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Abstract 

This research note’s primary objective is to assert for the impact of random demand 

for emergencies in Portuguese hospital costs. In order to do so, three different 

estimation methods are applied: Pooled OLS, Fixed-effects and Stochastic Frontier 

Analysis. Some conclusions of this note point out that dispersion measures of demand 

for emergencies are not significant in explaining total costs for the preferred models. 

Moreover, following Battese and Corra (1977), 58% of the total variance of the 

disturbance is due to the inefficiency term. Finally, predicting Coelli’s cost efficiency 

(1996), Portuguese hospitals have shown not to be far from the efficiency frontier. 

 

I. Introduction 

The Health Sector is one characterized by some peculiarities that differentiate it from 

other sectors. In that sense, when addressing any issue regarding health economics, one 

must have in mind that usual market and economic thinking may not verify. 

One good example of this is the demand for health and health care, which is a well-

known derived demand function, in other words, its amount depends directly on how 

much is supplied, being the supply determined by the health production function. 

Furthermore, demand in the health sector may also be characterized as being partially 

stochastic. As a way to better to understand this let us analyze emergency hospital 

admissions, which usually accounts for a considerable portion of total demand for 

hospital health care.  In fact, emergency admissions may suffer fluctuations over time, 

varying a lot from one period to another, a variation that is in part unpredictable (even 

in the presence of very good estimations), raising the following question: Does random 

demand for emergencies effects, or not, hospital costs? 
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This research question goes the following path. On Section II a literature review is 

presented, regarding notorious research papers on the topic of stochastic demand and 

forms of addressing it. Section III describes the data, briefly presenting the panel 

construction and the reasons behind the chosen variables. Afterwards, Section IV is 

concerned with the chosen methodology, mainly, with the stochastic frontier method, 

referring to annex the derivation of both Pooled OLS and Fixed Effects models. The 

empirical part of the paper is presented in Section V that starts by grasping each 

estimation method results individually and finishes by constructing the best model, 

according to Likelihood tests for every estimation process. Conclusion is made on 

Section VI, where a summary of procedures and results is shown, enabling a quick 

understanding of the paper. 

 

II. Literature Review 

Several research studies on the aforementioned matter were produced, specifically on 

how fluctuations in stochastic demand influence hospital costs. Friedman and Pauly 

(1981) were the first to establish such relationship, discussing the importance to take 

into account that for some firms the choice of inputs is made before knowing which 

demand will be faced in the future, in other words, in the presence of random demand. 

Moreover they were interested in correctly specifying the cost functions of firms facing 

such demand, always having in mind that a period with abnormally high demand could 

worsen the quality of the final output, by either reducing its values or even by lowering 

the utility of the firm’s manager.  

Their first step towards a consistent construction of a cost function for hospitals was 

to assume that each hospital sets its own level of quality. In the case of a demand burst 
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in a given period of time, hospitals are ready to assume a temporary decrease of the 

level of quality, which may be translated as an implicit or unobserved penalty cost. 

Nonetheless, if the effect persists over time, the hospital will increase their inputs in 

order to attain their previous level of quality, since by then the cost of quality reduction 

becomes higher than the cost of adding more inputs. 

Some empirical implications are to be taken from their models. Firstly, costs have 

shown to be highly sensitive to variations of the ratio expected output over the actual 

one; however they almost don’t change with respect to actual costs alone. Secondly they 

justify differences in their coefficients with differences in the size of hospitals, since this 

will consequently determine different levels of occupancy rates, average costs and case-

mix composition; an important point to take into consideration in further studies. They 

also agree on the idea that the suppression of excess beds won’t translate in a huge 

increase of savings. Finally, a policy proposition is made, in the presence of prospective 

budgets implemented by government and other insurers (both unwilling to specify an 

admission level), proportional revenue allowances are to be implemented, as a way to 

increase gains or to respond to unexpected losses in short-run. 

Later on, Gaynor and Anderson (1995) argue that uncertainty over demand enhances 

standby capacity of hospitals to reach a point that is considered to be excessive. The 

reason behind such behaviour is that hospitals look to avoid patients’ rejections when 

these are admitted into the hospital under emergency status. 

Standard theory of cost and production implies that technical efficiency in the 

production process is achieved (production “frontier”), however in the presence of 

stochastic demand such assumption does not hold. Therefore, the authors tried to derive 

a cost function for hospitals that differs from the usual approach, from which they were 
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able to conclude that uncertainty impacts hospital costs, and only by taking this into 

consideration, unbiased cost function parameters may be computed. 

After estimating the cost of an empty bed, they found out that a one percent decrease 

in the number of beds has a small impact on decreasing costs (only one-third of one 

percent). Nonetheless, if the number of beds diminishes largely, occupancy rates 

increase, resulting on a huge costs decrease. In their example, going from a 65 percent 

occupancy rate to a 76 percent occupancy rate, will decrease costs for the average 

hospital by almost 9,5 percent of total costs. 

Gaynor and Anderson conclude by stating one should merge these results with 

measures of social benefit of excess capacity in hospitals, so that optimal occupancy 

rates, and consequently the optimal number of excess beds, are to be correctly 

computed. 

Deepening the previous relationship, Hughes and McGuire (2003) seek for responses 

from hospitals’ production to demand uncertainty. They agree that an optimal level of 

reserve capacity is achieved given the existence of trade-off between costs of holding 

unused capacity available for unpredictable demand versus rejection of patients on 

emergency status due to operating at full capacity. Moreover, they also agree with 

Gaynor and Anderson (1995) when pointing out limitations to previous studies, such as, 

loss of information due to the use of aggregate measures. 

As for fluctuations in demand, these were previously relying on annual or quarterly 

periods of time that smoothed the behaviour throughout the entire time-series. In 

response to this, a distinction between elective and emergency admissions is to be made, 

from which they established two important assumptions for their model:  emergency 
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services’ demand is randomly distributed and follows a known probability density 

function, and, there is an observable excess demand for elective treatments. 

From here they conclude not only that demand uncertainty impacts hospitals’ costs, 

but also that by incurring in costs from holding standby capacity and being these much 

higher than costs with elective admissions, an increase in emergency cases will be of 

high concern in the budgetary perspective.  

There is also another important point to take into consideration on the analysis of 

stochastic demand and hospital costs relationship. In one hand costs are expected to 

increase due to the existence of idle capacity that ensures emergency admissions, in the 

other hand by allocating more resources such as beds to emergency admissions, one is 

overcrowding elective admissions, originating the so called waiting-lists. 

Siciliani, Stanciole and Jacobs (2009) address this particular issue with success. 

Waiting-lists are frequently seen as a way to effectively ration demand for health care 

(by reducing patients’ benefits from asking treatment). Until a certain point, waiting 

times may reduce idle capacity in the presence of stochastic demand; however, higher 

waiting times may also increase costs, usually due to increasing costs in managing the 

waiting-list, since one may have repeated examinations and increase in treatment costs, 

length of stay and cancelation rates. This is why the effect of waiting time on hospital 

costs is a non-linear one, having a U-shaped relationship, meaning there is a level of 

waiting time which minimises total costs. Nevertheless, results show that waiting times 

do not impact significantly hospital costs, implying that patients loose but at the same 

time providers do not benefit from such situation. 
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III. Data 

Data related with the Health Sector in Portugal is spread over several institutions. 

Not only this but data is gathered with different purposes, which leads to the creation of 

databases with different sets of time (annual, monthly, daily) in order to answer to 

different objectives. 

Despite all their different characteristics, it may be interesting to make an evaluation 

that encloses information from different sources, since only by doing so one may induce 

a broader perspective on specific matters. In particular, when evaluating hospital costs 

and the impact hospitals’ inputs and outputs have on its structure, one must gather 

different types of figures. 

Therefore, three different data sets are used when addressing this research question: 

the BDEA (Base de Dados dos Elementos Analíticos), the Diagnosis Related Groups 

and a Mixed Panel-Data (built by resorting to several sources of information). 

 

III.1 - BDEA (Base de Dados dos Elementos Analíticos) 

ACSS (Administração Central do Sistema de Saúde) provides information regarding 

hospitals’ accounting performances since 2002, from which we gather data regarding 

the dependent variable of this study, Total Costs. 

We use only hospitals that face emergencies. Specialty hospitals, such as oncology, 

maternities or even psychiatry, are also excluded from the analysis due to their 

specificities
1
. Some hospitals fail in reporting their accounts in some of the years

2
.  This  

leads to an unbalanced panel data, a feature aggravated once all data is gathered. 

                                                 
1
 Oncology Hospitals: IPO's Coimbra, Lisboa and Porto. Psychiatric Hospitals: Júlio de Matos, 

Lorvão, Magalhães Lemos, Miguel Bombarda, Sobral Cid. Maternitites: Alfredo da Costa, Júlio Dinis. 

Pediatric Hospitals: Maria Pia. 
2
 2003: Centro Hospitalar de Coimbra. 2004: Hospital de Águeda, Guarda e Viseu. 
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III.2 - Diagnosis Related Groups (DRG) 

DRG’s are a classification system for hospital inpatients grouped accordingly to 

similarities in their clinical profiles and consumption of resources. 

Each group is accredited with a certain relative weight, where this reflects the 

expected cost of a particular procedure for the medium inpatient inserted in a given 

group, relative to the average cost for the medium national inpatient. From such 

weighting coefficient one is able to design the case-mix index that results from the ratio 

between the number of weighted equivalent inpatients (admission episodes classified in 

DRG are converted to equivalent inpatients by taking the length of stay of each 

particular case and the normalized interval defined for each DRG) and the total number 

of equivalent inpatients (Fetter 1980). 

Mainly two reasons force the construction of an annual based dataset. Firstly, daily 

information presents a huge number of observations, which leads to heavy computation 

when applying statistical methods. Moreover one has that daily, weekly and monthly 

information may be gathered into annual data, while the reverse path is not possible. 

Having these restrictions in mind one must compress this dataset, which is originally 

composed by a total of 4,292,378 million daily observations and 146 variables 

comprehended between the years of 2003 and 2006, into annual data. 

Thus, two important questions arise: Will all this information be needed? How to 

deal with such huge amount of information? 

While the answer to the first question is an unquestionable and straightforward “no”, 

the last one requires a much more complex resolution. In order to address it one must 

answer another question: Which variables are to be used in our analysis? The response 
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to such interrogation is that the relevant variables to be computed from the DGR dataset 

are the annual average of the standard deviation of the number of emergencies taking 

place in a given year and hospital (sd), and its coefficient of variation (varco). 

After dropping irrelevant variables, one is left with 16 variables, each with a 

particular piece of information. These 16 variables enables the computation of our two 

final variables. 

The creation of three different indicators will lead to annual observations. The first is 

an hospital identification variable across all three datasets (id). 

The existence of hospital centers (two or more hospitals under the same management 

board) was taken into account, implying that several hospitals have seen their id 

correspond to the same of others.
3
 These transformations lead, once again, to the 

creation of an unbalanced panel data.  

The second indicator (ind) will assume the following format, YMMID, where Y 

stands for the year in question (Y = {3, 4, 5, 6} = {2003, 2004, 2005, 2006}), MM 

stands for the month in question (MM = {01, 02… 11, 12} = {Jan, Feb … Nov, Dec}) 

and ID stands for the indicator built in the first place – id, implying that ind = {30101, 

30102 … 61297, 61298}. 

The third and final indicator (ind2) assumes a similar form when compared with the 

previous one, that is YID, where once again Y is the year and ID is the hospital id code, 

therefore ind2 = {301, 302 … 697, 698}. 

As it is easily observable the indicator ind will enable the data aggregation in 

monthly averages, from which one will take its annual standard deviation.  

                                                 
3
 Gathered hospitals: Hospital de Setúbal with Hospital Ort. Outão (for every year); Hospital de Beja 

with Hospital de Serpa (for 2005 and 2006); Hospital Bragança with Hospital Mirandela and with 

Hospital Macedo de Cavaleiros (for 2005 and 2006); Hospital Vila Real with Hospital Peso da Régua (for 

2003); Hospital Portimão with Hospital Lagos (for 2005); Hospital Egas Moniz with Hospital Sª Cruz and 

with Hospital S. Francisco Xavier (for 2005 and 2006) 



9 

 

Taking a look to the variable “admission type”, different values arise, each of them 

corresponding to either programmed, urgent or other different types of admission in a 

given hospital. Thus, taking only the information related with urgent admissions one is 

apt to generate a dummy variable for emergencies where            (      )    

if     and            (       )    if    . 

Consequently, using the information captured by this dummy variable one is capable 

of counting the number of emergencies occurred in a given hospital in a given month of 

a given year, by resorting to our ind variable. Once this computation is completed it 

becomes easy to get the annual standard deviation of emergencies in a given hospital in 

a given year, since the variable ind2 allows monthly data to be aggregated annually. 

These transformations result on a solid construction of the annual average of the 

standard deviation of emergencies taking place in a certain hospital – sd. 

A similar procedure to the one used to compute sd may be applied in order to 

calculate the average annual number of emergencies in a given hospital (md), which is 

of high importance in the construction of our final variable, the coefficient of variation 

(      
 

 
 

  

  
). The usefulness of such variable is the fact of being a dimensionless 

measure of the spread of the distribution of a random variable (Encyclopaedia of 

Mathematics, 1988), meaning it has the ability to compare data sets that are in the same 

unit of measurement but present widely different mean values for each individual 

(Sharma, 2007), which in case of hospitals is sure to take place due to differences in 

size, and therefore in admissions capacity. 
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III.3 – Mixed Panel Data 

This Mixed Panel Data comes from Fortuna (2009), which has different sources for 

each set of variables. Built for the years between 2003 and 2006, it comprises outputs 

(production) and inputs (technology) recovered from DGS
4
 and dummy variables 

constructed throw the access to different sources (e.g. hospitals reports, hospital 

websites, among others). 

Despite the existence of important variables in this dataset in order to address our 

research question, one should still make reference to three important issues. Preferred to 

the number of deaths, the variable rate of deaths is adjusted to initial risk, as higher 

technological differentiation is translated into worst patients who will forcibly increase 

the number of deaths. However, in our dataset, its application means loss of 

information, in terms of observations. One must resort to the variable number of deaths 

as a proxy. 

The computation of a gross death rate (dividing the number of deaths by the number 

of discharges) would not solve the problem, as by taking logarithms in the empirical 

implementation, it would only change the interpretation of the variable number of 

discharges. 

The second issue is concerns the average annual wage (w).  It is a proxy for 

expenses with personnel, even though it is not possible to distinguish the average annual 

wage of a physician from that of a nurse, as this is an aggregated variable. Its formula is 

the quotient between total costs with personnel and the total number of staff members 

working, in a given hospital in a given year. 

                                                 
4
 Direcção Geral de Saúde – the general health directorate from the Ministry of Health. 



11 

 

A huge average annual wage dispersion is observed, ranging from 3,304.09€ to 

41,233.54€, something that may be the result of payments to staff through service 

companies, in which case the costs are registered in a different account. 

Following Jacobs, Smith and Street (2006) the functional form is expressed in the 

double log form. 

Greene (1990) alerts for the impact that a single errant observation may have in the 

estimation of our last models, whose effect may dominate an entire set of observations, 

even if large. Thus one must take into account all observations dropped due to 

unrealistic values or even not accommodated outliers, meaning once all three datasets 

are gathered one is left with a sum of 67 different hospitals. Not every hospital is 

observed yearly between the period of 2003 and 2006, meaning that estimations are 

produced using an unbalanced dataset
5
. 

The complete dataset accounts for a total of 239 observations across 4 years, and a 

total of 26 key explanatory variables
6
 and 1 dependent variable

7
 

(Annex.DataDescription). When doing so, one is avoiding three main issues in the 

computation of a stochastic frontier model (the latest to be constructed): non-

convergence, no-concavity and no decreasing loglikelihood function. 

Summarizing, the unrestricted model that will follow is built upon 26 independent 

variables, divided into eight different groups following the line of thought usually 

linked to cost functions. Since hospitals are expected to produce multiple outputs a first 

set of variables is chosen, being its quantities represented by the number of deaths and 

the number of discharges, both likely to impact total costs in an a priori analysis. 

                                                 
5
 45 hospitals with 4 observations; 11 hospitals with 3 observations; 10 hospitals with 2 observations 

and 1 hospital with 1 observation. 
6
 In logarithms if not dummy variables 

7
 ln(total costs) 
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Input prices are usually preferred to input quantities when computing a costs 

function, for a question of efficiency, nevertheless, the latter are much easier to gather 

since hospitals fail to report prices related with their intakes. Input prices are 

represented by average annual wage, while inputs are number of emergencies, number 

of outpatients, and number of beds. 

Other four variables, annual average of the standard deviation of emergencies and its 

coefficient of variation, occupancy rate and average length of stay, are added to the 

models in order to assert their impact in total costs, being the first two the key variables 

in addressing our question. Furthermore, the average length of stay may be interpreted 

as an intermediary output, in the sense it works simultaneously as an input, the time a 

patient stays hospitalized directly affects his or her treatment, and as an output, in the 

sense it results from a choice of inputs and their allocation. 

Finally a set of dummy variables are added depending on the estimation method, to 

allow for time-invariant effects that a group or all hospitals may face. Being time 

dummies (from 2003 to 2006), regional dummies (North, Center, Lisboa e Vale do 

Tejo, Alentejo and Algarve), district dummies (central hospital, district hospital and 

small district hospital) and type dummies (university hospital, EPE and separate 

buildings) the observable effects for each hospital. 

 

IV. Methodology 

In order to better estimate results from our panel data, characterized by repeated 

measures for each hospital, three methods are to be applied. The first one will be a 

simple Pooled-OLS, due to the existence of serial correlation. Secondly, Fixed-Effects 
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estimation as a way to capture the role of hospital characteristics that are not likely to 

change with time, such as managerial skills. 

Both models are characterized by computing average values for the coefficients, 

which seems not to be the best suitable option when analysing hospitals’ total costs. 

Consequently, a third and last method will be put into place, the Stochastic Frontier 

Analysis. Enabling the estimation of a Cost Efficiency, the analysis to be performed 

will be a result from an input-oriented approach. 

 

IV.1 – Stochastic Frontier Analysis 

Despite its usefulness in addressing a potential problem of endogeneity once Pooled 

OLS is performed, coming from the fact that bigger hospitals will probably present 

higher total costs and higher emergency inpatients, the Fixed-effects Model does not 

enable an error term decomposition in random statistical noise (exogenous shocks that 

affect each hospital) and time-invariant cost inefficiency. A solution for this problem is 

the application of the Stochastic Frontier Analysis, where the error term will present 

these two components. 

A more complete description of the method is reported in Annex.IV.1.2. 

 

IV.1.1 – Single-Equation Cost Frontier Models – The Model 

The panel data constructed encloses several observations for H hospitals through T 

time periods. In the construction of a single-equation model Kumbhakar and Knox 

Lovell (2000) point out that panel data is not required to be balanced. For notation, one 

must assume a well-balanced panel, and assume that the deterministic kernel of the 

stochastic cost frontier follows a Cobb-Douglas form. They also state that one must 
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assume time invariant cost efficiency, allowing the formulation of the following cost 

frontier model: 

1)                                

 
⇔ 

2) 
 

⇔                                    

 

h : hospital (=1,...,H) t : year (=1,...,T = 2003,…, 2006)    :  constant 

    (           )    : vector of outputs produced by hospital h in period t 

    (           )    : vector of prices and/or quantities of the inputs employed 

by hospital h in period t  

       
                : total expenditure incurred by hospital h in period t 

    : random statistical noise     : time invariant cost inefficiency 

           : this composed error term is asymmetric but positively 

skewed since      

Assuming that  (         ) is the cost frontier common to all hospitals, where   is a 

vector of technology parameters to be estimated, it implies that: 

     (         )    (   ) , being  (         ) the deterministic part common 

to all hospitals, and    (   ) a hospital-specific random part (random shocks faced by 

each hospital). 

Furthermore,        ensures homogeneity of degree +1 of the cost frontier in 

input prices, meaning that:  (          )    (         ), where    . 

The error components of the stochastic cost frontier follow three assumptions: 

1.          (    
 )  

2.          (    
 )  

3.    and     are independently distributed from each other and from the regressors 



15 

 

Given the marginal density function of  (   )   (      ) one is able to retrieve 

the log likelihood function for a sample of H hospitals, each observed for T periods of 

time (in here it relies the importance of assuming a balanced panel data): 

  ( )           
 (   )

 
  (  

 )  
 

 
  (  

     
 ) 

 ∑   [   ( 
   

  

)]

 

 (
   

   
 
)  

 

 
∑(

   

  

)
 

 

 

Where     
   

  ̅ 

  
     

   and    
  

   
 

(  
     

 )
 

Maximizing the log likelihood function with respect to the parameters one will be 

able to compute maximum likelihood estimates of      
        

  . 

Long panels usually imply that cost efficiency being time invariant will become a 

weaker assumption. Nevertheless all three methods (MLE; GLS; LSDV) lodge the 

possibility for time-varying cost efficiency. 

Taking from the conditional distribution of (   ), corresponding to the density 

function of a variable distributed as   (     
 )     mean or mode, or computing a 

minimum squared error predictor, one is able to correctly estimate cost efficiency. 

Hence, in order to appropriately measure cost efficiency given a stochastic cost frontier 

that follows all these assumptions, one must take the ratio of minimum cost attainable: 

3)      
 (         )    (   )

   
    (   ). 

 

 V. Results  

It will become clear that both coefficients and p-values will change accordingly to 

the specified estimation method. Results for every estimated model, either using Pooled 

OLS or Fixed-effects are available in the annexes, with similar interpretations to the 

ones presented below, however it is of high importance to compare the three estimations 
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methods under the same model specification (same variables), in order to follow a 

structured line of thought. The chosen specification was made with basis on likelihood-

ratio (LR) tests, which consistently presented the same combination of variables as the 

best model, independently of the statistical method applied 

(Annex.Likelihood.Tests). 

The inclusion of dummies, accounting for hospitals’ location or hospitals’ 

characteristics, is preferable in terms of LR test while estimating Pooled OLS and 

Fixed-effects, confirming Jacobs, Smith and Street (2006) prediction in improving 

estimations efficiency. Howbeit, the Stochastic Frontier Analysis does not allow the 

inclusion of such variables, leading to their exclusion and ultimately impacting the 

significance of important variables. Therefore, these models should still be taken into 

consideration, as the previously described dummies are used in the estimation of Pooled 

OLS and Fixed-effects, respectively in Annex.Table.PooledOLS and 

Annex.Table.Fixed-effects.  

 

V.1 Pooled OLS and Fixed-effects – Within estimator 

The main characteristic of the Pooled OLS model is that it treats each observation as 

being independent from all others; in that sense it produces average results for every 

observation when regressing the model. 

The output produced by Fixed-effects estimation will consider that yearly 

observations are not independent from each other in case they were observed in a given 

hospital. The usage of this model is validated by the Hausman Test, that for every 

specification prefers the fixed effects over the random effects.  
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The joint significance test has a p-value of zero for both Best Pooled OLS and Best 

Fixed-effects models, confirming that no variable is to be excluded from either 

regression. Furthermore, interpreting the Adjusted R
2
, the independent variables explain 

96.9% of the variation of total costs, in the case of Pooled OLS and 69.7% when 

applying the Fixed-effects (FE). 

Analysing more deeply and focusing on our research question, one must notice the 

high individual statistical significance that all number of outpatients (out), number of 

Pooled OLS Fixed Effects Stochastic Frontier

coef/se coef/se coef/se

ln(outpatients) 0.537*** 0.668*** 0.531***

(0.087) (0.064) (0.052)

ln(emergencies) 0.053 0.065 0.056

(0.068) (0.112) (0.049)

ln(annual average of the standard 

deviation of emergencies)
0.158 0.014 0.134

(0.148) (0.074) (0.084)

ln(coefficient of variation ) -0.130 0.036 -0.103

(0.143) (0.079) (0.081)

ln(average annual wage) -0.096* -0.005 -0.102

(0.055) (0.023) (0.064)

ln(discharges) -0.463*** -0.342** -0.434***

(0.141) (0.154) (0.098)

ln(occupancy rate) 0.419** 0.001 0.349**

(0.207) (0.124) (0.136)

ln(deaths) 0.274*** 0.200*** 0.278***

(0.068) (0.045) (0.044)

ln(beds) 0.611*** 0.321* 0.615***

(0.110) (0.179) (0.075)

_cons 8.246*** 9.447*** 8.357***

(0.948) (1.127) (0.918)

/lnsig2v - - -3.754***

(0.359)

/lnsig2u - - -3.423***

(0.734)

Number of observations 239 239 239

R2 0.971 0.709 -

Adjusted R2 0.969 0.697 -

sigma_v - - 0.153

sigma_u - 0.294 0.181

sigma2 - - 1.180

lambda - - 0.582

sigma_e - 0.085 -

rho - 0.923 -

corr - 0.717 -

note:  *** p<0.01, ** p<0.05, * p<0.1

Best Model - 3 Estimations
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deaths (dth), number of discharges (dis) and number of beds (beds) persistently show 

for every type of estimation. 

Starting by a ceteris paribus analysis of the number of outpatients, when out 

increases by one percentage point the total costs increase on average by 0.537 

percentage points (0.668 for FE), a positive effect that may be explained due to higher 

costs of treating patients outside the hospital. 

The variables number of emergencies (emg), annual average of the standard 

deviation of emergencies (sd) and coefficient of variation (varco) show no statistical 

significance for the usual levels of confidence (1%, 5% and 10%) in the Pooled OLS 

context (however last two become significant once dummies are added to the model). 

Thus one must conclude that given such model specification when demand for 

emergency services tends to fluctuate more across a given year than previously, its 

impact in tot will not be a significant one.  

Regarding the volume of emg a direct interpretation would just mean that the number 

of emergencies would be indifferent on the capacity hospitals have in costs adjustment, 

nonetheless, a more plausible explanation is linked with the fact that this variable shows 

only small variations across our panel data, making it difficult to attribute explanation 

power to it. 

In a ceteris paribus analysis of dth, one has that for a one percentage point increase 

in this variable tot will on average increase by 0.274 percentage points (0.2 for FE). 

Once again, this effect could result from the composition of the patients each hospital 

receives and by their degree of technology, which has two main implications for 

hospitals. First more advanced techniques are usually linked to higher costs of 

treatments, since better technology is more expensive to use and to buy. Secondly this 
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will attract more complicated cases in terms of resolution, meaning patients attracted to 

these hospitals will face, a priori, a higher probability of dying. 

A negative effect is observed on a ceteris paribus evaluation of dis, since for a one 

percentage point increase of this variable tot will decrease on average by 0.463 

percentage points (0.342 for FE). For a higher number of treated patients in a certain 

hospital, cheaper resources will be spent, as patients at the end of their lives tend to 

account for higher treatment costs, declining therefore the costs of health production. 

Recalling previous literature on the stochastic demand faced by hospitals there is no 

surprise in the result presented by beds, which, ceteris paribus, impact positively tot, 

leading to an increase of 0.611 percentage points (0.321 for FE) for a one percentage 

point increase in this variable. This is not only due to the directly associated cost of an 

extra bed, but more a question of correctly allocating it to either urgent or planned 

admissions and its associated costs. 

The Fixed-effects model provides some extra information. The first to be noticed is a 

correlation of 71,7% between the errors within groups and the regressors invoked by the 

output. As one may also behold the standard deviation of the residuals within groups 

(sigma_u) is roughly three times that of the overall residuals (sigma_e). Finally it is 

important to interpret the intraclass correlation (rho), a value that transpires that 92,3% 

of the variance is due to differences across panels, attesting huge differences from one 

hospital to another in terms of data variation, but small variations within each hospital, 

something explained by one’s short-term analysis. 

V.3 Stochastic Frontier Analysis 

The fixed-effects estimation method has two handicaps. In one hand there is the 

suppression of a large amount of variation in the data, which produces estimates that 
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SF Full Model SF Full Model - 1 SF Full Model - 2 SF Full Model - 3 SF Full Model - 4 SF Full Model - 5 SF Reduced Model

coef/se coef/se coef/se coef/se coef/se coef/se coef/se

ln(outpatients) 0.532*** 0.531*** 0.611*** 0.538*** 0.533*** 0.574*** 0.557***

(0.052) (0.052) (0.060) (0.065) (0.065) (0.067) (0.067)

ln(emergencies) 0.056 0.056 0.022 0.034 0.038 0.065 0.084

(0.049) (0.049) (0.057) (0.069) (0.068) (0.071) (0.069)

ln(annual average of the standard 

deviation of emergencies) 0.133 0.134 0.079 0.221** 0.228** 0.494*** 0.481***

(0.084) (0.084) (0.091) (0.101) (0.100) (0.076) (0.076)

ln(coefficient of variation) -0.103 -0.103 -0.035 -0.136 -0.146 -0.404*** -0.399***

(0.081) (0.081) (0.085) (0.094) (0.092) (0.066) (0.067)

ln(average annual wage) -0.102 -0.102 -0.159** -0.180** -0.183** -0.195**

(0.064) (0.064) (0.068) (0.082) (0.081) (0.084)

ln(discharges) -0.266 -0.434*** 0.023 0.328*** 0.329***

(0.451) (0.098) (0.082) (0.083) (0.084)

ln(occupancy rate) 0.186 0.349** -0.093 0.074

(0.448) (0.136) (0.120) (0.141)

ln(deaths) 0.277*** 0.278*** 0.428***

(0.044) (0.044) (0.047)

ln(beds) 0.448 0.615***

(0.445) (0.075)

ln(averagelengthofstay) 0.169

(0.444)

_cons 8.121*** 8.357*** 8.974*** 8.235*** 8.501*** 9.066*** 7.130***

(1.109) (0.918) (0.986) (1.199) (1.040) (1.069) (0.665)

/lnsig2v -3.752*** -3.754*** -3.828*** -2.880*** -2.940*** -2.846*** -2.823***

(0.360) (0.359) (0.364) (0.498) (0.367) (0.423) (0.403)

/lnsig2u -3.430*** -3.423*** -2.724*** -4.516 -3.903 -4.098 -4.087

(0.744) (0.734) (0.384) (6.939) (2.591) (4.004) (3.854)

sigma_v 0.153 0.153 0.148 0.237 0.230 0.241 0.244

sigma_u 0.180 0.181 0.256 0.105 0.142 0.129 0.130

sigma2 0.056 0.056 0.087 0.067 0.073 0.075 0.076

lambda 1.174 1.180 1.736 0.441 0.618 0.535 0.532

gamma 0.580 0.582 0.751 0.163 0.276 0.222 0.220

Number of observations 239 239 239 239 239 239 239

note:  *** p<0.01, ** p<0.05, * p<0.1

Stochastic Frontier Analysis

tend towards zero, meaning these are ones of almost no effect in the dependent variable. 

On the other hand this estimator finds it impossible to distinguish between time-

invariant heterogeneity and inefficiency, thus the application of a stochastic frontier 

analysis. 

 

 

 

 

 

 

Looking to the key variables of this research question, sd and varco, they are only 

statistically significant for more parsimonious models. For the reduced model, when sd 

increases by one percentage point, tot increases on average 0,481 percentage points, but 

as soon as one adds two variables to this model (average annual wage and number of 

discharges) this value immediately drops to 0,228 percentage points. 
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When statistically significant (two more parsimonious models), the varco works as 

an inverse force to the impact of sd, forcing tot to decrease near 0,399 percentage 

points. Still, one must notice that varco may increase as a result of two distinct 

behaviours: an increase in the sd or a decrease in md (capacity indicator for each 

hospital), implying that for the same level of sd hospitals with higher annual flows in 

emergency admissions will face higher costs than hospitals with lower flows. Moreover, 

since the negative effect evidenced by varco never overcomes that of sd, higher 

dispersion will always increase total costs, independently from the hospitals’ size. 

A strange result and one that makes no economic sense is that observed for the 

average annual wage (w), which has a negative impact. This cannot be fully explained. 

Nevertheless, after more detailed analysis one is able to conclude that in a simple 

relation with tot this variable has a positive impact, and only upon the addiction of 

volume variables, such as out and beds, the sign becomes negative. 

Under this estimation process the error term is decomposed in idiosyncratic error 

(   ) and inefficiency error (  ), being the later a possible aggregation of technical 

with allocative inefficiency (something not distinguishable using this approach). Jacob, 

Smith and Street (2006) advert that mean level and variation efficiency computations 

are susceptible to models’ specifications, in other words, they are sensitive to the chosen 

independent variables and to the functional form. 

Following Battese and Corra (1977) and computing the total variance of disturbance, 

  
    

    
 , one is able to observe that the “full model – 1”, or “best model”, is the 

one presenting the lower overall disturbance, with a variance of 0,056. Afterwards it is 

important to build gamma,  
  

 

  
  , a measure that tells us that this model allocates 58% 

of the total variance of the disturbance to the inefficiency term. In other words, 58% of 
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the distance comprised between the Portuguese hospitals’ operation point and the costs 

frontier is explain by inefficiencies within each of them, and only 42% is due to 

exogenous shocks common to all hospitals. 

According to Coelli (1996), the frontier will represent costs minimization where the 

   estimates define how far each hospital runs above the cost frontier, empowering one 

to estimate cost efficiency for each model. Starting by the calculation of lambda 

proposed by Greene (1990),  
  

  
 , one has a first indicator of efficiency, where 

whenever this ratio equals zero one will be in the presence of no inefficiency. The 

overall inefficiency for Portuguese hospitals is 1,180 for the best model. These 

efficiency results are still far from zero and state that inefficiency standard deviation is 

higher than the one coming from random factors, however they are not that high if one 

takes into consideration that it is comprehended between 0 and infinity. 

Finally, predicting the cost efficiency for each hospital advanced by Coelli (1996), 

        (  ), the inverse of what Kumbhakar and Knox Lovell (2000) considered. 

As a result, Coelli’s estimation (in Annex.Table.CostEfficiency) will vary between 1 

and infinity, in opposition to the production efficiency that is set between 0 and 1. 

For the best model, one has a minimum of 1.033501 (most efficient hospital – 

Hospital de Santo António 2006) and a maximum of 1.603784 (least efficient hospital – 

Centro Hospitalar de Caldas da Rainha 2006), while the national average is that of 

1.157327; meaning the Portuguese hospitals are on average not far from efficiency. 

Even though evaluating production efficiency, Afonso and Fernandes (2008) and 

Gonçalves (2008) point out improvements in the efficiency frontier until 2004, with a 

slight decrease in 2005, mainly due to the performance of hospitals in the public sector. 

Furthermore Afonso and Fernandes observed significant yearly fluctuations regarding 
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individual efficiency, showing that only 10% of the hospitals stayed on the production 

frontier across the studied time period. 

It is also important to estimate functions in their usual form, this is, without 

emergencies’ dispersion variables. These results are presented in 

Annex.BestModels.NoDispersionVariables and Annex.SF.NoDispersionVariables. 

  

VI. Conclusion 

This research paper tried to answer a research question regarding the impact that 

stochastic demand for emergency services in hospitals may have or not in hospital total 

costs. Using a Stochastic Frontier Analysis method, one may conclude, neither the 

number of emergencies nor its dispersion across a given year have a significant impact 

on total costs of hospitals. Regarding efficiency, Portuguese hospitals have shown not 

to be far from it, with about 58% of the distance towards full efficiency being explained 

by hospitals’ within inefficiency and 42% being tied with exogenous shocks. 

This study also enables the uncover of variables which are in fact important to 

explain total costs differences across hospitals, such as, number of outpatients, number 

of deaths, number of discharges and the number of beds. 
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Annexes 

 Annex.DataDescription 

Variable Obs Mean Std. Dev. Min Max 

Total Costs 239 61,600,000 69,000,000 4,818,909 338,000,000 

Nº Outpatients 239 108,648.3 108,520.1 4,072 520,029 

Nº Emergencies 239 94315.91 49705.43 24,987 249,420 

ln(sd) 239 4.296703 0.8384274 2.36429 6.291573 

ln(varco) 239 -2.371209 0.4893733 -3.624846 -0.9075351 

Average Annual Wage 239 26,893.12 4,460.06 3,304.09 41,233.54 

Nº Discharges 239 12,038.61 9,867.942 1,032 50,315 

Occupancy Rate 239 74.02702 9.815144 42.6 98 

Nº Deaths 239 572.795 448.326 30 2067 

Variable Description 

Total Costs 
sum of all accounts in Portuguese cost statements in euros, excluding amortizations and the noisiest 

accounts 

Nº Outpatients annual number of ambulatory patient visits, in a given hospital 

Nº Emergencies annual number of urgent admissions, in a given hospital 

ln(annual average of the 

standard deviation of 

emergencies) 

annual average of the standard deviation of emergencies taking place in a given hospital  

ln(coefficient of variation) 
quotient between annual average of the standard deviation of emergencies and the average annual 

number of emergencies, in a given hospital in a given year 

Average Annual Wage 
quotient between total costs with personnel and the total number of staff members working, in a given 

hospital in a given year 

Nº Discharges absolute annual number of inpatients discharges, in a given hospital 

Occupancy Rate (average length of stay X inpatients) / (365 X beds) 

Nº Deaths annual number of deaths, in a given hospital 

Nº Beds annual number of beds, in a given hospital 

Average Length of Stay average number of days a patient stays in a given hospital once admitted 

http://www.ncbi.nlm.nih.gov/pubmed?term=Lovell%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=18435427
http://www.ncbi.nlm.nih.gov/pubmed?term=Rodr%C3%ADguez-Alvarez%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18435427
http://www.ncbi.nlm.nih.gov/pubmed?term=Wall%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18435427
http://www.ncbi.nlm.nih.gov/pubmed/18435427
http://www.ncbi.nlm.nih.gov/pubmed/18435427
https://springerlink3.metapress.com/content/?Author=Mike+Smet
https://springerlink3.metapress.com/content/u2642782p0221626/
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Derivation of the Pooled Ordinary Least Squares and Fixed-effects Model  

Annex.IV.PooledOLS 

Enabling a general approach to panel data, enclosing a weighted (depending on the 

variability of the explanatory factors) average of both within and between estimators of 

hospitals, the Pooled OLS exploit the maximum information they possibly can. 

Following Cameron & Trivedi (2005), the pair  ̅  ∑ ∑    
 
   

 
    and  ̅  

∑ ∑    
 
   

 
    define the overall means of, respectively, total expenditure incurred by 

hospitals and explanatory variables (outputs produced and prices and/or quantities of the 

inputs employed by hospitals). From here one may easily compute the moment matrices of 

the overall sum of squares and cross products: 

   
  ∑∑      ̅       ̅  
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Dividing it into matrices for both within ( ) and between (b) sum of squares and cross 

products yields: 
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  ∑   ̅   ̅   ̅   ̅  

 

   

 

As it may be shown    
     

     
  and     

     
     

 . Consequently the OLS 

estimator may be constructed as it follows: 

   [   
 ]     

  [   
     

 ]
  

[   
     

 ] 

Taking this model formulation into account, one may ensure that Pooled OLS may in 

fact not be the most efficient to exploit jointly within and between variability. In case the 

individual specific effects are correlated with the explanatory variables,    estimates will 

be inconsistent and biased. 

Additionally, Pooled OLS estimation presents a constant intercept, denoting an 

inconsistent behavior of this model in case the correct model to apply is the Fixed-effects 

model, as one will study more carefully in the following section, due to the fact of the 

intercept being an individual-specific estimation, therefore impossible to consistently derive 

it for in a general approach. 

 

Annex.IV.Fixed-effects 

A possible problem of endogeneity may arise with the usage of Pooled OLS, since 

bigger hospitals will probably present higher total costs and higher emergency inpatients. 

Known as the simplest model applied in the treatment of panel data, the fixed-effects 

estimator surge as a possible solution for this issue, presenting the following general 

specification according to Cameron & Trivedi (2005): 
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Its main characteristic relies on the variable           . Despite measuring time-

invariant individual-specific effects, its unobserved heterogeneity may be correlated with 

the regressors     and with their coefficients   , assuming that the error term     is 

         
  . 

The main objective of such model is to estimate the coefficients   , because they 

represent the marginal effect of change in regressors, as one may easily understand from 

       

    
   . The variables    are not of interest per se, however they are useful in the 

sense that only in their presence one may compute better estimations of   . 

Several consistent estimations may be constructed by resorting to a wide variety of 

models, more precisely four models: Least Squares Dummy Variables (LSDV), Within 

Estimator, First-differences and Differences-in-differences (DD). One must note that the 

first two methods produce identic    estimations. 

 

Annex.IV.Fixed-effects.LSDV 

Briefly describing the Least Squares Dummy Variables it is simply the inclusion of N 

dummy variables for each individual and constant over time, in a simple OLS regression. 

Moreover, one must include N-1 dummy variables in a model with constant, or exclude the 

constant in order to put all the N dummies in the model. Constructing a model based on the 

last hypothesis one has the following form: 

                               

Where         if     and         if    . The error term is assumed to be well-

behaved, enabling consistent and unbiased estimates, since the omitted variable bias effect 

is capture by the dummy variable for each individual. It is also important to point out that 
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for huge datasets this model generates huge matrixes, that grow exponentially, which may 

lead to heavy computational requirements, making the estimation of parameters not 

feasible. Therefore, another approach may be required, such as the Within Estimator. 

 

Annex.IV.Fixed-effects.Within Estimator 

This method is derived by subtracting the time-averaged model from the original one, 

the within model comes as following: 

[      
̅̅̅̅ ]    [      ̅̅ ̅]  [      ̅̅ ̅] 

Where   
̅̅̅̅  is the mean of the T observations on the outcome for hospital h,   ̅̅ ̅ is the K 

row vector of the means of the T observations on explanatory factors X for hospital h. Once 

the estimates of the parameter    are computed      , it becomes possible to estimate the 

individual fixed effects for each hospital: 

     
̅̅̅̅    ̅̅ ̅    

However for a small panel data this individual fixed effect estimate will be inconsistent, 

since T does not converge to infinity. Nonetheless knowing that the sufficient condition for 

consistency in the within model is given by  [      ̅̅ ̅       ̅̅ ̅]   , in other words one 

assumes strict exogeneity, it may be ensured that the estimate for    is consistent. Such 

condition implies that strict orthogonality across time must be verified so that consistent 

OLS for the within estimator are computed. 

The major flaw presented by the within estimator is related with its incapability of 

allowing estimates of the coefficients of time-invariant regressors, by virtue of the 

cancellation of such variables when the subtraction of one model with the other takes place. 



5 

 

Finally it is important to stress out that robust statistical inference may be designed for 

the within estimator if heteroskedasticity or serial correlation take place. Usually, the main 

drawback is indeed the existence of serial correlation, which in its turn leads to an 

underestimation of the standard errors, consequently inflating t-statistics and p-values, both 

of high importance in setting conclusions. 

The degree of serial correlation diminishes in the presence of fixed or random effects; 

howbeit these procedures are not likely to fully eliminate this problem. The so-called panel-

robust sandwich standard errors, which correspond to an extension of the white standard 

errors to panel data, solve this issue, considering that every time observations for each 

hospital from our fixed effects model are stacked: 

  ̈      ̈    ̈ 

Where both   ̈ and   ̈ are     column vectors and   ̈ is a     matrix of regressors. 

Stacking the time stacks over the H hospitals, one has the following matrix form: 

 ̈     ̈   ̈ 

Assuming that    ̈  ̈   , the essential condition for consistency (weak exogeneity is 

not sufficient as it only implies contemporaneous exogeneity), and the model is correctly 

specified, the OLS estimator may be derived as it follows: 

 ̂      [ ̈  ̈]   ̈  ̈ 

Under strict exogeneity the asymptotic variance of the OLS estimators becomes: 

   ( ̂   )   ( ̂   
 
)   ( ̂   )

 
 [ ̈  ̈]   ̈ ⏟      

     

   ̈ ̈  ⏟  
      

 ̈[ ̈  ̈]  ⏟    
     

 

From which one only needs to take the residuals  ̂, estimated with the within or fixed 

effects estimator, and plug them in the expression, in order to consistently estimate this 

variance. 
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Theoretical background on Stochastic Frontier Analysis 

Annex.IV.1.2 – Cost vs Production 

Further developing the Stochastic Frontier Analysis, one needs to differentiate the input-

oriented cost efficiency (cost frontier) from the output-oriented technical efficiency 

(production frontier). Five major differences between these two processes are described by 

Kumbhakar and Knox Lovell (2000), which are imperative to better understand all 

computations and obtained results. 

The first difference is related with data, as for cost efficiency estimation one needs to 

gather information regarding input prices or quantities (depending on the model), output 

quantities and total expenditure; for a production frontier one will only need employed 

quantities of input and the output provided by each producer. 

Secondly, the number of outputs is also of high importance. It is possible to perform cost 

efficiency analysis for a firm that produces either one or multiple outputs, however for a 

production frontier estimation the firm will have to produce a single output. In case of 

multiple outputs a production frontier may be design recurring to an output distance 

function, dual to a revenue frontier, being one implication that joint production occurs, in 

other words, the total cost of producing both outputs jointly will be lower than producing 

them separately - “Baumol Gama Economies”. 

A third difference arises due to the fact that inputs are treated equally in a stochastic 

production frontier, even if it is known in advance that different classifications are to be 

given to each input. No distinction is made between variable and quasi-fixed inputs, 

indicating that information will be lost, since there is no inference related with the 

variability of inputs. When looking to a stochastic cost frontier, inputs may be treated 
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differently, a natural possibility as one is now working with an input-oriented model. Once 

such distinction is made and one knows exactly which inputs are and which are not quasi-

fixed, one will construct a variable cost frontier. 

In the fourth place, we have that no behavioural objectives must be set in advance to 

producers in an output oriented model, contrarily to what happens regarding the input-

oriented model. This may sometimes become an unrealistic assumption; however, if for 

instance the producer faces fixed outputs, maybe due to short-run fixity or contract 

arrangement, one must only model a variable cost frontier in order to solve this problem. 

One must also take into account that in some sectors, as in the Health one, output is not 

storable and therefore the output maximization objective, indissociable from the output-

oriented approach, will be inappropriate. 

Finally, the last difference is related with the information given by each frontier’s 

estimation. In one hand technical efficiency cannot be decomposed; in the other hand cost 

efficiency may be decomposed. The latest may have in fact two different sources, an input-

oriented technical efficiency or an input allocative inefficiency, and understanding which of 

these is the main source of inefficiency may be an interesting exercise. It is important to 

take into consideration that in order to estimate cost efficiency, input-oriented technical 

efficiency is a necessary condition, however it is not sufficient per se, meaning that it will 

always have a lower magnitude than that of cost efficiency, being the difference the so-

called input allocative inefficiency. Moreover, one must be careful when comparing input-

oriented technical efficiency results with that of output-oriented technical efficiency, as 

they may not be the same; such will only take place if production is technically efficient or 

when inefficient production of technology still satisfies constant returns to scale. In case 

neither of this assumption does not hold one must be aware that the input-oriented technical 
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efficiency will be lower than output-oriented for decreasing returns to scale, and greater for 

increasing returns. 

 

Annex.IV.1.3 – Cross-section vs Panel Data in a Cost Frontier Analysis 

Accessing cross-sectional data to perform efficiency estimates may raise several issues, 

mainly due to the fact that, in this case, each hospital would only be observed once, which 

would reduce one’s confidence in the results. These data limitations may be solved by 

access panel data, otherwise as Schmidt and Sickles point out three problems arise when 

computing a stochastic frontier analysis. 

The first issue addressed by them is related with Maximum Likelihood estimation of the 

stochastic cost frontier model, which will consequently allow for the decomposition of the 

residuals into cost efficiency and statistical noise. The limitation arises as all error terms 

follow strong assumptions regarding their statistical distribution. Panel data enables weaker 

distributional assumptions, because repeated observations for a given hospital are observed. 

A second difficulty surges when assuming that in one’s Maximum Likelihood 

Estimation the error related with cost efficiency must be independent from the regressors of 

the model (input prices, quasi-fixed quantities and output quantities). Nonetheless not every 

panel data estimation technique requires this independence assumption to hold, once again 

due to the existence of repeated observations. 

Finally they point out that despite being possible to perform the JSLM technique, 

applying it to the estimation of cost efficiency, the estimator is not consistent since the 

variance of the conditional mean does not tend to zero when the size of the cross-section 

tends to infinity. By adding observations for each hospital the inconsistency problem is 

solved, meaning technical efficiency of hospitals is now consistently estimated. 
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Further Results 

Annex.V.1.PooledOLS (Annex.Table.PooledOLS) 

The main characteristic of this model is that it treats each observation as being 

independent from all others; in that sense it produces average results for every observation 

when regressing the model. 

The joint significance test has a p-value of zero for all the Pooled OLS models, 

confirming that no variable is to be excluded from either regression. Furthermore, when 

looking for the Adjusted R
2
, it is observable that as more variables are included in the 

model, the higher the explanation power gets. For a regression with all variables included 

(Full Model), the independent variables explain 98,1% of the variation of total costs. 

Nevertheless, for the Reduced Model, the value is only a bit lower, with a power of 

explanation of 94,4% , confirming the huge importance that three of the last four variables 

have on total costs (tot). 

Analysing deeply these three variables and focusing more in our research question, one 

must notice the high individual statistical significance that all number of outpatients (out), 

annual average of the standard deviation of emergencies (sd) and coefficient of variation 

(varco) persistently show in every regression. 

Starting by a ceteris paribus analysis of the number of outpatients, when out increases 

by one percentage point the total costs increase on average by 0,419 to 0,580 percentage 

points, a positive effect that may be explained due to higher costs of treating patients 

outside the hospital. 

Depending on the model, ceteris paribus, for a one percentage point increase in sd, total 

costs increase on average between 0,236 and 0,529 percentage points, meaning that when 
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demand for emergency services tends to fluctuate more across a given year than previously, 

tot will also be higher than before.  

One notorious fact is that the volume of the number of annual emergencies presents no 

statistical significance for the usual levels of confidence (1%, 5% and 10%). A direct 

interpretation would just mean that the number of emergencies would be indifferent on the 

capacity hospitals have in costs adjustment. A more plausible explanation is linked with the 

fact that the variable number of annual emergencies shows only small variations across our 

panel data, making it impossible to attribute explanation power to this variable. 

From here comes the usefulness of the variable varco that enables the evaluation of the 

dispersion over the average number of emergencies in a given year, in a certain hospital. 

Once the computation of the average annual number of emergencies is computed one may 

better attain for the impact of dispersion; for a one percentage point ceteris paribus increase 

in varco, total costs decrease, on average, between 0,223 and 0,463 percentage points. 

These results show that higher dispersion on the number of emergencies for a given year 

increases hospitals’ total costs, since the negative effect evidenced by varco never 

overcomes that of sd, meaning that higher dispersion always increases total costs 

independently from the hospitals’ size. Moreover, an increase in md also leads to an 

increase of tot, in which case varco decreases, given a negative coefficient, tot must 

increase. 

Regarding the dummy variables presented in the models, having the year of 2003 as base 

group one reaches the conclusion that in case one is in any of the other years, ceteris 

paribus, a statistically significant positive impact is observed. Regarding the regional 

location of each hospital, one may state that hospitals located in any place but the Northern 

region will see their total costs increase in a ceteris paribus analysis, except for hospitals 
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located in the Centre region, which present no statistical significance. Hospital Centres will 

also present higher costs than district and small district hospitals, something that is easily 

understood due to their size. In the same line of thought, hospitals that are at the same time 

universities are also likely to present higher costs, as well as hospitals that perform their 

services in separate buildings, due to maintenance costs. 

Both number of discharges and number of deaths usually present statistical significance, 

although never for a confidence level of 1%. The number of deaths always shows a positive 

coefficient, however discharges see its coefficient vary depending on the model that is 

used. Finally, neither the average annual wages, nor the occupancy rate, nor the average 

length stay, are statistically significant in explaining total costs. 
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Robust Full model Robust Full-1 Robust Full-2 Robust Full-3 Robust Full-4 Robust Full-5 Robust Full-6 Robust Reduced Robust time Robust region Robust district Robust type

coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se

ln(outpatients) 0.444*** 0.444*** 0.479*** 0.419*** 0.422*** 0.435*** 0.436*** 0.559*** 0.535*** 0.580*** 0.454*** 0.520***

(0.071) (0.071) (0.077) (0.083) (0.083) (0.086) (0.085) (0.122) (0.125) (0.092) (0.121) (0.119)

ln(emergencies) -0.014 -0.014 -0.005 0.000 0.009 0.017 0.016 0.080 0.083 0.116 0.031 0.014

(0.070) (0.069) (0.097) (0.090) (0.090) (0.094) (0.095) (0.122) (0.124) (0.122) (0.111) (0.112)

ln(annual average of the standard 

deviation of emergencies)
0.264** 0.264** 0.236** 0.309** 0.288** 0.463*** 0.464*** 0.481*** 0.502*** 0.410*** 0.499*** 0.529***

(0.122) (0.122) (0.114) (0.120) (0.116) (0.099) (0.099) (0.128) (0.131) (0.104) (0.129) (0.120)

ln(coefficient of variation) -0.240* -0.239* -0.191 -0.248** -0.223* -0.390*** -0.390*** -0.399*** -0.427*** -0.316*** -0.404*** -0.463***

(0.127) (0.126) (0.118) (0.125) (0.115) (0.101) (0.101) (0.107) (0.112) (0.094) (0.123) (0.107)

2004 0.037*** 0.037*** 0.042*** 0.040** 0.041*** 0.040** 0.039** 0.044*

(0.012) (0.012) (0.015) (0.016) (0.016) (0.016) (0.017) (0.023)

2005 0.042** 0.042** 0.042* 0.063*** 0.062*** 0.064*** 0.065*** 0.063***

(0.020) (0.020) (0.022) (0.022) (0.022) (0.023) (0.022) (0.024)

2006 0.080*** 0.079*** 0.064** 0.082** 0.082** 0.072** 0.073** 0.069*

(0.029) (0.029) (0.031) (0.034) (0.034) (0.034) (0.033) (0.036)

Lisboa e Vale do Tejo 0.211*** 0.210*** 0.213*** 0.288*** 0.279*** 0.281*** 0.280*** 0.324***

(0.051) (0.050) (0.055) (0.048) (0.049) (0.050) (0.050) (0.067)

Centro 0.003 0.003 0.004 0.029 0.027 -0.002 -0.003 0.017

(0.035) (0.035) (0.048) (0.048) (0.048) (0.052) (0.052) (0.069)

Alentejo 0.190*** 0.190*** 0.293*** 0.370*** 0.366*** 0.343*** 0.341*** 0.384***

(0.069) (0.068) (0.074) (0.066) (0.068) (0.072) (0.075) (0.095)

Algarve 0.372*** 0.371*** 0.458*** 0.478*** 0.463*** 0.431*** 0.429*** 0.410***

(0.055) (0.055) (0.056) (0.055) (0.056) (0.049) (0.051) (0.102)

Districtal Hospital -0.192*** -0.192*** -0.231*** -0.256*** -0.253*** -0.265*** -0.264*** -0.333***

(0.060) (0.060) (0.073) (0.072) (0.074) (0.071) (0.071) (0.087)

Small Districtal Hospital -0.288*** -0.289*** -0.291*** -0.320*** -0.337*** -0.385*** -0.386*** -0.502***

(0.081) (0.080) (0.107) (0.115) (0.112) (0.110) (0.110) (0.146)

University Hospital 0.176** 0.177** 0.247*** 0.268*** 0.280*** 0.298*** 0.298*** 0.323***

(0.072) (0.071) (0.077) (0.081) (0.079) (0.078) (0.078) (0.106)

Entidade Pública Empresarial 0.031 0.031 0.017 0.024 0.022 0.028 0.028 -0.096

(0.041) (0.041) (0.047) (0.046) (0.047) (0.049) (0.049) (0.070)

Seperate Buildings 0.138*** 0.138*** 0.117** 0.124*** 0.117** 0.128*** 0.128*** 0.147**

(0.052) (0.051) (0.053) (0.047) (0.047) (0.045) (0.045) (0.062)

ln(average annual wage) -0.006 -0.006 0.011 0.018 0.020 0.011

(0.051) (0.051) (0.055) (0.060) (0.061) (0.064)

ln(discharges) -0.363* -0.277** 0.089 0.224** 0.222**

(0.213) (0.117) (0.097) (0.093) (0.091)

ln(occupancy rate) 0.251 0.167 -0.148 -0.144

(0.190) (0.154) (0.146) (0.152)

ln(deaths) 0.107 0.108* 0.181**

(0.066) (0.066) (0.087)

ln(beds) 0.538*** 0.450***

(0.205) (0.089)

ln(average length of stay) -0.088

(0.184)

_cons 9.816*** 9.695*** 9.334*** 9.248*** 8.660*** 9.380*** 9.498*** 7.260*** 7.290*** 6.996*** 9.224*** 8.067***

(1.077) (1.046) (1.153) (1.163) (0.901) (0.966) (0.835) (1.047) (1.066) (1.061) (0.959) (1.044)

Number of observations 239 239 239 239 239 239 239 239 239 239 239 239

R2 0.983 0.983 0.979 0.978 0.978 0.976 0.976 0.945 0.946 0.966 0.954 0.953

Adjusted R2 0.981 0.981 0.977 0.976 0.976 0.974 0.975 0.944 0.944 0.964 0.953 0.951

note:  *** p<0.01, ** p<0.05, * p<0.1

Pooled OLS
Annex.Table.PooledOLS 
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Annex.V.2.Fixed-effects.Within-estimator (Annex.Table.Fixed-effects) 

Avoiding the aforementioned endogeneity issue that will probably arise with the 

estimation of the Pooled OLS, coming from the fact that bigger hospitals are expected to 

present higher total costs and higher emergency inpatients, one should estimate a Fixed-

Effects model. The output produced by such estimation will consider that yearly 

observations are not independent from each other in case they were observed in a given 

hospital. The usage of this model is validated by the Hausman Test, that for every model 

prefers the fixed effects over the random effects.  

Several differences arise when estimating our models through the method of fixed 

effects. The first concerns the drop of some of the dummy variables, mainly the ones 

regarding the regional location and district location of hospitals, in order to avoid 

collinearity problems. Howbeit, the inclusion of dummy variables, for instance hospitals’ 

location or the hospitals’ characteristics, is something that must be done, given its power in 

improving estimations efficiency (Jacobs, Smith and Street 2006). 

Despite the joint significance test for every models also show a p-value of zero, making 

it possible to reject the null hypothesis of all variables being equal to zero, the Adjusted 

R
2
’s are much lower than the ones observed in the Pooled OLS models, with values around 

73,3% and 66,5%, which is still a high value for this statistic.. Such Result is justified by 

the attempt of the Pooled OLS in artificially balancing out existing heterogeneity. 

Once time-invariant individual-specific effects are taken into account, one comes across 

with models where the majority of variables display no statistical significance, which 

constitutes a major drawback in one’s analysis. 

The number of outpatients however, it is still significant across every constructed model, 

and in a ceteris paribus analysis, when out increases by one percentage point the total costs 
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increase on average by 0,5 to 0,8 percentage points, reaffirming the importance of this 

variable in explain total costs increase. 

In line with the already computed Pooled OLS models, another strong variable across 

models is the number of deaths (dth), which in a ceteris paribus analysis for a one 

percentage point increase leads tot to increase by at least 0,154 percentage points, implying 

the higher the number of deaths taking place in a given hospital in a given year, the higher 

will be total costs. 

Previously of high importance in every model, annual average of the standard deviation 

of emergencies (sd) and coefficient of variation (varco) have only shown to be statistically 

significant in the reduced model where dummy variables for each type of hospital are 

included. Even more puzzling are the coefficient signs both exhibit, negative and positive 

signs respectively, going in the opposite direction of the previous explanations for their 

impact on total costs. 

Notwithstanding such model specifications, some interesting results emerge from this 

estimation method. The first to be noticed is the correlation the strong correlation between 

the errors within groups and the regressors invoked by the output, reaching a maximum of 

85,8%. As one may also behold the standard deviation of the residuals within groups is 

roughly three to four times that of the overall residuals for every model. Finally it is 

important to interpret the intraclass correlation, given by the estimation of rho, a calculation 

that makes clear that 94,5% to 97% of the variance is due to differences across panels, 

attesting a huge differences from one hospital to another in terms of data variation, but 

small variations within each hospital, an expect result as the dataset only comprises four 

years. 
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FE Robust Full modelFE Robust Full-1 FE Robust Full-2 FE Robust Full-3 FE Robust Full-4 FE Robust Full-5 FE Robust Full-6 FE Robust Reduced FE Robust time FE Robust type

coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se coef/se

ln(outpatients) 0.500*** 0.504*** 0.606*** 0.628*** 0.629*** 0.626*** 0.626*** 0.800*** 0.691*** 0.725***

(0.072) (0.072) (0.099) (0.117) (0.119) (0.118) (0.118) (0.045) (0.109) (0.060)

ln(emergencies) 0.072 0.061 0.036 0.065 0.069 0.075 0.076 0.121 0.108 0.085

(0.118) (0.113) (0.111) (0.119) (0.119) (0.123) (0.122) (0.128) (0.126) (0.101)

ln(annual average of the standard 

deviation of emergencies)
0.080 0.074 -0.013 -0.043 -0.056 -0.069 -0.068 -0.078 0.021 -0.164*

(0.099) (0.103) (0.125) (0.133) (0.127) (0.135) (0.135) (0.103) (0.138) (0.088)

ln(coefficient of variation ) -0.048 -0.043 0.059 0.089 0.104 0.117 0.117 0.136 0.026 0.224**

(0.107) (0.111) (0.140) (0.149) (0.141) (0.150) (0.150) (0.109) (0.151) (0.094)

2004 0.033** 0.033** 0.031** 0.024 0.024 0.025 0.025 0.023

(0.014) (0.014) (0.015) (0.016) (0.016) (0.016) (0.016) (0.016)

2005 0.044* 0.043* 0.035 0.041 0.040 0.041 0.040 0.045*

(0.023) (0.024) (0.027) (0.027) (0.027) (0.026) (0.026) (0.026)

2006 0.067** 0.065** 0.044 0.046 0.045 0.046 0.046 0.047

(0.029) (0.031) (0.039) (0.040) (0.040) (0.040) (0.039) (0.038)

University Hospital 0.057 0.061 0.107 0.160 0.159 0.160 0.161 0.178**

(0.077) (0.078) (0.097) (0.110) (0.112) (0.112) (0.111) (0.089)

Entidade Pública Empresarial -0.003 -0.002 -0.006 -0.023 -0.022 -0.022 -0.021 -0.006

(0.027) (0.027) (0.026) (0.025) (0.024) (0.025) (0.024) (0.019)

Seperate Buildings 0.074 0.078 0.104 0.133* 0.137* 0.135* 0.134* 0.135**

(0.058) (0.059) (0.066) (0.073) (0.073) (0.073) (0.071) (0.067)

ln(average annual wage) -0.021 -0.019 -0.019 -0.009 -0.008 -0.008

(0.013) (0.014) (0.015) (0.016) (0.016) (0.016)

ln(discharges) -0.551 -0.348** -0.075* -0.020 -0.020

(0.407) (0.136) (0.039) (0.023) (0.023)

ln(occupancy rate) 0.244 0.058 -0.139** -0.058

(0.373) (0.105) (0.070) (0.080)

ln(deaths) 0.158*** 0.154*** 0.170***

(0.053) (0.051) (0.059)

ln(beds) 0.562 0.362**

(0.408) (0.143)

ln(averagelengthofstay) -0.209

(0.336)

_cons 11.062*** 10.831*** 10.826*** 10.537*** 10.313*** 10.180*** 10.087*** 7.787*** 8.438*** 9.570***

(1.269) (1.293) (1.440) (1.604) (1.604) (1.661) (1.565) (1.199) (1.429) (1.228)

Number of observations 239 239 239 239 239 239 239 239 239 239

R2 0.733 0.731 0.714 0.703 0.702 0.702 0.702 0.665 0.678 0.691

Adjusted R2 0.713 0.713 0.696 0.685 0.686 0.687 0.689 0.660 0.668 0.682

sigma_u 0.362 0.367 0.420 0.493 0.497 0.491 0.490 0.371 0.380 0.480

sigma_e 0.083 0.083 0.085 0.087 0.086 0.086 0.086 0.089 0.089 0.087

rho 0.950 0.951 0.960 0.970 0.971 0.970 0.970 0.945 0.948 0.969

corr 0.853 0.858 0.833 0.815 0.816 0.815 0.814 0.641 0.703 0.772

note:  *** p<0.01, ** p<0.05, * p<0.1

Fixed Effects Model

Annex.Table.Fixed-effects 
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Annex.BestModels.NoDispersionVariables  

 

Pooled OLS FE SF

coef/se coef/se coef/se

ln(outpatients) 0.592*** 0.676*** 0.569***

(0.074) (0.068) (0.049)

ln(emergencies) 0.063 0.081 0.067

(0.065) (0.107) (0.049)

ln(average annual wage) -0.084 0.007 -0.093

(0.054) (0.025) (0.064)

ln(discharges) -0.382*** -0.363** -0.362***

(0.107) (0.163) (0.080)

ln(occupancy rate) 0.440** -0.034 0.335**

(0.207) (0.125) (0.131)

ln(deaths) 0.288*** 0.200*** 0.290***

(0.065) (0.050) (0.043)

ln(beds) 0.601*** 0.332* 0.613***

(0.109) (0.185) (0.076)

_cons 7.543*** 9.325*** 7.876***

(0.868) (1.167) (0.872)

/lnsig2v -3.873***

(0.311)

/lnsig2u -3.182***

(0.463)

Number of observations 239 239 239

R2 0.970 0.698 -

Adjusted R2 0.969 0.689 -

sigma_v - - 0.144

sigma_u - 0.293 0.204

sigma2 - - 0.062

lambda - - 1.412

gamma - - 0.666

sigma_e - 0.086 -

rho - 0.921 -

corr - 0.717 -

note:  *** p<0.01, ** p<0.05, * p<0.1

Best Models - No emergencies dispersion
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Annex.SF.NoDispersionVariables 

 

SF No sd SF No sd - 1 SF No sd - 2 SF No sd - 3 SF No sd - 4 SF No sd - 5 SF No sd - 6

coef/se coef/se coef/se coef/se coef/se coef/se coef/se

ln(outpatients) 0.569*** 0.569*** 0.642*** 0.614*** 0.611*** 0.946*** 0.925***

(0.049) (0.049) (0.053) (0.057) (0.058) (0.037) (0.035)

ln(emergencies) 0.067 0.067 0.033 0.066 0.069 0.170** 0.181**

(0.049) (0.049) (0.056) (0.066) (0.067) (0.071) (0.071)

ln(average annual wage) -0.093 -0.093 -0.150** -0.157* -0.161** -0.161*

(0.064) (0.064) (0.068) (0.082) (0.082) (0.091)

ln(discharges) -0.165 -0.362*** 0.044 0.427*** 0.434***

(0.448) (0.080) (0.068) (0.061) (0.059)

ln(occupancy rate) 0.144 0.335** -0.101 0.079

(0.447) (0.131) (0.119) (0.138)

ln(deaths) 0.289*** 0.290*** 0.437***

(0.043) (0.043) (0.046)

ln(beds) 0.417 0.613***

(0.446) (0.076)

ln(averagelengthofstay) 0.198

(0.444)

_cons 7.605*** 7.876*** 8.619*** 7.111*** 7.404*** 6.446*** 4.928***

(1.063) (0.872) (0.914) (1.065) (0.930) (1.013) (0.545)

/lnsig2v -3.871*** -3.873*** -3.821*** -2.934*** -2.976*** -2.748*** -2.714***

(0.312) (0.311) (0.363) (0.309) (0.287) (0.266) (0.262)

/lnsig2u -3.187*** -3.182*** -2.715*** -3.744** -3.506*** -3.421** -3.539**

(0.468) (0.463) (0.382) (1.857) (1.309) (1.383) (1.576)

Number of observations 239 239 239 239 239 239 239

sigma_v 0.144 0.144 0.148 0.231 0.226 0.253 0.257

sigma_u 0.203 0.204 0.257 0.154 0.173 0.181 0.170

sigma2 0.062 0.062 0.088 0.077 0.081 0.097 0.095

lambda 1.408 1.412 1.739 0.667 0.767 0.714 0.662

gamma 0.665 0.666 0.751 0.308 0.371 0.338 0.305

note:  *** p<0.01, ** p<0.05, * p<0.1

Stochastic Frontier Analysis - No emergencies dispersion
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exp(u_h) Obs Mean Std. Dev. Min Max Most Efficient Least Efficient

Full Model 239 1.15668 0.0798912 1.03351 1.599697 HOSPITAL SANTO ANTÓNIO 2006 CENTRO HOSPITALAR DE CALDAS DA RAINHA 2006

Full Model-1 239 1.15733 0.0805233 1.0335 1.603784 HOSPITAL SANTO ANTÓNIO 2006 CENTRO HOSPITALAR DE CALDAS DA RAINHA 2006

Full Model-2 239 1.23547 0.1516201 1.03404 1.880148 HOSPITAL SANTO ANTÓNIO 2006 CENTRO HOSPITALAR DO BARLAVENTO ALGARVIO -LAGOS 2004

Annex.Likelihood.Tests 

 

 

Annex.Table.CostEfficiency 

 

SF Likelihood-Ratio Tests LR chi2(r) Prob > chi2 Null hypothesis: r=0

Full VS Full -1 (1) = 0.14 0.7065 Not reject

Full -1 VS Full -2 (1) = 57.70 0.000 Reject

Full -1 VS Full -3 (2) = 128.57 0.000 Reject

Full -1 VS Full -4 (3) = 128.85 0.000 Reject

Full -1 VS Full -5 (4) = 143.97 0.000 Reject

Full -1 VS Full -6 (5) = 149.25 0.000 Reject

Best model

Pooled OLS Likelihood-Ratio Tests LR chi2(r) Prob > chi2 Null hypothesis: r=0

Full VS Full -1 (1) = 0.16 0.6846 Not reject

Full -1 VS Full -2 (1) = 59.78 0.000 Reject

Full -1 VS Full -3 (2) = 127.81 0.000 Reject

Full -1 VS Full -4 (3) = 128.14 0.000 Reject

Full -1 VS Full -5 (4) = 143.23 0.000 Reject

Full -1 VS Full -6 (5) = 148.51 0.000 Reject

Best model

Fixed-effects Likelihood-Ratio Tests LR chi2(r) Prob > chi2 Null hypothesis: r=0

Full VS Full -1 (1) = 0.82 0.3642 Not reject

Full -1 VS Full -2 (1) = 12.62 0.0004 Reject

Full -1 VS Full -3 (2) = 31.94 0.000 Reject

Full -1 VS Full -4 (3) = 32.81 0.000 Reject

Full -1 VS Full -5 (4) = 32.97 0.000 Reject

Full -1 VS Full -6 (5) = 33.09 0.000 Reject

Best model

Stochastic Frontier Full -1

Pooled OLS Full -1

Fixed-Effects Full -1


