
ANA ISABEL VIEIRA LOPES MENDES

SIGNAL TRANSDUCTION PATHWAYS

INVOLVING THE HYPERTENSION-RELATED

WNK1 AND WNK4 PROTEIN KINASES

Lisboa

2011





nº de arquivo

“copyright”





ANA ISABEL VIEIRA LOPES MENDES

SIGNAL TRANSDUCTION PATHWAYS

INVOLVING THE HYPERTENSION-RELATED

WNK1 AND WNK4 PROTEIN KINASES

Dissertação apresentada para obtenção do Grau

de Doutor em Biologia, na especialidade de

Genética Molecular, pela Universidade Nova de

Lisboa, Faculdade de Ciências e Tecnologia.

Lisboa

2011





A Deus...





Agradecimentos

Ao Doutor Peter Jordan por me ter acolhido no seu laboratório e pela confiança em

mim depositada. Agradeço o estímulo, a preciosa orientação e rigor científicos, a

amizade e o exemplo constantes, que muito contribuíram para a minha formação e

que foram imprescindíveis para a realização deste trabalho.

À Professora Ilda Sanches pela disponibilidade, pelo interesse e supervisão científicos

prestados ao longo do decurso de todo o trabalho e pelas sugestões e comentários na

preparação deste manuscrito.

Às pessoas anónimas que dando o seu consentimento informado se tornaram o impres-

cindível objecto de estudo de parte deste trabalho.

Ao Ministério da Ciência e Ensino Superior e à Fundação para a Ciência e a Tecnologia

por terem possibilitado a realização deste trabalho através da concessão da bolsa de

doutoramento de que fui recipiente de 2006 a 2009 (SFRH/BD/23001/2005), através

do Programa de Financiamento Plurianual do Centro de Investigação em Genética

Molecular Humana e do projecto POCI/SAU-MMO/56439/2004. À FEBS pelo seu

imprescindível apoio para participar num dos mais prestigiados encontros científicos

na área da Transdução de Sinal e das Proteínas Cinases.

Ao Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA) pelas condições básicas neces-

sárias para a realização deste projecto. Ao antigo Centro de Genética Humana, agora

Departamento de Genética, na pessoa do Doutor João Lavinha, por me ter aceite no

seu Departamento proporcionando-me assim a oportunidade de desenvolver este tra-

balho.

A todos os colegas do Departamento de Genética do INSA que me brindaram ao longo

destes anos com o seu conhecimento, interesse, apoio, exemplo ou experiência. Em

ix



particular, ao Zé Manel da Unidade de Citogenética, pela assistência na Cultura de

Células e aos colaboradores da Unidade de Tecnologia e Inovação, pelas numerosas

sequenciações e análises por dHPLC. Aos colegas do Grupo de Fibrose Quística, a

Filipa, o Toby, a Anabela, a Ana Carina, a Marisa, o Carlos e o Simão agradeço a sua

singular colaboração e conselhos científicos.

Aos maravilhosos colegas, agora amigos, do Grupo de Oncobiologia pelo acolhimento,

pelo excelente ambiente de trabalho e principalmente pela simpatia, camaradagem

e cumplicidade que sempre demonstraram e claro, pela amizade e pela infindável

paciência concedidas. À Sónia, por tudo o que me ensinou, pela permanente disponi-

bilidade, pelo diálogo científico, e pelas numerosas boleias. Ao Paulo pelo valioso

acompanhamento e apoio científicos. À Vânia pelos conselhos úteis e por me demons-

trar que é possível (e saudável) ter algum tempo livre durante um doutoramento. À

Patrícia pela ajuda e incentivo e pela companhia nas horas indecentes. À Andreia e à

Elizabeth que embora já não estejam no laboratório estarão sempre presentes no meu

coração.

Aos meus amigos, Inês, Cláudia, Catarina, Tó Zé, Lara, Pedro, Carlos (o meu guru

pessoal do LaTeX) e Sara pelo vosso apoio independentemente da distância. Obrigada

pela vossa amizade que sobrevive não só à distância que nos separa, bem como à pas-

sagem do tempo. E também aos meus amigos mais locais, Cátia, Beta, Zé, Pedro e Ri-

cardo por estarem sempre presentes e disponíveis para me aturarem e me devolverem

um pouco à realidade.

Aos meus pais, à minha irmã Sofia e ao meu primo Pedro, pela eterna presença na

minha vida e pelo encorajamento, compreensão, apoio, ajuda e paciência que me dedi-

caram durante mais uma etapa decisiva da minha vida.

Ao Tiago pela compreensão, carinho, amizade e amor, sem os quais nada seria possível.

x



Resumo

Os genes WNK1 e WNK4 pertencem à subfamília WNK de proteínas cinases e a sua

mutação causa pseudohipoaldosteronismo tipo II, uma forma rara de hipertensão fa-

miliar com hipercalemia e hipercalciuria. Os mecanismos moleculares subjacentes a

esta condição envolvem a regulação da homeostase renal de electrólitos e a modu-

lação de diversos canais iónicos e transportadores via cinases WNK. Além disso, as

WNKs também estão descritas como intervenientes em vias de transdução de sinal

relacionadas com sobrevivência e proliferação celulares.

O objectivo desta tese foi identificar novas proteínas que interajam com a WNK1 e a

WNK4, e as vias de tradução de sinal subjacentes. Primeiramente, descobriu-se que a

WNK1 forma um complexo proteico com a Rab-GAP TBC1D4, fosforilando-a in vitro.

Mostrou-se ainda que os níveis de expressão da WNK1 regulam a expressão à super-

fície de células HEK293 do transportador da glucose GLUT1. A WNK1 aumenta a

ligação da TBC1D4 às proteínas reguladoras 14-3-3, ao mesmo tempo que reduz a in-

teracção com a pequena GTPase exocítica Rab8A. Estes efeitos são dependentes da sua

actividade catalítica. Em conjunto, estes dados sugerem uma via que regula a entrada

constitutiva da glucose na célula via GLUT1, cujo nível de expressão está relacionado

com várias doenças humanas.

Seguidamente, descobriu-se que a WNK4 promove a expressão do canal de cloro CFTR

à superfície de células de mamífero. O mecanismo através do qual a WNK4 age sobre a

CFTR envolve a interacção com a tirosina cinase Syk, a qual demonstrámos que fosfo-

rila o resíduo de tirosina 512 (Tyr512) no primeiro domínio de ligação ao ATP da CFTR.

A presença da WNK4 impede esta fosforilação in vitro de forma independente da sua

actividade de cinase. Em células BHK21 a expressar estavelmente a CFTR, a Syk reduz,

enquanto a WNK4 promove, a expressão à superfície deste canal. Mutando a Tyr512
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concluiu-se que a sua fosforilação é um novo sinal que regula a prevalência da CFTR à

superfície das células e que a WNK4 e a Syk têm papéis antagonistas neste processo.

Por fim, foram detectadas dez variantes da WNK4 num grupo de doentes e contro-

los portugueses, que posteriormente foram testadas para associação com a hiperten-

são e/ou osteoporose. Apesar de nenhuma ter apresentado associação significativa

com a hipertensão, uma alteração missense rara (rs56116165) num resíduo de arginina

altamente conservado apresentou uma associação nominal com a osteoporose. Com

esta descoberta defendemos que esta alteração é uma variante alélica rara, num gene

candidato implicado numa função biológica na homeostase renal do cálcio, que pode

contribuir para uma predisposição genética para a osteoporose.
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Abstract

The genes WNK1 and WNK4 belong to the subfamily of WNK protein kinases and

their mutation causes pseudohypoaldosteronism type II, a rare familial form of hyper-

tension with hyperkalemia and hypercalciuria. The molecular mechanisms underlying

this condition involve the regulation of renal electrolyte homeostasis and the modula-

tion of diverse ion channels and transporters via WNK kinases. Additionally, WNKs

have also been reported to participate in signal transduction pathways related to cell

survival and proliferation.

The objective of the present thesis was to identify novel WNK1 and WNK4 interact-

ing proteins and the underlying signal transduction pathways. First, it was found that

WNK1 forms a protein complex with the Rab-GAP TBC1D4 and phosphorylates it in

vitro. It was shown that the expression levels of WNK1 regulate surface expression

of the constitutive glucose transporter GLUT1 in HEK293 cells. WNK1 is shown to

increase the binding of TBC1D4 to regulatory 14-3-3 proteins while reducing its in-

teraction with the exocytic small GTPase Rab8A. Moreover, these effects were kinase

activity-dependent. Together, the data describe a pathway regulating constitutive glu-

cose uptake via GLUT1, the expression level of which is related to several human dis-

eases.

Second, WNK4 was found to promote the cell surface expression of the CFTR chloride

channel in mammalian cells. The mechanism by which WNK4 acts on CFTR involves

interaction with the tyrosine kinase Syk, which we found to phosphorylate tyrosine

512 (Tyr512) in the first nucleotide-binding domain of CFTR. The presence of WNK4

prevents this in vitro phosphorylation in a kinase-independent manner. In BHK21 cells

stably expressing CFTR, Syk reduces, while WNK4 promotes, the cell surface expres-

sion of CFTR. Mutation of Tyr512 revealed that its phosphorylation is a novel signal
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regulating the prevalence of CFTR at the cell surface and that WNK4 and Syk play an

antagonistic role in this process.

Finally, ten WNK4 variants were detected in a cohort of Portuguese patients and control

individuals, which subsequently were tested for association to hypertension and/or

osteoporosis. Despite none of the variants yield any significant association to hyper-

tension, a rare missense alteration (rs56116165) in a highly conserved arginine residue

showed a nominal association to osteoporosis. This finding advocates that this poly-

morphism is a rare allelic variant, in a candidate gene with a biological function in renal

calcium homeostasis, that may contribute to a genetic predisposition to osteoporosis.
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I may not have gone

where I intended to go,

but I think I have ended up

where I intended to be.

Douglas Adams (1952-2001)

1
General Introduction





1.1. Cellular signalling and protein kinases

1.1 Cellular signalling and protein kinases

The response of a cell to changes in its environment is initiated by receptors and exe-

cuted through a diverse array of intracellular signalling pathways. These signal trans-

duction pathways are not linear cascades of events but rather complex networks and

circuits of positive and negative feedback loops that serve to relay, amplify, and inte-

grate signals from extracellular stimuli, ultimately resulting in a genomic and physio-

logical response. Protein kinases are central signal transducers involved in control of

all facets of cell function, including changes in the cellular program as well as cellular

homeostasis. Therefore, it is not surprising that mutations or dysregulation of pro-

tein kinases, their regulators and effectors are implicated in several human diseases,

making them excellent candidates for the development of agonists and antagonists for

therapeutic use (reviewed in Hunter, 2000).

The activity of protein kinases is modulated by the upstream signalling events through

a variety of means that often involve alterations in the phosphorylation of key protein

kinase residues or changes in the physical association of regulatory proteins with the

protein kinase. Signals are typically relayed downstream by the protein kinase through

the covalent transfer of the terminal phosphate group from ATP or GTP to serine, thre-

onine or tyrosine residues of substrate proteins. Phosphorylation of the protein sub-

strate then alters its ability to physically interact with other molecules in the cell, or

its catalytic activity, or its subcellular localisation (Pearson and Kemp, 1991; Pawson and

Wilson, 1997; Cohen, 2000).

Protein kinases share a catalytic domain composed of a contiguous stretch of approxi-

mately 250-300 amino acids that can be divided into twelve subdomains. Although no

residue in this region is absolutely conserved in all protein kinases, there is a pattern

of residue conservation within this core of amino acids that constitutes a family signa-

ture (Hanks et al., 1988; Hanks and Hunter, 1995). Protein kinases constitute a large and
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diverse evolutionarily conserved gene superfamily composed of 518 genes that can be

divided in eight major families (except for 40 atypical protein kinase genes): AGC (con-

taining PKA, PKG, PKC subfamilies), CAMK (calcium/calmodulin-dependent protein

kinases family), CKI (casein kinase 1 family), CMGC (containing CDK, MAPK, GSK3,

CLK subfamilies), STE (homologs of the yeast Sterile 7, 11, and 20 families of ser-

ine/threonine kinases), TK (tyrosine kinase family), TKL (tyrosine kinase-like family),

and RGC (receptor guanylate cyclase family). In addition, there is a group classified

as Other Protein Kinases, in which the WNK subfamily of serine/threonine protein

kinases is included (Kostich et al., 2002; Manning et al., 2002).

1.2 The WNK subfamily of protein kinases

The WNK protein kinases are found only in multicellular organisms, forming in the

human kinome a separated phylogenetical branch (more closely related to the STE and

TKL family branches). Their closest human homologues are the protein kinases MEKK

(or MAP3K, MAPK kinase kinase), PAK (p21-activated kinase), and Raf, that belong

to the mitogen-activated protein kinases (MAPKs) (Veríssimo and Jordan, 2001; Kostich

et al., 2002; Manning et al., 2002).

The human WNK kinase subfamily is composed of four members and, despite the fact

that all four kinases exhibit similar topology, their overall degree of sequence identity

is approximately 40%. The WNKs most conserved region (83-93%) is the unique ki-

nase domain located towards the N-terminus of the protein, containing the expected

12 subdomains (FIG. 1.1). All four WNK kinases have an unusual positioning of the

conserved lysine residue essential for catalytic activity on subdomain I (in the majority

of protein kinase families it is located on subdomain II) and as a result of their initial

sequence analysis they were named WNK, meaning with no K = lysine. The other

conserved regions between the WNK kinases are the autoinhibitory domain, that can
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Figure 1.1| Sequence features of the WNK subfamily of protein kinases. A| Comparison of the se-
quence in subdomains I and II of the catalytic domain between a typical protein kinase and the WNK
kinases. A conserved lysine in subdomain II, which binds to ATP, is absent in WNK kinases and func-
tionally substituted by another lysine located in subdomain I, as indicated. B| Schematic representation
of the four human WNK proteins. Catalytic, autoinhibitory, and coiled-coil domains are shown as well as
conserved regions of homology between WNK kinases (adapted from Moniz and Jordan, 2010).

suppress protein kinase activity, three short homology regions, and a coiled-coil do-

main in spite of their considerable size. The homology region closer to the C-terminus

contains, besides the coiled-coil domain, multiple PXXP motifs and the typical binding

sites for Src-homology 3 (SH3) domains. These features together with their large size

suggest that these proteins have a scaffolding function and are involved in multiple

cellular signalling pathways (Xu et al., 2000; Veríssimo and Jordan, 2001; Xu et al., 2002a; Xu

et al., 2005a).
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The four WNK kinases also differ in their tissue specific expression pattern: while

WNK1 is almost ubiquitary, the others have a more restrict expression (Xu et al., 2000;

Veríssimo and Jordan, 2001). The molecular diversity of the WNK subfamily is further

increased by the existence of several alternative splicing variants that have been de-

scribed for all WNKs (Veríssimo and Jordan, 2001; Delaloy et al., 2003; O’Reilly et al., 2003;

Moniz et al., 2007; Holden et al., 2004; Gagnon et al., 2006b; Shekarabi et al., 2008).

Numerous studies in the past few years have shown that WNK kinases play important

roles in the regulation of diverse cellular functions including, electrolyte homeostasis,

membrane trafficking, cell survival and proliferation, and organ development.

1.3 WNK kinases and pseudohypoaldosteronism type II

Mutations in WNK1 or WNK4 cause pseudohypoaldosteronism type II (PHA-II), also

known as familial hyperkalemic hypertension (FHH) or Gordon’s syndrome [Online

Mendelian Inheritance in Man (OMIM) database no. 145260], a rare familial form of

hypertension characterised by increased renal salt reabsorption accompanied by hy-

perkalemia (high serum potassium levels) and metabolic acidosis due to impaired

potassium and proton excretion (Wilson et al., 2001).

The WNK1 gene expression is under the control of three alternative promoters (FIG.

1.2|A), generating several WNK1 isoforms with a tissue-specific distribution. Two ma-

jor WNK1 transcripts have been identified. One, named long WNK1 (L-WNK1), is

under the control of 2 proximal promoters and is almost ubiquitous, being mainly

expressed in skeletal muscle, heart, and brain. The other, a shorter transcript, has

mainly a high-level production in the kidney, predominantly in the distal convoluted

tubule (DCT), but also in the cortical collecting duct (CCD). The transcription of this

kidney-specific WNK1 (KS-WNK1) isoform is under the control of a kidney-specific
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enhancer and of an alternative promoter, rP. The latter is located in intron 4 and is the

only WNK1 variant that contains sequences from an extra exon located between exons

4 and 5, which has been designated as exon 4a (Wilson et al., 2001; Xu et al., 2002b; Delaloy

et al., 2003). This isoform lacks the almost entire kinase domain, thus being devoid of

serine-threonine kinase activity. However, it contains the autoinhibitory domain (Xu

et al., 2002a), and therefore it could act as a dominant negative form of the catalytic L-

WNK1 isoform and it could also inhibit other WNKs activity (as it has been shown for

WNK3 by Yang et al., 2007).

Reported disease-causing mutations in WNK1 are large deletions in the first intron that

result in the overexpression of L- and KS-WNK1 in the DCT and ubiquitous ectopic KS-

WNK1 expression (Wilson et al., 2001; Delaloy et al., 2008). Since PHA-II clinical features

are all explained by defects in renal ion transport in the distal nephron, it is highly

likely that altering the normal balance between L-WNK1 and KS-WNK1 plays a key

role in its pathophysiology.

In contrast, WNK4 mutations (FIG. 1.2|B) are all missense alterations, which cluster

in short (10 or 16 amino acids) highly conserved segments immediately downstream

from the first or second coiled-coil domains of the encoded WNK protein. These muta-

tions result in the substitution of a charged residue in these negatively and positively

charged sequences, respectively (Wilson et al., 2001). As coiled-coil domains are gener-

ally thought to be involved in protein-protein interactions, these mutations may affect

the interaction of WNK4 with its partners. Moreover, WNK4 is expressed predomi-

nantly in the kidney, where it is restricted to the DCT and CCD, the distal nephron

segments known to be crucial in the homeostasis of electrolytes that is altered in PHA-

II (Wilson et al., 2001).

Despite the different nature of WNK1 and WNK4 disease-causing mutations, the phe-

notypes of PHA-II patients harbouring mutations in either gene are not significantly
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Figure 1.2| Characterisation of WNK1 and WNK4 mutations causing PHA-II. A| WNK1 PHA-II muta-
tions. The genomic segments that are deleted in PHA-II are shown and the two major WNK1 isoforms are
represented with their promoters indicated. B| WNK4 PHA-II mutations. Missense mutations causing
PHA-II localise to small motifs adjacent to the coiled-coil domains. These 10 and 16 amino acid motifs are
conserved among the WNK family. The genomic segment spanning WNK1 and WNK4 are represented by
a horizontal line and exons are indicated by numbered rectangles. Catalytic, autoinhibitory and coiled-coil
domains are shown (adapted from Hadchouel et al., 2005).

different (Wilson et al., 2001), suggesting that these kinases either act in series in the

same pathway or in parallel pathways on similar downstream targets. The most im-

portant difference between patients with WNK1 and WNK4 mutations is that while the

first exhibit normocalciuria (Achard et al., 2003), the latter manifest hypercalciuria and

low bone mineral density (BMD) (Mayan et al., 2002).
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In agreement with its role in causing this rare monogenic form of hypertension, WNK1

also plays a significant role in blood pressure regulation in the general population.

Common WNK1 variants have been shown to be associated with the regulation of

blood pressure (Tobin et al., 2005; Newhouse et al., 2005; Tobin et al., 2008; Osada et al., 2009;

Newhouse et al., 2009; Padmanabhan et al., 2010). On the other hand, it remains contro-

versial whether WNK4 variants may predispose to essential hypertension (Erlich et al.,

2003; Speirs and Morris, 2004; Kokubo et al., 2004; Kamide et al., 2004; Tobin et al., 2005; Sun

et al., 2009).

Curiously, a nervous system-specific WNK1 splice variant has recently been implicated

in another disorder, hereditary sensory and autonomic neuropathy type II (OMIM no.

201300). This is an early-onset autosomal recessive disorder characterised by loss of

perception to pain, touch, and heat, attributable to a partial loss of peripheral sensory

nerves (Shekarabi et al., 2008).

The discovery that mutations in WNK1 or WNK4 are implicated in PHA-II led to a myr-

iad of studies at the physiological level showing effects of WNK1 and WNK4 on sev-

eral plasma membrane cotransporters and ion channels (both renal and extra-renal),

and shedding some light on their mechanisms of action.

1.4 The Role of WNK1 and WNK4 in renal electrolyte homeostasis

An integrated and tightly regulated system of ion channels, exchangers, transporters,

and pumps arrayed along the length of the kidney tubule and the paracellular pathway

are responsible for maintaining electrolyte and fluid balance through the reabsorption

of more than 99% of the salts present in the glomerular filtrate.

The bulk (some 60%) of the filtered salts is reabsorbed in the proximal tubule, mainly

by the Na+/H+ exchanger (NHE3), chloride/base exchangers or through paracellular
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junctions (for calcium and magnesium). A further 20-30% is reabsorbed in the thick

ascending limb of Henle (TAL) by the electrically neutral Na+/K+/2Cl− cotransporter

2 (NKCC2), followed by the recycling of potassium through the renal outer medullary

K+ channel (ROMK), which provides the passive driving force for calcium and mag-

nesium reabsortion throught the tight junction. The remainder sodium and cloride

(around 10%) are recovered by the electroneutral Na+/Cl− cotransporter (NCC) in the

DCT and through the epithelial sodium channel (ENaC) in the CCD (reviewed in Reilly

and Elisson, 2000). The epithelial calcium channels, transient receptor potential chan-

nel vanilloid subtype 4 (TRPV4), 5 (TRPV5) and 6 (TRPV6), and the epithelial mag-

nesium channel, transient receptor potential channel melastatin subtype 6 (TRPM6),

are responsible for the calcium and magnesium active reabsortion in both DCT and

CCD (5-10%) (Tian et al., 2004; Hoenderop et al., 2005; Schlingmann et al., 2002). All these

electrogenic steps provide the electrical driving force for cloride reabsorption via the

paracellular path and for potassium and proton secretion through the ROMK and the

H+ ATPase, respectively (Reilly and Ellison, 2000).

Despite the minor contribution from the DCT and CCD to salt reabsortion, the dis-

tal nephron is the primary target site for the renin-angiotensin-aldosterone system

(further detailed in the next subsection), and for the major calciotropic hormones, i.e.

parathyroid hormone (PTH), calcitonin, 1,25-dihydroxyvitamin D3 (active form of vi-

tamin D), and 17β-estradiol, being the final rate of calcium excretion also regulated

by calbindin-D28k (CBP-D28k), a cytosolic calcium facilitator (Reilly and Ellison, 2000;

Hoenderop et al., 2005). This fine-tuning of electrolyte and fluid homeostasis plays a key

role in the control of ion excretion and hence, blood pressure, which also explains the

efficacy of anti-hypertensive drugs targeting these sites in the distal nephron. More-

over, PHA-II patients’ symptoms can be corrected by thiazide diuretics (Farfel et al.,

1978; Semmekrot et al., 1987), which function as antagonists of NCC (Monroy et al., 2000).
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Experimental evidence exists showing that WNK1 and WNK4 regulate diverse renal

ion transport proteins, including the cation-chloride cotransporters NCC and NKCC2,

the ENaC sodium channel, the ROMK potassium channel, the TRPV4, TRPV5 and

TRPV6 calcium channels, and the paracellular tight junction proteins claudins (de-

scribed with more detail in the following).

1.4.1 Upstream regulators of WNKs

At the moment, little is known about potential physiologically important regulators

of the WNK kinases role in renal electrolyte homeostasis. The renin-angiotensin-aldo-

sterone system is a hormonal cascade involved in the blood pressure, electrolyte and

fluid homeostasis. Its dysregulation plays an important part in the pathogenesis of

both renal and cardiovascular diseases, and in hypertension (reviewed in Kappert and

Unger, 2008).

Renin is a protease derived from its precursor protein, prorenin, which is released con-

stitutively from juxtaglomerular cells of the kidney. The hydrolysis of angiotensinogen

by renin, generating angiotensin I, is the first and rate-limiting step of this system. Sub-

sequently, another enzyme converts angiotensin I into angiotensin II and its binding to

type 1 receptors causes most of angiotension II known physiological and pathophysi-

ological effects (Kappert and Unger, 2008).

The activation of this pathway occurs as a result of hypovolemia (low intravascu-

lar volume) and/or hypotension, and its immediate effects include vasoconstrition

in the arterioles of the glomerulus, thus increasing the peripheral vascular resistance

and ultimately increasing blood pressure. In addition, angiotensin II also acts on the

adrenal glands cortex causing the secretion of the sodium-retaining hormone aldos-

terone (Quinn and Williams, 1988; Kappert and Unger, 2008). Upon release, aldosterone

binds to its receptor, the mineralocorticoid receptor, in the distal nephron and enhances
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sodium reabsorption (via NCC and ENaC), being the final outcome an increase in in-

travascular volume (towards normal) and in blood pressure (Kim et al., 1998; Eaton et al.,

2001).

High serum potassium levels (hyperkalemia) can also stimulate aldosterone secretion,

and aldosterone can increase the excretion of potassium by the kidney (via ROMK), so

it is not surprising that there is a continuous relationship between the level of circulat-

ing potassium and that of aldosterone (Quinn and Williams, 1988; Beesley et al., 1998).

Recently, it has been shown that aldosterone rapidly induces the expression of KS-

WNK1, but not of L-WNK1 (Náray-Fejes-Tóth et al., 2004). L-WNK1 expression is reg-

ulated by aldosterone only at the post-transcriptional level, probably via miR-192, a

micro-RNA expressed only in the kidney and the gastrointestinal tract (whether KS-

WNK1 expression is regulated in a similar manner remains to be determined) (Elvira-

Matelot et al., 2010). On the other hand, both WNK1 and WNK4 are a target of an

aldosterone-responsive gene expressed in the distal nephron, SGK1 (serum glucocor-

ticoid-inducible protein kinase) (Xu et al., 2005b; Ring et al., 2007b; Rozansky et al., 2009).

Moreover, WNK4 has been shown to become activated in response to angiotensin II

signalling (San-Cristobal et al., 2009), thus providing additional evidence for the renin-

angiotensin-aldosterone system importance in WNK kinases regulation.

In addition, it has been suggested that hyperosmotic stress and cell shrinkage (e.g.

sorbitol, NaCl, and KCl) induces the phosphorylation (Ser1261), autophosphorylation

(Ser382 on the kinase domain) and activation of WNK1, leading to the phosphorylation

and activation of its downstream targets. Furthermore, hypertonicity also induces a

rapid redistribution of WNK1 from the cytoplasm to vesicular structures (Xu et al., 2000;

Lenertz et al., 2005; Zagórska et al., 2007). At the present moment, it is unclear whether

WNK4 is regulated in a similar manner and the underlying molecular mechanisms

remain to be fully elucidated.
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1.4.2 NCC and NKCC2 regulation

The first studies performed in Xenopus laevis oocytes strongly suggested that WNK4 is

a negative regulator of the thiazide-sensitive sodium transport in the DCT. Therefore,

PHA-II could result from unregulated activity of NCC, a member of the SLC12 gene

family (SLC12A3 gene), as a consequence of WNK1 and WNK4 mutations. Specifically,

wild-type WNK4 inhibited the activity of NCC through a nearly complete inhibition

of the insertion of the channel into the plasma membrane, whereas WNK4 PHA-II-

causing mutants seemed to fail to inhibit NCC in Xenopus oocytes (Wilson et al., 2003;

Yang et al., 2003).

Some years later, two independent studies confirmed that wild-type WNK4 downreg-

ulates the surface expression (and thus activity) of the NCC in mammalian cells as

well (Yang et al., 2005b; Cai et al., 2006). Furthermore, Wnk4 Q562E PHA-II mutant ex-

pression in mice (transgenic for genomic segments harbouring PHA-II Wnk4 Q562E

mutation homologous to the human WNK4 Q565E mutation) recapitulates the PHA-II

phenotype (high blood pressure, hyperkalemia and hypercalciuria). Also, it is entirely

dependent upon NCC activity, which shows that the major physiological role of WNK4

is to regulate NCC activity in the DCT (Lalioti et al., 2006).

Unlike WNK4, WNK1 does not seem to directly affect NCC activity but to lie upstream

of the WNK4 signalling pathway, modulating the inhibitory effects of WNK4 on NCC

(Wilson et al., 2003; Yang et al., 2003). Moreover, KS-WNK1 downregulates NCC activity

indirectly, by inhibiting L-WNK1 activity and thereby allowing WNK4 to inhibit NCC

(FIG. 1.4| DCT, on page 27) (Subramanya et al., 2006).

Accordingly, transgenic mice overexpressing KS-WNK1 in the kidney present low ef-

fective circulating volume, renal sodium wasting (impaired ability to reabsorb sodium)

and low blood pressure in response to dietary sodium restriction, and decreased sur-

face expression of total and phosphorylated NCC and NKCC2 (another member of the
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SLC12 gene family, SLC12A1 gene) in DCT and TAL, respectively. This confirms KS-

WNK1 as a negative regulator of both NCC and NKCC2 in vivo. These animals also

exhibit an increase in the angiotensin II and aldosterone levels, which is likely due to

activation of the renin-angiotensin system, consistent with the notion that a low effec-

tive circulating volume causes the decrease in blood pressure (Liu et al., 2011).

Conversely, KS-WNK1 knock-out mice display the inverse phenotypes, i.e. sodium re-

tention and elevated blood pressure on a high sodium diet, and increased expression

and phosphorylation of NCC and NKCC2 in the respective nephron segments (Had-

chouel et al., 2010; Liu et al., 2011).

Recently, a study has shown that SGK1, a mediator of aldosterone signalling, binds

to and phosphorylates WNK4 (Ser1190 and Ser1217), relieving the inhibitory effect of

WNK4 on NCC activity (FIG. 1.4 on page 27). In addition, in vitro kinase assays indicate

that L-WNK1 and SGK1 share phosphorylation targets and share similar effects on

WNK4 (Rozansky et al., 2009).

Other recent studies have elucidated the mechanism by which WNK4 downregulates

NCC surface expression. WNK4 does not stimulate NCC endocytosis (Golbang et al.,

2006), but instead attenuates the rate of NCC plasma membrane delivery. In fact,

WNK4 acts on newly synthesized NCC in the secretory pathway stimulating inter-

action with the AP-3 adaptor complex. These proteins mark cargo for transport from

endosomes to lysosomes, and thus divert NCC into the lysosomal pathway, where it

is ultimately degraded (Subramanya et al., 2009). Furthermore, WNK4 promotes NCC

targeting to the lysosome for degradation via a mechanism that involves sortilin, a lyso-

somal targeting receptor expressed in the DCT (Zhou et al., 2010). Interestingly, WNK4

globally stimulates lysosomal activity, therefore it might promote the lysosomal sort-

ing and degradation of cargo other than the NCC (Subramanya et al., 2009).
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In addition to WNK1 and WNK4 effects on NCC and NKCC2 surface abundance, these

kinases can also affect NCC and NKCC2 transport activity through its phosphory-

lation. Both of them can directly bind to their downstream targets, two similar ser-

ine/threonine kinases belonging to the Ste20-related kinases family, OSR1 (oxidative

stress-responsive kinase 1) and SPAK (ste20-related proline alanine-rich kinase), and

phosphorylate their evolutionarily conserved threonine and serine residues (Thr233

and Ser373 in SPAK, or Thr185 and Ser325 in OSR1) in vitro (FIG. 1.3) (Moriguchi et al.,

2005; Vitari et al., 2005; Vitari et al., 2006; Anselmo et al., 2006). On the other hand, KS-

WNK1 antagonizes the effect of WNK1 and WNK4 on NCC and NKCC2 mediated

through OSR1 and/or SPAK (FIG. 1.4|DCT, on page 27) (Liu et al., 2011).

Schematic representation of OSR1/SPAK interactions with both WNK 1/4 and NCC/NKCC2. 

WNK1 and 4 interact with OSR1/SPAK, which is mediated by the RFXV/I motif in WNKs and the 

conserved C-terminus domain (CCT) in OSR1/SPAK, respectively. WNKs activate OSR1/SPAK by 

phosphorylating on its kinase domain, which in turn phosphorylates cation-chloride-coupled 

cotransporters at conserved threonine or serine residues in the N-terminus. The interaction between 

OSR1/SPAK and the cotransporters also occurs via the CCT domain and RFXV/I motif. CD, catalytic 

domain.

hNCC   54 RTFGYNTIDVVPTYEHYANST  

hNKCC2 98 QTFGHNTMDAVPKIEYRYNTG

P P P

WNK 1/4 
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Figure 1.3| Schematic representation of OSR1/SPAK interactions with both WNK 1/4 and
NCC/NKCC2. WNK1 and WNK4 interact with OSR1/SPAK, which is mediated by the RFXV/I motif
in WNKs and the conserved C-terminal domain (CCT) in OSR1/SPAK, respectively. WNKs activate
OSR1/SPAK by phosphorylating its kinase domain, which in turn phosphorylate cation-chloride-coupled
cotransporters at conserved threonine or serine residues in the N-terminus. The interaction between
OSR1/SPAK and the cotransporters also occurs via the CCT domain and RFXV/I motif. CD, catalytic
domain.

SPAK and OSR1 possess a conserved C-terminal domain, which interacts with RFXV/I

motifs present in both WNK1 and WNK4 C-termini as well as in the N-terminal tail

of SLC12 cation/chloride cotransporters, such as NCC and NKCC2. Furthermore,
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these Ste20-related kinases have been confirmed to phosphorylate conserved threo-

nine residues in the N-terminal tail of NCC (Thr46, Thr50, Thr60) and NKCC2 (Thr99,

Thr104, Thr117) in vitro (Moriguchi et al., 2005; Richardson et al., 2008). This phosphoryla-

tion of NCC and NKCC2 has been shown to increase their intrinsic transporter activity

(Pacheco-Alvarez et al., 2006; Giménez and Forbush, 2005).

These NCC and NKCC2 phosphorylation sites mediate blood pressure control as shown

in transgenic knock-in mice. On SpakT 243A/+ mice, SPAK activation by the WNK ki-

nases is prevented, which leads to significantly reduced blood pressure by insufficient

expression and phosphorylation of NCC and NKCC2 (Rafiqi et al., 2010). Hypomor-

phic Wnk4 mice (with deletion of Wnk4 exon 7) that have recently been generated, also

display reduced blood pressure and decreased SPAK/OSR1 and NCC phosphoryla-

tion, demonstrating that wild-type WNK4 positively regulates NCC function in vivo

through the WNK-OSR1/SPAK-NCC cascade (Ohta et al., 2009).

Further support for the role of SPAK in blood pressure control comes from a genome-

wide association study (GWAS). In this study STK39, the human SPAK gene, was

identified as a novel hypertension susceptibility gene in which common variants are

associated with blood pressure levels, suggesting that SPAK may also regulate blood

pressure within the general population. This study showed that higher transcriptional

activity of SPAK, due to the presence of the less common G allele in an intronic sin-

gle nucleotide polymorphism (rs35929607), may increase the activity of downstream

NCC and NKCC2, which would promote sodium reabsorption in the kidney, thereby

increasing intravascular volume and blood pressure (Wang et al., 2009).

Physiological stimuli such as angiotensin II signal through type I receptors via WNK4

and SPAK to increase NCC activity (FIG. 1.4|DCT, on page 27), since angiotensin II in-

creases WNK4-dependent phosphorylation of both SPAK and NCC in mammalian
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cells. NCC activity is also increased by WNK4 PHA-II-causing mutations, and can-

not be further augmented by angiotensin II signalling. This is consistent with WNK4

PHA-II mutations providing constitutive activation of the signalling pathway between

angiotensin II and NCC (San-Cristobal et al., 2009).

The hypothesis that mutant PHA-II WNK4 enhances this signalling pathway in the re-

nal epithelium and thereby activates NCC (and thus sodium reabsorption) is favoured

by the observation that in the distal nephron of the PHA-II mouse model Wnk4D561A/+

mice, there is increased phosphorylation of both OSR1/SPAK and NCC (which was

concentrated on the apical plasma membranes). Moreover, it was shown that the acti-

vation of the OSR1/SPAK-NCC phosphorylation cascade by the mutant WNK4 is the

major cause of PHA-II in these mice (Yang et al., 2007c). Conversely, a significant de-

crease in NKCC2 expression was observed in the TAL of Wnk4D561A/+ mice (Yang et al.,

2010), however WNK4 protein expression in the TAL is still controversial (Wilson et al.,

2001; O’Reilly et al., 2006).

1.4.3 ENaC regulation

Naray-Fejes-Toth and collaborators (2004) reported that aldosterone rapidly induces

the expression of KS-WNK1 (but not of L-WNK1) in an unique mouse CCD cell line

that expresses functional mineralocorticoid receptors. Moreover, ectopic expression of

KS-WNK1 significantly increases transepithelial sodium transport in those cells through

the epithelial sodium channel (ENaC), the major mediator of aldosterone-sensitive

sodium reabsorption (FIG. 1.4|CCD, on page 27) . Furthermore, decreased ENaC ex-

pression and activity have recently been reported in KS-WNK1−/− mice, although the

authors suggest it could be a compensatory mechanism to prevent hypertension as a

result of the increased NCC activity following KS-WNK1 inactivation (Hadchouel et al.,

2010).
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Regardless, other studies suggest that WNK1 N-terminus regulates ENaC through the

activation of SGK1 (whose activity is stimulated by mineralocorticoids such as aldos-

terone), which phosphorylates Nedd4-2, an E3 ubiquitin ligase. This enzyme directly

interacts with a PY motif in two subunits of ENaC via a WW proline-binding domain,

leading to the endocytosis of the channel. Nedd4-2 phosphorylation inhibits this di-

rect interaction, causing the retention of ENaC at the cell surface and, consequently,

increased sodium current (FIG. 1.4|CCD, on page 27) (Xu et al., 2005b).

How WNK1 controls SGK1 activity remains unclear since SGK1 is not a WNK1 sub-

strate, although two sites of activating phosphorylation on SGK1, Thr256 and Ser422,

must be present for activation of SGK1 by WNK1. Possibly, as WNK1 binds to SGK1,

WNK1 may serve as a scaffold to assemble a protein complex required for efficient

SGK1 activation (Xu et al., 2005b; Xu et al., 2005c). Conversely, there is more insight in the

upstream pathways involved (FIG. 1.4|CCD, on page 27), WNK1 contains an N-terminal

site (Thr60) for phosphorylation by Akt (also called protein kinase B), and/or SGK1

(WNK1 phosphorylation by SGK1 may reflect positive feedback) (Xu et al., 2005c). Fur-

thermore, Akt phosphorylation of WNK1 increases the activation of SGK1 and ENaC

by WNK1, and the activation of Akt requires phosphatidyl inositol-3-kinase (PI3K)

catalytic activity. In addition, it has also been shown that WNK1 is required for SGK1

activation by insulin-like growth factor 1 (IGF-1) (Xu et al., 2005c).

A comparable site for Akt/SGK1 phosphorylation is present in WNK4 (Ser47) and

its mutation reduces WNK4 capacity to activate SGK1. Furthermore, PI3K activity is

also required for SGK1 activation by WNK4. In addition, the N-terminus of all WNKs

has been shown to have the capacity to interact with and activate SGK1, increasing

ENaC-associated sodium current. Conversely, KS-WNK1, which lacks the WNK1 N-

terminus, is unable to activate ENaC, and moreover, inhibits ENaC activation by L-

WNK1 and probably by other WNK subfamily members (Heise et al., 2010).
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On the other hand, in Xenopus oocytes, WNK4 inhibits ENaC activity via a mechanism

that requires the short cytoplasmic C-terminus of ENaC, which is used by Nedd4-2

to target the channel for degradation. However, it is not known whether WNK4 is

acting through Nedd4-2 or in an independent pathway. This inhibition is independent

of WNK4 kinase activity and is alleviated by mutations that cause PHA-II, and by

mimicking phosphorylation at one SGK1 consensus phosphorylation site (S1190D) in

WNK4 (Ring et al., 2007a; Ring et al., 2007b).

The physiological significance of these effects of WNK4 on ENaC in vivo is demon-

strated by the observation that transepithelial sodium permeability and ENaC protein

levels were elevated in the CCD of mutant Wnk4D561A/+ mice, even though it was sug-

gested that it could be a secondary mechanism that compensates for reduced luminal

sodium availability in CCD and/or hyperkalemia (Yang et al., 2007c). Also the hypo-

morphic WNK4 mice and the SpakT 243A/+ animals expressed higher levels of ENaC

in the kidney, further suggesting that this is a compensatory mechanism for reduced

NCC/NKCC2 activity (Ohta et al., 2009; Rafiqi et al., 2010).

1.4.4 ROMK regulation

As PHA-II is characterised by hyperkalemia due to impaired potassium excretion (Wil-

son et al., 2001), the involvement of ROMK (primary determinant of potassium ion se-

cretion in the CCD) has been extensively studied.

Work in Xenopus oocytes has shown that WNK4 inhibits the activity of ROMK, and this

inhibition is due to a significant reduction in membrane expression of ROMK, being

this effect independent of WNK4 kinase activity. Furthermore, WNK4 facilitates the re-

trieval of ROMK from the oocyte membrane through a clathrin-mediated endocytosis

pathway (Kahle et al., 2003).
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The kinase-independent inhibition of ROMK by WNK4 raised the question of how

inhibition is achieved. One possibility is that WNK4 serves as a scaffold to bring to-

gether ROMK and other factors that target ROMK for endocytosis (Kahle et al., 2003).

Indeed, several years later it was shown in human embryonic kidney (HEK293) cells

that WNK4 interacts with intersectin, a multimodular endocytic scaffold protein that

recruits endocytic proteins to the clathrin-coated pits, and that this interaction is cru-

cial for stimulation of ROMK endocytosis by WNK4 (FIG. 1.4|CCD, on page 27). It was

also demonstrated that this endocytosis stimulation required only the binding of in-

tersectin to specific proline-rich WNK motifs (PXXP) via its SH3 domains and not the

WNKs kinase activity (He et al., 2007).

Curiously, the PXXP motifs of WNK4 critical for interaction with intersectin, precede

the region of 4 amino acids (EADQ, FIG. 1.2|B) where most PHA-II-causing mutations

are clustered (He et al., 2007). These WNK4 mutations markedly increase inhibition

of ROMK-mediated potassium ion flux and surface expression, compared with wild-

type WNK4, due to enhanced interactions of WNK4 with intersectin and ROMK (Kahle

et al., 2003; He et al., 2007). Therefore, the increased inhibition of ROMK can account for

impaired potassium ion secretion and hyperkalemia in patients with PHA-II (Kahle

et al., 2003).

Another work in Xenopus oocytes has shown that WNK1 can directly affect ROMK-

mediated potassium ion current, independent of WNK4, by causing a marked reduc-

tion in its surface expression. They have also shown that this effect does not require

WNK1 kinase activity (Cope et al., 2006). In HEK293 cells, L-WNK1 (similarly to WNK4)

stimulates clathrin-dependent endocytosis of this channel by interacting with the scaf-

fold protein intersectin through its SH3 domains (Cope et al., 2006; Lazrak et al., 2006;

He et al., 2007). Moreover, KS-WNK1 acts as a physiological antagonist of L-WNK1, re-

versing the inhibition of ROMK caused by L-WNK1 (FIG. 1.4|CCD, on page 27). Accord-

ingly, transgenic mice overexpressing KS-WNK1 display increased surface expression

20



1.4. The Role of WNK1 and WNK4 in renal electrolyte homeostasis

of ROMK in the renal distal tubules and decreased serum potassium levels (Liu et al.,

2009). Thus, hyperkalemia in PHA-II patients with WNK1 mutations may be caused, at

least partially, by increased expression of L-WNK1, which can lead to increased endo-

cytosis of ROMK via intersectin (Lazrak et al., 2006; He et al., 2007; Liu et al., 2009).

More recently, the endocytotic signal and the internalisation machinery involved in

L-WNK1-stimulated ROMK endocytosis have been further elucidated. ROMK binds

directly to the clathrin adaptor molecule autosomal recessive hypercholesterolemia

(ARH), and this interaction is mediated by what is believed to be a novel variant of

the canonical NPXY endocytotic signal, YxNPxFV. Thus, ARH, which has a scaffold-

ing architecture to couple cargo selection to clathrin-pit localisation, recruits ROMK to

clathrin-coated pits, for both constitutive and L-WNK1-stimulated endocytosis, by si-

multaneously interacting with the internalisation signal, AP-2 and clathrin (Fang et al.,

2009).

Nevertheless, transgenic Wnk4 Q562E and knock-in Wnk4D561A/+ PHA-II mice models

suggest an additional mechanism for hyperkalemia. In both models, hyperkalemia is

ameliorated by treatment with thiazide. It was therefore suggested that hyperkalemia

developed secondary, because an increase in the activity of NCC decreases sodium

reabsorption via ENaC, thus diminishing the driving force for potassium secretion

via ROMK (Lalioti et al., 2006; Yang et al., 2007c). In both studies (also true for D564A

Wnk4 transgenic mice), apical abundance of ROMK between wild-type and PHA-II

mice were not different (Yamauchi et al., 2005; Lalioti et al., 2006; Yang et al., 2007c). The

‘normal’ level of apical abundance of ROMK in PHA-II mice, however, may be consid-

ered inappropriately low in the setting of hyperkalemia since the abundance of ROMK

should be upregulated in these situations, e.g. by increased dietary potassium intake

(reviewed in Frindt and Palmer, 2010). The observation that apical abundance of ROMK

is unchanged suggests that it is partially inhibited by mutant WNK4. Moreover, hy-

perkalemia in patients with WNK4 mutations (Mayan et al., 2004), as well as in PHA-II
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mice (Yang et al., 2007c), precedes the development of hypertension, suggesting that in-

creased NCC activity is not essential for hyperkalemia. Therefore, inhibition of ROMK

by mutant WNK4 likely occurs in PHA-II and contributes to hyperkalemia.

1.4.5 TRPV4, TRPV5, and TRPV6 regulation

The molecular mechanisms underlying hypercalciuria in PHA-II caused by WNK4 mu-

tations remain unclear. In the distal nephron, calcium channels such as TRPV4 are co-

expressed with both WNK1 and WNK4 (Tian et al., 2004; Wilson et al., 2001), thus the os-

motically responsive WNK kinases may influence expression, function and/or target-

ing of TRPV4 in this tissue. Indeed, ectopic expression of either WNK downregulates

TRPV4 function in HEK293 cells, being the effect mediated via decreased cell surface

expression of TRPV4 and partially independent of WNK kinase activity, although a

direct interaction between the WNK kinases and TRPV4 could not be demonstrated.

Regarding WNK4 PHA-II-causing mutations, they abrogate, but do not eliminate, the

inhibitory effect of WNK4 on TRPV4 function (Fu et al., 2006).

An effect of WNK4 (but not of WNK1) on TRPV5 function has also been described.

However, in contrast to its effect on TRPV4, the study in Xenopus oocytes showed

that coexpression of TRPV5 with WNK4 results in increased TRPV5-mediated calcium

uptake due to the increase in TRPV5 surface expression. Another difference is that

WNK4-induced increase in TRPV5 plasma membrane expression is abolished by a

kinase-dead mutant. Moreover, the positive effect of WNK4 on TRPV5 was greatly

reduced when NCC was coexpressed, suggesting that WNK4 may be an important

modulator of the inverse relation between calcium and sodium reabsorption in the

distal tubule (Jiang et al., 2007).

In Xenopus oocytes, WNK4 PHA-II-causing mutants were indistinguishable from wild-

type WNK4 in TRPV5 in vitro function assays (Jiang et al., 2007), which is inconsistent
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with the aberrant calcium balance accompanying familial hyperkalemia and hyperten-

sion in WNK4 mutant patients (Mayan et al., 2002). However, in the presence of NCC,

the WNK4 PHA-II mutant exhibits an impaired ability to enhance TRPV5 compared

with wild-type WNK4, suggesting reduced calcium reabsorption under the disease

condition, which could in turn contribute to the hypercalciuria observed in the WNK4

PHA-II patients (Jiang et al., 2007).

Conversely, a more recent study (Cha and Huang, 2010) shows that WNK4 decreases

calcium current and cell surface abundance of TRPV5 by enhancing its endocytosis

through a caveolae-mediated mechanism, in which intersectin is also important (FIG.

1.4, on page 27). Besides its role in clathrin-coated vesicles, intersectin is also present

in caveolae and is believed to play a critical role in fission of caveolar vesicles via dy-

namin, similar to that in clathrin-coated ones (Predescu et al., 2003).

Curiously, parathyroid hormone-activated protein kinase C (PKC) has the opposite ef-

fect of WNK4, and increases cell surface abundance of TRPV5 by inhibiting caveolae-

mediated endocytosis of the channel (Cha et al., 2008). Therefore, the lower basal TRPV5

level in the presence of WNK4 allows the amplification of the channel stimulation by

activated PKC (Cha and Huang, 2010). Surprisingly, the rate of TRPV5 increase stimu-

lated by PKC is also enhanced by WNK4. Nevertheless, further studies are required to

determine how WNK4 enhances this rate (Cha and Huang, 2010).

This study also shows that WNK4 PHA-II mutation enhances the ability of WNK4 to

inhibit TRPV5 current, raising the possibility that WNK4 regulation of TRPV5 may also

contribute to hypercalciuria in PHA-II patients (Cha and Huang, 2010).

On the other hand, WNK4 had direct little effect on TRPV6-mediated calcium uptake

(Jiang et al., 2007). However, the analysis of Wnk4D561A/+ knock-in transgenic mice has

suggested that decreased calcium reabsorption in the upstream nephron, with a sec-

ondary adaptive increase in the calcium channel TRPV6, and the cytosolic calcium
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facilitator CBP-D28k expression in the distal tubules, is underlying the hypercalciuria

of PHA-II patients (Yang et al., 2010).

1.4.6 Paracellular chloride permeability regulation

WNK1 and WNK4, despite being both present in the DCT and CCD, have distinct

subcellular distribution patterns. WNK1 is present throughout the cytoplasm whereas

WNK4 is present at the subapical plasma membranes and tight junctions in the DCT

and in both the cytoplasm and at intercellular junctions in the CCD (Wilson et al., 2001).

This pattern suggests that WNK4 might also modulate paracellular ion flux across

these epithelia, since it occurs through selective and regulated pores in tight junctions.

Ectopic expression of WNK4 in Madin-Darby canine kidney (MDCK) II epithelial cells

increases paracellular chloride permeability through tight junctions. In addition, the

paracellular chloride conductance is greater in cells expressing WNK4 PHA-II mutants

than in cells expressing wild-type proteins (Kahle et al., 2004b; Yamauchi et al., 2004).

WNK4 phosphorylates claudins 1-4, a family of transmembrane tight junction proteins

involved in the regulation of paracellular ion permeability (FIG. 1.4|DCT, on page 27).

Furthermore, cells expressing WNK4 PHA-II mutant contain a higher level of phos-

phorylated claudins than cells expressing wild-type protein (Yamauchi et al., 2004). En-

hanced phosphorylation of claudins by mutant WNK4 is due to the increased claudin-

WNK4 association. Possibly the disease-causing mutations in WNK4 somehow affect

its interaction with its negative regulators, including its own domains (such as the au-

toinhibitory one), allowing enhanced binding to claudins (Yamauchi et al., 2004). How

this phosphorylation imparts its effect is presently unknown. One possibility is that

this post-translational modification alters claudins conductance, as occurs with tran-

scellular ion channels (Marban et al., 1998). One can speculate that the phosphorylation
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by WNK4 changes the conformation of claudins, increasing chloride ion pore perme-

ability or affecting their interaction with intracellular regulators, such as cytoskeletal

proteins (Heiskala et al., 2001).

Similar to ectopic expression of WNK4, MDCK II cells overexpressing WNK1 display

an increase in paracellular permeability, associated with increased phosphorylation of

claudin 4 (Ohta et al., 2006). However, an in vitro kinase assay (and its cytoplasmic

localisation) suggests that WNK1 does not directly phosphorylate claudin 4 (Yang et al.,

2007b).

Thus hypertension in PHA-II patients could be caused by increased NaCl reabsorption

through both NCC and the paracellular pathway. However, the increase in NaCl reab-

sorption through NCC may be relatively more critical than that through the paracellu-

lar pathway, since hypertension in patients with WNK4 mutations was estimated to be

six times more sensitive to thiazide treatment than individuals with essential hyper-

tension (Mayan et al., 2002). Furthermore, recent studies using mice carrying a mutant

PHA-II-causing WNK4 gene (created either by transgene integration or by knock-in)

support the hypothesis that increased NCC activity is the primary cause of the hyper-

tension resulting from WNK4 mutations (Lalioti et al., 2006; Yang et al., 2007c).

1.4.7 WNK3 also participates in renal electrolyte homeostasis

Adding to the complexity of ion channel regulation by WNK1 and WNK4 is the find-

ing that WNK3 also participates in renal electrolyte homeostasis (FIG. 1.4 on page 27),

although no known mutations link this kinase to PHA-II. Unlike WNK1 and WNK4,

WNK3 is expressed throughout the nephron (including the TAL and the DCT) and

predominantly at intercellular junctions (Rinehart et al., 2005; Leng et al., 2006).
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Wild-type WNK3 activates NCC, NKCC1 and NKCC2 (chloride influx pathways), and

inhibits all four KCCs (chloride efflux pathways), even during cell swelling, a condition

in which KCCs are maximally active. The catalytically inactive WNK3 has the opposite

effects, even in isotonic conditions. Therefore, WNK3 possesses the ability to bypass

the tonicity requirements for activation or inhibition of the cotransporters (Kahle et al.,

2005; Rinehart et al., 2005; de Los Heros et al., 2006).

The effects of WNK3 are mediated via altered phosphorylation and surface expression

of its downstream targets, however, WNK3 does not seem to directly phosphorylate

these cotransporters. Furthermore, it has been shown that WNK3 modulates KCC1-

KCC4 activity via a mechanism that requires protein phosphatases, whereas activation

of NKCC2 by intracellular chloride depletion requires an interaction between WNK3

and SPAK (in a pathway in which WNK3 lies upstream of SPAK) (Kahle et al., 2005;

Rinehart et al., 2005; de Los Heros et al., 2006; Ponce-Coria et al., 2008).

On the other hand, WNK3 also inhibits ROMK activity by decreasing its plasmalem-

mal surface expression in Xenopus oocytes, although in a non-catalytically manner.

Conversely, WNK3 has no effect on the activity of ENaC in Xenopus oocytes, or on

paracellular chloride flux in MDCK II cells, renal NaCl transport processes regulated

by WNK1, or by both WNK1 and WNK4, respectively (Leng et al., 2006; Rinehart et al.,

2005).

WNK3 positively regulates the epithelial calcium channels TRPV5 and TRPV6 through

a kinase-dependent pathway, which involves protein maturation and delivery to the

plasma membrane via the secretory pathway (Zhang et al., 2008). Similar to the atten-

uation of the positive effect of WNK4 on TRPV5 when NCC was coexpressed (Jiang

et al., 2007), the presence of NCC also partially blocked the positive effect of WNK3 on

TRPV5 (Zhang et al., 2008).
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Figure 1.4| Simplified model of WNKs signalling pathways involved in renal electrolyte homeosta-
sis regulation. Distal convoluted tubule (DCT) | WNK4 can interact with NCC, the main channel respon-
sible for NaCl transport in this nephron segment, and reduce its surface expression by stimulating lyso-
somal degradation. Both SGK1 (whose activity is stimulated by mineralocorticoids such as aldosterone)
and WNK1 act upstream of WNK4, inhibiting its function. Moreover, KS-WNK1 antagonises WNK1 activ-
ity, thereby allowing WNK4 to inhibit NCC. In addition, there is evidence that WNK1, WNK3 and WNK4
can activate NCC via SPAK and/or OSR1, and that KS-WNK1 reverses the activation. Additionally, an-
giotensin II through type I receptors acts via WNK4 and SPAK to increase NCC activity. On the other
hand, WNK4 also decreases cell surface abundance of TRPV5 by enhancing its endocytosis through a
caveolae-mediated mechanism, in which intersectin (ITSN) is important. Cortical collecting duct (CCD)
| WNK1 and WNK4 regulate ENaC through the activation of SGK1 (a mediator of aldosterone signalling),
which phosphorylates Nedd4-2. This reduces its direct interaction with ENaC and thereby leads to reten-
tion of the channel at the cell surface. KS-WNK1 inhibits ENaC activation by WNK1 and probably by other
WNK subfamily members. Conversely, there is also evidence that KS-WNK1, in response to aldosterone,
signalling enhances ENaC activity. Furthermore, WNK1 and WNK4 (and possibly WNK3) facilitate the
retrieval of ROMK from the plasma membrane by a clathrin-mediated process, which also depends on
ITSN. Once again, KS-WNK1 acts as a physiological antagonist of WNK1 (and possibly of other WNKs),
reversing the inhibition of ROMK. In addition, WNK4 also stimulates paracellular chloride flux by phos-
phorylating claudins. (For simplicity, TRPV5 regulation is only represented in the DCT. Green arrows –
activating pathways, red blunt ends – inhibitory pathways. See text for further details.)
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1.4.8 Comprehensive model for WNK renal electrolyte homeostasis (dys)regula-

tion

WNK1, WNK3 and WNK4 have been suggested as multifunctional regulators of di-

verse renal ion transporters and their different mechanisms of regulation could be a

means to achieve independent function modulation of different channels. Specifically,

WNK1 and WNK4 kinases can both be seen as a molecular switch that integrates phys-

iologic signals to alter the balance between net renal NaCl reabsorption and potassium

secretion.

The ability of WNK1 and WNK4 to differentially regulate NCC and ROMK could

explain the mechanism by which the kidney responds differently to aldosterone sig-

nalling in the setting of hypovolemia versus hyperkalemia (Wilson et al., 2003; Yang et al.,

2003; Xu et al., 2005b; Kahle et al., 2003; Cope et al., 2006). Furthermore, both kinases seem

to regulate paracellular chloride flux (Yamauchi et al., 2004; Ohta et al., 2006), which plays

an important role in NaCl and potassium homeostasis in the CCD, where 70% of chlo-

ride reabsorption occurs via the paracellular path (Schuster and Stokes, 1987).

In the presence of WNK4 PHA-II mutant, the increase in electroneutral NCC activity in

the DCT (Lalioti et al., 2006) could reduce sodium reabsorption via ENaC, which would

be accompanied by increased paracellular chloride reabsorption and reduced potas-

sium secretion due to the effect of WNK4 to both, reduce the lumen-negative potential

(Kahle et al., 2004b; Yamauchi et al., 2004), and to directly inhibit ROMK (Kahle et al., 2003).

Hypertension in PHA-II patients with WNK1 mutations is likely caused by L-WNK1

mediated-increase of both NCC and ENaC sodium transport (Wilson et al., 2003; Yang

et al., 2003; Xu et al., 2005b). More, L-WNK1 might also increase paracellular chloride re-

absorption, and the decrease in potassium secretion through ROMK could contribute
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to the hyperkalemia phenotype in these patients (Cope et al., 2006). Thus, WNK1 muta-

tions effect of L-WNK1 expression in the DCT would enable it to counteract KS-WNK1,

which is L-WNK1 physiological antagonist (Subramanya et al., 2006).

WNK kinases not only modulate transport pathways directly, but also constitute a

multi-gene kinase network responsible for the electrolyte homeostasis in the aldoste-

rone-sensitive distal nephron. In particular, several in vitro studies have shown that

WNK4, WNK1, KS-WNK1, and recently WNK3, can form heteroligomeric protein

complexes and interact functionally amongst each other at the protein-protein level

(via coiled-coil domains) or by phosphorylation processes (Yang et al., 2003; Yang et al.,

2005a; Subramanya et al., 2006; Yang et al., 2007b). These interactions between different

WNKs have been suggested to allow the signal transduction pathway to be precisely

tuned to meet the different physiological demands of salt balance.

1.5 WNK kinases as regulators of ion flux in extrarenal epithelia

Although PHA-II has a renal phenotype, WNK kinases are widely expressed regula-

tory proteins. In extrarenal epithelia, WNK1 and WNK4 have been shown to regulate

other ion transporters and exchangers, establishing pleiotropic roles for these proteins

since ion transport across the plasma membrane is fundamental for many cellular func-

tions, including cell volume and pH regulation, electrochemical gradients, control of

neuronal excitability and mucus constitution (Choate et al., 2003; Kahle et al., 2004a; Kahle

et al., 2006).
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1.5.1 NKCC1 and KCC2 regulation

The WNK1 and WNK4 effectors SPAK and OSR1 are ubiquitously expressed and have

multiple functions. For instance, they have been confirmed to phosphorylate other

SLC12 cation/chloride cotransporters besides renal NCC and NKCC2, such as the

Na+/K+/ 2Cl− cotransporter 1 (NKCC1) and the K+/Cl− cotransporter 2 (KCC2) in

vitro in both Xenopus oocytes and HEK293 cells (Dowd and Forbush, 2003; Gagnon et al.,

2006a; Vitari et al., 2005; Gagnon et al., 2006b). NKCC1 is also ubiquitously expressed and

plays a key role in epithelial salt secretion and cell volume regulation, whereas KCC2

is a neuron-specific cotransporter, which functions not only as a significant chloride

extrusion mechanism, but also plays an important role in the overall chloride home-

ostasis of mature neurons (Haas and Forbush, 2000; Kahle et al., 2008b).

NKCCs, which mediate chloride influx, are activated by phosphorylation and inhib-

ited by dephosphorylation (Haas and Forbush, 2000), whereas KCCs, which transport

chloride out of cells, show the opposite regulation (Lauf and Adragna, 2000), i.e. these

cotransporters are reciprocally regulated by the same stimuli.

Activated WNK1 and WNK4 phosphorylate and activate SPAK and OSR1, which then

phosphorylate and stimulate the activity of NKCC1 (Vitari et al., 2005) and phosphory-

late and inactivate the function of KCC2 (Gagnon et al., 2006b). In addition to directly

activating NKCC1 by phosphorylation, SPAK was suggested to play a scaffolding role

in regulating NKCC1 function, perhaps by controlling its phosphorylation by other

kinases (Piechotta et al., 2003).

Conversely, another study in Xenopus oocytes shows that WNK4 can inhibit NKCC1,

which occurs via reduced surface expression of the cotransporter (Kahle et al., 2004a). At

this stage, there is no explanation why the same cotransporter (NKCC1, although hu-

man versus mouse), the same kinase (WNK4), and the same expression system (Xeno-

pus laevis oocytes) would yield such diametrically opposite results (Gagnon et al., 2006b).
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1.5.2 KCC1, KCC3, and KCC4 regulation

KCC1 exhibits ubiquitous expression and its primary role seems to be cell volume reg-

ulation. On the other hand, KCC3 and KCC4 are expressed in several tissues, including

the central nervous system and the kidney, and may play a role in several physiological

processes, such as transepithelial salt absorption, renal potassium secretion and reab-

sorption, myocardial potassium loss during ischemia, and vascular smooth muscle cell

relaxation (Gamba, 2005a; Mount and Gamba, 2001).

In Xenopus oocytes, wild-type WNK4 is capable of inhibiting the activity of all three co-

transporters under cell swelling (Garzón-Muvdi et al., 2007), a condition in which KCC1,

KCC3, and KCC4 are maximally active. The requirement of WNK4 catalytic activity to

inhibit KCCs suggests that WNK4 induces their phosphorylation since it is known that

KCCs remain inactive when phosphorylated (Lauf and Adragna, 2000). Furthermore,

the presence of SPAK does not affect the activity of these cotransporters or change the

WNK4 inhibitory effect on non-neuronal KCCs (Garzón-Muvdi et al., 2007).

In contrast, catalytically inactive WNK4 is able to bypass the tonicity requirements

for activation of KCC3 (and KCC2) but not for KCC1 and KCC4, and activate this co-

transporter in isotonic conditions (Garzón-Muvdi et al., 2007). The activation of KCC3

observed by inactive WNK4 is similar to what was previously observed with the cat-

alytically inactive form of WNK3 (de Los Heros et al., 2006) and it is also similar to what

would be expected with activation of the protein phosphatases, suggesting that catalyt-

ically inactive WNK4 is able to activate some of the endogenous protein phosphatases

in the Xenopus oocytes.

The expression of WNK1 (but again not of SPAK or OSR1) also appears to be part of

the pathway involved in the inhibitory phosphorylation events of cotransporter KCC3

and it is also suggested that dephosphorylation increases its intrinsic transport activity

(Rinehart et al., 2009).
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1.5.3 CFTR, SLC26A6 (CFEX), and SLC26A9 regulation

WNK kinases are coexpressed with the cystic fibrosis transmembrane conductance reg-

ulator (CFTR) in a variety of tissues, including ciliary epithelial cells in the lung (Choate

et al., 2003; Yang et al., 2007a). CFTR is a cAMP-gated chloride channel encoded by the

gene that is mutated in cystic fibrosis, being the most frequent mutation the deletion

of phenylalanine 508 (Phe508), which causes increased proteolytic degradation of the

misfolded mutant CFTR protein. Cystic fibrosis is a recessive genetic disease charac-

terised by progressive lung dysfunction (which is the main cause of morbidity and

mortality). This is a consequence of the defect in chloride transport coupled with hy-

perabsorption of sodium, which leads to the generation of thick and dehydrated mu-

cus, and subsequent colonisation of the conducting airway by bacteria (such as Pseu-

domonas aeruginosa). Other symptoms include pancreatic insufficiency, elevated sweat

electrolytes and male infertility (reviewed in Li and Naren, 2010). It has been shown

that the disease severity could be significantly reduced if the retention at the plasma

membrane of the mutant protein improved (since it could contribute to some residual

chloride channel activity) (Amaral, 2005).

WNK1 and WNK4 kinases inhibit CFTR chloride channel activity in Xenopus oocytes,

but the mechanisms appear to be different and, WNK1 and WNK4 exhibit additive

CFTR inhibition. Moreover, the inhibitory effects of WNK1 are kinase dependent and

do not affect CFTR abundance at the plasma membrane, whereas the inhibitory effects

of WNK4 are kinase independent and associated with a reduction in CFTR cell surface

abundance. Furthermore, the Wnk4 Q562E PHA-II-disease mouse model (Wnk4 muta-

tion homologous to the human Q565E mutation) has enhanced CFTR inhibitor activity

when compared to the wild-type Wnk4 (Yang et al., 2007a).

Moreover, WNK4 PHA-II patients have been reported to have changes in epithelial

potential difference and conductance that resemble mild cystic fibrosis, which could
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be explained by the mutant WNK4 ability to suppress CFTR in nasal epithelia and

sweat ducts of PHA-II patients (Farfel et al., 2005; Yang et al., 2007a).

WNK4 has also been reported to reduce the activity of the Cl−/base exchanger SCL26-

A6 (CFEX), in Xenopus oocytes (Kahle et al., 2004a). CFEX was first identified in the

brush border of renal proximal tubule cells, however it is also expressed in pancreas,

liver, and testis (Knauf et al., 2001; Lohi et al., 2000; Waldegger et al., 2001). Intriguingly, in

all these tissues epithelial ducts secrete HCO3− by Cl−/HCO3− exchange coupled to

CFTR-regulated chloride secretion (Li and Naren, 2010).

SLC26A9 is also a member of the SLC26 family of anion transporters, which is ex-

pressed at high levels at the luminal membrane of airway secretory glands and gastric

surface epithelial cells, where it functions as a chloride channel. WNK1, WNK3, and

WNK4 protein kinases regulate SLC26A9 channel activity and the inhibition does not

require the WNKs kinase activity. WNK-mediated inhibition of SLC26A9 activity is

caused by reduced SLC26A9 surface expression both in Xenopus oocytes and HEK293

cell line (Dorwart et al., 2007).

The effects of WNK4 on CFTR activity and, of WNK1, WNK3, and WNK4 on SLC26A9

activity, are reminiscent of WNK1 and WNK4 effects on ROMK (Kahle et al., 2003; Lazrak

et al., 2006; He et al., 2007). Both the effects of WNK4 on CFTR and of WNK1/3/4

on SLC26A9 are kinase activity-independent and associated with a change in protein

abundance at the plasma membrane. Therefore, WNKs could act here (as has been

shown for ROMK) as scaffolds that recruit other proteins that regulate the activity

and/or surface expression of these channels, possibly by an endocytosis mechanism.
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1.6 Summary of WNKs regulation of ion transport proteins

Taken together, the published data show that WNK kinases regulate many ion trans-

port proteins by altering membrane trafficking, and/or their activity, and that the

mechanisms by which WNK kinases regulate these proteins may vary (TABLE 1.1).

Table 1.1| Ion Transporters regulated by the WNK kinases

Channel Function WNK1 activity WNK4 activity Effect

NCC Na+/Cl− cotransporter dependent dependent surface and activity

NKCC Na+/K+/2Cl− cotransporter dependent dependent activity

KCC K+/Cl− cotransporter dependent dependent activity

ENaC epithelial Na+ channel independent independent surface

ROMK K+ channel independent independent surface

TRPV Ca+ channel dependent dependent surface

CFTR Cl− channel dependent independent activity or surface

CFEX Cl−/base exchanger unknown unknown activity

SLC26A9 Cl−/base exchanger independent independent surface

In particular, WNK4 decreases cell surface expression of the thiazide-sensitive NaCl

cotransporter NCC by inhibiting forward trafficking, whereas L-WNK1 antagonizes

WNK4 activity and KS-WNK1 inhibits L-WNK1 action (Wilson et al., 2003; Yang et al.,

2003; Yang et al., 2005b; Subramanya et al., 2006). On the other hand, both WNK1 and

WNK4 enhance NCC transport activity through the cotransporter phosphorylation via

their effectors, OSR1 and SPAK (Moriguchi et al., 2005; Vitari et al., 2005; Pacheco-Alvarez

et al., 2006; Richardson et al., 2008).

Furthermore, WNK1 activates SGK1 to inhibit Nedd4-2-mediated internalization of

the epithelial sodium channel ENaC, and although WNK4 also inhibits ENaC, it is not

known whether WNK4 is acting through Nedd4-2 or in an independent pathway (Xu

et al., 2005b; Ring et al., 2007a).
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Both, WNK1 and WNK4 stimulate clathrin-mediated endocytosis of the potassium

channel ROMK (Kahle et al., 2003; Cope et al., 2006; Lazrak et al., 2006; He et al., 2007) and,

WNK4 also stimulates caveolae-mediated endocytosis of the epithelial calcium chan-

nel TRPV5 (Cha and Huang, 2010). Moreover, WNK4 regulates both clathrin-mediated

and caveolae-mediated endocytosis by the same mechanism involving an interaction

with intersectin, an endocytic scaffold protein.

Even though both WNK1 and WNK4 kinases inhibit CFTR chloride channel activity,

the inhibitory effects of WNK1 are kinase-dependent and do not affect CFTR abun-

dance at the plasma membrane, whereas the inhibitory effects of WNK4 are kinase-

independent and associated with a reduction in CFTR cell surface abundance (Yang

et al., 2007a).

On the other hand, WNK1 also interacts with, and phosphorylates (within its calcium

binding C2 domains) synaptotagmin. This protein is a calcium sensor, which regu-

lates endocytosis and exocytosis and thus may be involved in a general mechanism

of WNK1-regulated trafficking of plasma membrane proteins. Phosphorylation by

WNK1 increases the amount of calcium required for synaptotagmin binding to phos-

pholipid vesicles. Therefore WNK1 could influence the rate of cycling of synaptotag-

mins among their calcium-dependent binding states, which would in turn compromise

the functionality of a number of transporters that are regulated by their time of resi-

dence at the plasma membrane (Lee et al., 2004).

1.7 The Role of WNK kinases in cell survival and proliferation

Besides WNK kinases’ role in ion channel regulation, WNKs also participate in sig-

nalling pathways involved in cell survival and proliferation. Whether a functional

connection between both roles exists has not been established yet.
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Several studies of somatic mutations in human cancers reported missense mutations in

WNK1 associated with brain, breast, lung, and colon cancers and, also a silent mutation

associated with ovary cancer. In contrast, missense WNK4 mutations were found in

melanoma, and ovary carcinoma, and a frameshift deletion was found in gastric cancer.

On the other hand, WNK2 missense mutations have been found in brain and lung

cancers, frameshift deletions have been described in gastric and colon cancers, and

both types of mutations were found in ovary cancers. Finally, also missense mutations

in WNK3 were reported in lung and kidney cancers and a frameshift deletion was

found in brain cancer (Stephens et al., 2005; Davies et al., 2005; Greenman et al., 2007; Parsons

et al., 2008).

At the genome-wide level, a recent RNA interference study identified 73 kinases whose

suppression increased the level of apoptosis by at least twofold over control, defining

them as survival kinases. In this screen, WNK1 and WNK3 scored positive, whereas

WNK2 and WNK4 had no effect on cell survival (MacKeigan et al., 2005 and J. Blenis,

personal communication, Boston).

Additionally, WNK1 expression was greatly decreased in a tumour cell line, in which

ganglioside synthesis was suppressed by genetic manipulation leading to a reduced

rate of cell migration and invasiveness, thus indicating a putative role of WNK1 in tu-

morigenesis (Zeng et al., 2005). Furthermore, WNK3 was found to promote cell survival

by inhibiting caspase-3 and thus permitting cells to evade apoptosis (Veríssimo et al.,

2006).

All of these findings suggest a relationship between WNK protein kinases and cell

survival and proliferation (reviewed in Moniz and Jordan, 2010).

Given that the protein kinases MEKK, PAK, and Raf are the WNK kinases closest ho-

mologues, a response to epidermal growth factor (EGF) would be expected. Indeed,

WNK1 is involved in the EGF-dependent stimulation of extracellular signal-regulated

36



1.7. The Role of WNK kinases in cell survival and proliferation

kinase 5 (ERK5), a signalling pathway linked to cell proliferation. Specifically, WNK1

activates this pathway in response to low concentrations of EGF in HEK293 cells. It

does so by interacting with MEKK2 and MEKK3, which bind to and activate MEK5

kinase, leading in turn to the phosphorylation and activation of ERK5 (Xu et al., 2004;

Nakamura and Johnson, 2003). Accordingly, reduction of WNK1 mRNA levels by RNA

interference in C17.2 mouse neural progenitor cells suppresses the activation of ERK5

and, greatly reduces cell growth, differentiation and migration (Sun et al., 2006).

In contrast to WNK1, human WNK2 (the only subfamily member not known to be in-

volved in ion channel regulation) has no effect on ERK5 but modulates the activation

level of ERK1/2. The molecular mechanism through which a reduction in WNK2 ex-

pression can increase ERK1/2 activation involves phosphorylation of MEK1 at serine

residue 298, a modification that increases its affinity towards ERK1/2. The increase in

ERK1/2 activation promotes cell cycle progression through G1/S and sensitises cells

to respond to lower concentrations of EGF (Moniz et al., 2007; Moniz et al., 2008).

Ectopic expression of WNK4 has also been shown to increase the phosphorylation of

ERK1/2 and p38 MAPKs following EGF stimulation or hyperosmotic stress in HEK293

cells. However, the mechanism of WNK4 action remains unclear and the correspond-

ing effect of endogenous WNK4 has not been addressed yet (Shaharabany et al., 2008).

WNKs can also affect other signalling pathways related to cell proliferation, includ-

ing the inhibition of Smad2/transforming growth factor beta (TGFβ) signalling since

both WNK1 and WNK4 directly bind to and phosphorylate Smad2. There are two ef-

fects of WNK1 on Smad2/TGFβ. One is to increase the cellular Smad2 level in HeLa

cells, probably through an increase in its transcription. The other is to decrease the

accumulation of phosphorylated Smad2 in the nucleus, causing inhibition of Smad2-

mediated transcription (Lee et al., 2007). The dual actions of WNK1 may be relevant to

the complex feedback regulatory mechanism for Smad2/TGFβ signalling, which can
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lead to both tumour suppression and progression depending on the cell context and

the microenvironment (Derynck et al., 2001; Massagué and Gomis, 2006).

As already mentioned (see 1.4.3 ENaC regulation), WNK1 also serves as a substrate

for the protein kinase Akt (Vitari et al., 2004; Jiang et al., 2005). This kinase is an effector

of the PI3K pathway, which is involved in the metabolic and mitogenic functions of

insulin, including the regulation of gene expression, cell survival, cell growth, glucose

transport, protein and glycogen synthesis, amongst many others (Lawlor and Alessi,

2001; Whiteman et al., 2002; Franke, 2008).

Moreover, WNK1 associates with syntaxin 4-regulatory protein Munc18c (Oh et al.,

2007), which is known to participate in insulin-stimulated GLUT4 vesicle translocation

and fusion in 3T3L1 adipocytes (Thurmond et al., 1998; Thurmond et al., 2000; Thurmond

and Pessin, 2000). Although neither ectopic WNK1 expression alone nor small inter-

fering RNA oligonucleotide (siRNA)-mediated depletion of WNK1 affects insulin se-

cretion, endogenous WNK1-Munc18c complexes are important for glucose-stimulated

insulin secretion via a syntaxin 4-dependent mechanism. This finding identifies a new

role for WNK1 in vesicle/granule exocytosis and it is independent of its role as a ki-

nase. Thus WNK1 could function as a scaffold, recruiting Munc18c as a substrate for

another kinase or phosphatase (Jiang et al., 2005; Oh et al., 2007).

On the other hand, siRNA-induced depletion of WNK1 enhances insulin-stimulated

DNA synthesis and cell growth in 3T3-L1 adipocytes suggesting a negative regulatory

role for WNK1 in insulin-mediated proliferation control (Jiang et al., 2005).

As also previously mentioned, SGK1, which is activated by PI3K (and WNK1), reg-

ulates sodium transport regulation in the kidney, however, in other cell types it also

mediates cyclin-dependent kinase inhibitor protein p27 phosphorylation, causing its

cytoplasmic mislocalisation. This impairs the inhibition of cyclin E-Cdk2 (leading to
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G1 progression) and contributes to increased cell motility, thus dysregulating cell cycle,

cell proliferation and cell migration (Hong et al., 2008; McAllister et al., 2003).

1.8 The Role of WNK1 in organ development

The WNK1 gene appears to be essential for normal embryonic development in mice,

since homozygous knock-out is lethal in utero; heterozygotes, however, are viable de-

spite presenting low blood pressure (Zambrowicz et al., 2003). Through the analysis of

embryos of time-mated WNK1-null mice, it was found that WNK1 is indeed essential

for cardiovascular development. Since WNK1 is expressed both in the developing and

adult heart there could be effects of WNK1 overexpression on the cardiovascular sys-

tem of PHA-II patients which might contribute to hypertension (Delaloy et al., 2006; Xie

et al., 2009).

1.9 Objectives

Since the molecular mechanisms and interactions involved in WNK function are largely

unknown, the elucidation of the molecular details involving human WNK1 and WNK4

protein kinases was the main objective of this thesis. Specifically, the identification

of novel interacting cellular protein partners and the underlying signal transduction

pathways was pursued. A proteomic or an antibody array approach was used to

identify partners for PHA-II-causing family members WNK1 (Chapter 2) and WNK4

(Chapter 3), respectively. The results were expected to deepen the understanding on

the role of WNK1 and WNK4 in normal cell physiology. This knowledge could con-

tribute to clarify their role in hypertension, but may have implications for other ion

channel-related disorders as well.
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In addition, it is known that WNK4 mutations detected so far in PHA-II patients are all

missense alterations clustered in exons 7 or 17 (Wilson et al., 2001) and WNK4 PHA-II

patients present hypercalciuria and low BMD besides hypertension. Accordingly, an-

other objective was established, to conduct a mutational screen for WNK4 exons 7 and

17 in a cohort of Portuguese patients and control individuals, and to evaluate if any of

the alterations encountered in the population under study may confer genetic predis-

position to hypertension and/or osteoporosis, through a case-control study (Chapter

4).
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2.1. Summary

2.1 Summary

One mechanism by which mammalian cells regulate the uptake of glucose is the num-

ber of glucose transporter (GLUT) proteins present at the plasma membrane. In insulin-

responsive cells types, GLUT4 is released from intracellular stores through inactivation

of the Rab GTPase activating protein Tre-2/USP6, BUB2, Cdc16 domain family, mem-

ber 4 (TBC1D4) (also known as AS160). Here we describe that TBC1D4 forms a protein

complex with protein kinase WNK1 in HEK293 cells. We show that WNK1 phospho-

rylates TBC1D4 in vitro and that the expression levels of WNK1 in cells regulate sur-

face expression of the constitutive glucose transporter GLUT1. WNK1 was found to

increase the binding of TBC1D4 to regulatory 14-3-3 proteins while reducing its inter-

action with the exocytic small GTPase Rab8A. These effects were dependent on the

catalytic activity because expression of a kinase-dead WNK1 mutant had no effect on

binding of 14-3-3 and Rab8A, or on surface GLUT1 levels. Together, the data describe

a pathway regulating constitutive glucose uptake via GLUT1, the expression level of

which is related to several human diseases.

Keywords: AS160, Cell surface protein, Glucose transport, Glut1, Intracellular traf-

ficking, Protein phosphorylation, Signal transduction, TBC1D4, WNK1
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2.2 Background

WNK1 is one of four human members of the WNK subfamily of serine/threonine pro-

tein kinases and is the only family member with a ubiquitous expression pattern (Verís-

simo and Jordan, 2001; Wilson et al., 2001; Choate et al., 2003; Delaloy et al., 2006). The WNK1

protein contains 2382 amino acids with a predicted molecular weight of 251 KDa and

has its catalytic domain near the N-terminus, including the unique sequence variation

around a catalytically-important lysine residue that characterises the WNK subfam-

ily (Xu et al., 2000; Min et al., 2004). WNK1 contains coiled-coil domains but the bulk

sequence reveals no homology to other known protein domains.

Currently, the knowledge on WNK1-regulated cellular pathways is still limited (Moniz

and Jordan, 2010). On one hand, WNK1 can affect multiple signalling pathways related

to cell proliferation, including the epidermal growth factor-dependent stimulation of

ERK5 in HEK293 cells (Xu et al., 2004) and the inhibition of Smad2/TGFβ signalling (Lee

et al., 2007) in HeLa cells. Additionally, IGF-1 treatment of HEK293 cells or adipocytes

stimulates protein kinase Akt to phosphorylate WNK1 at threonine residue 60 (Thr60).

However, the physiological relevance of this event is unclear because phosphorylation

did not affect WNK1 kinase activity, or its subcellular localisation (Vitari et al., 2004; Jiang

et al., 2005; Xu et al., 2005c). On the other hand, WNK1 is involved in restoring osmotic

homeostasis. It directly phosphorylates and activates SPAK and OSR1 protein kinases,

which interact with and stimulate the activity of the cation-chloride co-transporters

NKCC1 (Vitari et al., 2005; Moriguchi et al., 2005; Anselmo et al., 2006; Vitari et al., 2006)

or NCC (Moriguchi et al., 2005; Richardson et al., 2008) in HEK293 or HeLa cells. The

expression of WNK1 also appears to be part of a pathway involved in the inhibitory

phosphorylation events of cotransporter KCC3 (Rinehart et al., 2009).
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Mutations in the WNK1 and WNK4 genes have been linked to PHA-II, a rare famil-

ial form of hypertension (Wilson et al., 2001) which is characterised by increased re-

nal salt reabsorption and decreased potassium secretion. The identified WNK1 mu-

tations increase WNK1 expression levels (Wilson et al., 2001; Delaloy et al., 2008) and in

vitro data indicate that WNK1 inhibits WNK4, which itself regulates the renal sodium

cotransporter NCC and the potassium transporter ROMK, in particular the amount of

these channel proteins present at the surface of CCD cells (Gamba, 2005b; Kahle et al.,

2008a; Richardson and Alessi, 2008). In addition, WNK1 was shown to have WNK4-

independent effects on ion channels: it stimulates clathrin-dependent endocytosis of

ROMK by interaction with the scaffold protein intersectin and this does not require

WNK1 kinase activity (Cope et al., 2006; He et al., 2007). Moreover, WNK1 activates the

SGK1, which phosphorylates the ubiquitin-protein isopeptide ligase Nedd4-2 so that

less epithelial sodium channel (ENaC) is endocytosed from the plasma membrane of

HEK293 cells (Xu et al., 2005b).

In addition to its role in ion channel regulation, WNK1 has also been implicated in

protein secretion. In pancreatic beta cells WNK1 binds to synaptotagmin 2 (Lee et al.,

2004) and Munc18c (Oh et al., 2007), two proteins involved in the fusion of secretory

membrane vesicles.

Altogether, these data suggest that WNK1 regulates the retention or insertion of var-

ious transmembrane channel proteins and that different downstream effector mecha-

nisms are involved. Here we describe a role for WNK1 in regulating glucose trans-

porter GLUT1 (SLC2A1 gene) in HEK293 cells. The constitutive expression of this

transmembrane protein at the cell surface ensures glucose uptake in most tissues. We

found that WNK1 through interaction with TBC1D4, a Rab GTPase-activating protein

(RabGAP) involved in regulated exocytosis of glucose transporters, promotes GLUT1

surface expression.
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2.3 Experimental Procedures

2.3.1 Cell culture and transfections

HEK293 cells were maintained in Dulbecco’s modified minimal essential medium

(DMEM) supplemented with 10 units/mL Penicillin, 10 µg/mL Streptomycin and 10%

fetal calf serum (Invitrogen S.A., Barcelona, Spain), and regularly checked for absence of

mycoplasm infection.

For ectopic expression of plasmid cDNAs, HEK293 cells were transfected at 80-90%

confluence using Metafectene (Biontex, Martinsried/Planegg, Germany) according to the

manufacturer’s instructions. Transfection efficiencies were found to be 90%, as deter-

mined microscopically using a GFP expression vector. Total amounts of transfected

plasmid DNA were kept constant at 6 µg per 60 mm dish or 2 µg per 35 mm dish

and adjusted with empty vector if required. Cells were analysed after 20 hours for

biochemical assays or after 16 hours for immunofluorescence experiments.

For gene silencing HEK293 at 30% confluence were transfected with 200 pmol small in-

terfering RNA oligonucleotides (siRNAs) per 35 mm dish or 400 pmol per 60 mm dish

using LipofectAMINE 2000 (Invitrogen). Cells transfected with siRNAs were analysed

after 24 or 48 hours, and the achieved reduction in target gene expression was deter-

mined in each experiment by removing a 40 µL aliquot from the cell lysate for Western

blot analysis. All results were confirmed in at least three independent experiments.

2.3.2 Expression constructs and small interfering RNA oligonucleotides

The previously described WNK1 full length cDNA encoding amino acids 1-2382 (Verís-

simo and Jordan, 2001) was subcloned as an EcoRI fragment into expression plasmids

pcDNA3-Myc or pEGFP-C2 (Invitrogen or BD Biosciences Europe, Erembodegem, Belgium).

The kinase-dead WNK1 mutant K233M was made by site-directed mutagenesis of
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codon AAG to ATG using the Quick Change mutagenesis kit (Stratagene, La Jolla, CA,

USA). WNK1 fragments were generated as follows: WNK1(1-538) was amplified with

primer pair PK12-5-FL1 (5’-TCT GGC GGC GCC GCA GAG AA) and PK12-R2 (5’-

CTT GTG CAA CAT CTT CTG GGA CA), cloned into pCR2.1-Topo (Invitrogen) and

then transferred with EcoRI into pEGFP; WNK1(1-1340) was obtained by digestion of

pEGFP-C2-WNK1 with AflII to delete an internal fragment and religation of the re-

maining vector; for WNK1(1307-2382) pEGFP-C2-WNK1 was digested with StuI and

SalI, the fragment cloned into pBluescript and transferred as an EcoRI fragment into

pEGFP-C2; for WNK1(2030-2382) pEGFP-C2-WNK1 was digested with SacI and EcoRI

and the fragment recloned into pEGFP. Previously published constructs used in this

study were Myc-tagged hnRNP A1 (Matter et al., 2000) and pCR3.1/AS160-2Myc (Peck

et al., 2006). All constructs were verified by automated DNA sequencing.

Pools of three siRNA oligonucleotides were obtained from Santa Cruz Biotechnolo-

gies (Santa Cruz, CA, USA) to deplete expression of endogenous TBC1D4 (sc-61654), or

Rab8A (sc-41828), or Rab8B (sc-106474). The siRNA targeting WNK1 was the previ-

ously validated siWNK1-a (5’-GCA GGA GUG UCU AGU UAU ATT) (Moniz et al.,

2007). As controls, pre-designed luciferase GL2 siRNA (5’-CGU ACG CGG AAU ACU

UCG ATT) or a GFP-specific siRNA (5’-GGC UAC GUC CAG GAG CGC ACC TT)

were used (all obtained from MWG-Biotech AG, Ebersberg, Germany).

2.3.3 Immunoprecipitation and Western blot procedures

For co-immunoprecipitation experiments, cells were grown in either 60 mm (trans-

fected cells) or 100 mm dishes (endogenous proteins), lysed on ice in 250 µL non-

denaturing lysis buffer (50 mM Tris-HCl pH 7.5, 1% NP-40, 100 mM NaCl, 10% glyc-

erol, 10 mM MgCl2) supplemented with a protease inhibitor cocktail composed of

1 mM PMSF, 1 mM 1,10-phenanthroline, 1 mM EGTA, 10 µM E64, and 10 µg/mL
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of each aprotinin, leupeptin, and pepstatin A (all from Sigma-Aldrich Quimica, Madrid,

Spain). The cell lysates were incubated for 2 hours at 4ºC with the specified antibodies

(2.5 µg/mL anti-GFP ab1218 or anti-TBC1D4 ab24469 (Abcam, Cambridge, UK), anti-

Myc clone 9E10 (M5546, Sigma-Aldrich), rabbit anti-Myc A14 (sc-789 from Santa Cruz

Biotechnologies), or affinity-purified rabbit anti-WNK1 serum 308), then further incu-

bated for 1 hour with protein G-Agarose beads (Roche Applied Science, Indianapolis, IN,

USA), and finally washed three times in cold lysis buffer containing 300 mM NaCl. Pro-

teins were solubilised from the beads in 2x SDS sample buffer, boiled, and separated

in a 10% SDS-PAGE Protean III mini-gel (BioRad, Hercules, CA, USA).

For proteomic identification of proteins, the gel was stained in standard Coomassie

Brillant Blue R250, destained and a digital image taken over a light box. Candidate

bands were excised from the gel using a stereomicroscope, placed into sterile water

and shipped for mass spectrometry as indicated by the service provider Alphalyse

(Odense, Denmark, www.alphalyse.com).

For detection of specific proteins, the polyacrylamide gel was transferred onto a PVDF

membrane (BioRad) using a Mini Trans-Blot cell (BioRad; 100V for 1 hour) followed by

Coomassie-staining to check for equal transfer. Western blot membranes were blocked

in TBS, 0.1% Triton X-100, 5% milk powder, probed using the indicated antibodies, and

then incubated with a secondary peroxidase-conjugated antibody (BioRad) followed by

chemiluminescence detection. Primary antibodies used for Western blots were rab-

bit anti-WNK1 serum 308 (affinity-purified polyclonal antibody raised and purified

by Eurogentec (Ougree, Belgium) against peptide TSKDRPVSQPSLVGSKEC) (Veríssimo

and Jordan, 2001), rabbit anti-Myc A14 (sc-789), rabbit anti-pan 14-3-3 K19 (sc-629) and

anti-GLUT1 H43 (sc-7903) from Santa Cruz Biotechnologies, rabbit anti-GFP ab290 and

rabbit anti-TBC1D4 ab24469 from Abcam, mouse anti-Rab8 (clone 4/Rab4) and mouse

anti-Rab4 (clone 7/Rab4) from BD Biosciences Europe, mouse anti-T7-tag and mouse
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anti-PCNA ab-1 (clone PC10) from Merck4Biosciences (Nottingham, UK), mouse anti-α-

tubulin (clone B5-1-2) from Sigma-Aldrich and mouse anti-human transferrin receptor

(clone H68.4, Invitrogen).

2.3.4 Production of recombinant OSR1 and in vitro protein kinase assays

For the production of recombinant OSR1, a reported WNK1 substrate (Zagórska et al.,

2007), its coding sequence was amplified from cDNA clone IRAUp969A0428D (ima-

Genes, Berlin, Germany) by PCR with primers Bam-Osr1-F (5’-GGA TCC ATG TCC GAG

GAC TCG AG) and Hind-Osr1-R (5’-TTC GAA TTA GCT GAT GCT GAG CTG), cloned

into pCR2.1 Topo, and then subcloned into the BamHI and HindIII sites of T7/His-

tagged pET28 vector (Merck4Biosciences). Subsequently, codon 164 of the cDNA was

mutated from GAC to GCC using the Quick Change mutagenesis kit (Stratagene) to

generate the kinase-dead OSR1-D164A mutant. The protein was expressed in the E. coli

BL21 strain under IPTG induction and the bacterial pellets harvested at 1,400 × g,

20 min and frozen. For protein extraction pellets were resuspended in 50 mM Tris-HCl

pH 7.5, 50 mM NaCl, 5 mM MgCl2, 1 mM DTT in the presence of the protease inhibitor

cocktail described above and then sonicated on ice in 10 cycles of 30 seconds with

10 seconds intervals (Sonics Vibra Cell sonicator, set at 40% amplitude). Following cen-

trifugation of the extract at 16,000 × g, the supernatant was incubated with Ni-NTA

agarose beads (Qiagen, Hilden, Germany) for 1 hour at 4ºC. Beads were washed twice

with cold lysis buffer containing 20 mM imidazole and protease inhibitors. Recombi-

nant OSR1 was eluted in cold lysis buffer containing 250 mM imidazole, quantified,

and stored in aliquots at -80ºC.

For in vitro protein kinase assays, cells were lysed under strigent conditions in 250 µL

RIPA buffer (50 mM Tris-HCl pH 7.5, 1% NP-40, 150 mM NaCl, 0.1% SDS, 0.5% sodium

deoxycholate) supplemented with protease inhibitors (see above). To reduce extract
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viscosity 500 units/mL benzonase (Sigma-Aldrich) and 5 mM MgCl2 were added. Fol-

lowing immunoprecipitation of WNK1 as described above, the resulting beads were

washed three times in cold lysis buffer containing 300 mM NaCl, and then resus-

pended in 20 µL kinase reaction buffer (30 mM Tris/HCl pH 7.5, 10% glycerol, 1 mM

DTT, 1 mM Na3VO4, 10 mM MgCl2, 100 µM ATP), mixed with their substrate (either

beads containing immunoprecipitated Myc-TBC1D4 or 500 ng recombinant kinase-

dead OSR1), and incubated in the presence of 5 µCi γ-[32P] ATP at 30ºC for 30 min.

Finally, 2x SDS sample buffer was added, samples boiled and separated by SDS-PAGE

followed by Western blot. Membranes were exposed to X-ray films, and subsequently

incubated with the indicated antibodies in order to document protein quantities.

2.3.5 Biotinylation of cell surface proteins

HEK293 cells were transfected as described above, washed twice with warm culture

medium to remove dead cells, and placed on ice in a cold room. Cells were incu-

bated for 5 min with ice-cold PBS-CM (PBS pH 8.0 containing 0.1 mM CaCl2 and 1 mM

MgCl2) to ensure arrest of endocytic traffic. Then, cells were incubated for 30 min with

0.5 mg/mL EZlink sulfo-NHS-SS-biotin (Pierce Biotechnology, Rockford, IL, USA) in PBS-

CM, before being rinsed twice and left for 10 min on ice with ice-cold Tris/Glycine

(100 mM Tris/HCl pH 8.0, 150 mM NaCl, 0.1 mM CaCl2, 1 mM MgCl2, 10 mM glycine,

1% BSA) to terminate the biotinylation reaction. Cells were again washed 3x with cold

PBS-CM and lysed in 250 µL pull-down buffer (50 mM Tris/HCl pH 7.5, 100 mM NaCl,

10% glycerol, 1% NP-40) in the presence of the aforementioned protease inhibitor cock-

tail. The cell lysates were harvested by scraping and cleared by centrifugation at

16,000 × g at 4ºC for 5 min. An aliquot of 40 µL representing the total GLUT1 level

was removed and added to 5x SDS sample buffer, while 200 µL lysate were added to

50 µL Streptavidin-agarose beads (Sigma-Aldrich), previously incubated for 1 hour in

1 mL cold pull-down buffer containing 2% non-fat milk powder, and washed 3x in
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pull-down buffer. For purification of biotinylated proteins, lysate and beads were in-

cubated under rotation for 1 hour at 4ºC, the beads collected by centrifugation (1 min

at 3,000 × g), and washed 3x in cold wash buffer (100 mM Tris/HCl pH 7.5, 300 mM

NaCl, 1% Triton X-100). Captured proteins were recovered by boiling the beads in

25 µL 2x SDS sample buffer plus 2 µL of 1 M DTT. The biotinylated protein fraction

and one twentieth of the corresponding whole cell lysates were analysed alongside by

SDS-PAGE followed by Western blot.

2.3.6 Immunoprecipitation from cell lysates stabilised by cross-linking

For experiments using a cleavable chemical cross-linker, HEK293 cells were seeded

in 60 mm dishes, transfected as described, rinsed 3x in PBS-CM at room temperature

and incubated for 30 min on ice with 0.5 mM DSP (Sigma-Aldrich). Subsequently,

cells were rinsed twice and left for 15 min on ice with ice-cold Tris/Glycine buffer (see

above) to terminate the cross-linking reaction. Cells were again washed 3x with cold

PBS-CM and lysed in 500 µL RIPA buffer supplemented with protease inhibitors and

treated with benzonase (see above). An aliquot of 80 µL representing the total protein

levels was removed and added to 5x SDS sample buffer, while 400 µL lysate were

used for immunoprecipitation with anti-Myc antibodies, as described above. Proteins

were solubilised from the beads in 2x SDS sample buffer supplemented with 5% β-

mercaptoethanol to reverse the introduced cross-links, and analysed by SDS-PAGE

followed by Western blot.
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2.3.7 Immunofluorescence microscopy

HEK293 cells were grown on coverslips, transfected as indicated, fixed after 16 hours

with 4% (v/v) formaldehyde (Merck Chemicals, Darmstadt, Germany) in PBS and perme-

abilised with 0.2% Triton X-100 in PBS. Cells were then immunolabeled for 1 hour with

rabbit anti-GLUT1 (USBiological, Massachusetts, MA, USA, catalog G3900-03D), washed

3x 5 min in PBS/0.01% Tween (PBS-T), and incubated with a secondary Alexa532-

conjugated antibody (Invitrogen-Molecular Probes). Next, cells were washed, stained

briefly in DAPI solution (Sigma; 1:1000 in PBS-T), washed again, and post-fixed for

15 min in 4% formaldehyde. Coverslips were mounted on microscope slides with Vec-

tashield (Vector Laboratories, Burlingame, CA, USA), images recorded on a Leica TCS-SPE

confocal microscope and processed with Adobe Photoshop software.

2.4 Results

2.4.1 WNK1 exists in a complex with TBC1D4

In order to identify proteins interacting under physiological conditions, endogenous

WNK1 was immunoprecipitated under non-denaturing conditions from HEK293 cells

using a previously described anti-WNK1 serum (Veríssimo and Jordan, 2001). The ob-

tained protein fraction was then separated by gel electrophoresis and stained for the

presence of co-immunoprecipitated proteins (FIG. 2.1|A), which were excised from the

gel and identified by mass spectrometry. Besides WNK1 itself, we identified a major

co-purifying protein migrating above 150 KDa as TBC1 (Tre-2/USP6, BUB2, Cdc16)

domain family, member 4, also known as AS160 (Akt substrate of 160 KDa), a protein

involved in insulin-stimulated glucose transport in adipocytes (Watson and Pessin, 2006;

Sakamoto and Holman, 2008).

53



Chapter 2. WNK1 regulates GLUT1 surface expression

Figure 2.1
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Figure 2.1| WNK1 forms a protein complex with TBC1D4 in HEK293 cells. A| Cells were lysed un-
der non-denaturing conditions and incubated with affinity-purified anti-peptide antibodies against either
human WNK1 or the Myc-epitope (negative control). Shown is the digital image of a Coomassie-stained
gel and gray arrowheads indicate the bands that specifically co-precipitated with the anti-WNK1 antibod-
ies. These bands were excised from the gel for mass spectrometric identification, and those identified as
WNK1 and TBC1D4 are indicated. Note that endogenous WNK1 protein has been described to migrate
at an apparent molecular weight above 251 KDa (Veríssimo and Jordan, 2001; Vitari et al., 2004). B| HEK293
cells were transfected with Myc-TBC1D4 or Myc-hnRNP A1 (negative control), then lysed under non-
denaturing conditions and incubated with anti-WNK1 to immunoprecipitate endogenous WNK1. The total
cell lysate (Input) and the precipitate (IP) were analysed by Western blot with the indicated antibodies.
Note that Myc-TBC1D4 but not Myc-hnRNP A1 co-immunoprecipitates with endogenous WNK1. C| Co-
immunoprecipitation of endogenous TBC1D4 and WNK1. HEK293 cells were lysed under non-denaturing
conditions, incubated for immunoprecipitation with a control rabbit antibody, or anti-WNK1 or anti-TBC1D4
(IP), and the resulting fraction analysed by Western blot. In addition, anti-WNK1 and anti-TBC1D4 anti-
bodies were incubated in the absence of cell lysate (buffer) to exclude that non-specific antiserum-derived
bands would confound the results. Note the presence of TBC1D4 in the sample precipitated with anti-
WNK1 and the detection of WNK1 in the sample precipitated with anti-TBC1D4. The lane marked as
‘Input’ shows the expression levels observed in whole cell lysates, and immunoglobulin heavy chains
(IgH) are indicated to document success and comparability of the immunoprecipitation reactions.
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For confirmation of the observed interaction, Myc-TBC1D4 was transfected into

HEK293 cells and endogenous WNK1 immunoprecipitated as above. Anti-Myc an-

tibodies clearly detected the presence of TBC1D4 in the precipitate. As a con-

trol, the unrelated nuclear protein Myc-hnRNP A1 was expressed but did not co-

immunoprecipitate with WNK1 (FIG. 2.1|B). Moreover, both endogenous proteins co-

immunoprecipitated, i.e. using specific anti-TBC1D4 or anti-WNK1 antibodies we

could demonstrate by Western blot that endogenous TBC1D4 co-immunoprecipitated

with endogenous WNK1, or vice versa (FIG. 2.1|C).

In order to determine which WNK1 domain mediates the interaction with TBC1D4,

several GFP-tagged WNK1 deletion mutants were expressed and tested for their abil-

ity to co-immunoprecipitate with Myc-TBC1D4 (FIG. 2.2|A). The results showed that,

besides full-length WNK1(1-2382), the N-terminal WNK1(1-538) fragment had the

strongest affinity to TBC1D4 (FIG. 2.2|B). The weak affinity for intermediate fragment

WNK1(1-1340) suggests that intra-molecular interactions exist that can modulate ac-

cess to the N-terminus. Together, these data validate the existence of a protein complex

containing WNK1 and TBC1D4 in HEK293 cells.

2.4.2 WNK1 phosphorylates TBC1D4 in vitro

Given the preferential interaction with the N-terminal WNK1 fragment, which con-

tains the catalytic domain, we next tested whether TBC1D4 served as a substrate for

WNK1 kinase activity. For this, WNK1 was immunoprecipitated from HEK293 cells

transfected with either GFP-WNK1 or the N-terminal GFP-WNK1(1-538) fragment.

Cells were lysed in RIPA buffer and the immunoprecipitated WNK1 beads washed

in high salt buffer so that contamination with other kinases from the cell lysate was

minimised. The immunoprecipitated kinases were analysed in an in vitro kinase assay

followed by electrophoretic protein separation and transfer to PVDF membranes. As a
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Figure 2.2
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Figure 2.2| The N-terminal WNK1 region is required for protein complex formation with TBC1D4.
A| Schematic representation of full-length human WNK1 and the four fragments tested with the respec-
tive amino acid numbers in parentheses. B| HEK293 cells were co-transfected with one of the indicated
GFP-WNK1 constructs and either Myc-TBC1D4 or Myc-hnRNP A1 (negative control). Following cell ly-
sis under non-denaturing conditions, anti-Myc antibodies were added and immunoprecipitated proteins
analysed by Western blot. The lower panel shows the expression levels of GFP-WNK1 constructs in the
whole cell lysate (Input), the middle panels the quantities of precipitated Myc-tagged TBC1D4 and hn-
RNP A1, and the upper panel the amounts of co-precipitated GFP-WNK1 constructs. Note the specific
co-immunoprecipitation of full-length WNK1 and its N-terminal fragment (1-538).
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positive control we added recombinant OSR1 to the assay, a recently described WNK1

substrate (Zagórska et al., 2007). As shown in FIG. 2.3, both WNK1 and its N-terminal

fragment autophosphorylated and phosphorylated OSR1. In order to test TBC1D4 as

substrate, Myc-TBC1D4 was immunoprecipitated from transfected cells in RIPA buffer,

the beads washed in high-salt buffer and added as substrate to the kinase assay. We ob-

served that both WNK1 and its N-terminal fragment phosphorylated TBC1D4. In con-

trast, the respective kinase-dead WNK1 mutants did not phosphorylate it, confirming

the absence of contaminant kinase activities (FIG. 2.3).

2.4.3 WNK1 catalytic activity increases the association of endogenous TBC1D4

with 14-3-3 proteins

Previously, it has been described that phosphorylated TBC1D4 is a phosphoprotein

that interacts with 14-3-3 (Jin et al., 2004; Ramm et al., 2006; Geraghty et al., 2007), a fam-

ily of proteins that bind phosphoproteins and modulate the corresponding signalling

activities (Mackintosh, 2004). We thus tested the effect of WNK1 expression on the in-

teraction of TBC1D4 with 14-3-3 proteins. Endogenous TBC1D4 was immunoprecip-

itated from HEK293 cells and the precipitate analysed by Western blot. It was found

that the protein complex formed between the endogenous TBC1D4 and WNK1 con-

tained considerably increased amounts of 14-3-3 proteins. In contrast, cells expressing

the kinase-dead WNK1 mutant showed only co-immunoprecipitation between WNK1

and TBC1D4, and no change in the association with 14-3-3, which remained at back-

ground level comparable to that observed in GFP-expressing control cells (FIG. 2.4).
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Figure 2.3| WNK1 phosphorylates TBC1D4 in vitro. HEK293 cells were transfected with either GFP
empty vector, wild-type (wt) GFP-WNK1, wt fragment GFP-WNK1(1-538), or the respective kinase-dead
(kd) WNK1-K233M mutants. WNK1 was immunoprecipitated using anti-GFP antibodies and tested in an
in vitro protein kinase assay. As substrates served either recombinant OSR1 (rOSR1), as a previously
described physiological substrate (Zagórska et al., 2007)(Controls), or beads containing immunoprecipi-
tated Myc-TBC1D4. After 30 min of incubation the samples were denatured by adding SDS sample buffer
and boiling, then separated by SDS-PAGE and transferred to PVDF blotting membranes. Incorporated
radioactive [32P]-phosphate was detected by exposing the membranes for 24 hours to X-ray films (Kinase
assay). Subsequently, the amounts of recombinant T7-OSR1 or of immunoprecipitated proteins were doc-
umented by Western blot using anti-GFP, and then reprobed with either anti-T7 or anti-Myc antibodies.
Note that both wt full-length WNK1 and its fragment (1-538) autophosphorylate, and also phosphorylate
the physiological substrates OSR1 and TBC1D4. Whereas fragment (1-538) shows stronger autophos-
phorylation activity, possibly due to partial deletion of the inhibitory domain (Xu et al., 2002a), wt full-length
WNK1 has higher activity towards TBC1D4. Beads containing the respective kd mutants revealed no
phosphorylation activity.
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Figure 2.4
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Figure 2.4| Expression of WNK1 increases the association of endogenous TBC1D4 with 14-3-3
proteins. HEK293 cells were transfected with either GFP empty vector (control), or the wild-type (wt)
fragment GFP-WNK1(1-538), or its respective kinase-dead (kd) mutant. Endogenous TBC1D4 was im-
munoprecipitated from cell lysates prepared under non-denaturing conditions and probed by Western blot.
Shown are the levels of GFP-WNK1 and endogenous TBC1D4 and 14-3-3 proteins in total cell lysates
(Input; left panel) and in the immunoprecipitate (IP; right panel). The quantification of the 14-3-3 band in-
tensities is given below the blot as fold-over-control values. Note that the amount of 14-3-3 co-precipitating
with TBC1D4 increased considerably in the presence of wt WNK1, not however of mutant kd WNK1.

2.4.4 WNK1 leads to increased expression of GLUT1 at the cell surface

In insulin-sensitive adipocytes and skeletal muscle cells TBC1D4 was shown to control

the translocation of the insulin-responsive glucose transporter GLUT4 from intracellu-

lar storage vesicles to the plasma membrane (Sakamoto and Holman, 2008; Koumanov and

Holman, 2007). Most other cell types, however, express the transporter GLUT1 for their

constitutive uptake of glucose (Zhao et al., 1993). We thus tested whether the observed

phosphorylation of TBC1D4 by WNK1 affected the expression of endogenous GLUT1

at the cell surface. HEK293 cells were transfected with either full-length WNK1, or

WNK1(1-538), or their kinase-dead mutants K233M, and after 20 hours of expression

transferred to 4ºC for biotinylation of cell surface proteins. Following cell lysis, bi-

otinylated proteins were captured using Streptavidin-agarose beads and analysed by

Western blot using specific antibodies. As positive and negative controls, we con-

firmed that the biotinylated protein fraction contained the surface protein E-cadherin
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but not cytosolic tubulin or the nuclear protein PCNA (data not shown). Under these

experimental conditions we found increased GLUT1 cell surface expression in the pres-

ence of catalytically active WNK1 (either full-length or fragment (1-538)) (FIG. 2.5). In

contrast, expression of the kinase-dead mutants inhibited the level of surface GLUT1

compared to control cells. As further support for the role of WNK1, we depleted en-

dogenous WNK1 from HEK293 cells by RNA interference and analysed endogenous

Figure 2.5
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Figure 2.5| Expression of WNK1 affects the amount of GLUT1 expressed at the cell surface.
HEK293 cells were transfected with either GFP empty vector (Control), or wild-type (wt) full-length GFP-
WNK1, or fragment GFP-WNK1(1-538), or the respective kinase-dead (kd) mutants, as indicated. In
separate experiments, HEK293 cells were transfected with either control (siControl) or WNK1-specific
(siWNK1) small interfering oligonucleotides. After 20 hours cell surface proteins were biotinylated and
captured from the cell lysate using Streptavidin-beads. Shown are Western blots detecting GLUT1 or
TfR1 in the biotinylated protein fraction (top panels, Surface). The corresponding quantification of GLUT1
band intensities is given as fold-over-control values below the blot. Shown are also the expression levels
in whole cell lysates (Input) of endogenous GLUT1 and TfR1 (middle panels), and of GFP-tagged pro-
teins or endogenous WNK1 (bottom panels). Note that GLUT1 surface levels increase upon expression of
catalytically active WNK1 but decrease in WNK1-depleted cells, whereas surface levels of TfR1 remained
unaffected.
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GLUT1 surface expression. In WNK1-depleted cells of a significant reduction in bi-

otinylated GLUT1 was detected (FIG. 2.5). Under these experimental conditions the

cell surface levels of the endogenous transferrin receptor 1 (TfR1) did not change.

The cell surface expression of endogenous GLUT1 was also determined by immunoflu-

orescence microscopy. In HEK293 cells expressing catalytically active WNK1 as above,

we observed increased surface staining with anti-GLUT1 antibodies compared to non-

transfected cells (FIG. 2.6). On the contrary, expression of kinase-dead WNK1 reduced

GLUT1 staining at the cell surface, while increasing the intracellular GLUT1 signal

(FIG. 2.6).
Figure 2.6

GFP GLUT-1 Merge + DAPI

C
o

n
tr

o
l

w
t

G
F

P
-W

N
K

1
(1

-5
3
8
)

k
d

 G
F

P
-W

N
K

1
(1

-5
3
8
)

Figure 2.6| Visualisation of HEK293 endogenous GLUT1 protein by immunofluorescence mi-
croscopy. HEK293 cells were transfected as indicated with either GFP empty vector (control), or wild-type
(wt) GFP-WNK1(1-538), or its respective kinase-dead (kd) mutant. Cells were fixed after 16 hours of ex-
pression, stained with anti-GLUT1 followed by a secondary Alexa532-conjugated antibody, and images
recorded on a Leica SPE confocal microscope. Transfected cells are marked in green, DAPI in blue and
GLUT1 in red. Note the increased surface staining of GLUT1 in cells expressing wt WNK1 in contrast to
increased intracellular GLUT1 staining upon expression of kd WNK1.
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2.4.5 Rab8A is required for GLUT1 surface expression downstream of WNK1

The above data are compatible with the idea that phosphorylation of TBC1D4 by

WNK1 increases its association with 14-3-3 proteins and inhibits TBC1D4 as a negative

regulator of GLUT1 surface expression. TBC1D4 was described to act as a GTPase-

activating protein (GAP) for Rab2A, Rab8A, Rab10 and Rab14 (Mîinea et al., 2005;

Ishikura et al., 2007). Since Rab8 is involved in constitutive biosynthetic trafficking from

the trans-Golgi network (TGN) to the plasma membrane (Zerial and Mcbride, 2001; Sten-

mark, 2009), we tested its involvement in GLUT1 surface expression. We co-expressed

wild-type GFP-WNK1(1-538) or its kinase-dead mutant, and Myc-TBC1D4 in HEK293

cells. Due to the transient nature of GAP-GTPase interactions, cells were briefly treated

with the mild cross-linking reagent DSP before cell lysis. Then Myc-TBC1D4 was im-

munoprecipitated, and the precipitated fraction analysed for the presence of either

endogenous Rab8 or Rab4 (as negative control). Whereas no Rab4 was detected, the

endogenous Rab8 clearly co-immunoprecipitated. In addition, the amount of Rab8 in

the complex with TBC1D4 was reduced in the presence of wild-type WNK1, but in-

creased when the kinase-dead WNK1 mutant was expressed (FIG. 2.7|A). These data

indicate that the Rab-GAP TBC1D4 interacts transiently with Rab8 in HEK293 cells,

and that phosphorylation of TBC1D4 by WNK1 affects the amount of Rab8 engaged.

To substantiate that GLUT1 traffic is regulated by WNK1/TBC1D4 through Rab8,

endogenous Rab8A and Rab8B were depleted by specific small interfering oligonu-

cleotides. These experiments (data not shown) identified the slower migrating band

as Rab8A and revealed it to be the predominantly expressed form in HEK293 cells. In

order to provide evidence that Rab8A operates downstream of WNK1, HEK293 cells

were first transfected with siRab8A and 24 hours later transfected with Myc-WNK1(1-

538). Under these conditions of Rab8A depletion, the transfection of WNK1 no longer

promoted GLUT1 surface expression (FIG. 2.7|B). Also, the depletion of endogenous
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Figure 2.7
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Figure 2.7| Rab8A is required for GLUT1 surface expression downstream of WNK1. A| HEK293 cells
were transfected as indicated and treated briefly with the mild reversible cross-linking reagent DSP before
lysis. Myc-TBC1D4 was immunoprecipitated and analysed by Western blot. Shown are the expression
levels of GFP-WNK1(1-538), Myc-TBC1D4 and of the endogenous Rab8 and Rab4 proteins in total cell
lysates (left side panels, Input) as well as the immunoprecipitated fractions (right side panels, IP). Note
that Rab8A, but not Rab4, co-precipitated with TBC1D4, and that the amount decreased in the presence
of wt WNK1, whereas increased in the presence of kinase-dead WNK1. B| HEK293 cells were transfected
with control (siGFP) or Rab8A-specific (siRab8A) small interfering RNAs, either alone or in the presence
of Myc-WNK1(1-538). In parallel, cells were transfected with TBC1D4-specific siRNAs (siTBC1D4), either
alone or in combination with siRab8A. As described in caption of Figure 2.5, the biotinylated cell surface
proteins (Surface) and whole cell lysates (Input) were analysed by Western blot to document the amounts
of endogenous GLUT1, TfR1, TBC1D4 or Rab8A, as well as of transfected Myc-WNK1(1-538). Note the
successful depletion of TBC1D4 (lanes 4 and 5) and of Rab8A (lanes 3 and 5). GLUT1 surface expression
was promoted by either the expression of WNK1, or the depletion of TBC1D4, and the simultaneous
knockdown of Rab8A impaired both effects. Under these conditions the surface levels of endogenous
TfR1 remained unchanged.
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Chapter 2. WNK1 regulates GLUT1 surface expression

TBC1D4 by siRNAs clearly increased GLUT1 levels at the surface, but the simultane-

ous transfection with siRab8A completely impaired the increase in GLUT1 observed

upon depletion of TBC1D4 alone. Again, under these conditions the cell surface lev-

els of endogenous TfR1 remained unaffected (FIG. 2.7|B). Together, these experiments

clearly revealed that Rab8A is involved downstream of WNK1 and TBC1D4 in the

control of GLUT1 expression at the surface of HEK293 cells.

2.5 Discussion

The main conclusion from the present work is that protein kinase WNK1 forms a com-

plex with the Rab-GAP TBC1D4, which is involved in regulating the amount of glu-

cose transporter GLUT1 expressed at the cell surface. The complex formation between

TBC1D4 and WNK1 was initially identified using an unbiased proteomic approach but

then confirmed by immunoprecipitation using various antibodies. In particular, anti-

Myc antibodies detected co-immunoprecipitation of epitope-tagged Myc-TBC1D4 to-

gether with GFP-WNK1 (FIG. 2.2), as well as with endogenous WNK1 (FIG. 2.1|B). Fur-

thermore, GFP-tagged WNK1 was pulled down when antibodies against endogenous

TBC1D4 were used (FIG. 2.4), and the co-immunoprecipitation of both the endogenous

proteins could also be demonstrated in HEK293 cells (FIG. 2.1|C). Together, these ex-

periments provide solid support for the specificity of the observed interaction between

WNK1 and TBC1D4.

TBC1D4 was previously identified to regulate GLUT4 trafficking to the cell surface

following insulin stimulation of 3T3L1 adipocytes or skeletal muscle cells. This path-

way involves phosphorylation of TBC1D4 by protein kinase Akt and has led to its

alternative designation as Akt substrate of 160 KDa (AS160) (Watson and Pessin, 2006;

Sakamoto and Holman, 2008; Koumanov and Holman, 2007; Mîinea et al., 2005; Sano et al.,

2003). Experimental suppression of TBC1D4 leads to leaky and insulin-independent
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release of GLUT4 into the plasma membrane (Eguez et al., 2005). There is considerable

evidence that in the absence of insulin the GAP domain of TBC1D4 keeps a critical Rab

protein in its inactive GDP-bound state to prevent GLUT4 vesicle release (Stöckli et al.,

2008). Upon insulin treatment of adipocytes, Akt-phosphorylated TBC1D4 associates

with 14-3-3 proteins (Ramm et al., 2006; Ishikura et al., 2007; Sano et al., 2003) and becomes

inhibited. In agreement with a previous report, TBC1D4 can act also as a negative reg-

ulator of ubiquitously expressed GLUT1 and not only of GLUT4 in adipocytes (Ngo

et al., 2009). Our results show that protein kinase WNK1 is involved in the regulation

of GLUT1, which secures glucose transport in non-insulin target cells. WNK1 forms

a complex with TBC1D4, and its phosphorylation by WNK1 leads to increased inter-

action of TBC1D4 with 14-3-3 proteins (FIG. 2.4). Interestingly, a previous proteomic

analysis in HEK293 cells used mass spectrometry to identify proteins that associate

with Flag-tagged 14-3-3 proteins, and identified both TBC1D4 and WNK1 among a list

of 170 unique proteins (Jin et al., 2004).

We found that TBC1D4 interacted preferentially with an N-terminal WNK1 fragment

containing the catalytic domain (FIG. 2.2). Consistent with this observation, we de-

tected the phosphorylation of TBC1D4 by WNK1 in vitro (FIG. 2.3). For these exper-

iments WNK1 was precipitated under stringent conditions including SDS-containing

RIPA lysis buffer and 300 mM NaCl containing washing steps. Because no phospho-

rylation was obtained when a kinase-dead WNK1 mutant was prepared under these

conditions, our data provide strong evidence that TBC1D4 is a specific WNK1 sub-

strate. The observed phosphorylation activity was comparable to that of the described

physiological model substrate OSR1 (Zagórska et al., 2007).

TBC1D4 is known to be a phosphoprotein and eight sites (Ser318, Ser341, Thr568,

Ser570, Ser588, Thr642, Ser666 and Ser751) have been identified that can be phosphory-

lated in vivo (Geraghty et al., 2007; Sano et al., 2003). Further in vitro studies have revealed

that at least four kinases (Akt, SGK1, RSK1 and AMPK) can phosphorylate TBC1D4
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in distinct stimulus-dependent patterns (Geraghty et al., 2007). However, the functional

difference between the individual phosphorylation sites is unclear and requires more

detailed studies.

The WNK1-mediated phosphorylation of TBC1D4 resulted in increased amounts of

GLUT1 at the surface of HEK293 cells. Under these experimental conditions we also

observed a slight increase in cell number (data not shown), indicative of stimulated

metabolic activity and cell growth. In contrast, expression of kinase-dead WNK1 mu-

tants inhibited the level of surface GLUT1 compared to control cells. Moreover, the

suppression of endogenous WNK1 by small interfering RNA oligonucleotides also de-

creased surface amounts of GLUT1. These effects were demonstrated by biotinylation

of cell surface proteins (FIG. 2.5) and by immunofluorescence microscopy (FIG. 2.6).

Under these experimental conditions no changes in the surface levels of the endoge-

nous transferrin receptor 1 were observed (FIG. 2.5), demonstrating the specificity of

WNK1/TBC1D4 activity on GLUT1 surface expression.

The WNK1 substrate TBC1D4 has been found to exhibit selective GAP activity towards

Rab2A, -8A, -8B, -10, and -14 in vitro. In adipocytes, specific depletion of Rab10 was

identified to reduce GLUT4 translocation (Mîinea et al., 2005; Sano et al., 2007; Sano et al.,

2008), whereas in L6 muscle cell lines Rab8A and Rab14 appeared to be more important

for regulating GLUT4 (Ishikura et al., 2007; Ishikura and Klip, 2008). Thus, depending on

the cell type, TBC1D4 may control distinct Rab GTPases.

In HEK293 cells we provide evidence that Rab8A is involved in the WNK1-regulated

GLUT1 traffic. Rab8 is known to participate in exocytic events (Zerial and Mcbride,

2001; Stenmark, 2009) and exists in two isoforms: Rab8A and Rab8B. Our studies show

that Rab8A is the predominantly expressed form in HEK293 cells and that endoge-

nous Rab8A associates with TBC1D4 in a complex, the amount of which depends

on the catalytic activity of WNK1 (FIG. 2.7|A). When HEK293 cells were transfected
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with Rab8A-specific siRNAs, the WNK1-induced surface expression of GLUT1 was

significantly reduced (FIG. 2.7|B). Similarly, depletion of Rab8A specifically prevented

the increase in GLUT1 surface expression observed following depletion of TBC1D4 by

siRNA treatment. Under the same experimental conditions the surface levels of TfR1

did not change (FIG. 2.7|B). These results demonstrate the requirement of Rab8A for

GLUT1 regulation in HEK293 cells, and that it operates downstream of WNK1 and

TBC1D4.

These data are in agreement with the current view in the literature that TBC1D4 main-

tains an intracellular storage compartment for glucose transporter proteins under basal

conditions (Pessin et al., 1999; Dugani and Klip, 2005; Leney and Tavaré, 2009). This com-

partment can be mobilised upon phosphorylation of TBC1D4, by promoting its bind-

ing to 14-3-3 proteins and subsequent inactivation of its Rab-GAP activity. This permits

the forward trafficking of the transporters to the apical membrane. Based on this view,

the pathway involving WNK1 in the control of GLUT1 levels at the surface of HEK293

cells is schematically depicted in FIG. 2.8 (see figure caption for details).

Taken together, our data describe a pathway regulating surface expression of GLUT1

that is of considerable biomedical interest. First, malignant cells have accelerated

metabolism and satisfy their increased requirements for ATP production by aerobic

glycolysis (Gatenby and Gillies, 2004). Especially during the initiation of tumour for-

mation, cells experience suboptimal supply of oxygen and nutrients due to diffusion

limits. One mechanism that tumour cells use to adapt to these conditions is GLUT1

overexpression (Macheda et al., 2005), and our data suggest that changes in expression

or regulation of WNK1 may be an alternative route for adaptation. The WNK cat-

alytic domain represents a unique target site for the development of small molecule

kinase inhibitors, since it is characterised by a typical sequence variation in which a

lysine from subdomain I substitutes for a highly conserved catalytic lysine in subdo-

main II (hence their name with no [K] = lysine) (Xu et al., 2000; Min et al., 2004). Second,
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Figure 2.8
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Figure 2.8| Proposed model for the role of the WNK1/TBC1D4 complex in regulating GLUT1 traf-
fic in HEK293 cells. A fraction of GLUT1 is kept in an endosomal storage compartment in the cytosol.
There, TBC1D4 keeps Rab8A in the inactive GDP-bound conformation, and prevents vesicle trafficking
to the plasma membrane. Upon activation of WNK1, TBC1D4 becomes phosphorylated, and associates
with the phosphoprotein-binding 14-3-3 adaptor molecules, so that the GAP activity of TBC1D4 is in-
hibited. Following Rab8A activation by GDP/GTP exchange, delivery of GLUT1-containing vesicles to
the plasma membrane can occur, promoting increased cellular glucose uptake. The upstream stimuli
regulating WNK1 activation remain to be determined.

the described pathway may be an interesting drug target in certain diseases linked

to epilepsy and mental retardation that are characterised by insufficient GLUT1 activ-

ity (Klepper and Leiendecker, 2007; Brockmann, 2009). Finally, hypertensive glomerular

injury has been linked to pathological overexpression of GLUT1 in renal cells (Gnudi

et al., 2003). This is intriguing because some patients with PHA-II carry germline WNK1

mutations that lead to WNK1 overexpression. Our data clearly suggest that increased

expression of WNK1 promotes GLUT1 surface expression in a human kidney-derived

cell line. The clinical features of WNK1 mutant families have been suggested to reflect

a form of hypertension that is not exclusively salt dependent, as opposed to families

with mutant WNK4 (Xie et al., 2006; Hadchouel et al., 2006). Thus, WNK1 may in part

affect renal salt balance by glucose overload causing glomerular insufficiency.
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In the future it will be important to elucidate the upstream mechanisms involved in

the WNK1-mediated activation of GLUT1 trafficking. Previous studies reported that

hypertonic stress, including glucose, can increase WNK1 activity. Treatment of distal

CCD cells with 0.5 M glucose, for instance, promoted a significant increase in WNK1

activity (Lenertz et al., 2005).

Additionally, very recent evidence revealed that TBC1D4 regulates other transporter

proteins. Following aldosterone stimulation of CCD cells, TBC1D4 was shown to regu-

late trafficking of the epithelial sodium channel ENaC to the apical membrane, leading

to increased sodium absorption (Liang et al., 2010). Similar to our results, this involved

phosphorylation of TBC1D4 and increased association with 14-3-3 proteins, but was

mediated by another kinase, SGK1. Intriguingly, WNK1 has been proposed to serve as

a scaffold required for efficient SGK1 activation and there is evidence that SGK1 may

in turn phosphorylate WNK1 on Thr60 (Xu et al., 2005c).

Taken together, these data indicate TBC1D4 as a central player in the surface expression

levels of GLUT4, GLUT1 and ENaC, and it will be interesting to determine whether

the phosphorylation by WNK1, SGK1, or Akt represent cell type specific pathways or

a common regulatory kinase cascade.
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3.1. Summary

3.1 Summary

Members of the WNK subfamily of protein kinases regulate various ion channels in-

volved in sodium, potassium, and chloride homeostasis by either inducing their phos-

phorylation or regulating the number of channel proteins expressed at the cell surface.

Here we describe that WNK4 promotes the cell surface expression of the cystic fibro-

sis transmembrane conductance regulator (CFTR) in mammalian cells. The mecha-

nism by which WNK4 acts on CFTR involves interaction with spleen tyrosine kinase

(Syk), which we find to phosphorylate Tyr512 in the first nucleotide-binding domain

(NBD1) of CFTR. The presence of WNK4 prevents the phosphorylation of NBD1 by

Syk in vitro in a kinase-independent manner. In baby hamster kidney (BHK21) cells

stably expressing CFTR, catalytically active Syk reduces, while WNK4 promotes, the

cell surface expression of CFTR. This is shown by biotinylation of surface proteins,

immunofluorescence microscopy, and functional efflux assays. Mutation of Tyr512 to

either glutamic acid or phenylalanine is sufficient to alter CFTR surface levels. To-

gether, our results identify that Tyr512 phosphorylation is a novel signal regulating the

prevalence of CFTR at the cell surface, and describe an antagonistic role of WNK4 and

Syk in this process.

Keywords: Cell surface protein, CFTR, Cystic fibrosis, Intracellular trafficking,

Ion transport, Protein phosphorylation, Signal transduction, Syk, WNK4
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3.2 Background

Ion transport across the plasma membrane responds to sudden changes in the extra-

cellular environment by post-translational mechanisms that rapidly modify either the

amount of ion channel proteins present at the plasma membrane, and/or their trans-

port activity. This process requires tight regulation by signalling mechanisms, however

current knowledge on the underlying molecular pathways is still incomplete.

One novel signalling pathway involving members of the recently characterised WNK

protein kinase subfamily of serine/threonine protein kinases (Veríssimo and Jordan,

2001) has been identified in the kidney. There, a complex interplay between differ-

ent ion channels monitors excretion, fluid balance and salt reabsorption. It was found

that mutations in the WNK1 and WNK4 genes result in increased renal chloride reab-

sorption and impaired potassium secretion, manifesting as the inherited syndrome of

hypertension and hyperkalemia, also known as PHA-II or Gordon’s syndrome (Wil-

son et al., 2001). Affected patients carry missense mutations in WNK4, which when

expressed in cell models lead to dysregulation of the renal sodium chloride cotrans-

porter NCC and the potassium channel ROMK (Wilson et al., 2003; Gamba, 2005b; Kahle

et al., 2008a; Richardson and Alessi, 2008). The analysis of transgenic mouse models of the

disease suggests that changes in both the surface expression and the activity of NCC

are the main pathological mechanism underlying PHA-II (Lalioti et al., 2006; Yang et al.,

2007c; Ohta et al., 2009).

The ion transport activity of NCC, as well as of the related NKCC1 and NKCC2 chan-

nels, is regulated by phosphorylation on N-terminal threonine residues by one of two

Ste20-family protein kinases, SPAK or OSR1 (Pacheco-Alvarez et al., 2006; Kahle et al.,

2006; Richardson et al., 2008). Both kinases require activation by WNK4, which phospho-

rylates residue Thr233 in SPAK, or Thr185 in OSR1 (Moriguchi et al., 2005; Vitari et al.,

2005; Gagnon et al., 2006b). Besides its role as upstream activator of SPAK and OSR1,
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WNK4 was shown to inhibit the amount of NCC expressed at the cell surface (Wilson

et al., 2003; Yang et al., 2003; Yang et al., 2005a; Cai et al., 2006; Golbang et al., 2006; Subramanya

et al., 2009; Zhou et al., 2010), an effect lost in the presence of WNK4 PHA-II-missense

mutations.

Furthermore, WNK4 can regulate the surface amount of other renal or extra-renal ion

channels in a kinase-independent manner when expressed in Xenopus oocytes or mam-

malian cells. These include the Cl−/HCO3− exchangers SLC26A6 (Kahle et al., 2004a)

and SLC16A9 (Dorwart et al., 2007), the ROMK potassium channel (Kahle et al., 2003;

Ring et al., 2007b; Murthy et al., 2008), the ENaC sodium channel (Ring et al., 2007a; Heise

et al., 2010), the TRPV4 (Fu et al., 2006) and TRPV5 (Jiang et al., 2007; Cha and Huang, 2010)

calcium channels, and the CFTR chloride channel (Yang et al., 2007a), the mutation of

which is the cause for cystic fibrosis.

In case of ROMK and TRPV5, mutant WNK4 was shown to interact with the scaf-

fold protein intersectin and promote channel endocytosis (Kahle et al., 2003; He et al.,

2007; Cha and Huang, 2010), but whether other mechanisms exist through which WNK4

regulates ion channel surface expression remains unknown. The elucidation of such

mechanisms may help to identify drug targets to correct insufficient channel activity

that underlies several diseases (Jentsch et al., 2004; Camerino et al., 2008). For instance, in

cystic fibrosis the lack of CFTR activity leads to dehydrated, thick mucus in the lungs

with subsequent chronic bacterial infections. However, disease symptoms would be

significantly reduced if only about 10% of CFTR activity could be restored in patients

(Amaral, 2005).

Here we identified a novel signalling mechanism linking the cell surface expression

of CFTR to protein kinases WNK4 and Syk. Syk is a cytoplasmic non-receptor tyro-

sine kinase best known for its pro-inflammatory role in immunoreceptor signalling

in leukocytes (Mócsai et al., 2010). We show in this work that Syk can phosphorylate
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CFTR and decrease its surface expression, whereas WNK4 interaction with Syk pre-

vents CFTR phosphorylation, and thus promotes an increase in CFTR-mediated ion

transport.

3.3 Experimental Procedures

3.3.1 Cell culture and transfections

HEK293 cells were maintained in DMEM supplemented with 10 units/mL Penicillin,

10 µg/mL Streptomycin and 10% fetal calf serum (Invitrogen). BHK21 cells stably

expressing human wild-type CFTR (Tabcharani et al., 1991; Mendes et al., 2003) were

maintained in DMEM/F12 medium supplemented with L-glutamine, 15 mM HEPES,

10 units/mL Penicillin, 10 µg/mL Streptomycin, 0.2% methotrexate and 5% fetal calf

serum (Invitrogen). Both cells lines were regularly checked for the absence of my-

coplasm infection.

For ectopic expression of plasmid cDNAs, HEK293 cells were transfected at 80-90%

confluence using Metafectene (Biontex) according to the manufacturer’s instructions.

BHK21 cells were transfected at 80-90% confluence using LipofectAMINE 2000 (Invit-

rogen). Transfection efficiencies were found to be around 90%, as determined micro-

scopically using a GFP expression vector. The amount of transfected plasmid DNA

was kept constant at 4 µg per 60 mm dish, or 2 µg per 35 mm dish, and constructs

supplemented with empty vector if required. Cells were analysed after 20 hours for

biochemical assays or after 16 hours for immunofluorescence experiments. All results

were confirmed in at least three independent transfection experiments.
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3.3.2 Expression constructs

Partial cDNA clones encoding human WNK4 and its kinase-dead mutant K186A

(kindly provided by X. Jeunemaitre, Paris) were completed by substituting a PCR-

amplified 2 Kb fragment to generate the complete WNK4 sequence identical to Gen-

bank accession number NM_032387. The WNK4 cDNAs were then subcloned into

either pcDNA3-Myc or pEGFP expression vectors (Invitrogen or BD Biosciences Europe).

The YFP-Syk vector was purchased from RZPD-imaGenes, and its kinase-dead mu-

tant YFP-Syk-K402R generated by mutating codon 402 from AAA to AGA using the

Quick Change mutagenesis kit (Stratagene). pET-SUMO-NBD1 (kindly provided by P.

J. Thomas, Dallas) was mutated at CFTR codon 512 from TAT to TTT to obtain pET-

SUMO-NBD1-Y512F. For subcloning of Myc-tagged NBD1 and NBD1-Y512F, their cD-

NAs were PCR-amplified from pET-SUMO-NBD1 with primers NBD1-F (5’-ACG ACT

ACA GAA GTA GTG ATG) and NBD1-R (5’-TTA GAC AGG AGC ATC TCC TTC),

cloned into pCR2.1 TOPO-TA vector (Invitrogen), and transferred into a pcDNA3-Myc

expression vector. CFTR-Y512F and CFTR-Y512E mutants were generated by chang-

ing codon 512 of human pNUT-CFTR (Mendes et al., 2003) from TAT to TTT, or GAG,

respectively. Protein kinase OSR1 was amplified from cDNA clone IRAUp969A0428D

(RZPD-imaGenes) by PCR with primers Bam-OSR1-F (5’-GGA TCC ATG TCC GAG

GAC TCG AG) and Hind-OSR1-R (5’-TTC GAA TTA GCT GAT GCT GAG CTG),

cloned into pCR2.1 TOPO-TA vector, and then subcloned into the Bam HI and Hind

III sites of T7/His-tagged pET28 vector (Merck4Biosciences). Subsequently, codon 164

of the cDNA was mutated from GAC to GCC to generate the kinase-dead OSR1-D164A

mutant, which was used as a substrate for in vitro protein kinase assays. Myc-tagged

hnRNP A1 (gift from H. König, Karlsruhe) was as described (Matter et al., 2000). All con-

structs were verified by automated DNA sequencing.
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3.3.3 Immunoprecipitation and Western blot procedures

For co-immunoprecipitation experiments, cells were grown in 60 mm (transfected

cells), lysed on ice in 250 µL non-denaturing lysis buffer (see previous Chapter’s Ex-

perimental Procedures) supplemented with the aforementioned inhibitor cocktail. The

cell lysates were incubated for 2 hours at 4ºC with the specified antibodies (2.5 µg/mL

anti-GFP ab1218 (Abcam) or anti-Myc clone 9E10 (M5546, Sigma-Aldrich)), then further

incubated for 1 hour with protein G-Agarose beads (Roche Applied Science), and finally

washed three times in cold lysis buffer containing 200 mM NaCl. Proteins were solu-

bilized from the beads in 2x SDS sample buffer, boiled, and separated in a 10% SDS-

PAGE Protean III mini-gel (BioRad). Gels destined to assess CFTR expression contained

1% glycerol and were run at 4ºC.

For detection of specific proteins, the polyacrylamide gel was transferred onto a PVDF

membrane (BioRad) using a Mini Trans-Blot cell (BioRad; 100V for 1 hour) followed by

Coomassie-staining to check for equal transfer. Western blot membranes were blocked

in TBS, 0.1% Triton X-100, 5% milk powder, probed using the indicated antibodies, and

then incubated with a secondary peroxidase-conjugated antibody (BioRad) followed by

chemiluminescence detection. Primary antibodies used for Western blots were rabbit

anti-Myc A14 (sc-789) from Santa Cruz Biotecnologies, rabbit anti-GFP ab290 from

Abcam, mouse anti-T7-tag from Merck4Biosciences, mouse anti-CFTR clone L12B4

(mAb3484) from Chemicon International (Billerica, MA, USA), mouse anti-CFTR clone

596 (obtained through the UNC CFTR antibody distribution program sponsored by CFFT) and

affinity-purified rabbit anti-CFTR (Lis1) (Farinha et al., 2004).

For protein-protein interaction screening, a signal transduction antibody array from

Hypromatrix (Worcester, MA, USA) containing antibodies against 400 cellular proteins

involved in signal transduction was used. The array membranes were incubated for 2

hours at room temperature with cell lysates (prepared in non-denaturing lysis buffer)
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from four 60 mm dishes of HEK293 cells transfected with either Myc-WNK4 or empty

vector, then washed like Western blots before staining the complexes containing Myc-

WNK4 with an anti-Myc peroxidase conjugate (Hypromatrix).

3.3.4 Biotinylation of cell surface proteins

BHK21 cells were transfected as described above, washed twice with warm culture

medium to remove dead cells, and placed on ice in a cold room. Cells were washed

three times with ice-cold PBS-CM (see previous Chapter) and left 5 min in cold PBS-

CM to ensure arrest of endocytic traffic. Cells were then incubated for 30 min with

0.5 mg/mL EZlink sulfo-NHS-SS-biotin (Pierce Biotechnology) in PBS-CM before being

rinsed twice and left for 15 min on ice with ice-cold Tris/Glycine (see Chapter Two) to

quench the biotinylation reaction. Cells were again washed 3x with cold PBS-CM and

lysed in 250 µL pull-down buffer (see previous Chapter) in the presence of the afore-

mentioned protease inhibitor cocktail. The cell lysates were harvested by scraping and

cleared by centrifugation at 16,000 × g at 4ºC for 5 min. An aliquot of 40 µL repre-

senting the total CFTR level was removed and added to 2x SDS CFTR sample buffer

(62.5 mM Tris-HCl pH 6.8, 3% SDS, 10% glycerol, 0.02% Bromophenol Blue, 160 mM

DTT), while 200 µL lysate were added to 25 µL Streptavidin-agarose beads (Sigma-

Aldrich), previously incubated for 1 hour in 1 mL cold pull-down buffer containing 2%

non-fat milk powder, and washed 3x in pull-down buffer. For purification of biotiny-

lated proteins, lysate and beads were incubated under rotation for 1 hour at 4ºC, the

beads collected by centrifugation (1 min at 3,000 × g), and washed 3x in cold wash

buffer (see Chapter Two). Captured proteins were recovered from the beads in 25 µL

2x SDS CFTR sample buffer. The biotinylated protein fraction and one twentieth of the

corresponding whole cell lysates were analysed alongside by SDS-PAGE followed by

Western blot.
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3.3.5 Production of recombinant OSR1 or SUMO-NBD1 and in vitro protein kinase

assays

For the production of recombinant human OSR1, a reported WNK4 substrate (Vitari

et al., 2005), or of recombinant human NBD1, pET-OSR1-D164A, pET-SUMO-NBD1 or

pET-SUMO-NBD1-Y512F were expressed in the E. coli BL21 strain under IPTG induc-

tion and the bacterial pellets harvested at 1,400 × g, 20 min and frozen. For protein

extraction pellets were resuspended in either conventional lysis buffer (50 mM Tris-

HCl pH 7.5, 50 mM NaCl, 5 mM MgCl2, 1 mM DTT) for OSR1, or CFTR lysis buffer

(50 mM Tris-HCl pH 7.5, 100 mM L-Arginine, 50 mM NaCl, 5 mM MgCl2, 12.5% glyc-

erol, 0.25% NP-40, 0.1% SDS, 1 mM DTT, 2 mM ATP) in the presence of the protease

inhibitor cocktail described above, and then sonicated on ice in 10 cycles of 30 seconds

with 10 seconds intervals (Sonics Vibra Cell sonicator, set at 40% amplitude). Following

centrifugation of the extracts at 16,000 × g, the supernatant was incubated with Ni-

NTA agarose beads (Qiagen) for 1 hour at 4ºC. Beads were washed twice with cold lysis

buffer containing 20 mM imidazole and protease inhibitors. Recombinant OSR1 was

eluted and stored in cold lysis buffer containing 250 mM imidazole, whereas recombi-

nant SUMO-NBD1 proteins were dialysed against an imidazole-free lysis buffer, and

then concentrated. Proteins were quantified and stored in aliquots at -80ºC.

For in vitro protein kinase assays, cells were lysed under stringent conditions in 250 µL

RIPA buffer supplemented with protease inhibitors (see previous Chapter). To re-

duce extract viscosity 500 units/mL benzonase (Sigma-Aldrich) and 5 mM MgCl2 were

added. Following immunoprecipitation of WNK4 or Syk as described above, the re-

sulting beads were washed three times in cold RIPA buffer followed by three washes

with non-denaturing lysis buffer and then resuspended in 20 µL kinase reaction buffer

(30 mM Tris-HCl pH 7.5, 10% glycerol, 1 mM DTT, 1 mM Na3VO4, 10 mM MgCl2,

2 mM MnCl2, 100 µM ATP), mixed with their substrate (either beads containing im-

munoprecipitated Myc-tagged protein, or 1000 ng recombinant kinase-dead OSR1, or

81



Chapter 3. WNK4 and Syk regulate CFTR surface expression

recombinant NBD1), and incubated in the presence of 5 µCi γ-[32P] ATP at 30ºC for

30 min. Finally, 2x SDS sample buffer was added, samples boiled and separated by

SDS-PAGE followed by Western blot. Membranes were exposed to X-ray films, and

subsequently incubated with the indicated antibodies in order to document protein

quantities.

3.3.6 Immunofluorescence microscopy

BHK21 cells were grown on coverslips, transfected as indicated, fixed after 16 hours

with 4% (v/v) formaldehyde (Merck Chemicals) in PBS and permeabilised with 0.2%

Triton X-100 in PBS. Cells were then immunolabeled for 1 hour with mouse anti-

CFTR (clone 570; obtained through the UNC CFTR antibody distribution program spon-

sored by CFFT), washed 3x 5 min in PBS-T, incubated with a secondary Alexa 568-

conjugated antibody (Invitrogen-Molecular Probes). Cells were then washed, stained

briefly in DAPI solution (Sigma; 1:1000 in PBS-T), washed again and post-fixed for 15 min

in 4% formaldehyde. Coverslips were mounted on microscope slides with Vectashield

(Vector Laboratories), images recorded on a Leica TCS-SPE confocal microscope and pro-

cessed with Adobe Photoshop software.

3.3.7 Iodide efflux assay

CFTR-mediated iodide efflux assay was adapted from previously described methods

(Long and Walsh, 1997; Tang and Wildey, 2004; Zheng et al., 2009). BHK21 cells were grown

in 6-well dishes, transfected in duplicates as indicated, and 20 hours later washed twice

and incubated for 30 min at 37ºC in prewarmed Iodide Loading Buffer (136 mM NaI,

3 mM KNO3, 2 mM Ca(NO3)2, 0.5 mM MgSO4, 10 mM glucose, 20 mM HEPES pH

7.5). Cells were then washed 4x with Efflux Buffer (EB) (136 mM NaNO3, 3 mM

KNO3, 2 mM Ca(NO3)2, 0.5 mM MgSO4, 10 mM glucose, 20 mM HEPES pH 7.5) to
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completely remove extracellular iodide. Next, cells were left for equilibration during

10 min at 37ºC in EB (first set of replicates), or EB containing 10 µM of cell-permeable

CFTR-specific inhibitor-172 (Merck4 Biosciences) (second set of replicates), before 10 µM

Forskolin and 50 µM IBMX (both from Sigma) were added for 5 min to allow for PKA-

dependent CFTR-stimulation. The presence of 10 µM of CFTR inhibitor-172 (second

set of replicates) allowed correcting for endogenous non-CFTR-mediated iodide efflux

activities. Cells from all replicates were then quickly washed with fresh EB and the

dishes completely drained. Cells were lysed for 5 min in 1 mL EB plus 0.5% Triton

X-100, scraped and centrifuged at 16,000 × g for 5 min. Two sample aliquots were re-

moved to quantify CFTR by Western blot and total protein using Precision Red Protein

Assay Reagent (Cytoskeleton, Denver, CO, USA). The iodide content of the lysates was

then determined using an Iodide-Selective Electrode (Consort) connected to an MP225

General Purpose GLP pH/mV/°C Meter (Mettler Toledo). Sample voltages generated

by the iodide in solution were interpolated from the standard curve generated by mea-

suring 1, 10, 50 and 100 µM solutions and normalised to the amount of protein in the

sample. The iodide effluxed from transfected cells was calculated as the difference

between the amounts of iodide remaining in inhibitor-172-treated versus non-treated

replicates, and expressed in nmol.

3.4 Results

3.4.1 WNK4 modulates the cell surface abundance of CFTR in mammalian cells

WNK4 can regulate various ion channels, and one previous report identified a role in

the expression of CFTR at the cell surface of Xenopus oocytes (Yang et al., 2007a). In order

to confirm this effect in mammalian cells, we used BHK21 cells engineered to stably

express the human CFTR protein (Tabcharani et al., 1991; Mendes et al., 2003). These cells

are a well characterised model system in the field and were transfected with either GFP
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empty vector, or wild-type GFP-WNK4, or its GFP-WNK4-K186A kinase-dead mutant.

The consequences on the CFTR protein were subsequently analysed by three different

techniques. First, cell surface proteins were labeled by biotinylation and isolated from

cell lysates using Streptavidin-beads. As shown in FIG. 3.1|A, expression of both wild-

type and kinase-dead WNK4 increased the amount of CFTR detected at the cell surface.

We confirmed that the biotinylation reaction did not label cytosolic proteins such as

tubulin (data not shown). Second, confocal immunofluorescence microscopy analysis

confirmed an increase in the CFTR staining at the cell surface in both wild-type and

kinase-dead WNK4 transfected cells (FIG. 3.1|B). Third, CFTR-mediated ion transport

activity in transfected cells was determined by an iodide efflux assay, and revealed

a roughly two-fold increase in iodide release upon wild-type WNK4 or kinase-dead

WNK4 mutant expression (FIG. 3.1|C).

3.4.2 WNK4 exists in a complex with protein kinase Syk

In order to identify the molecular mechanism underlying this effect of WNK4 on CFTR

surface expression, we screened proteins interacting with WNK4 using an antibody

array. To this end, HEK293 cells were transfected with Myc-tagged WNK4, lysed un-

der non-denaturing conditions to preserve protein-protein interactions, and the extract

was incubated with an antibody array. Briefly, the array contained antibodies against

400 cellular proteins involved in signal transduction, which are able to bind to their

cognate proteins from the cell lysate. Those proteins forming a complex with Myc-

WNK4 in the lysate were revealed by chemiluminescence staining of the array mem-

brane with an anti-Myc peroxidase conjugate. After subtraction of unspecific signals

generated by the anti-Myc antibody alone, one clearly positive hit for WNK4 was ob-

tained at the position of anti-Syk (FIG. 3.2|A).
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Figure 3.1| Expression of WNK4 in mammalian cells increases cell surface expression of CFTR.
BHK21 cells stably expressing the human CFTR protein were transfected with GFP-tagged expression
vectors encoding either GFP alone (vector), or wild-type (wt) WNK4 or its WNK4-K186A kinase-dead
(kd) mutant, and then analysed through different techniques for changes in the cell surface expression of
CFTR. A| Biotinylation of cell surface proteins. Western blots of the CFTR protein, in either the fraction
of biotinylated cell surface proteins pulled-down with streptavidin-beads (Surface), or in whole cell lysates
(Input) are shown. The latter were further stained to document the expression levels of transfected GFP,
wt GFP-WNK4 or its kd mutant. B| Confocal immunofluorescence microscopy. Transfected cells were
fixed and stained with anti-CFTR followed by anti-mouse Alexa 568-conjugate. Images were recorded
sequentially for DAPI, GFP and Alexa stainings. C| CFTR-mediated ion transport activity by iodide
efflux. For details see EXPERIMENTAL PROCEDURES.
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Figure 3.2| WNK4 forms a protein complex with protein kinase Syk. A| Identification of Syk as a
WNK4 interacting protein using an antibody array. Lysates of HEK293 cells transfected with either
Myc-WNK4 or empty vector (Control) were incubated with an antibody array. WNK4-protein interactions
were then revealed by chemiluminescence using an anti-Myc peroxidase-conjugated antibody. The rel-
evant array areas with one WNK4-specific signal that corresponded to the position of Syk are shown.
B| Co-immunoprecipitation experiments to confirm the observed WNK4-Syk interaction. HEK293
cells were co-transfected with Myc-WNK4 and YFP-Syk, as well as YFP empty vector and Myc-hnRNP A1
as controls, lysed under non-denaturing conditions, and incubated with either anti-GFP antibodies to pre-
cipitate Syk (top panels) or with anti-Myc antibodies to precipitate WNK4 (bottom panels). The Western
blot analyses of the expression levels in whole cell lysates (Input) and the immunoprecipitated fractions
(IP) are shown. As respective controls, the YFP protein or Myc-tagged-hnRNP A1 were used. Note
that immunoprecipitated YFP-Syk pulls down WNK4 and, vice-versa, that immunoprecipitates of Myc-
WNK4 revealed the presence of Syk. C| Validation of the observed interaction in CFTR-expressing
BHK21 cells. Parental and CFTR-expressing BHK21 cells were co-transfected with YFP-Syk and either
Myc-WNK4 or Myc-hnRNP A1 (Control). Myc-tagged proteins were immunoprecipitated and analysed by
Western blot as described above.
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For confirmation of the observed interaction, Myc-WNK4 and YFP-Syk were co-trans-

fected into HEK293 cells (as well as YFP empty vector or Myc-hnRNP A1 as respective

controls) and immunoprecipitated. Anti-GFP antibodies immunoprecipitated Syk, and

the presence of WNK4 was clearly detected in the YFP-Syk precipitate, but not with

YFP alone. Vice-versa, anti-Myc antibodies precipitated WNK4 and the presence of

Syk was detected with anti-GFP antibodies. Also as a control, the unrelated nuclear

protein Myc-hnRNP A1 was expressed but did not co-immunoprecipitate with Syk

(FIG. 3.2|B). The endogenous WNK4 protein could not be immunoprecipitated due to

a lack of suitable commercial antibodies.

Since HEK293 cells do not express endogenous CFTR protein, the co-immunoprecipi-

tation studies were repeated in parental and CFTR-expressing BHK21 cells. This con-

firmed that Syk precipitated specifically with Myc-WNK4 but not with Myc-hnRNP

A1, and that this interaction occurred independently of the presence of the CFTR pro-

tein (FIG. 3.2|C).

3.4.3 Syk forms a complex with CFTR and phosphorylates the NBD1 in vitro

Given that so far no functional interaction between protein kinase Syk and CFTR has

been described, we first tested whether both proteins were able to co-immunoprecip-

itate. BHK21-CFTR cells were transfected to express either YFP protein or YFP-Syk,

and both were immunoprecipitated from cell lysates using the anti-GFP antibody. The

precipitates only revealed the presence of CFTR protein in case of YFP-Syk (FIG. 3.3|A).

We then analysed the CFTR peptide sequence and found a single Syk recognition motif

(Y-D/E-D/E-X) at Tyr512 in NBD1 (FIG. 3.3|B). We thus tested next whether Syk could

phosphorylate CFTR in vitro. Wild-type Syk or a K402R kinase-dead Syk mutant were

immunoprecipitated from cell lysates in SDS-containing RIPA buffer so that contam-

ination with other kinases from the cell lysate was minimised. The beads were then
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Figure 3.3| CFTR co-immunoprecipitates with Syk and harbours a Syk substrate motif in NBD1. A|
Syk forms a protein complex with CFTR. YFP empty vector or YFP-Syk were transfected into CFTR-
expressing BHK21 cells, and immunoprecipitated with anti-GFP antibodies. Whole cell lysates and pre-
cipitates were then separated in acrylamide gels optimized for best resolution of CFTR bands B and
C. Shown are Western blots with the expression levels of YFP, YFP-Syk (anti-GFP) and CFTR (rabbit
anti-CFTR Lis1) in whole cell lysates (Input) and the immunoprecipitated fractions (IP). Note that only
YFP-Syk co-precipitated the CFTR protein. The second visible Syk protein band occurred as an effect of
the CFTR-specific gel conditions. B| Model of the CFTR ion channel structure with part of its protein
sequence. The sequence of the cytoplasmic nucleotide binding-domain 1 (NBD1) is highlighted in grey,
the relevant residues containing the Syk substrate motif in pink and zoomed in below. Note that Tyr512 is
close to Phe508, the most frequently mutated residue in cystic fibrosis patients.

washed in protein kinase buffer and incubated with radioactive ATP in the presence of

isolated NBD1 as substrate.

In a first set of experiments, recombinant NBD1 (kind gift of P. J. Thomas) was found

to be phosphorylated by Syk but not by its kinase-dead mutant (FIG. 3.4 - left panels).

In order to demonstrate that Tyr512 was indeed the target residue of this activity, the
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Figure 3.4| Syk phosphorylates CFTR NBD1 in vitro. YFP empty vector, or wild-type (wt) YFP-Syk, or
K402R kinase-dead (kd) YFP-Syk mutant were transfected into HEK293 cells, immunoprecipitated and
tested in in vitro protein kinase assays for their ability to phosphorylate CFTR. The added substrates
were either recombinant NBD1 (left panel), SUMO-tagged recombinant NBD1, or its Y512F derivative
(middle panel), or transfected Myc-tagged NBD1 or Myc-NBD1-Y512F immunoprecipitated from HEK293
cells (right panel). Samples were separated by gel electrophoresis and transferred to PVDF blotting mem-
branes. Shown are the X-ray films (Kinase Assay) detecting incorporated radioactive [32P]-phosphate and
pink arrowheads indicate the position of NBD1. Note that wt Syk (but not its kd mutant) autophosphory-
lates and phosphorylates NBD1 at Tyr512. In order to document equal quantities of immunoprecipitated
Syk or NBD1 substrate protein, membranes were subsequently immunostained with anti-GFP and anti-
CFTR L12B40 antibodies (Input). White arrowhead indicates the position of immunoglobulin light chains
which retained some radioactive phosphate.

NBD1 coding sequence was point mutated to a phenylalanine at position 512 and then

expressed as SUMO-tagged recombinant protein. While Syk clearly phosphorylated

wild-type SUMO-NBD1 it no longer phosphorylated the Y512F NBD1 mutant (FIG.

3.4 - middle panels). Since the phosphorylation of recombinant proteins in vitro can
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sometimes result from an incorrect conformation, we confirmed these data using Myc-

tagged CFTR immunoprecipitated from HEK293 used as substrate for the Syk kinase

assay. Given that the high phosphorylation of full-length CFTR in the regulatory do-

main hampered analysis of the activity of Syk, we expressed only Myc-NBD1 and the

corresponding Y512F NBD1 mutant in these cells. The results confirmed that Syk can

only phosphorylate wild-type but not Y512F NBD1 (FIG. 3.4 - right panels).

3.4.4 WNK4 inhibits NBD1 phosphorylation by Syk

Since we found above that Syk interacts with WNK4, we tested the effect of WNK4

on the NBD1 phosphorylation by Syk. For this purpose, wild-type Myc-WNK4 or its

kinase-dead mutant were expressed, immunoprecipitated and added to Syk and re-

combinant NBD1 in the in vitro kinase assay. It was found that the presence of either

wild-type WNK4 or its kinase-dead mutant completely prevented Syk from phospho-

rylating NBD1 (FIG. 3.5|A).

In order to further study how WNK4 inhibits the NBD1 phosphorylation by Syk, we

analysed whether WNK4 could directly phosphorylate Syk in vitro. Myc-WNK4 was

expressed in cells, immunoprecipitated and mixed in in vitro kinase assays with either

wild-type or kinase-dead Syk. As a positive control, recombinant protein OSR1 was

added as known WNK substrate (Vitari et al., 2005), and found to become phosphory-

lated by WNK4 (FIG. 3.5|B). In contrast, Syk kinase-dead mutant was not phosphory-

lated by WNK4, and wild-type Syk revealed only its own auto-phosphorylation level

without any evidence for additional phosphorylation by WNK4.

Figure 3.5 (see next page)| WNK4 inhibits the Syk-mediated NBD1 phosphorylation. A| WNK4
inhibits NBD1 phosphorylation by Syk. Wild-type (wt) YFP-Syk, K402R kinase-dead (kd) YFP-Syk,
wt GFP-WNK4 or K186A kd GFP-WNK4 were transfected into HEK293 cells, immunoprecipitated and
pooled as indicated to test their ability to phosphorylate recombinant NBD1 (rNBD1) in in vitro protein
kinase assays. Samples were separated and analysed as described in the caption of FIG. 3.4. (continues
on the next page)
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Figure 3.5 (cont.)| A| Note that Syk and WNK4 autophosphorylate and that the presence of WNK4
prevents Syk from phosphorylating NBD1. B| WNK4 does not phosphorylate Syk in vitro. wt YFP-Syk,
or its kd mutant, or wt Myc-WNK4 were transfected into HEK293 cells, immunoprecipitated and pooled as
indicated for in vitro protein kinase assays. As a positive control, Myc-WNK4 was incubated with rOSR1,
a previously described substrate. Samples were separated and analysed as described in the caption of
FIG. 3.4. Note that WNK4 phosphorylates OSR1 but not the Syk protein.
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3.4.5 Syk activity modulates the expression of CFTR at the cell surface

Since Syk phosphorylated NBD1 of CFTR in vitro, we asked whether Syk could modulate the

expression of CFTR at the cell surface. Thus, BHK21-CFTR cells were transfected with YFP-

tagged expression vectors encoding either YFP alone (empty vector), wild-type Syk, or its

kinase-dead mutant, and then analysed for the expression of CFTR at the cell surface by bi-

otinylation of cell surface proteins, immunofluorescence microscopy and iodide efflux assays,

all in comparison to the described effect of wild-type WNK4. The expression of wild-type

Syk led to a decrease in the amount of CFTR at the cell surface, both as biotinylated pro-

tein (FIG. 3.6|A), or immunofluorescent staining (FIG. 3.6|B). In contrast, expression

of Syk kinase-dead increased the amounts of plasma membrane-associated CFTR in

both assays to levels comparable to those obtained upon expression of WNK4 (see

also FIG. 3.1|B for WNK4 immunofluorescences). These data were confirmed by io-

dide efflux measurements (FIG. 3.6|C) demonstrating that the observed changes in

surface amounts of CFTR reflected different capacities of cells to efflux iodide upon

Forskolin/IBMX stimulation.

3.4.6 Mutation of Tyr512 is sufficient to promote changes in the expression of CFTR

at the cell surface

In order to demonstrate that the observed phosphorylation in the NBD1 is functionally

relevant in vivo, Tyr512 was changed by site-directed mutagenesis into either a non-

phosphorylatable phenilalanine residue (Y512F) or a phospho-mimetic glutamic acid

residue (Y512E). These CFTR mutants were stably transfected into parental BHK21

cells, and CFTR activity measured by the iodide efflux technique (FIG. 3.7|A). CFTR-

Y512E-expressing cells showed a significant decrease in CFTR-mediated ion transport,

while cells expressing CFTR-Y512F released almost twice the amount of iodide as

wild-type CFTR-expressing cells. These data were found to correlate to the increased
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Figure 3.6| WNK4 and Syk have antagonistic effects on the cell surface expression of CFTR.
BHK21-CFTR cells were transfected with GFP-tagged expression vectors encoding either GFP alone
(vector), wild-type WNK4, wild-type Syk, or its kinase-dead mutant, and then analysed by different tech-
niques for changes in the expression of CFTR at the cell surface, as described in the caption of FIG. 3.1.
A| Biotinylation of cell surface proteins. B| Confocal immunofluorescence microscopy. C| CFTR-
mediated ion transport by iodide efflux. Note that expression of Syk decreased, whereas kinase-dead
Syk or WNK4 increased (see FIG. 3.1 for WNK4 immunofluorescences), cell surface CFTR compared to
control cells.
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amount of biotinylated CFTR protein at the cell surface compared to BHK21-CFTR

cells (FIG. 3.7|B). These mutants thus mimic the effects on CFTR of transfecting either

Syk or its kinase-dead mutant. To further confirm that Tyr512 mediates the effects

of Syk and WNK4 in vivo, we first transfected the non-phosphorylatable CFTR-Y512F-

expressing cells with YFP-Syk. Surface biotinylation revealed that wild-type Syk could

no longer reduce CFTR-Y512F surface expression (FIG. 3.7|B - two middle lanes). Sec-

ond, results showed that in cells expressing the phospho-mimetic CFTR-Y512E mutant

and transfected with Myc-WNK4, expression of WNK4 was no longer able to rescue

surface levels of the CFTR-Y512E mutant protein (FIG. 3.7|B - two right lanes) to those

of wild-type CFTR (second lane from the left).
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Figure 3.7| Phospho-mimetic mutants of CFTR Tyr512 are sufficient to change CFTR cell surface
expression. BHK21 cells were stably transfected with CFTR mutant constructs carrying point mutations
in Tyr512, so that either a phospho-mimetic glutamic acid residue (Y512E) or an unphosphorylatable
phenylalanine residue (Y512F) were present. Cells were analysed by different techniques for changes in
the expression of CFTR at the cell surface, as described in the caption of FIG. 3.1. A| CFTR-mediated
ion transport by iodide efflux. B| Biotinylation of cell surface proteins. Note that CFTR-Y512E is
less, but CFTR-Y512F is more abundant at the cell surface than wild-type CFTR. In addition, surface
abundance of CFTR-Y512F can no longer be decreased by transfection of YFP-Syk, and abundance of
CFTR-Y512E is no longer increased by expression of GFP-WNK4.
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3.5 Discussion

The data presented in this chapter provide two novel insights into the regulation of

cell surface expression of CFTR. First, we show that the CFTR protein is a substrate for

phosphorylation by protein kinase Syk at NBD1 residue Tyr512, leading to a reduction

in the cell surface expression of CFTR. Second, we describe an antagonistic role for

WNK4 and Syk in regulating the cell surface expression of CFTR.

In our experiments, Syk was initially identified as a WNK4 partner protein in HEK293

cells, when proteins involved in signal transduction were screened for formation of

complexes with Myc-WNK4 under non-denaturing conditions. The interaction was

clearly confirmed by co-immunoprecipitation when either WNK4 or Syk were pulled-

down (FIG. 3.2). The observed interaction occurred in both human HEK293 and in

rodent BHK21 cells, and is independent of the presence of CFTR.

Since expression of WNK4 enhanced the amount of CFTR at the plasma membrane

(FIG. 3.1) we searched for a possible role of Syk in this process and found a Syk phos-

phorylation motif at Tyr512 of the CFTR sequence, i.e. in its NBD1. In protein kinase

assays performed in vitro, this CFTR domain was indeed found to be phosphorylated

by Syk at Tyr512. Furthermore, when Syk is overexpressed in cells it associates with,

and co-immunoprecipitates CFTR, an interaction resulting in a slight reduction in the

amount of cell surface biotinylated CFTR. Even more significant was the outcome of

expressing a kinase-dead (dominant negative) Syk mutant, which can interact with

CFTR but not phosphorylate it, causing a significant increase in cell surface CFTR.

This indicates that Syk activity normally restricts expression of CFTR at the plasma

membrane. This increase in surface CFTR was confirmed by fluorescence microscopy

and by measuring CFTR-mediated iodide efflux in living cells (FIG. 3.6). Finally, CFTR

mutations mimicking either a constitutive phosphorylated or a non-phosphorylated
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Tyr512 were sufficient to provoke the corresponding changes in the CFTR cell surface

abundance and iodide efflux (FIG. 3.7).

Together, these data make a convincing case that the phosphorylation of CFTR at

Tyr512 by Syk is a novel regulatory mechanism to modulate the amount of CFTR

present at the plasma membrane. Although phosphorylation of CFTR is known to

occur in the regulatory domain of CFTR leading to channel opening and activation of

transport activity (Gadsby and Nairn, 1999), our data on Syk revealed a yet unknown

role for phosphorylation in NBD1 for the regulation of CFTR expression at the cell sur-

face. The physiological relevance of these findings is supported by the fact that Syk

expression was detected in airway epithelial cells (Ulanova et al., 2005b), and confirmed

by us in Western blot analyses of the lung cell lines CFBE and Calu-3 (data not shown).

Our data further revealed that WNK4 acts in an antagonistic way to Syk and promotes

cell surface expression of CFTR. A previous analysis of WNK4 in extra-renal tissues

found expression in lung and other chloride-transporting epithelia, including sweat

ducts, colonic crypts, pancreatic ducts, and epididymis (Kahle et al., 2004a). Thus, the

tissue-specific WNK4 expression pattern largely overlaps with that of CFTR. Given

that WNK kinases can be activated by changes in extracellular osmolarity (Kahle et al.,

2008a), it is tempting to postulate that WNK4 responds to fluctuations of the airway

surface fluid and adjusts the amount of CFTR activity accordingly.

The in vitro phosphorylation of CFTR NBD1 at Tyr512 by Syk was inhibited by WNK4

as well as by its kinase-dead K186A mutant. Thus, the inhibition is most likely me-

diated by the protein-protein interaction observed between Syk and WNK4. Other

WNK4-mediated effects on ion channels were also previously described to be kinase-

independent, and include the inhibition of ROMK (Kahle et al., 2003), and of ENaC

(Ring et al., 2007a) surface expression in Xenopus oocytes. In both cases, changes in
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endocytosis of the respective channels are involved, albeit through different molec-

ular pathways. While the inhibitory effect of WNK4 on ROMK involves binding to

the linker protein intersectin to facilitate clathrin-dependent endocytosis (He et al.,

2007), the downregulation of ENaC is most likely mediated by the E3 ubiquitin lig-

ase Nedd4-2 to direct ENaC into the lysosomal pathway for degradation (Ring et al.,

2007a). Whether the antagonistic effects of WNK4 and Syk on CFTR also involve endo-

cytosis or rather changes in membrane traffic and CFTR delivery remains to be deter-

mined. Intriguingly, when we expressed a kinase-dead Syk mutant, which leads to an

increase in surface CFTR, our immunofluorescence analysis revealed that this mutant

co-localised at the plasma membrane with sites of increased CFTR staining (FIG. 3.6|B).

This is suggestive that under normal conditions Syk is recruited to the plasma mem-

brane CFTR, and then phosphorylates it triggering CFTR endocytosis. The presence

of WNK4 would then sequester Syk and increase retention of CFTR at the cell surface.

This hypothesis is schematically depicted in FIG. 3.8.

Syk

endocytosis

Syk

Cl-

stabilised

Cl-
Cl-

P

P

SykWNK4

Figure 3.8| Proposed model for the role of WNK4 and Syk in regulating cell surface levels of CFTR.
Syk-mediated phosphorylation of CFTR at the plasma membrane triggers its endocytosis. WNK4 can
sequester Syk and thus increase the prevalence of CFTR at the cell surface. Upstream signals regulating
activation or expression of Syk and WNK4 remain to be determined.
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Our findings have several remarkable implications. First, the WNK4/Syk interplay

identified for CFTR may also operate in the regulation of other chloride cotransporters.

Given that an increase in apical CFTR activity would require concomitant activation of

basolateral ion channels to coordinate a transepithelial chloride flux (Kahle et al., 2006),

it is appealing to speculate that WNK4 and/or Syk control this coordination. Second,

the WNK4/Syk pathway may be of therapeutic interest in cystic fibrosis. The most

frequent mutation in patients is the deletion of phenylalanine 508 (Phe508del), which

causes increased proteolytic degradation of the misfolded mutant CFTR protein. In-

terestingly, however, the mutant protein could contribute to some residual chloride

channel activity and significantly reduce disease severity if its retention at the plasma

membrane is improved (Amaral, 2005). Our data show that Syk normally inhibits CFTR

surface expression and suggest that Syk inhibitors may also benefit the prevalence

of mutant CFTR Phe508del protein at the plasma membrane. Third, Syk inhibitors

are currently used in the clinic to inhibit inflammation and treat allergic rhinitis and

rheumatoid arthritis (Ulanova et al., 2005a; Sanderson et al., 2009). This is due to the role

of Syk in immunoreceptor signalling in leukocytes (Sanderson et al., 2009; Mócsai et al.,

2010). Interestingly, recent studies have suggested that Syk also functions in the lung

inflammatory response, being involved in tumour necrosis factor-induced nitric oxide

production by airway epithelial cells (Ulanova et al., 2006). Thus, Syk inhibition may

further be beneficial in cystic fibrosis therapy because the disorder is characterised by

chronic lung inflammation due to impaired clearance of the thick mucus that forms in

the absence of CFTR-mediated chloride transport (Belcher and Vij, 2010).
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4.1. Summary

4.1 Summary

Germline mutations in the WNK4 gene originate Gordon’s syndrome or pseudohy-

poaldosteronism type II (PHA-II), a familial form of hypertension with hyperkalemia

and hypercalciuria. In order to elucidate the contribution of WNK4 genetic variants to

hypertension and/or osteoporosis, we analysed 271 control individuals and a cohort of

448 hypertensive and 372 osteoporosis patients from the Portuguese population. Ten

genetic variants were detected in 4.3% of the population under study, none of which

revealed any significant association to the hypertension phenotype. In contrast, a rare

missense alteration (R1204C) within exon 17 in a highly conserved arginine residue

showed a possible tendency for association to the osteoporosis group. Our data sug-

gest that WNK4 polymorphism rs56116165 is a rare allelic variant in a candidate gene

with a biological function in renal calcium homeostasis that may contribute to a genetic

predisposition to osteoporosis.

Keywords: Gene variant, Hypertension, Low bone mineral density, Osteoporo-

sis, Predisposition, WNK4 protein kinase
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4.2 Background

Mutations in the WNK1 and WNK4 genes have been identified to cause PHA-II or Gor-

don’s syndrome (Wilson et al., 2001), a rare familial form of hypertension accompanied

by hyperkalemia and metabolic acidosis. WNKs encode a small family of protein ki-

nases with a sequence variation in the otherwise conserved catalytic domain (Xu et al.,

2000; Veríssimo and Jordan, 2001; Min et al., 2004). WNK kinases control the activity of

various ion channels and their mutation leads to dysregulated renal sodium absorp-

tion and potassium secretion (reviewed in Gamba, 2005; Kahle et al., 2008a).

The mutations identified thus far in the WNK4 gene are missense changes outside the

protein kinase domain, in particular mutations E562K, D564A, Q565E, and R1185C,

that cluster in exons 7 or 17 (Wilson et al., 2001). Besides hypertension and hyperkalemia,

patients with WNK4 mutations also present hypercalciuria and low BMD (Mayan et al.,

2002).

Transgenic mouse models expressing the disease-causing D564A or Q565E Wnk4 mu-

tations have demonstrated the typical hypertension, hyperkalemia and hypercalciuria

phenotypes (Lalioti et al., 2006; Yang et al., 2007c). They further allowed concluding

that increased transport activity of the sodium chloride cotransporter (NCC) is the

primary cause for the hypertension syndrome. With regard to hypercalciuria, these

mouse models revealed an underlying reduced renal calcium reabsorption since nor-

mal values were observed for glomerular filtration rate, serum calcium, and PTH or

1,25(OH)2D3 hormone levels. This is consistent with the notion that calcium reabsorp-

tion is inversely related to sodium reabsorption in the distal tubule. Besides NCC,

other candidate ion channels have been reported to be affected by WNK4 mutations,

including the transient receptor potential channel vanilloid subtype calcium channels

(TRPV4, 5 and 6) (Jiang et al., 2007; Fu et al., 2006) and the renal potassium channel ROMK
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(Kahle et al., 2003; Gamba, 2005b). These could contribute to the hypercalciuria and hy-

perkalemia phenotypes, respectively.

The objective of the work described in the following was to screen a cohort from the

Portuguese population for the presence of genetic WNK4 variants, which might confer

an increased risk for either hypertension and/or decreased BMD.

4.3 Experimental Procedures

4.3.1 Subjects

The following DNA samples were studied: the initial hypertension samples included

82 normal control individuals, 125 essential hypertension patients, 63 pregnancy-in-

duced hypertensive women; 10 pre-eclampsia and 9 post-menopause hypertensive

women. The study was then extended to include hypertension and/or osteoporo-

sis samples containing 189 normal control individuals, 110 essential hypertension pa-

tients, 69 combined low BMD and hypertension, 153 low BMD, 88 osteoporosis and 62

combined osteoporosis and hypertension patients. Patients with alterations in sodium

or potassium levels due to primary hyperaldosteronism were excluded from the study.

The total numbers were 271 normal control individuals, 448 hypertensive patients, 512

normotensive individuals, 372 patients with decreased BMD (low BMD or osteoporo-

sis) and 381 individuals with documented normal BMD. The genetic screening of exons

7 and 17 was performed in 601 and 960 samples, respectively.

Individuals were accessed for BMD (g/cm2) by dual X-ray absortiometry at the lum-

bar spine (L1-L4), hip and distal forearm, using the QDR Discovery W densitometer

(Hologic Inc.). The lowest T-score at those skeletal regions was used to qualify BMD,

according to the World Health Organization’s operational definition of osteoporosis:

T-score ≤-2.5 SD is classified as osteoporosis, -2.5 SD≤T-score≤-1 SD as low BMD and
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T-score ≥-1 SD as normal BMD. Blood samples were taken following the primary BMD

screening scan before any pharmacological patient treatment.

All patients signed an informed consent declaration.

4.3.2 PCR-dHPLC screening and DNA sequencing

Exons 7 and 17 of the WNK4 gene (GeneID: 65266, GenBank NC_000017; transcript

NM_032387 or ENST00000246914) were amplified from DNA (100 ng) using primer pairs

WNK4 ex7-F (5’-GGC GTC CTG ATG GAT CTT TG) and WNK4ex7-R (5’-AGG CCA

AGG TGT TCT GGG A) or WNK4ex17-F (5’-CCT GGG AGA GCA AGG TGT GT) and

WNK4ex17-R2 (5’-CCT GGA GAA AAA CAG TCG ACA GAA) under standard PCR

conditions. Fragments were screened for mutations by dHPLC elution (WAVE; Transge-

nomic, www.transgenomic.com), in a gradient of 57%-65% dimethylformamide solution

B during 4 min at 62ºC. Exons showing abnormal dHPLC patterns were subsequently

sequenced from an independently amplified PCR product using fluorescent dye termi-

nators and an automated DNA sequencer (ABI Prism 3100, Applied Biosystems).

4.3.3 Statistical Analysis

A case-control association study was conducted comparing individuals with and with-

out our variant of interest (rs56116165) in WNK4 exon 17, for each of the traits un-

der study. First, we compared the variant’s frequency between the individuals with

low BMD (N=372) against healthy unselected controls (N=271), as well as between

the group of individuals with hypertension (N=448) against the same control group

(N=271). Since the variant in question was more frequent in the low BMD group,

we did one further test comparing the group of individuals with low BMD (N=372)

against the group of all individuals with documented normal BMD (N=381). Logis-

tic regression as well as Fisher’s exact test were applied to test association between
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rs56116165 and each of the phenotypes under study, thus results were confirmed be-

tween both methods. These were implemented in the R software, using the genetics

library (http://cran.r-project.org). For each comparison group, the standard error and

the respective 95% confidence intervals were also estimated. Both logistic regression

and Fisher’s exact test are commonly used when dealing with dichotomous traits, es-

pecially, the latter test when sample sizes are small such as the populations under

investigation in this study. Although performing multiple statistical tests can lead to

inflation in the occurrence of false positives (requiring adjustment of the statistical sig-

nificance (P-value) threshold in order to account for the number of independent tests),

our study only investigated one variant, so no additional correction was required. Fur-

ther confounding effects were not considered in the regression analysis.

4.4 Results

Given that WNK4 mutations cause PHA-II with hypertension and hypercalciuria, ge-

netic variants in this gene may exist in the population that predispose to essential hy-

pertension and/or low BMD. Thus, we genotyped WNK4 exons 7 and 17, to which all

known mutations cluster, in DNA samples from normal individuals and from hyper-

tensive or osteoporosis patients.

Altogether, we analysed 960 individual DNA samples and detected ten (2 intronic and

8 exonic) different genetic variants. These were present in 41 individuals (4.3%). Some

individuals carried two alterations so that altogether 52 variant alleles were detected.

The corresponding variants and their allele frequencies in the Portuguese population

studied are shown in TABLE 4.1. Interestingly, we identified one variant in exon 7

(c.1598T>C, L533P) that has not been previously described.
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Table 4.1| Allele frequencies of the genetic WNK4 variants identified in the Portuguese population.
The number of amplified DNA samples (N) was 601 for exon 7 and 960 for exon 17. Sequence numbering
was in agreement with public database entries NM_032387 or ENST00000246914. Note that variant
c.1598T>C, L533P has not been previously described (n.a. – not applicable).

Exon/Intron Nucleotide Protein SNP Frequency

IVS6 c.1477(-13)A>G n.a. rs61754357 6/601 = 1.0%

7 c.1523G>A R508H rs5599715 1/601 = 0.2%

7 c.1524T>C R508R rs55879206 2/601 = 0.3%

7 c.1598T>C L533P not assigned 1/601 = 0.2%

7 c.1641C>T A547A rs9916754 15/601 = 2.5%

7 c.1653C>T P551P rs55751736 8/601 = 1.3%

7 c.1664C>G P555R rs57737815 4/601 = 0.7%

7 c.1719C>T H573H rs56243382 2/601 = 0.3%

IVS16 c.3448(-20)T>C n.a. rs61755630 4/960 = 0.4%

17 c.3610C>T R1204C rs56116165 9/960 = 0.9%

When the identified variants were matched to the subjects’ clinical phenotypes, we ob-

served that most variants occurred in both control and patient populations, without

revealing any significant correlation to essential hypertension (TABLE 4.2). Although

the exon 7 variants R508R, R508H and L533P were found only in hypertensive preg-

nant women, they occurred only in one sample each, thus precluding a statistically

significant interpretation.

In contrast, we observed that R1204C (rs56116165), a variant already described in exon

17, was almost exclusively found in patients with decreased BMD or osteoporosis (TA-

BLE 4.2). This variant was rare in the general population (0.9%) but found in 8 of the 372

patients with decreased BMD (2.2%). The clinical characterisation of the eight corre-

sponding osteoporosis patients revealed that they were unrelated, mostly female (7/8)

and had different pathologies with underlying osteoporosis, including type 2 diabetes
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Table 4.2| Correlation between clinical phenotypes and WNK4 sequence variants. 601 Portuguese
individuals were screened for the exon 7, and 960 for the exon 17 region. When divided into phenotypic
groups the analysed number of samples covered 448 hypertensive and 512 normotensive individuals, 372
individuals with decreased BMD, and 381 with normal BMD, as well as, 271 normal control individuals.
Ten different genetic variations were detected in 41 individuals (4.3%), summing up to a total of 52 variant
alleles. (n.a. – not applicable)

Sample Patient group Exon/Intron Nucleotide Protein Frequency
D2 Normal Control

IVS 6 c.1477(-13)A>G n.a. 6/601

D109 Normal Control
201 Normal Control
5MF Essential Hypertension
7MF Essential Hypertension
47MF Essential Hypertension
32G Pregnancy-induced hypertension Ex 7 c.1523G>A R508H 1/601
9BN Essential Hypertension

Ex 7 c.1524 T>C R508R 2/60129G Pregnancy-induced hypertension
PC2 Preeclampsia Ex 7 c.1598T>C L533P 1/601
D4 Normal Control

Ex 7 c.1641C>T A547A 15/601

D45 Normal Control
D109 Normal Control
201 Normal Control
261 Normal Control
1MF Essential Hypertension
7MF Essential Hypertension
47MF Essential Hypertension
66MF Essential Hypertension
273 Essential Hypertension
67G Pregnancy-induced hypertension
92G Pregnancy-induced hypertension
172 Low BMD + Hypertension
182 Low BMD + Hypertension
25 Osteoporosis

D102 Normal Control

Ex 7 c.1653C>T P551P 8/601

D111 Normal Control
34MF Essential Hypertension
284 Essential Hypertension
2G Pregnancy-induced hypertension
166 Low BMD + Hypertension
79 Low BMD
23 Osteoporosis
261 Normal Control

Ex 7 c.1664C>G P555R 4/601
1MF Essential Hypertension
273 Essential Hypertension
182 Low BMD + Hypertension
D45 Normal Control

Ex 7 c.1719 C>T H573H 2/60192G Pregnancy-induced hypertension
173 Low BMD + Hypertension

IVS 16 c.3448(-20)T>C n.a. 4/960
362 Low BMD + Hypertension
123 Low BMD
133 Low BMD
420 Normal Control

Ex 17 c.3610C>T R1204C 9/960

70 Osteoporosis + Hypertension
150 Osteoporosis + Hypertension
317 Osteoporosis + Hypertension
699 Osteoporosis+ Hypertension
104 Low BMD

2 Osteoporosis
514 Osteoporosis
606 Osteoporosis
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mellitus (2/8), hypercholesterolemia and goiter (3/8), or hyperthyroidism (2/8) (TA-

BLE 4.3). All patients had normal serum calcium levels (9.2-10.3) and showed no alter-

ations in sodium or potassium values (data not shown). Only 1 in 381 individuals with

normal BMD had the same variant, but presented hypothyroidism.

Table 4.3| Clinical description of the nine individuals carrying the WNK4 exon 17 variant
rs56116165 (R1204C). (F – female, M – male, n.d. – not determined)

ID Age Sex HT
Low

BMD

Osteo-

porosis

Serum

Ca2+ Additional Diagnosis

70 58 F + - + 10.0 Type 2 Diabetes Mellitus

317 74 F + - + 9.6
Type 2 Diabetes Mellitus, Hepatic Steatosis,

Esophagitis

150 65 F + - + 9.3
Goiter, Hypercholesterolemia, Depression,

Parkinsonism

2 68 F - - + 9.3
Goiter, Hypercholesterolemia, Ischemic

Cardiopathy, Chronic Adrenal Insufficiency

606 52 F - - + n.d. Goiter, Obesity

514 45 F - - + 10.3 Hyperparathyroidism

699 61 M + - + 9.6
Hyperthyroidism, Hypercholesterolemia,

Kidney Cyst Right

104 46 F - + - n.d.
Iatrogenic Hyperthyroidism, Asthma,

Depression

420 44 F - - - 9.2
Hypothyroidism, Chronic lymphocytic

thyroiditis, Depression

No significant association between variant rs56116165 and the hypertension pheno-

type was detected (P>0.05 - TABLE 4.4). Moreover, a non significant association value

was obtained when the low BMD group was compared to the healthy control individ-

uals (P>0.05 - TABLE 4.4). However, when all individuals with clinically documented

normal BMD were considered as the control group, the tendency for association with

the low BMD phenotype was highlighted (P>0.05 - TABLE 4.4), indicating an increased

risk (OR>1) for low BMD in carriers of this variant.
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Table 4.4| Case-control association results for the variant R1204C in the Portuguese population.
(BMD – bone mineral density, CI – confidence interval, logOR – odds ratio logarithm. Significant results
are shown in bold.)

Comparison Groups
Fisher’s exact test Logistic regression model

logOR CI P-value logOR CI P-value

Hypertensive versus Controls 0.38 (-0.70; 2.10) 0.650 0.89 (-1.30; 3,08) 0.428

Low BMD versus Controls 0.72 (-0.09; 2.40) 0.086 1.78 (-0.30; 3.86) 0.094

Low BMD versus Normal BMD 0.92 (0.04; 2.60) 0.020 2.12 (0.04; 4.20) 0.046

In order to evaluate the functional consequence of the observed variation for the WNK4

gene product, we analysed the evolutionary conservation of arginine 1204. A sequence

alignment of 12 different mammalian species revealed that arginine 1204 and its sur-

rounding amino acid residues form a highly conserved sequence (FIG. 4.1), indicating

that the amino acid exchange in variant R1204C has possibly functional relevance.

Figure 4.1| R1204 is highly conserved among mammalians. A WNK4 protein sequence alignment
is shown corresponding to the 3’ end of exon 17 in the twelve eutherian mammals indicated. R1204 is
marked by a box and sequence differences highlighted by black shading. Note the high conservation of
the whole region.
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4.5 Discussion

The main conclusions from the present work are that WNK4 polymorphic variants are

rare in the Portuguese population studied and revealed no significant association to

essential hypertension. In contrast, the variant rs56116165 was identified as being po-

tentially associated to low BMD.

In this work we describe single nucleotide polymorphisms (SNPs) in exons 7 and

17 of the WNK4 gene found in the Portuguese population. Ten different rare SNPs

were detected, including the identification of one novel mutation/variant found in a

preeclampsic pregnant woman (exon 7, c.1598T>C, L533P). Among these polymor-

phic variants, only one was found to be disease-related, namely exon 17 variant

rs56116165, which changes an arginine residue highly conserved among mammalian

species into a cysteine (R1204C). Data deposited in the current public NCBI SNP

database (http://www.ncbi.nlm.nih.gov/) indicated an allele frequency of 0.6%. In the

Portuguese population studied, this variant is similarly rare (0.9%) but was preferen-

tially encountered in low BMD patients (2.2%). The P-values obtained with the associ-

ation tests indicate a clear tendency for an association of this variant (rs56116165) with

low BMD. However, as we are dealing with a rare variant, association tests are not the

most adequate approach, as they possibly lack statistical power to find an unbiased

association.

There is no doubt that genetic variants of an individual can confer susceptibility to

certain diseases. It is at present unclear, however, to what extent this susceptibility

is contributed by either common variants with low penetrance or rare variants with

high penetrance (Schork et al., 2009; McClellan and King, 2010). Following the complete

sequencing of the human genome, GWAS have been reported for the unbiased iden-

tification of common susceptibility variants involved in complex diseases including

hypertension (Levy et al., 2009; Ehret, 2010) and osteoporosis (Rivadeneira et al., 2010; Li
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et al., 2010; Cheung et al., 2010). One important lesson from these studies has been that

no major common disease-causing variants were found, but rather that many ‘low risk

variants’ exist, each conferring only a small degree of risk. In hypertension, for in-

stance, a WNK1 variant (SNP rs2301880) was identified which exhibited a reduction

in systolic blood pressure of 1.78 mm Hg in the general population, thus contributing

a proportion of 1.4% to the additive polygenic variance in mean blood pressure (To-

bin et al., 2005). Therefore, development of complex diseases is postulated as the result

of the combined effects of many such alleles (McClellan and King, 2010). The GWAS

in osteroporosis identified candidate genes with a role in biological pathways of os-

teoblastogenesis and osteoclastogenesis (Li et al., 2010; Cheung et al., 2010).

This does not exclude, however, that rare gene variants exist in key genes which con-

tribute a large effect in predisposition to complex diseases. The current GWAS ap-

proach is likely to exclude them from the initial association analysis because of their

low allele frequency (McClellan and King, 2010). This is a major limitation of the GWAS

approach. The contribution of rare variants is likely to be important because the com-

mon variants identified in GWAS have been estimated to cover less than 3% of the

estimated genetic susceptibility to diseases (McClellan and King, 2010). Their clinical ap-

plicability is further unclear because many of the identified variants have no known

associated function or pathogenetic importance and are merely assumed to influence

gene function or expression.

In the study described herein we have shown that the rare variant rs56116165 in WNK4

exon 17 has clear tendency for association to low BMD. We propose to consider R1204C

as a rare susceptibility variant in a gene with an established biological function related

to renal calcium homeostasis. In particular, the analysis of Wnk4 transgenic mice has

suggested that decreased calcium reabsorption in the upstream nephron, with a sec-

ondary adaptive increase in calcium channel (TRPV6 and CBP-D28k) expression in the
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distal tubules is underlying the hypercalciuria of PHA-II (Yang et al., 2010). Interest-

ingly, one PHA-II kindred was described with a close-by WNK4 mutation in exon 17

(R1185C) that confers hyperkalemia without hypertension (Baz et al., 1990; Mayan et al.,

2002). This may indicate that exon 17 mutations differ in biological function from exon

7 mutations and explain our observation that R1204C was found in low BMD patients

but not in patients with hypertension alone.

In conclusion, we identified rs56116165 as a rare WNK4 variant that may predispose to

osteoporosis. In order to statistically consolidate its contribution towards this predis-

position, future independent studies from different populations should include larger

numbers of both cases and controls, inquiring not only the R1204C variant but its

surrounding gene region using deep-sequencing strategies. With next-generation se-

quencing technologies it is hoped to obtain a relevant list of potential susceptibility

variants, providing hope for a truly personalised preventive medicine, as well as ex-

plaining the missing heritability of the current GWAS studies performed for complex

disorders.
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5
General Discussion





5.1. Novel signalling mechanisms involving human WNK1 and WNK4 protein kinases

Similarly to the thesis objectives, the general discussion and conclusions are divided

into two different parts. In the first part the identification of novel WNK interacting

cellular protein partners is discussed in light of the current paradigms on signalling

transduction mechanisms, and their importance for cellular homeostasis. The second

part of this chapter discusses the value to the broad context of hypertension and/or

osteoporosis polygenic inheritance that was added by a WNK4 mutational screen in a

Portuguese cohort followed by the analysis of genetic predisposition to these disorders.

5.1 Novel signalling mechanisms involving human WNK1 and

WNK4 protein kinases

The flow of ions and other molecules across the membrane of cells and organelles is

crucial to many of life’s processes, and so are ion channels and transporters. An im-

portant aspect of transporters and ion channel biology in several disorders is the actual

amount of protein expressed at the cell surface. Among the multiple factors that reg-

ulate the functioning of these transporters and channels in cells, their redistribution

between intracellular vesicular pools and the plasma membrane is one such key factor

in which the WNK kinases are involved.

WNKs are unique and very large protein kinases that have been shown to participate

in a variety of signalling processes and to interact with different proteins via several

motifs or domains, as summarized in FIG. 5.1. The unusual position of their catalytic

lysine may be related to some yet to be identified regulatory mechanism. Moreover,

due to their large size it has been speculated that they can act as scaffolds that recruit

other proteins which regulate the activity and/or surface expression of ion channels

and transporters. Furthermore, in some cases, their kinase activity may not be relevant

but rather the conformation of the kinase domain.
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Schematic representation of WNK1 and WNK4 phosphorylation sites, interacting protein partners and respective interacting
domains. WNK1 and WNK4 known phosphorylation sites are shown, except for WNK1 Ser15 and Ser167 for simplicity reasons.
WNK1 Ser382 and WNK4 Ser332 are autophosphorylation sites (Xu et al., 2000, Lenertz et al., 2005), WNK1 Ser2012, Ser2029,
Ser2032 are constitutive sites of phosphorylation and the other WNK1 sites are sorbitol-induced ones (Zagorska et al., 2007). WNK1
and WNK4 have an Akt/SGK1 substrate motif (RXRXX(p)S/T) in their N-terminal (T60/S47) (Jiang et al., 2005, Heise et al., 2010) and

WNK4 has 2 additional motifs on its C-terminus (Ring et al., 2007b; Rozansky et al., 2009). WNK4 Ser1217 is phosphorylated both by
SGK1 and WNK1 (Rozansky et al., 2009). WNK1 and WNK4 interact with intersectin (ITSN) via a PXXP motif (He et al., 2007) and
WNK1 also interacts with Munc18c through its N-terminus (Oh et al., 2007). Interactions with substrates involving phosphorylation are
also shown. Both WNKs phosphorylate Smad2 (Lee et al., 2007) and OSR1/SPAK (Vitari et al., 2005), the later bind to WNKs RFXV/I

motifs. WNK1 also phosphorylates synaptotagmins (Syts) (Lee et al., 2004), MEKK2/3 (Xu et al., 2004) and TBC1D4 (see Chapter 2),
while WNK4 directly phosphorylates claudins (Yamauchi et al., 2004). Syk interaction region/motif within WNK4 is still unknown.
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Figure 5.1| Schematic representation of WNK1 and WNK4 phosphorylation sites, interacting pro-
tein partners and respective interaction domains. WNK1 and WNK4 known phosphorylation sites are
shown, except for WNK1 Ser15 and Ser167 for simplicity reasons. WNK1 Ser382 and WNK4 Ser332
are autophosphorylation sites (Xu et al., 2000; Lenertz et al., 2005), WNK1 Ser2012, Ser2029, Ser2032
are constitutive sites of phosphorylation, and the other WNK1 sites are sorbitol-induced ones (Zagórska
et al., 2007). Both WNK1 and WNK4 have an Akt/SGK1 substrate motif (RXRXX(p)S/T) in their N-terminal
(Thr60/Ser47) (Jiang et al., 2005; Heise et al., 2010), and WNK4 has 2 additional motifs on its C-terminus
(Ring et al., 2007b; Rozansky et al., 2009). WNK4 Ser1217 is phosphorylated both by SGK1 and WNK1
(Rozansky et al., 2009). WNK1 and WNK4 interact with intersectin (ITSN) via a PXXP motif (He et al., 2007)
and WNK1 also interacts with Munc18c through its N-terminus (Oh et al., 2007). Interactions with sub-
strates involving phosphorylation are also shown. Both WNKs phosphorylate Smad2 (Lee et al., 2007) and
OSR1/SPAK (Vitari et al., 2005), the later bind to WNKs RFXV/I motifs. WNK1 also phosphorylates synap-
totagmins (Syts) (Lee et al., 2004), MEKK2/3 (Xu et al., 2004) and TBC1D4 (see Chapter 2), while WNK4
directly phosphorylates claudins (Yamauchi et al., 2004). Syk interaction region/motif within WNK4 is still
unknown.

This has been shown for ROMK regulation, in which the mutation of Lys233 or Asp368,

two residues conserved in most protein kinases and commonly mutated to generate

kinase-dead variants, disrupts an ion pair interaction between them, that is critical for

the kinase domain conformation. Thus, mutation of these residues may rather affect
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the overall structure of the kinase domain, which is required for PXXP motifs in the N-

terminus of WNK1 to interact with the SH3 domain of intersectin, which in turn regu-

lates the endocytosis of the channel (He et al., 2007). This raises the question of whether

other WNK regulated mechanisms have been misdeclared as kinase-dependent.

5.1.1 WNK1

The work presented in Chapter 2 of this thesis is the first example of a non-ion chan-

nel regulated by a WNK kinase. The molecular details through which WNK1 regu-

lates the surface expression of GLUT1, the glucose transporter in non-insulin target

cells, could be elucidated. WNK1 forms a complex with TBC1D4, a Rab-GAP involved

in regulated exocytosis of glucose transporters, and with Rab8A-GDP. Upon activa-

tion of WNK1, TBC1D4 is phosphorylated and associates with the phosphoprotein-

binding 14-3-3 adaptor molecules so that, its GAP activity becomes inhibited. Follow-

ing Rab8A activation by GDP/GTP exchange, delivery of GLUT1-containing vesicles

to the plasma membrane can occur promoting increased cellular glucose uptake.

Curiously, a recent study revealed that another Tre-2/USP6, BUB2, Cdc16 domain fam-

ily member, TBC1D1 (also an Akt substrate), seems to be a negative regulatory element

in the insulin signalling pathway of mTOR that regulates GLUT1 protein expression. It

was shown that a siRNA-mediated gene silencing of TBC1D1 induced the expression

of GLUT1 and increased basal glucose transport in adipocytes, through a mechanism

dependent on mTOR (Zhou et al., 2008). It was suggested that the phosphorylation of

TBC1D1 could result in the inactivation of its GAP domain, which is similar to what

we observed as a consequence of TBC1D4 phosphorylation by WNK1. This raises the

question of whether WNK1 could also be mediating TBC1D1 effects on GLUT1 or if

these regulatory pathways could occur completely independent in different cell types.
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Additionally, it should also be investigated if the WNK1-TBC1D4 interaction is WNK1-

specific or if other WNK kinases can also interact and phosphorylate TBC1D4.

Moreover, translocation of the insulin-regulated glucose transporter GLUT4 to adipo-

cytes or muscle cells surface is also known to be regulated by TBC1D4 (Sano et al., 2003;

Bruss et al., 2005), and its interaction with 14-3-3 proteins is insulin- and Akt-dependent,

via an Akt phosphorylation site, Thr642 (Ramm et al., 2006). In addition, WNK1 has been

shown to associate with Munc18c (as aforementioned in Chapter 1) (Oh et al., 2007).

This syntaxin 4-regulatory protein also participates in insulin-stimulated GLUT4 vesi-

cle translocation in adipocytes, namely at the stage of fusion between the vesicle and

plasma membranes (Thurmond et al., 1998; Thurmond et al., 2000; Thurmond and Pessin,

2000). Thus, WNK1 could be involved in a more general mechanism regulating plasma

membrane transporter traffic than originally considered.

More recently, TBC1D4 was also shown to regulate ENaC trafficking. Specifically,

it stabilises ENaC within an intracellular compartment under nonstimulated condi-

tions, and aldosterone(SGK1)-dependent TBC1D4 phosphorylation permits accumu-

lated ENaC forward trafficking to the apical membrane of cortical collecting duct

(CCD) cells (Liang et al., 2010). Therefore, phosphorylation of TBC1D4 appears to be

a mechanism shared by regulated exocytosis of various membrane transport proteins.

Taking all these studies into consideration, it is reasonable to speculate that TBC1D4

phosphorylation by Akt and/or SGK1 may also be playing a part in GLUT1 regulation

by WNK1. Vice-versa, it should be explored whether WNK1 is involved in the regula-

tion of GLUT4 in insulin-responsive cell types. However, since WNK1 not only also

directly phosphorylates TBC1D4, but is itself an Akt/SGK1 substrate (as previously

mentioned in Chapter 1), the mechanisms underlying GLUT1 and GLUT4 cell sur-

face expression could be more intricate. Specifically, it is unknown whether TBC1D4

phosphorylation by WNK1 is antagonistic or cooperative to its phosphorylation by
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Akt/SGK1. Also, the upstream stimuli regulating WNK1 activation should be clari-

fied, and in particular, the effect of insulin or IGF-1 stimulation should be addressed.

Interestingly, insulin-induced phosphorylation of Akt and TBC1D4 is reduced in adi-

pocytes and skeletal muscle cells of patients with type 2 diabetes mellitus, which is ac-

companied by impaired GLUT4 translocation (Karlsson et al., 2005). Type 2 diabetes is a

complex disorder with diminished insulin secretion and insulin action, that contribute

to the hyperglycemia phenotype (reviewed in DeFronzo, 1992). In muscle cells, glu-

cose transport is the rate-limiting step for glucose metabolism in both normal glucose-

tolerant (Yki-Järvinen et al., 1987; Fink et al., 1992) and diabetic (Butler et al., 1990; Yki-

Jarvinen et al., 1992) persons. Defects in glucose transport into muscle cells have also

been implicated in the reduced insulin sensitivity observed in type 2 diabetes (Garvey

et al., 1998).

The results presented in this thesis raise the possibility that pharmacologic induction

of WNK1 activity could increase concentrations of glucose transporters which would

provide a therapeutic opportunity in insulin-resistant type 2 diabetic patients.

5.1.2 WNK4

In Chapter 3, a novel signalling mechanism linking the protein kinases WNK4 and Syk

to the modulation of CFTR cell surface expression was unravelled. It was shown that

Syk can phosphorylate CFTR, leading to a decrease in CFTR expression in the surface

of mammalian cells. In contrast, WNK4 interaction with Syk prevents CFTR phos-

phorylation, and consequently increases CFTR surface expression, thus promoting an

increase in CFTR-mediated ion transport.

The exact nature of Syk inhibition by WNK4 remains to be determined. WNK4 could

shield the NBD1 domain and prevent access of Syk; however, it seems more likely that
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Syk is inhibited by the observed protein-protein interaction with WNK4, since this in-

teraction also occurred in the absence of CFTR in parental BHK21 cells. Nevertheless,

whether the antagonistic effect of WNK4 and Syk on CFTR involves endocytosis (sim-

ilarly to ROMK; Kahle et al., 2003) or rather changes in membrane traffic and CFTR

delivery (as for NCC; Subramanya et al.,2009) remains unknown. Therefore, it will be

important not only to map the interacting regions involved, but also to investigate pos-

sible partners recruited by WNK4 and mediating its effects on Syk, and subsequently

on CFTR surface expression.

Given that any increase in apical CFTR activity requires concomitant activation of ba-

solateral ion channels, such as NKCC1, to coordinate a transepithelial chloride flux

(Kahle et al., 2006) and, knowing that WNK4 regulates both apical and basolateral chlo-

ride flux in extrarenal epithelia (Kahle et al., 2004a), it is tempting to hypothesise that

WNK4 (possibly via Syk) could be involved in this coordination. This way WNK4 may

play a general role in epithelial chloride homeostasis. These observations can afford

the speculation that pharmacologic modulation of the WNK4/Syk pathway could be

explored to partially restore chloride flux in the airway epithelium of patients with

cystic fibrosis.

On the other hand, in addition to functioning as a secretory chloride channel in ep-

ithelial cells, CFTR can also regulate several transport proteins, including ENaC (Stutts

et al., 1995), ROMK (Yoo et al., 2004; Lu et al., 2006), and chloride/base exchangers (Lee

et al., 1999; Ko et al., 2004). These transport proteins are known to be regulated by the

WNK kinases (Ring et al., 2007a; Ring et al., 2007b; Kahle et al., 2003; Kahle et al., 2004a; Dor-

wart et al., 2007). Moreover, it has been shown that the tissue-specific WNK4 expression

pattern largely overlaps with that of CFTR (Yang et al., 2007a). Consequently, WNK4

and CFTR may be involved in either cooperative or parallel physiologic pathways that

regulate ion flux in these epithelia.
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Furthermore, a sequence analysis of a variety of ion channels for the presence of Syk

phosphorylation motifs revealed such motifs in the sequence of the renal NKCC2

(Tyr45) and the ubiquitously expressed KCC3 (Tyr63), whose activities are known to

be regulated by the WNK kinases (de Los Heros et al., 2006; Garzón-Muvdi et al., 2007;

Rinehart et al., 2009). Thus, an interesting subject for future investigations is to examine

if a WNK4/Syk regulatory mechanism is also responsible for the modulation of these

channels’ cell surface abundance. Such a mechanism could also be contributing to the

phenotypes observed in carriers of WNK4 mutations.

5.2 WNK4 mutational screen and analysis of hypertension/osteopo-

rosis susceptibility

Essential hypertension afflicts nowadays industrialised populations (and continues to

increase) leading to augmented morbidity and mortality. This may be partly due to

increased salt consumption of a population that has been overtime put at risk by genes

that once aided survival, by facilitating salt and water conservation when these re-

sources were scarce (Meneton et al., 2005; O’Shaughnessy and Karet, 2006; Ritz, 2010).

On the other hand, osteoporosis is also a relevant disorder due to its high prevalence

worldwide. This disorder poses a major challenge to modern medicine since not only

it is a ‘silent’ condition, predisposing people to fractures at the hip, spine, forearm,

or other skeletal sites, but also its treatment requires high costs (Lau and Cooper, 1996;

Pongchaiyakul et al., 2008).

Both are age-related, complex and heterogeneous disorders, in which the extent of

contributions from genetic polymorphisms to their heterogeneity is still not entirely

understood. A small percentage of all cases are due to highly penetrant mutations

in single genes, whereas low penetrance susceptibility genes are estimated to account
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for a high proportion of cases, with most of the genes yet to be identified (Rosskopf

et al., 2007; Ferrari, 2008; Li et al., 2010). Therefore, the search for additional hyperten-

sive/osteoporosis predisposition genes is a main goal towards the improvement of

their early diagnosis and to a better understanding of the biological mechanisms un-

derlying these disorders.

The use of molecular markers and gene expression profiling provides a promising ap-

proach for improving the predictive accuracy of current disease prognostic indices.

Molecular tests for diagnosis, disease prognosis and selection of treatment options,

particularly in these disorders, are gaining increased acceptance by physicians and

patients. Clinicians who are aware of the progress of the diagnosis tools and, in partic-

ular, of how this effort may be effectively facilitated through a comprehensive family

history in concert with molecular genetic studies, are in a better position for designing

highly targeted screening and management programs for the affected families. This

knowledge may have impact upon the progress in the earlier diagnosis of the disor-

ders and provide an impetus for better diagnostic methods. One example of a progno-

sis/diagnosis tool could be the use of a gene chip with different genetic variants known

to be associated with the disorder. In this sense, a better understanding of WNK4 vari-

ants and their contribution to hypertension and/or osteoporosis may have prognostic

value and potential therapeutic applications in personalised medicine.

In the work presented in this thesis (Chapter 4) we analysed 271 control individuals,

448 hypertensive and 372 osteoporosis patients from the Portuguese population. Ten

genetic variants were detected in 4.3% of the population under study, none of which

revealed any significant association to the hypertension phenotype. In contrast, a rare

missense alteration (R1204C) in a highly conserved arginine residue in exon 17 was

identified as being potentially associated to low bone mineral density. Taken together,

these data provide new insights into the genetic basis of osteoporosis, and support the

hypothesis that WNK4 variants can underlie the pathogenesis of this disorder. This
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result has a statistical significance towards positive association considered nominal, as

it is close to the 5% threshold established for this analysis. Nevertheless, the confi-

dence interval is narrow and the trend is towards increased risk, as the respective OR

is above one (TABLE 4.4). This result warrants further validation that could be achieved

for example by genotyping a larger group of both cases and controls, through an in-

dependent method (like the Taqman platform) in order to gain statistical power. This

way, we could confirm whether the initial signal was real or not. It would also be

interesting to go back to the clinical data, and find additional relevant factors (such

as diet, medication and physical exercise) that may have an impact in the disorder’s

manifestation. This new data could then be included in the logistic regression analysis

performed.

Additionally, a replication study using independent cohorts should be pursued to con-

firm the positive association signal of this SNP (rs56116165) towards increasing osteo-

porosis susceptibility. This replication study could also include an improved sample

size, once again to empower the study in question.

In a long-term future, it would be thrilling to comprehend the relation between this

WNK4 variant and its contribution for the development of osteoporosis. Overall, there

is still a lot of work to do in order to master all the mechanisms involved, since the

exact WNK4 biological function in renal calcium homeostasis remains unclear. As de-

scribed in Chapter 1, there is some evidence that WNK4 could be directly regulating

calcium channels (Fu et al., 2006; Jiang et al., 2007; Cha et al., 2008; Cha and Huang, 2010), or

may be an important modulator of the inverse relation between sodium and calcium

reabsorption in the distal tubule (Jiang et al., 2007; Yang et al., 2010).

Future functional studies could be performed to analyse the effect of the WNK4 variant

protein on the regulation of ion channels such as NCC or TRPVs. It is also possible that
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the variant acts through differences in WNK4 expression levels of carriers of this vari-

ant. For this, cells lines generated both from carriers and control individuals should be

compared. In addition, luciferase reporter vectors (if possible using the endogenous

WNK4 promoter) with each allele of rs56116165 could also be constructed, and subse-

quently tested for expression levels in an appropriate cell line (e.g. HEK293). If a trend

for increased or decreased expression is observed this should be further pursued using

mRNA and microRNA chip expression arrays to investigate other possible differences

in gene expression/regulation.

Another idea would be to create genetically manipulated animal models for WNK4

alleles and study the physical (e.g. bone mineral density) and physiological conse-

quences, especially the ones related to ion channels regulated by WNK4.

In the wider field of complex disorders the strategies developed so far only cover ei-

ther common variants of small effect or rare variants of major effect. Consequently,

the systematic identification of rare variants with small effect is mostly still beyond

the power of current genetics. Nevertheless, a new era in human genetic research is

upon us. The systematical usage of Hapmap common variants reference panels and

of high-throughput genotyping systems, will soon be overtaken by next generation se-

quencing approaches of whole exome or even the entire genome, in increasingly larger

numbers of individuals and families. Next generation sequencing is a new increas-

ingly affordable technology which will lead to the creation of a comprehensive list of

potential susceptibility variants, providing hope for a truly personalised preventive

and curative medicine. Therefore, as we are dealing with a rare variant (rs56116165),

the strategy chosen might have been a lucky approach, and should definitely move

towards deep-sequencing approaches.

All in all, this work highlights the importance of the evaluation of WNK4 genetic poly-

morphisms in the general population and the need for a biological monitoring of the
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patients in order to better understand the aetiology of osteoporosis. Similarly, poly-

morphisms in the WNK1 gene have been described to cause small but measurable

changes in blood pressure in the general population (as mentioned in Chapter 1). Both

WNK1 and WNK4 were initially identified as the cause of a rare hypertensive genetic

disorder, PHAII, but in addition they also seem to contribute with rare gene variants to

the genetic predisposition to hypertension and osteoporosis in the general population.

Unravelling the genetic basis of complex disorders is not only a crucial step towards

finding answers to reduce these disease prevalences, but also to improve the respective

therapies, and consequently ameliorate the patients’ quality of life.
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