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Abstract 

Despite the extensive literature on the predictability of asset class returns and its 

economic significance, it is common for many asset managers to implement portfolio 

models built around active management within an asset class, while generally having 

passive allocations to each asset class based on the risk profile of the investor. We can 

exploit some of the predictability by using information on economic factors and 

momentum that explain broad asset class moves through a parametric portfolio 

approach introduced by Brandt, Santa-Clara and Valkanov (2009). I obtain significant 

improvements over fixed allocations and Markowitz optimal portfolios, even when 

applying significant restrictions. 

 

 

Key words:    Tactical    Asset    Allocation    Portfolio 

 

  



3 
 

1. Introduction and Literature Review 

Many fund managers and individual investors have faced the decision of how to 

allocate their wealth among various asset classes. In the case of individual investors 

setting up their own savings, most will be confronted by an asset manager that will 

recommend a fixed asset allocation among stocks, bonds and cash that will depend on 

their risk profile and investment horizon1. As for institutional investors, Anson (2004) 

describes how many institutional investors and pension funds perform strategic asset 

allocation2 at the asset class level, typically reviewing their allocation every 3 to 5 years, 

while following a more active approach for securities within those asset classes. This 

tendency to either define a fixed asset mix or strategically re-define the asset allocation 

mix over large intervals can be understandable, given the size of many institutional 

funds, large asset allocation shifts on a regular basis may be costly and hard to put in 

practice.  

Nevertheless, existing literature points out that almost all of the total return level of 

institutional funds is explained by the fund’s asset allocation policy, e.g. Blake, Lehman 

and Timmerman (1999) and Ibbotson and Kaplan (2000). Ibbotson and Kaplan (2000) 

find that on average the asset allocation policy decision accounts for 100% and 99% of 

mutual funds and pension funds respectively, while even the best funds that manage to 

beat their benchmarks (5th percentile) have 82% and 86% of their total return explained 

by their policy decision.  

                                                           
1 A good example is Fidelity’s website where in the first step of the portfolio construction, the investor is advised to 
choose an asset allocation mix and then proceed to with the fund selection. 
2 I define strategic and tactical asset allocation as in Dahluquist and Harvey (2001). While tactical allocation refers to 
changing asset allocation with a horizon of 1 to 3 months, strategic allocation refers to a more long term decision of 1 
year or longer. 
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It is important to note that this analysis alone does not mean that frequently shifting 

a fund’s asset allocation has the potential outcome of delivering higher returns, 

however, when combined with the fact that asset classes have different levels of risk 

premia which are time varying and to some extent predictable, might tilt a manager in 

favour of tactically managing their asset class exposure. In fact there is a wide range of 

literature that points out the varying risk premia on certain asset classes and their 

predictability. Fama and French (1989) describe how stock and bond risk premia are 

time varying and are related to the business cycle.  More importantly, they identify two 

variables that anticipate changes in the risk premium, the default spread and the term 

spread. These findings are consistent with many others that also document the 

predictable returns in financial assets: Ferson and Harvey (1991), Ferson and Harvey 

(1993), Aït-Sahalia and Brandt (2001) and Goyal and Welch (2002) while at the same 

time pointing out other variables with forecasting powers such as short term interest 

rates and dividend price ratios. More recently, Ferreira and Santa-Clara (2011) develop 

a model to forecast equity returns by first predicting the individual components of stock 

returns. Very interestingly, they assess the economic importance of their forecasts on 

equity returns using them to dynamically allocate between stocks and cash reporting a 

maximum gain in terms of Sharpe ratio of 73% versus using historical mean returns. 

Furthermore, Keim and Stambaugh (1986) also show how equity as an asset class 

displays momentum, that is, equity prices are predictable through a trending variable 

(the log of the ratio of the current price and the historical average).  Later, Faber (2007) 

and Moskowitz, Ooi and Pedersen (2012) show how they exploit can momentum across 

asset classes in order to obtain improved risk adjusted returns. 



5 
 

Despite the predictability to some extent of major asset class returns and the 

potential to benefit from this predictability to actively manage asset classes, many funds 

strategically define their asset allocation by performing minor adjustments at an 

infrequent basis. In the case of large pension and mutual funds this can be 

understandable for 2 reasons. First, it is important for some funds to have a portion of 

their assets allocated to low risk investments, for example bonds and cash, in order to 

meet short to medium term obligations such as guaranteeing income to pensioners as in 

the case of pension funds, however this problem can potentially be solved by only 

tactically managing a portion of the fund. The other problem is the trading costs and 

organizational problems that can arise from tactically managing asset classes. Imagine a 

large fund which has a 60% and 40% allocation to stocks and bonds respectively and 

wishes to change it the next month to 40% and 60%. All of a sudden teams managing 

the equity portfolios will have to liquidate a large portion of their positions, while those 

handling bond investments have 50% more assets to handle. The high trading costs that 

can arise from quickly liquidating and buying new securities, and the organizational 

problems associated with tactically managing asset class exposure, can be solved 

through the use of the wide range of available derivatives and futures contracts with 

broad indices as underlyers. Instead of shifting 20% of the fund’s assets, it is possible to 

take a short position in equity futures and a long one in bond futures in order for the 

portfolio to reach a net exposure of 40% and 60% in stocks and bonds as initially 

intended. The costs that arise from this alternative should be much lower due to the high 

liquidity of broad index futures3. Despite this kind of solution bringing regulatory 

                                                           
3
For example, the average daily volume for the S&P E-mini futures contract in 2011 was $134bn worth of contracts. 

Source: Bloomberg 
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challenges for some funds, it is nevertheless a possible solution that can be applied to at 

least a portion of a fund’s portfolio.  

With previous evidence that there are potential gains from attempting to time the 

market, I will proceed to develop a tactical asset allocation model based on the Brandt, 

Santa-Clara and Valkanov (2009) parametric portfolio policy approach. The next part of 

the paper will focus on the methods used to create a global tactical asset allocation 

model, followed by a discussion of the obtained results and ending with concluding 

remarks. I find that using this method significantly improves performance versus the 

benchmark portfolio as well as a Markowitz optimization approach. 

2. Methodology 

2.1. Data 

The asset choice in a global tactical asset allocation model should include an asset 

choice representative of the investment universe, while at the same time, these assets 

should be liquid given the tactical nature of the model. Given this, the focus will be on 

broad asset classes: US Equity, US Government Bonds, and 4 groups of commodities. 

To represent these 6 groups, I use a S&P 500 Index Futures Rolling Strategy, a US 

Government Bond Futures Rolling Strategy4 and the Goldman Sachs S&P Commodity 

Index for Precious Metals, Industrial Metals, Energy and Agricultural commodities 

respectively. I also use Fed Funds rate as the risk free rate, or the Cash asset. In this 

asset choice equity indices from other regions, such as Europe or Asia, are excluded due 

to their high correlation with US equity. Including highly correlated assets can at times 

can result in extreme weights being estimated in sample which can result in large 

                                                           
4
 Rolling futures strategies available on Bloomberg as FRSIUSE <Index> for US Equity and FRSIUSB 

<Index> for US Bonds.  
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drawdowns out of sample. In this case, it is arguable that a broader and more 

encompassing index like the MSCI World would be more appropriate; however, in this 

case, the S&P 500 Index is preferable since it is more easily tradable through index 

futures than the MSCI World.  The same issue is present in the choice of government 

bonds government bonds, where in this case, the same approach will be taken resulting 

in a focus on US government bonds.  

Furthermore, I use additional data as information variables in order to model the 

asset allocation decision over time. From the existing literature, the default spread and 

the term spread are generally revealed as good predictors of equity and bond returns, 

variances and covariances as found in Aït-Sahalia and Brandt (2001). Bjornson and 

Carter (1997) also document the importance of these variables in predicting commodity 

returns. Additionally, allocating to asset classes based on momentum is documented in 

Faber (2007) and Moskowitz et al. (2012) with impressive results. For this reason, I will 

also use the 6 month return on each asset as a momentum variable.  

For the term spread, I use the yield on 10 year rate on US government treasury notes 

minus the yield on 2 year notes. As for the default spread, I use the annual yields on 

Moody’s Baa rated long term corporate bonds minus the yield on 10 year US 

government treasuries. 

2.2. Model Choice and Basic Setup 

In order to exploit the possible gains from a global tactical asset allocation model, I 

use the parametric portfolio policy model developed by Brandt, Santa-Clara and 

Valkanov (2009). The basic idea behind this approach is to use information available on 

at time t such as the individual characteristics of each asset or broad market variables in 
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order to maximize our expected utility at time t+1. In this case, the investor problem is 

like in most tactical asset allocation models, to maximize a set of portfolio weights ��,� 

in order to maximize the investor’s expected utility conditional on portfolio’s return 

��,���, 

max
���,�����

�
	�[�(��,���)] 	= � �� ����,���,���	

�
�

	
 (1) 

= 	� �� ��� +���,�(��,��� − ��)	

�
�

	
 (2) 

The optimal portfolio weights are modelled as a function of each asset’s individual 

characteristics such as the asset’s return over the last 6 months, as well as broad market 

and macro-economic variables, such as changes in employment or the 12 month 

absolute change in the default spread level. The unconstrained portfolio problem can be 

written as in equation (2); note that in this case, by construction, portfolio weights will 

always add up to 1. Throughout most of the paper, weights for our 6 assets excluding 

cash will be modelled according to the following function:  

��,� = ����,�.���� ,���� ,���;�, ���
= �������+ �.��,� + ��.���� + ��.���� 

(3) 

where ��,� is the momentum variable, measured as 6 month return from t to t-6,  

���� is the default spread variable measured as the 12 month absolute change in the 

default spread level and ���� is the term spread variable measured as the 12 month 

absolute change in the term spread level. Parameters � and �� are defined in sample at 

time t in order to maximize the investor’s expected utility conditional on the portfolio 

return at t+1. In this model I re-estimate these parameters yearly using all available data 
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up to the current point in time. Finally, ������� defines the benchmark weight of each asset. 

I use an allocation of 47% to US Equity, 33% to US Bonds and 20% split evenly among 

the 4 commodity baskets5. Instead of directly estimating the weight for each asset that 

maximizes our objective function (or in other words using the optimal mean variance 

portfolio verified ex ante), weights are estimated as a function dependant on market and 

individual asset information allowing the model to trade based on significant market 

information.  

I choose this model over estimating expected returns, variances and covariances of 

all or some of the assets of the portfolio and then using a Markowitz (1952) or a Black 

and Litterman (1991) approach to optimize the portfolio. The reason for is clearly 

explained in Aït-Sahalia and Brandt (2001), who also decide to skip the estimation of 

the asset moments and directly use the predictor variables to determine the optimal 

weights. The reason for this is that despite the statistically significant predictability of 

the moments of asset returns, forecasts are still very noisy, with Aït-Sahalia and Brandt 

(2001) mentioning that an R2 of 10% is usually hailed in the literature on predicting 

returns. By skipping this step, we can reduce some of the noise leading up to the weight 

estimation process. For comparison, I provide the results from estimating the Markowitz 

mean variance tangency portfolio ex-ante using the historical means and covariance 

matrix, as well as the optimal portfolio as a mix between the risk free asset and the 

tangency portfolio, given a quadratic utility function.  

 

 

                                                           
5
 Based on the average asset allocation across pension funds worldwide, from the Towers Watson 2011 

Global Pension Asset Study. 
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2.3 Model Refinements 

2.3.1 Objective Function 

Defining the objective utility function is an important part of the setup in order to 

obtain reasonable out of sample estimates. In this type of setup, where we apply 

optimally defined parameters for a specific sample and then apply them outside of that 

sample, there is a high probability that these parameters will be over fitted to the sample 

period. This can result in parameters that yield extreme weights, extreme returns and/or 

an excessively active strategy, which can be disastrous when applied out of sample. 

There are several ways which can help mitigate this problem. In this case, the first step 

was to use a concave function, which incorporates the notion of a risk averse investor, 

that will penalize extreme returns. The function below is used as in Brandt et al. (2009):   

����� = �1 + �����
1 − �  

(4) 

where � is the level of risk aversion, with risk aversion increasing with �. Other options 

for this could be the use of a common measure used to measure risk adjusted 

performance such as the Sharpe ratio, however the function in equation (3) allows us to 

control the level of risk aversion, which helps to prevent the problem of having extreme 

and over fitted outputs. Also, to prevent the estimation of parameters that result in an 

excessively active model, we can incorporate transaction costs, where I assume a 0.2%  

fixed transaction cost ��,�, by subtracting them from the portfolio return, ��, in equation 

(4): 

�� = ���,�	���,��1 + ��,��−��,���	

�
�

. 
(5) 
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Brandt et al. (2009), assume a fixed cost of 0.5% as one of their option. Given that such 

a cost relates to individual securities, I assume a lower cost given the increased liquidity 

of the instruments traded. 

2.3.2 Truncating Variables 

In order to avoid extreme weights out of sample, I also make a minor adjustment to 

the ��,�, ���� and ���� variables. I truncate these variables to remain within two 

standard deviations of their in-sample mean, in order to prevent for example, the case 

where one of the assets has a large drop in its price resulting in very negative 

��,�variable for that asset that could translate into an extreme weight.  

3. Results and Discussion 

The results obtained are favourable to the parametric portfolio approach. I start with 

a base case where I run the unconstrained optimization problem from equation (2) net of 

transaction costs in order to reduce excessive trading that can result in extreme 

positions. I then proceed to remove them to perform this initial analysis. In Table 1, we 

can see that even in the worst case, tactically managing portfolio asset allocation more 

than doubles the Sharpe ratio versus the Benchmark portfolio.  

Besides risk adjusted performance, we can also witness the benefits of using this 

model versus a fixed weight approach when analysing the maximum drawdown6. Even 

in the scenario where we assume more risk, where the risk aversion coefficient is 

smaller, parametric portfolio policy (PPP) model manages to achieve a smaller 

                                                           
6
 Measured as the difference between the highest peak and the lowest trough after that. 
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drawdown than the benchmark portfolio. In fact, the PPP model is positively skewed 

whereas the benchmark has a negative skew and has “fatter” tails (see Appendix A).  

Table 1 – Base Case, Unconstrained Model, Net of Transaction Costs 

 Parametric Portfolio Policy Portfolio OOS  

 γ=10γ=10γ=10γ=10    γ=25γ=25γ=25γ=25 γ=40γ=40γ=40γ=40 
Benchmark 
Portfolio 

Annualized Return 14.2% 9.5% 8.3% 5.2% 

Annualized Standard 
Deviation 

15.6% 9.9% 9.3% 9.3% 

Sharpe Ratio 0.76 0.73 0.65 0.32 

Maximum Drawdown -27.9% -20.6% -18.9% -30.9% 

Annualized Alpha vs. 
Benchmark 

11.4%*** 5.2%** 3.7%** - 

Results for Out Of Sample (OOS) period range from January 2001 until December 2011. Parameters are 
estimated at the end of each year with all available information available up until that point. Results are
gross of transaction costs for all portfolios. 
*, **, *** - Significant at a 95%, 97.5% and 99% level respectively. 
 

In order to make the analysis more realistic, it is important to analyse the trading 

cost involved in pursuing an active strategy. Where in the case of the benchmark 

portfolio, we can ignore the costs of rebalancing the fixed portfolio back to the target 

weights, for the PPP model, we can expect trading costs to have an impact on 

performance (see Table 2). 

In fact, the impact of trading costs is most noticeable on the portfolio with the 

lowest risk aversion coefficient, which is significantly more active than its counterparts. 

The portfolio with risk aversion coefficient of 10, has trading costs that reach 1.2% 

annually while its counterparts lose 0.5% and 0.3% annually.  
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Table 2 – Unconstrained Model, Including Transaction Costs 

 Parametric Portfolio Policy Portfolio OOS  

 γ=10γ=10γ=10γ=10    γ=25γ=25γ=25γ=25 γ=40γ=40γ=40γ=40 
Benchmark 
Portfolio 

Annualized Return 13.0% 9.0% 8.0% 5.2% 

Annualized Standard 
Deviation 

15.6% 9.9% 9.4% 9.3% 

Sharpe Ratio 0.69 0.68 0.60 0.32 

Maximum Drawdown -29.8% -21.5% -19.6% -30.9% 

Annualized Alpha vs. 
Benchmark 

10.3%** 4.7%** 3.3%* - 

Results for OOS period range from January 2001 until December 2011. Parameters are estimated at the 
end of each year with all available information available up until that point. All portfolios are net of 0.2% 
transaction costs except for the benchmark portfolio.  
*, **, *** - Significant at a 95%, 97.5% and 99% level respectively. 

 

I also take into account the restrictions that some investors might face, namely in 

terms of borrowing and short selling restrictions. In order to do this, I perform the 

following transformation on the unconstrained weights (in order): 

��,�
� = ���0,��,�

�  (6) 

!"
# ��,�

∗ = ��,�
�							,���,�

� ≤ 1

��,�
∗ =

��,�
�

∑��,�
� 			 ,���,�

� > 1	 (7) 
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Table 3 – Constrained Model (Restricted Borrowing - B and Short Selling - SS) 

 Parametric Portfolio Policy Portfolio 
OOS 

 

 No SS, γ=25γ=25γ=25γ=25 No B &SS, γ=25γ=25γ=25γ=25 Benchmark Portfolio 

Annualized Return 8.2% 7.1% 5.2% 

Annualized Standard 
Deviation 

10.3% 8.7% 9.3% 

Sharpe Ratio 0.57 0.55 0.32 

Maximum Drawdown -22.1% -20.2% -30.9% 

Annualized Alpha vs. 
Benchmark 

3.3%* 2.4% - 

Results for OOS period range from January 2001 until December 2011. Parameters are estimated at the 
end of each year with all available information available up until that point. After running the 
unconstrained model, asset weights are restricted to being above 0% and net asset exposure is restricted 
to stay below 100%. 
*, **, *** - Significant at a 95%, 97.5% and 99% level respectively. 
 

In Table 3, we can see the results of imposing restrictions on the model. In the first 

case, “No SS”, only equation (6) is applied on the unrestricted weights, which results in 

no short selling any of the assets except for borrowing the risk free rate. In the next 

column, by applying equation (7), I also restrict borrowing the risk free rate, however, 

the investor may allocate to the risk free asset. Despite the two restrictions, results are 

still more favourable towards a more active approach. In both cases, there is a 

significant improvement in terms of risk adjusted returns of Sharpe ratio and alpha, as 

well as higher annualized returns and a lower maximum drawdown in both cases. In 

addition to these restrictions, it is also important to note that these 2 portfolios are both 

net of transaction costs (see appendix B for differences between the constrained and 

unconstrained models). 

Finally I compare the previous results against the more traditional approach of the 

Markowitz (1952) mean variance optimization approach (see Appendix C for details on 
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how this is done). From Table 4, we can quickly grasp that the PPP approach yields 

superior results to this one. 

 
Table 4 – Markowitz Portfolios 
 Markowitz Optimal Portfolios  

 λ=λ=λ=λ=1111    λ=5λ=5λ=5λ=5    λ=λ=λ=λ=10101010 
Tangency 
Portfolio 

Annualized Return 5.6% 8.5% 5.6% 4.2% 

Annualized Standard 
Deviation 

74.5% 14.9% 7.4% 11.6% 

Sharpe Ratio 0.04 0.41 0.45 0.16 

Maximum Drawdown -89.8% -22.4% -11.0% -28.5% 

Annualized Alpha vs. 
Benchmark 

35.6% 7.1% 3.6% 2.6% 

Results for OOS period range from January 2001 until December 2011. Tangency and Optimal portfolios 
are re-estimated every month using all previously available historical data since December 1991. Optimal 
Portfolios are a dynamic combination of the tangency portfolio and the risk free asset based on the risk 
aversion coefficient λ. 
*, **, *** - Significant at a 95%, 97.5% and 99% level respectively. 
 

Here I am simply using the historical distribution of returns as to determine our 

optimal asset mix, whereas in the PPP method, it is possible to take advantage of 

variables which have been documented to partially anticipate asset returns. The best 

unrestricted PPP portfolio outperforms the Sharpe ratio of the best Markowitz portfolio 

by 69% while the most restricted model still manages a respectable 22% increase in 

terms of Sharpe ratio. 

4. Conclusion 

The results I present, demonstrate the potential added value towards actively 

managing the asset allocation decision. While it improves practically all risk and return 

metrics versus a static benchmark portfolio, it also manages to outperform a constantly 
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updated mean variance optimized portfolio. Given the increasing availability of 

passively managed ETF’s, Index Futures and others, this type of strategy can be 

effectively be pursued by a wide range of investors. 

It is also interesting to consider the relationship between the results obtained here 

and Fama’s (1970) efficient market hypothesis. Some could consider that tactical asset 

allocation models contradict this paradigm; however there are other ways to look at it. It 

is accepted in the literature that investors require some form of predictable rate of return 

for bearing risks such as investing in the equity market, and that this rate of return is 

time varying and in part predictable. Black (2000) even points out how Fama and 

French (1989) acknowledge this. One way to look at this kind of tactical asset allocation 

model, is to think of it as a model that manages to capture time varying risk premia in 

different asset classes, by increasing and decreasing exposure to the asset classes with 

highest and lowest risk premia. In fact, this could potentially justify the choice of 

actively managing asset class exposure. If according to efficient market hypothesis, one 

cannot effectively select specific securities, such as individual stocks, with publicly 

available information, a dynamic asset allocation among passively managed broad 

based indices such as the S&P 500 could prove effective in enhancing returns for the 

investor. 
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Appendix A – Return Distributions of the PPP Model and the Benchmark 

 

Appendix B – PPP Constrained and Unconstrained Weights and Net Exposure 
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Appendix C – Markowitz Portfolio Simulation 

In order to perform this simulation, I use the same six assets and the risk free rate. 

The first step in this approach introduced by Markowitz (1952), is to calculate 

determine the tangency or efficient portfolio through, 

�� = Ω�.�(�)7 (8) 

                                                           
7 Ω = Sample covariance matrix; �(�)= vector of expected returns; ��= vector of efficient weights 
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and scale the weights so they add up to 1. We then have to choose between an optimal 

mix of this tangency portfolio and the risk free asset based on our risk preferences λλλλ.... 

The first order condition solves the problem of how much to allocate to the tangency 

portfolio, using the common quadratic utility is: 

�∗ = 	 �%��&− ��'(��  
(9) 

In the simulations above, I solve this problem every month using the historical moments 

of each asset. 

Appendix D – Parametric Portfolio Policy In Sample Results (Dec 1991 – Dec 

2000) 

Table 5 – Base Case, Unconstrained Model, Net of Transaction Costs, In-Sample 

 Parametric Portfolio Policy Portfolio OOS  

 γ=10γ=10γ=10γ=10    γ=25γ=25γ=25γ=25 γ=40γ=40γ=40γ=40 
Benchmark 
Portfolio 

Annualized Return 27.4% 16.7% 13.9% 11.4% 

Annualized Standard 
Deviation 

12.3% 7.6% 6.9% 7.4% 

Sharpe Ratio 1.81 1.51 1.26 0.84 

Maximum Drawdown -13.6% -6.5% -5.7% -8.0% 

Annualized Alpha vs. 
Benchmark 

14.5%*** 5.5%*** 3.2%*** - 

Results for the In Sample (OOS) period range from December 1991 until December 2000. Results are 
gross of transaction costs for all portfolios. 
*, **, *** - Significant at a 95%, 97.5% and 99% level respectively. 
 

Note: It is expectable for such impressive results in-sample since the parameters this 

case are estimated in order to maximize the objective function for this specific sample. 
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Nevertheless, it is important to estimate robust in-sample parameters so that they can be 

reliable out of sample. 


