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Parametric Portfolio Policies: An application for a Global
Tactical Asset Allocation Model

Abstract

Despite the extensive literature on the predictgbbf asset class returns and its
economic significance, it is common for many agsahagers to implement portfolio
models built around active management within aretasiass, while generally having
passive allocations to each asset class basedeamskhprofile of the investor. We can
exploit some of the predictability by using infortied on economic factors and
momentum that explain broad asset class moves ghra parametric portfolio
approach introduced by Brandt, Santa-Clara and araik (2009). | obtain significant
improvements over fixed allocations and Markowitatimal portfolios, even when

applying significant restrictions.
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1. Introduction and Literature Review

Many fund managers and individual investors hawedathe decision of how to
allocate their wealth among various asset cladsetfie case of individual investors
setting up their own savings, most will be confashtoy an asset manager that will
recommend a fixed asset allocation among stocksdand cash that will depend on
their risk profile and investment horizbrs for institutional investors, Anson (2004)
describes how many institutional investors and jeenfunds perform strategic asset
allocatiorf at the asset class level, typically reviewing tladibcation every 3 to 5 years,
while following a more active approach for secestiwithin those asset classes. This
tendency to either define a fixed asset mix ontatriaally re-define the asset allocation
mix over large intervals can be understandableergithe size of many institutional
funds, large asset allocation shifts on a regugamidomay be costly and hard to put in

practice.

Nevertheless, existing literature points out thatost all of the total return level of
institutional funds is explained by the fund’s dsa&ocation policy, e.g. Blake, Lehman
and Timmerman (1999) and Ibbotson and Kaplan (2000ptson and Kaplan (2000)
find that on average the asset allocation poligyigien accounts for 100% and 99% of
mutual funds and pension funds respectively, wénlen the best funds that manage to
beat their benchmarks'{%ercentile) have 82% and 86% of their total reexplained

by their policy decision.

1 A good example is Fidelity’s website where in fist step of the portfolio construction, the int@sis advised to
choose an asset allocation mix and then procewithicdhe fund selection.

2| define strategic and tactical asset allocatiinaDahluquist and Harvey (2001). While tactidédeation refers to
changing asset allocation with a horizon of 1 tadhths, strategic allocation refers to a more lemm decision of 1
year or longer.



It is important to note that this analysis alonesioot mean that frequently shifting
a fund’s asset allocation has the potential outcarhedelivering higher returns,
however, when combined with the fact that assetsels have different levels of risk
premia which are time varying and to some exteatligtable, might tilt a manager in
favour of tactically managing their asset classosxpe. In fact there is a wide range of
literature that points out the varying risk prentia certain asset classes and their
predictability. Fama and French (1989) describe Istock and bond risk premia are
time varying and are related to the business cy®ere importantly, they identify two
variables that anticipate changes in the risk pmemithe default spread and the term
spread. These findings are consistent with manyerstithat also document the
predictable returns in financial assets: Ferson ldadrey (1991), Ferson and Harvey
(1993), Ait-Sahalia and Brandt (2001) and Goyal Welch (2002) while at the same
time pointing out other variables with forecastipgwers such as short term interest
rates and dividend price ratios. More recentlyréiea and Santa-Clara (2011) develop
a model to forecast equity returns by first pradigthe individual components of stock
returns. Very interestingly, they assess the ecomamportance of their forecasts on
equity returns using them to dynamically allocatéween stocks and cash reporting a
maximum gain in terms of Sharpe ratio of 73% vergsing historical mean returns.
Furthermore, Keim and Stambaugh (1986) also show &quity as an asset class
displays momentum, that is, equity prices are ptatlle through a trending variable
(the log of the ratio of the current price and tingtorical average). Later, Faber (2007)
and Moskowitz, Ooi and Pedersen (2012) show how éxgloit can momentum across

asset classes in order to obtain improved risksaejureturns.



Despite the predictability to some extent of magmset class returns and the
potential to benefit from this predictability totaely manage asset classes, many funds
strategically define their asset allocation by periing minor adjustments at an
infrequent basis. In the case of large pension amdual funds this can be
understandable for 2 reasons. First, it is imparfansome funds to have a portion of
their assets allocated to low risk investments,efcmple bonds and cash, in order to
meet short to medium term obligations such as gieeing income to pensioners as in
the case of pension funds, however this problem patentially be solved by only
tactically managing a portion of the fund. The otpeoblem is the trading costs and
organizational problems that can arise from talfjicaanaging asset classes. Imagine a
large fund which has a 60% and 40% allocation ¢aks and bonds respectively and
wishes to change it the next month to 40% and 68V of a sudden teams managing
the equity portfolios will have to liquidate a largortion of their positions, while those
handling bond investments have 50% more assetandldr The high trading costs that
can arise from quickly liquidating and buying neecusrities, and the organizational
problems associated with tactically managing astmts exposure, can be solved
through the use of the wide range of availablevadities and futures contracts with
broad indices as underlyers. Instead of shiftingh2 the fund’s assets, it is possible to
take a short position in equity futures and a long in bond futures in order for the
portfolio to reach a net exposure of 40% and 60%totks and bonds as initially
intended. The costs that arise from this altereasivould be much lower due to the high

liquidity of broad index futures Despite this kind of solution bringing regulatory

*For example, the average daily volume for the S&Rif futures contract in 2011 was $134bn wortlcarftracts.
Source: Bloomberg



challenges for some funds, it is nevertheless aiplessolution that can be applied to at

least a portion of a fund’s portfolio.

With previous evidence that there are potentiahgidiom attempting to time the
market, | will proceed to develop a tactical asgditcation model based on the Brandt,
Santa-Clara and Valkanov (2009) parametric podfpblicy approach. The next part of
the paper will focus on the methods used to creaggobal tactical asset allocation
model, followed by a discussion of the obtainedultssand ending with concluding
remarks. | find that using this method significgntinproves performance versus the

benchmark portfolio as well as a Markowitz optintiaa approach.

2. Methodology

2.1.Data

The asset choice in a global tactical asset allmtahodel should include an asset
choice representative of the investment univerdelenat the same time, these assets
should be liquid given the tactical nature of thedal. Given this, the focus will be on
broad asset classes: US Equity, US Government Bamds4 groups of commodities.
To represent these 6 groups, | use a S&P 500 Ikdéxres Rolling Strategy, a US
Government Bond Futures Rolling Stratégnd the Goldman Sachs S&P Commodity
Index for Precious Metals, Industrial Metals, Enemnd Agricultural commodities
respectively. | also use Fed Funds rate as thefmegkrate, or the Cash asset. In this
asset choice equity indices from other regionsh fiscEurope or Asia, are excluded due
to their high correlation with US equity. Includimgghly correlated assets can at times

can result in extreme weights being estimated mpsa which can result in large

* Rolling futures strategies available on Bloombesg-RSIUSE <Index> for US Equity and FRSIUSB
<Index> for US Bonds.



drawdowns out of sample. In this case, it is artpahat a broader and more
encompassing index like the MSCI World would be enappropriate; however, in this
case, the S&P 500 Index is preferable since it aseneasily tradable through index
futures than the MSCI World. The same issue isgrein the choice of government
bonds government bonds, where in this case, the sg@proach will be taken resulting

in a focus on US government bonds.

Furthermore, | use additional data as informatianables in order to model the
asset allocation decision over time. From the @gsliterature, the default spread and
the term spread are generally revealed as goodcpyesiof equity and bond returns,
variances and covariances as found in Ait-Sahalch Brandt (2001). Bjornson and
Carter (1997) also document the importance of thes@bles in predicting commodity
returns. Additionally, allocating to asset clasbased on momentum is documented in
Faber (2007) and Moskowitz et al. (2012) with ingsige results. For this reason, | will

also use the 6 month return on each asset as amiiame&ariable.

For the term spread, | use the yield on 10 yearaatUS government treasury notes
minus the yield on 2 year notes. As for the defapliead, | use the annual yields on
Moody’'s Baa rated long term corporate bonds mirus yield on 10 year US

government treasuries.

2.2.Model Choice and Basic Setup

In order to exploit the possible gains from a gldbatical asset allocation model, |
use the parametric portfolio policy model develogeg Brandt, Santa-Clara and
Valkanov (2009). The basic idea behind this apgroado use information available on

at timet such as the individual characteristics of eachtasseroad market variables in



order tomaximize our expected utility at time 1. In this case, the investor problem is
like in most tactical asset allocation models, @ximize a set of portfolio weights;

in order to maximize the investor’s expected utiltonditional on portfolio’s return

Tpt+1s

max E[u(rpe+1)] = E

{W"tl 1

<Z Wl thi t+1)] (1)
N

Efu <Tf + Z Wit (Tier1 — Tf))] @)
i=1

The optimal portfolio weights are modelled as action of each asset’s individual

characteristics such as the asset’s return ovdagié months, as well as broad market
and macro-economic variables, such as changes plogment or the 12 month
absolute change in the default spread level. Tleenstrained portfolio problem can be
written as in equation (2); note that in this cdseconstruction, portfolio weights will
always add up to 1. Throughout most of the papeighis for our 6 assets excluding

cash will be modelled according to the followingétion:

w;; = f(MOM; . DEF,, TERM;, wy;; b, ;) 3
= Wy, + b. MOM; , + c;. DEF, + d;. TERM,
whereMOM; . is the momentum variable, measured as 6 monthnrétam t to t-6,
DEF; is the default spread variable measured as thendrith absolute change in the
default spread level artERM; is the term spread variable measured as the 1Zhmon
absolute change in the term spread level. Parasteterdc; are defined in sample at
timet in order to maximize the investor’'s expected wytitonditional on the portfolio

return att+1. In this model | re-estimate these parameterdyeaing all available data



up to the current point in time. Finally,, defines the benchmark weight of each asset.
| use an allocation of 47% to US Equity, 33% to Bhds and 20% split evenly among
the 4 commodity basketsinstead of directly estimating the weight for leasset that
maximizes our objective function (or in other wontlsing the optimal mean variance
portfolio verified ex ante), weights are estimassda function dependant on market and
individual asset information allowing the modelttade based on significant market

information.

I choose this model over estimating expected retuariances and covariances of
all or some of the assets of the portfolio and theing a Markowitz (1952) or a Black
and Litterman (1991) approach to optimize the ptdf The reason for is clearly
explained in Ait-Sahalia and Brandt (2001), whaalgcide to skip the estimation of
the asset moments and directly use the predictoablas to determine the optimal
weights. The reason for this is that despite tlh#issically significant predictability of
the moments of asset returns, forecasts are styl noisy, with Ait-Sahalia and Brandt
(2001) mentioning that an?Rf 10% is usually hailed in the literature on petidg
returns. By skipping this step, we can reduce sohtke noise leading up to the weight
estimation process. For comparison, | provide #sellts from estimating the Markowitz
mean variance tangency portfolio ex-ante usinghiséorical means and covariance
matrix, as well as the optimal portfolio as a metween the risk free asset and the

tangency portfolio, given a quadratic utility furet.

> Based on the average asset allocation across pesids worldwide, from the Towers Watson 2011
Global Pension Asset Study



2.3Model Refinements

2.3.1 Objective Function

Defining the objective utility function is an imgant part of the setup in order to
obtain reasonable out of sample estimates. In tifps of setup, where we apply
optimally defined parameters for a specific sangsid then apply them outside of that
sample, there is a high probability that these patars will be over fitted to the sample
period. This can result in parameters that yielolegwe weights, extreme returns and/or

an excessively active strategy, which can be disastwhen applied out of sample.

There are several ways which can help mitigategroblem. In this case, the first step
was to use a concave function, which incorpordiesnbtion of a risk averse investor,

that will penalize extreme returns. The functiofobeis used as in Brandt et al. (2009):

iy @
() =L

wherey is the level of risk aversion, with risk aversioreasing withy. Other options
for this could be the use of a common measure ueetheasure risk adjusted
performance such as the Sharpe ratio, howevewutiaioén in equation (3) allows us to
control the level of risk aversion, which helpstevent the problem of having extreme
and over fitted outputs. Also, to prevent the eation of parameters that result in an
excessively active model, we can incorporate tretisa costs, where | assume a 0.2%

fixed transaction cost; ., by subtracting them from the portfolio returp, in equation

(4):

A (5)
TC = Z Si,t |Wl,t(1 + ri’t) - Wi,t—l .

i=1
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Brandt et al. (2009), assume a fixed cost of 0.5%ree of their option. Given that such
a cost relates to individual securities, | assurt@er cost given the increased liquidity

of the instruments traded.
2.3.2 Truncating Variables

In order to avoid extreme weights out of samplalsb make a minor adjustment to
theMOM; ., DEF, andTERM, variables. | truncate these variables to remathiwitwo
standard deviations of their in-sample mean, ireotd prevent for example, the case
where one of the assets has a large drop in it presulting in very negative

MOM,; .variable for that asset that could translate imexreme weight.
3. Results and Discussion

The results obtained are favourable to the paraen@drtfolio approach. | start with
a base case where | run the unconstrained optimrizptoblem from equation (2) net of
transaction costs in order to reduce excessiveingathat can result in extreme
positions. | then proceed to remove them to perfdmsinitial analysis. In Table 1, we
can see that even in the worst case, tacticallyagiag portfolio asset allocation more

than doubles the Sharpe ratio versus the Benchpmatfolio.

Besides risk adjusted performance, we can alsoegstrihe benefits of using this
model versus a fixed weight approach when analygiagnaximum drawdown Even
in the scenario where we assume more risk, whegeridk aversion coefficient is

smaller, parametric portfolio policy (PPP) model mages to achieve a smaller

® Measured as the difference between the highestamekhe lowest trough after that.
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drawdown than the benchmark portfolio. In fact, BiéP model is positively skewed

whereas the benchmark has a negative skew anddites™tails (see Appendix A).

Table 1 — Base Case, Unconstrained Model, Net of dmsaction Costs

Parametric Portfolio Policy Portfolio OOS

Benchmark

y=10 ¥=25 y=40 Portfolio
Annualized Return 14.2% 9.5% 8.3% 5.2%
Annualized Standard ¢ 5o, 9.9% 9.3% 9.3%
Deviation
Sharpe Ratio 0.76 0.73 0.65 0.32
Maximum Drawdown -27.9% -20.6% -18.9% -30.9%
Annualized Alpha vs. 11 A04%+* 5 20k 3 704 i
Benchmark

Results for Out Of Sample (OO$griod range from January 2001 until December 28htameters a
estimated at the end of each year with all avaslatiormation available up until that point. Resuaite
gross of transaction costs for all portfolios.

* xx kkk_ Significant at a 95%, 97.5% and 99%\el respectively.

In order to make the analysis more realistic, iimgortant to analyse the trading
cost involved in pursuing an active strategy. Wherghe case of the benchmark
portfolio, we can ignore the costs of rebalancimg tixed portfolio back to the target
weights, for the PPP model, we can expect tradiogiscto have an impact on

performance (see Table 2).

In fact, the impact of trading costs is most natlde on the portfolio with the
lowest risk aversion coefficient, which is sign#itly more active than its counterparts.
The portfolio with risk aversion coefficient of 18as trading costs that reach 1.2%

annually while its counterparts lose 0.5% and Oz3ftually.

12



Table 2 — Unconstrained Model, Including Transactio Costs

Parametric Portfolio Policy Portfolio OOS

Benchmark

y=10 ¥=25 y=40 Portfolio
Annualized Return 13.0% 9.0% 8.0% 5.2%
Annualized Standard 45 g, 9.9% 9.4% 9.3%
Deviation
Sharpe Ratio 0.69 0.68 0.60 0.32
Maximum Drawdown -29.8% -21.5% -19.6% -30.9%
Annualized Alpha vs. 10,39+ 4.7 3,304 i
Benchmark

Results for OOS period range from January 2001 Dettember 2011. Parameters are estimated
end of each year with all available informationitalzle up until that point. All portfolios are nef 0.2%
transaction costs except for the benchmark pootfoli

* xx *xk - Significant at a 95%, 97.5% and 99%:\el respectively.

| also take into account the restrictions that samvestors might face, namely in
terms of borrowing and short selling restrictiotrs.order to do this, | perform the

following transformation on the unconstrained wesgin order):

Wi,t+ = Max{o, Wi'tu} (6)

iW L Wi ZW faq (7)
Lt = ) Lt
l wiet l
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Table 3 — Constrained Model (Restricted Borrowing B and Short Selling - SS)

Parametric Portfolio Policy Portfolio
00S

No SSy=25 No B &SS,y=25 Benchmark Portfolio

Annualized Return 8.2% 7.1% 5.2%
Ann_ua_llzed Standard 10.3% 8.7% 9.3%
Deviation

Sharpe Ratio 0.57 0.55 0.32
Maximum Drawdown -22.1% -20.2% -30.9%
Annualized Alpha vs. 3 304+ 2 4% i
Benchmark

Results for OOS period range from January 2001 Dettember 2011. Parameters are estimated
end of each year with all available information ifate up until that point.After running th
unconstrained model, asset weights are restrictdmbingabove 0% and net asset exposure is rest
to stay below 100%.

* xRk Significant at a 95%, 97.5% and 99%\el respectively.

In Table 3, we can see the results of imposingiotisins on the model. In the first
case, “No SS”, only equation (6) is applied onuheestricted weights, which results in
no short selling any of the assets except for wang the risk free rate. In the next
column, by applying equation (7), | also restriotfowing the risk free rate, however,
the investor may allocate to the risk free assesdile the two restrictions, results are
still more favourable towards a more active appnoan both cases, there is a
significant improvement in terms of risk adjustetdurns of Sharpe ratio and alpha, as
well as higher annualized returns and a lower marimdrawdown in both cases. In
addition to these restrictions, it is also impottEnnote that these 2 portfolios are both
net of transaction costs (see appendix B for diffiees between the constrained and

unconstrained models).

Finally I compare the previous results againstrttuge traditional approach of the

Markowitz (1952) mean variance optimization apploéee Appendix C for details on

14



how this is done). From Table 4, we can quicklysgréhat the PPP approach yields

superior results to this one.

Table 4 — Markowitz Portfolios
Markowitz Optimal Portfolios

_ _ _ Tangency

A=1 A=5 A=10 Portfolio
Annualized Return 5.6% 8.5% 5.6% 4.2%
Annualized Standard o, 14.9% 7.4% 11.6%
Deviation
Sharpe Ratio 0.04 0.41 0.45 0.16
Maximum Drawdown -89.8% -22.4% -11.0% -28.5%
Annualized Alpha vs. 35.6% 7 1% 3.6% 2 6%
Benchmark

Results for OOS period range from January 2001 Dettember 2011Tangency and Optimal portfoli
are re-estimated every month using all previoushilable historical data since December 199ftima
Portfolios are a dynamic combination of the tangepartfolio and the risk free asset based on tbk
aversion coefficienk.

* xRk Significant at a 95%, 97.5% and 99%\el respectively.

Here | am simply using the historical distributioh returns as to determine our
optimal asset mix, whereas in the PPP method, piossible to take advantage of
variables which have been documented to partiallycipate asset returns. The best
unrestricted PPP portfolio outperforms the Shaghe of the best Markowitz portfolio
by 69% while the most restricted model still mareagerespectable 22% increase in

terms of Sharpe ratio.

4. Conclusion

The results | present, demonstrate the potentideddvalue towards actively
managing the asset allocation decision. While firiones practically all risk and return

metrics versus a static benchmark portfolio, ibatsanages to outperform a constantly
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updated mean variance optimized portfolio. Giver fihcreasing availability of
passively managed ETF’s, Index Futures and othéirs, type of strategy can be

effectively be pursued by a wide range of investors

It is also interesting to consider the relationsbgiween the results obtained here
and Fama’s (1970) efficient market hypothesis. Soméd consider that tactical asset
allocation models contradict this paradigm; howetiere are other ways to look at it. It
is accepted in the literature that investors regaome form of predictable rate of return
for bearing risks such as investing in the equirkat, and that this rate of return is
time varying and in part predictable. Black (20@8)¢n points out how Fama and
French (1989) acknowledge this. One way to loakiatkind of tactical asset allocation
model, is to think of it as a model that managesdpture time varying risk premia in
different asset classes, by increasing and deaga&siposure to the asset classes with
highest and lowest risk premia. In fact, this coplatentially justify the choice of
actively managing asset class exposure. If accgrairefficient market hypothesis, one
cannot effectively select specific securities, sashindividual stocks, with publicly
available information, a dynamic asset allocationoag passively managed broad
based indices such as the S&P 500 could provete#em enhancing returns for the

investor.
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Appendix A — Return Distributions of the PPP Modeland the Benchmark

e PPP Model, Gamma=25 Histogram
== Benchmark
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Appendix B — PPP Constrained and Unconstrained Welgs and Net Exposure

PPP Model Net Exposure

e | nconstrained, Gamma = 25

== e [ylly Constrained, Gamma = 25
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Unconstrained Weights,y=25

100%
80% —US Equity
60% ——UsS Bonds
40% ——Precious
20% = |ndustrial
0% = Agric
-20% —Energy
-40%
-60%
Dez 00 Dez 02 Dez 04 Dez 06 Dez 08 Dez 10
Fully Constrained Weights, g=25
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Appendix C — Markowitz Portfolio Simulation

In order to perform this simulation, | use the saixeassets and the risk free rate.
The first step in this approach introduced by Makp (1952), is to calculate

determine the tangency or efficient portfolio thybu

wp =Q LE(r) (8)

" 0 = Sample covariance matrik(r)= vector of expected returng,= vector of efficient weights
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and scale the weights so they add up to 1. Wellhgr to choose between an optimal
mix of this tangency portfolio and the risk freesetsbased on our risk preferendes
The first order condition solves the problem of howich to allocate to the tangency
portfolio, using the common quadratic utility is:

., E@p)—r1f 9)
wt= —FP2

2
Aap

In the simulations above, | solve this problem gwaonth using the historical moments

of each asset.

Appendix D — Parametric Portfolio Policy In Sample Results (Dec 1991 — Dec

2000)

Table 5 — Base Case, Unconstrained Model, Net of dmsaction Costs, In-Sample

Parametric Portfolio Policy Portfolio OOS

Benchmark

y=10 ¥=25 y=40 Portfolio
Annualized Return 27.4% 16.7% 13.9% 11.4%
Annualized Standard 4, 4, 7.6% 6.9% 7.4%
Deviation
Sharpe Ratio 1.81 1.51 1.26 0.84
Maximum Drawdown -13.6% -6.5% -5.7% -8.0%
Annualized Alpha vs. 14 504+ 5 B0/ 3. D0 i
Benchmark

Results for the In Sample (OOS) period range froacddnber 1991 until December 20@Results at
gross of transaction costs for all portfolios.
* *x *xk - Significant at a 95%, 97.5% and 99%:\el respectively.

Note: It is expectable for such impressive results in{dansince the parameters this

case are estimated in order to maximize the oldtinction for this specific sample.
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Nevertheless, it is important to estimate robustample parameters so that they can be

reliable out of sample.
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