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CHAPTER I 

 
Biocatalysis  
from ancient to hi-tech applications 
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Through the history of mankind microorganisms have played a tremendous role in our 

evolution, influencing our social behavior and economic development. Long before we 

knew about their existence we used them for food and beverages production creating an 

evolutionary symbiosis that allowed the evolution of both species. Mesopotamia is 

commonly referred to as the cradle of applied biocatalysis where we can find several 

ancient civilizations that developed different fermentation techniques to produce new 

products. For instance Sumerians and Babylonians practiced beer brewing even before 

6000 BC, we find references to wine production in the book of the Genesis, and 

Egyptians used yeast for baking bread1,2. 

 

Nevertheless the knowledge about the production of chemical products such as alcohols 

and organic acids obtained by fermentation is quite recent, and dates from the second 

half of the 19th century. The work of Louis Pasteur was a great contribution to the 

understanding of biotransformations. For instance Pasteur was the first to demonstrate 

the microbial resolution of a racemate, where a microorganism in the presence of a 

racemic mixture consumes one of the enantiomers preferentially and can even leave the 

other one untouched. To accomplish this, Pasteur performed the fermentation of an 

ammonium salt of racemic tartaric acid, mediated by Penicillum glaucum, and he 

obtained (-)-tartaric acid. Later Pasteur also confirmed Bacterium xylinum as the agent 

involved in vinegar production (figure 1.1). His scientific curiosity led him to find out if 

this microorganism could be involved in other transformations, and in fact he 

demonstrated that the oxidations of propanol to propionic acid and mannitol to fructose 

could also be achieved with this particular microorganism. These works of Pasteur are 

remarkable: in the 19th century he launched the guidelines of modern biocatalysis. The 

approaches that he followed are the same that are used today when new microorganisms 

are isolated: let us find out what they are capable of doing for us. The concept is the 

same, the only difference being that we have better tools to put it into practice 
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Figure 1.1 – The first microbial resolution of a racemate by Louis Pasteur.  

 

The 19th century was quite profitable for chemistry and biology, with discoveries that 

launched the foundation of biochemistry and, later, biotechnology. For instance 

Kirchoff in 1814 found that a glutinous component of wheat could convert starch to 

sugar. And Payen and Persoz focused their attention on the action of extracts of 

germinating barley in the hydrolysis of starch to sugars. These works were very 

important because they were carried out in a very detailed way; in fact their authors 

postulated some of the basic principles of enzyme action. For instance they 

demonstrated that just with small amounts of the extracts they were able to liquefy large 

amounts of starch. They also showed that the extracts were thermolabile and that the 

active substance could be precipitated form an aqueous solution just by adding an 

alcohol, and hence be concentrated and purified. Payen and Persoz called this active 

substance diastase1,2.  Today we know that these scientists observed the action of a 

mixture of amylases, which is still being used in several industrial biotransformations. 

 

The pioneer on enzyme production was the Danish scientist Christian Hansen who in 

1874 started the first company to commercialize enzyme preparations (Christian 

Hansen’s Laboratory), namely rennet for cheese production. In 1883 this Danish 

botanist revolutionized beer-making by successfully developing new ways to cultivate 

yeast, and by refusing to patent his methodology, making it instead freely available to 

other brewers. He was one of the first to identify different strains of the yeast 

Saccaromyces cerevisae, an over-yeast (floating on the surface of the fermenting beer), 

and S. carlsbergensis, an under-yeast (lying at the bottom of the liquid)1,2.  
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The works of Emil Fisher are also an important contribution to this new area. In 1894 

Emil Fisher observed in his studies that an enzyme (emulsin) catalyzed the hydrolysis of 

β-methyl-D-glucoside, while another enzyme (maltase) was active towards α-methyl-D-

glucoside. These important results led Fisher to postulate his famous “lock-and key” 

theory that describes the enzyme specificity principle. As Fisher said, the enzyme and 

the glucoside must fit each other like a lock and a key (figure 1.3), in order to effect a 

chemical reaction on each other. Without any information in addition to that derived 

from his experiments, Fisher was convinced that these so-called enzymes were if fact 

proteins1,2. Today we know that his theory was correct and it is quite easy for us to 

understand this postulate because we can visualize the enzyme structure and understand 

the several steps that substrates and enzyme undergo during the catalytic process. But in 

l894 Fisher’s findings were remarkable. Many consider Fischer to be the most brilliant 

chemist who ever lived, due to his numerous contributions to science, especially 

chemistry and biochemistry. Many chemical reactions and concepts are named after him 

and in 1902 he was awarded the Nobel Prize in Chemistry.3. 

  

 

 

 

 

 

 

 

 

 

 

Figure 1.2 – Lock-and-key analogy by Emil Fisher. 

 

These results inspired several other scientists that took Fisher’s theories to the next level. 

One of these works was led by Edward Büchner who in 1898 caused a breakthrough in 

fermentation and enzymology by showing that the alcoholic fermentation did not 

required the presence of “such complex apparatus as is the yeast cell”. The agent 

responsible for this transformation was definitely a protein entity which Büchner called 

“Zymase”. Büchner brought to light a new biochemical paradigm that stated that 

Key = Substrate Lock = Enzyme 

Correct match:  
the enzyme reacts with 

the substrate 

No match:  

No reaction  
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enzyme catalysis was a chemical process that did not need a living cell to take place. 

This development settled the foundation for enzyme processing. On that same year 

Croft-Hill performed the first enzymatic synthesis of isomaltose.1,2. 

 

At the beginning of the 20th century biocatalysis was giving the first steps towards 

industrial applications. The major applications of enzymes at this time were in the chill-

proofing of beer, the addition of malt extract and in dough making. This took place 

before it was known that enzymes were proteins, a fact that was established in 1926 

only, when Summer was able to crystallize several enzymes like urease and trypsin. 

Biocatalysis was finally a consolidated area of research1,2.  

 

The discovery of the double helix by James Watson and Francis Crick in 1953, which 

led to the identification and elucidation of the role of DNA and RNA in heredity, was 

one of the great scientific milestones of the last century. This discovery had profound 

impact on several different areas and definitely transformed the way that we understand 

life and evolution. It led to the synthesis of recombinant DNA and became the basis for 

one of the most profiting technologies nowadays: genetic engineering. Such 

developments quickly made the DNA technology a tool for industrial microbial 

transformations1,2,4. One of the first examples of application of this technology was 

given by Ensley and co-workers who reported the construction of a strain of E.coli that 

excreted indigo, one of the oldest known dyes 1,2,5. These scientists discovered that the 

entire metabolic pathway for the conversion of naphthalene into salicylic acid was 

coded by a set of genes of Pseudomonas putida. Their results were beyond expectation 

since they found that a subset of these genes were also responsible for the production of 

indigo. Moreover they showed that indigo formation was a property of a dioxygenase 

enzyme system that synthesizes cis-dihydrodiols from aromatic hydrocarbons. They 

were able to clone these genes in a more “user friendly” microorganism  - E.coli -  and 

presented a novel way to produce indigo.1,2.   
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Figure 1.3 - Comparison between chemical and biological routes to synthesize indigo.  

 

In the early 80s, Aleksey Zaks and Alexander Klibanov broke the scientific dogma that 

enzymes could only work in aqueous media6,7,8. The two scientists demonstrated that 

enzymes could exhibit activity in dry organic solvents. These results were remarkable in 

that they opened the door to novel applications of biocatalysts. The curiosity of this 

discovery was that in the early 30s Aleksander Sym, a Polish scientist, had shown this 

possibility, but nobody paid much attention. Today the reason for this seems easy to 

understand: no applications were envisaged for his discovery, and so his vision had little 

consequence. For instance the pharmaceutical industry was giving the first steps and 

almost all the drugs that were commercialized came from natural sources. What we can 

say is that Sym’s discovery, like many others, was ahead of its time.  

  

But why do enzymes work in nonaqueous media? 6,9,10 Today the answer is simple: they 

work in such media because when they are placed there they can retain their hydration 

sphere, the water that is molecularly connected to the protein. This water, which is often 

called “essential water”, acts as a molecular lubricant of the protein structure. In its 

absence, no enzymatic reaction can take place. The next figure (figure 1.4) helps to 

understand this effect.  
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Figure 1.4 – The role of essential water as molecular lubricant of the enzyme structure.  

 

The importance of this discovery derived mostly from the new applications that 

enzymes could have in the absence of water. For instance in aqueous media enzymes 

like esterases, lipases and proteases, catalyze the hydrolysis of esters to the 

corresponding acids or alcohols74,12. However in anhydrous solvents these processes are 

not thermodynamically favorable. Therefore if we replace the nucleophilic agent with 

an organic compound such as an amine, an alcohol or a thiol, the process leads to an 

amynolysis, transesterification or thiotransesterification, respectively. These synthetic 

processes, which are suppressed in water, are the opposite reactions to hydrolysis12.  

 

By changing the nature of the solvent it became possible to catalyze many organic 

syntheses with enzymes, and use as substrates different organic molecules whose 

utilization was formerly restricted because of their low solubility in water. Moreover 

enzymes in organic media also show different properties compared to aqueous systems6-

11. Nevertheless the property that most interested researchers and especially industry 

was the high enantioselectivity that enzymes exhibit in this type of media13,14,17. Indeed 

it is possible to enhance enzyme enantioselectivity simply by changing the solvent 

where the reaction is performed. This property will be described in a more detailed way 

in Chapter II.  

 

The use of enzymes in organic synthesis has become one of the routes towards 

“greener” chemistry since enzymes are able to catalyze reactions in very mild 

conditions. Also with growing environmental concerns, industry is being forced to 

change the way it conducts industrial processes and limit the consumption of organic 

Hydrated enzyme  
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solvents. In addition to reactions in a solvent-free medium, it was also demonstrated that 

enzymes were able to catalyze reactions in alternative solvents such as supercritical 

fluids15 or ionic liquids16. This way enzymes have reinforced their role as an important 

tool in the emerging green chemistry technology. 

 

Today our challenges are extending the range of enzymes suitable for application and 

searching for new solutions for synthesis, especially of chiral compounds. The 

traditional methods for identifying new enzymes suitable for these applications are 

based on the screening from strain collections by enrichment, or from soil samples17-19. 

We can find in the literature several remarkable examples of these approaches17,6. But 

these techniques are becoming obsolete towards our need to obtain new and better 

solutions20, due to the fact that with this methodology, only a tiny fraction of the 

biodiversity that is present can be accessed. For instance the number of culturable 

microorganisms from a sample is estimated at merely 0.001-1 %, depending of course 

on their origin, which means that 99 % of the biodiversity escapes our efforts to identify 

new biocatalysts.  

 

In order to solve these limitations, new strategies have been put forward to include the 

excess on non-culturable biodiversity in biocatalysis19-23. One of these new strategies is 

the metagenome approach, which basically consists in the direct extraction of the 

DNA from the non-cultivated microbial consortia. This DNA is then cloned and 

expressed and the distinct enzymatic activities are identified by suitable assay methods 

(figure 1.5), a simple concept whose major advantage is the large number of 

biocatalysts that can be found. On the other hand phylogenetic analysis revealed that 

new subclasses of enzymes can be identified, which show very broad evolutionary 

diversity and thus the chance of identifying biocatalysts with unique properties is 

substantially increased. 
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Figure 1.5 – Schematic representation of a metagenome approach (adapted from reference 19). 

 

 

The most remarkable example of the metagenome approach was the discovery of more 

than 130 nitrilases from more than 600 biotope-specific environmental DNA 

libraries22,23. But more impressive even was the diversity of catalytic possibilities 

generated by this approach. For instance the application of these novel nitrilases 

revealed that 27 enzymes afforded mandelic acid in 90% ee in a dynamic kinetic 

resolution, and one nitrilase afforded (R)-mandelic acid in 86% yield and 98% ee. Also, 

aryllactic acid derivatives were accepted with high conversion and selectivity. The best 

enzyme gave a 98% yield and 95% ee for the (R)-product, and 22 enzymes gave the 

opposite enantiomer with 90-98% ee.  

Activity based screenning 

Aplication  A Aplication  B 
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Before these studies, there were available 20 nitrilases, obtained by classical isolation 

approaches. The metagenomic approach changed that situation dramatically, proving 

that today it is one of the best approaches to look for new biocatalysts and new catalytic 

solutions in nature. These studies were taken up by Diversa, the largest and more 

prominent specialist biotech company for the commercialization of metagenome 

technologies. Diversa has partnered with other companies for the discovery and 

development of enzymes, among them DSM, Syngenta, BASF and Genencor 

International. The German company BRAIN has adopted a similar strategy and is using 

metagenome technology to collaborate with the German manufacturer Henkel in the 

screening of novel glycosyl hydrolases for use in laundry applications19.  

 

These examples reflect the extreme importance of this technology in the development of 

new industrial solutions. In addition to the successful cases presented before, it is 

expected that this technology will be improved since there are still some limitations and 

difficulties related the expression and screening processes that have to be overhauled. 

 

To make the manipulation easier, all the metagenomic libraries described here were 

constructed in E.coli. However the successl of this approach is related with the class of 

enzyme that is screened for. For instance a soil sample gave 98 positive hits for 

lipase/esterase activity but when a different enzymatic activity was screened the number 

of positive hits considerably decreased20,21. This might be due to the difficulties in 

expressing specific genes in E.coli, and of course with their scarcity in the metagenome 

pool or even in some cases to the combination of both. To overcome these limitations 

several approaches have been tried, for instance expressing the metagenome in different 

hosts, like Bacillus subtillis, Streptomyces spp. Pseudomonas spp. or even in eukaryotic 

systems. Nevertheless this option is also limited by the low throughput that is associated 

with alternative cloning hosts and serves mainly as an option for large inserts (>30 

Kb)19-21. A different strategy based on the stimulation of the metagenomic pool towards 

the expression of a desired activity is one way to overcome the difficulties. In this case 

the abundance of the target genes in the metagenomic DNA pool is increased through 

microbial enrichment, using low concentrations of externally added nutrients prior to 

DNA extraction. This strategy has been pursued by the Icelandic biotech company 

Prokaria24.  
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Another interesting approach that have been presented as an alternative to host-cell 

expression systems is sequence based screening20. This strategy is not dependent on 

the expression of the cloned genes in heterologous hosts, but rather on the conserved 

DNA sequences of target genes. In this case hybridization or PCR are performed on the 

deduced DNA consensus. For instance if we have a certain type of enzyme activity that 

we want to screen in a DNA pool, what we must to do is compare the sequences of the 

known enzymes that can exhibit that type of activity and obtain a consensual sequence 

between them. With this sequence we perform hybridization with the DNA sequences in 

the DNA pool and the ones that hybridize have a high probability to code for the desired 

activity. With this technique several novel enzymes from biotechnologically relevant 

enzyme classes were identified, such as xylases and polyketide synthases19,25. However 

this approach has some limitations, namely related with the availability of the 

consensual sequences that are fundamental to apply this technique. In addition, the 

technique cannot be applied to all biocatalysts, multimeric enzymes being outside its 

range of application.25.  

 

Another effort to improve the frequency of screening hits was developed by Wanatabe26 

and their colleagues, and consists in substrate induced gene expression screening 

(SIGEX). This technique is based of the fact that catabolic genes are generally induced 

by substrates or metabolites of catabolic enzymes, which means that their expression is 

controlled by regulatory elements located proximately in many cases. In this strategy 

SIGEX screens the clones harboring the desired catabolic genes that are expressed in 

the presence of certain substrates but are not expressed in their absence. This kind of 

selection is possible because of the way the expression vector is constructed. In this case 

an operon-trap vector (p19GFP) is used, in which the cloning site divides the lac 

promoter and the gfp structural gene. The genomic libraries are constructed on this 

vector and the second step is to remove the self-ligated clones and the ones that express 

gfp constitutively. These false positives are removed by IPTG induction in the absence 

of substrates. The expression of catabolic genes in cloned metagenomic DNA is 

determined by gfp in the presence of the substrate and the positive clones are separated 

on agar plates and characterized. The last step uses fluorescence activated cell sorting 

(FACS), which is a very efficient technique to separate the gfp expression cells, i.e. the 

clones with the desired catabolic genes (figure 1.6)21,26. 
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Figure 1.6 – Schematic diagram of the SIGEX process (adapted from reference 21).  

 

 

Watanabe and his colleagues26 constructed a library of 33 clones induced by benzoate, 

and two clones were expressed by naphthalene from a pool with 152000 clones. They 

also showed that the enzyme Bzo71-8 P450 obtained form the same library was a novel 

enzyme. SIGEX has tremendous advantages to be used as a screening method in 

metagenome screening since it provides a more efficient and economical approach to 

select the desired enzymatic activity20,21,26. On the other hand the fact that the possibly 

to screen for hydrocarbon induced genes is an additional advantage since these genes 

are quite difficult to express using conventional techniques. In addition SIGEX does not 

STEP 1 – Construction of 
the metagenomic libraries 
using the p19GFP vector in 
liquid culture 

STEP  2 – Removal of self-
ligated clones and clones that 
express GPF constitutively  

Liquid culture 
with IPTG 

FACS 
selection of clones 
that do NOT show 

GFP activity 

STEP  3 – Selection of the 
clones that express GFP in 
the presence of the inducing 
substrate  

Liquid culture plus 
the inducing 

substrate  

FACS 
selection of clones that 

show GFP activity 

STEP 4 – Isolation of the 
sorted clones on agar plates 

Positive clones. GFP 
is ONLY expressed 

in the presence of the 
inducing substrate   
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require special colorimetric substrates that are frequently used in the traditional 

screening methods.  

 

However the application of SIGEX has also some limitations19,21. The first one is 

related with the fact that SIGEX is only sensitive to the structure and orientation of 

genes with desired traits, thus missing in this way the genes that are expressed 

constitutively in nature.  Moreover this approach also misses the active clones that have 

a transcription terminator between the catabolic genes and the following gfp gene. For 

these cases the functional-based screening methods have been used with relative success. 

Especially for this reason SIGEX is not suitable to be applied to metagenomic libraries 

harboring large insert DNA, due to the abundance of termination factors. At conditions 

where SIGEX can be applied, it is the most interesting and efficient technique at the 

moment for the screening of metagenomic libraries21. When SIGEX requirements are 

not met, other methods are preferable: the screening method should simultaneously 

account for the type of enzymatic activity and for the type of library that is present21. 

 

Despite the large investment that the pharmaceutical industry has made in R&D, the 

number of pharmacologically active new chemical identities (NCEs) has not increased 

proportionately. Most notable is the decrease in the number of new antibiotic drugs that 

are discovered and reach the market.19. This fact has two main causes. The first is 

related with the fact that big pharma currently finds antibiotics economically 

unattractive to develop, and directs its main investment to the development of drugs for 

chronic diseases like obesity and high cholesterol. This could have dramatic 

consequences in the future, due to global antibiotic resistance. The second cause is the 

fact that natural compounds and their derivatives represent a large percentage of all 

newly approved anti-infective drugs. 19,27. The problem is that these compounds are 

mainly secondary products of the activity of bacteria and fungi. Since most 

microorganisms cannot be easily cultivated, the discovery and characterization of novel 

active compounds is further compromised. Metagenomics has also been used to deal 

with this problem. The first targets of this approach were polyketide synthases due to 

the fact that these enzymes are involved in the synthesis of a broad class of antibiotics 

including erythromycin, ephithilone and rifamycin19-21. The strategy consisted in 

designing primers that hybridized with very conservative regions of polyketide synthase 

genes, and amplified novel polyketide synthase genes directly from the soil. From this 
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type of screening, 11 new polyketide synthase homologues were obtained that contained 

significant sequence similarity to polyketide synthase genes from cultured 

microorganisms. 

 

As shown above, the metagenomic approaches have changed the way we conceive a 

bioprocess, in that in the past we fitted the process to the biocatalysts that were 

available, whereas right now we can start by defining what we want to produce and then 

look for a suitable and specific biocatalyst that suits the process. This strategy should be 

able to keep offering creative solutions for the industrial production of both known and 

new compounds.  

 

But if metagenomics is the future, we still cannot neglect what we achieved without this 

approach. Until now we have developed several commercial enzyme preparations that 

are very competitive in many industrial processes, namely enzymes produced by NOVO 

and AMANO that have a very high catalytic efficiency, and can be used in several 

applications that go from laundry to enantiomeric resolution.  

 

What scientists have tried to do is to improve the catalytic properties of the existing 

enzymes, in order to increase enzyme activity, stability and selectivity towards some 

industrially relevant targets. The strategies adopted for this purpose also involve 

molecular biology, since they are directly associated with the modification of enzyme 

structure and function. They were inspired by Darwin’s theory of natural evolution 

since they involve the evolution of a certain gene towards a specific property, for 

instance so that an enzyme can be more selective for a group of substrates of even an 

enantiomer. The first reports of a directed evolution approach were by Stemmer and co-

workers28,29 in 1994, and by Francis Arnold and co-workers30,31 in 1996.   

 

The concept of directed evolution is a simple one that is based in three step design 

experiments. The first step consists in creating diversity, the second one in expressing 

this diversity, and the third one in the screening for the desired property. These steps are 

repeated in several cycle,s in order to reach the desired property (figure 1.7). 
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Figure 1.7 – Schematic representation of a directed evolution strategy.   

 

Directed evolution has maturated during the last decade and has became a key 

technology in the field of molecular enzyme engineering, especially because it allows 

the modification of a protein to obtain a desired property, without the need of knowing 

the protein structure. We can find in the literature several excellent reviews that report 

on the evolution of these strategies32-37.   

 

The creation of diversity is the crucial step in this technology. This can be achieved by 

isolating homologous though not identical genes available in nature, or by artificially 

generating genes, introducing random mutations into a target gene. The subsequent 

recombination of this diversity has proved to be a very effective strategy for combining 

advantageous mutations and sorting out the deleterious ones. The first technique to be 

used to create molecular diversity was error-prone-PCR (epPCR), which exploits the 
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lack of proofreading of polymerase, which can be accomplished by simply changing the 

concentration of magnesium chloride during the PCR process32. In this way the 

diversity is generated as a function of the errors committed by polymerase. The fact that 

epPCR introduces random point mutations makes this technique unsuitable to effect 

block changes that are essential for an efficient sequence evolution. Instead epPCR is a 

useful technique when just a few cycles of mutation have to be applied. Nevertheless 

several successful results were obtained with this approach. One of the best examples 

was demonstrated by Arnold and You31 who with this technique were able to increase 

the activity of subtilisin in the presence of a high concentration of the solvent 

dimethylsulfoxide (DMF). This enzyme is quite stable in DMF but exhibits a very poor 

activity in it. However after just one cycle of directed evolution, a mutant was obtained 

containing four different point mutations, which showed a 40-fold increase in activity 

relative to the wild-type enzyme. 

 

The breakthrough in directed evolution was achieved by the development of DNA 

shuffling that overcame the limitations of the epPCR mentioned before30,32. In this case 

the diversity is generated from a homologous set of genes that are recombined under 

specific conditions. There is a first step of homology generation. Variants in this step 

can be obtained by simply combining different homologous genes, such as genes that 

code for an enzyme expressed in different organisms. These genes are then digested 

with DNAase I to yield fragments with 50-100 bp range which are then submitted to 40-

60 rounds of PCR but without flanking primers. By self-priming the annealed fragment, 

the DNA chain grows. The extended fragments dissociate during the next step of the 

PCR cycle, and grow further by self-priming after annealing. In the end a library of 

chimeric genes is obtained, resulting from the random recombination of their ancestors, 

that are ready to be screened for the desired function. One of the best examples in the 

literature of this technique was given by Crameri et. al
38

 who demonstrated that by 

shuffling together 4 different genes of cephalosporinase, an important commercial 

enzyme, was possible to increase the enzyme activity up to 540 fold in just one single 

round of shuffling The best clone exhibited 33 amino acid point mutations and resulted 

from seven crossovers of the starting genes. The wide evolutionary distance between the 

best clone and the individual parents clearly suggests that this particular solution would 

never have been found using random mutagenic techniques such as epPCR.  
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Figure 1.8 - Schematic representation of DNA shuffling. Several homologous genes are fragmented, 

creating a pool of short fragments. These fragments are allowed to recombine, creating chimeric genes 

that are made up of a combination of the original genes.  

 

Another good example was reported by Ness et al
36 who explored the molecular 

breeding of the subtilisin family. Subtilisins are commercially important serine 

endoproteases with a wide range of applications, including food and leather processing, 

and laundry detergent formulations for stain hydrolysis. Those authors have used a 

DNA shuffling technique to recombine 25 subtilisin genes with the gene that codes for 

Savinase®, a highly engineered enzyme. A small set of variants was analyzed for 5 

distinct properties, including activity at different pH values, thermostability and solvent 

stability. In a pool of 654 clones the authors saw improvements in up to 12 % of these 

clones to any given property. In addition several enzymes had improved multiple 

Screen for interesting variants  
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properties, and new combinations of properties were generated. The most interesting 

thing was that these new combinations were not present in any of the parent genes. This 

type of family-shuffling approach has also been demonstrated with success in the 

recombination of several genes from herpes simplex virus that code for thymidine 

kinase .39. 

 

Often the desired properties or combinations of several different properties do not exist 

among natural enzymes, likely because these combinations have not been selected in 

nature. For example good activity a 23 ºC and thermostability are not required to be 

present in the same organism, and activity at low pH will not have been selected for 

alkalophilic species. What this means is that we can in fact look for any desired property 

in one enzyme, simply by combining the gene that codes for the desired enzyme with a 

pool of familiar genes. In this way we are increasing the frequency of recombination 

and the number of possibilities that can be generated by evolution towards the desired 

property. The example of subtilisins suits perfectly the concept of in vitro evolution38. 

 

In nature evolution occurs thought the combined forces of mutation, recombination and 

selection. The examples above show that DNA shuffling is a good starting point for 

transferring the evolutionary process to the lab bench. 

 

DNA-shuffling is still the preferred method in most directed evolution experiments. 

Recently other methods have been presented that show to be quite good options to 

create the much desired diversity (table 1.1).  Most of these techniques are 

improvements of DNA-shuffling by itself, and often incorporate changes in the way that 

diversity is generated before the recombination step32. 
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Table 1.1 - Some evolution techniques derived used in ourdays.  

 

Method Features and problems Ref. 

Family shuffling 

Creates diverse, highly functional libraries; closely 
related genes are required; requires separation of small 
DNA fragments and libraries contain large percentage of 
unshuffled clones 

 
Stemmer, 
1994 28,29 
 

Staggered Extension 
Process (StEP) 

Comparable diversity to family shuffling but with no 
fragment purification required; same problems as family 
shuffling 

Zhao, 
199839 

Combinatorial Library 
Enhanced by Recombination 

in Yeast (CLERY) 

Similar diversity to family shuffling; limited to protein 
screening in yeast 
 

Abecassi, 
200040 
 

Single-stranded DNA 
shuffling 

Higher proportion of shuffled clones than family 
shuffling. 

Kikuchi, 
200043 

RandomChimeragenesis 
on Transient Templates 

(RACHITT) 

All generated library members are shuffled; 
more crossovers than possible with PCR 
methods 

Coco, 
20041 
 

Sequence Homology- 

Independent Protein 
Recombination (SHIPREC) 

No requirement for sequence homology; requires size 
separation of DNA prior to screening; only one crossover 
per gene 

Sieber, 
200145 

 
Combination of 

THIO-ITCHY and family 
shuffling (SCRATCHY) 

More diverse family created than either method alone; 
useful for generating shuffling candidates where higher 
sequence homology is required than available genes. 

Lutz, 
200144 

Exon shuffling 
 

No homology required; high percentage of functional 
clones; limited to intron-containing genes; diversity is 
proportional to the number of exons 

Kolkman, 
200142 
 

Gene Site Saturation 
Mutagenesis (GSSM) 

All single amino acid substitutions explored. Technically 
out of reach for most researchers. 

US Patent 
6171820 

 

 

Many different enzymes have been subjected to optimization via direction evolution, 

including amylases, laccases, phytases, and cellulases46. Substrate specificity, thermal 

stability, and organic solvent resistance, but also more difficult properties such as 

cofactor-independence or enantioselectivity were evolved using directed evolution 

techniques30,35,39,47-49. Several of these approaches combined different evolution 

techniques to improve the enzyme desired properties. One of the most interesting 

examples of this combination was given by Jaeger and Reetz for the increase in 

enantioselectivity of Pseudomonas aeruginosa lipase34.  

 

The combination of metagenomic approaches together with directed evolution 

techniques have been recently proposed by Lorenz and co-workers50. This elegant 

approach starts with the amplification of specific partial gene sequences using 

conserved and degenerated oligonucleotides, called metagenome sequence tags (MST’s). 

Subsequently, shuffling of the cloned fragments and PCR-amplification generates 
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biocatalyst genes of increased diversity, as shown for dehalogenases and 

haloperoxidases. 

 

We have looked at the enormous potential of molecular approaches in the discovery and 

evolution of several types of enzyme functionalities, which makes it possible to improve 

enzymes without knowing anything about their structure. Nevertheless these methods 

are still too expensive and time consuming, especially when it comes to screening 

methods. In the last 7 years many efforts have been made to improve screening 

techniques in order to design faster and more selective screening processes. An 

extremely accurate screening is important in the design of an evolution experiment since, 

in the end, you get what you screen for. In this way the success of the techniques is 

strictly related with the availability of a good screening procedure.   

 

The problem begins when the screening for the desired enzyme functionality is complex 

or requires the use of substrates that are not soluble in conventional aqueous media. 

This is particularly true for properties such as enzyme enantioselectivity. Reetz and co-

workers have explored this topic in a very detailed way, bringing to light some 

screening techniques that improve the screening ratios and efficiency34,35. In their 

several publications in this field they have made use of high-throughput spectroscopic 

techniques, such as NMR and IR spectroscopies, and special GC and electrophoresis 

techniques51. Nevertheless the size of the libraries also increased as a direct result of the 

improvement in recombination approaches. Therefore and in spite of the efforts 

involved, the great limitation in the generalization of these techniques is still the 

screening for the desired information. 

 

One way to solve this problem is to rationalize the information obtained so far from 

molecular evolution experiments. For instance, what have we learned about enzyme 

function so far? Can we correlate the amino acid substitution with the improvement in 

the desired property that we submit to evolution?  Is there a standard or is the system 

completely chaotic? These are all relevant questions but we can only have an idea of 

how to start the rationalization if we know more about the enzyme, i.e. its structure. If 

we know the structure the protein of interest we can start thinking of a better way to 

evolve it in a certain way. This can be accomplished by detecting hot-spots for the 

desired improvement, i.e. amino acids whose change has a clear impact on the 
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improvement of the desired property. On the other hand we previously showed that 

many successful mutants obtained in the course of directed evolution processes have 

several modifications of their amino acid sequence relative to the wild-type enzyme, 

which makes the processes of rationalization even more complex. The idea right now is 

to put the in vitro in silico. This requires special tools since it is completely impossible 

to predict or correlate the impact that certain mutations have on enzyme function. For 

instance, it is impossible to evaluate the impact on enzyme activity of a mutation 

located far away from the enzyme active site. Over the last decade the field of 

bioinformatics has approached the problem of enzyme evolution in several ways, 

focused both on rationalization and on the generation of diversity. 

 

Recombination strategies have attracted the attention of several groups towards the 

design of molecular models to predict the shuffling events during the recombination 

procedure52-58. This is quite important to understand and consequently improve the 

DNA manipulation for library creation. Although the critical step to obtain the desired 

function is the screening step, the diversity is obtained via DNA recombination. Thus 

without sufficient diversity in the underlying combinatorial DNA library, all the 

evolution processes can be compromised. Therefore being able to predict the impact 

that protocol setups have on the level and type of diversity generated can ultimately 

determine the success or failure of a directed evolution project. The eShuffle approach 

was reported for the first time by Moore et al.54,55. These authors have studied in silico 

the impact that fragmentation length, annealing temperature, sequence identity, and 

number of shuffled parental sequences have on the number, type, and distribution of 

crossovers along the length of full-length reassembled sequences. In the eShuffle 

framework, annealing events during reassembly were modeled as a network of reactions, 

and equilibrium thermodynamics along with complete nucleotide sequence information 

was employed to quantify their conversions and selectivities. The authors based their 

models on the experimental data obtained from several distinct works36,38.  One of those 

works was the cephalosporinase evolution study mentioned earlier38. One remarkable 

aspect of this study was the absence of any fragment of either of the four genes shuffled 

in the chimeric DNA sequence of the best two mutants. Moore et al.
54,55 looked at this 

question and modeled the experimental data. They suggested two possible situations: 

the fact that gene did not contribute to the increase in enzyme activity with the 

particular substrate tested, and the fact that the gene was not present simply because the 
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pieces of that gene were disproportionately misrepresented in the library, due to the lack 

of sufficient long stretches of near-perfected identity with the other three genes. To put 

it more simply: of genes 1, 2, 3 and 4, gene 3 was the one absent in the chimeric 

sequence. Moore et al. determined that the identity of each one of the four genes against 

the remaining three was 70 %, 70 %, 65 % and 59 % respectively. The simulation 

results predicted that 36 % of the naïve gene sequences contained at least one crossover. 

But when the authors analyzed the fraction of crossover bearing sequences containing at 

least one piece from each of the four genes, they saw that gene 3 had the lowest 

percentage. The results were 85 %, 95 %, 7 % and 19 %, and even though gene 3 was 

not the one with the lowest sequence identity, it was by far the one with the lowest 

percentage of crossover. This could explain why it was not present in the chimeric 

sequences of the two best mutants. 

 

The same authors also verified that the annealing temperature was also responsible for 

the crossover generation54,55. The authors saw that this effect was correlated with the 

length of the fragments that were present in the medium. Thus the crossover of small 

fragments of 15 bases was highly increased at high temperatures due to the entropic 

contribution of the free energy of annealing, which dominates at these temperatures, 

blurring in this way the distinction between homo and heteroduplexes causing an 

increase in the total number of crossovers. On the other hand the number of crossovers 

of long fragments is more favorable at lower annealing temperatures. These results 

suggest that in a good experiment of evolution, a good compromise should be 

established between the fragment length and the annealing temperature, in order to 

increase the diversity via crossover.  

 

Another field explored by bioinformatics is the rational design of proteins. One of the 

factors that promoted this type of approach was the increase in the number of available 

enzyme structures59-62. In this case the goal of the modeling is to know how the 

structure affects enzyme properties and how certain structural modifications can affect 

those properties. Some authors mention this approach as a direct competitor to the in 

vitro evolution design. But both approaches appear to be excellent ways to perform 

evolution and create diversity, as well as good tools to rationalize the interplay between 

structure and function. Much can be gained by using a combined approach rather than 
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the two techniques separately and there are several successful examples in the literature 

that confirm it.  

 

One of the properties most explored by rational design has been enzyme stability, and 

several attempts have been made to improve and understand this property. The rational 

approaches include improvement of the packing of the hydrophobic core of the enzyme, 

the introduction of disulfide bridges, stabilization of helix dipoles, the engineering of 

the enzyme surface, salt and point mutations aimed at reducing the entropy of the 

unfolded state.   

 

Entropic stabilization is one of the most recurrent strategies to increase enzyme stability 

via rational design and is based on the introduction of mutations that decrease the 

entropy of the unfolded state but do not introduce unfavorable strain in the folded 

protein structure63.  One good example of this strategy was reported by Van den Burg et 

al
63 With a limited number of modifications, the authors were able to increase the 

stability of a thermolysine-like protease (TLP-ste) from Bacillus stearothermophlius, 

which is considered a moderately stable enzyme. The strategy to achieve this 

hyperstable enzyme involved replacing residues in TLP-ste by residues found at 

equivalent positions in thermostable variants, as well as rationally designed mutations. 

In this study an extremely stable mutant enzyme was obtained that was able to work at 

100 ºC in the presence of denaturing agents.  Most of the mutations responsible for this 

stabilization effect were related with the reduction of the entropy of the unfolded state, 

such as the introduction of two rigidifying mutations (Gly-Ala and Ala-Pro substitutions) 

and the introduction of one extra disulfide bridge 

 

One of the main issues when efforts are made towards improving one property, such as 

enzyme stability, is not to affect adversely enzyme activity or selectivity. The increase 

in stability is often related with the increase in the protein rigidity, and lack of structural 

flexibility can have a negative effect on enzyme activity. Recently Reetz and co-

workers64 presented an interesting strategy to overcome this problem, consisting on 

putting together rational and evolutionary tools in order to find target motives in the 

enzyme structure to direct an evolutionary approach.  
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The authors first selected the sites for amino acid replacements in order to avoid the 

screening of large libraries. These sites were chosen based on several systematic 

structural studies regarding mesophilic and thermophilic enzymes, which pointed out 

the factors that mostly contribute to an increase in structure rigidity and a resulting 

increase in enzyme stability. These factors include salt bridges, hydrogen bonds, and π–

π interactions at crucial positions in the protein, in addition to hydrophobic interactions 

and disulfide bridges, all of which help to prevent unfolding at various stages of 

denaturation64. The challenge for these authors was to achieve significant degrees of 

thermostabilization in an efficient manner without losing enzyme activity at room 

temperature. Once they identified the potential sites, they developed a model that 

established a compromise between the rigidity and the atomic displacement parameters 

obtained from the X-ray data, namely the B factors. Therefore, they targeted solely 

those amino acids in a protein that display the highest B factors, corresponding to the 

most pronounced degrees of thermal motion and thus flexibility. These sites, comprising 

one or more amino acids, were then chosen for saturation mutagenesis which generated 

small focused libraries. The gene of the best hit was subsequently used as a template for 

a second round of saturation mutagenesis. From this strategy the authors obtained a 

considerably small library with 8000 clones, and the result was an impressive 

enhancement or thermostability without compromising the enzyme activity or even its 

selectivity.64 

 

Until this point we focused on the importance of computational strategies for the 

improvement of enzymatic properties, either by understanding the factors that affect the 

diversity generation of an evolutionary process, or by modulating the several 

contributions that are relevant to one specific property.  Nevertheless these strategies 

have several limitations that are partially overcome when combined with in vitro 

evolution approaches. The idea of putting together in silico diversity creation with in 

silico screening processes is the aim of several groups53,57,65,66. This approach is based 

on the development of computational algorithms and is still an emerging area with a 

high potential in protein design.  

 

For instance, combinatorial randomization of only five residues generates a library of 

205 possibilities (3,2x106 mutants), too large a number for manual screening. Thus, to 

increase the power of rational and combinatorial modification of enzyme activities, 
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computational methods have been developed based on protein design algorithms. These 

methods can either perform a virtual screening of a vast library or can be applied to the 

design of enzyme active sites65,66. 

 
Hayes et al.6 developed a strategy for the computational screening of large libraries, 

called Protein Design Automation (PDA), which predicts optimal sequences space that 

can adopt a desired fold. PDA was used for pre-screening large, virtual libraries of 

mutants (1023), and led to a decrease in the number of sequences of interest by many 

orders of magnitude.  PDA allows all, or a rationally defined set of residues, to change. 

The optimal sequence is chosen based on its lowest conformational energy, and is used 

to identify other near-optimal sequences through Monte Carlo simulated annealing. The 

mutations that occur most frequently define the library which is going to be 

experimentally screened. 

 

With the use of PDA, the authors identified 19 residues of interest in TEM-1-β-

lactamase, generated in silico 7x1023 combinatorial mutants of these residues, and chose 

cut-offs to define the library of roughly 200 000 lowest-energy mutants that were then 

generated experimentally by mutagenesis and recombination. The advantage of PDA is 

that it can model a vast sequence of diversity and allows for multiple mutations to be 

identified simultaneously, which is particularly beneficial when the effect of multiple 

mutations is synergistic (non-additive). 

 

The fusion between rational and evolutionary approaches is a reality nowadays and with 

the combination of both approaches it has been possible to achieve very interesting 

results so far. The evolution of biocatalysts will be in part what researchers improve in 

this merging area. Recent advances in other areas, namely DNA synthesis, made 

possible the synthesis of large DNA sequences in a fast, inexpensive and accurate way, 

which constitute one more powerful tool to develop this area. In the future the 

biocatalyst could be a result of in silico screening for the desired property, followed by 

the synthesis of an artificial gene that will subsequently be expressed in a free host-cell 

system.  

  

The way that we use life to improve and development high-tech solutions is about to be 

changed. An emerging area called synthetic biology brings a completely different 
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concept of biological systems engineering66-69.  The vision and applications of this area 

will influence many other scientific and engineering areas, as well as affect various 

aspects of daily life and society. The goal of synthetic biology is to extend and modify 

the behavior of living organisms and engineer them to perform completely new tasks. 

One excellent analogy to conceptualize the goal and the methods of synthetic biology is 

the computer engineering hierarchy (figure 1.9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 - A possible hierarchy for synthetic biology is inspired by computer engineering (adapted 

from reference 68). 

 

Inside the hierarchy each constituent is a part that contributes to a high complexity 

system. The implementation of a new action or behavior on top of the hierarchy level is 

implemented with a bottom-up strategy. So in the cells, we have at the bottom of the 

hierarchy the DNA, RNA, proteins, and metabolites (including lipids and carbohydrates, 

aminoacids, and nucleotides), that are analogous to the physical layer of transistors, 
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capacitors, and resistors, in computer engineering. The next layer is the device layer that 

comprises biochemical reactions that control not only the flow of information, but also 

the physical processes. These units are equivalent to engineered logic gates that perform 

computation in a computer. The module in cells consists in a diverse library of devices 

to assemble complex pathways that function like integrated circuits. The connection 

between these modules allows the synthetic biologist to extended or modify the cell 

behavior in a programmed way. Although single cells can perform several complex 

tasks, we can achieve more sophisticated and coordinated ones with a population of 

communicating cells that work like a computer network68. 

 

This innovative approach brings a completely new set of problems that entail a set of 

design problems and solutions. This is because biological devices and modules are not 

independent objects, and are not built in the absence of a biological environment. With 

this in mind synthetic biologists have seriously considered cellular modification in order 

to run the desired function. The major concern in this approach so far is the lack of 

information about inherent cellular characteristics, for instance the effects of gene 

expression noise, mutation, cell death, undefined and changing extracellular 

environments. Also interactions within the cellular context currently prevent us from 

engineering single cells with the same confidence that we can engineer computers to do 

specific tasks67-69. 

 
But the answer to control the predictability and reliability of these biosynthetic 

networks can be found inside is own concept, and could be achieved either by using a 

large numbers of independent cells, or by synchronizing individual cells through 

intercellular communication. Even more interesting is to use intercellular 

communication systems in order to coordinate tasks across heterogeneous cell 

populations, which is a highly sophisticated behavior. The concept has to focus on 

multicellular systems to achieve overall reliability of performance67-69. 

 
The concept of a device is an abstraction overlaid on physical processes that allows for 

the decomposition of systems into basic functional parts. Thus complex systems have 

been designed through the combination of basic design units that represent biological 

functions. These biological devices have the basic function of processing inputs to 

produce outputs, and to accomplish this they have to control the information flow, 
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perform metabolic and biosynthetic functions, and interface with other devices that can 

be inside or outside of its own environment. The application of this new technology of 

“programming” cells is achieved by “reprogramming” their sets of biochemical 

reactions including transcription, translation, protein phosphorylation, allosteric 

regulation, ligand/receptor binding, and enzymatic reactions.67-69.  

 

Since this field is in its very infancy, there are only a few examples that constitute in   

fact novel biodevices. A new application was obtained by coupling gene regulatory 

networks with biosensor modules and biological response systems. Kobayashi et al. 67 

interfaced a toggle switch with the SOS pathway detecting DNA damage as the 

biosensor module, and biofilm formation as response output. The exposure of the 

engineered cells to transient UV irradiation caused DNA damage, triggering the toggle 

switch to flip to the state that induced the formation of biofilms (figure 1.10).  

 

 

 

 

 

 

 

 

 

 

Figure 1.10 - An example of programmed phenotype in strain A2. The diagram represents the 

engineered genetic circuitry. The genetic toggle switch module (pTSMa) controls the expression of traA 

from plasmid pBFR in response to DNA damage. The result of the activation of the pTSMa switch is the 

formation of the biofilm, which is represenedt in picture (b) .(adapted from reference 67).  

 

Recently, Anderson et al,70 engineered E. coli cells that were able to invade specific 

mammalian cells exhibiting tumorigenic properties. In this study the interaction of E. 

coli with mammalian cells was modified in order to be dependent on the heterologous 

environmental signal. To do this the authors built different plasmids containing different 

genes that could promote the invasion in response to an external signal. They 

characterized invasin, which is a protein of Yearsinia pseudotuburculosis, as an output 
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module that enables E.coli to invade the cancer cells. But this invasion should be 

specific and in order to accomplish this they placed this module under the control of 

heterologus sensors. For that purpose, the authors used as promoters the Vibrio fischeri 

lux quorum sensing circuit and the hypoxia-responsive fdhF. The result was simple 

(figure 1.11).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11 – Schematic representation of engineered E. coli cells that were programmed to invade 

mammalian cells exhibiting tumorigenic properties. 

 

Biocatalysis is always a good area to demonstrate new concepts, and synthetic biology 

confirms this statement. It is easy to imagine a biofilm completely programmable to 

respond to different inputs, which can be for instance a chemical stimulus or an 

environmental change. The resulting outputs are products of the biocatalytic cascade 

involving the biochemical sets mentioned earlier, and can be materialized in the form of 

a substance of pharmaceutical interest, such as a protein complex, or even in the form of 

an electric current. The function of this biofilm will be the result of the behavior that we 

set on the top of the hierarchy, and the way that it accomplishes that function will be a 

result of the programme set at the bottom, i.e., the DNA. 

 

We can have glance at this idea if we consider the study of Lovley and co-workers71-73 

where these authors present a very interesting way to produce energy using a biofuel 

cell(figure 1.12). They used the oxidative metabolic pathways to oxidized sugars and to 
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generate electrons. They demonstrated that this concept could also occur in soil, and 

they developed a fuel cell that could use the microorganisms fauna presented in the soil 

to produce electricity. Now imagine that we could put both concepts together. We could 

produce electric energy in a very cheap way from a myriad of natural resources 

everywhere in this planet. Maybe this is one the futures of biocatalysis. Of course there 

are severe limitations to the implementation of this technology, but those limitations are 

our future challenges. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12 – Example of microbial fuel cell developed by Lovley et al. (adapted from reference 71). 

 

Today we can consider biocatalysis as a melting pot of different disciplines that go from 

organic chemistry to molecular biology. This soup of different areas of knowledge and 

expertise puts biocatalysis on the top of the areas with industrial priorities.   

 

In summary the aim of this chapter was to give a global idea of biocatalysis and its 

impact in science and society along the times. We have used this technology even 

before we were aware of the underlying science, we have uncovered some of its 

mysteries and taken it beyond the most optimistic expectations, and nowadays we 

rationally incorporate it in many applications whose scientific basis most of those who 

benefit from them completely ignore. This is in fact the best way to evaluate the success 

of a technology.  
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As we saw in the previous chapter the high enantioselectivity that enzymes exhibit has 

always been pointed out as one of the major advantages of enzymes for industrial 

applications, and makes biocatalysis one of the most suitable approaches towards the 

chiral resolution of organic racemic mixtures. Therefore a considerable number of 

researchers have put a lot of effort into understanding and improving enzyme 

enantioselectivity, considered by many to be the hallmark of biocatalysis.  

 

This subject attracted particular interest in the 80s when is became clear that enzymes 

could be active in dry organic solvents and could perform organic syntheses in these 

media. It was also shown that in nonaqueous media enzyme enantioselectivity 

responded to the medium properties. Thus organic solvents did not only provide a way 

of doing biocatalytic synthesis, but could also tune enzyme selectivity.  

 

Having this in mind the aim of the present chapter is to give an idea of the high 

potential of enzymes in performing chiral resolutions. To accomplish this it is necessary 

to go trough fundamental aspects of this property, such as the elucidation of the 

molecular mechanisms behind enantioselectivity, several successful examples of 

application, the means that the scientific community developed to improve this 

enzymatic property.  

 

In general, all the strategies mentioned in section 4 of the previous chapter to improve 

catalytic performance can also be applied to enzyme enantioselectivity, and some 

examples relating to enantioselectivity were already mentioned. One of the classes of 

enzymes that have been extensively explored in this respect is that of serine hydrolases, 

which includes the lipases, esterases and proteases. For instance lipases are considered 

excellent biocatalysts to prepare optically active compounds such as alcohols, 

carboxylic acids, esters, amines, thiols, hydroperoxides and ketones, and have been used 

is the asymmetric synthesis of natural products1-5. Lipases also exhibit a good stability 

and activity in nonaqueous media and are in fact the enzymes that were more helpful in 

understanding and developing enantiomeric resolutions. Thus, most of the applications 

and fundamental studies that are going to be presented here are mostly related with 

lipases.  
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The first thing that we should have in mind when studying a property related with 

enzyme selectivity is the catalytic mechanism. Since lipases are serine hydrolases the 

catalytic mechanism is well described by figure 2.1. 

 

The active site of serine hydrolases is formed by an oxyanion hole and a catalytic triad 

formed by a serine (Ser), a histidine (His) and an aspartic acid (Asp). The switch of this 

active center is the His, since it works as a proton acceptor from the serine residue. This 

switch is in fact controlled by the pKa of the His residue (pKa=6), which means that 

only above this pKa the histine is able to accept the proton from the serine. This step is 

crucial for the active site catalytic function since the serine can only act as a nucleophile 

when its proton is set aside by histidine.   

 

The best way to understand this mechanism is with an example. Here we present the 

transesterication of a generic ester with a generic secondary alcohol. In this case four 

transition sates and two tetrahedral intermediates are formed, in order to accomplish the 

reaction.  The stabilization of tetrahedral intermediates is vital for the reaction progress, 

and occurs through electrostatic interactions between the imidazolium of His and the 

carboxylic group from the Asp, as well as by the hydrogen bonding between the acyl 

donor and the amine group form of the oxyanion hole. The acylation of the enzyme by 

an acyl donor gives the acyl enzyme-intermediate (E-Ac), and subsequent nucleophilic 

attack by an alcohol (R-OH), as can occur in a nonaqueous medium, yields an ester and 

free enzyme. 
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Figure 2.1 - The catalytic cycle of a lipase/esterase for the transesterification of a generic ester with a 

generic alcohol. 
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Before going trough the reasons why enzymes exhibit enantioselectivity towards some 

substrates, there are two concepts that should be understood: the enantiomeric excess 

(ee) and the enantiomeric ratio (E).  

 

The enantiomeric purity is expressed in terms of the ee value and is defined as 

 

 

 

 

R is the concentration of the (R)-enantiomer and S the concentration of the (S)-

enantiomer. Therefore for a racemic compound the ee value is zero, whereas for an 

enantiomerically pure compound the ee value is 1 (or 100% ee).  Since lipases are chiral 

structures they posses the ability to distinguish between both enantiomers of certain 

racemic mixtures. The parameter that quantifies this is the enantiomeric ratio, E. The E 

value is defined as the ratio of specificity constants for the two enantiomers: 

 

 

 

 

kcat is the rate constant and KM the Michaelis-Menten constant. One of most important 

contributions in this respect was made by Sih and his colleagues6 who developed the 

next equation for E as a function of the ee of the product (eep) and the unreacted 

substrate (ees), and the conversion (c). Therefore, for a reversible enzymatic reaction the 

E value is expressed by: 

 

 

 

 

 

K is the equilibrium constant. When the reaction is irreversible or the reverse reaction is 

negligible (K = 0), this equation is reduced to:  

 

 

 

R-S 
R+S 

x 100 % eeR = 

x 100 ERS = 
(Kcat/KM )R 
(Kcat/KM )S 

(For R>S) 



 47 

 

Where (c) can be expressed by:  

 

 

 

Thus E can also be expressed in terms of ees and eep : 

 

 

 

 

 

 

To calculate the E value we have to measure two of the three variables ees, eep, and the 

extent of conversion (c). A nonselective reaction has an E value of 1, while an E value 

above 100  is the minimum for an acceptable resolution3. 
 

Figure 2.2 shows how the substrates have to bind to the active site for the reaction to 

take place. This fact suggests that the dimensions of the chemical groups can modify the 

way the substrates can be accommodated inside the active site. For instance too large 

groups can make the stabilization of the tetrahedral intermediates difficult, since these 

groups have to find a pocket of suitable dimensions to fit in, if the reaction is to take 

place. This explains why esterases exhibit low activity towards long chain acyl donors 

or alcohols7-8. 

 

This type of assumption has led to the design of the first rationalization methods to 

understand enantioselective discrimination based on stereochemical rules. These models 

were put forward in the late 80s and early 90s with the aim to predict the 

enantioselectivity of the most common enzymes in industrial process7, 9-13. In 1991 

Roman Kazlauskas7 and co-workers presented more than 130 examples for several 

enzymes, namely Burkholderia cepacia lipase (formerly known as Pseudomonas 

cepacia lipase), Candida rugosa lipase and cholesterol esterase that were in agreement 

with the rules based on the size of the substituents bound to the chiral center of substrate. 

(figure 2).Today this rule is frequently called the “empirical rule” and is basically used 

to predict the enantioselectivity of some enzymes towards chiral alcohols and acids. 
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Figure 2.2 – “empirical rule”; (a) - the fast reacting enantiomer; (b) - the slow reacting enantiomer  

 

This model was quite important to design the first attempts to improve enzyme 

enantioselectivity towards a desired racemic mixture. This substrate engineering  

approach is based on the subtle modification of the substrate to change the enzyme 

enantioselectivity in a given reaction. Having in mind the previous model, this approach 

is no more than the attempt to move the chiral centre to pockets that favor the 

stabilization of one of the enantiomers. This is in fact a kinetic engineering approach 

since the structure of the enzyme is not affected, and the only change that is effected is 

the accommodation of the substrate in the active site.  

 

The success of this approach was confirmed by several authors14,15. One of these 

approaches was related with the oxidative kinetic resolution of sec-alcohols using 

Rhodococcus ruber DSM 44541. In this case it was found that the introduction of C=C 

bond units into the side chain could improve the reaction enantioselectivity14. The 

enantioselectivities towards rac-2-pentanol and rac-3-octanol were E=16.8 and E=13.3, 

respectively, and were improved to E>100 and E=50 just by placing a C=C bond 

adjacent to the carbonyl group.  

 
Two other authors, Magnusson and Holmquist15, presented a different approach called 

engineered substrate-assisted catalysis. They used for this purpose Candida antarctica 

lipase B (CALB) as a model system, and also have created a mutant of this enzyme with 

a substitution in the active center. They replaced a threonine, Thr40, which is involved 

in the stabilization of the transition state, by a valine residue (figure 2.3). The aim of 

this strategy was to replace the side chain hydroxyl group of Thr40 by one placed in the 

substrate to recreate the equivalent interaction found in the wild-type enzyme–substrate 

pairing. In fact, ethyl-2-hydroxypropanoate turned out to be a good substrate for the 

OH

OH
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mutant since it was able to increase the selectivity towards the (S)-isomer (E = 22), 

relative to the wild-type enzyme (E=1.6). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3 - The active site of CALB. (a) Transition-state stabilization in the wild-type enzyme. (b) 

Substrate-assisted transition-state stabilization in a Thr40Val mutant. The substrate is represented by a 

thick black line and hydrogen bonds are indicated as dashed lines. This figure was adapted from 

reference 16. 

 

This type of approach led to the development of several models with the aim of 

understanding the contributions involved in enantiomeric discrimination at the enzyme 

active center 17-19. Indeed this research provided the guidelines to the development of 

rational protein engineering, or rational design, which is an important tool today.    

 

 Karl Hult and co-workers20-29 are one of the groups that have contributed more to the 

development of this area. Most of their studies have been focused on Candida 

antarctica lipase B, which is a preferred enzyme for many industrial applications.  This 

group has proposed a model to explain the mechanism of enantiorecognition by CALB 

towards secondary alcohol enantiomers. This molecular model was based on the 

transition states of the fast and the slow enantiomers, as well as on the experimental 

kinetic resolution of sec-alcohols27-29. The authors concluded that steric interaction was 

important but it was not the only factor that contributes to the enantiomeric 
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discrimination. For instance they showed that CALB exhibits a quite different 

enantioselectivity towards aliphatic alcohols and their almost isosteric halohydrin 

analogues (figure 2.4). They correlated this difference with the unfavorable interaction 

between the halogen atom and the stereoselectivity pocket of the enzyme. These results 

led them to a rational design approach in order to create mutants that could exhibit a 

different enantioselectivity toward these substrates.  

 

 

 

 

 

X = Br 

X = Cl 

X = CH3 

 

Figure 2.4 – Enzymatic kinetic resolution of sec-alchohols with Candida antartica lipase B. this 

reaction scheme as adapted from reference 26.  

 

Hult and co-workers proposed several mutants on specific sites, namely Thr40, Thr42, 

Ser47 and Trp104 (Trp = tryptophan), which define the stereoselectivity pocket of 

CALB. They excluded the Thr40 due to the importance of this residue on the 

stabilization of the oxyanion formed in the transition state. This approach is completely 

different from the one presented before by Magnusson and Holmquist, who considered 

the modification on this residue an advantage to increase enzyme enantioselectivity in 

their substrate engineering approach. This fact clearly suggests that there are multi-

solutions to improve the enantioselectivity by a rational design approach. Hult and co-

workers only considered modifications in those sites toward smaller residues, due to 

limited space in the stereoselectivity pocket, but their aim was actually to decrease the 

electronegativity of the pocket. The decrease in the repulsion felt by the halogenated 

substrates was meant to decrease the enantioselectivity towards these particular 

substrates. To accomplish this, Hult and co-workers introduced basic residues in those 

sites, in order to increase the affinity of the new residues towards the halogen group. 

Their results confirmed that their rationalizations were correct, i.e. that an increase in 

the volume of the stereoselectivity pocket could decrease the enantioselectivity, while 

OH

X

4

O

O

X

4

O

+CALB 
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changes in electrostatic potential increased the enantioselectivity. In fact, the Thr42Val, 

Ser47Ala (Ala = alanine) single mutations and the Thr42Val/Ser47Ala double mutation 

only affected the stereoselectivity towards the halohydrins. The E value for aliphatic 

alcohols remained the same when compared to the wild-type. These results show that 

the change in the E value obtained for the mutants is strictly related with electrostatic 

contributions. The model proposed by Hult and co-workers was the first to consider the 

contribution of entropy to the enantioselectivity. 

 

A very elegant example to improve enzyme enantioselectivity through a rational 

approach was reported by Raushel and co-workers30 for the phosphotriesterase of 

Pseudomonas diminuta. In this example the understanding of the stereochemical 

specificity of this particular enzyme was the starting point for the rational design 

strategy. The stereochemical pocket of this enzyme has three biding subsites with 

different sizes. These authors found that by introducing small modifications with the 

aim of altering the dimensions of these sites, they could produce dramatic changes in 

enzyme enantioselectivity. One of the best results was obtained with ethyl phenyl p-

nitrophenyl phosphate (figure 2.5), a substrate that the enzyme hydrolyzed with E=21, 

preferring the (S)-enantiomer. But when they introducedc the Gly109Ala (Gly = glycine) 

mutation with the aim of reducing the size of the smaller subsite, the enantioselectivity 

towards the (S)-enantiomer increased 3-fold. This improvement in selectivity was 

related with the increase in Kcat/Km for the fast reacting enantiomer and the subsequent 

decrease in Kcat/Km for the slow reaction one. The true success of this work was 

obtained when these authors performed a size reduction of the larger subsite (His257Tyr; 

Tyr = tyrosine) together with an increase in the size of the small subsite 

(Ile106Gly/Phe132Gly/Ser308Gly; Ile = isoleucine; Phe = phenylalanine). The result 

was the inversion of the enantioselectivity, i.e. the (R)-enantiomer, which was the slow 

reacting one, became favoured over the (S)-enantiomer by a factor of 80.  
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Figure 2.5 – An example of a  p-nitrophenyl phosphate compound used on the  approach reported by 

Raushel and co-workers30 

 

A more complex example of this type of rational approach has been proposed by Pleiss 

and co-workers31,32, who made a comparison between the structure of several lipases 

and esterases and found that lipases differ in a certain motif located in the active site. 

This motif is called the GX or GGGX motif, where G denotes glycine and X denotes 

any aminoacid located in the oxyanion binding pocket of lipases and esterases. This 

motif is responsible for the stabilization of the tetrahedral intermediate during catalysis. 

Later Bornscheuer and co-workers33 showed that mutations in this motif could effect 

changes in activity and enantioselectivity towards tertiary alcohols. In fact their 

modelling study of p-nitrobenzylesterase from Bacillus subtilis (BsubpNBE) showed 

that mutations in one of the glycines of this motif (Gly105Ala) was responsible for 

more than a three-fold improvement in enantioselectivity for the resolution of (R,S)-2-

phenyl-3-butin-2-yl acetate. 

 

The impact of medium parameters on enzyme enantioselectivity has also been a target 

for molecular modelling. A good example of this type of approach was brought again by 

Pleiss and co-workers32 who evaluated the impact of pressure on the enantioselectivity 

of Candida Rugosa towards menthol. The aim of their study was to understand why 

Candida Rugosa exhibited a decrease in enantioselectivity along with the increase in 

medium pressure in aqueous an organic media. It is known that distinct regions of the 

protein respond differently when submitted to pressure. For instance, helical and loop 

regions have shown higher compressibility and volume fluctuation than β-sheets34,35. 

These variations could impact on enzyme structure and ultimately be reflected on 

enzymatic properties. This is easier to understand when the property in case is activity 

or stability. These authors found that enantioselectivity could also be affected by these 

changes in enzyme structure. They explained that the geometry of the stereocenter of 
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this enzyme was affected to favor the formerly nonpreferred enantiomer, explaining in 

this way why E gradually decreased with the increase in pressure.  

 

The rationalization of the several parameters that can affect enantioselectivity is quite 

important because it makes it easier to predict and consequently to modify that property 

towards the desired kinetic resolution. In the previous example the authors directed their 

attention to the impact of pressure on enzyme enantioselectivity. In nonaqueous media, 

that and other medium parameters such as temperature, water activity, solvent polarity 

or enzyme ionization state have been explored in the first strategies to improve 

enantioselectivity. For instance the discovery that organic solvents could enhance and in 

some cases even reverse enantioselectivity was a tremendous achievement36-38. The 

medium engineering solvent approach is still quite important today and many successful 

examples have been published so far. It is still one of the first ways to evaluate and 

improve enantioselectivity when a new enzyme or a new reaction setup is used.  

 

One such example was provided by Westcott and co-workers36. In this work the authors 

showed that the α-chymotrypsin enantioselectivity towards the transesterification of 

methyl 3-hydroxyl-2-phenylpropionate (figure 2.6) with propanol could be enhanced 

just by changing the type of solvent. More interesting, the authors showed that the 

enzyme strongly prefers the (S)-enantiomer of the substrate in solvents like di-isopropyl 

ether or cyclohexane, and that this preference is inverted when the reaction is performed 

in acetonitrile or methyl acetate. This work was made is the middle 1990s and was 

surprising at the time, but such effects were shown to be a general characteristic of some 

enzymes39-41, and in some cases could be rationalized quite easily. For instance the α-

chymotrypsin inversion mentioned before was rationalized taking into account the 

different transition states formed by the (R)- and the (S-) enantiomers in the different 

solvents. The structural modelling of both transition states showed that the solvent 

promoted changes in the sterochemical pocket, creating different reaction pathways 

with a profound effect on the transition state stability, which was ultimately reflected on 

enzyme enantioselectivity38. 
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Figure 2.6 - Hydroxyl-2-phenylpropionate. This was the coupond was the target substrate of Westcott 

and co-workers36 study.  
 

The solvent effect is also responsible for controlling two other types of enzyme 

selectivity: regio- and chemo-selectivity. The first one is related with the preference of 

the enzyme for the position of a specific functional group in the substrate molecule. 

This preference was shown to be present in Burkolderia cepacia lipase41 when two 

differently positioned ester groups were placed in the same aromatic molecule substrate. 

This enzyme also showed the same effect towards sugar hydroxyl groups, and in this 

case the enantioselectivity can even been reversed just by changing the position of the 

OH group on the sugar molecule. The chemo-selectivity is the preference that an 

enzyme exhibits for one type of reaction over a set of other plausible reactions. For 

many lipases and proteases, the degree of preference for a hydroxyl group relative to an 

amino group has been found to be strongly dependent on the solvent36, 41-43. 

 

The solvent engineering approach was fully explored and we can find examples for 

most of the enzymes used in biocatalytic transformations. Thus this approach only 

attracted new scientific interest when ionic liquids started to compete with organic 

solvents as reaction media. Ionic liquids are one of the pillars of green chemistry 

technology. Very simply they are organic salts which are liquid at room temperature. 

Unlike traditional solvents, which can be described as molecular liquids, ionic liquids 

are composed by ions (figure 2.7 shows the structures of the commonly used ionic 

liquids). Their unique properties such as nonvolatility, nonflammability, and excellent 

chemical and thermal stability have made them an environmentally attractive alternative 

to conventional organic solvents, on the road to higher sustainability. Ionic liquids have 

low melting points (<100 ºC) and remain as liquids within a broad temperature window 

(<300 ºC)46-48. Ionic liquids are known as tailored or design solvents, due to the fact that 

it is relatively easy to change the intrinsic properties of these solvents. For instance we 

can change the polarity of the solvent just by changing the anion or the cation of its 

structure.  This type of design strategy has been explored in biocatalysis in order to 
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enhance several enzymatic properties. Obviously enantioselectivity has been the 

property of major interest45-52. Although ionic liquids have tremendous applications in 

several different areas, in this chapter only their impact on enzyme enantioselectivity is 

going to be highlighted. A more detailed description of this new class of solvents will 

be presented in Chapter IV of the present thesis. 

 

There are many excellent examples of enantioselectivity improvement related with ionic 

liquids design, but only the most relevant ones will be referred here since the concept 

underlying this approach is similar to that of medium engineering in organic 

solvents47,48,50-55. The first example of enantioselective biocatalysis in ionic liquids was 

presented by Kragl and co-workers46 who reported the screening of nine different 

lipases in ten different ionic liquids for the classical kinetic resolution of rac-1-

phenylethanol by transesterification with vinyl acetate. This study revealed that ionic 

liquids could be a very good alternative to organic media since the studied enzymes 

showed good activities and in some cases improved enantioselectivities compared with 

the same reaction in methyl tert-butyl ether (MTBE). Another observation was that 

quite different reactivity patterns were observed in the different ionic liquids.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 – Some of the ionic liquids most commonly used in biocatalysis. 
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Following this type of approach, Kim and co-workers54 reported that the use of ionic 

liquids in lipase-mediated kinetic resolution of racemic alcohols could markedly 

enhance enantioselectivity. In this case they tested several transesterification reactions 

of vinyl acetate with four different alcohol substrates in [bmim][BF4] and [bmim][PF6], 

employing lipases such as Candida antarctica lipase B and Burkolderia cepacia. The 

results were excellent since the enzymes always exhibited higher enantioselectivity 

when compared with THF (tetrahydrofuran) or toluene, and in some cases this increase 

was up to 25 times.  

 

The positive effect that ionic liquids have on enzyme enantioselectivity has also been 

shown for proteases. Zhao and Malhotra56 demonstrated that the ionic liquid N-ethyl 

pyridinium trifluoroacetate [epy][OTf] could  be a good substitute for organic solvents 

in the resolution of N-acetyl amino acid esters performed by Bacillus licheniforms 

alcalase (figure 2.8). Using the solvent mixture ionic liquid [epy][OTf]-water with the 

composition (15:85) instead of acetonitrile–water at the same composition, the reaction 

proceeded with higher enantioselectively in all cases studied (86–97 % ee). But the 

most interesting result obtained by these authors consisted in the fact that the  

production of two L-amino acids (L-serine and L-4-chlorophenylalanine), which could 

not be achieved in acetonitrile–water using alcalase, was successfully accomplished in 

the ionic liquid medium.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 - Enantioselective hydrolysis of N-acetyl amino acid esters by alcalase (adapted from Zhao 

and Malhotra56). 
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All the examples relating to solvent engineering show that there is not a generic solvent 

to tune enantioselectivity, whether it is an organic solvent or an ionic liquid. Thus every 

time that we need to design a new synthetic process we should always perform a careful 

choice of the solvent that is going to be used as reaction medium. This selection still has 

to be done experimentally, since the molecular and theoretical models related with this 

property are still in their infancy.  

 
When a solvent engineering approach is carried out, one of the parameters that have to 

be taken into account is the water activity. Whenever a reaction is performed in 

nonaqueous medium water activity must be monitored, especially when the purpose is 

to evaluate enzymatic properties in different solvents. This is due to the importance that 

water has on enzyme dynamics. As we saw in the previous chapter of this thesis, water 

acts as a molecular lubricant of the enzyme structure. The effect of water activity or 

water content on enzyme enantioselectivity is a controversial subject. Some 

authors79,80,84,85 refer that increasing water content can produce an enhancement in E, 

whereas others81 mention exactly the opposite, and still others say they saw no effect of 

water content on E78,82,83. The problem is that some of the studies take into account 

water concentration rather than water activity, which is directly correlated with enzyme 

hydration. With this in mind, Bovara and co-workers78 did a consistent study on the 

effect of water activity on enantioselectivity. These authors found that water activity did 

not have any impact on the enantioselectivity of several lipases . Later other authors77, 

including ourselves57, have tried to use this “rigidity switch” to enhance the 

enantioselectivity of several enzymes, but with no success. Most of the examples 

reported in the literature show that water is responsible for changes in enzyme activity, 

but not enantioselectivity.  This is quite interesting because it seems to suggest that 

whereas the flexibility introduced by water on the enzyme structure is crucial for 

enzyme activity, changes in the flexibility of the enzyme molecule as a whole are either 

not reflected on the regions of the enzyme more involved in enantiomer discrimination, 

or if they are, then the dynamics of the active site is not crucial for enzyme 

enantioslectivity.  

 

The addition of different chemical species to the reaction medium, such as salts or metal 

ions, has also been explored as a method to increase enantioselectivity in nonaqueous 

media. A good example of this strategy was published by Okamoto and Ueji58 who 
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reported that the addition of lithium chloride could significantly increase the 

enantioselectivity of Candida antarctica in the resolution of several 2-(4-substitute-

phenoxy)-propionic acids with butanol (figure 2.9). They found that the addition of a 

small amount of that salt (0, 5%) could enhance the enantioselectivity almost 200 times.  

This fact was explained by the increase in the reaction rate of the fast reacting 

enantiomer in the presence of the lithium salt. 

 

 

 

 

 

 

 

 

 

Figure 2.9 – Enantioselective resolution of 2-(4-substitute-phenoxy)-propionic acids. Reaction scheme 

used by Okamoto and Ueji58.  

 

Temperature is one of the most critical parameters in biocatalysis, since it can promote 

severe changes on enzymatic properties. Enzyme stability is the best example to 

evaluate the impact of this medium parameter, since is quite intuitive to understand why 

the enzyme suffers denaturation with an increase in temperature. But temperature can 

also be used to increase enzyme enantioselectivity, and this strategy is accepted as a 

simple and theoretically reliable one. There are examples in the literature where good E 

values were obtained by decreasing temperature to as low as -80 ºC, a temperature at 

which the lipase used was still active.  

 

Water is essential for enzyme activity. One obvious question is what happens to the 

water bound to the enzyme at very low temperatures? What is the impact on the enzyme 

of lowering temperature below that at which water normally freezes? If we think of bulk 

water, when temperature decreases we expect to find it in several states59. Below 273 K, 

bulk water can be in a supercooled state if crystallization is somehow prevented. 

Nevertheless crystalline hexagonal ice is formed if the temperature decreases to 235 K, 

and if we then rapidly decrease temperature to approximately 100 K, glassy water is 
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formed. Between the glass transition and the crystallization state, water is commonly 

referred as being in an “ultra-viscous” state. The low-temperature behavior of water that 

is in the vicinity of a protein surface is considerably different. For instance, the water 

that belongs to the first hydration shell (figure 2.10) does not crystallize; this water is 

referred to as “unfreezable”. Beyond this hydration shell water can in fact be 

crystallized on slow-cooling, or vitrified at faster cooling rates. Lüsher and co-workers60 

studied the water behavior in the hydration shell of myoglobin though calorimetry and 

infrared spectroscopy. They found that the transition temperatures for second hydration 

shell water were higher than for bulk water. This indicates that second hydration shell 

water is structurally and dynamically modified by the presence of the protein surface 

with which it interacts via water molecules of the first hydration layer. Water dynamics 

and protein dynamics are thought to be highly correlated. Indeed, hydrated proteins 

undergo a so-called “dynamical transition” at temperatures similar to those at which 

water undergoes phase changes. Above the dynamical transition, anharmonic motions 

on the protein are activated, allowing the protein to shift between conformational states. 

This flexibility is important for protein function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 –  A very simple illustration of hydration shell of a protein 
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Using a modified Eyring equation, we can experimentally evaluate the effect of 

temperature on enzyme enantioselectivity.  

 

 
 
 
 
 
The racemic temperature (Tr) is the temperature at which E=1 and the enzyme does not 

discriminate between enantiomers. In some cases there has been shown to exist an   

inversion temperature (Tinv), i.e. the plot of ln E vs. 1/T exhibits two linear regions. The 

point of intersection defines two sets of activation parameters, one above T>Tinv and 

one below. Some authors61, 62 have hypothesized that the existence of an inversion 

temperature is related with structural changes on the enzyme caused by the low 

temperature, or by the solvent, or both.  

 

We can find in the literature several examples of the manipulation of temperature to 

increase enantioselectivity61-68. Most of the examples reported involve low-temperature 

reactions, where enzymes are required to work at sub-zero temperatures. Sakai and co-

workers were among the first to present and elucidate this concept63-68. These authors 

reported that Burkolderia cepacia catalysed the kinetic resolution of 3-phenyl-2H-

azirine-2-methanol at -40ºC, with a 6-fold increase in E relative to room temperature, 

which represented a dramatic enhancement in the selectivity of this enzyme. Their 

results highlight a correlation between the alcohol type and the impact of temperature. 

The low temperature method has been found to be a very effective way to enhance 

enzyme enantioselectivity. Nevertheless, it also causes a pronounced decrease in 

enzyme activity.  For instance in the resolution of solketal by Pseudomonas fluorescens, 

E increased from 9 to 55 while enzyme activity decreased almost 10 times68. To 

overcome this limitation, these authors have implemented immobilization strategies.  

 

The enzymes we have been referring to were from mesophilic microorganisms, which 

means that these enzymes have an ideal temperature for function between 25-40 ºC. 

Would different effects of temperature on E be observed for enzymes from 

microorganisms that live in extreme environments? For instance can we increase E for a 

thermophilic enzyme just by setting the reaction temperature to near room temperature 

values?  Or if we think of psychrophilic enzymes, can an increase in E be obtained at 

RT 
+  ln E = 

R 
 ∆∆S - ∆∆H 
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even lower temperatures? A positive answer has already been found for the above 

question on thermophilic enzymes69-70. In fact, the studies on thermophilic enzymes 

were conducted previously to studies on mesophilic enzymes. In the late 1980s, Pham 

and co-workers69-71 conducted one such study with an alcohol dehydrogenase from 

Thermoanaerobacter ethanolicus, a microorganism capable of using higher sugars, such 

as xylose, xylan, cellobiose or even cellulose as a carbon source for alcohol production. 

At its optimum working temperature, which is around 55 ºC, that alcohol 

dehydrogenase exhibited a preference for (R)-2-butanol. But by reducing temperature to 

26 ºC, this preference could be inverted. The authors obtained the same kind of effect 

with 2-pentanol, and were able to determine that the preference of the enzyme for (S)-2-

pentanol should disappear at the racemic temperature of 75 ºC. This was not confirmed 

experimentally, however, because the enzyme was not stable at such high temperature. 

The authors correlated enzyme enantioselectivity with the different contributions from 

the activation enthalpy and entropy for the two enantiomers.   

  

Not many psycrophilic enzymes have been used in studies based on the low temperature 

method. This may not be as surprising as it might seem72-76 Psycrophilic organisms had 

to evolve in order to survive in extremely low temperature environments. This evolution 

is in some cases related with the development of alternative isolation systems which can 

be found, for instance, in some fishes, like the Omul, an endemic specie of Lake Baikal. 

Evolution is also reflected at the metabolic level, i.e. the enzymes that catalyze vital 

functions on metabolic pathways have to retain their activity in such environments. 

Thus the enzymes of psycrophilic organisms have in general three main differences 

when compared with mesophilic ones. The first one is a higher ion-pairing content, 

which is responsible for the reduction of protein folding due to the hydrophobic effect. 

Usually these enzymes have a higher content in arginine residues. Secondly, these 

enzymes have a lower number of hydrogen bonds and salt-bridges, and thus have higher 

flexibility. Finally these enzymes have a great accessibility to the active site in order to 

overcome the reduced diffusivity of substrates that is observed at very low temperatures. 

All three facts but especially the last two can explain why these enzymes are not so 

attractive for enantiomeric resolutions. However, high flexibility and highly accessible 

active sites make enantiomeric resolutions difficult, but not impossible. In fact, the most 

exploited enzyme in the present chapter and one of the most studied enzymes in 

biocatalysis has a psycrophilic origin. Candida antarctica lipase B, which NOVO 
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commercializes as NOVOZYM 435, is a recombinant enzyme obtained from a lipase 

isolated from the yeast C. antarctica. This yeast was isolated in Lake Vanda in 

Antarctica. Conceptually, it is very interesting that the origin of the enzyme should be 

reflected on the way that temperature affects its enantioselectivity. This could be an 

important parameter to explore. It is known that extremophilic enzymes work at very 

high or very low temperatures because their structures make that possible. This means 

that the major contributions to enantioselectivity in this case probably come from 

structural motifs.  

 

More needs to be learned on the impact of enzyme dynamics on enzyme 

enantioselectivity. Molecular modelling and rational design studies have been providing 

insight into the clarification of that relationship. Nevertheless a severe limitation of 

these studies is the fact that we cannot rationalize about modifications that are made far 

from the enzyme active site. For instance directed evolution approaches have led to 

great improvements in enzyme enantioselectivity, but the rationalization of these 

achievements is impossible to do with the current state-of-art. We understand the 

importance of the enzyme stereochemical pocket on enantioselectivity. It is reasonable 

to expect that the impact of mutations far from the enzyme active site have to be poured 

through the protein structure up to the active site, and this is impossible to simulate with 

the techniques currently available. This is a little like the butterfly effect in chaos theory. 

Correlating protein structure and function is proving to be more complex than might 

have been expected.  
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A brief introduction to the experimental section  

 

This chapter explores the enantioselectivity of cutinase towards secondary alcohols. In 

the beginning the goal was to enhance cutinase enantioselectivity in nonaqueous media. 

To this end our first approach consisted in a medium engineering approach where 

parameters like water activity and ionization state were explored. This first work gave 

us the idea that it is not so easy to affect cutinase enantioselectivity, at least in the case 

of the substrates/reactions tested. Modelling studies offered a rationale to explain the 

differences in E values obtained for two similar secondary alcohols. Rather than a 

drawback, the results from our first study led us to devise a strategy to change cutinase 

enantioselectivity. An attempt was made to determine “hot-spots” for that property in 

the cutinase stereochemical pocket. We designed our first mutants based on the results 

obtained by molecular modelling. We also realized that temperature could be a useful 

parameter to affect E. However, the modelling studies could not progress to the point of 

highlighting the impact of substrate structure on enzyme enantioselectivity. A better 

mapping of the cutinase active site is needed to find the switches that are essential for 

cutinase enantiomer discrimination.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 77 

Effect of Immobilization Support, Water 

Activity, and Enzyme Ionization State on 

Cutinase Activity and Enantioselectivity 

in Organic Media. 
 

Pedro Vidinha,1 Neil Harper,1 Nuno M. Micaelo,2 Nuno M.T. Lourenço,1 

Marco D.R. Gomes da Silva,1 Joaquim M.S. Cabral,3 Carlos A.M. Afonso,1 

Claudio M. Soares,2 Susana Barreiros1 

 

1REQUIMTE/CQFB, Departamento de Quı ´mica, FCT, Universidade Nova de 

Lisboa, 2829-516 Caparica, Portugal; telephone: +35 1 21 2949681; 

fax: +35 1 21 2948385; e-mail: sfb@dq.fct.unl.pt 
2Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 

Apt. 127, 2781-901 Oeiras, Portugal 
3Centro de Engenharia Biológica e Química, Instituto Superior Técnico, 

1049-001, Lisboa, Portugal 

Received 30 January 2003; accepted 19 June 2003 Published online 15 January 2004 in Wiley 

InterScience (www.interscience.wiley.com). DOI: 10.1002/bit.10780 

 

Keywords: Cutinase; Water activity; Enzyme ionization; 

Protonation state; Activity; Enantioselectivity; Organic 

Solvents. 

 

 

Biotechnol Bioeng 2004, 85, 442-449. 
 

 

 

 



 78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 79 

CONTENTS   

 
ABSTRACT  81 

 
INTRODUCTION  81 

 
MATERIAL & METHODS  83 

 
Materials  83 

 
Enzyme Immobilization  84 

 
Enzyme Assays  85 

 
Analysis  85 

 
RESULTS AND DISCUSSION  87 

 
CONCLUSION  94 

 
ACKNOWLEDGMENT  94 

 
REFERENCES  95 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 81 

ABSTRACT 

We studied the reaction between vinyl butyrate and 2-phenyl-1-propanol in acetonitrile 

catalyzed by Fusarium solani pisi cutinase immobilized on zeolites NaA and NaY and 

on Accurel PA-6. The choice of 2-phenyl-1-propanol was based on modeling studies 

that suggested moderate cutinase enantioselectivity towards this substrate. With all the 

supports, initial rates of transesterification were higher at a water activity (aw) of 0.2 

than at aw = 0.7, and the reverse was true for initial rates of hydrolysis. By providing 

acid–base control in the medium through the use of solid-state buffers that control the 

parameter pH-pNa, which we monitored using an organosoluble chromoionophoric 

indicator, we were able, in some cases, to completely eliminate dissolved butyric acid. 

However, none of the buffers used were able to improve the rates of transesterification 

relative to the blanks (no added buffer) when the enzyme was immobilized at an 

optimum pH of 8.5. When the enzyme was immobilized at pH 5 and exhibited only 

marginal activity, however, even a relatively acidic buffer with a pKa of 4.3 was able to 

restore catalytic activity to about 20% of that displayed for a pH of immobilization of 

8.5, at otherwise identical conditions. As aw was increased from 0.2 to 0.7, rates of 

transesterification first increased slightly and then decreased. Rates of hydrolysis 

showed a steady increase in that aw range, and so did total initial reaction rates. The 

presence or absence of the buffers did not impact on the competition between 

transesterification and hydrolysis, regardless of whether the butyric acid formed 

remained as such in the reaction medium or was eliminated from the microenvironment 

of the enzyme through conversion into an insoluble salt. Cutinase enantioselectivity 

towards 2- phenyl-1-propanol was indeed low and was not affected by differences in 

immobilization support, enzyme protonation state, or aw.  

 

INTRODUCTION 

In nonaqueous solvents enzymes can catalyze reactions that are difficult or impossible 

to carry out in water, become more stable and can exhibit altered selectivity (Klibanov, 

2001). Enzyme hydration is one of the fundamental parameters that affect enzymatic 

properties in nonaqueous media, and is now usually recognized as such. Another 

parameter that can have a strong impact on enzyme performance is the protonation state 

of the enzyme. Charged residues on the protein either form ion pairs with other residues 

or with counter-ions (Halling, 2000). Unlike in water, in low dielectric media counter-

ions must be more closely associated with the protein. Therefore, for example, 
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deprotonation of a carboxyl group requires that a cation such as Na+ available to form 

the ion-pair enzyme-COO- Na+ and allow the release of H+. In such media, an enzyme 

exhibits pH memory, i.e., its catalytic activity reflects the pH of the aqueous medium 

from which it was obtained (Xu and Klibanov, 1996). However, pH memory can be lost 

through changes in acid–base conditions caused by the production of acidic or basic 

species, or by direct addition of ion-exchangers such as zeolites (Fontes et al., 2002; 

Harper and Barreiros, 2002) or salt hydrates (Fontes et al., 2003a). The impact of such 

species may be particularly important when using forms of enzyme where buffer salts 

are present in relatively low concentrations, as is the case of immobilized preparations. 

 

Optimization of the fundamental parameters that affect enzymatic properties requires 

the ability to standardize reaction conditions in terms of each of those parameters 

individually. The thermodynamic water activity (aw) is the parameter that best reflects 

enzyme hydration (Bell et al.,1995). aw may be fixed by pre-equilibrating reaction 

components with saturated salt solutions through the gas phase (Halling, 1994) a 

method that does not prevent aw from changing when water itself is a reactant or a 

product of the reaction, by using salt hydrate pairs in situ (Halling, 1992; Zacharis et al., 

1997a), and very conveniently in the case of polar solvents, by direct addition of water 

to the reaction medium (Bell et al., 1997). The protonation state of the enzyme may be 

fixed with organosoluble buffers (Harper et al., 2000a) or with solid-state buffer pairs 

(Harper et al., 2000b; Partridge et al., 2000; Zacharis et al., 1997b). Remarkable enzyme 

activity enhancements have been obtained with buffers that control the protonation state 

of acidic residues by setting a fixed exchange potential of H+ and Na+ (i.e., buffers that 

fix the parameter pH-pNa) (Partridge et al., 2000), in particular those buffers that 

promote the formation of the enzyme–COO- Na+ ion pairs. The enzymes used in these 

studies are lipases and proteases, which require a formal negative charge on the active 

site for full activity and are usually impaired catalysts in acidic conditions. Promotion of 

a more basic and catalytically competent form of enzyme is also thought to explain the 

rate enhancements obtained when using zeolite NaA (Fontes et al., 2002; Harper and 

Barreiros, 2002). The exchange potential of H+ and Na+ can be measured with an 

organosoluble chromoionophoric indicator (Harper et al., 2000b). One of the great 

advantages of enzymatic catalysis is selectivity. With a growing demand for enantiopure 

pharmaceuticals, asymmetric conversions will likely be a major application of 

nonaqueous biocatalysis (Klibanov, 2001). It is impossible, at present, to predict the 
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effect of aw on enzyme enantioselectivity, which has been found to decrease, increase, 

or show no dependence on aw (Carrea et al., 1995; Fontes et al., 1998; Pepin and Lortie, 

1999; Rariy and Klibanov, 2000; Persson et al., 2002). Counterion effects on both 

enzyme and substrate can have a significant impact on enzyme enantioselectivity in 

nonaqueous solvents (Ke and Klibanov, 1999; Okamoto and Ueji, 1999, 2000; Shin et 

al., 2000; Hsu and Clark, 2001; Quiro´s et al., 2001). However, there is only one report 

where enzyme enantioselectivity has been directly correlated with enzyme protonation 

states, fixed in situ with solid-state buffers (Quiro´s et al., 2001). 

 

Cutinase is an extracellular enzyme excreted by the plant pathogen Fusarium solani pisi 

(Carvalho et al., 1999). It belongs to the class of serine hydrolases and is a very versatile 

enzyme that catalyzes synthetic and hydrolytic reactions on a wide range of substrates. 

The structure of cutinase is well known (Martinez et al., 1992) and that has helped the 

elucidation of its function (Carvalho et al., 1999). In the present study we report on the 

effects of aw and enzyme protonation state on the activity and enantioselectivity of 

cutinase immobilized on different supports. The organosoluble indicator (Harper et al., 

2000b) was used to assess the efficiency of solid state buffers in controlling acid–base 

conditions and thus the protonation state of the enzyme. We also look at how the latter 

parameter affects the preference for the nucleophile in the deacylation step of the 

reaction mechanism, i.e., how it affects the competition between hydrolysis and 

transesterification. 

 

MATERIALS & METHODS 

 

Materials 

Fusarium solani pisi cutinase was produced by an Escherichia coli WK-6, which was a 

gift from Corvas International (Gent, Belgium). The production, extraction, and 

purification of the enzyme were done following a protocol developed in one of our 

laboratories (Centro de Engenharia Biológica e Química, Instituto Superior Técnico), 

adapted from a published method (Lauwereys et al., 1990). The enzyme purity was 

controlled by electrophoresis and isoelectric focusing. The estereolytic activity of the 

enzyme (30 nM) was determined spectrophotometrically by following the hydrolysis of 

p-nitrophenyl butyrate (0.56 mM) at 400 nm in a 50 mM potassium phosphate buffer at 

pH = 8.5. (R, S)-2-phenyl-1-propanol (97% purity), (R)- and (S)-2- phenyl-1-propanol 
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(98% purity), zeolite molecular sieves 4A° (powder, zeolite NaA), zeolite Y molecular 

sieves (powder, zeolite NaY) were from Aldrich, Accurel EP 700 (PA-6 powder, 

particle size < 800 Am) was from Akzo Nobel, vinyl butyrate (99% purity) was from 

Fluka, sodium butyrate, tridecane, 3-(cyclohexylamino)-2-hydroxy-2-propanesulfonic 

acid (CAPSO), 3-[(1,1-dimethyl-2-hydroxyethyl) amino]-2-hydroxypropanesulfonic 

acid (AMPSO), 3-(N-morpholino) propanesulfonic acid (MOPS), L-glutamic acid 

(GLU) and their sodium salts (CAPSO-Na, AMPSO-Na, MOPS-Na, GLU-Na) were 

from Sigma, acetonitrile, potassium acetate, potassium carbonate, strontium chloride 

were from Merck, Hydranal Coulomat A and C Karl-Fischer reagents were from 

Riedel- de-Häens. The solvent, substrates, and tridecane were stored over molecular 

sieves 3A° (Merck). Preparation of (R,S)-2-phenyl-1-propyl butyrate: To a stirred 

solution of (R,S)-2-phenyl-l-propanol (0.503 g, 3.7 mmol) and triethylamine (0.62 mL, 

1.2 eq) in anhydrous dichloromethane (20 mL), under argon atmosphere and at room 

temperature, was added dropwise butyryl chloride (0.42 mL, 1.1 eq). After completion 

of the reaction (TLC), the reaction mixture was partitioned between diethyl ether (100 

mL) and hydrochloric acid (100 mL, pH = l), the organic phase was washed with a 

saturated solution of NaHC03 (100 mL), dried (MgSO4), evaporated under vacuum and 

purified by silica gel flash chromatography (eluent: 9.5:0.5 n-hexane/diethyl ether) to 

give the desired ester (0.704 g, 93 %) as a clear liquid. The indicator used was 5-(4-

cyanophenyldiazo)-2-hydroxy-1,3-xylyl-18-crown-5. Its protonated form was 

synthesized according to a method given in the literature (Harper et al., 2000b). 

 

Enzyme Immobilization 

Cutinase was immobilized by deposition, according to the method developed by 

Serralha et al. (1998). The lyophilized enzyme was dissolved in a 50 mM sodium 

phosphate buffer solution (10 mg mL-1 or 6.3 mg mL-1 of enzyme in the case of zeolites 

and Accurel, respectively) at pH 8.5 unless stated otherwise. The support was added to 

the solution (25 mg of cutinase per g of support) and after vortex mixing for 1 min, the 

preparation was dried under vacuum for at least 24 h. The average yield of 

immobilization was (51 ± 8) % for zeolite NaA, (72 ± 12) % for zeolite NaY and (67 ± 

12) % for Accurel, as determined by a modified Lowry method (Lowry et al., 1951) that 

involved a first step of enzyme desorption via alkaline hydrolysis. The latter method 

was also used to measure the average protein content of the preparations after 24 h of 

reaction at the three values of aw tested. Approximately 7% of the immobilized protein 
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was washed out from zeolite NaA and Accurel and this value did not depend on aw. In 

the case zeolite NaY, the amount of protein desorbed increased with increasing aw: 

approximately 1% at aw = 0.22, 2 % at aw = 0.43, 7% at aw = 0.71. These values were 

used in all calculations. 

 

Enzyme Assays 

The enzyme preparations were pre-equilibrated for about 2 days through the vapor 

phase with saturated salt solutions at 25 ºC, to achieve the values aw = 0.22 (potassium 

acetate), aw = 0.43 (potassium carbonate) and aw = 0.71 (strontium chloride), taken 

from the literature (Greenspan, 1977). When used, solid-state buffers were pre-

equilibrated together with the enzyme preparations. Fifty milligrams of the pre-

equilibrated enzyme preparation and the solid-state buffer when required for the 

experiment (except where otherwise stated, 128 mg of the sodium form of the salt and 

32 mg of the more acidic form) were placed in a screwcapped polypropylene vial, to 

which 3.5 mL of acetonitrile were added, followed by 2-phenyl-1-propanol (100 mM), 

tridecane (14.5 mM, used as internal standard for GC analysis), water to give the 

required aw (amount of water derived from the data given by Bell et al., 1997) and the 

indicator (50 AM) when required. The mixture was stirred (with a stirring bar) for 1 h at 

35 ºC before adding vinyl butyrate (300 mM) to start the reaction. 

 

Analysis 

Both the reaction conversion and the enantiomeric excess of the remaining alcohol 

substrate (ees) were measured by GC analysis performed with a Trace 2000 Series 

Unicam gas chromatograph. Column: 30 m - 0.32 mm I.D. homemade fused silica 

capillary column coated with a 0.25 Amthickness film of 15% heptakis-(2,3-di-O-

methyl-6-O-tertbutyldimethylsilyl)-h-cyclodextrin in SE 52 (DiMe). Oven temperature 

program: 90 ºC for 5 min, 90–136 ºC ramp at 0.8ºC min 1, 200º C for 5 min. Injection 

temperature: 250 ºC. Flame ionization detection (FID) temperature: 250 ºC. Carrier gas: 

helium (2.0 cm3 min-1). Split ratio:1:20. The retention times were 12.37 min (butyric 

acid), 36.48 min (tridecane), 42.22 min ((R)-2-phenyl-1-propanol), 43.42 min ((S)-2-

phenyl-1-propanol), 58.48 min ((S)-2-phenyl-1-propyl butyrate), 58.81 min ((R)-2-

phenyll- propyl butyrate). No products were detected in assays carried out without 

enzyme. The enantiomeric ratio, E, was calculated from the expression                         

E= {ln[(1-c)(1-ees)]}/{ln[(1-c)(1+ees)]}, where c is the conversion (Straathof and 
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Jongejan, 1997) and ees is given for the (R)-enantiomer, by using data obtained for the 

racemic substrate along the time course of the reaction (whenpossible, up to a 

conversion of 0.5). We also calculated E from the ratio of the initial reaction rates for 

the single enantiomers (v(R)-enantiomer/v(S)-enantiomer), assuming these rates were 

proportional to the respective specificity constants (Straathof and Jongejan, 1997). The 

selectivity for the ester product was quantified by the ratio of the initial rates of 

formation of the ester and of the acid. When using the buffer CAPSO, butyric acid 

changed completely into sodium butyrate, causing the removal of butyrate from the 

solution. This also occurred with AMPS0 buffer, although to a lesser extent. Under 

these circumstances, routine GC analysis did not allow the measurement of the butyric 

acid effectively formed via hydrolysis. We thus quantified sodium butyrate by 

recovering the solids present in the reaction mixture at the end of reaction, filtering the 

solids and drying them in an oven at 70 ºC for at least 12 h. The resulting powder was 

resuspended in a solution of acetonitrile/HCl (60:40 v/v) that was shaken on a rotary 

shaker for 3 h, a period of time seen to be adequate for the recovery of all the sodium 

butyrate in the form of butyric acid. The latter was analyzed by GC.  

 

To validate this method, we spiked the medium with different amounts of butyric acid 

in the presence of CAPSO or AMPSO buffers. Following the treatment indicated above, 

the amount of butyric acid recovered agreed with the amount added initially. To monitor 

the formation of butyric acid to calculate initial rates of hydrolysis for reactions done in 

the presence of the latter buffers, several reactions were run simultaneously, were 

stopped at given times during the period required for initial rate measurements, and 

subjected to the treatment described above.  

 

The UV-visible spectra of the indicator were measured (blanked against acetonitrile or, 

in the case of reaction, blanked against a 100 mM solution of 2-phenyl-1-propanol in 

acetonitrile), using a Beckman Coulter DU 800 spectrophotometer. The spectra obtained 

were similar to those given by Harper et al. (2000b). The concentrations of the two 

forms of the indicator were calculated from the absorbance at the Emax for the two 

peaks taking into account the spectral overlap (Harper et al., 2000b). The Emax for the 

protonated and deprotonated indicator were 360 nm and 484 nm, respectively, in 

acetonitrile. The absorption coefficients for the protonated and deprotonated indicator 

were 0.0201 and 0.0004  µM-1cm-1  at 360 nm and 0.0024 and 0.0279  µM-1cm-1  at 484 
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nm. To test the sensitivity of the indicator, we analyzed its response to increasing 

concentrations of butyric acid (Fig. 1). Very small concentrations of butyric acid caused 

a very large increase in the protonated fraction of the indicator up to about 50%; from 

this value on, the indicator became less sensitive to changes in the acid–base conditions 

of the medium. Water concentration was measured by direct Karl-Fischer titration after 

water equilibration and at the end of the reaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. - Indicator response to butyric acid in acetonitrile. The indicator concentration 
was 50 µM. 
 

 

RESULTS AND DISCUSSION 

 

In an earlier study (Fontes et al., 1998), we showed that cutinase immobilized on zeolite 

NaA was virtually 100% selective towards the (R)-enantiomer for the resolution of 

(R,S)-1-phenylethanol and used computer modeling to elucidate this fact. To select a 

substrate that cutinase resolved less efficiently, we again focused on the deacylation 

step of the reaction mechanism, which involves the chiral agent, and modeled catalysis 

from differences in stabilization of the tetrahedral intermediate (Colombo et al., 1999, 

Warshel et al., 1989). In the case of 1-phenylethanol, this intermediate is well buried in 

the active site (Fig. 2A), which will result in large differences in substrate-enzyme 
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interactions between the two enantiomers. To make the enzyme less selective, the 

stereogenic center was moved towards the outside of the active site. 2-phenyl-1-

propanol yields a tetrahedral intermediate that meets these requirements (Fig. 2C) and 

was the substrate selected for the present work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Modeling studies of tetrahedral intermediates in the active site of cutinase. The details of 

these studies (Micaelo et al., to be published) are similar to those in previous work (Soares et al., 2003). 

The molecular dynamics simulations of cutinase with the tetrahedral intermediate are made in n-hexane, 

with full neutralization of ionizable groups and considering a 5% (w/w) water content associated with the 

protein. GROMOS96 (van Gunsteren et al., 1996; Scott et al., 1999) was used in the calculations. The 

conformations used in (A) [(R)-1-phenylethanol] and (C) [(R)-2-phenyl-1-propanol] are average 

structures (1 ns) obtained after 2 ns of equilibration. The molecular surface of the protein is rendered 

without considering the tetrahedral intermediate; the latter is rendered using sticks. An arrow indicates the 

methyl group attached to the stereogenic centre. (B) and (D) contain the (R)-enantiomer conformation 

shown in (A) and (C), overlaid with an average structure of the corresponding (S)-enantiomer. Only 

important residues of the active site are rendered using sticks. Some relevant residues are labeled. The 

label ‘‘OX’’ indicates the oxyanion hole, found in all serine proteases. For clarity, the carbon atoms of the 

(R)-and (S)-enantiomers are colored green and blue,respectively. The figures were prepared using Pymol 

(DeLano, 2002). 
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Cutinase is known to perform better for protonation states initially set by a pH of 

immobilization between 7 and 8.5 (Serralha, 1999); we selected the value 8.5. At aw = 

0.2, the most hydrophobic support, Accurel, promoted transesterification to a higher 

extent than the two zeolites (Fig. 3). Under these conditions, moderate hydrolysis also 

took place, reaching higher and lower levels with zeolite NaA and Accurel, respectively. 

The formation of butyric acid changed the acid-base conditions of the medium markedly, 

as shown by the response of the indicator. 
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Figure 3. Effect of immobilization support (zeolite NaA, zeolite NaY, Accurel PA-6) and aw on 

indicator response (bars), initial rates of transesterification (full squares), and initial rates of hydrolysis 

(open circles). Light green and dark green bars, protonated fraction of indicator at 0 h and at the end of 

the period used to measure initial rates, respectively. The enzyme was immobilized at pH 8.5. 

 

The values indicated in the figure for the protonated fraction of the indicator at 0 h in 

the presence of cutinase immobilized on the zeolites reveal the relative acidity of the 

zeolite supports. Zeolite NaA is highly basic and deprotonated the indicator almost 

completely; zeolite NaY is more acidic. In this case, the response of the indicator at 0 h 

did not change with aw and was the same as that obtained with the supports alone, 

without enzyme. Accurel, on the other hand, does not have ionogenic groups. Thus, one 

might expect that the initial protonated fraction of the indicator in the presence of 

cutinase immobilized on this support would reflect the protonation state of the enzyme, 

and possibly be different from the protonated fraction of the indicator in the presence of 

Accurel alone. This was in fact observed, the two values being about 27% as shown in 
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the figure and about 85% in the absence of enzyme. Increasing aw eliminated this 

difference, possibly due to favoured deprotonation of the carboxyl groups on cutinase as 

a result of improved hydration of the enzyme-COO-Na+ ion pairs. In all three cases, 

transesterification rates were lower at aw = 0.7. The extent of hydrolysis increased 

substantially, as might be anticipated, and confirmed the trend observed at low aw. The 

larger amounts of acid formed protonated the indicator virtually completely. 

 

The protonation state of cutinase at the start of reaction is set by the pH at which 

immobilization was carried out but may be subsequently altered by the formation of the 

acid by-product. One question that we sought to answer was whether rates of 

transesterification could be improved by providing acid–base control in the medium. In 

a recent study with subtilisin Carlsberg, we observed that the transesterification activity 

of the enzyme increased substantially with increasing aw in the presence of a relatively 

basic solid-state acid–base buffer (Fontes et al., 2003b).  

 

Another issue that we sought to investigate was whether buffers that set a more basic 

protonation state of cutinase affected the competition between 2-phenyl-1-propanol and 

water for the acyl-enzyme. To standardize the acid-base conditions of the medium, we 

used buffers of different aqueous pKa. We restricted the aw range of the experiments to 

values at which the buffers are not reported to form hydrates (Harper et al., 2000b), with 

the exception of CAPSO buffer at aw = 0.7. Nonetheless, in a hydrophilic solvent such 

as acetonitrile this should not impact on aw significantly, and CAPSO should still set a 

fixed pH-pNa value (Harper et al., 2000b). We selected cutinase immobilized on zeolite 

NaY for these studies. MOPS buffer set initial conditions that were sufficiently acidic to 

cause virtually complete protonation of the indicator; it was thus impossible to monitor 

possible changes in acid–base conditions brought about by the formation of the acid 

byproduct. The same applied to GLU buffer. In the presence of CAPSO buffer, the 

protonated fraction of the indicator remained approximately constant throughout the 

reaction: at aw = 0.2, 0.4, 0.7, it changed from (10.9 ± 3.1)% at 0 h to (14.3  ±  2.0) % at 

the end of the period used to measure initial rates. The same applied to AMPSO buffer: 

e.g., at aw = 0.2, 0.4, the protonated fraction of the indicator changed from (28.1 ± 2.1) 

% at 0 h to (35.5 ± 3.0) % at the end of the period used to measure initial rates. Thus, 

these buffers effectively controlled the acid-base conditions of the medium. It is 

reasonable to assume that the same applies to the other buffers tested. 
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At all the aw values tested none of the buffers were able to improve the rates of 

transesterification obtained with the blanks (no added buffer) when the enzyme was 

immobilized at an optimum pH of 8.5 (Fig. 4). Although aqueous pKa alone does not 

fully account for the acid–base behavior of the solid buffers in nonaqueous media 

(Fontes et al., 2003a), the relatively low pKa of GLU might suggest a comparatively 

poorer performance of the enzyme in the presence of this buffer, unlike what has been 

observed. At aw = 0.7, GLU even led to rates of transesterification that were very similar 

to those obtained with the blank, and much higher than those measured in the presence 

of AMPSO.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Effect of solid-state acid-base buffer and aw on initial rates of transesterification (bars) for 

cutinase immobilized on zeolite NaY at pH 5.0 (dark green bars, left axis) and at pH 8.5 (light green bars, 

right axis). Also shown are total initial reaction rates (line) for the enzyme immobilized at 8.5 (except for 

AMPSO buffer at aw= 0.5, 0.7, where the acid was not analyzed). Buffer aqueous pKa (at 25 ºC): 4.3 

(GLU/GLU.Na), 7.2 (MOPS/MOPS.Na), 9.0 (AMPSO/ AMPSO.Na), 9.6 (CAPSO/CAPSO.Na). 

 

No products were detected in experiments with CAPSO buffer. Cutinase thus behaves 

very differently from subtilisin Carlsberg (Fontes et al., 2002, 2003b; Harper and 

Barreiros, 2002). Although the two enzymes share a similar active site architecture and 

catalytic mechanism, they have substantially different structures, and this must account 
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for the observed differences in behaviour. An increase in aw first promoted 

transesterification, but at aw = 0.7 the transesterification activity of the enzyme was 

significantly impaired. However, due to a continuous increase in the rates of hydrolysis, 

total enzyme activity showed a steady increase with increasing aw. As seen in Table I at 

constant aw changes in acid–base conditions of the medium did not impact on the 

selectivity for the ester product. The latter declined significantly as aw increased, as 

already observed in Figure 3. 

 

 

Table I. Effect of solid-state acid– base buffer and aw on the selectivity for 

the ester product for cutinase immobilized on zeolite NaY at pH = 8.5. The 

blanks were without buffer. 

  
aW = 0.2 

 
aW = 0.4 

 
aW = 0.5 

 
aW = 0.7 

blank 3.6 ± 1.3 2.6 ± 0.5 0.75 ± 0.02 0.079 ± 0.020 
GLU 3.2 ± 0.9 2.7 ± 1.0 0.67 ± 0.23 0.12 ± 0.04 

MOPS 3.6 ± 1.3 2.4 ± 0.8 - - 
AMPSO 2.4 ± 0.8 2.7 ± 0.7 - - 
CAPSO 2.4 ± 1.0 1.8 ± 0.7   

 

The data obtained for the indicator in the blank experiment at aw = 0.2 suggests that at 

this aw the enzyme in the blank is exposed to a less acidic medium than that imposed by 

GLU or MOPS, and more acidic than that imposed by AMPSO or CAPSO. At aw = 0.4, 

the indicator protonated completely in the blank and it is only possible to say that the 

enzyme was then exposed to a more acidic medium than that set by AMPSO or CAPSO.  

 

Why were none of the buffers able to at least match the performance of the blanks up to 

aw = 0.5? Experiments done with twice as much buffer (320 mg) reproduced the results 

obtained when using the standard amount of buffer. On the other hand, when we 

replaced the buffer with an equal amount of zeolite NaY support (160 mg), the 

transesterification activity measured at aw = 0.4 reproduced that displayed by the blank 

at the same aw. Thus, our results suggest that when the enzyme is immobilized at an 

optimum pH of 8.5 none of the buffers are able to improve the protonation state of the 

enzyme from the standpoint of enzyme activity. The situation changed when the 

enzyme was immobilized at the sub-optimal pH of 5. This had a markedly negative 

impact on enzyme activity, which fell to about 2% of that exhibited by the enzyme 



 93 

0,0

0,4

0,8

1,2

bl
an

k  
0 .

1

b l
a n

k 
0 .

2

b l
a n

k  
0.

4

bl
an

k  
0 .

5

b l
a n

k 
0.

7

G
L

U
 0

.2

M
O

PS
 0

.2

C
A

PS
O

 0
. 2

 

M
O

PS
 0

. 4

C
A

PS
O

 0
.4

E

NaA NaY Acc

immobilized at pH 8.5. In this case, all the buffers tested enhanced enzyme activity 

relative to the blank (Fig. 4), MOPS buffer clearly leading to a better performance of the 

enzyme. Again, the result obtained for GLU buffer confirms the tolerance of cutinase to 

relatively acidic conditions. Cutinase was indeed less enantioselective towards 2- 

phenyl-1-propanol than 1-phenylethanol (Fig. 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Effect of immobilization support, solid-state acid– base buffer and aw on the enantiomeric 

ratio, E. The enzyme was immobilized at pH 8.5. 

 

The simulations presented in Figure 2B and 2D show that, while the two enantiomers of 

1-phenylethanol are constrained in the same position of the active site, the 

corresponding enantiomers of 2-phenyl-1-propanol have a higher conformational space 

available, which evidences the lower discriminating power of cutinase towards the latter. 

 

The E values given in Figure 5 were derived from measurements of reactions done with 

the racemic substrate. There was good agreement between E values at different reaction 

times, which we used to calculate an average at each aw. There was also good agreement 

between the data in the figure and E values derived from measurements of initial 

reaction rates for the single enantiomers (E = 1.0 ± 0.3 at aw = 0.2 and E = 1.1 ± 0.2 at 

aw = 0.7). Quiro´s et al. (2001) were able to substantially improve both the activity and 

the enantioselectivity of Candida antarctica lipase B by using CAPSO buffer or 
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organo-soluble bases of high pKa to control the protonation state of one of the residues 

of the catalytic triad. The authors found that the accumulation of the acid by product in 

the microenvironment of the enzyme had a negative effect on enantioselectivity similar 

to that of increasing hydration. Cutinase enantioselectivity, however, was not affected 

by the absence or presence of acid–base buffers, by aw or by the immobilization support. 

 

 

CONCLUSIONS 

 

Providing acid–base control has been shown in recent studies to be a powerful tool to 

modulate the activity and enantioselectivity of enzymes whose catalytic mechanism 

requires changes in the protonation states of residues at the active site (Quiro´s et al., 

2001; Fontes et al., 2002). This is the case of cutinase. However, changes in the acid–

base conditions of the medium directed towards changes in the protonation state of 

acidic residues on the enzyme had no impact on cutinase enantioselectivity. This 

approach was also not successful in improving the transesterification activity of the 

enzyme when it was immobilized at an optimum pH. Cutinase and the other serine 

hydrolases tested in these studies have a common catalytic triad but markedly different 

structures that might be the cause for the observed differences in enzyme behavior. In 

future studies we will try to elucidate these issues, and in particular, use protein 

engineering to improve cutinase enantioselectivity. 
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ABSTRACT 

 

We describe a concerted approach towards the rationalization of the enantioselectivity 

(E) of cutinase from Fusarium solani pisi in nonaqueous media. Simulations of wild-

type cutinase with the tetrahedral intermediate of the substrate 1-phenylethanol built in 

the active site provided the basis for a protein engineering approach focused on flanking 

active site residues and aimed at decreasing the marked preference of the enzyme for the 

(R)-enantiomer of that substrate. Potentially interesting mutants were constructed in 

silico and the differences in the free energies of activation for the two enantiomers were 

calculated, confirming the initial choice of target residues. Two mutants bearing single-

point mutations were constructed by site-directed mutagenesis. Despite the similar 

relative free energy difference between (R)- and (S)-tetrahedral intermediates for the two 

mutants selected, the L189A mutant exhibited an enantioselectivity towards 1-

phenylethanol that was experimentally indistinguishable from that of the wild-type 

enzyme, whereas the Y119A mutant was much less selective towards the (R)-

enantiomer of the alcohol. This was possibly due to the absence of the favorable van der 

Waals interactions between this enantiomer and Tyr 119, which were found to strongly 

stabilize the transition state for the wild-type enzyme. To expand the body of data on E 

for cutinase for testing the existing model, experimental data was generated for 

transesterification reactions between secondary alcohols and vinyl esters of varying 

chain-length. The accommodation of acyl donor alkyl chains up to butyl in the enzyme 

active site did not have any significant impact on enzyme enantioselectivity, which in 

that case depended solely on the alcohol. The size of 2-butanol afforded only marginal 

discrimination that increased and yielded similar values for 2-pentanol and 2-octanol, 

although far from matching the extremely high enantioselectivity observed for 1-

phenylethanol. By using vinyl laurate as the acyl donor, the discrimination ability of 

cutinase towards 2-octanol increased substantially, suggesting a packing arrangement in 

the active site that stabilizes the -(R)-enantiomer relative to the -(S)-enantiomer. The 

results obtained at lower temperatures confirm the role of this methodology as a second 

order approach towards the fine tuning of enzyme enantioselectivity. In fact, only in the 

cases where cutinase already showed a more marked preference for one of the 

enantiomers, did this preference become more pronounced as temperature was lowered.  
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INTRODUCTION 

 

Selectivity is considered the key enzymatic property. More than any other property, 

selectivity has been studied, rationalized, improved and used to illustrate several 

engineering concepts related with reaction/separations techniques. Most of the interest 

in this property stems from the tremendous potential that enzymes have in the resolution 

of racemic mixtures, and the utility of this strategy in the pharmaceutical industry 

(Krishna, 2002, Turner, 2003, Schoemaker, 2003, Chikusa et al., 2003, Ghanem and 

Abul-Enein, 2005]. Any factor that can enhance the enantiomeric ratio (E) has been the 

target of many studies. In the last decade, high-tech approaches such as in vitro 

evolution (Reetz, 2003) and in silico rational design (Hult and Berglund, 2003) have 

been successfully explored. In spite of the remarkable results obtained with the latter 

approaches, less resource demanding ones such as medium engineering keep being 

useful (Bornscheuer and Kazlauskas, 1999). The enhancement of E using temperature 

falls in that category. 

 

The impact of temperature on E was first reported by Keinan et al. (1986) in the 

reduction of ketones by an alcohol dehydrogenase in a temperature range between 7 and 

50 ºC, and also by Lam et al. (1986) in the hydrolysis of esters by pig liver esterase 

between -10  and  20 ºC. Later this fact was rationalized by Pham et al. (1989) and 

Pham and Phillips (1990) who used a thermophilic alcohol dehydrogenase in the kinetic 

resolution of secondary alcohols between 15 and 65 ºC. These authors introduced the 

concept of racemic temperature (Tr). In the light of the transition state theory, Tr is the 

temperature at which the enzyme does not discriminate the two enantiomers, i.e. E = 1. 

E is related to the difference in Gibbs activation energy for both enantiomers, ∆∆G# , 

through ∆∆G# = −RT ln E = ∆∆H# − T ∆∆S#, where ∆∆H#  e ∆∆S#  are the differences in 

activation enthalpy and entropy, respectively, for both enantiomers. In the case of 2-

butanol, Pham and Phillips observed an inversion in the enantioselectivity of the 

enzyme by decreasing temperature from 65 to 26 ºC. This example shows that 

temperature can be a critical parameter for enzymatic kinetic resolutions. 

 
Holmberg and Hult (1991) have also considered temperature an important tool to tune 

the enantioselectivity of Candida rugosa lipase. They found that in both aqueous and 

nonaqueous media the E of this lipase could be enhanced between 6 and 37 ºC, a 
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temperature range where enzyme activity did not change substantially. Based on his 

previous results, Phillips (1996) suggested that the increase in E caused by temperature 

could be related with small variations in reaction stereochemistry. This author also 

distinguished the different thermodynamic contributions that were responsible for the 

enantioselectivity enhancement below and above the racemic temperature: for T < Tc, 

the dominant contribution is ∆∆Η# and E should decrease with the increase in T until E 

equals 1 and T = Tr, whereas when T > Tr, T∆∆S# dominates and E should increase 

together with T. The ∆∆H#  term reflects the binding modes of both enantiomers in the 

enzyme stereochemical pocket, whereas ∆∆S# is related with the hydrophobic 

interactions between the enantiomers and the solvent and also with the loss of their 

rotational and translational mobility in the transition state. 

 
The effect of temperature on enzyme enantiomeric discrimination has been explored 

since these early papers. Nevertheless its applicability increased a lot with the advent of 

nonaqueous biocatalysis (Zaks and Klibanov, 1984). In these media, enzymes are more 

stable than in water and can catalyze reactions that are thermodynamically difficult to 

carry out in water. In nonaqueous media enzymes can also exhibit a completely 

different selectivity than in water, and more importantly, this property can be tuned by 

the nature of the solvent (Klibanov, 2001, Krishna, 2002). Organic media became very 

useful to study the temperature effect on enzymes that exhibit a low enantioselectivity at 

room temperature, since many remain in the liquid state at the low temperatures 

required to obtain practically useful E values (Ljubovic et al., 1999). We can find in the 

literature many examples of the application of the so-called low temperature method to 

increase enantioselectivity (Sakai et al., 2003 b, Miyazawa et al., 1997, Wegman et al., 

1999, Ljubovic et al., 1999, Aoyagu et al., 2003). Sakai et al. (1997) were the first to 

present and elucidate this concept. These authors reported that Burkolderia cepacia 

catalysed the kinetic resolution of 3-phenyl-2H-azirine-2-methanol at -40ºC, with a 6-

fold improvement in E relative to room temperature. These authors implemented 

immobilization strategies in order to reduce the negative impact of temperature on 

reaction rate (Sakai et al., 2003 a, 2003 b, 2005). 

 
In the present work we try to elucidate the enantiomeric discrimination ability of 

cutinase using both rational design and a medium engineering approach based on 

temperature. From a previous study (Fontes, et al., 1998) we knew that cutinase was 
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100 % selective towards the (R)-enantiomer of 1-phenylethanol in the transesterification 

of this alcohol with vinyl butyrate. Based on the model for cutinase developed at that 

time, we designed mutants that would be less enantioselective towards 1-phenylethanol 

by way of a reduction in the sterical hindrance of the methyl group attached to the chiral 

center.  When this approach met with success, we tried to recover the loss of 

discrimination ability of the enzyme by decreasing the reaction temperature. We 

extended this approach to other secondary alcohols, namely 2-butanol, 2-pentanol and 

2-octanol, via transesterification with vinyl acetate, vinyl butyrate and vinyl laurate.  

 

MATERIALS & METHODS 

 

Materials 

Fusarium solani pisi cutinase was produced by an Escherichia coli WK-6, which was a 

gift from Corvas International (Gent, Belgium). (R, S)-1-phenylethanol, (98% purity), 

(R,S)-2-butanol (98% purity), (R,S)-2-pentanol, (98% purity) (R,S)-2-octanol (98% 

purity) (R)- and (S)-1-phenyletanol (98% purity), Hydranal Coulomat A and C Karl-

Fischer reagents were from Riedel-de-Häens. Vinyl acetate (98% purity); vinyl acetate 

(98% purity); vinyl butyrate (98% purity); vinyl laurate (98% purity) were from Fluka. 

The solvent, substrates, and tridecane or decane were stored over molecular sieves 3A° 

(Merck).  Preparation of (R,S)-2-phenyl-1-ethyl butyrate: To a stirred solution of (R,S)-

1-phenylethanol (0.503 g, 3.7 mmol) and triethylamine (0.62 mL, 1.2 eq) in anhydrous 

dichloromethane (20 mL), under argon atmosphere and at room temperature, was added 

dropwise butyryl chloride (0.42 mL, 1.1 eq). After completion of the reaction (TLC), 

the reaction mixture was partitioned between diethyl ether (100 mL) and hydrochloric 

acid (100 mL, pH = l), the organic phase was washed with a saturated solution of 

NaHC03 (100 mL), dried (MgSO4), evaporated under vacuum and purified by silica gel 

flash chromatography (eluent: 9.5:0.5 n-hexane/diethyl ether) to give the desired ester 

(0.704 g, 93 %) as a clear liquid.  

 

Site-directed mutagenesis of cutinase aminoacid residues  

Based on the existing model for cutinase, mutagenic oligonucleotides were designed 

that carry the modified codon near the center, in order to yield the mutations Y119A and 

L189A. Amino acid substitutions were made by the QuikChange (Stratagene) site-

directed method using plasmid pMa/c5-CUF (Lauwereys, M. et al , 1991) as template 
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and E. coli strain XL1-blue as host. The mutations Y119A (TAC to GCC) and L189A 

(TGG to GCG) in the resulting plasmids, pMa/c5-CUF Y119A, and pMa/c5-CUF 

L189A, were confirmed by DNA sequencing. All plasmids carrying the different 

cutinase alleles were transferred to the E. coli strain WK6 (Zell, R., Fritz, H.J., 1987, 

EMBO J. 6:1809-1815) for protein expression analysis. 

 

Protein expression 

To confirm the production, estimate the yield and verify the solubility of the different 

target proteins, we performed small-scale analysis of total cell protein in the soluble and 

insoluble cell free extracts. For small-scale over-expression of the wild-type cutinase 

and mutant proteins, E. coli WK6 cells harboring plasmids pMa/c5-CUF WT (wild-

type), pMa/c5-CUF WT woMS (wild-type without silent mutation), pMa/c5-CUF DEL 

(negative control) and different cutinase variants were grown at 37 ºC and 160 rpm in 

10 mL of LB with appropriate antibiotic selection. When the OD 600 nm reached 0.6, 

protein expression was induced by the addition of 1 mM IPTG and the culture was 

further incubated 3 h at 37 ºC and 160 rpm. Cells were then harvested by centrifugation 

(13 000 g; 5 min). All subsequent steps were carried out at 4 ºC. The soluble and 

insoluble fractions were prepared as follows. Cells were resuspended in French Press 

buffer (20 mM Na-phosphate buffer, pH 7.4, 500 mM NaCl, 100 mM imidazole, 

glycerol 10%) and disrupted in the presence of lysozyme (1mg ml-1) by three cycles of 

freezing in liquid nitrogen and thawing 5 min at 37 ºC, followed by incubation with 

benzonase (Merck) to destroy nucleic acids and PMSF (10 mg ml-1), a protease inhibitor. 

After 15 min of centrifugation at 16 000 g and 4 ºC the soluble and insoluble fractions 

of the crude extract were obtained. The proteins were analysed by SDS–PAGE (12.5%). 

E. coli WK6 cells harboring plasmids, pMa/c5-CUF Y119A woMS, and pMa/c5-CUF 

L189A woMS were further used to large-scale production and purification of mutants 

119A and L189A. The procedure for large scale-prodution is described elsewhere 

(Carvalho, et al, 1999). 

 

Rational design  

The computer-assisted generation of the transition states for both enantiomers was made 

on the basis of the structure of a complex of cutinase with the inhibitor N-

hexylphosphonate ethyl ester30 (PDB accession code: 1XZL) using the programs Sybyl 

6.2 from TRIPOS and Turbo-Frodo.47 The structures obtained in this way were 
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subjected to local energy minimization (residues around the transition state) in Sybyl 

using the TRIPOS force field plus Kolmann united atom charges (united atoms were 

used). A distance-dependent dielectric was used for electrostatics and interactions were 

truncated at 10 Å. The same procedure was followed for Y119A and L189A. 

 

Enzyme Assays 

All reactions were transesterifications of one of the secondary alcohols with one of the 

vinyl esters. The solvent was either n-hexane which was pre-equilibrated at aw =0.22, as 

described (Vidinha et al., 2004). Reactions were performed in glass vials (reaction 

volume of 2 mL) placed in a constant temperature bath at 35 ºC, 0 ºC and -20 ºC. 50 mg 

of pre-equilibrated immobilized enzyme were placed in the vial and 2 mL of solvent 

were added, followed by the alcohol (100 mM). The system was left to equilibrate for 2 

hours before the reaction was started by adding the vinyl ester (300 mM).  

 

Analysis 

Both the reaction conversion and the enantiomeric excess of the remaining ester product 

substrate (eep) were measured by GC analysis performed with a Trace 2000 Series 

Unicam gas chromatograph. Column: 30 m - 0.25 mm I.D. BGB-76SE fused silica 

capillary column coated with a 0.25 µm thickness film of 20% heptakis-(2,3-di-O-

methyl-6-O-tertbutyldimethylsilyl)-h-cyclodextrin in SE 52 (5% phenyl-, 95% 

methylpolysiloxane). Three different programs were made. For acetate with 2-butanol 

and butyrate with 2-butanol: Oven temperature program: 40 ºC for 20 min, 85 ºC ramp 

at 1 ºC min-1, 200º C for 5 min. Injection temperature: 250 ºC. Flame ionization 

detection (FID) temperature: 250 ºC. Carrier gas: helium (1.0 cm3 min-1). Split 

ratio:1:20. The retention times for acetate with 2-butanol were 20,82 min ((R)-2-

butanol), 21,21 min ((S)-2-butanol), 33,26 min (vinyl butyrate), 52.68 ((S)-2-butyl 

butyrate), 54.3 min ((R-2-butyl butyrate), 60.15 min (decane internal standard). 

Retention times when acyl donor was vinyl acetate: 42.53 min ((S)-2-butyl acetate), 

44.32 min ((R-2-butyl acetate). For acetate with 2-pentanol and butyrate with 2-pentanol: 

Oven temperature program: 40 ºC for 17 min, 104 ºC ramp at 2 0 ºC min-1, 200º C for 5 

min. Injection temperature: 250 ºC. Flame ionization detection (FID) temperature: 250 

ºC. Carrier gas: helium (1.0 cm3 min-1). Split ratio:1:20. The retention times for 

butyrate with 2-pentanol were 32,21 min ((R)-2-pentanol), 32,40 min ((S)-2-pentanol), 

43,55 min (decane internal standard ), 45,45 min ((S)-2-pentyl butyrate), 46,45 min 
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((R)-2-pentyl butyrate), Retention times when acyl donor was vinyl acetate: 33,69 min 

((S)-2-pentyl acetate), 41,23 min ((R-2-pentyl acetate). For acetate with 2-octanol and 

butyrate with 2-octanol: Oven temperature program: 40 ºC for 25 min, 113 ºC ramp at 

1ºC min-1, 200º C for 5 min. Injection temperature: 250 ºC. Flame ionization detection 

(FID) temperature: 250 ºC. Carrier gas: helium (1.0 cm3 min-1). Split ratio:1:20. The 

retention times for butyrate with 2-octanol were 18,18 min (decane internal standard) 

34,53 min ((R)-2-octanol), 34,82 min ((S)-2-octanol), 65,12 min ((S)-2-octyl butyrate) 

and 66,18min ((R)-2-octyl butyrate), Retention times when acyl donor was vinyl acetate: 

34,21 min ((S)-2-octyl acetate), 38,93 min ((R)-2-octyl acetate). No products were 

detected in assays carried out without enzyme. The enantiomeric ratio, E, was 

calculated from the expression  E= {ln[(1-c)(1-ees)]}/{ln[(1-c)(1+ees)]}, where c is the 

conversion (Straathof and Jongejan, 1997) and ees is given for the (R)-enantiomer, by 

using data obtained for the racemic substrate along the time course of the reaction 

(when possible, up to a conversion of 0.5). The results reported are the average of least 

replicate measurements. 

 

 
RESULTS AND DISCUSSION 
 
 
In our earlier study (Fontes et al., 1998), we were able to rationalize the preference of 

cutinase towards the (R)-enantiomer of 1-phenyethanol. In the present study we used a 

similar approach to decrease the enantioselectivity of cutinase towards the (R)-

enantiomer of 1-phenylethanol. Our assumption was, as before, that the cutinase active 

site was available to both enantiomers, and that the enantiomeric discrimination was 

related with the stabilization of the tetrahedral transition state for deacylation in both 

cases. Our previous study had allowed us to identify residues involved in the 

stabilization of the transition state. We found that a hydrophobic pocket defined by 

leucine 187, valine 184 and tyrosine 119 was responsible for the accommodation of the 

phenyl group of the alcohol. On the other hand, we also found that tyrosine 119 was 

responsible for establishing a hydrogen bond with the backbone oxygen of histine 188, 

and that this interaction was maintained during the transition states of both enantiomers. 

The enzyme preference for the (R)-enantiomer was found to be related with the role of 

tyrosine 119 on the immobilization and stabilization of the transition state for that 

enantiomer. The role played by those three residues made them suitable candidates for 
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our rational design strategy. The mutants selected were L189A, V184A, Y119A and 

V184A/L189A. The rationale was to mutate a larger side chain into a smaller one 

(alanine) in order to decrease the sterical hindrance of the substrate. The mutants were 

constructed in silico and simulations were performed for each one of them, followed by 

free energy studies where the differential binding of the (R)- and the (S)-enantiomers of 

1-phenylethanol was evaluated. The results are presented in Table 1. 

 

 

 

Table 1 – Relative free energy difference ∆∆GR→S between (R)- and (S)-

tetrahedral intermediates for wild-type cutinase and mutants. 

 

 Sequence 
after mutation 

∆∆G(R->S)* 
(kJ/mol) 

error 
(kJ/mol) 

Wild-type  21.0286   
 

3.74752 

L189A AAPHAAYGP 12.6713 4.03798 
 

V184A 
 

GSLIAAAPH 20.6515 2.72374 

Y119A 
 

IAGGASQGA 10.5685 3.24193 

V184A/L189A 
 

 14.5218 1.91398 

 

 

 

The results show that three of the mutants decrease significantly the binding free energy 

difference between the (R)- and the (S)-enantiomers of the substrate, when compared 

with the wild-type enzyme, and especially the single point mutations L189A and 

Y119A (Figure 1). These two mutants were selected for large scale-prodution.  
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Figure 1 – Cutinase mutants. Orange on (a) - L189A mutation. Orange on (b) – non mutated Leu 189. 

Yellow on (a) – non mutated Tyr 119. Yellow on (b) – Y119A mutation. 

 

 

Despite the similar ∆∆GR→S values for the two mutants selected, the L189A mutant 

exhibited an enantioselectivity towards 1-phenylethanol that was experimentally 

indistinguishable from that of the wild-type enzyme (Table 2). However, the Y119A 

mutant was much less selective towards the (R)-enantiomer of the alcohol. A possible 

explanation for this fact is the absence of the favourable van der Waals interactions 

between this enantiomer and Tyr 119, since the transition state is strongly stabilized by 

this type of interaction. The apparent failure of the L189A mutation, which also brings 

about easier access of the phenyl group to the active site, seems to confirm the role of 

Tyr 119 in the stabilization of the transition state for the (R)-isomer of 1-phenylethanol 

in the case of wild-type cutinase.  
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Y119 
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L189A Y119A 
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Table 2 – Cutinase enantioselectivity in the kinetic resolution of 1-phenylethanol, at 35 

ºC and aw = 0.2. 

. 

 

 

 

 

 

 

 

By lowering temperature, it was possible to partially recover the discrimination ability 

of cutinase upon removal of Tyr 119: at -20ºC, we obtained E ≈ 20 for the Y119A 

mutant. This confirms the utility of temperature in fine tuning the stereochemistry of 

enzyme catalyzed reactions (Phillips, 1996). However, temperature alone could not 

match the more pronounced effect of a structural change imposed by the Y119A 

mutation. To try and throw more light on the  discrimination ability of cutinase, we 

extended our medium engineering approach by studying the transesterification of a 

homologous series of secondary alcohols, using also a homologous series of acyl donors, 

in a temperature range from -20 to 35 ºC (scheme 1).  

 

 

 

 

 

 

 

 R1  R2  
1a CH3, vinyl acetate 2a (CH2)2CH3, 2-butanol  
1b (CH2)2CH3, butyl acetate 2b (CH2)3CH3, 2-pentanol  
1c (CH2)9CH3, lauryl acetate 2c (CH2)6CH3, 2-octanol  
     
Scheme 1. 
 
 

 % Conversion  ees eep E 

Wild-type 43 0,87 1,00 ∞ 

L189A  39 0,78 1,00 ∞ 

Y119A  

 

30 0,10 0,56 3,5 

+

O

O

R1 O

O

OH

R2 (R,S)

R2 R1

(R,S)

cutinase 

organic  media 

1 2 3 

OH
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Published structures of cutinase bound to ester inhibitors (Longhi S., et al., 1996) 

indicate that the acyl chain of the substrate is preferentially oriented towards a tunnel 

region defined by Val 184 and Leu 81, in a hydrophobic cavity limited by Leu 182. If 

we assume that the -R2 substituent of the alcohol substrate is accommodated in the same 

hydrophobic pocket as the phenyl group of 1-phenylethanol, then it is likely that an 

increase in the alkyl chain length of the ester may affect the packing of the alcohol and 

that the alkyl chain length of the latter may also influence the stability of the transition 

state, and hence the enantiomeric discrimination of cutinase. Indeed, Kawasaki et al. 

(2002) looked at the impact of the acyl donor in transesterication reactions performed 

by several lipases, and found that the structure of the acyl donor required for the 

maximization of enantioselectivity was dependent on the type of alcohol.  

 

Our results (Table 3) suggest that the accommodation of short acyl donor alkyl chains, 

up to butyl, in the active site of cutinase does not have any significant impact on 

enzyme enantioselectivity, which in that case depends solely on the alcohol. The size of 

2-butanol affords only marginal discrimination that increases for 2-pentanol and hardly 

changes for 2-octanol, although far from matching the extremely high enantioselectivity 

observed when -R2 is a phenyl group. By making the alkyl chain length of the acyl 

donor larger, as in vinyl laurate, the discrimination ability of cutinase towards 2-octanol 

increased substantially, suggesting a packing arrangement in the active site that 

stabilizes the -(R)-enantiomer relative to the -(S)-enantiomer. 

 

 

Table 3 – Cutinase-catalyzed transesterification of secondary alcohols with vinyl esters, 

at 35 ºC and aw = 0.2. 

 

 

 

Acyl  donor Alcohol  % Conversion  eep E Stdev 
1a 2a 45,3 0,24 2,2 0,4 
1b 2a 43,4 0,25 1,8 0,1 
1a 2b 48,6 0,69 9,8 1,8 
1b 2b 46,2 0,68 8,9 0,8 
1a 2c 48,2 0,66 6,8 0,8 
1b 2c 48,6 0,68 8,3 0,9 
1c 2c 44,1 0,90 40,7 2,7 
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The results obtained at lower temperatures (Figure 2) confirm the role of this 

methodology as a second order approach towards the fine tuning of enzyme 

enantioselectivity. In fact, in the case of 2-butanol that cutinase resolved with poor E at 

35 ºC, lowering temperature hardly affected the discrimination ability of the enzyme. 

On the other hand, in the cases where cutinase already showed a more marked 

preference for one of the enantiomers, this preference became more pronounced as 

temperature was lowered.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Cutinase enantioselectivity at 35 ºC, 0 ºC and -20 ºC. Red squares: 1a with 2a; orange 

diamonds: 1a with 2a; Yellow squares: 1a with 2c; Light blue diamonds: 1b with 2c; Dark blue diamonds: 

1b with 2b; Brown squares: 1a with 2b; Purple circles: 1c with 2c. 

 

 

CONCLUSIONS 

 

We went one step further in the rationalization of the enantioselectivity of cutinase from 

Fusarium solani pisi in nonaqueous media. The utility of temperature in fine tuning the 

stereochemistry of cutinase catalyzed reactions was confirmed, although temperature 

alone could not match the more pronounced effect of a structural change imposed by a 

single point mutation close to the active site of cutinase. The results obtained for the 
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homologous series of secondary alcohols should be an important contribution to the 

development of the existing model for cutinase. 

 

ACKNOWLEDGMENTS. 

This work has been supported by Fundação para a Ciência e a Tecnologia (FCT, 

Portugal) through the contract POCTI/BIO/57193/04 (that includes a grant to V. 

Augusto) and the grant PRAXIS XXI/SFRH/BD/13787/2003 (P. Vidinha), and by 

FEDER.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 119 

REFERENCES 

• Aoyagu, Y., Saitoh, Y., Ueno, T., Horiguchi, M. and Takeya, (2003), Lipase TL-

Mediated Kinetic Resolution of 5-Benzyloxy-1-tert-butyldimethylsilyloxy-2-

pentanol at Low Temperature: Concise Asymmetric Synthesis of Both 

Enantiomers of a Piperazic Acid Derivative , J. Org .Chem, 68, 6899-6904. 

• Carvalho, C. M. L., Aires–Barros M. R. and Cabral, J. M. S, (1999), Cutinase: 

From molecular level to bioprocess development, Biotechnol. Bioeng., 66, 17–

34. 

• Bornscheuer, U. T. and Kazlauskas, R. J., (1999), Hydrolases in Organic 

Synthesis: Regio – Or Stereoselective Transformations, Wiley-VCH 

• Chikusa, Y., Hirayama, Y., Ikunaka, M., Inoue, T., Kamiyama, S., Moriwaki, 

M., Nishimoto, Y., Nomoto, F., Ogawa, K., Ohno, T., Otsuka, K., Sakota, A. K., 

Shirasaka, N., Uzura, A. and Uzura, K., (2003), There's No Industrial 

Biocatalyst Like Hydrolase: Development of Scalable Enantioselective 

Processes Using Hydrolytic Enzymes ,Org. Process Rés. Dev., 7, 289–296. 

• Fontes, N., Almeida, M. C, Peres, C., Garcia, S., Grave, J., Aires–Barros, M. R., 

Soares, C. M., Cabral, J. M. S., Maycock, C. D. and Barreiros, S., (1998), 

Cutinase Activity and Enantioselectivity in Supercritical Fluids,  Ind. Eng. 

Chem. Res., 37, 3189–3194. 

• Ghanem, A. and Aboul–Enein, H. Y., (2005), Application of lipases in kinetic 

resolution of racemates, Chirality, 17, 1–15. 

• Garcia, S., Vidinha, P., Arvana, H., Gomes da Silva, M. D. R., Ferreira M. O., 

Cabral, J. M. S., Macedo, E. A., Harper, N. and Barreiros, S., (2005), Cutinase 

activity in supercritical and organic media: water activity, solvation and acid–

base effects, J. Supercrit. Fluid, 35, 62–69. 

• Holmberg, H. and Hult, K., (1991), Temperature as an enantioselective 

parameter in enzymatic resolutions of racemic mixtures , Biotechnol. Lett., 13, 

323–326.  



 120 

• Hult, K. and Berglund, P., (2003), Engineered enzymes for improved organic 

synthesis, Curr.Opin, Biotech., 14, 395–400. 

• Kawasaki, M, Goto, M., Kawabata, S. and Kometani, T., (2002), The effect of 

vinyl esters on the enantioselectivity of the lipase-catalysed transesterification of 

alcohols, Tetrahedron–Asymmetr , 12, 585–596. 

• Keinan, K., Hafeli, E. K., Seth, K. K. and Lamed, R., (1986), Thermostable 

enzymes in organic synthesis. 2. Asymmetric reduction of ketones with alcohol 

dehydrogenase from Thermoanaerobium brockii, J. Am. Chem. Soc., 108, 162–

169. 

• Klibanov, A. M., (2001), Improving enzymes by using them in organic solvents, 

Nature, 409, 241–246. 

• Krishna, S. H, (2002), Developments and trends in enzyme catalysis in 

nonconventional media, Biotechnol. Adv., 20, 239–266 

• Lam, L. K. P., Hui, R. A. H. F. and Bryan Jones, (1986), Enzymes in organic 

synthesis. 35. Stereoselective pig liver esterase catalyzed hydrolyses of 3-

substituted glutarate diesters. Optimization of enantiomeric excess via reaction 

conditions control, J. Org. Chem., 51, 2047–2050. 

• Lauwereys, M., de Geus, P., de Meutter, J., Stanssens, P. and Mathyssens, G., In 

Lipases-Structure, function and genetic engineering, Alberghina, L., Schmid 

R.D., Verger, R. (eds.), (VCH Weinheim, pp 243-251, 1991) 

• Ljubovic, E., Majerić–Elenkov, M., Avadagić, A. and Sunjić, V., (1999), Food 

Technol. Biotech., 37, 3, 215–224. 

• Longhi, S., Nicolas, A., Creveld, L., Egmond, M., Verrips, C. T., de Vlieg, J., 

Martinez, C. and Cambillau, C., (1996), Dynamics of Fusarium solani cutinase 

investigated through structural comparison among different crystal forms of its 

variants Proteins, 26, 442-458. 

• Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., (1951), Protein 

Measurement with the Folin Phenol Reagent, J. Biol.Chem., 193, 265–275. 



 121 

• Pham, V. T., Phillips, R. S. and Ljungdahl, L. G., (1989), Temperature-

dependent enantiospecificity of secondary alcohol dehydrogenase from 

Thermoanaerobacter ethanolicus, J. Am. Chem. Soc., 111, 1935–1936. 

• Pham, V. T.and Phillips, R. S., (1990), Effects of substrate structure and 

temperature on the stereospecificity of secondary alcohol dehydrogenase from 

Thermoanaerobacter ethanolicus, J. Am. Chem. Soc., 112, 3629–3632. 

• Phillips, R. S., (1996), Temperature modulation of the stereochemistry of 

enzymatic catalysis: Prospects for exploitation Trends Biotechnol., 1, 13–16. 

• Sakai, T., Kawabata, I., Kishimoto, T., Ema, T. and Utakat, M., (1997), 

Enhancement of the Enantioselectivity in Lipase-Catalyzed Kinetic Resolutions 

of 3-Phenyl-2H-azirine-2-methanol by Lowering the Temperature to -40 C, J 

.Org. Chem., 62, 4906–4907 

• Sakai, T., Hayashi, K., Yano, F., Takami, M, Ino, M., Korenaga, T. and Ema, T., 

(2003), Enhancement of the Efficiency of the Low Temperature Method for 

Kinetic Resolution of Primary Alcohols by Optimizing the Organic Bridges in 

Porous Ceramic-Immobilized Lipase, Bull. Chem. Soc. Jpn., 76, 1441–1446. 

• Sakai, T, Matsuda, A., Korenaga, T. and Ema,T., (2003), Practical Resolution of 

3-Phenyl-2H-azirine-2-methanol at Very Low Temperature by Using Lipase 

Immobilized on Porous Ceramic and Optimized Acylating Agent, Bull. Chem. 

Soc. Jpn., 76, 1819–1821. 

• Sakai, T., (2004), Low-temperature method’ for a dramatic improvement in 

enantioselectivity in lipase-catalyzed reactions, Tetrahedron–Asymmetr., 15, 

2749–2756. 

• Sakai, T., Mitsutomi, H., Korenaga, T. and Ema, T., (2005), Kinetic resolution 

of 5-(hydroxymethyl)-3-phenyl-2-isoxazoline by using the ‘low-temperature 

method’ with porous ceramic-immobilized lipase, Tetrahedron–Asymmetr., 16, 

1535–1539. 



 122 

• Reetz ,M. T., (2004), Asymmetric Catalysis Special Feature Part II: Controlling 

the enantioselectivity of enzymes by directed evolution: Practical and theoretical 

ramifications ,PNAS, 101, 5716–5722 

• Schoemaker, H. E., Mink, D. and Wubbolts M.G., (2003), Dispelling the Myths-

-Biocatalysis in Industrial Synthesis, Science, 299, 1694–1697. 

• Serralha, F. N., Lopes, J. M., Lemos F., Prazeres D. M. F., Aires–Barros M. R., 

Cabral, J. M. S. and Ribeiro, F. R., (1998), Zeolites as supports for an enzymatic 

alcoholysis reaction,  J. Mol. Catal. B – Enzym., 4, 303–311. 

• Straathof, A. J. J. and Jongejan, J. A., (1997), The enantiomeric ratio: origin, 

determination and prediction, Enzyme Microb. Tech., 21, 559-571. 

• Turner, N. J., (2003), Directed evolution of enzymes for applied biocatalysis, 

Trends Biotechnol., 21, 11 474–478 

• Greenspan, L., Humidity fixed points of binary saturated aqueous solutions J. 

Res. Nat. Bur. Stand. – A. Phys. Chem, 1977, 81A, 89–96. 

• Vidinha, P., Harper, N., Micaelo, N. M., Lourenço, N. M. T., Gomes da Silva 

M. D. R., Cabral J. M. S., Afonso, C. A. M. and Barreiros S., (2004), Effect of 

immobilization support, water activity, and enzyme ionization state on cutinase 

activity and enantioselectivity in organic media, Biotechnol. Bioeng., 85, 442–

449. 

• Wegman, M. A., Hacking, M. A. P. J., Rops, J., Pereira, P., Rantwijk, F.  

Sheldon, R. A., (1999), Dynamic kinetic resolution of phenylglycine esters via 

lipase-catalysed ammonolysis, Tetrahedron–Asymmetr., 10, 1739–1750.  

 

• Zaks, A., Klibanov, A. M., (1984), Enzymatic catalysis in organic media at 100 

degrees C,  Science, 224, 1249–1251 

 

 

 

 

 



 123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 124 

 

 

 

CHAPTER III 

 
Enzyme immobilization 

Confining biocatalysis. 
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Since the second half of the 20th century a tremendous amount of studies have been 

done to develop immobilized enzyme preparations for a myriad of different applications. 

The reason for this intensive research in related with the positive return of using 

enzymes in such form. Immobilized enzymes can be recycled, which by itself is an 

important factor for biocatalytic applications, since the cost associated to their use can 

be considerably reduced. In the previous chapter we saw that new enzymes are being 

developed for many industrial processes, which represents a large investment of 

resources whose return can be greatly increased through immobilization.   

 

On the other hand enzymes are known to loose their activity during the reaction process 

due to their natural lack of adaptability to the novel environments forced upon them. 

Enzymes were not designed to serve all the chemical engineering intents, they are still 

biomolecules. Immobilization provides a simple way to protect enzymes from the 

harshness of reaction environments, and with the advent of molecular rationalization it 

became possible to alter the molecular environment of enzymes even in immobilized 

form. This last issue is particularly important and has been one on the areas of major 

interest within enzyme immobilization. 

 

Today the aim of immobilization is to develop interactive matrices that not only have to 

be able to retain the biocatalyst, but also provide it with the most suitable environment 

for its specific function. The idea of developing a generic immobilized preparation that 

suits large number of enzymes in different applications is out of the question. Enzymes 

are not generic, which means that every enzyme is a particular case. Obviously enzyme 

stability and activity are related with a considerably number of factors that change with 

the different environments and with the different tasks that are requested of the enzyme. 

Rationalization is again the key. Understanding enzyme dynamics is crucial to the 

development of better enzyme preparations, and for that purpose we need to consider 

the molecular level at which all the interactions take place.  

 

The aim of this chapter is to give an idea of the current state-of-the-art of enzyme 

immobilization, and analyze the developments that resulted from rational design and 

from the combination of different research areas.  
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Defining the function is the essential issue for developing the desired solution. One 

basic question is where and when are we going to use the enzyme? And what is more 

important? A high volumetric activity? A high stability? A high specific activity or an 

improvement in selectivity? Even with today’s technology it is difficult to provide 

solutions to every demand.  

 

For instance a high volumetric activity (HVA) is essential when a higher productivity 

and a space-time yield are process determinants. It is usually considered that only 10 % 

of the total mass of the immobilized preparation accounts for the enzyme, and it is also 

acceptable that the immobilized preparation occupies 10-20 % of the total volume of the 

reactor. In this case enzyme preparations with a high volumetric activity are an essential 

requirement1-3. To this end two major solutions have been presented. The first is one of 

the most common ways to immobilize enzymes and is based on the use of supports with 

a high payload5-14, which is a high mass of enzyme per mass of immobilization material. 

The second one and altogether different solution is CLEA technology (Cross-Linked 

Enzyme Aggregates), which is one of the most interesting and efficient ways to 

immobilize enzymes today2,3, 14-18.  

 

For a carrier to be able to immobilize considerably amounts of enzyme while 

maintaining its activity and integrity, two factors are important: the size of the pore of 

the matrix and the accessible surface3,5,10,12. This type of strategy involves enzyme 

immobilization onto organic or inorganic porous particles. In general it is considered 

that a support that allows a payload ratio (menzyme/(msupport+menzyme)) between 0,1 and 0,2 

with a specific area of about 200 m2/g and a pore size greater than 100 nm is perfectly 

suitable for this type of application12.  In theory, any material that can meet these 

conditions can indeed be considered suitable for enzyme immobilization. Nevertheless 

the most common materials reported in the literature are organic polymers19-23, which 

includes vinyl polymers, such as acrylates or polyvinylacetate (PVA), activated 

charcoals24-26, and silica based materials5-9;11-15;27-42. 

 

In fact mesoporous silica is the material most used for enzyme immobilization. The 

reason for this is related with the enormous variety of solutions that this material offers 

to immobilize biocatalysts. This is not only due to the structural versatility of silica, but 

also and particularly the chemical versatility of silica, which allows its modification in 
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order to fix the enzyme onto it35,39. The binding of the enzyme to this material can 

follow some of the main routes to the immobilization of biomolecules: physical 

adsorption5,7-9,12,14,15, which is the classical process for enzyme immobilization, covalent 

attachment8,10-13 and entrapment27-39, which confines the enzyme into the structure of the 

immobilization material. All these strategies have been shown to give good results, but 

again the choice of immobilization route has to take into account all the aspects that are 

crucial for the desired application1-3. One technique that has been widely exploited is 

that of sol-gel. There are numerous examples in the literature that demonstrate the 

efficiency and the success of this technique for obtaining particles to produce 

immobilized preparations with a high volumetric activity27-42. 

 

This process represents the most versatile way to obtain silica in different forms, since 

we can not only control the way in which silica is synthesized, thus obtaining materials 

with different design structures, but we can also introduce a range of different 

functionalities in the silica precursors that give the final material different chemical 

characteristics35-39. This makes sol-gel processing a very powerful immobilization 

technique. Special attention will be paid to sol-gel entrapment in the present chapter. 

 

CLEAs have been attracting a lot of attention due to the simplicity of their concept, 

broad applicability and high stability associated to a high volumetric activity3, 16-18.. The 

simplicity of the approach is one its great advantages, as illustrated in figure 3.1. In this 

case no external support is needed since the aggregates are prepared by the chemical 

cross-linking of the enzyme molecules. The enzyme is precipitated by using agents such 

as inorganic salts or organic solvents, without undergoing denaturation. The 

immobilization via cross-linking is attractive because the final preparation is basically 

pure protein, with a high concentration of enzyme per unit volume16-18.  
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Figure 3.1 -  CLEAs processing. (adapted from www.cleatechnologies.com). (a) – solution process; (b) 

– CLEAs associated to porous materials.  

 

More recently Sheldon and his co-workers18 have shown that immobilization via 

CLEAs could also be combined with immobilization onto a mesopourous support, 

combining the advantages of both techniques. In this case a porous membrane of 

controled pore size was impregenated with CLEAs. Instead of for instance attaching the 

enzyme to the surface of the support through covalent interactions that usually have a 

negative impact on catalytic performace, the authors filled the porous of the matrix with 

an enzyme solution and then made the CLEAs inside the pore cavities. They thus 

obtained a high density of immobilized enzyme inside the pores. The results that these 

authors obtained for Candida antartica lipase B were quite promising in terms of 

enzyme activity and stability, but also in terms of the mechanichal stability of the 

immobilized preparation which is one of the drawbacks of the CLEA immobilization 

strategy. 

 

Stability is a major goal of all immobilization procedures, and every paper on enzyme 

immobilization considers that parameter. Stability can be quantified by the loss of 

activity upon recycling, through the impact of a given medium parameter, such as 

temperature or solvent polarity, or by long term enzymatic activity. As we saw in the 

first chapter of the present thesis, molecular biology has given a very good insight 

towards the improvement of enzyme stability. Nevertheless, these improvements can 

and should be complemented by enzyme immobilization, since the enzyme structure is 

not the only factor that contributes to an enhancement of this property. Factors such as 

agregation Cross-linking 

Agregation 

Cross-linking 

(a) 

(b) 
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the number of bonds that are formed between the enzyme and the support, the degree of 

confinement of the enzyme molecules, the immobilization conditions, and of course the 

enzyme micro/molecular environment1-3;35-39,43-45,55 are all relevant to achieve good 

enzyme stability in an immobilized preparation. Therefore, both approaches should be 

combined in order to obtain even more powerful and stable biocatalysts.  

 

One of the first and simpler approaches to change the enzyme microenvironment 

consists on the addition of doping molecules during the enzyme immobilization 

procedure3,35-39,42,43,47. This strategy aims at the reduction of undesirable interactions 

between the enzyme and the chemical agents, as epoxy rings or aldehyde groups, which 

are used or formed during the immobilization procedure. The doping molecules act as 

blocking agents and can be simple molecules like aminoacids and small peptides, or 

macromolecules like biopolymers, surfactants, or even other proteins such as albumin.  

 

A good example of this procedure is the immobilization of penicillin V acylase from 

Streptomyces lavendulae on Eupergit C. The immobilization of this enzyme together 

with albumin not only increased the enzyme activity 1.5-fold, but also produced a 

remarkable increase in the stability of the biocatalyst, which was used for at least 50 

consecutive batch reactions without any loss of activity. The rationalization of this 

improvement was related with the creation of a more hydrophilic environment in the 

neighbourhood of the enzyme, to resemble the natural environment of this enzyme 

where hydrogen bonding plays an import role on its stabilization43.   

 

The modification of the microenvironment hydrophilic character has become a recurrent 

strategy and has led to other ways to achieve that effect, such as the binding of specific 

chemical molecules either to the enzyme or to the support, thus creating a spacer effect 

that mediates the direct interaction between both. A good example of this strategy was 

given by Hwang et al.58 who investigated the effects of surface properties on the 

stability of Bacillus stearothermophilus lipase (BSL).  For that purpose the authors used 

silica gel as carrier material, coated with polyethyleneimine (PEI) or silanized with 

hydrophobic molecules, to obtain supports with different hydrophilic characters. These 

authors observed an increased in enzyme stability in the supports with a higher 

hydrophilic character. The presence of PEI created a favorable microenvironment in 

which the BSL was more stable. 



 131 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2 – Example of an immobilization strategy that involves the functionalization of the support 

with polyethyleneimine.  

 

The modification of the enzyme microenvironment has been shown to be a very 

efficient way to improve enzymatic properties, and has triggered numerous publications 

in the field35-39, 42, 43, 51, 53-55, 58. With the advent of novel molecules and materials the 

combination of this strategy with other types of immobilization procedures has resulted 

in simpler and better ways to achieve the modification of the enzyme microenvironment.  

 

One technique that the approach was successfully combined with is that of sol-gel 30, 31, 

35-39. In this case the enzyme is encapsulated inside the silica matrix rather than on the 

porous surface like in the Hwang approach. The entrapment of the enzyme in a sol-gel 

matrix affords not only an increase in enzyme stability but also provides a simple way 

to modify the enzyme microenvironment. This is possible since the sol-gel process is 

based on the use of different precursors, i.e., orthosilicates that can be synthesized in 

order to have attached different functionalities (figure 3.3). The success of the sol-gel 
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technique can also be seen by the huge number of precursors that are available in the 

market. Using one or combining several it is possible, at least in theory, to obtain the 

“perfect” microenvironment for a given enzyme.  

 

 

 

 

  

 

 

 

 

 

 

 

Figure 3.3 – Modification of enzyme microenvironment via a sol-gel approach. 

 

As we saw in chapter II ionic liquids can affect enzymatic properties. Since it was 

shown that enzyme stability could be improved in some ionic liquids, the idea of using 

them as additives to change the enzyme microenvironment became the aim of several 

research groups that developed several ways to immobilize them together with 

enzymes59-63.  

 

One good example of this strategy was presented by Koo and colleagues60 who 

immobilized Candida antarctica lipase B together with different ionic liquids. The aim 

of this work was to avoid enzyme inactivation caused by the release of alcohol during 

the immobilization procedure. On the other hand since the ionic liquid remains in the 

material, the authors evaluated its impact on enzyme stability. Their results showed that 

some of the tested ionic liquids acted as protecting agents, since enzyme activity 

increased in their presence. From the standpoint of stability these authors evaluate the 

impact that long term incubation ( 5 days in n-hexane) could had on enzyme activity. 

Their results revealed that best ionic liquid could exibit an activity 3.5 times higher 

when compared with the preparation without ionic liquid. Lozano et al.59 obtained 
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similar results for the co-immobilization of CALB with ionic liquids onto silica 

membranes. 

 

In addition to the modification of the enzyme microenvironment, the modification of the 

enzyme before or after the immobilization procedure is also an important tool to 

enhance enzyme stability.  

 

The pre-immobilization procedures for stabilization aim at improving enzyme 

performance before the immobilization procedure takes place. In this case enzymes are 

chemically modified by conjugating reactions with polymers or even with cross-linking 

agents, yielding stabilized enzyme complexes64-71. The most classical way to 

accomplish this is to use polyethyleneglycol (PEG). The PEGylation of enzymes67-71 is 

one of the most studied ways to alter enzymatic properties, with broad applications, as 

excellently reviewed by Veronese71.  A good example of this approach was reported by 

Hsu and co-workers66
 who evaluated the impact of PEG modification of the stability of 

α-chymotrypsin. Their results showed that the PEGlyation of α-chymotrypsin before the 

encapsulation in calcium alginate beads increased both its thermal and its operational 

stability.  

 

When the immobilization procedure does not produce the stability initially envisaged, it 

is possible to use the methodologies above in a post modification step. The enzyme can 

be subjected to further chemical modification like cross-linking, or a physical treatment 

such as pH enhancement, even lyophilization.  

 

Post-modification can have a great importance in the case of multimeric enzymes. In 

this case, during or after the immobilization procedure, and due to ionic, acidic or even 

temperature stress, the enzyme subunits may dissociate and in this way the catalytic 

performance of the immobilization preparation can be significantly reduced.  
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Figure 3.4 – Pre-immobilization strategy to enhance enzyme catalytic performance. 

 

 

A good way to minimize this effect is to use a cross-linker agent. As we saw earlier 

these agents promote intermolecular interactions between enzyme molecules. However, 

they can also be used to promote intramolecular cross-linking, thus stabilizing the 

subunits of a multimeric enzyme. An excellent example of this approach was presented 

by Guisan and co-workers49,50 on the immobilization of tetrameric bovine liver catalase 

(BLC) on highly activated glyoxyl agarose. This enzyme is easily dissociated in 

solution and it cannot be efficiently stabilized by covalent immobilization due to the 

limited surface available to form multipoint attachments. To overcome this problem 

these authors used a cross-linker with dextran-aldehyde, a partially oxidized dextran, to 

increase the stability of this enzyme on the surface of the support. This strategy was 
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applied to several other enzymes with excellent results. Actually this group is known for 

presenting very interesting and creative solutions for enzyme immobilization45-57. 

 

 

 

 

 

 

 

 

 

Figure 3.5 – Post modification strategy to enhance the catalytic performance of a multimeric enzyme. 

(1) covalent immobilization; (2) chemical modification with a cross-linking agent.  Adapted from Guisan 

et al. 49 

 

The dichotomy between enzyme activity and stability is very important for process 

design. Equilibrium between these two parameters is usually a requirement for most 

immobilized preparations to have commercial applicability. If for a specific application 

it is desirable to have an immobilized enzyme with a high specific activity (U/mg), the 

viability of the process is time dependent and a fast conversion is critical. For this 

reason many authors have put a lot of effort into developing immobilization procedures 

centered on the improvement of catalytic activity. Most of the strategies follow the same 

concepts that the ones presented for stability improvement. Microenvironment, 

chemical and physical modifications, pre- and post-immobilization are also good 

strategies to improve enzyme activity, changes in enzyme microenvironment playing an 

essential role in this respect.  

 

The sol-gel process has been applied successfully to modify the microenvironment of 

lipases for activity enhancements29-32, 36, 41. One characteristic of these enzymes is the 

presence of a “lid” covering their active site. This lid is formed by a sequence of 

hydrophobic residues that have to undergo a structural modification in the presence of 

hydrophobic surfaces to give access to the active site. This phenomenon is called  

interfacial activation72 and is observed with many lipases. Actually it is one of the main 

differences between lipases and esterases. Usually this “lid” works as a switch that 

activates the lipase only when the substrates are present in critical concentrations. The 
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substrates must have a hydrophobic character in order to activate the enzyme catalytic 

function. This fact explains why in nature lipases are mainly involved in the hydrolysis 

of fat acids and triglycerides. Nevertheless in biocatalysis lipases are used to catalyze 

every possible trans- or esterification reactions, which means that not all the substrates 

possess the necessary hydrophobic character to activate them. This results in poor 

access to the active site, which is responsible for low enzymatic activity. 

Immobilization can be used to overcome this problem by providing the necessary 

hydrophobic interactions that are responsible for the activation of the enzyme. Since 

lipases are one of the most studied types of enzymes in biocatalysis, the number of 

publications on strategies to solve the interfacial activation problem is very 

large27,29,30,31,36,41,45-47,57,60.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 – A very simple representation of lipase interfacial activation.   

 

Reetz and co-workers30, 31, 73 have shown that the catalytic activity of several lipases 

could be enhanced with the increase in hydrophobic character of the immobilization 

matrix. This strategy is the same that was illustrated in figure 3.3, but in this case the 

substituents are hydrophobic alkyl chains. Those authors saw that the activity of 

Pseudomonas fluorescens lipase increased with the increase in the alkyl chain length of 

the precursors used in the sol-gel immobilization process.  

 
Another strategy to obtain an activity enhancement using the microenvironment 
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the loss of activity. Their specify function is not always clear but in the case of the 

inhibitors their function is thought to be related with the preservation of active site 

integrity. This approach was tested with several immobilization techniques, including 

the sol-gel immobilization process, and proved to be a valid solution to tune enzyme 

activity30,47,74-77 

 

Another interesting strategy that has shown good results on the activation of lipases was 

presented again by Guisan et al.45, 47 The strategy followed by these authors is very 

similar to the one already illustrated on figure 3.5.  But instead of using a support that 

only contained functional groups to establish ionic and covalent interactions, the authors 

used one with hydrophobic moieties on its surface. The increase in hydrophobic 

character of the support favored the interactions between the lipases and the support 

surface, promoting the immobilization of the lipases in the open-lid form. Further cross-

linking stabilized the open-lid form of the enzyme at the surface of the support. These 

results are very interesting since using the same immobilization procedure, the authors 

were able to enhance, simultaneously, enzyme activity and stability.  

 

Every time an enzyme is immobilized, one important factor to consider is its 

accessibility to reacting species. Obviously this is not an issue when the enzyme is 

immobilized at the surface of a support, but such type of immobilization is not always 

possible, especially for applications that involve continuous set-ups where shear stress 

can cause enzyme inactivation and leaching. The latter can be circumvented by 

entrapping enzymes in solid materials, such as a sol-gel. In a sol-gel matrix, the enzyme 

is inside a complex silica network and may not be directly exposed to the medium.  

Diffusion and partition effects for substrates and products between the reaction medium 

and the active site of the enzyme may then be a problem. If chemical or physical 

hindrances are at play, catalytic activity can be strongly affected. However, the sol-gel 

process allows the modulation of matrix pore size through the choice of precursors and 

reaction conditions. It is thus possible to generate immobilized preparations with a high 

volumetric activity from which enzyme leaching is minimized.   

 

As we saw in chapter II of this thesis, enzyme selectivity is a top enzymatic property. 

Many creative approaches have been developed to produce improvements in this 

property, and enzyme immobilization is no exception. A recent study by Guisan and co-
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workers46 shows that by changing some parameters like temperature during the 

immobilization procedure, enzyme enantioselectivity could be improved. The authors 

used Candida antarctica lipase B adsorbed of PEI-Agarose and observed that when the 

immobilization was done at pH 5 and 4 ºC , the enzyme exhibited a 1 fold (E>100) 

increase in enantioselectivity compared with the procedure done at pH 5 and 25 ºC. The 

authors correlated this improvement with the different conformations that the enzyme 

could assume at the different immobilization conditions.  

 

A very elegant approach was described by Faber and co-workers80, who demonstrated 

that the selection of an appropriate immobilization strategy could impact on enzyme 

selectivity. The authors used the immobilization of alkylsulfatase on different anionic 

exchangers to illustrate this concept. They found that the enzyme enantioselectivity 

towards the kinetic resolution of sec-alkyl sulfate esters could be improved by a careful 

choice of the charged groups present on the anionic resin. This enhancement was 

attributed to the fact that those groups might be able to approach certain protein 

domains or sites, and in this way influence the geometry of the active site. Other authors 

have also demonstrated that enzyme enantioselectivity could be improved by 

microenvironment modification, using different approaches that include the sol-gel 

process, or the use of chemical additives. In some cases, in just one step it has been 

possible to increase the stability and selectivity of a given enzyme, with the extra 

advantage of reusability30,46,47,70,77-80.  
 

From what has been discussed above, it is clear that today enzyme immobilization is not 

regarded as a mere way to fix the biocatalyst for further reuse, but rather as a powerful 

technique that allows the fine tuning of several enzymatic properties. Finding a good 

immobilization procedure for a particular enzyme is still not trivial and requires 

experimentation. The same immobilization technique can sometimes be applied 

successfully to improve different enzymatic properties. And as more in known on 

enzyme structure and dynamics, which allows for a better understanding of why 

enzymes behave in a certain way when they are immobilized, immobilization strategies 

are becoming more focused on modulating the enzyme microenvironment.  

 

One technique that has greatly expanded in the last 10 years of biocatalysis is sol-gel 

processing. Versatility in one of the keys to its success. With the sol-gel process it is 
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possible to obtain particles, nanoparticles and films with controlled porosity, and 

provide a particular microenvironment. The remainder of this chapter is going to be 

dedicated to this technology.  

 

The sol-gel perspective that is about to be introduced is basically a bio-perspective since 

sol-gel is a vast area with applications disseminated in almost all scientific fields. The 

bio-applications of sol-gel materials have gained a lot of importance in the last decade 

and enzymes were just the first biomolecules to be used. Today we have living 

organisms that actually maintain their biological activity inside a sol-gel matrix. 

Biology was not only a source of interesting and profitable applications but also 

inspired the process itself. In the literature we can find many papers on sol-gel that 

include the word “bio-inspired” in their title81-87,105. Actually nature has created the most 

beautiful and functional silica structures and we are just beginning to learn from it. Most 

of the future trends point towards “bio-inspired materials” as the way to obtain better 

functional materials. 

 

Inorganic gels are known since the middle of the 19th century, basically since the first 

developments in biocatalysis, as we saw in the first chapter of the thesis. Thus more 

than a century was needed to put these two areas in contact89. Nevertheless one area will 

only develop when there is potential applicability for its underlying science, and this 

was the case with sol-gel. The process was almost forgotten until the 60s, where the first 

coatings of flat-glass were reported, but the real development of sol-gel only occurred in 

the early 80s. The resurgence of this area was related with a growing interest in ceramic 

materials, and the sol-gel process offered a unique solution for ceramic fabrication at 

relatively low temperatures. Since then sol-gel methods have been used for the 

processing of a wide variety of materials: monolithic ceramic and glasses, fine powders, 

thin films, ceramic fibers, microporous inorganic membranes, and extremely porous 

aerogel materials, among others36,40,89,90.  

 

In the sol-gel process, one or more liquid inorganic silica precurors react, often in the 

presence of a catalyst and of additives such as stabilizers, to produce a gel consisting in 

a solid silica skeleton filled with a colloid, the sol. The sol contains unreacted species 

and additives dissolved in a water/alcohol mixture, and solid silica clusters89,90. As the 

process progresses, the solid skeleton expands, and through the so-called ageing, the 
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clusters connect to the main solid structure, forming a rigid three dimensional silica 

network containing remnants of the fluid phase in its pores. As shown in figure 3.7, the 

chemistry of sol-gel is quite simple and basically involves a two-step reaction, with a 

first step in which the hydrolysis of sol-gel precursors take place, and a condensation 

step which is responsible for the silica network growth. In this last step, condensation 

can occur either between two silanol groups that are formed in the first step of the 

process, or between one of these groups and a non hydrolyzed precursor molecule.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 – Schematic representation of the sol-gel processg, using tetramethoxysilanes.   
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The evaporation of the solvent leads to the formation of a xerogel. The drying is more 

efficient if the material is spread over a solid surface. In fact, surface drying was one of 

the reasons why the technique became so popular and forms the basis of surface coating. 

In this respect, homogeneity is very important, and methods such as spin coating or 

spray coating allow for the formation of homogeneous and very thin films (100nm)89,90.  

 

Drying is a critical step of sol-gel processing since it can have drastic effects on the 

porous structure of the final material 91,92,93. This is due to a phenomenon of surface 

tension. To maintain its structure during drying, the solid network has to behave as an 

elastic sheet. If the matrix cannot withstand capillary stresses, it collapses and its pore 

structure is destroyed.  The best way to avoid this effect is to change the drying 

procedure93. Alternative drying methods are freeze-drying followed by sublimation, and 

solvent extraction.  Extraction, especially if conducted with supercritical carbon dioxide 

(scCO2), will produce highly porous materials called aerogels93. This type of material 

has been applied in several high-tech solutions, of which the most famous was 

STARDUST, a seven year NASA mission that successfully recovered samples from the 

tail of a comet. The sample collector was an aerogel plate which trapped the comet’s 

cosmic dust inside its porous structure. Since areogels are extremely resistant materials, 

especially to high temperatures, it was possible to send these samples back to earth 

(figure 3.8). 
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Figure 3.8 –  (a) Comet dust particles inside  the aerogel trap; (b) – Sol-gel trap. These two pictures are 

available to the public on the NASA website (www.nasa.gov).  
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Although the chemistry of sol-gel is simple, a good control of the experimental 

conditions such as pH, the type of catalyst, ionic strength, is essential to obtain materials 

with the desired characteristics. For instance, low pH values promote fast hydrolysis 

and slow condensation, leading to small silica particles that form a three dimensional 

gel. High pH promotes slow hydrolysis rates and rapid condensation, resulting in a 

smaller number of larger particles89,90,93. Usually the most commonly used catalysts are 

strong acids and strong bases, such as HCl or NaOH, but using organic acids such as 

acetic and  formic acid, or weak bases such as sodium fluoride, can be quite effective 

for some solutions89,90,. However these reaction conditions are sometimes too aggressive 

for biological systems. This limitation has led to the development of more 

biocompatible solutions to make the sol-gel for bio-applications.  

 

There are many ways to catalyze the formation of sol-gel networks, and pH is just one 

of them. Scientists have searched for solutions in nature, since a large number of 

biomineralized organisms inhabit our planet. Actually the evolution of 

biomineralization dates back to the Cambrian period (525-510 million years ago), where 

a great number of biomineralization organisms suffered an exponential increase. In fact 

it was during this period that the most important skeletal materials were formed94,. With 

this in mind, research focused on the living organisms that were capable of depositing 

silica in their biological structures. Species belonging to bacteria, algae protozoa or even 

higher plants use silica that is involved in different roles related with the cell type and 

with the surrounding environment94-99. Understanding the biochemistry behind this 

process was definitely one breakthrough, not only to this area, but especially to general 

science. The first studies were made in algae and sponges and led to the identification of 

peptides (i.e silafins)98,99,103-105 and proteins (silcateins)101,102,105 involved in the 

biomineralization processes.  One of those proteins was silicatein α101,102, which was 

found to catalyze the polymerization of silicas and organosilicones from silicon 

alkoxide precursors at neutral pH. This was an extremely important achievement since it 

became possible to biocatalyze the sol-gel process. The solving of the structures of 

some silicateins structures and the understanding of their catalytic mechanism revealed 

a high complementarity between these proteins and serine hydrolases106-108, whose 

catalytic mechanism was presented in chapter II. A very interesting fact is that 

silicateins cannot not catalyze proteolytic reactions, but serine hydrolases can catalyze 

the polymerization of silica, although the cleavage of peptides and the condensation 
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reactions involved in the polymerization process proceeded through the same hydrolytic 

reaction101,102.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 – Schematic representation of the biocatalytic hydrolysis of TEOS 

(tetraethylmethoxysilane). This example can be applied either to silicateins or to serine hydrolases101,102, 

106-108.  

 

A very interesting study was performed by Brandstadt and his co-workers106,107 who 

demonstrated that several proteases were able to catalyze the hydrolysis of 

tetraethylmethoxysilane (TEOS). Actually trypsin led to yields of almost 90 % in the 

hydrolysis of TEOS.  Later these authors also showed that trypsin could catalyze the 

condensation reaction106. In this second study the authors used a 1,1-dimethyl-1-sila-2-

oxacyclohexane as alkoxysilane. They observed that after 3 hours, the alkoxysilane was 

almost completely hydrolyzed and had already begun to condense into 

hydroxybutlydimethylsilanol. In this reaction trypsin yielded 81 % for the hydrolysis 

and 71 % for the condensation reaction. These results are another good example of the 

application of serine hydrolases in the development of biocatalytic solutions.   
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Figure 3.10 – Schematic representation of hydrolysis and condensation of a 1,1-dimethyl-1-sila-2-

oxacyclohexane catalyse by a serine hydrolase107,.  

 

The hydrolysis and condensation of sol-gel precursors can also be achieved with the 

same polypeptides mentioned earlier. One of the most studied polypeptides is silafin 

extracted from the diatom Cylindrotecha fusiformis
98,99,103-105.  

 

This peptide was found to have an important role on silica deposition and on diatoms 

cell wall shaping, acting as a stabilizer for Si-O-Si bonding99. The amine groups present 

on the silafin chain could hydrogen bond to with silicic acid and in this way facilitate 

the condensation between two adjacent silica molecules. It was found that when this 

polypeptide was added to silicic acid solutions, it led to rapid precipitation of silica and 

was simultaneously incorporated into the formed biomineral99-100.  The shape of silica 

that precipitates from these solutions could be changed by the addition of poly-lysines, 

which were also found in the cell wall of these organisms99. This elegant lesson of 

biomineralization inspired the research into bio- and nanotecnological silica formation.  

 

Silafin A1 was used to catalyze the hydrolysis of a mixture of two sol-gel precursors for 

the immobilization of butyrylcholinesterase88. The authors achieved 20 % of enzyme 

loading and found that the butyrylcholinesterase entrapped during the precipitation of 

the silica nanospheres retained all of its activity. The stability of this immobilized 

preparation was reasonably good, especially when the reaction was accomplished in a 

flow-trough reactor.  
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Figure 3.11 – Schematic representation of a silafin.98,99,103-105. 

 

 

Perhaps the most interesting examples of sol-gel bioprocessing come from the 

immobilization of living organisms. The aim of entrapping life inside sol-gel structures 

is related with the advantages of using living organisms for bioprocessing. This can 

provide solutions for old problems, but especially presents new research lines to explore. 

Using sol-gel to immobilize enzymes, even the more complex and sensible enzymes, is 

a very simple task when compared to the immobilization of living organisms. The 

problem is not with the process itself, since it is always possible to play with 

experimental conditions, avoiding in this way the use or the formation of undesirable 

compounds. The question is rather how to maintain the organism viable for the 

desirable application. This is a difficult issue even for bacteria, which are typically 

considered the most resistant living organisms. Cells have their proper dynamics and 

small changes in their environment can have a dramatic impact on their viability. 

Nevertheless it has been possible to create microenvironments based on sol-gel that 

were capable of maintaining the viability of those organisms.  

 

The pioneers of whole cell immobilization were Carturan and co-workers110-115, who 

first immobilized Saccharomyces cerevisiae into sol-gel silicates. This microorganism 

is capable of performing other type of conversions, but a most interesting one is the 

millenary conversion of sugars to alcohols and CO2. The high tolerance of this 

microorganism towards alcohols made it the perfect candidate for first organism to be 

immobilized in sol-gel. Main issues in this study were maintaining the organism viable 

during the process and, most importantly, after it. The most interesting and perhaps 
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surprising aspect of this work was that the immobilized yeast was not only viable, but 

also improved its specific activity when compared with free yeast. This was in fact even 

more remarkable since it remained so over time. This result was a very important 

achievement since yeast is a technological microorganism. For instance Moët et 

Chandon have several patents on yeast immobilization onto several different materials. 

Their interest is related with the fermentation process, which in the case of champagne 

occurs inside a bottle. After the fermentation, the yeast has to be separated from the 

liquid phase. With immobilization, the process keeps to its main and traditional concept, 

but the immobilized enzyme is much easier to separate.  

 

The pioneering work of Carturan and co-workers led to the development of more 

compatible procedures for the encapsulation of cells into silicates. The fact that sol-gel 

is a low temperature process is not enough to obtain top quality preparations, since the 

processing conditions are far from the ideal ones for living organisms. The main 

problems associated with this technique are pH conditions, the alcohol toxicity, and the 

shrinkage during the drying stage which induces excessive stress on the immobilized 

cells109,116. Different approaches have been applied to deal with these problems. For 

instance to control the negative impact of the alcohol, many solutions were presented. 

Most of them were actually very simple since they consisted on the rapid elimination of 

the alcohol from the preparation. In this way Ferrer et al.117 showed that controlled 

vacuum evaporation of the alcohol from the colloidal solution prior to encapsulation 

helped to preserve the E.coli cells integrity. Similar results were obtained by dipping the 

immobilized preparation into a buffer solution or even into a culture media. This 

strategy aimed at the dilution of the alcohol, which allowed cells to maintain a higher 

viability118.  

 

Changing the type of precursor also proved to be adequate to improve the stability of 

immobilized cells119-121. In this case, instead of using methoxysilanes as precursors, 

some authors replaced them with polyol-based silanes, whose hydrolyzable group 

contains a longer chain alcohol in place of the traditional methanol and ethanol. One of 

these types of precursors had a glycerol as substituent, which is more biocompatible. 

The results obtained with this precursor were quite interesting since cell viability was 

maintained during a considerable period119-121. An alternative approach was using 

sodium silicate or colloidal silica to form silica structured materials. This is a quite 
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popular approach in spite of the very low pH which obviously has to be neutralized 

before adding the cells122-123.   

 

One major issue related with cell long term stability is the stress that cells suffer inside 

silica matrices. A good solution to overcome this problem was combing silica matrices 

with organic polymers, creating in this way silicate-organic hybrids. A very good 

example of this approach is the work developed by Livage, Coradin and co-

workers109,124-126. These authors have presented a strategy that involves a cell pre-

immobilization step in perfectly biocompatible materials such as calcium alginate or 

gelatine. These immobilizates are then covered with a thin film of silica. This technique 

has the aim of combining the better of two worlds: on one side the excellent 

biocompatibility of organic polymers, and on the other the mechanical stability of silica 

materials. This immobilization strategy had a higher impact when animal cells were 

used. In this case the aim was related with the development of scaffolds for tissue 

engineering treatments. One of the best examples was provided by Ren and his co-

workers127 who used a gelatine-siloxane scaffold for encapsulating osteoblastic cells. 

These authors observed that cell proliferation occurred without any cytotoxic effects. 

 

Carturan and co-workers113-115 introduced a different concept for cell immobilization 

using the sol-gel process. In order to eliminate cellular stress during the encapsulation, 

the cells were deposited on a solid support which could be a flat glass, a membrane, etc. 

Then a stream of nitrogen containing a mixture of sol-gel precursors was sprayed over 

the film. The more interesting fact of this design is that the water required for the 

hydrolysis of the sol-gel precursors came from the humidity on the cell surface. This 

technique considerably reduces the stress usually associated to the ageing and drying of 

the material. In this case, and since there is no liquid in excess, the matrix will not 

shrink and the excess of pressure over the cell can be avoided. This process was then 

extended to hybrid organic-slicate immobilizates and collagen matrices containing 

viable cells, where similar positive results were obtained115.  

 

Other biotechnological applications of sol-gel processing include the immobilization of 

enzymes and whole cells for biosensing. Microorganisms are excellent tools for modern 

biosensing, not only because of the type of metabolic sensing mechanisms that are 

naturally present on them, but also because they can be engineered towards a specific 
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function. The combination of animal cells with sol-gel offers very reliable solutions for 

drug delivery which, together with tissue engineering and cell therapy, are mainstream 

applications of sol-gel materials. For instance artificial organs have been created, such 

as an artificial pancreas using immobilized islet cells128-130. Also using this type of cells, 

which are insulin producers, transplanted to glycemic rats, Carturan and co-workers131 

were able to control the levels of blood glucose. This was a remarkable result since the 

authors were able to maintain the rats alive for a period of 2 months. Many of these 

accomplishments should reach commercialization in the future. Only in the case of 

enzymes is the sol-gel process an already established technology, with commercial and 

industrial applications. For instance Sigma-Aldrich sells sol-gel immobilized 

preparations of several enzymes.  

 

In the work that follows we focused our attention on the immobilization of cutinase in 

organically modified silicas, which are hybrid materials. Our aim was to develop 

microenvironments that were favorable to cutinase and potentiated its catalytic 

performance. In the first part of the work, several possibilities were considered to 

improve cutinase activity and stability, via changes in enzyme microenvironment. The 

latter was modulated by changing the type of sol-gel precursors and using additives. We 

found that cutinase activity was improved in the presence of several types of additives. 

The second and third parts of this work describe our attempts to rationalize these results: 

one is focused on the enzyme, and the other is focused on the material. Both approaches 

contributed to explain our results.  

 

The next section will be divided in three parts. Before part II and part III, a small 

introduction to the spectroscopic techniques used in the characterization of both enzyme 

and material will be given.  
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ABSTRACT 

 

Cutinase from Fusarium solani pisi was encapsulated in sol-gel matrices prepared with 

a combination of alkyl-alkoxysilane precursors of different chain-lengths. The specific 

activity of cutinase in a model transesterification reaction at fixed water activity in n-

hexane was highest for the precursor combination tetramethoxysilane/n-

butyltrimetoxysilane (TMOS/BTMS) in a 1:5 ratio, lower and higher chain lengths of 

the mono-alkylated precursor or decreasing proportions of the latter relative to TMOS 

leading to lower enzyme activity. Results obtained using combinations of three 

precursors confirmed the beneficial effect of the presence of BTMS in the preparations.  

 

Scanning electron microscopy of the 1:5 TMOS/n-alkylTMS gels showed a direct 

correlation between the macropore dimensions and the alkyl chain length of the 

alkylated precursor and revealed that TMOS/n-octylTMS gels suffered extensive pore 

collapse during the drying process. The specific activity of TMOS/BTMS sol-gel 

entrapped cutinase was similar to that exhibited by the enzyme immobilized by 

adsorption on zeolite NaY. However, the incorporation of different additives (zeolites, 

silica, Biogel, grinded sol-gel, etc) having in common the capability to react with 

residual silanol groups of the sol-gel matrix brought about remarkable enhancements of 

cutinase activity, despite the fact that the global porosity of the gels did not change.  

 

The behavior of the gels in supercritical CO2 (sc-CO2) paralleled that exhibited in n-

hexane, although cutinase activity was c.a. one order of magnitude lower (i.e. sol-gel 

encapsulation did not prevent the deleterious effect of CO2). The impact that 

functionalization of some of the additives had on cutinase activity indicates that the 

enzyme/matrix interactions must play an important role. Some of the best additives 

from the standpoint of enzyme activity were also the best from the standpoint of its 

operational stability (c.a. 80 % retention of enzyme activity at the tenth reutilization 

cycle). None of the additives that proved effective for cutinase could improve the 

catalytic activity of sol-gel encapsulated Pseudomonas cepacia lipase.  
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INTRODUCTION 

 

Immobilization has long been used to improve enzyme activity and stability in aqueous 

media, and, more recently, also in nonaqueous media (Bickerstaff, 1997; Bornscheuer, 

2003), once it became clear that in those media enzymes can catalyze reactions that are 

difficult to perform in water, become more stable and exhibit altered selectivity 

(Klibanov, 2001; Krishna, 2002). A wide variety of immobilization techniques can be 

used, including adsorption onto solid supports, covalent attachment or entrapment in 

silica matrices. Adsorption techniques are usually very easy to apply, but the bonding of 

the biocatalyst to the surface of the solid support is relatively weak. This usually leads 

to the leaching of the enzyme, even in nonaqueous media, in which the enzyme is not 

soluble. Covalent attachment normally leads to improved enzyme stability, often at the 

cost of partial deactivation due to the conformational restrictions imposed by the 

covalent bonding of enzyme residues to the support. 

 

The incorporation of enzymes in silica matrices has proved to be a good strategy to 

improve the catalytic efficiency of enzymes. This is essentially accomplished by using 

the sol-gel technology (Avnir et al., 1994; Gill, 2001; Reetz et al., 2003). The aqueous 

character of sol-gel processing and the fact that the synthesis of the ceramic materials 

can be conducted at room temperature ensure that sufficiently mild conditions prevail, 

as required for biomolecules to retain their native structure, dynamics and function. The 

process allows for high yields of enzyme immobilization. The framework rigidity of 

sol-gel polymers prevents the leaching of the entrapped enzyme while also stabilizing 

its structure. The mesoporous structure and high pore volume of these gels allow the 

diffusion of low to medium molecular weight species and their free interaction with the 

enzyme (Gill, 2001).  

 

A well-established sol-gel processing technique consists in hydrolyzing adequate 

precursors in aqueous solutions to produce soluble hydroxylated monomers, followed 

by polymerization and phase separation to produce a hydrated metal or semi-metal 

oxide hydrogel (Brinker and Scherer, 1990). Removal of water from the wet gel, which 

is usually accompanied by changes in the structure of the pores and of the gel’s 

network, results in a porous xerogel. The most widely used precursors are alkyl-

alkoxysilanes. These precursors were used already in the mid-1980s to prepare 
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organically modified silicates (Ormosils) for the successful encapsulation of antibodies 

and enzymes (Glad et al., 1985; Venton et al., 1984). Although the final structure of the 

material is basically determined by the differences in chain length, functionality and 

hydrophobic character of the precursors, it can be tailored via the addition of a wide 

range of molecules. Examples include surfactants (Chevalier, 2002; Coradin and Lopez, 

2003; Reetz et al., 2003), room-temperature ionic liquids (Zhou et al., 2004), crown 

ethers, β-cyclodextrins or porous solid supports like Celite (Reetz et al., 2003). The 

commonly used catalysts are weak acids or bases (Brinker and Scherer, 1990; Reetz et 

al., 1996). Recent research describes the use of other species that include peptides like 

silaffins (Luckarift et al., 2004), polyamines (Sun et al., 2004) or enzymes such as 

hydrolases (Bassindale et al., 2003) and silicateins (Cha et al., 1999).  

 

The versatility of the sol-gel process that makes possible the generation of materials 

with a wide range of inner surface chemistries is particularly suited to the 

immobilization of enzymes. In fact, enzymes differ in structure and function and it is 

not conceivable that a generic approach adequate for all enzymes may ever be 

established. Instead, the immobilization technique must be adjusted so as to offer the 

enzyme an optimum catalytic environment with favorable enzyme/matrix interactions, 

and an adequate balance between molecular restraint and conformational mobility, as 

required for efficient catalysis. The potential of the sol-gel technique for tuning the 

catalytic environment is well illustrated by the use of an enzyme transition-state 

analogue as a molecular imprint molecule to generate enantioselective silica particles 

(Markowitz et al., 2000). 

 

Here we report on sol-gel preparations for the encapsulation of cutinase from Fusarium 

solani pisi. Cutinase is an extracellular enzyme involved in the degradation of cutin, the 

cuticular polymer of higher plants (Carvalho et al., 1999). It belongs to the group of 

hydrolases, the enzymes most employed for industrial biotransformations (Chikuza et 

al., 2003). In particular, it is a serine hydrolase, a relatively small globular protein of 

approximately 45x30x30 Å3 size, with 197 residues and a molecular mass of 22 kD 

(Carvalho et al., 1999). Unlike most lipases, cutinase has no lid covering its active site 

that is thus accessible to the solvent. Also, the oxyanion hole that helps stabilize 

intermediates during the catalytic mechanism of lipases, and which is formed upon 

substrate binding, is preformed in cutinase. These two facts are thought to explain the 
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lack of interfacial activation observed with cutinase (Carvalho et al., 1999). When it 

exists, interfacial activation is manifested in a pronounced activity increase upon 

substrate aggregation (Mingarro et al., 1995). Enzyme interactions with these 

aggregates lead to conformational changes of the lid that result in an open, substrate-

accessible form of the enzyme, and to the formation of the oxyanion hole. This 

phenomenon is found with most lipases.  

 

Cutinase is a versatile enzyme that catalyzes synthetic and hydrolytic reactions on a 

wide range of substrates in aqueous and nonaqueous media (Carvalho et al., 1999). The 

latter include supercritical fluids (sc-fluids, any substance above its critical temperature 

and pressure) (Garcia et al., 2004a; Garcia et al., 2004b). The use of sc-fluids that can 

be easily eliminated through venting and leave no residues can be a good strategy to 

meet the requirements of environmentally friendly processes (DeSimone, 2002). 

Although sc-fluids are still regarded as unconventional, their unique characteristics 

make for a steadily increasing number of applications in many areas, including 

biocatalysis (Mesiano et al., 1999). Sc-CO2 is the most popular sc-fluid but it has the 

ability to acidify the microenvironment of the enzyme (Beckman, 2004), even at very 

low water activity (aW) values (Harper and Barreiros, 2002). Sc-CO2 has also been 

reported to form carbamates with free amine groups of lysine residues on some 

enzymes, thereby leading to poor enzyme performance (Mesiano et al., 1999). Cutinase 

is one of the enzymes shown to perform markedly worse in sc-CO2 than in other 

nonaqueous media (Garcia et al., 2004a; Garcia et al., 2004b). 

 

In the present work we study the impact that encapsulation of cutinase in sol-gel 

matrices has on the enzyme activity and stability. We also look at the performance of 

the sol-gel preparations in sc-CO2. The precursors used were alkyl-alkoxysilanes of 

different chain-lengths, the catalyst was a weak base, and several less-common 

additives were incorporated during the sol-gel process. Additionally, we look at how the 

same approach affects the catalytic activity of a different enzyme, Pseudomonas 

cepacia lipase (PCL). 
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MATERIALS & METHODS 

 

Materials 

 

Fusarium solani pisi cutinase was produced by an Escherichia coli WK-6 (a gift from 

Corvas International, Ghent, Belgium) and purified at Centro de Engenharia Biológica e 

Química, Instituto Superior Técnico (Carvalho et al., 1999; Lauwereys et al., 1990). The 

enzyme purity was controlled by electrophoresis and isoelectric focusing. The 

estereolytic activity of the enzyme (30 nM) was determined spectrophotometrically by 

following the hydrolysis of p-nitrophenyl butyrate (0.56 mM) at 400 nm in a 50 mM 

potassium phosphate buffer at pH = 7.0. Pseudomonas cepacia lipase (PCL) was from 

Amano (Nagoya, Japan). (R,S)-2-phenyl-1-propanol (97 % purity), (R)- and (S)-2-

phenyl-1-propanol (98 % purity), tetramethoxysilane (TMOS), methyltrimetoxysilane 

(MTMS), propyltrimetoxysilane (PTMS), 3-aminopropyltrimetoxysilane (3APTMS), n-

octyltrimetoxysilane (OCTMS), zeolite NaA and zeolite NaY molecular sieves (in 

powder form) were from Aldrich, n-butyltrimetoxysilane (BTMS) was from 

Polysciences Inc., vinyl butyrate (99 % purity) was from Fluka, Biogel PA6 was from 

BIORAD, silica (silica gel, 60 M) was from Macherey-Nagel, n-hexane, tridecane, 

potassium acetate, sodium fluoride and sodium chloride were from Merck, Hydranal 

Coulomat A and C Karl-Fischer reagents were from Riedel de Häen, polyvinyl alcohol 

(PVA; MW 15.000) was from Sigma, Krytox 157FSL (perfluoropolyether, PFPE, MW 

≈ 2500) was from Dupont. (R,S)-2-phenyl-1-propyl butyrate was prepared as previously 

indicated (Vidinha et al., 2004). CO2 and nitrogen were supplied by Air Liquide and 

guaranteed to have purities of over 99.995 mol %.  

 

Additive modification  

 

Zeolite NaA – 3APTMS and zeolite NaA – PTMS: 1 mL of sol-gel precursor was 

solubilized in 1.5 mL of dichloromethane. This solution was added to 50 mg of NaA 

zeolite powder, and the slurry obtained was stirred for 24 h at room temperature. The 

modified zeolite was washed with dichloromethane and dried under vacuum. This 

procedure was adapted from Mukhopadhyay et al. (2003). Krytox-NH4: 5 g of Krytox 

were added to 25 mL of ammonia (24 % w/w) and the slurry obtained was stirred until a 

solid formed (after about 24 h). The solid (PFPE COO− NH4
+, henceforth referred to as 
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Krytox-NH4) was then washed abundantly with water and dried under vacuum for 24 h. 

This procedure was adapted from Holmes et al. (1999). 

 

Cutinase immobilization on zeolites 

 

Cutinase was immobilized by deposition (Gonçalves et al., 1996; Serralha et al., 1998). 

The lyophilized enzyme was dissolved in a 50 mM sodium phosphate buffer solution 

(10 mg mL-1 of enzyme) at pH 8.5. The support was added to the solution (25 mg of 

cutinase per g of support) and after vortex mixing for 1 min, the preparation was dried 

under vacuum for at least 24 h. The average yield of immobilization was (51 ± 8) % for 

zeolite NaA and (72 ± 12) % for zeolite NaY, as determined by a modified Lowry 

method (Lowry et al., 1951). 

 

Cutinase immobilization in sol-gel  

 
This technique was adapted from that referred by Reetz et al. (1996). 1 mg of 

lyophilized cutinase was dissolved in an aqueous solution containing NaF (0.20 g L-1) 

and PVA (4.64 g L-1). The amount of water in this solution was fixed (6.86 mmol). The 

solution was vigorously shaken on a vortex mixer. The precursors were then added in 

amounts that yielded a water/silane molar ratio (R) of 8 irrespective of the type and 

number of precursors used (e.g. 0.142 mmol of TMOS and 0.712 mmol BTMS in 1:5 

TMOS/BTMS gels). The mixture was again vigorously shaken on the vortex mixer, 

until it became homogeneous. It was then placed in an ice bath until gelation occurred 

(after a few seconds), and kept in the ice bath for an additional 10 minutes. The 

container with the obtained gel was kept at 4 ºC for 24 h, after which the gel was air-

dried at 35 ºC for 24 h. The white gel obtained was crushed and washed (for about 10 

min)/centrifuged (at 5400 rpm), first using phosphate buffer (50 mM, pH 7, 2 mL), then 

acetone and finally n-pentane (also 2 mL of each).  

 

The gel was left at room temperature for 16 hours, after which it was equilibrated with a 

saturated salt solution at 25 °C for about 3 days, to achieve the values aW = 0.75 

(sodium chloride) or aW = 0.22 (potassium acetate), taken from the literature (Greenspan, 

1977). When used, additives (4 mg additive/mg protein) were added to the NaF/PVA 

solution. The average yield of immobilization of cutinase in the sol-gel matrix was (91 
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± 8) %, as determined by the Lowry method (Lowry et al., 1951). This determination 

was based on the amount of enzyme found in the aqueous buffer used for washing the 

gel. Average enzyme loading in 1:5 TMOS/n-alkylTMS gels: 1.6 % for TMOS/MTMS, 

1.4 % for TMOS/PTMS and TMOS/BTMS, 0.9 % for TMOS/OCTMS. Assays 

performed with crushed gels (average particle size of 1.5 mm; 2.5 mm maximum, 0.7 

mm minimum) and grinded gels (average particle size of 0.3 mm; 0.8 mm maximum, 

0.2 mm minimum) yielded comparable initial reaction rates (tests carried out with 

TMOS/BTMS gels without additive, with added zeolite NaY and with added Biogel, 

with TMOS/OCTMS gels without additive, and with TMOS/PTMS gels without 

additive).   

 

PCL immobilization in sol-gel 

 
This technique was also adapted from that referred by Reetz et al. (1996). The 

commercial powder enzyme was suspended in water and centrifuged (at 5400 rpm for 

10 minutes). The supernatant was used for immobilization experiments and for the 

determination of protein content (0.085 ± 0.005 mg mL-1, using the Lowry method 

(Lowry et al., 1951)). This solution was added to the NaF/PVA solution, and the 

following steps were the same as those referred for cutinase. The average yield of 

immobilization of PCL in the sol-gel was (92 ± 7) %. Average protein loading in 1:5 

TMOS/n-alkylTMS gels: 0.25 % for TMOS/MTMS, 0.18 % for TMOS/PTMS, 0.14 % 

for TMOS/BTMS, 0.09 % for TMOS/OCTMS.  

 

Enzyme activity assays 

 

For reactions in sc-fluids, variable volume stainless steel cells (reaction mixture volume 

of about 12 mL for most experiments) equipped with a sapphire window, loading and 

sampling valves, were used. Details of the high pressure apparatus and experimental 

technique have been given elsewhere (Fontes et al., 2001). Reactions in n-hexane were 

performed in glass vials (reaction volume of 750 µL) placed in a constant temperature 

orbital shaker set for 450 rpm. With the exception of sc-CO2, all the reaction mixture 

components were pre-equilibrated to a fixed aW for about 3 days. The reaction studied 

was the transesterification of vinyl butyrate (300 mM in n-hexane; 170 mM in sc-CO2) 

by (R,S)-2-phenyl-1-propanol (100 mM in n-hexane; 60 mM in sc-CO2) (Scheme 1). 
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The concentration of sol-gel encapsulated enzyme was 6 g L-1 in n-hexane and 2 g L-1 in 

sc-CO2. The concentration of cutinase adsorbed on zeolite NaY was 6 g L-1 in n-hexane 

and 4 g L-1 in sc-CO2. Assays in sc-CO2 were performed at 100 bar. Vinyl butyrate 

addition marked the start of the reaction. Tridecane (15.4 mM) was used as external 

standard for GC analysis. Water concentration was measured by Karl-Fisher titration. In 

sc-fluids, aW values were calculated dividing the water concentration in the reaction 

mixture by the water concentration in the same mixture at saturation (Fontes et al., 

2002). 

 

Analysis  

 

The reaction conversion was measured by GC analysis performed with a Trace 2000 

Series Unicam gas chromatograph. Column: 30 m x 0.32 mm i.d. home-made fused 

silica capillary column coated with a 0.64 µm thickness film of 30 % heptakis-(2,3-di-

O-methyl-6-O-tert-butyldimethylsilyl)-ß-cyclodextrin in SE 52 (DiMe). Oven 

temperature program: 125 ºC for 2 min, 125-171 ºC ramp at 6 ºC min-1, 200 ºC for 3 

min. Injection temperature: 250 ºC. Flame ionization detection (FID) temperature: 250 

ºC. Carrier gas: helium (2.0 cm3 min-1). Split ratio: 1:20. No products were detected in 

assays carried out without enzyme. The initial rates given (per mg of protein) are the 

average of at least two measurements.  

 

Matrices characterization  

 

The porosity of the dried gels (before grinding and washing) was assessed with a dry-

powder pycnometer (GeoPyc 1360, Micromeritics), using a consolidation force of 50 N 

for 17 measurement cycles. The samples were outgassed at room temperature prior to 

weighing. The fractured surfaces of the gels were examined with a DSM962 Zyce 

scanning electron microscope (SEM), operating between 3 and 10 kV. To avoid 

charging effects during observation, the surfaces were previously sputter-coated with a 

gold layer.  
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RESULTS AND DISCUSSION 

 

The type and combination of silica precursors had a great influence on cutinase activity 

(Figure 1). When only TMOS was used, no enzyme activity was observed. When 

TMOS was combined with a similar mono-alkylated precursor, the enzyme activity 

increased with increasing alkyl chain up to a certain point, decreasing from there on: for 

the TMOS/OCTMS combination, the cutinase activity is clearly reduced. There is also a 

clear increase in the enzyme activity by increasing the proportion of alkylated 

precursors relative to TMOS, as can be observed for the pairs TMOS/BTMS and 

TMOS/OCTMS containing different relative proportions of TMOS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Effect of precursor combination on the catalytic activity of cutinase in n-hexane at aW = 0.7 

and T = 35 ºC. Precursors used: tetramethoxysilane (TMOS) and n-alkyltrimetoxysilane (n-alkylTMS; M 

= methyl, P = propyl, B = n-butyl, OC = n-octyl). The reaction studied was the transesterification of vinyl 

butyrate by (R,S)-2-phenyl-1-propanol. 
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Figure 2 – SEM micrographs of the sol-gel matrices (1:5 TMOS/n-alkylTMS) with encapsulated 

cutinase. The bar represents 50 µm. 

 

The SEM micrographs for the gels prepared with a TMOS/n-alkylTMS ratio of 1:5 

(Figure 2) show a direct correlation between the macropore dimensions and the alkyl 

chain length of the alkylated precursor. The micrograph for TMOS/OCTMS evidences 

partial collapse of the pore structure during the drying process. The extent of shrinking 

during this process is determined by the bulk modulus of the matrix (Fidalgo et al., 

2003). Combinations containing alkylated precursors with a higher alkyl chain length, 

such as OCTMS, are expected to yield more highly stretched matrices, with lower 

mechanical strength. Therefore, the critical drying point (which corresponds to the 

maximum capillary pressure) is reached after considerable shrinking, leading to 

extensive pore collapse. Thus, cutinase activity seems to increase with increasing alkyl 

chain length of the precursor up to the point where the matrix formed lacks the strength 

to withstand the drying process.  

 

TMOS/MTMS TMOS/PTMS 

TMOS/BTMS TMOS/OcTMS 
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Reetz et al. (1995) have used the same precursors as in the present study to encapsulate 

a lipase from Pseudomonas cepacia (PCL). When using a TMOS/n-alkylTMS ratio of 

1:1, they observed an increase in enzyme activity with the increase in alkyl chain length 

of the alkylated precursor added to TMOS, up to n = 18. The sharp increase in enzyme 

activity occurred up to n = 4, further increases in chain length bringing about relatively 

small enhancements in that property. The authors hypothesized that in more hydrophilic 

gels the lipase might still have to undergo the conformational changes associated with 

the movement of the lid covering the enzyme active site, as opposed to being entrapped 

in the active conformation (Reetz at al, 1996).  Kunkova et al. (2003) also correlated 

increased lipase activity via the opening of the lid with hydrophobic interactions 

between the enzyme and the alkyl groups of the sol-gel matrix.  

 

As mentioned earlier, cutinase has no lid covering its active site and this argument does 

not apply. However, the enzyme activity responds to its microenvironment and to the 

interactions with the solid matrix, which may explain the activity increase with the alkyl 

chain length up to n ≈ 4 observed in this work. Also shown in Figure 1 are the results 

obtained for combinations of three precursors. By comparison with those obtained by 

using two precursors in corresponding proportions, it seems clear that when the third 

one has a long alkyl chain (e.g. OCTMS) its effect on the enzyme activity is negligible. 

However, when it has a shorter alkyl chain, such as BTMS, it results in a significant 

enhancement of the cutinase activity. This suggests again that the presence of BTMS 

and the increase in its proportion relative to TMOS give the best compromise between 

structural integrity of the material and cutinase/matrix interactions, thus yielding a 

higher enzyme activity. 

 

To try and improve cutinase activity, and also to gain a better understanding of the 

nature of the matrix/enzyme interactions, we incorporated additives in the 1:5 TMOS/n-

alkylTMS matrices during the sol-gel process (Figure 3). Included in this figure are 

results for cutinase adsorbed on zeolite NaY. This immobilization technique constitutes 

an already existing efficient method for cutinase (Gonçalves et al., 1996; Serralha et al., 

1998) and seems appropriate as a reference (Persson et al., 2002). To the best of our 

knowledge, none of the additives used in the present study have been used before to 

alter the catalytic activity of enzymes entrapped in sol-gel.  
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Figure 3 – Effect of additives on the catalytic activity of cutinase encapsulated in 1:5 TMOS/X sol-gel 

and adsorbed at the surface of zeolite NaY (bars, left axis) and on the global porosity of the dried gels 

(solid lines, right axis), in n-hexane at aW = 0.7 and T = 35 ºC. X = MTMS (yellow bars), PTMS (red 

bars), BTMS (green bars), OCTMS (blue bars). The assays with TMOS/MTMS gels with no additive or 

with the additive Krytox-NH4 yielded initial rates below 100 nmol min-1 mg-1. The reaction studied was 

the transesterification of vinyl butyrate by (R,S)-2-phenyl-1-propanol. 

 

 

The common characteristic to the additives used is their capability to react with residual 

silanol groups of the sol-gel matrix. The striking feature of Figure 3 is the positive 

impact that such different additives have on enzyme activity, although the global 

porosity is very similar for all the samples prepared. This suggests that the structural 

characteristics of the matrix cannot be the only reason for the observed differences in 

cutinase activity. Again, enzyme/matrix interactions probably play a major role. By 

reacting with silanol groups, the additives decrease the number of those available for 

binding to residues on the enzyme, thus reducing constraints on enzyme conformational 

mobility. This seems to be the primary effect of the additives, which explains why so 

many different additives had a positive impact on enzyme activity.  
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This argument also explains why the sol-gel matrix itself, when used as additive, can 

enhance enzyme activity (e.g using a TMOS/BTMS grinded gel as additive to a 

TMOS/BTMS sol). It further elucidates the results obtained when using zeolite NaA 

functionalized with the precursor PTMS (NaA-PTMS) as additive. This 

functionalization yields additives capable of reacting with silanol groups to a lesser 

extent than pure zeolite NaA, and enzyme activity in this case was very close to that 

exhibited by the blank. But the changes imposed on the microenvironment of the 

enzyme by the additive are also seen to be relevant. A good example is the case of 

zeolite NaA functionalized with APTMS (NaA-3APTMS). Compared to zeolite NaA, 

NaA-3APTMS differs mostly in the surface charge of the zeolite, and this has led to a 

significant increase in cutinase activity for both TMOS/MTMS and TMOS/BTMS. 

Overall, our results highlight the potential of additives for modulating the activity of 

enzymes encapsulated in sol-gel matrices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Effect of precursor combination on the catalytic activity of Pseudomonas cepacia lipase 

(PCL) encapsulated in 1:5 TMOS/X sol-gel and effect of additives on TMOS/BTMS and TMOS/OCTMS 

gels, in n-hexane at aW = 0.7 and T = 35 ºC. Code for bars as in Figure 3. The reaction studied was the 

transesterification of vinyl butyrate by (R,S)-2-phenyl-1-propanol. 
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To see how a different enzyme would respond to this approach, we used PCL (Figure 

4). The results for the blanks do not exactly follow the pattern reported by Reetz et al. 

(1995) for this enzyme, probably because the precursor ratio used in this work was 

different (1:5 versus 1:1). In both studies the higher activity was observed for 

TMOS/OCTMS, the precursor combination with the highest hydrophobicity. However, 

in the present study, TMOS/PTMS and TMOS/BTMS yielded very similar results and 

the combination TMOS/OCTMS offered a significant improvement in enzyme activity 

relative to TMOS/BTMS. The use of additives was not successful in increasing the 

enzyme activity in this case. Since the dynamics required for efficient catalysis depend 

on the enzyme, all the factors that interfere with the conformational mobility of the 

enzyme can have impact on its catalytic ability. The fact that, contrarily to cutinase, 

PCL has a lid covering the active site may also contribute to the observed responses of 

the two enzymes to additives, and supports the notion that the choice of additive must 

be tailored to fit the enzyme (Reetz et al., 2003).  

 

 

Table 1 - Stability of cutinase encapsulated in 1:5 TMOS/BTMS sol-gel preparations, 

as measured by the percentage of enzyme activity retention in n-hexane at the tenth 

reutilization cycle (aW = 0.7; T = 35 ºC). The reaction studied was the transesterification 

of vinyl butyrate by (R,S)-2-phenyl-1-propanol. 

 

additive % activity 

- 

zeolite NaA 

zeolite NaA-3APTMS 

zeolite NaY 

Biogel PA6 

   64 

41 

50 

75 

87 

 

 

Enzyme stability is a key enzymatic property that can be improved using the sol-gel 

technology (Gill et al., 1998; Park and Clark, 2002; Reetz et al., 2003). In the present 

study, cutinase stability was assessed in the gels that yielded highest activity. The 

measure of stability was the retention of enzyme activity at the tenth reutilization cycle 

(Table 1). The harshness of the manipulations endured by the enzyme between the 
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moment it is recovered from the medium and the moment it begins the next cycle is 

considerable but should be about the same for all the preparations. Therefore, the results 

must reflect the interactions established between the enzyme and the sol-gel matrix.  

 

Overall, the additives Biogel PA6 and zeolite NaY appear to be the best compromise for 

cutinase from the standpoint of enzyme activity and stability. We note that when 

cutinase was adsorbed on zeolite NaY, total loss of activity was observed after six 

cycles, a number that fell down to two when zeolite NaA was used instead. However, in 

this case the results mostly reflect the leaching of the protein, both during reaction and 

during the treatment involved in the reutilization process, since the enzyme is not caged 

as when it is encapsulated in the sol-gel. The extent of leaching during reaction in 

nonaqueous media is higher for zeolite NaA than for zeolite NaY, although values for 

the two supports become similar at higher aW (Vidinha et al., 2004). This and the fact 

that the average yield of cutinase immobilization onto zeolite NaY is higher than on 

zeolite NaA (Vidinha et al., 2004; Gonçalves et al., 1996; Serralha et al., 1998) reflect a 

stronger interaction between the enzyme and zeolite NaY.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Effect of additives on the catalytic activity of cutinase encapsulated in 1:5 TMOS/BTMS 

sol-gel and adsorbed at the surface of zeolite NaY, in sc-CO2 at aW = 0.2, T = 35 ºC and P = 100 bar. The 

reaction studied was the transesterification of vinyl butyrate by (R,S)-2-phenyl-1-propanol. 
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We are interested in implementing environmental friendly processes. Sc-CO2 is a 

solvent of choice in this context but it is known that it can have a markedly negative 

effect on the catalytic activity of many hydrolases, and cutinase is no exception (Garcia 

et al., 2004a; Garcia et al., 2004b). Encapsulation of cutinase in sol-gel matrices in the 

presence of additives also led to remarkable improvements in enzyme activity in sc-CO2 

(Figure 5). Although the impact of the additives when using this solvent was not exactly 

the same as when using n-hexane, our results generally show that a gel matrix with 

good activity in n-hexane propitiates good activity in sc-CO2 as well. Encapsulation in 

sol-gel has been found to provide protection against the deleterious effect of CO2, as 

reported by Novak et al. (2003) for a lipase. This is not the case here. Sol-gel 

encapsulation yields a more competent enzyme, but it does not bridge the gap between 

cutinase activity in sc-CO2 and in other nonaqueous media.  

  

CONCLUSIONS 

 
Encapsulation in a sol-gel matrix is a good strategy to improve cutinase activity and 

stability in nonaqueous media, as shown here for an organic solvent (n-hexane) and sc-

CO2. Although enzyme loading in some of the sol-gel matrices used in the present study 

was slightly lower than that normally used for adsorption on zeolites (Gonçalves et al., 

1996; Serralha et al., 1998) (c.a. 1.4 % w/w for TMOS/BTMS versus 2.5 % w/w for 

adsorption on zeolite NaY), we have already verified that enzyme loading in the 

TMOS/BTMS sol-gel can be doubled without decreasing the enzyme specific activity. 

The impact of the additives on the properties of cutinase and the fact that these agents 

did not affect the structural characteristics of the sol-gel matrix suggest that 

enzyme/matrix interactions must play an important role in determining enzyme 

performance. The results achieved with some of the additives highlight the potential of 

this strategy for a finer tuning of the properties of enzymes encapsulated in sol-gel 

matrices. As might be anticipated, the additives most adequate for one enzyme may not 

necessarily be the best for another, as seen here for cutinase and PCL. 
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PART II. 

The cutinase point of view    
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In the second part of our study, our aim was to try and correlate differences in the 

activity of cutinase with the microenvironment that the enzyme experiences inside the 

different sol-gel matrices. As we saw in the introduction to the present chapter, the 

rationalization of the interaction between enzymes and solid surfaces can give valuable 

information for the development of new immobilization solutions.  

 

The strategies that were presented in part I to enhance enzyme activity and stability 

were essentially related with the enzyme microenvironment, since they involved both 

changes in the hydrophobic character of the sol-gel matrices through the use of different 

sol-gel precursors, and the use of additives. The role of zeolite NaY, in particular, 

appeared to be worth pursuing. We knew from other authors that adsorption at the 

surface of zeolites was a good immobilization technique for cutinase, which led to the 

preservation of its three-dimensional structure, as observed with fluorescence 

spectroscopy. Fluorescence spectroscopy is one of the most sensitive techniques for 

studying protein conformation. Here we have used it to probe enzyme/matrix 

interactions.  

 

The technique is based on the fact that all biological molecules carry specific 

spectroscopic signatures that define not only their identities, but also their physical 

states and environments. Thus if the optical signals transmitted by biomolecules were 

intense enough, they could reflect very small changes in their environment1,2. There are 

several species, namely aromatic aminoacids, which can act as fluorescence probes, and 

fortunately they are present in the majority of proteins or peptides. The aromatic amino 

acids are tryptophan (Trp), tyrosine (Tyr) and phenylalanine (Phe), which have strong 

UV absorption bands corresponding to S0 – S1 transitions when exited between 260-280 

nm, or S0 – S2 transitions when exited below 230 nm. Usually fluorescence 

experiements use the S1 exited state in order to minimize photoreaction events and to 

enhance the quantum yield. At these longer wavelengths, Trp has the largest molar 

extinction coefficient (ε) and a better quantum yield (φf ), compared to the other two 

aminoacids. On the other hand, Phe has the poorest ε and φf, and that makes Phe rarely 

useful for fluorescence studies. When subjected to UV irradiation, both Trp and Tyr 

show emission spectra similar to spectra of Trp alone. The reason for this is related with 

the transfer of nonradiative energy from Tyr to Trp. Although these two residues are not 

highly fluorescent, undergo many photoreactions with higher quantum yield and their 



 202 

emission could be quenched by several factors, they are very useful probes to study 

protein structure1,2. .  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure II.I- Fusarium solani pisi cutinase structure (PDB 1CEX). At the top, the active center 

catalytic triad (Ser 120, His 188 and Asp 175). At the bottom, Trp 69, the disulfide bridge Cys31 – 

Cys109), and Ala 32.  
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Figure II.II- Detail of the region in the vicinity of Trp 69. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure II.III- Detailed catalytic triad. 
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Fusarium solani pisi cutinase is a serine hydrolase with a catalytic triad formed by 

serine 120, histine 188 and aspartic acid 175, as well as an oxyanion hole, like all 

cutinases. Their catalytic mechanism was described in Chapter II.  One important aspect 

of the cutinase structure is the presence of only one tryptophan (Trp 69) that is located 

at the opposite pole of the active center. This residue is on a β-sheet (residues 68-79), 

close to one of the two disulfide bridges of this esterase (the one between Cys 31 and 

Cys 109), forming a hydrogen bond with an alanine (Ala 32) located on the loop 

(residues 27-33)5-7.   

 

The fluorescence studies of cutinase are based on the fluorescence of its single Trp that  

can be used as a polarity probe of the enzyme microenvironment. Trp can also provide 

very important information on the conformation of the enzyme, since when cutinase is 

in its native conformation, the fluorescence of Trp 69 is highly quenched5-7. This is due 

to the presence of the Cys 31-Cys 109 disulfide bridge. Disulfide bridges are known to 

be excellent quenchers of the excited-state of aromatic residues. The fluorescence 

quantum yield of the Trp residue increases with an increase in irradiation time, but in 

this case what is taking place is the photo-induced disruption of the disulfide bridge, 

which reduces its quenching ability5-7. Neves-Peterson and co-coworkers5 have 

presented a correlation between the number of absorbed photons and the disruption of 

this disulfide bridge on cutinase. These authors verified that the overall structure of 

cutinase is damaged in the process. In fact, irradiation of cutinase at 295 nm causes 50% 

loss of the enzyme activity, confirming a negative impact on structure integrity since the 

active site is on the opposite pole of the Trp region (figure III.I).  

 

A first question that one may ask is why is the exited state of Trp responsible for the 

rupture of the disulfide bridge? This is possibly related with the dipole moment of Trp 

inducing a dipole moment on the adjacent disulfide bridge. The resulting energy transfer 

would induce vibrational modes on the disulfide bridge, causing its disruption. This is 

more plausible than direct light absorption by the disulfide bridge, since at 295 nm its 

extintition coefficient is 300 M-1 cm-1, whereas the extinction coefficient of Trp at the 

same wavelength is 5600 M-1cm-1, almost 19 times higher. Thus, an electronic transfer 

from Trp is the likely explanation for the disruption of the disulfide bridge5,7.  
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Another question one may ask is why a disulfide bridge is so near an aromatic residue? 

This structural feature can be found in many other proteins. Apparently the answer is 

simple: when aromatic residues such as Trp or Tyr are exited by UV light, H or an 

electron are triggered from these residues and can lead to the formation of radicals. The 

latter can develop a cascade reaction involving several reactive groups of the protein, 

causing great damage to the protein structure. By placing a disulfide bridge in close 

proximity to Trp, nature and evolution made the intelligent choice of choosing the less 

harmful way5.  

 

Trp 69 and the Cys 31- Cys 109 disulfide bridge can work as an integrity probe for the 

structural integrity of cutinase. Serralha and co-workers3 and Melo and co-workers4 give 

very good examples on the utility of this approach to assess the impact of several 

immobilization techniques. E.g. the first authors show a very good correlation between 

the decrease in the activity of cutinase adsorbed at the surface of zeolites with the shift 

in the emission spectrum of Trp. They found that the reason for the loss of activity when 

cutinase was immobilized on the most dealuminated supports was essentially a strong 

denaturation caused by the type of interaction of cutinase with those supports.  

 

In the study that follows, we have used fluorescence spectroscopy to clarify the impact 

of different sol-gel matrices, with or without added zeolite NaY, on cutinase activity. 
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ABSTRACT  

Cutinase, an esterase from Fusarium solani pisi, was immobilized in sol-gel matrices of 

composition 1:5 tetramethoxysilane(TMOS): n-alkyltrimethoxysilane (n-alkylTMS). 

Fluorescence spectroscopy using the single tryptophan (Trp-69) residue of cutinase as a 

probe revealed that the polarity of the matrices decreased as their hydrophobicity 

increased up to the TMOS/n-butylTMS pair, which correlates with an increase in 

cutinase activity. Fluorescence emission was suppressed (a higher than two orders of 

magnitude reduction) in the TMOS/n-octylTMS matrix, suggesting a greater proximity 

of the tryptophan to a nearby disulfide bridge. When zeolite NaY was used as additive, 

cutinase activity increased in all the matrices. The presence of the zeolite did not affect 

the fluorescence emission intensity maximum (λmax) of the tryptophan. And although 

the addition of the zeolite led to the recovery of fluorescence emission from the 

TMOS/n-octylTMS matrix, the corresponding λmax fell in line with the values obtained 

for the matrices with lower n-alkyl chain lengths. This indicates that tryptophan does 

not sense the proximity of the zeolite and suggests that the zeolite is in a position to 

affect the active site of the enzyme, located at the opposite pole of the enzyme 

molecule. Scanning electron microscopy and energy dispersive X-ray spectroscopy 

revealed that the zeolite particles were segregated to the pores of the matrices. Optical 

microscopy following the staining of the protein with a fluorescent dye showed that the 

enzyme was distributed throughout the material, and tended to accumulate around 

zeolite particles. Data obtained for sol-gel matrices with epoxy or SH groups provided 

further evidence that cutinase responded to changes in the chemical nature of the 

precursors. 
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INTRODUCTION 

The sol-gel process allows the immobilization of biomolecules and microorganisms at 

sufficiently mild conditions to preserve the native structure, dynamics and function of 

the biomolecules as well as the activity and viability of the encapsulated whole 

cells2,7,10. The inorganic matrix or host provides an inert and mechanically strong 

framework or interface whose porosity, pore size and permeability to solutes such as 

substrates, products or nutrients can be controlled1,20. Applications of the resulting 

hybrid materials include sensors based on protein microarrays12 or encapsulated 

bacteria33, bioartificial blood vessels35, bioartificial organs and cellular grafts6,40, and 

bioreactors containing the enzymes(s) of interest for the screening of certain analytes25 

or living cells for the biodegradation of pollutants17. Additional fields of application of 

hybrid sol-gel materials include drug release systems5, bioactive materials16 and 

biomimetic systems13.  

 

The immobilization of enzymes using the sol-gel process can lead to increased enzyme 

stability, one of the key properties for industrial applications. The enzymes are held 

within a confined space, with restricted conformational mobility that contributes to the 

observed stability enhancement14. In fact, sol-gel encapsulation has been used to mimic 

the effects of confinement on the structure and stability of proteins, as occurs in living 

cells, in particular surface-induced water structure effects that are also thought to 

contribute to the observed stabilization15. One of the advantages of the sol-gel system is 

that it allows studies on the impact of agents that cause the protein to aggregate in 

solution, a situation that is precluded in the sol-gel matrix. It has also been shown that 

sol-gel entrapment can protect enzymes against exposure to extreme pH conditions18. 

Additionally the entrapment of enzymes in sol-gel matrices can prevent the leaching of 

the enzyme8, which is equally important from an economic and environmental 

standpoint and has long been pointed out as one of the important advantages of the sol-

gel process1. The effective prevention of enzyme leaching may sometimes require 

additional steps in the immobilization protocol4.  

 

The use of additives that remain entrapped in the material is a second-order approach 

towards impacting on enzyme activity and stability via the sol-gel process. Examples 

include polymers that reduce the extent of shrinking during the making and drying of 
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the matrix47, sugars that act as stabilizers8, and various species such as surfactants or 

cyclodextrin38. In line with the latter study, we have recently studied the immobilization 

of cutinase in sol-gel matrices formed via the hydrolysis and condensation of mixtures 

of a silicon alkoxide and a trimethoxysilane, in the presence of several additives45. We 

have shown that when cutinase is immobilized in 1:5 tetramethoxysilane(TMOS)/n-

alkyltrimethoxysilane(n-alkylTMS) sol-gel matrices where the alkyl groups range from 

methyl to n-octyl, its activity increases up to n-butyl and then decreases. Studies with a 

lipase immobilized in similar sol-gel matrices36.37 showed increased enzyme activity for 

longer alkyl chain lengths, a fact attributed to the entrapment of the enzyme in an active, 

open lid conformation. The fact that cutinase does not have a lid covering its active site 

and lacks interfacial activation11 could explain the different correlation with the 

composition of the sol-gel matrix obtained for this enzyme.  

 

In our earlier study45 we have shown that when cutinase is immobilized in 1:5 TMOS/n-

butylTMS) sol-gel matrices, enzyme loading and enzyme activity can match the levels 

reached with the technique of physical adsorption at the surface of zeolite NaY, a 

successful immobilization procedure for cutinase in nonaqueous media that is suitable 

for transesterification19,41 as well as for hydrolysis reactions21,22. The advantages of the 

sol-gel process relative to the latter technique appeared to be twofold: an enhancement 

of enzyme stability, namely the operational stability of the enzyme, as assessed in a 

series of reutilization cycles, and an enhancement of specific activity when several 

additives were incorporated in the matrix. One of these was zeolite NaY. The purpose of 

the present work is then to elucidate the role that zeolite NaY plays when it is used as 

additive not only in the TMOS/n-alkylTMS matrices that we have used earlier, but also 

in sol-gel matrices bound to provide a different microenvironment for the enzyme. To 

build these we selected a trimethoxysilane bearing a thiol-substituent or an epoxy group 

that in principle could form covalent bonds with the enzyme.  

 

Cutinase from Fusarium solani pisi is an extracellular enzyme involved in the 

degradation of cutin, the cuticular polymer of higher plants. It is a serine hydrolase with 

197 residues, a molecular mass of ca. 22 kD, and a volume of ca. (45x30x30) Å3. 

Fluorescence spectroscopy has been extensively used to provide information on the 

conformation and dynamics of cutinase dissolved in aqueous media29,44, adsorbed on 

solid supports3,42 encapsulated in reverse micelles23,29,44. The maximum fluorescence 



 216 

intensity for cutinase is dominated by the contribution from its six tyrosines27. However, 

the fluorescence from the single tryptophan residue of cutinase (Trp-69) can be 

selectively measured by chosing an appropriate wavelength of excitation31,34,46. The 

fluorescence spectrum of tryptophan is very weak because tryptophan is highly 

quenched by a disulfide bridge between cysteines 31 and 109, whose distance from the 

indole ring of tryptophan is ca. 5 Å. The tryptophan fluorescence emission peak 

depends on the polarity of its surroundings, e.g. in more hydrophobic 

microenvironments the fluorescence emission intensity maximum of tryptophan will 

shift to smaller wavelength values.  

 

In the present work we look at the fluorescence emission spectra of the tryptophan of 

cutinase when the enzyme is entrapped in sol-gel matrices of composition 1:5 

TMOS:XTMS, in which X is an n-alkyl chain, a propyl chain modified with an SH 

group, or an epoxy, with or without co-entrapment of zeolite NaY. We also look at the 

impact that added zeolite NaY has on enzyme activity, and discuss the role of the zeolite 

in the sol-gel matrices, which we characterized using scanning electron microscopy 

(SEM), energy dispersive X-ray spectroscopy, and optical microscopy after staining the 

protein with a fluorescent dye.  

 

MATERIAL & METHODS 

 

Materials 

 

The cutinase producing strain Saccharomyces cerevisiae SU50-pUR7320 was 

constructed and provided by the Unilever Research Laboratory at Vlaardingen, The 

Netherlands. The production and purification of cutinase was performed at Centro de 

Engenharia Biológica e Química, Instituto Superior Técnico9. The enzyme purity was 

controlled by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). 

The estereolytic activity of the enzyme was determined spectrophotometrically. A 20 

µL sample from the culture medium was added to 980 µL of 11.3 mM sodium cholate, 

0.43 M tetrahydrofuran, 50 mM potassium phosphate buffer (pH 7.0) solution, in which 

the hydrolysis of p-nitrophenyl butyrate (0.56 mM) was monitored at 400 nm. (R,S)-2-

phenyl-1-propanol (97 % purity), tetramethoxysilane (TMOS), methyltrimetoxysilane 

(MTMS), ethyltrimethoxysilane (ETMS), propyltrimetoxysilane (PTMS), n-
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octyltrimetoxysilane (OCTMS), zeolite NaY molecular sieves (in powder form) were 

from Aldrich, n-butyltrimetoxysilane (BTMS) was from Polysciences Inc., vinyl 

butyrate (99 % purity) was from Fluka, n-hexane, tridecane, sodium fluoride and 

sodium chloride were from Merck, Hydranal Coulomat A and C Karl-Fischer reagents 

were from Riedel de Häen, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane (EXETMS), 

3-mercaptopropyltrimethoxysilane (SHPTMS), and polyvinyl alcohol (PVA; MW 

15.000) were from Sigma. Sypro Ruby red gel stain was from Molecular Probes. 

Technovit 2000 LC paste and light-curing resin were from Heraeus Kulzer.  

 

 

Immobilization of cutinase in the sol-gel.  

 

This technique was adapted from that referred by Reetz et al.37, as indicated by Vidinha 

et al.45. 2 mg of lyophilized cutinase was dissolved in an aqueous solution containing 

NaF (0.20 g L-1) and PVA (4.64 g L-1). The amount of water in this solution was fixed 

(6.86 mmol). The solution was vigorously shaken on a vortex mixer. The precursors 

were then added in amounts that yielded a water/silane molar ratio (R) of 8 irrespective 

of the type and number of precursors used (e.g. 0.142 mmol of TMOS and 0.712 mmol 

BTMS in 1:5 TMOS/BTMS gels). The mixture was again vigorously shaken on the 

vortex mixer, until it became homogeneous. It was then placed in an ice bath until 

gelation occurred (after a few seconds), and kept in the ice bath for an additional 10 

minutes. The container with the obtained gel was kept at 4 ºC for 24 h, after which the 

gel was air-dried at 35 ºC for 24 h. The white gel obtained was crushed and washed (for 

about 10 min)/centrifuged (at 5400 rpm), first using phosphate buffer (50 mM, pH 7, 2 

mL), then acetone and finally n-pentane (also 2 mL of each). The gel was left at room 

temperature for 16 hours, after which it was equilibrated with a saturated salt solution at 

room temperature for about 3 days, to achieve the value aW = 0.7 (sodium chloride), 

taken from the literature24. When used, zeolite NaY (4 mg) was added to the 

enzyme/NaF/PVA solution. The average yield of immobilization of cutinase in the sol-

gel matrix was (91 ± 8) %, as determined by the Lowry method26. This determination 

was based on the amount of enzyme found in the aqueous buffer used for washing the 

gel. Average enzyme loading ranged from 3.2 % in TMOS/MTMS gels to 1.8 % in 

TMOS/OCTMS gels.  
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Matrices with acid-base indicators and no enzyme.  

 

Matrices containing fluorescein were prepared as above, but with fluorescein (1 mg) 

replacing the enzyme. The reddish-orange dianionic form of fluorescein (λabs = 490 nm) 

protonates at mildly acidic pH values in water (pKa = 6.43) to yield the yellowish-

orange monoanionic form (λabs = 472 nm; λabs = 453 nm)43. The matrices containing an 

indicator (methyl orange, bromocresol green, phenol red or bromothymol blue) were 

prepared by replacing part of the water that was formerly added separately with an 

aqueous solution of the indicator, prepared according to standard protocols. The actual 

colours conferred by the indicators in the reaction mixture, in the acidic and basic pH 

ranges, were checked by adding concentrated HCl or NaOH solutions to the mixture 

immediately upon addition of the precursors. 

 

Immobilization of cutinase on zeolite NaY.  

 

Cutinase was immobilized by deposition21,41. The lyophilized enzyme was dissolved in 

a 50 mM sodium phosphate buffer solution (10 mg mL-1 of enzyme) at pH 8.5. The 

support was added to the solution (25 mg of cutinase per g of support) and after vortex 

mixing for 1 min, the preparation was dried under vacuum for at least 24 h. The average 

yield of immobilization was (72 ± 12) % zeolite NaY, as determined by a modified 

Lowry method26. 

 

Steady-state fluorescence spectroscopy.  

 

The fluorescence emission and excitation spectra of the samples were recorded on a 

Jobin Yvon-SPEX Fluorolog 3.22 spectrofluorometer. The emission was measured with 

excitation at 290 nm, to avoid interference from other luminescent residues, in a 4 mm 

path fluorescence cell filled with the powder, in front face geometry, with 1.5 nm band 

path excitation and emission slits. The excitation spectra, collected at the maximum of 

the observed emission, were recorded for all samples in order to confirm the origin of 

the observed emission. In the cases where significant emission was observed but the 

excitation spectrum did not match the absorption spectrum of tryptophan, the sample 

was rejected and re-synthesized. The fluorescence emission intensity maximum (λmax) 



 219 

values given are the average of at least six measurements performed on replicate sol-gel 

supports. The fluorescence intensity was quantified in arbitrary units. The specific 

fluorescence intensity is equal to the fluorescence intensity divided by the amount of 

enzyme (in mg).  

 

 

Matrices characterization.  

 

The fractured surfaces of the matrices were examined with a DSM962 Zyce scanning 

electron microscope (SEM), operating between 3 and 10 kV. To avoid charging effects 

during observation, the surfaces were previously sputter-coated with a gold layer. Some 

matrices were also examined with an Oxford Instruments SEM equipped with an 

INCAx-sight energy dispersive X-ray spectroscopy (EDS) detector, as well as with a 

Zeiss Axioplan-2 optical microscope. Prior to examination with the optical microscope, 

each sample was mounted on a plastic mould using a paste and a light-curing resin. 

Excess cured resin was removed by grinding. A few drops of the protein staining 

fluorescent dye solution were then deposited on the surface of the sample, which was 

kept in the dark for 10 min. Excess dye was then removed.  

 

 

Enzyme activity assays.  

 

Reactions were performed in glass vials (reaction volume of 750 µL) placed in a 

constant temperature orbital shaker set for 400 rpm. All the reaction mixture 

components were pre-equilibrated to aW = 0.7 for about 3 days. The reaction studied 

was the transesterification of vinyl butyrate (300 mM) by (R,S)-2-phenyl-1-propanol 

(100 mM) in n-hexane. The concentration of sol-gel encapsulated enzyme or of cutinase 

adsorbed on zeolite NaY was 6 g L-1. Vinyl butyrate addition marked the start of the 

reaction. Tridecane (15.4 mM) was used as external standard for GC analysis. Water 

concentration was measured by Karl-Fisher titration. Enzyme operational stability tests 

performed in n-hexane revealed very high retention of cutinase activity45. Thus the data 

in Figures 6 and 7 are not affected by enzyme leaching. 
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Analysis of reaction progress.  

 

The reaction conversion was measured by GC analysis performed with a Trace 2000 

Series Unicam gas chromatograph equipped with a 30 m x 0.32 mm i.d. fused silica 

capillary column coated with a 0.25 µm thickness film of 20 % 2,3-dimethyl-6-tert-

butyldimethylsilyl)-ß-cyclodextrin dissolved in BGB-15, from BGB Analytik AG. Oven 

temperature program: 125 ºC for 2 min, 125-171 ºC ramp at 6 ºC min-1, 200 ºC for 3 

min. Injection temperature: 250 ºC. Flame ionization detection (FID) temperature: 250 

ºC. Carrier gas: helium (2.0 cm3 min-1). Split ratio: 1:20. No products were detected in 

assays carried out without enzyme. The initial rates given (per mg of protein) are the 

average of at least two measurements.  

 

 

RESULTS AND DISCUSSION 

 

 

Steady-state fluorescence spectroscopy data 

 

The fluorescence emission intensity maximum (λmax) of the single tryptophan (Trp-69) 

residue of cutinase reflects the polarity of the microenvironment of that residue. Our 

first concern was to establish that the changes in λmax upon changing the composition of 

the sol-gel matrix could not be attributed to different levels of exposure of tryptophan to 

the surroundings of the protein, as caused by its denaturation. If this were the case, the 

recorded emission spectra would be expected to vary among supports prepared with 

such different precursors as n-alkylTMS or EXETMS, thus reflecting the presence of 

many different microenvironments of the tryptophan residue upon protein denaturation 

and/or aggregation. Figure 1 shows emission spectra obtained for cutinase entrapped in 

three different sol-gel matrices. As seen in the figure, the spectra have similar band 

widths, which indicates that the enzyme populations sensed by the tryptophan in each 

case are mostly in the same conformational state. The average full width at half the 

maximum of the emission band for all the samples tested that emitted fluorescence, 

including all the different sol-gel matrices, was ca. 55 nm. Also when normalizing the 

signals obtained by dividing the intensity of the fluorescence emission by the amount of 

protein, the specific intensities obtained agreed to within one order of magnitude, with 
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no trend, which is another indication that the enzyme populations did not vary much 

among samples. In fact, when denaturation occurs, the quenching of the tryptophan 

fluorescence emission is less pronounced, fluorescence intensity increases and a broader 

emission band is obtained23,27. Evidence that the conformational states of cutinase 

adsorbed on zeolite NaY resemble those of the native enzyme has been provided by 

Serralha et al.42.  
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 Figure 1 - Emission spectra of cutinase entrapped in sol-gel matrices of different compositions. 

Legend: (green) TMOS/BTMS; (blue) TMOS/MTMS; (red) TMOS/EXETMS.  

 

Figure 2 provides further evidence that the tryptophan of cutinase responds to changes 

in the polarity of its microenvironment, as effected by permeating the sol-gel matrix 

with different solvents. λmax was 319.0 nm in the case of the TMOS/BTMS matrix 

permeated with n-hexane, and shifted to 324.9 and 329.0 nm for the matrices permeated 

with acetonitrile and methanol, respectively. These two solvents have similar dielectric 

constants (35.94 and 32.66, respectively) but methanol has a higher value of the 

empirical parameter of solvent polarity ET
N (0.762; 0.460 for acetonitrile)39. The 

emission spectra for cutinase dissolved in aqueous buffer were highly quenched and are 

not shown in the figures. In this case, λmax was ca. 338 nm.  
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Figure 2 -  Emission spectra of cutinase entrapped in TMOS/BTMS sol-gel permeated with different 

solvents. The top curve, taken from Figure 1, is shown for comparison. Legend: (green) TMOS/BTMS; 

(yellow) TMOS/BTMS permeated with methanol; (pink) TMOS/BTMS permeated with acetonitrile; 

(black) TMOS/BTMS permeated with n-hexane.  

 

 

As referred in the Introduction, our main goal was to elucidate the role of zeolite NaY 

as additive in the sol-gel materials. To this end, we first looked at how the emission of 

the tryptophan responded to the composition of the sol-gel in the 1:5 TMOS/n-

alkylTMS homologous series (Figure 3). The sequential decrease in λmax registered in 

the gels up to TMOS/BTMS reveals that tryptophan is sensitive to the changes in 

polarity imparted by the increase in the chain length of the n-alkylated precursor and 

hence the increased hydrophobicity of its surroundings. However, in the case of the 

TMOS/OCTMS gel the specific fluorescence intensity recorded was significantly lower 

than that obtained with the other matrices (more than two orders of magnitude lower; 

lower curve in Figure 4). By comparison and for the purpose of the present discussion, 

this situation will be referred to as the ‘suppression of fluorescence emission’.  
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Figure 3 - Fluorescence emission intensity maximum (λmax) for cutinase entrapped in sol-gel matrices 

prepared without or with added zeolite NaY. In the case of the TMOS/OCTMS and TMOS/SHPTMS 

matrices prepared without zeolite NaY, the specific fluorescence intensity recorded was more than two 

orders of magnitude lower than that obtained with the other matrices, and no λmax values are given. 

 

As seen in Figure 3, fluorescence emission was also suppressed when cutinase was 

entrapped in the TMOS/SHPTMS gels. It is possible that some of the SH groups in the 

TMOS/SHPTMS matrix reacted among themselves to form additional disulfide bridges 

to further quench the emission signal from the enzyme. This would involve the release 

of protons and possibly formation of SH2 as well. There is evidence that both processes 

occurred to some extent, as shown by the colors of the preparations with different 

indicators that suggest a medium pH range of 6.0-6.5, and a clear smell of SH2 while 

preparing this matrix. No comment can be made on the λmax values in the 

TMOS/EXETMS matrices that were similar to those obtained with TMOS/BTMS, 

despite the dissimilarity of the compositions of the two matrices.  
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Figure 4 - Emission spectra of cutinase entrapped in the TMOS/OCTMS gel with added zeolite NaY 

(upper curve). The emission signals obtained from the TMOS/OCTMS matrix alone or with added zeolite 

NaY, and for cutinase entrapped in the TMOS/OCTMS gel without zeolite NaY are shown for 

comparison (lower curves). For the matrices that contain the enzyme, the Y-axis values represent the 

specific fluorescence emission of cutinase.  

 

Included in Figure 3 are the data obtained when zeolite NaY was incorporated in the 

materials via its suspension in the enzyme solution before the addition of the sol-gel 

precursors. In those cases where cutinase already emitted fluorescence with a given 

λmax, this parameter did not change upon the addition of zeolite NaY. This suggests that 

tryptophan cannot sense the zeolite. The specific fluorescence emission intensity of the 

preparations also did not change significantly with the addition of the zeolite. In those 

cases where the emission signal was suppressed in the absence of zeolite NaY, the 

presence of this additive was responsible for the recovery of the fluorescence emission, 

at normal levels of intensity, leading to λmax values that fall in line with appropriate 

references when they exist to allow comparison. Such is the case of the TMOS/OCTMS 

gel (Figure 4), which in the presence of zeolite NaY yielded spectra with a λmax of ca. 

321 nm, a value close to/slightly lower than that recorded for the TMOS/BTMS gel with 

or without added zeolite. Indirect evidence that such is also the case of the 

TMOS/SHPTMS matrices is provided by experiments in which the five parts of 

SHPTMS in the above matrix were replaced by different combinations of SHPTMS and 
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BTMS (Figure 5). Interestingly, only a small amount of BTMS was required for the 

matrix to recover fluorescence emission. The data suggest that if the emission signal in 

the TMOS/SHPTMS gel were not suppressed, the corresponding λmax should be ca. 333 

nm, close to the values recorded for the matrices with a higher proportion of SHPTMS 

relative to BTMS, and also very similar to the λmax obtained for TMOS/SHPTMS with 

added zeolite NaY (Figure 3). Slight changes in the degree of compactness of the 

enzyme structure might have important reflexes on the distance between the tryptophan 

and the disulfide bridge in its vicinity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 - Fluorescence emission intensity maximum (λmax) for cutinase entrapped in 

sol-gel matrices of composition 1:5 TMOS:(SHPTMS+BTMS), in which the 

proportions of SHPTMS and BTMS precursors were varied from 100 % BTMS to 100 

% SHPTMS. 
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Figure 6 - SEM micrographs of 1:5 TMOS/BTMS matrices. Left, without additives. Centre, with 

added zeolite NaY. Right, with added zeolite NaA functionalized with 3-aminopropyltrimetoxysilane. 

The white bar represents 20 µm.  

 

Confirmation that the granules that appear in Figure 8 are zeolite particles was provided 

by X-ray spectroscopy (Figure 7). As seen in this figure, carbon and silicon are spread 

all over the material, whereas aluminum and sodium, which only exist in the zeolite, 

appear in the regions where the granules are found. Indeed, X-ray emission spectra 

collected from a point on one of the granules (Figure 8, left) reveal the presence of those 

two metals that are almost absent from locations devoid of granules, as shown by 

spectra recorded at points on the wall of the pores or outside the pores (Figure 10, right; 

the detection of small levels of Al and Si can be explained by the penetration of the 

radiation below the plane of observation). 
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Figure 8 - X-ray emission spectra from points 1 (left) and 2 (right) in Figure 9. The data collected at 

points 2 and 2’ are very similar. 
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Figure 7 -  X-ray microanalysis on a scanning electron microscope for the 1:5 TMOS:BTMS matrix with 

added zeolite NaY. From top to bottom: EDS micrograph of the surface of the sample followed by 

micrographs depicting the X-ray emission from carbon, silicon, aluminum and sodium. 1 and 2 are points at 

which the spectra shown in Figure 10 were recorded 
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Optical microscopy following the staining of the protein with a fluorescent dye (Figure 

9) was used to characterize enzyme adsorbed at the surface of zeolite NaY particles, as 

well as entrapped in TMOS/BTMS matrices. The presence of the enzyme at the surface 

of the zeolite is indicated by yellow spots of fluorescence, as shown in image A. These 

spots are not found in image B, the control sol-gel matrix without enzyme. Image C 

shows that the enzyme is distributed throughout the matrix; matrices prepared with 

varying enzyme loads showed a correlation between the latter parameter and the 

intensity of the uniformly distributed fluorescence of the matrices. The presence of the 

zeolite induces the accumulation of protein in spots of more intense fluorescence at the 

pores of the matrices. These are regions of the materials where the enzyme is also found 

in the absence of the zeolite, as shown in image C, but in seemingly lower amounts (for 

a fixed quantity of enzyme in the sol-gel). As referred earlier, the specific fluorescence 

intensities of the materials prepared with or without added zeolite are very similar. This 

can explain the overall impression of image D of a less intense uniformly distributed 

fluorescence.   

 

 

 

 

 

 

 

Figure 9 - Optical microscopy images obtained after applying a protein staining fluorescent dye 

solution to the materials. A – enzyme adsorbed at the surface of zeolite NaY particles. B – TMOS/BTMS 

matrix without enzyme (control). C – TMOS/BTMS matrix with enzyme but without zeolite. D – 

TMOS/BTMS matrix with both enzyme and zeolite. Visualization of the protein was done with a blue 

light transilluminator. All pictures were taken with an exposure of 25, except A, which was taken with an 

exposure of 50.  

(a) (b) 

(c) (d) 
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We have seen that the co-entrapment of zeolite in the matrices does not cause changes 

in the λmax values obtained without this additive. And when the presence of the zeolite 

restores the fluorescence emission of the tryptophan, as seen for the TMOS/OCTMS 

and TMOS/SHPTMS matrices, the λmax values obtained are what appropriate references 

suggest they should be: below the λmax recorded for the TMOS/BTMS matrix, and very 

close to the λmax measured for the TMOS/(4.5 SHPTMS/0.5 BTMS) matrix, 

respectively. This indicates that tryptophan does not sense the presence of the zeolite in 

its vicinity. On the other hand, the zeolite has a positive effect on enzyme activity. The 

tryptophan residue and the active site of cutinase are located at opposite poles of the 

enzyme molecule. One possibility to account for both the impact of the zeolite on 

cutinase activity and its lack of impact on λmax is to hypothesize that the enzyme turns 

its active site towards the zeolite. We cannot at present confirm this hypothesis. But by 

simply promoting the accumulation of the enzyme at the pores of the material, the 

zeolite should improve the accessibility of the enzyme to the substrates and lead to a 

higher activity of the entrapped enzyme. The role of zeolite is thus similar to that 

described for certain osmolytes8, although its mode of action is different: the zeolite 

does not appear to promote enhanced pore size, as shown in the latter study. The degree 

of activity of a sol-gel entrapped enzyme has long been found to correlate with its 

accessibility in the matrix1. 

 

 

CONCLUSIONS 

 

The continuous advances in the combination of the sol-gel process with biomolecules or 

biological systems will surely lead to a greater number of bio-applications of sol-gel 

materials. The mechanical strength and chemical inertness of the sol-gel matrix, the 

protection it offers against several agents, its high retention ability and the possibility to 

control its properties, such as porosity and pore size are some of the aspects that make 

the sol-gel process a very powerful technique for the encapsulation of enzymes. The 

possibility to change the groups or functionalities of the sol-gel precursors or to use 

additives lends great versatility to the technique. However, relatively little is known on 

how a given matrix will interact with/affect/control the behavior of a sol-gel entrapped 

enzyme. We have used several techniques to characterize the microenvironment of 
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cutinase entrapped in sol-gel matrices. Our results indicate a type of organization in the 

material that places the zeolite in close proximity to the enzyme, as required to account 

for the beneficial effects that the co-entrapment of the zeolite can have on cutinase 

activity. We hope to be able to apply other experimental approaches for a deeper 

understanding of enzyme/matrix interactions, and thus contribute to the current 

developments of the sol-gel process for the encapsulation of biomolecules.  
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The material’s point of view    
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In part II we have tried a different approach to explain the differences in cutinase 

activity observed in part I. If in part I we considered that question from the point of 

view of the enzyme, here we look at it from the perspective of the material, and attempt 

to correlate molecular structural differences of the support where the enzyme is 

entrapped with differences in enzyme activity. The structure of the immobilized 

preparation was probed using two different spectroscopic techniques: Diffuse 

Reflectance Infrared Fourier Transform (DRIFT) spectroscopy and Solid State 29Si and 
1H NMR.  

  

The aim of this brief introduction is to introduce these two spectroscopic techniques that 

are not very common in biology related studies, but are extremely powerful techniques 

to characterize solid materials, thus providing very valuable information on materials 

that are used to immobilize biomolecules.  

 

DRIFT spectroscopy is used when conventional infrared spectroscopy cannot be used, 

for instance with solid powders or fibres. In DRIFT, the energy that penetrates the 

analyte particles is reflected in all the directions, making it necessary to use a different 

experimental set up (figure. III.I)1,2. 

 

 

 

 

 

 

 

 

 

 

 

Figure III.I – Schematic representation of instrumentation for DRIFT analysis.   

 

Kubelka and Munk1 developed a theory that describes the diffuse reflectance process for 

powdered samples, which relates the sample concentration with the scattered radiation 

intensity: 

IR detector  

Sample  
IR Source  
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(1-R)2 /2R = c/k 

 

R is the absolute reflectance of the layer, c is the concentration of analyte, and k is its 

molar absorption coefficient.  

 

This technique has been used to characterize the structure of several types of materials. 

For instance it is a recurrent technique to characterize silica based materials such as 

porous silica, zeolites, sol-gel matrices or even composite materials. In the case of 

hybrid siloxane organic networks, such as those that we used to immobilize cutinase, 

this technique can provide information not only about the siloxane backbone network, 

but also about the organic moieties that are introduced via the sol-gel process3,4. DRIFT 

allows the evaluation of the impact of different organic functionalities on the formation 

of a particular silica network.  

 

The other technique that was used here to characterize sol-gel matrices was solid state 

NMR. This spectroscopy is similar in concept to the NMR of liquids, but is 

characterized by having an anisotropic component, i.e. directionally dependent 

interaction. Solid state NMR can also be considered a common technique in the 

materials science field2. Using solid state NMR, it is possible to obtain high-resolution 

spectra providing the same information that is available from the corresponding solution 

NMR spectra. Nonetheless a number of special techniques and equipment are needed to 

obtain the same accuracy and resolution. One of those techniques is regarded as one of 

the most remarkable discoveries in that area: magic-angle spinning (MAS)2. The 

success of this technique is related with the suppression of anisotropic dipolar 

interactions, which result from the interaction of one nuclear spin with a magnetic field 

generated by another nuclear spin; and vice versa. In a solid, every magnetic spin is 

coupled to every other magnetic spin, whereas in solution molecules reorient quite 

quickly, which makes the spin less dependent from the contribution of dipolar 

interactions. These dipolar couplings have a dramatic contribution to broaden the NMR 

spectra, but can be suppressed by MAS2. 

 

This can be accomplished by introducing artificial motions in the solid, through rotation 

of the sample around its axis, the latter making a specific angle (54,74º magic angle) 
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with the axis of the magnetic field. In a very simple way this technique mimics the  

NMR of liquids by artificially introducing the molecular motions that are usually 

associated to a liquid. Another important technique used in solid state NMR is cross 

polarization (CP), which allows the transfer of polarization from the abundant spins 

such as 1H or 19F to the most dilute spins, such as 13C or 15N. This technique requires 

that nuclei are dipolar coupled to one another, and it naturally occurs while samples are 

being spun rapidly at the magic angle. The fundamentals behind these techniques are far 

from being simple, but the advantages of the MAS with CP are easy to understand in 

Figure III.III2, which shows that the spectrum obtained with CP MAS is far more 

informative than the static solid spectrum. 

  
 

 

 

  

 

 

 

 

 

   
Figure III.II – Magic spin angle (MAS). 
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Figure III.III – Differences between a solid state NMR spectrum with or without CP MAS  (adapted 
from reference 2). 
 
 
29Si was one of the nuclei analyzed in the present thesis, and it is important to have an 

idea of the information it provides2,4,5. 29Si is a spin 1/2 species that is more sensitive 

than 13C. The presence of 29Si in siloxane-silica systems and organic modified silica 

makes it one of most studied elements is solid state NMR. The next figure helps  

understand the type of silica structures that can be present in a sol-gel material. The 

most important for our work are the Qn and Tn
 chemical shifts, where Q designates the 

presence of 4 oxygens that are first neighbours about a Si atom, T the presence of 3 

oxygen first neighbours about a Si atom, and the exponent n (from 0 to 4 for Q, and 

from 0 to 3 for T) gives the number of Si second neighbours. The silica chemical shifts 

are described in the next two figures2,4,5.  

 

In the study that follows, we have used DRIFT and solid state NMR to evaluate the 

impact of different sol-gel matrices on cutinase activity.  

 
 
 
 
 
 
 
 
 
 

Using 

CP MAS 
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Figure III.IV – Building units of a hypothetical polysiloxane.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III.V – Slica chemical shift structural representation.  
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ABSTRACT 

Cutinase from Fusarium solani pisi was encapsulated in sol-gel matrices prepared using 

combinations of tetramethoxysilane and monoalkyl-methoxysilane precursors with 

different chain-lengths (from methyltrimetoxysilane to n-octyltrimetoxysilane) in molar 

proportion of 1 to 5. The specific activity of the encapsulated cutinase in a model 

transesterification reaction in n-hexane has been correlated with the structure of the 

ORMOSIL support. The matrices were characterized by Diffuse Reflectance Infrared 

Fourier Transform (DRIFT) spectroscopy and by Solid State 29Si and 1H Nuclear 

Magnetic Resonance (NMR). The enhancement of the bioactivity with increasing alkyl 

chain lengths up to C4 was correlated with the nature of the ORMOSIL surface groups, 

namely with a decrease in the hydrophilic-lipophilic balance (HLB) of the matrix. Such 

trend suggests that the kinetics of the catalyzed transesterification in n-hexane is a 

diffusion-controlled process. For co-precursors with longer alkyl chains (C6 and C8), the 

activity of encapsulated cutinase suddenly falls, despite the continuous decrease in the 

matrix HLB. For the ORMOSIL with n-hexyltrimetoxysilane, in particular, the enzyme 

activity is zero, due to the alkyl chain acting as a pore blocker. This effect is more 

moderate for n-ocyltrimetoxysilane, because the alkyl chain has a higher mobility 

within the inorganic matrix.  

INTRODUCTION 

 

The sol-gel encapsulation of biomaterials, from various types of enzymes to full living 

cells, is a field under full investigation1-4.This process has emerged as the most 

successful method to encapsulate enzymes, given the mild conditions involved, which 

are ideal to avoid damaging the biological component5-12. The variety of inorganic and 

organic precursors available broadens the range of support properties achievable, and 

allows an impressive number of possible organically modified silica (ORMOSIL) 

matrices. The focus is mostly the design of more efficient biocatalysts, with improved 

activity and stability of the entrapped enzyme. In the past decade, various ORMOSILs 

were successfully developed as immobilization media of several enzymes and applied to 

a number of reactions, both in non-aqueous and in aqueous media13-23. Many of the 

enzymes that have been successfully encapsulated in sol-gel matrices are lipases3-7,11. 

The catalytic efficiency of these enzymes has been shown to depend on their local 
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environment, more lipophilic supports promoting higher catalytic activity. In earlier 

studies with n-alkyltrimetoxysilane precursors, Reetz et al. have reported a drastic 

enhancement of the activity of Pseudomonas cepacia lipase up to C4, followed by a 

much smoother increase up to C18.
13 In contrast, Chen and Lin observed a dramatic 

decrease in the activity of Candida rugosa lipase for alkyl chains longer than C3.
24 

Nonetheless, much remains to be explained on the reasons behind these effects. 

 

It is the aim of the present work to correlate the structural modifications on the 

ORMOSIL support with the specific activity of encapsulated cutinase. This is a 

relatively small serine hydrolase, of approximately 45×30×30 Å3 size, with 197 residues 

and a molecular mass of 22 kD25.  Contrarily to many lipases, cutinase has no interfacial 

activation, possibly because its active site is accessible to the solvent. In lipases, 

substrate aggregation favors the opening of the lid that usually covers the active site, 

promoting an increase in catalytic activity. Previous works on cutinase encapsulated in 

n-alkylated ORMOSIL supports have revealed an activity enhancement up to n-butyl, a 

further increase in the n-alkyl chain length bringing about a poorer catalytic 

performance23. 

 
The different ORMOSIL structures were obtained using combinations of 

tetramethoxysilane (TMOS) and different monoalkylated precursors in a 1:5 molar 

ratio. These include methyltrimetoxysilane (MTMS), ethyltrimetoxysilane (ETMS), n-

propyltrimetoxysilane (PTMS), n-butyltrimetoxysilane (BTMS), n-hexyltrimetoxysilane 

(HTMS) and n-octyltrimetoxysilane (OTMS), whose structures are shown in Scheme 1. 

 

 
 
 

 

 
 
 

 

Scheme 1. Ball and stick models of the mono-alkylated precursors used in the synthesis of ORMOSILs 

(optimized by energy minimization - MOPAC- Chem 3D Ultra 8.0) 
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The local structure of the matrices has been assessed by Infrared and Nuclear Magnetic 

Resonance spectroscopies that provided complementary information26. 

 

EXPERIMENTAL 

 

Material 

 

The cutinase producing strain Saccharomyces cerevisiae SU50-pUR7320 was 

constructed and provided by the Unilever Research Laboratory at Vlaardingen, The 

Netherlands. The production and purification of cutinase was performed at Centro de 

Engenharia Biológica e Química, Instituto Superior Técnico27. The enzyme purity was 

controlled by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). 

(R,S)-2-phenyl-1-propanol (97 % purity), tetramethoxysilane, methyltrimetoxysilane, 

ethyltrimetoxysilane, n-propyltrimetoxysilane and n-octyltrimetoxysilane were from 

Aldrich, n-butyltrimetoxysilane was from Polysciences Inc., n-hexyltrimetoxysilane 

was from Alfa Aesar, n-hexane, tridecane, sodium fluoride and sodium chloride were 

from Merck, vinyl butyrate (99 % purity) was from Fluka, polyvinyl alcohol (PVA; 

MW15.000) was from Sigma, and (R,S)-2-phenyl-1-propyl butyrate was prepared as 

previously indicated28. 

 

Cutinase encapsulation.  

 

This technique was adapted from that referred by Reetz et al.14  2 mg of lyophilized 

cutinase was dissolved in an aqueous solution containing NaF (0.20 g L-1) and PVA 

(4.64 g L-1). The amount of water in this solution was fixed (6.86 mmol). The solution 

was vigorously shaken on a vortex mixer. The precursors were then added in amounts 

that yielded a water/silane molar ratio (R) of 8 irrespective of the type and number of 

precursors used (e.g. 0.142 mmol of TMOS and 0.712 mmol BTMS in 1:5 

TMOS/BTMS gels). The mixture was again vigorously shaken on the vortex mixer, 

until it became homogeneous. It was then placed in an ice bath until gelation occurred 

(after a few seconds), and kept in the ice bath for an additional 10 minutes. The 

container with the obtained gel was kept at 4 ºC for 24 h, after which the gel was air-

dried at 35 ºC for 24 h. The white gel obtained was crushed and washed (for about 10 

min)/centrifuged (at 5400 rpm), first using phosphate buffer (50 mM, pH 7, 2 mL), then 
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acetone and finally n-pentane (also 2 mL of each). The gel was left at room temperature 

for 16 hours, after which it was equilibrated with a saturated salt solution at room 

temperature for about 3 days, to achieve the value aW = 0.7 (sodium chloride), taken 

from the literature.29 The average yield of immobilization of cutinase in the sol-gel 

matrix was 91 (± 8) %, as determined by the Lowry method30.This determination was 

based on the amount of enzyme found in the aqueous buffer used for washing the gel. 

Average enzyme loading ranged from 3.2 % in TMOS/MTMS gels to 1.8 % in 

TMOS/OTMS gels. 

 

Enzyme activity assays and analysis of reaction progress. Reactions were performed 

in glass vials (reaction volume of 750 µL) placed in a constant temperature orbital 

shaker set for 400 rpm. All the reaction mixture components were pre-equilibrated to aW 

= 0.7 for about 3 days. The reaction studied was the transesterification of vinyl butyrate 

(300 mM) by (R,S)-2-phenyl-1-propanol (100 mM), as in Scheme 2: 

 

 
 
 
 

 

 

Scheme 2. Model reaction catalyzed by ORMOSIL encapsulated cutinase  

 

 

The concentration of sol-gel encapsulated enzyme was 6 g L-1. The solvent was n-

hexane. Vinyl butyrate addition marked the start of the reaction. Tridecane (15.4 mM) 

was used as external standard for GC analysis. The reaction conversion was measured 

by GC analysis performed with a Trace 2000 Series Unicam gas chromatograph 

equipped with a 30 m×0.32 mm i.d. fused silica capillary column coated with a 0.25 µm 

thickness film of 20 % 2,3-dimethyl-6-tert-butyldimethylsilyl)-ß-cyclodextrin dissolved 

in BGB-15, from BGB Analytik AG. Oven temperature program: 125 ºC for 2 min, 

125-171 ºC ramp at 6 ºC min-1, 200 ºC for 3 min. Injection temperature: 250 ºC. Flame 

ionization detection (FID) temperature: 250 ºC. Carrier gas: helium (2.0 cm3 min-1). 

+ + 
Encapsulated 

Cutinase 
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Split ratio: 1:20. No products were detected in assays carried out without enzyme. The 

absolute values of the specific activities of cutinase for this model reaction in different 

matrices were published elsewhere23. 

 

Matrices Characterization.  

 

The molecular structures of all the xerogels were characterized by diffuse reflectance 

infrared Fourier transform (DRIFT) spectroscopy, using a Mattson RS1 FTIR 

spectrometer with a Specac selector, in the range 4000 to 400 cm-1 (with a wide band 

MCT detector), at 4 cm-1 resolution. The spectra were the result of 500 co-added scans 

for each sample, ratioed against the same number of scans for the background (finely 

grinded KBr, FTIR grade). 

 

Solid state NMR measurements were performed at room temperature on a Bruker MSL 

300P spectrometer operating at 300.13 and 59.60 MHz for the observation of 1H and 
29Si resonances, respectively; magic angle spinning (MAS) at 10 and 4 kHz were 

selected to record proton and silicon spectra, respectively. 1H spectra were run using a 

single RF pulse with a duration of 2 µs (corresponding to 90º magnetization tip angle) 

and 10 s recycling delay, τ. 29Si resonances were observed using the standard cross 

polarization – dipolar decoupling RF pulse sequence (CP-DD) with 5 ms contact time 

and τ equal to 60 s. The Hartmann-Hahn condition was optimized using tetrakis-

trimethylsilyl-silane. Tetramethylsilane (TMS) was used as external reference to set 1H 

and 29Si chemical shift scales (δ=0).  
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RESULTS & DISCUSSION 

 

Effect of the Alkyl Chain Length.  

 

The relative activities of encapsulated cutinase for the model reaction referred above are 

shown in Fig. 1, as a function of the number of carbon atoms in the alkyl modifying 

chain. These values (in %) were determined taking as reference the maximum activity 

observed in the matrix TMOS/BTMS.  
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Figure 1 - Variation of the relative activity of cutinase (%) with the number of carbon atoms in the 

chain of the alkylated precursor.  

Clearly, the activity drops for chains longer than C4 and the ORMOSIL with HTMS is 

the poorest support. It is common to invoke the network lipophilicity to interpret such 

enzyme activity trends. However, in ORMOSILs the silica network can retain variable 

amounts of hydrophilic residual silanol groups that also affect the enzyme environment. 

Therefore, the activity changes should rather be correlated with a parameter that takes 

into account the two types of interactive sites, i.e., the hydrophilic/lipophilic balance 

(HLB).31  Spectroscopic techniques such as infrared and nuclear magnetic resonance are 

powerful tools that may ascertain the structural parameters to explain the dependence of 

the catalyst activity on the matrix.  

 

The DRIFT spectra of the TMOS/MTMS matrix, with and without encapsulated 

cutinase, are shown in Fig. 2. Their almost perfect overlapping proves that the enzyme 

entrapment within the matrix does not alter significantly the silica backbone structure. 
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In the low wavenumber region, the skeletal vibrations are the asymmetric Si-O-Si 

stretching, νasSiOSi (1000-1200 cm-1), the Si-O stretching in broken siloxane bridges, 

νSi-O (910 cm-1), and the symmetric Si-O-Si stretching, νsSiOSi (~800 cm-1). The latter 

is overlapped with the methyl rocking mode, ρCH3 (780 cm-1). The sharp band at 1273 

cm-1 is assigned to the symmetric deformation mode of methyl groups bonded to Si 

atoms, δs(Si)CH3. In the high wavenumber region, only the broad hydroxyl stretching 

band, νOH (centered at 3326 cm-1), and the methyl stretching modes, νCH3 

(asymmetric and symmetric at 2972 and 2912 cm-1, respectively) are observed.  
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Figure 2 - DRIFT spectra of the TMOS/MTMS ORMOSIL with (black line) and without (red line) 

enzyme. 4000-2500 cm-1 region normalized to the maximum of the νOH band; 1500-500 cm-1 region 

normalized to the maximum of the νasSiOSi band. 

 
From Figure. 2, it becomes clear that the silica network and even the type and number 

of hydrogen bonding between hydroxyl and silanol groups in the matrix remain 

unchanged upon enzyme entrapment. Additionally, the enzyme concentrations used are 

so low that its vibrational modes do not affect the spectra. As a result, it is reasonable to 

assume that the structural analysis of the matrices may be based on the DRIFT spectra 

of ORMOSILs with encapsulated cutinase. 

 

The DRIFT spectra of the cutinase-containing ORMOSIL matrices with different alkyl 

chain lengths are shown in Fig. 3, normalized to the most intense band, the νasSiOSi, at 

~1100 cm-1. The primary assignments of the main spectral regions are indicated. 
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Figure 3 -  DRIFT spectra of cutinase-encapsulating ORMOSILs with different mono-alkyl (from 

methyl- to octyl-) chain lengths. Spectra normalized to the maximum of the νasSiOSi band (~1100 cm-1). 

 
The spectrum of TMOS/MTMS is much simpler than the others, due to the absence of 

CH2 groups in the matrix. Since in these spectra there were no traces of water (the 

δHOH that should appear at ~1640 cm-1 is absent), the νOH band is assigned to non-

condensed silanol groups. The relative intensity of this band (with respect to the 

νasSiOSi) increases with the alkyl chain length up to butyl and decreases from there on. 

The hydrolysis and/or condensation reactions are certainly hindered by the alkyl chains, 

the net effect depending not only on the chain length but also on the possible rotational 

conformers.32 This matter will be addressed below by a quantitative spectral analysis. 

The relative intensities of the νCH related bands also have a maximum for the 

MTMS/BTMS matrix, suggesting that the proportion of alkyl chains that effectively 

remain in the matrix is lower for chains longer than C4. Possibly, phase separation 

occurs during the sol-gel process for excessively long chains.  
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The profile of the νasSiOSi band, which is the fingerprint of the silica structure, suggests 

that the inorganic structure is significantly modified by the participation of the alkylated 

precursors. In view of the partial overlapping of the Si-O stretching and the C-H 

deformation modes, the individual components were retrieved by spectral 

decomposition in the range between 1550 and 650 cm-1. A non-linear least squares 

fitting method was used, assuming Gaussian and/or Lorentzian band profiles. The first 

approach to the components’ maxima was previously determined by the second 

derivative of the spectra. The spectral decomposition of the TMOS/MTMS matrix is 

shown in Fig. 4-A. Figs. 4-B to D depict amplifications of the decomposition in 

different spectral regions for other selected matrices. 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

Figure 4 - Decomposition of the DRIFT spectra in the 1550-650 cm-1 region: A - the whole 

wavenumber range for TMOS/MTMS matrix; B - amplification of the region 1550-1150 cm-1 for the 

TMOS/BTMS matrix; C - amplification of the region 1250-950 cm-1 for the TMOS/HTMS matrix; D - 

amplification of the region 1000-650 cm-1 for the TMOS/PTMS matrix 
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The proposed assignment, fitted frequency and relative area of each component with 

respect to the fully integrated spectrum are summarized for all the samples in Table 1.  

 

Table 1 - Assignments, positions (cm-1) and relative areas (A%) of the spectral 

components for ORMOSIL matrices with different mono-alkyl chain lengths. 

Wavenumber / cm-1 (A%) 

MTMS ETMS PTMS BTMS HTMS OTMS 
Assignment3,4 

3326 (8.6) 3326 (20.3) 
3324 

(21.6) 

3327 

(21.9) 

3305 

(16.8) 

3307 

(13.7) 
νOH 

2972 (0.8) - - - - - νas(Si)CH3 

- 
2965/2941 

(5.2) 
2959 (5.6) 2960 (6.2) 2960 (5.4) 2959 (5.3) νas(C)CH3 

- 2920 (2.5) 2929 (4.1) 2927 (5.8) 2926 (7.0) 2926 (8.5) νas(C)CH2/νas(O)CH3 

2912 (0.3) - - - - - νs(Si)CH3 

- 2880 (2.9) 2873 (3.5) 2874 (2.5) 2874 (1.7) 2873 (1.5) νs(C)CH3 

- - - 2859 (3.2) 2856 (4.1) 2854 (4.0) νs(C)CH2/νs(O)CH3 

- 2841 (0.5) 2839 (0.2) 2837 (0.1) - - νs(C)CH2 

- 2807 (0.6) 2799 (0.5) 2797 (0.1) 2799 (0.2) 2798 (0.2) νas(Si)CH2 

- 2740 (0.2) 2732 (0.1) 2732 (0.1) 2737 (0.1) 2730 (0.2) νs(Si)CH2 

- 1462 (1.5) - - - - δas(C)CH3 

- - 1459 (1.5) 1461 (2.1) 1460 (2.7) 1460 (2.2) δas(C)CH3/δ(C)CH2 

1410 (0.2) - - - - - δas(Si)CH3 

- 1415 (1.0) 1409 (0.6) 1408 (0.7) 1408 (0.7) 1408 (0.5) δ(Si)CH2 

- 1381 (0.1) 1377 (0.3) 1378 (0.4) 1378 (0.3) 1377 (0.3) δs(C)CH3 

- - 1339 (0.6) 1345 (0.2) 1347 (0.3) 1348 (0.5) ω(C)CH2  

- - 1301 (0.2) 1301 (0.6) 1310 (0.2) 1303 (0.3) ω(C)CH2 

1273 (4.1) - - - - - δs(Si)CH3 

- - - 1274 (0.6) 1291 (0.4) 1274 (0.2) τ(C)CH2 

- - - - 1255 (0.5) 1261 (0.5)  

 1254 (2.7)     ω(Si)CH2 

- 1232 (0.1) 1231 (0.2) 1230 (1.7) 1233 (1.8) 1234 (2.0) ρ(O)CH3 

- - - - - 1214 (2.7) τ(C)CH2 

-  1218 (4.4) 1204 (3.7) 1194 (3.2) 1187 (2.4) ω(Si)CH2 

- 1196 (0.6) 1193 (0.6)  - - τ(C)CH2 

1127 

(35.5) 
1128 (22.6) 

1122 

(19.3) 

1123 

(17.0) 

1128 

(17.4) 

1127 

(20.0) 
νasSiOSi (LO6) 

1091 (1.3) 1095 (0.7) 1098 (0.3) 1096 (0.3) 1097 (0.7) 1099 (0.3) νasSiOSi (LO4) 
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1075 (0.7) 1077 (0.6) 1083 (0.4) 1078 (0.5) 1075 (0.8) 1076 (0.6) νasSiOSi (TO4) 

- - 1065 (1.8) 1061 (0.7) 1060 (0.3) - νCC 

1042 

(28.3) 
1046 (19.1) 

1033 

(15.3) 

1032 

(11.2) 

1035 

(17.8) 

1043 

(15.6) 
νasSiOSi (TO6) 

- 1007 (3.0) 998 (2.1) 998 (2.3) 996 (1.7) 1001 (1.9) ρ(C)CH3 

- 963 (2.2) - 963 (1.2) 952 (1.4) 948 (2.5)  

911 (3.8) 901 (1.2) 910 (2.2) 910 (2.5) 910 (2.0) 910 (1.5) νSiOd
(*) 

- - 900 (0.3) - - -  

844 (2.4) 873 (2.7) 876 (2.6) 876 (2.5) 879 (2.0) 874 (1.6) νSiC 

- - 824 (0.5) 853 (0.6) 846 (0.4) 861 (0.3)  

807 (2.1) 792 (2.7) 805 (1.7) 799 (4.3) 797 (3.2) 804 (3.7) νsSiOSi 

778 (11.9) - - - - - ρ(Si)CH3 

- - 776 (3.5) 760 (2.2) 760 (2.0) 771 (2.9) ρ(C)CH2 

- 752 (4.1) 748 (2.4) 739 (1.3) - 745 (0.9)  

- - 715 (1.1) 710 (0.7) 725 (1.4) 721 (0.8)  

- 694 (3.0) 688 (2.4) 689 (3.1) 689 (3.6) 688 (2.4) ρ(Si)CH2 

(*) -Od stands for dangling oxygen atoms, i. e., silanol groups and broken siloxane 

bridges.  

 

The maximum of the broad νOH band shifts to lower wavenumbers when the alkyl 

chain is longer than butyl, suggesting the presence of more interactive hydroxyl groups 

in these matrices. The relative intensities indicated in Table 1 (with respect to the full 

spectrum) confirm that the matrix with BTMS has the highest content in hydroxyl 

groups.  

 

Only for the ORMOSIL with MTMS is it possible to observe the modes of methyl 

groups bonded directly to Si: νas(Si)CH3, νs(Si)CH3, δas(Si)CH3, δs(Si)CH3 and 

ρ(Si)CH3, at 2972, 2912, 1410, 1273 and 778 cm-1, respectively. No other methyl 

related bands were observed in this matrix. In particular, the absence of (O)CH3 modes 

is a good indication that hydrolysis of both co-precursors was complete. For all the 

other modified matrices, the methyl modes observed may be related to (C)CH3 and/or 

(O)CH3 groups. For those groups bonded to a C atom, the assignment is 

straightforward: νas(C)CH3, νs(C)CH3, δas(C)CH3, δs(C)CH3 and ρ(C)CH3 appear at 

~2960, ~2874, ~1460, ~1378 and ~998 cm-1, respectively. Slight shifts of these bands 

are observed for TMOS/ETMS, consistent with the proximity of the Si atom. The 

presence of non-hydrolyzed methoxy groups is definitely confirmed by the ρ(O)CH3, at 



 262 

~1232 cm-1, in matrices with alkyl chains longer than ethyl, although its relative 

intensity becomes meaningful only for chains with C≥4. This confirms that the 

hydrolysis reaction is in fact hindered by the presence of alkylated co-precursors, 

mainly with chains longer than butyl. The assignment of the (O)CH3 stretching modes is 

ambiguous, since they appear at the same frequencies as the corresponding methylene 

modes. 

 

With the exception of MTMS, the Si atoms in the alkylated precursors are bonded to 

methylene groups. The frequencies and relative intensities of the corresponding 

stretching and rocking modes in the matrix are not much affected by the alkyl chain 

length: the νas(Si)CH2, νs(Si)CH2 and ρ(Si)CH2, modes appear at ~2800, ~2735 and 

~690 cm-1, respectively. However, the wagging mode, ω(Si)CH2, shifts to lower 

wavenumbers and decreases in relative intensity as the alkyl chain increases, probably 

due to conformational hindering of this mode for longer chains33. The remaining 

methylene groups are bonded only to C atoms and are not all equivalent. The presence 

of several CH2 rocking components, whose frequencies vary with the alkyl chain length, 

is a good indication that there is a distribution of stable rotational conformers within the 

network. However, the HTMS modified matrix is somewhat different from the others: it 

has only two such modes (at 725 and 760 cm-1), which suggests a lower fraction of 

gauche conformers. 

 

The information on the silica network is assessed mostly from the decomposition of its 

fingerprint band, the νasSiOSi. This band is usually split into optic components, 

longitudinal (LO) and transverse (TO), presenting a LO/TO pair for each main type of 

cyclic structural unit (siloxane ring)35. For silica xerogels, the most common types of 

cyclic units have six and four Si atoms (cyclohexa- and cyclotetra-siloxane rings)36 and 

the corresponding optic components are named in Table 1 as LO6/TO6 and LO4/TO4, 

respectively. The results summarized in Table 1 allow concluding that the silica 

network in all these ORMOSILs is mostly composed of cyclohexasiloxane rings (above 

96%, estimated as the following ratio of % areas: [LO6+TO6]/[LO6+TO6+LO4+TO4]). If 

these were pure silica xerogels, this result would point to porosities above ~80%37. In 

organically modified structures, however, it must be taken into account that the pores 

may be partially occluded by the organic moieties, resulting in lower effective 
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porosities. The ORMOSIL modified with HTMS has the lowest proportion of 

cyclohexasiloxane rings, which is consistent with the lowest porosity.  

 

Based on the above spectral decompositions, relevant trends of structural parameters 

were assessed from the following percentages: condensed silica (%SiOSi), hydrophilic 

Si-OH and Si-Od groups (%OH), lipophilic -CHx groups (%CH) using equations (1) to 

(3). The matrix hydrophilic/lipophilic balance (HLB) was estimated according to 

equation (4). 

%SiOSi = 100×(ALO6 + ALO4 + ATO4 + ATO6)/AT (1) 

%OH = 100×(AνOH + AνSiOd)/AT (2) 

%CH = 100×(∑AνCH + ∑AδCH + ∑AτCH + ∑AωCH + ∑AρCH)/AT (3) 

HLB = (AνOH + AνSiOd)/(∑AνCH + ∑AδCH + ∑AτCH + ∑AωCH + ∑AρCH) (4) 

AX is the fitted area of the X component and AT refers to the total integrated area of the 

spectrum. The variation of these structural parameters with the alkyl chain length is 

shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 - Influence of the number of carbon atoms in the chain of the alkylated 

precursor (NC) on structural parameters of the ORMOSIL: condensed silica (%SiOSi), 

alkyl (%CH) and silanol (%OH) contents, and hydrophilic-lipophilic balance (HLB). 
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For alkylated precursors with chains up to C4, the expected general trend is observed: an 

increase in the organic content of the ORMOSIL, with the consequent decrease in the 

condensed silica content. This is accompanied by an increase in the residual silanol 

groups, which proves the fall in condensation extent with increasing chain length. 

Although both the hydroxyl and alkyl contents increase in the matrix, the hydrophilic-

lipophilic balance (HLB) decreases, attesting the prevalence of the latter. For alkylated 

precursors with chains longer than C4, the organic content of the ORMOSIL is lower 

than would be expected, in a clear indication that some of these precursors did not 

hydrolyze, and were subsequently removed upon washing. In these systems hydrolysis 

is hindered by the longer alkyl chains and more methoxy groups remain within the 

network. However, condensation is more extensive, yielding a lower content in silanol 

groups. Consequently HLB is determined by the hydrophilic content and keeps 

decreasing for matrices TMOS/HTMS and TMOS/OTMS. For alkyl chains with NC ≤ 4, 

the estimated structural parameters correlate with the relative activity of entrapped 

cutinase, as shown in Fig. 6.  
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Figure 6 - Correlation between the structural parameters of ORMOSILs up to four C atoms and the 

relative activity of entrapped cutinase. The HLB scale has been multiplied by the factor 100. 

 

For the model reaction studied, the activity of encapsulated cutinase increases with the 

decrease in the condensed HLB of the matrix. This is consistent with a diffusion-

controlled kinetics, in which the solvent-matrix interactions are determinant of the 

enzyme activity: as the solvent is n-hexane, these interactions are stronger for matrices 

with lower HLB values 31. 
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For TMOS/HTMS and TMOS/OTMS matrices (NC>4), the observed decrease in the 

enzyme activity, despite the continuous decrease of HLB, indicates that a pore blocking 

effect by the long alkyl chains plays the major role, delaying diffusion. This effect is 

more important for the stiffer n-hexyl chain, the enzyme activity becoming zero in the 

TMOS/HTMS matrix. The matrices TMOS/MTMS, TMOS/BTMS (where the 

encapsulated cutinase has the highest activity) and TMOS/OTMS (with a longer chain 

length but with activity different from zero) were analyzed by 29Si and 1H NMR. Such 

analysis has already proven to be a reliable tool to characterize inorganic/organic gels7.  

 

 

Figure 7 -   29Si CP/MAS-DD spectra obtained from different matrices: A - TMOS/MTMS; B - 

TMOS/BTMS; C - TMOS/OTMS. The signals were decomposed using Gaussian functions; the residues 

are displayed in blue color.  
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around -100 and -110 ppm, assigned to silicon atoms in Q3 [(SiO)3-Si-OR] and Q4 

[(SiO)4-Si] units, respectively; b) at about -57 and -67 ppm, from silicon atoms in 

monoalkylated T2 [(SiO)2(OR)Si-R’] and T3 [(SiO)3-Si-R’] units, where R stands for H 

or CH3 and R’ for the alkyl chain. T1 [(SiO)(OR)2Si-R’] units were only observed for 

the TMOS/OTMS matrix (at -50 ppm), which can be explained by hindrance of the 

reactive Si-OR vicinal groups by the long n-octyl chain. This precursor is thus less 

hydrolysable and co-condensable with hydrolyzed TMOS, as suggested by the DRIFT 

results.  

 

The signals were decomposed using Gaussian functions, and the percent integrated 

areas and their ratios are summarized in Table 2. Since the 29Si CP/MAS-DD technique 

enhances the sensitivity of silicon atoms near OR or R’ groups, only the intensities of 

resonances recorded from similar silicon species may be compared (Tm with Tm’ and Qn 

with Qn’) on the assumption that spin dynamics is also comparable; the contact time 

dependencies of the 29Si CP/MAS signal intensities were reported on some ORMOSILs 

gels.385 The most interesting about this analysis is that it allows attaining further insight 

to the reaction details for each of the two co-precursors. 

 

Table 2 - Integrals (percent units) of the individual components obtained by 

decomposition of 29Si spectra, distribution of silicate structures, and overall degree of 

reaction (η, %) estimated for TMOS and the alkylated precursor. 

Sample T1 T2 T3 Q3 Q4 Q3:Q4 T1:T2:T3 
ηTMOS 

(%) 

ηalkylTMS 

(%) 

TMOS/MTMS 0 25 61 4 10 1: 2.6 0:1: 2.4 68.1 90.3 

TMOS/BTMS 0 36 54 3 7 1: 2.0 0:1: 1.5 66.7 86.7 

TMOS/OTMS 8 29 34 12 17 1: 1.3 0.3:1:1.2 64.5 79.0 

 

For TMOS derived Si atoms (Qn units), although the Q4 units are always predominant, 

its proportion decreases continuously as the chain of the co-precursor increases, in a 

clear indication that the hydrolytic-polycondensation of TMOS is negatively affected. 

Similarly, for Si atoms from the alkylated precursor (Tm units) the proportion of T3 

decreases continuously. Thus, the inhibiting role of the alkyl chain on the sol-gel 

reactions is felt by both precursors.  
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The reaction yields for the silica network from TMOS (ηTMOS) and alkylTMS (ηalkylTMS) 

may be estimated separately by comparing the effective Si functionality, feff, with the 

potential functionality (the maximum number of siloxane bridges that the Si atom can 

establish, assuming full hydrolysis: 4 for TMOS and 3 for alkylTMS)26.  

 

ηTMOS = 100*feff
TMOS/4 (5) 

ηalkylTMS = 100*feff
alkylTMS/3 (6) 

The effective functionality can be roughly estimated from: 

feff
TMOS= ∑[n×x(Qn)] (7) 

feff
alkylTMS = ∑[m×x(Tm)] (8) 

where x(Qn) is the relative proportion of Qn species (n varying between 3 and 4) and 

x(Tm) the proportion of Tm species (m varying between 1 and 3). The yield values 

obtained are listed in the last two columns of Table 2. 

 

It is interesting to note that the condensation of TMOS is the most affected by the 

presence of the alkylated precursor, despite the fact that the condensation reactions of 

both precursors are hampered by the increase in the alkyl chain length. 

 

Fig. 8 shows the isotropic signals of 1H MAS spectra recorded from TMOS/MTMS, 

TMOS/BTMS and TMOS/OTMS, which exhibit different line widths. Narrow peaks 

are assigned to hydrogen atoms in mobile chains, and, when no spinning side bands are 

observed, the H-H dipolar interactions are completely averaged out under MAS at 10 

kHz. Broad isotropic resonances and the corresponding envelope of spinning side 

bands, which spread over 30 kHz, are from rigid sites, in which case H-H dipolar 

interaction should be of that order of magnitude and, hence, only averaged out under 

MAS above 30 kHz (not available in our NMR laboratory). Consequently, from 

experiments performed at much lower MAS speed it is incorrect to obtain quantitative 

information using only isotropic signals. 

 

The major isotropic resonances depicted in Figs. 8A and 8B are very broad (the full 

widths at half maximum, FWHM, are higher than 1800 and 700 Hz, respectively), as 

expected for rigid matrices, where many structural variations in terms of angles and 

distances result in inhomogeneous spectral broadening. The less intense signal observed 

for the TMOS/MTMS matrix (signal 1, at about 3.7 ppm, in Fig.8A) may be tentatively 
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assigned to unreacted (Si)OCH3 groups of MTMS or to uncondensed (Si)OH groups 

involved in hydrogen bonding39,40. However, the latter appears to be most probable, 

since no residual (Si)OCH3 groups were identified by DRIFT. The most intense signal 

(2, at about 0.6 ppm) results from a strong (Si)CH3 contribution. For matrix 

TMOS/BTMS, resonances from (Si)OH, (Si)OCH3, (C)CH2, (C)CH3 and (Si)CH2 

groups may contribute to the very broad signal (Fig.8B, signal 3, centered at about 1 

ppm). The major signals from TMOS/OTMS matrix (Fig. 8C, signals 4 and 5) are 

significantly narrower than the resonances recorded from the other matrices (the 

FWHM of the convoluted signal is about 400 Hz) and are assigned to: all CH2 groups 

except (Si)CH2 (at about 1.4 ppm) and chain terminal CH3 (at 0.9-0.6 ppm), 

respectively. The signal 6 (at about 0.2 ppm) is probably from (Si)CH2 groups. This 

observation is consistent with the high mobility of the alkyl chain in the TMOS/OTMS 

matrix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8  -  1H MAS spectra obtained from different matrices: A - TMOS/MTMS, B - 

TMOS/BTMS; C - TMOS/OTMS.  

 



 269 

CONCLUSIONS 

 

The two complementary spectroscopic techniques used in the present work brought 

further insight into the source of the modifications in enzymatic behavior of lipases, due 

to encapsulation in organically modified sol-gel silicas.Error! Bookmark not defined. 

 

In systems where the co-precursors are R-Si-(OCH3)3 and Si(OCH3)4 (in 5 to 1 molar 

ratio), it was shown that increasing R length inhibits both the hydrolysis and 

condensations reactions of the two precursors, with important effects on the structure of 

the resulting ORMOSIL matrix. Thus, dramatic modifications in the bioactivity of 

encapsulated cutinase result.  

 

In non-polar media, it was observed that the activity of entrapped cutinase increases 

with the chain length of the alkylated precursor up to C4, decreasing abruptly for C6. 

This could only be interpreted in terms of a diffusion-controlled mechanism. In this 

case, the bioactivity is mostly dependent on the matrix-solvent interactions, since the 

accessibility to the enzyme active site plays the key role. The matrix determining 

parameter is its hydrophilic-lipophilic balance (HLB): the lower its value (increasing 

alkyl chain length of the modifying precursor), the more efficient becomes diffusion in 

non-polar solvents. However, partial pore-blocking by long alkyl chains hampers 

diffusion and the chain mobility becomes the dominant parameter on the enzyme 

activity: stiffer chains (as in the matrix TMOS/HTMS) are responsible for extremely 

low enzyme activities.  
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CHAPTER IV 
 

 

“Ion Jelly”  

A versatile tailor-made conductor  
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The last chapter of this thesis started with biocatalysis but followed a completely new 

research line. Our initially line was to combine the best of both worlds, the capacity that 

ionic liquids have to modulate to enzymatic properties and the advantages of enzyme 

immobilization using sol-gel processing. The model enzyme was cutinase and the 

model reactions that we were interest in were the kinetic resolutions of secondary 

alcohols. This type of approach was the most logical since we could combine the results 

obtained in chapter II and see if we could further improve them using the 

immobilization techniques describe on chapter III. We have this objective in mind since 

ionic liquids have demonstrated to be quite good solutions to enhance enzyme 

properties.  The relatively success of both previous chapters was not followed on this 

approach. The results obtained here were far from being positive since the combination 

of ionic liquids had a quite negative impact on cutinase activity. At the time we 

concluded that ionic liquid was affecting the sol-gel process, since in literature ionic 

liquids were described as templates of sol-gel matrices1.  This leaded us to use different 

materials to accomplish the immobilization of the ionic liquids. Our first approach was 

to create a polymeric bead containing ionic liquid, and for that we tried to use materials 

like alginate or gelatin. If the first reveal unexpected difficulties and needed a further 

development the second was perfectly suitable for our intents.  The ionic liquid was trap 

inside a polymeric matrix and our first goal was achieved. Nonetheless in biocatalysis 

we use biocatalysts and in this way only half of the way was completed. When we 

performed the immobilization of cutinase on these materials our expectations were high 

but the results did not correspond to our expectations. If fact cutinase showed a 

marginal activity when compared with results obtained with zeolites and sol-gel 

preparations. The only positive result was achieved in supercritical carbon dioxide 

(scCO2) where we verified for the first time a higher catalytic activity in this solvent 

when compared with hexane, which is traditionally one of the best solvents for cutinase.  

Nevertheless the activity of cutinase was far from the results obtained for cutinase with 

sol-gel and zeolites.  

 

Our attempts with cutinase were finished in this point. But the end of this story was 

actually the beginning of a completely new line our research. In this case we started 

with the combination of gelatin with ionic liquid which for our surprise had never been 

described in literature. This gave us the opportunity to patent this material was well as 

think in some applications for this new material. The advantage and novelty is 
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fundamentally related with the versatility that the combination of these two elements 

offers. The morphological versatility of gelatin and the chemical versatility of the ionic 

liquids offer this material a myriad of solutions for several different areas. Going from 

the separations processes up to electronic and ionic conductors. Of course that the ionic 

liquids play a fundamental role in these solutions and is by the liquid ionic (IL) that this 

chapter is going start. The composition of ionic liquids has been succinctly described on 

chapter II (figure 2.7). 

 

Before going trough I would like point that all the inventions and developments that 

concern this new material involved the participation of Nuno Torres Lourenço which 

had the same contribution as my self on the conception and development of this new 

material.  

 

The beginning of the XX century is considered the cradle of modern science so is no 

surprise that many principles of the modern high-tech application have their roots of this 

flourish scientific period. Ionic liquids are not an exception and the first ionic liquid to 

be describe (1914) was Ethylammonium nitrate, [EtNH3][NO3]. Since then many ionic 

liquids were discovered, for instance in late 40s it was described the first ionic liquid 

based chloroaluminate anion and in the 60s the tetraalkyammonium cation was firstly 

introduced. As we saw on chapter II this cation constitutes one of the most important 

families of ionic liquids and it was extensively studied during the following decades. 

One of the properties that attract more the attention of researchers was the solvent 

capacity of these salts. In the 80s this property was actually extensively studied for the 

chloroaluminate ionic liquids, namely to the dialkylimidazolium chloroaluminates2. In 

the 90s the discovery of a new generation of ionic liquids based on ethyl-3-

methylimidazolium cation and tetrafluoroborate anion was one of the major advents of 

this area2-6. This generation showed that the use of ionic liquids was not limited to 

uncomfortable chloroaluminate salts. Besides that it became clear that wide range ionic 

liquids with different properties could be prepared using this new this cation. One of the 

properties that call more the attention of researchers was the fact that the polarity of the 

ionic liquids could be enhance by changing the type of chemical moieties presented of 

both cation an anion. This have the effect of changing the solvation capacity of the ionic 

liquid, which means that ionic liquids are power solvents that can dissolve a wide range 

of chemical compounds2-6.    
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If we back a few centuries in history up to a period comprehend between the XV and 

XVIII century the eager search of alchemists was to discover a substance that have the 

power of dissolving every other substances, including gold, the so-called Alkahest. If 

those alchemists wave known about the ionic liquids maybe they had considered them 

the so desirable Alkahest and just for curiosity some of them are cable of dissolving 

some metals including gold.  

 

This solvation capacity made IL of the pillars of green chemistry technology, and their 

tailor-made design made them the solvent of future5. One best selling properties of ionic 

liquids is their nonvolatility. However since the work of Earle et al. showing that some 

ILs may be evaporated and recondensed made this argument a tricky to promote the 

reputation of ionic liquids as green solvents7.  But besides solubility ionic liquids have 

more interesting properties. One of the most interesting for this chapter is undoubtly 

their conductivity.  

 

Before going trough this property in ionic liquids there some fundamental issues that 

regards the conductivity property that can help us to understand better this phenomenon 

in ionic liquids.  

 

Electrical conductivity or specific conductivity is a measure of a material's ability to 

conduct an electric current. When an electrical potential difference is placed across a 

conductor, its movable charges flow, giving rise to an electric current. The conductivity 

(σ) is defined as the ratio of the current density J to the electric field strength E8,9.  

 

       J = σσσσ·E          (Eq. 1) 

Conductivity has the SI units of siemens per meter (S·m-1). This property is reciprocal 

of electrical resistivity  which is defined as a measure of how strongly a material 

opposes the flow of electric current. A low resistivity indicates a material that readily 

allows the movement of electrical charge The SI unit of electrical resistivity is the 

Ohm8,9.  

J =  E/ρρρρ         (Eq. 2) 
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Ionic liquids have a broad range of conductivities 0,1-14 mS/cm, for instance higher 

conductivities are associated to the cation 1-ethyl-3-methyl imidazolium  [EtMeIm]+  

where lower conductivities are associated to the ionic liquids based on 

tetraalkylammonium, pyrrolidinium, piperidinium and pyridinium cations ( 0,1 and 5 

mS/cm2). If we compare these values with conventional electrolytes we found that even 

the highest ionic liquid conductivity has a low conductivity value. For instance the 

conductivity of KOH solution (29,4 %) used in alkaline batteries is 540 mS/cm and the 

condutivity of the H2SO4 solution (30%) used in lead-acid batteries is 730 mS/cm.  

Nevertheless when we compared the conductivity of ILs with the conductivity of 

lithium solutions (10 mScm-1) we found similar values between both2,9.  

 

Other interesting subject of IL conductivity is that an ionic liquid solution can if exhibit 

a higher conductivity when compare with IL it self. A good example is given by 

[EtMeIm][BF4] which have a conductivity of  14 mS/cm but when a solution of 2 M of 

this IL is  prepared in acetonitrile the conductivity increases up 47 mS/cm10. This was 

indeed the opposite of what we might expect from a solution of salt in a solvent, since 

the ions are separated by solvent neutral molecules. Nonetheless at high salt 

concentrations all solvent molecules are involved in the ions primary solvation shell, in 

this case instead of having a dissolution of the salt into the solvent what we have a 

system called solvent in salt solution which resembles the properties of a classic salt 

solution, explaining in this way the increase in conductivity2,10. In this system the 

conductivity increases with the increase in the amount of salt up to a maximum and 

decreases with the further addition of salt. Of course this dilution effect could also be 

related with decrease in ionic liquid viscosity which is known to be reciprocal of 

conductivity2,10.   

 

These conductive properties of the ionic liquids have a major interest on 

electrochemical devices where ionic liquids could play an electrolyte function2,11-18. Of 

course their use is dependent on applicability of the device i.e.  if we need a top 

conductivity like the one obtained for KOH solution or if we just need a conductivity 

similar to the one offered by lithium solutions. The first point that we have to consider 

before using an ionic liquid on an electrochemical application is its electrochemical 

stability, which means that the ionic liquid cannot be reduce or oxidized inside the 

electrochemical window of the device2. Before going trough this subject there are some 
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fundamentals that can be useful to understand and evaluate the applicability of ionic 

liquids on those devices.   

 

Firstly, the concept of electrolyte says that an electrolyte is a substance containing free 

ions that behaves as an electrically conductive medium. This means that a solution 

containing free ions is an electric conductor. Usually the confusion starts at this point 

since an electric conductor is immediately associated to an electron current of electrons, 

since we intuitively associate this phenomenon of electricity8,9,19. On an electrolyte 

electric currents are flows of electrically charged atoms, i.e., ions. Nevertheless an 

electrolyte can also be a pronton conductor where electric currents results from the 

flow of protons2,9,19. 

 

This is the type of conduction that is expected for an ionic liquid and all the applications 

of ILs are related with this type of conductivity.  The application of ionic liquids in 

electrochemical devices is a recent area but we can find examples of their use on the 

construction of batteries, capacitators, fuel cells and even dye-solar cells2,11-18. 

 

The physical state of ionic liquid is an important factor for some applications. For 

instance, on applications related with battery electrolytes and film like ion conductive 

materials is preferable to use liquid electrolytes. The reason for this is related with the   

processing and packing of those devices. Nevertheless when ionic liquids are used 

directly as electrolytic materials they have a serious drawback which is related with the 

fact that their component ions could also migrate along with the potential gradient. This 

means that the major fear of liquid electrolytes on batteries applications, which is the 

leakage from the battery, is also present in ionic liquids11. For that reason the major 

developments in this area have presented the immobilization or the solidifications of IL 

as potential solutions to overcome this major drawback function15,16,18,20-20.  

 

This physical state can be controlled in several ways. The most obvious is by changing 

the chemical moieties of both cations an anion function24 the other possibility is to 

solidify the ionic liquid using for instant a polymerization process function16,20-23. A 

more recent approach consisted in the introduction of polymerizable groups into the 

ionic liquid structure obtaining in this way a good ionic conductivity without liquid 
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components. These polymerized ionic liquids (PILs) have been developed for battery 

electrolyte and for other solid electrolyte applications16,20-23. 

 

One of the aims of the developing this type of polymers is combining the conductivity 

properties of a ionic liquid with the mechanical strength an flexibility of a polymer, 

maintaining in the end the good capacity of transporting target ions and also a 

controlled polar environment. One of the major concerns during the developing of these 

conductive materials is maintaining their ionic conductivity after the polymerization 

procedure16,20-23.  

 

A very interesting study was presented by Ohno and co-workers16 who have introduced 

polymerizable groups into ionic liquid cation. They evaluated the conductivity of both 

monomer and PIL and found that the polymerization was responsible for a dramatic 

decrease on the conductivity. In some cases the decrease was from several orders of 

magnitude.  They related this fact with the effect of the segmental motion in polymer 

matrix and to overcome this limitation they increase the distance between the cation and 

the polymerizable group (figure 4.1). The results confirmed that an increase in the 

length of the spacer introduced a molecular flexibility which revealed to be essential for 

a good conductivity on PILs. 

 

 

 

 

 

 

 

 

 

Figure 4.1 – Structure and some of the cation used in the study of  Ohno and co-workers16. 

 

On the other hand it was also demonstrated that initial conductivity and the decrease 

after polymerization was correlated with the type of the cation used on PIL.  They also 

found that the latter was also related with the mechanical properties of the PIL. For 

instance the PILs obtained with ionic liquids composed by the cations 2, 4, 5, were 
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sticky and solid where the ones composed by cations 1 and 3 were glass solid films. In 

this way the type cation is extremely important for the conception of electrolytes based 

on ionic liquids16,2.  

Polymeric ionic liquid have been investigated to be used on polymeric lithium batteries 

which are lithium batteries which have a lower charge density. In these batteries besides 

a good conductivity is necessary that specific molecules like the lithium ion could be 

easily transport trough the electrolyte. Combining this two factors on PILs is not a 

simple task since the variables, conductivity and ion transport, are related with several 

issues. One the major factors that can affect simultaneously the lithium transport and 

conductivity is the type of cation used on PIL.   

 

Again Ohno and co-workers23 have shown that type cation could enhance the lithium 

transport trough the PIL. They found that cations with the piperidinium salt structure 

could be and advantage for lithium ion conduction. Nevertheless these cations were less 

conductive then the cations presented in figure 4.1. In this way what these results 

suggests is that the choice of IL have to account for several factors but specially for the 

type of conductive specie that is gone be use with the electrolyte.  

 

The ionic liquids can also be applied on lithium batteries with a high density charge 

(HDC), which differs from the previous by the type of application. In this case HDC are 

used as energy storage devices for uninterruptible power supplies for 

telecommunications of electric vehicles. The main issue with this type of batteries is 

their safety due to high energy load that they to store and mainly because they have in 

their composition organic solvents as liquids electrolytes which are flammable and in 

this requires safety risk procedures27.  The ionic liquids can be a good solution to this 

type of application but in this case the electrochemical stability is an essential issue25-

27,29.  For instance the ionic liquids based on the imidazolium cation which were quite 

good options in PIL have to suffer some modifications in order to be use in this type of 

batteries. The problem is related with working potential of these batteries which can go 

up to the 5 V, for this potential imidazolium is not stable and began to decompose. The 

reason for this is related with the high charge density of this cation and also with its 

reactivity above certain potentials. The modification of this cation have the aim of 

reduction is positive charge and its reactivity25-27.  
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Figure 4.2 – Schematic representation charge discharge chemistry  of lithium battery  

 

A good example of the success of such approach was given by Hayashi and co-

workers26 who have performed the alkylation of all the remaining positions of ethyl 

imidazolium, this modification had the aim of decreasing the cation positive charge 

density and also create a steric hindrance which make the imidazolium less susceptible 

to oxidation increasing in this way its electrochemical stability.  

 

 

 

 

 

 

Figure 4.3 – Structure of 1-ethyl-3-methyl imidazolium and 1-ethyl-2,3,4,5-tetramethyl imidazolium. 

 

The lithium batteries technology has motivated worldwide research efforts to develop 

better technological solutions for storing higher energy densities in the more reduce 

space possible.  One of the most interesting solutions presented in this specific area 

came from the lithium-metal batteries which differ from previous by using metallic 

lithium instead ionic lithium27,28. The advantage is related with the higher theoretical 

energy density of metallic lithium. But the problem is that this type of batteries is 
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related with the growth of dendrites during the cycling which are responsible for 

decreasing their life cycle. For instance on the first generation of these batteries this 

issue was a serious drawback but the devolving of passivating layers helped to protect 

the electrode surface from this phenomenon. The passivating agent can be for instance a 

solid electrolyte which acts as a mechanical barrier or a electrolyte which controls the 

solid-electrolyte interface27,28. The latter is responsible for controlling the performance 

of the battery by protecting the lithium metal surface and allowing the lithium ion 

transport.  

 

Recently Forsyth and their co-workers14 have demonstrated the potential on zwitterionic 

ionic liquids in the formation of passivating layer of the surface of metal lithium 

electrodes (Figure 4.4). On the other hand these compounds were also described to 

largely enhance the lithium ion diffusivity in polyelectrolyte gels. If fact the results 

obtained by these authors show that the addition of to the zwitterion to the solid 

electrolyte was able to double the current density of the battery. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
Figure 4.4 – Schematic representation of lithium-metal-battery. (solid electrolyte) 

 

In this way there several ways to overcome the problems related with the use of ionic 

liquids on lithium batteries which will make them one of the most adequate choices for 

designing batteries specially for tailor-made applications.   

 

Smart windows or electrochromic devices have many similarities with the lithium 

batteries30. This type of device is basically considered a transparent rechargeable battery, 

which the charge and the discharge conditions are associated to a color change.  
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In an electrochemical device the surface of each if the electrodes must be covered with 

n electrochromic material which color changes with its oxidation state. In this way by 

controlling the redox/oxidation potential of the electrode we can control the color of this 

electrochromic layer.  The conceptual design of this type of devices is quite simple31-34. 

First we must have two transparent electrodes which the most common are made from 

ITO glass. This electrodes results from the deposition of a mixture of indium (III) oxide 

(In2O3) 90% and tin (IV) oxide (SnO2), 10% over the glass. These Thin films of indium 

tin oxide are commonly deposited on surfaces by electron beam evaporation, physical 

vapor deposition, by a sputter deposition technique33. The surface of the electrodes must 

be covered with electrochromic materials which between the most popular are the 

Prussian blue, the tungsten oxide (WO3) and the vanadium oxide (V2O5)
 31-34. A 

possible cell set-up is described on figure 4.5.  

 

The use on ionic liquids on these devices in relatively recent and the aim in this case is 

the same as in batteries, which is to substitute the traditional or organic electrolytes. A 

very recent study have showed the great utility of N-butyl-N-methylpyrrolidinium 

bis(trifluromethansulfonyl)imide (PYR14TFSI), on the construction of an 

electrochromic device31. This ionic liquid was interposed between two transparent films 

electrodes, respectively WO3 and Lithium charged V2O5. The results were quite 

promising since they revealed a higher optical contrast during WO3 colouration with 

PYR14TFSI-LiTFSI, compared to that in a conventional non-aqueous electrolyte like 

PC-LiTFSI.  

 

Another interesting study was performed by Mecerreyes and co-workers11 who have 

developed a new type of tailor-made polymer electrolyte based polymeric ionic liquids. 

This electrolyte demonstrated a tremendous stability up to 70,000 cycles on   

PEDOT/electrolyte/PEDOT window which constitute an enhancement when compared 

with the traditional poly (ethylene oxide) electrolytes.  
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Figure 4.5 – A possible design of an electrochromic device with two different electrochromic layers. 

On the  ON state one of the electrochromic layers is oxidized and the other is reduced. (1) is blue when is 

on the oxidize state and (2) is blue when is on the reduced state. 

 

The applications of ionic liquids in electrochemistry do not extinguish in lithium 

batteries or electrochromic devices.  Related with energy production ionic liquids have 

been used as electrolytes in both solar and fuel cells.  

 

The photovoltaic energy is based on two fundamental steps, the light absorption and 

photon electron conversion. Today there are several ways to accomplish this. The most 

classical and also the most spread way to produce electricity from sun is using a silicon 

wafer cell
34-36.This type of cell is based on the charge separation that occurs at the 

interface of two materials with different conduction mechanism. These materials are 

semi-conductors and the interface where the two semiconductor materials meet is called 

junction or p-n junction if it is formed by N-type and P-type semiconductors34-36..  

 

These semiconductors are formed by a single atom lattice that is doped with an atoms of 

a different valence38,39. This concept is easier to understand with the example of silicon 

which has four valence electrons, each of which covalently bonded to other adjacent 

silicon atom. If this silicon lattice is doped with a trivalent atom from the group 13 such 

as boron, aluminum or titanium the resultant lattice will have one electron on silicon 

unpaired. In this way the dopant atom have to accept the electron from the neighboring 

silicon atom in order to complete the fourth bond. The dopant atom accepts the electron, 
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causing the loss of half of one the neighboring bonds which results in the formation of a 

"hole". The final result is a P-type conductor where the charge is majority transported 

by holes. In nature a blue diamonds, which contains boron impurities are good examples 

of this type of semi-conductor38,39.  
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Figure 4.6 – Schematic representation of silicon lattice doped with group 13 atoms (Boron atom)  to 

obtain the P-type semiconductor and doped with group 15 atoms (phosphor atom) to obtain N-type  

semiconductor 

 

On the other hand the N-type semiconductor is also obtained by doping but in this case 

the doping atom belongs to the group 15 of periodic table which includes for instance, 

phosphorus, nitrogen or arsenic. The atoms that belong to this group have a valence of 5. 

Since silicon is already full and the dopant atom have 5 electrons the result is that one 

electron on the dopant will be weakly bounded. In this way this electron is quite easy to 

excite into to the conduction band. Since excitation of these electrons does not result in 

the formation of a hole, the number of electrons in such a material far exceeds the 

number of holes. In this case the charge tranport is made by the electrons rather than 

holes. In both cases each hole and each electron are associated with a nearby negative-

charged or positive charge dopant ion which made the semiconductor electrically 

neutral38,39. 
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The p-n junction is in this way a nonconductor area since the electrical charge carriers 

in the both doped n-type and p-type attract and eliminate each other. By manipulating 

this nonconductive layer, p-n junctions can be used electrical switches allowing a flow 

of electricity in just one direction. The silicon wafer solar cell is basically a large p-n 

junction. When photons hit the solar cell they promote the charge separation at the p-n 

junction, both electrons and holes will have the tendency of being together but the p-n 

junction only allow the electrons to move in one direction. In this case electron will 

flow trough the n-type semiconductor where holes will flow trough the opposite p-type 

semiconductor. This externally flow of electrons and holes generates electric current 

( I ), and the cell's electric field causes a voltage ( V ) 38-40.  

 

This classical example of solar cells is on the edge of their technological improvement 

and has several disadvantages. The first one is related with band gap, which is the 

difference between valence and conduction band. This means that only photons with 

energy above the gap band are cable of generate electric current, the problem is that much 

of the energy of higher energetic photons from the blue and violet are lost in the form of 

heat since they have more than enough energy to cross the gap. But the main problem is 

that the light capture and energy production is associated to the same material. In this 

case in order to increase the capture of light the surface have to be fairly populated which 

means that a freshly-ejected electron will probably meet a hole before reaching the p-n 

junction. In fact this limits the efficiency of these cells up to 15% for the most common 

cases or up to 24% for the best lab prototypes. Another problem is that the cost of making 

a silicon junction is an expensive manufacturing process40-45. 
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Figure 4.7 – Schematic representation of electric energy produce by a photovoltaic silicon cell. 

 

 

Since energy is the engine of development many efforts have done to obtain better 

solutions to produce solar energy. Today we are already on the fourth generation of solar 

cells38-40. The second generation of photovoltaic cells is based in thin-film deposits of 
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semiconductors. The aim of these devices is to create highly efficient multiple junctions 

increasing in this way the global efficiency of the solar device. On the other hand using a 

thin-film cell is possible to reduce the amount of material required for cell construction. 

This contributed to a prediction of greatly reduced costs for thin film solar cells38-40. The 

third generation is a completely new area of solar cells since they are capable of 

producing energy without the p-n junction40-45. This type of cells has similarities with the 

photosynthetic process that occur in nature, and best examples are the dye-solar cells 

which also called Gratzel cells. This third generation will have a special attention on the 

present chapter since ionic liquids have been used to improve the efficiency of these cells. 

The fourth generation is the multi-spectrum layer which combines polymer cells from 

the previous generation with multi-junction from the second. The aim is to covert 

different light wavelengths into energy. For that propose the set-up involve different 

layers which covert different wavelengths into energy. This technology has been 

developing by NASA and other companies like Konarka Technologies. 

 

A dye solar cell (DSC) or Grätzel Cell is a different concept of solar cell since they 

separate the two functions of a solar cell; catching the photos and converting them into 

energy. If in silicon cells silicon double acts as source of photoelectrons and as the 

potential barrier to separate charges and create an electric current, in DSC the 

semiconductor only have the latter function since the photoelectrons are generated by a 

photosensitive dye. Additionally the charge separation proceeds in a different way since 

in this type of cell there is a presence of a third element, the electrolyte, which 

complements the semi-conductor on that function40-45.  
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Figure 4.8– Schematic representation of a dye photovoltaic solar cell figure adapt from 42.  

 

The heart of this cell is a mesoporous oxide layer composed by nanometer-sized particles 

which have been sintered together to allow a more effective electron transfer. The most 

common material to construct this semiconductor layer is TiO2 commonly know as 

anastase. On the surface of nanocrystalline layer is deposited a layer of the photosensitive 

dye. The photo excitation of the dye promotes the injection of an electron into the 

conduction band of the oxide. The oxidation state of the dye is the then regenerated by 

electron donation form the electrolyte which is usually composed by an organic solvent 

containing a redox system.  The most common redox system is iodine/triiodine. In this 

case iodine transfer an electron to the dye an its regeneration is made by the reduction of 

triiodine at the counterelectrode. The system is completed via electron migration trough 

the external load40-45 

 

The photovoltaic efficiency to DSC is approximately 11 % which is slightly lower than 

the obtained by silicon solar cells, nevertheless these cells are extremely promising 

since they are made of low-cost materials and do not need elaborated apparatus for its 

manufacture making them very competitive42,43. 
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Although the advantages there are still a few points that should be improved in these 

cells. One is related with the fact the electrolyte is base on a organic solvent which by 

the same reason mention for batteries should be avoid also on these devices. On the 

other hand the long term stability is also affected by the use of these electrolyte systems. 

Recently, some efforts have been done to substitute them for ionic liquids41,46,47. 

 

The several approaches that used ionic liquids involve the direct substitution of the 

organic electrolyte acting in this way as solvent of the mediator couple which is 

essential for the dye regeneration. Even more interesting is the fact that the ionic liquid 

could work as the regenerator acting in this as an electrolyte catalytic medium.  On both 

approaches ionic liquids had revealed a very good potential to accomplish the task. For 

instance Grätzel and their co-workers41 have demonstrated that binary ionic liquids 

composed by 1-propyl-3-methylimidazoliumiodide and 1-ethyl-3-methylimidazolium 

tricyanomethanide could substitute traditional iodine/triiodine as the regeneration agent. 

The cell have a conversion efficiency of 8% which is a quite good result if we have in 

mind that the maximum obtained by DSC is 11%. Furthermore an excellent light-

soaking stability was also observed during 1000 hours indicating a quite remarkable 

stability.   

 

In the same field of energy production but with a completely different concept for 

energy production are the fuel cells50. This concept is much easier to understand than 

the previous related with solar energy. The fuel cell is basically an electrochemical 

reactor with two semi-cells separate by electrolyte membrane, where both reactants and 

products are constantly removed. What is essential is to have a reactant that can be 

oxidized on electrode surface in order to create a  pronton gradient that migrate trough a 

membrane to the other semi-cell. On this second semi-cell is necessary the reduction of 

other reactant specie on the surface of the electrode serving in this way as the proton 

accepter 50. The simplest example is the hydrogen cell fuel cell, which used H2 as the 

reactant for the formation of proton gradient and uses O2 was proton acceptor. In theory 

everything that can be oxidized can be used as fuel. One of the most interesting 

concepts was already presented on the chapter I.49 
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Figure 4.9 – Schematic representation of a H2/O2 fuel cell. This representation is a typical PEM 

(polymer electrolyte cell) 

 

Of course that secret on these cells is in the membrane which has to be proton selective 

and very stable in working conditions.  The best material or at least the most common is 

the Nafion® which is a sulfonated tetrafluorethylene copolymer which has an excellent 

thermal and mechanical stability. The problem is the high cost of of this material48. 

 

This fact has motivated the research on alternatives to Nafion®. The ion-solvating 

polymer composite membranes have been presented as possible alternatives48,51-53. One 

of those alternatives consisted on the incorporation of a KOH into a poly(ethylene oxide) 

(PEO) based membrane. The major drawbacks of this membrane is the high crystallinity 

which is responsible for conductivity reductio51. A more promising example is chitosan, 

which is a natural, low-cost and also is a weak alkaline polymer electrolyte51,54. Besides 

that it has a thermal stability up to 200 ºC with an acceptable mechanical strength. On 

the other hand, the presence of hydroxyl and amino groups give the chitosan membrane 

a high level of hydrophilicity, which is crucial for the operation. Its drawback is related 

with its semi-crystalline structure.  For example when chitosan is on is dry state, which 

is its natural state is almost non-conductive. Nevertheless when fully hydrated, it can 

have a conductivity close to 10−3 S cm−1 which is a good conductivity but not high 

enough for large scale fuel cells application55.  
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Fuel cells are probably one of the most well studied applications of ionic liquid on 

electrochemistry field with several examples that clearly show the potential of these 

solvents on membrane electrolytes48,56,57. The first experiments of ionic liquid on fuel 

cell membranes was with  Nafion® membranes which their presence improved their 

already good working conditions. Nevertheless by the reason mention before Nafion® is 

a solution to avoid58. This fact motivated the incorporation of different ionic liquids in 

different types of materials such as polyacrylonitrile (PAN), polymethacrylate (PMA), 

polyethylene oxide (PEO), polymethyl methacrylate (PMMA) or polyvinylidene 

difluoride (PVdF)56-58. These studies reported very interesting results in terms of 

stability and conductivity for the application of ionic liquids on fuel cells membranes. 

For instance Doyle and co-workers58 have shown that the incorporation 1-ethyl,3-

methylimidazolium triflate and tetrafluoroborate ionic liquids on ionomer membranes 

enhance their conductivity up to 0,1 S cm-1 at 180 ºC which is an excellent result to 

think in an application. 

 

Until this point we have presented several applications for ionic liquids in 

electrochemistry. These tailor made compounds have been successfully applied on solar 

cells, lithium batteries and  fuel cell, most of times acting as an electrolyte. Dye solar 

cells are a quite good example to show that the application of ionic liquids does not 

extinguished on the electrolyte role. The applications of ionic liquids in 

electrochemistry is still given the first steps nevertheless the tailor made possibilities of 

these remarkable solvents made them an excellent bases for the developing creative 

solutions for this area. 

 

The next part of this chapter is going to be focused on polymeric materials that can 

exhibit electric conduction and whose properties could be combined with the ionic 

liquids in order to create a more integrated solution to the previous electrochemical 

applications. We start this chapter by introducing basic concepts electrochemistry. At 

this point is also important to refer some principles of electronic transfer.   

 

The materials can be simple divided in three different classes in respect of their 

conductive properties. In this way we have isolators, semi-conductors and conductors, 

and this classification determine their different target of application8,9. The next figure 

explains w why the materials exhibit these different properties. Everything is related 
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with the energy gap between the valence and the conductance band. When this band is 

too large, electrons cannot “jump” between valence and conducting band and the 

material is classified as an isolator. On the opposite site we have a conductor when 

these to bands are overlapped and the energy added to system is sufficient to propel the 

electrons between the two bands. The semi-conductors which were already described 

before, have also have a gap between the two bands, but in this case this is not so large 

as it is on the isolators. So if we applied an external electric field the electrons can be 

easily exited from the valence to conduction band and the number of free charge 

carriers is influence by the supplied energy. What this means is that the conductivity is 

controlled by the external potential. 

 

 

 

 

 

 

 

 

 

Figure 4.10 –  Schematic representation of an isolator, a semi-conductor and a conductor. 

 

Inside the conductors we have different mechanisms of charge transport (figure 4.11). 

For this chapter the most interesting types of conduction are the ones present on 

polymeric materials.In this way we have conducting polymers and polymer 

electrolytes9,59,60.  The conducting polymers are polymeric materials that are electron 

conductors by virtue of the  π electrons via conjugated double bounds and are 

designated as intrinsically conducting polymers (ICPs). On the other side we have the 

polymers which achieve their conductance by ion conduction. The dissociate ions are 

free to move within the matrix and can conduct electricity under applied voltage.  
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Figure 4.11–  Schematic representation of the conductivity ranges for some groups of materials. Green 

oval are market the most relevant group for the present discussion. Figure adapt from 9. 

 

 

A study that aims for the characterization of the conductivity properties of a given 

material results for the correlation of several physical parameters. In this way we have 

the electrical resistance, which is define the capacity of the material to resists to the 

flow of an electric current. The Omh’s law states that, in an electrical circuit, the current 

passing through a conductor between two points (I) is proportional to the potential 

difference (V) across the two points, and inversely proportional to the resistance (R) 

between them. An is written by where, V SI units is Volt (V), R SI units is Ohm (Ω) and 

I SI units is Ampere (A).8,9 

   

        (Eq. 3) 

 

Electrical conductance (G) is the reciprocal of electrical resistance and is a measure of 

how easily electricity flows along a certain path through an electrical element. The SI 

derived unit of conductance is the siemens (S). A very important thing about 

conductance is that it should not be confused with conduction8,9. 

V 
R 

I = 
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The conduction is the movement of electrically charged particles through a 

transmission medium (electrical conductor). This movement can form an electric 

current in response to an electric field and the underlying mechanism for this movement 

depends on the material. Nevertheless conduction in metals and resistors is also 

described by Ohm's Law. The easiness with which current density (current per unit area) 

(J) appears in a material is measured by the conductivity σ, which as defined by (Eq. 

1)8,9.  

 

The correlation between resistence  and conductance can be given by:  

       

         

                (Eq. 4) 

 

 
The conductance system for an of ion-conducting material, which is an electrolyte, 

depends on several factors such as,  polymer matrix, the concentration of the ionic 

species (charge transporters), the mobility of this ions on the matrix (conductivity), the 

valence of the ionic species and finally from temperature. In order to simplify it can be 

assume that electronic contribution of these polymers to the global conductance is 

poorly significant when compared with the other factors. In this way we can express the 

conductance of this material by: 

 

                  G (T) =   Σ n i . q i . µi             (Eq. 5) 

 
Where G is the conductance of the material at a certain temperature (T), n is the number 

of charge species per unit mole, q is the net charge of each species, and µ is the ion 

mobility of each species 8,9. 

 
There are several techniques that can be use to characterize the conduction and 

conductance of a given material distinguishing the different contributions implicated in 

that conductance system.  In this way a system can be characterized by impedance63, 

cyclic voltammetry64 and Hall effect61,62. 

 

1 
R 

G = =
I  
V 
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The Ohm´s Law (Eq. 3) is perfect to study ideal resistors which most of the polymer are 

not, for these cases impedance is used. Like resistance, impedance is a measure of the 

ability of a circuit to resist the flow of electrical current, but in this case the concept is 

extend to AC circuits, describing not only the relative magnitudes of the voltage and 

current, but also the relative phases. 

 
Impedance spectroscopy or Dielectric spectroscopy measures the dielectric properties 

of a medium as a function of frequency. It is based on the interaction of an external field 

with the electric dipole moment of the sample, often expressed by permittivity i.e on the 

material ability to transmit (or “permit”) an electric field. This spectroscopy uses a small 

amplitude signal, usually 5–50 mV, applied over a range of frequencies (0.001–100,000 

Hz) 63. 

 

Electrochemical impedance spectroscopy (EIS) uses a small amplitude signal, usually 

5–50 mV, applied over a range of frequencies (0.001–100,000 Hz). With this technique 

is possible to measure the complex components of the impedance response of the 

specimen, i.e., the “real” resistance and the “imaginary” capacitance: 

 

Z= R + jX                                        (Eq. 6) 

 

Where the real part of impedance is the resistance R and the imaginary part is the 

reactance X. Dimensionally impedance is the same as resistance; the SI unit is the Ohm 

 

Another technique commonly used is cyclic voltammetry64. In this experiment, a 

potential is applied to the system, and the faradic current, which is a current 

corresponding to the reduction or oxidation of some chemical substance, is measured. 

The most important fact in this technique is that the direction of the potential that is 

scan can be reversed, and the same potential window is scanned in the opposite 

direction (hence the term cyclic). This means that, for example, species formed by 

oxidation on the first (forward) scan can be reduced on the second (reverse) scan. This 

provides a simple and fast method for the characterization of a redox-active system. 

Moreover this technique can estimate the redox potential but also give an idea about the 
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electron transfer rate between the electrode and the stability of the analyte in the  

electrolyzed oxidation states, i.e. if they undergo any chemical reactions.  

 
Both techniques base their measurements on alternating current (AC) nevertheless there 

are techniques that can evaluate materials electric properties using direct current (DC).  

The Hall effect sensor measures the voltage variation in response to the changes in the 

magnetic field of the analyte. This technique is based on the Hall effect principle 

described by Edwin Hall 1879. The Hall effect refers to the potential difference (Hall 

voltage) created by a magnetic field applied perpendicular to the current on the opposite 

sides of an electrical conductor through which an electric current is flowing.  In other 

words the basic principle for the Hall Effect is the Lorentz force, which is the force that 

an electromagnetic field exerted on a charged particle. When an electron moves along 

an applied magnetic field, it experiences a force acting perpendicular to both directions 

and moves in response to this force and to the force applied by the internal electric field. 

Electrons subject to Lorentz force initially drift away from the current line, resulting in 

excess electrical charge on one side of the sample and giving rise to the Hall voltage, 

which in this way,  measures the potential drop across the sample normal to the applied 

voltage61,62 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 – Magnetic field B is employed perpendicular to the current direction j, as a consequence 

a potential difference (i.e. a voltage) develops at right angles to both vectors. The Hall voltage UHall will 

be measured perpendicular to B and j. An electrical field EHall develops in y-direction.  
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Hall voltage is a direct measure of the mobility µ of the carriers which are charge 

particles (ions or electrons). In this way can be consider a property of the material since 

different materials have different Hall effect coefficients resulting from the different 

impact that the same magnetic field have on current flow. If for a given material we had 

a conductivity value measured for instance by dielectric spectroscopy we can have a 

good characterization of the electric properties of the material.  

 

 

          (Eq. 7) 

 

 

This correlation between the Hall effect and conductivity give us directly the mobility 

of the carriers responsible for the conductance. The minus sign above is obtained for 

electrons, i.e. negative charges. If positively charged carriers are involved, the Hall 

constant would be positive61,62. 

 

For think in an application of a given conductor material either or not with ionic liquids 

is fundamental to know its properties, namely the ones related with the parameters that 

could affect the material specific conductivity. In this last part of this chapter we aimed 

to  highlight fundamental concepts behind the conduction process as well as present 

some procedures to characterize this physical property. Trough the several examples 

that were presented related with ionic liquids applications we can say that ionic liquids 

have a major role as electrolyte. In fact it can be one of the best solutions to fulfill that 

task in any of the devices presented. Nevertheless ionic liquids have also being 

associated to materials where the charge transporters are electrons. A good example of 

this association is carbon nanotubes. The idea that that salts could enhance the 

conduction via electrons is not new12,65-68, but its application and development is a quite 

emerging area in materials science. The materials that share both types of conduction 

are commonly known as the mixed conductors and the main objective of this 

development is related with the creation of new semi-conductors and electrodes. The 

next example is good application of this type o mixed conductor. 

 

Carbon nanotubes modified with ionic liquids are commonly known as bucky gels and 

are obtained by simply disperse the carbon nanotubes in an imidazolium cation type 

µµµµ 

σσσσ 
Rhall  = =

µµµµ  

q.n.µµµµ 
- =

-1  

q.n 
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ionic liquid12. These suspensions become viscous affording a gel. This last psychical 

sate is possible related with the π-electronic interaction between the ionic liquid surface 

of the carbon nanotubes by means of cation–π and/or π–π interactions. Basically what 

the ionic liquid brings to carbon nanotubes is and an enhancement of the ionic 

conductivity which is usually implicated in an enhancement of electric conductivity12 

 

 These bucky gels have been used on the construction of electrochemical actuators. An 

actuator is a device for moving or controlling a mechanism or system which in the case 

of electrochemical devices operates by the converting the electrical energy into 

mechanical energy. A bucky-gel-based actuator works in air without any support of 

external electrolytes. Furthermore, unlike conventional polymer actuators69 this actuator 

operates without deposition of a metallic electrode layer. The bucky-gel-actuator adopts 

a simple bimorph configuration with a polymer-supported internal ionic liquid 

electrolyte layer70,71,which is sandwiched by bucky-gel electrode layers (Figure 5). The 

actuator film can readily be fabricated through layer-by-layer casting of electrode and 

electrolyte components in a gelatinous 4-methyl-2-pentanone solution of vinylidene 

difluoride-hexafluoropropylene copolymer (PVdF(HFP). The most interesting aspect of 

this device is the presence of an ionic liquid on the different components of this device. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 – Schematic configuration of an actuator composed by bucky gel PVdF(HFP)-supported 

and an ionic liquid electrolyte layer. This figure was adapted from reference 12. 
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The hot applications on conducting materials are related with applications that are 

directly involved with our interaction with the surrounding environment. The concept of 

“smart environments” has attracted scientists from distinct areas in order to develop the 

best solution to fit this concept72-75. The man-machine interfaces concepts are becoming 

every day more bidirectional, more intuitive and more imperceptible to human 

behaviour.  In a certain way we can say that this concept is becoming bioinspired 

specialy if we think in our skin which is the most specialized organ and crucial for our 

interaction with the surrounding environment.  Exploring its several layers we found 

different functions related with the thermal control, protection to external agents, 

exchange with the surrounding environment, camouflage etc. This specialized 

organization inspired man on the developing devices whose interaction with the user 

resembles a skin, in this case an “artificial skin”. The new concept of electronic devices 

aims in this way for the development of new interfaces between these and their users 

creating in this way a simple and dynamic man-machine interaction.  

 

Clothing have been considered for a long time our second skin so the artificial skin 

concept choose cloth was the elected raw material to create the required interactive 

solutions. Both modern environments and daily routines are considerably complex and 

full of devices that are deeply implicated in our life rhythm. Smart environments present 

a concept that all the devices that “participate” in our daily routine could learn more 

about us and take imperceptible decisions that could make our life easier. But for that 

three fundamental conditions have to present sensing, logical interactivity and of course 

energy.  

 

A new concept always generates other new concepts and the development of conducting 

materials has been corresponding to aims of smart interaction. For instance the interest 

in cellulose and in other wovens as raw materials for new electronic concepts had an 

exponentially increase in the last decade. 

 

One of most interesting examples of the advances in this area was brought by Energy 

Systems Inc. which have develop  thin-film flexible batteries onto a woven substrate. 

This concept is commonly designated as “power fibres”72. These fibres cells are 

fabricated by coating a cellulose fibre with thin film layers, consisting in the same 

materials that are typically used in flat batteries, such as LiCoO2 as cathode, lithium as 
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anode, and LiPON as solid electrolyte. The figure 4.12 (a) represents two nanotubes 

composite fibres that were separately coated with an electrolyte, forming in this way a 

supercapacitator (diameter 100 mm) providing a capacitance of (5 Fg1) and an energy 

storage density (0.6 W h kg-1 at 1 V)73. These values are quite comparable with the 

larger commercial supercapacitors. Nevertheless the most interesting point of this 

device was the stability of its performance which remained unchanged over 1,200 

charge–discharge cycles. The helically wound nanotube fibres are separated at the 

capacitor ends so that electrical connections can be made. These last examples together 

with the enormous market for these applications made this research area one of the 

hottest at the moment.  

 

 

 

 

 

 

 

 

 

 

Figure 4.14 – (a) Photograph of a textile containing two nanotube-fibre supercapacitors woven in 

orthogonal directions; adapt from  reference 73 (b) Power fibres, Current-generating materials layered a 

top individual fibres. Adapt from reference 72. 

 
 

The materials that are presented in this thesis are been developing to meet certain 

requirements essential in such smart environment and interaction. Our raw material is 

gelatin one of the most abundant polymers in nature and our design material is based on 

ionic liquids. From the combination of these two results versatility. We are able to 

obtain material with different conducting and morphological properties just by changing 

the type of ionic liquid used creating in this way suitable materials for a several 

applications. Our study has been focused on the characterization of the material 

properties as well as on the development an electrochromic and electrochemical 

applications. 
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ABSTRACT 

 

The highly demanding for new conducting solutions as leaded the material research 

toward the development of novel and creative concept materials. Here we demonstrate a 

novel conceptual solution to for designing polymeric conducting materials (PCMs). We 

have made use of the ability of ionic liquids to dissolve gelatin, which is a widely 

available, inexpensive and well studied gelling agent. This yields a viscous gel that can 

be molded into a transparent film or a block, and solidifies by cooling below 35 ºC. Our 

approach fuses the physical chemical versatility of the ionic liquids with the high 

moldability of a natural polymer such as gelatin. Creating in this way a transparent, 

tailor-made, conducting material ready to be used as film or as compact block. These 

characteristics open a wide range of opportunities for their application on 

electrochemical devices, such batteries, fuel cells electrochromic windows or even 

photovoltaic cells. Moreover ionic liquids are excellent solvents and gelatin is well-

known for its biocompatibility, these combined characteristics can be explored also on 

bio-applications such as drug delivery.  

 

 

 

INTRODUCTION  

 

Polymeric conducting materials (PCMs) have been successfully applied in a wide range 

of electrochemical devices, such as batteries, capacitators, fuel cells, actuators, 

photovoltaic cells, electrochromic windows and light emitting cells1-4. A common 

feature to all these devices is the presence of an electrolyte whose properties have a 

pronounced effect on the device performance. A reasonable conductivity (above 10-4 S 

cm-1), and a large electrochemical window (above 1 V) are some of the criteria that an 

electrolyte must meet to be suitable for utilization in an electrochemical device1.  Room-

temperature ionic liquids (RTILs) fill all these requirements1,5. Unlike traditional 

molecular solvents, ionic liquids are entirely made of ions. Their unique properties such 

as nonvolatility, nonflammability and excellent chemical and thermal stability have 

made them an environmentally attractive alternative to conventional organic solvents. 

Ionic liquids have low melting points (<100 ◦C) and remain in the liquid state in a broad 

temperature window (<300 ◦C)6,7. One of the characteristics that have attracted more 
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attention is the adjustability of RTIL properties through changes in the type of chemical 

moieties present on both cation an anion5, and this has led to the designation “designer 

solvents”. By changing the functionalities of cation and/or anion, properties such as 

polarity and solvation ability can be manipulated, and therefore RTILs are suitable for a 

wide range of applications that go from reaction media for chemical and enzymatic 

catalysis8 to electrochemical applications1,5,9-17. RTIL conductivities and 

electrochemical windows are usually within the range 0.1-14 mS cm-1 and 4-5.7 V, 

respectively5.  

 

From the standpoint of device conception, solid electrolytes are preferable to liquid ones 

since the former allow the building of thin film devices using layer-by-layer techniques. 

Thus in electrochemical applications RTILs are usually coupled to supporting materials, 

such as organic polymers polyacrylonitrile (PAN), Polymethyl methacrylate (PMMA), 

polyethylene oxide (PEO), Polyvinylidene fluoride (PVdF) and Nafion®18-26
. The 

synthesis of RTILs containing groups that can be further polymerized to produce PCMs 

is also worth attention13,16,17. Although combined RTIL-organic polymer materials have 

successfully replaced traditional electrolytes in some applications, there are still some 

problems to overcome. These are mainly related with the complexity of processing 

techniques, which in some cases such as that of Nafion®, have prohibitive costs.  

 

Gelatin is prepared by the thermal or acidic denaturation of collagen, isolated from 

animal skin or bones, and also from fish skin. The triple helix of type I collagen 

extracted from skin and bones, as a source for gelatin, is composed of two α1(I) and one 

α2(I) chains, each with ca. 95 kDa molecular mass, 1.5 nm width and 0.3 µm length. 

Gelatin is basically a heterogeneous mixture of left-handed proline helix polypeptides 

and aminoacid strands, with a typical sequence of -Ala-Gly-Pro-Arg-Gly-Glu-4Hyp-

Gly-Pro-. Dissolution of gelatine in water occurs at 30-35ºC, where these polypeptide 

strands undergo a coil-helix transition. Upon cooling, these helices go through an 

aggregation process similar to collagen, with right-handed triple-helical 

proline/hydroxyproline junctions27-30. The presence of this posttranslational modified 

residue favours compactness of the quaternary structure due to the formation of 

hydrogen bonds between the hydroxyl group and carbonyl groups of the main chain 

helices.  Physical properties of gelatine and collagen are influenced by this interaction 

and higher levels of these pyrrolidine rings result in stronger gels34.  
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Here we report a very simple way to obtain a polymer conducting material. We have 

made use of the ability of RTILs to dissolve gelatin, which is a widely available, 

inexpensive and well studied gelling agent. This yields a viscous gel that can be molded 

into a transparent film or a block, and solidifies by cooling below 35 ºC (Figure 1). The 

resulting material, which we call ion jelly, combines conductivity that is a characteristic 

of RTILs, with the mechanical flexibility of a polymer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Ion jelly films and blocks. 
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MATERIALS & METHODS 

 

Materials 

All the ionic liquids used in this work were kindly offered by SOLCHEMAR 

(www.solchemar.com). [bmim][Cl] -1-butyl-3-methyl-Imidazolium chloride; 

[bmim][N(CN)2] - 1-butyl-3-methyl-imidazolium dicyanoamide; [C10mim][Cl] - 1-

decyl-3-methyl-Imidazolium chloride; [mmim][Cl] - 1-methyl-3-methyl-Imidazolium 

chloride; [im][Cl] - imidazolium chloride;  [Emim][EtSO3] -  1-Ethyl-3-

methylimidazolium n-ethylsulphate. Metallic Copper (Cu, Fluka),  metallic zinc   (Zn, 

Fluka), copper sulphate  (CuSO4,   Fluka), zinc sulphate  (ZnSO4, Fluka), potassium 

hexacyanoferrate (III) (K3[Fe(CN)6], Fluka), Iron(III) chloride hexahydrate 

(FeCl3.6H2O, Merck),  potassium chloride (KCl, Pronalab) were certified p.a. grade and 

used without further purification, gelatin. 

  

Ion jelly 

100-300 µL of ionic liquid was heated at 40 ºC and under magnetic stirring 1 equivalent 

mass of gelatin was added. The mixture was left under magnetic stirring in order to 

obtain a homogenous solution of gelatin. Depending on the ionic liquid the stirring time 

varied form 1 to 24 hours. The solution was then spread over a glass surface or used to 

fill a mold. The jellification occurred at room temperature. The R indicates the ratio 

(w/w) between ionic liquid and gelatin. 

 

Prussian Blue film preparation 

PB films were electrogenerated on glass indium tin oxide transparent electrode (ITO, 

acquired from Institute for Chemical Education – Chemistry Department). The 

electrochemical polymerization was performed in a conventional three-electrode cell. 

An aqueous solution of 5mM K3[Fe(CN)6, 5mM FeCl3.6H2O, 5mM HCl and 0.2M KCl 

was used as PB polymerization solution. Electropolymerization conditions was a 

constant applied voltage, 0.55V (vs Ag/AgCl), for 300s. After deposition the electrode 

was gently rinsed with distilled water. 
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WO3  film preparation 

WO3 films were prepared from a tungsten (W) target with 99,95% purity using the 

technique of direct current magnetron sputtering44.  

 

Electrochromic Window Assembly 

The electrochromic window set-up was constructed using two ITO which one covered 

with a different electrochromic layer respectively WO3 and Prussian Blue. The ion jelly 

was prepared and spread over the WO3 ITO using a pipette forming a homogenous film. 

The film was left to jellify for approximately 10 minutes before being covered with the 

Prussian Blue ITO. After the window was compress with two cramps and was left to 

jellify for 24 hours. Before sealing with an epoxy glue the window was left under 

vacuum for more 24 hours.   

 

Electrochemical measurements 

Electrochemical polymerization and choronocoulometry/chronoabsorptometry were 

performed with a conventional three-electrode cell using a computer controlled 

computerized potentiostat-galvanostat Model 12 Autolab, from Eco-Chemie Inc. The 

collection of data was controlled by the GPES Version 4.9 Eco Chemie B.V. Software 

(Utrecht, The Netherlands). The working electrodes was the WO3-ITO electrode, 

auxiliary electrode and the reference electrode were the PB-ITO modified electrode. 

 

Spectroscopic measurements 

UV/Vis absorbance chronoabsorptometry were recorded in a Shimadzu UV2501-PC 

spectrophotometer. All spectroscopic measurements of the electrochromic cell were 

done in situ. 

 

Conductivity measurements  

The conductivity of several ionic liquid gel films was measured using and impedance 

analyzer (Alpha-N Analyzer from Novocontrol GmbH), covering a frequency range 

from 0.1 Hz to 1 MHz; films were placed between two gold-plated electrodes (diameter 

20 mm) of a parallel plate capacitor. The temperature control, with a precision of ± 0.1 

K, was assured by the QUATRO Cryosystem also supplied by Novocontrol GmbH. 

Frequency dependent ionic conductivity of the different gel films was measured from -

110 up to 40ºC.   
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“Jelly Wire” experiments  

To evaluate the possibility of the ion jelly as wire  a simple  apparatus was constructed 

(figure 7). Two ion jelly films were placed over a glass surface without being in contact 

with each other.  This two were connected to a current generator and their junction was 

made by a LED. The current intensity as well as the potential was measured. AC a DC. 

  

“Jelly Battery” experiments 

A [emin][SO3](R=3) film was left to jellify over a glass slide. Before the jellification 

occur both ends on this film were doped different metallic solutions. These were 

prepared by mixing either the pair zinc/zinc sulphate or the pair copper/copper sulphate 

in the same ionic liquid used to prepare the film. Gelatin was added To these mixtures 

on the same ratio that film. The preparation was left to jellify at room temperature.  

 

Hall effect measurement 

The hall effect was measured using a  Biorad HLJ500PC. A sample ( square 1x1 cm ) as 

placed on the analyzer and Ag glue was used as an electrode. The messurement were 

conducted at atmospheric pressure and room temperature.  

 

X-ray diffraction  

The X-ray diffraction measurements were carried out on a Enraf-Nonious X-ray 

generator equipped with a Cu-Rotating anode. The diffraction patterns were collected, 

by rotating the sample 360° with a step size of 1° and an exposure time of 1h, with a 

detector to sample distance of 90 mm. 
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RESULTS & DISCUSSION 

 

Being a natural polymer, gelatin can be easily modified via functionalization by 

chemical or biological agents. Using transglutaminase, it is possible to cross-link lysine 

to glutamine residues36, while glutaraldehyde promotes cross-linking between lysine 

residues. On the other hand, thermal cross-linking between gelatin amino acid residues 

can also occur31 when temperature increases above a certain range. In fact, this is a very 

common technique to link gelatin to other materials, such as chitosan or sugars38,39. 

Cross-linking can considerably alter the gel properties. 

 

The formation of an ion jelly should occur in much the same way as the formation of a 

water-based gelatine gel. Certain RTILs are known to dissolve proteins in considerable 

amounts37. Both gelatin and RTILs have ionic character and this leads to strong 

interactions between the two species, and a high solubility of gelatin. During the 

renaturing or annealing process, the polypeptide strands will have a tendency to 

rearrange into the most thermodynamically favourable structure, which, in the case of 

gelatine, is the left-handed proline helix conformation. However in the presence of 

RTIL these conformational rearrangements seem be modified. 

 

X-ray diffraction experiments have been preformed to water-gelatin and RTIL-gelatin 

films (Figure 2) and significant differences have been observed. Similar to collagen, 

water-gelatin films (Figure 2a) exhibit three main diffracting rings at approximately 12 

Ǻ, 4 Ǻ and 2.8 Ǻ resolution when exposed to X-ray radiation. It has been suggested that 

the high resolution ring arises from the residues periodicity of each helices turn. The 

rise per residue along the helical axis is 2.9 Ǻ [34]. Regarding the low resolution ring, it 

corresponds to the diameter of the super helix aggregate of the film. However, in the 

diffraction images of RTIL-gelatin films (Figure 2b-c) the referred rings can no longer 

be found. This feature indicates serious modifications in the conformation of the gelatin 

left-hand helix, as well as with the right-handed superhelix.   

 

Several authors have shown that the structure and properties of water-based gelatin gels 

could be changed by adding different types of polyelectrolyte compounds, such as 

surfactants or sugars, during the jellification process31-33. The reason for this effect is 

generally attributed to the type of interaction that is mediated by the added species. The 
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two major contributions are ionic and hydrophobic interactions32,35. It was found that 

gelatin and surfactants could form either soluble complexes or precipitates as a result of 

the interactions established. E.g. Miller and co-workers40 reported that gelatin interacts 

with sodium dodecyl sulphate (SDS) not only through electrostatic attraction between 

the cationic residues of gelatin and the anionic surfactant head-groups, but also via 

hydrophobic interactions between the aliphatic residues and the exposed surfactant 

hydrocarbon tails. In the case of the ion jelly, ionic interactions are the most likely, 

since with the exception of [omim][Cl], the RTILs used have a low content of 

hydrophobic chains. As shown in Figure 2, an increase in the RTIL-gelatin ratio from 1 

to 3 had little effect on the structure of the material, as observed also upon changing the 

polarity of the RTIL. Such interactions would occur with side chain charged atoms, 

namely hydroxyproline, hence interfering with the hydrogen bonding network of the 

gelatine triple helix. Furthermore, the presence of these large ions bound to the gelatine 

strands would also prevent the formation of the triple superhelix and the macro 

assemblies typically seen in these molecules, can no longer arise.         
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Figure 2 – X-ray diffraction patterns. (a) – water-based gelatin gel ; (b) – ion jelly with 

[bmim][N(CN)2] (RRTIL/gelatin = 3) ;  (c) – ion jelly with [emim][EtSO3] (RRTIL/gelatin = 3); 

 

Differential scanning calorimetry (DSC) presents additional evidence for an impact of 

the RTIL on the structure of the gelatin gel (Figure 3). The observed increase in the 

decomposition temperature of the material suggests a stronger interaction between the 

polypeptide chains of the gelatin tripe-helix structure. Temperature plays a critical role 

in the properties of water-based gelatine gels, in the switching between the denaturation 

and renaturation processes.. An important result of the present study is related with the 

fact that once the ion jelly is formed a further raise in temperature does not reverse the 

material to its initial viscous form.  Since reversibility is associated with the rupture of 

(a) 
(b) 

(c) 
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proline/hydroxyproline junctions, our results suggests a stabilizing effect of the RTIL 

on the ion jelly structure31.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3 - Differential scanning calorimetry analysis. Blue – ion jelly with 

[bmim][N(CN)2]  (RRTIL/gelatin= 1); orange – water-based gelatine gel.  

 

The conductivity of the ion jelly materials was strongly affected by the RTIL used. To 

quantify the conductivity response of ion jelly films, frequency dependent ionic 

conductivity was measured at 25ºC, as shown in Figure 4. Several systems present, over 

a wide frequency range, very reasonable conductivity values that are of the order of 10-

5-10-4 S.cm-1. By analyzing the frequency dependence of the conductivity in Figure 4, it 

is obvious that the ion jelly materials conform only partially to the usual conductivity 

pattern observed in disordered conductive systems41,42,43. For such systems, the spectra 

at the lowest temperatures is independent of frequency and shows a plateau, due to a 

diffusive ion transport; at higher frequencies, a bend off occurs into a dispersive regime, 

with a strong increase of the conductivity. The absence of an extended plateau in the 

conductivity plot in the low frequency region, where a decrease in conductivity is 

observed, means that ionic conduction becomes blocked due to electrode polarization, 

i.e, ions accumulate in the sample/electrode interface.  
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The very reasonable value of conductivity in a large frequency range led us to study the 

possibility of using ion jelly as a conductor. For that purpose, we built an 

electrochromic window based on Prussian blue (PB) and WO3 as electrochromic layer. 

There are many applications described in the literature of RTILs as electrolytes45-48 , 

usually with ionic conducting species solubilized, such as lithium salts. Here we used an 

ion jelly instead. Although this type of electrochromic window has been designed to 

work with a highly concentrated electrolyte solution, electrochromic windows built with 

an ion jelly performed reasonably well (Figure 5) in what concerns contrast, stability 

and switching velocity. This suggests that the ion jelly network has a charge transport 

mechanism with sufficient degree of freedom.  

 

 

 

 

 

 

Figure 4 - Conductivity spectra of ion jelly films at 25ºC.       [bmim][N(CN)2](R=3);  

     [bmim][N(CN)2](R=1);      [bmim][Cl](R=1);     [mmim][Cl](R=1);    [C10mim][Cl](R=1);  

      [bmim][EtSO3](R=1);      [im][Cl](R=1).   
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Figure 5 – Glass-ITO/WO3/ion jelly/PB/ITO-Glass.(a)- Colored state; (b) – Bleached state. 
 

The stability of the electrochromic device was evaluated (Figure 6) by repeatedly 

switching the WO3/ion jelly/PB system between -1 V (180 s) and 1.5 V (100 s), for 350 

cycles (ca. 27 hours). After that time, a decrease in the overall absorbance of the cell 

was observed. The loss of coloration in PB electrochromic cells has been related with 

the decrease in the thickness of the PB film during the cycling. The “etching” of the PB 

layer can be due to some wash effect from the gel electrolyte, this problem was already 

reported and a possible solution is the protection of the electrochromic layer with the 

deposition of an inorganic layer like LiAlF10. The lower switching velocity can be 

explained by the absence of an electrolyte salt, but can be partly circumvented by 

incorporating ionic species in the ion jelly via their solubilization in the RTIL. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 – In situ spectroelectrochemical cycling data for Glass-ITO/WO3/ion jelly/PB/ITO-Glass. A - 

chronoabsorptometry recorded at 700nm; B - Square-wave switching between -1V (step duration 180s) 

and +1,5V (step duration 100s) (vs PB); C – Current. 

(a) 
(b) 
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To try and elucidate the type of electrical conduction in ion jelly materials, we set up the 

experiment shown in (Figure 7), where two ion jelly films were placed on a glass 

surface and connected to a current generator. The two films were connected via a LED. 

To avoid decomposition of the material, we limited the applied potential to the 

electrochemical window of the RTIL used (e.g. -2,5 – 3,4 V for [bmim][N(CN)2], -2,5 – 

3,4 V for [bmim][EtSO3).  

 

 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 7 –  Ion jelly working as “jelly wire”. The electron transfer in mediated by the 

ion jelly conducting material.  

 

The fact that the led lit up suggests an electronic transfer mechanism similar to that 

found in other conducting polymers such as polypyrrole or polythiophene, i.e. a 

delocalized π-system resulting from the overlapping of the π-orbitals. In a very simple 

way this system is based on the removal (“p-doping”) or the addition (“n-doping”) of 

electrons from the π-system. Basically when an electron is removed from the system, a 

free radical and a spinless positive charge are produced. The coupling of both species 

originates a polaron and new localized electronic states in the gap between the valence 

and conduction which are ultimately responsible for the conduction45. In the case of the 

ion jelly, we have an imidazolium center with a delocalized π-system that could form 

the basis of the charge transfer mechanism. The diffraction patterns for these materials 

are indicative of an ordered structure. Such type of organization is essential to create an 

extended π-system with a filled valence band through which the charge is transported. 

The Hall effect can give information about the type of charge transporters involved in 

the process, as well as their mobility in the material. In the case of the [emin][SO3](R=1) 
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ion jelly, the number density of charge carriers, Nv, was 2x1013 cm-3, their mobility, µ, 

was 9.83 cm2 V-1   s-1, and the Hall voltage was 1x10-4 V. The latter indicates that the 

charge is carried by p-transporters, and suggests the ion jelly behaves as a semi-

conductor. Figure 8 shows a battery made of ion jelly modules. Each end of the ion jelly 

film was either doped with mixture of Cu/CuSO4 or with a mixture of Zn/ZnSO4 in 

order to create an electrode system. As shown in the figure, the battery yielded a voltage 

of  0,5 V with a current of 23,4 µA 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 8 – Jelly battery. Green electrode (Cu/CuSO4) ; Grey electrode (Zn/ZnZO4);  0.5 V with 23,4 

µA.  

 

 

CONCLUSIONS 

 

Our findings are significant in the area of conducting polymers because we present a 

very simple way to obtain such materials through the combination of gelatin with RTILs. 

Gelatin is a natural polymer that can be easily modified via functionalization by 

chemical or biological agents36,38,39. E.g. the ability that gelatin has to interact with 

cellulose opens the possibility to incorporate the ion jelly into the concept of smart 

clothing. RTILs themselves can be custom made. This factor lend even greater 

versatility to ion jelly materials, and makes possible the tailoring of the ion jelly 

properties to meet desired applications. Through the choice of RTIL, transparent, 
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flexible ion jelly films can be synthesized that behave as conducting polymers, or else 

that behave as an electrical insulator. Additionally RTILs have the ability to solubilize 

both organic and inorganic compounds. This characteristic can be exploited in 

applications that demand enhanced electrical conductivity, as illustrated above, but bio-

applications such as drug delivery or the building of living cell scaffolds for tissue 

engineering applications can also be envisaged.     
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CONCLUSIONS 
 
Biocatalysis today. This thesis and 
the future. 
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Over the last twenty years the application of biocatalysis to industrial processes has 

been looked upon with many reservations, especially due to two major concerns: the 

perceived lack of availability of biocatalysts to fulfill the necessities of reaction 

processes, and the lack of stability of enzymes during those processes. For example, 

conformational changes of less than one Ångstrom can cause a dramatic decrease of 

enzyme activity, and for that reason the retention of enzyme activity is a stringent 

criterion for the use of enzymes in a chemical process. On the other hand, the price of 

enzymes was always referred as a major drawback. Nevertheless the improvement of 

the methodologies for enzyme production and purification has considerably decreased 

the costs of implementation of this technology. For example, today we do our laundry 

with enzymes.   

 

The catalytic requirements of some enzymes, such as the need for co-factors, were 

frequently indicated as a drawback that this technology had to overcome in order to 

become easily available and user-friendly. These two conditions are very important for 

the implantation of any technology, and biocatalysis is not an exception. With this in 

mind, researchers directed their research towards the understanding of enzymes as 

catalysts. They tried to answer very simple questions, such as “why do enzymes loose 

their activity during the process?”, “what are the major factors that affect their catalytic 

performance?”, or “can we generalize our findings for one enzyme to a large number of 

biocatalysts?”. A lot of work has been published in an attempt to answer those questions, 

and more should still be under way.  

 

We can single out two important milestones for biocatalysis as we know it today. The 

first one happened in the 1980s, when new frontiers for enzyme applications in 

synthetic reactions were established, by extending to nonaqueous media the types of 

solvents for conducting biocatalysis. This was a great breakthrough, since everyone’s 

conviction was that enzymes could not work in such media, but in fact they do. The 

number of applications of enzymes suffered an exponential increase in that decade, 

especially motivated by the high enantioselectivity that some enzymes exhibit in 

nonaqueous media. Since then, many conceptual ideas of enzyme applications have 

been based on that enzymatic property. 

 



 344 

The second milestone happened in the 1990s with the introduction of DNA technology, 

which not only allowed the discovery of novel enzymes, but also made it possible to 

change the aminoacid sequence of many of them, thus improving their efficiency 

through increases in their activity, selectivity or stability. DNA technology redefined in 

this way the rules of process design, since it became possible to obtain the desired 

biocatalytic solution directly from nature.   

 

Today almost all the types of reactions that we know in organic chemistry can be 

accomplished with an enzyme, the exception being the hetereo-cope rearrangement. 

This should not be cause for surprise, especially if we keep in mind the complexity of 

the living organisms in our planet and the enormous diversity of the environments 

where we can find them. If we look upon this diversity on a molecular level, we can see 

it translated into a vast number of proteins that confer to these organisms the 

characteristics to live at such conditions. This goes totally against the idea that there are 

a limited number of enzymes for the development of biocatalytic processes. On the 

other hand, the idea right now is that there are enzymes sought for many more reactions 

than there are enzymes available. To illustrate this idea, we can use the example of 

serine proteases that in nature are hydrolases, but in vitro can catalyze 

transesterifications, esterifications, epoxidations, etc. 

 

Biotechnology and biocatalysis differ from conventional chemistry and catalysis not 

only in the type of catalyst used, but especially in their conceptual basis. For example, 

chemistry emphasizes a molecularly-oriented perspective dominated by the compounds 

and their transformations, whereas chemical engineering favors a process oriented 

perspective and biology favors a system-oriented perspective focused on the organism 

as well on its evolution. The conceptual basis of biocatalysis is to put all these 

perspectives together, acting as a technological melting pot. This fusion of knowledge 

allows the development of more creative approaches that can result in a new or 

alternative transformation process. For example, the raw materials for a biotechnology-

based process are significantly different, since such processes can be built on sugars, 

lignin, or even on animal and plant wastes. The resulting products from the first 

transformation can be readily used or further transformed into fine chemicals with 

enzymes. This versatility of solutions can in fact change the way the chemical industry 

works, since from the same substrate we can obtain a wide range of products just by 
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changing the process pathway. The integration of multiple pathways based on 

biocatalysts can also be considered a bioinspired idea, since it mimics the metabolic 

pathways of the living organisms, which are considered the most efficient, selective and 

regulated processes in nature. With biocatalysis, we can achieve new goals in chemistry, 

such as novel, high-yield, shorter process routes with increased selectivity, and at the 

same time “go greener” by using natural wastes as raw materials.   

 

The conceptual idea of biocatalysis as a technological melting pot is expanding to 

several other areas, such as materials science or even astrobiology. Materials science 

suffered a boost in the last decade with the development of a wide range of new 

materials for a large number of applications. Biotechnology has also played a role in 

these recent developments, especially in what concerns the synthesis or biosynthesis of 

polymers from natural substrates. The way that living organisms produce or polymerize 

certain substrates has also inspired scientists in the development of novel synthetic 

routes to new materials. The precipitation of silica in microalgae is quite a good 

example of this. Scientists identified the proteins involved in the deposition of silica in 

the microalgae membrane, and used them in vitro to synthesize different forms of silica. 

The result was the achievement of better structured materials, using a more controlled 

process.  

 

Today biocatalysis has a set of tools to overcome the major drawbacks for its 

implementation. For example, we have molecular evolution tools which can be used to 

increase enzyme activity, stability or selectivity without the need for information on 

enzyme structure. Nevertheless through the rationalization of the practical results 

obtained, we can develop faster and better tools to obtain the same improvement in 

enzymatic properties. There is still a lot of fundamental research to be done before 

biocatalysis becomes a user-friendly technology that can be applied systematically in 

chemical transformations.  

 

The approach of the present thesis was focused on fundamental issues related with the 

performance of cutinase in nonaqueous media. We looked at all three major enzymatic 

properties of activity, selectivity and stability. In what concerns enantioselectivity, we 

used different approaches to generate data that could contribute to a better 

understanding of that property. Molecular modeling studies offered insight on how 
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enzyme enantioselectivity depended on the relative stabilization of the transition states 

for the two enantiomers. For example, 2-phenyl-1-propanol and 1-phenylethanol differ 

only in a methyl group. This difference in substrate chain length was enough to change 

dramatically the enantioselectivity of cutinase towards these two alcohols. The position 

of the chiral center of 2-phenyl-1-propanol in the active site of cutinase allowed for a 

higher conformational freedom of the two enantiomers, which explains the lower 

discrimination of cutinase toward this substrate.  

 

With this in mind, we used DNA technology to introduce point mutations at specific 

locations near the enzyme active site. Our approach was to decrease the preference of 

cutinase towards the (R)-enantiomer of 1-phenylethanol, by increasing the accessibility 

of the active site, and thus decreasing the hindrance to the stabilization of the (S)-

enantiomer of this alcohol. Differences in the free energies of activation for the two 

enantiomers (∆∆GR→S ) were calculated for potentially interesting mutants. We have 

seen in Chapter II that two mutants, respectively L189A and Y119A, were selected to 

continue this study. Despite the similar ∆∆GR→S values, replacement of a tyrosine for an 

alanine (Y119A) not only creates space in the active site, but also eliminates favorable 

van der Waals interactions between the (R)-enantiomer and Tyr 119, which were found 

to strongly stabilize the transition state for the wild-type enzyme. This could account for 

the observed loss of discrimination ability of cutinase towards that enantiomer.  

 

In this work we also directed our attention to reaction temperature, which is a very 

efficient parameter to fine tune enzyme enantioselectivity. Through a decrease in 

temperature, we were able to partially recover the loss of enantioselectivity of the 

Y119A mutant relative to the wild-type enzyme. We were also able to increase cutinase 

enantioselectivity towards 2-pentanol and 2-octanol. In the case of 2-butanol, which 

cutinase resolved with poor enantioselectivity at room temperature, lowering the latter 

parameter hardly affected the discrimination ability of the enzyme. In this study we used 

vinyl esters of varying chain-length. Our results should help develop the existing model 

for cutinase. 

 

Chapter III was focused on the improvement of cutinase activity and stability. For that 

purpose, we immobilized the enzyme and tried to elucidate the differences in enzyme 

activity afforded by the different supports. We used the sol-gel process that yields a 



 347 

mechanically robust preparation and affords control of the enzyme microenvironment. 

Enzyme activity matched that obtained via immobilization at the surface of zeolites, 

which is a good immobilization technique for cutinase. However, enzyme stability in 

the sol-gel was greatly improved. Also cutinase activity could be enhanced relative to 

adsorption on zeolites, by using several types of additives. This was particularly useful 

in the case of supercritical CO2 where cutinase activity is poor when compared to other 

solvents. One of the additives used in this study was zeolite NaY. To try and understand 

the effect of the presence of added zeolite NaY on cutinase activity, we turned to 

spectroscopic techniques.    

The first idea that came to us was to try and correlate the performance of the enzyme 

with the structure of the material. There are several reports in the literature that indicate 

a modification of sol-gel structure in the presence of different materials such as 

surfactants and ionic liquids. The bio-mineralization process also shows that some 

species can lead to the formation of structurally different silica materials. We thus 

considered the possibility that zeolite NaY could act as a template for the sol-gel 

matrices. In fact, even enzymes are sometimes reported to have that effect. However, 

both Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy and Solid 

State 29Si and 1H NMR showed that the molecular structure of the sol-gel materials was 

insensitive to the presence of either additive or enzyme. DRIFT provided information 

on the hydrophilic-lipophilic balance (HLB) of the matrices, the degree of condensation 

and percentage of free silanol groups. The enhancement of cutinase activity was found 

to correlate with a decrease in HLB, which suggests that the enzymatic reactions 

performed were controlled by diffusion through the matrices. Lower cutinase activity 

when sol-gel precursors with alkyl chains longer than C = 6 were used suggested that 

the alkyl chains acted as pore blockers in that case. 

Since DRIFT spectroscopy and solid state NMR could not throw light on the enzyme 

activity enhancements when added zeolite NaY was used, we decided to use a 

spectroscopic technique that looked specifically at the enzyme. We thus applied 

fluorescence spectroscopy based on the emission of the single tryptophan of the 

cutinase molecule, to probe the microenvironment of the enzyme. Our results indicated 

that the enzyme sensed the polarity of the surrounding matrix, but did not feel the 

presence of the zeolite. On the other hand, the presence of the zeolite was important 
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because it increased enzyme activity. This raised the question of the location of both 

enzyme and additive in the sol-gel matrix. The fact that zeolite NaY is a good support 

for the immobilization of cutinase by physical adsorption, and the fact that enzyme and 

zeolite are allowed to contact during the genesis of the sol-gel matrix suggested that 

they might be in close proximity in the material. Scanning electron microscopy and 

energy dispersive X-ray spectroscopy revealed that the zeolite particles were segregated 

to the pores of the matrices. Optical microscopy following the staining of the protein 

with a fluorescent dye showed that the enzyme was distributed throughout the material, 

and tended to accumulate around zeolite particles. By promoting the accumulation of 

the enzyme at the pores of the material, the zeolite should improve the accessibility of 

the enzyme to the substrates and lead to a higher activity of the entrapped enzyme. On 

the other hand, it is possible that the zeolite protects the enzyme from unfavorable 

interactions with the forming matrix. These could be covalent interactions, often 

referred as responsible for enzyme deactivation.  

 

Chapter IV of this thesis was dedicated to the development and characterization of a 

novel material made of gelatin and an ionic liquid. The work that led to the “ion jelly” 

started with an attempt to immobilize cutinase in the presence of an ionic liquid, 

following previous findings with combined ionic liquid/supercritical CO2 systems that 

suggested a protective effect of ionic liquids on cutinase. Our first strategy was to 

immobilize the enzyme together with an ionic liquid using the sol-gel process. However, 

cutinase activity was always lower than in the matrices without ionic liquid, and in 

some cases we did not even detect enzyme activity. At the time we concluded that the 

ionic liquid was affecting the sol-gel process, since in the literature ionic liquids are 

described as templates for sol-gel matrices. Next we mimicked a well known strategy to 

improve enzyme activity in nonaqueous media that consists in lyophilizing the enzyme 

in the presence of a highly concentrated salt solution. To that end, we freeze-dried the 

enzyme in the presence of varying concentrations of ionic liquid. This did not yield 

satisfactory results either. Finally we combined an ionic liquid with a natural polymer, 

gelatin. This was motivated by reports in the literature on ionic liquids that were capable 

of dissolving proteins and polymers in high concentrations. The idea was to use the 

ionic liquid to create a favorable ionic environment for the enzyme. It turned out that the 

ion jelly with cutinase did not afford any improvement in cutinase activity relative to 
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immobilization on zeolites or in the sol-gel. Nevertheless the end of this story was 

actually the beginning of a completely new line of research. 

 

The combination of gelatin with an ionic liquid had never been described in the 

literature. This gave us the opportunity to patent the ion jelly as well as to think about 

some applications for this new material. Its novelty and advantages are fundamentally 

related with the versatility offered by the combination of its two main constituents. The 

morphological versatility of gelatin and the chemical versatility of the ionic liquids open 

up a myriad of potential solutions. The study presented here consists in the 

characterization of the ion jelly in order to look for suitable applications for this new 

material. Our results show that it is possible to modulate the ion jelly conductivity by 

changing the type of ionic liquid used to produce it.  We also show that the ion jelly can 

work as an electrolyte in electrochromic applications, and that it can be used as an 

electron conducting material – the jelly wire. Our findings are significant to the area of 

conducting polymers since we present a very simple technique for producing tailor-

made conducting polymers for different electrochemical applications. The fact that the 

concept of the ion jelly is based on a natural polymer such as gelatin can make its 

commercial application feasible when compared to conducting polymers. Moreover the 

ability that gelatin has to interact with other materials, such as cellulose, makes the ion 

jelly a very attractive material for building devices that fit into the concept of smart 

clothing or smart environments.  

 

In the present thesis we start with an enzyme and end with the characterization of a 

novel material. This shows how versatile and multidisciplinary biocatalysis can be. The 

numbers of scientific areas that interface with biocatalysis are a good indication of the 

even greater impact that biocatalysis will have in the near future. Its importance greatly 

exceeds the many added-value compounds that can be produced with it. The social 

impact of biocatalysis can be far more significant, since the sustainable processes that 

are designed with that technology constitute essential guidelines for the way we want to 

live our lives in the future. Biocatalysis is one of the routes to green chemistry, which is 

what we want chemistry to be in the future.  
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Our need to understand certain aspects of our research can drive us to completely 

different areas of knowledge. By trying to go as deeply as possible in the analysis of the 

problems at hand, we can find solutions or partial solutions to those problems, and very 

often we also find solutions to problems that were not even ours, and that become 

doorways to the future.  
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