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IX 

 

Abstract 

 

The main goal of this Project was the development of microbubbles (MBs) and gas-filled 

porous particles (GPPs) by supercritical fluids (SCF) processes, namely particles from gas 

saturated solution (PGSS). 

MBs of perfluorcarbons (PFC) are currently used as contrast agents in ultrasound 

imaging and as ultrasound-guided drug delivery for targeted therapeutic applications. They are 

normally produced by processes that present some limitations. The SCF processes are an 

innovative technology for the production of these MB’s that has not yet been exploited and can 

overcome these limitations. 

Carriers are used to prevent rapid diffusion of the gas out of the particle. In the first part 

of this thesis, a preliminary selection of carrier materials was carried out, including lipids of 

different hydrophilic-lipophilic balance (HLB) and hydrophilic polymers.  Their behavior in the 

presence of PFC and mixtures of PFC and sc-CO2 was qualitatively studied. A lipid of high HLB 

value, Gelucire 50/13, was selected to produce the GPPs by PGSS. Main parameters of the 

process, temperature and pressure, were studied in the range from 55ºC to 80ºC and from 8,5 

MPa to 15,4 MPa. Besides, the carrier:PFC ratio and the molecular structure of the PFC were 

investigated. Particle morphology was analyzed by Scanning Electron Microscopy (SEM), and 

the presence of PFC was determined by Nuclear Magnetic Resonance (NMR). Small and non 

agglomerated particles were obtained at 80ºC and 8.5 MPa. 

Cyclic C4F8 was entrapped in lipid particles in higher amount than of linear C3F8. 

Nevertheless, the stability of particles obtained at the best operating conditions (80ºC and 8.5 

MPa), was relatively short (below 3h) being the majority of the gas released in the first hour. 

 

 
Keyword: Microbubbles, supercritical fluids, PGSS, PFC, gas encapsulation
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Resumo 

 
O principal objectivo deste projecto foi o desenvolvimento de microbolhas (MBs) com 

núcleos de gás e/ou partículas porosas (GPP) também com núcleos de gás. Este projecto foi 

desenvolvido utilizando processos de fluidos supercríticos (SCF), nomeadamente, precipitação 

de soluções saturadas com gás (CO2) (PGSS). 

 As MBs de perfluorcarbonetos (PFC) que são actualmente utilizados como agentes de 

contraste em imagiologia de ultrassons, são normalmente produzidos por processos que 

apresentam algumas limitações. Os SCF serão uma tecnologia inovadora para a produção 

destas MBs, que ainda não foi explorada. 

O material de revestimento é utilizado para evitar a rápida difusão do gás para fora da 

partícula. Foi realizada uma seleção preliminar de lípidos com diferentes valores hidrofílico-

lipofílico (HLB) para materiais de revestimento. O comportamento desse material foi 

qualitativamente estudado na presença de PFC e misturas de PFC e sc-CO2. Um lípido de 

elevado valor de HLB, Gelucire 50/13, foi selecionado para produzir estas partículas porosas 

através do método PGSS. Os principais parâmetros do processo foram; temperatura e pressão 

com um intervalo de temperatura de 55 º C a 80 º C e um intervalo de pressão de 8,5 MPa a 

15,4 MPa. As partículas mais promissoras, foram produzidas com as seguintes condições de 

pressão e temperatura: 8,5 MPa e 80ºC, respectivamente. Além disso a influência da razão do 

material de revestimento PFCs e estrutura molecular destes foram estudados. A morfologia das 

partículas foram analisadas por microscopia electrónica de varrimento (SEM), e para a 

detecção dos PFCs foi utilizado a Ressonância Magnética Nuclear (NMR).  

O PFC cíclico C4F8 foi encapsulado em partículas lipídicas com maior quantidade do 

que o PFC linear C3F8. No entanto, a estabilidade das partículas obtidas nas condições nas 

melhores condições (8,5 MPa  e 80 º C), foi ainda relativamente curto (inferior a 3 horas), 

sendo a maior parte do gás libertado durante a primeira hora. 

  
Palavras-chave: microbolhas, fluidos supercríticos, PGSS, PFC, encapsulação de gás 
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1. Introduction 

 

Supercritical fluids have been widely studied for the encapsulation of solids in natural or 

synthetic polymers, lipids or carbohydrates (Cocero M. J., et al, 2009). Moreover, liquids have 

been also encapsulated by means of the PGSS (Particles from Saturated solutions) process 

(Wendt, T., et al, 2005). However, the entrapment of gas has not been addressed before 

through these processes. Thus, the main goal of this project is to explore the potential of 

supercritical fluids to produce Gas-filled Porous Particles (GPPs) and MicroBubbles (MBs).  

 

MBs, composed by a filling gas, namely a perfluorocarbon (PFC), and a coating material or 

shell, are used as contrast agents in ultrasound imaging. Besides, they are being studied as 

ultrasound-guided drug delivery devices for the treatment of cancer, cardiovascular and 

pulmonary diseases (Cavalieri, F., et al, 2008) (Stride, E., and Edirisinghe, M.). 

 

Current production methods of MBs generally involved the formation of an emulsion using 

organic solvents, such xylene or toluene (Tinkov S., et al, 2009) (Stride E., and Edirisinghe, M., 

2008). These techniques offer high yield and low cost production; however, the control over size 

particle is poor and new processed are being explored to overcome this drawback (Stride E., 

and Edirisinghe, M.) as well as their short half-life, i.e. the gas diffuses out the MBs through the 

coating material  (Lentacker, J. et al., 2006 ) ( Sirsi, S. and Borden, M., 2007). 

 

Supercritical fluids for particle engineering, namely PGSS process, presents an environmentally 

friendly alternative for the manufacture of MBs and GPPs that will avoid the used of organic 

solvents; In PGSS, the supercritical fluid, sc-CO2, is dissolved partly in the molten carrier, 

reducing its viscosity. After rapid expansion of the mixture through a nozzle, particles are 

formed by fast solidification of the spray droplets. 
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2. Aim 

 
 The project aims to explore the capability of supercritical fluids to encapsulate gas 

inside of microparticles to produce gas-filled porous particles (GPPs) and microbubbles (MBs), 

using a solvent-free process, the PGSS (Particles from gas saturated solution) method. 
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3. Theoretical Backgroung 

3.1 Microbubble Structure  

 
Microbubbles are spherical voids or cavities filled with gas used as contrast agent in 

U.S. imaging. They are formed by two main of components: filling gas and coating material. 

Besides, they can be used as target drug delivery devices (Unger E.C. et al., 2004). In this 

case, a drug can be incorporated in the MB and the coating material can have targeting ligands 

(Figure 3.1).   

 

 

 

Figure 3.1: Microbubble (from Liu Y. et al., 2006) 

  

There have been three generations of MBs. Firstly MBs were simple air bubbles without 

any stabilizing shell. In the second generation, a stabilizing shell was introduced; however, as 

the filling gas was air or N2, MBs half life was short, less than 5 minutes, as these gases are 

sparingly soluble in blood. MBs with a gas core of perfluorocarbons (PFCs) were the third 

generation. This gas core, which is chemical and physiologically inert and practically insoluble in 

water, increases the half-life of MBs (Tinkov, S. et al., 2009). 

The coating or shell material of MBs is essential for their stabilization against 

coalescence and dissolution, and to control the size and morphology of the particles produced 

(Unger E. C. et al., 2004). The coating materials can be proteins (Human serum Albumin, 

Albumin (Ferrara K. et al., 2007, Tsutsui J.M. et al., 2004, Unger E. C. et al., 2004, Tinkov, S et 

al., 2009), lipids such as fatty acids (Tinkov, S. et al., 2009), and natural and synthetic polymers 

such as poly-L-lactide (Yang, F. et al., 2007), cellulose, poly(allylamine hydrochloride) 

(PAH)(Lentacker, J. et al., 2006), Polydimethylsiloxane (PDMS) (Hettiarachchi K. and Lee A.P., 

2010), 1,2-distearoyl-sn-glycero-3- phosphocholine (DSCP), 1,2-dipamiltoyl-sn-glycero-3- 

phosphoglycerol (DPPG), palmitic acid (PA), dipalmitoyl phosphatidylcholine (DPPC), 

dipalmitoyl phosphoric acid (DPPA), polyethyleneglycol 5000-dipalmitoyl 
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phosphotidylethanolamine (MPEG 5000-DPPE), dimyristoyl phosphatidylcholine (DMPC), 

polylactide-co-glycolide (PLGA) (Tinkov et al., 2009), Also, a combination of polymer-lipid or 

polymer-protein can be used (Hettiarchchi K. and Lee A.P., 2010). 

There is a wide variety of ligands that could be incorporated in microbubbles’ shell to 

lead to different targets. Some examples are avidin-biotin, antibodies, DNA, magnetic beads, 

(Hettiarachchi et al., 2010), oligonucleotides, intracellular leukocyte (Tsutsui, J et al., 2004). The 

ligands can be incorporated through electrostatics or hydrophobic interactions, van der Waals 

forces or by physical encapsulation. Hydrophilic macromolecules such as RNA and DNA, can 

be coupled to the surface of microbubbles, while the amphiphilic molecules are able to 

penetrate the monolayer of particles. (Tinkov, S. et al., 2009). Drug molecules  can be also 

encapsulated into shells of biodegradable materials 

As mentioned before, the gas core of MBs can be air, N2 or most commonly, 

perfluorcarbons. Most used perfluorocarbons are octofluoropropane (C3F8), 

octofluorocyclobutane (C4F8) and decafluorobutane (C4F10). Also, sulfure hexafluoride (SF6) is 

widely used, although it is slightly soluble in water compromising the stability of the MB. 

Besides, some liquid fluoroalkanes are also used: dodecafluoropentane (C5F12), which became 

gas above 29.5ºC at atmospheric pressure, and tetradecafluorohexane (C6F14) (Tinkov, S. et 

al., 2009) (Unger E.C. et al., 2004).  

 

 

3.2 Perfluorcarbons 

 

Perfluorcarbons are linear, cyclic, or polycyclic fluorine substituted hydrocarbons (figure 

3.2). These gases have been proved to be a good choice as microbubbles gas fillers, since they 

are chemically and biologically inert. In addition, these gases are non polar, amphiphilic, non-

ozone depleting, colorless, odorless, non-toxic and non-flammable materials not requiring any 

special handling procedures (Sandford G. et al., 2008) (Kaneda M.M. et al., 2009) (Gomes L. 

and Gomes E.R., 2007). Moreover, PFCs are used in gas delivery therapeutics thanks to their 

capacity to dissolve great amounts of gases (O2, CO2 and N2). The solubility of O2 in PFC liquids 

at 37ºC and 1 atm is of 40 to 50 % (v/v) while for CO2 this percentage rises to about 200 % (v/v) 

(Gomes L. and Gomes E.R., 2007) (Kaneda M. M et al., 2009). 
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A.    B.   

 

Figure 3.1: A. Cyclic Perfluorcarbon: Octafluorcyclobutane (C4F8). B. Linear perfluorcarbon:   

Octafluorbutane (C3F8) 

For medical applications, PFCs can be formulated as gas core in MBs and as PFC 

water emulsions. Some applications of these applications are artificial liquid ventilation as 

oxygen carriers, contrast agent in MIR-imaging and controlled drug delivery (Gomes L. and 

Gomes E.R., 2007).  

 
 

3.3 Conventional methods of production 

 

The microbubbles have already been produced by conventional techniques. 

Formulation of MBs is made by emulsions, such as nano or microemulsions of perfluorcarbons, 

stabilized by biodegradable block copolymer surfactants and loaded with drugs. Sonication, 

high shear emulsification, and mechanical agitation are some methods developed to produce 

microbubbles that are already marketed (Yang F. et al., 2007) (Tinkov, S. et al., 2009). These 

techniques offer high yield and low cost production, being these factors very important in the 

industry. However, they have poor control over microbubble size and uniformity (Stride, E., and 

Edirisinghe, M., 2008). 

New production methods, which provide a high degree of control over microbubble size, 

composition, stability and uniformity, are being developed: membrane emulsification, inkjet 

printing, electrohydrodynamic atomization and microfluidic processing (Hettiarachchi, K and Lee 

A. P., 2010) (Stride, E., and Edirisinghe, M., 2008). 

Sonication is the most commonly used method for microbubble preparation with protein 

shell; this method involves dispersing the gas or liquid in suspension with a suitable coating 

material using high intensity ultrasound.  Firstly, the gas or liquid is emulsified to form a 

suspension micro droplets or bubbles (Stride, E. and Edirisinghe, M., 2008) (Tinkov, S. et al., 

2009). Secondly, the high temperature and pressure generated by U.S. improve the stability of 

the micro droplets or bubbles through to chemical modification of the surface layer. The size 

distribution of microbubbles is relatively broad. Since these microbubbles are injected 

intravenously to avoid an embolism it is necessary to fraction or filters the microbubbles in order 

to remove the large bubbles (Stride, E., and Edirisinghe, M., 2008) 
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High shear emulsification method is commonly used for preparing polymer coated 

microbubbles. An aqueous emulsion of the polymer, dissolved in a suitable solvent, is formed 

by high shear stirring.  An immiscible non volatile liquid is used as a stabilizer. After solvent 

evaporation, the polymer precipitates onto the surface of the droplets to from coated liquid filled 

microspheres. The liquid filled may be only removed partially if the microspheres were to be 

used therapeutically (Stride, E., and Edirisinghe, M., 2008) 

Mechanical agitation is a two-step process. Initially, the shell of microbubble is produced 

through of a conventional method; then, the dispersion is placed into vials, filled with a suitable 

gas, which will later form the core of the MB. The vials are shaken at several thousand 

oscillations per minute (Tinkov, S. et al., 2009). 

The spray-drying method is used to form void particles. During particle formation, the 

coating material solidifies on the droplet’s surface to form the shell while the solvent inside the 

droplet evaporates (Tinkov et al., 2009). 

Microfluidic devices have been recently used to prepare microbubbles in suspensions, 

although the preparation of monodisperse liquid droplets is well established. Gas bubbles are 

formed by the impingement of a gas column into a liquid flow through a small orifice. 

Subsequently, at a certain distance of the orifice, the gas-liquid interface becomes unstable and 

an isolated bubble is formed. These devices offer operational control, but pressure and flow rate 

conditions are very limited (Stride, E., and Edirisinghe, M., 2008). 

The membrane emulsification is an alternative to others methods such as sonication 

and high shear stirring. In this method, emulsion components are force flow through a porous 

membrane, sometimes repeatedly, to produce the emulsion.  Gas microbubbles may be formed 

directly by using gas as the disperse phase. The advantage of this method is that it offers 

greater control over microbubbles size and narrower size distribution compared with the others 

techniques, without significantly reducing the yield of microbubbles (Stride, E., and Edirisinghe, 

M. 2008). 

 Ink jet printing is another technique to improve the microbubbles uniformity. Droplets of 

the fluid to be ‘printed’ are formed when this fluid is forced out of a stainless steel nozzle (20-

50µm in diameter) by the pressure pulses generated by a piezoelectric crystal embedded in the 

fluid. The droplets can be collected in air or in a liquid container. The advantage of this method 

relatively to membrane emulsification and microfluidic techniques is that droplet size can be 

varied by simply changing the electric voltage applied across the piezoelectric element; hence, 

varying the frequency/length of the pressure pulses (Stride, E., and Edirisinghe, M., 2008). 

Coaxial electrohydrodynamic atomization consists of two jet liquid streams that under 

the influence of an electric field, break up to form uniform droplets. Since the fluids are 

immiscible, one is encapsulated inside of the other. For microbubble formation, the gas should 

be in the inner side whilst the coating material is the outer (Eleonor Stride and Mohan 

Edirisinghe 2008). 
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3.4  Applications on the medical field 

As mentioned before, MBs are already used as contrast agents for U.S. imaging and 

diagnostics (Guidi, F., et al. 2010) (Vos H.J., et al., 2007); Thanks to its gas core, MBs are 

compressible and have the potential to respond to acoustic and ultrasound excitations: as the 

sound travels more slowly in gases than it does in liquids. MBs create an acoustic impedance 

mismatch between tissue and blood surroundings, where the MBs are suspended. 

(Hettiarchchi, K. and Lee, A.P., 2010). Moreover, if the gas core is a PFC, they are also used in 

Magnetic Resonance Imaging (MRI) since the 19F atom exhibits high Nuclear Magnetic 

Resonance (NMR) sensitivity, with essentially no background signal within the body (Kaneda M. 

M., et al., 2009.). Their introduction into clinical applications led to the development of more 

sensitive imaging techniques both in cardiology and radiology. Their use in medicine today is 

essential for disease diagnosis (Tinkov,S., et al., 2008). (Cavalieri F., et al., 2008). 

In both applications, MBs are administered through intravenous injection; therefore, 

particle size should be below 5-10 micron to avoid vasculature damaging.   

Moreover, MBs are being studied for ultrasound triggered drug delivery (Figure 3.3). 

After intravenous injection, MBs as U.S. imaging contrast agents, freely circulated throughout 

the vasculature under low pressure pulses. When MBs reach the target organ, stronger 

ultrasound pulses are applied to destroy them. The drug is, thus, release and easier absorbed 

by cells (Ferrara, K., et al. 2007). The ligands incorporated onto the surface of MBs, enable 

targeting to cell-specific receptors for more precise therapy with U.S (Unger, E. C., et al., 2004). 

Furthermore the microbubbles in combination with ultrasounds may increase transiently the 

permeability of various biological barriers, such as blood-brain-barrier (Ferrara K., et al., 2007). 

  

 

Figure 3.2: Rupture of drug loaded MBs by application of ultrasounds U.S.  (Ferrara, K., et al., 

2007). 
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Besides the intravenous injection, there are other important administration routes as via 

nasal, for drug delivery into the lungs. The lungs are an important target of PFC microbubbles, 

for the treatment of many chronic diseases such as asthma; cystic fibrosis; interstitial 

pneumonitis and interstitial fibrosis. Microbubbles composed of a film of a drug with PFC inside, 

have low density and unique properties for pulmonary delivery (Unger, E. C. et al., 2004). 

3.5 Supercritical fluids methods 

The supercritical fluid technology is a clean and environmentally friendly technology 

since it reduces the use of organic solvents and leaves no residue in the final products, which 

eliminates traditional post-steps process, such as washing or drying. It is therefore, considered 

an excellent alternative to the use of organic solvents, so that in the past 25 years it has been 

widely applied in the development of drug delivery systems (Cravo, C. et al., 2006) (Pasquali, I. 

et al., 2007) (Belhadj-Ahmed, F., et al., 2009) (Cocero, J.M., et al., 2009). 

 

3.5.1Supercritical fluids properties 

A supercritical fluid (SCF) is a substance whose temperature and pressure are above their 

critical values (Figure 3.4A). The critical values of temperature and pressure (Table 3.1) 

increase with molecular weight and intermolecular hydrogen bonds or polarity. The 

thermophysical properties of supercritical fluids   (density, viscosity and diffusivity) are 

intermediated of those of liquids and gases (Table 3.2). Since the surface tension is almost 

zero, there is no longer separation between liquid and gas phases; thus, SCF exist as a single 

phase, with the macroscopic appearance of a homogeneous and translucent system (Pasquali, 

I., et al., 2007) (York, P. 1999). 

 

A. B. 

Figure 3.3: A. Supercritical CO2 diagram. B. CO2 density-pressure phase diagram 
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The SCF is dense but highly compressible, particularly near the supercritical region. 

Thus any change of pressure or temperature alters its density and, consequently, the solvent 

power of the fluid. In Figure 3.4B is possible to verify that for temperatures approaching the 

critical temperature a small variation in pressure causes a large change in density, unlike what 

happens at much higher temperatures. Similarly, at pressures near the critical pressure, a small 

change in temperature causes a very significant change in density, which no longer occurs at 

very high pressures. It is concluded that near the critical point the density is particularly 

sensitive to small changes in the values of pressure and temperature.  

These unique features make it possible for the fluid to penetrate a matrix like a gas and 

still have the solvent power of a liquid, qualifying this technology as interesting for different 

Table 3.1: Critical parameters of selected compounds (Pasquali,I., et al., 2007) 

Compounds 
Critical 

temperature (Tc/K) 

Critical 

pressure(Pc/MPa) 

H2O 647,15 22 

Xe 289,75 5,9 

SF6 318,65 3,8 

N2O 309,65 4,1 

C2H4 282,25 5,1 

CHF3 299,05 4,7 

CO2 304,45 7,4 

Table 3.2: Comparison of properties of gases, supercritical fluids and liquids  

 Viscosity (Pa.s) Density (g/mL) 
Diffusivity 

(cm
2
/s) 

Gas 10-5 10-3 0,1 

Supercritical 
Fluid 

10-4 0,3 10-3 

Liquid 10-3 1 5x10-6 
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industrial applications, like extraction and catalysis (Sousa, A.R., 2007). Moreover, some 

compounds with low critical temperature, such CO2, are specially indicated for the food, 

cosmetic and pharmaceutical industry, to avoid thermal degradation of its components. 

Nevertheless, SCF technologies applied to particle engineering are not yet widespread 

throughout industry which is likely due to the high cost of the equipment and the weak 

knowledge. 

3.5.2 CO2 as Supercritical fluid 

Carbon dioxide is the supercritical fluid chosen in more than 98 % of applications for 

particle engineering (Pasquali, I., et al., 2007). Since the critical pressure and temperature, 

(Table 2) are easily attainable and enable to process temperature sensitive products, such as 

most of the products of biological origin and application. Additionally, CO2 has the added 

benefits of its inert nature, non-toxicity, low cost, wide availability and recyclability, and it is 

readily separated from the products (Cocero M. J. et al., 2009) (Pasquali, I., et al.,2007), (Cravo, 

C., et al., 2006)( York, P. 1999) (Nunes, A. et al. 2011).  

Due to its non-polar behavior, carbon dioxide has little affinity for polar compounds; 

solubility of high molecular weight compound is also limited. Far from being a disadvantage, 

CO2 can be used as selective solvent or as an anti-solvent or solute, depending on the 

applications and the phase equilibrium between the CO2 and compound of interest. 

Nevertheless, solubility can be increased by the addition of a co-solvent such as water, ethanol 

or methanol (Belhadj-Ahmed, F. et al.., 2009).  

Besides, compressed CO2 has excellent plasticizing properties and can swell most 

polymeric matrixes; Thus, active substances or additives can be incorporated into polymers by 

impregnation under mild operation conditions (Cravo, C., et al., 2006). 

. 

3.5.3Particle engineering with supercritical fluid 

The production of particles, i.e. a drug or drug mixture with carrier molecules for 

localized administration, whose physical characteristics (size, morphology, structure, 

dispersibility, physicochemical stability) are optimized is called ‘particle engineering’ (Chow 

A.H.L, et al., 2007). Thus, for drugs formulation, it will improve the bioavailability and controlled 

release of the drug. 

Particle formation processes using supercritical fluids, namely sc-CO2, have emerged in 

the over a decade as a promising alternative technology to overcome some technical problems 

and limitations related to the use conventional methodologies. Some of these processes are 

spray drying or emulsification-evaporation techniques, which most important drawbacks are the 

use of high temperatures, high shear forces and organic solvents (Nunes, A. et al, 2011). In 

medical and pharmaceutical applications, it is necessary to ensure complete removal of organic 

solvents avoiding exposure of the active components to elevated temperatures and avoid 
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degradation. In addition, a SCF particle engineering process improve the control of particle 

properties, require less handling and simplifies cleaning and sterilization post- steps (Rogers 

T.L., et al., 2001). 

There are several techniques for particle engineering and micronization with 

supercritical fluids. These processes are classified according to the role of the SCF as solvent 

(RESS), anti-solvent (SAS) or solute (PGSS) (Cocero, M.J. et al., 2009). 

In RESS (Rapid Expansion of Supercritical Solution) process, the solute to be 

micronized is dissolved in the SCF and, then, this solution is expanded through a nozzle into a 

chamber at atmospheric conditions. The rapid depressurization produce a high supersaturation 

of the solute and fine particles are produced (Rogers, T.L., et al., 2001). 

In SAS (Supercritical fluid as Anti-Solvent) process, the product is dissolved in an 

organic solvent; the precipitation of particles is performed by the addition of SCF; therefore, the 

effect of sc-CO2 as anti-solvent is exploited (Weidner, E., et al., 2010) (Cocero, M.J., et al, 

2009). 

In PGSS (Particles from Saturated Solution), the compounds are melted and mixed with 

sc-CO2, that dissolves partly in the melt and reduces its viscosity. Afterwards, this melt is 

expanded via a nozzle into a spray tower and particles are formed by solidification due to the 

Joule-Thompson effect (Lack, E., et al., 2010) (Cocero, M.J., et al., 2009). 

The solubility of a solute in supercritical fluids is related to its physical and chemical 

properties, such as polarity, molecular structure, and nature of the particle material and fluid 

supercritical fluid chosen. Besides, the operating conditions, such as temperature, pressure, 

density of solvent and co-solvents have also influence (Montes, A. et al., 2011). The very low 

solubility of solids in CO2 makes the RESS process unattractive, however  the SAS process 

very attractive because the solute must not be soluble in the SCF. Also, supercritical carbon 

dioxide can be dissolved in many polymers and lipids to be processed by PGSS or PGSS-

derived methods (Nunes, A., et al., 2011)  

PGSS process will be explained in detail, since this project explores its use in the 

production of lipid and polymer gas filled porous particles. It was selected taking into account 

the plasticizing properties of CO2.  

 

3.5.4Particle gas saturated solution (PGSS) 

As mentioned before, in the PGSS method, the particles are produced through the 

expansion of gas saturated solutions through nozzle into a spray tower. The compounds are 

melted and mixed with the dense or sc-CO2, either in a pressure vessel (batch process, Figure 

3.5) or in a static mixer (continuous process) (Lack, E., et al., 2010).  

The solubilization of SC-CO2 lowers the melting point of the compounds, reduces the 

viscosity of the melt and enhances the formation of tiny droplets after expansion of the melt, 

since the CO2 is expanded and gets out of the droplets.  Besides, the solidification of the droplet 
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is very fast due to the direct heat transfer from particles into the CO2, which is at the same time 

cooled down by the expansion (Joule-Thomson effect). Therefore, the thermal stress is lower 

compared to classic air drying process (Lack, E., et al., 2010).  

 

 

 

Figure 3.4: Particles from Gas Saturated Solutions (PGSS) techniques. (Nunes A. et al., 2011) 

 

These features have been exploited in the mixture, coating and encapsulation of food 

and pharmaceutical products, without requiring the use of organic solvents, avoid thermal 

degradation and air oxidation (Jung, J. and Perrut, M., 2001) (Lack, E., et al., 2010). Moreover, 

PGSS process is simple, easily scalable, and production cost (energy and gas consumption) is 

lower in comparison with other SCF process, such as RESS (Tandya A., et al., 2007).  

 As mentioned before, particle size and morphology of PGSS product, in both 

continuous and batch processes, is directly related to the degassing of the admixed and 

dissolved CO2 in the molten compound. Therefore, pressure and temperature are identified as 

main process parameters, since sc-CO2 solubility depends on them.  

The effect of pressure and temperature in continuous PGSS processing, as well as the  

mass flow ratio of CO2 to product solution  (GTP ratio), was extensively studied by (Kappler, P., 

et al., 2003) using polyethyleneglycol PEG as reference material. They demonstrated that 

fibers, microfoams, porous particles, porous spheres and spheres can be obtained by control of 

these parameters (Figure 3.6).  Moreover, they identify the effect of the size of the droplet after 

jet expansion in the mechanisms of cooling and powder generation, which include heat transfer, 

heat conductivity and crystallization. 
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Figure 3.5: Influence of pressure (bar) and Temperature (K) on morphologies of PEG 6000 particles 

process by semicontinous PGSS with a GTP ratio of 4 (Lack, E., et al., 2010).  

 

As pressure is increased, larger amounts of CO2 are dissolved in the melt and higher 

pressure drop is produced across the nozzle; therefore, more CO2 gas bubbles are formed 

increasing the cooling rate (Joule-Thomson effect) which originate micro-foams and porous 

particles as the gas cannot diffuse out of the particles perforating particle surface (Figure 3.7). 

On the contrary, as temperature increased, the solubility of CO2 is decreased allowing the 

formation of more spherical structures since the slower solidification of the droplets facilitates 

the diffusion of CO2 out of the particles (Kappler, P., et al., 2003) (Lack, E., et al., 2010) (Sousa, 

A. R., 2007). 

 

 

Figure 3.6: Schematic representation of the diffusion of CO2 out of the droplets formed 

(Sousa, A. R., 2007) 
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3.6 Methods for characterization of MBs 

The particles obtained in the experimental work of this thesis, were analyzed in terms of 

gas entrapment, which was qualitatively analyzed by Nuclear Magnetic Resonance (NMR), and 

particle morphology, analyzed through Scanning Electron Microscopy (SEM)   

3.6.1 Nuclear Magnetic Resonance  

NMR was chosen to detect PFC inside the particles due to its high sensitivity for fluorine 

atom (19F) (Kaneda, M. M., et al., 2009). 

NMR is based on a phenomenon that occurs when the nuclei of certain atoms are 

immersed in a static magnetic field and exposed to a second oscillating magnetic field of a 

specific frequency in the range of MHz of the electromagnetic spectra. NMR phenomenon 

allows studying physical, chemical and biological properties of matter, such as chemical 

structure of molecules based on the energy absorbed by the substance understudy (Hornak, 

P.J., 1997).  

NMR can only be applied to atoms with appropriate nuclear spin. Spin is a fundamental 

property like electric charge or mass. It takes values multiples of ½, positive or negative. 

Protons and neutrons, as electrons, posses spin; individual unpair protons and electrons each 

posses a nuclear spin of ½. Compounds that have more number of spins scattered more the 

energy and the generated NMR signal is worse. Almost every element of the table periodic has 

an isotope with a nuclei spin different of zero.  This method can only be performed when the 

isotopes have a natural abundance sufficiently high to be detected (Hornak, P.J., 1997). 

Fluorine atom (19F) has a net spin of ½, with one unpaired proton and no unpaired 

neutrons, like 1H. The natural abundance of 19F isotope of fluorine is near to 100%, having a 

receptivity signal of 4,89x102. Also, the signal strength of 19F is high, being approximately 83% 

that of 1H (Kaneda, M. M., et al., 2009).  

3.6.2 Scanning Electron Microscopy (SEM)  

SEM was used to observe particle size and morphology. This technique allows to 

characterize the particles, on a nano scale (nm) or micro scale (µm) due to high spatial 

resolution (≈ 1 nm) and the wide range of available magnifications (≈ 20x to 100000x). Thus, 

there are few instruments that have such a wide range of uses as electron microscopy, in its 

various configurations. Using this technique we can obtain images of surfaces of a large 

number of materials. SEM images are formed by an electron beam. This beam, which is 

generated at the top of the microscope, describes a helical path through lens in the 

electromagnetic field, to focus on the sample surface, ‘sweeping it’. The interaction of this beam 

with the material leads to the emission of electromagnetic radiation constituting the various 

types of detectable signals. When these particles are processed with the adequate software, an 

image of the ample surface is generated (Costa, C., et al. ,2011).  
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4. Material and methods 

4.1 Materials 

A preliminary selection of carrier materials was performed, including lipids of different 

hydrophilic-lipophilic balance (HLB) and hydrophilic polymers. Their properties are listed in 

Table 4.1. 

The CO2, 99,95% of purity, was provided by Air Liquid (Portugal), as well as PFC, C3F8 

and C4F8,both with 99,99% of purity. Their physical properties are shown in the Table 4.2. 

 

Table 4.1: Features of carrier compounds 

Name 
Precirol ® 

ATO 5 
Gelucire ® 

43/01 
Gelucire ® 

50/13 
Gelucire ® 

44/14 
LUMULSE 

TM
 

GMS K 
PEG ® 4000 

Pluronic® 
F127 

Composition 

Mono-, di- 
and 

triglycerides 
of saturated 

C16 and C18 
fatty acids 

Mono-, di- 
and 

triglycerides 
of saturated 
C 12-C18 
fatty acids 

Mono-, di- 
and 

triglycerides 
of saturated 

C8 - C18 
fatty acids + 
mono and di 

fatty acid 
esters of 

PEG 

Mono-, di- 
and 

triglycerides 
and mono- 
and di, fatty 
acids esters 

of 
polyethylene 

Glyceryl 
mono- and 
distearate 

Poly(ethylene 
glycol) 

 

Triblock 
copolymers, 
type A–B–A, 
consisting 
of ethylene 
oxide (A: 
EO) and 

propylene 
oxide (B: 

PO) 

Supplier Gattefossé Gattefossé Gattefossé Gattefossé Lambert 
technologies Sigma-Aldrich BASF 

 (HLB) 2 1 13 14 4 18,5 18–23 
Melting 

Point (ºC) 
53-57 42-45 46-51 42-44 62 59-63 53 - 57 

Density at 
melting 

point (g/mL) 
0,768 0,799 0,913 0,936 0,819 1,0347 0,791 

 

 

Table 3.2: Physical properties of gases – Octafluorpropane C3F8,  octafluorcyclobutane C4F8 

Gas 
Weight 

molecular 

Vapor 
pressure 
(MPa) at 

20ºC  

Density  
 at 23ºC 
(g/mL) 

Melting 
point 
(ºC) 

Boiling 
point 
(ºC) 

Critical 
temperature

(ºC) 

Critical 
pressure 

(MPa) 

Molar 
volume 

(cm
3
/mol) 

C3F8 188  0,77 1,3352 -183 -36,7 71,9 2,640  139  
C4F8 200 0,27 1,5063 -40,2 -6,4 115,0 2,777 133,4  
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4.2  High pressure Visual Cell apparatus  

A high pressure visual cell (Figure 4.1) was used to study the behavior of the carriers in 

the presence of the perfluorcarbons. Furthermore, the behavior of this mixture after the addition 

of SC-CO2 was observed. The apparatus consisted of 5 cm3-volume high pressure cell with 

sapphire windows. The heating system was composed of a heating cable (Horst), a controller 

(Ero Electronic LMS) and a high accuracy thermometer (Omega HH  501 AT, 0,1%). The 

pressure in the cell was measured with a pressure transducer Digibar II calibrated between 

0MPa and 25MPa (accuracy: 0,15%).  

A.     B.  

 
 
 
 
 

The experiments were performed as follows: a sample of carrier (≈1g) was placed 

inside in the high pressure cell. A small amount of dye (β-carotene) was added to the carrier, to 

easily distinguish it from the PFC liquid. The sample was melted at atmospheric pressure; 

afterwards the PFC was added. Finally, CO2 was injected into the binary system. 

 PFC was liquefied and pressurized in the piston of a manual syringe pump. This piston 

was inside an ice bath with liquid nitrogen.  

The carbon dioxide was previously liquefied and pumped using a Haskel pump (model 

29723-71). 

4.3 PGSS process apparatus 

The apparatus used for the experiments (Figure 4.2) was built by Separex Supercritical 

& High Pressure Technology (2011,France). The apparatus comprises a high pressure vessel 

of 50 mL volume with two sapphire windows, a cyclone and a 18L collector vessel.   

In a typical assay the mixture (CO2, carrier, PFC) was stirred at 170 rpm for 30min and 

then depressurized through a nozzle (0,25 mm) into the cyclone, where it was mixed with 

compressed air (7 bar).  Temperature was controlled by a system composed with a sensor 

inside the vessel, and the pressure was measured. The solid particles were collected and 

separated from carbon dioxide in cyclone. The system was designed for a maximum pressure of 

35 MPa. 

Figure 4.1: A. Flow diagram of the High pressure visual cell set-up:  (A) heated sapphire window 
cell. B. Picture of the apparatus. 

 



Preparation of Gas Filled Porous Microparticles (GPPs) and Microbubbles (MBs) by PGSS 

19 

September, 2012 

 

 

 

A.  B.  
 

Figure 4.2: A. Experimental setup: (1) CO2 cylinder (2) cryostate (3) pneumatic piston pump (4) 
stirred vessel (electrically thermostated) (5) automated depressurization valve (6) recovery vessel 
(7) nozzle (8) PFC vessel (9) manual high-pressure syringe pump. B. Picture of PGSS apparatus 

 

PGSS experiments were carried out as follow: First, a certain amount of carrier was 

inserted inside the high pressure vessel. Secondly, the vessel was closed and the operating 

temperature was set. Moreover, the carrier was allowed to melt while stirring. After melting the 

carrier, the PFC was injected into the vessel using a calibrated filling system.  

PFC was liquefied with liquid nitrogen and pressurized using a manual syringe pump 

with the valve at the outlet opened. The fluid was pressurized in the filling system, which volume 

is known (see section 4.3.1), until the desired pressure was achieved (ca. 12 MPa for C4F8 and 

9 MPa for C3F8). Immediately after, the valve connecting to the PGSS pressure vessel is 

opened and, at the same time, the valve at the outlet of the piston is closed. The variation of 

pressure in the filling system is registered and used to calculate the mass of PFC introduced. 

Density values of PFC are calculated from NIST data base. 

PFC and the carrier were mixed for 30 minutes. Afterwards, CO2 was added until the 

pressure setting for the experiment was reached. Subsequently, the three components were 

mixed for 30 minutes more. Finally, the mixture was expanded through the nozzle and particles 

were sprayed to the cyclone and collected at the bottom of the collector vessel. 

 

4.3.1Calibration of PFC filling system 

The mass of PFC used in the experiments was determined indirectly through compound 

density and occupied volume values. Therefore, it was necessary to calibrate of the volume the 

PFC piping system.  

For the calibration, the system was coupled to a cylinder of 1,78L, previously calibrated 

with milli-Q water at 22ºC. 

The apparatus (Figure 4.1) was divided in three sections as shown in Figure 4.3. The 

first section corresponds to the line connecting the cylinder submerged in a water bath at 22ºC 

CO2

(1)

(2) (3)

(4)

(5)

(7)

TIC

 

(6) Compressed 
Air

PI PI TI

PFC

(8)

(9)
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with the filling system. This section had a low pressure manometer with a range of 0-25 psi (0 – 

172 kPa) with an accuracy of 0,02 psi (0,13 kPa). The second section corresponds to the tubes 

and valves that connect the first section and the cylinder of the manual piston pump. This is the 

section of interest regarding the injection of PFC gas into the PGSS vessel. The third section, 

corresponds to the connection between the second section and the visual cell or the PGSS 

vessel. 

 

Figure 4.3: High pressure Apparatus divided into three sections. (A) Heated sapphire 

window cell (B) calibrate cylinder in thermostated bath  1- First section 2- Second section 3 

– Third section 

Before proceeding with the calibration, it was necessary to evacuate the gas from the 

lines of the three sections, as well as, from the calibrated cylinder with a vacuum pump. 

The cylinder was pressurized with nitrogen (N2), since this gas is inert and stable and 

do not present any phase change. The moles number of the gas, was determined through the 

equation of ideal gas (  ), once the other variables were already known, Temperature 

(T), Pressure (P), Volume (V) and the ideal gas constant. The temperature used in the 

calculations was the room temperature, 22ºC. 

The calibration was made by sections. The initial pressure inside the N2 cylinder before 

of the calibration was 166 kPa. Firstly, the valve in the section 1 was open and pressure was 

allowed to stabilize and read in the manometer of section 1. Since the N2 mole number was 

known, the volume of the section 1 was determined. Afterwards the process was repeated for 

section 2 (valve 2) and section 3 (valve 3).  

The calibration procedure was repeated three times for each section. The result is 

presented in Table 4.3 

 Table 4.3: Results of the volume, mean and standard deviation, according to calibration procedure 

 
 Section 1 Section 2 Section 3 

Mean (L) 0,006 0,011 0,003 
Standard deviation 0,000 0,001 0,000 
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4.4 NMR Analysis at Cermax Group 

The 19F NMR spectra were obtained on a BRUKE  AVANCE II+ console and a 400 

MHz Ultra-Shield-Plus Magnet with 54 mm diameter standard bore. The equipment was 

controlled via Topspin V.2.1 software and was run in automatic mode (ICON-NMR). It was 

equipped with a broad band 5 mm BBFO-Z probe-head for direct detection of 19F.   

The spectrometer was operated at 376 MHz for direct observation of 19F at 25ºC. The 

NMR spectra were acquired with optimized parameters for which the 90º pulse width was 11 µs. 

The acquisition time was 0.4375s over a total number of 10000 scans and the minimum 

recycling delay time was 0.5. The data were processed with an exponential multiplication 

corresponding to a 30 Hz signal width. 

All fluorine atoms of C4F8 (4 x -CF2-) resonate at -138 ppm whereas C3F8 presented two 

kind of fluorine atoms according to their nuclear environments: fluorine in (CF3-) resonate at -

85ppm and those in (-CF2-) at -133 ppm. Therefore the spectral window was 37500 Hz (100 

ppm) for C3F8 and 9400 Hz (25 ppm) for C4F8. 

A sample of dry particles together with a capillary filled with D2O was introduced in a 

NMR tube. The deuterium signal was necessary to keep constant the resonance frequency of 

the magnetic field of the equipment. In order to get comparable NMR spectra, the same amount 

of particles (ca. 0.9g) were carefully packed in the same volume of the NMR tube. Nevertheless, 

it was not possible to quantify the amount of the PFC in the particles, because the amount of 

these particles was not homogenous. Therefore, benzene was used as solvent, but it was 

neither possible to make a calibration curve since the solubility of the PFC gases was very 

small, i.e. 2.731·10-03 molar fraction of C4F8 (Evans and Battino, 1971). 

Consequently, the encapsulated amount of PFC was qualitatively analyzed by 

comparison of peak areas of samples obtained under different conditions. 

 

4.5 Scanning Electron Microscopy (SEM) 

The microbubbles were analyzed by FEG-SEM (Field Emission Scanning Electron 

Microscopy) (Jeol, 7001 F) at 20/25 kV at the Laboratory ICEMS- Instituto Superior Técnico. 

Samples were previously coated with approximately 300 Å of gold in Argon atmosphere. 
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5. Results and discussion 

5.1 Phase Equilibrium 

 

Using the high pressure visual cell (describe in 4.2), the behavior of the different carriers 

selected in the presence of each chosen perfluorcarbon, octafluorcyclobutane (C4F8) or 

octafluorbutane (C3F8) was studied. 

Through visual cell observations, it was possible to conclude that none of the PFC 

tested (C3F8 and C4F8) change the melting point of the carriers. Besides, both gases were 

immiscible with all carriers. Nevertheless, some differences were found in the behavior of each 

binary system (carrier-PFC) due to density values of each compound. In some cases, the 

density of molten carrier was lower enough, that it has floated on the liquefied PFC. The same 

has happened for the system Gelucire 50/13-C4F8 (Figure 5.1). In other cases, both densities 

were similar, so that the liquefied PFC and the molten polymer tried to stay at the same level. 

This phenomenon was identified as “repulsion” since one of the components, depending on the 

surface tension values, leak to the walls while the other was in the centre of the cell (Figure 

5.2).  

 

     .                          

       Figure 5.2: Pluronic F127- C4F8 

The behavior of each pair carrier-PFC is summarized in Table 5.1. It can be observed 

that the “repulsion” is the predominant behavior of the systems with C3F8 since its liquid density 

at test conditions (ca. 55ºC and 1,6 MPa) is around 1 g/mL (NIST), very similar to the values of 

molten carriers (Table 4.1). The density of C4F8 was higher: ca. 1,4 g/mL at 55ºC and 0,7 MPa. 

This table also reports if an emulsion of both components could be formed. However, as the 

stirring was performed with a magnetic system, the emulsion formed was quite weak, with the 

exception of Gelucire 50/13. Moreover, it was not possible to stir high viscous systems (i.e PEG 

4000, GMS and Pluroni F127). 

Figure 5.1: Gelucire 50/13 - C4F8 

PFC vapor 

Liquid PFC  

Molten 
carrier 
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Table 5.1: Behavior of the carriers in the presence of both PFCs. 

Carriers 

 

Position at 

the cell 

(C4F8) 

Emulsion 

(C4F8) 

Carriers 

 

Position at 

the cell 

(C3F8) 

Emulsion 

(C3F8) 

Gelucire 

44/14 
At the top Weak 

Gelucire 

44/14 

At the 

top/repulsion 
Weak 

Gelucire 

43/01 
At the top Weak 

Gelucire 

43/01 

At the 

top/repulsion 
No 

Gelucire 

50/13 
At the top Weak/mean 

Gelucire 

50/13 

At the top 

/repulsion 
Weak 

PEG 4000 At the top 
No, very 

viscous 
PEG 4000 repulsion 

No, very 

viscous 

Precirol ATO 

5 
Repulsion Weak 

Precirol ATO 

5 
Repulsion No 

GMS Repulsion 
No, very 

viscous 
GMS Repulsion 

No, very 

viscous 

Pluronic F127 Repulsion 
No, very 

viscous 
Pluronic F127 

At the bottom/ 

repulsion 

No, very 

viscous 

  

 

The addition of CO2 up to 7,5 MPa has improved the mixing between the carrier and the 

PFC. When CO2 was added to the binary system, still three phases were present: liquid PFC, 

molten carrier and CO2 with the vapor PFC solubilized into it (Figure 5.3 A).  After stirring, a two-

phase system was formed: CO2 partly dissolved in the carrier (Sousa, A. R., 2007) and in the 

PFC, changing their properties and enabling phase inversion. Thus, emulsion formation is 

promoted. The carrier rich-phase became the heavier one and it has occupied the bottom of the 

cell (Figure 5.3 B). In addition the repulsion between PFC and some carriers was avoided. The 

mixing of the components was improved since the viscosity of the carrier was lowered after the 

dissolution of CO2. 
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A.   B.  

 

 

 

5.2 PGSS experiments results 

According to the previous results, the system Gelucire 50/13-PFC-CO2 was selected to 

be processed by PGSS, as this carrier was the only one able to form a stable emulsion in 

equilibrium with the gaseous phase.  

 

5.2.1Effect of temperature and pressure 

 

The operating conditions, pressure and temperature, were varied in order to verify their 

effect on particle morphology and gas entrapment efficiency. The experiments were made with 

a fixed ratio Gelucire 50/13:PFC  of 40:1 and at three different (P.T.) conditions 

Taking Figure 5.4 as starting point, the approximate conditions to obtain micro-foams 

(15 MPa - 55ºC), porous particles (15 MPa - 80ºC) and porous spheres (8,5 MPa - 80ºC) were  

selected. Nevertheless, it should be noted that this figure was developed for continuous 

processing of PEG. Therefore, different regions are expected for the system in development. 

As shown in Figure 5.4, particles produced at high pressure and low temperature (15 

MPa - 55ºC) were larger particles, more porous and more agglomerated than those produced 

under different conditions. As expected, when temperature was increased (15, MPa- 80ºC) 

more spherical particles were produced. Furthermore, as pressure was decreased (8,5 MPa- 

80ºC), less porous and less agglomerate particles were produce, since the amount of CO2 

dissolved in the carrier was smaller.  However, since particles were too porous and looked like 

broken in all cases, the carrier (Gelucire 50/13) was processed alone by PGSS as reference to 

determined if the observations were due to operation conditions or to burst release of PCF after 

particle solidification. As clearly shown in Figure 5.4, cavities were more abundant in particles 

processed with PFC. 

Best operation conditions (8,5 MPa and 80ºC) were identified once they yielded small 

and low agglomerated spherical particles with good flowability.  However, no difference was 

Figure 5.3: A. Gelucire 50/13-PFC-CO2 without stirring. B. Gelucire 50/13-PFC-CO2 after stirring 
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observed in the bulk density of the powders. Values ranged from 0,230 g/mL to 0,274 

g/mL (Table 5.2).  

 

 

 

 

  

According to NMR analysis, the amount of encapsulated gas was very similar in these 

three experiments (Figure 5.5). Nevertheless, it could be said that the particles obtained at (8,5 

MPa -80 ºC) had more gas inside than the others, according to the area of the peak. This could 

be explained, perhaps, due to their more spherical morphology, enabling more entrapment of 

the gas inside the particle. On the contrary, the more porous the microbubbles are, the less gas 

they retain. 

Particles 
obtained 
without 
PFC 

   
Particles 
obtained 
with PFC 
(Gelucire: 

PFC 
ratio: 
1:12) 

   
 15,0 MPa 

55ºC 
 

15,0 MPa 

80ºC 

8,5 MPa 

80ºC 

Figure 5.4: SEM images of particles obtained by PGSS at different operating conditions. Scale bar: 

30µm (top images) and 10 µm (bottom images) 

Table 5.2: Bulk density of MBs obtained at different operation conditions 

Conditions/ratio 
15,0 MPa - 55ºC 

(12:1) 

15,0 MPa - 80 ºC 

(12:1) 

8,5 MPa - 80ºC 

(12:1) 

Bulk density (g/mL) 0,230 0,274 0,260 
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Figure 7: NMR spectra analysis of Gelucire 50/13: C4F8 particles produce with different operating 
conditions and fix carrier: PFC ratio of 40:1 

 

5.2.2 Effect of Gelucire: PFC ratio 

Maintaining the operation conditions established in the previous section (8,5 MPa and 

80ºC), various carrier:PFC gas ratios were tested in the range from 10:1 to 50:1. As detailed in 

Table 5.5, the total mass of carrier was varied, since the amount of PFC injected in the PGSS 

high pressure vessel could not be varied in a wide range, due to small volume of PFC filling 

system, as explained in section 4.3.1. 

The PFC gas was detected in all formulations, except in ratio 10:1, as shown in NMR 

analysis (Figure 5.6). When the ratio was increased, the amount of PFC gas also increased, i.e. 

the area of the peak increases, up to the ratio of 30:1. For higher ratios, the amount of PFC gas 

decreases, being this tendency somehow expected, since the gas is more diluted in the lipid 

particle. 

From the results, was clear that a higher amount of lipid is needed to encapsulate the 

PFC, when it is aimed to be entrapped in the gas phase. Nevertheless, these results could be 

not fully explained, since a quantification of the gas in the particles could not be performed and 

the knowledge about the phase equilibrium of the ternary mixture is only qualitatively known, 

according to visual cell experiments. Moreover, it should be taken into account that the amount 

of CO2 varies from one experiment to the other since the amount of lipid is different in some of 

the experiments (Table 5.3).  

8,5 MPa; 80ºC 

15,0 MPa; 80ºC 

15,0 MPa; 55ºC 
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Figure 8: NMR spectra analysis of Gelucire 50/13 particles produce at 85ºC and 80 bar in all ratios 
carrier:C4F8,  
 
 
Table 5.3: Operating conditions and amount of each component for PGSS experiments with 
different ratios Gelucire:C4F8 
 

Gelucire 
(g) 

C4F8 
(g) 

Ratio 
Initial 

Pressure 
(MPa) 

Final 
Pressure 

(MPa) 

Temperature 
(ºC) 

C4F8 
detection 

1,510 0,484  (3:1) 8,9 8,8 80 No 

5,001 0,482  (10:1) 8,5 8,2 81 Yes 

10,000 0,490  (20:1) 8.5 8,0 80 Yes 

14,000 0,462  (30:1) 8.5 7,7 79 Yes 

14,000 0,355  (40:1) 8-5 7,5 79 Yes 

14,010 0,278  (50:1) 8.5 7,6 81 Yes 

 

 
A rough calculation indicates that approximately 7.5g of CO2 were used in the (3:1) 

experiment and that it was decrease of 10% between 1st and 2nd experiment, as well as 

between the 2nd and 3rd, and between the 3rd and the 4th. Approximately, the same amount was 

used in the 4th, 5th and 6th experiments. Since PFC is solubilized in the CO2, the PFC dilution will 

decrease as CO2 amount decreases, carrying more PFC into the molten material. On the other 

hand, when the CO2 amount is constant, the prevailing effect is the dilution of PFC in the lipid 
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carrier. These tendencies are shown in the graph below (Figure 5.7), where the % of NMR peak 

areas normalized by the area of the peak 30:1 represented for each carrier: PFC ratio.   

 

 

Figure 9: Effect of CO2 amount in relative amount of PFC gas entrapment 

5.2.3Effect of gas structure 

Similar experiments were performed using the linear PFC (C3F8). Differences were 

evident between both gases, being C3F8 less entrapped in the particles (Figure 5.8). This 

difference could be explained, perhaps, due to the difference in the molecular structure. Due to 

the fact that C4F8 molecule is cyclic and C3F8 molecule is linear, it will be more difficult to leave 

the porous spheres for a cyclic molecule than for a linear one. 

  

Figure 10: NMR spectra analysis of Gelucire 50/13 particles produce at 85ºC and 8,0 MPa in 

all ratios carrier:C3F8. 
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It should be noted that C3F8 was only detected for the ratios: 10:1, 20:1, 30:1 (Table 5.4; 

Figure 5.8).  As discussed previously, higher amounts of C4F8 were also detected for these 

three ratios. The same explanation could be applied for these results, since approximately the 

same amount of all components was used.  

 

Table 5.4: Operating conditions and amount of each component for PGSS experiments with 

different ratios Gelucire:C3F8 

Gelucire 
(g) 

C3F8 
(g) 

Ratio 
Initial 

Pressure 
(MPa) 

Final 
Pressure 

(MPa) 

Temperature 
(ºC) 

C3F8 
detection 

1,510 0,473  (3:1) 8,9 8,8 80 No 

5,001 0,484  (10:1) 8,5 8,2 81 Yes 

10,000 0,485  (20:1) 8.5 8,0 80 Yes 

14,000 0,469  (30:1) 8.5 7,7 79 Yes 

14,000 0,352  (40:1) 8-5 7,5 79 No 

14,010 0,288  (50:1) 8.5 7,6 81 Yes 

 

 

5.2.4 Stability of the gas in the particle 

 The stability of gas inside  the particle was evaluated for particles at optimal  operation 

conditions (8,5 MPa, 80 ºC and 30:1 carrier: PFC  ratio). Dry particles were analyzed by NMR 

directly after production and after 1, 2 and 3 hours at room temperature.  

The half-life of the gas inside the particle was shorter than 3 hours. As shown in Figure 

5.9, the majority of the gas was release in the first hour.  

Typical self-life of lipid microbubbles reffered in the literature, is several minutes (Unger, 

E.C., et al., 2004). Therefore, the obtained result is promising. Nevertheless, MBs coated with 

polymers such as poly(allylamine hydrochloride) (PAH) achieved half-life as long as 7 hours 

(Lentacker, I., et al, 2006).  
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Figure 11: NMR analysis of Gelucire 50/13 particles produce at 85ºC and 8,0 MPa for a carrier:PFC 
ratio of 30:1. Stability study: red line (0h; particles after production), green line (1h) and blue line 
(2h) 



Preparation of Gas Filled Porous Microparticles (GPPs) and Microbubbles (MBs) by PGSS 

31 

September, 2012 

 

6. Conclusion and Future Work 

The potential of supercritical fluid technology, namely PGSS process, to encapsulated 

gases was demonstrated through the entrapment of perfluorocarbons (PFC: C3F8 and C4F8) in 

porous lipid microparticles.  

In the first part of this thesis, different lipid and polymers were proposed as possible 

carriers for entrapment of PFC gases. The lipid Gelucire 50/13 was selected according to its 

behavior in the presence of PFC alone, forming an emulsion, and after the addition of sc-CO2 to 

the mixture. 

In the second part, PGSS experiments were performed. The effect of temperature and 

pressure on the morphology of the particles (size, size distribution, and its porosity), and PFC 

entrapment efficiency were studied. Optimal operating conditions of pressure and temperature 

were 8.5 MPa and 80ºC, respectively, once obtained particles were smaller, do not agglomerate 

and shown better flowability. Attending to the carrier:PFC ratio, more gas was entrapped at  a 

value of 30:1 for both gases, C4F8 and C3F8; Less C3F8 gas was encapsulated probably due to 

its linear structure face to the cyclic C4F8.  

The half-life of C4F8 in particles was relatively short, below 3h, being the majority of the 

gas release in the first hour. Nevertheless, this result is promising since according to literature, 

half life of lipid MBs is in the order of several minutes, because of PFC diffusion across the lipid 

layer.   

Future work will be focused in increasing the half-life of gas filled microparticles 

produced by PGSS. A polymer will be used to coat the outer surface of the Gelucire/ PFC 

particles. Besides, a more detailed study of the ternary mixture Gelucire:PFC:CO2 is needed to 

verify the influence of the ratio of each compound in the entrapment efficiency. Also, a 

quantitative method for the gas analysis should be developed. 
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