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EFFECTS OF SPATIAL PATTERN OF GREENSPACE ON LAND 

SURFACE TEMPERATURE 

 

“A CASE STUDY OF OASIS CITY AKSU, NORTHWEST CHINA” 

 

ABSTRACT 

 

The urban heat island (UHI) refers to the phenomenon of higher atmospheric and 

surface temperatures occurring in urban areas than in the surrounding rural areas. 

Numerous studies have shown that increased percent cover of greenspace (PLAND) 

can significantly decrease land surface temperatures (LST). Fewer studies, however, 

have investigated the effects of configuration of greenspace on LST. This thesis aims 

to fill this gap using oasis city Aksu, northwest China as a case study. PLAND along 

with two configuration metrics were used to measure the composition and 

configuration of greenspace. The metrics were calculated by moving window method 

based on a greenspace map derived from Landsat Thematic Mapper (TM) imagery, 

and LST data were retrieved from Landsat TM thermal band. Normalized mutual 

information measure was employed to investigate the relationship between LST and 

the spatial pattern of greenspace. The results showed that PLAND was the most 

important predictor of LST. Configuration of greenspace also significantly affected 

LST. In addition, the variance of LST was largely explained by both composition and 

configuration of greenspace. Results from this study can expand our understanding of 

the relationship between LST and vegetation, and provide insights for improving 

urban greenspace planning and management. 
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ACRONYMS 

 

 

UHI – Urban Heat Inland 

LST – Land Surface Temperature  

PLAND – Percentage of Landscape area 

PD – Patch Density  
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1. INTRODUCTION 

 

1.1 Background of the Study   

 

The urban heat island (UHI) refers to the phenomenon of higher atmospheric and 

surface temperatures occurring in urban areas than in the surrounding rural areas. The 

UHI phenomena are widely observed in cities despite their sizes and locations (Tran 

et al. 2006, Imhoff et al. 2010). Increased temperatures due to UHI may alter species 

composition and distribution (Niemelä 1999), increase air pollution (Sarrat et al. 

2006, Weng and Yang 2006, Lai and Cheng 2009), and affect the comfort of urban 

dwellers and even lead to greater health risks (Patz et al. 2005). Therefore, since first 

reported in 1818, UHI has become a major research focus in urban climatology and 

urban ecology (Arnfield 2003, Weng 2009). 

 

The intensity and spatial pattern of UHI is a function of land surface characteristics 

(e.g. albedo, emissivity, and thermal inertia), urban layout/street geometry (e.g. 

canyon height-to-width ratio and sky view factor), weather conditions (e.g. wind and 

humidity), and human activities(Hamdi and Schayes 2007, Rizwan, Dennis, and Liu 

2008a, Taha 1997, Unger 2004, Voogt and Oke 1998). Many of these factors, 

especially land surface characteristics, are primarily determined by land use/land 

cover (LULC). For example, vegetation usually has higher evapotranspiration and 

emissivity than built-up areas, and thus has lower surface temperatures (Hamada and 

Ohta 2010, Weng, Lu, and Schubring 2004). This suggests that increases in the 

amount of greenspace can be an effective means to improving the urban thermal 

environment. 

 

The rapid development of thermal infrared remote sensing greatly advanced the 

exploration of the relationship between land surface temperature (LST) and LULC 

(Voogt and Oke 2003, Weng, Lu, and Schubring 2004, Pu et al. 2006, Buyantuyev 

and Wu 2010) LULC pattern has two components: composition (the abundance and 

variety of land cover classes) and configuration (the spatial arrangements of land 

cover classes)(Turner 2005). The past two decades witnessed proliferations of studies 
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focusing on the relationship between LST and greenspace composition. In particular, 

the significant negative relationship between LST and vegetation abundance was well 

documented (Voogt and Oke 2003, Weng, Lu, and Schubring 2004, Chen, Zhao, et al. 

2006, Tran et al. 2006, Weng 2009). However, less studied is the relationship between 

LST and configuration of greenspace (Liu and Weng 2008, Weng, Liu, and Lu 2007, 

Zhao et al. 2011). Some preliminary studies have demonstrated that both air and 

surface temperatures may be related to the configuration of greenspace(Bowler et al. 

2010, Cao et al. 2010, Honjo and Takakura 1991, Yokohari et al. 1997, Zhang et al. 

2009). For example, two recent studies showed that the size and shape of a vegetation 

patch affected its cool island effects, the phenomenon that the temperature of 

greenspace is lower than its surrounding areas (Cao et al. 2010, Zhang et al. 2009). 

These studies were conducted at the patch level, only focusing on the size and shape 

of greenspace, however few have examined the effects of configuration of greenspace 

on LST at the landscape level(Yokohari et al. 1997, Zhang et al. 2009, Zhou, Huang, 

and Cadenasso 2011), at which urban greenspace planning and management are 

usually implemented. Exploring the relationship between LST and spatial pattern, 

especially configuration of greenspace at the landscape level, can help us better 

understand the LST–vegetation relationship, and provide insights for urban 

greenspace planning and management. 

 

1.2 Objectives  

 

The intent of the study is to quantify the urban greenspace and estimate the land 

surface temperature of the aksu city and analyze the effects of spatial pattern of 

greenspace on land surface temperature.  

Specifically, 

 to extract and map the urban greenspcace infromation from the landast TM 

imagery (image); 

 to estimate the land surface temperature of the study, and data will be retrived 

from Landsat TM thermal band; 

 to quantify and ivestigate the charactiristics of the urbarn greenspace; 
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 to carry out statistical analysis between the urban greenspace patterns and 

landsurface temprature.   

 to provide implication for urban planning and land use management             

 

1.3 Research Questions  

 

This study, taking the oasis city Aksu as case study, tried to answer the following two 

questions:  

 Does spatial pattern, especially configuration of greenspace affect LST ?  

 What is the relative importance of composition and configuration of 

greenspace in explaining the variance of LST? 

In this work, the spatial pattern of greenspace refers to the composition (i.e., percent 

cover) of greenspace, and its spatial distribution or configuration. The spatial pattern of 

greenspace will be measured by a series of selected landscape metrics that will be 

discussed in detail in the methodology section. The research questions will be 

addressed using normalized mutual information measure. 

 

1.4 Study Area  

 

The study area chosen in this research is a typical arid region oasis city Aksu’s urban 

area (Fig. 1). Aksu is the capital of Aksu Prefecture in Xinjiang Uyghur Autonomous 

Region, northwest China. Aksu City located in the south of the Tianshan Mountains, 

northwest edge of the Tarim Basin. Geographic location is 39º30'N - 41º27'N， 

79º39'E - 82º01'E. Aksu City has been known as “Land of Melons and fruits”. It 

includes municipal total area of 14,300 Km
2
 and built-up area of 28.1 Km

2
. It is a 

multi-ethnic neighborhood composed of the Uyhgur, Han, Hui, Kazak, Mongol, Kirgiz 

and other 24 ethnic groups. The city has total psopulation of 582,000 people and the 

urban resident population of 258,000 people.  The Agricultural population is 324,000. 

 

http://en.wikipedia.org/wiki/Aksu_Prefecture
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Aksu City is situated in the hinterland of the Eurasian continent, rich in light and heat 

resources. It experiences a long frost-free period, which is around 205 to 219 days. 

The climate is dry with little rainfall since it is the one of the most remote cities from 

the ocean, hence rainfall is extremely rare and does not exceed 50 mm per year with 

average annual evaporation of 1950 mm. The study area is flat. The climatic and the 

physiographic conditions are mostly constant across the region. Therefore, it is an 

ideal area to explore the relationship between LST and spatial pattern of greenspace in 

arid and semi arid land. 

 

Besides, currently the city's green area has expanded up to 30.6%, which was 12 % in 

early 1980s. Urban greenspace coverage has reached 39.2% and the per capita public 

green area of 9 m
2
. Meanwhile, city's ecological environment has been significantly 

improved.  This rapid growing greenspace demands further rational arrangement to 

effectively reduce the urban heat inland caused by expanding impervious surfaces  and 

to adapt the worldwide climate change.   
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Fig. 1 map of the study area  

 

1.6 Dissertation Organization 

 

The thesis work is organized into five sections in which the first section deals with the 

introduction and statement of the problem, research objectives, research questions, 

description of the study area and organization of the paper. The second part contains 

review of related literatures where the concept of urban heat island (UHI), remote 

sensing of urban areas, application of thermal remote sensing in detecting LST, urban 

greenspace and integrated analysis of urban greenspace and land surface temperature 

are reviewed. Tools, data, image pre-processing, extracting urban greenspace, 
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accuracy assessment procedures, urban greenspace landscape metrics selection and 

calculation, land surface temperature retrieval and statistical correlation measures are 

briefly presented in the third section. The fourth section deals with results and 

discussion including outcome presentations and data analysis consisting of descriptive 

statistics between the LST and urban greenspace landscape metrics. Meanwhile, 

normalized mutual information measure between the spatial pattern of urban 

greenspace and land surface temperature are mentioned in this section. Finally, 

conclusions of the study are presented in the fifth section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

 

2. LITERATURE REVIEW  
 

2.1 Urban Heat Island (UHI) 

 

The urban heat island (UHI) refers to the phenomenon of higher atmospheric and 

surface temperatures occurring in urban areas than in the surrounding rural areas and 

generally because of changing urban land cover. As a major component of urban 

climate, UHI has been a concern for more than 40 years(Chen, Yang, et al. 2006). 

This phenomenon was first discovered in London over 150 years ago by Howard 

(1833) and has since been studied in many of the largest cities around the world. Heat 

islands have been documented in most or the major cities in all around the world. 

Recent decades have seen the study of urban heat islands extended to many smaller 

and more diverse cities around the world. Over the past few years, UHI has been 

investigated in cities as diverse as Lódi, Poland(Klysik and Fortuniak 1999), 

Reykjavik, Iceland (Steinecke 1999), Fairbanks, Alaska (Magee, Curtis, and Wendler 

1999), Grnnadn, Spain(Vez, Rodríguez, and Jiménez 2000) and Beijing, China (Lin 

and Yu 2005) 

 

Fig.2 Urban Heat Island Profile showing temperature differences for specific land cover of the urban 

area. (Source: Environmental Protection Agency) Source: http://www.urbanheatislands.com/ 

 

Fig.2 shows a profile of the urban heat island. In general, the temperature rises 

dramatically near the outskirts of the city and plateaus across the suburban, 

residential, and commercial districts. The maximum temperatures are typically found 
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in the central business district(s) or other areas of high urban density. The heat island 

is mitigated somewhat by areas of vegetation and low urban density, such as golf 

courses. parks, and playing fields.  

 

2.2 Application of Thermal Remote Sensing in Detecting LST 

 

In past several decades, remote sensing technology has contributed well to the study 

of urban areas and urban heat islands. One of the earliest applications of spaceborne 

measurements was for surface temperature and its relationship to the urban heat island 

effect and urban climate. (Rao 1972)is credited with the first study of urban heat 

islands from an environmental satellite. Since then, remote sensing has become vital 

in the field of urban studies, including the study of urban climate and the urban heat 

island.   

 

(Carlson, Augustine, and Boland 1977)used satellite-derived measurements of surface 

temperature to investigate the relationship between urban land use and heating 

patterns. (Roth, Oke, and Emery 1989) and (Gallo et al. 1993)used AVHRR data to 

compare the urban heat island effect to vegetation index for cities along the west coast 

of North America. (Lee 1993) also used AVHRR data to study the urban heat island 

of cities in South Korea. At finer scales, (Kim 1992)used higher-resolution Landsat 

data to study the urban heat island of washington, (Nichol 1994) used Landsat TM 

thermal imagery to quantify the effect of solar radiation on the microclimate in 

Singapore. (Lo, Quattrochi, and Luvall 1997)studied the urban heat island by 

combining high-resolution thermal infrared data and Geographic Information System 

(GIS) techniques. (Kawashima et al. 2000)used Landsat data to study the relationship 

between surface temperature and air temperature during winter nights in Japan and 

found that the effect of the surface temperature on air temperature was related to the 

mean lapse rate of the atmosphere boundary layer.  
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Another way of assessing temperature simultaneously across a wide surface area and 

acquiring a synoptic view of a study area is by using remote sensing technology. 

Airborne and satellite remote sensing platforms offer away of capturing data related to 

land surface temperature through thermal sensors. Additionally, data in other bands of 

the spectrum can be used to assess land cover for levels of vegetation and the extent 

of urbanization through use of measures like the normalized difference vegetation 

index or NDVI. Satellites in particular offer an efficient mode of data collection, and 

those in the Landsat program have been collecting data on a world-wide basis since 

the 1970’s. Satellite data from Landsat, AVHRR, MODIS and the Terra satellite has 

all been used to study land surface temperature. The Landsat Thematic Mapper, or 

TM series of satellites has accumulated a particularly extensive archive of 

images.Landsat 5 has been in operation since March 1984, providing 120 meter 

spatial resolution images, which is adequate for medium resolution urban temperature 

studies. Both MODIS and Advanced Very High Resolution Radiometer, or AVHRR 

satellites collect data in the thermal band, however their low spatial resolution of 1 

and 1.1Km per pixel limits suitability for urban studies. Another instrument, 

Advanced Spaceborne Thermal Emissions & Reflection Radiometer, or ASTER 

mounted on the TERRA satellite was launched in 1999. It provides higher spatial 

resolution data, at 90 meter per pixel. Both Landsat and TERRA have 16 dayground 

coverage cycles.  

 

Remote Sensing in the thermal band cannot directly reveal the UHI. The UHI is a 

phenomenon of atmospheric air temperature, and satellite remote sensing only 

observes the thermal upwelling of radiation from the surface below. Consequently, the 

term surface urban heat island, or SUHI has been coined by Voogt and Oke as 

descriptive of the heat island detectable from the land surface temperature (Voogt and 

Oke 2003). Differences in land surface temperature, especially high temperatures are 

indicative of the SUHI, and are detectable by remote sensing. Many previous studies 

have been conducted, especially using AVHRR, though Landsat TM sensor data had 

limited accuracy and was not employed as much prior to development of a mono-

window algorithm by (Qin, Karnieli, and Berliner 2001). Their study found that the 

technique achieved accuracy within 0.4˚C between assumed and retrieved temperature 

levels. These results indicate that Landsat TM thermal data provides a reasonably 
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accurate method for measuring LST with a spatial resolution adequate for urban 

studies. It offers a low-overhead and efficient land surface temperature survey method.  

 

How Urban Heat Islands are sensed?  

There are two types of  UHIs that  are of equal  importance for investigation:  The  Su

rface  Urban  Heat  Island  (SUHI)  and  the  Atmospheric  Urban  Heat  Island (AUHI

). Both UHIs are interconnected, though one is an effect of the other.  

 

The  SUHI  is  an  indirect  measurement  of  surface  temperature  that  has been  inve

stigated  primarily  with  airborne  or  satellite  thermal  infrared  sensors. Atmospheri

c  corrections  and  temperature  calibrations  must  be  made  to  accurately  use  this  

type  of  measurement.  Satellites  that  carry  such  sensors include:  NOAA  AVHRR

(Advanced  Very  High  Resolution  Radiometer)  and Landat TM & ETM+ Band 6 T

hermal low and high gain sensors. 

  

The  first  satellite  observation  of  UHIs  was  reported  by  (Rao 

1972).  The measurements  have  improved  since  the  early  1970s  as  the  spatial  re

solution  of the  satellite  sensors  has  been  improved  dramatically.  For  instance,  A

VHRR  has a  pixel  resolution  of  1.1  x  1.1 km and  has  a  very  large  swath  width

  of  ~2000 km, andthus  shows  a  relatively  large  area  at  low  resolution.  Landsat  

TM’s  infrared sensor  has  a  pixel  resolution  of  120 m and  Landsat  ETM+ has  a  

resolution  of  60 m. The  increased  resolution  of  Landsat’s  sensor  also  limits  the  

swath  to  185km wide.  

 

2.3 Urban Greenspace 

 

Greenspaces refer to those land uses that are covered with natural or man-made 

vegetation in the built-up areas and planning areas (Wu 1999). 

 

Urban green space is considered a relatively recent term, originating from the urban 

nature conservation movement and the idea of green space planning  (Swanwick, 

Dunnett, and Woolley 2003). According to Swanwick  et al. (2003,  pp. 97-98), urban 
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greenspace is by definition “land that consists predominantly of unsealed, permeable, 

‘soft’ surfaces such as soil, grass, shrubs and trees … whether or not they are publicly 

accessible or publicly managed”. (Jim and Chen 2003) suggested that “greenspaces in 

cities exist mainly as semi-natural  areas, managed parks and gardens, supplemented 

by  scattered vegetated pockets associated with roads and  incidental locations.”  Fig. 

3 illustrates one version of the definition of urban green space and the difference 

between urban green space and other types of urban open space or grey space (land 

that consists predominantly impermeable surfaces, such as roads, car parks, 

pavements and town squares etc). In the present study, urban green space  is broadly 

defined as all types of vegetation found in  the urban environment, including urban 

parks and gardens, outdoor playgrounds, open woodland and grassland fields, 

regardless of their composition and ownership. 

 

 

Fig. 3 structure of urban greenspace 

  

Significance and Benefits of Urban Greenspace  

 

Green space plays an important functional role in the urban environment by 

exchanging water, energy and nutrients  between  the atmosphere, organisms, soil  

and aquatic systems.  It provides environmental, social and economic values  to urban 

communities, as well as contributing positively to urban sustainability. These values 

and benefits  include  providing ecosystem services and maintaining biodiversity  (Jim 
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and Chen 2003), moderating urban climate(Weng 2009, Weng, Lu, and Schubring 

2004, Landsberg 1981)offering social inclusion and health benefits (Kaplan and 

Kaplan 1989) , increasing property values  (Anderson and Cordell 1988, Luttik 2000), 

advancing cities’ economic development  (Arvanitidis et al. 2009) and improving 

people’s quality of life(Lo and Faber 1997, WEBER and Hirsch 1992).In short, the 

significance  of urban green space in providing a broad range of benefits and 

enhancing urban sustainability is profound. Therefore, estimating urban green space 

patterns and changes is becoming increasingly important in ecologically  oriented city 

planning and environmentally sustainable urban development. 

 

Urban green space plays an important role in supporting urban communities 

ecologically, economically and socially.  When drastic  changes occur to urban green 

space, the environment, economy and quality of human well-being are affected  

(James et al. 2009). Therefore, a better understanding of urban green space benefits is 

crucial for implementing better urban planning strategies. 

 

First, urban green space improves urban environmental quality.  It generates 

significant  ecosystem  services  including  offsetting carbon emission, regulating 

microclimate, mitigating  flooding and soil erosion,  releasing  oxygen,  maintaining 

wildlife habitat and  biodiversity,  removing  gaseous and particulate  pollutants, and 

reducing noise  (Bolund and Hunhammar 1999, Jim and Chen 2003). These 

ecosystem services all contribute to improving the quality of urban environments. 

Since  the  18th century, people  have  realised  the positive contribution of urban  

green space, especially trees,  to  reducing energy consumption  (Landsberg 1981). 

Urban green space provides shading, evaporative cooling, rainwater  interception, 

storage and infiltration functions. However, with the urbanisation  process gradually 

replacing  vegetated surfaces  with impervious surfaces, energy exchanges are 

modified to cause an urban heat island  (Gill et al. 2007). The use of urban green  

space offers significant potential in  influencing urban energy fluxes by selective 

reflection and absorption of solar radiation  to regulate air temperature,  thereby 

reducing  energy consumption  for air conditioning  and carbon emissions  (Akbari, 

Pomerantz, and Taha 2001, Donovan and Butry 2009, McPherson and Rowntree 

1993). Therefore, urban green space can mitigate the urban heat island effect. 
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Second, urban green space has economic values. (Anderson and Cordell 1988) 

provide empirical evidence that trees are associated with increase in residential 

property values. (Luttik 2000) suggests  housing price may be used as a guiding 

principle to quantify  the socio-economic value of ecological factors. It  has  been  

demonstrated  that the distribution of urban green space can influence the real estate 

market. (Bolitzer and Netusil 2000)show that proximity to an open space, such as 

public parks, natural areas and golf courses, and the type of  open-space can increase 

the sale price of homes. They conclude  that both distance from a home to an open 

space and the type of open space have significant effects  on  the housing market.  

These studies show that houses located in a comfortable living environment with 

attractive settings and pleasant views can have an added value over similar, less 

favourably located houses. Therefore, urban  green space increases  property values  

and  affects  the  housing market  (housing prices and housing values) positively. 

 

Third, urban green space provides social benefits.  It  provides people with 

environmentally friendly zones where  both local residents and tourists  interact with 

nature. Research from the past two decades suggests  that access to urban green 

spaceis beneficial to  diverse  communities as a focal point for recreational and 

educational opportunities  (Barbosa et al. 2007, Germann-Chiari and Seeland 2004, 

Seeland, Dübendorfer, and Hansmann 2009, Takano, Nakamura, and Watanabe 

2002). Natural views, rather than  views of  man-made property settings, can  improve 

people’s physical and psychological well-being  (Kaplan and Kaplan 1989, Tennessen 

and Cimprich 1995, Tzoulas et al. 2007, Ulrich et al. 1991). Overall, urban green 

space contributes positively to the quality of life. Quality of life is a concept that can 

be measured by various indicators  (Liu 1976; (Liu et al. 2007, Pacione 2003) . It is 

accepted that quality of life  is comprised of both objective and subjective elements 

that describe attributes of a group of people  (Gregory et al. 2009). Some indicators 

such as housing, income level and education status,  developed as  quality of life  

indices,  have been measured together with physical environmental  data  (Lo and 

Faber 1997, WEBER and Hirsch 1992). These studies show that urban green space 

plays an important role in preserving and enhancing urban quality of life.  
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2.4 Integrated Analysis: Urban Greenspace and Land Surface 

Temperature 
 

 

There are three application areas of researches on UHI study using thermal sensor 

data (Voogt and Oke 2003): examination of the spatial structure of urban thermal 

patterns and their relation to urban surface characteristics, thermal remote sensing for 

urban surface energy balances, and study on the relationship between atmospheric 

heat islands and surface urban heat island. Among the first application area, most 

researchers have focused on studying the relationship between ULST and vegetation 

abundance. Various vegetation indices (Gallo et al. 1993, Gallo and Owen 1999)and 

fractional vegetation cover (Weng, Lu, and Schubring 2004) have been used to 

indicate UHI effects, and the results showed that vegetation abundance has significant 

negative correlation with UHI effects.  
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3. RESEARCH METHODOLOGY 

 

This section describes the data and methods that were applied in data acquisition, pre-

processing (geo-reference and geometric correction), processing, presentation and  

analysis data with a view to achieve the designed objectives and the research 

questions posed. This allowed us analysis of change and to draw conclusions about 

effects of spatial pattern of greenspace on land surface temperature. Fig. 4 depicts the 

flow chart how the research data, methods and analysis were organized in a brief way. 

 

 

Fig. 4 The flow chart of the research data and methodology 
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3.1 Data Collection  
 

3.1.1 Remote Sensing Data 

 

Currently remote sensing data for detecting land surface thermal environment 

generally include sixth band of Landsat TM and Landsat ETM+, fourth and fifth 

bands of AVHRR on NOAA meteorological satellite, 31
st
  and  32

nd
 bands of MODIS 

satellite, 10
th 

, 11
th

 , 12
th

 ,13
th

 and 14
th

  bands of ASTER the satellite. The spatial 

resolution of MODIS data vary from 250m to 1000m, but spectral resolution is 

relatively high. The spatial resolution of AVHRR data is 1000m. ASTER thermal 

infrared band has 90m of spatial resolution. Landsat TM and ETM+ thermal infrared 

bands are featured with spatial resolution of 120m and 60m (Table1). In order to 

maintain the consistency of data radiation characteristics as well as to investigate the 

detailed thermal structure of land surface more effectively, Landsat images were 

chosen as the data source of the research (Fig.5). Table2 describes the related 

information of the Landsat 5 images used for further processing. 

                                  

Fig. 6 urban area of Aksu, NW China (5,4,3 bands RGB) 
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Satellite Sensor Attribution 

Number of 

TIR band 

numbers 

spectral 

range of 

TIR (µm) 

spatial 

resolution 

NOAA AVHRR 
the United 

States 
2 

3.55-3.93 

10.3-12.5 

1.1km-

8km 

ERS ATSR ESA 3 

Central 

wavelength 

3.7, 11, 12 

 

1km 

Terra&Aqua MODIS America 16 
3.66-

14.385 
1km 

RESURS-1 MSU-SK Russia 1 10.4-12.6 600m 

BIRD HSRS Germany 2 
3.4-4.2 

8.5-9.3 
370m 

CEBER IMRSS China, Brazil 1 10.4-12.5 156m 

Landsat-5 TM 
the United 

States 
1 10.4-12.5 120m 

Terra&Aqua ASTER 
Japan, 

America 
5 

8.125-

11.65 
90m 

Landsat-7 ETM+ 
the United 

States 
1 10.4-12.5 60m 

Table1. Common thermal satellite sensors 

 

 

Satellite Sensor Data Acquisition date Resolution(m) 
visible/thermal 

Product 

Quality 

Landsat 5 TM/MSS 19 August, 2011 30/120 good 

Table2. Description of Landsat image data 
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Landsat 5 path 147, row 31 covers the whole study area. The map projection for 

collected satellite images is Universal Transverse Mercator(UTM) within 44 North. 

Datum is World Geodetic System (WGS) 84(USGS 2010).  

 

3.1.2 Reference Data  

 

In this study, it was necessary to employ a variety of methods to develop reference 

data sets for training samples and accuracy assessment. It is also apparent that 

ancillary data such as high resolution imageries and existing map of the study area 

were essential for extracting and assessing the accuracy of the urban greenspace map. 

The study mainly relied on the land use map of Aksu city with a scale of 1:150000 

(produced by Land Resources Bureau of Aksu City and Department of Resource and 

Environmental Science, Xinjiang University, China. Published on Jun. 2012) as 

reference for urban greenspace mapping and its accuracy assessment.  Google Earth 

was another option to get some ideas about detecting urban greenspace pattern of 

Aksu city. In conclusion these were the reference data used for training site selection 

and preparing the urban greenspace map.  

 

The referenced land use map of Aksu city is attached in Appendix. 

 

3.2 Tools 

 

In order to store, analyze and display the collected remote sensing data and maps, 

softwares from ESRI and EXELIS were employed. Hence, both Arcmap/GIS 10.1 and 

ENVI 4.1 were used to extract urban greenspace, land surface temperature and further 

analysis visual data. In consideration of determining spatial landscape metrics of 

urban greenspace  and  calculate them, public domain statistical package FRAGSATS 

4.1 software(Mcgarigal et al. 2002) was used. Furthermore, to figure out impact of the 

compositional and configurational pattern of urban greenspace on land surface 

temperature, the MATLAB was used to quantify the mutual information between the 

variables. Besides, Microsoft windows accessories for tabulations and graphical 
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representations were used to present describe and analyze the outcomes of the study 

and write up the whole report. 

 

3.3 Image Processing 

 

Land surface spectral data collected by sensors are distorted due to a variety of factors 

such as sensor characteristics, instantaneous position, height, speed, roll, tilt and yaw 

of carrying platform. In most of the cases rough correction for these kinds of 

systematic errors will be carried out by satellite receiving stations. However, only 

with rough correction, all the distortion of remote sensing images cannot be 

eliminated and unable to meet the needs of applications and research. In the practical 

application process, in order to ensure the reliability of the data, georeferencing and 

geometric correction should be applied. In this regard, the Landsat images were pre-

processed using standard procedures including geo-referencing and geometric 

correction. The World Geodatic Datum 1984 (WGS-84) was used as the coordinate 

system. Subsets of Landsat satellite images were rectified using land use map with 

UTM projection Zone 44 (WGS-84) using first order polynomial method and nearest 

neighbor image re-sampling algorithm through image-to-map registration techniques. 

A total of 35 Ground Control Points (GCPs) were used to register the TM image 

subset with the rectification error less than 0.5 pixels.  Consequently, this allowed 

direct comparison of features between the images and land use map during the 

selection of training samples for use in mapping greenspace and accurace assessment 

of classified maps. On this image pre-processing stage, geo-referencing tool of  

ArcGIS 10.1 was applied. 
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3.4 Extracting Urban Greenspace 
 

3.4.1 Landcover classes  

 

Fig.6 shows the classification land cover class system established for this study. The 

land cover classes applied in this paper are adopted from the classification used by  

Chinese Environment Agency, which describes land cover (and partly land use) 

according to a nomenclature of 38 classes organized hierarchically in different levels.  

This system is used for pixel-based image classifications. The entire image is 

classified into four classes, namely urban greenspace, residential area, construction 

site and water body. The ultimate goal of image classification is to extract urban 

greenspace information in order to further investigate its relationship with land 

surface temperature.  

 

 

 

 

 

 

 

 

Fig.6 Landcover classes 

3.4.2 Image classification  

 

Urban greenspace is an important symbol of evaluating urban civilization and 

modernization(DU and GAO 2000). As the natural productivity, green space plays 

important roles in urban ecological systems. Compared with the traditional surveying 

method and the mathematical or statistical analysis, green space information 

extraction from remote sensing images has noticeable advantages: (1) intelligent and 

shorter time requirement; (2) smaller human impact and higher accuracy; and (3) 

higher visualization, facilitate comprehensive evaluation. To take use of these 

Study 
Area 

Urban Greenspace 

Residential Area 

Construction Site 

Water Body 
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advantages, image classification method was used to extract the urban greenspace 

information(Huapeng et al. 2007).  

 

In remote sensing, there are different image classification techniques. Their 

appropriateness depends on the purpose of landcover maps produced for and the  

analyst’s knowledge of the algorithms he/she is using. Classification methods can also 

be viewed as pixel-based, object-oriented, fuzzy classification, etc. Selection of 

appropriate classification methods and efficient use of multisource remotely sensed 

data are useful for minimizing the classification errors and improve  the accuracy (Lu 

and Weng 2007). Regarding mentioned points above, for this study, pixel-based 

supervised image classification was applied. 

 

Pixel-based Supervised Image Classification 

A pixel-based supervised image classification is based on the theory that it uses pixels 

in the training samples to develop appropriate discriminant functions to distinguish 

each class. The data vectors typically consist of a pixel’s grey level values from multi-

spectral channels (Shackelford and Davis 2003).  Training samples are needed to train 

the classifier based on prior knowledge of the study area features. This knowledge is 

obtained through ground truth and familiarity with associated ancillary maps and 

images. Then the  statistical analysis is  performed on the multiband data for each 

class. All pixels in the images outside  the  training sites were  then compared with the 

class discriminants  and assigned to the class they are closest to  or remained 

unclassified (Navulur 2006).  To conclude, the four stages involved in  a  supervised 

classification are: (1) class definition, (2) pre-processing, (3) training and  (4) 

automated pixel assignment.  In this study, pixel-based supervised maximum 

likelihood image classification is performed in ENVI 4.1.   

 

After the images were geo-referenced and geometrically rectified, image classification 

and interpretation was performed. Using existing land use map study of area and 

Google Earth as reference data, training samples were gathered from more than 130 

points as signatures for Landsat satellite images. The training points were 

proportionally distributed to each cover types with at least 15 points per cover type. 

For the supervised classification the remote sensing image, its unsupervised 
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classification map and land cover map were used to create ground control signatures. 

The image was classified into four major landcover classes  and they include urban 

greenspace, residential areas, construction site and water bodies. 

 

3.4.3 Accuracy Assessment 

 

Assessment of classification accuracy is critical for a map generated from any remote 

sensing data. Although accuracy assessment is important for traditional remote  

sensing techniques, with the advent of more advanced digital satellite remote sensing 

the necessity of performing an accuracy  assessment has received new interest 

(Congalton 1991). Currently, accuracy assessment isconsidered as an integral part of 

any image classification. This is because image classification using different 

classification methods or algorithms may classify or assign some pixels or group of 

pixels to wrong classes. In order to wisely use the landcover maps which are derived 

from remote sensing and the accompanying land resource statistics, the errors must be 

quantitatively explained in terms of classification accuracy. The most common types 

of error that occurs in image classifications are omission or commission errors.  

 

The widely used method to represent classification accuracy is in the form of an Error 

Matrix sometimes referred as Confusion Matrix. Using Error Matrix to represent 

accuracy is recommended and adopted as the standard reporting convention 

(Congalton 1991). It presents the relationship between the classes in the classified and 

reference maps. The technique provides some statistical and analytical approaches to 

explain the accuracy of the classification. In this study, overall, producer’s and user’s 

accuracy were considered for analysis. Kappa Coefficient, which is one of the most 

popular measures in addressing the difference between the actual agreement and 

change agreement, was also calculated. The kappa is a discrete multivariate’s 

technique used in accuracy assessment (Fan, Weng, and Wang 2007). The Kappa 

coefficient is calculated according to the formula given by (Congalton 1991): 

  
              

 
   

 
   

             
 
   

 

Where, 
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r = the number of rows in the error matrix  

   = the number of observations in row i column i(along the diagonal)  

   = is the marginal total of rowi(right of the matrix)  

   = the marginal total of column i(bottom of the matrix)  

  = the total number of observations included in the matrix 

 

The reference data used for accuracy assessment are usually obtained from aerial 

photographs, high resolution images (e.g. IKONOS and QUICKBIRD), and field 

observations. In this study, the assessment was carried out using Google Earth and 

existing landcover maps as a reference. A set of reference points has to be generated ; 

thus, three hundred (300) randomly allocated training points were generated for 

accuracy assessment. These points were verified and labeled against reference data. 

Error matrices were designed to assess the quality of the classification accuracy of the 

newly generated landcover map. The error matrix can then be used as a starting point 

for a series of descriptive and analytical statistical techniques (Congalton 1991). 

Overall accuracy, user’s and producer’s accuracies, and the Kappa statistic were then 

derived from the error matrices. 

 

3. 5 Landscape Metric Selection and Calculation 

 

It was demonstrated that land surface temperature or surface urban heat island could 

be related to LCLU types (Chen, Zhao, et al. 2006, Weng 2001, Xian and Crane 

2006), and there are relationship between spatial structure of urban thermal patterns 

and urban surface characteristics (Liu and Weng 2008, Weng, Liu, and Lu 2007). In 

the past few decades, a large number of landscape metrics have been developed and 

widely used to characterize landscape patterns (Gustafson 1998, Li and Reynolds 

1993, Li and Wu 2004, McGarigal and Marks 1995, Turner 2005, Turner et al. 1989, 

Wu 2000, Wu et al. 2002) and to relate landscape patterns to ecological processes 

(Turner 2005). These metrics fall into two general categories to measure the 

composition and spatial configuration (Gustafson 1998, McGarigal and Marks 1995). 

Landscape composition metrics measure the presence and amount of different patch 
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types within the landscape, without explicitly describing its spatial features (i.e., 

percentage land of a certain cover). Landscape configuration metrics measure the 

spatial distribution of patches within the landscape (i.e., degree of aggregation and 

contagion) (Alberti 2005). Three commonly used landscape metrics were selected to 

relate land surface temperature with spatial pattern of urban greenspace according the 

following principles (Riitters et al. 1995, Li and Wu 2004, Lee et al. 2009, Riva-

Murray et al. 2010): (1) important in both theory and practice, (2) easily calculated, 

(3) interpretable, and (4) minimal redundancy. Table 3(for detailed calculation 

equation and comments, see McGarigal et al.  2002) shows the three landscape 

metrics. They are selected to provide complementary information about landscape 

structure for both composition and configuration.  

Landscape metrics Calculation and description 

Compositional 

 

Percentage of Landscape area 

(PLAND) 

                   

 

   

   

   is proportion of the landscape 
occupied by patch type (class)  ; and n is 
the number patches in the landscape for 
class  ;     is the area of patch   . A is the 

total landscape area. It is a measure of 
landscape composition. 

 

 

Configurational 

 

 

Patch density(PD) 

         

 

   is the number of patches in the 

landscape for patch type (class)  . It is an 
index measuring spatial heterogeneity of 
the landscape 

 

 

 

Edge density(ED) 

 

 

        

 

   

   

    is the total length of edges in the 

landscape for patch type (class)   and 
patch  , including landscape boundary 
and background segments involving 

patch type  . It measures the shape 
complexity for a patch type or the 
landscape. 

 
Table 3. the definition of landscape metrics 
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With FRAGSATS software we can have the option of conducting a local structure 

gradient or moving window analysis and outputting the results as a new grid for each 

selected metric. If we select a moving window analysis, then we must specify the 

level of heterogeneity (class or landscape) and the shape (round, square or hexagon) 

and size (radius or length of side, in meters) of the window to be used. A window of 

the specified shape and size is passed over every positively valued cell in the grid 

(i.e., all cells inside the landscape of interest). However, only cells in which the entire 

window is contained within the landscape are evaluated. Within each window, each 

selected metric at the class or landscape level is computed and the value returned to 

the focal (center) cell. The moving window is passed over the grid until every 

positively valued cell containing a full window is assessed in this manner. 

 

In our case, we used 8-cell rule and 500m-radius circular window was used. The 

window moves over the 1andscape one cell at a time, calculating the selected metric 

within the window and returning that value to the center cell and output a new grid 

file for each selected file metric. 

 

3. 6 Estimating Land Surface Temperature 
 

3.6.1 Principles of Land Surface extraction    

 

The nature of material is to continuously radiate electromagnetic waves with certain 

energy and spectral distribution, as long as the temperature is more than absolute zero 

(273.15K). Moreover, the intensity and the features of spectral distribution of radiant 

energy are function of material type and temperature. In atmospheric transmission 

process, thermal infrared passes through the two windows (3-5 m  and 8-14 m ). 

Thermal infrared remote sensing uses space borne or airborne sensors to collect and 

record the thermal infrared information of land surface objects, which belongs to two 

atmospheric windows mentioned above. This thermal infrared information is also 

used to identify the land surface objects, to extract the surface parameters as well as 

temperature, humidity, thermal inertia, etc. The sun and the earth is the main source of 

energy for thermal infrared remote sensing. Therefore, the thermal infrared radiation 

http://www.free-online-private-pilot-ground-school.com/Aviation-Weather-Principles.html
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characteristics of the surface and the sun is the basis of the thermal infrared remote 

sensing. Generally speaking, the object of the radiation energy budget is uneven, so 

the temperature of the object is unstable. But at a specific moment, the state of the 

object can be considered as balanced. Thus, we are allowed to use certain temperature 

to characterize and analyze the radiation energy of an object. The following content 

describes the basic thermal radiation law of objects. 

 

(1)  Kirchhoff’s Law 

Kirchhoff found that at the same temperature, for various objects, ratio between the 

emitted energy W and the absorption rate  within per unit time and per unit area is a 

constant. This ratio has nothing to do with the nature of the object itself; it is equal to 

the black body radiation energy WB of same area under the same temperature 

condition. Its mathematical expression is following:  

 

W / = WB 

 

Can also be written as:    = W / WB 

From previous formula  = W/WB, so   equal to the absorption rate and 

emissivity of the object. (If an object does not absorb electromagnetic radiation at 

certain wavelength, it will not transmit the same wavelength of electromagnetic 

waves)
1
 

 

(2) Stephen (Stefen) - Boltzmann 

The law has proved that the total radiant heat energy emitted from a surface is 

proportional to the fourth power of its absolute temperature.  

 

The law applies only to blackbodies, theoretical surfaces that absorb all incident heat 

radiation. For general objects the law needs to be amended. The emitted  thermal 

radiation energy of objects, according to Kirchhoff and Stephen (Stefen) - 

Boltzmann's law
2
, equals to, 

 

4TW                       is Emission rate, 

                                                 
1
 http://www.tutorvista.com/content/physics/physics-iii/heat-and-thermodynamics/kirchhoffs-law.php# 

2
 http://www.britannica.com/EBchecked/topic/564843/Stefan-Boltzmann-law 

http://www.britannica.com/EBchecked/topic/68445/blackbody
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Or 
4TW                   is absorption rate. 

 

The formulas above show that the thermal radiation energy of general objects is 

proportional to the fourth power of its absolute temperature and its emission rate. 

Hence, if there is a slight difference in object temperature, it will cause more 

significant change. As long as the emission rate of surface features is different, two 

objects with the same temperature will exhibit different radiation characteristics. Thus 

the object heat radiation characteristics form the theoretical basis of the thermal 

infrared remote sensing. 

 

3.6.2 TM/ETM+ Temperature Extraction Algorithm Overview  

 

Currently there are three types of land surface temperature retrieval algorithms for 

TM/ETM+ images, which are radiation conduction equation method, mono-window 

algorithm and single-channel algorithm(DING Feng 2006). Radiation conduction 

equation method requires real-time atmospheric profile data but acquisition of this 

type of data is rather difficult; Parameters of mono-window algorithm need near-

surface temperature, and atmospheric water content; the only required atmospheric 

parameters for single-channel algorithm is moisture content of atmosphere. The 

algorithms are outlined below: 

 

(1)   Radiation Conduction Equation 

This method is also known as atmospheric correction method. The basic idea is to first 

estimate the impact of the atmosphere on surface thermal radiation, specifically the 

atmospheric sounding profile data is measured by synchronous satellite transit or 

MODTRAN, ATCOR, 6S atmospheric model; then this atmospheric effects will be 

subtracted from total thermal radiation observed by satellite sensor. The is the process 

of obtaining the surface thermal radiation intensity. At the end this  intensity is 

converted to the corresponding surface temperature. The algorithm expression: 

 

      atmatmSsensor IITBI  ]1[  
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Where sensorI  is intensity of surface emissive radiation measured by sensor;  is 

surface emission rate;  STB  is blackbody thermal radiation intensity derive by 

Plank's law where  ST  is The surface temperature(Kelvin). 

atmI and 

atmI   are 

atmospheric thermal downstream and upstream radiation intensity respectively;   is 

atmospheric transmittance. 

atmI and 

atmI can be calculated by using real-time 

atmospheric sounding profile data or  6S atmospheric modeling software. Therefore, 

as long as surface emissivity is measured, the  STB  can be calculated by applying the 

formula described above. To further calculation following formula will be used to 

retrieve the land surface temperature: 

 

  sS TBKKT /1ln/ 12   

 

Where ST  is surface temperature (Kelvin); for Landsat TM 1K and 2K  are constants 

 

1K =607.76  112   msrmW   

2K =1260.56  112   msrmW   

 

Radiation conduction equation method limits the algorithm for practical application 

due to the lack of real-time atmospheric profile data. 

 

(2) Single-Channel Algorithm 

Single-channel algorithm only relies on one thermal infrared band to invert the land 

surface temperature, The formula:  

 

    321 /)( SENSORS LT  

 

Where ST  is land surface temperature (K); sensorL  is radiation intensity measured by 

sensor (unit: 112   msrmW  );   land surface emission rate;  , 321 ,,,  are 

intermediate variables and explained by formulas below: 

 

   /1/*//1 1

42

2  cLTLc sensorsensorsensor  
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1234.115583.014714.0 2

1  ww  

5294.037607.01836.1 2

2  ww  

39071.08719.104554.0 2

3  ww  

Where  C1 and C2 are constants of PLANK function.  

 

1c = 1.19104 * 10
8 124   srmmW   

                                       2c = 14387.7 km   

SENSORT  is pixel brightness temperature detected by sensor (Kelvin);   is effective role 

wavelength; w is The total water vapor content of atmospheric profiles. (g
2cm ). 

 

(3) mono-window algorithm 

Mono-window algorithm, invented by (Zhi-hao, Zhang, and Karnieli 2001). It is a 

derivation of land surface thermal radiation conduction equation. By using this 

method land surface temperature can be extracted from TM sixth band. The 

calculation procedure is explained as following: 

 

      CDTTDCDCbDCaT aS /11 6   

 

Where ST is land surface temperature (Kelvin); a and b are variables, respectively  

-67.355351, 0.458606; C and D are intermediate variables. C =   , D =

      111 , where  is land surface emission rate,   is atmospheric 

transmittance; 6T  is pixel brightness temperature detected by sensor (Kelvin); aT is  

average atmospheric temperature (K). Under the standard state of atmosphere, there is 

a liner relationship (Table 4) between the average atmospheric temperature and near-

surface temperature. 
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Atmosphere type Estimating equation 

Average atmosphere of America 1976 088045.09396.25 TTa   

Average tropical atmosphere 

(North latitude15º, annual average ) 
091715.09769.17 TTa   

Mid-latitude summer average atmosphere 

(North latitude 45º, July) 
092621.0011.16 TTa   

Mid-latitude winter average atmosphere  

(North latitude 45º  , January) 
091118.02704.19 TTa   

Table 4.   Estimate of the average atmospheric temperature table 

 

 

atmospheric profile 
Moisture content

 2
/ cmgw  

Estimating equations of 

Atmospheric 

transmittance  

 

High temperature (35Cº) 

0.4-1.6 T=0.97429-0.08007w 

1.6-3.0 T=1.031412-0.11536w 

low temperature (18 Cº) 
0.4-1.6 T=0.982007-0.09611w 

1.6-3.0 T=1.05371-0.14142w 

Table 5.  Estimation of atmospheric transmittance for Landsat TM Band6 

 

 

Band  From 01/03/1984 to 
04/05/2003 

After 04/05/2003 

Lmin Lmax Lmin Lmax 

1 -1.52 152.10 -1.52 193.0 

2 -2.84 296.81 -2.84 365.0 
3 -1.17 204.30 -1.17 264.0 
4 -1.51 206.20 -1.51 221.0 
5 -0.37 27.19 -0.37 30.2 
6 1.2378 15.303 1.2378 15.303 
7 -0.15 14.38 -0.15 16.5 

Table 6.  Values of Lmax and Lmin for reflecting bands of Landsat-5 TM (W˙m-
2
-sr

-1
˙μm-

1
) 

 

3.6.3 Surface Brightness Temperature Retrieval of the Study Area  

 

According to the calculation algorithm, the sixth band radiance of remote sensing 

images was obtained (relevant parameters are shown in the table 6). Surface 

brightness temperature of the study area was then calculated using following formula: 
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 LKKT /1ln/ 126   

Where 6T  is brightness temperature of the study area; 1K  and 
2K  is default pre-

launch constants (Table 7), L is radiance of sixth band calculated. 

 

TM Band 6 
1K   msrm ..2

 2K  （Kelvin）   

LandSat5 TM 607.76 1260.56  

Table 7 Value of 1K  and 2K  

3.6.4 Surface emission rate calculation of the study area 

 

Surface emissivity is an important element to calculate the land surface temperature . 

Surface emissivity has considerable effect on accuracy of land surface temperature 

extraction and the important sources of error. The study shows that the relative error 

of 0.01 in emission rate can cause error of 0.75K  in land  surface temperature. 

Consequently, the resulting error towards  extraction accuracy is much more bigger 

than the error that atmosphere causes. Therefore, people have been greatly concerned 

about acquisition of surface emissivity information in many ways, such as laboratory, 

field and space measurements.  

 

In this paper given emissivity of soil and vegetation as precondition,  the weighted 

hybrid model , which proposed by Sobrino and based on land cover types, was used 

and the surface emissivity was calculated by NDVI classification. The formula as 

follows: 

 

ε=















5.099.0

5.02.0)1(

2.097.0

NDVI

NDVIPP

NDVI

VSVV   

 

Where ε is the surface emissivity, εv vegetation emissivity, εs bare soil emissivity εv 

=0.99, εs = 0.97, pv vegetation coverage. 

Vegetation coverage is the ratio between the total area vertical projection area of 

vegetation canopy and total soil area, namely: 

 



33 

 

Pv=
)( minmax

min

NDVINDVI

NDVINDVI




 

 

NDVI is vegetation index of a pixel. NDVImin and NDVImax  are minimum and 

maximum NDVI values of the study area. In fact, the vegetation cover and leaf area 

index (LAI) change over time and space. Healthy vegetation has higher  humidity 

value.  For all soil background, if green vegetation coverage increases with increasing 

humidity values. This phenomenon is particularly evident when it comes to dry soil, 

namely NDVImin = 0.2, NDVImax = 0.5. 

 

3.6.5 Land surface temperature calculation of the study area  

 

This paper used mono-window algorithm, proposed by Zhihao, to calculate land 

surface temperature. The average atmospheric temperature was obtained from the 

formula displayed on Table 4 (grayed area); atmospheric transmittance was estimated 

based on formula showed on Table5 (grayed area). According to s previously 

calculated brightness temperature and surface emissivity, real temperature map of 

study area was produced with mono-window algorithm. 

 

3.7 Statistical Correlation Measures 
 

Some previous studies have already showed us about the negative correlation between 

the land surface temperature and urban green space. However, the studies which can 

indicate us how the spatial pattern of greenspace effects the landsurface temperature 

are significantly rare. To fill this gap, this study applied statistical correlation methods 

to further reveal the spatial relationships between the land surface temperature and 

spatial pattern of urban greenspace.   

 

In information theory, we can find information measures that can quantify how much 

a given random variable can predict another one
3
. In this respect, the normalized 

                                                 
3
 http://en.wikipedia.org/wiki/Entropy_(information_theory) 
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mutual information measure was applied to figure out the correlation between the land 

surface temperature and spatial pattern or urban greenspace.  

 

Not only is mutual information widely used as a criterion for measuring the degree of 

independence between random variables but it also measures how much a certain 

variable can explain the information content about another variable, being a 

generalized correlation measure. Thus, special relationships between spatial pattern of 

urban greenspace and land surface temperature (random variables) can be defined 

based on this measure as a relevance criterion. 

 

In following section some important concepts and properties in information theory 

will be introduced. 

 

Entropy  

In information theory, entropy is a measure of the uncertainty in a random variable. In 

this context the term usually refers to the Shannon entropy, which quantifies the 

expected value of the information contained in a message
4
. The Shannon entropy of a 

random variable X with probability density function      for all possible events 

    is defined as  

                                      

 

 

In the case of discrete random variable X, entropy H(X) is expressed as  

  

                   

   

                     

Where      represents the mass probability of an event     from a finite set of 

possible values. Entropy is often taken as related amount of information of a random 

variable.  

                                                 
4
 http://en.wikipedia.org/wiki/Entropy_(information_theory) 
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Mutual information  

In probability theory and information theory, the mutual information (sometimes 

known by the archaic term trans-information) of two random variables is a quantity 

that measures the mutual dependence of the two random variables. 

 

Formally, the mutual information of two discrete random variables X and Y can be 

defined as: 

               

      

    
      

        
               

where p(x,y) is the joint probability distribution function  of  X and Y, 

and      and      are the marginal probability distribution functions 

of X and Y respectively. 

 

I is always a nonnegative quantity for two random variables, being zero when the 

variables are statistically independent. The higher the I, the higher the dependence 

between the variables. Furthermore, the following property about two random vari-

ables always holds: 

                                       

Mutual information I can be expressed in terms of entropy measures according to the 

following expression: 

                                   

Where        is the joint entropy, which is defined from the joint probability 

distribution       . 

 

 

 

 

 

http://en.wikipedia.org/wiki/Archaism
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Joint_distribution
http://en.wikipedia.org/wiki/Marginal_probability
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Normalized mutual information measure 

 

So far, I has been introduced as an absolute measure of common information shared 

between two random variables. However, as we can infer from (5), I by itself would 

not be suitable as a similarity measure. The reason is that it can be low because either 

the     variables present a weak relation (such as it should be desirable) or the 

entropies of these variables are small (in such a case, the variables contribute with 

little information). Thus, it is convenient to define a proper measure, so that it works 

independently from the marginal entropies and also measures the statistical 

dependence as a similarity measure . 

 

Thus, the normalized mutual information measure will be used to assess the 

dependencies between the variables. In fact there exit numerous definitions of 

information-based criteria in applications among them, one important expression is 

the normalized mutual information measure defined as  

 

    
      

    
         

      

    
               

This expression presents another type of “correlation measure and sometimes is called 

as “asymmetric dependency coefficient (ADC)”. However, tow definitions in (number 

6) will produce unequal values due to their asymmetric property in the definitions. 

Therefore, normalized mutual information was proposed with symmetric property, 

such as  

         
      

         
          

      

         
         

In this study, the expression (6) was applied to measure the normalized mutual 

information between the different variables since the focus of the work is to find out 

the correlation between the land surface temperature, which is chosen as reference of 

target variable , and other variables including PLAND, ED and PD.     

 

It is worth to mention that the mutual information of two random variables I(X,Y) is 

always smaller than the entropy H(Y), namely the              is valid, therefore 
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            If       equals one, it means X,Y  are highly correlated. If      equals 

0 it indicates there is no correlation between X, Y.4. RESULTS AND DISCUSSION 
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4. RESULTS AND DISCUSSION  
 

4.1 Urban Greenspace Map 
 

 

Urban greenspace was mapped using remote sensing classification techniques (Fig.7). 

In order to achieve the best classification outcome to evaluate the classification 

results, confusion/error matrices were used. It is the most commonly employed 

approach for evaluating per-pixel classification (Lu and Weng 2007). The accuracy 

was assessed with cross-validation against landcover map and Google Earth 

Imageries. Using these reference data and the classified maps, confusion matrices 

were constructed. The resulting Landsat land use/cover map had an overall map 

accuracy of 87.6 %. This was reasonably good overall accuracy and accepted for the 

subsequent analysis and change detection. User’s accuracy of individual classes 

ranged from 75% to 100 % and producer’s accuracy ranged from 73 % to 100%.  

   

Fig.7 Urban greenspace map 
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Kappa statistics/index was computed for classified map to measure the accuracy of 

the results. The resulting classification of Landsat land use/cover map had a Kappa 

statistics of 84.4%. The Kappa coefficient expresses the proportionate reduction in 

error generated by a classification process compared with the error of a completely 

random classification. Kappa accounts for all elements of the confusion matrix and 

excludes the agreement that occurs by chance. Consequently, it provides a more 

rigorous assessment of classification accuracy.  

 

4.2 Spatial Pattern of Urban Greenspace  

 

To carry out the quantitative analysis of the relationship between the LST and urban 

greenspace, just having an urban greenspace map or a landcover map is not sufficient. 

Therefore, as described in methodology section, the compositional and 

configurational pattern of urban greenspace were calculated. For compositional 

feature  PLAND,  for configurational feature PD and ED  were chosen and grid map 

of the landscape metrics were produced (Fig.8).      

   (a)Percent cover of greenspace                   (b)Patch density                              (c) Edge density  

Fig.8 Grid map of urban greenspace metrics 

 

4.3 Land Surface Temperature Map 
 

The digital remote sensing method provides not only a measure of the magnitude of 

surface temperatures of the entire study area, but also the spatial extent of the surface 

±
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heat island effects (Fig.9). The LST map had a range of 296.72–322.35K with the 

highest surface temperatures located in the north, south and central urban area where 

mostly covered with residential areas and construction sites. The LST map also 

showed striking UHI effects with urban and rural surface temperature contrasts. 

General patterns of UHI with a maximum LST difference of 25K between vegetated  

and non-vegetated areas and a mean temperature of 309. 53K for the entire study area.  
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Fig.9 LST map of study area 

 

4.4 Descriptive Analysis of LST and Urban Greenspace 

 

Scatter plots (Fig.10) were made to show the relationships between the LST and 

landscape metrics. The every pixel value of LST map and corresponding values of 

urban greenspace landscape metrics were used as input data. 
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Fig.10 Scatter plot of LST with PLAND, PD and ED 

 

Considering correlation between the variables, there is a significant, negative linear 

relationship between LST and all three urban greenspace landscape metrics (Table 8). 

A statistically significant, negative linear relationship was shown for PLAND                

(r = -0.558828). Besides, other two landscape metrics indicated negative relationship 

with LST as well. However, PD indicates the weakest negative relationship                

(r = -0.24852) with LST compare to PLAND and ED (r=-0.49288).  

 

 PLAND PD ED 

LST -0.55828 -0.24852 -0.49288 
Table 8.  Correlation coefficients 

 

So as to answer the research questions, the new statistical approach was performed to 

quantify the relationship between the LST and spatial pattern of urban greenspace. 

The focus of this section mainly on normalized mutual information analysis since it is 

more appropriate method to measure the dependencies between different variables. 
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Nevertheless, the outcome of mutual information measure was omitted here 

considered as an intermediate result of normalized mutual information analysis 

(attached in appendices).    

 

First of all the normalized mutual information between the LST and single landscape 

metrics were calculated in order to figure out how the only composition or 

configuration of greenspace affects the  LST. Results are shown below : 

 

           = I(PLAND; LST)/H(LST) = 0.7100 

        =I(PD; LST)/H(LST) = 0.6985  

        =I(ED; LST)/H(LST) = 0.7033 

 

In next step, to measure the impact of combination of compositional and 

configurational urban greenspace, joint variables of urban greenspace landscape 

metrics were  formed and normalized mutual information was calculated, such as: 

 

                =I(PLAND, PD; LST)/H(LST) = 0.7679 

                =I(PLAND, ED; LST)/H(LST) = 0.7650 

             =I(PD, ED; LST)/H(LST) = 0.7832 

   

Finally, all three landscape metrics of urban greenspace were joined into one variable 

and dependency between this variable and LST was measured.   

 

                  =I(PLAND, PD, ED; LST)/H(LST) = 0.8694 

 

Results showed that the compositional and configurational pattern of urban 

greenspace can affect the LST to a certain degree.  When these two big categories of 

greenspace pattern are taken into account separately, it seems the compositional 

greenspace pattern has slightly bigger effect on LST than configurational. Meanwhile, 

the configurational greenspace patterns do have relatively strong effect but not as 

strong as compositional greenspace pattern. When it comes to joint greenspace 
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patterns, all types of joint greenspace patterns have more strong effect on LST than 

the both single compositional and configurational greenspace patterns. The joint effect 

of (PLAND, PD) has less effect on LST than (PLAND, ED) does. However, the joint 

effect of (ED, PD) has relatively higher effect than pervious joint greenspace patterns. 

Finally, The strongest effect of greenspace on LST was expressed by three joint 

landspcape metrics.  

 

4.4 Discussion  

 

Urban greenspace can potentially mitigate the UHI effects, and numerous studies have 

shown that increases in PLAND can significantly decrease LST(Weng, Lu, and 

Schubring 2004, Buyantuyev and Wu 2010) Fewer studies, however, have 

investigated the effects of configuration of greenspace on LST(Yokohari et al. 1997, 

Zhang et al. 2009, Zhou, Huang, and Cadenasso 2011). Taking the urban area oasis 

city Aksu as an example, we quantitatively demonstrated that the spatial pattern of 

greenspace, both the composition and configuration, significantly affected LST.  

 

Our results showed that PLAND was negatively correlated with LST. This is 

consistent with previous studies in which the abundance of greenspace was measured 

by vegetation index (e.g. Normalized Difference Vegetation Index) (Chen, Zhao, et al. 

2006, Buyantuyev and Wu 2010), vegetation fraction (Weng, Lu, and Schubring 

2004), or percent cover of a certain type of vegetation (e.g., Forest, Grass, Cropland, 

etc.)(Weng, Lu, and Liang 2006, Zhou, Huang, and Cadenasso 2011). The increase of 

greenspace mainly decreases LST because: (1) greenspace can generate cool island 

effects by evapotranspiration, combined with lower thermal inertia compared to 

impervious surfaces and bare soil (Lambin and Ehrlich 1996, Weng, Lu, and 

Schubring 2004, Hamada and Ohta 2010); and (2) greenspace (i.e., trees) can produce 

shade that prevents land surfaces from direct heating by the sun(Zhou, Huang, and 

Cadenasso 2011). 

 



45 

 

Concerning the configurational metrics,   the PD and ED are less correlated with LST 

than PLAND is. The normalized mutual information analysis also showed that there 

were less dependences between the LST with individual PD and ED, which is still 

smaller than the dependence between the PLAND and LST. This means the increase 

of patch density leads to decrease in mean patch size resulting in a general increase in 

total patch edges. Therefore, the effects of the increase of patch density on LST were 

due to the joint effects of a decrease in mean patch size and increase in patch edges on 

LST. The decrease in mean patch size may increase LST because a larger, continuous 

greenspace produces stronger cool island effects than that of several small pieces of 

greenspace whose total area equals the continuous piece(Yokohari et al. 1997, Zhang 

et al. 2009, Cao et al. 2010). However, the increase of total patch edges may enhance 

energy flow and exchange between greenspace and its surrounding areas, and provide 

more shade for surrounding surfaces, which lead to the decrease of LST (Zhou, 

Huang, and Cadenasso 2011). 

 

The composition of greenspace was more important than the configuration of 

greenspace in predicting LST, which is consistent with previous findings (Zhou, 

Huang, and Cadenasso 2011). However, our results also showed that the unique 

effects of the composition were slightly higher than that of the configuration, and 

much of the variance of LST was jointly explained because the composition and 

configuration of greenspace are highly interrelated. 

 

It is widely accepted that greenspace can cool the urban environment(Weng, Lu, and 

Schubring 2004, Hamada and Ohta 2010) therefore the focus of urban greenspace 

planning and management has been on increasing greenspace by planting more trees 

(Rizwan, Dennis, and Liu 2008b, Zhou, Huang, and Cadenasso 2011). Results from 

this study showed that the increase in greenspace cover can significantly mitigate UHI 

effects. In addition, we found that not only composition (i.e., percent cover) but also 

config-uration of greenspace affected LST. In other words, UHI effects can be 

mitigated by increasing greenspace cover and optimizing its configuration. These 

results have important implications for greenspace management, particularly in rapid 
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urbanizing areas, where available land area for increased greenspace cover is usually 

very limited (Zhou, Huang, and Cadenasso 2011)(Zhou et al.2011). 

 

It should be noted that the relationship between LST and configuration of greenspace 

found in this study may differ from those in previous studies where different types of 

data and units of analysis were used(Li et al. 2011, Zhou, Huang, and Cadenasso 

2011). We recognize that the individual characteristics of a city and the current spatial 

arrangement of the greenspace may affect the relationship between LST and spatial 

pattern of greenspace. Therefore, cautions should be taken when applying the results 

from this study to other cities or at a different scale(Hess et al. 2006, Feist et al. 2010)  
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5. CONCLUSIONS 
 

 

Taking the urban area of oasis city Aksu area as an example, this study quantitatively 

examined the effects of spatial pattern of greenspace on LST. it was found that both 

composition and configuration of greenspace affected LST. The majority of the 

temperature variance can be attributed to the joint effects of composition and 

configuration. The unique effects of configuration were only slightly lower than that 

of composition. Results from this study extend previous findings on the effects of 

greenspace on UHI and provide insights for effective urban greenspace planning and 

management. 

 

Increasing greenspace cover is one of the most effective measures to mitigate UHI 

effects as PLAND has a significantly negative effect on LST. In addition, 

configuration of greenspace should never be ignored when making urban greenspace 

planning and management decisions because configuration of green-space also affects 

LST, and the effects are comparable to composition (i.e. greenspace cover). 

Optimizing the configuration of greenspace may be a more practical means than 

increasing greenspace cover, particularly in arid, semi-arid areas, where climate limits 

the increase of greenspace cover. the results suggest that by increasing patch and edge 

density of the greenspace, the thermal environment in Aksu can be further improved 

in addition to increasing greenspace area. It should be noted that the relationship 

between LST and configuration of greenspace may be scale dependant, suggesting 

that cautions should be taken when applying findings across scales. Therefore, multi-

scale comparison studies on the relationship between LST and configuration of 

greenspace are highly desirable. 
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APPENDICES 

 Appendix 1: Land Cover Land Use map of Aksu City 
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 Appendix 2: Part of the Matlab Code  
 

 
close all 

 

 

disp('Mayor...si') 

 

pause 

 

load MuhammadTemperatureDataOtherParam 

 

NormalizedMutualInformationDataB=[]; 

 

for i=1:size(NormalizedMutualInformationData,1), 

     

    i 

     

    if NormalizedMutualInformationData(i,2)~=0 & 

NormalizedMutualInformationData(i,3)~=0 & 

NormalizedMutualInformationData(i,4)~=0 

         

        

NormalizedMutualInformationDataB=[NormalizedMutualInformationD

ataB;NormalizedMutualInformationData(i,:)]; 

         

    end 

     

end 

 

 

X=NormalizedMutualInformationDataB(:,2:4); 

Y=NormalizedMutualInformationDataB(:,1); 

 

Prob=0.1; 

 

 

X_train=[]; 

Y_train=[]; 

 

 

for i=1:size(X,1), 

     

    a=rand; 

     

    if a<=Prob, 

         

        X_train=[X_train;X(i,1:3)]; 

        Y_train=[Y_train;Y(i,1)]; 

         

    end 

     

end 
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[r,c]=size(X_train); 

cM=c+1; 

cMMat=0.5*(cM*c); 

 

 

DesvEstY=std(Y_train); 

VariaY=DesvEstY^2; 

MedY=mean(Y_train); 

 

HY=-log2(1/size(X_train,1)); 

 

HacheMio=double(zeros(2,size(X_train,2))); 

HacheMioB=double(zeros(2,cMMat)); 

 

 

 

for v=1:size(X_train,2), 

    disp('v') 

    v 

    Hache=1/(1.0*log2(size(X_train,1)))*ones(2,1) 

    min_Hache=0.5*Hache; 

%     min_Hache(1,1)=0.1*Hache(1,1); 

%     min_Hache(2,1)=0.5*Hache(1,1); 

%     max_Hache(1,1)=10*Hache(2,1); 

%     max_Hache(2,1)=50*Hache(2,1); 

    max_Hache=2.0*Hache; 

 

    %    

Hache=fmincon(@(Hache)LHAHBUnaDim(X_train(:,v),Y_train,Hache),

min_Hache,max_Hache) 

    

Hache=fmincon(@(Hache)LHAHBUnaDim(X_train(:,v),Y_train,Hache),

Hache,[],[],[],[],min_Hache,max_Hache) 

    HacheMio(:,v)=Hache; 

    disp('Misi') 

    Hache 

     

end 

 

 

 

VecSuma=double(zeros(1,c)); 

VecSuma(1,1)=1; 

 

for i=2:c, 

     

    disp('VecSuma') 

    i 

    VecSuma(1,i)=VecSuma(1,i-1)+i; 

     

end 

 

VecSumaB=[]; 

 

for l=1:cMMat, 
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    disp('cMMat') 

    l 

     

    VecSumaB=[VecSuma l]; 

 

    VecSumaC=sort(VecSumaB); 

 

    i=find(VecSumaC(1,:)==l); 

 

    if size(i,2)>1 

 

        i=min(i); 

 

    end 

 

    if i==1 

 

        j=1; 

 

    else 

 

        j=l-(VecSumaC(1,i-1)); 

 

    end 

     

                

     StdXA=(std(X_train(:,i)))^2; 

     StdXB=(std(X_train(:,j)))^2; 

      

     CovX=[StdXA 0;0 StdXB]; 

      

      

    HacheB=1/(2.0*log2(size(X_train,1)))*ones(2,1) 

    min_HacheB=0.5*HacheB; 

    max_HacheB=2.0*HacheB; 

     

    

HacheB=fmincon(@(HacheB)LHAHBDosDim(X_train(:,[i,j]),Y_train,C

ovX,HacheB),HacheB,[],[],[],[],min_HacheB,max_HacheB); 

%     if HacheB(1,1)>=1 

%         HacheB(1,1)=HacheB(2,1); 

%     end 

    HacheMioB(:,l)=HacheB; 

    disp('MisiB') 

    HacheB 

     

end 

 

%% 

==============================================================

========== 

%% Ahora consideramos el conjunto de las tres variables 

 

StdXA=(std(X_train(:,1)))^2; 

StdXB=(std(X_train(:,2)))^2; 
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StdXC=(std(X_train(:,3)))^2; 

 

CovXTres=[StdXA 0 0;0 StdXB 0;0 0 StdXC]; 

 

 

HacheC=1/(3.5*log2(size(X_train,1)))*ones(2,1) 

min_HacheC=0.5*HacheC; 

max_HacheC=2.0*HacheC; 

 

HacheC=fmincon(@(HacheC)LHAHBTresDim(X_train(:,:),Y_train,CovX

Tres,HacheC),HacheC,[],[],[],[],min_HacheC,max_HacheC); 

%     if HacheB(1,1)>=1 

%         HacheB(1,1)=HacheB(2,1); 

%     end 

HacheMioC(:,1)=HacheC; 

     

HacheMio=HacheMio'; 

HacheMioB=HacheMioB'; 

HacheMioC=HacheMioC'; 

 

 

 

save 

'H1H2UnaVarInit1p0Int0p5And2p0MuhammadTemperatureProb0p1.mat' 

HacheMio 

save 

'H1H2DosVarInit2p0Int0p5And2p0MuhammadTemperatureProb0p1.mat' 

HacheMioB 

save 

'H1H2TresVarInit3p5Int0p5And2p0MuhammadTemperatureProb0p1.mat' 

HacheMioC 
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 Appendix 3: Intermediate Results Of Normalized Mutual 

Information  
 

  



62 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TITLE 

2
0
0
8
 Subtitle Complete Author’s Name 



Guia para a formatação de teses Versão 4.0 Janeiro 2006 

 

 

 

 

 

 

 

 

 


