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Resumo 

 

O trabalho realizado nesta tese centra-se na produção e caracterização de um novo 

exopolissacárido (EPS) bacteriano de alto valor acrescentado, denominado por FucoPol. 

Neste processo utilizou-se como substrato o subproduto da indústria do biodiesel – glicerol. 

A bactéria produtora de EPS, isolada de uma solução de glicerol contaminada, foi 

caracterizada morfológica, bioquímica e geneticamente e denominada por Enterobacter 

estirpe A47.  

A produção do exopolissacárido pela Enterobacter A47 foi realizada em condições 

controladas de temperatura e pH (30.0 ºC e 6.80). O FucoPol apresenta um elevado peso 

molecular (~5.0x106) e é rico em fucose, uma característica interessante, uma vez que a 

fucose é um dos açúcares raros e difíceis de obter na natureza. Tipicamente, o FucoPol é 

composto por açúcares, nomeadamente, fucose (32 – 36 %mol), galactose (25 – 26 %mol), 

glucose (28 – 34 %mol) e ácido glucorónico (9 – 10 %mol), e grupos acilo, particularmente 

acetato (3 – 5 wt.%), piruvato (13 – 14 wt.%) e succinato (3 wt.%). 

De modo a optimizar a produção de FucoPol, foi estudado o impacto da 

temperatura (15.6 – 44.1 ºC) e pH (5.6 – 8.4) no crescimento celular e produção de EPS. 

Para tal foram utilizadas ferramentas estatísticas, tais como a metodologia de superfície de 

resposta e o desenho compósito central. Os resultados mostraram que Enterobacter A47 

tem a capacidade de sintetizar diferentes heteropolissacáridos em função do pH e 

temperatura, uma característica que pode ser explorada de modo a obter polímeros com 

composições em função das aplicações desejadas. Para além disso, a produção de 

polímeros com elevado conteúdo em fucose foi estável para uma larga gama de valores de 

pH (6.0 – 8.0) e de temperatura (25 – 35 ºC), o que é importante para o desenvolvimento do 

processo tendo em vista uma aplicação industrial.  

Estudou-se também, em dois grupos de experiências, a influência da concentração 

de glicerol e azoto. No primeiro grupo, foi avaliado o efeito da concentração inicial de 

glicerol e azoto na fase “batch” e no segundo grupo o impacto de usar soluções de 
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alimentação com diferentes concentrações de glicerol e azoto na fase “fed-batch”. A 

bactéria Enterobacter A47 teve um desempenho semelhante numa vasta gama de 

concentrações iniciais de glicerol e azoto (25 – 50 e 0.68 – 1.05 g L-1, respectivamente), 

tanto para a produção (~8 g L-1) como para a composição do EPS (idêntica à composição 

típica). Utilizando uma solução de alimentação com uma concentração de glicerol (400 g L-1) 

e de azoto (9 g L-1) obteve-se a maior síntese de EPS (10.16 g L-1), a maior produtividade 

volumétrica (5.52 g L-1 d-1) e o maior conteúdo em fucose (41 %mol). 

Foram estudadas as propriedades do FucoPol em solução, de modo a perceber o seu 

potencial de aplicação. O FucoPol apresenta uma viscosidade intrínseca de cerca de 8 dL g-1 

e as suas soluções aquosas apresentam um comportamento reofluidificante. Verificou-se 

que, tanto o valor da viscosidade intrínseca como o comportamento reofluidificante se 

mantêm numa gama alargada de valores de pH e força iónica (3.5 – 8.0 e 0.05-0.50 M NaCl, 

respectivamente). O FucoPol apresentou uma capacidade de espessamento semelhante à 

demonstrada pela goma guar. Verificou-se ainda que as soluções de FucoPol mantêm a sua 

viscosidade aparente e as suas propriedades viscoelásticas à temperatura de 25 ºC, após 

ciclos consecutivos de aquecimento (até T=80ºC) e arrefecimento, indicando uma boa 

estabilidade térmica quando sujeitas a flutuações de temperatura. Estas propriedades 

indiciam que o FucoPol poderá ser utilizado como agente espessante em soluções aquosas 

que sofram variações de pH, força iónica e temperatura. 

Foi também realizado um estudo preliminar sobre a capacidade do FucoPol formar e 

estabilizar emulsões de compostos hidrofóbicos em água, demonstrando um bom potencial 

para vários compostos, em particular para óleos alimentares (índice de emulsão, E24 > 60%). 

Esta capacidade é similar à de outros polissacáridos comerciais (ex. xantano e pectina). A 

sua capacidade de floculação foi também avaliada, demonstrando ser semelhante a alguns 

produtos já comercializados (ex. xantano e carboximetilcelulose) 

 As propriedades apresentadas pelo FucoPol, nomeadamente as propriedades 

reológicas, assim como a capacidade de formar e estabilizar emulsões e a sua actividade 

floculante, conferem-lhe grande potencial para ser utilizado em várias aplicações (ex.: 

produtos alimentares, cosméticos e farmacêuticos; detergentes, fluídos de perfuração). 
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Abstract 

 

This thesis is focused on the production and characterisation of a novel value added 

bacterial exopolysaccharide (EPS), named FucoPol, using glycerol byproduct from the 

biodiesel industry as carbon source. The EPS producing bacterium was isolated from a 

contaminated glycerol solution. It was morphologically, biochemically and genetically 

characterized and named Enterobacter A47.  

Exopolysaccharide production by Enterobacter A47 was performed under controlled 

temperature and pH (30.0ºC and 6.80, respectively). FucoPol has a high molecular weight 

(~5.0x106) and was rich in fucose, which is very interesting, since fucose is one of the rare 

sugars difficult to obtain in Nature. Typically, FucoPol is composed of sugar monomers, 

namely, fucose (32 – 36 %mol), galactose (25 – 26 %mol), glucose (28 – 34 %mol) and 

glucuronic acid (9 – 10 %mol); and acyl group substituents, namely, acetyl (3 – 5 wt.%), 

pyruvyl (13 – 14 wt.%) and succinyl (3 wt%). 

In order to optimize FucoPol production the impact of temperature (15.6 to 44.1 ºC) 

and pH (5.6 to 8.4) on cellular growth and EPS production was assessed using statistical 

tools (response surface methodology and central composite design). Enterobacter A47 

revealed the ability to synthesize different heteropolysaccharides as a function of pH and 

temperature, a feature that can be exploited to obtain tailored polymer compositions. 

Moreover, the synthesis of high fucose content EPS was stable for wide pH (6.0 – 8.0) and 

temperature (25 – 35 ºC) ranges, which is important for the envisaged industrial 

development of the bioprocess. 

Afterwards, the influence of glycerol and nitrogen concentration was also evaluated 

in two sets of experiments. In the first set, the effect of the initial nitrogen and glycerol 

concentrations was assessed, while in the second the impact of using different glycerol and 

nitrogen concentrations in the feeding solution was studied. Enterobacter A47 

demonstrated to have a stable performance, both in terms of EPS production (~8.00 g L-1) 

and in EPS composition, within initial glycerol and nitrogen concentrations of 25 – 50 and 
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0.68 – 1.05 g L-1, respectively. On the other hand, the highest EPS synthesis (10.16 g L-1), 

volumetric productivity (5.52 g L-1 d-1), and fucose content (41 %mol) were reached when 

the feeding solution had a higher glycerol concentration (400 g L-1) and a nitrogen 

concentration of 9 g L-1.  

In order to understand the potential for FucoPol’s industrial applicability, its solution 

properties were studied. FucoPol had an intrinsic viscosity of ~8.00 dL g-1 and produced 

viscous aqueous solutions with a shear thinning behaviour. Both intrinsic viscosity and shear 

thinning behaviour were maintained under a wide range of pH and ionic strength values 

(3.5 – 8.0 and 0.05 – 0.50 M NaCl, respectively). The thickening capacity of FucoPol was 

similar to that of commercial guar gum. The influence of temperature on steady shear and 

oscillatory data was also evaluated in the temperature range from 15 to 65 ºC. FucoPol has 

shown to form high viscosity solutions with a shear-thinning behaviour. Moreover, the 

viscous and viscoelastic properties at 25 ºC were maintained after consecutive heating (up 

to 80ºC) and cooling cycles, indicating a good thermal stability under temperature 

fluctuations. Therefore, the application of FucoPol as thickening agent is foreseen in 

aqueous solutions with variations of pH, ionic strength as well as temperature.  

A preliminary study about the FucoPol´s emulsion forming and stabilizing capacity, 

as well as flocculating activity were performed. FucoPol has shown a good emulsion forming 

and stabilizing capacity for hydrophobic compounds, especially for food grade oils 

(emulsification index, E24 > 60%), similar to some commercial polysaccharides (e.g. xanthan 

and pectin). Furthermore, FucoPol has also demonstrated good flocculating capacity (28%), 

in the same range of some commercially available products (e.g. xanthan and 

carboxymethilcellulose).  

The main properties of FucoPol, namely, rheological properties in aqueous medium, 

emulsion forming and stabilizing capacity, and flocculating capacity, make it a promising 

alternative to be used in several industrial applications (food processing, detergents, oil 

drilling fluids). On the other hand, the presence of fucose renders it an enormous potential 

for use in pharmaceutical and cosmetic formulations, wherein it may be used alone or 

blended with other polymers (e.g. chitosan).   
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Polysaccharides have a wide spectrum of applications due to their functional 

properties (e.g. thickening, emulsifying, stabilizing and/or gelling capacity). Indeed, 

polysaccharides are currently used in all sectors of human activity, namely food and feed 

products, personal care products, medicine, pharmaceuticals, paper, oil drilling and paints, 

among others (Elnashar, 2011). Even when present at low concentrations (less than 1%), 

polysaccharides may have a significant influence on the products textural properties and on 

the efficiency of industrial processes (Phillips and Williams, 2009).  

Being materials obtained from living organisms, natural polysaccharides are usually 

non-toxic and biodegradable, a feature that turns them into attractive biomaterials for 

sustainable development. Polysaccharides are widely distributed in nature: they can be 

found in plants, animals, algae and microorganisms, performing different fundamental 

biological functions (Reis et al., 2011; Elnashar, 2011). 

Microbial polysaccharides often have improved or new properties, comparing to 

polysaccharides from other natural sources (e.g. plants and algae). Hence, in the last years, 

the demand for novel microbial polysaccharides with interesting properties for industrial 

applications has greatly increased. 

 

 

1.1. Polysaccharides  

 

Polysaccharides are high molecular weight (104 – 107) polymeric biomaterials with a 

large structural diversity, being composed of one or more monosaccharides joined by 

glycosidic bonds, often forming repeating units and presenting different degrees of 

branching (Sutherland, 2001; Reis et al., 2008). They are mainly composed of 

carbohydrates, such as neutral sugars (e.g. galactose, glucose), acidic sugars (e.g. glucuronic 

acid, galacturonic acid) and amino sugars (e.g. N-acetyl-glucosamine, N-acetyl-

galactosamine). Furthermore, many polysaccharides possess non sugar substituents, 
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namely organic acyl groups (e.g. acetyl, succinyl and pyruvyl) and inorganic groups (e.g. 

sulphate, phosphate) (Sutherland, 1982). The presence of some acyl groups (e.g. succinyl 

and pyruvyl), as well as acidic or amino sugars, confers the polymers a polyelectrolyte 

character (Freitas et al., 2011). 

Polysaccharides may be composed of a unique sort of monosaccharide 

(homopolysaccharides) or comprise two or more different monosaccharides 

(heteropolysaccharides). Besides that, in some cases, single polysaccharide chains may 

associate with each other through intra or intermolecular non-covalent bonds, conferring to 

the macromolecule a certain geometry and rigidity, which will determine the polymer´s 

properties both in solid state and in solution (Kumar et al., 2007; Reis et al., 2011). 

 

In Nature, polysaccharides can be obtained from plants (e.g. starch, guar gum, 

pectin), animals (e.g. chitin), algae (e.g. carrageenan, alginate, agar) and microorganisms 

(e.g. xanthan, gellan, pullulan). They present diverse physiological roles, functioning as 

structural elements, maintaining mechanical shape and rigidity of the living cells (e.g. 

cellulose and pectin in plant cell wall; chitin in arthropod exoskeletons and yeast and fungi 

cell walls), as energy reserve substances (e.g. starch or inulin in plants; glycogen in animals 

and microorganisms), or as adhesion and protective barriers (microorganisms) (Kaplan, 

1998; Kumar et al., 2007; Elnashar, 2011).  

Their ability to change the physical-chemical properties of aqueous solutions (e.g. 

thickening, emulsifying and stabilizing capacity), allows their application on several products 

and processes, namely in the food, pharmaceutical, cosmetic, paper, paint and oil drilling 

sectors. Beyond that, the capacity to form biodegradable films shown by some 

polysaccharides (e.g. starch, alginate, pullulan, cellulose derivatives) enables their use in 

packaging (e.g. vessels and sheets for several agro-food applications), pharmaceuticals and 

other industrial applications. Their biocompatibility also enables their use in medical 

applications (e.g. as scaffolds or matrices for tissue engineering, wound dressing and drug 

delivery) (Rehm, 2010). 
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Nowadays, the polysaccharides market is still dominated by products obtained from 

plants and algae (e.g. starch, galactomannans, pectin, carrageenan and alginate), while 

microbial polysaccharides represent only a small fraction of the market (e.g. xanthan) 

(Canilha et al., 2005). In 2008, the total market value was > 4 million US$, with xanthan 

being the only significant microbial polysaccharide, which accounted for 6% of the total 

market value (Imeson, 2010; Freitas et al., 2011). 

 

Microbial polysaccharides can be divided into intracellular (e.g. glycogen), structural 

cell wall components (e.g. chitin) and extracellular polysaccharides. Extracellular 

polysaccharides or exopolysaccharides (EPS) are polymers secreted by the cells, either as a 

capsule that remains associated with the cell surface (e.g. K30 antigens) or as a slime that is 

loosely bound to the cell surface (e.g. xanthan, gellan, hyaluronic acid) (Kumar et al., 2007; 

Rehm, 2010). Several different EPS (e.g. dextran, xanthan, gellan) have been extensively 

studied over the last decades. The research on many exopolysaccharides has relied on their 

biological functions, namely as reserve materials or as part of bacterial cell protective 

structure, providing an advantage under certain environmental conditions. Although the 

factors leading to EPS synthesis are still not clearly elucidate, it is thought to be a response 

of the microbial strains to environmental stress conditions (e.g. pH, temperature, light 

intensity) (Sutherland, 1998; Kumar et al., 2007; Rehm, 2010; Donot et al., 2012).  

Some microbial EPS can replace polysaccharides extracted from plants (e.g. guar 

gum or pectin) or algae (e.g. carrageenan or alginate) in traditional applications, due to their 

improved physical properties (e.g. xanthan or gellan gum). On the other hand, other 

microbial EPS possess unique and superior properties that enable the development of new 

commercial opportunities (Freitas et al., 2011). For this reason, in recent years, there has 

been an increasing demand for the identification and isolation of new microbial 

polysaccharides that can compete with traditional polymers due to their improved physical 

and chemical properties: higher emulsifying and flocculating activities; resistance to 

solvents; biological activity (e.g. anticarcinogenic and immunoenhancing effects); and 

rheological characteristics (e.g. higher viscosity for lower polymer concentrations and 
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greater stability to a wide ranges of temperature, pH and ionic strength) (Kumar et al., 

2007; Sutherland, 2001).  

Furthermore, microbial polysaccharides production is advantageous comparing with 

that of plant and algae-derived polysaccharides, since it is usually more productive and less 

resource intensive, and relies on controlled fermentation processes, with more degrees of 

freedom to control product composition, yield and productivity (Moreno et al., 1998). On 

the other hand, plants, algae and animals have life cycles of months or years, being the 

production cycle usually seasonal. Moreover, they are subjected to climatic and 

environmental impact, such as pollution, which causes great variability in the quantity and 

quality of the final products.  

However, for new microbial polysaccharides to conquer the market as commodity 

products, it is crucial to lower their production costs (Rehm, 2010), which can be performed 

by: (i) using low cost substrates, (ii) improving product yield by optimizing fermentation 

conditions, (iii) developing higher yielding strains (e.g. by mutagenesis or genetic 

manipulation), and (iv) optimizing downstream processing. The great opportunity to 

bacterial EPS to be developed at industrial scale and commercialized relies on high value 

market niches (e.g. cosmetics, pharmaceuticals and biomedicine), since microbial 

polysaccharides may present the desired degree of purity and functional properties that the 

traditional polysaccharides obtained from plants and algae may not have. In this case, the 

potential designed characteristics and quality of the product will exceed production costs 

and product yield issues (Freitas et al., 2011). 

 

Table 1 summarizes the main characteristics of some of the microbial 

polysaccharides that are currently commercialized. Dextran was the first microbial 

polysaccharide to be commercialized and approved for food applications by FDA (US Food 

and Drug Administration). Nowadays, xanthan, produced by Xantomonas campestris, is the 

most widely accepted microbial polysaccharide. It has been granted a GRAS (Generally 

Recognized as Safe) status, and is used in many manufactured foods, as well as in cosmetics 

and personal care products. Xanthan has a huge thickening and suspending capacity with 
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high stability under a large range of pH and temperature conditions (Garcia-Ochoa et al., 

2000; Sutherland, 2002; Freitas et al., 2011). Gellan is another GRAS polysaccharide 

produced by Sphingomonas paucimobilis. It is mainly used in food applications due to its 

great gelling capacity that allows it to be used at a much lower concentration than agar 

(Sutherland, 2002; Bajaj et al., 2007; Freitas et al., 2011).  

Bacterial cellulose is a high-value product, produced by Acetobacter sp.. Its purity 

and fibres orientation makes them very suitable to form audio membranes with great 

quality. Bacterial cellulose is also known to be an immune stimulant and tumour 

suppressive agent (Sutherland, 2002; Chawla et al., 2009). Other commercial 

polysaccharides with interesting properties are hyaluronic acid and succinoglycan, which 

have found medical, pharmaceutical and cosmetic applications due to their resemblance to 

eukaryotic polymers (Sutherland, 2001; Freitas et al., 2011).  
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1.2. Fermentative exopolysaccharides production 

 

In the design of any microbial process it is necessary to take into account the type of 

product that is to be produced. Hence, certain EPS are growth associated products (e.g. 

bacterial alginate), being synthesized only during the cell growth phase, while others are 

growth dissociated products, which are synthesized only in the post-stationary growth 

phase (e.g. curdlan). On the other hand, many microorganisms show a partially growth-

associated EPS production trend, with polymer synthesis being initiated during the 

exponential growth phase and proceeding with identical production rate when cell growth 

is restricted.  

Furthermore, there are no standard operational conditions for bacterial EPS 

production. In fact, EPS-producing microorganisms differ widely in their carbon and 

nitrogen source utilization, oxygen and mineral requirements, optimal temperature and pH. 

The amount of EPS produced is strongly influenced by the nutritional and environmental 

conditions (Sutherland, 2001; Donot et al., 2011), which may be manipulated to achieve 

improved production (Kumar et al., 2007). Usually, polysaccharides production processes 

require excess of carbon source, concomitant with limitation of another nutrient (e.g. 

nitrogen or phosphate) (Bajaj et al., 2007, Rehm, 2010; Freitas et al., 2011). Most microbial 

EPS are produced under aerobic conditions. However, some EPS-producing strains need 

maximal aeration (e.g. Xanthamonas sp.), while for others the production is maximized 

under microaerophilic conditions (e.g. Azotobacter vinelandii) (Peña et al., 2000; Rehm, 

2010). Production is also frequently favoured under sub-optimal incubation temperatures 

(Sutherland, 2001) and pH (Kumar et al., 2007). Furthermore, in some cases the production 

is stimulated by supplementation of the production medium with surfactants (e.g. Triton X-

100), vitamins and aminoacids (e.g. tryptophan) and cations (e.g. Ca2+ and Mg2+) (Bajaj et 

al., 2007; Kumar et al., 2007; Freitas et al., 2011).  

For most of the EPS-producing microorganisms, the growth conditions do not 

influence the basic carbohydrate EPS composition (Rosalam and England, 2006; Freitas et 
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al., 2011). However, their content in substituent groups can vary extensively, which greatly 

affects polymer properties. An exception has to be made for some EPS-producing organisms 

(e.g. Rhizobium and Pseudomonas), for which EPS composition may be affected by medium 

composition, as well as incubation conditions (Freitas et al., 2011). Thus, bioprocesses 

based on those bacteria can be used for the production of tailor made polymers. 

Many EPS producers are also able to accumulate variable amounts of intracellular 

storage products (e.g. glycogen or polyhydroxyalkanoates), thus reducing their full potential 

for EPS production. Xanthomonas sp. is an exception to this, since those bacteria do not 

produce significant amounts of other bioproducts, which allows achieving very high 

substrate conversion into xanthan (Rehm, 2010). 

 

Most EPS-producing microorganisms use substrates with a high degree of purity, 

which increases the production costs. The most common carbon sources used to produce 

microbial polysaccharides are sugars, mainly glucose, but also fructose, sucrose, lactose, 

maltose, mannitol and sorbitol (Bajaj et al., 2007; Kumar et al., 2007; Reis et al., 2008). 

In order to reduce polysaccharide production costs it is desirable to use abundant 

and less expensive carbon sources, such as agro-food and industrial wastes and byproducts. 

A large amount of wastes/byproducts are generated by several agricultural activities and 

industrial processes, such as sugarcane molasses, cheese whey and glycerol from the 

biodiesel industry. Several byproducts and wastes (e.g. sugar cane molasses, cheese whey, 

waste sugar beet pulp, peach pulp) have been tested as substrates for xanthan production, 

achieving competitive results. Nevertheless, the industrial process is still based on glucose 

and sucrose due to the higher production yields and product quality they enable 

(Kalogiannis et al., 2003; Rosalam and England, 2006; Silva et al., 2009). Cheese whey and 

molasses, that have high sugar contents, have also been successfully tested as raw materials 

for the fermentative production of gellan (Fialho et al., 1999; Banik et al., 2007).  
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In the bio-combustible industry, the biodiesel byproduct, rich in glycerol, has 

become a stream for which there is an urgent need of alternative applications, in order to 

reduce its industrial stocks and make biodiesel production a more cost effective process. 

Biodiesel is made through a chemical catalysed reaction, transesterification, which occurs 

between oils or fats and an alcohol, usually methanol, with the production of glycerol as a 

byproduct (10% of the total biodiesel produced) (Temudo et al., 2008).  

As such, glycerol is being generated in large quantities (~2.1million tons/year), far 

beyond current consumption in traditional applications, thus making it a product for which 

interesting applications are lacking. Pure glycerol is used for different industrial 

applications, such as soaps, paints, foods, pharmaceuticals (Temudo et al., 2008). However, 

glycerol byproduct from the biodiesel industry contains residual methanol, NaOH, carry-

over fat/oil, some esters, and low amounts of sulphur compounds, proteins and minerals 

(Thompson et al., 2006), which make it inadequate for use in many of the traditional 

glycerol applications (e.g. food, pharmaceutical, and cosmetic industries), unless costly 

purification steps are performed (Freitas et al., 2009a). 

The use of glycerol byproduct as a carbon source in microbial processes is a good 

way to increase its consumption and valorisation. It has been tested in fermentation 

processes to produce several microbial products, such as lipids (Papanikolau et al., 2002), 

pigments (Narayan et al., 2005) and ethanol, succinate, acetate, lactate and hydrogen 

(Dharmadi et al., 2006). Furthermore, glycerol is a potential carbon source for protein 

production by Pichia pastoris (Çelik et al., 2008) and for the production of polymers, namely 

PHA (Ashby et al., 2005), exopolysaccharides (Freitas et al., 2009a) and chitin-glucan 

complex (Roca et al., 2012), thus opening the possibility of new markets for glycerol. 
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1.3. Motivation 

 

Bearing in mind that renewable resources, like industrial wastes/byproducts, may be 

regarded as potential alternative substrate sources for biopolymers production, in this PhD 

thesis, a process was studied to valorise glycerol byproduct from the biodiesel industry with 

the production of a novel value-added bacterial fucose-rich exopolysaccharide (Reis et al., 

2008) that was named FucoPol.  

The following main objectives were envisaged: 

1. Setting the standard cultivation process and optimization of bioreactor operation, by 

studding the effect of environmental conditions (pH and temperature) and nutrient 

concentration (nitrogen and glycerol) aiming at maximizing FucoPol productivity. 

2. Polymer characterisation, in terms of its chemical composition (sugars and 

substituent groups); molecular weight; rheology and functional properties (emulsion 

forming and stabilizing ability and flocculating capacity). 

 

 

1.4. Thesis outline 

 

This thesis is divided into seven chapters, describing the work performed during this 

PhD project. The methodology used in each individual chapter is detailed in the context of 

the respective subject and, when applicable, is related to that used in previous chapters. 

Chapters 2, 3 and 4 are dedicated to FucoPol production and process optimization. Chapters 

5 and 6 describe FucoPol’s properties. The work performed during this PhD resulted in five 

scientific papers, which have been published in international scientific publications, while 

one more manuscript is being prepared. 
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Chapter 1 introduces the subject of this thesis, by presenting the context and 

motivation for this PhD work. 

Chapter 2 presents the morphological, physiological and genetic characterisation of 

the strain, which was named Enterobacter strain A47 and deposited at DSMZ with accession 

number 23139, under the Budapest Treaty. It also describes the standard cultivation for 

FucoPol production and its physical-chemical characterisation, as well as the morphological 

and rheological characterisation of the fermentation broth.  

Chapter 3 and Chapter 4 describe the studies performed for the optimization of 

FucoPol production. Chapter 3 focused on the interactive effect of temperature and pH 

using multivariate statistical analysis, while in Chapter 4, the effect of glycerol and nitrogen 

concentration on FucoPol production was studied. 

Chapter 5 describes FucoPol’s behaviour in aqueous solution, in a diluted regime 

(intrinsic viscosity) and in a concentrated regime: steady shear and viscoelastic properties. 

The effect of salt concentration, pH and temperature, on such properties, was assessed by 

using statistical tools. 

Chapter 6 presents a preliminary study of the emulsion forming and stabilizing ability 

of FucoPol, as well as its flocculating capacity, in order to better understand the FucoPol´s 

potential applications, namely in the cosmetic, food and pharmaceutical industry. 

 The main conclusions obtained in this PhD thesis are presented in Chapter 7. Some 

suggestions for future research are also proposed. 
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Chapter 2 

FucoPol 

Standard Bioprocess Operation  

and Polymer Characterisation 

 

 

The results presented in this chapter were published in three peer reviewed papers. 

Alves, V.D., Freitas, F., Torres, C.A.V., Cruz, M., Marques, R., Grandfils, C., Gonçalves, 

M.P., Oliveira, R., Reis, M.A.M., 2010. Rheological and morphological characterization of the 

culture broth during exopolysaccharide production by Enterobacter sp. Carbohydrate 

Polymers, 81, 758-764.  

Freitas, F., Alves, V.D., Torres C.A.V., Cruz, M., Sousa, I., Melo, M.J., Ramos, A.M., 

Reis, M.A.M., 2011. Fucose-containing exopolysaccharide produced by the newly isolated 

Enterobacter strain A47 DSM 23139. Carbohydrate polymers, 83, 159-165. 

Torres, C.A.V., Marques, R., Antunes, S., Alves, V.D., Sousa, I., Ramos, A.M., Oliveira, 

R., Freitas, F., Reis, M.A.M., 2011. Kinetics of production and characterization of the fucose-

containing exopolysaccharide from Enterobacter A47. Journal of Biotechnology, 156, 4, 261-

267.  
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2.1 Summary 

 

 A fucose-containing exopolysaccharide (EPS) – FucoPol – was produced by the 

bacterium Enterobacter A47 using glycerol byproduct from the biodiesel industry. Kinetic 

parameter values estimated by a MATLAB model were in agreement with experimental data 

and suggested that EPS synthesis was partially growth associated. The culture broth was 

characterized in terms of its morphological and rheological properties throughout the 

cultivation run. Microscopic observations revealed the formation of cell aggregates 

surrounded by the EPS at the beginning of the cultivation run, while, at the end, aggregates 

were reduced and an EPS matrix with the cells embedded in it was observed. The apparent 

viscosity of the culture broth increased over time, which was attributed to the increase of 

the FucoPol concentration in the first period of the cultivation run. However, in the final 

stage, the creation of new polymer interactions within the complex culture broth was likely 

the reason for the viscosity increase observed, since there was not a significant variation of 

the FucoPol concentration, average molecular weight or chemical composition. The broth 

presented a Newtonian behavior at the beginning of the run, changing to shear thinning as 

the EPS concentration increased, and revealed to follow the Cox–Merz rule. 

 FucoPol was composed by neutral sugars, namely fucose (32 – 36 %mol), galactose 

(25 – 26 %mol) and glucose (28 – 34 %mol), and acidic sugar, glucuronic acid (9 – 10 %mol). 

It had also acyl groups substituents, acetyl (3 – 5 wt.%), pyruvyl (13 – 14 wt.%) and succinyl 

(2 wt%). The neutral sugars relative proportion was measured throughout the cultivation run 

and a considerably variation was observed. At the beginning (1 day), glucose was the main 

component (83 %mol), while at the end (4 days) it was composed of 32 % mol fucose, 25 

%mol galactose and 34 %mol glucose. The acyl groups content and composition have also 

changed. Moreover, the molecular weight has increased linearly during the run (from 8x105 

to 5x106). The changes observed in EPS composition and molecular weight had also had an 

impact upon the polymer’s intrinsic viscosity, as shown by its linear increase from 3.95 to 

10.72 dL g-1. The results suggest that the culture might have synthesized at least two distinct 

EPS, with different sugar composition and average molecular weight, which predominated at 

different cultivation stages. 
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2.2. Introduction 

 

Although the interesting physical properties that microbial polysaccharides may 

presented, certain microbial exopolysaccharide (EPS) have an increased value due to their 

content in some rare sugars, such as fucose or rhamnose, which occur rarely in Nature and 

are difficult to obtain (Vanhooren and Vandamme, 2000). One of those rare sugars is fucose. 

Fucose-containing polymers are particularly interesting due to their biological properties. It 

has been reported that preparations with fucose-containing oligo- and polysaccharides, as 

well as fucose monomers, have biological properties that potentiate their therapeutic use, 

for example, as anti-carcinogenic and anti-inflammatory agents, in the treatment of 

rheumatoid arthritis, in age-related pathologies accompanied by tissue loss, in the 

acceleration of wound healing and as hydrating and anti-aging additives (Cescutti et al., 

2005; Péterszegi et al., 2003). There is also a growing interest in the use of fucose or fuco-

oligosaccharides for the synthesis of human milk oligosaccharides (HMO) that are used as 

additives in infant formulae. HMOs are important for enhancing the protection of infants 

against enteric and other pathogens, especially in early development (Chaturvedi et al., 

2001; Coppa et al., 2006: Romeo et al., 2010). 

Oligo- and polysaccharides containing fucose may be found in microorganisms, 

plants, seaweeds and animals (Vanhooren & Vandamme, 1999). Microorganisms producing 

exopolysaccharides rich in fucose include a wide range of bacteria, fungi and microalgae. 

Extensively studied bacterial fucose-containing extracellular polysaccharides include colanic 

acid, fucogel and clavan. Colanic acid is a polysaccharide composed of fucose, glucose, 

galactose and glucuronic acid, and the acyl groups pyruvyl and acetyl (Grant et al., 1969). It is 

commonly produced by many members of the family Enterobacteriaceae, including 

Escherichia, Salmonella and Klebsiella strains (Ratto et al., 2006). Fucogel is a polysaccharide 

produced by Klebsiella pneumoniae I-1507, composed of galactose, 4-O-acetyl-galacturonic 

acid and fucose (Guetta et al., 2003). It has been successfully commercialized by Solabia 

BioEurope, France (www.solabia.com), for the cosmetic industry (Paul et al., 1999). Clavan is 

composed of glucose, galactose, fucose and pyruvyl, being produced by Clavibacter 

michiganensis strains (van den Bulk et al., 1991; Vanhooren & Vandamme, 2000). 
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Among the genus Enterobacter, several species have been reported to secrete 

exopolysaccharides containing fucose. Examples include: Enterobacter sp. CNCM 1-2744 that 

produces an EPS in which fucose, galactose, glucose and glucuronic acid monomers are 

present in a ratio of 2:2:1:1 (Philbe, 2002), Enterobacter sp. SSYL (KCTC 0687BP) that 

produces an EPS in which fucose represents 8-10% of the sugar content, being glucuronic 

acid the main component (40-70%) (Yang, 2002), Enterobacter sakazakii, strains ATCC 53017, 

ATCC 29004 and ATCC 12868 that produce an EPS in which fucose represents 13-22% (Harris 

& Oriel, 1989) and Enterobacter amnigenus that produces a heteropolymer containing 

glucose, galactose, fucose, mannose, glucuronic acid and pyruvil (Cescutti et al., 2005). More 

recently, an E. ludwiggi strain isolated from the Chernobyl exclusion zone has also been 

reported to synthesize a fucose-containing EPS (Pawlicki-Julian et al., 2010). This polymer is 

composed by neutral sugars and uronic acids in a ratio of 90/10, the neutral sugars are 

fucose, galactose and glucose in a molar ratio of 2:1:1. 

The maximum possible productivity and product concentration that can be obtained 

in any biochemical process are limited by microbial kinetics and by mass transport 

phenomena occurring during it. The latter is influenced by the mixing degree and 

hydrodynamic conditions in the process. These parameters are related to the fluid flow 

characteristics that determine mass (oxygen, carbon source and other nutrients) and heat 

transfer rates in bioreactors (Bandaiphet & Prasertsan, 2006). Hence, the study of the 

rheological properties of culture broths is one of the keys to improved yield of the desired 

microbial products.  

Cultivation broths containing unicellular microorganisms of simple shape should 

behave as Newtonian fluids. However, in many microbial cultivation the broths are much 

more complex and deviations from Newtonian behaviour are significant. The broths may 

exhibit different types of behaviour, depending on their stage of development during the 

cultivation. In a number of industrially important cultivation processes the broth develops 

shear thinning behaviour (Figure 2.1). Examples of such behaviour include industrially 

important microbial polysaccharides, such as xanthan gum that is produced by Xanthomonas 

campestris (Candia & Deckwer, 1999), pullulan that is produced by Aureobasidium pullulans 

(Furuse et al., 2002) and dextran that is produced by Leuconostoc mesenteroides (Landon et 

al., 1993). Rheological properties provide a sensitive analytical means for the 
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characterisation of cellular mass changes and provide a clue to the relationship between 

cellular structure and biochemical activity in a microbial cultivation. 

 

 
Figure 2.1 Flow behaviour – Newtonian and shear-thinning – at logarithmic scale. 

 

The viscosity of microbial culture broths may be influenced by physical, as well as 

biological parameters, including the cultivation medium, the size of both cells and cell 

aggregates formed, biomass concentration, morphological parameters and the products 

being secreted into the solution (Al-Asheh et al., 2002). However, in most cases, the change 

in flow behaviour in such microbial processes is attributed to the increasing extracellular 

polymer concentration being produced, with negligible contribution from the cells (Landon 

et al., 1993). 

In this chapter, a newly isolated EPS-producing microorganism, was identified and 

named Enterobacter A47. This culture was grown on glycerol byproduct from the biodiesel 

industry as the sole carbon source for EPS production. A kinetic model has been developed 

with the objective of describing the behaviour of the culture during its growth on glycerol 

and EPS synthesis. Furthermore, the polymer was characterized in terms of its chemical 

composition and average molecular weight and intrinsic viscosity along the cultivation run. 

The culture broth was characterized regarding its rheological and morphological properties 

throughout the cultivation run. A special attention was driven to evaluate the changes 

experienced by the bacterial cells during growth and EPS production on glycerol byproduct. 
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In addition, the culture broth rheology was related to polymer concentration, composition 

and average molecular weight, as well as to the cell concentration and morphology. 

 

 

2.3. Material and Methods 

 

2.3.1. FucoPol Production 

 

Microorganism  

The strain used in this work was isolated from a contaminated glycerol byproduct 

aqueous solution. Enterobacter A47 (DSM 23139) was characterised morphologically and 

biochemically (biochemical and physiological tests - Table 2.1). The 16S rRNA gene sequence 

was determined by direct sequencing of PCR-amplified 16S rDNA. Gemonic DNA extraction, 

PCR (Polymerase Chain Reaction) mediated amplification of the 16S rDNA and purification of 

the PCR product was carried out as described by Rainey et al. (1996). Purified PCR products 

were sequenced using the CEQTMDTCS-Quick Start Kit (Beckman Coulter) as directed in the 

manufacturer´s protocol. Sequence reactions were electrophoresed using the CEQTM8000 

Genetic Analysis System. The resulting sequence data was put into alignment editor ae2 

(Maidak et al., 1999). For comparison 16S sequences were obtained from the EMBL, RDP or 

DSMZ dtabases. 

The phylogenetic dendogram of the bacteria Enterobacter A47 was constructed using 

the ARB package (Pruesse et al., 2007). Based on the evolutionary distance values, the 

phylogenetic tree was constructed by neighbor-joining method (Jukes and Cantor, 1969), 

using the correlations of Saitou and Nei (1987). The root of the tree was determined by 

including the 16S rRNA gene sequence of Klebsiella pneumoniae into the analysis.  

Enterobacter A47 aliquots were preserved in glycerol 20% and stored at -80 ºC. 
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Media 

In all experiments, Enterobacter A47 was grown on a slightly modified Medium E* 

(pH 7.0) (Brandl et al., 1988), with the following composition (per liter): (NH4)2HPO4, 3.3 g; 

K2HPO4, 5.8 g; KH2PO4, 3.7 g; 10 mL of a 100 mM MgSO4 solution and 1 mL of a 

micronutrient solution. The micronutrient solution had the following composition (per liter 

of 1N HCl): FeSO4·7H2O, 2.78 g; MnCl2·4H2O, 1.98 g; CoSO4·7H2O, 2.81 g; CaCl2·2H2O, 1.67 g; 

CuCl2·2H2O, 0.17 g; ZnSO4·7H2O, 0.29 g. (pH 7.0). Glycerol byproduct was added to give a 

concentration between 25 and 50 g L-1. Glycerol byproduct (with a glycerol content ca. 89%) 

was supplied by SGC Energia, SGPS, SA, Portugal.  

 

Bioreactor Operation 

EPS production was performed in a 2 and 10 L bioreactors (BioStat Bplus, Sartorius), 

with initial working volumes of 1.8 or 8 L, respectively. Inocula for bioreactor experiments 

(20%, v/v) were prepared by incubating the culture in Medium E* supplemented with 

glycerol byproduct, in shake flasks, for 72 h at 30 ºC, in an incubator shaker (150 rpm). 

The temperature and the pH were controlled at 30.0±0.1 ºC and 6.80±0.05, 

respectively. The initial glycerol and ammonium concentration were 25 – 40 and 0.7 – 1.1 g 

L-1, corresponding to a C:N ratio of 14:1 (w/w). After initial nitrogen depletion, a feeding 

solution composed of Medium E* supplemented with 200 g L-1 of glycerol byproduct was fed 

to the bioreactor at a constant rate (5 and 20 mL h−1 for the 2 and 10 L bioreactors, 

respectively). The aeration rate (0.4 and 1.0 L/min, in the 2 and 10 L bioreactors, 

respectively) was kept constant throughout the cultivation, and the dissolved oxygen 

concentration (DO) was controlled by the automatic variation of the stirrer speed (300–800 

rpm) provided by two six-blade impellers. During the fed-batch phase, the DO was 

maintained below 10%. 

Culture broth samples taken periodically during the cultivation runs were centrifuged 

at 13 000 × g, for 15 min, for cell separation. The cell-free supernatant was stored at – 20 ºC 

for the determination of glycerol and ammonium concentrations, and for the quantification 

of the EPS produced, while the cell pellet was used for the determination of the cell dry 

weight (CDW). 
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Analytical Techniques 

The CDW was determined by gravimetry, after washing the cell pellet with deionized 

water (resuspension in water, centrifugation at 13 000 × g, for 15 min, and, finally, 

resuspension in water and filtration through 0.20 µm filters) and dried at 100 ºC, for 24 h. 

Glycerol concentration in the cell-free supernatant was determined by high 

performance liquid chromatography (HPLC) with an Aminex HPX-87H column (BioRad), 

coupled to a refractometer. The cell-free supernatant samples were diluted in H2SO4 0.01 N 

and filtered with Vectra Spin Micro Polysulphone filters (0.2 μm), at 10 000 rpm, for 10 min. 

The analysis was performed at 50°C, with sulphuric acid (H2SO4 0.01N) as eluent, at a flow 

rate of 0.6 mL min−1. An external standard calibration curve was constructed using glycerol 

(Sigma – Aldrich 99%) solutions in concentrations within 1000 and 10 ppm. 

Ammonium concentration was determined with a potentiometric sensor (Thermo 

Electron Corporation, Orion 9512). Cell-free supernatant samples (1 mL) were mixed with 20 

μL of ISA (Ionic Strength Adjuster) reagent, and the electric potential was measured within 5 

minutes. An external standard calibration curve was constructed using NH4Cl (Panreac) 

solutions (50 – 0.02 mM). 

 

EPS Extraction 

Culture broth samples were diluted with deionised water for viscosity reduction and 

centrifuged at 13 000 × g for 1 h. Two methods were used for the recovery of the EPS from 

the cell-free supernatant, namely: 

 

1- Solvent precipitation with acetone  

The cell-free supernatant was subjected to protein denaturation by the addition of 

trichloroacetic acid (TCA) at a final concentration of 10% (reaction at 4 ºC for 15 min), 

followed by their separation by centrifugation (13 000 x g, 1 h). The polymer was then 

precipitated from the supernatant by the addition of cold acetone (3:1) and separated by 

centrifugation (10 000 x g, 15 min). The pellet was dissolved in deionised water and freeze 

dried. 
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2- Dialysis 

The cell-free supernatant was subjected to thermal treatment (70 ºC, 1 h) to inactivate 

bacterial enzymes that might cause polymer degradation during the subsequent purification 

steps. The treated supernatant was centrifuged (13 000 × g, 1 h) to remove any remaining 

cell debris and denatured proteins. Finally, it was dialyzed with a 10 000 MWCO membrane 

(SnakeSkin™ Pleated Dialysis Tubing, Thermo Scientific), against deionized water (48 h, 4 ºC) 

and freeze dried. 

 

Calculus 

The specific growth rate (μ, h-1) was determined using the follow equation: 

  (
 

  
)               Eq. 2.1 

 

where   (g L-1) is the cell concentration in the beginning of the run. 

The yields of biomass on substrate (    , g.g-1) and EPS on substrate ((    , g.g-1) 

were determined by using the following equations:  

 

      
  

  
          Eq. 2.2 

 

       
  

  
          Eq. 2.3 

 

where    and    are the biomass and EPS produced, respectively, and    is the substrate 

uptake. 

The EPS volumetric productivity (  , g L-1d-1) was determined as following:  

 

    
  

  
           Eq. 2.4 
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where   corresponds to the product, EPS (g L-1) at time t(days). 

 EPS specific production rate was determined by dividing the volumetric rate by cell 

concentration in terms of cell dry weight. 

 

    
  

    
           Eq. 2.5 

 

Kinetic Modelling 

Growth kinetics was assumed to follow the Monod model with potential limitation of 

glycerol ( ) and ammonia ( ). 

 

       
 

    
 

 

    
        Eq. 2.6 

 

Overall glycerol consumption results from glycerol taken up for biomass synthesis 

(      ), glycerol taken up for EPS synthesis (       ) and energy spent for maintenance 

processes (mS). 

 

   
 

    
 

  

    
           Eq. 2.7 

 

EPS synthesis is assumed to be partially associated to cell growth and described by 

the following equation: 

 

                      Eq. 2.8 

 

Finally, ammonia uptake is associated with biomass synthesis 
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          Eq. 2.9 

 

These kinetic equations result into the following set of material balance equations for 

a stirred-tank bioreactor operated in batch/fed-batch mode: 

 

  

  
 (      )    -        Eq. 2.10 

  

  
          (    )        Eq. 2.11 

  

  
       (    )        Eq. 2.12 

  

  
                  Eq. 2.13 

  

  
              Eq. 2.14 

 

with  ,  ,   and P the concentrations of biomass, glycerol, ammonia and EPS in the 

bioreactor respectively,       the dilution rate (  = 0 h-1 in the batch phase),   the inlet 

feed rate in the fed-batch phase,   the culture volume and subscript index ‘o’ denoting 

concentration in the inlet feed stream. 

 

Kinetic Parameters Estimation 

Kinetic parameters estimation was performed using an in-house developed program 

for MATLAB (Mathworks, Inc). Parameter estimation was performed in the least squares 

sense using the Levenberg-Marquardt algorithm. Model differential equations were 

integrated using a 4th/5th order Runge-Kutta solver. The final residuals and Jacobian matrix 

served to calculate an approximation to the Hessian matrix assuming that the final solution 

is a local optimum. The Hessian matrix enabled to calculate the parameters covariance 

matrix and parameters 95% confidence intervals. See Dias et al. (2005) for more details. 
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2.3.2. Culture Broth Characterisation 

 

Microscopic Observations 

Culture broth samples collected throughout Enterobacter A47 cultivation run were 

observed with an Olympus BX51 microscope in phase contrast mode. The EPS was also 

visualized by its negative staining with China ink, using a technique based on the work of 

Hahn et al. (2004). Briefly, broth samples were spread out in a slide and stained with a drop 

of China ink (Pelikan). The microscopic observation was performed in phase contrast, with 

low light intensity. 

 

Rheological Studies 

Culture broth samples were loaded in the cone and plate geometry (diameter 4 cm, 

angle 2º) of a controlled stress rheometer (ARG2, TA Instruments Inc., New Castle, DE, USA) 

and the shearing geometry covered with paraffin oil in order to prevent water loss. The 

samples were equilibrated at 30 ºC for 10 min. A strain sweep was performed at 1Hz in order 

to determine the linear viscoelastic region. Frequency sweeps with 0.1 strain amplitude 

were then performed to measure the frequency dependence of the storage (G´) and loss 

(G´´) moduli at 30 ºC. Flow curves were determined using a steady-state flow ramp (torque 

was imposed using a logarithmic ramp) in the range of shear rate from around 1 to 700 s−1. 

The shear rate was measured point by point with consecutive 60 s steps of constant shear 

rate. The viscosity was recorded for each point to obtain the flow curves. Frequency sweeps 

were carried out at a controlled stress of 1Pa (shown by stress sweeps to give values within 

the linear viscoelastic region) in order to measure the dynamic moduli G´ and G´´. 
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2.3.3. FucoPol Characterisation 

 

Sugar and Acyl Groups Composition 

Extracellular polysaccharide samples (2 – 3 mg) were dissolved in 5 mL deionised 

water and hydrolysed with 0.1 mL trifluoracetic acid (TFA 99%), at 120 ºC, for 2 h. The 

hydrolysate was used for the identification and quantification of the sugar monomers and 

acyl groups present in the purified EPS.  

The acid hydrolysate was used for the identification and quantification of the 

constituent monosaccharides by High Performance Liquid Chromatography (HPLC), using a 

CarboPac PA10 column (Dionex), equipped with an amperometric detector (Dionex). The 

analysis was performed at 30 ºC, with sodium hydroxide (NaOH 4 mM) as eluent, at a flow 

rate of 0.9 mL min-1. Galactose (Fluka 99%), glucose (Fluka), mannose (Fluka 99%), rhamnose 

(Fluka 99%), glucosamine hydrochloride (Sigma 99%), fucose (Sigma 98%) and glucuronic 

acid (Sigma 99%) solutions (30 – 8 ppm) were used as standards.  

The hydrolysate was also used for the identification and quantification of the acyl 

groups substituents. The analysis was performed by HPLC, with an IonPac ICE-AS1 9x250 mm 

column (Dionex), coupled to an Photodiode Array PDA ICS series (Dionex), using sulphuric 

acid (H2SO4 0.01 N) as eluent, at 30ºC, with a flow rate of 0.6 mL min-1. The detection was 

performed at 210 nm. Pyruvate (Alfa Aesar 98 %), succinate (Merck 99.5%) and acetate 

(Sigma-Aldrich 99.8%) solutions were used as standards in concentrations ranging from 1 to 

100 ppm. 

Proteins and salts were also measured, since they can be present as remnants of the 

cultivation broth. For the determination of the EPS protein content, 5.5 ml samples of 4.5 g 

L-1 aqueous solutions were mixed with 1 ml 20% NaOH and placed at 100 ºC for 5 min. After 

cooling on ice, each sample was mixed with 170 µl of CuSO4.5H2O (Merck) (25% v v-1) and 

centrifuged at 3500 × g for 5 min. The optical density was measured at 560 nm 

(Spectrophotometer Helios Alpha, Thermo Spectronic, UK). Albumin (Merck) solutions (0.5–

3.0 g L-1) were used as protein standards. 
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The total inorganic content of the biopolymer was evaluated by subjecting it to 

pyrolysis at a temperature of 550ºC for 48 hours. 

 

Fourier Transform Infra Red (FT – IR) Spectroscopy 

The infrared spectra of the polymers were acquired with a Nicolet Nexus 

spectrophotometer interfaced with a Continumm microscope, using a MCT-A detector 

cooled by liquid nitrogen. All the spectra presented were obtained in transmission mode, 

using a Thermo diamond anvil compression cell. The spectra were obtained, in a 100 µmx100 

µm area, with a resolution of 4 cm-1 (8 cm-1 in the exopolysaccharide analysis) and 128 scans. 

They are shown here as acquired, without corrections or any further manipulations, except 

for the removal of the CO2 absorption at approximately 2300-2400 cm-1. 

 

Molecular Weight 

Number and weight average molecular weights (Mn and Mw, respectively), as well as 

the polydispersity index (PD = Mw/Mn) were obtained by size exclusion chromatography 

(SEC) in a low temperature Waters Co. apparatus, equipped with a Waters Ultrahydrogel 

Linear column and a differential refractive index detector (Waters 2410). A Tris-HCL 0.1M 

(pH 8) solution at 30 ºC was used as eluent, and the polymer concentration was less than 

0.1% wt, thus ensuring the pumping of essentially non aggregated polysaccharides in coil 

conformation by a Waters 510 Solvent Delivery System. The values of Mw and Mn were 

calculated using a relative calibration curve generated with monodisperse pullulan standards 

(Shodex, Showa Denko, Japan). 

 

Intrinsic Viscosity  

The intrinsic viscosity of the purified polymer was determined by double 

extrapolation to zero concentration of the Huggins and Kraemer equations, respectively 

(Rao, 1999): 
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where   , sp  and rel  are the intrinsic, specific and relative viscosities, respectively; Hk  and 

kk  are the Huggins and Kraemer coefficients, and C is the polymer concentration. An 

automatic viscosity measuring unit AVS 450 (Schott-Gerate, Germany), with an Ubbelhode 

capillary viscometer (Ref. 53013/Ic, Schott-Gerate, Germany) was used to measure the 

viscosity of dilute solutions at 25ºC, with a relative viscosity in the range between 1.2 and 

2.0 in order to ensure a good accuracy in the extrapolations to zero concentration. A volume 

of 16 mL of each diluted solution was used to fill the viscometer. Elution time of each 

solution was taken as an average of three concordant readings. Relative viscosities (ηrel) 

were calculated by dividing the average flow time of each biopolymer solution by that of the 

solvent (water or NaCl solution). 

 

 

2.4. Results and Discussion 

 

2.4.1. Identification and Characterisation of the Microorganism 

 

The microorganism isolated from a contaminated glycerol aqueous solution was 

characterized about its morphological, physiological and genetic characterisation of the 

strain, such characterisation was performed by the Deutsche Sammlung von 

Mikroorganismen und Zellkulturen (DSMZ), Germany, according to the Standard Methods. 

The strain was named Enterobacter A47 and a Patent deposit was made at DSMZ, under the 

Budapest Treaty, with accession number 23139. These studies were financed by a 

Portuguese company named 73100, which is also the owner of the patent WO 2011/073874 

A2 (Reis et al., 2011). 
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Morphological Characterisation 

The bacterium Enterobacter A47 is a short rod with a length of 0.7 – 0.8 µm and a 

width of 1.2 – 2.5 µm. It is a Gram negative motile bacterium.  

 

Biochemical Profile 

The cellular fatty acid pattern of Enterobacter A47 is characterized by high levels of 

the acids 16:0 (28.3%), sum in feature 3 (16:1ω7c/15 iso 2OH) (23.9%) and 18:1 ω7c (22.8%). 

The acids 12:0 (3.3%), 14:0 (7.8%), 17:0 (0.2%), 17:0 cyclo (4.0%), 18:0 (0.3%) and sum in 

feature 2 (14:0 3OH/16:1 ISO I) (6.4%) were also detected. This fatty acid pattern is typical of 

members of the family Enterobacteriaceae (Kampfer et al., 2005). By comparison with 

TSBA50 library, Citrobacter koseri, Enterobacter cloacae and Salmonella choleraesuis were 

identified with identification scores > 0.90. 

The biochemical and physiological characteristics of Enterobacter A47 are presented 

in Table 2.1. Biochemically and physiologically, the strain was most similar to Enterobacter 

species E. pyrinus, E. hormaechei and E. asburiae. Shared features included: positive results 

in tests for gas production from glucose, catalase activity, urease activity, citrate utilization 

and acid production from mannose, maltose, xylose, sucrose, trehalose, arabinose and 

glycerol; negative results in tests for indole production, DNase activity and gelatin 

liquefaction. However, phenotypically, Enterobacter A47 can be differentiated from the type 

strains of those related species by several tests (Table 2.1). In contrast with E. homaechei 

and E. asburiae, Enterobacter A47 was negative for the methyl red and ornithine 

decarboxylase activity tests. Another distinguishing result was the production of acid from 

adonitol, which was positive for Enterobacter A47 and negative for all the related species. 

Other species distinctive characteristics were: E. asburiae negative results for acetoin 

production (Voges-Proskauer test), malonate utilization and acid production from rhamnose; 

E. homaechei positive results for acid production from dulcitol; and E. pyrinus positive results 

for acid production from inositol and production of H2S. 
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Table 2.1 Biochemical and physiological characteristics of Enterobacter A47 in comparison with related species 
type strains Enterobacter pyrinus KCTC 2520

T
, E. hormaechei ATCC 49162

T
 and E. asburiae ATCC 35953

T
 

Test 
Enterobacter 

A47 
E. pyrinus 

KCTC 2520
T
 

E. 
hormaechei 
ATCC 49162

T
 

E. asburiae 
ATCC 35953

T
 

Catalase + + + + 

Gas from glucose + + + + 

Indole production - - - - 

Methyl red - N.D. + + 

Voges-Proskaeur + + + - 

Citrate (Simmons) + + + + 

H2S production - + - - 

Urea hydrolysis + + + + 

Gelatin hydrolysis - - - - 

DNA hydrolysis - - - - 

Arginine dihydrolase + N.D. + + 

Lysine decarboxylase - N.D. - - 

Ornithine decarboxylase - N.D. + + 

ONPG + N.D. + + 

Malonate utilization + + + - 

     
Acid production from: 

    
Mannose + + + + 

Maltose + + + + 

Xylose + + + + 

Sucrose + + + + 

Trehalose + + + + 

Arabinose + + + + 

Rhamnose + + + - 

Adonitol + - - - 

Dulcitol - - + - 

Inositol - + - - 

Glycerol + + + + 

Reference This study 
Chung et al., 

1993 
O’Hara et al., 

1989 
Brenner et 
al., 1986 

 “+” and “-“ represent positive and negative results, respectively, to the test. 
N.D. – data not available. 

 

16S rDNA Gene Sequence 

The complete 16S rDNA gene sequence (1523 bp) was determined and compared 

with representative sequences of members of the family Enterobacteriaceae (Table 2.2). The 

phylogenetic tree (Figure 2.2) was constructed using the neighbor-joining method. The 
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species most closely related to Enterobacter A47 was Enterobacter pyrinus. However, the 

data was not clear since the strain showed similarity of 98.3% with E. pyrinus DSM 12410T 

and 96.2% with E. pyrinus KCTC 2520T, which is the strain given as reference in the List of 

Prokaryotic Names with Standing in Nomenclature. Enterobacter A47 showed high 

similarities of 99.0% and 98.9% (binary values) with the bacteria E. hormaechei and E. 

asburiae respectively. The highest similarity found was 99.4% (binary value) with a not yet 

validated strain, Enterobacter hormaechei subsp steigerwaltii (Hoffman et al., 2005).  

 

Table 2.2 16S rDNAgene sequence of the bacterium Enterobacter A47 (DSM 23139) 

1 TGATCCTGGC TCAGATTGAA CGCTGGCGGC AGGCCTAACA CATGCAAGTC GAACGGTAAC 

61 AGGAAGCAGC TTGCTGCTTC GCTGACGAGT GGCGGACGGG TGAGTAATGT CTGGGAAACT 

121 GCCTGATGGA GGGGGATAAC TACTGGAAAC GGTAGCTAAT ACCGCATAAY GTCGCAAGAC 

181 CAAAGAGGGG GACCTTCGGG CCTCTTGCCA TCGGATGTGC CCAGATGGGA TTAGCTAGTA 

241 GGTGGGGTAA CGGCTCACCT AGGCGACGAT CCCTAGCTGG TCTGAGAGGA TGACCAGCCA 

301 CACTGGAACT GAGACACGGT CCAGACTCCT ACGGGAGGCA GCAGTGGGGA ATATTGCACA 

361 ATGGGCGCAA GCCTGATGTCA GCCATGCCGC GTGTATGAAG AAGGCCTTCG GGTTGTAAAG 

421 TACTTTCAGC GGGGAGGAAG GCGATAAGGT TAATAACCT GTCGATTGAC GTTACCCGCA 

481 GAAGAAGCAC CGGCTAACTC CGTGCCAGCA GCCGCGGTAA TACGGAGGGT GCAAGCGTTA 

541 ATCGGAATTA CTGGGCGTAA AGCGCACGCA GGCGGTCTGT CAAGTCGGAT GTGAAATCCC 

601 CGGGCTCAAC CTGGGAACTG CATTCGAAAC TGGCAGGCTA GACTCTTGTA GAGGGGGGTA 

661 GAATTCCAGG TGTAGCGGTG AAATGCGTAG AGATCTGGAG GAATACCGGT GGCGAAGGCG 

721 GCCCCCTGGA CAAAGACTGA CGCTCAGGTG CGAAAGCGTG GGGAGCAAAC AGGATTAGAT 

781 ACCCTGGTAG TCCACGCCGT AAACGATGTC GACTTGGAGG TTGTGCCCTT GAGGCGTGGC 

841 TTCCGGAGCT AACGCGTTAA GTCGACCGCC TGGGGAGTAC GGCCGCAAGG TTAAAACTCA 

901 AATGAATTGA CGGGGGCCCG CACAAGCGGT GGAGCATGTG GTTTAATTCG ATGCAACGCG 

961 AAGAACCTTA CCTACTCTTG ACATCCAGAG AACTTTCCAG AGAGGATTG GTGCCTTCGG 

1021 GAACTCTGAG ACAGGTGCTG CATGGCTGTC GTCAGCTCGT GTTGTGAAAT GTTGGGTTAA 

1081 GTCCCGCAAC GAGCGCAACC CTTATCCTTT GTTGCCAGCG GTYAGGCCGG GAACTCAAAG 

1141 GAGACTGCCA GTGATAAACT GGAGGAAGGT GGGGATGACG TCAAGTCATC ATGGCCCTTA 

1201 CGAGTAGGGC TACACACGTG CTACAATGGC GCATACAAAG AGAAGCGACC TCGCGAGAGC 

1261 AAGCGGACCT CATAAAGTGC GTCGTAGTCC GGATTGGAGT CTGCAACTCG ACTCCATGAA 

1321 GTCGGAATCG CTAGTAATCG TGGATCAGAA TGCCACGGTG AATACGTTCC CGGGCCTTGT 

1381 ACACACCGCC CGTCACACCA TGGGAGTGGG TCGCAAAAGA AGTAGGTAGC TTAACCTTCG 

1441 GGAGGGCGCT TACCACTTTG TGATTCATGA CTGGGGTGAA GTCGTAACAA GGTAACCGTA 

1501 GGGAACCTGC GGGCTGGATC AAC       
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The criterion to identify a given microorganism within a known species, defined as 

having a similarity of at least >90% or, ideally, >99.5%, with the type strain for that species 

(Janda and Abbott, 2007) was not met. On the basis of these results, Enterobacter A47 might 

represent a new species within the genus Enterobacter or a subspecies or species of E. 

pyrinus, E. hormaechei or E. asburiae.  

 

 
Figure 2.2 Phylogenetic analysis based on 16S rRNA gene sequences available from European Molecular Biology 
Laboratory (EMBL), Ribossomal Database Program (RDP) and DSMZ databases (accession numbers are given in 
brackets). The scale bar below the dendrograms indicates 1 nucleotide substitutions per 100 nucleotides. 
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2.4.2. FucoPol Production Process 

 

Typical Enterobacter A47 Cultivation 

A typical cultivation run of Enterobacter A47 for exopolysaccharide production is 

presented in Figure 2.3 a, in which the profiles of cell growth on glycerol byproduct and EPS 

production are shown over time. The cultivation run was performed with a C:N ratio of 14:1 

(w/w), corresponding of initial glycerol and nitrogen concentrations of 25 and 0.7 g L-1, 

respectively.  

Enterobacter A47 grew exponentially, attaining maximum biomass concentrations of 

5.80 g L−1 within less than 1 day. At that time, the fed-batch phase was initiated, during 

which cell growth was suppressed by imposing nitrogen limiting conditions (<0.1 g NH4
+ L−1). 

Ammonium concentration was thereafter kept at a residual value (below the detection 

limit), even though the feeding solution containing 0.9 g NH4
+ L−1 was fed to the bioreactor at 

a constant flow rate (2.5 mL h−1 L-1), while the dissolved oxygen concentration was controlled 

at 10% by the automatic variation of the stirring rate between 300 – 800 rpm. During this 

phase, cell dry weight (CDW) steadily decreased, which may be related to a loss of cell 

viability caused by the nitrogen and oxygen limiting conditions imposed in the bioreactor. 

Since bacterial cells were not multiplying at this stage, the volume withdraw from the 

bioreactor for sampling, concomitant with the continuous introduction of feeding medium 

and solutions for pH control, led to a net reduction of the CDW. Accompanying cell growth, 

glycerol concentration in the culture broth decreased from the initial 25 to 5 g L−1 by the 

time that the fed-batch phase was initiated (Figure 2.3 a). From that time on, glycerol 

concentration was maintained below 2 g L−1, even though it was being continuously fed to 

the bioreactor with a solution containing 200 g L-1 of glycerol.  
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Figure 2.3 Time course of the cultivation of Enterobacter A47 on glycerol byproduct: () glycerol, (×) 
ammonium, (●) CDW and () EPS. (a) Initial glycerol and nitrogen concentration of 25 and 0.7 g L

-1
, 

respectively; (b) Initial glycerol and nitrogen concentration of 40 and 1.1 g L
-1

, respectively. 

 

FucoPol synthesis was initiated during the batch phase (~7 h), concomitantly with cell 

growth, reaching a concentration of 2.09 g L-1 when the fed-batch phase was initiated. 

However, increased production was observed during the stationary growth phase (Figure 2.3 

a), and an EPS concentration of 7.97 g L-1 was attained at day 4. Although the run took 7 

days, after day 4 EPS production maintained practically constant. Considering the time frame 

of increased EPS production (1 to 4 days), a volumetric productivity (rP) of 2.04 gEPS L−1 d−1 

and a specific productivity (qP) of 0.36 gEPS gCDW-1d-1 were achieved. The net yield of EPS in 

glycerol (YP/S) was 0.17 g g-1, a lower value than the 0.45 g g-1 achieved by Zhang and Chen 

(2010) for xanthan production in a glucose/xylose mixtures, Müller et al. (2007) also 

achieved higher YP/S for the alginate production optimization (within 0.28 -0.41 g g-1) using 

glucose as carbon source. 

The productivity values achieved are in the range of those presented for xanthan 

gum by Rottava et al. (2009) (1.46–2.4 gEPS L−1 d−1) and by Zhang and Chen (2010) (0.96 – 

10.56 gEPS L−1 d−1), but are higher than the ones obtained for bacterial alginate (0.43–1.53 
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gEPS L−1 d−1) (Peña et al., 2000) and the EPS produced by Enterobacter cloacae WD7 (1.68 

gEPS L−1 d−1) (Prasertsan et al., 2008), using glucose or sucrose as substrates. 

 

FucoPol production was also carried out in a 2 L bioreactor fed with higher initial 

glycerol byproduct and nitrogen, namely, 40 and 1.1 g L-1, respectively, keeping the same 

initial C:N ratio of 14:1 (w/w). All the other conditions were maintained unchanged. After a 

short adaptation period (~7.5 h) Enterobacter A47 entered an exponential growth phase that 

ended also within 1 day (as in the cultivation run above mentioned), when the ammonium 

concentration became limiting (under 0.1 g NH4
+L-1), being the fed-batch phase initiated at 

that time. 

Figure 2.3 b shows concentration profiles of biomass, EPS, glycerol and ammonium 

during the cultivation period. The culture attained a maximum cell dry weight of 6.68 g L-1, at 

the end of batch phase (~1 day), which was higher than in the prior cultivation run due to 

the higher initial nitrogen concentration available. Subsequently, a decrease of the cell dry 

weight (CDW) was also observed (Figure 2.3 a and b). During the batch phase, the glycerol 

concentration decreased from the initial 40 g L-1 to 5 g L-1 simultaneously with cell growth 

(Figure 2.3 b). In the fed-batch operation glycerol was kept between 4 – 10 g L-1, a 

concentration slightly higher than in the previous assay. 

Under those conditions, Enterobacter A47 initiated EPS production a little earlier (~6 

h) and at the end of the batch phase the EPS production was similar (2.69 g L-1) to that 

obtained in the previous assay. The maximum EPS concentration (7.50 g L-1) was attained at 

around third day. This value is similar to the one obtained in the prior cultivation run (7.97 g 

L-1), but in a longer cultivation time. Hence, rP was slightly higher (2.51 gEPS L-1 d-1), owing to 

the shorter production time frame (~3 days). Concerning qP (0.37 gEPS gCDW-1 d-1), as well as 

the net yield of biomass and EPS on glycerol were similar to the former cultivation run.  

 Results demonstrated that a typical Enterobacter A47 cultivation run may be 

performed with glycerol and nitrogen concentrations within 25 – 40 g L-1 and 0.7 – 1.1 g L-1, 

respectively, keeping the C:N ratio at 14:1 (w/w). However, with higher initial glycerol and 

nitrogen concentrations the productivities achieved were higher. 
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Kinetics Modelling 

A kinetic characterisation of the cultivation run presented in Figure 2.2 b was 

obtained by fitting the model Equations. (2.6) - (2.14) (see section 2.2.1) to the experimental 

data obtained in the 4 days cultivation run. Overall modelling results are shown in Figure 2.4 

and Table 2.3. The glycerol half saturation constant (KS) cannot be accurately estimated due 

to the lack of measured data at very low glycerol concentrations. An arbitrarily low value 

was used instead, KS = 9.21 10-5 g L-1 (Lin, 1979). All other parameters were estimated 

according to the previously described method. 

 

 
Figure 2.4 Experimental (symbols) and modelling results (continuous lines) showing the () glycerol, (×) 
ammonia, (●) biomass and () EPS kinetics with time. The mean square errors were 0.194 g L

−1
, 4.09 g L

−1
, 

0.020 g L
−1

 and 0.181 g L
−1

 for biomass, glycerol, ammonia and EPS respectively. 

 

It can be observed that model predictions and experimental data are in good 

agreement. Also, parameter estimates show narrow confidence intervals, strengthening 

their statistical confidence.  

The analysis of kinetic parameter values showed that the maximum cell growth rate 

was rather high (max = 0.36  0.02 h-1). The yield YX/s= 0.49 g g-1 was also high denoting a 
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robust and efficient cell growth process. EPS synthesis seemed to be partially growth 

associated ( = 0.12  0.09 g g-1 and  = 0.984  0.216 gEPS gCDW-1 d-1) although most of the 

EPS was synthesized after cell growth arrest at a specific synthesis rate of 0.041  0.009 gEPS 

gCDW-1 h-1. Considering only the nitrogen limited fed-batch phase, the volumetric EPS 

productivity determined by the model was 6.72 g L-1 d-1 and the yield YP/S was 0.24  0.04 (g 

g-1).  

 

Table 2.3 Maximum yields and Michaelis-Menten constant for glycerol uptake 
 Values Value source 

YX/S 0.49 ± 0.05 g g
-1

 Estimated 

YP/S 0.24 ± 0.04 g g
-1

 Estimated 

YX/N 5.45 ± 0.36 g g
-1

 Estimated 

KS ~ 0 g L
-1

 Lin (1976) 

KN 2.10x10
-3

 ± 1.68x10
-4

 g L
-1

 Estimated 

µmax 3.61x10
-1

 ± 2.00x10
-2

 h
-1

 Estimated 

     1.20x10
-1

 ± 9.00x10
-2

 g g
-1

 Estimated 

qP 0.984 ± 0.216 g g
-1

 h
-1

 Estimated 

mS 0 Fixed 

Kd 0  Fixed 

 

 

2.4.3. Characterisation of the Culture Broth 

 

Morphological Observations 

Microscopic observations of culture broth samples performed throughout the 

cultivation run are presented in Figure 2.5. Enterobacter A47 cells are small rods, almost 

coccoid in shape, at the beginning of the cultivation, being found separately and in pairs. 
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Throughout the cultivation, most of the cells increased in length and a few short chains 

started to form (Figure 2.5 a). For the indirect detection of the EPS in culture broth samples, 

a negative staining technique (China ink) was used, based on the work of Hahn et al. (2004). 

At microscope observation, under low light intensity, the EPS appears as a light halo or ring 

around the cells, while the background is stained in black. At the beginning of the cultivation, 

the broth presented a low cellular density and no EPS was detected. At 1.0 day of cultivation, 

CDW attained its maximum concentration (Figure 2.3) and Enterobacter A47 cells were 

visualized under the optical microscope (Figure 2.5 a). Although the amount of EPS produced 

at this time was still too low to be clearly visualized, China ink staining (Figure 2.5 b) already 

showed some lighter areas surrounding the cells, which may attributed to the presence of 

the EPS. 

Around 3.0 days cultivation, the microscopic observations showed that Enterobacter 

A47 cells were clumped together, forming aggregates (Figure 2.5 c). This cell aggregation 

behaviour has also been noticed for other microorganisms, such as, for example, the 

bacterium Pseudomonas aeruginosa (Al-Asheh et al., 2002) and the microalga Rhodosorus 

marinus (Basaca-Loya et al., 2008). At this cultivation time, EPS production had reached its 

maximum concentration (Figure 2.3), so it was possible to detect its presence by China ink 

staining (Figure 2.5 d). The image shows a white halo around cell aggregates, as well as a 

lighter background than that observed in Figure 2.5 b.  

At the end of the cultivation, cell aggregates were reduced both in number and size 

(Figure 2.5 e). Figure 2.5 f shows an image of a broth sample taken at the end of cultivation 

stained with China ink. As shown by the white background of the image, the EPS matrix was 

spread out occupying nearly all the optical field, being the cells embedded in it, in contrast 

with the image taken at day 3.0 (Figure 2.5 d), where the EPS seems to be somewhat 

bounded to the cells. This may suggest that, as the EPS was being synthesized (up to day 4.0) 

it remained loosely attached to the bacterial cells. After that there was no further significant 

EPS production and the polymer may have become detached from the cells, thus spreading 

throughout the broth. 
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Figure 2.5 Microscopic observations of Enterobacter A47 broth samples at different cultivation times: 1.0 day 
(upper images: A and B), 3.0 days (middle images: C and D) and end of cultivation run (lower images: E and F), 
observed in phase contrast (left images) and after staining with China ink (right images). 

 
 

 

Rheological Studies 

Cultivation broth viscosity increases concomitantly with EPS production. In order to 

improve FucoPol production, it is necessary to keep the highly viscous broth well mixed, 



FucoPol: Standard Bioprocess Operation and Polymer Characterisation 

39 

 

which is problematic, especially at a large scale. In view of this, the study of the rheological 

properties of microbial culture broths is essential to improve EPS yield and productivity.  

 

Steady-shear behaviour 

Figure 2.6 shows the flow curves of Enterobacter A47 culture broth samples at 

different times (from the first day until seventh day) of the cultivation run represented in 

Figure 2.3 a. For all cases, the apparent viscosity was immediately recovered at low shear 

rates, after subjecting the samples to shear rate values up to 700 s−1. Until 1.0 day of 

cultivation, the broth exhibited a Newtonian behaviour (Figure 2.6). Afterwards, it has 

developed non-Newtonian characteristics acting as a shear-thinning fluid, showing an 

increase of shear-thinning as the cultivation time proceeded. This viscosity built up is a 

common feature observed in much microbial cultivation for the production of extracellular 

polysaccharides and it usually determines the termination of the run due to loss of bulk 

homogeneity of the culture broth (Freitas et al., 2009b). 

The apparent viscosity of the culture broth measured at low shear rates has shown 

an increase of three orders of magnitude (from 10−3 to 100 Pa s) (Figure 2.6). The rise in the 

broth viscosity and the increasingly non-Newtonian behaviour of the culture broth was 

mostly due to the accumulation of EPS in the aqueous medium. Bacterial cells had a 

negligible contribution to the changes in the broth rheological properties, since those 

changes occurred after maximum CDW was reached (day 1). In fact, the flow behaviour at 

the beginning of the experiment (day 0.2), for a very low cell concentration, was identical to 

that of the culture broth sample with the highest CDW at day 1.0 (Figure 2.6). 
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Figure 2.6 Flow curves for culture broth samples at different cultivation times: (Δ) 0 days, (-) 1.0 days, (×) 2.0 

days, () 4.0 days, (●) 5.0 days, () 6.0 days and () 7.0 days. The measurements were made at 30 ◦C. 

 

In each case, the relationship between the shear stress (τ, Pa) and the shear rate ( ̇ , 

s−1) for the different broth samples could be fitted using the Power law or Ostwald-de-Waele 

model (Equation 2.17), which is commonly employed, namely by Sanchez et al, (2002) and 

Candia & Deckwer (1999): 

 

     ̇           Eq. 2.17 

 

where   is the consistency index (Pa sn) and   is the power law index. The later indicates the 

degree of non-Newtonian behaviour. For   = 1, the fluid is Newtonian, while for   < 1 it is 

considered shear-thinning. Both these parameters have changed throughout the cultivation 

time (Table 2.4). The power law index decreases as the consistency index increases 

throughout the cultivation run. In fact, at the beginning (up to 1.0 day)   was around 1, thus 

confirming the Newtonian behaviour of the broth at that time. Afterwards,   gradually 

decreased to a value of 0.4, showing the shear-thinning behaviour that is characteristic of 

most high molecular weight polymers in aqueous media, and observed in some bioreactor 
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culture broths as well, like those of Pseudomonas aeruginosa (Al-Asheh et al., 2002), 

Leuconostoc mesenteroides (Landon et al., 1993), Xanthomonas campestris (Candia & 

Deckwer, 1999) and Beta vulgaris (Sanchez et al., 2002). However, in the literature a few 

systems also referred cultivation broths which behaves differently, such as in the cultivation 

of Bacillus cereus, having a dilatant fluid behaviour with an initial yield stress (Al-Asheh et al., 

2002). 

 

Table 2.4 Power Law parameters for Enterobacter A47 broth samples taken at different cultivation times 

Cultivation time 

(days) 
EPS (g L

-1
)

a
 η (Pa s)

b
 

Power law model
c
 

K (Pa s
n
) N 

0.0 0.0 0.0047 0.004 ± 0.0005 0.984 ± 0.0190 

1.0 3.66 ± 0.02 0.0052 0.006 ± 0.0002 0.948 ± 0.0069 

2.0 7.73 ± 1.46 0.0147 0.026 ± 0.0013 0.814 ± 0.0083 

4.0 12.24 ± 1.01 0.0814 0.263 ± 0.0105 0.577 ± 0.0067 

5.0 12.77 ± 0.60 0.2590 1.174 ± 0.0610 0.439 ± 0.0093 

6.0 12.64 ± 0.24 0.3910 2.033 ± 0.1231 0.383 ± 0.0105 

7.0 13.28 ±0.25 0.3939 1.947 ± 0.1097 0.407 ± 0.0099 

a
 EPS extracted with acetone; 

b
 At a shear rate of 15.85 s

-1
, the associated error was ≤0.5%; the relative 

deviation errors -     ∑ ([             ]       ⁄ )  ⁄ 
    where 

c
0.0091≤RE≤0.1038. 

 

The consistency index increased over the cultivation time, which is related to the 

increase of broth viscosity. The increase of the consistency index up to 4.0 days of cultivation 

may be attributed to the increase in EPS concentration (Figure 2.3; Table 2.4). On the other 

hand, its further increase between days 4.0 and 7.0 cannot be related only to EPS 

concentration, since it remained nearly constant. Such increase can be related with changes 

in the substituent’s content and composition, which usually have great impact on the 

polymer’s properties, such as solubility and rheology (Rinaudo, 2004). EPS anionic character 

is influenced by its content in pyruvyl and succinyl and glucuronic acid (Freitas et al., 2009). 

Hence, the raise of the broth viscosity and the consistency index after day 4 should be 
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essentially related to the formation of new interactions between individual EPS molecules 

and the other components of the complex media that is the cultivation broth, added by the 

slightly higher negative groups content. Another factor that probably has contributed to the 

increase of broth viscosity observed during the last days of the cultivation was the death of 

some microbial cells. As the cells lose their viability, they release their intracellular 

components, which might have an influence upon the broth viscosity. These hypotheses are 

in agreement with the results shown in Figure 2.7 a and b, where it is presented the steady-

state and oscillatory data of the culture broth at day 7.0, and of an aqueous solution in 

deionised water of the purified EPS recovered at day 7.0, both samples having an identical 

polymer concentration (0.81 wt%, calculated subtracting the inorganic content).  

 

 
Figure 2.7 Steady-state (A) and oscillatory data (B) of the culture broth at day 7.0 (), and of an aqueous 
solution in deionised water of the purified EPS taken at day 7.0 (), both samples having the same effective 
polymer concentration (0.81 wt%). G´ (full symbols), G´´ (open symbols). 

 

 



FucoPol: Standard Bioprocess Operation and Polymer Characterisation 

43 

 

As can be seen, the viscosity of the purified EPS sample is lower, meaning that, the 

ions and other components of the broth are acting as viscosity enhancers in the presence of 

EPS molecules. In addition, the mechanical spectrum of the purified EPS sample shows a 

higher loss modulus (G´´) for all frequencies studied, in contrast with the data of the broth 

sample, for which the storage modulus (G´) becomes higher at high frequencies (Figure 2.7). 

The flow curves obtained for broth samples taken at 4.0, 5.2, 6.2 and 7.0 days of 

cultivation could be fitted by Equation (2.18), which is based on the Cross model normally 

used to describe all stages of the flow curves: 

 

    
  

  (  )̇ 
          Eq. 2.18 

 

where  ̇ is the shear rate (s−1),    is the apparent viscosity (Pa s),    is the zero-shear rate 

viscosity (of the first Newtonian plateau) (Pa s),   is a time constant (s) and   is a 

dimensionless constant, which may be related to the exponent of the power law ( ) by 

     . Equation (2.18) is obtained from the Cross equation (Cross, 1965) assuming a 

negligible viscosity of the second Newtonian plateau when compared to    and   , which is 

valid in this work since the second Newtonian plateau was never approached. 

Eq. (2.18) fitted quite well the flow curves, and the parameter values obtained are 

presented in Table 2.5. The values of the exponent   are consistent with those obtained 

for  , the exponent of the power law. It is also observed an increase of the time constant   

as the viscosity of the culture broth becomes higher, meaning that more time is needed to 

form new polymer chain entanglements as they are disrupted by the shear stress imposed. 

As a consequence, the shear rate corresponding to the transition from Newtonian to shear-

thinning behaviour moves to lower values as the concentration increases (Figure 2.6). 
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Table 2.5 Cross model parameters for Enterobacter A47 broth samples taken at different cultivation times 

Cultivation time 

(days) 

Cross model
a
 

     (s)   

0.2 - - - 

0.9 - - - 

2.0 - - - 

4.0 0.198 ± 0.010 0.122 ± 0.024 0.563 ± 0.021 

5.2 1.980 ± 0.045 0.352 ± 0.046 0.677 ± 0.019 

6.2 2.060 ± 0.049 0.492 ± 0.030 0.709 ± 0.009 

7.0 2.070 ± 0.066 0.583 ± 0.057 0.659 ± 0.011 

a 
The relative deviation error -     ∑ ([             ]       ⁄ )  ⁄ 

    where 0.0114≤RE≤0.0192. 

 

Oscillatory measurements and their correlation to steady-shear data 

Figure 2.8 shows the angular frequency dependencies of storage (G´´) and loss (G´) 

moduli of the broth samples taken at days 4.0, 5.2, 6.2 and 7.0. At low frequencies (terminal 

zone), values of G´´ were much higher than those of G´. This indicates that a liquid-like 

behavior predominated for all samples. However, at higher frequencies and for 5.2, 6.2 and 

7.0 days broth samples, a cross-over was detected beyond which the elastic contribution 

predominated. This “cross-over frequency” (where G´ = G´´) moved to lower frequency 

values when the concentration increased (Figure 2.8 b–d), as a consequence of increasing 

relaxation times. 
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Figure 2.8 Storage () and loss modulus () for broth samples taken at different cultivation times: (a) 4.0 days; 
(b) 5.0 days; (c) 6.0 days and (d) 7.0 days. 

 

In the measurement of the viscosity and viscoelasticity of simple polymeric solutions, 

the angular frequency dependence of complex viscosity is well superimposed on the shear 

rate dependence of the apparent viscosity, known as the Cox–Merz model. In this study, the 

correlation between apparent and complex viscosity was determined using Enterobacter 

A47 broth from different cultivation times. The plots of complex viscosity against angular 

frequency were completely superimposed to the curve of apparent viscosity against shear 

rate for all samples. Figure 2.9 presents the results obtained for broth samples at 4 and 7 

days. This fact means that, although the culture broth is a complex system composed, not 

only by a high molecular weight polysaccharide, but also by other components, such as salts, 

glycerol and cells, it still possesses simple rheological properties. As the cultivation process 

proceeded, similar types of molecular rearrangements were taking place in the two flow 

patterns for the applied shear rate and frequency ranges (Xu et al., 2009). 

The dynamic viscosity is also presented in Figure 2.9, and behaves as in many 

polysaccharide systems: approaching the zero-shear rate viscosity at low shear rates and 

diverging from the complex and apparent viscosities as the angular frequency increases. This 
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fact may be attributed to different molecular motions present in the dynamic and steady 

conditions at high frequency and shear rate (Ferry, 1980). 

 

 
Figure 2.9 Cox–Merz plots for the broth samples isolated at days 4.0 and 7.0: (-) apparent viscosity; () 
complex viscosity and () dynamic viscosity. 

 

2.4.4. FucoPol Characterisation 

 

Sugar and Acyl Groups Composition 

The glycosyl composition analysis of the purified EPS produced by Enterobacter A47 

from glycerol byproduct revealed that it was a heteropolysaccharide mainly composed of 

neutral sugars: fucose (32 – 36 %mol), galactose (25 – 26 %mol) and glucose (28 – 34 %mol). 

Glucuronic acid, an acidic sugar, was also detected, accounting for 9 – 10 %mol of the 

polymer’s sugar content. Different acyl groups substituents, namely, pyruvyl (13 – 14 wt. %), 

acetyl (3 – 5 wt.%) and succinyl (3 wt.%) were also detected. Identical EPS composition was 

obtained for both cultivations of Figure 2.3. 
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The evolution of EPS neutral sugar composition it was followed across a typical 

cultivation run, between days 1 and 4. As expected, the relative proportion of the neutral 

sugar monomers has suffered some changes throughout the assay (Figure 2.10 a). Around 

day 1 of cultivation, glucose was the main sugar monomer of the EPS with a content of 83 

%mol. Galactose and fucose were present in much lower amounts (8 and 9 %mol, 

respectively). Between days 1 and 2, the neutral sugar monomers composition has suffered 

changes, namely, a reduction of the glucose content from 83 to 70 %mol, simultaneously 

with an increase of the content in galactose and fucose (from 8 to 19 %mol and from 9 to 11 

%mol, respectively) (Figure 2.10 a). From that time on, the neutral sugar monomer 

composition of the EPS has changed significantly, being the final EPS (4 days) composed of 

fucose (32 %mol), galactose (25 %mol) and glucose (34 %mol). Longer cultivations (up to 7 

days) showed that the composition of the EPS did not suffer any further changes of its sugar 

monomer composition.  

 

 
Figure 2.10 Profile of the FucoPol neutral sugar composition (() glucose; () galactose; () fucose) (A) and 
acyl groups (() succinyl; () pyruvyl and () acetyl) (B) along the cultivation run. 
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The observed changes in the polymer’s sugar composition may reflect bacterial 

metabolism changes occurring throughout the run. EPS synthesis by bacteria needs energy-

rich form monosaccharides as precursors, namely nucleoside diphosphate sugars (NDP-

sugars), which are derived from phosphorylated sugars (Figure 2.11) (Sutherland, 1982; 

Freitas et al., 2011). All sugar nucleotides share a common precursor, which is glucose-6-P. 

The shortest pathway is the synthesis of UDP-glucose (Figure 2.11). Therefore, maybe the 

polymer is enriched in glucose at the beginning of the cultivation because the enzymes 

needed for the synthesis of the other sugar nucleotides (GDP-fucose, UDP-galactose, UDP-

glucuronic acid) were still not available. The pathways leading to such sugar nucleotides 

require several enzymes and longer pathways for their synthesis (Kumar et al., 2007; Freitas 

et al., 2011).  

 

 
Figure 2.11 Resumed diagram of nucleotide biosynthetic pathway involved in bacterial EPS synthesis by Gram- 
negative bacteria. NDP, nuclesoside diphosphate; UDP, uridine diphosphate; GDP, guanosine diphosphate 
(adapted from Freitas et al., 2011). 

 

The evolution of acyl groups (Figure 2.10 b) substituents were also evaluated 

throughout the cultivation run (Figure 2.9 b). The total content in acyl groups increased from 

0.7 wt.% at day 1 to 19.2 wt.% at day 4. The identified acyl groups in the acid hydrolysate 

were acetyl, pyruvyl and succinyl. Succinyl had the most significant increase throughout the 
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run, attaining its maximum content (19.4 wt.%) by the third day. Afterwards, it has 

decreased to 12.9 wt.% at day 4 (Figure 2.10 b). Acetyl and pyruvyl contents gradually 

increased throughout the entire run, reaching final contents of 2.9 wt.% and 3.4 wt.%, 

respectively. Further extending the cultivation to 7 days (data not shown) resulted in some 

additional changes in the polymer’s content in succinyl, pyruvyl and acetyl (1.1 wt.%, 3.9 

wt.% and 6.8 wt.%, respectively).  

These differences verified in the acyl groups concentration from day 4 to day 7 may 

be one of the causes of the culture broth increase viscosity, as previous stated the succinyl 

content had a pronounced decrease, while acetyl and pyruvyl content increased. Casas et al. 

(2000) reported a similar behaviour for xanthan production, i.e. an increase of viscosity with 

the increase of acetyl and pyruvyl contents. 

 

Proteins and Salts Contents 

For the extraction of the EPS from the cultivation broth, two procedures have been 

tested and the resulting polymers were characterized in terms of their content in 

contaminants. The acetone contained considerable amounts of contaminants, namely, 

proteins (7.6-15.9 wt%) and inorganic residues (32.5%), remnants of the culture broth that 

co-precipitated with the polysaccharide. Thus, with the objective of obtaining a refined 

polymer, the EPS was extracted by dialysis of the cell-free supernatant with a 10000 MWCO 

membrane. This procedure allowed for the elimination of additional contaminants, whose 

content was considerably reduced. In fact, no inorganic residues were detected in the 

polymer. A fraction of the protein content still remained in the dialyzed polymer (<5 wt%), 

suggesting that such proteins were high molecular weight molecules.  

 

Fourier Transform Infrared Spectroscopy 

FucoPol´s FT-IR spectrum is presented in Figure 2.12 along with the spectra of several 

other commercial polysaccharides for comparison. The polysaccharides analyzed were: 

Fucogel, which is a bacterial fucose-containing EPS, composed by fucose, galactose and 

galacturonic acid; alginate, which is an algae polysaccharide, composed by mannuronic and 
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guluronic acids, and acetate; and guar gum (a neutral plant polysaccharide composed of 

galactose and mannose).  

The broad and intense band around 3400 cm-1, common to all polysaccharides, 

represents O-H stretching of hydroxyls and bound water (Synytsya et al., 2003), which 

overlaps in part with the C-H stretching peak of CH2 groups appearing at 2940 cm-1. The well-

defined envelope found between 1200-900 cm-1 represents skeletal C-O and C-C vibration 

bands of glycosidic bonds and pyranoid ring (Synytsya et al., 2003). 

The band at 1720 cm-1 observed in the FucoPol and Fucogel spectra, but not 

identified in guar gum nor Alginate, may be attributed to the C=O stretching of carbonyls in 

acyl groups (Alvarez-Mancenido et al., 2008). Similarly, the band at 1250 cm-1 may also be 

attributed to the C-O-C vibration of acyls (Synytsya et al., 2003). The two strong bands 

around 1607 and 1405 cm-1 in alginate spectrum (Figure 2.12 c) can be attributed to the 

asymmetric and symmetric stretching of carboxylates, respectively (Synytsya et al., 2003). 

Such bands are also observed in the Fucogel and FucoPol spectra (Figure 2.12 a and b), 

which can be related with the presence of galacturonic and glucuronic acids in each polymer, 

respectively. Those bands are not seen in guar gum (Figure 2.12 d), since this polysaccharide 

is a neutral polymer. Even though the fucose-containing EPS and Fucogel spectra are quite 

similar, there is a distinctive band at 1564 cm-1 observed for the fucose-containing EPS 

(Figure 2.12 a) that may be attributed to the C=O anti-symmetric stretching vibrations of 

succinate (Krishnan et al., 2007). The identification of bands corresponding to acid groups in 

the FucoPol´s spectrum is consistent with the presence of acyl groups, which account for 11 

to 20 wt.% of the polymer.  
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Figure 2.12 Comparative FT-IR spectra of polysaccharides: (a) FucoPol, (b) Fucogel, (c) alginate and (d) guar 
gum. 

 

FucoPol Average Molecular Weight 

Molecular weight (Mw) and polidispersity (PD) are important parameters that will 

determine the suitability of a given polymer for specific application. The PD reflects the 

degree of heterogeneity of the polymer´s chain lengths. 

FucoPol´s weight average Mw was estimated by size exclusion chromatography (SEC). 

As shown in Figure 2.13 a, both the EPS Mw and the polymer’s PD changed during the 

cultivation run. The Mw increased across the cultivation run (from 8 × 105 to 5 × 106), on the 

other hand the PD increase from 1.2 to 2.2 and after decreases again to 1.2. 
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Figure 2.13 (a) Evolution of FucoPol´s average molecular weight (Ж) and polydispersity () along the 
cultivation run. (b) Variation of the intrinsic viscosity over time. 

 

The bimodal shape of the chromatograms (Figure 2.14) seems to suggest that the 

culture might have synthesized at least two distinct EPS, with different sugar composition 

and average Mw, and either of them predominated at different cultivation stages. At the 

beginning (day 1) of the cultivation, the lower Mw EPS seems to have prevailed (Figure 2.14). 

Considering that the polymer recovered from the broth at that time was mainly composed of 

glucose (83 %mol), this EPS might be a glucose homopolymer. The lower polymer content in 

fucose and galactose (9 and 8 %mol, respectively) may possibly be attributed to the higher 

Mw peak (Figure 2.14). The value of PD, calculated considering a whole peak, only for 

comparison purposes, was 1.2 (Figure 2.13 a). 
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Figure 2.14 Mw chromatogram profiles for different cultivation times. 

 

Concomitant with the reduction of the content in glucose (about 10 %mol) and the 

increase of the fucose and galactose contents (about 13 %mol each), between days 1 and 2, 

there was an increase on the polymer’s Mw from 8.0x105 to 2.0x106 (Figure 2.13 a). 

Moreover, there was also an increase of the intensity of the peak corresponding to the 

higher Mw fraction of the polymer and a reduction of the lower Mw peak (Figure 2.14) that 

was observed until the end of the run. Hence, apparently the high Mw EPS became 

predominant. Although its content was lower, glucose was still a major sugar component of 

the polymer at that time, suggesting that the high Mw EPS might be composed of fucose, 

galactose and glucose.  

The higher heterogeneity of the polymer between days 2 – 3 is also evidenced by the 

higher PD value obtained (2.2) during that period (Figure 2.13 a). At day 4 the EPS had a 

value Mw of 5.0x106, and it was rather homogenous, as shown by the low PD of 1.2. The 

reduction of the PD is evidenced by the narrower chromatogram shape and the loss of the 

great bimodal character seen in Figure 2.14. The polymer obtained by the seventh day had a 

similar Mw 5.8x106 and PD (1.3). 
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These results are in accordance with the increase of the culture broth viscosity, 

indicating that besides the influence of the EPS composition on this characteristic, it is also 

deeply influenced by the raise of the EPS polymerization degree.  

The Mw of some commercial polysaccharides was also measured under the same 

conditions. FucoPol showed to have a similar Mw to Fucogel (Solabia) (3.1x106) and 

commercial xanthan (5.0x106). Alginate, citrus pectin and CMC (carboxymethylcellulose) 

presented lower molecular weight values (4.3x105, 2.2x105 and 5.1x105, respectively).  

FucoPol´s Mw was higher than the value reported by Salah et al. (2010) for xanthan 

produced (8.0x104) by Xanthomonas campestris NRRL B-1459 using palm date juice 

byproduct as carbon source and similar (1.1x106) to the one reported by Reyes et al. (2003) 

for alginate produced by Azotobacter vinelandii in a modified Burk´s medium. 

 

Intrinsic Viscosity 

The intrinsic viscosity ([η]) is a characteristic property of a single macromolecule in a 

given solvent and is a measure of the hydrodynamic volume occupied by the polymer itself. 

It depends on the polymer’s molecular mass, chain rigidity and type of solvent. 

The polymer’s intrinsic viscosity was also evaluated between days 1 and 4 of the 

cultivation run (Figure 2.13 b). At the end of the run, FucoPol presented an intrinsic viscosity 

around 10.72 dL g-1. This value is in agreement with the ones reported for several 

commercial typical commercial polysaccharides, such as xanthan and guar gum, 5–50 dL g-1 

(Arvidson et al., 2006). The intrinsic viscosity of Fucogel (16.7 dL g-1) was also reported to be 

within this range (Guetta et al., 2003).  

The Huggins constant (kH = 0.57) of the EPS seems to indicate the presence of 

aggregates, since for flexible macromolecules in a good solvent kH is generally around 0.3. 

Fucogel has a similar Huggins constant (kH = 0.55), indicating some similarity between both 

fucose-containing polysaccharides in terms of aggregation. 

The EPS intrinsic viscosity and the molecular weight had presented a similar trend, 

namely, as a linear increase along the cultivation run (Figure 2.13 a and b). This linearity is 

correlated, since the [η] is a measure of the molecule’s hydrodynamic volume and, 
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consequently, we may expect an increase of [η] with the increase of its molecular weight 

(Bae et al., 2008). In fact, the average molecular weight of the polymer formed increased 

from 8.0x105 to 5.0x106, which is concomitant with the increase of the intrinsic viscosity 

(Figure 2.6 a and b), between days 1 and 4. 

Between the third and fourth day, the composition in neutral sugars barely varied, as 

well as EPS concentration. However, the same was not observed with the acyl groups. Their 

composition had a considerably variation, with a great decrease in succinyl and an increase 

in pyruvyl and acetyl content. This fact can affect the intrinsic viscosity, since the presence of 

these non-sacharide ionizable components, namely pyruvyl and succinyl, can affect the 

interactions between EPS molecules and within the same molecule (García-Ochoa et al., 

2000). In other words, the presence of acyl groups affects the hydrodynamic volume, 

through molecule-molecule, molecule-solvent and intramolecular interactions, which may 

also be the source of the increase of [η]. 

 

 

2.5. Conclusions 

 

FucoPol´s producing bacteria was identified as Enterobacter A47 by biochemical and 

physiological identification and by 16S rRNA gene sequence determination. Tests revealed 

that Enterobacter A47 could be a new species among the genus Enterobacter or a subspecies 

or species of E. pyrinus, E. absuriae or E. homoarchei. 

FucoPol´s bioprocess was composed of a batch phase where Enterobacter A47 grew 

exponentially and a fed-batch phase where the EPS production was more pronounced. Thus, 

EPS synthesis seems to be partially growth associated, as suggested by the experimental 

results and confirmed by the mathematical model.  

The initial C:N ratio was kept at 14 :1 (w/w), however two distinctive initial glycerol 

and nitrogen concentrations were used, 25 – 40 and 0.7 – 1.1 g L-1, respectively. Such 

difference in initial glycerol and nitrogen concentrations tested did not significantly affect 

Enterobacter A47 performance. Maximum FucoPol concentration of 7.50 – 7.97 g L-1 was 
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achieved within 3 – 4 days of cultivation, corresponding to volumetric rates of 2.04 and 2.51 

g L-1 d-1.  

Along the cultivation run, the morphology of the culture broth changed, revealing the 

formation of cell aggregates surrounded by the EPS at the beginning of the cultivation run, 

while, at the end, aggregates were reduced both in number and size, and an EPS matrix with 

the cell embedded in it was observed. On the other hand, the culture broth flow behaviour 

also changed, from Newtonian in the beginning, to shear-thinning as the EPS was produced. 

It has been shown that the viscosity of Enterobacter A47 culture broth was not only 

dependent on EPS concentration, molecular weight and chemical composition, as the broth 

viscosity continued to increase when polymer production ceased, and when there was not a 

significant variation of the EPS molecular weight and chemical composition. The increase of 

broth viscosity in the end of the cultivation run should be essentially related to the 

formation of new interactions between individual EPS molecules and the other components 

of the broth. Nevertheless, changes in culture broth viscosity reflected the progress of the 

cultivation and, hence, rheological data can be used, in some extent, for monitoring the EPS 

production process. 

The relative proportion of sugar monomers, as well as the content and composition 

of the acyl groups substituents of Fucopol have changed considerably throughout the 

cultivation run, reaching a stable composition at the end of the experiments. FucoPol was 

composed of fucose (32 – 36 %mol), galactose (25 – 26 %mol), glucose (28 – 34 %mol), 

glucuronic acid (9 – 10 %mol) and acyl groups substituents (succinyl, pyruyl and acetyl). FT-IR 

spectrum of the EPS was in accordance with the composition analysis. 

FucoPol´s average molecular weight was 5.0×106 at 4 days of cultivation run and 

5.8×106 at 7th day. Mw and intrinsic viscosity of the EPS have increased linearly along the run 

and these two properties are closely related. The changes of polymer´s physical-chemical 

characteristics could be correlated to the viscosity built up observed in the broth during the 

assay. Enterobacter A47 seems to be able to synthesize two distinct EPS, with different sugar 

composition and average Mw, as suggested by the bimodal shape of the SEC 

chromatograms. 
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Chapter 3 

Optimization of FucoPol Production  

Study of the Interactive Effect of Temperature 

and pH using Multivariate Statistical Analysis 

 

 

The results presented in this chapter were published in a peer reviewed paper. 

 Torres, C.A.V., Antunes, S., Ricardo, A.R., Grandfils, C., Alves, V.D., Freitas, F., Reis, 

M.A.M., 2012. Study of the interactive effect of temperature and pH on exopolysaccharide 

production by Enterobacter A47 using multivariate statistical analysis. Bioresource Technology 

119, 148-156. 
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3.1. Summary 

 

Enterobacter A47 synthesizes FucoPol, a fucose-containing EPS, using glycerol byproduct 

at 30 ºC and pH 6.8. It has a Mw ~ 5.0x106 and a fucose content within 32 – 36 %mol. In order to 

evaluate the impact of temperature (15.6 to 44.1 ºC) and pH (5.6 to 8.4) on cellular growth and 

EPS production, in the current chapter a RSM (Response Surface Methodology) was used and a 

central composite rotatable design was applied. The effect of such conditions on polymer 

composition and average molecular weight was also assessed. 

Maximum EPS production (> 7.00 g L-1) was obtained for temperature and pH within 25 – 

35 ºC and 6.0 – 8.0, respectively. Under these conditions, the polymers contained over 30 %mol 

fucose. Glucose, galactose, and glucuronic acid contents were about 28, 25, and 10 %mol, 

respectively, and the total acyl groups content was about 20 wt.%. The average molecular 

weight (Mw) was around 4.0x106. Outside the optimal temperature and pH ranges, fucose, 

galactose and glucuronic acid, and the total acyl group contents were reduced, while the 

glucose content increased, new monomers (rhamnose and glucosamine) were detected, and 

the Mw increased to ≥ 1.10x107. 

This study revealed the ability of Enterobacter A47 to synthesize different 

heteropolysaccharides as a function of pH and temperature, a feature that can be exploited to 

obtain tailored polymer composition. Moreover, the production of high fucose content EPS was 

stable for wide pH and temperature ranges, which is important for the envisaged industrial 

development of the bioprocess. 
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3.2. Introduction  

 

Despite their valuable properties, only a reduced number of bacterial EPS has reached 

industrial development and is currently commercially available (e.g. xanthan, gellan gum, 

hyaluronic acid) (Freitas et al., 2011). The main limitation of bacterial production of 

polysaccharides is their high production costs. One of the strategies to turn such processes 

more cost effective is the improvement of product yield and productivity, which can be 

achieved by optimization of the fermentation conditions (e.g. pH, temperature, carbon and 

nitrogen source concentration) (Freitas et al., 2011). Similarly to other microbial bioprocesses, 

nutritional and environmental conditions strongly affect EPS synthesis (Kumar et al., 2007). 

Temperature and pH, which considerably influence the activity of bacterial enzymes (Kanari et 

al., 2002), are important environmental factors controlling both microbial growth and 

metabolite synthesis (Toledo et al., 2008).  

To improve bioreactor operational conditions, several optimization tools have been 

developed. Response surface methodology (RSM) is a recognized method for optimization of 

diverse areas of biotechnology. This approach is composed by statistical design of experiments, 

mathematical modelling and coefficient estimation, along with response prediction and model 

accuracy testing (Ratnam et al., 2003). The most common model used in RSM for bioprocesses 

optimisation is the second order polynomial (Banik et al., 2007; Jiang, 2010; Majumder et al., 

2009; Sousa et al., 2010). 

In chapter 2, the production of FucoPol, a new fucose-containing EPS, by the bacterium 

Enterobacter A47 (DSM 23139), using glycerol byproduct from the biodiesel industry as the sole 

carbon source was described. The standard process was performed with controlled temperature 

and pH at 30 ºC and 6.8, respectively. In the current chapter, the interactive effect of 

temperature (15.6 to 44.1 ºC) and pH (5.6 to 8.4) on Enterobacter A47 cellular growth and EPS 

production were evaluated. The impact of such conditions on polymer composition and average 

molecular weight was also evaluated. RSM was used and a central composite rotatable design 
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was applied, where the standard conditions previously described in Chapter 2 were set as the 

central point conditions.  

 

 

3.3. Material and Methods 

 

3.3.1. FucoPol Production 

 

Microorganism and Media 

Enterobacter A47 was grown as described in section 2.2.1. – Chapter 2. 

 

Bioreactor Operation 

All experiments were carried out in 2 L bioreactors and operated as described in section 

2.3.1. – Chapter 2. For this set of experiments runs were performed with an initial glycerol and 

nitrogen concentration of 40 and 1.1 g L-1, respectively. The bioreactor was operated with 

controlled temperature and pH, which were in the range of 15.9 - 44.1 ºC and 5.6 - 8.4, 

respectively, for the different runs performed, according to the experimental design (see 

section 3.3.3). 

 

Analytical Techniques  

Were used the same analytical techniques described in section 2.3.1. – Chapter 2.  
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3.3.2. FucoPol Characterisation 

 

Sugar and Acyl Groups 

The sugar and acyl groups composition was analysed as described in section 2.3.3. – 

Chapter 2. 

 

Molecular Weight 

In this chapter EPS average molecular weight (Mw) and polydispersity were determined 

by SEC-MALLS (Size Exclusion Chromatography - Multi-Angle Laser Light Scattering). EPS 

solutions (0.2 g/dL) were dissolved first by dispersion the powder in Tris-HCl 0.1M; NaCl (0.2 M), 

pH 8.1 buffer. These aqueous dispersions were warmed for 1 hour at 80°C in a water bath under 

lateral agitation (50 rpm). Dissolution of the polymer was future continued for 36 hours under 

rolling agitation at room temperature The polymer solutions were filtrated on polysulfone filter 

(0.45 µm ; 23 mm Whatman Puradisc 25AS) before their injection on the SEC-MALS system. The 

molecular weight distribution of EPS was analysed by Size Exclusion Chromatography coupled 

with Multiple Angle Light Scattering (SEC-MALS) adopting a SEC mobile phase made of Tris-HCl 

0.1M; NaCl (0.2 M), pH 8.1 buffer. The latter combines in series respectively: a HPLC pump 

(Hewlett Packard quaternary 1050), an autoinjector (Hitachi-Merck, Lachrom L7200, model: 

1405 – 040); an analytical SEC linear columns (PL aquagel-OH mixed 8 µm, 30 x 7.5 mm) 

protected by a guard column (Polymer Laboratory; 50 x 7.5 mm, part n° 1149-1840).  The SEC 

columns were equilibrated for 24 hours before running the analysis at a flow rate of 0.7 ml min-1 

at room temperature. The analysis was performed by injection of 100 µL volume of EPS solution 

(0.2 g dL-1). Each analysis was conducted in duplicate. 

Signals from MALS (Wyatt Technology Corporation Dawn Model mounted with an 

Uniphase Argon laser (488 nm; 10 mW; K5 cell Flow cell) and RI signals (Optilab DSP, Wyatt 

Technology Corporation 488.0 nm, P10 cell thermostatized at  30°C) were recorded in parallel 

and treated with Astra (V 4.73.04) in order to follow the purity and molecular mass distribution 
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of the polysaccharide. A dn/dc of 0.190 mL g-1 has been adopted to calculate the Mw of the EPS. 

Quality of the whole MALS installation was verified adopting PEG standards and protein 

standards (bovine serum albumin and egg albumin). 

 

3.3.3. Experimental Design 

 

Response Surface Methodology 

To assess the optimal cultivation conditions for EPS production by Enterobacter A47, a 

statistical approach was applied, namely, response surface methodology (RSM) (Lundstedt et 

al., 1998). RSM was used to evaluate the impact and the interaction between the experimental 

variables (Xi): pH and temperature, and the observed responses (Yi): specific growth rate (µ, h-1); 

maximum EPS concentration (EPSmax, g L-1); specific productivity (               ⁄ , gEPS 

gCDW-1 d-1, determined considering the time range wherein EPSmax was achieved for each run); 

relative molar fractions of each sugar monomer, namely, fucose (Fuc), glucose (Glc), galactose 

(Gal), glucuronic acid (GlcA), rhamnose (Rha) and glucosamine (GlcN); acyl goups content, 

namely, pyruvyl (Pyr), succinyl (Succ) and acetyl (Acet), and average molecular weight (Mw).  

A central composite rotatable design (CCRD), with two independent variables, was used 

to study the responses, where X1 is the temperature (ºC) and X2 the pH (Table 3.1). This design 

was composed of nine experiments, performed randomly: four factorial design points at levels 

±1; four experiments of axial level α = ±1.414; and a central point with three replicas. The 

system´s behaviour was evaluated by fitting the experimental data to the following second 

order model: 

 

                             
         

               (3.1) 
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where    corresponds to the predicted responses,       are the coded values of the 

independent variables;   ,   ,   ,     (i, j = 1, 2) are the coefficient estimates, where     is the 

interception,    and    the linear terms,     and     the quadratic terms and     the interaction 

term. In order to identify an appropriate reduced quadratic model, the significance of each 

source of variation was obtained from statistical analysis (ANOVA and Multiple Linear 

Regression). The statistical analysis was done using the software Statistica, version 6.0 (StatSoft, 

Inc., Tulsan UK). 

 

Statistical validity 

Analysis of variance (ANOVA) and multiple linear regression gave information about the 

model fitting. The model was considered to be a good predictive tool when accurately described 

the experimental results assuming that the maximum error of prediction was within the 

experimental deviation range. Therefore, the model should satisfy the following criteria: a good 

correlation value (R2 > 0.7, acceptable for biological samples, according to Lundstedt et al. 

(1998), with statistical meaning (p-value < 0.05, for a 95% confidence level) and with no lack of 

fit (p-value > 0.05, for 95% confidence level), i.e. the model error was in the same range as the 

pure error. The factors and their interaction were also evaluated by p-value at 95% confidence 

level. The effect of temperature and pH on the response was given by the statistic and the 

surface plots analysis.  

 

 

3.4. Results and Discussion 

 

In Chapter 2, the production of an extracellular fucose-containing polysaccharide – 

FucoPol – by the bacterium Enterobacter A47, using glycerol as the sole carbon source has been 

described. Bioreactor cultivation runs were performed with pH and temperature controlled at 

6.8 ± 0.05 and 30 ± 0.1 ºC, respectively. These pH and temperature values are commonly used 
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for cultivation of Enterobacter strains, such as Enterobacter agglomerans (Prasertsan et al., 

2006), Enterobacter cloacae WD7 (Prasertsan et al., 2008) and Enterobacter sp. BY-29 (Yokoi et 

al., 2001). Therefore, those operation conditions were selected as the starting point to assess 

the impact of temperature and pH on Enterobacter A47 growth and EPS synthesis. 

 

3.4.1. Standard Conditions for EPS Production 

 

The typical cultivation profile for Enterobacter A47 growth and EPS production, using 

glycerol as carbon source, with pH and temperature control at 6.8 and 30 ºC, respectively, is 

presented in Figure 2.3 (section 2.3.2 – Chapter 2). In the current work, the conditions of this 

typical cultivation profile, namely, controlled temperature at 30 ºC and pH 7.0, were performed 

in triplicate and taken as the central point assays on the central composite rotatable design. 

 

3.4.2. Influence of Temperature and pH: Response Analysis 

 

Influence of Temperature and pH on Cellular Growth and EPS synthesis  

The results obtained under the different temperature (15.9 – 44.1 ºC) and pH (5.6 – 8.4) 

conditions tested are presented in Table 3.1. Maximum specific productivities (qp) were 

achieved at 30 ºC, with pH 7.0 (0.53 – 0.56 gEPS gCDW-1 d-1) and pH 8.4 (0.65 gEPS gCDW-1 d-1). 

The central point conditions also resulted in high specific growth rates (0.30 – 0.32 h-1) and high 

EPS concentrations (7.23 – 7.79 g L-1). Under the remaining conditions, EPS production was 

lower, except for run 7 (30 ºC; pH=5.6), wherein a similar maximum EPS concentration (7.50 g L-

1) was obtained. These conditions also resulted in a high specific growth rate (0.25 h-1). Hence, a 

lower specific productivity (0.28 gEPS gCDW-1 d-1) was obtained in that run. 

Results showed that at 20 ºC (runs 1 and 3), for both pH values tested (6.0 and 8.0), the 

culture grew slowly (specific growth rates of 0.14 and 0.12 h-1, respectively). In contrast, at high 
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temperatures (40 ºC) (runs 2 and 4), cellular growth was favoured for both pH values tested, as 

shown by the high specific growth rates observed in those runs (0.34 and 0.32 h-1, respectively). 

The effect of temperature and pH on EPS synthesis was even more pronounced (Table 3.1), 

since in runs 1, 2 and 4, EPS production was between 0.82 and 2.59 g L-1, corresponding to 

specific productivities below 0.13 gEPS gCDW-1 d-1.  

With respect to the temperature extremes tested (15.9 ºC and 44.1 ºC), only 44.1 ºC 

impacted cellular growth (0.17 g L-1). EPS production at 15.9 ºC was extremely affected, as the 

final EPS concentration was only 1.12 g L-1. Therefore, the temperature had a stronger impact 

on EPS production than on cell growth.  

It was observed that growth and EPS production were also influenced by pH. The 

decrease from pH 7.0 to pH 5.6 (run 7), did not affect EPS production and only a slight reduction 

of the specific growth rate was observed, whereas at pH 8.4 (run 8) significant reductions in 

both specific growth rate and EPS synthesis (0.12 h-1 and 2.67 g L-1, respectively) were observed.  

These results suggest that Enterobacter A47 growth was not significantly affected by 

temperature within the range 15.9 – 40.0 ºC, while EPS synthesis reached a maximum value 

around 30 ºC, within a pH range of 5.6 – 7.0. For the lower and higher values of temperature 

tested, EPS production was negatively affected regardless of pH. 

 

Composition of the EPS Synthesized by Enterobacter A47  

The composition of the EPS obtained under the different experimental conditions is 

provided in Table 3.1. The typical polymer composition was obtained for the EPS produced 

under the central point conditions (30ºC, pH=7.0), namely, 36 – 37 %mol fucose, 25 – 26 %mol 

galactose, 27 – 28 %mol glucose and 10 – 11 glucuronic acid. 

 The results obtained in this study seem to indicate that lower temperatures (15.9 – 20 

ºC; runs 3 and 5) led to a slight reduction in fucose and galactose monomers (26 – 30 %mol and 

21 – 22 %mol, respectively), when compared to the central point (Table 3.1). Concomitantly, 
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there was an increase in glucose (to 36 %mol) and the inclusion of new monomers, rhamnose 

and glucosamine, in minor amounts (< 2 %mol). 

 Lowering the pH from 7.0 to 6.0 and 5.6 (runs 1, 2 and 7) had a much more pronounced 

effect on the composition of the EPS since fucose and galactose contents were reduced to 9 - 

13%mol and 13 - 20 %mol, respectively, while glucose became the main sugar component (48 – 

59 %mol) (Table 3.1). Additionally, there was also an increase in the rhamnose content to 6 – 9 

%mol. 

 The combination of high temperatures (40 – 44.1 ºC) and high pH (8.0 – 8.4) (runs 4, 6 

and 8) led to the synthesis of EPS without fucose and higher contents in rhamnose and 

glucosamine. For the highest pH value tested (8.4; run 8) a rhamnose-rich EPS (29 %mol 

rhamnose content) was produced, simultaneously with an increase in glucosamine content to 

11 %mol (Table 3.1). 

 Temperature and pH also had an impact on the EPS acyl groups content and composition 

(Table 3.1). The highest content in acyl groups (17 – 24 wt% of the polymer’s dry weight) was 

obtained under the central point conditions (30 ºC; pH 7.0), where pyruvyl, succinyl and acetyl 

accounted for 9 – 13 wt% , 2 – 3 wt% and 5 – 8 wt% of the polymer’s dry mass, respectively. All 

the other tested conditions led to a reduction of the acyl groups content of the EPS (Table 3.1).  
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Average Molecular Weight of the EPS Synthesized by Enterobacter A47 

The mean molecular weight and related polydispersity are critical macromolecular 

parameters which can drastically affect several functionalities of the final materials, in particular 

viscosity behaviour, diffusion properties or mechanical properties. For all the conditions tested, 

the EPS obtained had high Mw (≥ 2.6 × 106), similar to the values reported for xanthan (5.0 × 

106) and guar gums (2.6 × 106) (section 2.4.4 – Chapter 2). The highest Mw values were obtained 

for the EPS synthesized at 20 ºC and pH 6.0, (1.10 × 107) and for temperatures ≥ 40 ºC (1.32 - 

1.46 × 107) (Table 3.1). It should be stressed that the polymer recovery after SEC analysis, 

estimated on a mean dn/dc of 0.190 mL/g, has been found typically low, i.e. ranging from 10 to 

41%. This observation is not really surprising due to the fact that most of these biopolymers 

have given colloid dispersions instead of true solutions whatever the duration of dissolution (15 

– 36 hours). Most of the SEC profiles of the polysaccharides have also demonstrated 

heterogeneities with the presence of a bimodal population detected by MALS and RI detectors. 

 

3.4.3 RSM Modelling 

 

Although the one-to-one factor analysis enabled to evaluate the effect of temperature 

or pH on the different responses, it was not possible to identify the interaction between the two 

variables. In view of this, response surface methodology (RSM) was used to evaluate their 

combined effect. This statistical model was also used to define the working region to produce 

the highest EPS yield, as well as to determine conditions for production of an EPS with a 

targeted composition. 

RSM (ANOVA and MLR) analysis used for the several responses is summarized in Table 

3.2. For the whole set of responses, the second order developed model showed a good fitting 

(R2 > 0.90), except for maximum EPS concentration (Y2), rhamnose content (Y8) and acetyl 

content (Y12) responses, which, nevertheless, had an acceptable R2 (> 0.80), according to 

Lundstedt et al. (1998). The ANOVA p-values showed that the second order model had 
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significance (p < 0.05) for all thirteen responses, except for the rhamnose content (Y8). Even 

though, for certain responses (EPSmax, qP, rhamnose content and Mw) there was evidence of 

lack of fit (p < 0.05), meaning that the model prediction error was above the error of the 

replicas. However, in these specific cases, the lack of fit could be explained by the pure error 

(calculated with the replicates of the central point), which was close to zero, thus giving an 

artificial sense of a model with lack of fit.  

 

Table 3.2 Model and lack of fit p-values (significance levels) and R
2
 values for the analysis of variance (ANOVA) for 

the responses of the central composite design 

  Model Lack of Fit  
R

2
 

  p-value p-value 

μ (Y1) 0.007 0.067 0.959 

EPSmax (Y2) 0.027 0.024 0.873 

qp (Y3) 0.010 0.022 0.952 

Fuc (Y4) 0.000 0.076 0.996 

Gal (Y5) 0.005 0.117 0.965 

Glc (Y6) 0.000 0.110 0.997 

GlcA (Y7) 0.028 0.265 0.917 

Rha (Y8) 0.140 0.000 0.801 

GlcN (Y9) 0.003 (---) 0.971 

Pyr (Y10) 0.010 0.679 0.918 

Succ (Y11) 0.017 0.629 0.936 

Acet (Y12) 0.023 0.862 0.882 

Mw (Y13) 0.002 0.018 0.960 

μ – Specific growth rate (h-1); EPSmax – Exopolysaccharide maximum concentration (g L-1); qp – Specific productivity (gEPS gCDW-1 d-1); Fuc – 
Fucose content (%mol); Gal – Galactose content (%mol); Glc – Glucose content (%mol); GlcA – Glucuronic Acid content (%mol); Rha – Rhamnose 
content (%mol); GlcN – Glucosamine content (%mol); Pyr – Pyruvyl content (wt.%); Succ – Succinyl content (wt.%); Acet – Acetyl content (wt.%); 
Mw – Molecular weight. 

 

Optimal Temperature and pH Ranges for Growth and EPS Synthesis 

Multiple linear regression (MLR) gave information about the linear, quadratic and 

interaction effect of temperature and pH on the different responses (Table 3.3). The specific cell 

growth rate was affected mostly by the linear temperature and the quadratic terms of pH (p < 
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0.05) (Table 3.3). Such quadratic effect is represented by the parabola format on the 3D surface 

plot (Figure 3.1 a). The model predicted that Enterobacter A47 achieved higher cell growth rates 

within temperatures and pH ranges of 30–40 ºC and 6.0–8.0, respectively. 

Concerning EPS concentration and specific productivity models, the quadratic term of 

temperature (TxT) had an impact, which is also represented by the 3D surface plot with a 

parabola format (Figure 3.1 b and c), in which a nil EPS production and, consequently, a nil 

specific EPS productivity are predicted for extremes of temperature (below 20 ºC or above 40 

ºC) and pH (below 6.0 or above 7.0). The model allowed estimating the conditions for maximal 

EPS production by the bacterium (>7.00 g L-1), which were: temperature and pH within the 

ranges 25–35 ºC and 6.0–8.0, respectively. The highest production was obtained at 30 ºC and 

pH 7.0 (Figure 3.1 b). Within those ranges, the specific EPS productivity, which is influenced by 

biomass concentration, was also maximal (>0.50 gEPS gCDW-1 d-1) (Figure 3.1 c). 

According to Lawson and Sutherland (1978), the optimum pH range for growth and EPS 

synthesis was 6.0–7.5 for most known polysaccharide-producing strains. pH and temperature 

optima of 7.0 and 30 ºC, respectively, were reported for growth and EPS synthesis by E. cloacae 

WD7 (Prasertsan et al., 2008) and E. agglomerans WD50 (Prasertsan et al., 2006). However, the 

maximum EPS production achieved by those strains was much lower (2.71 and 0.83 g L-1, 

respectively) than that obtained in the current work for Enterobacter A47. The optimal 

conditions for the production of gellan and xanthan were similar, namely, pH = 6.5–7.0 and T = 

25–30 ºC (Bajaj et al., 2006; Kalogiannis et al., 2003; Kanari et al., 2002). 
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Table 3.3 Constants and coefficients of polynomial models and p-values for both linear and quadratic effects and 
interaction of temperature and pH for the several responses (Yn) 

Effect   Linear Quadratic Interaction 

  Constant T (X1) pH (X2) TxT (X1
2
) pH*pH (X2

2
) TxpH (X1X2) 

μ  (Y1) 0.313 0.107 -0.028 -0.032 -0.060 0.000 

p- value 0.000 0.002 0.066 0.122 0.012 1.000 

       

EPSmax (Y2) -108.200 2.855 21.468 -0.035 -1.341 -0.108 

p- value 0.000 0.653 0.352 0.003 0.093 0.212 

       

qp (Y3) -3.033 0.033 0.670 -0.002 -0.062 0.012 

p- value 0.000 0.011 0.007 0.006 0.126 0.068 

       

Fuc (Y4) -875.786 10.637 219.588 -0.110 -14.248 -0.700 

p- value 0.000 0.004 0.622 0.003 0.001 0.032 

       

Gal (Y5) -163.658 0.146 50.639 -0.020 -3.729 0.150 

p- value 0.000 0.584 0.006 0.017 0.004 0.066 

       

Glc (Y6) 686.264 -6.857 -156.379 0.107 10.377 0.175 

p- value 0.000 0.000 0.001 0.000 0.000 0.204 

       

GlcA (Y7) -29.893 0.314 9.876 -0.008 -0.631 0.000 

p- value 0.000 0.008 0.021 0.119 0.145 1.000 

       

Rha (Y8) 266.172 -2.658 -64.530 0.017 4.033 0.250 

p- value 0.989 0.352 0.670 0.224 0.046 0.137 

       

GlcN (Y9) 64.320 -1.574 -11.889 0.016 0.622 0.100 

p- value 0.987 0.003 0.424 0.001 0.058 0.011 

       

Pyr (Y10) -263.372 3.6806 63.0981 -0.0432732 -4.13021 -0.175 

p- value 0.000 0.079 0.970 0.002 0.003 0.110 

       

Succ (Y11) -83.2638 0.992581 20.1341 0.00160421 -1.11169 -0.15282 

p- value 0.001 0.416 0.950 0.513 0.008 0.010 

       

Acet (Y12) -115.663 2.05393 26.44 -0.0239905 -1.66888 -0.1 

p- value 0.000 0.085 0.858 0.004 0.018 0.137 

       

Mw (Y13) 1.959*10
8
 

-
2.885*10

6
 

-4 
230*10

7
 

3.164*10
4
 2.520*10

6
 1.868*10

5
 

p- value 0.002 0.001 0.024 0.002 0.005 0.031 
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Figure 3.1 Response surface of specific growth rate (a); EPS concentration (b) and specific productivity (c) as a 
function of temperature and pH. 

 

Influence of Temperature and pH on EPS Composition 

Linear, quadratic and interaction terms of temperature and pH, had diverse effects on 

the different sugar monomer components of the EPS synthesized by Enterobacter A47 (Table 

3.3; Figure 3.2). For fucose and glucose contents of the EPS, most of the linear and quadratic 

terms had a great impact (p < 0.05), although with different signs. A contrasting behaviour was 

expected for fucose and glucose contents within the ranges 20 < T < 35 ºC and 6.5 < pH < 7.5, 

namely, maximal fucose content concomitant with the lowest glucose content (Figures 3.2 a and 

c). In contrast, the EPS galactose content was not influenced by temperature (Figure 3.2 b). The 

production of polymer enriched in galactose was greatly favoured by the mid-range pH (6.5 – 

7.5), regardless of the temperature. A similar profile was observed for glucuronic acid, in which 

a linear relation between temperature and glucuronic acid content was observed (Figure 3.2 d). 

In this model, only the linear terms had impact (p < 0.05), with a maximum for pH between 6.5 – 

8.0, and temperature under 30 ºC.  
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Figure 3.2 Response surface of fucose (a); galactose (b) glucose (c); glucuronic acid (d); rhamnose (e) and 
glucosamine (f) as a function of temperature and pH. 

 

Within the estimated optimal conditions for EPS production (temperature and pH within 

25 and 35 ºC and 6.0 - 8.0, respectively), the polymers synthesized had the highest content in 

fucose (36.33 ± 0.58 %mol), galactose (25.67 ± 0.58 %mol) and glucuronic acid (10.33 ± 0.58 

%mol), with the lowest content in glucose (36.33 ± 0.58 %mol). Outside these ranges, fucose, 

galactose and glucuronic acid contents were reduced and glucose content was increased (Figure 

3.2). Moreover, new monomers, namely, rhamnose and glucosamine residues, were included in 

the synthesized polymers. Glucosamine content was favoured at higher pH and temperatures. 

Since for this aminosugar the interaction term had significance, the model predicted a range for 

which the polymer had nil glucosamine content: 21 < T < 35 ºC and 5.8 < pH < 6.4. According to 

the model, rhamnose content, though low for most conditions, was independent of the 

temperature. In the rhamnose content model, only the pH quadratic term had significance (p < 

0.05), which was supported by the higher contents obtained in the experiment operated at high 

pH (8.4).  
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Cultivation of Enterobacter A47 at different pH and temperature values revealed the 

versatility of this culture to produce different heteropolysaccharides with the same carbon 

source. This feature can be exploited to obtain a tailored sugar EPS composition, as a function of 

reactor operating conditions. This behaviour, presented by Enterobacter A47, has been reported 

for some EPS-producing strains, such as Rhizobium and Pseudomonas (Rehm, 2010). However, it 

is not a common behaviour amongst bacterial EPS producers. In fact, for most EPS, the basic 

carbohydrate monomer composition does not change significantly with growth conditions 

(Rehm, 2010).  

The acyl group content and composition were affected by temperature and pH (Table 

3.3). The total acyl groups content was higher for pH between 6.0 and 8.0 and temperatures 

between 25 and 35 ºC (Figure 3.3). The content for pyruvyl, acetyl and succinyl, was influenced 

by temperature and pH. The pH and temperature ranges that gave rise to a maximal pyruvyl 

content were 6.5 < pH < 7.0 and 25 < T < 30 ºC, respectively. A similar behaviour was obtained 

for acetyl, with a maximum acetyl content at 20 < T < 35 ºC and 6.0 < pH < 8.0. Since only the 

quadratic pH and the interaction between temperature and pH model parameters seemed to 

have effect (p < 0.05) for succinyl content, the highest succinyl content was obtained between 

pH 6.5 and 8.5, for temperatures above 35 ºC and below 25 ºC.  

 

 
Figure 3.3 Response surface of acyl groups total content (% wt.) as a function of temperature and pH. 

 



Study of the Interactive Effect of Temperature and pH using Multivariate Statistical Analysis 

75 

The content in substituent groups can vary extensively, thus changing polymer 

properties (Rehm, 2010). Xanthan is a good example of such variability. The content in acetyl 

and pyruvyl groups highly influence xanthan solution properties, i.e. xanthan with low acetyl 

and pyruvyl contents will have lower viscosity than xanthan with higher acetyl content (Casas et 

al., 2000). In xanthan production, temperature of cultivation also influences the polymer’s acyl 

groups content (acetyl and pyruvyl). Xanthan acetyl content is usually greater at lower 

temperatures (25 – 28 ºC) (Casas et al., 2000). García-Ochoa et al. (2000) reported that higher 

pyruvyl content in xanthan was obtained within 27 – 31 ºC.  

 

Influence of Temperature and pH on the EPS Average Molecular Weight 

The different terms (linear, quadratic and interaction) of temperature and pH affected 

the polymer´s average molecular weight (p < 0.05; Table 3.3). Results from MLR were 

corroborated by the data shown in Figure 3.4, where it is observed that polymers with higher 

Mw were obtained for temperatures above 40 ºC, and also for pH below 5.5. Within the optimal 

ranges of temperature (25 – 35 ºC) and pH (6.0 – 8.0) for EPS production, the biopolymers 

synthesized had an average Mw around 4.37 × 106. Outside those ranges, the polymer’s Mw 

was increased (Figure 3.4). 

 

 
Figure 3.4 Response surface of molecular weight as a function of temperature and pH. 
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García-Ochoa et al. (2000) have reported that xanthan’s Mw was directly related to the 

temperature of cultivation, being reduced as the temperature was increased between 24 and 34 

ºC. In contrast with xanthan production, in this work, the EPS Mw was practically unchanged 

within such a temperature range. Moreover, for higher and lower temperatures the Mw of the 

EPS produced by Enterobacter A47 increased. Such differing behaviour is probably related to the 

different composition of the biopolymers obtained in this study. 

 

 

3.5. Conclusions 

 

Enterobacter A47 was able to grow and synthesize EPS under most of the experimental 

conditions assessed. However, FucoPol production and the macromolecular characteristics were 

considerably affected by temperature and pH. 

The synthesis of high fucose content EPS was stable for wide temperature (25-35 ºC) and 

pH (6.0 – 8.0) ranges, which make the bioprocess robust. Outside those ranges, the polymer’s 

fucose content decrease, while glucose content increased. Moreover, new sugar monomers 

were identified in the synthesized EPS, namely rhamnose and glucosamine. All the EPS obtained 

were high Mw polymers (106 – 107). The EPS with the highest fucose content presented Mw 

around 4.0x106, whereas polymers with higher glucose content had higher Mw values (≥ 

1.0x107). 

The main focus of this work is the rich-fucose polysaccharides due to their high market 

demand. However, the ability showed by the bacterium to synthesize EPS with different 

composition, only modifying the cultivation conditions, is very interesting. In view of this, such 

capability confers to the bioprocess a great versatility, enabling to achieve different polymers, 

which can be used in different applications.  
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Chapter 4 

Optimization of FucoPol Production 

Impact of Glycerol and Nitrogen 

Concentration  

 

 

The results presented in this chapter integrate a manuscript being prepared for 

submission to publication: 

Torres, C.A.V., Marques, R., Ferreira, A.R., Antunes, S., Gouveia, A.R., Grandfils, 

C., Alves, V.D., Freitas, F., Reis, M.A.M. Impact of glycerol and nitrogen concentration on 

Enterobacter A47 growth and exopolysaccharide production. 
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4.1. Summary 

 

 The standard process conditions for EPS production by Enterobacter A47 include 

initial glycerol and nitrogen concentrations of 25 – 40 g L-1 and 0.70 – 1.10 g L-1, 

respectively (Chapter 2). Within such nutrient concentration ranges, the synthesized EPS 

presents stable physical-chemical properties, namely, sugar and acyl groups’ 

composition, and average molecular weight. Although, commonly carbon (e.g. glycerol) 

and nitrogen concentration influences the biologic processes. Therefore, the study of 

their impact on the EPS production by Enterobacter A47 is important to optimize the 

process. Hence, two sets of experiments were done. In the first set of experiments, 

different initial glycerol and nitrogen concentrations at the beginning of the batch phase 

were tested, while in the second set the nitrogen and glycerol concentration of the 

feeding solution fed to the bioreactor during the fed-batch phase were changed. 

The results of the first set of experiments have shown that EPS synthesis was 

severely impaired when the initial nitrogen concentration was above 1.10 g L-1, with low 

polymer production (< 1.80 g L-1) and productivities (~.35 g L-1 d-1). For lower initial 

nitrogen concentrations and initial glycerol concentrations up to 50 g L-1, high EPS 

productions (7.50 – 8.85 g L-1) were achieved, with productivities of 2.00 – 2.51 g L-1 d-1. 

Increasing the nitrogen concentration in the feeding solution (9 g L-1) resulted in 

identical EPS production (≥ 8.00 g L-1), but the volumetric productivity was increased to 

3.97 g L-1 d-1. The highest EPS synthesis (10.18 g L-1) and volumetric productivity (5.52 g 

L-1 d-1) was reached when the feeding solution had a glycerol nitrogen concentration of 

400 g L-1 and 9 g L-1, respectively. 

Comparing to the standard runs the EPS produced in the highest productivity run 

had a higher fucose content (41 %mol), concomitant with lower glucose content (19 

%mol). Moreover, the total acyl groups content decreased from 19-22 wt.% to 14 wt.%, 

noticing a great decrease in the pyruvyl content from 14 wt.% to 4 wt.%. Such polymer 

was also characterized by a lower average molecular weight (Mw) was (7.20x105) than 

the EPS obtained in the standard runs (4.31x106).  
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In the runs wherein EPS productivity was low, the polymers synthesized had a 

significantly different sugar and acyl goups composition, namely, lower fucose contents 

(14 – 17 %mol) and higher glucose contents (36 – 39 %mol). Moreover, new sugars 

monomers (rhamnose and glucosamine) were identified, which accounted for 6 – 16 

%mol of the polymer’s carbohydrate content. On the other hand, the acyl groups are 

also very different, in these runs the EPS achieved had no succinyl and the pyruvate 

content was also much lower (0 – 3 wt.%) than in the EPS achieved within the standard 

conditions. 

 

 

4.2. Introduction 

 

For most producing bacteria, exopolysaccharides (EPS) synthesis is stimulated by 

carbon availability concomitantly with limitation by another nutrient, such as nitrogen, 

usually requiring a high C:N ratio for high polymer synthesis (Sutherland, 1982; Tait et 

al.; 1986). As reported for several EPS-producing strains, such as Aeromonas salmonicida 

(Bonet et al., 1993), Pseudomonas NCIB11264 (Williams and Wimpenny, 1978), 

Rhizobium tropici (Staudt et al., 2011), Sphingomonas paucimobilis (Ashtaputre and 

Shah, 1995, Bajaj et al., 2007) and Xanthomonas campestris (Lo et al., 1997; Garcia-

Ochoa et al., 2000; Moshaf et al., 2011), high nitrogen concentrations usually promote 

cell growth and often reduce EPS production. 

The most significant factor restricting the commercial development of many 

microbial polymers is their high production costs. One of the strategies to overcome 

such limitation and allow for bacterial polysaccharides to get a higher market 

penetration is the reduction of their production costs and the improvement of their 

production yields. This can be done by optimizing fermentation conditions, such as, for 

example, carbon and/or nitrogen concentrations (Rehm, 2010; Freitas et al., 2011a).  

 In previous chapters, it was reported that FucoPol is produced by the bacterium 

Enterobacter A47, using glycerol byproduct from the biodiesel industry as the sole 
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carbon source (Chapter 2). Enterobacter A47 cultivation for FucoPol production is 

typically performed with an initial batch phase, in which most of the cell growth occurs 

and EPS synthesis is initiated, followed by a fed-batch phase, wherein cell growth is 

restricted by nitrogen and oxygen limitation, and the glycerol fed to the bioreactor is 

used for EPS production. The standard initial glycerol and nitrogen concentrations were 

within 25 - 40 and 0.70 - 1.10 g L-1, respectively (section 2.4.2 – Chapter 2). 

In this work, several experiments were performed to evaluate the impact of 

glycerol and nitrogen concentrations on EPS production by Enterobacter A47. Firstly, a 

set of experiments with different initial glycerol and nitrogen concentrations were 

tested to assess their influence on bacterial growth and EPS synthesis. Subsequently, a 

second set of experiments was carried out by changing the glycerol and nitrogen 

concentrations in the feeding solution supplied to the bioreactor during the fed-batch 

phase. The impact of the tested conditions on polymer’s composition and average 

molecular weight were also assessed. 

 

 

4.3. Materials and Methods 

 

4.3.1. FucoPol Production 

 

Microorganism and Media 

Enterobacter A47 was cultivated as described in section 2.2.1. – Chapter 2. 

 

Bioreactor Operation 

All experiments were carried out in 2 L bioreactors and operated as described in 

section 2.3.1. – Chapter 2. That is, all the cultivation runs had an initial batch phase, 
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followed by a fed-batch phase, wherein a glycerol feeding solution was fed to the 

bioreactor. 

In this study, two sets of experiments were performed. In the first set of 

experiments, the impact of different initial glycerol and nitrogen concentrations was 

studied in three different runs (Table 4.1), while in the second the impact of glycerol and 

nitrogen was evaluated during the fed-batch phase, by changing their concentrations in 

the feeding solution (Table 4.1). 

 

Analytical Techniques  

The analytical techniques used are described in sections 2.3.1. and 2.3.2. – 

Chapter 2.  

 

 

4.4. Results and Discussion 

 

As mentioned in section 2.4.2 – Chapter 2 – EPS production by Enterobacter A47 

is a partly growth associated cultivation, starting with a batch phase, wherein most of 

the cell growth occurs and EPS synthesis is initiated, followed by a fed-batch phase, 

during which cell growth is restricted by nitrogen depletion and polymer synthesis 

proceeds. In the standard bioprocess operation (Table 4.1), the initial glycerol and 

nitrogen concentrations were in the range of 25 – 40 g L-1 and 0.70 – 1.10 g L-1, 

respectively. After nitrogen depletion (within less than 24 hours), a feeding solution with 

about 200 g L-1 glycerol and 0.9 g L-1 nitrogen was supplied at a constant rate (fed-batch 

phase) (Chapter 2). Under those conditions, an EPS production of 7.50 – 7.97 g L-1 was 

achieved within around 3 – 4 days, corresponding to a global volumetric productivity (rP) 

of 2.04 – 2.51 g L-1 d-1 (standard runs – Table 4.1).  

Concomitant with EPS production, there is usually a significant increase of the 

culture broth viscosity that leads to a loss of bulk homogeneity and dictates the end of 
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the cultivation run (see section 2.4.3. – Chapter 2). Usually, under the standard 

bioprocess operation, the culture broth viscosity increases about three orders of 

magnitude, from around 1.9 mPa s to over 2000 mPa s. 

As it was already mentioned in the Chapter 2, increasing the initial glycerol and 

nitrogen concentrations (from 25 and 0.70 g L-1 to 40 and 1.10 g L-1, respectively) had no 

significant impact on Enterobacter A47 performance, i.e. the EPS production and 

volumetric productivity were similar. Thus, aiming to better understand whether other 

range of concentrations of those nutrients may affect Enterobacter A47 growth and EPS 

synthesis, three tests with different initial glycerol and nitrogen concentrations were 

performed (Table 4.1). 

 

 

4.4.1. Effect of Initial Glycerol and Nitrogen Concentrations  

 

In the batch phase, different initial glycerol and nitrogen concentrations where 

tested (49 – 83 and 0.98 – 1.39 g L-1, respectively – Table 4.1 – runs 1-3), while the 

conditions of the fed-batch phase were kept similar to the standard runs (200 g L-1 

glycerol and 0.9 g L-1 nitrogen). Figure 4.1 describes Enterobacter A47 growth, EPS 

synthesis and nutrient profiles for runs 1 to 3.  

In run 1, in which the initial glycerol and nitrogen concentrations (83 and 1.34 g L-

1, respectively) were higher than the ones used in standard runs 1 and 2, resulted in a 

higher biomass production (7.30 g L-1) (Table 4.1). Although this result was expected due 

to the higher initial nitrogen concentration used, the maximum specific cell growth rate 

(μmax) was lower (0.20 h-1) than in standard experiments (0.27 – 0.29 h-1). These results 

may evidence inhibition caused by the high glycerol concentration used. Furthermore, 

polymer production was significantly decreased to 1.08 g L-1.  

In order to avoid inhibition by substrate, in run 2 the initial glycerol concentration 

was decreased (from 83 to 49 g L-1) and the nitrogen concentration was kept similar 

(1.39 g L-1) to run 1. The maximum biomass achieved was similar (7.50 g L-1) to run 1, 
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which is in accordance with the ammonia concentration used. The maximum specific cell 

growth rate (0.26 h-1) was identical to the values obtained for the standard runs 1 and 2. 

However, EPS production (1.80 g L-1) and productivity (0.34 g L-1 d-1) were still lower than 

in standard runs (7.50 – 7.97 g L-1 and 2.04 and 2.51 g L-1 d-1, respectively) (Table 4.1). 

Given that the difference between run 2 and the standard runs is the nitrogen 

concentration, it is likely that the low EPS production achieved in runs 2 it was caused by 

the higher initial nitrogen concentration used which may have led to a shift in the 

metabolism of Enterobacter A47: shift from polymer production to growth.  

Such behaviour, i.e. higher biomass production concomitant with lower EPS 

synthesis as a result of higher initial nitrogen concentration had been reported by 

several authors for other EPS synthesizing bacteria, such as Aeromonas salmonicida 

(Bonet et al., 1993), Sphingomonas paucimobilis –GS1 (Ashtaputre and Shah, 1995), and 

Xanthomonas campestris (Sutherland, 1982; Lo et al., 1997; García-Ochoa et al., 2000). 

The effect of nitrogen concentration on carbon flux to growth or polymer production 

was reported by Linton, (1991) and Bajaj et al., (2007). 

In run 3 (Figure 4.1 c), the initial glycerol concentration was kept similar (52 g L-1) 

to run 2 and the initial nitrogen concentration was decreased to 0.98 g L-1. As a result, 

maximum biomass production was lower (6.41 g L-1) than in run 2, but similar to the one 

achieved in standard run 2 (6.75 g L-1), where a similar ammonia concentration was 

used. The specific cell growth rate was identical (0.29 h-1) to the standard runs (Table 

4.1). The final EPS production (8.85 g L-1), the global volumetric productivity (2.00 g L-1 d-

1) and the global net yield of product on glycerol (YP/S = 0.23 g g-1) were within the values 

obtained for the standard runs. 
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Figure 4.1 Impact of the initial glycerol and nitrogen concentrations on cell growth and EPS production 
across the different cultivation runs (a) Run 1; (b) Run 2 and (c) Run 3. Profile of cultivation runs: () EPS 
(g L

-1
); (●) CDW (g L

-1
); () N-NH4

+
 (g L

-1
); () glycerol (g L

-1
). 
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The impact of nitrogen on EPS and biomass production is highlighted in Figure 

4.2. The initial nitrogen concentration had a significant impact on EPS production, as 

well as in cell growth; biomass increases proportionally with the nitrogen concentration, 

while above 1.05 gN L-1 EPS production declines steeply. Moreover, results show that an 

initial glycerol concentration within 25 and 50 g L-1, combined with an initial nitrogen 

concentration of 0.68 - 1.05 gN L-1, are the best conditions for EPS production. 

Concomitant with EPS synthesis, in run 3 there was also a significant increase of 

the broth’s viscosity (up to 1800 mPa s, measured at 0.3 s-1), similarly to the standard 

runs 1 and 2. This viscosity built up was not observed in run 1 and 2, wherein very low 

EPS production was reached (1.08 g L-1). 

 

 
Figure 4.2 Impact of nitrogen concentration on biomass () and EPS production (), for all the 5 runs 
(Stdr 1 and 2 and runs 1 to 3). 
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4.4.2. Effect of Nitrogen Concentration in the Feeding Solution 

 

In the typical FucoPol bioprocess, the greater increase in EPS production occurs 

during fed-batch phase, under nitrogen limiting condition. However, the impact of this 

concentration on polymer production was never evaluated. Hence, two tests were 

performed in which the nitrogen concentration of the feeding solution was below the 

values of the standard runs (i.e. no nitrogen - run 4) and above (nitrogen concentration 

of 9 g L-1 - run 5), while keeping the glycerol concentration similarly to the standard 

assays (Table 4.1). The batch phase was operated within the best conditions reported 

above: initial nitrogen concentration around 0.70 g L-1 and, hence, the results obtained 

in batch phase were similar to those achieved under those conditions (in previous runs). 

Analysis of the fed-batch phase with no nitrogen supplied (run 4) showed an EPS 

production of 8.75 g L-1, achieved within ~3 days (Figure 4.3 a), resulting in a global 

volumetric productivity of 2.86 g L-1 d-1. These values, as well as the global net yield of 

EPS on glycerol (YP/S = 0.20 g g-1) were within the ones obtained in the standard runs 1 

and 2. These results suggest that absence of nitrogen during the fed-batch phase did not 

affect EPS synthesis by Enterobacter A47.  

On the other hand, increasing ten times the nitrogen concentration in the 

feeding solution (9 g L-1 - run5 ) relatively to the standard runs led to a higher biomass 

concentration (9.18 g L-1) and yield of biomass on glycerol (YX/S =0.47g g-1). A final EPS 

production of 8.80 g L-1 was reached, which was within the values achieved for previous 

runs (Standard 1 and 2 and runs 3 and 4) (Figure 4.3 b). However, a higher global 

volumetric productivity (3.97 g L-1 d-1) was obtained within 2.20 days.  

It can be concluded that the availability of nitrogen during fed-batch has a 

significant impact on the EPS productivity, probably due to the higher biomass achieved, 

which led to a faster EPS production. Although, more cells did not result in higher EPS 

production probably due to a limitation in glycerol, resulting in a lower specific 

productivity (0.43 gEPS gCDW-1 d-1) comparing to run 4 (0.53 gEPS gCDW-1 d-1). 

In run 5, in spite of the high nitrogen concentration in the bulk, the residual 

glycerol concentration was very low (< 0.5 g L-1), which could have restricted growth and 
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polymer production. In order to assess if the glycerol was the limiting factor for the 

capacity of the culture to produce the EPS, in run 6 the glycerol concentration in the 

feeding solution was increased by 2 fold (400 g L-1), while maintaining the nitrogen 

concentration tested in run 5 (9 g L-1 – Table 4.1). This strategy enabled a complete 

consumption of the nitrogen source and glycerol availability throughout the assay 

(Figure 4.3 c). Under these conditions a maximum biomass concentration of 10.66 g L-1 

at 1.24 days was achieved. Furthermore, EPS production was 10.18 g L-1 obtained in 1.84 

days, corresponding to a volumetric production rate (rP) of 5.52 g L-1 d-1, and the YP/S was 

0.31 g g-1. These were the highest values obtained so far with this strain. 

In run 6 the culture broth viscosity increased from 1.21 to 13000 mPa s, 

measured at 0.3 s-1, in 1.84 days, leading to the run termination due to the poor mixing. 

In run 4 the culture broth viscosity increased from 1.08 to 371 mPa s (at 1.5 s-1) achieved 

at the end of 3.06 days, while in run 5 the viscosity in 2.20 days increased from achieved 

and 1.78 to 302 mPa s (at 1.5 s-1), which is concomitant with the polymer production.  

The present work has shown that increasing the glycerol and nitrogen in the 

feeding solution from 200 to 400 g L-1 and 0.9 to 9.0 g L-1 respectively, significantly 

improved EPS synthesis. This was probably due to the extended period of growth, 

provided by the higher glycerol and nitrogen availability (Figure 4.3 b and c). Several 

authors reported that EPS producing bacteria needs a high C:N ratio to promote EPS 

synthesis (Sutherland, 1990; Garcia-Ochoa et al., 2000; Liu et al., 2011; Staudt et al., 

2011). Such behaviour may be related with the fact that cells are more viable, which in 

turn may lead to a higher production of sugar nucleotide precursors involved in EPS 

synthesis. Moreover, as suggested by Sutherland (2001), a longer growth period leads to 

increased isoprenoid carrier content in the cell membrane, which results in higher rates 

of EPS synthesis. This isoprenoid lipid carrier is important in the EPS synthesis, since it is 

one of the cell wall components, which is involved in EPS polymerization and secretion 

across the cell membrane (Sutherland, 1990; Freitas et al., 2011a).  
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Figure 4.3 Impact of glycerol and nitrogen concentrations in the feeding solution. Time course of the 
cultivation runs: (a) Run 4, (b) Run 5 and (c) Run6 (() EPS (g L

-1
); (●) CDW (g L

-1
); () N-NH4

+
 (g L

-1
); () 

glycerol (g L
-1

)).  
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4.4.3. EPS Physical-chemical Characterization 

 

EPS composition 

The sugar components of the EPS obtained in the standard runs were fucose (32 

– 36 %mol), galactose (25 – 26 %mol), glucose (28 – 34 %mol) and glucuronic acid (9 – 10 

%mol) (see section 2.4.4 – Chapter 2). Additionally, FucoPol typically contains acetyl (3 – 

5 wt.%), pyruvyl (13 – 14 wt.%) and succinyl (~3 wt.%) as non-sugar components. As 

shown in Table 4.2, the different glycerol and nitrogen concentrations used in this study 

have affected the polymers’ sugar and acyl groups composition. 

The runs 1 and 2, wherein polysaccharide production was very reduced, 

presented an EPS with a lower fucose content (14 – 17 %mol) than in the standard runs 

(32 – 36 %mol), while glucose content increased from 28 – 34 %mol to 36 – 39 %mol. 

Besides, other sugar monomers (rhamnose, mannose and glucosamine), not previously 

present in the EPS of the standard runs, were found in contents within 6 – 16 %. As 

explained in section 2.4.4 (Chapter 2), the higher content in glucose and lower in fucose 

may be related with the fact that all sugar nucleotides share a common precursor, which 

is glucose-6-P. The shortest pathway for the synthesis of sugar nucleotides is the 

synthesis of UDP-glucose, which is the precursor of glucose monomers to be 

incorporated into the EPS. On the other hand, the synthesis of the other sugar 

nucleotides (GDP-fucose, UDP-galactose, UDP-glucuronic acid) requires several enzymes 

and longer pathways for their synthesis (Kumar et al., 2007; Freitas et al., 2011). 

Therefore, it can be hypothesized that, in those runs, the polymers were enriched in 

glucose because the enzymes needed for the synthesis of the other sugar nucleotides 

were not available.  

Furthermore, in runs 1 and 2 the total acyl groups content also varied. A great 

decrease was observed (3 – 7 wt.%) relatively to the standard runs (19 – 22 wt.%). 

Succinyl was absent of the EPS obtained in both runs and the content in pyruvyl was 

significantly reduced in run 2 (3 wt%) or also absent (run 1).  

On the other hand, the EPS produced in run 3 presented an EPS sugar and acyl 

groups composition similar to the EPS composition of the standard runs (Table 4.2).  
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 The polymers achieved in runs 4 and 6 also presented a different sugar and acyl 

groups composition comparing to the typical FucoPol polymer (standard runs). There 

was an increase of fucose content to 40 – 41 %mol and a reduction of glucose content to 

18 – 19 %mol. Moreover, the acyl groups content was also reduced (14 wt.%), being the 

main differences the reduction of pyruvyl content to 4 wt% and the increase of succinyl 

to 6 wt% (Table 4.2). 

 The EPS synthesized in run 5 was also characterized by a different sugar and acyl 

groups composition: the content in fucose was lower (25 %mol) and the content in 

galactose was higher (33 %mol) than in the standard runs. The acyl groups content was 

also lower (8 wt %), presenting low pyruvil and succinyl contents (3 and 1 wt.%) (Table 

4.2). This difference in the EPS composition may be related with the limitation in glycerol 

observed during the fed-batch phase, in contrast with the other runs, in which glycerol 

was never limited. 

 The lower content in acyl groups detected in the EPS produced in runs 1, 2 and 5, 

as well as 4 and 6 was possibly associated to the higher biomass contents achieved. 

Since the precursors of the acyl groups were also involved in pathways of bacterial 

growth, such as phosphoenolpyruvate and acetyl-CoA (Sutherland 1982; Tait et al., 

1986), the precursors probably were not available in quantities to permit complete 

acylation of the polysaccharides. 

 It should be noted that for the EPS with higher fucose content as well as higher 

acyl groups content the cultivation broth presented a high viscosity (224 – 13000 mPa s). 

In turn, for runs 1 and 2, which had a lower fucose and acyl groups content the broth 

viscosity was much lower (4 – 19 mPa s). Such behaviour can be related with what is 

reported by Rinaudo (2004) that the composition and the content in acyl groups 

substituents can affect the polymer rheology. For example, for xanthan production 

Casas et al. (2000) reported that high degree of acetylation produced solutions with 

higher viscosity. 
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EPS average molecular weight 

Molecular weight (Mw) also influences the polymers’ solution properties, 

determining their potential to be used in specific applications (Tosh et al., 2004). In this 

work, all the obtained polymers had high Mw values within 7.20x105 – 6.65x106 (Table 

4.2). FucoPol typically has a Mw within 4.19 x106 – 5.80x106 (Table 4.2). On the other 

hand, the polymers with higher fucose (40 – 41 %mol) and lower glucose contents (18 – 

19 %mol) (runs 4 and 6) were characterized by lower Mw (7.20x105). In contrast, the 

polymers with lower fucose and higher glucose contents (runs 1 and 2), presented Mw 

similar to the standard runs (2.71x106 – 6.65x106). 

There is no evidence of a direct effect of glycerol and nitrogen concentrations on 

the polymers Mw, withal the lower Mw, observed in run 4, 5, and 6. It might be related 

to the shorter cultivation times of the runs (73, 53 and 44 h, respectively) comparing to 

the standard runs (96 h), since as it was already reported for the EPS synthesized by 

Enterobacter A47, Mw usually increases throughout the cultivation runs (see section 

2.4.4 – Chapter 2). Sutherland (1982) and García-Ochoa et al. (2000) has also reported a 

similar behaviour to xanthan production by Xanthomonas campestri. 

 

 

4.5. Conclusions 

 

Enterobacter A47 was able to grow and produce EPS for all the initial glycerol and 

nitrogen concentrations evaluated. However, the impact of the initial nitrogen 

concentration was more evident during batch phase, both in growth and in EPS 

synthesis. For initial nitrogen concentrations above 1.05 g L-1 EPS synthesis decreased 

dramatically. Furthermore, the EPS synthesis was similar for initial glycerol and nitrogen 

concentrations within the range of 25 – 50 and 0.68 – 1.05 g L-1, respectively. 

During the fed-batch phase, nitrogen concentrations in the feeding solution 

within 0 and 9 g L-1 did not affect Enterobacter A47 EPS synthesis, with EPS production 

higher than 8.00 g L-1. Increasing the glycerol concentration in the feeding solution from 
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200 to 400 g L-1 and using a nitrogen concentration of 9 g L-1 resulted in the highest EPS 

synthesis and highest volumetric productivity. 

Furthermore, the macromolecular characteristics of the polymers produced 

under the different conditions tested were also affected. The highest productivity run 

yielded the EPS with the highest fucose content. 

Enterobacter A47 has shown to be able to synthesize fucose-containing EPS 

within different nitrogen and glycerol concentrations. Moreover, the observed increase 

in fucose content is remarkable due to the possible different applications, as already 

mentioned in chapter 2. 
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Chapter 5 

FucoPol 

Properties in aqueous solutions 

 

 

 

Some of the results presented in this chapter were already published in a peer reviewed 

paper, while others will be published in a paper which is being prepared. 

Cruz, M., Freitas, F., Torres, C.A.V., Reis, M.A.M., Alves, V.D., 2011. Influence of 

temperature on the rheological behavior of a new fucose-containing bacterial 

exopolysaccharide. International Journal of Biological Macromolecules, 48, 695-699. 

Torres, C.A.V., Ferreira, A. R., Sousa, I., Reis, M.A.M., Freitas, F., Alves, V.D. FucoPol 

Rheological Studies. (In preparation). 
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5.1. Summary 

 

 Taking into account that FucoPol is a novel polysaccharide produced by glycerol 

from the biodiesel industry with a high Mw, it is essential to study it solution properties, in 

order to better understand its potential applications. 

The effect of pH (3.5 – 10.5) and ionic strength (0.05 – 0.75 M NaCl) on FucoPol 

intrinsic viscosity and steady shear flow was assessed using a central composite rotatable 

design of experiments and response surface methodology. FucoPol intrinsic viscosity (~8.00 

dL g-1) and shear behaviour has shown to be stable under a wide range of pH and ionic 

strength (3.5– 8.0 and 0.05 – 0.50 M NaCl, respectively). The influence of temperature on 

steady shear and oscillatory data was also evaluated in the temperature range from 15 to 

65 ºC. For all of the conditions tested, FucoPol formed high viscosity solutions with a shear-

thinning behaviour. Therefore, the application of FucoPol as thickening agent is foreseen in 

aqueous solutions with variations of pH, ionic strength as well as temperature. 

Furthermore, the viscous and viscoelastic properties at 25ºC were maintained after 

consecutive heating and cooling cycles, indicating a good thermal stability under 

temperature fluctuations. 

 

 

5.2. Introduction 

 

Microbial polysaccharides are especially important in the domain of water soluble 

polymers, due to their important role as thickening, gelling, emulsifying, hydrating and 

suspending agents (Rinaudo, 2008). The remarkable variety of physical chemical properties 

reflect the structural diversity of polysaccharides, such as sugar composition, molecular 

weight, presence of ionisable groups and association of single polysaccharide chains (Kumar 
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et al., 2007, Freitas et al., 2011). Understanding polysaccharides’ properties in aqueous 

solutions is critical to forecast their potential industrial applications. These properties can 

be affected by several parameters, such as pH, salt concentration, temperature, polymer 

average molecular weight and shear rate (Xu et al., 2009). 

The physical properties of microbial polysaccharides are explained in terms of 

different rheological behaviour. In view of that, it is important to perform viscometry 

studies in dilute solution conditions, to obtain information about the molecular 

characteristics, such as intrinsic viscosity (hydrodynamic volume of a single molecule). On 

the other hand, it is also important to study the concentrated polymer solutions to assess 

the viscosity behaviour (Newtonian or non-Newtonian) and viscoelastic properties (Freitas 

et al., 2011). For such evaluation, rheology provides important tools especially useful to 

monitor and to probe structural changes in the systems. The rheological behaviour of 

polymer solutions manifests the fundamental structure of the systems (Williams, 2007). 

This chapter is focused on the assessment of FucoPol properties in aqueous 

solutions, which involved the study of the intrinsic viscosity and steady shear behaviour 

using a design of experiments (central composite rotatable design), with particular interest 

on studying the influence of pH and ionic strength. In addition, the attention was also driven 

to evaluate the influence of temperature on the apparent viscosity and on the viscoelastic 

properties. FucoPol´s concentration regimes were also assessed.  

These studies are essential to characterize this biopolymer, since most water soluble 

polysaccharides are mainly used as hydrocolloids, being used in aqueous formulations for a 

wide range of applications, namely in food, cosmetic or pharmaceutical products or 

processes. 
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5.3. Material and Methods 

 

5.3.1. Preparation of FucoPol Aqueous Solutions 

 

 FucoPol solutions were prepared by mixing the freeze dried polymer with deionised 

water or with a NaCl solution with the desired salt concentration, followed by stirring 

overnight at room temperature. 

 

5.3.2. Rheological Measurements 

 

Intrinsic Viscosity 

 The intrinsic viscosity [η] of FucoPol was assessed under different conditions. The 

measurements presented in this chapter were performed by double extrapolation of 

Kraemer and Huggins equations, as described in Chapter 2, section 2.3.3. 

- Standard Conditions Studies (0.1 M NaCl; pH ~5.6; T = 25ºC)  

A 0.1 wt.% FucoPol stock solution was prepared by dissolving the purified 

biopolymer in 0.1 M NaCl. Dilutions also with 0.1 M NaCl of the stock solution were 

performed to achieve five lower polymer concentrations (0.06, 0.05, 0.04, 0.03 and 0.02 

wt.%). The relative and specific viscosities of these solutions were then assessed by capillary 

viscometry. 

- Study of the Ionic Strength and pH Effect (T = 25ºC) 

FucoPol solutions with a polymer concentration of 1.0 wt.% were prepared with the 

desired salt concentration, by using solutions with NaCl concentrations within 0.05 to 0.75 

M as solvent, were used as stock solutions. The solutions pH was adjusted to the desired 

value (within the range 3.5 - 10.5), with the addition of small drops of HCl (15% wt) and/or 
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NaOH (10% wt) solutions. After that, the solutions were stirred for 2 hours in order to 

ensure a stable pH value (with pH measured every 30 min). Each stock solution was diluted 

with the respective NaCl concentration, to the desired concentration, the pH was 

readjusted, and the specific and relative viscosities were then assessed by capillary 

viscometry. 

 

Apparent Viscosity and mechanical spectra 

The rheology measurements of FucoPol’s aqueous solutions (oscillatory and steady-

shear tests) were performed by loading directly the different solutions in the cone and plate 

geometry (diameter 35 mm, angle 2º) of a controlled stress rheometer. The shearing 

geometry was covered with paraffin oil in order to prevent water loss. The measurements 

were executed as described in Chapter 2, section 2.3.2. The exception was the rheometer 

used in the measurements of samples in the standard conditions and in the study of pH and 

salt effect, which was the controlled stress rheometer Rheostress RS 75, Germany. The 

oscillatory tests were performed within the linear viscoelastic region, applying a tension 

chosen after performing stress sweeps at constant frequency (f = 1 Hz).  

The conditions studied were: 

- Studies at Standard Conditions (0.1 M NaCl; pH ~ 5.6; T =25 ºC)  

Measurements were performed using solutions with polymer concentrations 

ranging from 0.2 to 1.2 wt.% in a 0.1 M NaCl solution. The pH was the natural pH of the 

solutions after polymer dissolution (pH ~ 5.60). 

- Study of the Ionic Strength and pH Effect (T = 25 ºC) 

1.0 wt.% FucoPol aqueous solutions prepared as described in the sub-section 

Intrinsic viscosity- ionic strength and pH effect were studied. 

- Temperature Effect (pH ~ 5.6) 
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For the temperature effect assessment the polymer was dissolved in deionised 

water. A solution with an effective polymer concentration of 0.81 wt.% was used.  

Both oscillatory and steady-state tests were carried out at different temperatures 

ranging from 15 to 65 ºC. The purified EPS solution was also submitted to temperatures 

cycles of consecutive heating and cooling steps. After recording the mechanical spectrum 

and the steady-state data at 25 ºC, the sample was heated up to 40 ºC at a rate of 3 ºC min-

1, followed by an oscillatory time sweep (strain=0.2 and f=1 Hz) at that temperature for 10 

minutes. Afterwards, the sample was cooled down at a rate of -3 ºC min-1 to 25 ºC, and new 

oscillatory and steady-state tests were performed at the same conditions. The cycle was 

repeated by heating the sample up to 55, 70 and 80 ºC. 

 

5.3.3. Experimental Design 

 

Response surface methodology (RSM) was applied to evaluate simultaneously the 

effect of ionic strength (NaCl concentration) and pH, on the observed FucoPol intrinsic 

viscosity [η] (Y1) and in the zero-shear rate viscosity (first Newtonian plateau) (Y2) of FucoPol 

solutions. A central composite rotatable design (CCRD), with two independent variables at 

five levels was used, where X1 is the ionic strength (M, NaCl concentration) and X2 the pH 

(Table 5.1). The central point was repeated three times, to allow estimating experimental 

error. All experiments were carried on a randomized order to prevent the effect of 

unexplained variability due to exogenous factors. A solution with a NaCl concentration of 

0.40 M and pH 7.0, was used as the central point. The data analysis was performed as 

described in Chapter 3 – section 3.3.3. 
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5.4. Results and Discussion 

 

5.4.1. Intrinsic Viscosity 

 

The intrinsic viscosity represents the hydrodynamic volume of individual polymer 

molecules, giving information about the molecule’s size and shape (Bae et al., 2008). It was 

calculated by estimating the value of reduced and inherent viscosities of FucoPol solutions 

approaching zero concentration, according to the Huggins and Kraemer equations (Eqs 2.15 

and 2.16 – Chapter 2; section 2.3.3). 

Figure 5.1 a presents the variation of the reduced viscosity as a function of FucoPol 

concentration in a salt free aqueous solution showing a non-linear dependence of these two 

parameters. As the polymer concentration decreased, there was a decline of the reduced 

viscosity, and afterwards it increased for polymer concentration values below 0.02 wt.%. 

This behaviour is usually perceived at low ionic strength aqueous solutions of 

polyelectrolytes (Mitchell & Ledward, 1985), and is attributed to repulsive forces between 

intra-chain groups with equal charges, which leads to an increase of the molecules 

hydrodynamic volume, and consequently, to an increase of the intrinsic viscosity. As the 

biopolymer concentration increases, inter-chain interactions prevail against the intra-chain 

repulsive forces, becoming dominant at higher concentration values, leading to reduced 

viscosity-concentration dependence normally observed for uncharged polymers (Walter, 

1998).  
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Figure 5.1 (a) Reduced viscosity as a function of FucoPol concentration in salt free solution; (b) determination 
of the intrinsic viscosity in 0.1 M NaCl using the Huggins () and () Kraemer equations. 

 

The addition of ions to FucoPol solutions leads to shielding of polysaccharide 

negative charges and disabling intra-chain repulsions. As a consequence, when the 

measurements were performed in the presence of salt (0.1M NaCl), linear plots for Huggins 

and Kraemer extrapolations were obtained (Figure 5.1 b), enabling the determination of the 

intrinsic viscosity. The value obtained was 8.86±0.09 dL g-1, which is within the values 

referred in the literature for typical commercial polysaccharides, namely. guar gum, 

carrageenan, cellulose and xanthan, 5 – 50 dL g-1, respectively (Arvidson et al., 2006). 

Fucogel, a commercial fucose-containing bacterial polysaccharide, is referred to have an 

intrinsic viscosity around 16.7 dL g-1 (Guetta et al., 2003). 

The Huggins constant (KH) determined for FucoPol was 0.58±0.04, which is quite 

similar to that measured for Fucogel (KH = 0.55, Guetta et al., 2003). According to Morris et 
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al. (1981), KH should lie between 0.3 and 0.8, while values of KH higher than 1.0 are 

indicative of molecular aggregation.  

 

Ionic Strength and pH effect 

To get a better knowledge of the behaviour of FucoPol ´s intrinsic viscosity ([η]) 

under different aqueous environments, namely, different ionic strength and pH values, a 

central composite rotatable design with the two independent variables was performed. The 

inputs and outputs are listed on Table 5.1.  

 

Table 5.1 Central composite rotatable design (CCRD) with two independents variables X1 (Ionic Strength, IS) 
and X2 (pH), and the observed responses studied Y1 (intrinsic viscosity, [η]) and Y2 (zero-shear rate viscosity, η0) 

  Run 
number 

IS NaCl (M) pH   [η] (dL g
-1

) η0 (Pa s) 

  X1 X2 
 

Y1 Y2 

Factorial 
design 

1 0.15 4.50 
 

8.17 0.94 

2 0.65 4.50 
 

7.37 0.88 

3 0.15 9.50 
 

7.38 0.41 

4 0.65 9.50 
 

7.21 0.43 

Central 
point 

5 0.40 7.00 
 

8.30 1.20 

6 0.40 7.00 
 

8.28 1.20 

7 0.40 7.00 
 

8.23 1.20 

Axial 
points 

8 0.05 7.00 
 

8.54 0.64 

9 0.75 7.00 
 

5.65 0.61 

10 0.40 3.47 
 

8.07 1.07 

11 0.40 10.54   5.51 0.37 

 

For the central point runs (0.40 M NaCl and pH 7.0) the [η] achieved was within 8.23 

– 8.30 dL g-1, a value similar to the one obtained in standard conditions (8.86±0.09 at 0.1 M 

NaCl and natural pH). On the other hand, results have also shown that within the wide 

range of ionic strengths and pH tested, the [η] did not have great changes, remaining within 

7.21 and 8.54 dL g-1. Only for the higher ionic strength (0.75 M NaCl) and higher pH (10.5) 
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tested the intrinsic viscosity demonstrated a pronounced decrease to 5.65 and 5.51 dL g-1, 

respectively.  

 

RSM Modelling of the Ionic Strength and pH Effect on intrinsic viscosity 

Statistical analysis was used to evaluate the significance of ionic strength NaCl (M) 

and pH effect and their interactions on the quadratic model for describing [η]. An 

appropriate analysis of variance (ANOVA) of the second order model (Masmoudi et al., 

2008) showed a good fit (R2 =0.99) and a sum of squares (SS) of 10.476, with 10 degrees of 

freedom (Table 5.2). Despite that, there was evidence of lack-of fit (p < 0.05), which means 

that the error predicted by the model was above the error of the replicas (the same 

behaviour was seen for the second order model for some of the responses studied in 

Chapter 3 – section 3.3.1.3). 

 

Table 5.2 Analysis of variance of the second order model for parameter [η] (intrinsic viscosity) 

Source of 
variation 

[η]   

Sum of 
squares 

Df 
Mean 

squared 
F - values P   

X1 5.706 1 5.706 595.128 0.000 

 
X2 1.999 1 1.999 208.478 0.000 

 
X1X1 5.013 1 5.013 522.783 0.000 

 
X2X2 3.097 1 3.097 323.038 0.000 

 
X1X2 0.666 1 0.666 69.510 0.001 

 
Lack-of-fit 0.055 2 0.027 20.033 0.047 

 
Pure error 0.002 2 0.001 

   
Total (corr.) 10.476 10 1.164 

   
R

2
 0.994           

 

The linear (X1; X2), quadratic (X1X1; X2X2) and the interaction (X1X2) effects of ionic 

strength (NaCl (M) (X1) and pH (X2)) on [η] is described in Table 5.2. The intrinsic viscosity 

was affected by all the effects of ionic strength and pH (linear, quadratic and interaction), 

since p < 0.05 for all the effects. 
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Such correlation between response and independent variables can be illustrated 

graphically by plotting 3D response surface plots. The quadratic effect is represented by the 

parabola format on the 3D surface plot (Figure 5.2). It can be observed that the intrinsic 

viscosity was kept practically unchanged for a wide range of ionic strength and pH (0.05 – 

0.50 M NaCl and 3.0 – 8.0, respectively). Withal, it decreases for combinations between 

ionic strength and pH above 0.50 M NaCl and 8.0, respectively. By the information taken 

from Figure 4.2, it seems that for ionic strengths above 0.75 M NaCl, the intrinsic viscosity 

will decrease for any pH tested. 

This lowering of [η] with the increase of ionic strength is common to other 

polysaccharides, such as colanic acid, for which the intrinsic viscosity decreases from 47.5 to 

22.7 dL g-1 when the ionic strength increases from 0.002 to 0.2 M NaCl (Ren et al., 2003 b). 

 

 
Figure 5.2 Response surface plot of intrinsic viscosity [η] as a function of pH and NaCl concentration. 
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5.4.2. Rheological Properties under Steady and Dynamic Shear 

 

5.4.2.1. Measurements at Standard Conditions (pH~5.6; T = 25ºC) 

 

Steady shear measurements 

Flow curves of FucoPol aqueous solutions with concentrations ranging from 0.2 to 

1.2 wt.% are shown in Figure 5.3. For all the concentrations studied, the apparent viscosity 

was immediately recovered at low shear rates, after subjecting the samples to shear rate 

values up to 700 s-1. This may indicate that the sample has not strong internal interactions 

forming a structured matrix (e.g. gel like) that could be disrupted by the strong stress 

imposed, and it is able to recover instantly (data not shown).  

FucoPol molecules are high molecular weight structures able to establish 

interactions in solution (e.g. entanglements and hydrogen, electrostatic and hydrophobic 

bonds). The energy transferred to the sample influences the creation and disruption of such 

interactions. At low shear rates, the disruption of interactions is balanced by the formation 

of new ones, resulting in a constant apparent viscosity (Newtonian plateau) (Sittikijyothin et 

al., 2004). At high shear rates, the disruption of those interactions predominates and the 

molecules align in the direction of the flow, resulting in the observed decrease of the 

apparent viscosity (shear-thinning), which is a typical behaviour of macromolecular 

solutions, reported by several authors (Morris et al., 1981; Ren et al., 2003; Simsek et al., 

2009; Chenlo et al., 2011). It is possible to observe the curves approaching a Newtonian 

plateau at low shear rates, followed by a decrease of apparent viscosity as the shear rate 

increases. The onset of the Newtonian plateau moves to lower shear rates with increasing 

polymer concentrations. 
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Figure 5.3 Shear rate dependence of viscosity for different concentrations of FucoPol. () 0.20 wt.%; () 0.35 
wt%; () 0.45 wt.%; () 0.50 wt.%; () 0.60 wt.%; (●) 0.80 wt.%; (×) 0.90 wt.%; () 1.0 wt.%; () 1.2 wt. %. 
Lines represented the fitted Cross equation. 

 

Flow curves were fitted by Eq. 5.1, which is based on the Cross model, often used to 

describe shear thinning-behaviour, assuming    (the viscosity of the second Newtonian 

plateau) much lower than    and  , since the second Newtonian plateau was never 

approached: 

 

    
  

  (  ̇) 
           Eq. 5.1 

 

where  ̇ is the shear rate (s-1),   is the apparent viscosity (Pa s),    is the zero-shear rate 

viscosity (of the first Newtonian plateau) (Pa s),   is a relaxation time (s) and   is a 

dimensionless constant, which may be related to the exponent of the power law ( ) by 

 

                  Eq. 5.2 
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The flow curves (Figure 5.3) were fairly well fitted by Eq. 5.1. The parameter values 

are summarized in Table 5.3.  

The time constant ( ) increases with increasing FucoPol concentration. This fact 

means that more time is needed to form new entanglements in a number high enough to 

compensate the ones disrupted by the imposed shear stress. Hence, the shear rate at which 

there is the transition from Newtonian to non-Newtonian behaviour shifts to lower values, 

and corresponds to the reciprocal of  . 

 

Table 5.3 Cross model parameters estimated for different FucoPol concentrations 

FucoPol 
(wt.%) 

  Cross model 

     (Pa s)   (s)   

0.20 
 

0.011±0.000 0.005±0.000 0.825±0.092 

0.35 
 

0.054±0.006 0.028±0.012 0.613±0.058 

0.45 
 

0.074±0.002 0.016±0.002 0.634±0.028 

0.50 
 

0.096±0.004 0.022±0.004 0.693±0.046 

0.60 
 

0.134±0.008 0.033±0.007 0.735±0.066 

0.80 
 

0.439±0.038 0.098±0.018 0.677±0.036 

0.90 
 

0.759±0.024 0.159±0.018 0.707±0.030 

1.00 
 

1.095±0.036 0.282±0.036 0.645±0.024 

1.20   2.465±0.066 0.553±0.052 0.666±0.016 

 

Flow curves depicted on Figure 5.3 were overlaid by scaling vertically, dividing by the 

respective zero shear rate viscosity (  ), and horizontally, multiplying by the relaxation time 

( ), which generated a master curve (Figure 5.4) (Morris, et al., 1981). This procedure was 

employed successfully for several polysaccharide solutions, such as an EPS produced by 

Pseudomonas acidi-propionici and a galactose-rich EPS produced by Pseudomonas 

oleovorans (Gorret et al., 2003; Hilliou et al., 2009). With the application of the generalized 

equation: 

 

    ⁄    
 

  (  ̇) 
           Eq. 5.3 
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a value     0.681±0.008 was obtained. This value is in accordance with the one presented 

by Morris (1990),     0.76, for polysaccharides presenting strong interactions between 

polymer chains, such as hydrogen bonds (Graessley, 1974). The concentration dependence 

of   is illustrated in the inset of Figure 5.4. The solid line suggests   ~ c4 for concentrations 

above 0.6 wt.%, with an exponent near the one referred in the literature for 

polysaccharides exhibiting a strong inter-chain association (Burchard, 2001). Additionally, 

de Gennes (1979) has estimated a power law behaviour of   ~ c2.75 for entangled polymer 

melts. By the contrary, polysaccharides with linear chains revealing non-association 

presented exponent values of 2.08 (Doi & Edwards, 1986). Therefore, we may infer that, for 

the concentration range studied, FucoPol presents a rheological behaviour of an entangled 

solution with high inter-chain association. 

 

 
Figure 5.4 Master curve obtained shifting vertically dividing by   , and horizontally multiplying by relaxation 
time ( ). Inset:   as a function of FucoPol concentration. 

 

Furthermore, FucoPol ´s aqueous solution (1.00 wt.%) was compared to several 

comercial polysaccharides with the same concentration and solvent (0.1 M NaCl) (Figure 

5.5). The flow curve of FucoPol aqueous solution (1.00 wt.%) already mentioned (Figure 
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5.3), showed a Newtonian plateau at low shear rates, with a zero shear viscosity 

approaching 1.0 Pa.s, followed by a shear-thining behaviour, with the apparent viscosity 

decreasing with the increase of shear rate. This behaviour is similar to the one 

demonstrated by the guar gum solution. The solution prepared with Fucogel, had also a 

similar behaviour under the tested conditions, but the apparent viscosity was somewhat 

higher. Although xanthan solution was much more viscous than FucoPol for low shear rates, 

for high shear rates its viscosity was similar to Fucogel, guar gum and FucoPol solutions. 

These non-Newtonian behaviour of polysaccharide solutions makes them interesting to be 

used in several industries, such as food, textile, pharmaceutical and cosmetic, as stabilizing, 

suspending or thickening agents. 

 

 
Figure 5.5 Comparative flow curves of polysaccharides (C=1%wt, 0.1M NaCl): () FucoPol; () Fucogel; (×) 
xanthan; () guar gum; (●) CMC; () pectin and () alginate. 

 

As seen in Figure 5.5, there is a clear differentiation between the behaviour of the 

higher average molecular weight (Mw>106) (FucoPol, xanthan, Fucogel and guar gum) and 

the lower molecular weight polysaccharides (Mw~105) (alginate, pectin and CMC), which 

were considerably less viscous and had an almost Newtonian behaviour.  
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Dynamic measurements 

The mechanical spectra of aqueous solutions with different FucoPol concentrations 

are presented in Figure 5.6. For all the concentrations tested, FucoPol solutions were 

predominantly liquid-like, since the loss modulus (G’’) is above the storage modulus (G’) in 

the entire frequency range studied, except at higher frequencies, where a cross-over is 

appoached at an angular frequency of about 2.8 Hz for the solutions with 1.0 and 1.2 wt.% 

(Figure 5.6 c and d). This dependence of the dynamic moduli with the frequency indicates 

the presence of solutions with entangled polymer chains. 

 

 
Figure 5.6 Mechanical spectra (G´(); G´´ ()) of FucoPol aqueous solution at different concentrations in 0.1 
M NaCl. (a) 0.6 wt.%; (b) 0.8 wt.%; (c) 1 wt.% and (d) 1.2 wt.%. 

 

 

Furthermore, the Cox-Merz rule was also applied. This rule is an empirical 

relationship that predicts that the magnitude of the complex viscosity should be compared 

with the apparent viscosity at equal values of frequency and shear rate. It is used to 

establish relationships between steady shear flow and dynamic rheology, and is especially 
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useful to estimate the complex viscosity for cases in which the oscillatory operating mode is 

not available. In addition, a qualitative perception of the sample microstructure may be 

perceived according to its applicability. In general, it is not valid for most particulate 

dispersions or when there is the formation of large aggregates and gel systems, as reported 

for several exopolysaccharides, including xanthan, curdlan and Aeromonas gum (Rochefort, 

1987; Lo, et al., 2003; Xu et al., 2006). 

FucoPol solutions obeyed the Cox-Merz rule. The results obtained for 1% FucoPol 

solution (Figure 5.7) show a good superposition of the angular frequency dependence of 

complex viscosity (*) with the shear-rate dependence of apparent viscosity (). These facts 

suggest samples with a viscous behaviour constituted by entangled polymer chains without  

gel-like interactions. This behaviour was also referred for other polymers, namely the fucose 

containing polymer colanic acid (Ren et al., 2003 b). 

 

Figure 5.7 Apparent viscosity and complex viscosity (FucoPol solution 1.0 wt.%) as a function of the shear rate 
and angular frequency, respectively. 

 

 

 

 



FucoPol: Properties in aqueous solutions 

113 

 

5.4.2.2. Effect of Ionic Strength and pH (1 wt.% FucoPol; T = 25ºC) 

 

Steady shear measurements 

The stock solutions used to assess the effect of ionic strength and pH on intrinsic 

viscosity were also used to study the influence of those parameters on the steady shear 

behaviour, applying a central composite design as well. The inputs and outputs are listed on 

Table 5.1. Figure 5.8 presents the flow curves of the FucoPol aqueous solutions with 

different ionic strength and pH values. The results show that all solutions present a shear 

thinning behaviour with an apparent viscosity at the lowest shear rates studied varying 

between 0.1 and 1 Pa s.  

The flow curves were also properly fitted by Eq. 5.1 (based on the Cross model) 

(Figure 5.8). The zero-shear viscosity (η0) values calculated are summarized in Table 5.1. 

For the central point runs (0.40 M NaCl and pH 7.0) η0 achieved the highest value 

(1.20 Pa s), which was similar to the one obtained for the 1 wt% FucoPol aqueous solution 

in standard conditions (1.10 Pa s at 0.1 M NaCl and pH ~5.6). The lowest values were 

obtained for the solutions with 0.40 M NaCl – pH 10.54, 0.15 M NaCl – pH 9.5 and 0.65 M 

NaCL – pH 9.5, with zero-shear viscosities of 0.37, 0.45 and 0.43 Pa s, respectively. 
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Figure 5.8 Effect of ionic strength NaCl (M) and pH on FucoPol´s shear rate dependency on viscosity. () 
0.15M NaCl - pH 4.5; () 0.65 M NaCl – pH 4.5; () 0.15 M NaCl – pH 9.5; (×) 0.65 M NaCl – pH 9.5; () 0.40 
M NaCl – pH 7.0; (●) 0.40 M NaCl – pH 7.0; ()0.40 M NaCl – pH 7.0; () 0.05M NaCl – pH 7.00; () 0.75 M NaCl 
– pH 7.00; () 0.40 M NaCl – pH 3.47; () 0.40 M NaCl – pH 10.54. Lines represent the fitted model. 

 

RSM Modelling of Ionic Strength and pH Effect on zero-shear viscosity 

Statistical analysis was also used to evaluate the impact of ionic strength NaCl (M) 

and pH on the quadratic model for describing η0. ANOVA of the second order model 

(Masmoudi et al., 2008) showed a satisfactory fit (R2 =0.85) (according to Lundstedt et al., 

1998), a sum of squares (SS) of 1.109, with 10 degrees of freedom, and an insignificant lack-

of fit (p = 0.120) (Table 5.4). 

Table 5.4 shows the linear (X1; X2), quadratic (X1X1; X2X2) and the interaction (X1X2) 

coefficients of ionic strength NaCl (M) (X1) and pH (X2) on η0. Linear pH and quadratic ionic 

strength are the factors which had a significant effect on η0, since p < 0.05. 
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Table 5.4 Analysis of variance of the second order model for parameter η0 (zero shear viscosity from Cross 
model fitting) 

Source of 
variation 

η0         

Sum of 
squares  

Df 
Mean 

squared  
F- 

values 
p-value 

X1 0.001 1 0.001 0.018 0.899 

X2 0.384 1 0.384 9.344 0.038 

X1X1 0.480 1 0.480 11.687 0.027 

X2X2 0.265 1 0.265 6.446 0.064 

X1X2 0.001 1 0.001 0.035 0.860 

Lack-of-fit 0.163 2 0.054 37.209 0.120 

Pure error 0.001 2 0.001 
  

Total (corr.) 1.109 10 0.123 
  

R
2
 0.850         

 

The 3D response surface plot (Figure 5.9) evidenced the correlation between 

response and independent variables. The quadratic effect is represented by the parabola 

format on the 3D surface plot (Figure 5.9), which demonstrated that for the higher and 

lower ionic strength and pH (axial points) the zero-shear viscosity decreased. The zero-shear 

viscosity presented higher values for ionic strength and pH within 0.10 – 0.50 M NaCl and 

3.0 – 8.0, respectively, corresponding to the ranges for which a higher intrinsic viscosity was 

observed (Figure 5.8).  

 

Figure 5.9 Response surface of zero-shear viscosity (η0) as a function of pH and NaCl concentration. 
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Dynamic measurements 

The mechanical spectra for the FucoPol solutions at different ionic strengths and pH 

(Figure 5.10) indicated liquid like solutions as in standard conditions, since the loss modulus 

(G´´) is higher than the storage modulus (G´) for all the solutions measured with a strong 

frequency dependence, indicating again samples of entangled polymer chains in aqueous 

media. 

Whatever the pH and ionic strength values, the spectra were very similar, with a 

noticeable cross-over point for higher frequencies (above 1 Hz). The exception was the 

solution with 0.40 M NaCl and pH 10.5, for which the loss and storage modulus presented 

lower values. This result indicates that at higher pH values the interactions between 

polymer chains in solution are weakened, which is consistent with the lower apparent 

viscosity presented in Figure 5.8. 

 

 
Figure 5.10 Mechanical spectra for FucoPol solutions with different ionic strength and pH values, G´ (full 
symbols) and G´´ (empty symbols). (a) ( and ) 0.75 M NaCl – pH 7.00; ( and ) 0.05 M NaCl – pH 7.00; 
(b) ( and ) 0.40 M NaCl – pH 7.00; (c) ( and ) 0.40 M NaCl – pH 3.45; ( and ) 0.40 M NaCl – pH 
10.54. 
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5.4.2.3 Temperature Effect (pH ~ 5.6) 

 

Steady shear Measurements 

A solution with a FucoPol concentration of 0.81 wt.% in deionised water was 

submitted to a shear rate range from 1 to 700 s−1, at different temperatures (15, 25, 30, 45, 

55 and 65 ºC). The viscosity measurements showed a shear-thinning behaviour, since the 

apparent viscosity decreased as the shear rate increased, for all temperatures tested (Figure 

5.11). 

On the other hand, the apparent viscosity decreased with the temperature increase, 

showing the influence of this parameter on the polymer’s rheological properties. It is 

notorious in Figure 5.11 that the shear rate corresponding to the transition from Newtonian 

to shear-thinning behaviour moves to higher values as the temperature increases, which 

means that for higher temperatures the formation of new interactions is faster. This 

behaviour is similar to that observed in works with other polysaccharides, such as for the 

galactose-rich EPS produced by P. oleovorans from glycerol byproduct (Alves et al., 2010). 

 

 
Figure 5.11 Flow curves for a 0.81 wt.% FucoPol solution at different temperatures: () 15ºC; () 25ºC; () 
30ºC; () 45ºC; () 55ºC; () 65ºC. 
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The Carreau model Eq. 5.4 (Carreau, 1972) was used to describe the steady shear 

viscosity dependence with the shear rate, at different temperatures: 

 

       
     

[  (  ̇) ] 
          Eq. 5.4 

 

where  ̇ is the shear rate (s−1),    a is the apparent viscosity (Pa s),    is the infinite shear 

rate viscosity (Pa s),    is the zero-shear rate viscosity (Pa s),   is a time constant (s) and N is 

a dimensionless constant. Since the second Newtonian plateau was never approached, Eq. 

5.4 was simplified assuming    much higher than    and   . The model fitted quite well the 

experimental results, and the parameter values are presented in Table 5.5. 

 

Table 5.5 Parameters of Carreau model for the range of temperatures studied 

T (ºC) 
Carreau Model 

   (Pa s)    (s) N 

15 0.443±0.008 0.334±0.039 0.224±0.010 

25 0.240±0.004 0.175±0.017 0.219±0.007 

30 0.215±0.004 0.154±0.016 0.218±0.008 

45 0.103±0.001 0.086±0.010 0.197±0.010 

55 0.075±0.002 0.092±0.020 0.171±0.014 

65 0.045±0.001 0.037±0.005 0.174±0.010 

   ∑
(|             |     )

 

 
    was 0.019 ≤ RE ≤ 0.039 

 

As expected,    and   decreased with increasing temperature. The relaxation time 

constant ( ) decreased from 0.334 s−1 to 0.037 s−1 as the temperature increased from 15 to 

65 ºC, respectively. This fact indicates that less time is needed to form new interactions 

between polymer molecules at higher temperatures. Consequently, the transition from 

Newtonian plateau to shear-thinning regime is less notorious and moves to higher shear 

rate values. 
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Dynamic Measurements 

Similarly to the previously studied conditions, the mechanical spectra for FucoPol 

solutions at 15 and 65 ºC (Figure 5.12 a) indicated the presence of viscous samples of 

entangled polymer chains. At low frequencies (f < ~3 Hz), the loss modulus (G´´) was higher 

than the storage modulus (G´), indicating a liquid-like behaviour for the polymer solution. At 

high frequencies, a cross-over was detected at 15 ºC, after which the elastic contribution 

predominates. However, this behaviour was not observed at 65 ºC. At lower temperatures, 

a higher viscosity was observed, i.e. 15º C had the highest viscosity while 65º C had the 

lowest (Figure 5.11). Hence, less energy is needed to transfer to those samples in order to 

store more energy than that dissipated, and perceive a G´´ and G´ cross-over. Figure 5.12 b 

shows the dynamic (  ) and the out of phase (   ) viscosities, consisting of the viscous and 

elastic components of the complex viscosity (  *=    −i   ), respectively. Their behaviour is 

in agreement with that of dynamic moduli presented in Figure 5.12 a. 

Frequency sweeps were performed before and after the steady state measurements 

and the obtained mechanical spectra were coincident for all temperatures studied. These 

results confirmed that FucoPol solutions do not have an organized internal structure that 

would suffer irreversible changes after being subjected to high shear rates, such as 700 s−1. 

By the contrary, their viscoelastic properties were maintained. 
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Figure 5.12 (a) Mechanical spectra of 0.81wt.% FucoPol solution at 15 ºC (squares) and 65 ºC (triangles), G´- 
full symbols; G´´ - open symbols. (b) Dynamic viscosity    (full symbols) and out of phase viscosity     (open 
symbols) as a function of the applied frequency for 15 ºC (squares), 45 ºC (bullets) and 65 ºC (triangles). 

 

Application of Time-Temperature Superposition (TTS) principle 

TTS principle superposes oscillatory isothermal frequency data of viscoelastic 

variables into a single master curve using the temperature-dependent shift factor    to 

extend the frequency axis by several orders of magnitude (Nickerson et al., 2004). According 

to this principle, all contributions to the dynamic moduli should be proportional to    and 

all relaxation times should have the same temperature dependence. The change of 

temperature from   to    (reference temperature) will change G´ and G´´, corresponding to 

the multiplication by       ⁄  (temperature density ratio) defined as    (Ferry, 1980). This 

shift factor was necessary to have a good superposition of the measurements done at the 

different temperatures (Roth et al., 2004). 
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Figure 5.13 Frequency and temperature superposition of the loss (G´´) and storage (G´) moduli. The solid line 
represents the data for the reference temperature (25 ºC) and the symbols correspond to the other 
temperatures: () 15 ºC; () 30 ºC; () 45 ºC; () 55 ºC; () 65 ºC. 

 

The TTS for both moduli is shown in Figure 5.13, and the respective shift factors are 

presented in Table 5.6. TTS principle was applied successfully, suggesting that FucoPol EPS 

solution is thermorheologically simple, with the relaxation times for all mechanisms 

changing identically with temperature (Nickerson et al., 2004). In addition, the range of 

frequencies was significantly enlarged for the lower temperatures, enabling the estimation 

of the dynamic moduli for frequency values outside the range measured by the rheometer. 

 

Table 5.6 Shift factors of Time-Temperature Superposition 

T ºC 
  G´´ 

 
G´ 

        
 

      

15 
 

2.00 1.10 
 

2.00 1.10 

25 
 

1.00 1.00 
 

1.00 1.00 

30 
 

0.70 0.85 
 

1.00 1.20 

45 
 

0.20 0.58 
 

0.22 0.52 

55 
 

0.14 0.58 
 

0.16 0.51 

65   0.10 0.55   0.11 0.50 
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Temperature influence on rheological parameters 

To determine the activation energy at a given concentration and shear rate, the 

apparent viscosity and the zero-shear rate viscosity were studied as a function of the 

temperature according to the Arrhenius law (Desbrieres, 2004): 

 

        (
  

  
)          Eq. 5.5 

 

where    (Pa s) represents the apparent viscosity or the zero-shear rate viscosity 

determined by the Carreau equation,   is the preexponential factor,    is the activation 

energy,   is the gas constant and   is the absolute temperature. 

The variation of the activation energy with the apparent viscosity for two different 

shear rates (5 and 13 s−1), and for the zero shear rate, is plotted in Figure 5.14. The 

Arrhenius equation fitted quite well the experimental data and, as can be seen, the 

activation energy decreased as the shear rate increased. For zero shear rate the activation 

energy was 36.8±5.2 kJ mol−1 and for 13 s−1 it was 25.7±3.1 kJ mol−1. In fact, as the shear 

rate increases, molecular interactions have shorter lifetimes and less energy is needed to 

promote viscous flow.  
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Figure 5.14 Temperature dependence of: apparent viscosity at shear rate 5 s

-1
() and 13 s

-1
 (); zero-shear 

rate viscosity estimated by the Carreau model (). The lines correspond to Arrhenius equation. 

 

Consecutive temperature cycles were also performed, in which the same sample 

was subjected to different temperatures (from 25 to 80 ºC) during 10 min. After each 

heating step, the temperature was reduced to 25 ºC, where both oscillatory and steady-

state tests were carried out. As can be seen in Figure 5.15 a, the flow curves were nearly 

concurrent. The same may be observed for the dynamic data presented in Figure 5.15 b (G´ 

and G´´) and c (   and    ). Besides a small difference at low frequencies, before and after 

the temperature cycles, the mechanical spectra are rather similar, meaning that the 

polymer solution did not suffer significant alterations and its rheological properties were 

maintained. These results indicate that the polymer sample is quite stable under the tested 

temperature fluctuations. This is an interesting characteristic for certain industrial 

applications, in which thermal variations may occur (e.g. food processing). 
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Figure 5.15 Data measured at 25 ºC before (open symbols) and after (full symbols) the temperature cycles: (a) 
flow curves; (b) dynamic moduli and (c) dynamic (  ) and out of phase (   ) viscosities. 

 

Cox-Merz Rule 

Figure 5.16 presents the apparent and complex viscosities as a function of the shear 

rate and angular frequency, respectively, for the present case-study. It can be seen that the 

Cox–Merz rule is valid for all temperatures tested. These results indicate a sample with 

simple rheological properties, without the formation of large aggregates, 
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hyperentanglements or gel-like structures, which is in agreement with the oscillatory data 

presented in Figure 5.12. 

 

 
Figure 5.16 Apparent viscosity   (lines), and complex viscosity |  | (symbols), as a function of the shear rate 
and angular frequency, respectively. 

 

5.4.3. Concentration Regimes 

 

The concentration dependence of zero shear-rate specific viscosity (     ) can be 

represented as the logarithmic of       as a function of biopolymer concentration. This 

standard procedure is based on approaches used by several authors (e.g. Morris et al., 

1981; Lapasin and Pricl, 1995; Bohm and Kulicke, 1999; Arvidson et al., 2006; Wyatt and 

Liberatore, 2009). For concentration values below 0.1%wt, the       data was obtained by 

capillary viscometry, while for higher values a controlled stress rheometer was used. Figure 

5.17 displays FucoPol behaviour. The curve has three distinct linear zones, characterized by 

different slopes, and separated by two critical concentrations (   and    ). This type of 

correlation is analogous to the one exhibited by other high molecular weight microbial 

polysaccharide solutions, such as xanthan (Cuvelier and Launay, 1986), the galactose-rich 



FucoPol: Properties in aqueous solutions 

 

126 

 

EPS produced by Pseudomonas oleovorans (Hilliou et al., 2009) and the exopolysaccharide 

produced by P. acidi-propionici (Gorret et al., 2003). 

 

 
Figure 5.17 Concentration dependence of zero-shear specific viscosity for FucoPol samples. Dotted line: 
Martin model. 

 

The dilute regime is characterized by isolated coils of polymer molecules with a free 

mobility and a negligible influence on each other.    set the dilute regime boundary, 

marking the onset of significant coil overlap (Gorret et al., 2003). The coil overlap parameter 

(  [ ]), or space occupancy, was found to be approximately 0.8. With increasing 

concentration, polymer molecules start being directly affected by each other (Arvidson et 

al., 2006). This leads to a change from one stage to another, thus resulting in a significant 

increase of the slope. The intermediate concentration region has a slope of 2.43, with space 

occupancy between 0.8 and 5.34.     corresponds to the beginning of the entangled 

regime, where molecules interact intensively with each other (Lai and Yang, 2007). The 

estimated values (  ~0.09 wt.%,    ~0.6 wt.%) are higher than the ones obtained for 

xanthan at the same ionic strength (  ~0.024 wt.%,    ~0.092 wt.%) (Cuvelier and Launay, 

1986). This result may be related to a smaller hydrodynamic volume of FucoPol, expressed 

by its lower intrinsic viscosity ([ ] ≤ 8.54 dL g-1), when compared to that of xanthan ([ ] = 

47.5 dL g-1). The slope above     (3.78) is in the range (3.3-4.0) presented for several 
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random coil polymers in the literature (alginate, xanthan, colanic acid, galactomannans) 

(Morris et al., 1981; Milas et al., 1990; Launay et al., 1997; Ren et al., 2003). The high value 

may indicate the existence of a large number of entanglements.  

Martin (Eq. 5.6) equation was adjusted successfully to the data presented in Figure 

5.17:  

 

       [ ]  
   [ ]          Eq. 5.6 

 

 where    is the Martin polymer-polymer interaction parameter. A good fit was obtained 

(R2 = 0.99) for FucoPol with a    of 0.49 ([ ]  = 8.54 dL g-1, 0.1M NaCl, 25ºC). Cuvelier and 

Launay (1986) presented a similar value (  = 0.42) for xanthan ([ ]  = 51.5 dL g-1, 0.1M 

NaCl, 25ºC). 

 

 

5.5. Conclusions 

 

Fucopol intrinsic viscosity and shear flow was stable under a wide range of pH and 

ionic strength (3.5 – 8.0 and 0.05 – 0.50 M NaCl, respectively). The polymer produced 

viscous solutions with a shear-thinning behaviour. There was no hysteresis when the shear 

rate was decreased, after subjecting the polymer solution to shear rate values up to 700 s-1. 

The flow curves were described successfully by the Cross model and the dependence of the 

estimated relaxation time with polymer concentration suggests a large degree of 

interaction between FucoPol molecules. Mechanical spectra and application of the Cox- 

Merz rule suggest the presence of entangled macromolecules in a viscous solution. 

The Carreau model fitted quite well the steady state data at the different 

temperatures tested. The Arrhenius equation described adequately the temperature 
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dependence of 0  and the apparent viscosity at different shear rates. As expected, a 

decrease of the activation energy was noticed with the increase of shear rate due to the 

lower resistance to viscous flow. FucoPol maintained its rheological properties at 25ºC 

under consecutive temperature fluctuations, even after heated up to 80ºC. This novel 

polysaccharide produces aqueous solutions that are thermorheologicaly simple and stable. 

 



FucoPol: Emulsifying and Flocculating Capacity 

 

129 

 

 

Chapter 6 

FucoPol 

Emulsifying and Flocculating Capacity 

 

 

 

  



FucoPol: Emulsifying and Flocculating Capacity 

 

130 

 

6.1. Summary 

 

 Some microbial polysaccharides possess the ability to emulsify and stabilize mixtures 

between water and hydrophobic compounds. Furthermore, polysaccharides may also have 

the capacity to separate solids from liquids in aqueous systems, acting as flocculating 

agents. In this chapter, FucoPol was tested for both properties. The emulsion forming and 

stabilizing capacity was evaluated for different hydrophobic compounds (e.g. food grade oils 

and hydrocarbons). Furthermore, FucoPol’s emulsifying performance was also assessed at 

three different polymer concentrations and Oil/Water (O/W) ratios. On the other hand, 

FucoPol’s flocculating activity was studied using kaolin clay as the suspended solids. For 

both studies, results were compared with other commercial emulsion forming and 

flocculating agents. 

FucoPol has shown a good emulsion forming and stabilizing capacity for food grade 

oils (emulsification index, E24 > 60%), similar to some commercial polysaccharides (xanthan 

and pectin). Given the high emulsification index obtained against sunflower oil (60%), it was 

chosen for the study of FucoPol’s emulsifying capacity at different polymer concentrations 

and different O/W ratios. The most structured oil in water emulsion produced with 

sunflower oil was achieved for 1.5 wt.% polymer and a O/W ratio of 60/40, which presented 

the highest apparent viscosity and the highest dynamic moduli. Besides, the increase of 

polymer concentration, from 0.5 wt.% to 1.5 wt.%, resulted in an increase of the viscosity 

and of the dynamic moduli, for all O/W proportions tested. 

Furthermore, FucoPol has demonstrated a similar flocculating capacity (28%), in the 

same range of some commercially available products (xanthan and carboxymethylcellulose).  

These functional properties make FucoPol a promising alternative to many synthetic 

polymers, as well as other natural polysaccharides in several applications in the food, 

pharmaceutical, cosmetic, textile, paper and petroleum industries. Since FucoPol is 

probably biodegradable, harmless to human and environment and may have a lower cost.  
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6.2. Introduction 

 

An emulsion is a dispersion of droplets of liquids that are not completely miscible 

(e.g. oil in water) and may exhibit structural changes in various ways depending on 

characteristics of the system and conditions it is under (Vianna-Filho et al., 2012). However, 

emulsions are thermodynamically unstable, where creaming, flocculation, coalescence or 

Ostwald ripening phenomena may occur (Calero et al., 2013). Surface-active ingredients 

adsorb at the newly formed oil/water interface during emulsion preparation, and protect 

them against immediate recoalescence (Phillips and Williams, 2009). The emulsifying agents 

commonly used are proteins (e.g. those derived from milk or eggs) and small molecule-

surfactants (Dickinson, 2003).  

In addition, some polysaccharides have the ability to stabilize emulsion droplets as 

well, either by acting as interface stabilizers, or by increasing the viscosity of the aqueous 

continuous phase. Many microbial polysaccharides can find applications as bioemulsifiers 

due to their ability to stabilize emulsions between water and hydrophobic compounds 

(Freitas et al., 2009b). 

Some examples include sodium hyaluronan, xanthan and Fucogel, which are used as 

additives in cosmetics as moisturizing agents (Phillips and Williams, 2009; Vianna-Filho et 

al., 2012). Moreover, polysaccharides may also be applied in several other industries, 

namely oil, water and soil bioremediation, detergents and laundry, pulp and paper 

processing, paints, pharmaceuticals, personal care products and food processing (Al-Araji et 

al., 2007). 

Some microbial polysaccharides may be used as flocculating agents, to support 

solid–liquid separation in aqueous systems. In sedimentation processes, flocculants provide 

a significant increase in settlement rate and improvement in supernatant clarification (Singh 

et al., 2007).  
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Flocculants are frequently used in water treatment, food and fermentation 

industries, drinking water purification and downstream processes (Xiong et al., 2010). In 

general, flocculating agents are divided in three groups, namely: (i) inorganic flocculants, 

such as aluminum sulphate and polyaluminum chloride; (ii) organic synthetic flocculants, 

such as polyacrylamide derivatives and polyethylene amine; and (iii) naturally occurring 

flocculants, such as chitosan, sodium alginate, and microbial flocculants. Inorganic and 

organic synthetic flocculants are commonly used due to their strong flocculating activity and 

low cost. However, there is evidence that synthetic flocculating substances may cause 

health and environmental problems. Such as the case of the acrylamide monomer which is 

harmful to humans (e.g. neurotoxic and carcinogenic) and the environment (e.g. non-

degradable in nature) (Xiong et al., 2010; Notembiso et al., 2011; Yang et al., 2012).  

On the other hand, natural polysaccharide flocculants have advantages such as 

safety, strong effect, biodegradability and harmlessness to humans and the environment, 

which make them potentially suitable for the replacement of inorganic and organic 

synthetic flocculants. Hence, the search for new biodegradable bioflocculants, with strong 

flocculating activity, is attracting wide research interest (Xiong et al., 2010; Notembiso et al., 

2011; Yang et al., 2012). 

In this chapter, a preliminary study of FucoPol’s emulsion forming and stabilizing 

capacity was assessed under several polymer concentrations and oil/water ratios. Besides, 

the polymer’s flocculating activity was also evaluated. Results for both properties were 

compared to other commercially available polymers, namely, Fucogel, xanthan, guar gum, 

alginate, pectin and carboxymethylcellulose (CMC). 
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6.3. Material and Methods 

 

6.3.1. Emulsion forming and stabilizing capacity 

 

The standard assay for testing the emulsifying activity was based on the method 

described by Cooper and Goldenberg (1987). Briefly, a FucoPol aqueous solution (0.5 wt%) 

was mixed with different hydrophobic compounds (3:2 v/v ratio) and stirred in the vortex, 

and the emulsification index (E24, %) was determined after 24 h, using the following 

equation: 

 

     
  

  
            Eq.6.1 

 

where    (mm) is the height of the emulsion layer and    (mm) is the overall height of the 

mixture. All tests were performed in duplicate. The tested hydrophobic compounds 

included hydrocarbons (hexane, Riedel de Haen; hexadecane, Sigma; toluene, Sigma; 

diethylether, Riedel de Haen; benzene, Riedel de Haen) and oils (corn oil, sunflower oil, rice 

bran oil and cedar wood oil, purchased at the local supermarket; and silicone oil, Wacker). 

The same test procedure was also carried out for commercial polysaccharides: 

Fucogel (Solabia), xanthan gum (Fluka), citrus pectin (Riedel de Haen), guar gum (Fluka), 

sodium alginate (Sigma), carboxymethylcelullose (Aqualon, France) and Triton X100 (Riedel 

de Haen), with the same concentration in deionized water. 

Further studies were performed in order to evaluate the effect of polymer 

concentration (0.50, 1.00, 1.50 wt.%) and oil/water (O/W) ratios (20/80, 40/60, 60/40 and 

80/20). The oil used was sunflower oil. The emulsions were prepared by stirring at 13 500 

rpm in an Ultra Turrax homogenizer for 5 minutes and stored at 4ºC for 24h. The 

emulsification index (E24) was evaluated and the steady shear and the viscoelastic 
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properties of the emulsions were measured using a controlled stress rheometer (HAAKE 

RS75, Germany) equipped with a cone and plate geometry (diameter 35 mm, angle 2º) at a 

temperature of 25ºC. Stress sweeps were performed at a constant frequency (f=1Hz) in 

order to ensure that the frequency sweeps were performed within the linear viscoelastic 

region. A tension of 1 Pa was used in all frequency sweeps performed. 

 

 

6.3.2. Flocculating activity 

 

The flocculating activity was tested using kaolin clay (Fluka) as the suspended solid, 

following the procedure described by Kurane et al. (1986) and Gong et al. (2008). 2 mL of 

FucoPol solution (0.01 wt.%) and 2 mL CaCl2 solution (1% w/v) were added to a kaolin 

suspension (5 g L-1, pH 7.0). The mixture was stirred in a vortex (1 min) and left standing for 

5 min. The absorbance of the upper layer was measured at 550 nm. A control was prepared 

using the same method but FucoPol was replaced by deionized water. The flocculating 

activity was calculated according to the following equation: 

 

Flocculating activity ( )  (   )           Eq. 6.2 

 

where   and   are the optical densities of the control and the sample, respectively. 

The same test procedure was carried out using aqueous solutions of several 

commercial polysaccharides, namely, Fucogel (Solabia), xanthan gum (Fluka), citrus pectin 

(Riedel de Haen), guar gum (Fluka), sodium alginate (Sigma) and carboxymethylcelullose 

(CMC) (Aqualon, France). An inorganic flocculant, Al2(SO4)3 (Riedel de Haen), was also 

tested. All tests were performed in duplicate. 
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6.4. Results and discussion 

 

6.4.1. Emulsion forming and stabilizing capacity 

 

A preliminary assessment of FucoPol’s potential to be used as an emulsion forming 

and stabilizing agent was performed with the polymer in aqueous solution (0.5 wt.%). 

Several hydrophobic compounds, namely, food grade oils, mineral oils and hydrocarbons, 

were assayed (Table 6.1). For comparison, the same test procedure was performed with 

Triton X-100, which is a synthetic emulsifier, and other commercial polysaccharides 

reported to be able to stabilize emulsions, namely, xanthan, pectin and alginate (Leroux et 

al., 2003; Lim et al., 2007).  

A measure to evaluate the emulsion forming and stabilizing capacity of an emulsifier 

consists on evaluating its ability to retain at least 50% of the original emulsion volume 24h 

after its preparation (Willumsen and Karlson, 1997). Considering this criterion, FucoPol has 

proven to possess high emulsion forming and stabilizing capacity for the food-grade oils 

tested, namely, sunflower oil, corn oil and rice bran oil, with emulsification indexes of 60, 64 

and 80%, respectively. The ability of this biopolymer to stabilize emulsions with vegetable 

oils suggests its potential application as cleaning or emulsifying agent in the food industry. 

Cedar wood oil, though having lower emulsification index (20%), formed stable emulsions 

that did not break within the test period. Little emulsion-stabilizing capacity, with emulsions 

breaking up after only a few minutes, was observed for silicone oil. 

FucoPol demonstrated to have a lower emulsion forming and stabilizing capacity for 

the tested hydrocarbons (Table 6.1). In fact, under the conditions tested, no emulsion was 

formed with xylene, diethylether, benzene or toluene, while low emulsification indexes 

(<10%) were obtained for decane and chloroform. Although stable emulsions were formed 

with hexadecane and hexane, their emulsification indexes were rather low (22 and 30%, 

respectively) (Table 6.1).  
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As shown in Table 6.1, FucoPol has demonstrated to have higher emulsification 

indexes than xanthan, alginate and pectin for most of the compounds tested. Also, the 

capacity of FucoPol to form and stabilize emulsions is specific for certain hydrophobic 

compounds, which is also a characteristic of the other commercial polysaccharides tested 

(Freitas et al., 2009a).  

 

Table 6.1 Emulsification index (E24) for FucoPol and commercially available emulsion forming and stabilizing 
agents against several hydrophobic compounds. All emulsions were prepared by mixing a 0.5wt% aqueous 
solution with each of the hydrophobic compound (3:2 v/v ratio) and left at room temperature for 24 h to 
determine E24 

E24 (%) FucoPol Xanthan Alginate Pectin Triton X-100 

Oils 
     

Cedarwood oil 20 30 10 40 80 

Sunflower oil 60 40 56 20 80 

Corn oil 64 90 40 60 82 

Rice bran oil 80 50 50 60 90 

Hydrocarbons           

Hexadecane 22 40 10 20 80 

Hexane 30 40 10 30 70 

 

Effect of different FucoPol concentrations and O/W ratios 

Following the preliminary results showing the emulsion-forming capacity of FucoPol, 

further experiments were performed to test its performance in different oil/water (O/W) 

ratios, as well as in different polymer concentrations. These studies were performed with 

sunflower oil, which was one of the food-grade oils for which FucoPol had high 

emulsification index. The O/W proportions used and the different concentrations of FucoPol 

solution are presented in Table 6.2. 

The emulsification index (E24) obtained with a 0.5 wt.% FucoPol aqueous solution by 

blending the two phases (O/W ratio equal to 60/40, equivalent to a ratio of 3:2 v/v ) with a 

high shear mixer (Ultra Turrax homogenizer) was quite similar to that obtained previously 

for the emulsions prepared by stirring at lower shear with the vortex (E24  60%). For that 
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polymer concentration and O/W ratio, the shear applied did not influence the emulsion 

height after 24h. 

When FucoPol concentrations of 1.0 wt.% and 1.5 wt.% were used, no phase 

separation was observed after 24h (E24 = 100%) for all O/W ratios tested, except in the case 

of O/W=80/20, for which quite low E24 values were observed (14% and 23%, respectively). A 

different behaviour was observed when a polymer concentration of 0.5 wt.% was applied. 

In this case, even though a complete oil in water stabilization was never achieved, a higher 

E24 (71%) was determined for an O/W ratio of 80/20. This fact must be further investigated, 

by studying the effect of other factors besides polymer concentration (e.g. solution pH, 

ionic strength, as well as polymer composition and structure) on the emulsion forming and 

stabilization. 

 

Table 6.2 Emulsification index (E24) for FucoPol against sunflower oil and apparent viscosity at a shear rate 1 s
-1 

for FucoPol solutions and emulsions with different O/W proportions 

FucoPol O/W 
E24 

η FucoPol 
solution 

η Emulsions 

(wt.%) (v/v %) (%) (Pa s) (Pa s) 

0.50 

20/80 71 

0.28 

0.53 

40/60 57 1.89 

60/40 64 0.59 

80/20 71 0.06 

1.00 

20/80 100 

0.68 

1.37 

40/60 100 3.37 

60/40 100 3.80 

80/20 14 0.51 

1.50 

20/80 100 

3.39 

6.54 

40/60 100 15.70 

60/40 100 20.01 

80/20 23 2.53 
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Steady shear tests 

The rheological properties of the emulsions formed were studied after maturation at 

4 ºC for 24h. The respective steady shear flow curves are presented in Figure 6.1. Most of 

the emulsions have shown a strong shear thinning behaviour, except the one prepared with 

0.5 wt.% FucoPol solution and an O/W ratio of 80/20, which demonstrated a Newtonian 

behaviour. The shear thinning is attributed to the disentanglement of the polysaccharide 

chains in the aqueous phase, along with the deformation of the oil droplets into ellipsoidal 

shapes and with the breaking of agglomerates into their elements that start to form layers 

coincident with the shear plane (Brumer 2006, Tadros, 2011). The Newtonian behaviour of 

the 80/20 emulsion prepared with a 0.5 wt.% FucoPol solution may be caused by the lower 

concentration of FucoPol in the emulsion, which may have resulted in the formation of a 

thinner and much less concentrated polymer layer surrounding the oil droplets, imparting a 

lower resistance to flow, that was independent on the shear applied. 

For the polymer concentrations of 1.5 wt.% and 1.0 wt.%, the O/W ratio of 60/40 

was the one exhibiting a higher apparent viscosity at low shear rates, followed by the 40/60, 

20/80 and 80/20 ratios (Table 6.2, Figure 6.1). However, when a 0.5 wt.% concentration was 

used there was a change in the behaviour and the O/W proportion of 40/60 was the one 

rendering an emulsion with a higher apparent viscosity. This fact is probably a consequence 

of the influence of the amount of FucoPol available to form and stabilize an emulsion, 

regarding to its overall oil content. As the oil content increases, a higher amount of polymer 

is needed in the aqueous phase to maintain the overall consistency of the droplets 

dispersion produced. 

In general, the emulsions presented a higher apparent viscosity than the original 

FucoPol aqueous solutions. The exceptions were the emulsions formed with an O/W ratio of 

80/20, for which a decrease of the apparent viscosity was observed. This fact may be 

attributed to a high oil droplets concentration in the emulsion, imparting a lower resistance 

to shear than the original polymer solution. 
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Figure 6.1 Flow curves of emulsions prepared with different polymer concentrations ((a) 0.50 wt.%; (b) 1.00 
wt.% and (c) 1.50 wt.%) and different oil-water proportions: 20/80 (diamonds); 40/60 (bullets); 60/40 
(squares); 80/20 (triangles). 

 

For a fixed O/W proportion, the increase of FucoPol concentration in the aqueous 

phase led to an increase of the apparent viscosity of the resulting emulsions. This fact is 

attributed essentially to the increase of the polymer chain entanglements within the 

aqueous film surrounding the oil droplets, imparting a higher resistance to flow under 

steady shear. The same trend was observed by Calero et al., 2013 for emulsions formulated 
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with sunflower oil as disperse phase, potato protein as emulsifier and chitosan as stabilizer. 

The apparent viscosity of the emulsions after one day of maturation increased with the 

increase of the chitosan concentration used. 

 

Oscillatory tests 

Figure 6.2 shows the mechanical spectra of the O/W emulsions with different 

FucoPol concentrations. The variation of the dynamic moduli with the frequency was quite 

dependent on the O/W ratio for all FucoPol contents studied. This dependence was 

evaluated by the power law regression   (   )      (Valdez et al., 2006) and the 

exponent values  obtained are presented in Table 6.3.  

 

Table 6.3 β values of the power law regression for the different emulsions 

  0.5 wt.% FucoPol 1.0 wt.% FucoPol 1.5wt.% FucoPol 

  β (G´) β (G´´) β (G´) β (G´´) β (G´) β (G´´) 

20/80 2.05 0.91 0.90 0.55 0.50 0.29 

40/60 0.77 0.51 0.48 0.46 0.40 0.27 

60/40 1.72 0.87 0.74 0.47 0.33 0.15 

80/20 1.75 1.13 1.40 0.76 0.83 0.51 

 

For the emulsions with 1.5 wt.% FucoPol (Figure 6.2 a), the O/W ratio of 60/40 was 

the one that presented the highest dynamic moduli values and the lowest variation with 

frequency,  (G’) = 0.33 and  (G’’) = 0.15, with G’ > G’’ over the entire frequency range. 

This behaviour indicates that this emulsion was the most structured, which is in agreement 

with the steady shear data that has shown a higher apparent viscosity (Figure 6.1 a). In 

opposition, the O/W ratio of 80/20 formed an emulsion with the lowest dynamic moduli 

which have shown a higher variation with the frequency, (G’) = 0.83 and (G’’) = 0.51. In 

addition, G’’ was higher than G’ within most of the frequency range, with a crossover at 

high frequencies. The results show that the emulsions behaviour changes from that 
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generally attributed to a viscous solution with entangled polymer chains to that of a weak 

gel, when moving from O/W proportions of 60/40, to 40/60, 20/80 and 80/20. 

 

 
Figure 6.2 Mechanical spectra showing the frequency dependence of G´ (full symbols) and G´´ (open symbols). 
(a) 0.50 wt.% (b) 1.00 wt.% (c) 1.50 wt.%. O/W ratios: 20/80 (diamonds); 40/60 (bullets); 60/40 (squares); 
80/20 (triangles). 
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As FucoPol’s concentration used decreased to 1.0 wt.% and 0.5 wt.% (Figures 6.2 b 

and c), lower dynamic moduli were observed, along with a larger variation with the 

frequency, as can be confirmed by the increase of the respective  values. Furthermore, the 

O/W ratio that produced an emulsion with a stronger internal structure changed from 

60/40 to 40/60. This fact was more evident for a 0.5% FucoPol concentration, which is in 

agreement with the higher apparent viscosity presented in Figure 6.1.  

 

 
Figure 6.3 Mechanical spectra showing the frequency dependence of G´ (full symbols) and G´´ (open symbols). 
(a) 20/80 (b) 40/60 (c) 60/40 (d) 80/20. FucoPol wt.%: 0.5 (triangles); 1.0 (bullets); 1.5 (diamonds.). 

 

Figure 6.3 shows the mechanical spectra for the emulsions studied arranged 

according to the O/W ratio. It can be observed more clearly the effect of FucoPol 

concentration on the dynamic moduli of the emulsions. For all O/W proportions tested, the 

increase of polymer concentration led to the increase of both G’ and G’’ and, 

simultaneously, to a decrease of their dependency with the frequency. This fact may be 
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attributed to a more effective stabilization of the oil-water interface along with the increase 

of the viscosity of the continuous phase. 

 

6.4.2. Flocculating activity 

 

A preliminary test of the flocculating activity of FucoPol was performed using a 

kaolin suspension and compared with commercial flocculants, namely, Al2(SO4)3, alginate, 

xanthan, guar gum, chitosan and CMC (Figure 6.4). These preliminary tests were performed 

at room temperature and neutral pH, for flocculants concentration of 0.01wt%. As 

expected, Al2(SO4)3 had the highest flocculating activity (30%), while CMC and xanthan had 

flocculating activities of 27 and 24%, respectively. Nevertheless, for the tested conditions, 

the EPS had similar flocculating activity (28%), which is a very promising result. Alginate, 

guar gum and chitosan had much lower flocculating activities (11, 8 and 6%, respectively) 

than the EPS (Figure 6.4).  

 

 
Figure 6.4 Flocculating activity of FucoPol in comparison with commercially available flocculants. 
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These results indicate that the polymer has high flocculating activity under the 

conditions tested, which envisages its potential use for colloid and cell aggregation in 

several applications, such as water treatment and food and mining industries. Inorganic 

(e.g. Al2(SO4)3) and synthetic organic flocculating agents (e.g. polyacrylamide) are 

inexpensive products, but have a low biodegradability and are not shear resistant (Singh et 

al., 2007). On the other hand, some of them are dangerous for human health, namely 

polyacrylamides, whose monomers are neurotoxic, and poly(aluminum chloride) that 

induces Alzheimer disease. To overcome these environmental and public health problems, 

naturally occurring flocculants, including several polysaccharides have been suggested as 

safe alternatives (Freitas et al., 2009b; Lim et al., 2007; Yokoi et al., 2002). FucoPol 

produced by Enterobacter A47 may be included amongst these bioflocculants. 

 

 

6.5. Conclusions 

 

 FucoPol has shown a good emulsion forming and stabilizing capacity for several 

hydrophobic compounds, including oils and hydrocarbons, similar to some commercial 

polysaccharides. FucoPol has shown to possess high emulsion forming and stabilizing 

capacity for the food grade oils tested (E24 > 60 %), namely sunflower oil, corn oil and rice 

oil. However, for the tested hydrocarbons (hexadecane and hexane) the polymer 

demonstrated a lower emulsion forming and stabilizing capacity (< 30%). 

Regarding the emulsions produced with sunflower oil, and for FucoPol aqueous 

solutions in concentrations above 1.0 wt.%, no phase separation after 24h was observed for 

most of the O/W ratios tested. Moreover, the emulsions presented a strong shear thinning 

behaviour, being the O/W ratio of 60/40 the one exhibiting a higher apparent viscosity at 

low shear rates. 
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Furthermore, the variation of the dynamic moduli with the frequency was quite 

dependent on the O/W ratio for all FucoPol concentrations studied. The polymer solution 

with 1.5 wt.% polymer concentration and the O/W ratio of 60/40 resulted in the most 

structured emulsion, which is in agreement with the steady shear data that has shown a 

higher apparent viscosity. Decreasing polymer concentration to 0.5 wt.% led to a change in 

the O/W ratio that produced an emulsion with a stronger internal structure from 60/40 to 

40/60. For all O/W proportions tested, the increase of polymer concentration led to the 

increase of both G’ and G’’ and, simultaneously, to a decrease of their dependency with the 

frequency. 

Under the conditions tested (i.e. room temperature, neutral pH and flocculant 

concentration of 0.01 wt.%), FucoPol showed a good flocculating activity (28%), similar to 

aluminium sulphate and xanthan.  

FucoPol´s emulsion forming and stabilizing capacity, and flocculating capacity, make 

it a promising alternative to commercial polysaccharides. 
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7.1. General Conclusions 

 

 In this thesis the production and characterisation of a novel bacterial 

exopolysaccharide (FucoPol) using glycerol byproduct from the biodiesel industry was 

studied. FucoPol´s producing bacterium was identified as Enterobacter A47 by biochemical 

and physiological identification and by 16S rRNA gene sequence determination. 

FucoPol´s standard bioprocess included an initial batch phase wherein Enterobacter 

A47 grew exponentially, followed by a fed-batch phase in which EPS synthesis was more 

pronounced. In a typical cultivation, Enterobacter A47 was able to produce 7.50 – 7.97 gEPS 

L-1, within 3 – 4 days of cultivation, corresponding to volumetric productivities of 2.04 and 

2.51 g L-1 d-1. FucoPol was composed of fucose (32 – 36 %mol), galactose (25 – 26 %mol), 

glucose (28 – 38 %mol), glucuronic acid (9 – 10 %mol) and acyl groups substituents 

(succinyl, pyruyl and acetyl) and presented a high molecular weight (4.19 – 5.0×106). 

Furthermore, Enterobacter A47 was able to grow and synthesize EPS under a wide 

range of temperatures and pH. However, FucoPol production and the macromolecular 

characteristics were considerably affected. The synthesis of high fucose content EPS was 

stable for wide temperature (25-35 ºC) and pH (6.0 – 8.0) ranges, which make the 

bioprocess robust. The EPS with the highest fucose content (36 – 37 %mol) presented Mw 

around 4.0x106. 

The impact of using different glycerol and nitrogen concentrations were also 

evaluated. Once more, Enterobacter A47 was able to grow and produce EPS for all the initial 

glycerol and nitrogen concentrations. FucoPol production has shown to be stable within an 

initial glycerol and nitrogen concentrations of ~25 – 50 and 0.68 – 1.05 g L-1, respectively, 

while for nitrogen concentrations above 1.05 g L-1 the EPS production was severely 

impaired. Increasing glycerol concentration in the feeding solution from 200 to 400 g L-1 and 

using 9 g L-1 nitrogen resulted in the highest EPS synthesis (10.18 g L-1), volumetric 

productivity (5.52 g L-1 d-1) and fucose content (41 %mol) of this study. 
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Regarding FucoPol´s aqueous solutions properties, it presented an intrinsic viscosity 

of ~8.00 dL g-1 that was stable under a wide range of pH and ionic strength values (3.5 – 8.0 

and 0.05 – 0.50 M NaCl, respectively). The polymer was able to produce viscous solutions 

with a shear-thinning behaviour, which were also stable under wide ranges of pH, ionic 

strength and temperatures. The mechanical spectra and the application of the Cox- Merz 

rule suggested the presence of entangled macromolecules in a viscous solution. Moreover, 

FucoPol maintained its rheological properties at 25ºC under consecutive temperature 

fluctuations, even after heated up to 80ºC.  

 FucoPol showed a good emulsion forming and stabilizing capacity (E24 > 60 %) for 

several hydrophobic compounds, especially for food grade oils, similar to some commercial 

polysaccharides. Furthermore, under the conditions tested, FucoPol presented a high 

flocculating activity (28%), similar to xanthan and CMC and superior to other natural 

polysaccharides (e.g. alginate). 

The main focus of this work was the rich-fucose polysaccharides due to their high 

market demand. However, the ability shown by the bacterium to synthesize EPS with 

different composition, as a result of the modification of cultivation conditions, is also 

remarkable. In view of this, such capability confers the bioprocess a great versatility, 

enabling to achieve different polymers, which can be used in different applications. Beyond 

the interesting physical characteristics observed, FucoPol’s chemical composition may 

confer additional bioactive activity, since fucose-containing polysaccharides have been 

reported to have pharmacological and cosmetic properties. Taking into account the 

versatile properties presented, combined to the prospective lower production costs from 

using a low-cost carbon source, FucoPol has an enormous potential to be used on several 

industrial applications, namely in cosmetics, pharmaceuticals, detergents and paints, as well 

as in processes that require thermal stability (e.g. food processing and oil drilling fluids). 
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7.2. Future Work 

  

 The results obtained in this work may be improved and extended in diverse ways. 

 Firstly, FucoPol production can be further optimized in terms of medium 

composition, namely, micronutrients, such as phosphate, sulphate and magnesium. 

Moreover, operational parameters, such as dissolved oxygen concentration, aeration and 

stirring rate, can also affect cell growth and polymer synthesis by Enterobacter A47 and, 

hence, their effect should be studied. Other bioreactor operation modes (e.g. repeated fed-

batch, continuous) may also be tested, as well as other feeding strategies (e.g. pulses).  

 The bioprocess can also be optimized in terms of the downstream procedure to yield 

high purity polymers in high yields, while taking into consideration possible industrial 

applications.  

 It is also important to study the Enterobacter A47 metabolic pathway in order to 

better understand the EPS synthesis process. 

The potential development of FucoPol systems for high-value cosmetic, food and 

pharmaceutical applications is closely related to its performance in structures, such as 

hydrogels, emulsions, films and particles (micro/nanoparticles), as well as its ability to form 

viscous solutions. FucoPol emulsion forming and stabilizing capacity should be evaluated 

under diverse ionic strength and pH values. It may also be studied for other potential 

properties, such as gelling capacity and the polymer’s ability to form films and particles 

(micro/nanoparticles), regarding the encapsulation and release of selected key substances 

(e.g. antioxidants, drugs, antimicrobials). 

Taking into account some possible industrial applications (e.g. cosmetic, food, 

pharmaceutical) the safety of this biopolymer should be assessed by cytotoxic assays. The 

biological activity may also be evaluated, as well as the antioxidant properties, anti-

inflammatory effect and antimicrobial activity.  
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