Goncalo Franco Pita Louro Alves
Licenciado em Ciéncias de Engenharia
Electrotécnica e de Computadores

A Framework for Semantic Checking of
Information Systems

Dissertacdo para obten¢cédo do Grau de Mestre em
Engenharia Electrotécnica e de Computadores

Orientador: Ricardo Jardim-Gongalves, Professor Auxiliar,

FCT-UNL
Co-orientador: Jo&o Filipe dos Santos Sarraipa, Investigador,
UNINOVA
Jari:
Presidente: Doutor Joao Francisco Alves Martins
Arguente; Doutor Jodo Pedro Mendonga de Assungéo da Silva
Vogais: Doutor Ricardo Luis Rosa Jardim Gongalves

Mestre Joéo Filipe dos Santos Sarraipa

FACULDADE DE
CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Setembro de 2012

A Framework for Semantic Checking of Information Systems

Copyright © Goncgalo Franco Pita Louro Alves, FCT/UNL, UNL

A Faculdade de Ciéncias e Tecnologia e a Universidade Nova de Lisboa tern o direito,
perpetuo e sem limites geograficos, de arquivar e publicar esta dissertacdo através de
exemplares impressos reproduzidos em papel ou de forma digital, ou por qualguer outro
meio conhecido ou que venha a ser inventado, e de a divulgar atraves de repositorios
cientificos e de admitir a sua copia e distflouicdo corn objectivos educacionais ou de

investigacao, ndo comerciais, desde que seja dado crédito ao autor e editor.

ACKNOWLEDGEMENTS

First of all, I would like to thank all the people who helped me during my academic course.

To my advisor, Professor Ricardo Goncalves for giving me the opportunity to work with him and with
his research group, and for giving me valuable advice during the execution of this work.

To all members of GRIS, and especially to Jodo Sarraipa for being there every day, for his attention,
guidance and support during the research and the preparation of this dissertation.

To my friends, Goncgalo Barros, Francisco Esteves, Nuno Vasconcelos, Jodo Silva, Jodo Filipe,
Gongalo Carvalho, Jodo Melo, Pedro Almeida, Ricardo Lampreia and to everyone else whom | may
have forgot to mention, for all your support and for providing many unforgettable moments during this
academic experience.

To my parents, brother and all of my family for providing with everything you could and for trying to
give me the best possible future. You mean a lot to me.

Finally, to my girlfriend Iris, for always being there for me and for supporting me, pushing me to go
further and to never give up, but more importantly for always believing in me.

To all, you have my deepest and sincerest gratitude.

ABSTRACT

In this day and age, enterprises often find that their business benefits greatly if they collaborate with
others in order to be more competitive and productive. However these collaborations often come with
some costs since the worldwide diversity of communities has led to the development of various
knowledge representation elements, namely ontologies that, in most cases, are not semantically
equivalent. Consequently, even though some enterprises may operate in the same domain, they can
have different representations of that same knowledge. However, even after solving this issue and
establishing a semantic alignment with other systems, they do not remain unchanged. Subsequently,

a regular check of its semantic alignment is needed.

To aid in the resolution of this semantic interoperability problem, the author proposes a framework that
intends to provide generic solutions and a mean to validate the semantic consistency of ontologies in

various scenarios, thus maintaining the interoperability state between the enrolled systems.

KEYWORDS

Semantic Interoperability, Ontology Validation, Consistency Checking;

vii

RESUMO

Nos dias de hoje, as empresas muitas vezes verificam que o seu negocio beneficia bastante quando
colaboram com outros, aumentando a sua competitividade e produtividade. Contudo estas
colaborag@es tipicamente tém algum custo associado, pois a diversidade global de comunidades
conduziu ao desenvolvimento de varios elementos de representagdo de conhecimento,
nomeadamente ontologias, que ndo sdo semanticamente coincidentes. Consequentemente, e apesar
de algumas empresas trabalharem sobre um mesmo dominio, estas podem ter diferentes
representacdes de um mesmo conhecimento. Porém, mesmo apos ultrapassar esta barreira e se
estabelecer um alinhamento seméantico com outros sistemas, estes ndo permanecem inalterados. Por

conseguinte, & necessario verificar regularmente o alinhamento semantico dos sistemas.

Para ajudar a solucionar estes problema de interoperabilidade semantica, o autor propde uma
estrutura que tem a intencdo de proporcionar solucfes genéricas e meios para validar a consisténcia
de ontologias a nivel seméantico numa variedade de cenarios, de modo a manter o estado de

interoperabilidade entre os sistemas envolvidos.

PALAVRAS-CHAVE

Interoperabailidade Semantica, Validacdo de Ontologias, Verificacdo de Consisténcia;

TABLE OF CONTENTS

IO 4 o o [¥ ot o o [FSSPPPRN 1
1.1. Background ODSErVationccccccuuiiiiiiiiiiiieeeeeeee e ee e e e eeeessesc e re et eere e e e e e eeeaeaaaaeeaeeesesssssannnns 1
1,20 MOTIVATION ettt e e et et e e e e e e e e e e bbb e et e et et e e e e e e e e e e e e e e as 2
1.3, ReSEArCh IMELNOMcoiiiiiiieiiee ettt sbre e e sbb e e s sbbe e e sbaeee s 2
1.4. Research Questions and Problemsc..uiiiiiiiiiiiiieee et ree e s s sareee s 4
0SS T o 1Yo o 1 LYY TSR 4
0 T DT T 7 4 o o W 10 [ST UPP 4

2. Ontology Based Solutions for Knowledge Representation............ccoooocciiiiiiiiiiiiiiiiieceeeeeeeee e, 7
2.1. Ontology Operations & LEArNiNgGueiiiieiciiieiee et e e eecre e e e eertrr e e e e e e sarr e e e e e e saaaareeeeens 7

2.1.1. Ontology Mapping/MAatCRINGcooiiiiiiiii e e 7
2.1.2. (@] g110] (oo) VAr=11Te] 0] 1= 0| ST PPPPPPPPPPPTN 8
2.1.3. @ 10100] (oTs)V 10 =140 1oV RRU T TP PP PP P PP PRPPPPN 8
2.1.4. (@] 7o) (o0 VA I =T T o 11 o [P PEPPEPRRPR 9
2.2. Ontology Management TOOIScccciiiiiie et e e e e e e e e e e e e e e e e e e e s s e s nnnensessraesaeeees 9
2.2.1. 0 (=0 =S 10
2.2.2. 1041 (o] o F- WP PPPPPPPTTPPTP 10
2.2.3. TIMAL . ettt e e e ettt e e e e bbb e et e e e s naaaeaae s 12
2.2.4. Ontology Management Tools Concluding Remarks...........cccccuuuiiiiiiiiiiiiiiiiiiiieeeeeeeeeen 13
2.3, ONtology VisU@liZationcccuiiiieeiiciiieee et e e e e et e e e e e nnaaaaeea s 13
2.3.1. ONLOPIA VIZIGALOT ...t eeieitee ettt e ettt e e e ettt e e e e sbb b e e e e e s anbreeeeeeeane 14
2.3.2. JAMDAIAYA ... 14
2.3.3. 1041 (o] - | PP PPPPPPRPRPPRP 16
2.3.4. TIMAL VIBWET ... eeieiie ettt ettt e et e e e e e e e e e e e e e e s e e sasan i sensbaebestenseneeeeeeeees 16
2.3.5. DEDAEGIAPN ... —————————————————————aa 17
2.3.6. B0 1=1 = = U o ISR 18
2.3.7. D1, 112 T PP OPPPPRPTN 19
2.3.8. Ontology Visualization Tools Concluding Remarks...........cccccvuiiiiiiiiiiiiiiiieeeeeeeeeee, 19
N O 101 o] [-4V 2 =T 1o o 1= PRI 20
24.1. [1= 00 PSP 20
2.4.2. =] 1= PR PPPPT 22
2.4.3. O I SRR 23
24.4. 16T o o F PP TUPPRPT 23
2.4.5. Ontology Reasoners Concluding REMAIKScoooiiiiiiiiiiiiiiiiiie ettt 24

3. Semantic Checking FrameEWOrKoo it e e e e e s raree e e e e e s nreees 27
0t I 1o =Y o o T=T =1 o111 4V 25 27
S \V/ =1\ N L@ 21V, =Y d o oo [o] [o = AR 28

3.2.1. MeEdIAtOr ONEOIOGYeeeeiuieiiieieeiiitee ettt e s e e e e s et e e e e e ebeeas 31
IR T o o I 1) <Y o Tor VA @ o 1Yol 4 [V=R 32
3.3.1. Interoperability ChECKINGccooiiiiiiiie e 33
3.3.2. SemMantic ChECKINGouiiiiiieie e e e e e e e eaeaeaaaaeees 34
3.3.3. Semantic Adaptability Using a Mapping TUPIE........oociiiiiiiiiieeee e 35
3.4. Semantic Checking FrameEWOIKc..uuiiiiiiiciiiieee et e et e e e et e e s e e sara e e e e e esnaaaaeeaean 37
I T 0o o Tol I¥ L [TV 0= oo - RPN 39

O AN o o] [Tor 1 d oY o I ol =T = o o L3O 41

4.1, MeChaniCal SCENAIIO.....uuii ittt ettt ettt e st e e sbee e s sbae e s sbaeeessbaeessaseeesesseees 41

vii

4.1.1. Single Structural Semantic ChECKINGoiiiiiiiiiiiiii e 43

4.1.2. Single Structural Semantic Checking Concluding Remarks...........cccoevvviiiiiiniiiieeeeeeens 44
4.1.3. Single Conceptual Checking at MENTOR SCENANOccceeviiiiiiiieeiiiiiieeee e 44
4.1.4. Single Conceptual Semantic Checking Concluding Remarks.........cccccccvvvviiveieieiinnnnnnn. 45
4.1.5. Multiple Conceptual Semantic Checking..........cooouiiiiieiiiiii e 45
4.1.6. Multiple Conceptual Semantic Checking Concluding Remarksccccccvvvvvveeeeeeennnnn. 50
4.2. ENSEMBLE SCONAIIO ...ttt et e e e e e e e e e e e e sttt e e e et e e eeeeaaaaaaaaaaesanns 51
4.2.1. Composite Ontologies Checking at ENSEMBLE Scenarioccccveevveviviieiieeeieeeeneen, 53
4.2.2. Multiple Structural Semantic Checking at ENSEMBLE Scenario..........ccocccvveveeiininneen. 54
4.2.3. ENSEMBLE Scenario Concluding REMAIKSuvvviiiiiiiiiiiiee i 56

. Proof-of-Concept IMplementation ... e 59
LT O U 1YY B <Yl o T oo] [o =TT TR 59
5.1.1. B =LV LSS PPRPTTPN 59
5.1.2. 1YY £ST © EPEETPURRT 59
5.1.3. Protegé / Protég@-OWL APL.........eiiiiiie ettt 60
5.1.4. Changes and ANNOLALIONS APcoiiiiiiiii e 60
LT Y AN ol oV 1 =Tt { U o =T PPUPP PP 60
5.2.1. SyNchronization MOUIE...........uuuiiiiiiiiiie e e e e e e e 61
5.2.2. 16107 2X@ @ 1] (o] (oo | AP PPPPTTPPRP 61
5.2.3. L1] = F PSP RPTTPI 61
5.2.4. FINES WK ceeeeieiiiiieee ettt e e e st e e e e s et e e e e e e e nnbae e e e e e e nnneees 62
5.2.5. EISB ReferenCe ONtOIOQYcciiuriiiiiiiiiiiiiit ettt 65
5.3. Synchronization eXecution fIOWSccoiiiiiiiiiiii it e e 73
5.3.1. EISB Ontology to FINES Wiki Synchronization Execution FIOWcccccvvvivviveeeeennn.. 73
5.3.2. FInES Wiki to EISB Ontology Synchronization Execution FIOWccccccvvvvvieeeeeenenn. 74
5.4, CONCIUAING REMAIKS ...vviiiiiiiiiiiiieeeeeiittee e e esiite e e e e et e e e e e sttt e e e e e e saaaaeeeeessasssaeeeeesssssneeeeeas 75
. Synchronization Tool DeMONSEratioNuuiiiiiiiiiieeice 77
6.1. Ontology to Wiki Synchronization Demonstrationccccccccvveeeieiiiiiiiiee e 77
6.1.1. New Scientific Area iNSTANCEooo i 78
6.1.2. Remove Scientific Ar€a CIASSuueiiiiiiiiiiiie e 81
6.2. Wiki to Ontology Synchronization Demonstrationccccceeeeeeeiii e 83
6.2.1. NEW PUDICAIIONeeeiiiiiieee et e e e s 84
6.2.2. Edit SCIENETIC AFBa.....iiiiiiii e e e s s e e e eeeeees 87
6.3. Synchronization Tool Demonstration Concluding Remarks..........ccccccvvveeeiiiiciiieeeeeeeccineeeeenn, 89
. Conclusions aNd FULUIE WOTKceiiiiiiiiiie ettt ee e ee st e e e e e e e e s ree e e s e s sabaaee e e e e sanrneas 91
7.1, ReSEArch Validation ... e s srrr e e e s s araeeee s 91
T.2. FULUIE WOTK ceiiiiiiiiiiiiee ettt ettt ettt sttt e e st e e s aba e e s abe e e s s ata e e ssbeeessbaeessabaeessnsaeesnnsanesnns 92
B 0] = T ol PR SPUR 93
B o o =1 o Vo 1 GO UUPRRT 97
9.1. Ontology to Wiki Synchronization — New Scientific Area instance code example 97
9.2. Ontology to Wiki Synchronization — Scientific Area class removal code example................. 97
9.3. Wiki to Ontology Synchronization — New Publication code examplecccccccvvviivirerreeennenn. 98
9.4. Wiki to Ontology Synchronization — Edit Scientific Area code examplecccccevvvevivriennnnn. 99

viii

LIST OF FIGURES

Figure 1.1 - Phases of the Classical Research Method [6]............oooiiiiiiiiiiiiiee e 2
Figure 2.1 - Ontology MappPing/MAtCNING.uuueiriiieiiiiiiiia e e e e e e e e e e e e e e e e e 8
Figure 2.2 - ONtology @ligNMENT bbbt e e e e e e e e e aaaaaaaaaaaaaas 8
FIgure 2.3 - ONtOlOGY MEIGING . ..coiiiiii ittt ettt et e e e e et e e e e e e aaa e e e e e s e e s e e e nneaebesbesbeeeeeeeeeeeeaaaaaaaaaaaaans 9
Figure 2.4 - Snapshot of the ProtEge GUIccuuiiiiiiiiiiiiiie ettt e e e e e e e nseaes 10
Figure 2.5 - ONtOPOIY SNAPSNOLottt e aaaas 11
Figure 2.6 — Omingator snapshots - (a) Omnigator Main Page with index of topic maps; (b) Browsing a
100] o [0 11 F= T o H TP UOUPUPPPPPPPPP 11
Figure 2.7 - Snapshot of TMAL USEr INEITACEcouiiiiiiiiiii et 12
Figure 2.8 - Ontopia Vizigator SNAPSNOLuuuiiiiiiiiiiiiei ettt e e e 14
Figure 2.9 - Jambalaya snapshots (a) Sink Tree view; (b) Nested Graph VIieWccccccciiiiiinnnnnn. 15
Figure 2.10 - ONtOGraf SNAPSNOL ...ttt e e e e e e e e e e e e e e e e 16
Figure 2.11 - Snapshot Of the TIMAL VIBWETeeiiiiiiiiiiiaae ettt a e e e e e e e 17
Figure 2.12 - Snapshot of the debateGraph visualization tool..............ccccciiiiiiiiiiii e 18
Figure 2.13 - Snapshot of theBrain visualization t00l ... 18
Figure 2.14 - Snapshot of the XMind visualization t00l..............oooiiiiiiiiiii e 19
Figure 2.15 - HermiT reasoner Protégé plugin output - inconsistent ontology..........cccceevvvvviereeeennnnnen. 21
Figure 2.16 - HermiT reasoner example using the command liNecccuuiiiiiiiiiiiiiee e, 21
Figure 2.17 - HermiT reasoner java application integration examplecccccuueiieiiiiiiiiieeen 22
Figure 2.18 - Pellet reasoner Protégé plugin output - inconsistent ONtologycccccvvevviivvieeeeeeiiennn, 23
Figure 2.19 - FaCT++ reasoner Protégé plugin output - inconsistent ontologyccccoeevvvvveeeeeinennen. 23
Figure 2.20 - RacerPro reasoner supported features [40] ..o 24
Figure 3.1 - Enterprise INteroperability [46]uuuueeeiiiiiiiiiiie e e e e e e e 27
Figure 3.2 - MENTOR MethodolOgy [48]uuuuuiiiiiiiiiiiiieieeeeeeee e r e e e e e e e e e e e e e e e e e e e naean 30
Figure 3.3 - MENTOR PrototyPe [49].. ...ttt et e e e e e e e e e e s s s e s e e e e e eaaaaeaaaaaaaeanaaas 30
Figure 3.4 - Mediator Ontology StrUCIUIE [51] ..vvuiriiiiiiiiieiiiee e e e e e e e e e e e 31
Figure 3.5 - Mapping design and execution flow in data exchange...........cccccovviiiiiiiiiiiieeeeeeee, 32
Figure 3.6 - Conformance Testing EXamPIe [57]uuuviiiiiiiiiiieee et 33
Figure 3.7 - Interoperability Testing EXampPle [57]coveiiiviiiiieeii e 34
Figure 3.8 - (a) Single Semantic Checking; (b) Composite Semantic Checking; (c) Multiple Semantic

L0 31T 241 Vo [34
Figure 3.9 - Knowledge Mapping TYPES [50] . uuuuuuuiriiiiiiiiiieeeeeeeee e e e e e sesseesite e e e e e er e e e e e aaaaaeeaaaaaaaeas 36
Figure 4.1 - MENTOR SCENAIO OVEIVIEWuuuiiiiiiiiiieiiieieaeeeeeeaeessessasssesiasnssrsssesssssereeeeeeeaaaaaaaaaasaessans 42
Figure 4.2 - Used ONtOIOGIES.cciii ittt e e e e e e e e e e e e s s e s s s e st a e e e e e e e e e e aaaaeaaeeaaaaasanns 43
Figure 4.3 - Pellet reasSONEr OULIPULuuuiiiiiiiiiiiiiiiee e eeeeee e e e e e e e s e s se s s s e e raeeessereearaaaaeaaaaaaaeasans 44
Figure 4.4 - Reasoning Example (Retailer ONtOlOgy)ccceveeeeiiiiii i 45
Figure 4.5 - Reasoning Example (Retailer and Reference Ontologies)cccvvviiieieiiiiiiiiieiieeeeeeeeeeee, 47
Figure 4.6 - Reasoning Example (Manufacturer and Reference Ontologies)eveveveiiiiiieiieannnnnnnn, 47
Figure 4.7 - Multiple Conceptual Semantic Checking EXampleccccociiiiiiiiiiiiiiieiieeiceeeeeeeee e 50
Figure 4.8 - ENSEMBLE SCENAIIO OVEIVIEWuuvuiiiiiiiiiieiieeeeeeeee e e e e s sesssesaetesaeeaeeeesseereaaaaaaaaaeaaaaeesanas 51
Figure 4.9 - EISB ReferenCe ONIOIOQYuuururiiiiiiiiiiiiiieiieeeeeeeeees e et sssssesseseresaasarsaesseerereaaaaaaaaeaaeeasans 52
Figure 4.10 - (a) FINES wiki Main Page; (b) FINES wiki article exampleccccccvvevieiiiiiieiecieeeeeeeee, 53
Figure 4.11 - EISB Reference Ontology and FINES Wiki Structural Comparisonccccccceeveeeeeeeennnnnn. 55
Figure 4.12 - Ontology/Wiki Synchronization (a) Using Web Services; (b) Using XML/RDF Files 55
Figure 5.1 - Synchronization tool arChiteCUIEcviiiiiiii i 60
Figure 5.2 - Example of changes recorded in the ChAO ontology........ccccccvriiiiiiiiiiiiiiiireiceeceeeee e 61
Figure 5.3 - Wiki DB @XAMPIE........cccci ittt e e e e e e e e e e e e e e s s e s s s e et a e e e e e e e e e e eaaaeeaaaeaaaaasanns 62
Figure 5.4 - FInES Wiki Homepage: 1 - FINES Reserach Roadmap; 2 - FInES Task Forces; 3 — EISB

... 62

Figure 5.5 - FINES Wiki: EISB Scientific Areas and GlOSSary.........c..coccvvveieiiiieeiiiie e 63

Figure 5.6 - FINES Wiki: (a) EISB Glossary; (b) Scientific Area category page example 63
Figure 5.7 - FINES Wiki: Scientific Area page exXxample ... 64
Figure 5.8 - FINES Wiki: Sub Scientific Area page eXxample............coooiiiiiiiieiiniiie e 64
Figure 5.9 - FINES Wiki: El Ingredient page eXample...........cooiiiiiiioiiiie e 65
Figure 5.10 - FINES Wiki: Publications page example ... 65
Figure 5.11 - EISB Reference ONntOlOgY OVEIVIEWccuuuiiiieiiiiiiiiee et e e 72
Figure 5.12 - Ontology to Wiki Synchronization execution flowccoociiiiiiiiiiiiee i, 74
Figure 5.13 - Wiki to Ontology synchronization execution flOW...........cccoociiiiiiiiiiiii e, 75
Figure 6.1 - Synchronization tO0l GUIcooiiiiiiiiiiiii e 77
Figure 6.2 - Ontology to Wiki Synchronization - New Scientific Area instance detection...................... 79
Figure 6.3 - Ontology to Wiki Synchronization - Scientific Area inStancecccceveeiiiiiiieee e, 79
Figure 6.4 - Ontology to Wiki Synchronization - New Scientific Area instance finished synchronization
... 80
Figure 6.5 - Ontology to Wiki new Scientific Area synchronization exampleccccccoviiiiiieeninninnn. 80
Figure 6.6 - Ontology to Wiki Synchronization - Deleted Class detection.........c.occcvveveeiiiiiiiieien i, 81
Figure 6.7 — EISB Reference Ontology (a) Before class deletion; (b) After class deletion 81
Figure 6.8 - Ontology to Wiki Synchronization - Wiki page deletion (Java GUI)cccccooivviiieeiinninnen. 82
Figure 6.9 - Ontology to Wiki Synchronizaton. (a) Wiki page before deletion; (b) Wiki page after
(0[] 0= (o] o DT PP PP PP TP PPPPR PP 83
Figure 6.10 - Wiki to Ontology Synchronization example - New publication detection 84
Figure 6.11 - Wiki to Ontology synchronization example - Publication to be synchronized.................. 85
Figure 6.12 — Finished wiki to ontology synchronization process: (a) - java GUI; (b) Created instance
... 86
Figure 6.13 - Wiki to Ontology new publication synchronization examplecccocceiniiiiiineeeennennn. 86
Figure 6.14 - Wiki to Ontology Synchronization example - Edited Scientific area detection................. 87
Figure 6.15 - Scientific area page - (a) Before editing; (b) After editing...........ccooocciiviiiiiiii e, 88
Figure 6.16 - Edited Scientific Area Synchronization - (a) Instance before editing; (b) Instance after
editing; (€) Finished process - JAVa GUILL.........ccoiiiiiiiiiiie e 88
Figure 6.17 - Wiki to Ontology Edited Scientific Area eXample..........ccccoiuiiiiieiiiiiiiieeeeeiee e 89

LIST OF TABLES

Table 2.1 - Comparison between Ontology management t00IS. ... 13
Table 2.2 - Comparison between ontology visualization t00IS ... 19
Table 2.3 - Ontology Reasoners COMPAIISONcccccuuuuuiiiiiiiiiiiieeeeeettaataaaaaaaaaaaaasaaaaaneanabbebeesseeeeeeeeeeas 24
Table 3.1 - Semantic MiSMAatChEs [51]ocoii it eeeeeeaeas 36
Table 3.2 - Semantic Checking FrameWOIK............ooouuiiiiiiiiiiiiee e 38
Table 4.1 — Framework applicability SCENAIOScccuuuiiiiiiiiiii e 41
Table 4.2 - Retailer Ontology Terms and DefinitioNS............uuueiiiiiiiiiiiiiiiiae e 42
Table 4.3 - Manufacturer Ontology Terms and Definitions ... 42
Table 4.4 - Reference Ontology Terms and DefinitioNS.............eeeiiiiiiiiiiii e 43
Table 4.5 — Retailer Reference MappingsSoooo oottt e e e e e e reeeeeeeaaeas 46
Table 4.6 - Manufacturer - Reference MappingSccccuuuuuiiiiiiiiiieiee et ee e e 46
Table 4.7 - Reference - Manufacturer Conceptual MappingsS ... 48
Table 4.8 - SWRL rules defined in the retailer - reference example ..., 48
Table 4.9 - SWRL rules defined in the manufacturer - reference example..............ccccciiiiiiiiiiieeeeeenen. 49
Table 4.10 - Identification of conceptual losses in INfFOrMation ... 50
Table 6.1 - Ontology to Wiki synchronization cases analySiSc.covvvuiiiiiiiiiiieee e e e 78
Table 6.2 - Wiki to Ontology Synchronization cases analysSiS............ooouuuiiiiiiiiiieee e e, 83

Xi

ACRONYMS

API - Application Programming Interface
ChAO - Changes and Annotations Ontology
CTM = Compact Topic Maps

DB — Database

El — Enterprise Interoperability

EISB - Enterprise Interoperability Science Base

ENSEMBLE - Envisioning, Supporting and Promoting Future Internet Enterprise Systems Research

through Scientific Collaboration

FInES - Future Internet Enterprise Systems

GUI - Graphical User Interface

HTML — Hypertext Markup Language

JDBC - Java Database Connectivity Driver

JVM - Java Virtual Machine

KB — Knowledge Base

KRE - Knowledge Representation Element

LTM — Linear Topic Maps

MENTOR - Methodology for Enterprise Reference Ontology Development
MO - Mediator Ontology

OWL - Web Ontology Language

RDF — Resource Description Framework
SHRIMP — Simple Hierarchical Multi-Perspective
SQL - Structured Query Language

SWRL - Semantic Web Rule Language

TMAL - Topic Maps 4 E-Learning

XML - Extensible Markup Language

XTM = XML Topic Maps

xiii

1. INTRODUCTION

Nowadays, in an increasingly global business environment, several companies have found that to
make themselves more competitive and productive they have to collaborate with other enterprises, to
compete with the larger organizations [1]. However the globalization that led to the collaboration
between companies, also led to the development of various Knowledge Representation Elements
(KREs), such as ontologies, which are not semantically coincident [2]. As a result enterprises are
engaging in some standstills regarding the lack of interoperability of systems and software applications
to manage and increase their collaborative business.

Since various companies that operate in the same domain may have different representations of a
same Knowledge Base (KB), when they describe it electronically it will most likely lead to different
representation models [1]. Thus interoperability problems, particularly regarding the semantics of the
concepts involved, may surface when these different systems try to exchange or share information

with one another.

Even after having established seamless communication and semantic alignment between systems it
was identified the necessity of having “something” that allows companies to track their semantic
evolution to keep the consistency and validity of their KRESs. Since this is a vast and complex subject,
it was recognized that a structured solution that encompasses several different scenarios was a
possible step forward in help solving some of the semantic interoperability problems. Therefore the
idea of a framework was conceived. A framework is a structure for supporting or enclosing something

else, especially a skeletal support used as the basis for something being constructed [3].

To this effect, an interoperability framework that provides a set of assumptions, concepts, values and
practices (methods & tools) [4] and that contemplates several scenarios for the semantic checking is a
possible solution to the semantic interoperability maintenance issue.

1.1. Background Observation

Since interoperability between enterprises is becoming increasingly important to assure
competitiveness and productivity, there is a need to constantly verify if the involved systems remain
interoperable, particularly on a semantic level. For this reason, there is a need to have validation
elements to ensure this interoperable state.

Due to the use of ontologies in enterprises to represent knowledge and consequently its semantics, it
is needed to analyse its integration with other KREs. Thus a path to follow is to analyse the various

KREs with a high relevance to ontologies.

1.2. Motivation

Although some work has been done in the Enterprise Interoperability (El) field, these focus more on
the seamless interoperability between enterprises rather than verifying the consistency of the
exchanged information. In fact a research roadmap (Enterprise Interoperability Research Roadmap)
has been defined with the main objective of identifying the main areas of research within the El
domain [5]. As a consequence, one of the great motivations for this dissertation work is the fact that
the semantic interoperability between businesses and enterprises is an authentic research challenge

and it is a research area that is in constant contact with the industrial world.

Furthermore, enterprises would benefit greatly if it is assured that the information they exchange,
besides being received, is also well perceived by others, since communication would be made with
much less effort.

Therefore this works aim is to provide a possible solution in the field of semantic interoperability, with
focus on the verification of the semantic consistency of information, by proposing a framework to serve
as a backbone in solving these issues.

1.3. Research Method

The research method adopted in this work is centred on the classical method, which is composed by
seven steps, conveniently ordered from a more theoretical to a more practical view of the system, in
addition to an eighth step which is the passage from the theoretical work to the industrial world. This
research method starts by defining the research theme and area and leads to the testing step and
results analysis. Since this method is iterative, the researcher can go back to the first steps if the
obtained results weren’t the expected ones to try a new approach. Figure 1.1 represents the different
steps of this method that are described afterwards.

® Research Question / Problem
* Background / Observation

* Formulate Hypothesis

* Design Experiment

» Test Hypothesis / Collect Data

* Interpret / Analyze Results

® Publish Findings

T

* Transition to Industry

Figure 1.1 - Phases of the Classical Research Method [6]

A brief description of the steps, according to [6], follows.

1. Research Question / Problem: This is the most important step in research. It is a period of

study that intends to define the area of interest of the research. The research question must be clearly
defined, making the study feasible and capable of being validated or refuted. Furthermore, a research
guestion can be complemented with several minor questions to refine the main idea of the research

subject. This is presented on section 1.4 - Research Questions and Problems.

2. Background / Observation: This step contemplates the study of the work done before about
the same research area. In other words, this is where the state of the art research takes place. This is
accomplished by reviewing literature and scientific projects bringing up the ideas of what was already
tested and accomplished. Furthermore it is important to have a big variety of documents for searching
information on the area of interest, since some of the literature although very reliable, can be outdated
and on the other hand, some documentation can be recent and have very innovative ideas but low
reliability. Finally, it is also in this step that the researcher defines what differs from the previous work

to the one being developed, as well as the methodologies taken when approaching the solution.

The background observation (state of the art study) is comprehended in sections 2 and 3 of this

dissertation.

3. Formulate Hypothesis: As its name indicates, in this step the researcher formulates the
hypotheses in order to make the research problem simpler to understand, stating the ambitions to
accomplish at the end of the project. The hypothesis can be seen as an educated guess since it states

the predicted relationship amongst variables.

The hypotheses for this research work are presented in section 1.5 of this document.

4, Design Experiment: This step works as a preparation for the experimental step, where a
prototype or system architecture is designed. In addition, it is significant to find a validation plan for the

previous step, i.e. the hypothesis.

5. Test Hypothesis: This step comprehends the implementation of the designed prototype and
the evaluation of the obtained results. A large amount of tests (especially in different scenarios) should
be done in order to test effusively the outcomes given by the system. These outcomes are supposed

to be collected for later analysis.

6. Interpret / Analyse Results: After the batteries of tests have been made to the system it is
the time to evaluate and analyse the achieved results. It is at this point that the veracity and
confidence in the hypothesis are put to the test. A number of outcomes are possible, the results can
be satisfactory, proving the author right, or they can completely miss the initial idea. If the results point

straight to the hypothesis, then it is reasonable to say that a good prevision was made and it is

possible to consider what comes after, making some recommendations for further research. But even
if the results are not what was expected it should not be taken as a failure, but as an opportunity to
improve the original approach and go back again to the first steps of this research method. The

researcher can then try a different approach from the one taken before.

7. Publish Findings: The final results, if consistent, must end up in a valuable contribution to the
scientific community as scientific papers. These papers can be then presented in conferences, where
the author has the chance to show in person his ideas for the research, presenting the results and

answer questions of other researchers to prove the efficiency of the results.

8. Transition to Industry: Upon validation from the scientific community, the conducted work
should be analysed for a possible industrial application in order to capitalize from it and contribute to
the entrepreneurial world. This can be accomplished by passing the developed work from a prototype
stage to a fully functional industry application which can be presented to various enterprises and

businesses.

1.4. Research Questions and Problems

e How can the semantic consistency of the data exchanged between enterprises information

systems be checked?

1.5. Hypothesis

e With a proper framework that provides guidelines for semantic consistency checking
complemented with possible resolutions for each case, the data exchange between

enterprises is facilitated and its understanding maintained.

1.6. Dissertation Outline

The first section of this work is the Introduction, which addresses the purpose of this work as well as
the main ideas that led to the creation of this dissertation. Furthermore, it presents the authors
motivation behind this work in addition to the background observation that was conducted and the
adopted research method. Finally, this section identifies the research questions and problems that this

dissertation addresses and the hypothesis for attempting to solve them.

Section 2 is named Ontology Based Solutions for Knowledge Representation and addresses the
background research that was conducted. It covers the main tools for building ontologies as well as

techniques and operations that can be applied on ontologies.

Section 3 is named Semantic Checking Framework and covers a background research about
interoperability and consistency checking in ontologies. Furthermore this section introduces the
framework that is proposed in this work as a solution to the semantic checking of information systems

issue.

The next section (4), Application Scenarios, describes two situations where the proposed framework
was applied. Firstly a mechanical scenario is presented, that features the interaction between a bolt
retailer and a manufacturer. The second scenario refers to the Envisioning, Supporting and Promoting
Future Internet Enterprise Systems Research through Scientific Collaboration (ENSEMBLE) project.
The described scenarios were also used to demonstrate the validity of the ideas presented in this

work.

Section 5 is called Proof-of-Concept Implementation and as its name indicates, features the
architecture of the developed prototype, the technologies used to develop it and why they were
chosen. Furthermore it is presented the execution flow of the prototype to serves as a complement to
the architecture in the sense that it shows in detail the flow of the system. Furthermore, this chapter
presents and describes in detail the involved elements in the system, namely the EISB (Enterprise
Interoperability Science Base) Reference Ontology and the FINES (Future Internet Enterprise

Systems) wiki.

The following section is the Synchronization Tool Demonstration chapter which shows the results of

the implemented prototype by featuring some execution examples of the developed prototype.

Finally this document comes to a close with the Conclusions and Future Work chapter where, as
indicated by its name, the concluding remarks and future work topics are presented. Furthermore, this
section also intends to prove that the Hypothesis is valid, or not, regarding the Research Questions

and Problems identified in the beginning of this work.

2. ONTOLOGY BASED SOLUTIONS FOR KNOWLEDGE
REPRESENTATION

This chapter comprehends the state of the art study regarding ontology operations, reasoners and
management and visualization tools. This study focuses mainly on ontologies since they are capable
of encoding the knowledge of a certain domain in machine-processable form to make it available to
other information systems [7]. Therefore ontologies have been widely adopted as mechanisms to

represent knowledge on a given domain.

This chapter is structured as follows; firstly, some ontologies operations are presented and described,
as well as the concept of ontology learning. Following is the study of selected ontology management

and visualization tools. Finally, the review of certain ontology reasoners is presented.

2.1. Ontology Operations & Learning

Ontology operations usually refer to the methods used to integrate two or more ontologies, while
ontology learning refers to the fact of extracting ontological elements in order to build new ontologies.
A summary of the ontology operations that are going to be discussed in detail in the following sub-

sections are:
¢ Ontology mapping/matching;
e Ontology alignment;
¢ Ontology merging;

After the execution of any of these operations the user should check the resulting ontology for

inconsistencies or loss of information [8].

To conclude this subsection, the concept of ontology learning is described and presented in detail.

2.1.1. Ontology mapping/matching

As referred by the de Bruijn et al in [9], ontology mapping is a (declarative) specification of the

semantic overlap between two ontologies.

This operation consists in mapping or matching each entity (class, relation, attribute, etc.) of an
ontology to the corresponding entity in another ontology, as illustrated in Figure 2.1. The
corresponding entities must have the same meaning, which means that usually the correspondences
are expressed in a one-to-one fashion. This process won’'t modify the involved ontologies, and as a

result the mapping operation will only produce a set of correspondences. [8]

Ontology A Ontology B Ontology A Ontology B

c1 Mapping -1
Cc2 — C’2
Cc’3 —> C’3

Figure 2.1 - Ontology mapping/matching

2.1.2. Ontology alignment

Much like the mapping process, in the alignment operation the original ontologies persist with links
established between them [10], which is why this operation is often considered a synonym of ontology
mapping. However, the original ontologies might suffer alterations because this process implies a
mutual agreement between the ontologies in order to make them aligned and coherent with one
another, eliminating unnecessary information [8]. This is why this method is usually applied when the
involved ontologies cover domains that are complementary to each other. This way the original
ontologies are more likely to remain unaltered diminishing the likelihood of occurring inconsistencies of
information. As illustrated in Figure 2.2, the two original ontologies (A and B) were aligned so that the

resulting ontology of the operation, in this case, consists of the greyish area of ontology A.

Ontology A Ontology B Ontology A Ontology B

Alignment

Figure 2.2 - Ontology alignment

2.1.3. Ontology merging

The process of ontology merging consists in integrating or merging two or more existing ontologies to
form a new ontology. In this operation, the source ontologies are usually discarded and only the new
ontology remains active. Although in some cases the source ontologies could also remain active after
the merging process. In the merging operation, often the original ontologies cover similar or

overlapping domains [10] .

According to de Bruijn et al in [9] there are two approaches to the ontology merging operation. In the
first approach, the input of the merging process is a collection of ontologies and the outcome is one
new, merged, ontology which captures the original ontologies. In the second approach the original
ontologies are not replaced, but rather a ‘view’, called bridge ontology, is created which imports the

original ontologies and specifies the correspondences using bridge axioms.

Ontology A Ontology B Ontology C

A
=

Figure 2.3 - Ontology merging

Figure 2.3 shows a small example where ontologies A and B are merged together to form a new

ontology (C) that consists of the source ontologies.

It is worthy of note that the result of the merging process (or any other that promotes changes to the
ontologies) should be tested in order to identify inconsistencies or loss of information [8].

2.1.4. Ontology Learning

Ontology Learning refers to extracting ontological elements (conceptual knowledge) from input and
building an ontology from them [11]. Furthermore, within the research community, ontology learning is
mainly associated to the process of discovering ontological knowledge from various forms of data [13].
According to Cimiano et al in [12] there are three kinds of data to which ontology learning can be
applied, which are, structured data (e.g. databases), semi-structured data (e.g. HyperText Markup
Language - HTML or Extensible Markup Language - XML) and unstructured data (e.g. text)
documents. However, it can also be used as support to the refinement and expansion of existing
ontologies that could have been built following a traditional basis by means of incorporating new

knowledge in an automatic way [13].

To achieve the goal of discovering ontological knowledge from various forms of data, diverse ontology
learning techniques have been developed. These serve the purpose of supporting an ontology
engineer in the task of creating and maintaining an ontology [12]. Most of these techniques are drawn
from well-established disciplines such as machine learning, natural language processing, statistics,
knowledge acquisition, information retrieval, artificial intelligence, reasoning and Database (DB)
management [11][14]. However these techniques are not exclusive to one another, i.e., they can be
combined to form a more powerful method to achieve the goals of ontology learning. For example,
linguistic-based methods are commonly applied with statistical approaches to calculate the relevance
of concept to the given domain, these methods include techniques based on linguistic patterns,
pattern-based extraction, methods that measures the semantic relativeness between terms within a

domain.

2.2. Ontology Management Tools

Ontology management tools are pieces of software that enable the user to create, edit or perform

other operations on ontologies. As referred by Youn, S et al in [15], ontology tools can be applicable
for all stages of the ontology life cycle (creation, population, validation, deployment, maintenance and
evolution). These tools support a variety of ontology languages such as the Web Ontology Language
(OWL), Resource Description Framework (RDF) or XML which are used to implement the ontologies.
In this subsection three ontology management tools are presented, Protégé, Ontopia and Topic Maps

4 E-Learning (TM4L), although there are many more.

2.2.1. Protége

Protégé is a free, open-source platform, with a suite of tools to construct domain models and
knowledge-based applications with ontologies [16]. This tool allows the user to perform numerous
ontology operations, such as creating, populating, validation or visualization. It also enables the
creation of domain ontologies, definition of classes, class hierarchies, variable-value restrictions, and
the relationships between classes and the properties of these relationships [16]. Apart from these
features, Protégé also allows the user to export or import ontologies provided they are in OWL/XML or
RDF/XML formats. Regarding the Graphical User Interface (GUI), Protégé consists of a tab navigation
system, much like a web browser, allowing for a much smoother learning curve. Navigating through
the tabs the user can easily see the entities, classes, instances and relations that compose the

ontology, as illustrated in Figure 2.4.

Fle Edt View Reasoner Tools Refoctor Window Hel

< | [@ atFios o (100 FacudaeresemoraFmes EALY

Aciveriohgy | Entis | Slsses | Oujct Properies | DetaPrapories | vikals | Ovviz | oL cuery | Criograt |

s | Aroutors [N

[t [xt]

V@ Thing
‘Case Studies'
‘Gloud Interoperability’ label

‘Concepts & Positions' “Cloud Interoperability
Container

ConversionFactor

EISB Glossary'

‘Ecosystems Interoperability'
Experiments

Methods Equivalentcliss [4]

isD By
® Category Cloud_insroperabilty

‘Objects Interoperability’
Proof-of-concept
‘Services Interoperability*

Standards e
Subject
‘Surveys-Empirical Data' Members

T°°': 4 'Applying Software Engil Pringiples for gning

Wikipage 4 'Blueprint for the Intercloud - Protecels and Formats for Cloud Computing Intereperability" I
4°Cloud Computing : Issues and Challenges'

4Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility'

4 'Cloud Computing'

4 'Cloud Interoperability

4 Compliant Cloud Gomputing (G3): Architecture and Language Support for User-Driven Compliance Management in Clouds'
4 Digital ecosystems in the clouds: Towards community cloud computing’ L

Figure 2.4 - Snapshot of the Protége GUI

2.2.2. Ontopia

Ontopia is an open source suite of tools for building applications based on topic maps [17]. As a side
note, topic maps are an ISO standard for describing knowledge structures and associating them with
information resources. As such they constitute an enabling technology for knowledge management
[18]. This ontology management tool has essentially three main components. The first component is

the ontology editor named Ontopoly that allows the user to incrementally design topic map ontologies

10

using a user-friendly web interface, as shown in Figure 2.5. The Ontopoly editor also provides the user

the possibility to populate the ontologies and to store them in files or databases [19].

Topic Types

Figure 2.5 - Ontopoly snapshot

The second main component of Ontopia is the ontologies browser called Omnigator and has a variety
of features. It is web-based and can be used to display any topic map [20], as illustrated in Figure 2.6,
whether the topic map was created with the Ontopia editor (Ontopoly) or imported from another
ontology editor (e.g. Protégé). Additionally, the Omnigator also features an exportation plugin, that
allows saving the ontology into various file formats such as RDF, XML Topic Maps (XTM 1.0, 2.0 or
2.1) or Linear Topic Map (LTM), a topic map query interface, topic maps validation, statistics and
merging. One great advantage of this tool is that it allows the user to follow links associated to classes
or instances. For example, navigating to a class through omnigator one could follow the link
associated with that class and be redirected to the designated web page.

T

T

E omnigator
Welcome to the Omnigator]
- i . 1
Index of Tapic Haps | omnigator 3
o ADL-FTT.xtm]]
* alffines.rdf allfines.df | Plug-ins | Customize | Filter | Export | Merge | Statistics | DB2TM | Query | No schema | Edit | ROF2TM
» ensemble_v02.xtm
® fines-rr-ks.xtm
o fines-rr-ks.xtm. rdf Index Page
 GCL-2-1.xtm
® i18n.ltm - - - i
« ItalianOpera.ltm [Topic Map Overview Topic Types (16) 1
® jill.xtm s Ontology ® 1.0:Subject
JillsMusic.xtm o Master Index o Case Studies
* KanzakisConcerts.rdf o Index of Individuals o Cloud Interoperability
. "“"":"“”" Xem o Index of Themes * Concepts & Positions
. ':“';[':‘-""“ o Unnamed Topics o EISB Glossary
my _
.
® MyConcerts.xtm : Ecosystems Interoperability
* MyMusic.xtm xperiments
« myente.xtm ® Methods
« myontopia-1.xtm o Objects Interoperability
» myontopia.xtm o Proof-of-concept
* myontoprotege.rdf ® Services Interoperability
® MyPlan.xtm © Standards
& MyThesaurus.xtm o Surveys-Empirical Data
o mywikiexportrdf.rdf o Tools
+ ontopoly-ontology. xtm o owl:Class
* p.xtm o owl:Ontology
o pokemon.Itm
o support-kb.itm
® TapsasConcerts.xtm
® tm-standards.xtm
* userman.ltm
*® xmitools-tm.xtm

Figure 2.6 — Omingator snapshots - (a) Omnigator Main Page with index of topic maps; (b) Browsing a topic map

Finally, the third main component of the Ontopia tool suite is the graphical visualization feature named
Vizigator (visual navigator). Since section 2.3.1 is dedicated to this component, there won’t be a

detailed description of it here. However, as a very brief and short introduction, the Vizigator is used to

11

show graphical visualizations of topic maps and is subdivided in two components, the VizDesktop and
the Vizlet.

2.2.3. TMA4L

The TMAL tool is somewhat similar to Ontopia, in a sense that it also uses the topic maps technology
to manage ontologies. However, Ontopia is web-based and TM4L is more of a “standalone” or “offline”
product. This tool provides support in conceptual structure design and maintenance through its
functionality for editing, browsing, and combining such structures, coupled with support for relating
concepts, linking concepts to resources, merging ontologies, external searching for resources,
defining perspectives, etc.[21]. TM4L has a user-friendly interface, which guides the users to create
and update topic as well as their relations and resources [21]. This tool is divided into two constituents,
the editor and the viewer.

The TMA4L editor is what allows the user to create, edit and manage ontologies using topic maps.
About formats, TM4L saves the topic maps in the XTM format by default, however TM4L comes
equipped with a XTM to RDF converter granting compatibility with RDF applications, such as Protégé,
for example. Since this is as topic maps based tool, the main objects it manipulates are topics
(representing domain ontology concepts), relationships between them, resources, and contexts
(represented by themes) [21]. Regarding the user interface, TM4L uses a tab navigation system, as
seen in Figure 2.7 similar to the one used in Protégé, from which the user can access the topic map,

the topics, relationships, themes and the graphical visualization of the topic map.

Figure 2.7 - Snapshot of TM4L user interface

Regarding the TM4L viewer, it will be described in greater detail in section 2.3.4. However as a very
brief description, the TM4L viewer displays the topic map in graph like format where the topics and
instances (in different colours) are nodes of the graph and the different relations are lines (also in

different colours) connecting them.

12

2.2.4. Ontology Management Tools Concluding Remarks

In conclusion of this section, Table 2.1 is presented in which a comparison of the main features of the
described ontology management tools is conducted. Namely, the characteristics being compared are
the supported file formats for import and export and if the management tool provides means for a
graphic visualization of ontologies.

Table 2.1 - Comparison between Ontology management tools

Ontology

Management Export Format Graphic Visualization
Tool
. Yes.
RDF/XML,OWL/XML in all
versions. In versions 3.4.x, In versions 3.4.x through
Protégé RDF, OWL CLIPS, N-TRIPLE, N3, plugins like Jambalaya.

TURTLE. In versions 4.x, .

KRSS2, OBO 1.2, Latex. On versions 4.x through

plugins like OntoGraf

RDF, XTM, XTM 1.0, XTM 2.0, XTM Yes, through the Vizigator

Ontopia CTM, 2.1, RDF/XML, CXTM, tool

TM/XML LTM and TM/XML

XTM , RDF

(though to

TMAL work RDF))((-;hlcl tEDRFD(IEhégﬁ\%ZrEZE Yes, through the TM4L
must be Viewer
tool)
converted to
XTM)

As seen in this table, they all seem to be very complete, since they all provide support for various file
types and graphical visualization methods. However, Protégé is more adequate for beginning ontology
development since it has a more user-friendly interface and has a smoother learning curve.
Nonetheless, the choice between which tools to use should come down to the needs of each user. If
topic map technology is used, then Ontopia and TM4L are best suited, with Ontopia being more
complete, specifically regarding the supported file formats. On the other hand, if OWL or RDF files are

used to store the ontology then Protégeé is the best choice.

2.3. Ontology Visualization

Ontology visualization refers to the graphical visualization of ontologies. These representations can be
accomplished by means of directed or nested graphs, topic maps or other techniques. However this
isn’t an easy operation to accomplish, because ontologies are more than just a hierarchy of concepts
[22]. They are the sum of various relations and attributes between classes and entities, and in turn,
these can have a wide number of instances, so it can be difficult to represent ontologies effectively. It
is worthy of note that the examples used to take the snapshots for the figures were taken from the
FInES wiki [23], upon extraction of its contents to an RDF file. The examples will highlight the cloud
interoperability wiki category (class) and all of its pages (instances).

In the following subsections some examples of ontology visualization tools are described in detail.

13

2.3.1. Ontopia Vizigator

The Vizigator (visual navigator) is an ontology visualization tool from the Ontopia tool suite that

displays ontologies in form of topic maps, as illustrated in Figure 2.8

It shows graphical visualizations of the structure of a topic map for seeing larger patterns in complex
data, or simply as a visually attractive and user-friendly alternative way of displaying the topic map
[24].

It was also said in the Ontopia dedicated section that the Vizigator tool has two main components, the
VizDesktop and the Vizlet. The first component provides a graphical interface where the user can load
a topic map or ontology to display, in a variety of formats including RDF, XTM, Compact Topic Maps
(CTM) and LTM, and configure the visualization through a set of operations like filtering and scoping.
These options enable the user to configure which associations, classes or instances to show, or what
colours and shapes represent the various components of the ontology. In short the user can fine tune
the display to ensure the best results. The second component refers to a Java applet for displaying
visualizations on the web which is called the Vizlet [24] .

Setting up the visualization requires no programming, the user only has to create a configuration in
VizDesktop and deploy the applet together with the necessary web service interface on the server side
[24].

File View Filtering Topics Filtering Associations Styling Options Name Scoping Association Scoping Help

Enter search expression ‘l Search
1l I I] D

Trust Model to F
Intercloud Dire.

Ir]

B
Digital ecosyst
A% -
Cloud computing. . Cornpliant Cloud...

Market-Oriented 3

Gloud GComputing “\ /

— How to Enhance J

Y\ B
Blueprint for .
Security and CI 'S \

4]
/ Gloud Gomputing
Applying Softwa
=

;]
CloudInteroper. © Lnwcuu d comp

B
2]
Automatic servi | T

)
Internet-connec.

: £ EISE Glossary
Enterprise hash

\\ (-]

RFID interopera

Service CD-DESI...E
B
Device interape....Service Level A
Objects Interop..”

[o]

KT | T [v

Figure 2.8 - Ontopia Vizigator snapshot

2.3.2. Jambalaya

Jambalaya is a plugin created for Protégé that uses Shrimp (Simple Hierarchical Multi-Perspective) to

visualize the user created ontologies.

14

The Shrimp visualization technique uses a nested graph view to present information that is
hierarchically structured. It introduces the concept of nested interchangeable views to allow a user to

explore multiple perspectives of information at different levels of abstraction [25].

In Jambalaya, there are many types of views available. The user has choices that range from the
nested graph to the sink tree views. Furthermore the user is able to choose the layout of those views,
such as radial or grid layouts. The classes and instances are represented as nodes in the graph.
However they are represented differently according to view type chosen, as shown in Figure 2.9. In
the nested view, the classes (or instances) are represented within the class they belong to, that is they
are nested inside their superclass node. As for the sink tree view, the classes and instances are still
represented as nodes, though the relations are represented by directed arcs connecting them. Apart
from this visualization features, Jambalaya also allows the user to filter contents of the visualization, to
search for a specific class, instance or relation or zoom in or out for a more detailed or more generic
view. These features result in an environment where the user can interact directly with the information
space enhancing their understanding of the information structures, thus promoting further exploration
[25].

@ Applying_Software_Engineering_Principles._for Desigring Cloud2:Home
#uii:Securiy_and_Cloud Computing-3A [u_tLrC\wd Identity_Management_Infrastructure
hitp:/193.192.38.77 fines/mw/index. php/Special UR_R_e_snbleﬂGerc_:._;zjqd .m‘n@}ng i bill Jardization_and the Next G tion_Network_(NGN|
.Mkﬁyl.}s_t,mﬁdd-m 'Eljﬁéﬁqe_ Securty2hd._Interoperabilty of Cloud Envronment
Wik How | 'tn-_-Elih-auDLOaud-Mch@lures to_Enable_Cross-20Federation
— QWWﬁia@Computmg
fintercloud. D\rectnry and. Exchan@ Pratocel_Detail Using XMPP_and_RDF

wiki:Category-3AClowd |

P /. Bt S .W\kl C[Dudmlemperah\hty
/V/ QwﬂuC\wd Cnmu g'\ Issues_and Challenges
wiki:Category-3AObjects_Interoperability
ol Thing~ 1 ki Calegory-3AEcbsstems_Interoperabilty
i — - vt CategonBhEISE_Glossary
mchCategnry “4HPrbot 2Dol-2Dconcept

‘Categn,ry 3RS {nkys-20Empirical Dala
N wk\ﬁategnrﬁmase Studies
%ﬁabgﬁw 3ighoepts 28 Postions
QMBEEEQQNA@WS Interoperabiity
\mk Qahgn@AExpemmenls
i Ctegl Sancars
WKiDaldgdhy 3AToos
i Cater et

wii:Category-3ACase_Sludies. wii Calagory- Wik Cal E i Wik Calegory-3ACloud_interoperabillty
= a0 O =
= 0 o =3
L [R =
wiki Gategory-3ANethods = =
ki-Category-3ASuveys-2DEmpirical Data M Cats
R R L e g Pwid Cateqory-3AFISB_Glossary wili-Categary-3AConcepls_-28_Positions
wiki:Category-3ASenvices Interoperabity
wiki Category-3ACbjects e —
@i CatopryToos B viki Category-3AProal-2Dof-2Dconcep wikiCalegory-3AExperiments

Figure 2.9 - Jambalaya snapshots (a) Sink Tree view; (b) Nested Graph view

15

2.3.3. OntoGraf

The OntoGraf is an ontology visualization tool available as a plugin for Protégé versions 4.x. It gives
support for interactively navigating the relationships of OWL ontologies and it also supports various
layouts for automatically organizing the structure of the ontology [26]. Much like the other visualization
tools described, OntoGraf displays all information regarding a class (subclasses, instances, etc.) and it
also represents the various relationships which are represented by directed arcs and differentiates

them through different colours.

It is a very similar tool to Jambalaya since it provides similar views, however it doesn’t feature the
nested graph view (figure 2.9 (b)). On the other hand it is able to better present complex information
than Jambalaya as one can see by comparing Figure 2.9 (a) and Figure 2.10 that represent exactly
the same scenario gathered from the FINES wiki [23]. Jambalaya depicts a confusing scenario, where
the labels of the classes and instances are all overlapping. On the contrary OntoGraf is able to keep
things very neat, clearly representing all the classes and instances with the labels being completely

readable and all the relationships also clearly visible.

%] =] T] e o~
T Y oase studes 4] [m] %] £]a[a] el 4] /s[4 CEIEEIEE

‘Cloud Interoperability’
'‘Concepts & Positions'
Container

ConversionFactar = ys-Empiri @5
'EISB Glossary' = Methods — gtar i
rom . ® Tvoe

'Ecosystems Interoperability’ Proof-of-concep
Experiments t

~ @ Methods e
- @'Objects Interoperability’ -

~@Proof-of-concept
~@'Services Interoperability'
-~ Standards

-~ @ Subject
~@'Surveys-Empirical Data'

- @Tools * & Cloud
» Type Computing' —

Wikinage “ & Cloud
Interoperahilt. .

'@ TiustModsl to
Enhape=rt=

ConversionFacto
r

‘Case Studies’

'Concepts &

] # ‘Compliant Cloud
Computing (C3):

% " |*# Cloud computing
N T i and emerging IT.

'Q ‘Security and
Cloud Computing.

i

& ‘Market-Oriented
Cloud Computing.

*# Howt s
Cloud Architect.

Figure 2.10 - OntoGraf snapshot

2.3.4. TMAL Viewer

The TMA4L Viewer displays the topic maps using a graph, where the topics and instances are
represented as nodes of the graph (with different colours) and the relations are represented as lines
connecting the nodes also with different colours (depending on the type of relation). It is worthy of note
that the relations and nodes are labelled so that the user can easily see what they are and their
relation. Moreover this tool also has a hierarchical tree view where the user can easily observe the
instances and relations of a topic in a more structured manner. Apart from these features the TM4L
Viewer also provides a topic maps index where the user can choose between listing topic types,

relationships, subject topics, relationship types, resource types, member types and themes (contexts).

16

By choosing a member of a list, the TM4L Viewer automatically displays the graph and the tree of the

selected object, as illustrated in Figure 2.11.

Figure 2.11 - Snapshot of the TM4L Viewer

2.3.5. DebateGraph

DebateGraph [27] is a web-based collaborative idea visualization tool based on mind maps. This
visualization tool displays topics or ideas that relate to a selected topic. It enables several users to
contribute to a topic by adding their own ideas and contributions that can be represented in different
colours depending on the user point of view. For example, the green colour is used when the user has
a positive argument about a certain topic, or a red colour when the argument is against a certain point
of view. It also enables the user to create subtopics that can represent instances, or subclasses of a
certain class (topic). A major advantage of this tool is the possibility of easily sharing the map with
others via web pages through the addition of specific HTML code provided by the DebateGraph GUI.
Another advantage of this tool is that it provides excellent readability of the concepts, even when
dealing with very large and complex maps, i.e. the topics are clearly visible and their labels aren’t
stacked upon each other and can easily be read. However, a big disadvantage of this tool is the fact
that it isn’t possible to open or exporting map files, which means that the user either creates a new
map from scratch or edits an existing one. An example gathered from the FINES wiki is presented in
Figure 2.12.

17

FINES WIKI pfap Home

Dats Interopersbility
Software Interoperability
Ecosystems Interoperability
Knowledge Interopersbility
Services Interoperability

=
Process Interoperability |— -/
p— i

FINES WIKI * Cultural Interoperability

e A
=

Cloud Interoperability

Electronic Identity Interoperability

Social Networks Interoperability

Rules Interoperability
Objects Interoparability

Figure 2.12 - Snapshot of the debateGraph visualization tool

2.3.6. TheBrain

This tool is based on the mind map technology and can be used as a mean for ontology visualization.
It uses a graphical layout of topics connected by lines that radiate out from a central topic [28].
However it is a very dynamic tool since any topic can be the central one as the user shifts contexts or
changes the focused topic. Up to this point, the Brain tool seems very similar to the other ontology
visualization tools already presented. However this tool has some features that the others do not. One
of these features is the possibility of attaching files or URL’s to each topic allowing the user to be
redirected to those sources thus providing complementary information about the topic. Another
important feature is the possibility of uploading and sharing the created mind map to a website using
simple HTML code, thus allowing other users to navigate online through the map. Figure 2.13
represents the same example gathered from the FINES wiki that was used in the previous ontology
visualization tools. As can be seen, this tool centres the focused topic and arranges the other topics

neatly in the side so that they can easily be selected if the user so desires.

Category-3ACase_Studies
Category-3AConcepts_-26_Positions
Category-3AEcosystems_Interoperability
FINES Wiki [Category-3AEISB_Glossary
Category-3AExperiments
Category-3AMethods
%Category‘:aAC'OUd_'ntemperabi"ty Category-3AObjects_Interoperability
Category-3AProof-2Dof-2Dconcept
Category-3AServices_Interoperability
Category-3AStandards
Category-3ASurveys-2DEmpirical_Data
Category-3ATools
Container
ConversionFactor
Subject

Figure 2.13 - Snapshot of theBrain visualization tool

18

2.3.7. XMind

XMind is an open source tool that contributes to building a cutting-edge brainstorming/mind-mapping
facility, focused on both usability and extendibility [29]. The structure in XMind contains a root in the
center, with main branches radiating from it, similarly to “theBrain” tool. Its features contemplate
several mind map templates, the ability to import and export mind maps in a variety of file formats and
it can also be shared on the web or embedded in a webpage [30]. This tool can be of great use in
terms of ontology visualization because the information can be arranged as to maintain good
readability and more importantly it can clearly represent the class hierarchy, as well as the properties
that relate the several classes. However a major downside to this tool is that it doesn’t work with
ontology files such as, OWL or RDF, thus the classes and properties have to be built manually, which

for complex ontologies, can be very error-prone and extenuating.

Figure 2.14 shows an example gathered from the FINES wiki, and as can be observed, it contains a
root topic, and its branches represent classes, while the blue dotted lines represent the relations
between them. This example can attest to the capability of this tool to represent the relations and class

hierarchy of an ontology, although this is mainly a mind mapping tool.

+ Cloud Interoperability ‘

‘ FInES Wiki ‘

‘ Objects Interoperability | - . ‘ Ecosystems Interoperability ‘

Figure 2.14 - Snapshot of the XMind visualization tool

2.3.8. Ontology Visualization Tools Concluding Remarks

To conclude this section Table 2.2 is presented, where the studied ontology visualization tools are
compared regarding their supported file formats, possibility of embedding the visualization online,
support for multiple users and elements disposition and readability.

Table 2.2 - Comparison between ontology visualization tools

Ontolo Supported File q q Multiple Users -
| VisualizatiognyTooI F?:FZ)rmats Ol Fibes iy Slﬁ)pport izl Ty
Yes. Through Java
Ontopia Vizigator XTM;:]:J'.\I_AMII‘L'\\AAI’_RDF applet_+ web service Yes Medium
interface
Jambalaya OWL 1.0, RDF No N.A. Bad
OntoGraf OWL, RDF No N.A. Medium
TMAL Viewer XTM and LTM No N.A. Medium
DebateGraph N.A. Yes Yes Good
XML, DOCX, MMAP,
theBrain XMMAP, OPML, MM, Yes Yes Good
OWL and TXT
XMind Nilen bl ootz Yes Yes Good
and MM

At first glance all of the presented visualization tools seem similar since all of them represent the

concepts similarly to a topic map, with the focus on one topic and linking related topics through lines or

19

arcs. However when their specifications are more thoroughly analysed, differences between them
begin to emerge, as shown in the table. Beside these differences, one cannot clearly state that a tool
is better than the other. Still, depending on the technology used to develop the ontologies or their end
use, some tools can be more suited than others. For example, if topic map type files are used then
perhaps it is best to use Ontopia’s Vizigator or the TM4L Viewer. On the other hand if the ontologies
are developed using the OWL or RDF file formats then the Jambalaya and OntoGraf tools are perhaps
more suited for a better visualization. Furthermore if the end use for the visualization is an online
application then DebateGraph or theBrain or even XMind are more suited as they offer a more simple
solution for online integration. The multiple users feature relates to the capability of the tool to support
users editing or viewing the ontology at the same time. Unfortunately this feature could not be tested
for the Jambalaya, OntoGraf and TM4L viewer tools, hence the “Not Applicable” (N.A.) value Lastly
there’s the readability attribute, which is evaluated according to three levels, “bad”, “medium”, and
‘good”. The lowest value is “bad” and means that the elements aren’t clearly shown or the labels
aren’t read easily, signifying that the concepts are piled on top of each other creating a lot of confusion
and not allowing a good overview of the structure of the ontology. The “medium” value means that the
concepts are still presented somewhat confusingly, however it is possible to have a better overview of
the ontologies structure. The highest value for this attribute is “good” and it means that the elements
are neatly shown, all the labels are easily readable and the structure of the ontology is well
represented. It is also worthy of note that the readability attribute refers to large or complex ontologies,

since for simple or small ontologies, all of the tools perform satisfactorily.

2.4. Ontology Reasoners

Reasoners are key components for working with OWL ontologies. In fact, querying an ontology should
be done using reasoners. The reason for this is that knowledge in an ontology might not be explicit
and a reasoned is required to deduce implicit knowledge so that the correct query results are obtained
[31]. These tools work based on description logic, where logical consequences are inferred, using an
inference engine, based on a predefined set of rules and are often based on a hypertableau algorithm
[32]. Reasoners are often used paired with ontology editing tools, like the ones previously presented,
with the objective of computing the class hierarchy and alert users to inconsistencies within the
ontology [33].

In this subsection four of the most known description logic reasoners will be presented, HemiT [34],
Pellet [35], FaCT++ [36] and RacerPro [37].

2.4.1. HermiT

HermiT is an open source ontology reasoner that given an OWL file, can determine whether or not an
ontology is consistent, identify subsumption relationships between classes, among other functions

[34]. This reasoner has essentially three modes of operation. It can be used as Protégé plugin, from

20

the command line or in java applications [39].
e HermiT as Protégé plugin

In this mode of operation, HermiT can be accessed directly from the Protégé GUI from a drop down
menu on the menu bar. When the reasoner is run the consistency of the ontology is assessed. If the
ontology is inconsistent, a pop up message appears to alert the user to that fact, as shown in Figure
2.15. On the other hand, if the ontology is consistent, the results can be seen by choosing to view the

inferred components from the Protégé GUI as illustrated in Figure 4.4.

& Ontology1335435283 (http: v jes.com/O 5435283 ow) - [D: Tese\Or i FIRES\v 3. 1\FInESY3_Lowl] ™ — S e
Fie Edt View |Reasoner Tools Refactor Window Help ‘
&0 Stertreasoner Gnt-R t ~ ®m
I
Active Ontology [| [terts a new reasoner and intisiizes a cache of reasoning resultsi | "o ey
Inciuding the hierarchy and the of
TR oo of s [T
FaCT++
| ® HermiT136 I
Nore Help for inconsistent ontclogies (]
&) | our ontology is inconsistent which means that the OWWL reasoner will no longer be able to
¥ | rovide any usetul information about the ontclogy
ou have several options at this point

Click the Explain button to try the Protege explanation facity

® 1f you think you know what the problem is, click Cancelto fix the ontoiogy yourself

® Some reasoners come with command ine tools that wil provide complete explanations

for inconsistent ortologies
Ontology imports | OntoGraf Import View | Ontology Prafixes | General o
‘ DEEE
Explain Cancel

Figure 2.15 - HermiT reasoner Protégé plugin output - inconsistent ontology

e Using HermiT from the command line

When HermiT is used from the command line, different common reasoning tasks can be configured for
the reasoner to perform. In the example featured in Figure 2.16 HermiT was used to classify an
ontology, outputting the class hierarchy. The command to invoke HermiT from a shell is “java —jar

HermiT .jar” followed by the arguments that serve to tell which operation the reasoner is to perform.

BN Administrador: C:\Windows\system32\cmd.exe g=To7 x

lsons > <http:/ wwu.co—ode.orgsontologiesspizzas2B885-85/16-/pizza.owliiNanedPizza> >N

BubClass0f{ {http:/Awuwu.co—ode.orgsontologies/pizza 2005 85 16/piz=za.owlitHapolet
ana> <h 2w .co—ode .orgsontologies/pizza 28858516 /piz=za.ow

SubGlas <http:/7 v _co—ode.orgsontolo s/pizza-20085-85-16 /piz=a.owlliParmens
e> <http:-s- wuw.co—ode.orgsontologies/pizza 208085-05-16/pizza.owliiNanedPizza> >
SubClass0f{ <{http:-/Awwu.co—ode.orgsontologies/pizza 20085 /B5-16/piz=za.owliiHotGree
nPepperTopping?> <http:/~uwww.co—ode.orgsontologies/pizzas2085/85/16-/pizza.owliSpil
cyTopping> >

BubClass0f{ {http:/wuw.co—ode.orgs/ontologies/p a-2805 /85,16 /pizza.owliiTobasco
PepperSauce> <{http://www.co—ode.orgsontologies/ za 208585 16/pizza. owliSpicyT
opping> 2

BubClass0f{ <http: 7w ._.co—ode.orgsontologiesspizza 20085 05716 pizza.owlitHotSpic
edBeef Topping> <http:/swuw.co—ode.org/ontologies pizza 200585 /16/pizza.owlipic
yIopping> >

SubClass0f ¢ <http:rs wuw.co—ode.orgsontologiessp as2885-85-16/piz=za.
loPepperTopping? <http:/ uww.co—ode.orgs/ontologies/piz=za/20085785./16/

cyTopping> >

SubGlass0f{ <http: wuw.co—ode.orgsontologiesspizza 28858516 /pizza.owliiCajunsyp|
ichogp%ng) <http:/7vum_co—ode.orgsontologies/pizzar 200585716 /pizza.owlitSpicyTo
pping

D:=“Faculdade“Tese“Progs“Reasoners“hermit?> java —jar Hermil.jar —-c http:/ wuw.co—|
ode .orgsontologies pizza~2085 /B85 -/16-pizza.owl &

Figure 2.16 - HermiT reasoner example using the command line

21

e Using HermiT in java applications

This reasoner can be used in java applications through the OWL Reasoner interface that is available
in the OWL Application Programming Interface (API). It can be used to integrate HermiT with user
developed applications or tools. In the example shown in Figure 2.17, a simple demo application was
created where the consistency of an ontology is tested. If the ontology is consistent the program

returns the Boolean value “true”, else if it isn’t consistent the program returns the Boolean value

false”.
P ||& HermitDemo.java ®
8 5 <
T AR SFEG P G0 5| &
e org.sem b.owlapi.model tology:
] import org.semanticweb.owlapi.model.OWLOntologyManager:
>
| 1e
2| 19
£ 20 L
& 21 public class HermitDemo {
L
23 public static void main(String[] args) t Exception {
& 24
5| 25 OWLOntologyManager m = OWLManager.creat ntologyManager() :
§ 26
8|27 OWLOntology © = m.loadOntologyFromOntologyDocument (IRI.create(4 5]
(s
29 Reasoner hermit new Reasoner (o)
30
31 System.out.println(hermit.isConsistent()):
2| - }
33
34
Output - hermitDemo (run) # Threads
P3
Figure 2.17 - HermiT reasoner java application integration example

Pellet is an OWL description logic reasoner that features standard reasoning services, such as,
consistency checking, concept satisfiability, classification and realization [40]. As it happens with the
HermiT reasoner, Pellet also has multiple interfaces from which users can access its reasoning
capabilities, for instance, a command line interface, an APl and as a Protégé plugin. The command
line interface is more suited for simple reasoning tasks, while the API is better for standalone

applications and the Protégé plugin is useful when the ontology is being developed using that editor.
An example of consistency checking of an ontology using this reasoner is shown in Figure 4.3.

The procedure to using this reasoner as a Protégé plugin is the same as the one described for
HermiT. An example of consistency checking with this interface is shown in Figure 2.18, where the

consistency of an ontology is tested with the result being that it is inconsistent.

22

2§ Ontology 335435283 (o crtcogies ol Ontology 33543528 Gl - IR s s Ol e R s e === ==

Fie Ed View \Rm Tools Refactor Window Help
<l [@d miOntology 13354352 =0 A
[Active Ontology |1 i e s In Properties | Indvidusls | OWLViz | DL Guery | OntoGrat |
Contgre.
e FaCTes
Hermil 1.36
[o poa
Pedet (incremental)
None
Reasoner Error =]
InconsistentOntologyException: Cannot do reasoning with inconsistent ontologies!
Reason for inconsistency: Individual hitp: /Awww owl-ontologies com/Ontology1335435283.0wi#C has more than one value for the p: Ortologyt
1
Figure 2.18 - Pellet reasoner Protégé plugin output - inconsistent ontology
2.4.3. FaCT++

FaCT++ is also an open source OWL description logic reasoner that uses FaCT algorithms, but with a
different internal architecture [36]. This reasoner can be used as standalone reasoner, as back-end
reasoner for an OWL API based application [38] or as a plugin for the Protégé ontology editor.
FaCT++ is implemented using C++ in order to create a more efficient tool, and to maximise portability
[36]. As happens with the previously presented reasoners, FaCT++ is also capable of verifying the

consistency of OWL ontologies and classifying the ontology to compute the class hierarchy.

The example featured in Figure 2.19, illustrates the output of the execution of the FaCT++ reasoner,

as a Protégé plugin, on an inconsistent ontology.

& Ontology1335435283 mMMmMWBSRWWMWWMVZJWEWSW
Fle Edt View |Ressoner Tools Refactor Window Help
<> @é 0
|
— : 1
(“Active Ontology [N— Properties | Individusls | OWLViz | DLQuery | OntoGraf |
Configure.]
|o Factee
HermiT 136
Pellet
Pelet (incremental)
Nk Help for inconsistent ontologies |

0 Your ontology is inconsistent which means that the OWL reasoner will no longer be able to
provide any useful information about the ontology.

You have several options at this point

® Click the Explain button to try the Protege explanation facilty.
® If you think you know what the problem is, click Cancel to fix the ontology yourself
® Some reasoners come with tools that will provide complete

for inconsistent ontologies.

Ontology imports | OntoGrat Import View | Ontology Prefixes | General class axioms |

[] [owen

Figure 2.19 - FaCT++ reasoner Protégé plugin output - inconsistent ontology

2.4.4. RacerPro

The Renamed ABox and Concept Expression Reasoner (RacerPro) is a description logic reasoner for
OWL or RDF ontologies [37]. It can be used as a plugin for Protégé, via an http/XML DIG protocol or it

23

can be used on a standalone application via a Java or LISP API. Its main functionalities include [41]:

e Check the consistency of an OWL ontology and a set of data descriptions.

e Find implicit subclass relationships induced by the declaration in the ontology.

e Find synonyms for resources (either classes or instance names).

e Incremental query answering for information retrieval tasks (retrieve the next n results of a
qguery). In addition, RacerPro supports the adaptive use of computational resource: Answers
which require few computational resources are delivered first, and user applications can

decide whether computing all answers is worth the effort.

To have a better understanding of its features, Figure 2.20 is presented, which illustrates the
technologies that this reasoner integrates and supports.

~(0\'“- P\F’p"(?atio'7

Figure 2.20 - RacerPro reasoner supported features [41]

2.4.5. Ontology Reasoners Concluding Remarks

As a conclusion to this subsection Table 2.3 is presented where some features of the presented
reasoners are put side by side for a better general view. It isn’t the objective of this work to make an
exhaustive comparison of these reasoners, but it is suffice to say that these tools are quite similar to

each other varying only in their architectures, implementations and speed of execution of the

reasoning tasks.

Table 2.3 - Ontology Reasoners Comparison

Ontology Standalone
Ontology . Ontology S
Reasoner User Interface Consstgncy Classification gppllcatlpns
Checking integration
g Command line,
HermiT Protégé plugin,API Yes Yes Yes
Command line,
Pellet Protégé plugin, API Yes Yes Yes
FaCT++ SRS, Yes Yes N.A.
Protégé plugin
RacerPro Protégé plugin, API Yes N.A. Yes

As seen in the table, regarding the user interface, all of the presented reasoners can be used as a
plugin for the Protégé ontology editor. This a great benefit because the consistency of the ontology
can be checked as its being developed. The command line feature is also useful because it allows a

direct consistency checking of the ontology without having the need of additional programs, however

24

RacerPro doesn’t implement this feature. An API is particularly useful when integrating reasoning
features to user developed applications. Out of the studied reasoners, only FaCT++ doesn’t implement
this feature. Regarding the consistency checking of ontologies, all of the reasoners are capable of
doing so, since it's their main objective. Referring to the classification of an ontologies taxonomy, only
RacerPro doesn’t have this capacity. Finally, the integration of reasoning features with standalone

applications isn’t accomplished by FaCT++ since it doesn’t provide an API.

In spite of the chosen reasoner it can be concluded that these tools are indeed very important upon
developing ontologies. They can ensure that the conducted work remains solid and error free during
its evolution regarding its consistency.

25

3. SEMANTIC CHECKING FRAMEWORK

In this chapter, the semantic checking framework proposed by the author is presented along with an
extensive description of its purpose and guidelines. In addition, to provide a context as to why and
how this framework was developed, a background study on the problematic of systems interoperability
and consistency checking is also presented. This study is important because it introduces key
concepts to the problematic addressed in this work such as, consistency checking and semantic

checking.

3.1. Interoperability

According to the IEEE standards glossary [42] interoperability is the ability of a system or a product to
work with other systems or products without special effort on the part of the customer. Still, the popular
perception is that interoperability is synonymous with connectivity. However, interoperability is much
more than just connectivity. It is also a function of operational concepts and scenarios, policies,
processes and procedures [43]. Nonetheless, there are other definitions of interoperability such as the
one in [44], which regards interoperability as the ability of a set of communicating entities to exchange
specified state data and operate on that state data according to specified, agreed-upon, operational
semantics. Interoperability can also be seen in an El point of view being defined as the ability of
interaction between enterprises. The enterprise interoperability is achieved if the interaction can, at
least, take place at the three levels: data, application and business process [45]. Despite these
different definitions, the one adopted in this work is the one defined in [44] as it is deemed by the

author as the most suitable to the topic of this dissertation.

Nowadays, as information systems in enterprises and organizations keep evolving and become more
complex, the need for interoperable operation, automated data interchange and coordinated behaviour
of large scale infrastructures becomes highly critical [46]. Regarding enterprise systems as layered
systems, to achieve meaningful interoperability between enterprises, interoperability must be achieved

on all layers [47], as seen in Figure 3.1.

Enterprise A Enterprise B
Business ‘ - + Business
7 %
Knowledge, = r¢------ * Knowledge
Apphcatloni 3 > ."-k[:)pI|t:,f::t|c>r':i]
Data - » Data

EE Communication EZ

Figure 3.1 - Enterprise Interoperability [47]

27

Yet, interoperability isn't only a technical issue. The rise of other challenges have led to the
categorization of interoperability into several fields, such as, data, organizational, semantic, syntactic,
etc. Data interoperability denotes the agreed format in which data is exchanged between collaborating
enterprises. Organizational interoperability deals with the ability of enterprises to collaborate and
exchange information despite having different internal structures and processes. Semantic
interoperability offers cooperating enterprises the ability to bridge semantic conflicts arising from
differences in implicit meanings, perspectives and assumptions by creating a compatible environment
based on agreed concepts between the entities [48]. Syntactic interoperability allows multiple software
components to cooperate regardless of their different implementation languages, interfaces or

execution platforms [48].

There are several ways to achieve interoperability, either by implementing standards [42] or, in the
case of ontologies, by performing operations to integrate them or by resorting to a methodology, such
as MENTOR (Methodology for Enterprise Reference Ontology Development), to build a reference
ontology to serve as a bridge between the source ontologies. However, it is needed to take into
account that the execution of any operation can result, in some cases, in loss of information.
Therefore, after conducting operations to integrate or to make two or more systems interoperable, it is
needed to check the consistency of the output, independently of which type of interoperability

considered.

3.2. MENTOR Methodology

MENTOR is a methodology that helps an organization to build and adapt a domain reference ontology
[49]. MENTOR provides a methodology that allows ontology building from scratch, ontology

reengineering, cooperative ontology building and ontology merging methods.

This methodology is comprised of two phases, each with three steps, as seen in Figure 3.2. The first
phase (Lexicon Settlement Phase) represents the domain knowledge acquisition and is divided in the

following steps:

e Terminology Gathering — In this step all the relevant terms or concepts in a specific domain

are gathered, with the all the participants giving their inputs [49]. The terms gathered in this
step should reference the contributors so that they can provide their definitions during the next
step;

e Glossary Building — In this step, each contribute provides their annotations of the previously

established terms. Then the terms enter a cycle where they are reviewed in order to reach a
reference definition. This cycle has two possible outputs. If there isn’t an agreement then the
participants produce a semantic mismatches record for future mappings. On the other hand if
everyone agrees on the definitions then the glossary is produced and the process is advanced
to the next step;

e Thesaurus Building — This step is constituted by a cycle where the knowledge engineers

define a taxonomic structure from the glossary terms [49]. Then the other terms are classified

28

into semantic proper paths in the existing taxonomic structure down to the thesaurus leafs
[49]. Equally to the previous step, the process only advances if there is an agreement between
the participants. If an agreement isn’t reached then the cycles starts all over again. On the
contrary, if there is an agreement then the thesaurus is produced and process advances to the
next phase. The defined thesaurus will enhance the ontology harmonization process in the

next phase [49].

The second phase (Reference Ontology Building Phase) is where the reference ontology is built and
the semantic mappings between the organizational ontologies and the reference one are established

[49]. This phase is composed by the following steps:

e Ontologies Gathering — This step comprehends the collection of ontologies or other types of

knowledge representation techniques within the specified domain;

e Ontologies Harmonization — This step is supported by two cycles. First there is a discussion

about the structure of the reference ontology where the previously defined thesaurus is taken
into account. Once again, if an agreement is reached by all, then the cycle is repeated. If a
consensus is reached then the taxonomy of the reference ontology is defined. From there the
step advances to the second cycle where the contents of the gathered ontologies are
harmonized using the semantic mismatches previously recorded. However new mismatches
may be found and these need to be recorded as well. When the participants reach an
agreement the reference ontology is finalized and the process can advance to the final step;

e Ontologies Mapping — This step is executed whenever there are semantic mismatches to

record [49]. These semantic mismatches are used to produce mapping tables that describe
the ontological relationships between the reference ontology and each one of the source
ontologies [49].

29

0. Domain
defined

Fe 'i: Outputs
] g 1.1 Demainrelated i ‘ 4 ouputs i
1 : | ! ul i
3. terms collecton : im 41 Collect the | |
= i 3 H Oniologies or other | i
\ i g g type of knowledge | '
pTTTTTTmmm ¥ Y L1t representation i !
1 ! | i
! 2.1 Annotations H i pE-EEE !
! attribution 1o the |] i
! terms : ! |
: 1 ! i rh= :
| S S |
! I . | |
- - s 01 -Semantic |, 1 |
P8 2.2 Terms revision -pll Mismatchee 73 i _ :
- Pl e i1 8 !
| = 1 i B i
g - HHE |
: g ! | B !
¥ -=#| 02-Giossary | E : § :
i il AN 5.3 Harmonize the ! !
] i 1 1 1
'] [N |
) it i
| ' [N i
: 3.1 Taxonomic : i i i
! ~* siructure cefinition 1 H i i
i | 1 :
| i 1
2 ! R q '
5 y , i | ;
E a 32 Terms | H i i !
Py classification in the ! THE" | |
L& defined structurs : | AE &1 Ontologies ooe
- i Lia—-g-5-» Mapping == Mapping |
- . S £ S 1 E= establishment i1 Tables |!
| o |} T !
E Thesaurus !- """"""""""""""""""""""
1
H

> Lexicon Settlement Phase > > Reference Oniology Bulding Phase >

Figure 3.2 - MENTOR Methodology [49]

Some work has already been conducted by Gaspar in [50] in order to enrich MENTOR with qualitative
information collective methods and developed a functioning prototype, illustrated in Figure 3.3 that

implements some of the described steps.

Bolt_Suppliers Terms Revisions Panel
Finished Revision? O

Terin Manager

MENTOR - o

O Bolt Headed fasteners having ezternal threads that meet an exacting, uniform bolt thread
specification (such as 1, MT, TN, TNE, and TNT) such that they can accept ano

tapered nut

Username I:l Password | | [Submit]
@) Tolerance Permissible lirits of vaniation that a measure can fall within; determmed by the
Nesw Tser? inspection phase after manufacture of the component
O Pitch The axial distance between a point on a thread flank and the equivalent point on the
immediately adjacent and corresponding flank
O s Dimension across flats in a hezagonal head
MENTOR login page Terms revision (Glossary Building step)

Figure 3.3 - MENTOR prototype [50]

30

3.2.1. Mediator Ontology

As previously referred, one of the steps in this methodology comprises the establishment of mappings
to record the possible existing semantic mismatches. Since this is not an easy task, MENTOR uses a
Mediator Ontology (MO) as a reference for mediating the mapping establishment and its subsequent
‘mapping records’ reasoning [50]. This allows communities to build systems with reasoning capabilities
able to understand each other’s representation format, without having to change their data and
communication functions [49]. Apart from the feature of enabling seamless communication between
different systems, the MO is also able to represent ontology semantic operations such as, the
semantic mismatches found in the Glossary building step, the semantic transformations identified in
the harmonization process, the ontologies mapping and other ontology operations (e.g. versioning)
[49]. To be able to represent these ontology operations, the MO is uses a five-tuple mapping
expression proposed by Agostinho et al. in [51]. According to the tuple philosophy, all the information
about the mappings should be stored in a dedicated KB so that it becomes computer processable and
so that readjustments are easier to manage. In this case the KB is the MO which is defined in the

OWL format with the structure represented in Figure 3.4.

Object Molphlurl)om-ln
-name ; String -hasMorphisminDomain |.domainPath Slmg
-naturallanguage : String } -
-url : String [0..1) -associatedObject 0.* -relating] -related.

-version : double

-sRelatedTo

-appiediorphism
ot

0 Morphism
elatesTo e oment 1 | InformationModel | -th'ngvm
.isRoot - Boolean isinitialVersion - Boolean -description : String [0..1] HisAssociateWith _Code
0. -annotation : String ~owner : String String 0. o
VNSP'HWYYYDE Boolean > ,’d’e date -ATLEx| p«esmn String
- I “hoslements [1.© _-belongsTo |-anguageVersion o | = isExecutableBy
-ofType
<<enumeration>>
ElementType
|class ‘ —oYType; &
. <<gnumeration>>
instance <<enumeration>>
property | MorphismType - -MatchClass | MatehMismach |
concept I | LA
S mapping coverage
merging equal
9] disjoint
. s (i —x
InstantiableDataMapping c““"‘";"”"“ {
=1 ‘we’" double 1
-KMType : String = “InstantiableData’ KMType Stmg[= ‘C]onceptud‘

StructuralSemanticsMapping | -MatchClass (0.1
KMType : String = "Semantics” <<enumeration>> >
m———T = :on;emu:uﬂcmnmacn ﬁludwmznﬂhmach
ssGener
moreGeneral granulery
language stbChssAnnbue
o schemainstance
encodng
-MatchCiass [content
1 ;bs\ractm
structuring

Figure 3.4 - Mediator Ontology Structure [52]

The structure of the MO, presented in the previous figure is described as follows: the MO has two
main classes: “Object” and “Morphism”. The “Object” represents any “InformationModel” (IM) which is
the model/ontology itself and “ModelElements” (also belonging to the IM) that can either be classes,
properties or instances. The “Morphism” associates a pair of “Objects” (related and relating), and

classifies their relationship with a “MorphismType”, “KnowledgeMappingType” (if the morphism is a
mapping), and “Match/Mismatch” class. The “Morphism” is also prepared to store transformation

oriented “ExecutableCode” that will be written in the ATLAS Transformation Language and can be

31

used by several organizations to automatically transform and exchange data with their business

partners [51].

With the mappings stored in the mediator, all information regarding them can be accessed by local
systems of business partners that wish to communicate. The translation from one message format to
another is the responsibility of the mediator, therefore assuring seamless communication between
different systems. Figure 3.5 illustrates the general vision of the flow of the system. At the beginning,
all the required mappings, using the tuples, are established and stored in the MO. Then, when one of
the business partners wants to communicate with another, it simply sends its message to mediator

who is then in charge of transforming its format and forwarding it to the destination.

fj:, L] : Mappmz(chentA} : gfgg f:

<Mapp|ngTupIe>
\ H

Execution —_— .
= e TR

_— -
@ Message in Enterprise A Enterprise A

A”Format System Ontology
Message in

E Client =\ —_—
' ClientSystem rormat | = | ‘' | g
Reference : E Format “Wessage i > a2 < g%z

Ontology “B"” Format

Mediator

Enterprise BE Enterprise B
System | Ontology

; ‘ <Mapping Tuple> |
§ o 4 _ , ! i
_____@:’ 2 < Mapping [Client, B]] §i’§§z é_.

Figure 3.5 - Mapping design and execution flow in data exchange

3.3. Consistency Checking

Consistency is defined in the Oxford dictionary [54] as the quality of achieving a level of performance
which does not vary greatly in quality. This can be interpreted as something that has an accordance
with previously stated facts or characteristics. That being said, the consistency of an ontology can be
defined as incorporating new information in accordance to the one that was previously represented in
the ontology. Therefore, consistency checking is one of the most important phases in ontology
maintenance. As ontologies evolve, i.e., modifications in the application domain, incorporating
additional functionality according to changes in the users’ needs, organizing information in a better
way, etc. [55] it is important to have a mechanism that can validate that the information within the

ontology remains consistent. Much work has been done in this field, such as, frameworks that provide

32

strategies for detecting and repairing inconsistencies [56] and how to deal with the evolution of
ontologies in order to maintain their consistency [55]. Other work that has been conducted in this area
features tools to help prevent or detect and fix inconsistencies. Such tools are mostly descriptive logic
reasoning tools that infer logical consequences, through an inference engine, based on a set of rules
or facts. Examples of consistency checking tools are ConsVISor [57], FaCT++ [36] or HermiT [34].

Consistency checking can be divided into two categories that are referred here as interoperability

checking and semantic checking. The latter being the main focus of this dissertation.

3.3.1. Interoperability Checking

As information systems in companies and enterprises evolve and grow larger and more complex, a
previous interoperable state with other systems, within the same or between different companies, can
become compromised. Therefore there is a necessity to continuously verify if the systems are still
functioning properly with one another, i.e., if they remain interoperable. This is often done by using
tests designed specifically to achieve this goal. From a general perspective, two types of testing are
relevant in the entrepreneurial context, conformance and interoperability testing [58]. Conformance
testing involves the verification of whether an implementation is in conformity with the underlying
specifications. This kind of testing is the first step toward interoperability with other conformant
systems as prescribed by the specification [58]. An example of conformance testing is shown in Figure

3.6.
Ve Document
: l'-' Receive RESpoNse
:’.i\‘_ }Fm/‘
¥

Test Participant

Figure 3.6 - Conformance Testing Example [58]

On the other hand, interoperability testing consists in verifying if the involved systems are actually able
to intercommunicate based on some exchange scenarios, as seen in Figure 3.7. However, this form of
testing is generally more difficult to automate than the previous one and requires more human
involvement and coordination [58]. Furthermore, human involvement is highly costly and leaves room
for human error due to the repetitive nature of the tests and the high number of interfaces involved in

the testing of complex systems [59].

33

T _---_1 Send DOCUMBNT -~ __"*\‘
&

G \ i\‘-\
& B4 |
Test Parbcipant 1 L _;;% .
=8 Tast a8 Pz-n
Il
or
I
vermy

Figure 3.7 - Interoperability Testing Example [58]

Also according to [58], software implementations can be certified and correct information exchange
between systems if both types of testing are used, meaning that conformance testing isn’t a substitute
for interoperability and vice-versa. Furthermore, the quality of the interoperability specifications

impacts the difficulty in the application of the tests.

3.3.2. Semantic Checking

Semantic checking refers to the validation of ontological concepts regarding their semantics. This is a
very important step if one is to have interoperability between several ontologies. According to Li et al.
in [46], there are three types of semantic checking, single, composite and multiple. In the first case the
semantic checking is done within a single ontology and it is only deemed consistent if it satisfies a set
of concepts and axioms and if all used entities is defined. The second type refers to the semantic
checking of ontologies (or subsets of ontologies) within ontologies. Also, in this case an ontology is
deemed consistent if the ontology itself and all its included ontologies are consistent. Finally the third
type is the main focus of this work and depicts a scenario where several separate ontologies interact
with each other. In this case of multiple semantic checking the goal is to validate if all knowledge
represented in a given ontology can be represented in another (within the same domain), by means of
a reference ontology, for example. Conceptual representations of each of these types can be seen in

Figure 3.8.

Ontology A Ontology B Ontology N

EntitiesN

Entities A EntitiesB

Classes A Classes B Classes N

Ontology Ontology A

Concepts A
Axioms A
Entities A

Proprieties A Proprieties B Proprieties N

> Concepts <

Semantic Checking

\, Axioms Ontology B

Semaﬁtic

Concepts B Semantic
/ Axioms B Checki . Checki
> Entities < Entities B o mg\ Entities AB,....N /e e

ﬂu!xaéaj_a!_xaéwas
Suppay) oniuewas

Classes A,B,...,N
ProprietiesA,B,...,N

Reference Ontology

@) (b) ()

Figure 3.8 - (a) Single Semantic Checking; (b) Composite Semantic Checking; (c) Multiple Semantic Checking

34

In this work, semantic checking will be accomplished by using a reasoning process aided by rules
defined in Semantic Web Rule Language (SWRL).

Haase et al. in [55] further propose three types of consistency regarding the semantics of a single
ontology. It refers to structural, logical and user-defined consistency. Structural consistency considers
constraints that are defined for the ontology model with respect to the constructs that are allowed to
form the elements of the ontology [55], which means that an ontology is only deemed structurally
consistent if no elements of the ontology violate its defined structure. For example, consider an
ontology that represents a simple bank domain, where there are employees, clients and accounts and
that there is a constraint that doesn’t allow an employee to be both employee and client. If the bank
manager tries to open an account for himself, thus becoming both client and employee, then the
ontology would become structurally inconsistent. Logical consistency focuses on whether the ontology
does not contain any contradicting information, i.e. it is semantically correct [55]. For an ontology to be
logically consistent it must satisfy each of its axioms. Considering the previous example, if an axiom
stating that there is a client named John and assuming that an employee named John already exists,
then the addition of this axiom would lead to a logically inconsistent ontology because it was
previously defined that employees cannot be both clients and employees. Finally, user-defined
consistency takes into account specific user requirements that are external to the ontology itself. Even
if an ontology is structurally and logically consistent it may still violate user requirements [55]. Two
types of user-defined consistency were identified, generic and domain dependent. The former refers to
consistency conditions applicable across domains. The latter refers to consistency conditions that take

into account the semantics of a particular formalism of the domain [55].

3.3.3. Semantic Adaptability Using a Mapping Tuple

Either being used in the form of traditional databases, architectural models, or domain ontologies,
models can be described on multiple formats, languages, expressiveness levels, and for different
purposes. A model can be characterized according to four dimensions: Metamodel - the modelling
primitives of the language for modelling (e.g. ER, OWL, XSD) are represented by a set of labels
defined in the metamodel; Structure - corresponding to the topology associated to the model schema;
Terminology - the labels of the model elements that don‘t refer to modelling primitives; Semantics -
given a “Universe of Discourse”, the interpretations that can be associated with the model [51]. In this
case the information models are ontologies where mappings are established to relate each element of
the source ontology to a corresponding element in the target one. However, a formalism able to
represent these mappings is needed because it could facilitate the integration and use of various
knowledge sources to the semantics adaptability of the information systems [53]. To ensure semantic
interoperability and minimize inconsistencies, Agostinho et al. in [51] proposed a tuple based mapping
scheme. They used a 5-tuple mapping expression to formalize morphisms between model elements
enriched with semantic information that enables fast human readability. This mapping tuple expression
contains 5 fields, ID, MElems, KMType, MatchClass and Exp. The ID is the unique identifier of the

mapping tuple. The MElems field indicates the pair of mapped elements. KMType is the knowledge

35

mapping type which can be Structural Semantic, Instantiable Data or Conceptual as stated in previous
section and illustrated in Figure 3.9. The MatchClass field stands for the semantic mismatch
classification which depends on the knowledge mapping type. Finally the Exp field is the mapping

expression that translates and further specifies the previous tuple components.

Knowledge
Mapping

Conceptual

Instantiable
Data

Figure 3.9 - Knowledge Mapping Types [51]

Although the mappings are made to minimize inconsistencies, imperfect mappings can lead to such
inconsistencies called semantic mismatches. These mismatches have been identified in [51] as lossy,
when losses of information are recorded and as lossless when no information loss is recorded. A

summary of the identified semantic mismatches can be seen in Table 3.1

Table 3.1 - Semantic Mismatches [52]

Mismatch Description Examples
Namin Different labels for same concept — Naming p——
& of structure -name : String S > |_personilame : String

Same information decomposed

Granularity | in or composed by Person Granularity 31::::; y
(sub)attributes il § S Isstme : Srings
. . i Person _hasldentificati
structuring | DTerent design structures for Str”d””"g/»’lm"“’e"‘““’“"’"
g the same information yracsl R vieition
Person -name : String
5’) -persontames @ String
Q
§ Baraon SubClass-Attribute
= | subClass An attribute, with a predefined LSS — >
Attribute Value set representEd by a «enumerations
subclass hierarchy (or vice-versa) | .comam s
Carlos
Schema An attribute value in one model
- [
can be a part of the other’s erson_| Schema-Instance | Jose
Instance . weight it | GommmmommmemmmD ot - int
model schema (or vice-versa) I S -
T Different formats of data or units Person fncoding, [Person
of measure -weight - Kg : int “weight - Lbs : int

36

Mismatch Description Examples
Different content denoted by the
Content Person | Content | Persen
same Concept -mame : String |~ 7 -address ;| String
Person
. . Coverage Person
Coverage |Absence of information welght | Gmmnmmmeoeee S g
-name : String
>
[.. R
0 Person Precision Person |
o Porrprry NN
— -weeight : int - —
Precision Accuracy of information)
'WeightCategory
heavy
light
medium
Abstraction | Level of specialisation car | Abstraction Ford

These mismatches are often observed when mapping operations between ontologies are executed.
Therefore, this can be associated with the MENTOR methodology approach to the semantic alignment
of the involved ontologies. Thus the MO, which uses these tuple based mappings to represent

ontology semantic operations and records any mismatches that occur during the operations.

3.4. Semantic Checking Framework

There are three approaches to the issue of semantic checking, the one suggested by Li et al. in [46],

the one proposed by Haase et al. in [55], and the one by Agostinho et al. in [51].

Starting with the approach described in [46], it features a more general method to the semantic
checking issue, since the ontologies are considered as a whole. This means that only the architectural
aspects of the ontology based system are considered, i.e., if the system is composed of a single
ontology, or if there are multiple separate ontologies interacting each other. This has led the author to

adopt this method to serve as basis for the scenarios identified in the framework.

Referring to the approaches to the semantic checking issue by Haase et al. and Agostinho et al. these
seem quite similar at first sight. However in [55] the approach is more of a structural point of view,
encompassing the semantics and data instances of the ontologies. On the other hand, the method
described in [51] is more specific, since besides considering the structural aspects of ontologies,
namely its semantics and data instances, it also considers the conceptual aspect of ontologies. This
conceptual aspect is about the meanings of the used terms, i.e., if the concepts are well characterized.
Due to the specificity in this approach, the author chose to use the knowledge mapping types seen in
Figure 3.9, applied to the scenarios presented by Li et al. in [46], illustrated in Figure 3.8, to build the

framework.

To help maintain semantic interoperability in the enrolled systems, the author proposes a semantic
checking framework (Table 3.2), which shows the main characteristics that an ontology based

information system should comply to maintain semantic consistency.

37

Table 3.2 - Semantic Checking Framework

. Composite Multiple
Single Ontology Ontologies Ontologies
3 5.
b Automatic reasoning; Ad hoc
Structural Automatic . g synchronization;
reasoning Automatic Automatic
synchronization reasoning
4 6.
2. . Human action plus
] Human action plus automatic
Conceptual Human actlo_n plus automatic reasoning; i
automatic . reasoning;
reasoning Autom_atlc_ Ad hoc
synchronization i
synchronization

More specifically, this framework intends to evaluate, in each case, if the information models are
consistent according to their structural and its conceptual definition. Technically, each of these cases
can be verified by resorting to description logic reasoners by using inference engines. These
reasoners derive logical consequences from a set of pre-defined rules which aim to represent the
semantic mappings between the elements of the information models. However in some cases, further

mechanisms are needed to verify the semantic consistency of the system.

This framework is composed of 6 items. Framework items 1 and 2 refer to scenarios where only a
single ontology is involved. For item 1 (single ontology — structural consistency checking), a simple
reasoning process suffices to verify the structural consistency of the ontology. This process was
named automatic because it is only needed to execute a typical reasoner on the ontology and it
automatically infers that the ontology is structurally consistent. This can be done because descriptive
logic reasoning tools infer specific logical consequences, through an inference engine, based on a set
of rules or facts. Regarding item 2 of the framework, besides an automatic reasoning process similar
to the previous situation, human action is also needed. This is because the user needs to create
elements of the concepts to test if after running the reasoner such concepts are well positioned in the

ontology, thus verifying their conceptual definitions.

Items 3 and 4 of the framework denote cases where composite ontologies are involved. On item 3, in
addition to an automatic reasoning process, an automatic synchronization mechanism is also required.
Since composite ontologies are composed of two or more ontologies merged together, a
synchronization mechanism is needed to validate its structural consistency. This is because any
structural change that occurs in one of the ontologies needs to be reflected in all the other KREs. On
the other hand, item 4 additionally requires human interaction to the automatic reasoning and
synchronization processes. This is because the user needs to create elements of the concepts
represented in the ontology to verify its conceptual definitions, achieving the same objective
mentioned for item 2. Moreover in this case, the concepts need to be well represented in the merged

ontology to avoid repetitions and that is why the synchronization and reasoning are both required.

Finally, items 5 and 6 of the framework are applicable in scenarios where multiple but separate

38

ontologies are involved. In item 5, besides having an automatic reasoning process, it also requires an
ad hoc synchronization process in order to align the knowledge represented in the various KREs. This
means that any changes that occur in a given element of the system must be reflected in the others in
order to maintain consistency. Since these types of systems can be very complex, knowing the
synchronization method facilitates the semantic checking process. This is because the users need to
know what the system is prepared for, i.e., its capabilities in order to execute the modifications on one
side to be properly reflected in the other. If the user doesn’t have a grasp of the system is prepared for
then it could lead to misalignment of the represented knowledge which could lead back to a non-
interoperable state. In entry 6 it is needed human intervention, for the same reasons that figure in the
other conceptual checking cases. The user needs to create elements that intend to represent certain
concepts, and these elements must be well represented in the other ontologies that compose the
system. To accomplish this, a reasoner is executed as in the other conceptual checking items. Here

the synchronization process is also used for aligning the knowledge represented in the various KREs.

3.5. Concluding Remarks

In this chapter the proposed semantic checking framework was presented. Its goal is to provide
effective means to check if the data exchanged between enterprises information systems is facilitated
and its understanding maintained. To that effect, generic guidelines are proposed for each case so

that they can be applied to any system to assure semantic consistency of the exchanged data.

In conclusion of this chapter, this framework can be a valuable advantage in terms of verifying and

maintaining the semantic consistency if the involved systems.

39

4. APPLICATION SCENARIOS

In this section two scenarios are presented that intend to demonstrate the applicability of the proposed
framework. Firstly, a mechanical scenario is introduced, where a relation between a bolt supplier and
manufacturer is illustrated. The second scenario refers to the ENSEMBLE project and intends to

further demonstrate the applicability of some of the framework guidelines.

Table 4.1 indulges the cases that are being considered in these scenarios. This table has the same
structure of the framework. However, its cells contain the scenarios that were identified as being better
suited to a specific framework item. For items 1, 2 and 6 of the framework, the Mechanical Scenario
presented in section 4.1 was used to validate and demonstrate them. On the other hand, for items 3, 4
and 5 of the framework the ENSEMBLE project scenario, presented in section 4.2, was used to
validate and demonstrate these items. Furthermore, in chapter 5 a synchronization tool prototype is
described and in chapter 6, framework item 5 is thoroughly demonstrated through use case examples

of that same tool.

Table 4.1 — Framework applicability scenarios
Single Ontology Composite Ontologies Multiple Ontologies

Structural Semantic 1.Mechanical Scenario 3.ENSEMBLE Scenario 5.ENSEMBLE Scenario

Conceptual 2.Mechanical Scenario 4.ENSEMBLE Scenario 6.Mechanical Scenario

4.1. Mechanical Scenario

This scenario depicts a relation between a bolt retailer and manufacturer. Each enterprise has its own
ontology with its own representation of the domain. To be able to collaborate with one another it was
decided to follow the MENTOR methodology in order to build a reference ontology to serve as a
mediator to their interactions. Thus, this scenario main goal is to check the consistency of the
ontologies, after applying MENTOR, regarding their semantics.

Protégé 4.1 was chosen as the ontology management tool, instead of Ontopia or TM4L, through this
scenario due to its user friendly interface and the built-in reasoner plugins to conduct the semantic
checking. Regarding the reasoning process, the HermiT reasoner was chosen to verify the
consistency of the ontologies in scenarios 4.1.3 and 4.1.5. While the Pellet reasoner was chosen to
perform the semantic checking in scenario 4.1.1. Some rules were also defined, in the SWRL

language, to aid in the reasoning process. Figure 4.1 illustrates an overview of this scenatrio.

41

------- i Protégé [-----------------

M
§ E
Ontology A N -
(Retailer) T
- 0] Reference
R Ontology
Ontology B
(Manufacturer)

Figure 4.1 - MENTOR scenario overview

For this purpose it was used the MENTOR methodology, which comprehends a series of steps, one of
them being the glossary building phase, where the domain terms and definitions are gathered. In this
case, the definitions adopted by each of the implemented ontologies (retailer, manufacturer and
reference) are presented in Table 4.2, Table 4.3 and Table 4.4, respectively, and are based on the

ones by Sarraipa et al. in [49].

Table 4.2 - Retailer Ontology Terms and Definitions

Headed fasteners having external threads that
Bolt meet an exacting, uniform bolt thread specification Class
(such asM, MJ, UN, UNR and UNJ) such that they
can accept a no tapered nut.
. The diameter of an imaginary cylindrical surface
Nominal
Diameter tangent to t_he crests of an external and (or) to the Class
Retailer roots of an internal thread.
. The maximum value acceptable for the diameter
Maximum . ’
. obtained from a predefined allowed upper Class
Diameter " . h
deviation of the nominal diameter.
- The minimum value acceptable for the diameter
Minimum . .
Di obtained from a predefined allowed lower Class
iameter L . h
deviation of the nominal diameter

Note that during the harmonization phase the maximum and minimum diameter concepts were

obtained based on equations [i] and [ii] that use the upper and lower tolerance proprieties.

upper tolerance + nominal diameter = maximum diameter [i]

lower tolerance + nominal diameter = minimum diameter [ii]

Table 4.3 - Manufacturer Ontology Terms and Definitions

Term used for a threaded fastener, with a
Bolt head, designed to be used in conjunction with Class
a nut.

Diameter of an imaginary cylinder parallel with
Nominal the crests of the thread; in other words it is the
Diameter distance from crest to crest for an external
thread, or root to root for an internal thread.

Manufacturer Class

Allowable deviation from a hominal or
Tolerance specified dimension, determining maximum Class
and minimum material condition.

42

After gathering the terms and definitions from both entities, the reference ones were established as

seen in Table 4.4.

Table 4.4 - Reference Ontology Terms and Definitions

Bolt

Definition

Headed fasteners having external threads that
meet an exacting, uniform bolt thread
specification (e.g. M, MJ, UN, UNR, UNJ)
such that they can accept a no tapered nut.

Class

Nominal

Reference Diameter

In a hexagonal bolt’s head, is the dimension
of the nominal diameter tangent to the flats
(also expressed as the dimension across flats
which correspond to the size of wrench to
use). The diameter of an imaginary cylindrical
surface tangent to the crests of an external
and (or) to the roots of an internal thread.

Class

Upper
Tolerance

Maximum value of allowable deviation from a
nominal or specified dimension.

Class

Lower
Tolerance

Minimum value of allowable deviation from a
nominal or specified dimension.

Class

Note that the reference ontology distinguishes between “Upper and Lower Tolerances” while the

manufacturer ontology does not. Also it doesn’t define the “Maximum and Minimum Diameters” as in

the retailer ontology because these can easily be obtained from the “Nominal Diameter and Upper and

Lower Tolerances” as specified in the previous equations.

Upon obtaining the reference ontology the next step is to try and accomplish the previously

established goal for this scenario. This means that is needed to validate if the reference ontology

indeed represents the knowledge gathered from the enterprises and if this representation is able to do

so without any loss of information. The ontologies used to verify this scenario are represented in

Figure 4.2.

v

v

Thing v mstopObjectProperty
Bolt1 = > WhasMax_Diameter

Diameter - ®=hasMin_Diameter
Max_Diameter > ®®hasNom_Diameter
Min_Diameter

Nom_Diameter

v-@Thi

v
ng Vv m=topObjectProperty
Bolt2 ~——————> ®™hasNom_Diameter2
Nom_Diameter2 ~ mmhasTolerance2 v
Tolerance

Thing

v mtopObjectProperty

Bolt < ™ hasNom_Diameter

Nom_Diameter ®hasTelerance
Tolerance W hasLower_Tolerance

Lower_Tolerance ®mhasUpper_Tolerance

Upper_Tolerance

Retailer Ontology

Manufacturer Ontology

Reference Ontology

Figure 4.2 - Used Ontologies

As referred in Table 4.1, this scenario is used to validate some of the framework items, namely items

1, 2 and 6, and to that effect specific examples are presented for each case.

4.1.1. Single Structural Semantic Checking

This scenario intends to demonstrate the applicability of the proposed framework regarding its item 1.

As previously indicated, this case only requires an automatic reasoning process in order to verify the

43

structural consistency of a single ontology. To this effect, the retailer ontology, shown on the left part
of Figure 4.2, was used to validate this case. The ontology was then submitted to the reasoning
process, using the Pellet reasoner [35], and the structural consistency of the ontology was confirmed,
as shown in Figure 4.3. As stated previously, Pellet was the chosen reasoner, instead of the others
presented in section 2.4, to perform this task due to the simplicity of its use as a command line

interface and of its output.

Pellet is an OWL ontology reasoner.
For more information, see http://clarkparsia.com/pellet

C:\Users\Goncalo\Desktop\pellet—-2.3.8>pellet consistency D:\Faculdade\Tese\Work
testOnto\single.owl
Consistent: Yes

Figure 4.3 - Pellet reasoner output

4.1.2. Single Structural Semantic Checking Concluding Remarks

As indicated by the framework in item 1, the structural consistency of a single ontology was verified by
resorting to an automatic inference mechanism. In this case the chosen ontology was submitted to the
Pellet reasoner and its output was an assertion to whether the ontology was consistent or not, which,

in this case, its consistency was effectively verified.

4.1.3. Single Conceptual Checking at MENTOR Scenario

This situation refers to item 2 of the proposed framework. In this case, the chosen ontology was also
the one from the retailer enterprise. However, as stated earlier, the chosen reasoning tool was HermiT
[34] as a plugin in Protégé due to its effectiveness and simplicity. The basis for this example is the
creation of instances in the ‘Thing’ class, to ensure that the instances aren'’t initially associated with
any class. Then a reasoning process is started to verify if the instances are placed in their

corresponding classes, in order to validate its conceptual definition.

As seen in Figure 4.4 (left), instances (‘b1’, ‘maxD’, ‘minD’, ‘n’) were defined as being in the ‘Thing’
class. It is also shown the structural properties that comprise instance ‘b1’ and the expressions that
define the bolt concept. These proprieties indicate that a bolt instance must be comprised of a
minimum diameter, a nominal diameter and a maximum diameter. The class expressions define a
criterion that an instance must meet in order to belong in that class. It is based on these expressions
and proprieties that the reasoning process is able to infer the correct consequences. The creation of
the instances had to be done manually as it was suggested by the framework. Afterwards the

reasoning process was executed and the output is shown in the right part of Figure 4.4. As it can be

seen, the Bolt class is highlighted and it shows the ‘b1’ instance as an inferred member of that class,
thus validating the bolt concept for this ontology. Although the output only highlights the instance that
refers to the bolt class (‘b1’), the other instances (‘maxD’, ‘minD’ and ‘n’) were also inferred to their

proper classes thus validating the conceptual consistency of the ontology.

44

Proprieti
Classes Instances oprieties RES FArCRRIER SEE|IN crmoers st (inferred)

hasMin_Diameter minD

mmhasNom_Diameter n

Diameter
Max_Diameter
Min_Diameter
Nom Diameter

=mhasMax_Diameter maxD, \ &

v Diameter
Max_Diameter
Min_Diameter
Nom_Diameter

Class Expressions

hasmax_Diameter some Max_Diameter)
- and (hasMin_Diameter some Min_Diameter)
and (hasNom_Diameter some Nom_Diamete

Before Reasoning After Reasoning

Figure 4.4 - Reasoning Example (Retailer Ontology)

4.1.4. Single Conceptual Semantic Checking Concluding Remarks

Based on inference mechanisms, more specifically using the HermiT reasoner and some human
intervention, it is possible to assess the conceptual consistency of this ontology, as indicated in item 2
of the proposed framework. As seen in the example HermiT was able to successfully infer the created
instances to their corresponding classes. Therefore it is possible to conclude that this ontology is

conceptually consistent.

4.1.5. Multiple Conceptual Semantic Checking

This example features the case of conceptual validation of multiple ontologies, item 6 of the
framework, namely between the retailer and reference ontologies and between the manufacturer and
reference ontologies. To portray the relations between the retailer, manufacturer and reference, tuple-
based mappings were defined between their concepts. Table 4.5 and Table 4.6 show the mappings

between the retailer and reference, and between the manufacturer and reference, respectively.

As an example as to how this mappings are built, consider the bolt definitions adopted by the
manufacturer and reference entities. Firstly an ID is attributed to serve as a unique identifier to that
mapping. Then the two terms are compared, where ‘@’ is the manufacturer definition of the bolt
concept and ‘b’ the one defined by the reference. These two terms are then classified according to
their knowledge mapping type shown in Figure 3.9. In this case they have been identified as belonging
to the “Conceptual” knowledge type. Then the two definitions of the bolt concept are compared and
classified according to the semantic mismatches presented in Table 3.1. In this case, by resorting to
the bolt definitions presented in Table 4.3 and Table 4.4 it is easily verified that the reference definition
is more complete and as such, the MatchClass was defined as less general, because it's the
manufacturers term in relation to the reference term. Finally, the expression is defined according to the
MatchClass, using set theory symbols. In this case the manufacturers’ term is contained in the

reference one.

45

Table 4.5 — Retailer Reference Mappings

ID Retailerl_1 Retailer2_2 Retailer2.3_3 Retailer2.1_4 ‘ ‘ Retailer2.2_5
Retailer. Retailer.Diamet Retailer.Nom_D | Retailer.Max_Dia Retailer.Min_Dia
a
Mz Boltl er iameter meter meter
S =
(a,b) b Referenc Reference.Nom Reference.Nom Reference.Upper Reference.Lower
e.Bolt _Diameter _Diameter _Tolerance _Tolerance
KMTyp
Conceptual Conceptual Conceptual Conceptual Conceptual
e
Match
ol Equal More General Less General More General More General
ass
Exp b=a bca
Table 4.6 - Manufacturer - Reference Mappings
Manufacturerl Manufacturer Manufacturer2.3
ID Manufacturer2_2 Manufacturer3_2
1 1.3 3 3
Manufactur Manufacturer.No Manufacturer. Manufacturer.Tol Manufacturer.Tol
a
SIS er.Bolt2 m_Diameter2 Tolerance erance erance
S =
(a,b) b Reference. Reference.Nom_ Reference.Tol Reference.Uppe Reference.Lowe
Bolt Diameter erance r_Tolerance r_Tolerance
KMTy
Conceptual Conceptual Conceptual Conceptual Conceptual
pe
Match
cl Less General Less General Equal More General More General
ass
Exp bca

boa t boa

With such mappings defined, it is very important to verify if the reference ontology indeed represents

the knowledge gathered from the enterprises, and if any information model compliant with the

reference ontology knowledge, is able to exchange data between the participant enterprises, without

any loss of information independently of the direction that the data is transmitted to.

After obtaining the mappings, a reasoning approach to check if the concepts are well represented in

the ontologies and aligned to all the participants’ knowledge. In this case the process starts by pairing

one of the enterprise ontologies with the reference one in the same KB. Then instances were created

in the “Thing” class. These instances were created there to ensure that the reasoning process puts

them in their corresponding classes. The example shown in Figure 4.5 refers to the retailer and

reference ontologies.

46

v @thing Classes

“Bolt

©Bolt1

v-@0Diameter

@ Max_Diameter

@ Min_Diameter

@ Nom_Diameter
— WNom_Diameter |
¥-@Tolerance

® Lower_Tolerance

® Upper_Tolerance

Legend:

Retailer

Reference

Proprieties

hasUpper_Tolerance
®=hasNom_Diameter n_ref

Instances ®hasLower_Tolerance It

hasMin_Diameter minD

4 maxD mmhasNom_Diameter n

4 minD hasMax_Diameter may@
n

4 n_ret

¢ ut

——— Retailer
= Reference
= Equivalence

OBolt1
v @ Diameter
@ Max_Diameter
@ Min_Diameter
®Nom_Diameter
@ Nom_Diameter
v @ Tolerance
® Lower_Tolerance
® Upper_Tolerance

ol
o|®

¥ @Thing

¥ ®Diameter
® Max_Diameter
® Min_Diameter
@ Nom_Diameter
®Nom_Diameter
¥ @ Tolerance
@ Lower_Tolerance
® Upper_Tolerance

Before Reasoning

After Reasoning

As observed in Figure 4.5, two different types of ‘Bolt’ instances (i.e. “b” and “b1”) were created and
upon running the HermiT reasoner it was observed that both instances were indeed placed in the ‘Bolt’
class of the retailer and reference ontologies (i.e. “Bolt” and “Bolt1”). Therefore it can be concluded
that the ontologies remained consistent and a bolt represented in the retailer ontology is semantically

equivalent to a bolt represented in the reference ontology.

The next example is shown in Figure 4.6 denotes the manufacturer and reference ontologies. The
principle of this example is the same as in the one before, meaning that two different types of ‘Bolt’

instances (“b” and “b2”) were created within the ‘Thing’ class and then the reasoning process was

Figure 4.5 - Reasoning Example (Retailer and Reference Ontologies)

executed to verify if the instances were placed in their proper classes.

v @Thing Classes

Proprieties

hasUpper_Tolerance

Instances mshasNom_Diameter n_ref

© Bolt2

@ Nom Diameter2
@ Tolerance
® Lower_Tolerance

hasLower Tolerance |

hasNom_Diameter2
hasTolerance2 t

® Upper_Tolerance ¢
Tolerance2 ¢ ut
Legend:
Manufacturer
Reference

Legend:

—— Manufacturer
——— Reference

~—— Equivalence

®Nom_Diameter
@ Nom_Diameter2
v @ Tolerance
©® Lower_Tolerance
®Upper_Tolerance
® Tolerance2

Class | rchy: Bolt2 MESE I 12 ber s st (inferred)
I

e & | B
v ®Thing

O Bolt

©Nom_Diameter
@ Nom_Diameter2
v @ Tolerance
® Lower_Tolerance
® uUpper_Tolerance
® Tolerance2

Before Reasoning

After Reasoning

Figure 4.6 - Reasoning Example (Manufacturer and Reference Ontologies)

47

Contrarily to the previous example, in this case, it is possible to observe some loss of information
because although both instances (“b” and “b2”) are represented within the reference ontology, the
same cannot be said regarding the manufacturers’ ontology since only “b2” is represented. This is
because of the “Tolerance” definitions represented by each of the ontologies. While the reference
ontology distinguishes between “Upper and Lower Tolerances”, the manufacturers only define a single
tolerance, assuming an equal value for “Upper” and “Lower”. This means that if different values for the
“Upper and Lower Tolerances” are defined in the reference ontology then a conflict is created. Since
the manufacturer ontology does not have such distinction and therefore doesn’t know which value is
the correct one, leading to possible inconsistencies in the ontology. This loss of information is easily
reflected in the mappings defined in the direction from the reference to the manufacturer, that are the

same as the ones in Table 4.6 with the addition of the ones shown in Table 4.7.

Table 4.7 - Reference - Manufacturer Conceptual Mappings

ID Reference3.1_1 Manufacturer3.2_2
a | Reference.Tolerance.Lower_Tolerance ‘ Reference.Tolerance.Upper_Tolerance
MElems = (a,b)
Manufacturer.Tolerance ‘ Manufacturer.Tolerance
KMType Conceptual ‘ Conceptual
MatchClass Abstraction ‘ Abstraction

Exp b=a L b=a

It is also worthy of remark that to aid in the reasoning process some rules were defined in SWRL.
These rules serve the purpose of aiding the inference engine by providing it with additional facts and
logical consequences that are based on the mappings defined earlier. Table 4.8 and Table 4.9
illustrate the rules defined in the first example and second examples, respectively and their purpose.
Table 4.8 - SWRL rules defined in the retailer - reference example
Rule Purpose

Min_Diameter(?minD), Lower_Tolerance(?lt),
Nom_Diameter(?n), Thing(?b), hasMin_Diameter(?b,
?minD), hasNom_Diameter(?b, ?n) ->
hasLower_Tolerance(?b, ?It)

If a bolt instance is defined as having a minimum
diameter and a nominal diameter then it can be
concluded that it also has a lower tolerance.

Max_Diameter(?maxD), Nom_Diameter(?n),
Upper_Tolerance(?ut), Thing(?b),
hasMax_Diameter(?b, ?maxD), hasNom_Diameter(?b,
?n) -> hasUpper_Tolerance(?b, ?ut)

If a bolt instance is defined as having a maximum
diameter and a nominal diameter then it can be
concluded that it also has an upper tolerance.

Max_Diameter(?maxD), Nom_Diameter(?n),
Upper_Tolerance(?ut), Thing(?b),
hasNom_Diameter(?b, ?n), hasUpper_Tolerance(?b,
?ut) -> hasMax_Diameter(?b, ?maxD)

If a bolt instance is defined as having a nominal
diameter and an upper tolerance then it can be
concluded that it also has a maximum diameter.

Min_Diameter(?minD), Lower_Tolerance(?lt),
Nom_Diameter(?n), Thing(?b),
hasLower_Tolerance(?b, ?It), hasNom_Diameter(?b,
?n) -> hasMin_Diameter(?b, ?minD)

If a bolt instance is defined as having a nominal
diameter and a lower tolerance then it can be
concluded that it also has a minimum diameter.

The rules in the Table 4.8 explore the diameter and tolerance proprieties of the ontologies and proved
to be invaluable to validate the semantic consistency of the ontologies. It is quite simple to conceive

that bolts can have slight deviations regarding their diameters, so by defining a nominal diameter and

48

upper and lower tolerances it is easy to conclude that the bolt has maximum and minimum diameters.
The contrary is also true, if a nominal diameter for a bolt is defined as a certain value and the end

product records a slight deviation either by excess or default then it is easy to conclude that the bolt

has upper and lower tolerances.

Table 4.9 - SWRL rules defined in the manufacturer - reference example

Rule

Purpose

Tolerance2(?t2), Lower_Tolerance(?It), Thing(?b),
hasTolerance2(?b, ?t2) -> hasLower_Tolerance(?b,
?lt)

If a bolt instance is defined has having a tolerance
then it can be concluded that it also has a lower
tolerance.

Tolerance2(?t2), Upper_Tolerance(?ut), Thing(?b),
hasTolerance2(?b, ?t2) -> hasUpper_Tolerance(?b,
2ut)

If a bolt instance is defined has having a tolerance
then it can be concluded that it also has an upper
tolerance.

These rules in Table 4.9 exploit the tolerance definitions of the manufacturer and reference ontologies.
In this case it is assumed that if a bolt is defined has having a tolerance it can be concluded that it has
both the same upper and lower tolerances. However, unlike the previous example, the contrary is not
true, since the bolt can have different upper and lower tolerances it is not possible to conclude that it
has a single tolerance. As a consequence this can lead to inconsistencies as it was explained

beforehand.

4.1.5.1. Multiple Conceptual Semantic Checking Demonstration Example

To better illustrate this semantic checking case, a practical example where a client orders a bolt
product with particular specifications is described. As seen in Figure 4.7, the client specified a bolt with
a nominal diameter of ‘10’ and upper and lower tolerances of ‘0.2’ and ‘0.1’, respectively. A message
containing these specifications is then sent from the client system to the mediator in the reference
ontology format. The mediator then translates the message from the reference format, to both the
retailer and manufacturers before relaying it to them. Converting from the reference to the retailer
format is fairly straightforward. Based on the previously presented mappings in Table 4.5, the mediator
only has to sum the nominal diameter and the upper tolerance to obtain the maximum diameter,
subtract the lower tolerance to the nominal diameter to obtain the minimum diameter and the nominal
diameter is the same for both. However the case isn’t so simple when translating from the reference to
the manufacturer format. While the nominal diameter remains the same for both formats, the
manufacturer,doesn’t distinguish between upper and lower tolerances. Thus the mediator has to
assume one of its values, either upper or lower tolerance (it's up to the system developer to choose
which one), as the tolerance in the manufacturer format. If the values for upper and tolerances happen
to be equal, then there is no problem whatsoever, since it won’t have any adverse effect on the final
product. On the other hand, if the values are different, as depicted in the example, then there will be
loss information thus leading to inconsistencies, since the same bolt product is not equally

represented in all formats.

49

<message from= "client" format= "Reference">

<getProduct>
<bolt>

<hasNom Diameter> hasNom Diameter>

<value>1l0</value>
</hasNom Diameter>
<hasMax_Diameter>

<value>10.2</value>

olerance>0.2</hasUpper_Tolerance>
0.1</haslower Tolerance>
</hasTolera

</bolt> </hasMin Diameter>
</getFroduct> </bol -
</message> </getProducc>

</message>

/// e '“\
_—
Message in Retailer

“Retailer”
Format System

—
o
—
©
©
18-
= \
) =S
\ Message in -
Manufacturer Manufacturer
Syste

i
@ — Message in

| ! Ref Format
Client System

Format

<message from= "client" format= "Manufacturer">

<getProduct

<bolt>
<hasNom Diameter>
<value>10</value>
</hasNom Diameter>

</hasTolera
</bolt>
</getProduct>

</message>

Figure 4.7 - Multiple Conceptual Semantic Checking Example

4.1.6. Multiple Conceptual Semantic Checking Concluding Remarks

To sum up this scenario, Table 4.10 illustrates the information exchange between ontologies and

whether this exchange resulted in a loss of information.

Table 4.10 - Identification of conceptual losses in information
Ontologies Information Exchange

(From —To)

Information Loss

Retailer — Reference No
Reference — Retailer No
Manufacturer - Reference No
Reference - Manufacturer Yes

As seen in Table 4.10 there was loss of information only in one case, from the reference to the
manufacturer ontology. This means that the conceptual checking has failed in this case, since not all
the knowledge represented in the reference ontology can be reproduced in the manufacturer ontology.
As previously explained, this has to do with the tolerance definitions adopted by both entities. This loss
was recorded from the reference from the manufacturer, what was to be expected when the mappings
in this direction had a match class of Abstraction, which is a lossy semantic mismatch. On the other
hand, no loss of information was recorded in the opposite direction, i.e. from the manufacturer to the
reference. This is due to the fact that the tolerance concept of the manufacturer ontology is more

50

general than the upper and lower tolerance concepts of the reference ontology, thus the information
can be ‘split’ evenly between the reference concepts. For example if the tolerance is defined as being

0,5 centimetres then the reference assumes the same value for both the upper and lower tolerances.

Regarding the retailer and reference ontologies, no information losses were recorded in both

directions since the concepts defined in each one are quite similar to one another.

The previous conclusions can be reinforced further by analysing the practical example featuring an
interaction between a client and a bolt retailer and manufacturer. In the example it can be observed
that in fact there is loss of information between the reference (client) and the manufacturers’
messages, specifically in the tolerance values interpreted by each one. Contrarily, no information loss
was recorded from the client to the retailer. It is important to have semantic checking in this case,
because it needs to be ensured that the product delivered to the client is in fact what was ordered in
the first place. Therefore the data exchanged between the various entities must remain consistent to
comply to all of the clients specifications.

4.2. ENSEMBLE Scenario

The work described in this section refers to the ENSEMBLE project. Its goal is to gather and provide

knowledge in the El and neighbouring domains, such as papers and publications, authors, domain
experts, etc.

The application scenario that supports this work is depicted in Figure 4.8. Its aim is to provide a visual
understanding of the architecture of the system, that is, how the system is structured by representing
the most important components, how they are connected and what technologies were used to develop
them. Furthermore it also depicts that will be developed in the future, such as the harmonization of the
ontologies and its synchronization with the FINES wiki.

Ontology Management Tools
Deliverables
> O

- R- EISB
Ontopia Ontology
Wi editin
¢ mﬂ,{.;ﬂ?- - O
e -
t ¥
-
1 -
- EISB
| - Document
1 -
OU wm
1 l Boument
| Ontology
O » Copy / FINES Site Space
1 Synchronizat]
|
\ Fines Wiki p‘:ﬁ::b"p’;:fﬂ '
* — | [editing (we need a atthee

Wikipedia

—_—
Ontology better editer)
Visualisation

Figure 4.8 - ENSEMBLE scenario overview

51

As seen in Figure 4.8, the ontology management tool with which this work was developed is Ontopia,

and apart from developing the ontologies, Ontopia is also used to visualize them, using the Vizigator

tool. Regarding the R-RR (Reference — Research Roadmap) ontology and EISB ontology, they were

obtained by combining several smaller ontologies using a reference ontology building methodology

such as MENTOR. One of the goals of this application scenario consists in harmonizing these two

ontologies into a single reference ontology for the whole EI community (see section 4.2.1). The FINES

wiki functions as a source of knowledge and as a means of integrating all the knowledge gathered in

the aforementioned ontologies, so these components need to be tightly synchronized (refer to section

4.2.2) as to avoid inconsistencies in the information.

In sum:

Ontopia — Ontology management tool selected to develop the R-RR and R-EISB ontologies

and to visualize them;
RR/EISB Documents — Project deliverables;

R-EISB Ontology — The need to have an advanced EISB service that is able to provide
specific knowledge with several interrelationships led to the development of a KB ruled by a
reference ontology. Therefore the EISB Reference Ontology, shown in part in Figure 4.9, main
goal is to represent all the knowledge related to the EISB domain. Having this kind of
knowledge would facilitate the search of specific information, for instance papers or methods
of a determined EISB area or a specific set of tutorials related to a specific EISB topic, or even
a set of expert researchers [61]. Another aim of this ontology is to serve as a facilitator for
knowledge reasoning, enabling different views of the information either gathered from the wiki
or directly from an administrator. [61]. Furthermore the EISB reference ontology can prove to
be a valuable asset for the science base itself gathering meta-information relevant to both El
and the neighbouring domains [61].

OWL Classes Object Proprieties Datatype Proprieties
owl Thing [|
Bibliography [AreaOf « I Abstract
v @ Enterprise_interoperabilty I inverse_of_AreaOf I Citation
¥ ® Cloud_Interoperabity [inverse_of_Publication < F I Description_Defintion)

Cloud_Federation
Cloud_Orchestration
v Ecosystems_Interoperabiity
Virtual_Enterprise_Integration
¥ @ Services_Interoperabity

M FinesPage
mD

I Keywords
I Link

I LinkMendeley
I Name

[Publication
(M references
[seellso
I tag

Service_Deployment
Service_Mediation
v Glossary
Concept
Publications
Sciertific_Area
Scientific_SubArea

Figure 4.9 - EISB Reference Ontology

R-RR Ontology — Ontology containing the knowledge gathered by the research roadmap
team;

Ontology Visualization — Using Ontopia’s Vizigator tool (see Figure 2.8);

Fines Wiki — Source of knowledge more focused on the collaborative gathering of information

52

from domain experts. The wiki, depicted in Figure 4.10, is accessible through the FINES
cluster portal [23], serves as tool to maintain all the El state of the art research. In order to
avoid replication of efforts it will be synchronized automatically with the reference ontology
[61].

Nevigition Search Toofbex In uther langusges
Metgstion Sewch Toslbox o other langunges

Cloud Computing

Main Page

About Finespedia FInES Tack Farces.
el § e ter curre

() (b)
Figure 4.10 - (a) FInES wiki Main Page; (b) FINES wiki article example

Despite this scenario being presented in its entirety in Figure 4.8, the work conducted in relation to
this, focuses only in two of its aspects: 1) the harmonization (merging) process between the R-RR and
R-EISB ontologies; and the synchronization process between the harmonized ontologies and the
FINES wiki.

The first aspect, which is also described in subsection 4.2.1, regards to composite ontologies
characteristics of the proposed framework for semantic checking, i.e., items 3 and 4 of it. This is

because the result of merging ontologies is a KB constituted by composite ontologies.

The second aspect, which is also described in subsection 4.2.2, regards to the multiple structural
semantic checking, i.e., item 5 of the proposed framework, since the harmonized ontologies and the
wiki can be seen as separate KREs. Furthermore, in relation to this, chapter 5 presents a
synchronization process prototype that is then semantically demonstrated using real examples in

chapter 6.

4.2.1. Composite Ontologies Checking at ENSEMBLE Scenario

This scenario consists in harmonizing two ontologies namely, the EISB Reference Ontology and the El
Roadmap Ontology, in order to form a composite ontology. Therefore this scenario can be applied to
both framework items 3 and 4.

Harmonizing the EISB Reference Ontology with the El Roadmap Ontology

As seen in Figure 4.8, there is a step in which the harmonization of the El roadmap ontology with the
EISB reference ontology occurs. The goal of this harmonization is to have a single reference ontology
to serve the ENSEMBLE project.

The harmonization can be achieved using any of the operations described in section 2.1, and the

53

impact of using each one is analysed. If the mapping operation is used, the source ontologies (El
roadmap and EISB reference ontologies) wouldn’t suffer alterations. However, as the ontologies
evolve (contents are updated, added, removed, etc.), new mappings between them would have to be
made and consequently this would require constant supervision to ensure that there are no
inconsistencies. Using this approach would also make the synchronization with the EISB (FINES) wiki
extremely difficult because a three way synchronization would be required, i.e. between the EISB wiki
and each of the ontologies and between the ontologies themselves. The alignment operation could
alter the source ontologies in order to make them aligned and coherent with each other. However,
since these ontologies aim to be complementary of each other this process would be essentially equal
to the mapping operation, meaning that the previously described difficulties would remain. Finally, the
merging operation could be used to simply integrate the ontologies with each other, where the output
would be a single reference ontology. This process could be achieved using a methodology like
MENTOR or by simply integrating the contents of one of the ontologies into the other. This method
achieves the initial goal to have a single reference ontology. Furthermore, this process would make
the synchronization process less difficult due to the existence of only one ontology to synchronize with
the EISB wiki. However after the merging is complete the result should be thoroughly tested in order to
avoid inconsistencies and losses of information. These tests should focus mainly in the structure and
concepts of the resulting ontology. Therefore this scenario is a suitable candidate to validate
framework items 3 and 4.

However, in the point of view of this dissertation, this scenario was merely identified as belonging to
items 3 and 4 of the framework. Consequently, work in terms of validating or demonstrating this

scenario isn’'t conducted in this dissertation and is considered as a possibility for future work.

4.2.2. Multiple Structural Semantic Checking at ENSEMBLE Scenario

Up to this point, this work has focused mainly in the validation of the consistency between multiple
ontologies. However this scenario describes the validating of the semantic structure between the
harmonized ontology of the previous step, and the EISB wiki, therefore relating this scenario to item 5
of the framework. Since these two entities, on the surface, seem to be quite different it is important for
them to have a similar structure, as seen in Figure 4.11 and therefore the importance of the structural
semantic checking step. Moreover, these two entities need to be tightly synchronized in order for the

information to remain consistent.

54

References

Future G
pil/SO1

739X0:

2458 3
2011, from http

PR St Buyya, R. et al., 2009. Cloud and

8001957 @

P. & Grance, T., 2011, The NIST Definition of Cloud Computing. NIST Special Publication 800-145 (Draft). Retrieved February 8,
csrc.nist.gov/publications/drafts/800- 145/Draft-SP-800-145_cloud-definition.pdf B

ging IT Vision, hype, and reality for delivering computing as the Sth utility.
ration Computer Systems, 25(6), pp.599-616. Retrieved February 8, 2011, from http:/linkinghub.elsevier.com/retrieve

owl Thing

v O Enterprise_Interoperabiity
v @ Cloud_interoperabilty %
® Cloud_Federation
® Cloud_Orchestration
ve® Ecosys%ems_htevopevahiiy\

@ virtual_Enterprise_lntegration|
v @ Services_Interoperabiity

/

/

From the Taxonomy tree you can browse throught the
i SFite >

Base (EISB)

categories and sub-

bility Science Base
[+ d Interoperability (0)

[+] Cultural Interoperability (0)
+] Data Interoperability (0)

ems Interoperability (0)
@ Service_Deployment {+] Electronic Identity Interoperability (0)
i it [+] Knowledge Interoperability (0)
v| ® Glossary [+] Objects Interoperability (0)
® concept [+] Process Interoperability (0)
® Publicat Rules Interoperability (0)
o [rvices Interoperability (0)
© scientific_Area [+] Social Networks Interoperability (0)
i [+] bility (0)

\
Category:Cloud Interoperability
The main article of this category is Cloud Interoperability

Pages in category "Cloud Interoperability”

The following 42 pages are in this category, out of 42 total.

A
» A Framework of Sensor - Cloud Integration
Opportunities and Challenges
* ATaxonomy and Survey of Cloud Computing
Systems
» Application Level Interoperability between

C cont.
» [Cloud Interoperability
» Cloud and and
EISB Reference Material
» Compliant Cloud Computing (C3): Architecture
and Language Support for User-Driven

Clouds and Grids
» Applying Software Engineering Principles for
Designing Cloud@Home

Compliance Management in Clouds
» Considerations on the Interoperability of and
between Cloud Computing Standards

Figure 4.11 - EISB Reference Ontology and FInNES Wiki Structural Comparison

Synchronization with the EISB Wiki

Since the EISB reference ontology and the EISB wiki are constantly evolving, any changes that occur
on one side need to be reflected on the other. Therefore a method for synchronizing the EISB wiki and
EISB reference ontology must be developed. In this dissertation it was defined and implemented a
synchronization process based on the two possible solutions presented in Figure 4.12 that are
discussed afterwards. However, as suggested by the guidelines of framework item 5, the effort here
would be to understand the functionalities of the synchronization process, but not implement it.

EISB WIKI

Web Services

EISB Reference
Ontology

(@)

EISB WIKI

XML Files

XML/RDF Converter

EISB Reference
Ontology

(b)

Figure 4.12 - Ontology/Wiki Synchronization (a) Using Web Services; (b) Using XML/RDF Files

55

As seen in Figure 4.12, (a) features web services as a possible solution to the synchronization issue,
while (b) relies on XML/RDF files to solve the problem.

In solution (a) the idea is to have a web services layer that is able to connect both to the EISB wiki DB
and the EISB reference ontology. Upon connection the web service would then retrieve the desired
content through queries, either to the ontology or to the wiki DB. Then the retrieved content would
simply be transported from the source to the destination, thus maintaining the contents harmonized in
both ends.

In solution (b) the idea is to have files transfer from end to end. For instance, a system administrator
would export the desired content from the wiki onto an XML file and convert it to the RDF format, with
the help from a XML/RDF converter application. Then that converted file would be imported to the
ontology, therefore updating the ontology with new information. The opposite operation is also
possible, that is, exporting the desired content of the ontology to an RDF file and converting it to the
XML format so that it can be imported to the wiki. Operations such as this are often referred as bulk
load operations. A bulk load operation, in this case, would be an exportation of all the contents from
one end (wiki or ontology) and import them into the other. However this solution is, at most, semi-
automatic because it needs human intervention at the importing and exporting stages of the process.

Furthermore the mappings required to convert from XML to RDF and vice-versa can be very complex.

Maintenance Strateqy

For an efficient maintenance strategy to this project, one could look at both solutions presented in the
previous section and state that they somewhat complement each other. Since solution (a) is highly
dynamic, due to the features that web services provide, it is more suitable for scenarios when the
changes, either on the ontology or the wiki are small. On the other hand, solution (b) is a better fit for
bulk load operations. Concluding, one could apply both cases for a more efficient and complete
solution to the synchronization issue. Solution (a) would then be applied in cases of small incremental
changes and solution (b) in scenarios that would require large portions (or all) of data to be

synchronized to either end.

4.2.3. ENSEMBLE Scenario Concluding Remarks

In this subsection, a scenario was presented that suits three items of the proposed framework. The
harmonization process used to achieve a reference ontology suits items 3 and 4 of the framework,

while the synchronization with the FINES wiki encompasses item 5.

The study of the presented scenario served an important purpose, since difficulties associated with the
addressed items of the framework were identified and possible solutions were presented. Regarding
the semantic checking of composite ontologies possible methods to accomplish harmonization were
addressed along with their associated difficulties. Regarding the semantic checking of the structure of

multiple KREs, it was identified the need of having a synchronization process, therefore its inclusion

56

as a possible scenario for item 5 of the framework, and two possible solutions were presented and
discussed. Furthermore to facilitate the synchronization of the reference ontology with the FINES wiki,
it is extremely important to verify, as the system evolves, if their structure remains consistent to ensure

that the information represented on one side can be equally and accurately represented in the other.

57

5. PROOF-OF-CONCEPT IMPLEMENTATION

The objective here is to implement a proof-of-concept to validate the proposed framework, namely
item 5, and to that effect, the previously presented scenario of section 4.2.2 was chosen. The solution
presented here is related to the ad-hoc synchronization step of the fifth item of the proposed
framework. It was chosen to implement a synchronization process to show that it is possible to

effectively maintain consistent data between two different KREs.

This chapter is structured as follows; firstly the chosen technologies to implement the synchronization
process are presented, followed by the architecture and description of its components, which has the
objective of providing a general understanding of how the synchronization process is structured and
how it is implemented. Finally, two sequence diagrams will be presented and analysed that show the

flow of execution of the developed synchronization prototype.

5.1. Used Technologies

Before starting the development of the synchronization tool, a study of the required technologies was
made. The result of this study is presented in the next subsections of this document which shows the

chosen technologies for this project and their descriptions.

5.1.1. Java

The Java programming language is a general-purpose concurrent class-based object-oriented
programming language, specifically designed to have as few implementation dependencies as
possible [62]. This is a highly flexible language since it can run in any platform. This is possible
because Java software is compiled into specific bytecode that is run on the Java Virtual Machine

(JVM) instead of being compiled into platform-specific machine code.

The main reason the synchronization module was chosen to be developed in the java programming
language was due to the fact that Protégé provides the previously presented API that allows the
developer to manage an ontology programmatically. Java was also chosen due to its runtime

performance and the fact that it is an open source software.

5.1.2. MySQL

MySQL is a widely popular open source DB software [63]. It is a DB management system that uses
the SQL language (Structured Query Language) to perform operations on relational databases. This
technology can also be embedded into others, allows the developer to build DB applications in their
language of choice [64]. It can be embedded in the Java language via the JDBC (Java Database

Connectivity) driver.

59

5.1.3. Protégé / Protégé-OWL API

This technology was already extensively presented in section 2.2.1 of this document and therefore it
won't be re discussed here. However it is important to say that Protégé was chosen as the ontology
management tool, instead of the other tools studied in section 2.2, due to the fact that Protégé

provides a free API to manage ontologies programmatically.

The Protégé-OWL API is an open source Java library for the OWL language and RDF(s). It provides
methods and classes that allow the developer to create or edit OWL data models, such as ontologies.
It is possible to query and manipulate data within the model, for example, creating or deleting classes,
properties and instances [65]. This API can be used to develop components that are executed in the
Protégé user interface or it can be used to develop stand-alone applications, such as the prototype

that was developed during the course of this dissertation.

5.1.4. Changes and Annotations API

This API enables tracking changes, annotating ontology components or changes and access to that
information programmatically. The change tracking information annotation of ontology entities and

changes is stored as instances of the changes and annotation ontology (ChAO), called the ChAO

KB.[66]

5.2. Architecture

The architecture designed for the synchronization tool is an enhancement of the one previously
presented in Figure 4.12 however the principle remains the same. The web services layer was
dropped because the developed tool connects directly to the wiki DB via the JDBC driver and
connects directly to the ontology using the Protégé-OWL API via its URL. A general overview of the

synchronization tools architecture and the interaction between the different elements is shown in

EISB _F_hanges ChAO
! Ontology Ontology

g

5 \
o | S
~
&
£

Figure 5.1.

| Detect o
_‘ Changes
JDBC Synchronization
W] Module [~

Figure 5.1 - Synchronization tool architecture

This architecture is composed of 5 main components:
e The FInES Wiki where the knowledge of the EI community is gathered,;

e The FInNES Wiki DB that contains all the contents of the FINES wiki and means of detecting

60

any changes that may occur;
e The EISB Ontology that also contains the knowledge of the EI community;

e The Changes and Annotations Ontology (ChAOQ) that contains the records of all the changes

that took place in the EISB ontology;
e The Synchronization Module serves as a user interface to the whole synchronization process.

With this simple architecture users can easily synchronize wiki contents with the EISB ontology and
vice versa. The java application uses the wiki DB to detect any changes that have occurred in the wiki
since it was last run and then updates the ontology accordingly. On the reverse path, the java
application uses the ChAO ontology to detect any changes that have occurred in the EISB ontology

and then updates the wiki accordingly by placing the new contents directly into its DB.

5.2.1. Synchronization Module

The developed module is composed of 4 java classes. A class (‘GUl.java”) that implements the user
interface and performs the required initializations. Another developed class implements methods that
support the interaction between the synchronization tool and the wiki DB (“Database.java”). Finally
there are two more classes that serve the purpose of managing the actual synchronization between
the ontology and the wiki, and between the wiki and the ontology, respectively (“Wiki2Onto.java” and
“Onto2Wiki.java”).

5.2.2. ChAO Ontology

The ChAO ontology allows the tool to detect any changes that have occurred in the EISB ontology and
what exactly those changes were. The synchronization tool connects to the ontology via its location
(URL, file path, etc...) and updates it directly by saving the ontology into a new file and overwriting the
old one. Figure 5.2 shows an example of changes recorded in the ChAO ontology using a Protégé

interface.

€ FInESv3_1 Protégé 347 !fu\C.\Um\qo&lvn'.De:kmp\teﬁx‘\Hn!‘Sv?JDDUOWL/RDFfiﬂi et s |) Sl
| £l £t Pomct QUL Bessonng Code Toos BkPoral Viedow Changs Colsborstion Hep

1 o+ A &b ZRCRED Qprotégé

@ Wetadata(Oniokogy1 335435283 owl) OWLCusses | WN Propertes | 4 ndvidues | T Forms | Cranges

Acton

Figure 5.2 - Example of changes recorded in the ChAO ontology

5.2.3. Wiki DB

The FInES wiki will be extensively described in the next subsection and therefore won’t be further
discussed here. However the FINES wiki DB is very important to the project, because like the ChAO

61

ontology, it is what allows the synchronization tool uses to detect any changes that have occurred in
the wiki via the “recentchanges” table. The developed tool connects to the wiki DB via its URL and
updates its contents directly into specific tables of the wikis DB. Figure 5.3 shows an example of the
wiki DB represented in the “phpMyAdmin” interface. It features the “page” table highlighted and shows
some of its instances.

logging T

S
module_deps
msg_resource
msg_resaurce_links
hpacizacka Showing fows 0 -6 { =7 tetal 43 , Query took 0.0008 sec)

Browse b Swucwre [SQL 4 Search Fimsen (< Expon S Impont ¥ Operations

elamage
page seLect®
pagelinks FROM page
page_props
page_estrictions Profiing [inino] | Ed] [Explain SQL | [Croate PHP Code] [Rekesh
protected_titles

aqueryeache

i Show:) [0 | row(s) starting wom row # [0 in| harizants]| moce and repast hassers atar [100 | cots

queryeache_nfo
recentchanges

page_id page_namespace page_title page_restrictions page_counter page_is_redirect page_is_new

s
sew_canc2

Figure 5.3 - Wiki DB example

5.2.4. FInES Wiki

As said beforehand, the FInES wiki serves as a source of knowledge more focused on the
collaborative gathering of information from domain experts. It also serves as tool to maintain all the El
state of the art research. To that effect, the wiki, in its homepage is divided into 3 main parts, as seen
in Figure 5.4, the FINES Research Roadmap, the FInES Task Forces and the EISB. However only the
latter is relevant for this work and therefore is the only that will be described in detail.

FinES =

Navigation » Search - Toolbox = in other languages -

Main Page

About FINESPedia

3

tatcErine interopersbty Science Bave (£158)
e e Tyt you can bromse ez e
o[[eores ek v coecogies ot Srearpene

i Coencn tann

e
t-1ms8 02)

Figure 5.4 - FINES Wiki Homepage: 1 - FINES Reserach Roadmap; 2 - FInES Task Forces; 3 — EISB

Looking now, in detalil, into the EISB portion of the wikis homepage, it can be seen in Figure 5.5 that it
is composed of several links that represent and direct the user to the various scientific areas
addressed by the El community as well as the EISB Glossary.

62

Enteprise Interoperability Science Base (EISB)
From the Taxonomy tree you can browse throught the
and sub of the

Interoperability Science Base
[=]EISB (12
[[x] Cloud Interoperability (0)
{x] Cultural Interoperability (0)
[x] Data Interoperability (0)
(x] Ecosystems Interoperability (0)
[x] Electronic Identity Interoperability (0)
[x] Knowledge Interoperability (0)
[x] Objects Interoperability (0)
[x] Process Interoperability (0)
[x] Rules Interoperability (0)
[x] Services Interoperability (0)
(x] Social Networks Interoperability (0)
[x] Software Interoperability (0)

Sealy J141IUBIIS

Enterprise Interoperability Science Base
Glossary
Browse and Contribute to the EISB Glossary

Figure 5.5 - FINES Wiki: EISB Scientific Areas and Glossary

Going now into further detail, the EISB portion of the FINES wiki is essentially composed of 5 types of

pages, the category page type, the scientific area and sub scientific area description type, the El

ingredients page type and the publications page type.

o Category Pages — These types of pages serve as an index since it lists all of the wiki
pages that fall under a specific category. The links present in the wikis homepage direct the
user into these pages that can either be the EISB glossary or a specific scientific area. In the
EISB Glossary category page all the terms in the El domain are listed. These terms are called
the El ingredients and they can be scientific areas, sub scientific areas, case studies,
methods, experiments, tools, standards, a proof of concept, surveys or empirical data and
concepts or positions. Regarding the scientific area category pages, these are very similar to
the EISB Glossary page, however they contain a list of the El ingredients and publications that
particular scientific area addresses as well as the wiki page describing that same scientific
area. A part of the EISB Glossary page and an example of a scientific area category page is

shown in Figure 5.6.

Navigation

Category:EISB Glossary

Search » Toolbox I other languages -

Navigation - Search - Toolbox - I other languages -

Category:Cloud Interoperability
Pages in category “Cloud Interoperability

A € con

(a) (b)

Figure 5.6 - FINES Wiki: (a) EISB Glossary; (b) Scientific Area category page example

Scientific Area Pages — These types of pages have the purpose of describing the scientific
areas addressed by the EI community. Each page contains a table that summarizes the
scientific area. This table contains the name of the scientific area paired with its unique
identifier, a small description, links to other scientific areas, a list of its sub scientific areas and

a list of tags. Furthermore these types of pages contain the full general description of the

63

scientific area which is the main focus of the page, along with a section with the references
that are identified along the text and a section that contains links to additional information

relative to that scientific area. A scientific area page example is presented in Figure 5.7.

Cultural Interoperability

Figure 5.7 - FINES Wiki: Scientific Area page example

Sub Scientific Area Pages —They have the purpose of describing the sub scientific areas
addressed by a specific scientific area. Similarly to the previous page type, each page
contains a table that summarizes the sub scientific area. This table contains the name of the
sub scientific area paired with its unique identifier, a small description, the scientific area it
relates to and a list of tags. Furthermore these types of pages contain the full general
description of the sub scientific area which is the main focus of the page. A sub scientific area

page example is shown in Figure 5.8.

Unified Cloud Interfaces (SaasS Io)

SSA.11.1 - Unified Cloud Tnterfaces (S3aS To)

Figure 5.8 - FINnES Wiki: Sub Scientific Area page example

El Ingredients Pages — These pages aim to describe an El Ingredient, i.e., a method,
concept, tool, etc... They contain a table that contains the name and a small definition of the
ingredient. It also contains a section (General) that contains the main text of the page, a
references section which contains information about the citations that occur along the main
text of the page. Finally it contains a section (See Also) that contains links to additional
information relating to that particular ingredient. An example of this type of page is illustrated
in Figure 5.9

64

Access
General Access

References Defmition £rzes

Figure 5.9 - FINES Wiki: El Ingredient page example

e Publications Pages — These pages contain information about publications pertinent to the El
community and that are referenced in several pages of the wiki as well as the ones that
appear in the “See Also” section of many different pages. These types of pages contain a
table that serves to classify the publication according to an El Ingredient (Tool, Experiment,

Standard, etc...). An example of this type of page can be seen in Figure 5.10

Intercloud Directory and Exchange Protocol Detail Using XMPP and RDF

Concepts &
Fositians
Pethods

Proof of
Concepts

Link to Mendeley

Figure 5.10 - FINES Wiki: Publications page example

5.2.5. EISB Reference Ontology

As previously stated the main goal of this ontology is to represent all the knowledge related to the
EISB domain. Here the ontology will be presented fully and in detail. To have a better graphical
understanding of the ontology, a good ontology visualization tool is needed. Taking into account the
study of this visualizers conducted in section 2.3, the chosen tool to visualize this ontology was XMind.
This is mainly because of this tools capability to represent the class hierarchy as well as the properties

that serve to relate them in a perceptible way.

A general overview of the entire ontology can be seen in igure 5.11, where all the classes and
respective subclasses are represented, as well as the relationships between them. Following, is the

detailed description of the ontology.

Taking a top down approach to this description, the ontology, at the top (root) is composed of 5
classes, the Bibliography, Content_Classifier, El_Contents_Categorization, EISB_Framework and

EISB_Wiki classes.

65

. Bibliography - aims to represent all the publications that are featured in the EISB wiki and
their authors. To achieve this goal, 4 proprieties were created that have this class as a domain, 2
datatype properties and 2 object properties. The datatype properties are the Link and Citation
proprieties. The former aims to store the website from which the users can download or buy the
respective publication. On the other hand the Citation property was defined to store the citation that is
to be used by authors if they want to cite the respective publication in their work. The 2 object
properties defined in this class are the relatedTo_Publication and the AuthoredBy properties. The first
one has the goal of relating the instances defined in the Bibliography class to the instances defined in
the Publications class (which will be discussed in detail shortly). This property was also defined as
being functional to ensure that each instance in the Bibliography class has at most one corresponding
entry in the Publications class. The second object property defined for this class aims to relate the
authors to their corresponding publications. This means that each instance of the Bibliography class
will be related to instances defined in the Researchers class (to be presented further along this
description). Contrarily to the relatedTo_Publication property, the AuthoredBYy property is not functional
because a Bibliography instance can have more than one author.

. Content_Classifier - aims to store information relative to classifications of the EISB wiki
contents. This class is subdivided into 4 other subclasses with the objective of storing specific
classification types.

o EI_Barrier_Classifier - holds the classification of a certain content regarding its
interoperability barrier category. Instances in this class have 2 properties, Relevance
which is a datatype property, and the hasBarrier object property. The first property holds
the relevance of the classification and it must be one of three values, low, medium or high.
The hasBarrier property has the objective of relating the classification with a respective
barrier in the Interoperability_Barriers class. It is a functional property since a classification
of this type must relate only to one type of barrier.

o El_Maturity Classifier - stores information relative to the maturity of the wiki content. It
only has an object property, hasMaturity that aims to relate the classification with an
instance of the Interoperability Maturity class.

o EI_Phase_Classifier - has the goal of classifying wiki content relatively to its
development lifecycle. Like the EI_Barrier_Classifier subclass, this one also has the
Relevance property to rate the classification as being low, medium or high. This subclass
also contains an object property, hasPhase that relates the instances of the classification
to a certain instance that represents a phase of the Development_Lifecycle class.

o Scientific_Area_Classifier - was created with the purpose of classifying certain wiki
content with the relevance pertaining to a certain scientific area. Like the previous
subclass, this one also has the Relevance datatype property to classify the content with
low, medium or high relevance. Furthermore it also has an object property, scientificArea
that relates the classification to a certain scientific area defined in the El_Scientific_Areas

or EISB_Neigbouring_Scientific_Areas classes.

66

. El_Contents_Categorization - is tightly related to the previously described class
(Content_Classifier). This class houses the information about the different categories that the content
of the wiki can take. It is divided into 3 subclasses which will be individually discussed. Furthermore,
this class has a single datatype property which is called Name and keeps the name of the category of
the content. Also, this property is propagated to all subclasses under its domain.

o Development_Lifecycle — houses the information about the different development
phases that certain content is in and it further divided into 3 subclasses.

= Assessment

= Design

* Implementation
The instances created in these subclasses are the ones that will be used to relate the
content classification to its phase via the previously presented hasPhase property.

o Interoperability_Barriers — records the information regarding the barriers that a certain
content can encounter. Like the previous subclass, the Interoperability Barriers subclass
is also divided into its own subclasses, representing the so called barriers.

= Conceptual
= Organizational
= Techonological

The instances created in these subclasses are the ones that relate the content classification to

the interoperability barriers via the hasBarrier property

o Inteoperability_Maturity - intends to hold information about the various maturity
classification categories. To this effect this subclass was also divided into several
subclasses of its own.

= AIF
= C4IF
= Humanistic

e Deprecated

e Elder
e |nfant
e Mature

= Interoperability_Classification_Framework

= LISI
= NC3TA_RMI
= OIM

Like the previous cases, the instances created within the various subclasses of the
Interoperability_Maturity class are the ones that relate the maturity classification of content to
their respective maturity category by means of the hasMaturity property.

. EISB_Framework - aim of this class is to hold information about the elements that compose

the EISB universe. To that effect three subclasses were defined.

67

o

o

EISB_Knowledge Base - contains an object property named instancedBy which aims to

illustrate a relation of origin, meaning that that an instance associated with this property is

originated within this class. This property is also propagated to the subclasses and its goal

is the same, however the contexts are different.

El_Scientific_Areas - holds information about the various scientific areas
represented in the EISB universe, and these subclasses are also divided into
other subclasses that illustrate the scientific sub areas. These classes also
contain the Name datatype property that stores the name of the scientific areas
and scientific subareas. The instances created under these classes are the ones
that are used to relate the scientific area classification of content to the respective
scientific are via the scientificArea property.

e Various Scientific Areas

o Various Scientific Sub Areas

EISB_Community - Contains information about different researcher communities
present in the EISB universe. This is why this class is also divided into different
subclasses that represent each community respectively.

e Experts_Scientific_Committee

e Related_Scientific_Disciplines_Community

e Validation_Community

e Other_Relevant_Communities

These classes also contain the Name property to record the name of the communities

EISB_Neighbouring_Scientific_Areas - is very similar to the
El_Scientific_Areas since it is also divided into subclasses that represent the
scientific areas and scientific sub areas (if they exist), however in this context the
scientific areas belong the EISB neighbouring domains instead of the EISB
domain.

e Various Neighbouring Scientific Areas

Tangible_Content - contains information about the actual contents of the EISB
universe. These contents are divided into 3 subclasses
= EISB_Ingredients - is divided into subclasses that represent the
ingredients themselves which are used in the classification of scientific
publications, i.e. if it as case study, a standard, a method, etc...

e Various Ingredients

= Expert - The Expert subclass is used to classify the researchers involved
in the EISB universe by relating them using the instancedBy property
= Scientific_Publication - class is used to classify publications pertinent to

the EISB, and they also relate via the instancedBy property.

EISB_Problem_Space
EISB_Solution_Space

68

EISB_Hypothesis
EISB_Laws

o EISB_Wiki — The objective of this class is to represent all elements that compose the EISB
(FInES) Wiki. This class also holds FINES_Page datatype property that holds the direct web link to the

wikis main page (in this case). This property is propagated to all the subclasses of this one with the

same objective. However the links will obviously be different for each instance. This class also

contains the object property isinstanceOf which is the inverse of a previously discussed property

named instancedBy, meaning that the relation can now be seen as that instance x was originated by

instance y. Instead of being instance y originates instance x. It is worthy of note that this property is

also propagated to the subclasses but the instances contained in them will have a different values.

o

EISB_Glossary — This class contains the contents that are represented in the glossary

page of the EISB wiki. To achieve that goal, the class is divided in the following

subclasses. This class also contains some properties that are also propagated to its

subclasses. One property is the FINES Page property which holds the link to the

respective wiki page. Another property is the Name property which contains the name of

the respective content. The Definition property was also created and its aim is to hold

small definitions of a respective content. Finally the previously described isinstanceOf

property is also present.

El_Ingredients — This class holds the detailed information about the various
ingredients (concepts) that are represented in the EISB_Wiki. Therefore some
properties, along with the ones inherited from the upper class, were defined.
These properties are the MainText datatype property which holds all of the text in
the wiki page of the respective ingredient. The hasReference object property
holds the instances of the bibliography that is referenced along the text in the wiki
page and that appear in the References section of the wiki page. The hasSeeAlso
object property holds the instances of the Bibliography class that appear in the
See Also section of the wiki page. The other properties that compose this
subclass are the ones that were inherited from the upper class, and as such will
not be described here.

Scientific_Area — This class holds all the details regarding the EISB scientific
areas represented in the EISB wiki. Apart from the inherited properties (which
won’'t be described here) this class presents the following properties. The ID
datatype property holds the unique identifier of a certain scientific area. The
MainText datatype property holds the text of the wiki page. The hasReference and
hasSeeAlso object properties have the same purpose as in the El_Ingredients
class. The hasSubArea subclass relates the scientific areas to their corresponding
scientific sub areas, so the range of this property is Scientific_SubArea class (to
be described shortly). The hasTags object property holds the ingredients,
publications or neighbouring ingredients that are represented in the wiki page of

69

o

the scientific area. The includes, relatesTo and requires object properties serve to
relate a scientific area with other scientific areas or scientific sub areas.

Scientific_SubArea — This class holds all the details regarding scientific sub
areas represented in the EISB wiki. The inherited properties won’t be described
here. Apart from those properties, this class contains the hasSuperArea object
property that is the inverse of the hasSubArea property and serves the purpose of
relating the scientific sub areas with their respective scientific areas. The ID
datatype property holds the unique identifier of the scientific sub area. The
MainText dataytpe property holds the text of the wiki page. The hasReference,
hasSeeAlso, hasTags, includes, relatesTo and requires object properties serve

the same purpose as the ones describe for the Scientific_Area class.

EISB_Neighbouring_ SDRG - This class serves the same purpose of the EISB_Glossary

class, however it refers to the Neighbouring domains instead of the EISB domain. Apart

from the properties inherited from the root class, this class has 2 other datatype

properties. The Definition property which holds a small definition of the content, and the

Name property which records the name of the content.

Core_Features — This class holds the information about the core features of the
EISB neighbouring domains. Apart from the inherited properties which won’t be
described again here, this subclass contains several other properties. The
hasReference, hasSeeAlso and hasTags object properties serve the same
purpose as the ones described for the Scientific_Area class. The MainText
datatype property holds the text of the respective wiki page. The
relatedTo_EI_ScientificArea relates the core features of the neighbouring domains
with the EISB scientific areas. The relatedTo_EISB_Neighbouring_Area relates
the core features with the scientific areas of the neighbouring domains. The
EISB_Relation holds a small description as to how this feature relates to the EISB
universe.

Neighbouring_Ingredients — This subclass holds the information regarding the
ingredients of the EISB neighbouring domains. Apart from the inherited properties,
this class contains the hasReference and hasSeeAlso object properties that serve
the same purpose as the ones described in previous classes. It also contains the
MainText datatype property that records the text of the corresponding wiki page.
The relatedTo_CoreFeature object property relates the neighbouring domain
ingredients to neighbouring domains core features.
Neighbouring_Scientific_Area — This class records all the data regarding the
EISB neighbouring domains scientific areas. To that effect and separately from
the inherited properties, this subclass has the hasTags object property and the
MainText datatype property which has the same objective as the ones described
for previous classes. Furthermore it also has the hasCoreFeatures object property

which is the inverse of the relatedTo_EISB_Neighbouring_Area property and aims

70

o

to relate the EISB neighbouring domains scientific areas to their respective core

features.
Publications — This class aims to hold all the information regarding all the publications
represented in the EISB Wiki. To that end various properties were defined. More
specifically 6 datatype properties were defined along with 4 object properties (including
the properties that were propagated from the root class). The datatype properties will now
be presented in detail. Abstract property holds the textual form of the abstract section
presented in the wiki pages representing publications. HasLicence property holds the
value for the licencing section of the wiki page. Keywords property stores the value of the
keywords section of the wiki page. The linkMendeley property holds the link to the
mendeley website of the respective publication. The Name property holds the name of the
publication. And the FINES Page property holds the link to the wiki page of the
publication. Now, the object properties will be described. The hasingredient property
relates the publications with none, some or all the ingredients in the EISB_Ingredients
class. The isClassifiedAs property relates the publications with the classifications
regarding its barrier, phase, maturity and scientific area. This means that this property will
have instances that were created in Content_Classifier class. The relatedTo_Bibliography
property is the inverse of the relatedTo_Publication property that was previously
presented. This property relates the instances of the Publications class with the
corresponding ones in the Bibliography class. The islnstanceOf property in this case, will
relate the instances of the Publications class with the ones in the Scientific_Publication
class.
Researchers — This class handles detailed information about the researchers of the EISB
universe. To this effect 5 datatype properties and 3 object properties were defined. The
datatype properties are the FINES_ page, which holds the link to the researcher’s wiki
page. The FirstName and LastName hold the first name and the surname of the
researcher, respectively. The Contact property holds various contacts of the researcher
(e-mail, phone, etc...). The Organization property holds the organization(s) which the
research is affiliated with. Regarding the object properties, they are, the
belongsToCommunity property that relates the researcher with the community or
communities which he is associated with via the instances created in the
EISB_Community subclasses. The workedOn property is the inverse of the AuthoredBy
property that was previously described. This property holds the instances of the
Bibliography class in which the researcher has participated. The isInstanceOf property in

this case will hold the instance created in the Expert class.

71

v--El_lngrédients:
1S Gfussary'"!'Sciemi?ic_Arem
hasSubArea

Cloud_Federation 1 hasTags hasTags -
1aas_Interoperability
PaaS_Interoperability

Unified_Cloud_Interfaces_SaaS_lo

HasTagsEsp-Wiki|

Cloud_Interoperability

hasIngredient

sPublicationss.. hasTags

Al gz refiglons apel thics Cultural_Interoperability includes i - : R h hestags

Language_Interoperability | = relatesTo . peference’ hasReference esearcherse.

Data_Mediation requires o oo o hasSeeAlso
Data_Standardization Data_Interoperability & L
Schema_Matching = 5
Semantic_Data_Representation includes . relatedTo_Bibliography
_Ec I il relatesTo worl‘(edOn Aulhor_edBy
_Strategy | Ec] bils requires 3 A
Interoperability_within_Virtual_Enterprises
Digital_Signatures_Interoperability
Enterprise_Context_Mobility ic_ldentity |

> + Knowledge_Interoperabilit;
Knowledge Sharing_and_Knowledge_Repositories | v o ge-nteroperability

Identity| _Systems_|
Business_Knowledge_Reasoning_Analysis_and_Representation i
LUnEe K . [EISB Ontology

Ontology_Matching
Device_Interoperability
RFID_] i
Smart_Objects_Communication
Automated_Process_Execution
Process_Alignment

i 7 belongsToCommunity

N 1 b
| Objects_| EL Scientific_Areas

scientificArea...

Process_|
Process_Reengineering
Process_Standardisation
Business_and_Legal_Rules_Homogenization_Alignment
Rules_E: ti
Rules_Modelling

Process_Ir

hasBarrier

Rules_Ii

hasIngredient
EISB_Knowledge _Base

ic_service._ ry_and_ P
Enterprise_Mashups
Service_Choreography
Service_Co-Design
Service_Level Agreements_Alignment
Service_Orchestration
Enterprise_Social_Content_Distillation
Enterprise_Social_Content_Sharing_and_Distribution
Social_Network_Characteristics_Infusion
Interoperability_Conformance_and_Testing
Interoperable_Software_Models_and_Building_Blocks
Middleware_Architectures
Web_services_Interoperability
Experts_Scientific_Committee
Other_Relevant_Communities
Related_Scientific_Disciplines_Community
Validation_Community

- Services_Interoperability EISB_Framework

Social_Networks_Interoperability scientificArea

+ Software_Interoperability

" EISB_Community

Complexity_Science
Design_Science
Music_Composition
Services_Science
Software_Engineering
Case_Study
Concept_or_Position
Experiment
Method
Proof_of_Concept
Standard
Survey_or_Empirical_Data

EISB_Neighbouring_Scientific_Areas. ..

EISB_Ingredients "™
Tangible_Content

Tool
Expert
Scientific_Publication

EISB_Problem_Space

EISB_Hypothesis

EISB_Solution_Space
EISB_Laws

Figure 5.11 - EISB Reference Ontology overview

72

.. Scientific_SubArea
; Core_Featuresy
| EISB_Neighbouring_SDRG ' Neighbouring_Ingredient
Nighbouring_Scie

latedTo_Publicatio

=
“*Bibliography «-

..EI_Barrier_Classifier
EI_Maturity_Classifi
EI_Phase_Classifier..
Scientific_Area_Classifier.

hasPﬁase

Content_Classifier |

EI_Contents_Categorization

hasTags

hasTags hasTags

g hasSuperArea hasTags

hasTags

hasTags

hasReference
hasSeeAlso
hasReference
hasSeeAlso

o Assessment
Development_Lifecycle Design

Implementation

Conceptual
-~sInteroperability_Barriers Organizational
Technological
AIF
C4aIF

relatedTo_CoreFeature

hasCoreFeatures

elatedTo_EI_ ScuennliﬁcArea
relatedTo_EISB_Neighbouring_Area

hasMéturity

Deprecated
Elder

s - 7 Infant
Interoperability_Maturity e
Interop ity_C fication_Framework
LISE
NC3TA_RMI
OIM

5.3. Synchronization execution flows

To have a better general understanding of how the synchronization tool works, the flow of execution
and how the information is processed are presented in this subsection. Firstly, the flow of execution of
the synchronization tool from the EISB Ontology to the FINES wiki is introduced and after, the reverse
route is presented. These sequence diagrams, serve to complement the previously shown in

architecture in a sense that it is shown in detail the flow of execution of the system.

5.3.1. EISB Ontology to FINES Wiki Synchronization Execution Flow

As can be observed in Figure 5.12, the user first activates the tool which allows it to perform some
initializations, such as loading the ontology to prepare for editing and constructing the required java
classes for synchronization. When these initializations are complete the program signals the user and
it's at that point that the user can instruct the tool to begin synchronizing. At this moment the program
connects to the wiki DB to verify that synchronization is, indeed, possible. When the connection is
established the developed tool then proceeds to perform the actual synchronization. It starts by getting
the changes recorded in the ChAO ontology, which is associated with the EISB Ontology. It is worthy
of note that the EISB ontology isn’t directly involved in this procedure because all the changes that are
made in it are recorded in the ChAO ontology and therefore all the information required for
synchronization can be accessed directly from the ChAO ontology. After obtaining the modifications
perpetrated in the ontology, the program processes them in order to maintain the consistency of the
extracted contents, and places them in specific tables of the wiki DB. Finally, before signalling the user
that the synchronization process has been completed, the program deletes all the changes form the
ChAO ontology to ensure that on the next execution of the software, the same contents won’t be

resynchronized.

73

FInES Wiki Database Synchronization Tool

ChaAD Ontology ‘

|
| Activate l

Initializaticns

S','rbchmnige

Conmect

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
on|
[

Get Changes

Ontology Changes

Process Changes

Update Wiki with Changes

Delete all changes.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Synchronization Complete :
|

Figure 5.12 - Ontology to Wiki Synchronization execution flow

5.3.2. FInES Wiki to EISB Ontology Synchronization Execution Flow

In this subsection it's intended to describe the execution flow of the developed tool regarding the
synchronization between the EISB ontology and the FINES wiki. As can be perceived in Figure 5.13,
the process starts in the same manner as when the synchronization is between the EISB ontology and
the FINES wiki. The user activates the program and it begins by performing the same initializations as
it did in the previous scenario. After the user gives the command to begin synchronization, the
program connects to the wiki DB and proceeds to get the modifications that have occurred in the wiki.
Upon obtaining those changes, the program processes them, once again to ensure that the
information remains consistent, and updates the EISB ontology accordingly. Finally, the program
saves the ontology file, that ensure that the update isn’t lost and erases all the changes in the wiki DB
to guarantee that the next time the program is run, the same changes won’t be synchronized again.
When all those steps are complete, the developed tool signals the user that the synchronization

process is complete.

74

E1S8 Ontology

FInES Wiki Database | l Synchronization Tool

Synchronize

Connected
'

|
Get Changes

[}
Wiki Changes
'

|
l
|
| Process Changes
I
|
1
|
I

Update Ontology with Chang

I
|
: Save Ontalogy File
|
1

Delete Changes.

|
I
|
|
|
I
|
|
I
I
|
I
|
I
|
one !
|
|
|
I
|
I
|
|
|
I
Synch z Complete |
|
|
I
I

Figure 5.13 - Wiki to Ontology synchronization execution flow

5.4. Concluding Remarks

The work conducted throughout this chapter features the study behind the development of the
implementation of the synchronization process between the EISB reference ontology and the FINES
wiki. This study is what allows an effective implementation of the synchronization, since as it was
referred in 3.4 regarding item 5, the knowledge of the synchronization procedure facilitates the
semantic checking process. Furthermore the study conducted in this section enabled a better
understanding of the system and how its components interact with each other, and with the aid of the
sequence diagrams, a visual and temporal understanding of how the synchronization process is done
is facilitated.

75

6. SYNCHRONIZATION TOOL DEMONSTRATION

This chapter of the document shows a demonstration example related to the multiple structural
semantic checking scenario introduced in section 4.2.2 and features the results of the developed

synchronization tool which was implemented according to the architecture presented in Figure 5.1.

The examples presented here intend to demonstrate how the synchronization tool works in detail.
Firstly an example of synchronization from the EISB reference ontology to the FINES wiki is presented
in subsection 6.1. Following, an example of synchronization from the FINES wiki to the EISB
Reference Ontology is presented in subsection 6.2. However, before going in to the examples, it is
important to demonstrate the common steps that always take place when running the synchronization
tool. Upon executing this tool, the users find a GUI, shown in Figure 6.1, from which they can control
the synchronization process. In this user interface, the users first have to specify some information
such as the wiki DB name, username and password, in order to allow the program to access it.
Furthermore, users need to specify the ontology project location as well as the project name for the
program to know which ontology will be involved in the synchronization process. After all that
information is specified, users need to click the activate button in order for the program to perform
some initializations. Once these steps are complete, the users are then allowed to click the

synchronize button, and what happens afterwards will be described in following two subsections.

o » e

File

Adiivate |

s ——

RecentChanges table

Wiki Database User | roof

Wiki Database Passward

Ontology Location C:/UsersigoAlvesiDesklopitests/

Wiki Database IP localhost

Wiki Database Name wikiDB

ProjectName FInESv3_1

Individuals Created

| Status Status

Figure 6.1 - Synchronization tool GUI

6.1. Ontology to Wiki Synchronization Demonstration

Two examples of ontology to wiki synchronization are going to be presented in this subsection. The
first example chosen here to demonstrate how the synchronization tool works features a scientific area
instance created in the EISB ontology being synchronized into the FINES wiki. The second example
features the removal of a scientific area of the ontology and its synchronization with the wiki. However
before going into the specific examples, a thorough analysis of all the cases that may occur when

synchronizing the two elements was made.

77

Table 6.1 shows in the first column the cases that may occur when the synchronization process is

between the EISB ontology and the FINES wiki. The middle column denotes the recommended course

of action (if any) to take part in the wiki for each specific case that ensues in the ontology. Finally, the

third column denotes which cases have been implemented in the synchronization tool prototype.

Table 6.1 - Ontology to Wiki synchronization cases analysis

Ontology Case Action Implemented
If new instances are part of any of the subclasses of the EISB_Glossary class or
. in the publications class then a wiki page has to be created for each of them,
NETITSETEEE with the contents built using the values of the instances properties. VES
Else no wiki related action is needed.
If the new classes are a subclass of the El_ScientificAreas class then a wiki
category page must be created for each of them.
New classes Else if the new classes belong to the EISB_Ingredients subclass then the EISB i
Papers Classification Metadata template page must be altered to accommodate
the new ingredient.
Else no wiki related action is needed.
If the new proprieties have the Publications class or the EISB_Glossary class as
New proprieties | domain then the wiki page contents must reflect these new proprieties. -
Else no wiki related action is needed.
If the edited instance is part of the EISB_Glossary or Publications classes then
Edit instances the corresponding wiki page must be edited to reflect the changes recorded. -
Else no wiki related action is needed.
If the edited classes belong to the El_ScientificAreas class then the
corresponding wiki category page must reflect the changes.
Edit classes Else if the edited classes belong to the EISB_Ingredients class then the EISB)
Papers Classification Metadata template page must be altered to accommodate
the changes.
Else no wiki related action is needed.
If the edited proprieties have the Publications class or the EISB_Glossary class
Edit proprieties as domain then the wiki page contents must reflect these proprieties -
Else no wiki related action is needed.
If the deleted instances are part of the EISB_Glossary or Publications classes
Remove ; g
. then the corresponding wiki pages must also be deleted. =
instances e o
Else no wiki related action is needed.
If the removed classes belong to the El_ScientificAreas class then the
corresponding instances in ScientifcAreas and subScientificAreas must also be
L i - o Yes (for
deleted which in turn will remove the corresponding wiki pages. Lo
. scientific areas
If the removed classes are subclasses of EISB_Ingredients then the EISB
Remove classes e and sub
Papers Classification Metadata template page must be altered to accommodate scientific
the changes and the corresponding instances in the El_Ingredients class must areas)

also be removed.
Else no wiki related action is needed.

Remove
proprieties

If the removed proprieties have the Publications class or the EISB_Glossary
class as domain then the wiki page contents must reflect these changes.
Else no wiki related action is needed.

6.1.1. New Scientific Area instance

Upon performing the previously presented and required initializations the user can then start the

synchronization process. After the user clicks the synchronize button on the tools interface, the

program checks the ChAO ontology to get the changes that have occurred in the EISB ontology. In

this case, the program verifies that a new scientific area instance has been added to the EISB

ontology, as shown in Figure 6.2.

78

2] —- T — (o e

File

| Activate | Synchronize

Wiki Database Password ~ ***** Wiki Database Name wikiDB

Wiki Database User root Wiki Database IP localhost

Ontology Location C:/Users/goAlves/Desktopitests/ | ProjectName FInESv3_1

====z======Wiki======sss2= ===========0ntology===========
RecentChanges table 0 Individuals Created 1
Status Status

===ACTIVE=== ===ACTIVE===

Connected to wiki database ===Connected to wiki database===

===Synchronization possible ===
===Connected to wiki database===
===Synchronization possible === === New Scientific Area detected ===

Figure 6.2 - Ontology to Wiki Synchronization - New Scientific Area instance detection

More specifically, in this demonstration, the instance created in the EISB ontology is of the “Social

Networks Interoperability” scientific area, which can be observed in Figure 6.3, on the Protégé

INSTANCE BROWSER INDIVIDUAL EDITOR for SA.8 'Social Hetworks Interoperability’ (instance of Scientific_Areal
For Class: @ Scientific_Area ZXREE TR MR i1/ vs v ve.owlontologies. comiOntology 1335435283 ow i Scientific_Area_1

Asserted || Inferred
multiple properties ¥ exXG

@ 5.1 Data nteroperabity’
@ 5410 Electranic Identty Interoperabiity’

@ 5411 ‘Cloud Interaperaklty’ Definition £ E passechlso LR
@ 5412 Ecosystems Interopersbily [ons to the characteristics of the social networks.| 4k Social semartic wek ot work: Annatating and
| 54.2 Process Interaperabiity’ 4 The Impact of Socisl Computing on the EL Infor

@ 523 Rules Interoperabilty’ 4 The Semartics of a Policy Language Framesw:

@ 4.4 ‘Objects Interaperakilty' T

@ 545 'Software Interoperahility’ 8
546 ‘Cultural Interoperabilty’

* 1D £ ¥ nassubarea L S

54,7 Knowledge Interoperabilty’
* o © v & 'Social Networks Characteristics Infusion’

FINES_Page £ K
php/Social_Networks_| Wi T I v

@ 548 'Services Interoperabilty' ‘S‘c‘ g
| 54,8 'Social Networks Interopsrabilty'
MainText £ 8
|2 the promising candidate for such activiies. </p=|
Name £ X pastags LR S

4 Enterprise 20
@ Social Computing
@ Social Media

isinstance0f & * e @ Social Networks

4 Socisl_Networks_Intercperabilty_116 e 20

[social Networks Interoperabilty

Figure 6.3 - Ontology to Wiki Synchronization - Scientific Area instance

The synchronization tool then proceeds to obtain the values of the properties associated with that
instance and builds a string from those values to form the wiki page content. Afterwards, three entries
are added to three different tables of the wiki DB. Firstly an entry is added to the page table that the
wiki uses to identify each page using its title [67]. Then an entry is added to text table of the DB, which
is where the wikitext of individual page revisions are stored [68]. Lastly, an entry is added to revision
table which is needed because this table holds the metadata for every edit done to a page within the
wiki [69] (including the creation of pages). When these entries are made, the synchronization process
for this particular instance is finished and the result on the wiki can be seen on part (a) of Figure 6.4,

while the finished process on the java interface can be observed in half (b).

79

‘Social Networks Interoperability

st e o1 e b s e ke e o s et vt s o
ot o s s i . 53 i i 0 S s, 1 s b s o St Sl

T e ra—

[s sprg e

OnéologyLocaion CUsersigoAhesDesitoptests/ | Projectiame FINESW_1

‘=zzszzzzzezOntology==ssz==zas
RecentChanges table 0 Indduals Created | 1
Status £
ssACTVE s ACTHEwes
Connectsd to wih database -Connacted to win databas

Syrchronzation possidie

===Smanvonization possivle === New Sciensfic Area detected

- s Now Scondiic ATe3 craated on the wikl ses

Femany 8 281 dem ‘Soial_Networts_Interoperabiity

S ol Wi Soey o Ecwroy nv..—u.-..,

=== Onlolegy Yo Wiki Syncronizaticn completel ===

ur_u.Amn-.—)u:u— e Ctamrin M S gt e et - D ——
& o 2010 A Bt s O . v

o g, -1 Serge et 2. 20 e DS
T g et oo o o E1 et Sy

(@) (b)

Figure 6.4 - Ontology to Wiki Synchronization - New Scientific Area instance finished synchronization

Afterwards, the program deletes all references to that instance in the ChAO ontology to ensure that

this particular instance won'’t be resynchronized in the future.

Finally, the top portion of Figure 6.5 shows the representation of the “Social Networks Interoperability”
scientific area in the EISB ontology (Protégé interface), whereas the bottom portion shows the “Social
Networks Interoperability” scientific area page on the FINES wiki. As seen, the various properties of
the instance have a correspondence in the wiki page, ensuring that the contents are well transferred.

For Individual:

multiple properties >~ ¥ e XS
4 SA.1 'Data Interoperability”

4 SA.10 ‘Electronic idertity Interoperabilty’
4 SA.11 'Cloud Interoperabiity’

55 e
”

/ e
luev.nmcm Pad a hasSeeAlso m

@ SA12 Ecosystems iteroperabity’ ns to the characteristics of the social nmonsJ @ Social semantic web at work Annotating and
@ SA.2 'Process Interoperabiity” 4: The Impact of Social Computing on the EU Inf

" | The Semartics of a Policy Language Framew)
QSS:.GMMWMY FINES_Page L R
: SA‘; ; biects “:muy [simwindex phprSocial_Networks L | I 0|

: 'ware Interoperabilty’
@ SA 6 'Cultural Interoperabiity’ = sl a S SO
\as SubArea

@ SA7 Knowledge hteroper sA9 | @ ‘SociaiNetworks Characteristics intusion
4@ SA 8 'Services Interoper:
@ SA8 "Social Networks

inText L a

rme promising candidate for such activates. <pf|

Hame £ R Bhastogs KR |

[socisl Networks | @ Enterprise 20
:Soculcwlm
Social Media
isinstanceOf & ¢ L& Sociel Networks
4 Social_Networks_Inter 116 [Web 20

Social Nefvorks Interoperability

A social network

cording to Wikipedia''| .. is a social structure made up of indniduals (or organizations) called Yodes”. which are tied (connected) by one or more kpecific types of interdependency. .* Recent studies indicate
engaged with social technologies. Over half of allntemet users are “content creators™ who Cleate websites or blogs, share original media such 3§ photos and videos. of remix content into new creations. Social
Tunter & or Facebook & oRen are 3 comerstone of this information space The sbikty of snterpps to ulise social
@ a major evolution coming out of Web 2.0 and in the last years they have attracted the interest of enflerprises, not only for promotional and advertising reas\gs, but also for operational purposes, ranging from developing networks for collaboralon and

employees, collaborators and clients, to deliering senices through specic features and functions of gbpular social networks. Not kong ago, enterprises have Walised that the power of social networks can also positively Description ~ interconnection purposls, by aligning part

o negatively ifipact their business operations. The impact and are also underined in JRCIPTS report . which others states that Social Computing is now maindeam that companies and policymakers cannat aflord to of theic intemal structurdand functions to
overook. has fhe potentialto reshape work. health and learming and is a drver for growth and employment the characteritics of thsocial networks.
Keeping asigh the dimension of reputation management in social media (which is by s own a huge research landscape). enterpses steadily understand the value betind social net integration 1o their operation and try to exploit the 5

adantages fered by these networks i terms o cotaboration btween themssies and aiso betwoen thec own employses. As P states “Social etworks provde masns forenteprises Wcapture and expose many informal comections HerBIEhIGal] Lot

between thifr stakeholders * Moreover as Gamer states "Within the enterprise, social computing facilitates many interpersonal functions with business implications, such as intemal teaming! sohing, collaboration, and knowledge Links Outbound Links

jzation * As a resul, companies that are
these networks, etc. However, Indicative
rteroperabilty between different entiies i this domain does not solely mean just the presence and the usage of social networks, but goes futher down 1o the construction of an intemal, fleXle,grganisational structure that is Scientific « Social Network Characteristics nfusion

but also to build their products and senices on their platiorms. In fact, every one of those networks oflers today its own API (ike Facebook @, Youtube &, Twiter®, MySpace @, Linkedin®, Micro®

Opensoffal @), which includes 3 number of functions and cals to the underlying sofware Framewark and 3s such those networks are regarded as apphcation platiorms, closely related with the idea of cloud computing Sorim Newoten S5 s, v 20

‘Social Computing, Enterprise 2.0

reseafch into a two layer approach, focusing both of the underlying technologies of the social web but aiso on the social web as a coherent “platform’. As the analysis has shown, most scientific attempts til y focus on the proposal of for infusing the

Socid webto the enterprises. However, this methodologies focus on very specifc topics and there is a huge lack regarding the proposal of standards and frameworks which would enable the seamiess integration of such features in the operational functionaity of businesses. An obvious reason
behigh the lack of scientifc resouces deaing with social networks interoperatiity is the fact that this area is quite young and immature, and innovation actities are preceding research on fundamental aspects. But as practice has shown, youth and immaturity is not at al a disadvantage towards
the ghientific foundation of a field, as it promotes it to the promising candidate for such activties.
Rejerences feditar)

* Wikipedia (2010). Social Network Retrieved February 8, 2011, from hitp //en wikipedia orgy al

+ JRCAPTS (2009). The Impact of Social Computing on the EU Information Society and Economy. Retrieved Fehluuy 8, 2011, from: hitp /Rp jrc es/EURdoc/JRCS4327 paf

+ Maamar, 2., & Bad, Y. (2009). Social networks as a senice in modem enterprises. 2009 Intemational Canference on the Current Trends in Information Technology (CTIT). 15. leee. doi: 10.1109/CTIT 2009 6423135

+ Wikipedia (2010). Enterprise 2.0. Retrieved February 8, 2011, from [http://en wikipsdia org/wiki/Enterprise_2 0 hitp /jen wikipedia orghwikiEnterprise_2 0@

+ McAfee, A (2006). Enterprise 2.0: The Dawn of Emergent Collaboration. MIT Sioan Management Review Retrieved Febeuary 8, 2011, from hitp //sloanreview i edu/the-magazine 006/5pring/47306/enterprise the-dawn-of-emergent collaboration/ @

+ W3C Incubator Group Report {2010). A Standards-based, Open and Privacy-aware Social Web. Retrieved February 8, 2011, from http /Awww w3 org/2005Incubator/sociahweb/XGR-socialweb- 20101206/ @

y

See Also [editar)

« Abel, F., Henze, N., & Krause, D. (2009). Social semantic web at work: Annotating and grouping social media content. Web Information Systems and Technologies, 199-213. Springer. Retrieved March 22, 2011, from hitp /Awwye springerlink com/index/w83t334466169871 pef)
« AlaMutka, K . Broster, D.. Cachia, R . Centeno, C., Feijéo, C., Haché, A et al. (2009). The impact of Social Computing on the EU Information Society and Economy The Impact of Social Computing on the EU Information Society
« lannela, R. (2008). The Semantics of a Policy Language Framework for Web 2 -0 Social Networks. Social Networks, (January)

Figure 6.5 - Ontology to Wiki new Scientific Area synchronization example

80

It is worthy of note that a portion of the java code used to perform this synchronization is present in
appendix 9.1.

6.1.2. Remove Scientific Area class

Similarly to the previous demonstration, the user starts by performing the required initializations of the
synchronization tool. The user then presses the synchronization button on the tools interface to begin
the process. The program starts by checking the ChAO ontology for any changes that may have
occurred in the EISB ontology. Specifically in this case, the program detects that a class has been
removed, namely the “Cloud Interoperability” scientific area, as shown in Figure 6.6.

L T |

File

Activate Synchronize

Wiki D User vrool Wiki Database IP >@I}7wsl

Wiki Database Password ***** Wiki Database Name wikiDB

Ontology Location C:/Users/goAlves/Desktopftests/ ProjectName FINESv3_1

| ==mmmsmmemWikizzmmmszeaas
RecentChanges table 2 Individuals Created
| Status Status
===ACTIVE=== ===ACTIVE=== L]
Connected to wiki database =Connected to wiki database===
I ===8ynchronization possible === 1 |

Connected to wiki database===
Synchronization possible ===

== Deleted class detected ===

loud Interoperability

Figure 6.6 - Ontology to Wiki Synchronization - Deleted Class detection

As a side note, to demonstrate that the “Cloud Interoperability” scientific area class was indeed erased

from the ontology, Figure 6.7 is presented, where part (a) shows the structure of the ontology before

the deletion, while part (b) the resulting class hierarchy of the ontology after deletion.

or @ FnESv3_1
e LAl YO)
[ovtheg 1
® Bibliography

» © Content_Classifier
» @ B1_Contents_Categorization
v ® E1SB_Framework

v © ESB_Knowledge_Base

© 1aaS_interoperabiity
© PaaS_interoperabiity

B Unified Cloud Intertace
@ Cutural_interoperabity
@ Data_interoperabiity
@ Ecosystems_interoperabiity
@ Electronic_identity_Interoperabiity
@ Knowledge_Interoperabity
@ Objects_interoperabilty
@ Process_interoperabilty
@ Rules_interoperabiity
@ Services_interoperabity
@ Social_Networks_interoperabiity
» @ Software_interoperabiity
» © BS8_Community
» @ EISB_Neigbouring_Scientific_Areas
» @ Tangible_Content
® E1SB_Problem_Space
» @ ESB_Solution_Space
» © ess_wii

YYYYVYYVP9Y9%YY

SUBCLASS EXPLORER]

For Project: @ FINESv3_1

v e

Asszerted Hierarchy

owl: Thing
. Bibliography
» @ Cortert_Classifier
» @ El_Contents_Categorization
¥) EISB_Framewnrk
v O ESE_Knowledye_Base
v O El_Scientific_Areas
> .Cunural_\rrtemperahnrty
» 0 Data_interoperabiity
> .Ecnsys{ems_lmernperabilrty
> .EIel:‘trnnic_ldam'rty_\rrtemperahi\'rty
> .Knnw\edge_\rﬁemperahimy
» 0 Objects_rteroperabiity
> .Prncess_lmernperahilrty
» O Rules_Interoperskility
> .Serwces_lmernperahil'rty
» @ Social_Metworks_Interoperabiity
» @ Software_Interoperakilty
» (D EISB_Commurity
» O EISB_Neighouring_Scisrtitic_Areas
» (O Tangible_Content
. EISE_Proklem_Space
» (0 BiSB_Soltion_Space
» D ESB_wiki

(@)

(b)

Figure 6.7 — EISB Reference Ontology (a) Before class deletion; (b) After class deletion

81

It can also be observed Figure 6.7 (a) that the “Cloud Interoperability” scientific area contains four
subclasses that compose its sub scientific areas. Since the scientific area was removed,
consequently, all of its sub scientific areas were also erased. Therefore, the synchronization tool will

also have to deal with them.

After detecting the “Cloud Interoperability” scientific area class removal the synchronization tool
proceeds to deleting the wiki page that corresponds to that scientific area. Subsequently, the wiki
pages corresponding to the scientific sub areas of the “Cloud Interoperability” scientific area are also
deleted, since they no longer figure in the ontology. These page deletions are signalled by the

synchronization tools interface as seen in Figure 6.8.
File

Activate Synchronize

Wiki Datab User | root Wiki Database IP localhost

Wiki Database Password ***** Wiki Database Name wikiDB

Ontology Location C:/Users/goAlves/Desktoptests/ Project Name FInESV3_1

Or gy

RecentChanges table 1 Individuals Created
Status Status
===ACTIVE=== ===ACTIVE===
Connected to wiki database ===Connected to wiki database===

===Synchronization possible ===

===Connected to wiki database==
===8ynchronization possible === === Deleted class detected ===
Cloud Interoperability

F== Page deleted from the wiki ===}
[loud Interoperability

=== Deleted class detected ===
Unified Cloud Interfaces SaaS lo

F== Page deleted from the wiki ===}
Unified Cloud Interfaces SaaS lo

=== Deleted class detected ===
Paa$s Interoperability

== Page deleted from the wiki ==:
aa$ Interoperability |

=== Deleted class detected ===
Cloud Federation

F== Page deleted from the wiki ===|
[Cloud Federation

=== Deleted class detected ===
1aa$ Interoperability

Iaas Interoperability

I::: Page deleted from the wiki ==

Figure 6.8 - Ontology to Wiki Synchronization - Wiki page deletion (Java GUI)

After deleting the wiki pages the synchronization process is finished and the application also erases all
references to the deleted classes to avoid conflicts in future synchronizations. The results of this
specific process can be observed in Figure 6.9, where half (a) illustrates the wiki page before deletion
whereas part (b) denotes the wiki page after deletion. As seen, the wiki page was ,in fact, erased

ensuring that the synchronization process was successful.

82

Cloud Interoperability

With the significant advances in Information and Communications Technology (ICT) over the last half century, there is an increasingly perceived vision that computing will one day be the 5th utity (after water, electricity, gas. and

telephony) "/ Today, the evolution of the Intemet has introduced cloud computing as a very prominent computing method that although still in its infancy, appears as a promising approach for highly scalable software systems for A Gl e oA,

indwidual-, community-, and business-use "/ Cloud Computing holds the potential to provide small and large enterprises with a flexible model for delivering added-value solutions by composing best of breed intemal and extemal senices The abilty of cloud sendces o be able to
which combine diverse data sources deployed across multiple cloud infrastructure prowders and possibly reconfigured while running, or with limited interruption, to respond to changes in usage pattems of resource availabilty. work together with both different cloud
According to NIST 7/, Cloud Computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (.g., networks, servers, storage. applications, and senices) that Description senices and prowders, and other

can be rapidly provisioned and released with minimal management effort or senvice provider interaction. In particular, an enterprise can use cloud senices for its whole IT infrastructure, ranging from ‘renting” online data storage and utilising applications or platforms that are not cloud
combined cloud processors for heavy calculations needed in specific fields, to the operation of ERPs and other enterprise related platforms on the cloud. This cloud model ¥ promotes availability and is composed of five essential dependant

characteristics (On-demand self-senvice; Broad network access; Resource pooling; Rapid elasticity. Measured Senice), three senvice models (Cloud Software as a Senvice - SaaS; Cloud Platform as a Senice - PaaS; Cloud Infrastructure. e
as a Senice - 1aaS), and four deployment models (Private cloud; Community cloud: Public cloud; Hybrid cloud)

» Senices Interoperability
« Knowledge Interoperabilty
« Identity Interoperabilty

Today, numerous vendors have introduced paradigms and senices based on non-compatible underlying technologies, making the cloud landscape diverse. heterogeneous and vendor-locked . In this

context. interoperability which is definitely a challenge for on-premise applications is magnified in the cloud. Cloud Interoperability is defined as the ability to federate multiple clouds to support a single Hierarchical
application ¥/, and refers to customers’ ability to use the same artifacts, such as management tools, virtual server images, and so on, with a variety of cloud computing providers and platforms ™ In Links

other words, interoperability involves software and data simuitaneously active in more than one cloud infrastructure, interacting to serve a common purpose. The scope of interoperability refers both to

Ficheiro The Cloud

Interoperabilty Vision.png
The Cloud Interoperabity Vision
Outbound Links

the links amongst different clouds and the connection between a cloud and an organization's local systems "/ in order to realize the seamless fiid data across clouds and between cloud and local
L « Ecosystems Interoperabilty

applications. The near future evolution of the cloud computing is hypothesized in three subsequent stages “ Stage 1 - "Monolithic” (now). in which cloud senices are based on independent proprietary architectures; Stage 2 - Vertical
Supply Chain’, in which cloud providers wil leverage cloud senices from ather providers; Stage 3 - “Horizontal Federation”, in which smaller, medium, and large cloud providers will federate themselves to gain economies of scale and an

« Unified Cloud Interfaces (SaaS fo)
enlargement of their capabilties. Indicative

e « Cloud Federation

Although standardization appears to be a worthwhile track and many efforts are under way to standardize clouds’ important technical aspects, resohing the cloud interoperability problem is stillfar from reality. Most approaches emphasize Scientific

on cloud deployment issues, with interoperability not having appeared yet on the pressing agenda of major industry cloud vendors and researchers. There are some positions, definitions and visions on the benefits from addressing cloud Sub-Areas
yet efforts and pr t are rather limited

2 Cloud Computing, InterCloud, Cross-cloud
References fodtac RGN Federation, Cloud Interconnection

Eny)a R etal., 2009. Cloud cnmp\mng and emerging IT p«aﬂovms Vision, hype, and reality for delivering computing as the 5th utilty. Future Generation Computer Systems, 25(6), pp.599-616. Retrieved February 8. 2011

212921 el P& Grance, T. 2011, The NIST Deftion of Cloud Camwhng NIST Special Publication 800-145 (Draf). Retrieved February 8, 2011, from http //csic. nist gow/publications/drafts/800-145/Drat SP-8(

3.+ Sheth, A & Ranabahu, A. 2010, Semaniic Modeing for Cloud Computing, Part 1 IEEE Intemet Computing, 14(3). pp 8183 Retreved February 8, 201, fum hi isee

4. 1 Oberle, K. & Fisher, M., 2010. ETSI CLOUD - Inital Standardization Requirements for Cloud Services. In GECON 2010, LNCS 6296. pp. 105-115

5. 1 Goyal. . 2010 Enterpise Usabityof Cloud Comguting Environments: 5sues and Challenges. 2010 19t EEE Itematonal Workshops on Enabling Technalagis:Infastructures for Cllabortve Enorpses, pp 54-59. Retieved February , 201, fom i
picO3wrapper him?amumb

per htmPamumber=5481371&@

6. 1 [11:27] Dikaiakos, M.D. et al, 2009 Clod Computing - Distributed Intemet Computing for T and Scientific Research. IEEE Intemet Computing, pp.10-13. Retrieved February 8, 2011, from h w.nebi nim. nih. govipubmed/21097207 @
7. 1 Dillon, T, W, C. & Chang, E., 2010. Cloud Computing - Issues and Challenges. In 2010 24th IEEE Intemational Conference on Advanced Information Networking and Applications. pp. 27-33
8. 1 Calesti, A et al, 2010. How to Enhance Cloud Architectures to Enable Cross-Federation. 2010 IEEE 3rd Intemational Conference on Cloud Computing, pp.337-345. Retrieved February 8, 2011, from htp://ieeexplore ieee org/ipdocs/epic03/wrapper him?amumber=5557976 ¢

See Also [editar]

« Bemste, D. & Vij, D.. 2010. Intercloud Dires

« Bemstein, D. et al., 2009. Blueprint f

072540 @

« Brandic, |. et al, 2010. rmmv u d Computing (C3) Architecture and Language Support for User-Driven Compliance M
apper ht @

+ Biscoe, G. & Marinos, A., 2009, Digita ecosystems in the clouds: Towards communiy cloud computing. 2009 3 IEEE Intemational Corference on Digtal Ecosystems and Technologes, pp.103-108. Retieved February 8, 2011, from it xplore.jeee org/ipdocs/epic03

and Exchange Protocol Detail Using XIMPP an In 2010 6th World Congress on Senices. IEEE, pp. 431438, Retrieved February 8, 2011, from hitp//iseexplore e o tm7amumber=5577272. @

rability. 2009 Fourth Intemational Conference on Intemet and Web Applications and Senices, pp.328-336. Retrieved Febvuary 8,201, from

intercloud - Protocols and Formats for Cloud Computing In

ent in Clouds. 2010 IEEE 3rd Intemational Conference on Cloud Computing, (), pp.244-251. Retrieved February 8. 2011, from hitp //ieeexplore ieee org/ipdo

(@)

Cloud Interoperability

Ainda n3o exste texto nesta pdgna_Pode pe ¥ 0 tulo desta pégna nowtras paginas ou

(b)

Figure 6.9 - Ontology to Wiki Synchronizaton. (a) Wiki page before deletion; (b) Wiki page after deletion

As happened with the previous example, some of the java code developed to perform this
synchronization task is illustrated in appendix 9.2.

6.2. Wiki to Ontology Synchronization Demonstration

In this subsection, firstly an example of the synchronization process between the wiki and the ontology
is the creation of a new publication page on the wiki will be presented. Next an example of editing a
scientific area page in the wiki and posterior synchronization with the ontology will be presented.
However before going into the specific demonstration examples, a study of the cases that can occur

when synchronizing the wiki with the ontology was made.

Table 6.2, on the first column, shows the identified cases when the synchronization is between the
wiki and the ontology. The second column indicates the recommended action to take in the ontology
for each specific case that occurs in the wiki. Finally, the third column specifies which cases have

been implemented in the developed synchronization tool prototype.

Table 6.2 - Wiki to Ontology Synchronization cases analysis

Wiki Case Action Implemented

New instance in Publications class under the EISB_Glossary class with proprieties
filled according to wiki text

New instance in bibliography class with properties filled according to wiki text. Yes
Create instances for new researchers that don’t yet exist.

New
publication

New Create a new instance in EI_Ingredients class with proprieties filled according to wiki

Ingredient | text. Yes

New SA 1. Create new sub-class in the El_ScientificAreas class; Yes

83

Wiki Case

Action

Implemented

Create new instance in that same subclass
Create new instance in ScientificAreas class under the EISB_Glossary
class

w N

1. Create new sub-class in scientific area that this sub area is part of in the
El_ScientificAreas class;

New SSA 2. Create new instance in that same subclass Yes
3. Create new instance in subScientificAreas class under the EISB_Glossary
class
Get the respective instance in the publications class and edit the values of the
Edit properties according to the changes verified in the wiki text
Publication Also edit the corresponding bibliography instance filling the values of the -
proprieties according to the wiki text.
Edit the respective researchers instances (if needed)
Edit Get the respective instance in the El_Ingredients class and edit the values of i
Ingredient the properties according to the changes verified in the wiki text
. Get the respective instance in the ScientifcAreas class and edit the values of the
Edit SA ; - o - Yes
properties according to the changes verified in the wiki text
. Get the respective instance in the subScientificAreas class and edit the values
Edit SSA . . o g, Yes
of the properties according to the changes verified in the wiki text
Remove Remove the respective instance from the Publications class and also remove i
publication the respective bibliography instance
_Remo_ve Remove the respective instance from the El_Ingredients class -
ingredient
Remove the respective instances from the ScientificAreas and
Remove SA El_ScientificAreas class. -
Also remove the corresponding subclass from the El_ScientificAreas class
Remove the respective instances from thesub ScientificAreas and
Remove S
SSA El_ScientificAreas class. -

Also remove the corresponding sub-subclass from the El_ScientificAreas class

6.2.1. New Publication

In this example, the “Cloud Computing” publication was created on the wiki and then the

synchronization tool was run to perform the synchronization with the ontology.

The user begins by executing the synchronization tool and performing the previously described

initializations. Once the user clicks the synchronization button of the java application GUI, the program

checks the “recentchanges” table of the wiki DB for any changes that have occurred in the wiki since

the tool was last run. In this particular situation, as referred earlier, the tool detects a new publication,

as shown in Figure 6.10.

Wiki Database User root Wiki Database IP localhost

| Activate | [Synchronize |

Wiki Database Password ***** Wiki Database Name wikiDB

Ontology Location C:/Users/goAlves/Desktopitests/ Project Name

RecentChanges table 1

=== New Publication Detected ===

tal
Ontology

Individuals Created

Status

===Connected to wiki database=== A
Synchronization possible ===

===ACTIVE===
===Connected to wiki database===
===8ynchronization possible ===

Figure 6.10 - Wiki to Ontology Synchronization example - New publication detection

FINESV3_1

Subsequently, the program retrieves the page content from the wiki DB and proceeds to breakdown

84

the different sections of the page. In this example the newly created page refers to the “Cloud

Computing” publication which is illustrated in Figure 6.11.

Cloud Computing

Contents [hide] Concepts &

o X
1 Citation Positions
2 Abstract Methods X
3 Keywords
4 EI Scientific Area Addressed Praof of x
Concepts
5 EI Level Addressed
6 State of EI Issue Tackled Tools -
7 Maturity
8 Licencing Experiments -
9 Link to Mendeley Case
Studies
Citation Surveys-
Empirical B

Cunsolo, V.D. et al., 2010. Cloud Computing N. Antonopoulos & L. Gillam, eds. Computer Communications, pp.93-111. Retrieved February 8, | pata
2011, from http: 1-84996-241-4 .

ww.springerlink.com/index/10.1007/978-
Standards -
Abstract

Computing as yeu know it is about to change, your applications and documents are going to move from the desktop into the cloud. I'm talking abeut cloud
computing, where applications and files are hosted on a "cloud” consisting of thousands of computers and servers, all linked together and accessible via the Internet.
With cloud computing, everything you do is now web based instead of being desktop based. You can access all your programs and documents from any computer
that's connected to the Internet. How will cloud computing change the way you work? For one thing, you're no longer tied to a single computer. You can take your
work anywhere because it's always accessible via the web. In additien, cloud computing facilitates group collaboration, as all group members can access the same
programs and documents from wherever they happen to be located. Cloud computing might sound far-fetched, but chances are you're already using some cloud
applications. If you're using a web-based email program, such as Gmail or Hotmail, you're computing in the cloud. If you're using a web-based application such as
Google Calendar or Apple Mobile Me, you're computing in the cloud. If you're using a file- or photo-sharing site, such as Flickr or Ficasa Web Albums, you're
computing in the cloud. It's the technology of the future, available to use today.

Keywords

EI Scientific Area Addressed
Cloud Interoperability - High Relevance
EI Level Addressed

Conceptual - High Relevance

State of EI Issue Tackled
Design Phase - High Relevance
Maturity

Mature

Licencing

Free

Link to Mendeley

http:

w.mendeley.cem/research/cloud-computing/ &

Figure 6.11 - Wiki to Ontology synchronization example - Publication to be synchronized

Then the tool creates a publication instance in the ontology and fills the respective properties with the
previously broken down sections of the wiki page. Finally, the tool saves the ontology with the new
publication and the synchronization process is finished, with the results being shown in Figure 6.12.
Part (a) of that same figure, shows the result of the finished synchronization process in the developed

tool. Part (b) illustrates the created instance in the ontology, viewed here in the Protégé editor.

n A A A B BB A Rk — =

File
Wiki Database User root Wiki Database IP | localhost
Activate Synchronize
Wiki Database Password =" Wiki Database Name wikiDB
Ontology Location CiUsersigoAlves/Deskiopitestis/ Project Name FInESV3_1
Ontolog:
RecentChanges table 1 Individuals Created
Status Status
sonnected to wiki databas]
===Synchronization possible === CTIVE=== i
=Connected to wiki database:
=== New Publication Detecled === =8ynehronization possible ===
====New publication -=Cloud_Computing inserted into the on
Wiki to Ontology synchronization finished===
I aving ontology file===
ntology File saved with 0 errors===
Recent changes table successfully cleared===
=== Wiki to Ontology Synchronization completell === v
< 3

@)

85

DIVIDUAL EDIT

@ FinESv3_1

-
Chas Berachy i I CEeag O [
owt Thing s - ¥ * X G Property Vale Lang |
® Bkliography (5 @ Cloud Computig rdfs comment
¥ Cortert_Classifier @ Cloud computiog and emerging IT platforms: Vision,
@ B_Barrier_Classifier @ Compliart Cloud Compiting (C3) Archtscturs snd L
® B.Meturty_Classities # Intercloud Directory and Exchange Protocel Detai Lt
® B_prase_ossitier @ Organisationsl Barriers 1o Intercperahiity
@ scientific_sres_Cisssifier (¢
b @ El_Contents_Categorization -
v @ B framework) I e e ¥ 4 € tsigredient Ve
v Es8 Hnowiedge Sase 12 technology of the future, avalable to use today. | 4 "Cloud Computing’ 9 Concapts end Postions
b B _Scieniliic_Aress & Wethods
b @ ESB_Community Sl b o b2 o Froof of Concepts
: : ?:;’T:m’m“’me“ s-cluster. su/fines/mw findex php/Cloud_Computing Value Lang f

 E5B_Proziem_Space [
» O E2B_Sokiion_Space LinkMendeley &R | isClassif - -« .

i ssifedAs
v @ Ese vk (1 Jiwwew mendeley comiresearchicloud-computing! | [Cloud_ntercperabiity_26 High
v @ 83B_Glossary (1)

@ Elingredierts (12 s R P b 52

@ Scientific_Area (12 Cioud Computing Value Lang |

@ Scienific_Subérea (5 |

» @ BSB_Neighbouring_SDRG 1 z Y S & ..
@ Pubications (5, & Scientic_Fublicsions_10

@ Researchers (& - & =
(b)

Figure 6.12 — Finished wiki to ontology synchronization process: (a) - java GUI; (b) Created instance

In conclusion, the top part of Figure 6.13 features the wiki page with its various sections and contents
whereas the bottom part features the version of the same publication represented in the ontology
(Protégé interface). The various sections of the wiki page have a direct correspondence in the

ontology, and all of the contents are therefore well migrated.

An excerpt of the java code used to perform this synchronization task is shown in appendix 9.3.

Cloud Computing

ET Level Addressed
State of E1 Issue Tackled

Maturity

For Project: @ FRESv3_{ Publications

Class Hicrarchy R | Asseri=d | 2 [Annotations
i Thing — - ¥ @ X G Property [Value | [vang |
® Eibliography (5) [Cioud Comauing =
¥ @ Corfert_Clessifier | Clouet computing and emerging IT pettorms: Vision,
© Bl Barrier_Classiier (1) @ Compliart Cloud Computing (37 Architecture and L|
© &1_vsturty_Clossifier |4 rtercloud Directory st Exchangs Protoco Detsi L
© El_Phase_Classifier (1) @ Crgarisational Barrisrs to Interoper abilty
@ scentific_area_Clssifier (4
b @ El_Conlents_Categorization s
v @ erse_framework Abstract £ R reldftedTo_Bibliography ¢ 4 & nsingrediont ¢ o

¥ @ EiSB_Kneviedge_Base (1)
» @ El_scientific_sress
» © EISB_Community
O £ R L 2
» @ EIS5_Neighouring_Sciertific_areas FINES_Page HasLicence i
b @ Tanable_Cortert [s-custer. php/Cloud_Computing| Vale [teng
- Free

© EiSB_Problem_Space
[LinkMendeley 2R isClassifedAs ¢ o

[@ Concents and Fostions
|4 Methods
|@ Proot of Concepts

[re technoiogy of the future, availabie to use today. | |4 *igud Computing'

v @58 (1) || [rmorvrve.mendeley.comiresarchicloud-computing| 1@ Cloud_interoperabilty_35 High
¥ @B _clossary (1) 7l
® Elngredierts (17) Hame £ R Keywords £ dp 2
@ sciniic_pres (12 [Coua Computng | = C oo
1 sciertific_Subérea (5) £l - D
» @ EISB_Neighbouring_SDRG Instance0f LR %
© Publications (%) [@ Scientific_Publications _10
© Ressarchers (5) - = S

Figure 6.13 - Wiki to Ontology new publication synchronization example

86

6.2.2. Edit Scientific Area

In this example, the “Cloud Computing” publication was created on the wiki and then the

synchronization tool was run to perform the synchronization with the ontology.

As with previous examples the users start by executing the synchronization tool and performing the
required initializations. Then the users press the synchronization button to begin the process. Once
again the application starts by checking the “recentchanges” table of the wiki DB and retrieves any
changes that may have occurred in the wiki since the synchronization tool was last executed. In this
particular example, the synchronization tool detects that a scientific area page was modified (edited),

as illustrated in Figure 6.14.

File

Wiki Database User root Wiki Database IP localhost
| Activate | | Synchronize |

Wiki Database Password ***** Wiki Database Name wikiDB

Ontology Location C:/Users/goAlves/Desktopitests/ Project Name FINESV3_1

W Ontology
RecentChanges table 2 Individuals Created
Status Status

< ===ACTIVE===

onnected to wiki database
===8ynchronization possible ===

=Connected to wiki database===
===8ynchronization possible ===

=== Edited Scientific Area Detected ===

Figure 6.14 - Wiki to Ontology Synchronization example - Edited Scientific area detection

In this example, the edited scientific area is the “Social Networks Interoperability” area. Half (a)
lllustrates a fragment of the page before editing, while part (b) shows some the scientific area wiki
page after editing. The edited items are circled for a better visualization. Subsequently, the

synchronization tool breaks down each section of the edited page.

Sacial Networks Interoperability

v [-
A social network, according to Wikipedia is a social structure made up of individuals (o SA.9 - Social Networks Tnteroperability
organizations) called "nodes”, which are tied (connected) by one or more specific types of
interdependency...” Recent studies indicate that people are increasingly engaged with social technalogies,
Over half of all Internet users are “content creators” who create websites or blogs, share original media
such as photos and videos, or remix content into new creations. Social Networks such as Twitter &7 or Description

The ability of enterprises to utilise social
networks for collaboration and
interconnection purposes, by aligning part

Facebook B often are a cornerstene of this information space. of their internal structure and functions to
Social networks are a major evolution coming out of Web 2.0 and in the last years they have attracted the characteristics of the social networks.
the interest of enterprises, not only for promotional and advertising reasens, but alse for operational

purposes, ranging from developing networks of their employees, collaborators and clients, to delivering BackLinks

services through specific features and functions of popular social networks. Not leng ago, enterprises
have realised that the power of social networks can also positively or negatively impact their business oo L

Data Interoperability
Cultural Interoperability
operations. The impact and are also underlined in JRC-IPTS report 2], which amangst others states that| Links

Sacial Computing is now that and po cannot afford to overlok, has (T e

the potential to reshape work, health and learning and is a driver for growth and employment.

Ecosystems Interoperability
Keeping aside the dimension of reputation management in social media (which is by its own 2 huge
research landscape), enterprises steadily understand the value behind social networks integration to Indicative

their operation and try to exploit the advantages offered by these networks in terms of collaboration Scientific
3] . Sub-Areas
states "Social networks provide|

Sacial Network Characteristics Infusion

between themselves and also between their own employees. As

means for enterprises to capture and expose many informal connections between their stakeholders.” Social Networks, Social Media, Web 2.0,

Moreover as Garner states "Within the enterprise, social computing facilitstes many interpersonal 1295 Social Computing, Enterprise 2.0

functions with business implications, such as internal teaming, problem solving, collaboration, and

knowledge management and transfer. Such interactions lie at the core of meeting growing business demands to imprave enhance o and
ge innovation gl the “ As a result, companies that are active in Web 2.0 environments are able to exchange client portfolios, to align

their online social media strategies for achieving a joint cause, to interconnect their departments and employees through these networks, stc. However, seamless
interoperability between different entities in this domain does not solely mean just the presence and the usage of social networks, but goes further down to the
construction of an internal, flexible organisational structure that is aligned with the philosophy and the fundamental aspects of social networks. A great number of
APIs offered by social networks exist today, which offer the possibility to enterprises not only to interconnect in @ seamless way to these networks, but also to build
their products and services on their platforms. In fact, every one of those networks offers today its own API (like Facebook &, Youtube &, Twitter &, MySpace &,
LinkedIn®, Microsoft Live 8 and Google Opensocial), which includes a number of functions and calls to the underlying software framework and as such those
networks are regarded as application platforms, closely related with the idea of cloud computing.

@)

87

Ope

schema {41

A social network, according to Wikipedia'"' *

Social Networks Interoperability

is social structure made up of indwiduals (or organizations) called “nodes”. which are tied (connected) by one or more specific types of interdependency.
people are increasingly engaged with social technologies. Over half of all Intemet users are “content creators” who create websites or blogs. share original media such as photos and videos, or remix content into new creations. Sociall
Networks such as Twitter & or Facebook & often are @ comerstone of this information space.

of an intemal, flexible

* Recent studies indicate lhall

Social networks are a major evolution coming out of Web 2.0 and in the last years they have atiracted the interest of enterprises, not only for promational and advertising reasons, but also for operational purposes, ranging from developing

networks of their employees, collaborators and clients, to delivering senices through specific features and functions of popular social networks. Not long ago, enterprises have realised that the power of social networks can also positively Description
or negatively impact their business operations. The impact and are also underiined in JRCIPTS report % which amongst others states that Social Computing is now mainstream that companies and policymakers cannot afford to

overlook, has the potential to reshape work, health and learning and is a driver for growth and employment
Keeping aside the dimension of reputation management in social media (which is by its own a huge research landscape), enterprises steadily understand the value behind social networks integration to their operation and try to exploit the
advantages offered by these networks in terms of collaboration between themselves and also between their own employees. As
between their stakeholders.” Moreover as Gamer states “Within the enterprise. social computing faciltates many interpersonal functions with business implications, such as intemal teaming, problem sobing, collaboration, and knowledge
management and transfer. Such interactions lie at the core of meeting growing business demands to improve communications, enhance collaboration and encourage innovation throughout the organization.” As a result, companies that are
active in Web 2.0 emvironments are able to exchange client portiolios, to align their online social media strategies for achieving a joint cause, o interconnect their departments and employees through these networks, etc. However, Links
seamless interoperability between diferent entities in this domain does not solely mean just the presence and the usage of social networks, but goes further down to the

states "Social networks provide means for enterprises to capture and expose many informal connections

aligned with the hiosophy and the fundamental aspects of social networks. A reat umber of APYS ofered by sacial networks exist today. which ofr the possdity to entrpises o only to interconnect in a
networks, but also to build their products and semices on their platforms. In fact, every one of those networks offers today its own AP (ike Facebook, Youtube @, Turttere, N 50
cial), which inchudes a number of fctons snd caks to the underying soktwars ksmework and a5 such those networks are regarded 83 sppication pltionms, closaly related with the iea of coud computing

should be able to manage and interconnect all their social media accounts. As nowadays Intemet presence is a fundamental issue for enterprises, it is quite common for an enterprise to possess accounts in almost every social media,
as this will maximize its visibiity and expose the brand name globally. In those terms, integration and interoperability between those platforms should be pursued by enterprises through the implementation of various tools will allow the
of their presence in those points. Secondly, and most important, enterprises need to redefine their senvices, operation and intemal structure in order to integrate social network characteristics to their daily operation. This will push them more towards an Enterprise 2.0
1, where Web 2.0 and social networks become the operational emvronment of them.

structure that is,

Hierarchical

The ability of enterprises to utlise social
networks for collaboration and
interconnection purposes, by aligning part
of their intemal structure and functions to
the characteristics of the social networks.

BackLinks

« Data Interoperabilty

« Cultural Interoperability
Outbound Links

« Ecosystems Interoperability

I those terms, Social Networks Interoperabity can be defined as the abity of enterprises to seamlessly interconnect and utilise social networks for collaboration purposes, by aligning part of their intemal structure and functions to thelg v a o
characteristics of the social networks. This ability, as stated before should concentrate into two diflerent operations, as seen from an extemal observer, but should converge within the boundaries of the enterprise. Firstly, enterprise

Social Networks, Social Media

(b)

Figure 6.15 - Scientific area page - (a) Before editing; (b) After editing

Since this is merely a modification of page contents, it is assumed that an instance corresponding to

the wiki page already exists in the ontology. That being said, the synchronization tool then proceeds to

retrieving the instance associated with the “Social Networks Interoperability” scientific area and resets

its properties to the new values, gotten from the previously broken down sections of the page. Finally,

the tool saves the ontology with the edited scientific area and the synchronization process is finished.

The results of this synchronization process are shown in part (b) of Figure 6.16, while part (a)

illustrates the scientific area instance before the modifications, and part (c) indicates the finished

synchronization process in the java interface.

INSTANCE BROWSER INDIVIDUAL EDITOR for
For Class: @ Scientific_Area tpiwww. owl-ontologies. comOntology! Area_1 ® scentinc_Aren
Asserted | Inferred [Asseried |infoired
multiple properties Y ¥ # X & munpleproperties > ¥ # X &
[@ 5.1 Data rteroperabity @ SA1 Dela kteroperatiy’
@ a0t 4 S8 10 Beetonic isertly teroperatity’
) . + . .
@ SA.11 Cou nteroperskitty’ Definition £ R nasseeaiso ¢ [SAT1 Coud deroperatity efintior P B nasseeniso e
|@ 58,12 Ecasystems teroperabity’ s ome p 1 bt wars Arroteing st 4 SA 12 Ecosystems teroperatiey’ P " -
|@ 58.2 Process nteroperabitty @ The Impact of Secal Compuing on the EU nos @ 542 Process Iteraperstity’ 4 Tre npact of Social Computing on the EL nfor
|@ 553 Rules Interonersbilty' @ The Semartics of a Policy Languags Framew: 4 SA 3 Rules Rleroperabity’ o R @ The Semartics of a Poicy Language Framewc
FINES_Page £ R WES_Page
@ S8.4 'Objects Interaperabilty’ [mesfindex phpfSocial Networke. Ineroperanity] 4 SA 4 ‘Objects interoperabiity’ ™
simwiingex php/SocL Networks. il I D etwcrts a I 5
@ 58,5 'Software Interoperabilty' #SAS
|@ 5.5 Cutural nteropersiity *sas0 m - — {2
: s, | [Sntmmen = I ®
“Soviel Networks Characteriiios nfusion’
|@ 5.8 Services ineroperabity’ EE 4 SA7 Knowledge Iteraperatity’
|# 549 Social Netwarks Interoper abilty' (4 SAB 'Services Interoperabilty’
WainText LR ainrext SR
) the promising candidate for such activites. </p* 1 the promising conddate for such actiies. <ips
Name. O R hastags ¢ o0 Hame £ K[hasTags LK
Social Networts Interoperabilty @ Erterpris= 20 Socil Networks interoperabity : MSW}"' Wm
@ Saciel Computing s
@ Socid Vedia - -
isinstanceor LR R N S stanceon tee
@ Social Netwrks_teroperabilly_116 @ vien 20 4 Socisl_Networks_rteroperatilty_116
¢ oo =P - oo
["] ® || ¢ atveac o s comuing e] b s S g e
File
Wiki Database User root Wiki Database IP localhost
Activate Synchronize E
Wik Database Password ***** Wiki Database Name wikiDB
Ontology Location C:Usersig: FINESV3_1

=Wiki===:

RecentChanges table 2

Status.

onnected to wiki databat
ynchronization possible

=== Edited Scientific Area Detected ===

-Ontology==:
IndMduals Created
Status

L] ACTIVE===

Scientific Area ->Social_Networks_Interoperability updated!

===Wiki to Ontology synchronization finished===
aving ontology file=

ntology File saved with 0 errors===
ecent changes table successfully cleared===

Connected to wiki database:
Synchronization possible

(©

Figure 6.16 - Edited Scientific Area Synchronization - (a) Instance before editing;

Finished process - Java GUI

88

(b) Instance after editing; (c)

In conclusion, Figure 6.17 features the edited wiki page and ontology instance with the

correspondence of the modified sections in each one, ensuring that all of the contents are therefore
well migrated.

Social Networks Interoperability

SA.500 . Social Networks Interoperability I

Social netwarks are a major evolution coming ous of Web 2.0 and in the last yea
metworkes o their employees. collaboralors and chents, 1o delhering semices thio.

or negatively impact their business aparations. The impact and are aiso

The abiity of enterprises to utilse social

from develoging netwarks for collaboration and

50 850 posithely Dascription Ilercoanection purposes, by signing pat
cannot aiord tg ol their and fanctons to

the characteristics of the socis netwarks
Keepi - ty 1o explet the
adiartages ofred by these networks in mai cannections
betiwean thei stakeholders.” Moreaver 35 Gamer statas W . and knowldge « Data nteroperabiity
m e at the core Tapanies that ore Wierarchical « Cutura Interoperabiity
Links

BackLinks

Outbound Links

+ Ecosystems Interoparably

9 i1 <
chaa b 4 = Z
; s g o 5 ey social mpsreTags Social Hotworks, Sacil Meda
a5 izs s iy an - o e — i wil s the
nagemen of ther pesence i thos econdly. and most thei Baily operation. This wil push them mare towards an Enterpise 2.0
WIS, haia Wi 2.0 and social etworks: baconé the opeeationl smieomy s TTT

L —_T

£l o

40 e moct o Socid ampndin o e B et

Figure 6.17 - Wiki to Ontology Edited Scientific Area example

Similarly to the previous examples, a part of the java code used in the implementation of this
synchronization process is presented in appendix 9.4.

6.3. Synchronization Tool Demonstration Concluding Remarks

Regarding the synchronization process between the EISB reference ontology and FInES wiki it is
important to have semantic checking because it ensures that, as both systems evolve, the data
represented in them remains consistent. This was demonstrated in this chapter by presenting some

use case examples of the synchronization process, showing that the synchronization was successful
and that the data remained consistent and well represented in both systems.

This chapter also serves to reiterate the idea expressed when the proposed framework was presented
in section 3.4. The idea is that in complex systems like this one, the prior knowledge of the
synchronization method facilitates the semantic checking process. This became apparent in these

demonstrations, because the knowledge represented in both elements was properly aligned, therefore
allowing the modifications on one side to be properly reflected in the other.

89

/. CONCLUSIONS AND FUTURE WORK

Today’s demanding world is inciting small enterprises to think of new ways to do business in order to
survive and keep up with market requirements. Such enterprises started to realize that to in order to
grow they needed to target a larger market to reap more benefits. To achieve this goal, enterprises
must seek collaboration with one another in order to be able to compete with the larger enterprises
that dominate the bigger markets. However, collaboration does not come easy since there is usually a
price to pay and some enterprises are reluctant to cooperate since they feel they have to change their
way of doing business. Regardless, interoperability is key in today’s world and should be seen as an

opportunity instead of a barrier.

To achieve interoperability, enterprises need to communicate and collaborate with each other in order
to achieve a common understanding. However, it is often the case that these communications are

unsuccessful due to semantic interoperability issues.

The proposed framework was developed with the idea to provide general solutions to various contexts
and situations, allowing organizations to effectively assess if their KREs are consistent, specifically, on
a semantic level. Following its guidelines it was possible to assess the semantic consistency of the
involved ontologies on a small case study scenario that comprises a bolt retailer and a manufacturer.
The framework also enables companies to evaluate if there are losses in the information exchanges
that occur between the knowledge elements. In addition, the framework indicated a possible solution
through a reasoning process, more specifically using the HermiT and Pellet reasoners, to assess the
conceptual consistency of ontologies. Furthermore, this framework can also be used for enterprises to
evaluate the consistency of their own KREs before attempting to communicate with others.
Concerning the structural point of view of the semantic checking issue, a prototype was developed for
an ad hoc synchronization mechanism for multiple ontologies under the ENSEMBLE project work,
between a wiki and an ontology. This prototype for a synchronization mechanism demonstrated that is
possible to maintain the structural consistency of the involved KREs, by seamlessly exchanging data

from on system to another without tampering with their architectures.

In conclusion, the proposed framework could prove to be a valuable asset in helping, as a guideline, in

the semantic checking of knowledge repositories.

7.1. Research Validation

To accomplish the research validation of this work it was followed a research method presented in
section 1.3. Aligned to this is the research question presented in the beginning of this dissertation, and
in response, it was verified that it is possible to check the semantic consistency of data exchanges
between enterprises information systems by resorting to the guidelines provided by the proposed
framework. The understanding between the systems can be preserved, thus maintaining semantic

interoperability. This was demonstrated along the course of this document, specifically in the scenario

91

concerning the data exchange between a client system and a bolt manufacturer and retailer systems
in section 4.1.5.1. With this situation it was possible to demonstrate the capability of the framework to

help detect conceptual inconsistencies between the different KREs.

Also regarding the research question presented in the beginning of this dissertation, the demonstration
of a synchronization process in section 6 helped validate one of the guidelines proposed in the
framework, namely in items 5 and 6, where multiple KREs are involved. This scenario contributed to
demonstrate that knowing the synchronization process indeed facilitates the maintenance of the
semantic checking process. Through the demonstrated examples it was shown that this knowledge

ensured that the contents between the elements of the system remained well aligned and consistent.

With both these scenarios, it can be established that both, reasoning and synchronization processes,
when used separately or together, are extremely important when validating and maintaining the

semantic consistency of data exchanges between the enterprises information systems.

Regarding the research question presented in the beginning of this dissertation, it was verified that it is
possible to check the semantic consistency of data exchanges between enterprises information
systems by resorting to the guidelines provided by the proposed framework. The understanding

between the systems can be preserved, thus maintaining semantic interoperability.

For intentional purposes of the research results of this dissertation, a scientific publication was
published in the proceedings of the Fifth Interop-Viab.It Workshop on the 28" of September 2012 in

Rome — Italy:

e Alves, G., Sarraipa J., Silva, J. P. M. and Jardim-Gongalves R. A Framework for
Semantic Checking of Information Systems, Accepted In: Fifth Interop-Viab.It
Workshop, 28" of September 2012 in Rome, Italy (2012).

7.2. Future Work

The main purpose behind the developed solution is to have seamless synchronization between
knowledge representation systems, and in order to fulfil that goal all cases that can be identified need
to be implemented. Therefore, in terms of future work, more features of the prototype can be

” o«

implemented such as, the cases of “new classes”, “edit properties”, etc... (Table 6.1) or the “Remove

publication”, “Edit Ingredient”, etc... features (Table 6.2).

On a different note, validation scenarios for items 3 and 4 of the framework, regarding composite

ontologies could be devised.

Yet another topic of future work regarding the proposed framework is to test its items with more

scenarios to further demonstrate its effectiveness.

92

8. REFERENCES

[1] Silva, J. P. M, Cavaco F., Sarraipa, J. and Jardim-Gongalves, R. (2011). Knowledge Based
Methodology Supporting Interoperability Increase in Manufacture Domain. Proceedings of the
ASME Congress 2011, November 11-17, Denver, CO, USA.

[2] Sarraipa J., Jardim-Gongalves,R., Gaspar, T. and Steiger-Garcéo, A. (2010). Collaborative
Ontology Building using Qualitative Information Collection Methods. International Conference on
Intelligent Systems, IEEE. Jul 7-9, London, United Kingdom, (2010).

[3] The Free Dictionary (2010). Framework Meaning. Retrieved from the web at May 2012:
http://www.thefreedictionary.com/framework.

[4] Work Package — A4.2 Participants (2007). Athena Deliverable Number: D.A4.2: Specification of
Interoperability Framework and Profiles, Guidelines and Best Practices — version 1.0; March,
2007.

[5] Charalabidis, Y; Gionis, G; Hermann, K; Martinez, K.: Enterprise Interoperability: Research
Roadmap. Update Version 5.0 (2008).

[6] Camarinha-Matos L. (2010). Scientific Research Methodologies and Techniques - Unit 2:
Scientific Method, PhD Program in Electrical and Cumputer Engineering (2010).

[71 Grimm, S., Hitzler, P. and Abecker, A. (2007). Knowledge Representation and Ontologies —
Logic, Ontologies and Semantic Web Languages. University of Karlsruhe, Germany (2007).

[8] Sarraipa, J. (2004). Uma solucéo para a Interoperabilidade Semantica em ambientes globais de
negacios. Universidade Nova de Lisboa, Faculdade de Ciéncias e Tecnologia.

[9] de Bruijn, J., Ehrig, M., Feier, C., Martin-Recuerda, F., Scharffe, F. and Weiten, M. (2006).
Ontology mediation, merging and aligning.

[10] Noy, N. and Musen, M. An Algorithm for Merging and Aligning Ontologies: Automation and Tool
Support. Stanford Medical Informatics, Stanford University.

[11] Shamsfard, M. and Barforoush, A. The State of the Art in Ontology Learning: A Framework for
Comparison. Intelligent Systems Laboratory, Computer Engineering Department, Amir Kabir
University of Technology.

[12] Cimiano, P., Madche, A., Staab, S. and Volker, J. Ontology Learning. Handbook on Ontologies
Second Edition, International Handbooks on Information Systems pp 245-268.

[13] Sarraipa, J. Semantic Adaptability for the Systems Interoperability. PhD Dissertation in Electrical
and Computer Engineering, New University of Lisbon, Science and Technology Campus, to be
presented in 2012.

[14] Alfaries, A., Bell, D. and Lycett, M. Ontology Learning for Semantic Web Services. School of
Information Systems, Computing and Mathematics, Brunel University, Uxbridge, United Kingdom.

[15] Youn, S., Arora, A., Chandrasekhar, P., Jayanty, P., Mestry, A. and Sethi, S. Survey about
Ontology Development Tools for Ontology-based Knowledge Management. University of South
California.

[16] Stanford Center for Biomedical Informatics Research (2012). Protégé Overview, available from
http://protege.stanford.edu/overview/index.html. Acessed on February 2012.

[17] About Ontopia, available from http://www.ontopia.net/page.jsp?id=about, accessed on February
2012.

[18] Pepper, S. (2000). The TAO of Topic Maps — Finding the Way in the Age of Infoglut, available
from http://www.ontopia.net/topicmaps/materials/tao.html#d0e140, accessed on September 2012.

[19] Ontopia The editor, available from http://www.ontopia.net/page.jsp?id=ontopoly, accessed on
February 2010.

[20] Ontopia The browser, available from http://www.ontopia.net/page.jsp?id=omnigator, accessed on
February 2012.

[21] Dicheva, D. and Dichev, C. TM4L: Creating and Browsing Educational Topic Maps. Winston-
Salem Stat University, Computer Science Department.

[22] Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C. and Giannopoulou, E. (2007). Ontology
Visualization Methods — A Survey. ACM Computing Surveys, Volume 39, Number 4, Article 10,
October 2007.

[23] FInES Wiki, available from http://www.fines-cluster.eu/fines/mw/index.php/Main_Page, accessed
on February 2012.

[24] Ontopia Graphical Visualization, available from http://www.ontopia.net/page.jsp?id=vizigator,
accessed on February 2012.

93

http://www.thefreedictionary.com/framework
http://protege.stanford.edu/overview/index.html
http://www.ontopia.net/page.jsp?id=about
http://www.ontopia.net/topicmaps/materials/tao.html#d0e140
http://www.ontopia.net/page.jsp?id=ontopoly
http://www.ontopia.net/page.jsp?id=omnigator
http://www.fines-cluster.eu/fines/mw/index.php/Main_Page
http://www.ontopia.net/page.jsp?id=vizigator

[25] Storey, M., Musen, M., Silva, J., Best, C., Ernst, N., Fergerson, R. and Noy, N. Jambalaya:
Interactive Visualization to enhance ontology authoring and acquisition in Protégé.

[26] Protégé Wiki — OntoGraf (2011), available from http://protegewiki.stanford.edu/wiki/OntoGraf,
accessed on February 2012.

[27] DebateGraph, http://debategraph.org/Stream.aspx?nid=61932&iv=05, accessed on April 2012.

[28] theBrain, http://webbrain.com/about;jsessionid=83856289256DA49C2185DB5A05F725F7,
accessed on April 2012.

[29] Xmind3 — Brainstorming and Mind Mapping — Google Project Hosting, available from
http://code.google.com/p/xmind3/, accessed on September 2012.

[30] Features — Xmind: Professional & Powerful Mind Mapping Software, available from
http://www.xmind.net/features/, accessed on September 2012.

[31] Reasoners, available from http://owlapi.sourceforge.net/reasoners.html, accessed on September
2012.

[32] Motik, B., Shearer, R. and Horrocks, 1. (2009). Hypertableau Reasoning for Description Logics.
Published in Journal of Artificial Intelligence Research, Volume 36 Issue 1, September 2009, pp
165-228, Oxford, United Kingdom.

[33] Gardiner, T., Tsarkov, D. and Horrocks, 1. (2006). Framework for an Automated Comparison of
Description Logic Reasoners. Proceedings of the 2006 International Semantic Web Conference
(ISWC 2006). November 5 — 9, Athens, United States of America (2006).

[34] University of Oxford, Information Systems Group (2012). Hermit OWL Reasoner Overview,
available from http://www.hermit-reasoner.com. Accessed on February 2012.

[35] Clark & Parsia (2012). Pellet Reasoner, available from http://clarkparsia.com/pellet/protege/.
Accessed on February 2012.

[36] FaCT++, available from http://semanticweb.org/wiki/FaCT%2B%2B, accessed on September
2012.

[37] Racer Systems GmbH & Co. KG (2012). RacerPro, available from http://www.racer-
systems.com/products/racerpro/index.phtml, accessed on September 2012.

[38] FaCT++, available from http://owl.cs.manchester.ac.uk/fact++/, accessed on September 2012.

[39] University of Oxford, Information Systems Group (2012). Hermit OWL Reasoner — Using HermiT,
available from http://www.hermit-reasoner.com/using.html. Accessed on February 2012.

[40] Clark & Parsia (2012). Pellet Features, available from http://clarkparsia.com/pellet/features,
accessed on September 2012.

[41] Racer Systems GmbH & Co. KG (2012). RacerPro Features, available from http://www.racer-
systems.com/products/racerpro/features.phtml, accessed on September 2012.

[42] Institute of Electrical and Electronics Engineers (IEEE) Standards Glossary, available from
http://www.ieee.org/education careers/education/standards/standards_glossary.html, accessed
on February 2012. Carnegie Mellon University.

[43] Kasunic, M. (2001). Measuring Systems Interoperability: Challenges and Opportunities.

[44] Morris, E., Levine, L., Meyers, C., Place, P. and Plakosh, D. (2004). System of Systems
Interoperability (SOSI): Final Report. Carnegie Mellon Software Engineering Institute, Pittsburgh,
PA, USA (2004).

[45] Chen, D. (2006): Framework for Enterprise Interoperability, IFAC TC5.3 workshop EI2N (2006),
Bordeaux, France.

[46] Li, D., Huang, L. and Li, M. (2004). Dynamic Semantic Consistency Checking of Multiple
Collaborative Ontologies in Knowledge Management System. Proceedings of the 5th international
conference on Parallel and Distributed Computing: applications and Technologies (PDCAT),
December 8-10, Singapore, pp. 76-80, 2004.

[47] Jardim-Gongalves, R. (2012). Arquitectura de Integracdo de Sistemas — Aula 1, MsC program in
Electrical and Computer Engineering (2012).

[48] Park, J. and Ram, S. (2004). Information Systems Interoperability: What Lies Beneath? ACM
Transactions on Information Systems, Volume 22, Number 4, pp. 595-632.

[49] Sarraipa, J., Jardim-Goncalves, R. and Steiger-Garcao, A. (2010). MENTOR: An enabler for
interoperable intelligent systems. International Journal of General Systems, Volume 39, Number
5, July 2010, pp. 557-573.

[50] Gaspar, T. (2011). Methodology for Collaborative Enterprise Reference Ontology Building.

[51] Agostinho, C., Sarraipa, J., Gongalves, D. and Jardim-Gongalves, R. Tuple-based semantic and
structural mapping for a sustainable interoperability. Proceedings of: Technological Innovation for
Sustainability - Second IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing, Electrical
and Industrial Systems, DoCEIS 2011, Costa de Caparica, Portugal, February 21-23, 2011.

[52] ISOFIN

94

http://protegewiki.stanford.edu/wiki/OntoGraf
http://debategraph.org/Stream.aspx?nid=61932&iv=05
http://webbrain.com/about;jsessionid=83856289256DA49C2185DB5A05F725F7
http://code.google.com/p/xmind3/
http://www.xmind.net/features/
http://owlapi.sourceforge.net/reasoners.html
http://www.hermit-reasoner.com/
http://clarkparsia.com/pellet/protege/
http://semanticweb.org/wiki/FaCT%2B%2B
http://www.racer-systems.com/products/racerpro/index.phtml
http://www.racer-systems.com/products/racerpro/index.phtml
http://owl.cs.manchester.ac.uk/fact++/
http://www.hermit-reasoner.com/using.html.%20Accessed%20on%20February%202012
http://clarkparsia.com/pellet/features
http://www.racer-systems.com/products/racerpro/features.phtml
http://www.racer-systems.com/products/racerpro/features.phtml
http://www.ieee.org/education_careers/education/standards/standards_glossary.html

[53] Sarraipa, J. and Jardim-Goncalves, R. (2011). Knowledge-based System for Semantics
Adaptability of Enterprises Information Systems. Proceedings of IWEI 2011 Third International
IFIP Working Conference “Interoperability and Future Internet for Next-Generation Enterprises”,
March 22-24, Stockholm, Sweden, 2011.

[54] Oxford Online Dictionary, Consistency Definition, available from
http://oxforddictionaries.com/definition/consistency, accessed on February 2012.

[55] Haase, P. and Stojanovic, L. (2005). Consistent Evolution of OWL Ontologies. Proceedings of the
2nd European Semantic Web Conference (ESWC), May 29 — 1 June, Heraklion, Greece (2005).

[56] Haase, P., Harmelen, F., Huang, Z., Stuckenschmidt, H. and Sure, Y. &2005). A Framework for
Handling Inconsistency in Changing Ontologies. Proceedings of the 4" International Semantic
Web Conference (ISWC), November 6-10, Galway, Ireland, pp. 353-367, (2005).

[57] Baclawski, K., Kokar, M., Waldinger, R. and Kogut, P. (2002). Consistency Checking of Semantic
Web Ontologies.

[58] CEN Workshop Agreement (2012). Testing Framework for Global eBusiness Interoperability Test
Beds (GITB). European Committee for Standardization., February 2012.

[59] Bergengruen, O., Fischer, F., Namli, T., Rings, T., Schulz, S., Serazio, L. and Vassiliou-Gioles, T.
(2010). Ensuring Interoperability with Automated Interoperability Testing. White Paper, European
Telecommunications Standards Institute (ETSI), Sophia-Antipolis, France, 2010.

[60] Jardim-Gongalves, R., Agostinho, C. and Steiger-Garcao, A. (2010). Sustainable Systems’
Interoperability: A reference model for seamless networked business. Proceedings of the 2010
IEEE International Conference on Systems Man and Cybernetics (SMC), October 10-13, Istanbul,
Turkey, 2010.

[61] Agostinho, C., Gongalves, R., Sarraipa, J., Koussouris, S., Mouzakitis, S., Lampathaki, F.,
Charalabidis, Y., Popplewell, K. And Assogna, P. (2011). ENSEMBLE Deliverable D2.3 EISB
Basic Elements Report.

[62] Gosling, J., Joy, B., Steele, G. and Bracha, G. (2005). Introduction. In: The Java ™ Language
Specification. 3rd ed. Addison-Wesley. pp. 1-5, 2005.

[63] About MySQL, available from http://www.mysgl.com/about/, accessed on August 2012.

[64] MySQL Connectors, available from http://www.mysqgl.com/products/connector/, accessed on
August 2012.

[65] Protége-OWL API Programmer’s Guide, available from
http://protegewiki.stanford.edu/wiki/ProtegeOWL_API_Programmers_Guide, accessed on August
2012.

[66] Accessing the collaboration features programmatically (The Changes and Annotations API),
available from http://protegewiki.stanford.edu/wiki/ChAQO _API, accessed on September 2012.

[67] Manual: Page Table, available from http://www.mediawiki.org/wiki/Manual:Page table, accessed
on September 2012.

[68] Manual: Text Table, available from http://www.mediawiki.org/wiki/Manual:Text table, accessed
on September 2012.

[69] Manual: Revision Table, available from http://www.mediawiki.org/wiki/Manual:Revision_table,
accessed on September 2012.

95

http://oxforddictionaries.com/definition/consistency
http://www.mysql.com/about/
http://www.mysql.com/products/connector/
http://protegewiki.stanford.edu/wiki/ProtegeOWL_API_Programmers_Guide
http://protegewiki.stanford.edu/wiki/ChAO_API
http://www.mediawiki.org/wiki/Manual:Page_table
http://www.mediawiki.org/wiki/Manual:Text_table
http://www.mediawiki.org/wiki/Manual:Revision_table

9. APPENDIX

9.1. Ontology to Wiki Synchronization — New Scientific Area instance code

example

private void createScientificArea(){

String title = getDataFromMap(saDataMap, "Name");

String table = "{{Io Scientific Area Metadata\n|SA Code= " +
getDataFromMap(saDataMap, "ID") + "|Title= " + title + "|Description= " +
getDataFromMap(saDataMap, "Definition") +
"|Backlinks=</p><p>|0OutboundLinks=</p><p>|Indicative Scientific Sub-Areas=</p><p>\n" +
getDataFromMap(saDataMap, "subAreas") + "|Tags =" + buildTags(saDataMap) + "}}\n\n";

String text = getDataFromMap(saDataMap, "MainText");

String references = "\n== References ==\n<p
align=\"justify\"><references/> </p>";

String seeAlso = "\n== See Also ==\n" + getDataFromMap(saDataMap,
"SeeAlso");

title = title.replace(' ', '_").replace('\n', " ").trim();

title = title.substring(@, 1).toUpperCase() + title.substring(1);
//Capitalize first letter of title

String category = "[[Category:" + title + "]][[Category:EISB Glossary]]";

String wikiText = table + text + references + seeAlso + category;

if (db.insertPage(title, wikiText.length()))

{
if (db.insertText(wikiText))
if (db.insertRevision(title, wikiText.length()))
{
root.setOntoStatus("\n=== New Scientific Area created on the
wiki ===\n" + title + "\n");
}
}
}

9.2. Ontology to Wiki Synchronization — Scientific Area class removal code
example

private void deletelInstances(String name) {
RDFProperty rdfProperty = owlModel.getRDFProperty("“Name");
Collection results =
owlModel.getRDFResourcesWithPropertyValue(rdfProperty, name);
for (Iterator it = results.iterator(); it.hasNext();) {
Object obj = it.next();
if (obj instanceof RDFIndividual) {
RDFIndividual ind = (RDFIndividual) obj;
ind.delete();

97

9.3. Wiki to Ontology Synchronization — New Publication code example

private void createPublicationInstance(String citation, String link, String abstr,
String wikiURL, String mendeley, String title, ArraylList<String> keywordArray,
ArrayList<RDFIndividual> ingredients, String sa, String saRelevance, String phase,
String phaseRelevance, String level, String levelRelevance, String maturity, String
licence){

ArraylList classifierList = new ArraylList();

getClassifier(sa, saRelevance, "Scientific_Area_Classifier",
classifierlList);

getClassifier(phase, phaseRelevance, "EI_Phase Classifier",
classifierlList);

getClassifier(level, levelRelevance, "EI_Barrier_Classifier",
classifierlList);

getClassifier(maturity,

, "EI_Maturity Classifier", classifierList);

RDFSNamedClass bibClass = owlModel.getRDFSNamedClass("Bibliography");
RDFResource newBibliography = bibClass.createInstance(title + "_BIB");

newBibliography.setPropertyValue(owlModel.getOWLDatatypeProperty("Citation"),
citation);

newBibliography.setPropertyValue(owlModel.getOWLDatatypeProperty("Link™),
link);

RDFSNamedClass pubClass = owlModel.getRDFSNamedClass("Publications");
RDFResource newPublication = pubClass.createInstance(title);
//DATATYPE PROPERTIES

newPublication.setPropertyValue(owlModel.getOWLDatatypeProperty("Abstract™), abstr);

newPublication.setPropertyValue(owlModel.getOWLDatatypeProperty("FINES Page"),
wikiURL);

newPublication.setPropertyValue(owlModel.getOWLDatatypeProperty("LinkMendeley"),
mendeley);

newPublication.setPropertyValue(owlModel.getOWLDatatypeProperty("Name"),
title);

newPublication.setPropertyValues(owlModel.getOWLDatatypeProperty("Keywords"),
keywordArray);

newPublication.setPropertyValue(owlModel.getOWLDatatypeProperty("HasLicence"),
licence);

//OBJECT PROPERTIES

newPublication.setPropertyValues(owlModel.getOWLObjectProperty("hasIngredient™),
ingredients);

newPublication.setPropertyValues(owlModel.getOWLObjectProperty("isClassifiedAs"),
classifierlList);
newPublication.setPropertyValue(owlModel.getOWLObjectProperty(“relatedTo_Bibliography"
), newBibliography);

newPublication.setPropertyValues(owlModel.getOWLObjectProperty("isInstanceOf"),
owlModel.getRDFSNamedClass("Scientific_Publication").getInstances(true));

root.setWikiStatus("====New publication ->" + title + " inserted into the

ontology====\n");

98

9.4. Wiki to Ontology Synchronization — Edit Scientific Area code example

private void editScientificArea(String wikiURL, String title, String newText, String
oldText){

ArrayList newSubArealist = new ArraylList();
ArraylList newTagsList = new ArrayList();
ArrayList newSeeAlsolList = new ArraylList();
Collection range;

String newCode = getComponentFromText("SA.",

, hewText);

newCode = "SA." + newCode;
String newDefinition = getComponentFromText("Description=", "|", newText);
String newMainText = getComponentFromText("}}", "==", newText);

String newSubAreaNames = getComponentFromText("Indicative Scientific Sub-
Areas", "|", newText);

String newAllTags = getComponentFromText("Tags =", "}}", newText);

String newAllSeeAlso = getComponentFromText("See Also ==\n", "[[Category",

newText);
getMultipleComponents(newAllSeeAlso, newSeeAlsoList, "[[", "1]1");
getMultipleComponents(newSubAreaNames, newSubArealist, "[[", "1]1");
getMultipleComponents(newAllTags, newTagsList, "[[", "11");
String oldCode = getComponentFromText("SA.", "|", oldText);
oldCode = "SA." + oldCode;
String oldDefinition = getComponentFromText("Description=", "|", oldText);
String oldMainText = getComponentFromText("}}", "==", oldText);
RDFIndividual editedSA = getInstanceFromClass(title, "Scientific_Area");
if (editedSA != null)
{
if (newCode.length() != oldCode.length())
{
editedSA.setPropertyValue(owlModel.getOWLDatatypeProperty("ID"),
newCode) ;
}
if (newDefinition.length() != oldDefinition.length())
{

editedSA.setPropertyValue(owlModel.getOWLDatatypeProperty("Definition™),
newDefinition);

}

if (newMainText.length() != oldMainText.length())

{
editedSA.setPropertyValue(owlModel.getOWLDatatypeProperty(“"MainText"), newMainText);

range =
owlModel.getOWLObjectProperty("hasSeeAlso").getUnionRangeClasses();

editedSA.setPropertyValues(owlModel.getOWLObjectProperty("hasSeeAlso"),
getListInstances(newSeeAlsolList, range));

range =
owlModel.getOWLObjectProperty("hasTags").getUnionRangeClasses();

editedSA.setPropertyValues(owlModel.getOWLObjectProperty("hasTags"),
getListInstances(newTagsList, range));

range =
owlModel.getOWLObjectProperty("hasSubArea").getUnionRangeClasses();

99

editedSA.setPropertyValues(owlModel.getOWLObjectProperty("hasSubArea™),
getListInstances(newSubArealist, range));

root.setWikiStatus("Scientific Area ->" + title + " updated!\n");

}

else

{

root.setWikiStatus("Error getting the edited instance from the
ontology!!!I\n");
}

}

100

