

Gonçalo Franco Pita Louro Alves
Licenciado em Ciências de Engenharia

Electrotécnica e de Computadores

A Framework for Semantic Checking of
Information Systems

Dissertação para obtenção do Grau de Mestre em
Engenharia Electrotécnica e de Computadores

Orientador: Ricardo Jardim-Gonçalves, Professor Auxiliar,
FCT-UNL

Co-orientador: João Filipe dos Santos Sarraipa, Investigador,
UNINOVA

Júri:

Presidente: Doutor João Francisco Alves Martins
Arguente: Doutor João Pedro Mendonça de Assunção da Silva
Vogais: Doutor Ricardo Luís Rosa Jardim Gonçalves

 Mestre João Filipe dos Santos Sarraipa

Setembro de 2012

A Framework for Semantic Checking of Information Systems

Copyright © Gonçalo Franco Pita Louro Alves, FCT/UNL, UNL

A Faculdade de Cièncias e Tecnologia e a Universidade Nova de Lisboa tern o direito,

perpetuo e sem limites geogrãficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualguer outro

meio conhecido ou que venha a ser inventado, e de a divulgar atraves de repositórios

cientificos e de admitir a sua copia e distflbuição corn objectivos educacionais ou de

investigação, não comerciais, desde que seja dado crédito ao autor e editor.

ACKNOWLEDGEMENTS

First of all, I would like to thank all the people who helped me during my academic course.

To my advisor, Professor Ricardo Gonçalves for giving me the opportunity to work with him and with

his research group, and for giving me valuable advice during the execution of this work.

To all members of GRIS, and especially to João Sarraipa for being there every day, for his attention,

guidance and support during the research and the preparation of this dissertation.

To my friends, Gonçalo Barros, Francisco Esteves, Nuno Vasconcelos, João Silva, João Filipe,

Gonçalo Carvalho, João Melo, Pedro Almeida, Ricardo Lampreia and to everyone else whom I may

have forgot to mention, for all your support and for providing many unforgettable moments during this

academic experience.

To my parents, brother and all of my family for providing with everything you could and for trying to

give me the best possible future. You mean a lot to me.

Finally, to my girlfriend Íris, for always being there for me and for supporting me, pushing me to go

further and to never give up, but more importantly for always believing in me.

To all, you have my deepest and sincerest gratitude.

vii

ABSTRACT

In this day and age, enterprises often find that their business benefits greatly if they collaborate with

others in order to be more competitive and productive. However these collaborations often come with

some costs since the worldwide diversity of communities has led to the development of various

knowledge representation elements, namely ontologies that, in most cases, are not semantically

equivalent. Consequently, even though some enterprises may operate in the same domain, they can

have different representations of that same knowledge. However, even after solving this issue and

establishing a semantic alignment with other systems, they do not remain unchanged. Subsequently,

a regular check of its semantic alignment is needed.

To aid in the resolution of this semantic interoperability problem, the author proposes a framework that

intends to provide generic solutions and a mean to validate the semantic consistency of ontologies in

various scenarios, thus maintaining the interoperability state between the enrolled systems.

KEYWORDS

Semantic Interoperability, Ontology Validation, Consistency Checking;

v

RESUMO

Nos dias de hoje, as empresas muitas vezes verificam que o seu negócio beneficia bastante quando

colaboram com outros, aumentando a sua competitividade e produtividade. Contudo estas

colaborações tipicamente têm algum custo associado, pois a diversidade global de comunidades

conduziu ao desenvolvimento de vários elementos de representação de conhecimento,

nomeadamente ontologias, que não são semanticamente coincidentes. Consequentemente, e apesar

de algumas empresas trabalharem sobre um mesmo domínio, estas podem ter diferentes

representações de um mesmo conhecimento. Porém, mesmo após ultrapassar esta barreira e se

estabelecer um alinhamento semântico com outros sistemas, estes não permanecem inalterados. Por

conseguinte, é necessário verificar regularmente o alinhamento semântico dos sistemas.

Para ajudar a solucionar estes problema de interoperabilidade semântica, o autor propõe uma

estrutura que tem a intenção de proporcionar soluções genéricas e meios para validar a consistência

de ontologias a nível semântico numa variedade de cenários, de modo a manter o estado de

interoperabilidade entre os sistemas envolvidos.

PALAVRAS-CHAVE

Interoperabailidade Semântica, Validação de Ontologias, Verificação de Consistência;

vii

TABLE OF CONTENTS

1. Introduction .. 1

1.1. Background Observation .. 1

1.2. Motivation .. 2

1.3. Research Method ... 2

1.4. Research Questions and Problems ... 4

1.5. Hypothesis .. 4

1.6. Dissertation Outline .. 4

2. Ontology Based Solutions for Knowledge Representation .. 7

2.1. Ontology Operations & Learning .. 7

2.1.1. Ontology mapping/matching ... 7
2.1.2. Ontology alignment ... 8
2.1.3. Ontology merging ... 8
2.1.4. Ontology Learning .. 9

2.2. Ontology Management Tools ... 9

2.2.1. Protégé ... 10
2.2.2. Ontopia ... 10
2.2.3. TM4L... 12
2.2.4. Ontology Management Tools Concluding Remarks .. 13

2.3. Ontology Visualization .. 13

2.3.1. Ontopia Vizigator .. 14
2.3.2. Jambalaya .. 14
2.3.3. OntoGraf ... 16
2.3.4. TM4L Viewer ... 16
2.3.5. DebateGraph .. 17
2.3.6. TheBrain ... 18
2.3.7. XMind.. 19
2.3.8. Ontology Visualization Tools Concluding Remarks... 19

2.4. Ontology Reasoners ... 20

2.4.1. HermiT .. 20
2.4.2. Pellet ... 22
2.4.3. FaCT++ ... 23
2.4.4. RacerPro ... 23
2.4.5. Ontology Reasoners Concluding Remarks ... 24

3. Semantic Checking Framework ... 27

3.1. Interoperability ... 27

3.2. MENTOR Methodology ... 28

3.2.1. Mediator Ontology .. 31
3.3. Consistency Checking ... 32

3.3.1. Interoperability Checking .. 33
3.3.2. Semantic Checking ... 34
3.3.3. Semantic Adaptability Using a Mapping Tuple .. 35

3.4. Semantic Checking Framework .. 37

3.5. Concluding Remarks ... 39

4. Application Scenarios .. 41

4.1. Mechanical Scenario ... 41

viii

4.1.1. Single Structural Semantic Checking .. 43
4.1.2. Single Structural Semantic Checking Concluding Remarks.. 44
4.1.3. Single Conceptual Checking at MENTOR Scenario ... 44
4.1.4. Single Conceptual Semantic Checking Concluding Remarks 45
4.1.5. Multiple Conceptual Semantic Checking... 45
4.1.6. Multiple Conceptual Semantic Checking Concluding Remarks 50

4.2. ENSEMBLE Scenario .. 51

4.2.1. Composite Ontologies Checking at ENSEMBLE Scenario ... 53
4.2.2. Multiple Structural Semantic Checking at ENSEMBLE Scenario 54
4.2.3. ENSEMBLE Scenario Concluding Remarks ... 56

5. Proof-of-Concept Implementation .. 59

5.1. Used Technologies .. 59

5.1.1. Java .. 59
5.1.2. MySQL .. 59
5.1.3. Protégé / Protégé-OWL API .. 60
5.1.4. Changes and Annotations API .. 60

5.2. Architecture .. 60

5.2.1. Synchronization Module.. 61
5.2.2. ChAO Ontology ... 61
5.2.3. Wiki DB ... 61
5.2.4. FInES Wiki .. 62
5.2.5. EISB Reference Ontology ... 65

5.3. Synchronization execution flows .. 73

5.3.1. EISB Ontology to FInES Wiki Synchronization Execution Flow 73
5.3.2. FInES Wiki to EISB Ontology Synchronization Execution Flow 74

5.4. Concluding Remarks ... 75

6. Synchronization Tool Demonstration .. 77

6.1. Ontology to Wiki Synchronization Demonstration ... 77

6.1.1. New Scientific Area instance .. 78
6.1.2. Remove Scientific Area class ... 81

6.2. Wiki to Ontology Synchronization Demonstration ... 83

6.2.1. New Publication .. 84
6.2.2. Edit Scientific Area .. 87

6.3. Synchronization Tool Demonstration Concluding Remarks .. 89

7. Conclusions and Future Work ... 91

7.1. Research Validation .. 91

7.2. Future Work ... 92

8. References .. 93

9. Appendix ... 97

9.1. Ontology to Wiki Synchronization – New Scientific Area instance code example 97

9.2. Ontology to Wiki Synchronization – Scientific Area class removal code example 97

9.3. Wiki to Ontology Synchronization – New Publication code example 98

9.4. Wiki to Ontology Synchronization – Edit Scientific Area code example 99

ix

LIST OF FIGURES

Figure 1.1 - Phases of the Classical Research Method [6] ... 2
Figure 2.1 - Ontology mapping/matching.. 8
Figure 2.2 - Ontology alignment ... 8
Figure 2.3 - Ontology merging .. 9
Figure 2.4 - Snapshot of the Protége GUI .. 10
Figure 2.5 - Ontopoly snapshot .. 11
Figure 2.6 – Omingator snapshots - (a) Omnigator Main Page with index of topic maps; (b) Browsing a

topic map .. 11
Figure 2.7 - Snapshot of TM4L user interface .. 12
Figure 2.8 - Ontopia Vizigator snapshot ... 14
Figure 2.9 - Jambalaya snapshots (a) Sink Tree view; (b) Nested Graph view 15
Figure 2.10 - OntoGraf snapshot .. 16
Figure 2.11 - Snapshot of the TM4L Viewer ... 17
Figure 2.12 - Snapshot of the debateGraph visualization tool .. 18
Figure 2.13 - Snapshot of theBrain visualization tool ... 18
Figure 2.14 - Snapshot of the XMind visualization tool ... 19
Figure 2.15 - HermiT reasoner Protégé plugin output - inconsistent ontology 21
Figure 2.16 - HermiT reasoner example using the command line .. 21
Figure 2.17 - HermiT reasoner java application integration example ... 22
Figure 2.18 - Pellet reasoner Protégé plugin output - inconsistent ontology .. 23
Figure 2.19 - FaCT++ reasoner Protégé plugin output - inconsistent ontology 23
Figure 2.20 - RacerPro reasoner supported features [40] .. 24
Figure 3.1 - Enterprise Interoperability [46] .. 27
Figure 3.2 - MENTOR Methodology [48] .. 30
Figure 3.3 - MENTOR prototype [49] .. 30
Figure 3.4 - Mediator Ontology Structure [51] .. 31
Figure 3.5 - Mapping design and execution flow in data exchange .. 32
Figure 3.6 - Conformance Testing Example [57] .. 33
Figure 3.7 - Interoperability Testing Example [57] .. 34
Figure 3.8 - (a) Single Semantic Checking; (b) Composite Semantic Checking; (c) Multiple Semantic

Checking .. 34
Figure 3.9 - Knowledge Mapping Types [50] .. 36
Figure 4.1 - MENTOR scenario overview ... 42
Figure 4.2 - Used Ontologies .. 43
Figure 4.3 - Pellet reasoner output ... 44
Figure 4.4 - Reasoning Example (Retailer Ontology) ... 45
Figure 4.5 - Reasoning Example (Retailer and Reference Ontologies) .. 47
Figure 4.6 - Reasoning Example (Manufacturer and Reference Ontologies) 47
Figure 4.7 - Multiple Conceptual Semantic Checking Example .. 50
Figure 4.8 - ENSEMBLE scenario overview ... 51
Figure 4.9 - EISB Reference Ontology ... 52
Figure 4.10 - (a) FInES wiki Main Page; (b) FInES wiki article example .. 53
Figure 4.11 - EISB Reference Ontology and FInES Wiki Structural Comparison 55
Figure 4.12 - Ontology/Wiki Synchronization (a) Using Web Services; (b) Using XML/RDF Files 55
Figure 5.1 - Synchronization tool architecture .. 60
Figure 5.2 - Example of changes recorded in the ChAO ontology .. 61
Figure 5.3 - Wiki DB example ... 62
Figure 5.4 - FInES Wiki Homepage: 1 - FInES Reserach Roadmap; 2 - FInES Task Forces; 3 – EISB

 ... 62

x

Figure 5.5 - FInES Wiki: EISB Scientific Areas and Glossary ... 63
Figure 5.6 - FInES Wiki: (a) EISB Glossary; (b) Scientific Area category page example 63
Figure 5.7 - FInES Wiki: Scientific Area page example .. 64
Figure 5.8 - FInES Wiki: Sub Scientific Area page example .. 64
Figure 5.9 - FInES Wiki: EI Ingredient page example ... 65
Figure 5.10 - FInES Wiki: Publications page example .. 65
Figure 5.11 - EISB Reference Ontology overview .. 72
Figure 5.12 - Ontology to Wiki Synchronization execution flow .. 74
Figure 5.13 - Wiki to Ontology synchronization execution flow... 75
Figure 6.1 - Synchronization tool GUI .. 77
Figure 6.2 - Ontology to Wiki Synchronization - New Scientific Area instance detection 79
Figure 6.3 - Ontology to Wiki Synchronization - Scientific Area instance ... 79
Figure 6.4 - Ontology to Wiki Synchronization - New Scientific Area instance finished synchronization

 ... 80
Figure 6.5 - Ontology to Wiki new Scientific Area synchronization example .. 80
Figure 6.6 - Ontology to Wiki Synchronization - Deleted Class detection ... 81
Figure 6.7 – EISB Reference Ontology (a) Before class deletion; (b) After class deletion 81
Figure 6.8 - Ontology to Wiki Synchronization - Wiki page deletion (Java GUI) 82
Figure 6.9 - Ontology to Wiki Synchronizaton. (a) Wiki page before deletion; (b) Wiki page after

deletion ... 83
Figure 6.10 - Wiki to Ontology Synchronization example - New publication detection 84
Figure 6.11 - Wiki to Ontology synchronization example - Publication to be synchronized 85
Figure 6.12 – Finished wiki to ontology synchronization process: (a) - java GUI; (b) Created instance

 ... 86
Figure 6.13 - Wiki to Ontology new publication synchronization example .. 86
Figure 6.14 - Wiki to Ontology Synchronization example - Edited Scientific area detection 87
Figure 6.15 - Scientific area page - (a) Before editing; (b) After editing .. 88
Figure 6.16 - Edited Scientific Area Synchronization - (a) Instance before editing; (b) Instance after

editing; (c) Finished process - Java GUI... 88
Figure 6.17 - Wiki to Ontology Edited Scientific Area example ... 89

xi

LIST OF TABLES

Table 2.1 - Comparison between Ontology management tools .. 13
Table 2.2 - Comparison between ontology visualization tools .. 19
Table 2.3 - Ontology Reasoners Comparison .. 24
Table 3.1 - Semantic Mismatches [51] ... 36
Table 3.2 - Semantic Checking Framework.. 38
Table 4.1 – Framework applicability scenarios ... 41
Table 4.2 - Retailer Ontology Terms and Definitions .. 42
Table 4.3 - Manufacturer Ontology Terms and Definitions ... 42
Table 4.4 - Reference Ontology Terms and Definitions .. 43
Table 4.5 – Retailer Reference Mappings .. 46
Table 4.6 - Manufacturer - Reference Mappings .. 46
Table 4.7 - Reference - Manufacturer Conceptual Mappings ... 48
Table 4.8 - SWRL rules defined in the retailer - reference example ... 48
Table 4.9 - SWRL rules defined in the manufacturer - reference example ... 49
Table 4.10 - Identification of conceptual losses in information ... 50
Table 6.1 - Ontology to Wiki synchronization cases analysis ... 78
Table 6.2 - Wiki to Ontology Synchronization cases analysis ... 83

xiii

ACRONYMS

API - Application Programming Interface

ChAO – Changes and Annotations Ontology

CTM – Compact Topic Maps

DB – Database

EI – Enterprise Interoperability

EISB - Enterprise Interoperability Science Base

ENSEMBLE - Envisioning, Supporting and Promoting Future Internet Enterprise Systems Research

through Scientific Collaboration

FInES – Future Internet Enterprise Systems

GUI – Graphical User Interface

HTML – Hypertext Markup Language

JDBC – Java Database Connectivity Driver

JVM - Java Virtual Machine

KB – Knowledge Base

KRE – Knowledge Representation Element

LTM – Linear Topic Maps

MENTOR - Methodology for Enterprise Reference Ontology Development

MO - Mediator Ontology

OWL – Web Ontology Language

RDF – Resource Description Framework

SHRIMP – Simple Hierarchical Multi-Perspective

SQL - Structured Query Language

SWRL - Semantic Web Rule Language

TM4L - Topic Maps 4 E-Learning

XML – Extensible Markup Language

XTM – XML Topic Maps

1

1. INTRODUCTION

Nowadays, in an increasingly global business environment, several companies have found that to

make themselves more competitive and productive they have to collaborate with other enterprises, to

compete with the larger organizations [1]. However the globalization that led to the collaboration

between companies, also led to the development of various Knowledge Representation Elements

(KREs), such as ontologies, which are not semantically coincident [2]. As a result enterprises are

engaging in some standstills regarding the lack of interoperability of systems and software applications

to manage and increase their collaborative business.

Since various companies that operate in the same domain may have different representations of a

same Knowledge Base (KB), when they describe it electronically it will most likely lead to different

representation models [1]. Thus interoperability problems, particularly regarding the semantics of the

concepts involved, may surface when these different systems try to exchange or share information

with one another.

Even after having established seamless communication and semantic alignment between systems it

was identified the necessity of having “something” that allows companies to track their semantic

evolution to keep the consistency and validity of their KREs. Since this is a vast and complex subject,

it was recognized that a structured solution that encompasses several different scenarios was a

possible step forward in help solving some of the semantic interoperability problems. Therefore the

idea of a framework was conceived. A framework is a structure for supporting or enclosing something

else, especially a skeletal support used as the basis for something being constructed [3].

To this effect, an interoperability framework that provides a set of assumptions, concepts, values and

practices (methods & tools) [4] and that contemplates several scenarios for the semantic checking is a

possible solution to the semantic interoperability maintenance issue.

1.1. Background Observation

Since interoperability between enterprises is becoming increasingly important to assure

competitiveness and productivity, there is a need to constantly verify if the involved systems remain

interoperable, particularly on a semantic level. For this reason, there is a need to have validation

elements to ensure this interoperable state.

Due to the use of ontologies in enterprises to represent knowledge and consequently its semantics, it

is needed to analyse its integration with other KREs. Thus a path to follow is to analyse the various

KREs with a high relevance to ontologies.

2

1.2. Motivation

Although some work has been done in the Enterprise Interoperability (EI) field, these focus more on

the seamless interoperability between enterprises rather than verifying the consistency of the

exchanged information. In fact a research roadmap (Enterprise Interoperability Research Roadmap)

has been defined with the main objective of identifying the main areas of research within the EI

domain [5]. As a consequence, one of the great motivations for this dissertation work is the fact that

the semantic interoperability between businesses and enterprises is an authentic research challenge

and it is a research area that is in constant contact with the industrial world.

Furthermore, enterprises would benefit greatly if it is assured that the information they exchange,

besides being received, is also well perceived by others, since communication would be made with

much less effort.

Therefore this works aim is to provide a possible solution in the field of semantic interoperability, with

focus on the verification of the semantic consistency of information, by proposing a framework to serve

as a backbone in solving these issues.

1.3. Research Method

The research method adopted in this work is centred on the classical method, which is composed by

seven steps, conveniently ordered from a more theoretical to a more practical view of the system, in

addition to an eighth step which is the passage from the theoretical work to the industrial world. This

research method starts by defining the research theme and area and leads to the testing step and

results analysis. Since this method is iterative, the researcher can go back to the first steps if the

obtained results weren’t the expected ones to try a new approach. Figure 1.1 represents the different

steps of this method that are described afterwards.

Figure 1.1 - Phases of the Classical Research Method [6]

A brief description of the steps, according to [6], follows.

1. Research Question / Problem: This is the most important step in research. It is a period of

3

study that intends to define the area of interest of the research. The research question must be clearly

defined, making the study feasible and capable of being validated or refuted. Furthermore, a research

question can be complemented with several minor questions to refine the main idea of the research

subject. This is presented on section 1.4 - Research Questions and Problems.

2. Background / Observation: This step contemplates the study of the work done before about

the same research area. In other words, this is where the state of the art research takes place. This is

accomplished by reviewing literature and scientific projects bringing up the ideas of what was already

tested and accomplished. Furthermore it is important to have a big variety of documents for searching

information on the area of interest, since some of the literature although very reliable, can be outdated

and on the other hand, some documentation can be recent and have very innovative ideas but low

reliability. Finally, it is also in this step that the researcher defines what differs from the previous work

to the one being developed, as well as the methodologies taken when approaching the solution.

The background observation (state of the art study) is comprehended in sections 2 and 3 of this

dissertation.

3. Formulate Hypothesis: As its name indicates, in this step the researcher formulates the

hypotheses in order to make the research problem simpler to understand, stating the ambitions to

accomplish at the end of the project. The hypothesis can be seen as an educated guess since it states

the predicted relationship amongst variables.

The hypotheses for this research work are presented in section 1.5 of this document.

4. Design Experiment: This step works as a preparation for the experimental step, where a

prototype or system architecture is designed. In addition, it is significant to find a validation plan for the

previous step, i.e. the hypothesis.

5. Test Hypothesis: This step comprehends the implementation of the designed prototype and

the evaluation of the obtained results. A large amount of tests (especially in different scenarios) should

be done in order to test effusively the outcomes given by the system. These outcomes are supposed

to be collected for later analysis.

6. Interpret / Analyse Results: After the batteries of tests have been made to the system it is

the time to evaluate and analyse the achieved results. It is at this point that the veracity and

confidence in the hypothesis are put to the test. A number of outcomes are possible, the results can

be satisfactory, proving the author right, or they can completely miss the initial idea. If the results point

straight to the hypothesis, then it is reasonable to say that a good prevision was made and it is

4

possible to consider what comes after, making some recommendations for further research. But even

if the results are not what was expected it should not be taken as a failure, but as an opportunity to

improve the original approach and go back again to the first steps of this research method. The

researcher can then try a different approach from the one taken before.

7. Publish Findings: The final results, if consistent, must end up in a valuable contribution to the

scientific community as scientific papers. These papers can be then presented in conferences, where

the author has the chance to show in person his ideas for the research, presenting the results and

answer questions of other researchers to prove the efficiency of the results.

8. Transition to Industry: Upon validation from the scientific community, the conducted work

should be analysed for a possible industrial application in order to capitalize from it and contribute to

the entrepreneurial world. This can be accomplished by passing the developed work from a prototype

stage to a fully functional industry application which can be presented to various enterprises and

businesses.

1.4. Research Questions and Problems

 How can the semantic consistency of the data exchanged between enterprises information

systems be checked?

1.5. Hypothesis

 With a proper framework that provides guidelines for semantic consistency checking

complemented with possible resolutions for each case, the data exchange between

enterprises is facilitated and its understanding maintained.

1.6. Dissertation Outline

The first section of this work is the Introduction, which addresses the purpose of this work as well as

the main ideas that led to the creation of this dissertation. Furthermore, it presents the authors

motivation behind this work in addition to the background observation that was conducted and the

adopted research method. Finally, this section identifies the research questions and problems that this

dissertation addresses and the hypothesis for attempting to solve them.

Section 2 is named Ontology Based Solutions for Knowledge Representation and addresses the

background research that was conducted. It covers the main tools for building ontologies as well as

techniques and operations that can be applied on ontologies.

5

Section 3 is named Semantic Checking Framework and covers a background research about

interoperability and consistency checking in ontologies. Furthermore this section introduces the

framework that is proposed in this work as a solution to the semantic checking of information systems

issue.

The next section (4), Application Scenarios, describes two situations where the proposed framework

was applied. Firstly a mechanical scenario is presented, that features the interaction between a bolt

retailer and a manufacturer. The second scenario refers to the Envisioning, Supporting and Promoting

Future Internet Enterprise Systems Research through Scientific Collaboration (ENSEMBLE) project.

The described scenarios were also used to demonstrate the validity of the ideas presented in this

work.

Section 5 is called Proof-of-Concept Implementation and as its name indicates, features the

architecture of the developed prototype, the technologies used to develop it and why they were

chosen. Furthermore it is presented the execution flow of the prototype to serves as a complement to

the architecture in the sense that it shows in detail the flow of the system. Furthermore, this chapter

presents and describes in detail the involved elements in the system, namely the EISB (Enterprise

Interoperability Science Base) Reference Ontology and the FInES (Future Internet Enterprise

Systems) wiki.

The following section is the Synchronization Tool Demonstration chapter which shows the results of

the implemented prototype by featuring some execution examples of the developed prototype.

Finally this document comes to a close with the Conclusions and Future Work chapter where, as

indicated by its name, the concluding remarks and future work topics are presented. Furthermore, this

section also intends to prove that the Hypothesis is valid, or not, regarding the Research Questions

and Problems identified in the beginning of this work.

7

2. ONTOLOGY BASED SOLUTIONS FOR KNOWLEDGE

REPRESENTATION

This chapter comprehends the state of the art study regarding ontology operations, reasoners and

management and visualization tools. This study focuses mainly on ontologies since they are capable

of encoding the knowledge of a certain domain in machine-processable form to make it available to

other information systems [7]. Therefore ontologies have been widely adopted as mechanisms to

represent knowledge on a given domain.

This chapter is structured as follows; firstly, some ontologies operations are presented and described,

as well as the concept of ontology learning. Following is the study of selected ontology management

and visualization tools. Finally, the review of certain ontology reasoners is presented.

2.1. Ontology Operations & Learning

Ontology operations usually refer to the methods used to integrate two or more ontologies, while

ontology learning refers to the fact of extracting ontological elements in order to build new ontologies.

A summary of the ontology operations that are going to be discussed in detail in the following sub-

sections are:

 Ontology mapping/matching;

 Ontology alignment;

 Ontology merging;

After the execution of any of these operations the user should check the resulting ontology for

inconsistencies or loss of information [8].

To conclude this subsection, the concept of ontology learning is described and presented in detail.

2.1.1. Ontology mapping/matching

As referred by the de Bruijn et al in [9], ontology mapping is a (declarative) specification of the

semantic overlap between two ontologies.

This operation consists in mapping or matching each entity (class, relation, attribute, etc.) of an

ontology to the corresponding entity in another ontology, as illustrated in Figure 2.1. The

corresponding entities must have the same meaning, which means that usually the correspondences

are expressed in a one-to-one fashion. This process won’t modify the involved ontologies, and as a

result the mapping operation will only produce a set of correspondences. [8]

8

Figure 2.1 - Ontology mapping/matching

2.1.2. Ontology alignment

Much like the mapping process, in the alignment operation the original ontologies persist with links

established between them [10], which is why this operation is often considered a synonym of ontology

mapping. However, the original ontologies might suffer alterations because this process implies a

mutual agreement between the ontologies in order to make them aligned and coherent with one

another, eliminating unnecessary information [8]. This is why this method is usually applied when the

involved ontologies cover domains that are complementary to each other. This way the original

ontologies are more likely to remain unaltered diminishing the likelihood of occurring inconsistencies of

information. As illustrated in Figure 2.2, the two original ontologies (A and B) were aligned so that the

resulting ontology of the operation, in this case, consists of the greyish area of ontology A.

Figure 2.2 - Ontology alignment

2.1.3. Ontology merging

The process of ontology merging consists in integrating or merging two or more existing ontologies to

form a new ontology. In this operation, the source ontologies are usually discarded and only the new

ontology remains active. Although in some cases the source ontologies could also remain active after

the merging process. In the merging operation, often the original ontologies cover similar or

overlapping domains [10] .

According to de Bruijn et al in [9] there are two approaches to the ontology merging operation. In the

first approach, the input of the merging process is a collection of ontologies and the outcome is one

new, merged, ontology which captures the original ontologies. In the second approach the original

ontologies are not replaced, but rather a ‘view’, called bridge ontology, is created which imports the

original ontologies and specifies the correspondences using bridge axioms.

9

Figure 2.3 - Ontology merging

Figure 2.3 shows a small example where ontologies A and B are merged together to form a new

ontology (C) that consists of the source ontologies.

It is worthy of note that the result of the merging process (or any other that promotes changes to the

ontologies) should be tested in order to identify inconsistencies or loss of information [8].

2.1.4. Ontology Learning

Ontology Learning refers to extracting ontological elements (conceptual knowledge) from input and

building an ontology from them [11]. Furthermore, within the research community, ontology learning is

mainly associated to the process of discovering ontological knowledge from various forms of data [13].

According to Cimiano et al in [12] there are three kinds of data to which ontology learning can be

applied, which are, structured data (e.g. databases), semi-structured data (e.g. HyperText Markup

Language - HTML or Extensible Markup Language - XML) and unstructured data (e.g. text)

documents. However, it can also be used as support to the refinement and expansion of existing

ontologies that could have been built following a traditional basis by means of incorporating new

knowledge in an automatic way [13].

To achieve the goal of discovering ontological knowledge from various forms of data, diverse ontology

learning techniques have been developed. These serve the purpose of supporting an ontology

engineer in the task of creating and maintaining an ontology [12]. Most of these techniques are drawn

from well-established disciplines such as machine learning, natural language processing, statistics,

knowledge acquisition, information retrieval, artificial intelligence, reasoning and Database (DB)

management [11][14]. However these techniques are not exclusive to one another, i.e., they can be

combined to form a more powerful method to achieve the goals of ontology learning. For example,

linguistic-based methods are commonly applied with statistical approaches to calculate the relevance

of concept to the given domain, these methods include techniques based on linguistic patterns,

pattern-based extraction, methods that measures the semantic relativeness between terms within a

domain.

2.2. Ontology Management Tools

Ontology management tools are pieces of software that enable the user to create, edit or perform

10

other operations on ontologies. As referred by Youn, S et al in [15], ontology tools can be applicable

for all stages of the ontology life cycle (creation, population, validation, deployment, maintenance and

evolution). These tools support a variety of ontology languages such as the Web Ontology Language

(OWL), Resource Description Framework (RDF) or XML which are used to implement the ontologies.

In this subsection three ontology management tools are presented, Protégé, Ontopia and Topic Maps

4 E-Learning (TM4L), although there are many more.

2.2.1. Protégé

Protégé is a free, open-source platform, with a suite of tools to construct domain models and

knowledge-based applications with ontologies [16]. This tool allows the user to perform numerous

ontology operations, such as creating, populating, validation or visualization. It also enables the

creation of domain ontologies, definition of classes, class hierarchies, variable-value restrictions, and

the relationships between classes and the properties of these relationships [16]. Apart from these

features, Protégé also allows the user to export or import ontologies provided they are in OWL/XML or

RDF/XML formats. Regarding the Graphical User Interface (GUI), Protégé consists of a tab navigation

system, much like a web browser, allowing for a much smoother learning curve. Navigating through

the tabs the user can easily see the entities, classes, instances and relations that compose the

ontology, as illustrated in Figure 2.4.

Figure 2.4 - Snapshot of the Protége GUI

2.2.2. Ontopia

Ontopia is an open source suite of tools for building applications based on topic maps [17]. As a side

note, topic maps are an ISO standard for describing knowledge structures and associating them with

information resources. As such they constitute an enabling technology for knowledge management

[18]. This ontology management tool has essentially three main components. The first component is

the ontology editor named Ontopoly that allows the user to incrementally design topic map ontologies

11

using a user-friendly web interface, as shown in Figure 2.5. The Ontopoly editor also provides the user

the possibility to populate the ontologies and to store them in files or databases [19].

Figure 2.5 - Ontopoly snapshot

The second main component of Ontopia is the ontologies browser called Omnigator and has a variety

of features. It is web-based and can be used to display any topic map [20], as illustrated in Figure 2.6,

whether the topic map was created with the Ontopia editor (Ontopoly) or imported from another

ontology editor (e.g. Protégé). Additionally, the Omnigator also features an exportation plugin, that

allows saving the ontology into various file formats such as RDF, XML Topic Maps (XTM 1.0, 2.0 or

2.1) or Linear Topic Map (LTM), a topic map query interface, topic maps validation, statistics and

merging. One great advantage of this tool is that it allows the user to follow links associated to classes

or instances. For example, navigating to a class through omnigator one could follow the link

associated with that class and be redirected to the designated web page.

(a) (b)
Figure 2.6 – Omingator snapshots - (a) Omnigator Main Page with index of topic maps; (b) Browsing a topic map

Finally, the third main component of the Ontopia tool suite is the graphical visualization feature named

Vizigator (visual navigator). Since section 2.3.1 is dedicated to this component, there won’t be a

detailed description of it here. However, as a very brief and short introduction, the Vizigator is used to

12

show graphical visualizations of topic maps and is subdivided in two components, the VizDesktop and

the Vizlet.

2.2.3. TM4L

The TM4L tool is somewhat similar to Ontopia, in a sense that it also uses the topic maps technology

to manage ontologies. However, Ontopia is web-based and TM4L is more of a “standalone” or “offline”

product. This tool provides support in conceptual structure design and maintenance through its

functionality for editing, browsing, and combining such structures, coupled with support for relating

concepts, linking concepts to resources, merging ontologies, external searching for resources,

defining perspectives, etc.[21]. TM4L has a user-friendly interface, which guides the users to create

and update topic as well as their relations and resources [21]. This tool is divided into two constituents,

the editor and the viewer.

The TM4L editor is what allows the user to create, edit and manage ontologies using topic maps.

About formats, TM4L saves the topic maps in the XTM format by default, however TM4L comes

equipped with a XTM to RDF converter granting compatibility with RDF applications, such as Protégé,

for example. Since this is as topic maps based tool, the main objects it manipulates are topics

(representing domain ontology concepts), relationships between them, resources, and contexts

(represented by themes) [21]. Regarding the user interface, TM4L uses a tab navigation system, as

seen in Figure 2.7 similar to the one used in Protégé, from which the user can access the topic map,

the topics, relationships, themes and the graphical visualization of the topic map.

Figure 2.7 - Snapshot of TM4L user interface

Regarding the TM4L viewer, it will be described in greater detail in section 2.3.4. However as a very

brief description, the TM4L viewer displays the topic map in graph like format where the topics and

instances (in different colours) are nodes of the graph and the different relations are lines (also in

different colours) connecting them.

13

2.2.4. Ontology Management Tools Concluding Remarks

In conclusion of this section, Table 2.1 is presented in which a comparison of the main features of the

described ontology management tools is conducted. Namely, the characteristics being compared are

the supported file formats for import and export and if the management tool provides means for a

graphic visualization of ontologies.

Table 2.1 - Comparison between Ontology management tools

Ontology
Management

Tool

Import
Format

Export Format Graphic Visualization

Protégé RDF, OWL

RDF/XML,OWL/XML in all
versions. In versions 3.4.x,

CLIPS, N-TRIPLE, N3,
TURTLE. In versions 4.x,
KRSS2, OBO 1.2, Latex.

Yes.

In versions 3.4.x through
plugins like Jambalaya.

On versions 4.x through
plugins like OntoGraf

Ontopia
RDF, XTM,

CTM,
TM/XML

XTM 1.0, XTM 2.0, XTM
2.1, RDF/XML, CXTM,

LTM and TM/XML

Yes, through the Vizigator
tool

TM4L

XTM , RDF
(though to
work RDF
must be

converted to
XTM)

XTM, RDF (through the
XTM to RDF converter

tool)

Yes, through the TM4L
Viewer

As seen in this table, they all seem to be very complete, since they all provide support for various file

types and graphical visualization methods. However, Protégé is more adequate for beginning ontology

development since it has a more user-friendly interface and has a smoother learning curve.

Nonetheless, the choice between which tools to use should come down to the needs of each user. If

topic map technology is used, then Ontopia and TM4L are best suited, with Ontopia being more

complete, specifically regarding the supported file formats. On the other hand, if OWL or RDF files are

used to store the ontology then Protégé is the best choice.

2.3. Ontology Visualization

Ontology visualization refers to the graphical visualization of ontologies. These representations can be

accomplished by means of directed or nested graphs, topic maps or other techniques. However this

isn’t an easy operation to accomplish, because ontologies are more than just a hierarchy of concepts

[22]. They are the sum of various relations and attributes between classes and entities, and in turn,

these can have a wide number of instances, so it can be difficult to represent ontologies effectively. It

is worthy of note that the examples used to take the snapshots for the figures were taken from the

FInES wiki [23], upon extraction of its contents to an RDF file. The examples will highlight the cloud

interoperability wiki category (class) and all of its pages (instances).

In the following subsections some examples of ontology visualization tools are described in detail.

14

2.3.1. Ontopia Vizigator

The Vizigator (visual navigator) is an ontology visualization tool from the Ontopia tool suite that

displays ontologies in form of topic maps, as illustrated in Figure 2.8

It shows graphical visualizations of the structure of a topic map for seeing larger patterns in complex

data, or simply as a visually attractive and user-friendly alternative way of displaying the topic map

[24].

It was also said in the Ontopia dedicated section that the Vizigator tool has two main components, the

VizDesktop and the Vizlet. The first component provides a graphical interface where the user can load

a topic map or ontology to display, in a variety of formats including RDF, XTM, Compact Topic Maps

(CTM) and LTM, and configure the visualization through a set of operations like filtering and scoping.

These options enable the user to configure which associations, classes or instances to show, or what

colours and shapes represent the various components of the ontology. In short the user can fine tune

the display to ensure the best results. The second component refers to a Java applet for displaying

visualizations on the web which is called the Vizlet [24] .

Setting up the visualization requires no programming, the user only has to create a configuration in

VizDesktop and deploy the applet together with the necessary web service interface on the server side

[24].

Figure 2.8 - Ontopia Vizigator snapshot

2.3.2. Jambalaya

Jambalaya is a plugin created for Protégé that uses Shrimp (Simple Hierarchical Multi-Perspective) to

visualize the user created ontologies.

15

The Shrimp visualization technique uses a nested graph view to present information that is

hierarchically structured. It introduces the concept of nested interchangeable views to allow a user to

explore multiple perspectives of information at different levels of abstraction [25].

In Jambalaya, there are many types of views available. The user has choices that range from the

nested graph to the sink tree views. Furthermore the user is able to choose the layout of those views,

such as radial or grid layouts. The classes and instances are represented as nodes in the graph.

However they are represented differently according to view type chosen, as shown in Figure 2.9. In

the nested view, the classes (or instances) are represented within the class they belong to, that is they

are nested inside their superclass node. As for the sink tree view, the classes and instances are still

represented as nodes, though the relations are represented by directed arcs connecting them. Apart

from this visualization features, Jambalaya also allows the user to filter contents of the visualization, to

search for a specific class, instance or relation or zoom in or out for a more detailed or more generic

view. These features result in an environment where the user can interact directly with the information

space enhancing their understanding of the information structures, thus promoting further exploration

[25].

(a)

(b)

Figure 2.9 - Jambalaya snapshots (a) Sink Tree view; (b) Nested Graph view

16

2.3.3. OntoGraf

The OntoGraf is an ontology visualization tool available as a plugin for Protégé versions 4.x. It gives

support for interactively navigating the relationships of OWL ontologies and it also supports various

layouts for automatically organizing the structure of the ontology [26]. Much like the other visualization

tools described, OntoGraf displays all information regarding a class (subclasses, instances, etc.) and it

also represents the various relationships which are represented by directed arcs and differentiates

them through different colours.

It is a very similar tool to Jambalaya since it provides similar views, however it doesn’t feature the

nested graph view (figure 2.9 (b)). On the other hand it is able to better present complex information

than Jambalaya as one can see by comparing Figure 2.9 (a) and Figure 2.10 that represent exactly

the same scenario gathered from the FInES wiki [23]. Jambalaya depicts a confusing scenario, where

the labels of the classes and instances are all overlapping. On the contrary OntoGraf is able to keep

things very neat, clearly representing all the classes and instances with the labels being completely

readable and all the relationships also clearly visible.

Figure 2.10 - OntoGraf snapshot

2.3.4. TM4L Viewer

The TM4L Viewer displays the topic maps using a graph, where the topics and instances are

represented as nodes of the graph (with different colours) and the relations are represented as lines

connecting the nodes also with different colours (depending on the type of relation). It is worthy of note

that the relations and nodes are labelled so that the user can easily see what they are and their

relation. Moreover this tool also has a hierarchical tree view where the user can easily observe the

instances and relations of a topic in a more structured manner. Apart from these features the TM4L

Viewer also provides a topic maps index where the user can choose between listing topic types,

relationships, subject topics, relationship types, resource types, member types and themes (contexts).

17

By choosing a member of a list, the TM4L Viewer automatically displays the graph and the tree of the

selected object, as illustrated in Figure 2.11.

Figure 2.11 - Snapshot of the TM4L Viewer

2.3.5. DebateGraph

DebateGraph [27] is a web-based collaborative idea visualization tool based on mind maps. This

visualization tool displays topics or ideas that relate to a selected topic. It enables several users to

contribute to a topic by adding their own ideas and contributions that can be represented in different

colours depending on the user point of view. For example, the green colour is used when the user has

a positive argument about a certain topic, or a red colour when the argument is against a certain point

of view. It also enables the user to create subtopics that can represent instances, or subclasses of a

certain class (topic). A major advantage of this tool is the possibility of easily sharing the map with

others via web pages through the addition of specific HTML code provided by the DebateGraph GUI.

Another advantage of this tool is that it provides excellent readability of the concepts, even when

dealing with very large and complex maps, i.e. the topics are clearly visible and their labels aren’t

stacked upon each other and can easily be read. However, a big disadvantage of this tool is the fact

that it isn’t possible to open or exporting map files, which means that the user either creates a new

map from scratch or edits an existing one. An example gathered from the FInES wiki is presented in

Figure 2.12.

18

Figure 2.12 - Snapshot of the debateGraph visualization tool

2.3.6. TheBrain

This tool is based on the mind map technology and can be used as a mean for ontology visualization.

It uses a graphical layout of topics connected by lines that radiate out from a central topic [28].

However it is a very dynamic tool since any topic can be the central one as the user shifts contexts or

changes the focused topic. Up to this point, the Brain tool seems very similar to the other ontology

visualization tools already presented. However this tool has some features that the others do not. One

of these features is the possibility of attaching files or URL’s to each topic allowing the user to be

redirected to those sources thus providing complementary information about the topic. Another

important feature is the possibility of uploading and sharing the created mind map to a website using

simple HTML code, thus allowing other users to navigate online through the map. Figure 2.13

represents the same example gathered from the FInES wiki that was used in the previous ontology

visualization tools. As can be seen, this tool centres the focused topic and arranges the other topics

neatly in the side so that they can easily be selected if the user so desires.

Figure 2.13 - Snapshot of theBrain visualization tool

19

2.3.7. XMind

XMind is an open source tool that contributes to building a cutting-edge brainstorming/mind-mapping

facility, focused on both usability and extendibility [29]. The structure in XMind contains a root in the

center, with main branches radiating from it, similarly to “theBrain” tool. Its features contemplate

several mind map templates, the ability to import and export mind maps in a variety of file formats and

it can also be shared on the web or embedded in a webpage [30]. This tool can be of great use in

terms of ontology visualization because the information can be arranged as to maintain good

readability and more importantly it can clearly represent the class hierarchy, as well as the properties

that relate the several classes. However a major downside to this tool is that it doesn’t work with

ontology files such as, OWL or RDF, thus the classes and properties have to be built manually, which

for complex ontologies, can be very error-prone and extenuating.

Figure 2.14 shows an example gathered from the FInES wiki, and as can be observed, it contains a

root topic, and its branches represent classes, while the blue dotted lines represent the relations

between them. This example can attest to the capability of this tool to represent the relations and class

hierarchy of an ontology, although this is mainly a mind mapping tool.

Figure 2.14 - Snapshot of the XMind visualization tool

2.3.8. Ontology Visualization Tools Concluding Remarks

To conclude this section Table 2.2 is presented, where the studied ontology visualization tools are

compared regarding their supported file formats, possibility of embedding the visualization online,

support for multiple users and elements disposition and readability.

Table 2.2 - Comparison between ontology visualization tools
Ontology

Visualization Tool
Supported File

Formats
Online Embedding

Multiple Users
Support

Readability

Ontopia Vizigator
XTM, CTM, LTM, RDF

and TM/XML

Yes. Through Java
applet + web service

interface
Yes Medium

Jambalaya OWL 1.0, RDF No N.A. Bad

OntoGraf OWL, RDF No N.A. Medium

TM4L Viewer XTM and LTM No N.A. Medium

DebateGraph N.A. Yes Yes Good

theBrain
XML, DOCX, MMAP,
XMMAP, OPML, MM,

OWL and TXT
Yes Yes Good

XMind
XMIND, MMAP, XMP

and MM
Yes Yes Good

At first glance all of the presented visualization tools seem similar since all of them represent the

concepts similarly to a topic map, with the focus on one topic and linking related topics through lines or

20

arcs. However when their specifications are more thoroughly analysed, differences between them

begin to emerge, as shown in the table. Beside these differences, one cannot clearly state that a tool

is better than the other. Still, depending on the technology used to develop the ontologies or their end

use, some tools can be more suited than others. For example, if topic map type files are used then

perhaps it is best to use Ontopia’s Vizigator or the TM4L Viewer. On the other hand if the ontologies

are developed using the OWL or RDF file formats then the Jambalaya and OntoGraf tools are perhaps

more suited for a better visualization. Furthermore if the end use for the visualization is an online

application then DebateGraph or theBrain or even XMind are more suited as they offer a more simple

solution for online integration. The multiple users feature relates to the capability of the tool to support

users editing or viewing the ontology at the same time. Unfortunately this feature could not be tested

for the Jambalaya, OntoGraf and TM4L viewer tools, hence the “Not Applicable” (N.A.) value Lastly

there’s the readability attribute, which is evaluated according to three levels, “bad”, “medium”, and

“good”. The lowest value is “bad” and means that the elements aren’t clearly shown or the labels

aren’t read easily, signifying that the concepts are piled on top of each other creating a lot of confusion

and not allowing a good overview of the structure of the ontology. The “medium” value means that the

concepts are still presented somewhat confusingly, however it is possible to have a better overview of

the ontologies structure. The highest value for this attribute is “good” and it means that the elements

are neatly shown, all the labels are easily readable and the structure of the ontology is well

represented. It is also worthy of note that the readability attribute refers to large or complex ontologies,

since for simple or small ontologies, all of the tools perform satisfactorily.

2.4. Ontology Reasoners

Reasoners are key components for working with OWL ontologies. In fact, querying an ontology should

be done using reasoners. The reason for this is that knowledge in an ontology might not be explicit

and a reasoned is required to deduce implicit knowledge so that the correct query results are obtained

[31]. These tools work based on description logic, where logical consequences are inferred, using an

inference engine, based on a predefined set of rules and are often based on a hypertableau algorithm

[32]. Reasoners are often used paired with ontology editing tools, like the ones previously presented,

with the objective of computing the class hierarchy and alert users to inconsistencies within the

ontology [33].

In this subsection four of the most known description logic reasoners will be presented, HemiT [34],

Pellet [35], FaCT++ [36] and RacerPro [37].

2.4.1. HermiT

HermiT is an open source ontology reasoner that given an OWL file, can determine whether or not an

ontology is consistent, identify subsumption relationships between classes, among other functions

[34]. This reasoner has essentially three modes of operation. It can be used as Protégé plugin, from

21

the command line or in java applications [39].

 HermiT as Protégé plugin

In this mode of operation, HermiT can be accessed directly from the Protégé GUI from a drop down

menu on the menu bar. When the reasoner is run the consistency of the ontology is assessed. If the

ontology is inconsistent, a pop up message appears to alert the user to that fact, as shown in Figure

2.15. On the other hand, if the ontology is consistent, the results can be seen by choosing to view the

inferred components from the Protégé GUI as illustrated in Figure 4.4.

Figure 2.15 - HermiT reasoner Protégé plugin output - inconsistent ontology

 Using HermiT from the command line

When HermiT is used from the command line, different common reasoning tasks can be configured for

the reasoner to perform. In the example featured in Figure 2.16 HermiT was used to classify an

ontology, outputting the class hierarchy. The command to invoke HermiT from a shell is “java –jar

HermiT.jar” followed by the arguments that serve to tell which operation the reasoner is to perform.

Figure 2.16 - HermiT reasoner example using the command line

22

 Using HermiT in java applications

This reasoner can be used in java applications through the OWL Reasoner interface that is available

in the OWL Application Programming Interface (API). It can be used to integrate HermiT with user

developed applications or tools. In the example shown in Figure 2.17, a simple demo application was

created where the consistency of an ontology is tested. If the ontology is consistent the program

returns the Boolean value “true”, else if it isn’t consistent the program returns the Boolean value

“false”.

Figure 2.17 - HermiT reasoner java application integration example

2.4.2. Pellet

Pellet is an OWL description logic reasoner that features standard reasoning services, such as,

consistency checking, concept satisfiability, classification and realization [40]. As it happens with the

HermiT reasoner, Pellet also has multiple interfaces from which users can access its reasoning

capabilities, for instance, a command line interface, an API and as a Protégé plugin. The command

line interface is more suited for simple reasoning tasks, while the API is better for standalone

applications and the Protégé plugin is useful when the ontology is being developed using that editor.

An example of consistency checking of an ontology using this reasoner is shown in Figure 4.3.

The procedure to using this reasoner as a Protégé plugin is the same as the one described for

HermiT. An example of consistency checking with this interface is shown in Figure 2.18, where the

consistency of an ontology is tested with the result being that it is inconsistent.

23

Figure 2.18 - Pellet reasoner Protégé plugin output - inconsistent ontology

2.4.3. FaCT++

FaCT++ is also an open source OWL description logic reasoner that uses FaCT algorithms, but with a

different internal architecture [36]. This reasoner can be used as standalone reasoner, as back-end

reasoner for an OWL API based application [38] or as a plugin for the Protégé ontology editor.

FaCT++ is implemented using C++ in order to create a more efficient tool, and to maximise portability

[36]. As happens with the previously presented reasoners, FaCT++ is also capable of verifying the

consistency of OWL ontologies and classifying the ontology to compute the class hierarchy.

The example featured in Figure 2.19, illustrates the output of the execution of the FaCT++ reasoner,

as a Protégé plugin, on an inconsistent ontology.

Figure 2.19 - FaCT++ reasoner Protégé plugin output - inconsistent ontology

2.4.4. RacerPro

The Renamed ABox and Concept Expression Reasoner (RacerPro) is a description logic reasoner for

OWL or RDF ontologies [37]. It can be used as a plugin for Protégé, via an http/XML DIG protocol or it

24

can be used on a standalone application via a Java or LISP API. Its main functionalities include [41]:

 Check the consistency of an OWL ontology and a set of data descriptions.

 Find implicit subclass relationships induced by the declaration in the ontology.

 Find synonyms for resources (either classes or instance names).

 Incremental query answering for information retrieval tasks (retrieve the next n results of a

query). In addition, RacerPro supports the adaptive use of computational resource: Answers

which require few computational resources are delivered first, and user applications can

decide whether computing all answers is worth the effort.

To have a better understanding of its features, Figure 2.20 is presented, which illustrates the

technologies that this reasoner integrates and supports.

Figure 2.20 - RacerPro reasoner supported features [41]

2.4.5. Ontology Reasoners Concluding Remarks

As a conclusion to this subsection Table 2.3 is presented where some features of the presented

reasoners are put side by side for a better general view. It isn’t the objective of this work to make an

exhaustive comparison of these reasoners, but it is suffice to say that these tools are quite similar to

each other varying only in their architectures, implementations and speed of execution of the

reasoning tasks.

Table 2.3 - Ontology Reasoners Comparison

Ontology
Reasoner

User Interface
Ontology

Consistency
Checking

Ontology
Classification

Standalone
applications
integration

HermiT
Command line,

Protégé plugin,API
Yes Yes Yes

Pellet
Command line,

Protégé plugin, API
Yes Yes Yes

FaCT++
Command line,
Protégé plugin

Yes Yes N.A.

RacerPro Protégé plugin, API Yes N.A. Yes

As seen in the table, regarding the user interface, all of the presented reasoners can be used as a

plugin for the Protégé ontology editor. This a great benefit because the consistency of the ontology

can be checked as its being developed. The command line feature is also useful because it allows a

direct consistency checking of the ontology without having the need of additional programs, however

25

RacerPro doesn’t implement this feature. An API is particularly useful when integrating reasoning

features to user developed applications. Out of the studied reasoners, only FaCT++ doesn’t implement

this feature. Regarding the consistency checking of ontologies, all of the reasoners are capable of

doing so, since it’s their main objective. Referring to the classification of an ontologies taxonomy, only

RacerPro doesn’t have this capacity. Finally, the integration of reasoning features with standalone

applications isn’t accomplished by FaCT++ since it doesn’t provide an API.

In spite of the chosen reasoner it can be concluded that these tools are indeed very important upon

developing ontologies. They can ensure that the conducted work remains solid and error free during

its evolution regarding its consistency.

27

3. SEMANTIC CHECKING FRAMEWORK

In this chapter, the semantic checking framework proposed by the author is presented along with an

extensive description of its purpose and guidelines. In addition, to provide a context as to why and

how this framework was developed, a background study on the problematic of systems interoperability

and consistency checking is also presented. This study is important because it introduces key

concepts to the problematic addressed in this work such as, consistency checking and semantic

checking.

3.1. Interoperability

According to the IEEE standards glossary [42] interoperability is the ability of a system or a product to

work with other systems or products without special effort on the part of the customer. Still, the popular

perception is that interoperability is synonymous with connectivity. However, interoperability is much

more than just connectivity. It is also a function of operational concepts and scenarios, policies,

processes and procedures [43]. Nonetheless, there are other definitions of interoperability such as the

one in [44], which regards interoperability as the ability of a set of communicating entities to exchange

specified state data and operate on that state data according to specified, agreed-upon, operational

semantics. Interoperability can also be seen in an EI point of view being defined as the ability of

interaction between enterprises. The enterprise interoperability is achieved if the interaction can, at

least, take place at the three levels: data, application and business process [45]. Despite these

different definitions, the one adopted in this work is the one defined in [44] as it is deemed by the

author as the most suitable to the topic of this dissertation.

Nowadays, as information systems in enterprises and organizations keep evolving and become more

complex, the need for interoperable operation, automated data interchange and coordinated behaviour

of large scale infrastructures becomes highly critical [46]. Regarding enterprise systems as layered

systems, to achieve meaningful interoperability between enterprises, interoperability must be achieved

on all layers [47], as seen in Figure 3.1.

Figure 3.1 - Enterprise Interoperability [47]

28

Yet, interoperability isn’t only a technical issue. The rise of other challenges have led to the

categorization of interoperability into several fields, such as, data, organizational, semantic, syntactic,

etc. Data interoperability denotes the agreed format in which data is exchanged between collaborating

enterprises. Organizational interoperability deals with the ability of enterprises to collaborate and

exchange information despite having different internal structures and processes. Semantic

interoperability offers cooperating enterprises the ability to bridge semantic conflicts arising from

differences in implicit meanings, perspectives and assumptions by creating a compatible environment

based on agreed concepts between the entities [48]. Syntactic interoperability allows multiple software

components to cooperate regardless of their different implementation languages, interfaces or

execution platforms [48].

There are several ways to achieve interoperability, either by implementing standards [42] or, in the

case of ontologies, by performing operations to integrate them or by resorting to a methodology, such

as MENTOR (Methodology for Enterprise Reference Ontology Development), to build a reference

ontology to serve as a bridge between the source ontologies. However, it is needed to take into

account that the execution of any operation can result, in some cases, in loss of information.

Therefore, after conducting operations to integrate or to make two or more systems interoperable, it is

needed to check the consistency of the output, independently of which type of interoperability

considered.

3.2. MENTOR Methodology

MENTOR is a methodology that helps an organization to build and adapt a domain reference ontology

[49]. MENTOR provides a methodology that allows ontology building from scratch, ontology

reengineering, cooperative ontology building and ontology merging methods.

This methodology is comprised of two phases, each with three steps, as seen in Figure 3.2. The first

phase (Lexicon Settlement Phase) represents the domain knowledge acquisition and is divided in the

following steps:

 Terminology Gathering – In this step all the relevant terms or concepts in a specific domain

are gathered, with the all the participants giving their inputs [49]. The terms gathered in this

step should reference the contributors so that they can provide their definitions during the next

step;

 Glossary Building – In this step, each contribute provides their annotations of the previously

established terms. Then the terms enter a cycle where they are reviewed in order to reach a

reference definition. This cycle has two possible outputs. If there isn’t an agreement then the

participants produce a semantic mismatches record for future mappings. On the other hand if

everyone agrees on the definitions then the glossary is produced and the process is advanced

to the next step;

 Thesaurus Building – This step is constituted by a cycle where the knowledge engineers

define a taxonomic structure from the glossary terms [49]. Then the other terms are classified

29

into semantic proper paths in the existing taxonomic structure down to the thesaurus leafs

[49]. Equally to the previous step, the process only advances if there is an agreement between

the participants. If an agreement isn’t reached then the cycles starts all over again. On the

contrary, if there is an agreement then the thesaurus is produced and process advances to the

next phase. The defined thesaurus will enhance the ontology harmonization process in the

next phase [49].

The second phase (Reference Ontology Building Phase) is where the reference ontology is built and

the semantic mappings between the organizational ontologies and the reference one are established

[49]. This phase is composed by the following steps:

 Ontologies Gathering – This step comprehends the collection of ontologies or other types of

knowledge representation techniques within the specified domain;

 Ontologies Harmonization – This step is supported by two cycles. First there is a discussion

about the structure of the reference ontology where the previously defined thesaurus is taken

into account. Once again, if an agreement is reached by all, then the cycle is repeated. If a

consensus is reached then the taxonomy of the reference ontology is defined. From there the

step advances to the second cycle where the contents of the gathered ontologies are

harmonized using the semantic mismatches previously recorded. However new mismatches

may be found and these need to be recorded as well. When the participants reach an

agreement the reference ontology is finalized and the process can advance to the final step;

 Ontologies Mapping – This step is executed whenever there are semantic mismatches to

record [49]. These semantic mismatches are used to produce mapping tables that describe

the ontological relationships between the reference ontology and each one of the source

ontologies [49].

30

Figure 3.2 - MENTOR Methodology [49]

Some work has already been conducted by Gaspar in [50] in order to enrich MENTOR with qualitative

information collective methods and developed a functioning prototype, illustrated in Figure 3.3 that

implements some of the described steps.

MENTOR login page Terms revision (Glossary Building step)

Figure 3.3 - MENTOR prototype [50]

31

3.2.1. Mediator Ontology

As previously referred, one of the steps in this methodology comprises the establishment of mappings

to record the possible existing semantic mismatches. Since this is not an easy task, MENTOR uses a

Mediator Ontology (MO) as a reference for mediating the mapping establishment and its subsequent

‘mapping records’ reasoning [50]. This allows communities to build systems with reasoning capabilities

able to understand each other’s representation format, without having to change their data and

communication functions [49]. Apart from the feature of enabling seamless communication between

different systems, the MO is also able to represent ontology semantic operations such as, the

semantic mismatches found in the Glossary building step, the semantic transformations identified in

the harmonization process, the ontologies mapping and other ontology operations (e.g. versioning)

[49]. To be able to represent these ontology operations, the MO is uses a five-tuple mapping

expression proposed by Agostinho et al. in [51]. According to the tuple philosophy, all the information

about the mappings should be stored in a dedicated KB so that it becomes computer processable and

so that readjustments are easier to manage. In this case the KB is the MO which is defined in the

OWL format with the structure represented in Figure 3.4.

Figure 3.4 - Mediator Ontology Structure [52]

The structure of the MO, presented in the previous figure is described as follows: the MO has two

main classes: “Object” and “Morphism”. The “Object” represents any “InformationModel” (IM) wh ich is

the model/ontology itself and “ModelElements” (also belonging to the IM) that can either be classes,

properties or instances. The “Morphism” associates a pair of “Objects” (related and relating), and

classifies their relationship with a “MorphismType”, “KnowledgeMappingType” (if the morphism is a

mapping), and “Match/Mismatch” class. The “Morphism” is also prepared to store transformation

oriented “ExecutableCode” that will be written in the ATLAS Transformation Language and can be

32

used by several organizations to automatically transform and exchange data with their business

partners [51].

With the mappings stored in the mediator, all information regarding them can be accessed by local

systems of business partners that wish to communicate. The translation from one message format to

another is the responsibility of the mediator, therefore assuring seamless communication between

different systems. Figure 3.5 illustrates the general vision of the flow of the system. At the beginning,

all the required mappings, using the tuples, are established and stored in the MO. Then, when one of

the business partners wants to communicate with another, it simply sends its message to mediator

who is then in charge of transforming its format and forwarding it to the destination.

Figure 3.5 - Mapping design and execution flow in data exchange

3.3. Consistency Checking

Consistency is defined in the Oxford dictionary [54] as the quality of achieving a level of performance

which does not vary greatly in quality. This can be interpreted as something that has an accordance

with previously stated facts or characteristics. That being said, the consistency of an ontology can be

defined as incorporating new information in accordance to the one that was previously represented in

the ontology. Therefore, consistency checking is one of the most important phases in ontology

maintenance. As ontologies evolve, i.e., modifications in the application domain, incorporating

additional functionality according to changes in the users’ needs, organizing information in a better

way, etc. [55] it is important to have a mechanism that can validate that the information within the

ontology remains consistent. Much work has been done in this field, such as, frameworks that provide

33

strategies for detecting and repairing inconsistencies [56] and how to deal with the evolution of

ontologies in order to maintain their consistency [55]. Other work that has been conducted in this area

features tools to help prevent or detect and fix inconsistencies. Such tools are mostly descriptive logic

reasoning tools that infer logical consequences, through an inference engine, based on a set of rules

or facts. Examples of consistency checking tools are ConsVISor [57], FaCT++ [36] or HermiT [34].

Consistency checking can be divided into two categories that are referred here as interoperability

checking and semantic checking. The latter being the main focus of this dissertation.

3.3.1. Interoperability Checking

As information systems in companies and enterprises evolve and grow larger and more complex, a

previous interoperable state with other systems, within the same or between different companies, can

become compromised. Therefore there is a necessity to continuously verify if the systems are still

functioning properly with one another, i.e., if they remain interoperable. This is often done by using

tests designed specifically to achieve this goal. From a general perspective, two types of testing are

relevant in the entrepreneurial context, conformance and interoperability testing [58]. Conformance

testing involves the verification of whether an implementation is in conformity with the underlying

specifications. This kind of testing is the first step toward interoperability with other conformant

systems as prescribed by the specification [58]. An example of conformance testing is shown in Figure

3.6.

Figure 3.6 - Conformance Testing Example [58]

On the other hand, interoperability testing consists in verifying if the involved systems are actually able

to intercommunicate based on some exchange scenarios, as seen in Figure 3.7. However, this form of

testing is generally more difficult to automate than the previous one and requires more human

involvement and coordination [58]. Furthermore, human involvement is highly costly and leaves room

for human error due to the repetitive nature of the tests and the high number of interfaces involved in

the testing of complex systems [59].

34

Figure 3.7 - Interoperability Testing Example [58]

Also according to [58], software implementations can be certified and correct information exchange

between systems if both types of testing are used, meaning that conformance testing isn’t a substitute

for interoperability and vice-versa. Furthermore, the quality of the interoperability specifications

impacts the difficulty in the application of the tests.

3.3.2. Semantic Checking

Semantic checking refers to the validation of ontological concepts regarding their semantics. This is a

very important step if one is to have interoperability between several ontologies. According to Li et al.

in [46], there are three types of semantic checking, single, composite and multiple. In the first case the

semantic checking is done within a single ontology and it is only deemed consistent if it satisfies a set

of concepts and axioms and if all used entities is defined. The second type refers to the semantic

checking of ontologies (or subsets of ontologies) within ontologies. Also, in this case an ontology is

deemed consistent if the ontology itself and all its included ontologies are consistent. Finally the third

type is the main focus of this work and depicts a scenario where several separate ontologies interact

with each other. In this case of multiple semantic checking the goal is to validate if all knowledge

represented in a given ontology can be represented in another (within the same domain), by means of

a reference ontology, for example. Conceptual representations of each of these types can be seen in

Figure 3.8.

(a) (b) (c)

Figure 3.8 - (a) Single Semantic Checking; (b) Composite Semantic Checking; (c) Multiple Semantic Checking

35

In this work, semantic checking will be accomplished by using a reasoning process aided by rules

defined in Semantic Web Rule Language (SWRL).

Haase et al. in [55] further propose three types of consistency regarding the semantics of a single

ontology. It refers to structural, logical and user-defined consistency. Structural consistency considers

constraints that are defined for the ontology model with respect to the constructs that are allowed to

form the elements of the ontology [55], which means that an ontology is only deemed structurally

consistent if no elements of the ontology violate its defined structure. For example, consider an

ontology that represents a simple bank domain, where there are employees, clients and accounts and

that there is a constraint that doesn’t allow an employee to be both employee and client. If the bank

manager tries to open an account for himself, thus becoming both client and employee, then the

ontology would become structurally inconsistent. Logical consistency focuses on whether the ontology

does not contain any contradicting information, i.e. it is semantically correct [55]. For an ontology to be

logically consistent it must satisfy each of its axioms. Considering the previous example, if an axiom

stating that there is a client named John and assuming that an employee named John already exists,

then the addition of this axiom would lead to a logically inconsistent ontology because it was

previously defined that employees cannot be both clients and employees. Finally, user-defined

consistency takes into account specific user requirements that are external to the ontology itself. Even

if an ontology is structurally and logically consistent it may still violate user requirements [55]. Two

types of user-defined consistency were identified, generic and domain dependent. The former refers to

consistency conditions applicable across domains. The latter refers to consistency conditions that take

into account the semantics of a particular formalism of the domain [55].

3.3.3. Semantic Adaptability Using a Mapping Tuple

Either being used in the form of traditional databases, architectural models, or domain ontologies,

models can be described on multiple formats, languages, expressiveness levels, and for different

purposes. A model can be characterized according to four dimensions: Metamodel - the modelling

primitives of the language for modelling (e.g. ER, OWL, XSD) are represented by a set of labels

defined in the metamodel; Structure - corresponding to the topology associated to the model schema;

Terminology - the labels of the model elements that don‘t refer to modelling primitives; Semantics -

given a “Universe of Discourse”, the interpretations that can be associated with the model [51]. In this

case the information models are ontologies where mappings are established to relate each element of

the source ontology to a corresponding element in the target one. However, a formalism able to

represent these mappings is needed because it could facilitate the integration and use of various

knowledge sources to the semantics adaptability of the information systems [53]. To ensure semantic

interoperability and minimize inconsistencies, Agostinho et al. in [51] proposed a tuple based mapping

scheme. They used a 5-tuple mapping expression to formalize morphisms between model elements

enriched with semantic information that enables fast human readability. This mapping tuple expression

contains 5 fields, ID, MElems, KMType, MatchClass and Exp. The ID is the unique identifier of the

mapping tuple. The MElems field indicates the pair of mapped elements. KMType is the knowledge

36

mapping type which can be Structural Semantic, Instantiable Data or Conceptual as stated in previous

section and illustrated in Figure 3.9. The MatchClass field stands for the semantic mismatch

classification which depends on the knowledge mapping type. Finally the Exp field is the mapping

expression that translates and further specifies the previous tuple components.

Figure 3.9 - Knowledge Mapping Types [51]

Although the mappings are made to minimize inconsistencies, imperfect mappings can lead to such

inconsistencies called semantic mismatches. These mismatches have been identified in [51] as lossy,

when losses of information are recorded and as lossless when no information loss is recorded. A

summary of the identified semantic mismatches can be seen in Table 3.1

Table 3.1 - Semantic Mismatches [52]

Mismatch Description Examples

Lo
ss

le
ss

Naming
Different labels for same concept
of structure

Granularity
Same information decomposed
in or composed by
(sub)attributes

Structuring
Different design structures for
the same information

SubClass-
Attribute

An attribute, with a predefined
value set represented by a
subclass hierarchy (or vice-versa)

Schema-
Instance

An attribute value in one model
can be a part of the other’s
model schema (or vice-versa)

Encoding
Different formats of data or units
of measure

Schema-Instance

Structuring

Naming

Granularity

SubClass-Attribute

Encoding

37

Mismatch Description Examples

Lo
ss

y
Content

Different content denoted by the
same concept

Coverage Absence of information

Precision Accuracy of information

Abstraction Level of specialisation

These mismatches are often observed when mapping operations between ontologies are executed.

Therefore, this can be associated with the MENTOR methodology approach to the semantic alignment

of the involved ontologies. Thus the MO, which uses these tuple based mappings to represent

ontology semantic operations and records any mismatches that occur during the operations.

3.4. Semantic Checking Framework

There are three approaches to the issue of semantic checking, the one suggested by Li et al. in [46],

the one proposed by Haase et al. in [55], and the one by Agostinho et al. in [51].

Starting with the approach described in [46], it features a more general method to the semantic

checking issue, since the ontologies are considered as a whole. This means that only the architectural

aspects of the ontology based system are considered, i.e., if the system is composed of a single

ontology, or if there are multiple separate ontologies interacting each other. This has led the author to

adopt this method to serve as basis for the scenarios identified in the framework.

Referring to the approaches to the semantic checking issue by Haase et al. and Agostinho et al. these

seem quite similar at first sight. However in [55] the approach is more of a structural point of view,

encompassing the semantics and data instances of the ontologies. On the other hand, the method

described in [51] is more specific, since besides considering the structural aspects of ontologies,

namely its semantics and data instances, it also considers the conceptual aspect of ontologies. This

conceptual aspect is about the meanings of the used terms, i.e., if the concepts are well characterized.

Due to the specificity in this approach, the author chose to use the knowledge mapping types seen in

Figure 3.9, applied to the scenarios presented by Li et al. in [46], illustrated in Figure 3.8, to build the

framework.

To help maintain semantic interoperability in the enrolled systems, the author proposes a semantic

checking framework (Table 3.2), which shows the main characteristics that an ontology based

information system should comply to maintain semantic consistency.

Abstraction

Content

Coverage

Precision

38

Table 3.2 - Semantic Checking Framework

 Single Ontology
Composite
Ontologies

Multiple
Ontologies

Structural

1.

Automatic
reasoning

3.

Automatic reasoning;

Automatic
synchronization

5.

Ad hoc
synchronization;

Automatic
reasoning

Conceptual

2.

Human action plus
automatic
reasoning

4.

Human action plus
automatic reasoning;

Automatic
synchronization

6.

Human action plus
automatic
reasoning;

Ad hoc
synchronization

More specifically, this framework intends to evaluate, in each case, if the information models are

consistent according to their structural and its conceptual definition. Technically, each of these cases

can be verified by resorting to description logic reasoners by using inference engines. These

reasoners derive logical consequences from a set of pre-defined rules which aim to represent the

semantic mappings between the elements of the information models. However in some cases, further

mechanisms are needed to verify the semantic consistency of the system.

This framework is composed of 6 items. Framework items 1 and 2 refer to scenarios where only a

single ontology is involved. For item 1 (single ontology – structural consistency checking), a simple

reasoning process suffices to verify the structural consistency of the ontology. This process was

named automatic because it is only needed to execute a typical reasoner on the ontology and it

automatically infers that the ontology is structurally consistent. This can be done because descriptive

logic reasoning tools infer specific logical consequences, through an inference engine, based on a set

of rules or facts. Regarding item 2 of the framework, besides an automatic reasoning process similar

to the previous situation, human action is also needed. This is because the user needs to create

elements of the concepts to test if after running the reasoner such concepts are well positioned in the

ontology, thus verifying their conceptual definitions.

Items 3 and 4 of the framework denote cases where composite ontologies are involved. On item 3, in

addition to an automatic reasoning process, an automatic synchronization mechanism is also required.

Since composite ontologies are composed of two or more ontologies merged together, a

synchronization mechanism is needed to validate its structural consistency. This is because any

structural change that occurs in one of the ontologies needs to be reflected in all the other KREs. On

the other hand, item 4 additionally requires human interaction to the automatic reasoning and

synchronization processes. This is because the user needs to create elements of the concepts

represented in the ontology to verify its conceptual definitions, achieving the same objective

mentioned for item 2. Moreover in this case, the concepts need to be well represented in the merged

ontology to avoid repetitions and that is why the synchronization and reasoning are both required.

Finally, items 5 and 6 of the framework are applicable in scenarios where multiple but separate

39

ontologies are involved. In item 5, besides having an automatic reasoning process, it also requires an

ad hoc synchronization process in order to align the knowledge represented in the various KREs. This

means that any changes that occur in a given element of the system must be reflected in the others in

order to maintain consistency. Since these types of systems can be very complex, knowing the

synchronization method facilitates the semantic checking process. This is because the users need to

know what the system is prepared for, i.e., its capabilities in order to execute the modifications on one

side to be properly reflected in the other. If the user doesn’t have a grasp of the system is prepared for

then it could lead to misalignment of the represented knowledge which could lead back to a non-

interoperable state. In entry 6 it is needed human intervention, for the same reasons that figure in the

other conceptual checking cases. The user needs to create elements that intend to represent certain

concepts, and these elements must be well represented in the other ontologies that compose the

system. To accomplish this, a reasoner is executed as in the other conceptual checking items. Here

the synchronization process is also used for aligning the knowledge represented in the various KREs.

3.5. Concluding Remarks

In this chapter the proposed semantic checking framework was presented. Its goal is to provide

effective means to check if the data exchanged between enterprises information systems is facilitated

and its understanding maintained. To that effect, generic guidelines are proposed for each case so

that they can be applied to any system to assure semantic consistency of the exchanged data.

In conclusion of this chapter, this framework can be a valuable advantage in terms of verifying and

maintaining the semantic consistency if the involved systems.

41

4. APPLICATION SCENARIOS

In this section two scenarios are presented that intend to demonstrate the applicability of the proposed

framework. Firstly, a mechanical scenario is introduced, where a relation between a bolt supplier and

manufacturer is illustrated. The second scenario refers to the ENSEMBLE project and intends to

further demonstrate the applicability of some of the framework guidelines.

Table 4.1 indulges the cases that are being considered in these scenarios. This table has the same

structure of the framework. However, its cells contain the scenarios that were identified as being better

suited to a specific framework item. For items 1, 2 and 6 of the framework, the Mechanical Scenario

presented in section 4.1 was used to validate and demonstrate them. On the other hand, for items 3, 4

and 5 of the framework the ENSEMBLE project scenario, presented in section 4.2, was used to

validate and demonstrate these items. Furthermore, in chapter 5 a synchronization tool prototype is

described and in chapter 6, framework item 5 is thoroughly demonstrated through use case examples

of that same tool.

Table 4.1 – Framework applicability scenarios

 Single Ontology Composite Ontologies Multiple Ontologies

Structural Semantic 1.Mechanical Scenario 3.ENSEMBLE Scenario 5.ENSEMBLE Scenario

Conceptual 2.Mechanical Scenario 4.ENSEMBLE Scenario 6.Mechanical Scenario

4.1. Mechanical Scenario

This scenario depicts a relation between a bolt retailer and manufacturer. Each enterprise has its own

ontology with its own representation of the domain. To be able to collaborate with one another it was

decided to follow the MENTOR methodology in order to build a reference ontology to serve as a

mediator to their interactions. Thus, this scenario main goal is to check the consistency of the

ontologies, after applying MENTOR, regarding their semantics.

Protégé 4.1 was chosen as the ontology management tool, instead of Ontopia or TM4L, through this

scenario due to its user friendly interface and the built-in reasoner plugins to conduct the semantic

checking. Regarding the reasoning process, the HermiT reasoner was chosen to verify the

consistency of the ontologies in scenarios 4.1.3 and 4.1.5. While the Pellet reasoner was chosen to

perform the semantic checking in scenario 4.1.1. Some rules were also defined, in the SWRL

language, to aid in the reasoning process. Figure 4.1 illustrates an overview of this scenario.

42

Figure 4.1 - MENTOR scenario overview

For this purpose it was used the MENTOR methodology, which comprehends a series of steps, one of

them being the glossary building phase, where the domain terms and definitions are gathered. In this

case, the definitions adopted by each of the implemented ontologies (retailer, manufacturer and

reference) are presented in Table 4.2, Table 4.3 and Table 4.4, respectively, and are based on the

ones by Sarraipa et al. in [49].

Table 4.2 - Retailer Ontology Terms and Definitions

Ontology Term Definition Category

Retailer

Bolt

Headed fasteners having external threads that
meet an exacting, uniform bolt thread specification
(such asM, MJ, UN, UNR and UNJ) such that they
can accept a no tapered nut.

Class

Nominal
Diameter

The diameter of an imaginary cylindrical surface
tangent to the crests of an external and (or) to the
roots of an internal thread.

Class

Maximum
Diameter

The maximum value acceptable for the diameter
obtained from a predefined allowed upper
deviation of the nominal diameter.

Class

Minimum
Diameter

The minimum value acceptable for the diameter
obtained from a predefined allowed lower
deviation of the nominal diameter

Class

Note that during the harmonization phase the maximum and minimum diameter concepts were

obtained based on equations [i] and [ii] that use the upper and lower tolerance proprieties.

 []

 []

Table 4.3 - Manufacturer Ontology Terms and Definitions

Ontology Term Definition Category

Manufacturer

Bolt
Term used for a threaded fastener, with a
head, designed to be used in conjunction with
a nut.

Class

Nominal
Diameter

Diameter of an imaginary cylinder parallel with
the crests of the thread; in other words it is the
distance from crest to crest for an external
thread, or root to root for an internal thread.

Class

Tolerance
Allowable deviation from a nominal or
specified dimension, determining maximum
and minimum material condition.

Class

43

After gathering the terms and definitions from both entities, the reference ones were established as

seen in Table 4.4.

Table 4.4 - Reference Ontology Terms and Definitions

Ontology Term Definition Category

Reference

Bolt

Headed fasteners having external threads that
meet an exacting, uniform bolt thread
specification (e.g. M, MJ, UN, UNR, UNJ)
such that they can accept a no tapered nut.

Class

Nominal
Diameter

In a hexagonal bolt’s head, is the dimension
of the nominal diameter tangent to the flats
(also expressed as the dimension across flats
which correspond to the size of wrench to
use). The diameter of an imaginary cylindrical
surface tangent to the crests of an external
and (or) to the roots of an internal thread.

Class

Upper
Tolerance

Maximum value of allowable deviation from a
nominal or specified dimension.

Class

Lower
Tolerance

Minimum value of allowable deviation from a
nominal or specified dimension.

Class

Note that the reference ontology distinguishes between “Upper and Lower Tolerances” while the

manufacturer ontology does not. Also it doesn’t define the “Maximum and Minimum Diameters” as in

the retailer ontology because these can easily be obtained from the “Nominal Diameter and Upper and

Lower Tolerances” as specified in the previous equations.

Upon obtaining the reference ontology the next step is to try and accomplish the previously

established goal for this scenario. This means that is needed to validate if the reference ontology

indeed represents the knowledge gathered from the enterprises and if this representation is able to do

so without any loss of information. The ontologies used to verify this scenario are represented in

Figure 4.2.

Retailer Ontology Manufacturer Ontology Reference Ontology

Figure 4.2 - Used Ontologies

As referred in Table 4.1, this scenario is used to validate some of the framework items, namely items

1, 2 and 6, and to that effect specific examples are presented for each case.

4.1.1. Single Structural Semantic Checking

This scenario intends to demonstrate the applicability of the proposed framework regarding its item 1.

As previously indicated, this case only requires an automatic reasoning process in order to verify the

44

structural consistency of a single ontology. To this effect, the retailer ontology, shown on the left part

of Figure 4.2, was used to validate this case. The ontology was then submitted to the reasoning

process, using the Pellet reasoner [35], and the structural consistency of the ontology was confirmed,

as shown in Figure 4.3. As stated previously, Pellet was the chosen reasoner, instead of the others

presented in section 2.4, to perform this task due to the simplicity of its use as a command line

interface and of its output.

Figure 4.3 - Pellet reasoner output

4.1.2. Single Structural Semantic Checking Concluding Remarks

As indicated by the framework in item 1, the structural consistency of a single ontology was verified by

resorting to an automatic inference mechanism. In this case the chosen ontology was submitted to the

Pellet reasoner and its output was an assertion to whether the ontology was consistent or not, which,

in this case, its consistency was effectively verified.

4.1.3. Single Conceptual Checking at MENTOR Scenario

This situation refers to item 2 of the proposed framework. In this case, the chosen ontology was also

the one from the retailer enterprise. However, as stated earlier, the chosen reasoning tool was HermiT

[34] as a plugin in Protégé due to its effectiveness and simplicity. The basis for this example is the

creation of instances in the ‘Thing’ class, to ensure that the instances aren’t initially associated with

any class. Then a reasoning process is started to verify if the instances are placed in their

corresponding classes, in order to validate its conceptual definition.

As seen in Figure 4.4 (left), instances (‘b1’, ‘maxD’, ‘minD’, ‘n’) were defined as being in the ‘Thing’

class. It is also shown the structural properties that comprise instance ‘b1’ and the expressions that

define the bolt concept. These proprieties indicate that a bolt instance must be comprised of a

minimum diameter, a nominal diameter and a maximum diameter. The class expressions define a

criterion that an instance must meet in order to belong in that class. It is based on these expressions

and proprieties that the reasoning process is able to infer the correct consequences. The creation of

the instances had to be done manually as it was suggested by the framework. Afterwards the

reasoning process was executed and the output is shown in the right part of Figure 4.4. As it can be

seen, the Bolt class is highlighted and it shows the ‘b1’ instance as an inferred member of that class,

thus validating the bolt concept for this ontology. Although the output only highlights the instance that

refers to the bolt class (‘b1’), the other instances (‘maxD’, ‘minD’ and ‘n’) were also inferred to their

proper classes thus validating the conceptual consistency of the ontology.

45

Before Reasoning After Reasoning

Figure 4.4 - Reasoning Example (Retailer Ontology)

4.1.4. Single Conceptual Semantic Checking Concluding Remarks

Based on inference mechanisms, more specifically using the HermiT reasoner and some human

intervention, it is possible to assess the conceptual consistency of this ontology, as indicated in item 2

of the proposed framework. As seen in the example HermiT was able to successfully infer the created

instances to their corresponding classes. Therefore it is possible to conclude that this ontology is

conceptually consistent.

4.1.5. Multiple Conceptual Semantic Checking

This example features the case of conceptual validation of multiple ontologies, item 6 of the

framework, namely between the retailer and reference ontologies and between the manufacturer and

reference ontologies. To portray the relations between the retailer, manufacturer and reference, tuple-

based mappings were defined between their concepts. Table 4.5 and Table 4.6 show the mappings

between the retailer and reference, and between the manufacturer and reference, respectively.

As an example as to how this mappings are built, consider the bolt definitions adopted by the

manufacturer and reference entities. Firstly an ID is attributed to serve as a unique identifier to that

mapping. Then the two terms are compared, where ‘a’ is the manufacturer definition of the bolt

concept and ‘b’ the one defined by the reference. These two terms are then classified according to

their knowledge mapping type shown in Figure 3.9. In this case they have been identified as belonging

to the “Conceptual” knowledge type. Then the two definitions of the bolt concept are compared and

classified according to the semantic mismatches presented in Table 3.1. In this case, by resorting to

the bolt definitions presented in Table 4.3 and Table 4.4 it is easily verified that the reference definition

is more complete and as such, the MatchClass was defined as less general, because it’s the

manufacturers term in relation to the reference term. Finally, the expression is defined according to the

MatchClass, using set theory symbols. In this case the manufacturers’ term is contained in the

reference one.

46

Table 4.5 – Retailer Reference Mappings

ID Retailer1_1 Retailer2_2 Retailer2.3_3 Retailer2.1_4 Retailer2.2_5

Melem

s =

(a,b)

a
Retailer.

Bolt1

Retailer.Diamet

er

Retailer.Nom_D

iameter

Retailer.Max_Dia

meter

Retailer.Min_Dia

meter

b
Referenc

e.Bolt

Reference.Nom

_Diameter

Reference.Nom

_Diameter

Reference.Upper

_Tolerance

Reference.Lower

_Tolerance

KMTyp

e
Conceptual Conceptual Conceptual Conceptual Conceptual

Match

Class
Equal More General Less General More General More General

Exp ab ab ab ab ab

Table 4.6 - Manufacturer - Reference Mappings

ID
Manufacturer1

_1
 Manufacturer2_2

Manufacturer

1.3_3
 Manufacturer3_2

Manufacturer2.3

_3

MElem

s =

(a,b)

a
Manufactur

er.Bolt2

Manufacturer.No

m_Diameter2

Manufacturer.

Tolerance

Manufacturer.Tol

erance

Manufacturer.Tol

erance

b
Reference.

Bolt

Reference.Nom_

Diameter

Reference.Tol

erance

Reference.Uppe

r_Tolerance

Reference.Lowe

r_Tolerance

KMTy

pe
Conceptual Conceptual Conceptual Conceptual Conceptual

Match

Class
Less General Less General Equal More General More General

Exp ab ab ab ab ab

With such mappings defined, it is very important to verify if the reference ontology indeed represents

the knowledge gathered from the enterprises, and if any information model compliant with the

reference ontology knowledge, is able to exchange data between the participant enterprises, without

any loss of information independently of the direction that the data is transmitted to.

After obtaining the mappings, a reasoning approach to check if the concepts are well represented in

the ontologies and aligned to all the participants’ knowledge. In this case the process starts by pairing

one of the enterprise ontologies with the reference one in the same KB. Then instances were created

in the “Thing” class. These instances were created there to ensure that the reasoning process puts

them in their corresponding classes. The example shown in Figure 4.5 refers to the retailer and

reference ontologies.

47

Before Reasoning After Reasoning

Figure 4.5 - Reasoning Example (Retailer and Reference Ontologies)

As observed in Figure 4.5, two different types of ‘Bolt’ instances (i.e. “b” and “b1”) were created and

upon running the HermiT reasoner it was observed that both instances were indeed placed in the ‘Bolt’

class of the retailer and reference ontologies (i.e. “Bolt” and “Bolt1”). Therefore it can be concluded

that the ontologies remained consistent and a bolt represented in the retailer ontology is semantically

equivalent to a bolt represented in the reference ontology.

The next example is shown in Figure 4.6 denotes the manufacturer and reference ontologies. The

principle of this example is the same as in the one before, meaning that two different types of ‘Bolt’

instances (“b” and “b2”) were created within the ‘Thing’ class and then the reasoning process was

executed to verify if the instances were placed in their proper classes.

Before Reasoning After Reasoning

Figure 4.6 - Reasoning Example (Manufacturer and Reference Ontologies)

48

Contrarily to the previous example, in this case, it is possible to observe some loss of information

because although both instances (“b” and “b2”) are represented within the reference ontology, the

same cannot be said regarding the manufacturers’ ontology since only “b2” is represented. This is

because of the “Tolerance” definitions represented by each of the ontologies. While the reference

ontology distinguishes between “Upper and Lower Tolerances”, the manufacturers only define a single

tolerance, assuming an equal value for “Upper” and “Lower”. This means that if different values for the

“Upper and Lower Tolerances” are defined in the reference ontology then a conflict is created. Since

the manufacturer ontology does not have such distinction and therefore doesn’t know which value is

the correct one, leading to possible inconsistencies in the ontology. This loss of information is easily

reflected in the mappings defined in the direction from the reference to the manufacturer, that are the

same as the ones in Table 4.6 with the addition of the ones shown in Table 4.7.

Table 4.7 - Reference - Manufacturer Conceptual Mappings

ID Reference3.1_1 Manufacturer3.2_2

MElems = (a,b)
a Reference.Tolerance.Lower_Tolerance Reference.Tolerance.Upper_Tolerance

b Manufacturer.Tolerance Manufacturer.Tolerance

KMType Conceptual Conceptual

MatchClass Abstraction Abstraction

Exp b = a b = a

It is also worthy of remark that to aid in the reasoning process some rules were defined in SWRL.

These rules serve the purpose of aiding the inference engine by providing it with additional facts and

logical consequences that are based on the mappings defined earlier. Table 4.8 and Table 4.9

illustrate the rules defined in the first example and second examples, respectively and their purpose.

Table 4.8 - SWRL rules defined in the retailer - reference example
Rule Purpose

Min_Diameter(?minD), Lower_Tolerance(?lt),
Nom_Diameter(?n), Thing(?b), hasMin_Diameter(?b,
?minD), hasNom_Diameter(?b, ?n) ->
hasLower_Tolerance(?b, ?lt)

If a bolt instance is defined as having a minimum
diameter and a nominal diameter then it can be
concluded that it also has a lower tolerance.

Max_Diameter(?maxD), Nom_Diameter(?n),
Upper_Tolerance(?ut), Thing(?b),
hasMax_Diameter(?b, ?maxD), hasNom_Diameter(?b,
?n) -> hasUpper_Tolerance(?b, ?ut)

If a bolt instance is defined as having a maximum
diameter and a nominal diameter then it can be
concluded that it also has an upper tolerance.

Max_Diameter(?maxD), Nom_Diameter(?n),
Upper_Tolerance(?ut), Thing(?b),
hasNom_Diameter(?b, ?n), hasUpper_Tolerance(?b,
?ut) -> hasMax_Diameter(?b, ?maxD)

If a bolt instance is defined as having a nominal
diameter and an upper tolerance then it can be
concluded that it also has a maximum diameter.

Min_Diameter(?minD), Lower_Tolerance(?lt),
Nom_Diameter(?n), Thing(?b),
hasLower_Tolerance(?b, ?lt), hasNom_Diameter(?b,
?n) -> hasMin_Diameter(?b, ?minD)

If a bolt instance is defined as having a nominal
diameter and a lower tolerance then it can be
concluded that it also has a minimum diameter.

The rules in the Table 4.8 explore the diameter and tolerance proprieties of the ontologies and proved

to be invaluable to validate the semantic consistency of the ontologies. It is quite simple to conceive

that bolts can have slight deviations regarding their diameters, so by defining a nominal diameter and

49

upper and lower tolerances it is easy to conclude that the bolt has maximum and minimum diameters.

The contrary is also true, if a nominal diameter for a bolt is defined as a certain value and the end

product records a slight deviation either by excess or default then it is easy to conclude that the bolt

has upper and lower tolerances.

Table 4.9 - SWRL rules defined in the manufacturer - reference example
Rule Purpose

Tolerance2(?t2), Lower_Tolerance(?lt), Thing(?b),
hasTolerance2(?b, ?t2) -> hasLower_Tolerance(?b,
?lt)

If a bolt instance is defined has having a tolerance
then it can be concluded that it also has a lower
tolerance.

Tolerance2(?t2), Upper_Tolerance(?ut), Thing(?b),
hasTolerance2(?b, ?t2) -> hasUpper_Tolerance(?b,
?ut)

If a bolt instance is defined has having a tolerance
then it can be concluded that it also has an upper
tolerance.

These rules in Table 4.9 exploit the tolerance definitions of the manufacturer and reference ontologies.

In this case it is assumed that if a bolt is defined has having a tolerance it can be concluded that it has

both the same upper and lower tolerances. However, unlike the previous example, the contrary is not

true, since the bolt can have different upper and lower tolerances it is not possible to conclude that it

has a single tolerance. As a consequence this can lead to inconsistencies as it was explained

beforehand.

4.1.5.1. Multiple Conceptual Semantic Checking Demonstration Example

To better illustrate this semantic checking case, a practical example where a client orders a bolt

product with particular specifications is described. As seen in Figure 4.7, the client specified a bolt with

a nominal diameter of ‘10’ and upper and lower tolerances of ‘0.2’ and ‘0.1’, respectively. A message

containing these specifications is then sent from the client system to the mediator in the reference

ontology format. The mediator then translates the message from the reference format, to both the

retailer and manufacturers before relaying it to them. Converting from the reference to the retailer

format is fairly straightforward. Based on the previously presented mappings in Table 4.5, the mediator

only has to sum the nominal diameter and the upper tolerance to obtain the maximum diameter,

subtract the lower tolerance to the nominal diameter to obtain the minimum diameter and the nominal

diameter is the same for both. However the case isn’t so simple when translating from the reference to

the manufacturer format. While the nominal diameter remains the same for both formats, the

manufacturer,doesn’t distinguish between upper and lower tolerances. Thus the mediator has to

assume one of its values, either upper or lower tolerance (it’s up to the system developer to choose

which one), as the tolerance in the manufacturer format. If the values for upper and tolerances happen

to be equal, then there is no problem whatsoever, since it won’t have any adverse effect on the final

product. On the other hand, if the values are different, as depicted in the example, then there will be

loss information thus leading to inconsistencies, since the same bolt product is not equally

represented in all formats.

50

Figure 4.7 - Multiple Conceptual Semantic Checking Example

4.1.6. Multiple Conceptual Semantic Checking Concluding Remarks

To sum up this scenario, Table 4.10 illustrates the information exchange between ontologies and

whether this exchange resulted in a loss of information.

Table 4.10 - Identification of conceptual losses in information
Ontologies Information Exchange

(From – To)
Information Loss

Retailer – Reference No

Reference – Retailer No

Manufacturer - Reference No

Reference - Manufacturer Yes

As seen in Table 4.10 there was loss of information only in one case, from the reference to the

manufacturer ontology. This means that the conceptual checking has failed in this case, since not all

the knowledge represented in the reference ontology can be reproduced in the manufacturer ontology.

As previously explained, this has to do with the tolerance definitions adopted by both entities. This loss

was recorded from the reference from the manufacturer, what was to be expected when the mappings

in this direction had a match class of Abstraction, which is a lossy semantic mismatch. On the other

hand, no loss of information was recorded in the opposite direction, i.e. from the manufacturer to the

reference. This is due to the fact that the tolerance concept of the manufacturer ontology is more

51

general than the upper and lower tolerance concepts of the reference ontology, thus the information

can be ‘split’ evenly between the reference concepts. For example if the tolerance is defined as being

0,5 centimetres then the reference assumes the same value for both the upper and lower tolerances.

Regarding the retailer and reference ontologies, no information losses were recorded in both

directions since the concepts defined in each one are quite similar to one another.

The previous conclusions can be reinforced further by analysing the practical example featuring an

interaction between a client and a bolt retailer and manufacturer. In the example it can be observed

that in fact there is loss of information between the reference (client) and the manufacturers’

messages, specifically in the tolerance values interpreted by each one. Contrarily, no information loss

was recorded from the client to the retailer. It is important to have semantic checking in this case,

because it needs to be ensured that the product delivered to the client is in fact what was ordered in

the first place. Therefore the data exchanged between the various entities must remain consistent to

comply to all of the clients specifications.

4.2. ENSEMBLE Scenario

The work described in this section refers to the ENSEMBLE project. Its goal is to gather and provide

knowledge in the EI and neighbouring domains, such as papers and publications, authors, domain

experts, etc.

The application scenario that supports this work is depicted in Figure 4.8. Its aim is to provide a visual

understanding of the architecture of the system, that is, how the system is structured by representing

the most important components, how they are connected and what technologies were used to develop

them. Furthermore it also depicts that will be developed in the future, such as the harmonization of the

ontologies and its synchronization with the FInES wiki.

Figure 4.8 - ENSEMBLE scenario overview

52

As seen in Figure 4.8, the ontology management tool with which this work was developed is Ontopia,

and apart from developing the ontologies, Ontopia is also used to visualize them, using the Vizigator

tool. Regarding the R-RR (Reference – Research Roadmap) ontology and EISB ontology, they were

obtained by combining several smaller ontologies using a reference ontology building methodology

such as MENTOR. One of the goals of this application scenario consists in harmonizing these two

ontologies into a single reference ontology for the whole EI community (see section 4.2.1). The FInES

wiki functions as a source of knowledge and as a means of integrating all the knowledge gathered in

the aforementioned ontologies, so these components need to be tightly synchronized (refer to section

4.2.2) as to avoid inconsistencies in the information.

In sum:

 Ontopia – Ontology management tool selected to develop the R-RR and R-EISB ontologies

and to visualize them;

 RR/EISB Documents – Project deliverables;

 R-EISB Ontology – The need to have an advanced EISB service that is able to provide

specific knowledge with several interrelationships led to the development of a KB ruled by a

reference ontology. Therefore the EISB Reference Ontology, shown in part in Figure 4.9, main

goal is to represent all the knowledge related to the EISB domain. Having this kind of

knowledge would facilitate the search of specific information, for instance papers or methods

of a determined EISB area or a specific set of tutorials related to a specific EISB topic, or even

a set of expert researchers [61]. Another aim of this ontology is to serve as a facilitator for

knowledge reasoning, enabling different views of the information either gathered from the wiki

or directly from an administrator. [61]. Furthermore the EISB reference ontology can prove to

be a valuable asset for the science base itself gathering meta-information relevant to both EI

and the neighbouring domains [61].

Figure 4.9 - EISB Reference Ontology

 R-RR Ontology – Ontology containing the knowledge gathered by the research roadmap

team;

 Ontology Visualization – Using Ontopia’s Vizigator tool (see Figure 2.8);

 Fines Wiki – Source of knowledge more focused on the collaborative gathering of information

53

from domain experts. The wiki, depicted in Figure 4.10, is accessible through the FInES

cluster portal [23], serves as tool to maintain all the EI state of the art research. In order to

avoid replication of efforts it will be synchronized automatically with the reference ontology

[61].

(a) (b)

Figure 4.10 - (a) FInES wiki Main Page; (b) FInES wiki article example

Despite this scenario being presented in its entirety in Figure 4.8, the work conducted in relation to

this, focuses only in two of its aspects: 1) the harmonization (merging) process between the R-RR and

R-EISB ontologies; and the synchronization process between the harmonized ontologies and the

FInES wiki.

The first aspect, which is also described in subsection 4.2.1, regards to composite ontologies

characteristics of the proposed framework for semantic checking, i.e., items 3 and 4 of it. This is

because the result of merging ontologies is a KB constituted by composite ontologies.

The second aspect, which is also described in subsection 4.2.2, regards to the multiple structural

semantic checking, i.e., item 5 of the proposed framework, since the harmonized ontologies and the

wiki can be seen as separate KREs. Furthermore, in relation to this, chapter 5 presents a

synchronization process prototype that is then semantically demonstrated using real examples in

chapter 6.

4.2.1. Composite Ontologies Checking at ENSEMBLE Scenario

This scenario consists in harmonizing two ontologies namely, the EISB Reference Ontology and the EI

Roadmap Ontology, in order to form a composite ontology. Therefore this scenario can be applied to

both framework items 3 and 4.

Harmonizing the EISB Reference Ontology with the EI Roadmap Ontology

As seen in Figure 4.8, there is a step in which the harmonization of the EI roadmap ontology with the

EISB reference ontology occurs. The goal of this harmonization is to have a single reference ontology

to serve the ENSEMBLE project.

The harmonization can be achieved using any of the operations described in section 2.1, and the

54

impact of using each one is analysed. If the mapping operation is used, the source ontologies (EI

roadmap and EISB reference ontologies) wouldn’t suffer alterations. However, as the ontologies

evolve (contents are updated, added, removed, etc.), new mappings between them would have to be

made and consequently this would require constant supervision to ensure that there are no

inconsistencies. Using this approach would also make the synchronization with the EISB (FInES) wiki

extremely difficult because a three way synchronization would be required, i.e. between the EISB wiki

and each of the ontologies and between the ontologies themselves. The alignment operation could

alter the source ontologies in order to make them aligned and coherent with each other. However,

since these ontologies aim to be complementary of each other this process would be essentially equal

to the mapping operation, meaning that the previously described difficulties would remain. Finally, the

merging operation could be used to simply integrate the ontologies with each other, where the output

would be a single reference ontology. This process could be achieved using a methodology like

MENTOR or by simply integrating the contents of one of the ontologies into the other. This method

achieves the initial goal to have a single reference ontology. Furthermore, this process would make

the synchronization process less difficult due to the existence of only one ontology to synchronize with

the EISB wiki. However after the merging is complete the result should be thoroughly tested in order to

avoid inconsistencies and losses of information. These tests should focus mainly in the structure and

concepts of the resulting ontology. Therefore this scenario is a suitable candidate to validate

framework items 3 and 4.

However, in the point of view of this dissertation, this scenario was merely identified as belonging to

items 3 and 4 of the framework. Consequently, work in terms of validating or demonstrating this

scenario isn’t conducted in this dissertation and is considered as a possibility for future work.

4.2.2. Multiple Structural Semantic Checking at ENSEMBLE Scenario

Up to this point, this work has focused mainly in the validation of the consistency between multiple

ontologies. However this scenario describes the validating of the semantic structure between the

harmonized ontology of the previous step, and the EISB wiki, therefore relating this scenario to item 5

of the framework. Since these two entities, on the surface, seem to be quite different it is important for

them to have a similar structure, as seen in Figure 4.11 and therefore the importance of the structural

semantic checking step. Moreover, these two entities need to be tightly synchronized in order for the

information to remain consistent.

55

Figure 4.11 - EISB Reference Ontology and FInES Wiki Structural Comparison

Synchronization with the EISB Wiki

Since the EISB reference ontology and the EISB wiki are constantly evolving, any changes that occur

on one side need to be reflected on the other. Therefore a method for synchronizing the EISB wiki and

EISB reference ontology must be developed. In this dissertation it was defined and implemented a

synchronization process based on the two possible solutions presented in Figure 4.12 that are

discussed afterwards. However, as suggested by the guidelines of framework item 5, the effort here

would be to understand the functionalities of the synchronization process, but not implement it.

(a) (b)

Figure 4.12 - Ontology/Wiki Synchronization (a) Using Web Services; (b) Using XML/RDF Files

56

As seen in Figure 4.12, (a) features web services as a possible solution to the synchronization issue,

while (b) relies on XML/RDF files to solve the problem.

In solution (a) the idea is to have a web services layer that is able to connect both to the EISB wiki DB

and the EISB reference ontology. Upon connection the web service would then retrieve the desired

content through queries, either to the ontology or to the wiki DB. Then the retrieved content would

simply be transported from the source to the destination, thus maintaining the contents harmonized in

both ends.

In solution (b) the idea is to have files transfer from end to end. For instance, a system administrator

would export the desired content from the wiki onto an XML file and convert it to the RDF format, with

the help from a XML/RDF converter application. Then that converted file would be imported to the

ontology, therefore updating the ontology with new information. The opposite operation is also

possible, that is, exporting the desired content of the ontology to an RDF file and converting it to the

XML format so that it can be imported to the wiki. Operations such as this are often referred as bulk

load operations. A bulk load operation, in this case, would be an exportation of all the contents from

one end (wiki or ontology) and import them into the other. However this solution is, at most, semi-

automatic because it needs human intervention at the importing and exporting stages of the process.

Furthermore the mappings required to convert from XML to RDF and vice-versa can be very complex.

Maintenance Strategy

For an efficient maintenance strategy to this project, one could look at both solutions presented in the

previous section and state that they somewhat complement each other. Since solution (a) is highly

dynamic, due to the features that web services provide, it is more suitable for scenarios when the

changes, either on the ontology or the wiki are small. On the other hand, solution (b) is a better fi t for

bulk load operations. Concluding, one could apply both cases for a more efficient and complete

solution to the synchronization issue. Solution (a) would then be applied in cases of small incremental

changes and solution (b) in scenarios that would require large portions (or all) of data to be

synchronized to either end.

4.2.3. ENSEMBLE Scenario Concluding Remarks

In this subsection, a scenario was presented that suits three items of the proposed framework. The

harmonization process used to achieve a reference ontology suits items 3 and 4 of the framework,

while the synchronization with the FInES wiki encompasses item 5.

The study of the presented scenario served an important purpose, since difficulties associated with the

addressed items of the framework were identified and possible solutions were presented. Regarding

the semantic checking of composite ontologies possible methods to accomplish harmonization were

addressed along with their associated difficulties. Regarding the semantic checking of the structure of

multiple KREs, it was identified the need of having a synchronization process, therefore its inclusion

57

as a possible scenario for item 5 of the framework, and two possible solutions were presented and

discussed. Furthermore to facilitate the synchronization of the reference ontology with the FInES wiki,

it is extremely important to verify, as the system evolves, if their structure remains consistent to ensure

that the information represented on one side can be equally and accurately represented in the other.

59

5. PROOF-OF-CONCEPT IMPLEMENTATION

The objective here is to implement a proof-of-concept to validate the proposed framework, namely

item 5, and to that effect, the previously presented scenario of section 4.2.2 was chosen. The solution

presented here is related to the ad-hoc synchronization step of the fifth item of the proposed

framework. It was chosen to implement a synchronization process to show that it is possible to

effectively maintain consistent data between two different KREs.

This chapter is structured as follows; firstly the chosen technologies to implement the synchronization

process are presented, followed by the architecture and description of its components, which has the

objective of providing a general understanding of how the synchronization process is structured and

how it is implemented. Finally, two sequence diagrams will be presented and analysed that show the

flow of execution of the developed synchronization prototype.

5.1. Used Technologies

Before starting the development of the synchronization tool, a study of the required technologies was

made. The result of this study is presented in the next subsections of this document which shows the

chosen technologies for this project and their descriptions.

5.1.1. Java

The Java programming language is a general-purpose concurrent class-based object-oriented

programming language, specifically designed to have as few implementation dependencies as

possible [62]. This is a highly flexible language since it can run in any platform. This is possible

because Java software is compiled into specific bytecode that is run on the Java Virtual Machine

(JVM) instead of being compiled into platform-specific machine code.

The main reason the synchronization module was chosen to be developed in the java programming

language was due to the fact that Protégé provides the previously presented API that allows the

developer to manage an ontology programmatically. Java was also chosen due to its runtime

performance and the fact that it is an open source software.

5.1.2. MySQL

MySQL is a widely popular open source DB software [63]. It is a DB management system that uses

the SQL language (Structured Query Language) to perform operations on relational databases. This

technology can also be embedded into others, allows the developer to build DB applications in their

language of choice [64]. It can be embedded in the Java language via the JDBC (Java Database

Connectivity) driver.

60

5.1.3. Protégé / Protégé-OWL API

This technology was already extensively presented in section 2.2.1 of this document and therefore it

won’t be re discussed here. However it is important to say that Protégé was chosen as the ontology

management tool, instead of the other tools studied in section 2.2, due to the fact that Protégé

provides a free API to manage ontologies programmatically.

The Protégé-OWL API is an open source Java library for the OWL language and RDF(s). It provides

methods and classes that allow the developer to create or edit OWL data models, such as ontologies.

It is possible to query and manipulate data within the model, for example, creating or deleting classes,

properties and instances [65]. This API can be used to develop components that are executed in the

Protégé user interface or it can be used to develop stand-alone applications, such as the prototype

that was developed during the course of this dissertation.

5.1.4. Changes and Annotations API

This API enables tracking changes, annotating ontology components or changes and access to that

information programmatically. The change tracking information annotation of ontology entities and

changes is stored as instances of the changes and annotation ontology (ChAO), called the ChAO

KB.[66]

5.2. Architecture

The architecture designed for the synchronization tool is an enhancement of the one previously

presented in Figure 4.12 however the principle remains the same. The web services layer was

dropped because the developed tool connects directly to the wiki DB via the JDBC driver and

connects directly to the ontology using the Protégé-OWL API via its URL. A general overview of the

synchronization tools architecture and the interaction between the different elements is shown in

Figure 5.1.

Figure 5.1 - Synchronization tool architecture

This architecture is composed of 5 main components:

 The FInES Wiki where the knowledge of the EI community is gathered;

 The FInES Wiki DB that contains all the contents of the FInES wiki and means of detecting

61

any changes that may occur;

 The EISB Ontology that also contains the knowledge of the EI community;

 The Changes and Annotations Ontology (ChAO) that contains the records of all the changes

that took place in the EISB ontology;

 The Synchronization Module serves as a user interface to the whole synchronization process.

With this simple architecture users can easily synchronize wiki contents with the EISB ontology and

vice versa. The java application uses the wiki DB to detect any changes that have occurred in the wiki

since it was last run and then updates the ontology accordingly. On the reverse path, the java

application uses the ChAO ontology to detect any changes that have occurred in the EISB ontology

and then updates the wiki accordingly by placing the new contents directly into its DB.

5.2.1. Synchronization Module

The developed module is composed of 4 java classes. A class (“GUI.java”) that implements the user

interface and performs the required initializations. Another developed class implements methods that

support the interaction between the synchronization tool and the wiki DB (“Database.java”). Finally

there are two more classes that serve the purpose of managing the actual synchronization between

the ontology and the wiki, and between the wiki and the ontology, respectively (“Wiki2Onto.java” and

“Onto2Wiki.java”).

5.2.2. ChAO Ontology

The ChAO ontology allows the tool to detect any changes that have occurred in the EISB ontology and

what exactly those changes were. The synchronization tool connects to the ontology via its location

(URL, file path, etc…) and updates it directly by saving the ontology into a new file and overwriting the

old one. Figure 5.2 shows an example of changes recorded in the ChAO ontology using a Protégé

interface.

Figure 5.2 - Example of changes recorded in the ChAO ontology

5.2.3. Wiki DB

The FInES wiki will be extensively described in the next subsection and therefore won’t be further

discussed here. However the FInES wiki DB is very important to the project, because like the ChAO

62

ontology, it is what allows the synchronization tool uses to detect any changes that have occurred in

the wiki via the “recentchanges” table. The developed tool connects to the wiki DB via its URL and

updates its contents directly into specific tables of the wikis DB. Figure 5.3 shows an example of the

wiki DB represented in the “phpMyAdmin” interface. It features the “page” table highlighted and shows

some of its instances.

Figure 5.3 - Wiki DB example

5.2.4. FInES Wiki

As said beforehand, the FInES wiki serves as a source of knowledge more focused on the

collaborative gathering of information from domain experts. It also serves as tool to maintain all the EI

state of the art research. To that effect, the wiki, in its homepage is divided into 3 main parts, as seen

in Figure 5.4, the FInES Research Roadmap, the FInES Task Forces and the EISB. However only the

latter is relevant for this work and therefore is the only that will be described in detail.

Figure 5.4 - FInES Wiki Homepage: 1 - FInES Reserach Roadmap; 2 - FInES Task Forces; 3 – EISB

Looking now, in detail, into the EISB portion of the wikis homepage, it can be seen in Figure 5.5 that it

is composed of several links that represent and direct the user to the various scientific areas

addressed by the EI community as well as the EISB Glossary.

63

Figure 5.5 - FInES Wiki: EISB Scientific Areas and Glossary

Going now into further detail, the EISB portion of the FInES wiki is essentially composed of 5 types of

pages, the category page type, the scientific area and sub scientific area description type, the EI

ingredients page type and the publications page type.

 Category Pages – These types of pages serve as an index since it lists all of the wiki

pages that fall under a specific category. The links present in the wikis homepage direct the

user into these pages that can either be the EISB glossary or a specific scientific area. In the

EISB Glossary category page all the terms in the EI domain are listed. These terms are called

the EI ingredients and they can be scientific areas, sub scientific areas, case studies,

methods, experiments, tools, standards, a proof of concept, surveys or empirical data and

concepts or positions. Regarding the scientific area category pages, these are very similar to

the EISB Glossary page, however they contain a list of the EI ingredients and publications that

particular scientific area addresses as well as the wiki page describing that same scientific

area. A part of the EISB Glossary page and an example of a scientific area category page is

shown in Figure 5.6.

(a) (b)

Figure 5.6 - FInES Wiki: (a) EISB Glossary; (b) Scientific Area category page example

 Scientific Area Pages – These types of pages have the purpose of describing the scientific

areas addressed by the EI community. Each page contains a table that summarizes the

scientific area. This table contains the name of the scientific area paired with its unique

identifier, a small description, links to other scientific areas, a list of its sub scientific areas and

a list of tags. Furthermore these types of pages contain the full general description of the

64

scientific area which is the main focus of the page, along with a section with the references

that are identified along the text and a section that contains links to additional information

relative to that scientific area. A scientific area page example is presented in Figure 5.7.

Figure 5.7 - FInES Wiki: Scientific Area page example

 Sub Scientific Area Pages –They have the purpose of describing the sub scientific areas

addressed by a specific scientific area. Similarly to the previous page type, each page

contains a table that summarizes the sub scientific area. This table contains the name of the

sub scientific area paired with its unique identifier, a small description, the scientific area it

relates to and a list of tags. Furthermore these types of pages contain the full general

description of the sub scientific area which is the main focus of the page. A sub scientific area

page example is shown in Figure 5.8.

Figure 5.8 - FInES Wiki: Sub Scientific Area page example

 EI Ingredients Pages – These pages aim to describe an EI Ingredient, i.e., a method,

concept, tool, etc… They contain a table that contains the name and a small definition of the

ingredient. It also contains a section (General) that contains the main text of the page, a

references section which contains information about the citations that occur along the main

text of the page. Finally it contains a section (See Also) that contains links to additional

information relating to that particular ingredient. An example of this type of page is illustrated

in Figure 5.9

65

Figure 5.9 - FInES Wiki: EI Ingredient page example

 Publications Pages – These pages contain information about publications pertinent to the EI

community and that are referenced in several pages of the wiki as well as the ones that

appear in the “See Also” section of many different pages. These types of pages contain a

table that serves to classify the publication according to an EI Ingredient (Tool, Experiment,

Standard, etc…). An example of this type of page can be seen in Figure 5.10

Figure 5.10 - FInES Wiki: Publications page example

5.2.5. EISB Reference Ontology

As previously stated the main goal of this ontology is to represent all the knowledge related to the

EISB domain. Here the ontology will be presented fully and in detail. To have a better graphical

understanding of the ontology, a good ontology visualization tool is needed. Taking into account the

study of this visualizers conducted in section 2.3, the chosen tool to visualize this ontology was XMind.

This is mainly because of this tools capability to represent the class hierarchy as well as the properties

that serve to relate them in a perceptible way.

A general overview of the entire ontology can be seen in igure 5.11, where all the classes and

respective subclasses are represented, as well as the relationships between them. Following, is the

detailed description of the ontology.

Taking a top down approach to this description, the ontology, at the top (root) is composed of 5

classes, the Bibliography, Content_Classifier, EI_Contents_Categorization, EISB_Framework and

EISB_Wiki classes.

66

 Bibliography - aims to represent all the publications that are featured in the EISB wiki and

their authors. To achieve this goal, 4 proprieties were created that have this class as a domain, 2

datatype properties and 2 object properties. The datatype properties are the Link and Citation

proprieties. The former aims to store the website from which the users can download or buy the

respective publication. On the other hand the Citation property was defined to store the citation that is

to be used by authors if they want to cite the respective publication in their work. The 2 object

properties defined in this class are the relatedTo_Publication and the AuthoredBy properties. The first

one has the goal of relating the instances defined in the Bibliography class to the instances defined in

the Publications class (which will be discussed in detail shortly). This property was also defined as

being functional to ensure that each instance in the Bibliography class has at most one corresponding

entry in the Publications class. The second object property defined for this class aims to relate the

authors to their corresponding publications. This means that each instance of the Bibliography class

will be related to instances defined in the Researchers class (to be presented further along this

description). Contrarily to the relatedTo_Publication property, the AuthoredBy property is not functional

because a Bibliography instance can have more than one author.

 Content_Classifier - aims to store information relative to classifications of the EISB wiki

contents. This class is subdivided into 4 other subclasses with the objective of storing specific

classification types.

o EI_Barrier_Classifier - holds the classification of a certain content regarding its

interoperability barrier category. Instances in this class have 2 properties, Relevance

which is a datatype property, and the hasBarrier object property. The first property holds

the relevance of the classification and it must be one of three values, low, medium or high.

The hasBarrier property has the objective of relating the classification with a respective

barrier in the Interoperability_Barriers class. It is a functional property since a classification

of this type must relate only to one type of barrier.

o EI_Maturity_Classifier - stores information relative to the maturity of the wiki content. It

only has an object property, hasMaturity that aims to relate the classification with an

instance of the Interoperability_Maturity class.

o EI_Phase_Classifier - has the goal of classifying wiki content relatively to its

development lifecycle. Like the EI_Barrier_Classifier subclass, this one also has the

Relevance property to rate the classification as being low, medium or high. This subclass

also contains an object property, hasPhase that relates the instances of the classification

to a certain instance that represents a phase of the Development_Lifecycle class.

o Scientific_Area_Classifier - was created with the purpose of classifying certain wiki

content with the relevance pertaining to a certain scientific area. Like the previous

subclass, this one also has the Relevance datatype property to classify the content with

low, medium or high relevance. Furthermore it also has an object property, scientificArea

that relates the classification to a certain scientific area defined in the EI_Scientific_Areas

or EISB_Neigbouring_Scientific_Areas classes.

67

 EI_Contents_Categorization - is tightly related to the previously described class

(Content_Classifier). This class houses the information about the different categories that the content

of the wiki can take. It is divided into 3 subclasses which will be individually discussed. Furthermore,

this class has a single datatype property which is called Name and keeps the name of the category of

the content. Also, this property is propagated to all subclasses under its domain.

o Development_Lifecycle – houses the information about the different development

phases that certain content is in and it further divided into 3 subclasses.

 Assessment

 Design

 Implementation

The instances created in these subclasses are the ones that will be used to relate the

content classification to its phase via the previously presented hasPhase property.

o Interoperability_Barriers – records the information regarding the barriers that a certain

content can encounter. Like the previous subclass, the Interoperability_Barriers subclass

is also divided into its own subclasses, representing the so called barriers.

 Conceptual

 Organizational

 Techonological

The instances created in these subclasses are the ones that relate the content classification to

the interoperability barriers via the hasBarrier property

o Inteoperability_Maturity - intends to hold information about the various maturity

classification categories. To this effect this subclass was also divided into several

subclasses of its own.

 AIF

 C4IF

 Humanistic

 Deprecated

 Elder

 Infant

 Mature

 Interoperability_Classification_Framework

 LISI

 NC3TA_RMI

 OIM

Like the previous cases, the instances created within the various subclasses of the

Interoperability_Maturity class are the ones that relate the maturity classification of content to

their respective maturity category by means of the hasMaturity property.

 EISB_Framework - aim of this class is to hold information about the elements that compose

the EISB universe. To that effect three subclasses were defined.

68

o EISB_Knowledge_Base - contains an object property named instancedBy which aims to

illustrate a relation of origin, meaning that that an instance associated with this property is

originated within this class. This property is also propagated to the subclasses and its goal

is the same, however the contexts are different.

 EI_Scientific_Areas - holds information about the various scientific areas

represented in the EISB universe, and these subclasses are also divided into

other subclasses that illustrate the scientific sub areas. These classes also

contain the Name datatype property that stores the name of the scientific areas

and scientific subareas. The instances created under these classes are the ones

that are used to relate the scientific area classification of content to the respective

scientific are via the scientificArea property.

 Various Scientific Areas

o Various Scientific Sub Areas

 EISB_Community - Contains information about different researcher communities

present in the EISB universe. This is why this class is also divided into different

subclasses that represent each community respectively.

 Experts_Scientific_Committee

 Related_Scientific_Disciplines_Community

 Validation_Community

 Other_Relevant_Communities

These classes also contain the Name property to record the name of the communities

 EISB_Neighbouring_Scientific_Areas - is very similar to the

EI_Scientific_Areas since it is also divided into subclasses that represent the

scientific areas and scientific sub areas (if they exist), however in this context the

scientific areas belong the EISB neighbouring domains instead of the EISB

domain.

 Various Neighbouring Scientific Areas

 Tangible_Content - contains information about the actual contents of the EISB

universe. These contents are divided into 3 subclasses

 EISB_Ingredients - is divided into subclasses that represent the

ingredients themselves which are used in the classification of scientific

publications, i.e. if it as case study, a standard, a method, etc…

 Various Ingredients

 Expert - The Expert subclass is used to classify the researchers involved

in the EISB universe by relating them using the instancedBy property

 Scientific_Publication - class is used to classify publications pertinent to

the EISB, and they also relate via the instancedBy property.

o EISB_Problem_Space

o EISB_Solution_Space

69

 EISB_Hypothesis

 EISB_Laws

 EISB_Wiki – The objective of this class is to represent all elements that compose the EISB

(FInES) Wiki. This class also holds FINES_Page datatype property that holds the direct web link to the

wikis main page (in this case). This property is propagated to all the subclasses of this one with the

same objective. However the links will obviously be different for each instance. This class also

contains the object property isInstanceOf which is the inverse of a previously discussed property

named instancedBy, meaning that the relation can now be seen as that instance x was originated by

instance y. Instead of being instance y originates instance x. It is worthy of note that this property is

also propagated to the subclasses but the instances contained in them will have a different values.

o EISB_Glossary – This class contains the contents that are represented in the glossary

page of the EISB wiki. To achieve that goal, the class is divided in the following

subclasses. This class also contains some properties that are also propagated to its

subclasses. One property is the FINES_Page property which holds the link to the

respective wiki page. Another property is the Name property which contains the name of

the respective content. The Definition property was also created and its aim is to hold

small definitions of a respective content. Finally the previously described isInstanceOf

property is also present.

 EI_Ingredients – This class holds the detailed information about the various

ingredients (concepts) that are represented in the EISB_Wiki. Therefore some

properties, along with the ones inherited from the upper class, were defined.

These properties are the MainText datatype property which holds all of the text in

the wiki page of the respective ingredient. The hasReference object property

holds the instances of the bibliography that is referenced along the text in the wiki

page and that appear in the References section of the wiki page. The hasSeeAlso

object property holds the instances of the Bibliography class that appear in the

See Also section of the wiki page. The other properties that compose this

subclass are the ones that were inherited from the upper class, and as such will

not be described here.

 Scientific_Area – This class holds all the details regarding the EISB scientific

areas represented in the EISB wiki. Apart from the inherited properties (which

won’t be described here) this class presents the following properties. The ID

datatype property holds the unique identifier of a certain scientific area. The

MainText datatype property holds the text of the wiki page. The hasReference and

hasSeeAlso object properties have the same purpose as in the EI_Ingredients

class. The hasSubArea subclass relates the scientific areas to their corresponding

scientific sub areas, so the range of this property is Scientific_SubArea class (to

be described shortly). The hasTags object property holds the ingredients,

publications or neighbouring ingredients that are represented in the wiki page of

70

the scientific area. The includes, relatesTo and requires object properties serve to

relate a scientific area with other scientific areas or scientific sub areas.

 Scientific_SubArea – This class holds all the details regarding scientific sub

areas represented in the EISB wiki. The inherited properties won’t be described

here. Apart from those properties, this class contains the hasSuperArea object

property that is the inverse of the hasSubArea property and serves the purpose of

relating the scientific sub areas with their respective scientific areas. The ID

datatype property holds the unique identifier of the scientific sub area. The

MainText dataytpe property holds the text of the wiki page. The hasReference,

hasSeeAlso, hasTags, includes, relatesTo and requires object properties serve

the same purpose as the ones describe for the Scientific_Area class.

o EISB_Neighbouring_SDRG – This class serves the same purpose of the EISB_Glossary

class, however it refers to the Neighbouring domains instead of the EISB domain. Apart

from the properties inherited from the root class, this class has 2 other datatype

properties. The Definition property which holds a small definition of the content, and the

Name property which records the name of the content.

 Core_Features – This class holds the information about the core features of the

EISB neighbouring domains. Apart from the inherited properties which won’t be

described again here, this subclass contains several other properties. The

hasReference, hasSeeAlso and hasTags object properties serve the same

purpose as the ones described for the Scientific_Area class. The MainText

datatype property holds the text of the respective wiki page. The

relatedTo_EI_ScientificArea relates the core features of the neighbouring domains

with the EISB scientific areas. The relatedTo_EISB_Neighbouring_Area relates

the core features with the scientific areas of the neighbouring domains. The

EISB_Relation holds a small description as to how this feature relates to the EISB

universe.

 Neighbouring_Ingredients – This subclass holds the information regarding the

ingredients of the EISB neighbouring domains. Apart from the inherited properties,

this class contains the hasReference and hasSeeAlso object properties that serve

the same purpose as the ones described in previous classes. It also contains the

MainText datatype property that records the text of the corresponding wiki page.

The relatedTo_CoreFeature object property relates the neighbouring domain

ingredients to neighbouring domains core features.

 Neighbouring_Scientific_Area – This class records all the data regarding the

EISB neighbouring domains scientific areas. To that effect and separately from

the inherited properties, this subclass has the hasTags object property and the

MainText datatype property which has the same objective as the ones described

for previous classes. Furthermore it also has the hasCoreFeatures object property

which is the inverse of the relatedTo_EISB_Neighbouring_Area property and aims

71

to relate the EISB neighbouring domains scientific areas to their respective core

features.

o Publications – This class aims to hold all the information regarding all the publications

represented in the EISB Wiki. To that end various properties were defined. More

specifically 6 datatype properties were defined along with 4 object properties (including

the properties that were propagated from the root class). The datatype properties will now

be presented in detail. Abstract property holds the textual form of the abstract section

presented in the wiki pages representing publications. HasLicence property holds the

value for the licencing section of the wiki page. Keywords property stores the value of the

keywords section of the wiki page. The linkMendeley property holds the link to the

mendeley website of the respective publication. The Name property holds the name of the

publication. And the FINES_Page property holds the link to the wiki page of the

publication. Now, the object properties will be described. The hasIngredient property

relates the publications with none, some or all the ingredients in the EISB_Ingredients

class. The isClassifiedAs property relates the publications with the classifications

regarding its barrier, phase, maturity and scientific area. This means that this property will

have instances that were created in Content_Classifier class. The relatedTo_Bibliography

property is the inverse of the relatedTo_Publication property that was previously

presented. This property relates the instances of the Publications class with the

corresponding ones in the Bibliography class. The isInstanceOf property in this case, will

relate the instances of the Publications class with the ones in the Scientific_Publication

class.

o Researchers – This class handles detailed information about the researchers of the EISB

universe. To this effect 5 datatype properties and 3 object properties were defined. The

datatype properties are the FINES_page, which holds the link to the researcher’s wiki

page. The FirstName and LastName hold the first name and the surname of the

researcher, respectively. The Contact property holds various contacts of the researcher

(e-mail, phone, etc…). The Organization property holds the organization(s) which the

research is affiliated with. Regarding the object properties, they are, the

belongsToCommunity property that relates the researcher with the community or

communities which he is associated with via the instances created in the

EISB_Community subclasses. The workedOn property is the inverse of the AuthoredBy

property that was previously described. This property holds the instances of the

Bibliography class in which the researcher has participated. The isInstanceOf property in

this case will hold the instance created in the Expert class.

72

Figure 5.11 - EISB Reference Ontology overview

73

5.3. Synchronization execution flows

To have a better general understanding of how the synchronization tool works, the flow of execution

and how the information is processed are presented in this subsection. Firstly, the flow of execution of

the synchronization tool from the EISB Ontology to the FInES wiki is introduced and after, the reverse

route is presented. These sequence diagrams, serve to complement the previously shown in

architecture in a sense that it is shown in detail the flow of execution of the system.

5.3.1. EISB Ontology to FInES Wiki Synchronization Execution Flow

As can be observed in Figure 5.12, the user first activates the tool which allows it to perform some

initializations, such as loading the ontology to prepare for editing and constructing the required java

classes for synchronization. When these initializations are complete the program signals the user and

it’s at that point that the user can instruct the tool to begin synchronizing. At this moment the program

connects to the wiki DB to verify that synchronization is, indeed, possible. When the connection is

established the developed tool then proceeds to perform the actual synchronization. It starts by getting

the changes recorded in the ChAO ontology, which is associated with the EISB Ontology. It is worthy

of note that the EISB ontology isn’t directly involved in this procedure because all the changes that are

made in it are recorded in the ChAO ontology and therefore all the information required for

synchronization can be accessed directly from the ChAO ontology. After obtaining the modifications

perpetrated in the ontology, the program processes them in order to maintain the consistency of the

extracted contents, and places them in specific tables of the wiki DB. Finally, before signalling the user

that the synchronization process has been completed, the program deletes all the changes form the

ChAO ontology to ensure that on the next execution of the software, the same contents won’t be

resynchronized.

74

Figure 5.12 - Ontology to Wiki Synchronization execution flow

5.3.2. FInES Wiki to EISB Ontology Synchronization Execution Flow

In this subsection it’s intended to describe the execution flow of the developed tool regarding the

synchronization between the EISB ontology and the FInES wiki. As can be perceived in Figure 5.13,

the process starts in the same manner as when the synchronization is between the EISB ontology and

the FInES wiki. The user activates the program and it begins by performing the same initializations as

it did in the previous scenario. After the user gives the command to begin synchronization, the

program connects to the wiki DB and proceeds to get the modifications that have occurred in the wiki.

Upon obtaining those changes, the program processes them, once again to ensure that the

information remains consistent, and updates the EISB ontology accordingly. Finally, the program

saves the ontology file, that ensure that the update isn’t lost and erases all the changes in the wiki DB

to guarantee that the next time the program is run, the same changes won’t be synchronized again.

When all those steps are complete, the developed tool signals the user that the synchronization

process is complete.

75

Figure 5.13 - Wiki to Ontology synchronization execution flow

5.4. Concluding Remarks

The work conducted throughout this chapter features the study behind the development of the

implementation of the synchronization process between the EISB reference ontology and the FInES

wiki. This study is what allows an effective implementation of the synchronization, since as it was

referred in 3.4 regarding item 5, the knowledge of the synchronization procedure facilitates the

semantic checking process. Furthermore the study conducted in this section enabled a better

understanding of the system and how its components interact with each other, and with the aid of the

sequence diagrams, a visual and temporal understanding of how the synchronization process is done

is facilitated.

77

6. SYNCHRONIZATION TOOL DEMONSTRATION

This chapter of the document shows a demonstration example related to the multiple structural

semantic checking scenario introduced in section 4.2.2 and features the results of the developed

synchronization tool which was implemented according to the architecture presented in Figure 5.1.

The examples presented here intend to demonstrate how the synchronization tool works in detail.

Firstly an example of synchronization from the EISB reference ontology to the FInES wiki is presented

in subsection 6.1. Following, an example of synchronization from the FInES wiki to the EISB

Reference Ontology is presented in subsection 6.2. However, before going in to the examples, it is

important to demonstrate the common steps that always take place when running the synchronization

tool. Upon executing this tool, the users find a GUI, shown in Figure 6.1, from which they can control

the synchronization process. In this user interface, the users first have to specify some information

such as the wiki DB name, username and password, in order to allow the program to access it.

Furthermore, users need to specify the ontology project location as well as the project name for the

program to know which ontology will be involved in the synchronization process. After all that

information is specified, users need to click the activate button in order for the program to perform

some initializations. Once these steps are complete, the users are then allowed to click the

synchronize button, and what happens afterwards will be described in following two subsections.

Figure 6.1 - Synchronization tool GUI

6.1. Ontology to Wiki Synchronization Demonstration

Two examples of ontology to wiki synchronization are going to be presented in this subsection. The

first example chosen here to demonstrate how the synchronization tool works features a scientific area

instance created in the EISB ontology being synchronized into the FInES wiki. The second example

features the removal of a scientific area of the ontology and its synchronization with the wiki. However

before going into the specific examples, a thorough analysis of all the cases that may occur when

synchronizing the two elements was made.

78

Table 6.1 shows in the first column the cases that may occur when the synchronization process is

between the EISB ontology and the FInES wiki. The middle column denotes the recommended course

of action (if any) to take part in the wiki for each specific case that ensues in the ontology. Finally, the

third column denotes which cases have been implemented in the synchronization tool prototype.

Table 6.1 - Ontology to Wiki synchronization cases analysis

Ontology Case Action Implemented

New instances

If new instances are part of any of the subclasses of the EISB_Glossary class or
in the publications class then a wiki page has to be created for each of them,
with the contents built using the values of the instances properties.
Else no wiki related action is needed.

Yes

New classes

If the new classes are a subclass of the EI_ScientificAreas class then a wiki
category page must be created for each of them.
Else if the new classes belong to the EISB_Ingredients subclass then the EISB
Papers Classification Metadata template page must be altered to accommodate
the new ingredient.
Else no wiki related action is needed.

-

New proprieties
If the new proprieties have the Publications class or the EISB_Glossary class as
domain then the wiki page contents must reflect these new proprieties.
Else no wiki related action is needed.

-

Edit instances
If the edited instance is part of the EISB_Glossary or Publications classes then
the corresponding wiki page must be edited to reflect the changes recorded.
Else no wiki related action is needed.

-

Edit classes

If the edited classes belong to the EI_ScientificAreas class then the
corresponding wiki category page must reflect the changes.
Else if the edited classes belong to the EISB_Ingredients class then the EISB
Papers Classification Metadata template page must be altered to accommodate
the changes.
Else no wiki related action is needed.

-

Edit proprieties
If the edited proprieties have the Publications class or the EISB_Glossary class
as domain then the wiki page contents must reflect these proprieties
Else no wiki related action is needed.

-

Remove
instances

If the deleted instances are part of the EISB_Glossary or Publications classes
then the corresponding wiki pages must also be deleted.
Else no wiki related action is needed.

-

Remove classes

If the removed classes belong to the EI_ScientificAreas class then the
corresponding instances in ScientifcAreas and subScientificAreas must also be
deleted which in turn will remove the corresponding wiki pages.
If the removed classes are subclasses of EISB_Ingredients then the EISB
Papers Classification Metadata template page must be altered to accommodate
the changes and the corresponding instances in the EI_Ingredients class must
also be removed.
Else no wiki related action is needed.

Yes (for
scientific areas

and sub
scientific
areas)

Remove
proprieties

If the removed proprieties have the Publications class or the EISB_Glossary
class as domain then the wiki page contents must reflect these changes.
Else no wiki related action is needed.

-

6.1.1. New Scientific Area instance

Upon performing the previously presented and required initializations the user can then start the

synchronization process. After the user clicks the synchronize button on the tools interface, the

program checks the ChAO ontology to get the changes that have occurred in the EISB ontology. In

this case, the program verifies that a new scientific area instance has been added to the EISB

ontology, as shown in Figure 6.2.

79

Figure 6.2 - Ontology to Wiki Synchronization - New Scientific Area instance detection

More specifically, in this demonstration, the instance created in the EISB ontology is of the “Social

Networks Interoperability” scientific area, which can be observed in Figure 6.3, on the Protégé

interface.

Figure 6.3 - Ontology to Wiki Synchronization - Scientific Area instance

The synchronization tool then proceeds to obtain the values of the properties associated with that

instance and builds a string from those values to form the wiki page content. Afterwards, three entries

are added to three different tables of the wiki DB. Firstly an entry is added to the page table that the

wiki uses to identify each page using its title [67]. Then an entry is added to text table of the DB, which

is where the wikitext of individual page revisions are stored [68]. Lastly, an entry is added to revision

table which is needed because this table holds the metadata for every edit done to a page within the

wiki [69] (including the creation of pages). When these entries are made, the synchronization process

for this particular instance is finished and the result on the wiki can be seen on part (a) of Figure 6.4,

while the finished process on the java interface can be observed in half (b).

80

(a) (b)

Figure 6.4 - Ontology to Wiki Synchronization - New Scientific Area instance finished synchronization

Afterwards, the program deletes all references to that instance in the ChAO ontology to ensure that

this particular instance won’t be resynchronized in the future.

Finally, the top portion of Figure 6.5 shows the representation of the “Social Networks Interoperability”

scientific area in the EISB ontology (Protégé interface), whereas the bottom portion shows the “Social

Networks Interoperability” scientific area page on the FInES wiki. As seen, the various properties of

the instance have a correspondence in the wiki page, ensuring that the contents are well transferred.

Figure 6.5 - Ontology to Wiki new Scientific Area synchronization example

81

It is worthy of note that a portion of the java code used to perform this synchronization is present in

appendix 9.1.

6.1.2. Remove Scientific Area class

Similarly to the previous demonstration, the user starts by performing the required initializations of the

synchronization tool. The user then presses the synchronization button on the tools interface to begin

the process. The program starts by checking the ChAO ontology for any changes that may have

occurred in the EISB ontology. Specifically in this case, the program detects that a class has been

removed, namely the “Cloud Interoperability” scientific area, as shown in Figure 6.6.

Figure 6.6 - Ontology to Wiki Synchronization - Deleted Class detection

As a side note, to demonstrate that the “Cloud Interoperability” scientific area class was indeed erased

from the ontology, Figure 6.7 is presented, where part (a) shows the structure of the ontology before

the deletion, while part (b) the resulting class hierarchy of the ontology after deletion.

(a) (b)

Figure 6.7 – EISB Reference Ontology (a) Before class deletion; (b) After class deletion

82

It can also be observed Figure 6.7 (a) that the “Cloud Interoperability” scientific area contains four

subclasses that compose its sub scientific areas. Since the scientific area was removed,

consequently, all of its sub scientific areas were also erased. Therefore, the synchronization tool will

also have to deal with them.

After detecting the “Cloud Interoperability” scientific area class removal the synchronization tool

proceeds to deleting the wiki page that corresponds to that scientific area. Subsequently, the wiki

pages corresponding to the scientific sub areas of the “Cloud Interoperability” scientific area are also

deleted, since they no longer figure in the ontology. These page deletions are signalled by the

synchronization tools interface as seen in Figure 6.8.

Figure 6.8 - Ontology to Wiki Synchronization - Wiki page deletion (Java GUI)

After deleting the wiki pages the synchronization process is finished and the application also erases all

references to the deleted classes to avoid conflicts in future synchronizations. The results of this

specific process can be observed in Figure 6.9, where half (a) illustrates the wiki page before deletion

whereas part (b) denotes the wiki page after deletion. As seen, the wiki page was ,in fact, erased

ensuring that the synchronization process was successful.

83

(a)

(b)

Figure 6.9 - Ontology to Wiki Synchronizaton. (a) Wiki page before deletion; (b) Wiki page after deletion

As happened with the previous example, some of the java code developed to perform this

synchronization task is illustrated in appendix 9.2.

6.2. Wiki to Ontology Synchronization Demonstration

In this subsection, firstly an example of the synchronization process between the wiki and the ontology

is the creation of a new publication page on the wiki will be presented. Next an example of editing a

scientific area page in the wiki and posterior synchronization with the ontology will be presented.

However before going into the specific demonstration examples, a study of the cases that can occur

when synchronizing the wiki with the ontology was made.

Table 6.2, on the first column, shows the identified cases when the synchronization is between the

wiki and the ontology. The second column indicates the recommended action to take in the ontology

for each specific case that occurs in the wiki. Finally, the third column specifies which cases have

been implemented in the developed synchronization tool prototype.

Table 6.2 - Wiki to Ontology Synchronization cases analysis

Wiki Case Action Implemented

New
publication

New instance in Publications class under the EISB_Glossary class with proprieties
filled according to wiki text
New instance in bibliography class with properties filled according to wiki text.
Create instances for new researchers that don’t yet exist.

Yes

New
Ingredient

Create a new instance in EI_Ingredients class with proprieties filled according to wiki
text.

Yes

New SA 1. Create new sub-class in the EI_ScientificAreas class; Yes

84

Wiki Case Action Implemented

2. Create new instance in that same subclass
3. Create new instance in ScientificAreas class under the EISB_Glossary

class

New SSA

1. Create new sub-class in scientific area that this sub area is part of in the
EI_ScientificAreas class;

2. Create new instance in that same subclass
3. Create new instance in subScientificAreas class under the EISB_Glossary

class

Yes

Edit
Publication

Get the respective instance in the publications class and edit the values of the
properties according to the changes verified in the wiki text
Also edit the corresponding bibliography instance filling the values of the
proprieties according to the wiki text.
Edit the respective researchers instances (if needed)

-

Edit
Ingredient

Get the respective instance in the EI_Ingredients class and edit the values of
the properties according to the changes verified in the wiki text

-

Edit SA
Get the respective instance in the ScientifcAreas class and edit the values of the
properties according to the changes verified in the wiki text

Yes

Edit SSA
Get the respective instance in the subScientificAreas class and edit the values
of the properties according to the changes verified in the wiki text

Yes

Remove
publication

Remove the respective instance from the Publications class and also remove
the respective bibliography instance

-

Remove
ingredient

Remove the respective instance from the EI_Ingredients class -

Remove SA
Remove the respective instances from the ScientificAreas and
EI_ScientificAreas class.
Also remove the corresponding subclass from the EI_ScientificAreas class

-

Remove
SSA

Remove the respective instances from thesub ScientificAreas and
EI_ScientificAreas class.
Also remove the corresponding sub-subclass from the EI_ScientificAreas class

-

6.2.1. New Publication

In this example, the “Cloud Computing” publication was created on the wiki and then the

synchronization tool was run to perform the synchronization with the ontology.

The user begins by executing the synchronization tool and performing the previously described

initializations. Once the user clicks the synchronization button of the java application GUI, the program

checks the “recentchanges” table of the wiki DB for any changes that have occurred in the wiki since

the tool was last run. In this particular situation, as referred earlier, the tool detects a new publication,

as shown in Figure 6.10.

Figure 6.10 - Wiki to Ontology Synchronization example - New publication detection

Subsequently, the program retrieves the page content from the wiki DB and proceeds to breakdown

85

the different sections of the page. In this example the newly created page refers to the “Cloud

Computing” publication which is illustrated in Figure 6.11.

Figure 6.11 - Wiki to Ontology synchronization example - Publication to be synchronized

Then the tool creates a publication instance in the ontology and fills the respective properties with the

previously broken down sections of the wiki page. Finally, the tool saves the ontology with the new

publication and the synchronization process is finished, with the results being shown in Figure 6.12.

Part (a) of that same figure, shows the result of the finished synchronization process in the developed

tool. Part (b) illustrates the created instance in the ontology, viewed here in the Protégé editor.

(a)

86

(b)

Figure 6.12 – Finished wiki to ontology synchronization process: (a) - java GUI; (b) Created instance

In conclusion, the top part of Figure 6.13 features the wiki page with its various sections and contents

whereas the bottom part features the version of the same publication represented in the ontology

(Protégé interface). The various sections of the wiki page have a direct correspondence in the

ontology, and all of the contents are therefore well migrated.

An excerpt of the java code used to perform this synchronization task is shown in appendix 9.3.

s

Figure 6.13 - Wiki to Ontology new publication synchronization example

87

6.2.2. Edit Scientific Area

In this example, the “Cloud Computing” publication was created on the wiki and then the

synchronization tool was run to perform the synchronization with the ontology.

As with previous examples the users start by executing the synchronization tool and performing the

required initializations. Then the users press the synchronization button to begin the process. Once

again the application starts by checking the “recentchanges” table of the wiki DB and retrieves any

changes that may have occurred in the wiki since the synchronization tool was last executed. In this

particular example, the synchronization tool detects that a scientific area page was modified (edited),

as illustrated in Figure 6.14.

Figure 6.14 - Wiki to Ontology Synchronization example - Edited Scientific area detection

In this example, the edited scientific area is the “Social Networks Interoperability” area. Half (a)

Illustrates a fragment of the page before editing, while part (b) shows some the scientific area wiki

page after editing. The edited items are circled for a better visualization. Subsequently, the

synchronization tool breaks down each section of the edited page.

(a)

88

(b)

Figure 6.15 - Scientific area page - (a) Before editing; (b) After editing

Since this is merely a modification of page contents, it is assumed that an instance corresponding to

the wiki page already exists in the ontology. That being said, the synchronization tool then proceeds to

retrieving the instance associated with the “Social Networks Interoperability” scientific area and resets

its properties to the new values, gotten from the previously broken down sections of the page. Finally,

the tool saves the ontology with the edited scientific area and the synchronization process is finished.

The results of this synchronization process are shown in part (b) of Figure 6.16, while part (a)

illustrates the scientific area instance before the modifications, and part (c) indicates the finished

synchronization process in the java interface.

(a) (b)

(c)

Figure 6.16 - Edited Scientific Area Synchronization - (a) Instance before editing; (b) Instance after editing; (c)
Finished process - Java GUI

89

In conclusion, Figure 6.17 features the edited wiki page and ontology instance with the

correspondence of the modified sections in each one, ensuring that all of the contents are therefore

well migrated.

Figure 6.17 - Wiki to Ontology Edited Scientific Area example

Similarly to the previous examples, a part of the java code used in the implementation of this

synchronization process is presented in appendix 9.4.

6.3. Synchronization Tool Demonstration Concluding Remarks

Regarding the synchronization process between the EISB reference ontology and FInES wiki it is

important to have semantic checking because it ensures that, as both systems evolve, the data

represented in them remains consistent. This was demonstrated in this chapter by presenting some

use case examples of the synchronization process, showing that the synchronization was successful

and that the data remained consistent and well represented in both systems.

This chapter also serves to reiterate the idea expressed when the proposed framework was presented

in section 3.4. The idea is that in complex systems like this one, the prior knowledge of the

synchronization method facilitates the semantic checking process. This became apparent in these

demonstrations, because the knowledge represented in both elements was properly aligned, therefore

allowing the modifications on one side to be properly reflected in the other.

91

7. CONCLUSIONS AND FUTURE WORK

Today’s demanding world is inciting small enterprises to think of new ways to do business in order to

survive and keep up with market requirements. Such enterprises started to realize that to in order to

grow they needed to target a larger market to reap more benefits. To achieve this goal, enterprises

must seek collaboration with one another in order to be able to compete with the larger enterprises

that dominate the bigger markets. However, collaboration does not come easy since there is usually a

price to pay and some enterprises are reluctant to cooperate since they feel they have to change their

way of doing business. Regardless, interoperability is key in today’s world and should be seen as an

opportunity instead of a barrier.

To achieve interoperability, enterprises need to communicate and collaborate with each other in order

to achieve a common understanding. However, it is often the case that these communications are

unsuccessful due to semantic interoperability issues.

The proposed framework was developed with the idea to provide general solutions to various contexts

and situations, allowing organizations to effectively assess if their KREs are consistent, specifically, on

a semantic level. Following its guidelines it was possible to assess the semantic consistency of the

involved ontologies on a small case study scenario that comprises a bolt retailer and a manufacturer.

The framework also enables companies to evaluate if there are losses in the information exchanges

that occur between the knowledge elements. In addition, the framework indicated a possible solution

through a reasoning process, more specifically using the HermiT and Pellet reasoners, to assess the

conceptual consistency of ontologies. Furthermore, this framework can also be used for enterprises to

evaluate the consistency of their own KREs before attempting to communicate with others.

Concerning the structural point of view of the semantic checking issue, a prototype was developed for

an ad hoc synchronization mechanism for multiple ontologies under the ENSEMBLE project work,

between a wiki and an ontology. This prototype for a synchronization mechanism demonstrated that is

possible to maintain the structural consistency of the involved KREs, by seamlessly exchanging data

from on system to another without tampering with their architectures.

In conclusion, the proposed framework could prove to be a valuable asset in helping, as a guideline, in

the semantic checking of knowledge repositories.

7.1. Research Validation

To accomplish the research validation of this work it was followed a research method presented in

section 1.3. Aligned to this is the research question presented in the beginning of this dissertation, and

in response, it was verified that it is possible to check the semantic consistency of data exchanges

between enterprises information systems by resorting to the guidelines provided by the proposed

framework. The understanding between the systems can be preserved, thus maintaining semantic

interoperability. This was demonstrated along the course of this document, specifically in the scenario

92

concerning the data exchange between a client system and a bolt manufacturer and retailer systems

in section 4.1.5.1. With this situation it was possible to demonstrate the capability of the framework to

help detect conceptual inconsistencies between the different KREs.

Also regarding the research question presented in the beginning of this dissertation, the demonstration

of a synchronization process in section 6 helped validate one of the guidelines proposed in the

framework, namely in items 5 and 6, where multiple KREs are involved. This scenario contributed to

demonstrate that knowing the synchronization process indeed facilitates the maintenance of the

semantic checking process. Through the demonstrated examples it was shown that this knowledge

ensured that the contents between the elements of the system remained well aligned and consistent.

With both these scenarios, it can be established that both, reasoning and synchronization processes,

when used separately or together, are extremely important when validating and maintaining the

semantic consistency of data exchanges between the enterprises information systems.

Regarding the research question presented in the beginning of this dissertation, it was verified that it is

possible to check the semantic consistency of data exchanges between enterprises information

systems by resorting to the guidelines provided by the proposed framework. The understanding

between the systems can be preserved, thus maintaining semantic interoperability.

For intentional purposes of the research results of this dissertation, a scientific publication was

published in the proceedings of the Fifth Interop-Vlab.It Workshop on the 28
th
 of September 2012 in

Rome – Italy:

 Alves, G., Sarraipa J., Silva, J. P. M. and Jardim-Gonçalves R. A Framework for

Semantic Checking of Information Systems, Accepted In: Fifth Interop-Vlab.It

Workshop, 28
th
 of September 2012 in Rome, Italy (2012).

7.2. Future Work

The main purpose behind the developed solution is to have seamless synchronization between

knowledge representation systems, and in order to fulfil that goal all cases that can be identified need

to be implemented. Therefore, in terms of future work, more features of the prototype can be

implemented such as, the cases of “new classes”, “edit properties”, etc… (Table 6.1) or the “Remove

publication”, “Edit Ingredient”, etc… features (Table 6.2).

On a different note, validation scenarios for items 3 and 4 of the framework, regarding composite

ontologies could be devised.

Yet another topic of future work regarding the proposed framework is to test its items with more

scenarios to further demonstrate its effectiveness.

93

8. REFERENCES

[1] Silva, J. P. M , Cavaco F., Sarraipa, J. and Jardim-Gonçalves, R. (2011). Knowledge Based
Methodology Supporting Interoperability Increase in Manufacture Domain. Proceedings of the
ASME Congress 2011, November 11-17, Denver, CO, USA.

[2] Sarraipa J., Jardim-Gonçalves,R., Gaspar, T. and Steiger-Garção, A. (2010). Collaborative
Ontology Building using Qualitative Information Collection Methods. International Conference on
Intelligent Systems, IEEE. Jul 7-9, London, United Kingdom, (2010).

[3] The Free Dictionary (2010). Framework Meaning. Retrieved from the web at May 2012:
http://www.thefreedictionary.com/framework.

[4] Work Package – A4.2 Participants (2007). Athena Deliverable Number: D.A4.2: Specification of
Interoperability Framework and Profiles, Guidelines and Best Practices – version 1.0; March,
2007.

[5] Charalabidis, Y; Gionis, G; Hermann, K; Martinez, K.: Enterprise Interoperability: Research
Roadmap. Update Version 5.0 (2008).

[6] Camarinha-Matos L. (2010). Scientific Research Methodologies and Techniques - Unit 2:
Scientific Method, PhD Program in Electrical and Cumputer Engineering (2010).

[7] Grimm, S., Hitzler, P. and Abecker, A. (2007). Knowledge Representation and Ontologies –
Logic, Ontologies and Semantic Web Languages. University of Karlsruhe, Germany (2007).

[8] Sarraipa, J. (2004). Uma solução para a Interoperabilidade Semântica em ambientes globais de
negócios. Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia.

[9] de Bruijn, J., Ehrig, M., Feier, C., Martín-Recuerda, F., Scharffe, F. and Weiten, M. (2006).
Ontology mediation, merging and aligning.

[10] Noy, N. and Musen, M. An Algorithm for Merging and Aligning Ontologies: Automation and Tool
Support. Stanford Medical Informatics, Stanford University.

[11] Shamsfard, M. and Barforoush, A. The State of the Art in Ontology Learning: A Framework for
Comparison. Intelligent Systems Laboratory, Computer Engineering Department, Amir Kabir
University of Technology.

[12] Cimiano, P., Madche, A., Staab, S. and Volker, J. Ontology Learning. Handbook on Ontologies
Second Edition, International Handbooks on Information Systems pp 245-268.

[13] Sarraipa, J. Semantic Adaptability for the Systems Interoperability. PhD Dissertation in Electrical
and Computer Engineering, New University of Lisbon, Science and Technology Campus, to be
presented in 2012.

[14] Alfaries, A., Bell, D. and Lycett, M. Ontology Learning for Semantic Web Services. School of
Information Systems, Computing and Mathematics, Brunel University, Uxbridge, United Kingdom.

[15] Youn, S., Arora, A., Chandrasekhar, P., Jayanty, P., Mestry, A. and Sethi, S. Survey about
Ontology Development Tools for Ontology-based Knowledge Management. University of South
California.

[16] Stanford Center for Biomedical Informatics Research (2012). Protégé Overview, available from
http://protege.stanford.edu/overview/index.html. Acessed on February 2012.

[17] About Ontopia, available from http://www.ontopia.net/page.jsp?id=about, accessed on February
2012.

[18] Pepper, S. (2000). The TAO of Topic Maps – Finding the Way in the Age of Infoglut, available
from http://www.ontopia.net/topicmaps/materials/tao.html#d0e140, accessed on September 2012.

[19] Ontopia The editor, available from http://www.ontopia.net/page.jsp?id=ontopoly, accessed on
February 2010.

[20] Ontopia The browser, available from http://www.ontopia.net/page.jsp?id=omnigator, accessed on
February 2012.

[21] Dicheva, D. and Dichev, C. TM4L: Creating and Browsing Educational Topic Maps. Winston-
Salem Stat University, Computer Science Department.

[22] Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C. and Giannopoulou, E. (2007). Ontology
Visualization Methods – A Survey. ACM Computing Surveys, Volume 39, Number 4, Article 10,
October 2007.

[23] FInES Wiki, available from http://www.fines-cluster.eu/fines/mw/index.php/Main_Page, accessed
on February 2012.

[24] Ontopia Graphical Visualization, available from http://www.ontopia.net/page.jsp?id=vizigator,
accessed on February 2012.

http://www.thefreedictionary.com/framework
http://protege.stanford.edu/overview/index.html
http://www.ontopia.net/page.jsp?id=about
http://www.ontopia.net/topicmaps/materials/tao.html#d0e140
http://www.ontopia.net/page.jsp?id=ontopoly
http://www.ontopia.net/page.jsp?id=omnigator
http://www.fines-cluster.eu/fines/mw/index.php/Main_Page
http://www.ontopia.net/page.jsp?id=vizigator

94

[25] Storey, M., Musen, M., Silva, J., Best, C., Ernst, N., Fergerson, R. and Noy, N. Jambalaya:
Interactive Visualization to enhance ontology authoring and acquisition in Protégé.

[26] Protégé Wiki – OntoGraf (2011), available from http://protegewiki.stanford.edu/wiki/OntoGraf,
accessed on February 2012.

[27] DebateGraph, http://debategraph.org/Stream.aspx?nid=61932&iv=05, accessed on April 2012.
[28] theBrain, http://webbrain.com/about;jsessionid=83856289256DA49C2185DB5A05F725F7,

accessed on April 2012.
[29] Xmind3 – Brainstorming and Mind Mapping – Google Project Hosting, available from

http://code.google.com/p/xmind3/, accessed on September 2012.
[30] Features – Xmind: Professional & Powerful Mind Mapping Software, available from

http://www.xmind.net/features/, accessed on September 2012.
[31] Reasoners, available from http://owlapi.sourceforge.net/reasoners.html, accessed on September

2012.
[32] Motik, B., Shearer, R. and Horrocks, I. (2009). Hypertableau Reasoning for Description Logics.

Published in Journal of Artificial Intelligence Research, Volume 36 Issue 1, September 2009, pp
165-228, Oxford, United Kingdom.

[33] Gardiner, T., Tsarkov, D. and Horrocks, I. (2006). Framework for an Automated Comparison of
Description Logic Reasoners. Proceedings of the 2006 International Semantic Web Conference
(ISWC 2006). November 5 – 9, Athens, United States of America (2006).

[34] University of Oxford, Information Systems Group (2012). Hermit OWL Reasoner Overview,
available from http://www.hermit-reasoner.com. Accessed on February 2012.

[35] Clark & Parsia (2012). Pellet Reasoner, available from http://clarkparsia.com/pellet/protege/.
Accessed on February 2012.

[36] FaCT++, available from http://semanticweb.org/wiki/FaCT%2B%2B, accessed on September
2012.

[37] Racer Systems GmbH & Co. KG (2012). RacerPro, available from http://www.racer-
systems.com/products/racerpro/index.phtml, accessed on September 2012.

[38] FaCT++, available from http://owl.cs.manchester.ac.uk/fact++/, accessed on September 2012.
[39] University of Oxford, Information Systems Group (2012). Hermit OWL Reasoner – Using HermiT,

available from http://www.hermit-reasoner.com/using.html. Accessed on February 2012.
[40] Clark & Parsia (2012). Pellet Features, available from http://clarkparsia.com/pellet/features,

accessed on September 2012.
[41] Racer Systems GmbH & Co. KG (2012). RacerPro Features, available from http://www.racer-

systems.com/products/racerpro/features.phtml, accessed on September 2012.
[42] Institute of Electrical and Electronics Engineers (IEEE) Standards Glossary, available from

http://www.ieee.org/education_careers/education/standards/standards_glossary.html, accessed
on February 2012. Carnegie Mellon University.

[43] Kasunic, M. (2001). Measuring Systems Interoperability: Challenges and Opportunities.
[44] Morris, E., Levine, L., Meyers, C., Place, P. and Plakosh, D. (2004). System of Systems

Interoperability (SOSI): Final Report. Carnegie Mellon Software Engineering Institute, Pittsburgh,
PA, USA (2004).

[45] Chen, D. (2006): Framework for Enterprise Interoperability, IFAC TC5.3 workshop EI2N (2006),
Bordeaux, France.

[46] Li, D., Huang, L. and Li, M. (2004). Dynamic Semantic Consistency Checking of Multiple
Collaborative Ontologies in Knowledge Management System. Proceedings of the 5th international
conference on Parallel and Distributed Computing: applications and Technologies (PDCAT),
December 8-10, Singapore, pp. 76-80, 2004.

[47] Jardim-Gonçalves, R. (2012). Arquitectura de Integração de Sistemas – Aula 1, MsC program in
Electrical and Computer Engineering (2012).

[48] Park, J. and Ram, S. (2004). Information Systems Interoperability: What Lies Beneath? ACM
Transactions on Information Systems, Volume 22, Number 4, pp. 595-632.

[49] Sarraipa, J., Jardim-Gonçalves, R. and Steiger-Garcao, A. (2010). MENTOR: An enabler for
interoperable intelligent systems. International Journal of General Systems, Volume 39, Number
5, July 2010, pp. 557-573.

[50] Gaspar, T. (2011). Methodology for Collaborative Enterprise Reference Ontology Building.
[51] Agostinho, C., Sarraipa, J., Gonçalves, D. and Jardim-Gonçalves, R. Tuple-based semantic and

structural mapping for a sustainable interoperability. Proceedings of: Technological Innovation for
Sustainability - Second IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing, Electrical
and Industrial Systems, DoCEIS 2011, Costa de Caparica, Portugal, February 21-23, 2011.

[52] ISOFIN

http://protegewiki.stanford.edu/wiki/OntoGraf
http://debategraph.org/Stream.aspx?nid=61932&iv=05
http://webbrain.com/about;jsessionid=83856289256DA49C2185DB5A05F725F7
http://code.google.com/p/xmind3/
http://www.xmind.net/features/
http://owlapi.sourceforge.net/reasoners.html
http://www.hermit-reasoner.com/
http://clarkparsia.com/pellet/protege/
http://semanticweb.org/wiki/FaCT%2B%2B
http://www.racer-systems.com/products/racerpro/index.phtml
http://www.racer-systems.com/products/racerpro/index.phtml
http://owl.cs.manchester.ac.uk/fact++/
http://www.hermit-reasoner.com/using.html.%20Accessed%20on%20February%202012
http://clarkparsia.com/pellet/features
http://www.racer-systems.com/products/racerpro/features.phtml
http://www.racer-systems.com/products/racerpro/features.phtml
http://www.ieee.org/education_careers/education/standards/standards_glossary.html

95

[53] Sarraipa, J. and Jardim-Gonçalves, R. (2011). Knowledge-based System for Semantics
Adaptability of Enterprises Information Systems. Proceedings of IWEI 2011 Third International
IFIP Working Conference “Interoperability and Future Internet for Next-Generation Enterprises”,
March 22-24, Stockholm, Sweden, 2011.

[54] Oxford Online Dictionary, Consistency Definition, available from
http://oxforddictionaries.com/definition/consistency, accessed on February 2012.

[55] Haase, P. and Stojanovic, L. (2005). Consistent Evolution of OWL Ontologies. Proceedings of the
2nd European Semantic Web Conference (ESWC), May 29 – 1 June, Heraklion, Greece (2005).

[56] Haase, P., Harmelen, F., Huang, Z., Stuckenschmidt, H. and Sure, Y. (2005). A Framework for
Handling Inconsistency in Changing Ontologies. Proceedings of the 4

th
 International Semantic

Web Conference (ISWC), November 6-10, Galway, Ireland, pp. 353-367, (2005).
[57] Baclawski, K., Kokar, M., Waldinger, R. and Kogut, P. (2002). Consistency Checking of Semantic

Web Ontologies.
[58] CEN Workshop Agreement (2012). Testing Framework for Global eBusiness Interoperability Test

Beds (GITB). European Committee for Standardization., February 2012.
[59] Bergengruen, O., Fischer, F., Namli, T., Rings, T., Schulz, S., Serazio, L. and Vassiliou-Gioles, T.

(2010). Ensuring Interoperability with Automated Interoperability Testing. White Paper, European
Telecommunications Standards Institute (ETSI), Sophia-Antipolis, France, 2010.

[60] Jardim-Gonçalves, R., Agostinho, C. and Steiger-Garcao, A. (2010). Sustainable Systems’
Interoperability: A reference model for seamless networked business. Proceedings of the 2010
IEEE International Conference on Systems Man and Cybernetics (SMC), October 10-13, Istanbul,
Turkey, 2010.

[61] Agostinho, C., Gonçalves, R., Sarraipa, J., Koussouris, S., Mouzakitis, S., Lampathaki, F.,
Charalabidis, Y., Popplewell, K. And Assogna, P. (2011). ENSEMBLE Deliverable D2.3 EISB
Basic Elements Report.

[62] Gosling, J., Joy, B., Steele, G. and Bracha, G. (2005). Introduction. In: The Java
TM

 Language
Specification. 3rd ed. Addison-Wesley. pp. 1-5, 2005.

[63] About MySQL, available from http://www.mysql.com/about/, accessed on August 2012.
[64] MySQL Connectors, available from http://www.mysql.com/products/connector/, accessed on

August 2012.
[65] Protégé-OWL API Programmer’s Guide, available from

http://protegewiki.stanford.edu/wiki/ProtegeOWL_API_Programmers_Guide, accessed on August
2012.

[66] Accessing the collaboration features programmatically (The Changes and Annotations API),
available from http://protegewiki.stanford.edu/wiki/ChAO_API, accessed on September 2012.

[67] Manual: Page Table, available from http://www.mediawiki.org/wiki/Manual:Page_table, accessed
on September 2012.

[68] Manual: Text Table, available from http://www.mediawiki.org/wiki/Manual:Text_table, accessed
on September 2012.

[69] Manual: Revision Table, available from http://www.mediawiki.org/wiki/Manual:Revision_table,
accessed on September 2012.

http://oxforddictionaries.com/definition/consistency
http://www.mysql.com/about/
http://www.mysql.com/products/connector/
http://protegewiki.stanford.edu/wiki/ProtegeOWL_API_Programmers_Guide
http://protegewiki.stanford.edu/wiki/ChAO_API
http://www.mediawiki.org/wiki/Manual:Page_table
http://www.mediawiki.org/wiki/Manual:Text_table
http://www.mediawiki.org/wiki/Manual:Revision_table

97

9. APPENDIX

9.1. Ontology to Wiki Synchronization – New Scientific Area instance code

example

private void createScientificArea(){

 String title = getDataFromMap(saDataMap, "Name");
 String table = "{{Io Scientific Area Metadata\n|SA Code= " +
getDataFromMap(saDataMap, "ID") + "|Title= " + title + "|Description= " +
getDataFromMap(saDataMap, "Definition") +
"|Backlinks=</p><p>|OutboundLinks=</p><p>|Indicative Scientific Sub-Areas=</p><p>\n" +
getDataFromMap(saDataMap, "subAreas") + "|Tags =" + buildTags(saDataMap) + "}}\n\n";
 String text = getDataFromMap(saDataMap, "MainText");
 String references = "\n== References ==\n<p
align=\"justify\"><references/> </p>";
 String seeAlso = "\n== See Also ==\n" + getDataFromMap(saDataMap,
"SeeAlso");
 title = title.replace(' ', '_').replace('\n', ' ').trim();
 title = title.substring(0, 1).toUpperCase() + title.substring(1);
//Capitalize first letter of title
 String category = "[[Category:" + title + "]][[Category:EISB Glossary]]";
 String wikiText = table + text + references + seeAlso + category;

 if (db.insertPage(title, wikiText.length()))
 {
 if (db.insertText(wikiText))
 {
 if (db.insertRevision(title, wikiText.length()))
 {
 root.setOntoStatus("\n=== New Scientific Area created on the
wiki ===\n" + title + "\n");
 }
 }
 }
}

9.2. Ontology to Wiki Synchronization – Scientific Area class removal code

example

private void deleteInstances(String name) {
 RDFProperty rdfProperty = owlModel.getRDFProperty("Name");
 Collection results =
owlModel.getRDFResourcesWithPropertyValue(rdfProperty, name);
 for (Iterator it = results.iterator(); it.hasNext();) {
 Object obj = it.next();
 if (obj instanceof RDFIndividual) {
 RDFIndividual ind = (RDFIndividual) obj;
 ind.delete();
 }
 }
}

98

9.3. Wiki to Ontology Synchronization – New Publication code example

private void createPublicationInstance(String citation, String link, String abstr,
String wikiURL, String mendeley, String title, ArrayList<String> keywordArray,
ArrayList<RDFIndividual> ingredients, String sa, String saRelevance, String phase,
String phaseRelevance, String level, String levelRelevance, String maturity, String
licence){

 ArrayList classifierList = new ArrayList();
 getClassifier(sa, saRelevance, "Scientific_Area_Classifier",
classifierList);
 getClassifier(phase, phaseRelevance, "EI_Phase_Classifier",
classifierList);
 getClassifier(level, levelRelevance, "EI_Barrier_Classifier",
classifierList);
 getClassifier(maturity, "", "EI_Maturity_Classifier", classifierList);

 RDFSNamedClass bibClass = owlModel.getRDFSNamedClass("Bibliography");
 RDFResource newBibliography = bibClass.createInstance(title + "_BIB");

newBibliography.setPropertyValue(owlModel.getOWLDatatypeProperty("Citation"),
citation);
 newBibliography.setPropertyValue(owlModel.getOWLDatatypeProperty("Link"),
link);

 RDFSNamedClass pubClass = owlModel.getRDFSNamedClass("Publications");
 RDFResource newPublication = pubClass.createInstance(title);
 //DATATYPE PROPERTIES

newPublication.setPropertyValue(owlModel.getOWLDatatypeProperty("Abstract"), abstr);

newPublication.setPropertyValue(owlModel.getOWLDatatypeProperty("FINES_Page"),
wikiURL);

newPublication.setPropertyValue(owlModel.getOWLDatatypeProperty("LinkMendeley"),
mendeley);
 newPublication.setPropertyValue(owlModel.getOWLDatatypeProperty("Name"),
title);

newPublication.setPropertyValues(owlModel.getOWLDatatypeProperty("Keywords"),
keywordArray);

newPublication.setPropertyValue(owlModel.getOWLDatatypeProperty("HasLicence"),
licence);

 //OBJECT PROPERTIES

newPublication.setPropertyValues(owlModel.getOWLObjectProperty("hasIngredient"),
ingredients);

newPublication.setPropertyValues(owlModel.getOWLObjectProperty("isClassifiedAs"),
classifierList);

newPublication.setPropertyValue(owlModel.getOWLObjectProperty("relatedTo_Bibliography"
), newBibliography);

newPublication.setPropertyValues(owlModel.getOWLObjectProperty("isInstanceOf"),
owlModel.getRDFSNamedClass("Scientific_Publication").getInstances(true));

 root.setWikiStatus("====New publication ->" + title + " inserted into the
ontology====\n");

99

}

9.4. Wiki to Ontology Synchronization – Edit Scientific Area code example

private void editScientificArea(String wikiURL, String title, String newText, String
oldText){

 ArrayList newSubAreaList = new ArrayList();
 ArrayList newTagsList = new ArrayList();
 ArrayList newSeeAlsoList = new ArrayList();
 Collection range;

 String newCode = getComponentFromText("SA.", "|", newText);
 newCode = "SA." + newCode;
 String newDefinition = getComponentFromText("Description=", "|", newText);
 String newMainText = getComponentFromText("}}", "==", newText);
 String newSubAreaNames = getComponentFromText("Indicative Scientific Sub-
Areas", "|", newText);
 String newAllTags = getComponentFromText("Tags =", "}}", newText);
 String newAllSeeAlso = getComponentFromText("See Also ==\n", "[[Category",
newText);

 getMultipleComponents(newAllSeeAlso, newSeeAlsoList, "[[", "]]");
 getMultipleComponents(newSubAreaNames, newSubAreaList, "[[", "]]");
 getMultipleComponents(newAllTags, newTagsList, "[[", "]]");

 String oldCode = getComponentFromText("SA.", "|", oldText);
 oldCode = "SA." + oldCode;
 String oldDefinition = getComponentFromText("Description=", "|", oldText);
 String oldMainText = getComponentFromText("}}", "==", oldText);

 RDFIndividual editedSA = getInstanceFromClass(title, "Scientific_Area");
 if (editedSA != null)
 {
 if (newCode.length() != oldCode.length())
 {
 editedSA.setPropertyValue(owlModel.getOWLDatatypeProperty("ID"),
newCode);
 }
 if (newDefinition.length() != oldDefinition.length())
 {
editedSA.setPropertyValue(owlModel.getOWLDatatypeProperty("Definition"),
newDefinition);
 }
 if (newMainText.length() != oldMainText.length())
 {
editedSA.setPropertyValue(owlModel.getOWLDatatypeProperty("MainText"), newMainText);
 }
 range =
owlModel.getOWLObjectProperty("hasSeeAlso").getUnionRangeClasses();

editedSA.setPropertyValues(owlModel.getOWLObjectProperty("hasSeeAlso"),
getListInstances(newSeeAlsoList, range));
 range =
owlModel.getOWLObjectProperty("hasTags").getUnionRangeClasses();
 editedSA.setPropertyValues(owlModel.getOWLObjectProperty("hasTags"),
getListInstances(newTagsList, range));
 range =
owlModel.getOWLObjectProperty("hasSubArea").getUnionRangeClasses();

100

editedSA.setPropertyValues(owlModel.getOWLObjectProperty("hasSubArea"),
getListInstances(newSubAreaList, range));

 root.setWikiStatus("Scientific Area ->" + title + " updated!\n");
 }
 else
 {
 root.setWikiStatus("Error getting the edited instance from the
ontology!!!\n");
 }
}

