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Abstract

The purpose of this thesis is the factorization of elliptic boundary value problems defined
in cylindrical domains, in a system of decoupled first order initial value problems. We
begin with the Poisson equation with mixed boundary conditions, and use the method of
invariant embedding: we embed our initial problem in a family of similar problems, defined
in sub-domains of the initial domain, with a moving boundary, and an additional condition
in the moving boundary. This factorization is inspired by the technique of invariant
temporal embedding used in Control Theory when computing the optimal feedback, for,
in fact, as we show, our initial problem may be defined as an optimal control problem. The
factorization thus obtained may be regarded as a generalized block Gauss LU factorization.
From this procedure emerges an operator that can be either the Dirichlet-to-Neumann or
the Neumann-to-Dirichlet operator, depending on which boundary data is given on the
moving boundary. In any case this operator verifies a Riccati equation that is studied
directly by using an Yosida regularization. Then we extend the former results to more
general strongly elliptic operators. We also obtain a QR type factorization of the initial
problem, where Q is an orthogonal operator and R is an upper triangular operator. This
is related to a least mean squares formulation of the boundary value problem.
In addition, we obtain the factorization of overdetermined boundary value problems, when
we consider an additional Neumann boundary condition: if this data is not compatible
with the initial data, then the problem has no solution. In order to solve it, we introduce a
perturbation in the original problem and minimize the norm of this perturbation, under the
hypothesis of existence of solution. We deduce the normal equations for the overdetermined
problem and, as before, we apply the method of invariant embedding to factorize the
normal equations in a system of decoupled first order initial value problems.

KEYWORDS: factorization, invariant embedding, Dirichlet-to-Neumann operator, Riccati
equation, Yosida regularization, overdetermined problem.

iii





Resumo

O objectivo desta tese é a fatorização de problemas eĺıticos com valores na fronteira
definidos em domı́nios ciĺındricos, num sistema desacoplado de problemas de primeira
ordem de valores iniciais. Começamos com a equação de Poisson com condições de fronteira
mistas, e usamos o método de imersão invariante: mergulhamos o problema inicial numa
famı́lia de problemas semelhantes, definidos em subdomı́nios do domı́nio inicial, com uma
condição adicional numa fronteira móvel. Esta fatorização inspira-se na técnica de imersão
invariante temporal usada em Teoria do Controlo para calcular o feedback ótimo, pois,
de facto, como demonstramos, o problema inicial pode definir-se como um problema de
controlo ótimo. A fatorização assim obtida pode ser considerada como a generalização da
fatorização LU por blocos obtida pelo método de Gauss, usada em Análise Numérica para
resolver sistemas de equações lineares. Deste procedimento surge um operador, que no
caso estudado, tanto pode ser o operador Dirichlet-Neumann, como o operador Neumann-
Dirichlet, dependendo do tipo de dado atribúıdo na fronteira móvel. Em qualquer caso, o
referido operador verifica uma equação de Riccati, equação esta que estudamos diretamente
usando uma regularização de Yosida. Estendemos ainda os resultados anteriores a outros
operadores fortemente eĺıticos. Também obtemos uma fatorização do tipo QR, onde Q é
um operador ortogonal e R um operador triangular superior, que resulta duma formulação
em mı́nimos quadrados do problema de valores de fronteira.

Efetuamos ainda a fatorização de problemas eĺıticos sobredeterminados, quando se con-
sidera uma condição de fronteira de Neumann adicional: se esta condição não é compat́ıvel
com os dados iniciais, então o problema não tem solução. Para o resolver, introduzimos
uma perturbação no problema original e minimizamos a norma desta perturbação, sujeita
à condição de existência de solução. Em seguida, deduzimos as equações normais para
o problema sobredeterminado, e, tal como anteriormente, usamos o método de imersão
invariante para obter uma fatorização das equações normais num sistema desacoplado de
problemas de primeira ordem de valores iniciais.

PALAVRAS CHAVE: fatorização, imersão invariante, operador Dirichlet-Neumann, equa-
ção de Riccati, regularização de Yosida, problema sobredeterminado.
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Introduction

The method of factorization by invariant embedding [2] is used [1] to derive analytical
and numerical results in various fields such as, for instance, in atmospheric physics, wave
propagation and transport theory. In Control Theory it is used [16, 4] to obtain the
decoupling of systems arising from Optimal Control problems. This technique consists in
embedding a given problem in a family of similar problems defined in sub-domains of the
initial one with a moving boundary, and depending on a parameter governing the position
of the moving boundary. In Control Theory the parameter used is the time variable,
and in this thesis it is a spacial one. We begin by using this method to factorize second
order elliptic boundary value problems defined in a cylindrical domain in a system of two
decoupled first order initial value equations. A similar approach is followed by [9], and
in [19] the same method is used to factorize elliptic problems in circular and star-shaped
domains. We shall also apply the same method to obtain the factorization of a fourth order
boundary value problem in a system of four decoupled first order initial value equations.

In the first Chapter we introduce our case study, problem (P0), that we wish to factorize by
the method of invariant embedding: the Poisson equation with mixed boundary conditions,
defined in a cylindrical domain. We define its variational formulation and show that it is
well-posed. We next consider a fourth order problem for the bi-Laplacian, defined in the
same domain, and show its well-posedness. This result will be used in Chapter 2, to justify
the well posedness of the particular fourth order problem that arises when we consider
an overdetermined problem. Finally, in the last section, following [16], we present a brief
explanation of the method of factorization by invariant embedding.

In Chapter 2, we begin by showing that the solution of (P0) may be regarded as the optimal
control of a particular control problem. Then we embed problem (P0) in a family of similar
problems defined in sub-domains of the initial domain, with an additional condition on a
moving boundary: we obtain a system of two decoupled first order initial value problems,
and a Riccati equation in an operator P that can be either the Dirichlet-to-Neumann
or the Neumann-to-Dirichlet operator, depending on which boundary data is given on
the moving boundary. In [9] it is shown that this decoupling may be regarded as a
generalization to infinite dimension of the block Gauss LU factorization. Next, we deduce
the normal equations for the overdetermined problem when we consider an additional
Neumann boundary condition: we begin by introducing a perturbation in the optimal
system equivalent to (P0), and then minimize the norm of this perturbation. As before,
we factorize the normal equations by using the method of invariant embedding: we obtain
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CONTENTS

the same Riccati equation as before, a Lyapounov equation in an operator Q, and four
decoupled first order initial value problems. Next, we present solutions to the equations
obtained, with the exception of the Riccati equation. This first part of the Chapter can
be found in [13]. Finally, we derive a QR type factorization of problem (P0), where Q is
an orthogonal operator and R is an upper triangular operator.
In Chapter 3, we present a direct study of the Riccati equation by Yosida regularization.
This study can be found in [5]. In [11] the same equation is studied in an Hilbert-Schmidt
framework.
In Chapter 4, we deduce matrix formulae for the operators P and Q with the aid of an
orthonormal basis of H1

0 (O).
In Chapter 5, we obtain a simple factorized formula for the Dirichlet-to-Neumann operator,
solution of the Riccati equation.
Finally, in Chapter 6, we use the method of invariant embedding to factorize more general
elliptic problems.
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Chapter 1

Preliminaries

In this chapter, we begin by introducing our case study, a particular elliptic problem,

(P0), defined in a cylindrical domain. Next, in section 1.2, we define the variational

formulation for (P0), and show that it is a well-posed problem. Then, in section 1.3, we

extend the former results to more general elliptic problems that we show to be well-posed.

In section 1.4, we introduce a fourth order problem for the bi-Laplacian, and show its

well-posedness. Finally, in section 1.5, we present a brief explanation of the method of

factorization by invariant embedding. This method will be used to factorize a second order

elliptic boundary value problem in a system of decoupled first order initial value problems.

1.1 Position of the problem (P0)

Let Ω be the cylinder Ω =]0, 1[×O, x′ = (x, y) ∈ R
n, where x is the coordinate along

the axis of the cylinder and O, a bounded open set in R
n−1, is the section of the cylinder.

The lateral boundary of the cylinder is Σ =]0, 1[×∂O. For each s ∈]0, 1[, let Γs = {s}×O
and Σs =]0, s[×∂O. Γ0 and Γ1 are the two faces of the cylinder. Given f ∈ L2(Ω),

u0 ∈ (H
1/2
00 (O))′ and u1 ∈ H

1/2
00 (O), we consider the following Poisson equation with

1



1. Preliminaries

mixed boundary conditions

(P0)































−∆u = −∂
2u

∂x2
− ∆yu = f in Ω,

u|Σ = 0,

−∂u
∂x

|Γ0
= u0, u|Γ1

= u1.

(1.1)

Remark 1.1 The space H
1/2
00 (O) is defined in [17], Theorem 12.3, page 72, as the inter-

polated space of order 1/2 between H1
0 (O) and L2(O)

H
1/2
00 (O) =

[

H1
0 (O), L2(O)

]

1

2

and, from Theorem 6.2, page 29 of [17], its dual is given by

(H
1/2
00 (O))′ =

[

L2(O), H−1(O)
]

1

2

.

Moreover,

H1
0 (O) ⊂ H

1/2
00 (O) ⊂ L2(O),

each space being dense in the following one, so, by duality, we have

L2(O) ⊂ (H
1/2
00 (O))′ ⊂ H−1(O),

each space dense in the following one.

Definition 1.2 We define the following spaces

X = L2(0, 1;H1
0 (O)) ∩H1(0, 1;L2(O)),

X0 = {u ∈ X : u|Γ1
= 0},

Y = {u ∈ X :
∂2u

∂x2
∈ L2(0, 1;H−1(O))},

with the norms

‖u‖2
X =

∫ 1

0
‖u(x)‖2

H1
0
(O)dx+

∫ 1

0
‖u(x)‖2

L2(O)dx+

∫ 1

0

∥

∥

∥

∥

∂u

∂x
(x)

∥

∥

∥

∥

2

L2(O)

dx, (1.2)

2



1.1 Position of the problem (P0)

‖u‖2
X0

=

∫ 1

0
‖u(x)‖2

H1
0
(O)dx+

∫ 1

0

∥

∥

∥

∥

∂u

∂x
(x)

∥

∥

∥

∥

2

L2(O)

dx, (1.3)

‖u‖2
Y = ‖u‖2

X +

∫ 1

0

∥

∥

∥

∥

∂2u

∂x2

∥

∥

∥

∥

2

H−1(O)

dx. (1.4)

Theorem 1.3 The norms in X and in X0 are equivalent to the norm in H1(Ω). Moreover,

X0 is a closed subspace in X, and X is a Hilbert space for the norm of H1(Ω).

Proof. In fact

‖u‖2
X =

∫ 1

0

∫

O
|∇yu|2dxdy +

∫ 1

0

∫

O
|u|2dxdy +

∫ 1

0

∫

O

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

2

dxdy = ‖u‖2
H1(Ω), ∀u ∈ X,

so we may conclude that the norms in X and in H1(Ω) are equivalent. On the other hand,

we have

‖u‖2
X0

=

∫ 1

0

∫

O
|∇yu|2dxdy +

∫ 1

0

∫

O

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

2

dxdy =

∫

Ω
|∇u|2dxdy ≤ ‖u‖2

H1(Ω), ∀u ∈ X0,

and

‖u‖2
H1(Ω) = ‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω) ≤ (c+ 1)‖∇u‖2

L2(Ω) = (c+ 1)‖u‖2
X0
, ∀u ∈ X0,

where c is the Poincaré constant, so the norm in X0 is also equivalent to the norm in

H1(Ω). Next, we notice that L2(0, 1;H1
0 (O)) is a Hilbert space for the norm

‖u‖2
L2(0,1;H1

0
(O)) =

∫ 1

0
‖u(x)‖2

H1
0
(O)dx

and H1(0, 1;L2(O)) is a Hilbert space for the norm

‖u‖2
H1(0,1;L2(O)) =

∫ 1

0
‖u(x)‖2

L2(O)dx+

∫ 1

0

∥

∥

∥

∥

∂u

∂x
(x)

∥

∥

∥

∥

2

L2(O)

dx,

consequently, X is a Hilbert space for the norm (1.2), or, which is equivalent, for the norm

of H1(Ω). Finally, we show that X0 is closed in X. Consider a sequence (un) ⊂ X0 such

that un → u in X. Then u ∈ X and un → u in H1(Ω). The continuity of the trace

mapping

u 7→ u|∂Ω

3



1. Preliminaries

from H1(Ω) into H
1

2 (∂Ω) implies, in particular, that

un|Γ1
→ u|Γ1

so we derive that u|Γ1
= 0 and, consequently, u ∈ X0.

Remark 1.4 We notice that, from Theorem 1.3, X0 is a closed subspace of a Hilbert space

and consequently is itself a Hilbert Space.

Theorem 1.5 Y is a Hilbert space.

Proof. In fact, we can show that Y is complete for the norm

‖u‖2
Y = ‖u‖2

X +

∫ 1

0

∥

∥

∥

∥

∂2u

∂x2

∥

∥

∥

∥

2

H−1(O)

,

taking into account the continuity of the derivation with respect to x in the sense of

D′ (]0, 1[;H1
0 (O)

)

.

Definition 1.6 We define the following spaces

W1(0, 1) = {u ∈ L2(0, 1;H1
0 (O)) :

∂u

∂x
∈ L2(0, 1;L2(O))}

and

W2(0, 1) = {u ∈ L2(0, 1;L2(O)) :
∂u

∂x
∈ L2(0, 1;H−1(O))}.

Remark 1.7 W1(0, 1) is a Hilbert space for the norm

‖u‖2
W1(0,1) = ‖u‖2

L2(0,1;H1
0
(O)) +

∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

2

L2(0,1;L2(O))

and the same is true for W2(0, 1), with the norm

‖u‖2
W2(0,1) = ‖u‖2

L2(0,1;L2(O)) +

∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

2

L2(0,1;H−1(O))

.

Theorem 1.8 For each u ∈ Y , we have

(

u,
∂u

∂x

)

∈ C
(

[0, 1];H
1/2
00 (O) × (H

1/2
00 (O))′

)

,

4



1.1 Position of the problem (P0)

and the mapping

u 7→
(

u,
∂u

∂x

)

is linear and continuous from Y into C
(

[0, 1];H
1/2
00 (O) × (H

1/2
00 (O))′

)

. Besides, for each

s ∈ [0, 1], the trace mapping

u 7→
(

u|Γs ,
∂u

∂x
|Γs

)

is a linear and continuous mapping from Y onto H
1/2
00 (O) × (H

1/2
00 (O))′.

Proof. Consider u ∈ Y . Then u ∈ W1(0, 1), and, by Theorem 3.1, page 19 of [17], we

may conclude that

u ∈ C
(

[0, 1];H
1/2
00 (O)

)

,

and the identity mapping, I, is continuous from W1(0, 1) into C
(

[0, 1];H
1/2
00 (O)

)

, which

means that there exists a constant c1 such that

‖u‖2

C
(

[0,1];H
1/2

00
(O)

) ≤ c1‖u‖2
W1(0,1),∀u ∈W1(0, 1).

But

‖u‖2
W1(0,1) ≤ ‖u‖2

Y ,∀u ∈ Y

so, the identity is continuous from Y into C
(

[0, 1];H
1/2
00 (O)

)

. Moreover,
∂u

∂x
∈ W2(0, 1)

and, by the same Theorem, we conclude that

∂u

∂x
∈ C

(

[0, 1];H
1/2
00 (O)′

)

.

Again by Theorem 3.1, page 19 of [17], we know that I is continuous from W2(0, 1) into

C
(

[0, 1];H
1/2
00 (O)′

)

. Therefore there exists a constant c2 such that

‖v‖2

C
(

[0,1];H
1/2

00
(O)′

) ≤ c2‖v‖2
W2(0,1),∀v ∈W2(0, 1),

so
∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

2

C
(

[0,1];H
1/2

00
(O)′

)

≤ c2

∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

2

W2(0,1)

,∀u ∈ Y.

5



1. Preliminaries

But
∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

2

W2(0,1)

≤ ‖u‖2
Y ,∀u ∈ Y,

so the mapping

u→ ∂u

∂x

is also continuous from Y into C
(

[0, 1];H
1/2
00 (O)′

)

. Finally, the last part of the theorem

is a direct consequence of Theorem 3.2, page 21 of [17].

1.2 Variational formulation of problem (P0)

Theorem 1.9 The variational formulation of problem (P0) is
∫

Ω
∇u.∇vdxdy = 〈u0, v|Γ0

〉
H

1/2

00
(O)′×H

1/2

00
(O)

+

∫

Ω
fvdxdy,∀v ∈ X0, (1.5)

where u ∈ X verifies the constraint u|Γ1
= u1.

Proof. Multiplying both sides of −∆u = f by v ∈ X0 and integrating in Ω, we obtain
∫

Ω
(−∆u)vdxdy =

∫

Ω
fvdxdy. (1.6)

Integrating by parts the left hand side of (1.6), we derive
∫

Ω
∇u.∇vdxdy −

∫

∂Ω

∂u

∂n
vdσ =

∫

Ω
fvdxdy, (1.7)

and, taking into account that

v ∈ X0 ⇒ v|Σ = v|Γ1
= 0

and −∂u
∂x

|Γ0
= u0, we conclude that

∫

Ω
∇u.∇vdxdy =

∫

Γ0

u0v|Γ0
dσ +

∫

Ω
fvdxdy.

But v ∈ W1(0, 1), therefore, by Theorem 1.8, we derive that v|Γ0
∈ H

1/2
00 (O). We finally

obtain
∫

Ω
∇u.∇vdxdy = 〈u0, v|Γ0

〉
H

1/2

00
(O)′×H

1/2

00
(O)

+

∫

Ω
fvdxdy,∀v ∈ X0.

Next we show the well posedness of problem (P0) when u1 = 0.

6



1.2 Variational formulation of problem (P0)

Theorem 1.10 There exists a unique u ∈ X0, such that

∫

Ω
∇u.∇vdxdy = 〈u0, v|Γ0

〉
H

1/2

00
(O)′×H

1/2

00
(O)

+

∫

Ω
fvdxdy,∀v ∈ X0. (1.8)

Proof. Consider

a(u, v) =

∫

Ω
∇u.∇vdxdy, u, v ∈ X0, (1.9)

and

(f, v) = 〈u0, v|Γ0
〉
H

1/2

00
(O)′×H

1/2

00
(O)

+

∫

Ω
fvdxdy, v ∈ X0. (1.10)

By Hölder inequality, we have

|a(u, v)| ≤ ‖∇u‖L2(Ω)‖∇v‖L2(Ω) ≤ ‖u‖H1(Ω)‖v‖H1(Ω)

and, from Theorem 1.3, we conclude that a(u, v) is a continuous bilinear form in X0.

Besides

‖u‖2
H1(Ω) = ‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω) ≤ (c+ 1)‖∇u‖2

L2(Ω) = (c+ 1)a(u, u),∀u ∈ X0,

where c is the Poincaré constant, so we derive that

a(u, u) ≥ 1

c+ 1
‖u‖2

H1(Ω),∀u ∈ X0,

which, again by Theorem 1.3, shows that a(u, v) is coercive in X0. On the other hand, by

Hölder inequality

|
∫

Ω
fvdxdy| ≤ ‖f‖L2(Ω)‖v‖L2(Ω)| ≤ ‖f‖L2(Ω)‖v‖H1(Ω),∀v ∈ X0.

Moreover, from Theorem 1.8, we know that the mapping

v 7→ v|Γ0

is continuous from W1(0, 1) into H
1/2
00 (O), and, due to the fact that

‖v‖2
W1(0,1) ≤ ‖v‖2

X0
,∀v ∈ X0,

we derive that the linear form

v 7→ 〈u0, v|Γ0
〉
H

1/2

00
(O)′×H

1/2

00
(O)

7
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is continuous in X0, for in fact, it is the composition of continuous mappings. Thus, (f, v)

is a continuous linear form in X0. Finally, by Lax-Milgram Theorem, there exists a unique

solution u ∈ X0 of (1.8).

We finally prove that problem (P0) is well posed in the general case:

Theorem 1.11 Problem (P0) admits a unique solution u ∈ H1(Ω).

Proof. From Theorem 1.8, given u1 ∈ H
1/2
00 (O) there exists u∗ ∈ Y such that u∗|Γ1

= u1.

Let ũ ∈ X0 be the unique solution of































−∆ũ = −∂
2ũ

∂x2
− ∆yũ = f + ∆u∗ in Ω,

ũ|Σ = 0,

−∂ũ
∂x

|Γ0
= u0 +

∂u∗

∂x
|Γ0
, ũ|Γ1

= 0.

(1.11)

Then it is easy to show that u = ũ+u∗ ∈ X is a solution of (P0). Finally we show that the

solution of (P0) is unique. In fact, if ū, û ∈ X are solutions of (P0), then u = ū− û ∈ X0

verifies






























−∆u = 0 in Ω,

u|Σ = 0,

−∂u
∂x

|Γ0
= 0, u|Γ1

= 0.

(1.12)

so, by Theorem 1.10, we conclude that u = 0.

1.3 Other elliptic problems

Let Ω be the cylinder defined in section 1.1. For the sake of simplicity we will denote

an element of Ω by x′ = (x1, y), with x1 ∈]0, 1[ and y = (x2, ..., xn) ∈ O. Given f ∈
L2(Ω), u0 ∈ (H

1/2
00 (O))′ and u1 ∈ H

1/2
00 (O), we consider the following equation with mixed

8
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boundary conditions


































Lu = f in Ω,

u|Σ = 0,

(−
n

∑

j=1

a1,j
∂u

∂xj
)|Γ0

= u0, u|Γ1
= u1.

(1.13)

where L is the operator defined by:

L = −
n

∑

i,j=1

∂

∂xi
(ai,j

∂

∂xj
) (1.14)

The ai,j are real and continuously differentiable functions in Ω̄ and L is a strongly elliptic

operator in Ω, i.e., there exists a constant c0 > 0 such that:
n

∑

i,j=1

ai,jξiξj ≥ c0‖ξ‖2, ∀ξ ∈ R
n, (1.15)

Theorem 1.12 The variational formulation of problem (1.13) is
n

∑

i,j=1

∫

Ω
ai,j

∂u

∂xi

∂v

∂xj
dx1dy = 〈u0, v|Γ0

〉
H

1/2

00
(O)′×H

1/2

00
(O)

+

∫

Ω
fvdx1dy, ∀v ∈ X0, (1.16)

where u ∈ X verifies the constraint u|Γ1
= u1.

Proof. Multiplying both sides of Lu = f by v ∈ X0 and integrating in Ω, we obtain

−
n

∑

i,j=1

∫

Ω

∂

∂xi
(ai,j

∂u

∂xj
)vdx1dy =

∫

Ω
fvdx1dy. (1.17)

Integrating by parts the left hand side of (1.17), we derive
n

∑

i,j=1

∫

Ω
ai,j

∂u

∂xj

∂v

∂xi
dx1dy −

n
∑

i,j=1

∫

∂Ω
ai,j

∂u

∂xj
v ~n.~exidσ =

∫

Ω
fvdx1dy. (1.18)

Taking into account that

v ∈ X0 ⇒ v|Σ = v|Γ1
= 0,

(−
n

∑

j=1

a1,j
∂u

∂xj
)|Γ0

= u0, and that v ∈ W1(0, 1), which implies, by Theorem 1.8, that

v|Γ0
∈ H

1/2
00 (O), we conclude that

n
∑

i,j=1

∫

Ω
ai,j

∂u

∂xi

∂v

∂xj
dx1dy = 〈u0, v|Γ0

〉
H

1/2

00
(O)′×H

1/2

00
(O)

+

∫

Ω
fvdx1dy, ∀v ∈ X0.

Next we show the well-posedness of problem (1.13) when u1 = 0.

9



1. Preliminaries

Theorem 1.13 There exists a unique u ∈ X0 such that:

n
∑

i,j=1

∫

Ω
ai,j

∂u

∂xi

∂v

∂xj
dx1dy = 〈u0, v|Γ0

〉
H

1/2

00
(O)′×H

1/2

00
(O)

+

∫

Ω
fvdx1dy, ∀v ∈ X0. (1.19)

Proof. Let

a(u, v) =
n

∑

i,j=1

∫

Ω
ai,j

∂u

∂xi

∂v

∂xj
dx1dy (1.20)

and

(f, v) = 〈u0, v|Γ0
〉
H

1/2

00
(O)′×H

1/2

00
(O)

+

∫

Ω
fvdx1dy, ∀v ∈ X0. (1.21)

By the Hölder inequality, we have:

|a(u, v)| ≤M
n

∑

i,j=1

∫

Ω
| ∂u
∂xi

|| ∂v
∂xj

|dx1dy ≤

≤M

(∫

Ω
|∇u|2dx1dy

) 1

2
(∫

Ω
|∇v|2dx1dy

) 1

2

≤M‖u‖H1(Ω)‖v‖H1(Ω)

(1.22)

so, by Theorem 1.3, we conclude that a(u, v) is a continuous bilinear form in X0. Besides,

using the fact that L is a strongly elliptic operator, we have:

a(u, u) =
n

∑

i,j=1

∫

Ω
ai,j

∂u

∂xi

∂u

∂xj
dx1dy ≥ c0

n
∑

i=1

∫

Ω
| ∂u
∂xi

|2dx1dy =

= c0

∫

Ω
∇u‖2dx1dy.

(1.23)

On the other hand, we have:

∫

Ω
‖u‖2dx1dy +

∫

Ω
‖∇u‖2dx1dy ≤ (c+ 1)

∫

Ω
‖∇u‖2dx1dy ≤ c+ 1

c0
a(u, u) (1.24)

where c is the Poincaré constant, and so we conclude that:

a(u, u) ≥ c0
c+ 1

(

∫

Ω
‖u‖2dx1dy +

∫

Ω
‖∇u‖2dx1dy) =

c0
c+ 1

‖u‖2
H1(Ω),∀u ∈ X0. (1.25)

By Theorem 1.3, we may derive that a(u, v) is coercive in X0. Moreover, by Hölder

inequality

|
∫

Ω
fvdx1dy| ≤ ‖f‖L2(Ω)‖v‖L2(Ω)| ≤ ‖f‖L2(Ω)‖v‖H1(Ω),∀v ∈ X0.
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From Theorem 1.8, we know that the mapping

v 7→ v|Γ0

is continuous from W1(0, 1) into H
1/2
00 (O), and, due to the fact that

‖v‖2
W1(0,1) ≤ ‖v‖2

X0
,∀v ∈ X0,

we derive that the linear form

v 7→ 〈u0, v|Γ0
〉
H

1/2

00
(O)′×H

1/2

00
(O)

is continuous in X0, for in fact, it is the composition of continuous mappings. Thus, (f, v)

is a continuous linear form in X0. Finally, by the Lax-Milgram Theorem, there exists a

unique solution u ∈ X0 of (1.13), when u1 = 0.

Finally we show the well-posedness of problem (1.13) in the general case:

Theorem 1.14 Problem (1.13) admits a unique solution u ∈ H1(Ω).

Proof. From Theorem 1.8, given u1 ∈ H
1/2
00 (O) there exists u∗ ∈ Y such that u∗|Γ1

= u1.

Let ũ ∈ X0 be the unique solution of


































Lũ = f − Lu∗ in Ω,

ũ|Σ = 0,

(−
n

∑

j=1

a1,j
∂ũ

∂xj
)|Γ0

= u0 + (
n

∑

j=1

a1,j
∂u∗

∂xj
)|Γ0

, ũ|Γ1
= 0.

(1.26)

Then it is easy to show that u = ũ+u∗ ∈ X is a solution of (1.13). Finally we show that the

solution of (P0) is unique. In fact, if ū, û ∈ X are solutions of (1.13), then u = ū− û ∈ X0

verifies


































Lu = 0 in Ω,

u|Σ = 0,

(−
n

∑

j=1

a1,j
∂u

∂xj
)|Γ0

= 0, u|Γ1
= 0.

(1.27)

so, by Theorem 1.13, we conclude that u = 0.
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1.4 A fourth order problem

In this section we are going to justify the well-posedness of the following problem for the

bi-laplacian:














































∆2u = F, in Ω,

u|Σ = 0, ∆u|Σ = 0,

−∂u
∂x

|Γ0
= u0,

∂∆u

∂x
|Γ0

= u1,

u|Γ1
= u2, ∆u|Γ1

= u3,

(1.28)

where F ∈ L2(Ω), u0 ∈ H
1/2
00 (O), u1 ∈

(

H3/2(O) ∩H1/2
00 (O)

)′
, u2 ∈ H3/2(O) ∩H1/2

00 (O)

and u3 ∈
(

H
1/2
00 (O)

)′
.

Definition 1.15 We define the following spaces

X = L2
(

0, 1;H2(O) ∩H1
0 (O)

)

∩H1(0, 1;H1
0 (O)) ∩H2(0, 1;L2(O)),

X0 = {u ∈ X : −∂u
∂x

|Γ0
= 0, u|Γ1

= 0},

It is easy to show that the norm in X is equivalent to the norm in H2(Ω).

Theorem 1.16 The variational formulation of problem (1.28) is

∫

Ω ∆u∆vdxdy =
∫

Ω Fvdxdy−

−
〈

∂v
∂x |Γ1

, u3

〉

H
1/2

00
(O)′×H

1/2

00
(O)

+ 〈u1, v|Γ0
〉
H

1/2

00
(O)′×H

1/2

00
(O)

, ∀v ∈ X0.

(1.29)

where u ∈ X verifies the aditional constraints: −∂u
∂x

|Γ0
= u0, u|Γ1

= u2.

Proof. Multiplying both sides of ∆2u = F by v ∈ X0 and integrating in Ω, we obtain

∫

Ω
(∆2u)vdxdy =

∫

Ω
Fvdxdy. (1.30)

Applying the Green formula to the left hand side of (1.30), we derive

−
∫

Ω
∇(∆u).∇vdxdy +

∫

∂Ω

∂∆u

∂n
vdσ =

∫

Ω
Fvdxdy, (1.31)

12
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and, taking into account that v|Σ = 0 and v|Γ1
= 0, and

∂∆u

∂x
(0) = u1, we obtain:

−
∫

Ω
∇(∆u).∇vdxdy −

∫

Γ0

u1vdσ =

∫

Ω
Fvdxdy. (1.32)

Integrating again by parts, and noting that
∂v

∂x
|Γ0

= 0, ∆u|Σ = 0 and ∆u|Γ1
= u3, we

deduce that:
∫

Ω
∆u∆vdxdy −

∫

Γ0

u1vdσ −
∫

Γ1

∂v

∂x
u3dσ =

∫

Ω
Fvdxdy. (1.33)

From the regularity assumptions made at the beginning, we deduce that:
∫

Ω
∆u∆vdxdy =

∫

Ω
Fvdxdy+

+

〈

∂v

∂x
|Γ1
, u3

〉

H
1/2

00
(O)′×H

1/2

00
(O)

+ 〈u1, v|Γ0
〉
H

1/2

00
(O)′×H

1/2

00
(O)
, ∀v ∈ X0.

(1.34)

We next prove the well-posedness of problem (1.28) when u0 = u2 = 0.

Theorem 1.17 There exists a unique u ∈ X0 such that:
∫

Ω
∆u∆vdxdy =

∫

Ω
Fvdxdy+

+

〈

∂v

∂x
|Γ1
, u3

〉

H
1/2

00
(O)′×H

1/2

00
(O)

+ 〈u1, v|Γ0
〉
H

1/2

00
(O)′×H

1/2

00
(O)

, ∀v ∈ X0.

(1.35)

Proof. We define the following norm in X0:

|||u|||2X0
=

∫

Ω
|∆u|2dxdy. (1.36)

Let

a(u, v) =

∫

Ω
∆u∆vdxdy,

(f, v) =

∫

Ω
Fvdxdy +

〈

∂v

∂x
|Γ1
, u3

〉

H
1/2

00
(O)′×H

1/2

00
(O)

+ 〈u1, v|Γ0
〉
H

1/2

00
(O)′×H

1/2

00
(O)
.

(1.37)

We have:

|a(u, v)| ≤ |||u|||X0
|||v|||X0

(1.38)

and consequently a(u, v) is a coercive and continuous bilinear form in X0. On the other

hand, from the regularity assumptions made at the beginning of the section, it can be

easily shown that (f, v) is a continuous linear form in X0. The conclusion now follows

directly from the Lax-Milgram Theorem.
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1.5 The method of factorization by invariant embedding

Following J.L. Lions ([16]), in this section we present the method of factorization by

invariant embedding. Let V , H be Hilbert spaces such that V is dense in H. Assuming

that H ′ (the dual space of H) is identified with H, we have V⊂ H⊂ V ′, where each space

is dense in the following one. Considering the Hilbert space of controls U and the Hilbert

space of observations H, we are given a continuous and coercive bilinear form on V , that

is

ϕ,ψ → a(t;ϕ,ψ)

for each t ∈ (0, T ), such that we may write

a(t;ϕ,ψ) = (A(t)ϕ,ψ) , A(t)ϕ ∈ V ′,

and verifying A(t)∈L(L2(0, T ;V );L2(0, T ;V ′)). Let us denote by ΛU the canonical iso-

morphism of U onto U ′. Given

B ∈ L(U ;L2(0, T ;V ′)), f ∈ L2(0, T ;V ′), y0 ∈ H,

we consider the control problem































∂

∂t
y(v) +A(t)y(v) = f +Bv,

y(v)|t=0 = y0,

y(v) ∈ L2(0, T ;V ).

(1.39)

The function y(v) is the state of the system. The observation is given by

z(v) = Cy(v), C ∈ L(L2(0, T ;V ),H)

and N is such that

N ∈ L(U ;U), (Nu, u)U ≥ c‖u‖2
U , c > 0.

The cost function is

J(v) = ‖Cy(v) − zd‖2
H + (Nv, v)U .
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Let Λ represent the isomorphism between H and H′. The adjoint state p(v) is then

introduced by































− ∂

∂t
p(v) +A∗(t)p(v) = C∗Λ(Cy(v) − zd) in ]0, T [,

p(T ; v) = 0

p(v) ∈ L2(0, T ;V ).

(1.40)

We have the folowing result:

Theorem 1.18 The optimal control verifies (1.39), (1.40) and

Λ−1
U B∗p(u) +N(u) = 0,∀u ∈ U . (1.41)

Now let us assume that U = L2(0, T ;E) and H = L2(0, T ;F ), E and F being separable

Hilbert spaces. Moreover, let B(t) ∈ L(E;V ′), C(t) ∈ L(V ;F ), ∀t ∈]0, T [ such that

t → (B(t)e, ψ) and t → (C(t)ϕ, f ′) are measurable ∀e ∈ E,ψ ∈ V, ϕ ∈ V, f ′ ∈ F ′, and

‖B(t)‖L(E;V ′) ≤ c, ‖C(t)‖L(V ;F ) ≤ c. These formulae give us B ∈ L(U ;L2(0, T ;V ′)) and

C ∈ L((L2(0, T ;V ));H). Furthermore let us assume that N(t) ∈ L(E;E), (N(t)e, e1)

measurable, ‖N(t)‖L(E;E) ≤ c and (N(t)e, e)E ≥ v‖e‖2
E ,∀e ∈ E. Representing by ΛE

(resp. ΛF ) the canonical isomorphism of E (resp. F ) into its dual space, then ΛUu(t) =

ΛEu(t) almost everywhere and Λf(t) = ΛF f(t) almost everywhere. Finally we set D1(t) =

B(t)N(t)−1Λ−1
E B(t)∗ and D2(t) = C(t)∗ΛFC(t). We have D1(t) ∈ L(V ;V

′

), D2(t) ∈
L(V ;V

′

), t → (D1(t)ϕ,ψ) measurable ∀ϕ, ψ ∈ V , ‖Di(t)‖L(V ;V
′
) ≤ c, i = 1, 2, and

D1(t)
∗ = D1(t), D2(t)

∗ = D2(t). Then equations (1.39) and (1.40) may be written as:















∂y

∂t
+A(t)y +D1(t)p = f, t in ]0, T [,

−∂p
∂t

+A∗(t)p−D2(t)y = g, t in ]0, T [,

(1.42)

with g(t) = −C∗(t)ΛF zd(t), and y(0) = y0, p(T ) = 0. The solution {y, p} of (1.42) may

then be written in a unique manner as:

p(t) = P (t)y(t) + r(t),∀t ∈]0, T [, (1.43)
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where y, p ∈ C([0, T ];H), and P (t) ∈ L(H,H). P (t) and r(t) are defined as follows:

1. We solve






























dβ

dt
+A(t)β +D1(t)γ = 0 in ]s, T [,

−dγ
dt

+A∗(t)γ −D2(t)β = 0 in ]s, T [,

β(s) = h, γ(T ) = 0;

(1.44)

and set:

P (s)h = γ(s); (1.45)

2. We solve






























dη

dt
+A(t)η +D1(t)ξ = f in ]s, T [,

−dξ
dt

+A∗(t)ξ −D2(t)η = g in ]s, T [,

η(s) = 0, ξ(T ) = 0;

(1.46)

and define:

r(s) = ξ(s). (1.47)

Formal differentiation of (1.43) and substitution in (1.42) leads to:















−∂P
∂t

+ PA+A∗P + PD1P = D2 in ]0, T [,

−∂r
∂t

+A∗r + PD1r = Pf + g in ]0, T [.

(1.48)

Furthermore, from (1.43) at t = T we have p(T ) = P (T )y(T ) + r(T ) = 0, so P (T ) = 0

and r(T ) = 0.
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Chapter 2

Factorization of (P0)

In this chapter we begin by showing that problem (P0) may be defined as an optimal

control problem. In section 2.2, we apply the method of invariant embedding to obtain the

factorization of problem (P0) in a system of decoupled first order initial value problems. In

addition, we obtain an operator Riccati equation where the unknown, P , is the Dirichlet-

to-Neumann operator defined on a section of the domain. Then, in section 2.3, we apply

the same method in the reverse sense and we obtain another factorization of (P0). Next,

in section 2.4, we consider an additional Neumann boundary condition at point 1, and

deduce the normal equations for this overdetermined problem. In section 2.5, we apply

the method of invariant embedding to factorize the fourth order problem obtained in the

previous section, into a system of decoupled first order initial value problems. We obtain

the same operator Riccati equation as before, and a Lyapunov equation in an operator Q

that arises from the invariant embedding. Next, we study some properties of the operators

P and Q. Then, by using evolution operators, we study the equations obtained in the

factorization. Finally, in section 2.8, we deduce a QR type factorization of problem (P0).
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2. Factorization of (P0)

2.1 Associated control problem

In this section, for the sake of simplicity, we consider u0 = 0. We define an optimal control

problem that we will show to be equivalent to (P0). The control variable is v and the state

u verifies equation (2.1) below. Let U = L2(O) be the space of controls . For each v ∈ U ,

we represent by u(v) the solution of the problem:















∂u

∂x
= v in Ω,

u(1) = u1.

(2.1)

We consider the following set of admissible controls:

Uad = {v ∈ U : u(v) ∈ Xu1
}

where

Xu1
= {h ∈ L2(0, 1;H1

0 (O)) ∩H1(0, 1;L2(O)) : h(1) = u1}.

The cost function is

J(v) = ‖u(v) − ud‖2
L2(0,1;H1

0
(O)) + ‖v‖2

L2(Ω) =

∫ 1

0
‖∇yu(v) −∇yud‖2

L2(O)dx+

+

∫ 1

0

∫

O
v2dxdy, v ∈ Uad.

The desired state ud is defined in each section by the solution of















−∆yϕ(x) = f(x) in O,

ϕ|∂O = 0,

(2.2)

where ϕ ∈ L2(0, 1;H1
0 (O)). Consequently, we have

ud = (−∆y)
−1f ∈ L2(0, 1;H1

0 (O)).

Now we look for z ∈ Uad, such that

J(z) = inf
v∈Uad

J(v).
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2.1 Associated control problem

Taking into account that Uad is not a closed subset in L2(Ω), we cannot apply the usual

techniques to solve the problem, even it is not clear under that form that this problem

has a solution. Nevertheless we can rewrite it as an equivalent minimization problem with

respect to the state

Uad =

{

∂h

∂x
: h ∈ Xu1

}

and, consequently

J(z) = inf
v∈Uad

J(v) = inf
h∈Xu1

J̄(h) = J̄(u)

where ∂u
∂x = z, and

J̄(h) = ‖h− ud‖2
L2(0,1;H1

0
(O)) + ‖∂h

∂x
‖2

L2(Ω) =

∫ 1

0
‖∇yh−∇yud‖2

L2(O)dx+

+

∫ 1

0

∫

O

∣

∣

∣

∣

∂h

∂x

∣

∣

∣

∣

2

dxdy.

We remark that Xu1
is a closed convex subset in the Hilbert space

X = L2(0, 1;H1
0 (O)) ∩H1(0, 1;L2(O))

and, for ud = 0, (J̄(h))
1

2 is a norm equivalent to the norm in X. Then by Theorem 1.3,

chapter I, of [16], there exists a unique u ∈ Xu1
, such that:

J̄(u) = inf
h∈Xu1

J̄(h)

which is uniquely determined by the condition

J̄ ′(u)(h− u) ≥ 0,∀h ∈ Xu1
.

But X0 is a subspace, and so the last condition is equivalent to

J̄ ′(u)(h) = 0,∀h ∈ X0. (2.3)

Now we have

J̄ ′(u)(h) = 0 ⇔ lim
θ→0+

1

θ
[J̄(u+ θh) − J̄(u)] = 0 ⇔

∫ 1

0

∫

O
∇y(u− ud).∇yhdxdy+

+

∫ 1

0

∫

O

∂u

∂x

∂h

∂x
dxdy = 0,∀h ∈ X0
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2. Factorization of (P0)

which implies that

∫ 1

0
〈−∆y(u− ud), h〉H−1(O)×H1

0
(O) dx+

∫ 1

0

∫

O

∂u

∂x

∂h

∂x
dxdy = 0,∀h ∈ X0.

Then, taking into account that ud = (−∆y)
−1f , we obtain

∫ 1

0
〈−∆y(u) − f, h〉H−1(O)×H1

0
(O) dx+

∫ 1

0

∫

O

∂u

∂x

∂h

∂x
dxdy = 0,∀h ∈ X0.

If we consider h ∈ D(Ω), then

〈

−∆yu− ∂2u

∂x2
− f, h

〉

D′(Ω)×D(Ω)

= 0,∀h ∈ D(Ω)

so, we may conclude that −∆u = f in the sense of distributions. But f ∈ L2(Ω), and so

we deduce that u ∈ Y , where

Y =
{

v ∈ Xu1
: ∆v ∈ L2(Ω)

}

.

We now introduce the adjoint state :















∂p

∂x
= −∆yu− f in Ω,

p(0) = 0.

We know that −∆yu− f ∈ L2(0, 1;H−1(O)). For each h ∈ X0

∫ 1

0
〈−∆yu− f, h〉H−1(O)×H1

0
(O) dx =

∫ 1

0

〈

∂p

∂x
, h

〉

H−1(O)×H1
0
(O)

dx =

= −
∫ 1

0

∫

O
p
∂h

∂x
dydx

and so p ∈ L2(Ω). Using the optimality condition (2.3), we obtain:

∫ 1

0

∫

O

(

−p+
∂u

∂x

)

∂h

∂x
dydx = 0,∀h ∈ X0,

which implies that

−p+
∂u

∂x
= 0 (2.4)
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2.2 Direct invariant embedding

Furthermore, from (2.4) we have that:

0 =

∫ 1

0

∫

O
(−p+

∂u

∂x
)
∂h

∂x
dydx = −

∫ 1

0

∫

O

∂

∂x
(−p+

∂u

∂x
)hdydx+

+

∫

O
(−p+

∂u

∂x
)(1)h(1)dy −

∫

O
(−p+

∂u

∂x
)(0)h(0)dy, ∀h ∈ X0,

(2.5)

and, taking into account that h(1) = p(0) = 0, we deduce that
∂u

∂x
(0) = 0. We have thus

shown that problem

(P1,u1
)















∂u

∂x
= p in Ω, u (1) = u1,

∂p

∂x
= −∆yu− f in Ω, p (0) = 0,

(2.6)

admits a unique solution {u, p} ∈ L2(Ω) × L2(Ω), where u is the solution of (P0).

We can represent the optimality system (2.6) in matrix form as follows:

A









p

u









=









0

f









, u(1) = u1, p(0) = 0, (2.7)

with

A =









−I ∂
∂x

− ∂
∂x −∆y









.

Remark 2.1 We notice that problem (P0) is equivalent to the optimality system written

in matrix form (2.7).

2.2 Direct invariant embedding

Following R. Bellman [2], we embed problem (P1,u1
) in the family of similar problems

defined on Ωs =]0, s[×O, 0 < s ≤ 1:

(Ps,h)































∂ϕ

∂x
− ψ = 0 in Ωs, ϕ(s) = h,

ϕ|Σ = 0,

−∂ψ
∂x

− ∆yϕ = f in Ωs, ψ(0) = −u0,

(2.8)
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2. Factorization of (P0)

where h is given in H
1/2
00 (O). When s = 1 and h = u1 we obtain problem (P1,u1

). Due to

the linearity of the problem, the solution {ϕs,h, ψs,h} of (Ps,h) verifies

ψs,h(s) = P (s)h+ r(s), (2.9)

where P (s) and r(s) are defined as follows:

1) We solve






























∂β

∂x
− γ = 0 in Ωs, β (s) = h,

β|Σ = 0,

−∂γ
∂x

− ∆yβ = 0 in Ωs, γ (0) = 0,

(2.10)

and define P (s) as:

P (s)h = γ(s).

We remark that P (s) is the Dirichlet-to-Neumann operator on Γs relative to the domain

Ωs.

2) We solve






























∂η

∂x
− ξ = 0 in Ωs, η (s) = 0,

η|Σ = 0,

−∂ξ
∂x

− ∆yη = f in Ωs, ξ (0) = −u0.

(2.11)

The remainder r(s) is defined by:

r(s) = ξ(s).

Furthermore, the solution {u, p} of (P1,u1
) restricted to ]0, s[ satisfies (Ps,u|Γs

), for s ∈]0, 1[,

and so one has the relation

p(x) = P (x)u(x) + r(x),∀x ∈]0, 1[. (2.12)

From (2.12) and the boundary conditions at x = 0, we easily deduce that

P (0) = 0, r(0) = −u0.
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2.2 Direct invariant embedding

Formally, taking the derivative with respect to x on both sides of equation (2.12), we

obtain:

∂p

∂x
(x) =

dP

dx
(x)u(x) + P (x)

∂u

∂x
(x) +

dr

dx
(x)

and, substituting from (2.6) and (2.12) we conclude that:

−∆yu− f =
dP

dx
(x)u(x) + P (x)(P (x)u(x) + r(x)) +

dr

dx
⇔

(
dP

dx
+ P 2 + ∆y)u+

dr

dx
+ Pr + f = 0.

(2.13)

Then, taking into account that u(x) = h is arbitrary, we obtain the following decoupled

system:

dP

dx
+ P 2 + ∆y = 0, P (0) = 0, (2.14)

∂r

∂x
+ Pr = −f, r(0) = −u0, (2.15)

∂u

∂x
− Pu = r, u(1) = u1, (2.16)

where P and r are integrated from 0 to 1, and finally u is integrated backwards from

1 to 0. We remark that P is an operator on functions defined on O verifying a Riccati

equation.

We have factorized problem (P0) as:

“ − ∆” = −
(

d

dx
+ P

) (

d

dx
− P

)

.

This decoupling of the optimality system (2.6) may be seen as a generalized block LU

factorization. In fact, for this particular problem, we may write

A =









I 0

−P − d
dx − P

















−I I

I 0

















I −P

0 d
dx − P









.

We will see in section 2.6 that P is self adjoint. So, the first and third matrices are adjoint

of one another and are, respectively, lower triangular and upper triangular.
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2. Factorization of (P0)

2.3 Backwards invariant embedding

In this section we are going to obtain another factorization of (P0). For that purpose,

we embed problem (P0) in the family of similar problems defined in Ω′
s =]s, 1[×O with

additional boundary conditions in Γs = {s} × O:

(P̂s,h)















































−∆u = f in Ω′
s,

u|Σ = 0,

−∂u
∂x

|Γs = h,

u|Γ1
= u1

(2.17)

We know that, for each h ∈ (H
1/2
00 (O))′ and each s ∈ [0, 1[, (2.17) is a well posed problem.

Besides, when s = 0 and h = u0, we obtain problem (P0). Then the solution ûs,h of (2.17)

verifies:

ûs,h|Γs = P̂ (s)h+ r̂(s), (2.18)

where P̂ and r̂ are defined in the following way:

1. We solve














































−∆γ = 0 in Ω′
s,

γ|Σ = 0,

−∂γ
∂x

|Γs = h,

γ|Γ1
= 0.

(2.19)

Then P̂ (s)h = γ|Γs , for s ∈ [0, 1[, and P̂ (1) = 0.

2. We solve:














































−∆β = f in Ω′
s,

β|Σ = 0,

−∂β
∂x

|Γs = 0,

β|Γ1
= u1,

(2.20)

24



2.4 Normal equations for the overdetermined problem

and set: r̂(s) = β|Γs , and r̂(1) = u1. Moreover, the solution u of (P0) restricted to ]s, 1[

verifies (P̂s,u|Γs
), for s ∈]0, 1[, so we have the relation:

u(x, y) = (P̂ (x)(−∂u
∂x

|Γx))(y) + (r̂(x))(y), ∀x ∈]0, 1[. (2.21)

By formal derivation with respect to x of this formula, we obtain:

∂u

∂x
=
∂P̂

∂x
(−∂u
∂x

) + P̂ (−∂
2u

∂x2
) +

dr̂

dx
. (2.22)

Then substituting from (2.21) and (2.17) we derive:

∂u

∂x
=
∂P̂

∂x
(−∂u
∂x

) + P̂ f + P̂∆y[P̂ (−∂u
∂x

) + r̂] +
dr̂

dx
. (2.23)

Finally, taking into account that −∂u
∂x

|Γs = h is arbitrary, we deduce































∂P̂

∂x
+ P̂∆yP̂ + I = 0, P̂ (1) = 0

dr̂

dx
+ P̂∆y r̂ = −P̂ f, r̂(1) = u1

P̂
∂u

∂x
+ u = r̂, −∂u

∂x
|Γ0

= u0.

(2.24)

2.4 Normal equations for the overdetermined problem

From now on, we suppose u0 ∈ H
1/2
00 (O), u1 ∈ H3/2(O) ∩ H

1/2
00 (O), u2 ∈ H

1/2
00 (O),

f ∈ H2(Ω) ∩ L2(0, 1;H1
0 (O)) and f |Σ = 0.

Assuming we have an extra information, given by a Neumann boundary condition at point

1, we consider the overdetermined system

A









p

z









=









0

f









, u(1) = u1, p(0) = −u0,
∂u

∂x
(1) = u2. (2.25)

If the data are not compatible with (2.7), this system should be satisfied in the least square

sense.
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2. Factorization of (P0)

We introduce a perturbation ,

A









p

u









=









δg

f + δf









, u(1) = u1, p(0) = −u0,
∂u

∂x
(1) = u2. (2.26)

We want to minimize the norm of the perturbation,

J(δf, δg) =
1

2

∫ 1

0

(

‖δf‖2
L2(O) + ‖δg‖2

L2(O)

)

dx, (2.27)

subject to the constraint given by (2.26). This defines problem (P1). Like in section 2.1, we

know that the final optimality problem is well-posed, and we consider the corresponding

Lagrangian.

Taking, for convenience, the Lagrange multiplier of the second equation of (2.26) as ū−f ,

where ū verifies the additional boundary condition ū|Σ = f , we have:

L (δf, δg, u, p, ū, p̄) = J (δf, δg) +

∫ 1

0

(

p̄,
∂u

∂x
− p− δg

)

L2(O)

dx+

+

∫ 1

0

(

ū− f,−∂p
∂x

− ∆yu− f − δf

)

L2(O)

dx+

(

µ,
∂u

∂x
(1) − u2

)

L2(O)

.

(2.28)

Taking into account that ∂u
∂x (1) = p (1) + δg (1), we obtain

(

∂L

∂u
, ϕ

)

=

∫ 1

0
(ū− f,−∆yϕ)L2(O) dx+

∫ 1

0

(

p̄,
∂ϕ

∂x

)

L2(O)

dx, ∀ϕ ∈ Y,

where

Y =

{

ϕ ∈ H1(Ω) : ∆ϕ ∈ L2(Ω), ϕ|Σ = 0,
∂ϕ

∂x
(0) = 0, ϕ(1) = 0

}

and, integrating by parts, we derive

(

∂L

∂u
, ϕ

)

=

∫ 1

0
(−∆y(ū− f), ϕ)L2(O) dx− (p̄(0), ϕ(0)) +

∫ 1

0

(

−∂p̄
∂x
, ϕ

)

L2(O)

dx.

Now, if p̄ (0) = 0, and because all the functions are null on Σ, we conclude that:

∂L

∂u
= 0 ⇔ −∂p̄

∂x
− ∆yū = −∆yf.
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2.4 Normal equations for the overdetermined problem

On the other hand

(

∂L

∂p
, ψ

)

=

∫ 1

0

(

ū− f,−∂ψ
∂x

)

L2(O)

dx+

∫ 1

0
(p̄,−ψ)L2(O) dx+

(µ, ψ (1))L2(O) =

∫ 1

0

(

∂ (ū− f)

∂x
, ψ

)

L2(O)

dx+ (ū (0) − f (0) , ψ (0))L2(O) −

− (ū (1) − f (1) , ψ (1))L2(O) +

∫ 1

0
(−p̄, ψ)L2(O) dx+ (µ, ψ (1))L2(O)

and, if ψ (0) = 0 and ū (1) − f (1) = µ arbitrary, then

∂L

∂p
= 0 ⇔ ∂ū

∂x
− p̄ =

∂f

∂x
.

We have thus obtained:














∂ū

∂x
− p̄ = f1 :=

∂f

∂x
, ū (1) arbitrary, ū = f on Σ,

−∂p̄
∂x

− ∆yū = f2 := −∆yf, p̄ (0) = 0.

(2.29)

We finally evaluate the optimal values for δf and δg. We have:

(

∂L

∂(δf)
, γ

)

=

∫ 1

0
(δf, γ)L2(O)dx+

∫ 1

0
(ū− f,−γ)L2(O)dx, ∀γ ∈ L2(Ω)

and for all ξ ∈ L2(Ω) such that ∂ξ
∂x ∈ L2(Ω),

(

∂L

∂(δg)
, ξ

)

=

∫ 1

0
(δg, ξ)L2(O)dx+

∫ 1

0
(p̄,−ξ)L2(O)dx.

At the minimum, we must have

∂L

∂(δf)
= 0 ⇔ δf = ū− f

and
∂L

∂(δg)
= 0 ⇔ δg = p̄.

In conclusion, we obtain

A









p

u









=









δg

f + δf









=









p̄

ū









, (2.30)
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2. Factorization of (P0)

and the normal equation is given by

A2









p

u









=









f1

f2









, p(0) = −u0, u(1) = u1,
∂u

∂x
(1) = u2, −

∂u

∂x
(0) = u0. (2.31)

From (2.29), we have

−∆ū = −∂
2ū

∂x2
− ∆yū =

∂2f

∂x2
− ∆yf = −∆f (2.32)

and, from (2.29) and (2.30),

−∆f = −∆ū = −∆

(

−∂p
∂x

− ∆yu

)

= −∆

(

∂p̄

∂x
− ∂2u

∂x2
− ∆yu

)

= −∆ (−∆yū+ ∆yf − ∆u) = ∆2u+ ∆y (∆ū− ∆f) = ∆2u.

We now notice that

∂2p̄

∂x2
=

∂

∂x
(∆yf − ∆yū) = ∆y

(

∂f

∂x
− ∂ū

∂x

)

= −∆yp̄

and, remarking that p̄(0) = 0, we derive −∆yp̄(0) = 0 which implies that

∂(∆u)

∂x
(0) =

∂2p̄

∂x2
(0) − ∂ū

∂x
(0) = −∆yp̄(0) − p̄(0) − ∂f

∂x
(0) = −∂f

∂x
(0).

Furthermore, taking into account that −∆u = f in Ω and f |Σ = 0, we conclude that

∆u|Σ = 0. Now we can write the normal equation as

(P2)















































∆2u = −∆f, in Ω,

u|Σ = 0, ∆u|Σ = 0,

−∂u
∂x

(0) = u0,
∂∆u

∂x
(0) = −∂f

∂x
(0),

u(1) = u1,
∂u

∂x
(1) = u2.

(2.33)

2.5 Factorization of the normal equation by invariant embedding

In order to factorize problem (2.33) we consider f ∈ H2(Ω) ∩ L2(0, 1;H1
0 (O)), u1 ∈

H3/2(O)∩H1/2
00 (O), u0, u2 ∈ H

1/2
00 (O). We embed (2.33) in the family of problems (Ps,h,k)
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2.5 Factorization of the normal equation by invariant embedding

defined in Ωs =]0, s[×O, for each h ∈ H
3

2 (O) ∩H1/2
00 (O) and each k ∈ (H

1

2

00(O))
′

. After-

wards we will show the relation between (Ps,h,k) for s = 1 and problem (2.33).

(Ps,h,k)















































∆2u = −∆f, in Ωs,

u|Σ = 0, ∆u|Σ = 0,

−∂u
∂x

(0) = u0,
∂∆u

∂x
(0) = −∂f

∂x
(0),

u|Γs = h, ∆u|Γs = k.

(2.34)

These problems may be decomposed in two second order boundary value problems, as

follows:

1. First, we solve:














































−∆v = ∆f, in Ωs,

v|Σ = 0,

−∂v
∂x

(0) =
∂f

∂x
(0),

v|Γs = k

(2.35)

From section 1.2, we know that this is a well-posed problem, and it admits a unique

solution v ∈ H1(Ω).

2. Then we solve:














































∆u = v, in Ωs,

u|Σ = 0,

−∂u
∂x

(0) = u0,

u|Γs = h

(2.36)

Again, by section 1.2, this is a well-posed problem, and it admits a unique solution u ∈
H2(Ω), and so we may evaluate its trace

∂u

∂x
(s), which is an affine function of h and k:

∂u

∂x
(s) = P1(s)h+Q(s)k + r̃(s). (2.37)
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2. Factorization of (P0)

In order to define P1 we consider the problem:















































∆2γ1 = 0, in Ωs,

γ1|Σ = 0, ∆γ1|Σ = 0,

∂γ1

∂x
(0) = 0,

∂∆γ1

∂x
(0) = 0,

γ1|Γs = h, ∆γ1|Γs = 0.

(2.38)

This problem reduces to:































∆γ1 = 0, in Ωs,

γ1|Σ = 0,

∂γ1

∂x
(0) = 0, γ1|Γs = h.

(2.39)

We set P1(s)h =
∂γ1

∂x
(s). This defines P1 as an operator from H3/2(O) ∩ H1/2

00 (O) into

H
1/2
00 (O). From (2.10) we may conclude that P1 = P .

To define Q, we consider















































∆2γ2 = 0, in Ωs,

γ2|Σ = 0, ∆γ2|Σ = 0,

∂γ2

∂x
(0) = 0,

∂∆γ2

∂x
(0) = 0,

γ2|Γs = 0, ∆γ2|Γs = k,

(2.40)

and set:

Q(s)k =
∂γ2

∂x
(s).

Problem (2.40) can be decomposed in two second order boundary value problems as follows:
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2.5 Factorization of the normal equation by invariant embedding

1. First we solve:














































∆v = 0, in Ωs,

v|Σ = 0,

−∂v
∂x

(0) = 0,

v|Γs = k

(2.41)

2. Next we solve:














































∆γ2 = v, in Ωs,

γ2|Σ = 0,

−∂γ2

∂x
(0) = 0,

γ2|Γs = 0

(2.42)

Finally, we solve:














































∆2β = −∆f, in Ωs,

β|Σ = ∆β|Σ = 0,

−∂β
∂x

(0) = u0,
∂∆β

∂x
(0) = −∂f

∂x
(0),

β|Γs = ∆β|Γs = 0

(2.43)

and set:

r̃(s) =
∂β

∂x
(s).

Then, the solution of the normal equation restricted to ]0, s[, verifies (Ps,u|Γs ,∆u|Γs
), for

s ∈]0, 1[. So, one has the relation

∂u

∂x
|Γs = P (s)u|Γs +Q(s)∆u|Γs + r̃(s). (2.44)

From (2.44), it is easy to see that Q(0) = 0 and r̃(0) = −u0. On the other hand, we may
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2. Factorization of (P0)

consider the following second order problem on ∆u as a subproblem of problem (2.34)














































∆(∆u) = −∆f, in Ωs,

∆u|Σ = 0,

∂∆u

∂x
(0) = −∂f

∂x
(0),

∆u|Γ1
= c.

(2.45)

where c is to be determined later, in order to be compatible with the other data. From

(2.15) and (2.16), it admits the following factorization:














∂t

∂x
+ Pt = −∆f, t(0) = −∂f

∂x
(0),

−∂∆u

∂x
+ P∆u = −t, ∆u(1) = c.

(2.46)

Formally, taking the derivative with respect to x on both sides of (2.44), we obtain:

∂2u

∂x2
(x) =

dP

dx
(x)u(x) + P (x)

∂u

∂x
(x) +

dQ

dx
(x)∆u(x) +Q(x)

∂∆u

∂x
(x) +

dr̃

dx
(x)

and, substituting from (2.44) and (2.46), we obtain:

∆u− ∆yu =
dP

dx
u+ P (Pu+Q∆u+ r̃) +

dQ

dx
∆u+Q(P∆u+ t) +

dr̃

dx
(2.47)

or which is equivalent

(
dP

dx
+ P 2 + ∆y)u+ (

dQ

dx
+ PQ+QP − I)∆u+

dr̃

dx
+ P r̃ +Qt = 0. (2.48)

Now, taking into account that u|Γs = h and ∆u|Γs = k are arbitrary, we derive

dP

dx
+ P 2 + ∆y = 0, P (0) = 0, (2.49)

dQ

dx
+ PQ+QP = I, Q(0) = 0, (2.50)

∂t

∂x
+ Pt = −∆f, t(0) = −∂f

∂x
(0), (2.51)

∂r̃

∂x
+ P r̃ = −Qt, r̃(0) = −u0, (2.52)

∂∆u

∂x
− P∆u = t, ∆u(1) = c, (2.53)

∂u

∂x
− Pu = Q∆u+ r̃, u(1) = u1. (2.54)
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2.6 Some properties of P and Q

It is easy to see, from the definition, that Q(1) is a bijective operator from (H
1

2

00(O))
′

to

H
1

2

00(O), so we can define (Q(1))−1. From (2.37) and the regularity assumptions made at

beginning of this section, we can define:

c = (Q(1))−1(u2 − P (1) u1 − r̃(1)). (2.55)

Remark 2.2 We remark the interest of the factorized form if the same problem has to be

solved many times for various sets of data (u1, u2). Once the problem has been factorized,

that is P and Q have been computed, and t and r̃ are known, the solution for a data set

(u1, u2) is obtained by solving (2.55) and then the Cauchy initial value problems (2.53),

(2.54) backwards in x.

We have factorized problem (P2). We may write









− d
dx − P 0

−Q − d
dx − P

















0 −I

−I 0

















d
dx − P −Q

0 d
dx − P

















u

∆u









=









−∆f

0









2.6 Some properties of P and Q

In this section we study some properties of the operators P andQ appearing in the previous

sections.

Definition 2.3 Given s ∈]0, 1], we define the following spaces:

Xs = L2(0, s;H1
0 (O)) ∩H1(0, s;L2(O)),

Ys = {u ∈ Xs :
∂2u

∂x2
∈ L2(0, s;H−1(O))},

Lemma 2.4 For each s ∈ [0, 1], and each h ∈ H
1/2
00 (O), (Ps,h) is a well-posed problem,

and P (s) ∈ L(H
1/2
00 (O); (H

1/2
00 (O))′). Moreover, for each s ∈ [0, 1], r(s) ∈ (H

1/2
00 (O))′.

Proof. The linearity of P (s) is an imediate consequence of the linearity of problem (Ps,h).

On the other hand, similarly to section 1.2, it is easy to show that for each s ∈ [0, 1] and

each h ∈ H
1/2
00 (O), (Ps,h) admits a unique solution us ∈ Ys. Let γs ∈ Ys be the solution
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2. Factorization of (P0)

of (2.10). Then
∂γs

∂x
∈ L2(Ωs), and its trace

∂γs

∂x
|Γs ∈ (H

1/2
00 (O))′. On the other hand, let

βs ∈ Ys be the solution of (2.11). Then r(s) =
∂βs

∂x
|Γs ∈ (H

1/2
00 (O))′.

Lemma 2.5 For each s ∈ [0, 1], P (s) is a self-adjoint non negative operator and it is

positive if s 6= 0.

Proof. In fact, the property is obviously true when s = 0. On the other hand, let s ∈]0, 1],

h1, h2 ∈ L2(O), and {β1, γ1},{β2, γ2} the corresponding solutions of (2.10) and (2.11) to

h1 and h2. From the definition of P we may conclude that P (s)hi =
∂βi

∂x
|Γs , where βi is

the solution of:






























−∆βi = 0 in Ωs,

βi|Σ = 0,

−∂βi

∂x
|Γ0

= 0, βi|Γs = hi.

We then have that:

0 =

∫

Ωs

(−∆β1)β2dxdy =

∫

Ωs

∇β1∇β2dxdy −
∫

∂Ωs

∂β1

∂x
β2dσ

and, taking into account that β2|Σ = 0,
∂β1

∂x
|Γ0

= 0 and β2|Γs = h2, we conclude that:

(P (s)h1, h2) =

∫

Γs

∂β1

∂x
(s)β2(s)dσ =

∫

Ωs

∇β1∇β2dxdy

which shows that P (s) is a self-adjoint and positive operator.

Lemma 2.6 For each s ∈ [0, 1], Q(s) ∈ L((H
1/2
00 (O))′;H1/2

00 (O)) ∩ L(L2(O);H1
0 (O)) is a

self-adjoint, non negative operator in L2(O), and it is positive if s 6= 0.

Proof. In fact, the result is obviously verified if s = 0. On the other hand, if s ∈]0, 1],

ki ∈ L2(O), and γi are the solutions of the problems:














































∆2γi = 0, in Ωs,

γi|Σ = 0, ∆γi|Σ = 0,

∂γi

∂x
(0) = 0,

∂∆γi

∂x
(0) = 0,

γi|Γs = 0, ∆γi|Γs = ki, i = 1, 2,

(2.56)
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2.7 Solving the equations

then, by Green’s formula, noticing that γ1|Σ = γ1|Γs = 0 and ∂∆γ2

∂x (0) = 0, we have:

0 =

∫

Ωs

γ1∆
2γ2dxdy = −

∫

Ωs

∇γ1∇(∆γ2)dxdy

and, again by Green’s formula, remarking that ∆γ2|Σ = 0 and ∂γ1

∂x (0) = 0, we obtain

〈Q(s)k1, k2〉 =

∫

Γs

∂γ1

∂x
(s)∆γ2(s)dσ =

∫

Ωs

∆γ1∆γ2dxdy

which shows that Q(s) is a self-adjoint non negative operator in L2(O). On the other

hand

〈Q(s)k, k〉 = 0 ⇔
∫

Ωs

(∆γ)2dxdy = 0 ⇒ ∆γ = 0 in Ωs ⇒ k = ∆γ|Γs = 0

and so Q(s) is positive for s ∈]0, 1].

2.7 Solving the equations

In this section we are going to present formal solutions of the equations (2.50) through

(2.54), obtained by means of an evolution operator. As for equation (2.49), it is studied

in chapter 3 by Yosida regularization.

Lemma 2.7 For each x ∈ [0, 1], −P (x) is the infinitesimal generator of a strongly con-

tinuous semigroup of contractions in L2(O).

Proof. In fact we know that, for each x ∈ [0, 1], P (x) is an unbounded and self-adjoint

operator from L2(O) into L2(O) with domain H1
0 (O). By [6], proposition II.16, page 28,

−P (x) is a closed operator. On the other hand

(−P (x)h, h) ≤ 0,∀h ∈ H1
0 (O)

so, −P (x) is a dissipative operator. Finally, by [18], Corollary 4.4, page 15, −P (x) is

the infinitesimal generator of a strongly continuous semigroup of contractions in L2(O),

{exp(−tP (x)}t≥0.
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2. Factorization of (P0)

Definition 2.8 An evolution operator in a Hilbert space H is a two parameter family

of bounded linear operators in H, U(x, s), 0 ≤ s ≤ x ≤ 1, verifying U(x, x) = I,

U(x, r)U(r, s) = U(x, s), 0 ≤ s ≤ r ≤ x ≤ 1, and such that (x, s) 7−→ U(x, s) is strongly

continuous for 0 ≤ s ≤ x ≤ 1.

Lemma 2.9 There exists a unique evolution operator U(x, s) in L2(O), solution of the

equation:

∂

∂s
U(x, s)h = U(x, s)P (s)h, ∀h ∈ H1

0 (O), a.e. in 0 ≤ s ≤ x ≤ 1.

Proof. It is easy to see that the family {−P (x)}x∈[0,1] verifies the conditions of Theorem

3.1, with the slight modification of remark 3.2, of [18]. This implies that there exists a

unique evolution operator U(x, s) in L2(O), such that ‖U(x, s)‖L(L2(O)) ≤ 1 and

∂

∂s
U(x, s)h = U(x, s)P (s)h, ∀h ∈ H1

0 (O), a.e. in 0 ≤ s ≤ x ≤ 1.

Formally, from equation (2.50), we have:

∂

∂s
(U(x, s)Q(s)U∗(x, s)) = U(x, s)U∗(x, s).

Integrating from 0 to x, and remarking that Q(0) = 0,

Q(x) =

∫ x

0
U(x, s)U∗(x, s) ds.

Definition 2.10 We define a mild solution of the Lyapunov equation (2.50) by

(Q(x)h, h̄) =

∫ x

0
(U∗(x, s)h, U∗(x, s)h̄) ds, ∀h, h̄ ∈ H1

0 (O).

By the preceeding remarks,

Lemma 2.11 Equation (2.50) has a unique mild solution.

Again formally, from equation (2.51), we have

∂

∂s
(U(x, s)t(s)) = U(x, s)

∂t

∂s
+ U(x, s)P (s)t = −U(x, s)∆f,
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2.8 QR type factorization of problem (P0)

Definition 2.12 We define a mild solution of (2.51) by

t(x) = −U(x, 0)
∂f

∂x
(0) −

∫ x

0
U(x, s)∆f ds.

For equations (2.52), (2.53) and (2.54) we proceed in a similar way, noting that for (2.53)

and (2.54) the integral is taken between x and 1.

2.8 QR type factorization of problem (P0)

In Numerical Analysis, when solving a system AX = B, instead of obtaining the LU

factorization of A, where L is a lower triangular matrix and U an upper triangular matrix,

for the sake of stability we often prefer a QR factorization. We proceed in the following

way: let ATA = RTR be a factorization of the normal equation, withR an upper triangular

matrix. Then A = A−TRTR, and defining Q = A−TRT , we have that QTQ = I, and the

problem reduces to solving QY = B, RX = Y . Similarly to this procedure, in this chapter

we are going to obtain a QR type factorization of problem (P0), where Q is an orthogonal

operator and R is an upper triangular operator. For this purpose we proceed in the

following fashion: consider the problem Au = f , and let A∗A = R∗R be a factorization

of the normal equation, with R an upper triangular operator. Then A = A−∗R∗R, and

defining Q = A−∗R∗, the operator Q is orthogonal, A = QR, and the problem reduces to

solving QRu = f .

We return to section 2.5 and equations (2.49) through (2.54): eliminating t from (2.52)

and (2.53), we have:

(
∂

∂x
+ P )Q−1(

∂

∂x
+ P )r̃ = ∆f. (2.57)

From (2.53) and (2.54) we obtain:

Q−1(
∂

∂x
− P )u = ∆u+Q−1r̃,

(
∂

∂x
− P )Q−1(

∂

∂x
− P )u = t+ (

∂

∂x
− P )Q−1r̃.

(2.58)

Substituting t from (2.52) in the last equation, we derive:

(
∂

∂x
− P )Q−1(

∂

∂x
− P )u = (−Q−1(

∂

∂x
+ P ) + (

∂

∂x
− P )Q−1)r̃, (2.59)
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2. Factorization of (P0)

and, consequenyly we deduce that:

Q(
∂

∂x
− P )Q−1(

∂

∂x
− P )u = (−(

∂

∂x
+ P )Q+Q(

∂

∂x
− P ))Q−1r̃. (2.60)

Using (2.50), we have that:

−(
∂

∂x
+ P )Q+Q(

∂

∂x
− P ) = −I, (2.61)

and so we obtain:

Q2(
∂

∂x
− P )Q−1(

∂

∂x
− P )u = −r̃. (2.62)

Finally, by substituting r from last equation in (2.57), we have:

(
∂

∂x
+ P )Q−1(

∂

∂x
+ P )Q2(

∂

∂x
− P )Q−1(

∂

∂x
− P )u = −∆f. (2.63)

Letting R = Q(
∂

∂x
− P )Q−1(

∂

∂x
− P ), we have thus obtained the factorization of (2.33)

(or, which is equivalent, of ∆2 plus boundary conditions) as R∗R. Let A = −∆. Then:

A∗A = A2 = R∗R, and so A = A−1R∗R. By defining Q = A−1R∗, we have that A = QR,

and the problem of solving Au = −∆u = f reduces to solving QRu = f , in the following

way:

1. Given f regular enough, we evaluate Af = −∆f , then we solve

∂t

∂x
+ Pt = −∆f, t(0) = −∂f

∂x
(0)

followed by
∂r̃

∂x
+ P r̃ = −Qt, r̃(0) = −u0 (2.64)

and evaluate g from r̃ = Qg.

2. Next we have to solve Ru = g. Letting z = ∆u + Q−1r̃, and using equations (2.50),

(2.52) and (2.53), we may easily deduce that:

∂z

∂x
− Pz = −Q−1g = −Q−2r̃, z(1) = c+Q−1(1)r̃(1), (2.65)

where c is given by (2.55). We now evaluate z from (2.65) and finally u from

∂u

∂x
− Pu = Qz, u(1) = u1.
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2.8 QR type factorization of problem (P0)

Next we show that Q is an orthogonal operator. From the definition of Q, it is easy to see

that given f ∈ L2(Ω), then g = Qf is evaluated in the following way:

1. We first apply: R∗ : f → R∗f = (
∂

∂x
+ P )Q−1(

∂

∂x
+ P )Qf = h.

2. We solve: −∆g = h.

We then have:

QQ∗(f) = (−∆)−1R∗R(−∆)−1(f) = (−∆)−1R∗Ru = (−∆)−1∆2u = −∆u = f. (2.66)

On the other hand, we have that:

Q∗Q = R(−∆)−1(−∆)−1R∗ = R(∆2)−1R∗ = R(R∗R)−1R∗ = I. (2.67)

and so we conclude that Q is an orthogonal operator.
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Chapter 3

Direct study of the Riccati
equation by Yosida regularization

In this chapter we present a direct study of the Riccati equation

dP

dx
+ P 2 = −∆y, P (0) = 0, (3.1)

satisfied by the Dirichlet-Neumann operator P defined on a section of the domain. The

additional difficulty of this problem is due to the unboundedness of the right-hand side and

of the solution of the equation. This causes a problem to define powers of P0. The Yosida

regularization is used to overcome it. In [?] its well-posedness was proved by adapting

the Galerkin method used by J.L. Lions in [16]. In [10] a direct study of the operator

equation was made in a Hilbert-Schmidt operator framework inspired from [21]. Due to

the unboundedness of the operator, the fixed point argument used in [4] and [20] does not

work any more. In [4] (p. 405) the case of the unbounded observation is studied, but

the assumptions relate this unboundedness to the one of the generator of the evolution

semi-group (which is here 0) and are not satisfied in our case.

3.1 Yosida regularization

Let A be the unbounded operator −∆y in the Hilbert space H = L2(O), with domain

D(A) = H2(O) ∩H1
0 (O), and let An be its Yosida regularized An = nI − n2R(n,−A) =
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3. Direct study of the Riccati equation by Yosida regularization

nI − n2(nI +A)−1. We know that

lim
n→+∞

Anh = Ah, ∀h ∈ D(A).

Each An is a linear, bounded, self adjoint and positive operator in H, and so we can define

A
1

2
n , the positive square root of An, which is a linear, bounded, self adjoint and positive

operator, which also verifies:

∥

∥

∥

∥

A
1

2
n

∥

∥

∥

∥

L(H)

= ‖An‖
1

2

L(H) ,∀n ∈ N. (3.2)

Let Pn be the solution of the corresponding Riccati equation:

dPn

dx
+ P 2

n = An, Pn(0) = 0. (3.3)

From [4], the equation (3.3) admits a solution given by:

Pn(x) = A
1

2
n (exp(2xA

1

2
n ) − I)(exp(2xA

1

2
n ) + I)−1. (3.4)

First of all, we notice that each operator A
1

2
n is a linear bounded operator in H, and so

it is the infinitesimal generator of an uniformly continuous semigroup of bounded linear

operators in H:

Tn(x) = exp(xA
1

2
n ), x ≥ 0, n ∈ N, (3.5)

and taking into account that A
1

2
n is self adjoint ∀n ∈ N, then Tn(x) is also self adjoint

∀n ∈ N.

Theorem 3.1 For each x ≥ 0, Pn(x) is well defined and Pn(x) ∈ L(H) is a positive and

self adjoint operator in H. Moreover, we have that:

Pn ∈ C1([0, 1];L(H)). (3.6)

Proof. First of all, we notice that for each x ≥ 0, the linear operator exp(2xA
1

2
n ) + I is

invertible in H. In fact, we know that Tn(x) = exp(xA
1

2
n ) is self adjoint in H, ∀x ≥ 0,
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3.1 Yosida regularization

and so we have that:

((exp(2xA
1

2
n ) + I)h, h) = (exp(xA

1

2
n ) exp(xA

1

2
n )h, h) + (h, h) = (3.7)

= (exp(xA
1

2
n )h, exp(xA

1

2
n )h) + ‖h‖2 ≥ (3.8)

≥ ‖h‖2 ,∀h ∈ H (3.9)

and, taking into account that exp(2xA
1

2
n ) + I is continuous in H, then, by Lax-Milgram

theorem, we may conclude that it is invertible in H, and we have also that:
∥

∥

∥

∥

(exp(2xA
1

2
n ) + I)−1

∥

∥

∥

∥

L(H)

≤ 1,∀x ≥ 0. (3.10)

We remark that, for each x ≥ 0, Pn(x) is the product of self adjoint, positive and bounded

operators in H, that commute with each other, and, consequently, we may conclude that

Pn(x) is a self adjoint, positive and bounded operator in H, ∀x ≥ 0. Next we show that

Pn ∈ C1([0, 1];L(H)) Let x0 ∈ [0, 1] arbitrary. Then:

Pn(x) − Pn(x0) =

A
1

2
n [(exp(2xA

1

2
n ) − I)(exp(2xA

1

2
n ) + I)−1 − (exp(2x0A

1

2
n ) − I)(exp(2x0A

1

2
n ) + I)−1] =

= A
1

2
n [(exp(2xA

1

2
n ) − I)(exp(2x0A

1

2
n ) + I)(exp(2x0A

1

2
n ) + I)−1(exp(2xA

1

2
n ) + I)−1−

−(exp(2x0A
1

2
n ) − I)(exp(2xA

1

2
n ) + I)(exp(2xA

1

2
n ) + I)−1(exp(2x0A

1

2
n ) + I)−1] =

= A
1

2
n [(exp(2xA

1

2
n ) − I)(exp(2x0A

1

2
n ) + I)−

−(exp(2x0A
1

2
n ) − I)(exp(2xA

1

2
n ) + I)](exp(2xA

1

2
n ) + I)−1(exp(2x0A

1

2
n ) + I)−1 =

= 2A
1

2
n [exp(2xA

1

2
n ) − exp(2x0A

1

2
n )](exp(2xA

1

2
n ) + I)−1(exp(2x0A

1

2
n ) + I)−1.

Taking into account that each A
1

2
n is bounded in L(H), (exp(2xA

1

2
n ) is an uniformely

continuous semigroup of bounded linear operators in H and
∥

∥

∥

∥

(exp(2xA
1

2
n ) + I)−1

∥

∥

∥

∥

L(H)

≤ 1,∀x ≥ 0,∀n ∈ N

it follows that

lim
x→x0

‖Pn(x) − Pn(x0)‖L(H) = 0,
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3. Direct study of the Riccati equation by Yosida regularization

so Pn is continuous in x0. From (3.4) we obtain:

dPn

dx
= 4An exp(2xA

1

2
n )(exp(2xA

1

2
n ) + I)−2. (3.11)

Let x0 ∈ [0, 1] arbitrary. Then:

dPn

dx
− dPn

dx0
=

= 4An[exp(2xA
1

2
n )(exp(2xA

1

2
n ) + I)−2 − exp(2x0A

1

2
n )(exp(2x0A

1

2
n ) + I)−2] =

= 4An[exp(2xA
1

2
n )(exp(2x0A

1

2
n ) + I)2(exp(2x0A

1

2
n ) + I)−2(exp(2xA

1

2
n ) + I)−2−

− exp(2x0A
1

2
n )(exp(2xA

1

2
n ) + I)2(exp(2xA

1

2
n ) + I)−2(exp(2x0A

1

2
n ) + I)−2] =

= 4An[(exp(2xA
1

2
n ) exp(2x0A

1

2
n ) − I)(exp(2x0A

1

2
n ) − exp(2xA

1

2
n ))].

.(exp(2x0A
1

2
n ) + I)−2(exp(2xA

1

2
n ) + I)−2

As before, we know that:

lim
x→x0

‖ exp(2xA
1

2
n ) − exp(2x0A

1

2
n )‖L(H) = 0. (3.12)

Moreover, all the other factors present in the expression of
dPn

dx
− dPn

dx0
are bounded op-

erators in L(H), so we deduce that:

lim
x→x0

‖dPn

dx
− dPn

dx0
‖L(H) = 0 (3.13)

which shows that dPn
dx is continuous at x0. Since x0 ∈ [0, 1] is arbitrary, we deduce that

dPn
dx ∈ C([0, 1];L(H)).

Theorem 3.2 For each h ∈ D(A) there exists a constant c(h) ≥ 0, such that

‖Pn(x)h‖ ≤ c(h),∀x ∈ [0, 1] ,∀n ∈ N.

Proof. By (3.11) and, being the product of positive operators that commute with each

other, we may conclude that:

dPn

dx
≥ 0, ∀n ∈ N, ∀x ≥ 0.
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3.1 Yosida regularization

From the Riccati equation (3.3) we have:

(
dPn

dx
h, h) + (P 2

n(x)h, h) = (Anh, h),

Pn being self adjoint,

(
dPn

dx
h, h) + ‖Pn(x)h‖2 = (Anh, h), ∀h ∈ H, ∀x ≥ 0,

and so we may conclude that:

‖Pn(x)h‖2 ≤ (Anh, h) −→ (Ah, h),∀h ∈ D(A),∀x ∈ [0, 1] ,

and, consequently, for each h ∈ D(A) there exists a constant c(h) ≥ 0, such that:

‖Pn(x)h‖ ≤ c(h),∀x ∈ [0, 1] ,∀n ∈ N.

Theorem 3.3 For each h ∈ D(A), the following limit: lim
n→+∞

Pn(x)h exists strongly in

H, uniformly in x ∈ [0, 1].

Proof. For each h ∈ H and each x ∈ [0, 1], we consider the sequence {Pn(x)h}n∈N
.

Now, it can be shown that for each x ≥ 0, Pn(x) and Pm(x) commute with each other,

∀m,n ∈ N, and so we have that:

d

dx
(Pn(x) − Pm(x))h+ (Pn(x) + Pm(x))(Pn(x) − Pm(x))h = (An −Am)h. (3.14)
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3. Direct study of the Riccati equation by Yosida regularization

Multiplying by (Pn(x) − Pm(x))h it results that

( d
dx(Pn(x) − Pm(x))h, (Pn(x) − Pm(x))h)+

+((Pn(x) + Pm(x))(Pn(x) − Pm(x))h, (Pn(x) − Pm(x))h) =

= ((An −Am)h, (Pn(x) − Pm(x))h) ⇒

⇒ 1
2

d
dx((Pn(x) − Pm(x))h, (Pn(x) − Pm(x))h) ≤

≤ ((An −Am)h, (Pn(x) − Pm(x))h) ≤

≤ ‖(An −Am)h‖ ‖(Pn(x) − Pm(x))h‖ ⇔

⇔ 1
2

d
dx ‖(Pn(x) − Pm(x))h‖2

= ‖(Pn(x) − Pm(x))h‖ d
dx ‖(Pn(x) − Pm(x))h‖ ≤

≤ ‖(An −Am)h‖ ‖(Pn(x) − Pm(x))h‖

⇒ d
dx ‖(Pn(x) − Pm(x))h‖ ≤ ‖(An −Am)h‖

⇒ ‖(Pn(x) − Pm(x))h‖ ≤ x ‖(An −Am)h‖

≤ ‖(An −Am)h‖ ,∀x ∈ [0, 1] ,∀h ∈ H.

We obtain the estimate

‖(Pn(x) − Pm(x))h‖ ≤ ‖(An −Am)h‖ ,∀x ∈ [0, 1] ,∀h ∈ H. (3.15)

Since Anh → Ah, ∀h ∈ D(A), and remarking that ‖(An −Am)h‖ does not depend on x,

we conclude that, for each h ∈ D(A), the sequence {Pn(x)h}n∈N
is a Cauchy sequence,

uniformly in x ∈ [0, 1], and, consequently, for each h ∈ D(A), the sequence {Pn(x)h}n∈N

is strongly convergent in H, uniformly in x ∈ [0, 1].

3.2 Passing to the limit

We now define, for each h ∈ D(A) and each x ∈ [0, 1]: P (x)h = lim
n→+∞

Pn(x)h, which, by

linearity, defines the operator P (x) from D(A) to H.
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3.2 Passing to the limit

Theorem 3.4 The operator P is a solution of the Riccati equation (3.1) in the following

sense:

d

dx
(P (x)h, h) + (P (x)h, P (x)h) = (−∆yh, h), ∀h, h ∈ H2(O) ∩H1

0 (O), (3.16)

and P (0) = 0.

Proof. We know that each Pnverifies:

(
dPn

dx
h, h) + (Pn(x)h, Pn(x)h) = (Anh, h), ∀h, h ∈ H.

Let ϕ ∈ D(]0, 1[). Then:

−
∫ 1

0
(Pn(x)h, h)ϕ′(x)dx+

∫ 1

0
(Pn(x)h, Pn(x)h)ϕ(x)dx =

∫ 1

0
(Anh, h)ϕ(x)dx. (3.17)

For each h, h fixed in D(A) = H2(O) ∩H1
0 (O), we have:

lim
n→+∞

(Pn(x)h, h)ϕ′(x) = (P (x)h, h)ϕ′(x), ∀x ∈ [0, 1] (3.18)

and
∣

∣(Pn(x)h, h)ϕ′(x)
∣

∣ ≤ c(h).
∥

∥h
∥

∥

∣

∣ϕ′(x)
∣

∣ ,∀x ∈ [0, 1] ,∀n ∈ N. (3.19)

We also have that

lim
n→+∞

(Pn(x)h, Pn(x)h)ϕ(x) = (P (x)h, P (x)h)ϕ(x),∀x ∈ [0, 1] (3.20)

and
∣

∣(Pn(x)h, Pn(x)h)ϕ(x)
∣

∣ ≤ c(h).c(h) |ϕ(x)| , ∀x ∈ [0, 1] ,∀n ∈ N. (3.21)

Finally, we notice that:

lim
n→+∞

∫ 1

0
(Anh, h)ϕ(x)dx = (Ah, h)

∫ 1

0
ϕ(x)dx. (3.22)

Consequently, we may use the Lebesgue dominated convergence theorem to pass to the

limit for each term of (3.17). Then (3.16) is satisfied in the sense of distributions on ]0, 1[

for each h, h ∈ D(A). Furthermore, since Pn(0)h = 0 for all n ∈ N and h ∈ D(A) then,

by Theorem 3.3, P (0) = 0.
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3. Direct study of the Riccati equation by Yosida regularization

Theorem 3.5 The operator P (x) verifies:

(
dP

dx
h, h) ≥ 0,∀h ∈ H2(O) ∩H1

0 (O). (3.23)

Proof. From Theorem 3.4, we know that P (x) verifies:

(
dP

dx
h, h) + ‖P (x)h‖2 = (−∆yh, h),∀h ∈ H2(O) ∩H1

0 (O). (3.24)

We also know that, for each n ∈ N, Pn(x) verifies:

(
dPn

dx
h, h) + ‖Pn(x)h‖2 = (Anh, h),∀h ∈ L2(O).

Now, taking into account that, for each h ∈ H2(O) ∩ H1
0 (O), Pn(x)h −→

n→+∞
P (x)h,

strongly in L2(O), uniformly in x ∈ [0, 1], and

(Anh, h) −→
n→+∞

(−∆yh, h),∀h ∈ H2(O) ∩H1
0 (O), (3.25)

we may conclude that:

(
dPn

dx
h, h) −→

n→+∞
(
dP

dx
h, h),∀h ∈ D(A).

On the other hand, we know that dPn
dx ≥ 0 in L2(O), and so we conclude that:

(
dP

dx
h, h) ≥ 0,∀h ∈ D(A).

Theorem 3.6 The operator P (x) verifies

‖P (x)h‖L2(O) ≤ ‖h‖H1
0
(O) ,∀h ∈ H2(O) ∩H1

0 (O),∀x ∈ [0, 1] ,

and, consequently, it also verifies

P ∈ L∞(0, 1;L(H2(O) ∩H1
0 (O), L2(O))). (3.26)

Proof. We know that P (x) verifies

(dP
dx h, h) + ‖P (x)h‖2 = (−∆yh, h) = ‖∇yh‖2

= ‖h‖2
H1

0
(O) ≤ ‖h‖2

H2(O) , ∀h ∈ H2(O) ∩H1
0 (O)

and, taking into account that (dP
dx h, h) ≥ 0,∀h ∈ H2(O) ∩ H1

0 (O) the conclusion is now

obvious.
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3.2 Passing to the limit

Theorem 3.7 There exists an operator

P ∈ L∞(0, 1;L(H1
0 (O), L2(O))) (3.27)

solution of the Riccati equation

(
dP

dx
h, h) + (P (x)h, P (x)h) = (∇yh,∇yh),∀h, h ∈ H1

0 (O) (3.28)

verifying P (0) = 0. This solution is strongly continuous in the sense that P (x)h ∈
C([0, 1];L2(O)), for all h ∈ H1

0 (O).

Proof. The operator P , referred in the previous theorems, can be extended by density,

taking Theorem 3.6 into account, to an operator P from H1
0 (O) to L2(O). This extension

is unique and we name P by P. From Theorem 3.6, we may conclude that:

‖P (x)h‖L2(O) ≤ ‖h‖H1
0
(O) ,∀h ∈ H1

0 (O),∀x ∈ [0, 1] , (3.29)

and, consequently, P ∈ L∞(0, 1;L(H1
0 (O), L2(O))).

Following a similar way to the one we used in the proof of Theorem 3.4, it can be shown

that P (x) verifies the Riccati equation (3.28). By Theorem 3.3, P (x)h ∈ C([0, 1];L2(O)),

for all h ∈ H2(O) ∩H1
0 (O). The remaining property follows from (3.29).

Remark 3.8 The uniqueness of the solution of (3.1) can be proved. The easiest way is

to use the interpretation of P as a Dirichlet-Neumann operator and to use the uniqueness

of the solution of the boundary value problem.

Remark 3.9 If instead of A = −∆y we consider the operator

A = −
n−1
∑

i,j=1

∂

∂yj

(

ai,j(y)
∂

∂yi

)

with ai,j(y) = aj,i(y), ∀i, j and ∀y ∈ O, ai,j being continuously differentiable in O, and

A being H1
0 (O)-elliptic, we can do everything as before with almost no changes. In fact,

A remains self adjoint, positive and −A is the infinitesimal generator of a strongly con-

tinuous semigroup. The explicit formula at the begining remains. The norm of P in

L∞(0, 1;L(H1
0 (O), L2(O))) is now bounded by M for some M, instead of 1. This is the

unique little change.
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Chapter 4

Discretization

In this chapter we are going to obtain matrix formulae for the operators P and Q written

with the aid of an orthonormal basis of H1
0 (O).

4.1 An expression for P

From ([6]), Theorem IX.31, pag.192, we know that there exists an orthogonal basis (en)n∈N

of L2 (O), which is an orthonormal basis of H1
0 (O), formed by the eigenfunctions of the

problem:














−∆yen = λnen in O,

en|∂O = 0.

(4.1)

where the sequence (λn)n∈N
is a positive and non-decreasing sequence in R, such that:

lim
n→+∞

λn = +∞.

It has the following properties:

1. ‖en‖H1
0
(O) =

(∫

O |∇yen|2dy
) 1

2 = 1, ∀n ∈ N.

2. (en, em)H1
0
(O) =

∫

O ∇yen.∇yemdy = 0, ∀n,m ∈ N, n 6= m.

3. The set {
∑

finite

λiei, λi ∈ R} is a dense subset of H1
0 (O) .

(4.2)
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4. Discretization

In addition, the spaces L2 (O), H1
0 (O), H

1

2

00 (O) and H
1

2

00 (O)′ may be defined as follows:

L2 (O) = {u =
∑

n

unen :
∑

n

|un|2 < +∞} (4.3)

H1
0 (O) = {u =

∑

n

unen :
∑

n

(1 + λn) |un|2 < +∞} (4.4)

H
1

2

00 (O) = {u =
∑

n

unen :
∑

n

(1 + λn)
1

2 |un|2 < +∞} (4.5)

H
1

2

00 (O)′ = {u =
∑

n

unen :
∑

n

(1 + λn)−
1

2 |un|2 < +∞}. (4.6)

Given h ∈ (H
1/2
00 (O))′, by the definition of the operator P , P (s)h =

∂u

∂x
|Γs where u is the

solution of






























∆u = 0 in Ωs,

u|Σ = 0,

−∂u
∂x

|Γ0
= 0, u|Γs = h.

(4.7)

But u ∈ L2(0, 1;H1
0 (O)) ∩H1(0, 1;L2(O)), and so its trace in each section Γx, for a fixed

x, may be written in the basis (en)n∈N in the following way:

u(x, y) =
+∞
∑

n=1

un(x)en(y), where un(x) =

∫

Γx

u(x, y)en(y)dy. (4.8)

We then have:

∆u = 0 in Ωs ⇔
+∞
∑

n=1

d2un

dx2
(x)en(y) + un(x)∆yen(y) = 0 in Ωs

⇔ d2un

dx2
(x) − λnun(x) = 0 in Ωs, ∀n ∈ N.

(4.9)

From the boundary conditions we derive that:

−∂u
∂x

|Γ0
= 0 ⇔ −

+∞
∑

n=1

dun

dx
(0)en(y) = 0 ⇔ dun

dx
(0) = 0, ∀n ∈ N, (4.10)

and

u(s) = h⇔
+∞
∑

n=1

un(s)en =
+∞
∑

n=1

hnen ⇔ un(s) = hn, ∀n ∈ N. (4.11)
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Thus, for each n ∈ N, un is the solution of















d2un

dx2
− λnun = 0,

dun

dx
(0) = 0, un(s) = hn.

(4.12)

The solution of this problem is given by:

un(x) = hn
e
√

λnx + e−
√

λnx

e
√

λns + e−
√

λns
, ∀n ∈ N, (4.13)

and so we conclude that:

P (s)h =
∂u

∂x
|Γs =

+∞
∑

n=1

hn

√

λn
e
√

λns − e−
√

λns

e
√

λns + e−
√

λns
en. (4.14)

From the last expression, we conclude that the operator P is diagonal, and its components

are:

Pn(s) =
√

λn
e
√

λns − e−
√

λns

e
√

λns + e−
√

λns
. (4.15)

4.2 An expression for Q

Given k ∈ (H
1/2
00 (O))′, let u ∈ H2(Ω) be the solution of the problem:















































∆2u = 0 in Ωs,

u|Σ = ∆u|Σ = 0,

−∂u
∂x

|Γ0
= 0,

∂∆u

∂x
|Γ0

= 0

u|Γs = 0, ∆u|Γs = k.

(4.16)

Let w = ∆u. Then w is the solution of































∆w = 0 in Ωs,

w|Σ = 0,

−∂w
∂x

|Γ0
= 0, w|Γs = k.

(4.17)
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and, by the previous section, we may conclude that:

w(x, y) =
+∞
∑

n=1

wn(x)en(y) (4.18)

with:

wn(x) = kn
e
√

λnx + e−
√

λnx

e
√

λns + e−
√

λns
, ∀n ∈ N. (4.19)

If u(x, y) =
+∞
∑

n=1

un(x)en(y), then

∆u = w in Ωs ⇔
+∞
∑

n=1

(

d2un

dx2
(x) − λnun(x)

)

en(y) =
+∞
∑

n=1

wn(x)en(y) ⇔

⇔ d2un

dx2
(x) − λnun(x) = wn(x) = kn

e
√

λnx + e−
√

λnx

e
√

λns + e−
√

λns
, ∀n ∈ N.

(4.20)

From the boundary conditions we derive that:

u|Γs = 0 ⇔ un(s) = 0, ∀n ∈ N,

−∂u
∂x

|Γ0
= 0 ⇔ −dun

dx
(0) = 0.

(4.21)

The solution of this problem is given by:

un(x) =
kns

2
√
λn

e−
√

λns − e
√

λns

(e
√

λns + e−
√

λns)2
(e

√
λnx + e−

√
λnx)+

+
kn

2
√
λn(e

√
λns + e−

√
λns)

x(e
√

λnx − e−
√

λnx).

(4.22)

We finally deduce the formula for the operator Q:

Q(s)k =
∂u

∂x
|Γs =

+∞
∑

n=1

dun

dx
en(y) =

+∞
∑

n=1

[

kns(e
−
√

λns − e
√

λns)(e
√

λns − e−
√

λns)

2(e
√

λns + e−
√

λns)2
+

kn

2
√
λn(e

√
λns + e−

√
λns)

(

e
√

λns − e−
√

λns +
√

λns
(

e
√

λns + e−
√

λns
))

]

en =

=
+∞
∑

n=1

kn
4
√
λns+ e2

√
λns − e−2

√
λns

2
√
λn(e

√
λns + e−

√
λns)2

en.

(4.23)
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Thus Q(s) is diagonal, and its components are:

Qn(s) =
4
√
λns+ e2

√
λns − e−2

√
λns

2
√
λn(e

√
λns + e−

√
λns)2

, ∀n ∈ N. (4.24)

In particular, Q is an invertible operator, and the components of the inverse operator are:

Q−1
n (s) =

2
√
λn(e

√
λns + e−

√
λns)2

4
√
λns+ e2

√
λns − e−2

√
λns

, ∀n ∈ N. (4.25)
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Chapter 5

Homographic transformation

In this chapter we are going to obtain a simple factorized formula for the Dirichlet-to-

Neumann operator P , solution of the Riccati operator equation. We begin by showing

that the Riccati equation of P is equivalent to a first order linear coupled system. Next, by

changing variables, we show that the former system is equivalent to a first order decoupled

linear system. Finally we obtain an explicit formula for the operator P , which verifies the

Riccati equation (see section (4.2)):

dP

dx
+ P 2 + ∆y = 0, P (0) = 0. (5.1)

5.1 Linear system for the Riccati equation

Let u ∈ H1(Ω) be the solution of (P0) with f = 0, u0 = 0 and u1 ∈ H
1/2
00 (O). We

define the operators X(x) ∈ L(H
1/2
00 (O), H

1/2
00 (O)′) and Y (x) ∈ L(H

1/2
00 (O), H

1/2
00 (O)) in

the following way:

X(x) : u(1) → ∂u

∂x
(x), (5.2)

Y (x) : u(1) → u(x). (5.3)

Taking into account the definition of the operator P , we have:

P (x)Y (x) = X(x), ∀x ∈ [0, 1]. (5.4)
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5. Homographic transformation

Furthermore, X and Y verify X(0) = 0, Y (1) = I. Taking the derivative with respect to

x on both sides of the identity

X(x)u(1) =
∂u

∂x
(x) (5.5)

and due to the fact that ∆u = 0 in Ω, it follows

∂X

∂x
(x)u(1) =

∂2u

∂x2
(x) = −∆yu(x). (5.6)

Then
∂X

∂x
(x)u(1) = −∆yY (x)u(1), (5.7)

and, due to the fact that u(1) is arbitrary, we derive that

∂X

∂x
(x) = −∆yY (x). (5.8)

Similarly, taking the derivative with respect to x on both sides of

Y (x)u(1) = u(x) (5.9)

we derive
∂Y

∂x
(x)u(1) =

∂u

∂x
(x) = X(x)u(1) (5.10)

and, because u(1) is arbitrary, we conclude that

∂Y

∂x
(x) = X(x). (5.11)

We have thus obtained the following linear system:














dX

dx
(x) = −∆yY (x), X(0) = 0,

dY

dx
(x) = X(x), Y (1) = I.

(5.12)

Next we show that problem (5.12) and the Riccati equation of P are equivalent, by means

of the relation (5.4). Let P be the solution of (5.1). Taking into account (5.4) and recalling

that P is the Dirichlet-to-Neumann operator, then, formally, we have:

dX

dx
(x) =

dP

dx
(x)Y (x) + P (x)

dY

dx
(x) =

= (−P 2 − ∆y)Y (x) + P (x)P (x)Y (x) = −∆yY (x),
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5.2 Diagonalization of the linear system

so X and Y verify the linear system (5.12).

Conversely, let X and Y be solutions of (5.12) for x ∈]0, 1[. From the definition it is easy

to show that Y (x) is an injective operator with dense image, for each x ∈]0, 1[, and so we

can define the operator P (x) through the relation:

P (x)Y (x) = X(x), ∀x ∈]0, 1[. (5.13)

Formally taking the derivative with respect to x on both sides of this equation, we derive

dP

dx
(x)Y (x) + P (x)

dY

dx
(x) =

dX

dx
(x). (5.14)

Taking into account the equations verified by X and Y , it follows that:

dP

dx
(x)Y (x) + P 2(x)Y (x) = −∆yY (x). (5.15)

Finally, again due to the fact that Y (x) is an operator with dense image, for each x ∈]0, 1[,

we conclude that P verifies the Riccati equation, and from P (0)Y (0) = X(0) = 0 we derive

that P (0) = 0.

5.2 Diagonalization of the linear system

In this section, we consider as an orthonormal basis of L2(O) the set {en}n∈N of eigen-

functions of the Dirichlet problem















−∆yen(y) = λnen(y), ∀y ∈ O, n ∈ N

en|Σ = 0, ∀n ∈ N,

(5.16)

with (λi) a positive and non decreasing sequence such that limλi
i→+∞

= +∞. Let P0 ∈

L(H1
0 (O), L2(O))∩L(H

1/2
00 (O), H

1/2
00 (O)′) be the positive stationary solution of the Riccati

equation (5.1):

P0 = +(−∆y)
1

2 . (5.17)

P0 is a particular diagonal solution of the Riccati equation, which is invertible, because

λn > 0, ∀n ∈ N.
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5. Homographic transformation

Theorem 5.1 The linear system















dX

dx
(x) = −∆yY (x), X(0) = 0,

dY

dx
(x) = X(x), Y (1) = I,

(5.18)

is equivalent to the diagonal system















dϕ

dx
(x) = P0ϕ(x), ϕ(0) − P0ψ(0) = 0,

dψ

dx
(x) = −P0ψ(x), P−1

0 ϕ(1) + ψ(1) = I,

(5.19)

where the operators ϕ(x) ∈ L(H
1/2
00 (O), H

1/2
00 (O)′) and ψ(x) ∈ L(H

1/2
00 (O), H

1/2
00 (O)) are

related with X and Y through the equations















X = ϕ− P0ψ,

Y = P−1
0 ϕ+ ψ,

(5.20)















ϕ = 1
2(P0Y +X),

ψ = 1
2(Y − P−1

0 X).

(5.21)

Proof. Taking the derivative with respect to x on both sides of (5.21), we have:

dϕ

dx
=

1

2

d

dx
(P0Y +X) =

1

2
(P0X − ∆yY ) =

1

2
[P0(ϕ− P0ψ) − ∆y(P

−1
0 ϕ+ ψ)] =

=
1

2
2P0ϕ = P0ϕ.

and
dψ

dx
=

1

2

(

dY

dx
− P−1

0

dX

dx

)

=
1

2
[X − P−1

0 (−∆yY )] =
1

2
(X − P0Y ) =

=
1

2
[ϕ− P0ψ − P0(P

−1
0 ϕ+ ψ)] = −P0ψ.

Finally, we have:

X(0) = 0 ⇔ ϕ(0) − P0ψ(0) = 0,

Y (1) = I ⇔ P−1
0 ϕ(1) + ψ(1) = I.
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5.2 Diagonalization of the linear system

Conversely, if (ϕ,ψ) are solutions of (5.19), then, using (5.20), we can easily show that

(X,Y ) verify (5.18).

We have thus showed that the operators









0 −∆y

I 0









and








P0 0

0 −P0









are similar. In fact, in matrix form:









dX

dx
dY

dx









=









0 −∆y

I 0

















X

Y









,









dϕ

dx
dψ

dx









=









P0 0

0 −P0

















ϕ

ψ









,

and








X

Y









=









I −P0

P−1
0 I

















ϕ

ψ









.

Now, due to the fact that P0 is independent of x, integrating (5.19), and representing by

exp(P0x) the semigroup generated by P0, we obtain:















ϕ(x) = ϕ(0) exp(P0x),

ψ(x) = ψ(1) exp (−P0(x− 1)) .

(5.22)

and consequently














ϕ(1) = ϕ(0) exp(P0),

ψ(0) = ψ(1) exp(P0).

(5.23)
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5. Homographic transformation

Taking into account the initial conditions verified by ϕ and ψ, it follows that















ϕ(0) = P0ψ(0) = P0ψ(1) exp(P0),

P−1
0 ϕ(1) + ψ(1) = P−1

0 ϕ(0) exp(P0) + ψ(1) = ψ(1) exp(2P0) + ψ(1) = I.

(5.24)

From the last equality, and due to the fact that P0, P
−1
0 and exp(P0) comute with each

other, we derive that

ψ(1) = (exp(2P0) + I)−1 (5.25)

and

ϕ(0) = P0 (exp(2P0) + I)−1 exp(P0). (5.26)

Finally, we deduce:















ϕ(x) = P0 (exp(2P0) + I)−1 exp (P0(1 + x)) ,

ψ(x) = (exp(2P0) + I)−1 exp (−P0(x− 1) )

(5.27)

5.3 Homographic representation of P

Theorem 5.2 The operator P may be written in the following way:

P (x) = (ϕ(x)ψ−1(x) − P0)(P
−1
0 ϕ(x)ψ−1(x) + I)−1 (5.28)

Proof.

P (x) = X(x)Y −1(x) = (ϕ(x) − P0ψ(x))(P−1
0 ϕ(x) + ψ(x))−1 =

= (ϕ(x)ψ−1(x)ψ(x) − P0ψ(x))(P−1
0 ϕ(x)ψ−1(x)ψ(x) + ψ(x))−1 =

= (ϕ(x)ψ−1(x) − P0)ψ(x)((P−1
0 ϕ(x)ψ−1(x) + I)ψ(x))−1 =

= (ϕ(x)ψ−1(x) − P0)(P
−1
0 ϕ(x)ψ−1(x) + I)−1.

(5.29)

Let

W (x) = ϕ(x)ψ−1(x). (5.30)
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5.3 Homographic representation of P

From the definition, we derive an explicit formula for W :

W (x) = ϕ(x)ψ−1(x) = P0 (exp(2P0) + I)−1 exp (P0(1 + x))
[

(exp 2P0 + I)−1 exp (−P0(x− 1))
]−1

=

= P0 (exp(2P0) + I)−1 exp (P0(1 + x)) exp (P0(x− 1)) (exp(2P0) + I) =

= P0 exp(2P0x).

(5.31)

In addition, W (0) = ϕ(0)ψ−1(0) and, from (5.26) and (5.27) we deduce that W (0) = P0.

Theorem 5.3 The operator W is solution of the linear differential equation:

dW

dx
= P0W +WP0, W (0) = P0. (5.32)

Proof. In fact, formally taking the derivative with respect to x on both sides of (5.30)

we have:
dW

dx
(x) =

dϕ

dx
(x)ψ−1(x) − ϕ(x)ψ−1(x)

dψ

dx
(x)ψ−1(x) (5.33)

and, from (5.19) the conclusion is obvious.

We finally deduce an explicit formula for the operator P :

Theorem 5.4 The operator P may be defined in the following way:

P (x) = [(exp(P0x)P0 exp(P0x) − P0)]
[

P−1
0 exp(P0x)P0 exp(P0x) + I

]−1
(5.34)

Proof. The result is obvious: we just have to replace W (x) = exp(P0x)P0 exp(P0x) in

(5.29).
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5. Homographic transformation
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Chapter 6

Factorization of other elliptic
problems

In this chapter, we apply the method of factorization by invariant embedding to factorize

more general elliptic problems, by proceeding in the straightforward way.

Using the same notations and conditions, we consider the problem defined in section

1.3. We embed problem (1.13) in the family of similar problems defined in Ωs, s ∈]0, 1],

h ∈ H
1/2
00 (O):







































Lu = f in Ωs,

u|Σ = 0,


−
n

∑

j=1

a1,j
∂u

∂xj



 |Γ0
= u0, u|Γs = h.

(6.1)

From Theorem 1.14, we know that these are well posed problems. For each s ∈]0, 1] we

define

P̄ (s)h =





n
∑

j=1

a1,j
∂γs,h

∂xj



 |Γs (6.2)
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6. Factorization of other elliptic problems

where γs,h is the solution of the problem:







































Lγs,h = 0 in Ωs,

γs,h|Σ = 0,


−
n

∑

j=1

a1,j
∂γs,h

∂xj



 |Γ0
= 0, γs,h|Γs = h,

(6.3)

and P̄ (0) = 0. Moreover, for each s ∈]0, 1], we set

r̄(s) =





n
∑

j=1

a1,j
∂βs,h

∂xj



 |Γs (6.4)

where βs,h is the solution of







































Lβs,h = f in Ωs,

βs,h|Σ = 0,


−
n

∑

j=1

a1,j
∂βs,h

∂xj



 |Γ0
= u0, βs,h|Γs = 0,

(6.5)

and r̄(0) = −u0. Then the solution ūs,h of (6.1) verifies:





n
∑

j=1

a1,j
∂ūs,h

∂xj



 |Γs = P̄ (s)h+ r̄(s), ∀s ∈ [0, 1]. (6.6)

Furthermore, the solution u of (1.13) verifies (6.1) with h = ū|Γs , for each s ∈ [0, 1] so we

have the following identity:





n
∑

j=1

a1,j
∂u

∂xj



 |Γx1
= P̄ (x1)u|Γx1

+ r̄(x1), ∀x1 ∈ [0, 1]. (6.7)

Formal derivation of (6.7) with respect to x1 leads to:

− ∂

∂x1





n
∑

j=1

a1,j
∂u

∂xj



 = − dP̄

dx1
u− P̄

∂u

∂x1
− dr̄

dx1
, ∀x1 ∈ [0, 1]. (6.8)
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By substitution from (1.13) and (6.7), and noting that

∂u

∂x1
= a−1

11



P̄ u+ r̄ −
n

∑

j=2

a1,j
∂u

∂xj



 (6.9)

we obtain:

− dP̄

dx1
u− P̄ a−1

11



P̄ u+ r̄ −
n

∑

j=2

a1,j
∂u

∂xj



 − ∂r̄

∂x1
=

=

n
∑

i=2

∂

∂xi



ai,1a
−1
11



P̄ u+ r̄ −
n

∑

j=2

a1,j
∂u

∂xj







 +

n
∑

i,j=2

∂

∂xj

(

ai,j
∂u

∂xj

)

+ f,

(6.10)

so, we deduce:





dP̄

dx1
+ P̄ a−1

11 P̄ − P̄ a−1
11

n
∑

j=2

a1,j
∂

∂xj
+

n
∑

i,j=2

∂

∂xi

(

ai,1a
−1
11 P̄

)

−

−
n

∑

i,j=2

∂

∂xi

(

ai,1a
−1
11 a1,j

) ∂

∂xj
+

n
∑

i,j=2

∂

∂xi

(

ai,j
∂

∂xj

)



u+

+P̄ a−1
11 r̄ +

∂r̄

∂x1
+

n
∑

i=2

∂

∂xi

(

ai,1a
−1
11 r̄

)

+ f = 0

(6.11)

and taking into account that u|Γs = h is arbitrary, we finally conclude that:



































































dP̄

dx1
+

n
∑

i,j=2

∂

∂xi

(

ai,1a
−1
11 P̄

)

+ P̄ a−1
11 P̄ − P̄ a−1

11

n
∑

j=2

a1,j
∂

∂xj
−

−
n

∑

i,j=2

∂

∂xi

(

ai,1a
−1
11 a1,j

) ∂

∂xj
+

n
∑

i,j=2

∂

∂xi

(

ai,j
∂

∂xj

)

= 0, P̄ (0) = 0,

∂r̄

∂x
+ P̄ a−1

11 r̄ +
n

∑

i=2

∂

∂xi

(

ai,1a
−1
11 r̄

)

+ f = 0, r̄(0) = −u0,

− ∂u

∂x1
−

n
∑

j=2

a−1
11 a1,j

∂u

∂xj
+ a−1

11 P̄ (x)u = −a−1
11 r̄, u(1) = u1.

(6.12)
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mension infinie, Journal of Functional Analysis, 7 (1971), 85-115.

71



Index

QR type factorization, 37

adjoint state, 15, 20

Cauchy problem, 33

control, 18

cost function, 14

decoupled, 23

diagonal solution, 59

diagonal system, 60

diagonalization, 59

Dirichlet problem, 59

Dirichlet-to-Neumann operator, 22

eigenfunctions, 59

evolution operator, 36

factorization, 14

homographic transformation, 57

infinitesimal generator, 35

interpolated space, 2

invariant embedding, 14

Lagrangian, 26

least square, 25

LU factorization, 23
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