
Julho de 2012

Hugo Manuel de Almeida Vaz Pereira

Mestrado Integrado em Ciências de Engenharia

Electrotécnica e de Computadores

Interoperability on Low Power Devices

Dissertação para obtenção do Grau de Mestre em

Engenharia Electrotécnica e de Computadores

Orientador: Adolfo Sanchez Steiger Garção,

Professor Catedrático, FCT-UNL

Co-Orientador: Pedro Miguel Negrão Maló,

Professor Assistente, FCT-UNL

Júri:

Presidente: Prof. Doutor José António Barata de Oliveira

 Arguente: Prof. Doutor Tiago Oliveira Machado de Figueiredo Cardoso

 ii

Interoperability on Low Power Devices

Copyright © Hugo Manuel de Almeida Vaz Pereira, Universidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e

sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos

reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a

ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e

distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado

crédito ao autor e editor.

 iii

Aos meus pais e irmã

iv

v

Acknowledgments

 Queria dedicar esta tese á minha família. Ao meu Pai e Mãe, por serem o meu exemplo a seguir e

por todo o amor e força que nunca deixaram de dar. À minha Irmã, pela paciência e pelo carinho e

amor que nunca deixou de demonstrar. À Cris, por estar incondicionalmente disponível e presente

na minha vida. À minha avó Maria pela grande mulher que é e por todo o amor incondicional que

sempre me deu. À tia Bia por nunca deixar de me dar força sempre que precisei. O meu sincero

Obrigado por tudo e por fazerem de mim o que sou hoje!

 À Joana por toda a dedicação, paciência, apoio e amor incondicional que sempre demonstrou,

Obrigado! Ao Manel por ser o meu amigo de sempre. Ao Gordo, por nunca ter deixado de me ouvir

quando mais precisei. Ao Bueno, por ser quem é. Ao Central por estar sempre aqui quando é

preciso. À Raquel por tudo o que fez, nunca vou esquecer. À Inês Pinheiro por ser a minha amiga

mais ocupada. Ao Jester por ser o meu eterno vizinho e amigo! À Andreia pelas conversas até às

tantas! Ao Luís por ser o meu melhor amigo ausente! Ao Eusébio por ter enterrado o pastel comigo

ao longo do curso! Ao Careca por estar sempre disponível quando precisei! Ao “Bad Boy”

Caixinha por todos os póneis malditos! Ao Monhé por ser o meu companheiro de trabalho! Á

Telma e ao Nuno pelas horas de riso e disponibilidade! Ao Kelia por ser o meu amigo mais

parvinho! À Telma por todos os momentos de risos! Ao Stage por ser um grande bot! À Inês

Ferreira por ser única. Ao Pelo de rato por ser sempre verdadeiro! Aos Beetoques por serem a

minha equipa! Ao Paulinho por ser o meu primo irmão! Ao David e a todos os Fagulhas!

Ao Tiago, Márcio e Spread o meu obrigado pela paciência e disponibilidade que nunca me faltou!

Ao Pedro Maló e ao Bruno Almeida, pela exigência e rigor demonstrada ao longo do trabalho, foi

um prazer trabalhar convosco. Ao Departamento de engenharia electrotécnica e de computadores

pelas condições proporcionadas para a finalização do curso. A todos os amigos que não mencionei,

mas que estiveram sempre presentes.

Muito Obrigado.

vi

vii

Abstract

 Model transformation is the process of turning one data format into another according to a

specification that contains the operations needed to accomplish it. Therefore it assumes a relevant

role on handling interoperability on an “Internet of Things” environment composed by

interconnected heterogeneous things with heterogeneous information. However, operate

interoperability specifications on this environment is challenging, because model transformation

technologies were developed considering an environment composed of devices with processing

power and memory, as opposed to the environment exposed. The proposed solution consists in a

specific approach, the clear separation of run-time and design time processes and the redefinition of

formats used to describe model data and interoperability specification without changing their

information. To do so an execution engine architecture is specified, able to execute model

transformations according to a lite model data format and an interoperability specification defined

as part of the solution.

Keywords: Internet of Things, Interoperability, Heterogeneity, low power devices, Execution

Engine.

viii

ix

Resumo

Transformação de modelos é o processo de transformar um formato de dados noutro de acordo com

uma especificação que contém as operações necessárias para fazê-lo. Então, este processo assume

um papel relevante para suportar interoperabilidade num ambiente “Internet of Things” composto

por coisas heterogéneas interconectadas, com informação heterogénea. Contudo, operar

especificações de interoperabilidade neste ambiente é desafiante, dado que as tecnologias de

transformações de modelos foram desenvolvidas considerando um ambiente composto por

dispositivos com poder de processamento e memória, ao contrário do ambiente anteriormente

exposto. A solução proposta consiste numa abordagem específica, que se baseia na separação clara

de processos em run-time e design-time e pela redefinição de formatos usados para descrever os

dados do modelo e a especificação de interoperabilidade sem mudar a informação contida nos

mesmos. Para tal, foi especificada a arquitectura de um motor de execução capaz de executar

transformações de modelos de acordo com um formato de dados lite e uma especificação de

interoperabilidade definidos como parte da solução.

Palavras-Chave: Internet of Things, Interoperabilidade, Heterogeneidade, Dispositivos de baixo

consumo, Motor de transformação de modelos.

x

xi

Index

Chapter 1 Introduction .. 1

1.1 Motivation Scenario: Plug and Interoperate ... 1

1.2 Problem: Operate Interoperability Specifications in a low power

 device environment .. 4

1.3 Work Methodology .. 5

1.4 Dissertation outline .. 7

Chapter 2 - State of the Art ... 9

2.1 State of the Art Review .. 9

2.1.1 Individual Review .. 9

2.1.2 Synthesis ... 17

2.2 Advancement .. 18

Chapter 3 - Interoperability on Low Power Devices ... 21

3.1 ATL compilation .. 23

3.1.1 ASM text file .. 23

3.2 Lite Language... 24

3.3 Execution Engine ... 26

3.3.1 Logical Architecture Specification ... 26

3.3.2 Detailed architecture ... 30

3.3.3 Architecture Module Sequence .. 30

Chapter 4 - Testing and Validation ... 33

4.1 Testing Methodology ... 33

4.2 Proof of Concept Implementation .. 36

4.3 Test Definition and Execution .. 36

4.3.1 Lite language translation .. 37

4.3.2 Model transformation execution ... 43

4.4 Verdict .. 47

Chapter 5 - Conclusions and Future Work .. 49

5.1 Future Work... 52

Chapter 6 - Bibliography ... 53

xii

xiii

Index of Figures

Figure 1.1 - Application domains and relevant major scenarios, based on (Atzori, Iera et al. 2010) 1

Figure 1.2 - An application scenario of Internet of Things .. 2

Figure 1.3 - Source to target information exchange through Interoperability specification 3

Figure 1.4 - Work approach used in this thesis .. 6

Figure 2.1 - ATC Virtual Machine architecture, retrieved from (Lorenzo, Luna et al.) 11

Figure 2.2 - EMF engine architecture, retrieved from (Jouault and Kurtev 2006)........................... 12

Figure 2.3 - Processing Kermeta language ... 14

Figure 2.4 - An overview of the Viatra2 transformation execution, retrieved from (Varró, Balogh et

al. 2006).. 16

Figure 2.5 - Viatra2 execution overview, retrieved from (Varró, Balogh et al. 2006) 16

Figure 3.1 – Approach example ... 22

Figure 3.2 - ASM structure, retrieved from (ATLAS 2005) .. 23

Figure 3.3 - ASM Compilation process ... 24

Figure 3.4 - Expression hierarchy for conversion example, retrieved from (Preden and Pahtma

2009) .. 25

Figure 3.5 – Execution Engine Architectural Solution .. 26

Figure 3.6 - Example of module with API and Caller Interface .. 27

Figure 3.7 – Control ... 27

xiv

Figure 3.8 - Model Handler .. 28

Figure 3.9 – Virtual Machine ... 29

Figure 3.10 - Detailed Architecture .. 30

Figure 3.11 - Sequence Diagram of the Execution Engine .. 32

Figure 4.1- Global View of the Conformance Testing Process, based on (Technology 1991) 34

Figure 4.2 - Lite Language translation Test 1 - Model description .. 38

Figure 4.3 – Lite Language translation Test 1 - Model data .. 39

Figure 4.4 - Lite Language translation Test 1 - Execution Outcome ... 39

Figure 4.5 - Lite Language translation Test 1 – Translation Model Data Outcome 40

Figure 4.6- Lite Language translation Test2 - Model description .. 40

Figure 4.7 - Lite Language translation Test 2 - Model data ... 41

Figure 4.8 - Lite Language translation Test 2 - Execution Outcome ... 41

Figure 4.9 - Lite Language translation Test 2 – Translation Model Data Outcome 42

Figure 4.10 - Model transformation execution test 1 - Initial conditions ... 44

Figure 4.11 - Model transformation execution test 1 - Model data .. 45

Figure 4.12 - Model transformation execution test 2 - Initial conditions ... 45

Figure 4.13 - Model transformation execution test 2 - Model data .. 46

Figure 4.14 - Model transformation execution test 3 - Initial conditions ... 46

Figure 4.15 - Model transformation execution test 3 – Model data ... 47

xv

Index of Tables

Table 2.1 - Method synthesis and features coverage .. 18

Table 3.1 – Constants for the conversion example, retrieved from (Preden and Pahtma 2009) 25

Table 4.1 - Example of a TTCN-2 based table test .. 35

Table 4.2 - Example of a test case .. 35

Table 4.3 - Lite language translation - Test definition ... 37

Table 4.4 - Lite language translation - Test execution ... 38

Table 4.5 - Lite Language translation Test 1 - Tag definition table ... 39

Table 4.6 - Lite Language translation Test 2 - Tag definition table ... 41

Table 4.7 - Lite Language translation Test 3 - Tag definition table ... 42

Table 4.8 - Model transformation execution - Test definition ... 43

Table 4.9 - Model transformation - Test execution .. 44

xvi

xvii

Acronyms

ACG ATL virtual machine Code Generator

API Application Programming Interface

ATC Atomic Transformation Code

ATL Atlas Transformation Language

ASM Assembly

AST Abstract Syntax Tree

EMF Eclipse Modeling Framework

EMOF Essential Meta Object Facility

EMP Eclipse Modeling Project

GT Graph Transformation

GRIS Group for Research in Interoperability of Systems

IDE Integrated Development Environment

IOT Internet of Things

JVM Java Virtual Machine

MDA Model Driven Approach

MDE Model Driven Engineering

MDR MetaData Repository

OCL Object Constraint Language

OMG Object Management Group

OSI Open System Interconnection

QVT Queries, Views and Transformations

SQL Structured Query Language

TTCN Tree and Tabular Combined Notation

xviii

UML Unified Modeling Language

XML Extensible Markup Language

Chapter 1 - Introduction

IonLPD – Interoperability on Low Power Devices 1

 Introduction Chapter 1

We shall not walk away from our future. We shall harness the power of the IoT to shape the future

together.”

From Gérald Santucci on The Internet of Things: A Window to Our Future

1.1 Motivation Scenario: Plug and Interoperate

“Internet of Things” intends to enhance things, going from books to cars, electrical devices to food, of

our everyday life with information and interconnect them. Thus the users can access the data to

analyze or act according to all aspects of the physical world (Karl Aberer 2006). Accordingly,

everyday things are connected, have an identity, are readable, can acquire intelligence, gather

information from different sources and act accordingly to that information, with user requirement or

autonomously (Kopetz 2011).

As Luigi Atzori (Atzori, Iera et al. 2010) stated “Potentialities offered by the IoT make possible the

development of a huge number of applications”. “Internet of Things” is an emerging technology that is

used in several scenarios. According to Atzori and Iera (Atzori, Iera et al. 2010) there are 5 relevant

application scenarios to take into consideration such as transportation and logistics, healthcare, smart

environments, personal and social and futuristic as shown in the Figure 1.1.

Figure 1.1 - Application domains and relevant major scenarios, based on (Atzori, Iera et al. 2010)

Chapter 1 - Introduction

IonLPD – Interoperability on Low Power Devices 2

One application consists in a comfortable home scenario. In this house, according to the profile of

each inhabitant, the coffee will be ready at the right time; the bathtub will be filled with water at the

desirable temperature and the requested time; the right media will be played through television or

radio, according to the preferences of the user; the heat of the room will be adapted according to the

weather and the user profile; and in addition the electric equipment’s will be automatically turned off

in order to provide an optimization of the energy consumption (Atzori, Iera et al. 2010). This will lead

to a maximization of the user’s comfort according to the environment status and the user profile.

In these “Internet of Things” scenarios the existence of several actuators and sensors is a requirement,

however it mostly lead to a heterogeneous environment with non-standardized data. Since, due to the

lack of data standard in this field, each manufacturer operates data in a different way. This conducts to

a large number of heterogeneous devices and sensor networks and consequently generates an

interoperability problem in the “Internet of Things” domain.

Figure 1.2 - An application scenario of Internet of Things

Interoperability “is the ability of two (or more) systems or components to exchange information and to

use the information that has been exchange” (IEEE 1990). For example, considering the same

domestic environment composed of sensors and actuators, as shown in Figure 1.2, with the aim to

prevent a house fire, a smoke detector (sensor) is installed and sends data to a water sprinkle

(actuator). The actuator receives information from the sensor in an integer value form and acts

according with it. The presence of carbon monoxide is detected by the sensor, however it can be

detected through several types of concentration units, such as g/mL, g/cm
3
 or kg/L. According to the

Chapter 1 - Introduction

IonLPD – Interoperability on Low Power Devices 3

scenario, how will the water sprinkler interpret information and act accordingly? It can not, since there

is no interoperability between the sensor and the actuator, even though the data exchange has been

done correctly.

In order to assure interoperability in the “Internet of Things”, the Plug and Interoperate concept has

been developed and defined by the research group Uninova - GRIS. Therefore, Plug and Interoperate

aims to allow that devices from different manufacturers could be plugged to a heterogeneous network

and interoperate with it without the need of remanufacturing every device that composes the network.

For this proposal, the system must transform disparate data into a known data format which arises due

to the existence of non-standardized data, readable and usable in a heterogeneous environment.

The previous scenario presented can be used as an example of the Plug and Interoperate. Considering

that a new sensor enters in the house network. This sensor uses a specific data format unknown to the

house network, consequently the information will not be spread through the network. The data

exchange in the network will only be possible if exists a specification that tells the system how to

convert the unknown data format to a known one in the network. Thus this specification assumes a

relevant role in the Plug and Interoperate solution and it will be referred as interoperability

specification.

Interoperability specification is a method of supporting the transformation of one data format into

another one in order to achieve interoperability between different data formats. The executors are

responsible for interpreting interoperability specifications and data formats, transforming the last one

into another data format. In Figure 1.3 is represented an information exchange between a source

system (sender) and a target system (receptor), by using an executor to transform the information

according to the interoperability specification, allowing the information exchange.

Figure 1.3 - Source to target information exchange through Interoperability specification

Information Information Source System Executor Target System

Interoperability

Specification

Chapter 1 - Introduction

IonLPD – Interoperability on Low Power Devices 4

1.2 Problem: Operate Interoperability Specifications in a low power device

environment

The Plug and Interoperate concept is executed in the network in an “Internet of Things” environment

where the executor is present. However and taking into consideration the previous environment, the

implementation of such executor in this context is not trivial due to the resource constrains, such as

low processing power and memory (Gsottberger, Shi et al. 2004), associated to heterogeneous devices

that compose the environment.

The devices referred are normally battery powered and with wireless connection to provide

information anywhere at any time and with flexibility to be installed in different places. Consequently,

there is no need of networked power supply, neither physical network connection. Since the devices

power is supplied by battery, a low processing unit is required to extend their activity for the longest

time as possible for information gathering. On the other hand the incremental code migration
1
 has

been achieved using XML (Bray, Paoli et al. 2000), these devices lack the RAM to store even the

simplest XML elements. Thus, the executor has to be implemented considering the low processing

power and memory constrains of the device.

Besides the presented issues related with resource constrains, there is still the need to handle disparate

data formats which can be achieved with the operation of interoperability specifications. However,

these operations are developed in different languages, such as ATL (Bézivin, Dupé et al. 2003) and

QVT (OMG 2003), that were developed without considering the constrains of these devices.

Therefore the challenge is to understand and find new routes to operate interoperability specifications

in these resource constrained devices to provide interoperability in heterogeneous environments. This

challenge leads to the following research question:

This research question will support the development of this master thesis and answering it will be the

challenge of the work. In order to achieve the previous goal, the problem needs to be characterized as

follows.

1
 add, remove or replace code fragments in a remote program

How to operate interoperability specifications in a low power device?

Chapter 1 - Introduction

IonLPD – Interoperability on Low Power Devices 5

Resource constrains

The operation over interoperability specifications, developed over different languages, such as ATL

(Bézivin, Dupé et al. 2003) or QVT (OMG 2003), were developed without any resource constrains

concern. Thus, these operations are done in personal computers that use a resourceful processor meant

to be flexible and used for a wide range of applications and with a lot of memory resources. Low

power devices compose the “Internet of Things” environment and are different from personal

computers because they have low processing power and low memory, due to the battery power and

design constrains, respectively. Accordingly, the problem is how to operate interoperability

specifications considering the resource constrain of devices that compose the environment.

Disparate data format handler

The lack of standard data formats in a heterogeneous environment generates the need to support

disparate data formats. This occurs because devices manufacturer only provide the data formats

without semantic details. For example, considering one low power device in the heterogeneous

environment that uses an UML data format and other device uses a XML data format. To exchange

information between them, the interoperability specification needs to be defined and processed

otherwise the communication does not occur between both in this environment.

1.3 Work Methodology

The Work Methodology used in this thesis is inspired on the Scientific Method described in

(Schafersman 1997). This work approach, as shown in Figure 1.4, is composed of the following steps:

1. Characterise the problem;

2. Do a background research;

3. Formulate hypothesis;

4. Set up an experiment;

5. Test hypothesis through experimentation;

6. Draw conclusions;

7. Publication of results.

Chapter 1 - Introduction

IonLPD – Interoperability on Low Power Devices 6

Figure 1.4 - Work approach used in this thesis

The steps presented in the picture will be defined and explained as following:

1. Characterise the problem

In this step, a significant problem is identified and so are its respective characteristics. It will end with

a research question that will be the base of the research work. The problem identified in this thesis is

how to operate interoperability specifications in a low power device.

2. Do background research

This step is where scientific data from prior work, associated to the research question, is exposed. This

leads to the requirement of gathering information about execution engines that enables interoperability

in heterogeneous low power device environments.

3. Formulate hypothesis

The formulation of hypothesis is one of the steps in this work approach. Based on the background

research the hypothesis must be an “informed, testable, and predictive solution to a scientific

Chapter 1 - Introduction

IonLPD – Interoperability on Low Power Devices 7

problem” (Schafersman 1997) that explains the characterization of the problem, in a way that can be

tested. In this thesis, the hypothesis focuses on the problem of operate interoperability specifications

on heterogeneous low power devices.

4. Set up an experiment

This step consists in an experiment setup in order to validate the formulated hypothesis. This

experiment is used as a proof-of-concept defined by taking into account the characterization of the

problem and the formulated hypothesis.

5. Test hypothesis through experimentation

In this step, several tests over the experimentation were defined in order to obtain the outcome of it.

This outcome is analysed and interpreted considering the characteristics of the problem in order to

validate the hypothesis purposed. If the results can be quantitative and qualitative analyzed, the

outcome should be applied to the results.

6. Draw of conclusions

After the test is completed, it is important to analyse the outcome of the experimentation and verify the

validity of the hypothesis. This analysis can enframe in the hypothesis or not, which can lead to the

confirmation of the hypothesis or the denial of the same. If the hypothesis is confirmed then it will

answer the research question according to experimentation. Otherwise, it must return to point 3 where

a new hypothesis is formulated.

7. Publication of results

In this step, the publication of results is made according to the outcome of the experimentation in the

research work. This step only occurs if the outcome answers the hypothesis defined in the thesis.

1.4 Dissertation outline

This thesis is divided in five chapters and since the first chapter, presents the motivating scenario and

the problem of the thesis, a brief description on the other four will be given:

Chapter 1 - Introduction

IonLPD – Interoperability on Low Power Devices 8

 State of the Art - The second chapter provides technologies that implement the concept of

operate interoperability specification associated to the research question. In the end of the

chapter, an analysis of each state-of-art element will be given according to the problem

defined in the first chapter and the features that each element provides to this work.

 Interoperability on Low Power Devices - The third chapter presents the proposed

solution to provide an answer on how to operate interoperability specifications on low

power devices. It starts with the presentation of the concept behind the solution. Then, it is

the solution with their respective description. Finally it ends with a sequence diagram that

provides a global view of the solution.

 Testing and Validation - The fourth chapter provides the tests used to validate the

formulated hypothesis. It begins with the description of the methodology used to test the

hypothesis. A description of the implemented proof of concept and the test definition and

execution will be presented. Then the results are presented and it is verified if the initial

objectives were fulfilled through an analysis of the test results.

 Conclusions and Future Work - The final chapter of this work presents a summary of

the dissertation, giving a highlight of the most important aspects of the research as well as

a potential direction for future research regarding the obtained results.

Chapter 2 – State of the Art

IonLPD – Interoperability on Low Power Devices 9

 - State of the Art Chapter 2

2.1 State of the Art Review

In this chapter an extensive research is made in order to identify which solutions do exist to operate

interoperability specification in low power devices. Several solutions were identified but only five

will get the main focus due to the fact that these are suitable approaches to achieve the research

goal. The elements in this research use Model Driven Interoperability concepts, which are

summarized next.

Model Driven use models to describe elements of a system with a concrete viewpoint, expressed

with the aid of a well-defined language. Furthermore, it can be characterized by model

transformations that represent relations between models and meta-models. In this work the models

are the information that is transformed, meta-models are the language that describes the

information and model transformation is described by an interoperability specification defined

between those models and meta-models (Kleppe, Warmer et al. 2003). In order to operate

interoperability specifications execution engines are used. The execution engine intends to enhance

software interoperability, by executing the translation of one data language to another one

according to the interoperability specifications.

2.1.1 Individual Review

Several transformation languages with one or more execution engines were considered:

 Atomic Transformation Code Virtual machine - The ATC VM is responsible to

interpret and to process the ATC language file providing QVT- based transformations.

 Eclipse Modeling Framework Virtual Machine – The EMF VM is a byte code

interpreter responsible to transform Ecore data files using ATL language to describe model

transformations.

 Kermeta – Kermeta is an executable meta-modelling language designed to define

operational semantics of meta-models and structures specification.

Chapter 2 – State of the Art

IonLPD – Interoperability on Low Power Devices 10

 Viatra2.0 – Viatra2.0 is a model transformation engineering framework that aims at

supporting the execution of transformations between several modeling languages.

Atomic Transformation Code Virtual machine

ATC VM is a virtual machine for QVT (Queries, Views and Transformations)-based

transformations which is responsible for performing transformations on several model data types. It

has been developed over the Open Canarias S.L. a model transformation project which target goal

was to comply with OMG-MDA, therefore the QVT specification was targeted. The Virtual-

Machine technology drive by its own byte-code model transformation language named Atomic

Transformation Code (ATC) which is the main characteristic of the solution purposed (Sánchez-

Barbudo, Sánchez et al. 2008).

The ATC VM architecture is based on the Eclipse Core and the Eclipse Modeling Framework

(EMF) (Steinberg, Budinsky et al. 2008) and it is currently available as a set of Eclipse plug-ins.

The Eclipse Modeling Framework project is a Java-based modelling framework and code

generation facility for building tools and other applications based on structured data model. EMF is

implemented in java and provides tools and runtime support to produce a set of Java classes and

adapter classes of the model.

The ATC Virtual machine (ATC VM) also known as Virtual Transformation Engine (VTE) is

responsible to interpret and to process the ATC language file. The ATC language file derives from

a translation of the meta-models registered on the Eclipse Modeling Framework to an ATC

language file provided by the ATC tool. ATC language file contains all the semantics of any

programming language decision, loops and own data types. It is a byte code model transformation

language that contains the interoperability specification and the meta-model data. The ATC Virtual

Machine and its respective layered architecture summarized is shown in Figure 2.1.

Chapter 2 – State of the Art

IonLPD – Interoperability on Low Power Devices 11

Figure 2.1 - ATC Virtual Machine architecture, retrieved from (Lorenzo, Luna et al.)

Analysis:

Regarding the ATC tool from an architectural point of view, it can be concluded that it is a Java-

based architecture implemented on top of the Eclipse platform and Eclipse Modeling Framework

(EMF) (Steinberg, Budinsky et al. 2008). The Eclipse platform is a multi-purpose plugin-based

Java IDE, and the Eclipse Modeling Framework (EMF) is a full-fledged Java platform for aid

Model Driven application development, that provides among other things, an abstraction layer to

provide access to several model languages types. Both elements described leads to the fact that the

Virtual Transformation Engine (VTE) is implemented on top of Java-based technologies. One

problem of Java is the need of suitable run-time environment, a Java Virtual Machine (JVM),

which requires significant resources in terms of memories and computing power (Uhrig and Wiese

2007).

The purpose of the VTE is to interpret ATC model and execute the ATC language model

transformation instances, so it does not directly process other transformation languages or model

languages. It can however process other model transformation languages and model languages

registered in the Eclipse Modeling Framework (EMF), for which ATC translation support has been

provided. This translation support is achieved through a traditional parsing, a model generator and

a model transformation, the whole process described, requires memory and processing power

(Gsottberger, Shi et al. 2004) in order to be accomplished.

Eclipse Modeling Framework Virtual Machine

One of the technologies found, was the EMF Virtual machine, this virtual machine is the

responsible for providing model transformations for several model data files. The EMF virtual

Chapter 2 – State of the Art

IonLPD – Interoperability on Low Power Devices 12

machine is a byte code interpreter responsible to transform Ecore data files to describe information

and using an ATL language to describe the model transformation. It is part of the Eclipse Modeling

Project (EMP), which focuses on the evolution and promotion of model-based development

technologies within the Eclipse community by providing a unified set of modelling frameworks,

tools and standards implementations.

The EMF virtual machine tool architecture is based on the Eclipse Core and it is implemented on

top of the Eclipse Modeling Framework (EMF) (Steinberg, Budinsky et al. 2008) and Netbeans

MetaData Repository (MDR) (Matula 2003), which can be seen in Figure 2.2. The EMF and the

MDR, between other things, are model handlers implemented in Java that consist on an abstraction

layer to provide access to the XML-based model (e.g. ecore data files). This Virtual Machine

could also be based on other model handlers as suggested by the “etc.” box in Figure 2.2. The ATL

compiler, also known as ATL VM Code Generator (ACG), is implemented on top of the EMF VM

and is a domain specific language designed to express the compilation of an ATL program model

transformation into ASM code executable by the EMF Virtual Machine (Jouault and Kurtev 2006).

The EMF virtual machine is derived from the current ATL Virtual Machine and is a byte code

interpreter which manages OCL and ATL type’s hierarchy, providing model transformations,

supported by an execution environment that provides the realisation of operations necessary to the

model transformation accomplishment. The necessary inputs in order to achieve that goal, on the

EMF Virtual Machine, are the meta-model and model registered in the Eclipse Modeling

Framework (EMF) Repository and the interoperability specification, described in the only model

transformation language EMF Virtual Machine can process directly, the ASM file. Typically all

inputs are XML-based files, where the model and meta-model are interpreted by a model handler

and the interoperability specification by the EMF Virtual Machine itself.

Figure 2.2 - EMF engine architecture, retrieved from (Jouault and Kurtev 2006)

Analysis:

Architecturally, the EMF Virtual Machine is based on the Eclipse core, and is implemented on top

of Eclipse Modeling Framework (EMF) (Steinberg, Budinsky et al. 2008) and Netbeans MetaData

Repository (MDR) (Matula 2003). Both technologies are full-fledged java components based

Chapter 2 – State of the Art

IonLPD – Interoperability on Low Power Devices 13

platform for aid application development, leading to the conclusion that in order to provide these

technologies to the EMF Virtual Machine architecture, the Java Virtual Machine will be a

requirement to process the Java language, leading to a significant resource usage (Uhrig and Wiese

2007).

The EMF Virtual Machine tool is responsible to provide model transformation, according to an

interoperability specification expressed by an ASM file, which is the only file the EMF Virtual

Machine can process directly. The ASM file is an output of ACG that results from the compilation

process of a XML-based ATL file, this process requires parsing, interpretation and transformation

into XML-based ASM file, although “XML-based parsing requires certain computing power”

(Gsottberger, Shi et al. 2004). Once the ASM is obtained, the EMF Virtual Machine parses it, in

order to access the interoperability specification information.

On the other hand, in order to execute a model transformation, besides the interoperability

specification the EMF Virtual Machine needs to have access to model and meta-model data. This

information is provided by the Eclipse Modeling Framework (EMF) (Steinberg, Budinsky et al.

2008), Netbeans MetaData Repository (MDR) (Matula 2003) or any other model handler, which

virtually gives support to any data format. The problem is that models and meta-models are mostly

described with the aid of a XML-based file, making the parsing of information a requirement for

model handlers to provide data access to the EMF Virtual Machine, leading to a high resource

usage (Gsottberger, Shi et al. 2004) in order to accomplish this process.

Kermeta

Kermeta has been developed as a core language for an MDE (Model Driven Engineering) platform.

It is an executable meta-modelling language, which is designed to define both operational

semantics of meta-models and structures specification. This action language can specify the body

of operations in meta-models complying with the OMG Essential Meta Object Facility (EMOF)

(OMG 2003). This technology provides tools for transforming its meta-models from and to EMOF

and Ecore meta-models. The tool is included in the modelling layer of the RNTL platform, and

used in projects like OpenDevFactory and Speeds (Drey, Faucher et al. 2009).

The Kermeta architecture is built as an extension to Eclipse Modeling Framework (EMF)

(Steinberg, Budinsky et al. 2008) within the Eclipse development environment. The Eclipse

Development environment is a Java IDE to aid application development, where the Eclipse

Modeling Framework (EMF) is integrated. The Eclipse Modeling Framework (EMF) unifies Java,

Chapter 2 – State of the Art

IonLPD – Interoperability on Low Power Devices 14

XML and UML, technologies so that they can be used together to build better integrated software

tools, as the Kermeta virtual machine. The Eclipse Modeling Framework (EMF) is implemented

using Java, but it is used to implement development tools for other languages, in this case Kermeta

language.

The Kermeta language is supported by a Kermeta virtual machine, based on the Java Virtual

Machine, responsible to provide model transformations according to operations specified by the

Kermeta language. In order to execute a model transformation, the kermeta tool requires 2 inputs,

the interoperability specification expressed by a .kmt file (kermeta language) and the meta-model

expressed by a registered meta-model in the Eclipse Modeling Framework Repository (EMF).

Regarding the meta-model, it is a XML-based file processed by the Eclipse Modeling Framework

directly, however Kermeta uses an internal mapping in order to import Ecore model as Kermeta

model. On the other hand the interoperability specification, specified by the Kermeta language, is

processed directly by the tool itself, as seen in the Figure 2.3.

Figure 2.3 - Processing Kermeta language

Analysis:

Analysing Kermeta from an architectural point of view, it can be concluded that the technology

possesses a Java-based architecture and is also implemented on top of one, Eclipse Modeling

Framework (EMF) (Steinberg, Budinsky et al. 2008). In order to process the elements that compose

the Kermeta Virtual Machine architecture, a Java Virtual Machine is needed to execute the Java

language, leading to the requirement of processing power and memory (Uhrig and Wiese 2007).

Chapter 2 – State of the Art

IonLPD – Interoperability on Low Power Devices 15

The model transformation execution process in the Kermeta Virtual Machine is achieved recurring

to two inputs, the Kermeta language and the meta-model or Kermeta model. The Kermeta language

is processed by the Kermeta Virtual Machine, through the parsing of the Kermeta language file

resulting into an Abstract Syntax Tree (AST) (Jones 2003) and then loaded and translated into a

Kcore model. The process described, parsing and translation, are resource intensive processes

(Gsottberger, Shi et al. 2004).

On the other hand this tool accesses the meta-model information, through the Eclipse Modeling

Framework (EMF) (Steinberg, Budinsky et al. 2008). The EMF is responsible to provide the

Kermeta Virtual Machine the ability of processing several meta-model types, since the Virtual

Machine natively integrates Ecore definitions. However it requires a translation of the EMF meta-

model into a Kermeta model, leading to the conclusion that this process requires the parsing and

translation of information requiring processing power in order to be accomplished (Gsottberger,

Shi et al. 2004).

Viatra2.0

“Viatra2.0 (VIsual Automated model TRAnsformations) is a general-purpose model transformation

engineering framework that aims at supporting the entire life-cycle, i.e. the specification, design,

execution, validation and maintenance of transformations within and between various modeling

languages and domains in the MDA“ (Varró, Balogh et al. 2006). Viatra2.0 is available as part of

the Eclipse GMT Subproject and is being developed at the Fault Tolerant Systems Research Group

at the Budapest University of Technology and Economics, and it was inserted in several projects

such as the project HIDE.

Viatra2 have a Java based architecture, where there are three main modules, the Eclipse Modeling

Framework (EMF) (Steinberg, Budinsky et al. 2008), the Viatra2.0 Model transformation Plug-in

and the Viatra Model Space, as shown in Figure 2.4. Viatra2.0 is implemented on top of the

Eclipse Modeling Framework (EMF) (Steinberg, Budinsky et al. 2008) and the model

transformations in Viatra2.0 tool are primarily executed within the framework. In order to provide

that model transformation execution in consonance with the Eclipse Modeling Framework (EMF)

(Steinberg, Budinsky et al. 2008) the tool is fitted with the Viatra2.0 Model transformation plug-in.

This element is the main responsible to handle and transform heterogeneous meta-models and their

respective data into a Viatra2.0 data format, which is achieved through XML, Model and Xform

parsers and their respective interpreters. The Viatra2.0 Model Space is responsible to provide

model transformation execution.

Chapter 2 – State of the Art

IonLPD – Interoperability on Low Power Devices 16

Figure 2.4 - An overview of the Viatra2 transformation execution, retrieved from (Varró,

Balogh et al. 2006)

The main purpose of Viatra Model Space is to provide a model transformation execution engine to

the Viatra2 tool. To achieve model transformation the engine requires 2 inputs, an interoperability

specification and a meta-model. The interoperability specification is expressed by a Graph

Transformation rules (GT) or an Abstract State Machines (ASM) (Varró and Balogh 2007) this file

requires the interpretation and compilation by the engine in order to be accessible to it. The meta-

models in this technology are mostly represented through Ecore, but the Eclipse Modeling

Framework (EMF) (Steinberg, Budinsky et al. 2008) and the Viatra2.0 Model Transformation

Plug-in provides support to several meta-models data types. Regarding the execution Viatra2.0

enables the separation of design (and validation) and execution time, as shown in Figure 2.5.

Figure 2.5 - Viatra2 execution overview, retrieved from (Varró, Balogh et al. 2006)

Analysis:

The Viatra2 tool, from an architectural point of view, is integrated in the Eclipse Modeling

Framework (EMF) for general-purpose model transformation engineering framework, to support

various model transformation languages and domains in the MDA. It has built-in support, through

the Viatra2.0 Model transformation Plugin, for different data formats and different transformation

languages, giving this tool the ability to support heterogeneous data formats and interoperability

Chapter 2 – State of the Art

IonLPD – Interoperability on Low Power Devices 17

specifications. The problem is that both framework are Java-based technologies, requiring resource

intensive processes in order to be executed correctly (Uhrig and Wiese 2007).

Viatra2 tool requires the interoperability specification and the meta-model so it can execute a

model transformation. In order, to provide the model transformation execution there is the

requirement to access the information in the inputs of the tool. To achieve this goal the tool recurs

to XML, XForm and Model parsers to compilers and interpreters. The whole process is done in

design time and requires memory and computing power to be achieved (Gsottberger, Shi et al.

2004). The model transformation execution is done in runtime and is described by the translation of

the inputs and the execution according to an interoperability specification, this translation. The

translation described is achieved through a model transformation and a rule interpreter, being this a

resource intensive process (Gsottberger, Shi et al. 2004).

2.1.2 Synthesis

Presented and described each state-of-art element, it is now time to resume the main features of

each element relating it to each one of the characteristics of the problem: Handling disparate data

formats and Resource constrains.

In order to handle disparate data formats, all the technologies have a common solution expressed in

their architecture, the Eclipse Modeling Framework (EMF) (Steinberg, Budinsky et al. 2008). The

main difference between the technologies studied is the way they use EMF. The ATC Virtual

Machine and Kermeta use this technology as a model handler and model repository, and both have

a translation support from EMF models to their native language type. The EMF Virtual Machine

directly access to the Eclipse Modeling Framework, or any other model handler to process model

information, providing to this technology an extensive support to heterogeneous data. Viatra2

access information from the EMF through the Viatra2 Model Transformation Plugin layer, which

was designed to provide the translation of languages to the Viatra2 model transformation engine

and to provide support to other languages the EMF cannot process.

Regarding the execution engine, all of the technologies studied, need the parsing of their respective

inputs information, leading to the requirement of having processing power to achieve this goal

(Gsottberger, Shi et al. 2004). Besides that these execution engines rely on a Java-based

architecture requiring a Java Virtual Machine to process the Java language, leading to a significant

resource usage (Uhrig and Wiese 2007) by all the technologies addressed.

A brief analysis of each element according to each feature of the problem, previously defined, is

shown in Table 2.1. Each row of the table represents the elements studied and each column the

features of the problem.

Chapter 2 – State of the Art

IonLPD – Interoperability on Low Power Devices 18

Table 2.1 - Method synthesis and features coverage

 Resource Constrains Disparate data handler

ATC VM

No, since it is implemented on top of

Eclipse and the EMF project and

possesses a Java-based architecture.

There is also the requirement of parsing

inputs.

Yes, it uses a byte-code model transformation

language, this language contains all the

semantics of any programming language,

which makes possible the support of any model

language by this tool

EMFVM

No, the EMF Virtual Machine tool is

based in resource intensive technologies,

such as XML parsers, and Eclipse Ecore.

Yes, this technology supports only ecore data

files, but since it is based on several model

handlers, virtually any model is possible to be

supported by this tool.

Kermeta

No, the tool is based in resource intensive

technologies, such as XML parsers,

Eclipse Core and the Eclipse Modeling

Framework. The Kermeta virtual

machine has a Java-based architecture.

Yes, since the Kermeta meta-models can be

easily transferred from/to other systems. This

tool can virtually support any data type.

Viatra2

No, the Viatra2 tool is integrated in the

Eclipse Modeling framework, and it

recurs to a XML serializer and a XForm

parser, in order to parse the models data

an then interpret it.

Yes, the Viatra2 is integrated in the Eclipse

framework in order to support various model

transformation languages and domains in the

MDA.

2.2 Advancement

After reviewing and analysing all elements of the state of art, it can be concluded that none of the

technologies presented can solve all the features of the problem described. In order to provide a

suitable solution, different functionalities of each technology were selected with the purpose of

fulfill all the requirements previously stated.

Regarding the handling of disparate data formats, all systems rely on the Eclipse Modeling

Framework (EMF) (Steinberg, Budinsky et al. 2008). Among the studied elements, the EMF

Virtual Machine is the only technology that directly access to the information on the Eclipse

Modeling Framework and is architecturally designed to support countless model handlers. Virtually

Chapter 2 – State of the Art

IonLPD – Interoperability on Low Power Devices 19

this characteristic of the EMF Virtual Machine grants support to any data format, providing the

most suitable approach to the solution.

In terms of resource constrains, none of the technologies studied fulfill the needs of the solution but

there are, in some of the elements, interesting characteristics to contribute to it. One interesting

approach is the separation of design time and execution time provided by Viatra2 which can

severely contribute to a resource aware solution. Another interesting approach is made by the ATC

VM and EMF VM, which consists in the translation of the interoperability specification to a byte-

code format. This byte-code format directly provides, to the virtual machine, the operation

necessary to the transformation execution without the need of translation. The only problem is both

virtual machines require a XML-Parser to process the interoperability specification.

One major issue regarding the resource constrains is the constant need of XML-parsers in all

technologies studied. To avoid this issue, the need of redefining interoperability specification,

models data to a new lite format, is of extreme importance. Since EMF Virtual Machine is the

technology that provides better support to disparate data, it will be used as a reference on the

solution purposed.

Chapter 2 – State of the Art

IonLPD – Interoperability on Low Power Devices 20

Chapter 3 – Interoperability on Low Power Devices

IonLPD – Interoperability on Low Power Devices 21

 - Interoperability on Low Power Chapter 3

Devices

The purpose of this work is to support interoperability specification execution on low power

devices. To accomplish this goal, two different approaches are taken in consideration:

 Execute the minimum of processes in run-time - This is made to enable low power

devices to execute the only the run time processes required to accomplish a model

transformation execution.

 Use of a lite language - This language is designed to overcome the processing and

memory limitations that exist on low power devices.

The first approach relies on the minimum execution of processes in run time. This approach arises

to allow some run time demanding processes to be executed by resourceful devices in design time.

This stems from the model transformation execution done by the EMF Virtual Machine
2
,

(Steinberg, Budinsky et al. 2008) which requires intensive resource usage and far too demanding

processes, like file compilation and XML-parsing.

The second approach relies on the use of a lite language. This language is created due to the fact

that the EMF Virtual Machine execution requires access to important data, such as model data
3
, to

provide a model transformation execution. Two problems arises from this, the storage of that

information and the XML-parsing to access that data. These procedures require computing and

memory power, so they should therefore, be avoided on low power devices.

2
 A model transformation execution engine

3
 XML-based file with the data according to the meta-model definition whose describe something in a system

Chapter 3 – Interoperability on Low Power Devices

IonLPD – Interoperability on Low Power Devices 22

The model transformation defined by Eclipse consists in an interoperability specification

(described through an ATL) between two models (described through Ecore). Those models contain

data that is operated through an execution engine to provide a model transformation. In order to

provide model transformations on an embedded system a solution is presented on Figure 3.1.

Figure 3.1 – Approach example

This chapter goal is to describe the presented solution and will be structured as follows:

 ATL compilation - Designed to express the compilation of a model transformation

language into an executable code that will be processed by the Execution Engine.

 Lite Language - Designed to express the information contained in a XML-file on a simple

lite format.

 Execution Engine - Responsible to execute a model transformation and handle lite models

data.

Design

time

Run

time

ATL

Compiled ATL

Source

XML Lite

Source Ecore

Data XML

Target

XML Lite

Target Ecore

Data XML

Chapter 3 – Interoperability on Low Power Devices

IonLPD – Interoperability on Low Power Devices 23

3.1 ATL compilation

A valid way to use ATL compilation in low power devices is to provide a model transformation

language in a textual assembler file that will be interpreted by the execution engine. Unlike this,

EMF Virtual Machine uses an assembler language file to describe a model transformation

expressed in a XML data type.

The compilation process is based on ATL Virtual Machine specification (ATLAS 2005) and it

consists in a compilation of an ATL file to a set of instructions readable by the execution engine.

These instructions are:

 Operand Stack Handling - This instruction provides a number of instructions that enable

direct manipulation of the operant stack. It defines instructions like push, pop, load, store,

among others.

 Control Instructions - This cause the ongoing execution to continue from an instruction

that may be different from the previous one. It defines instructions like if, goto, iterate,

enditerate and call.

 Model Handling Instructions - This instruction set is dedicated to models and model

elements handling. It defines instructions like new, get, put and findme.

3.1.1 ASM text file

The Eclipse Modeling Framework Virtual machine is designed to read the ASM file format and

correctly perform the operations specified therein. The ASM file is an assembly file encoded by a

XML. Thus the ASM file is composed by XML elements in an ordered structure that contains a

constant pool (cp), a field and one or more operation fields, as shown in Figure 3.2.

Figure 3.2 - ASM structure, retrieved from (ATLAS 2005)

Chapter 3 – Interoperability on Low Power Devices

IonLPD – Interoperability on Low Power Devices 24

This ASM file uses a reference system that connects every XML element. Therefore the approach

followed to avoid the XML parsing on low power devices consists in interconnecting every XML

element and turning the ASM into an assembly language file as shown in Figure 3.3.

Figure 3.3 - ASM Compilation process

3.2 Lite Language

Interpreting a model data defined in a XML requires processes like parsing and interpretation,

although “XML-based parsing requires certain computing power” (Gsottberger, Shi et al. 2004).

Therefore a lite language in a textual format is defined to represent the model data information in

another format.To do so, the XML fields and parameters are identified with hexadecimal tags, and

the XML file is compiled to a hexadecimal format, to reduce the use of intensive resource

processes to interpret the model data. Both files contain the same information but are described in

different formats.

The compilation process is based on (Preden and Pahtma 2009), that consists on an appropriate

structuring and encoding of data suitable for use by Wireless Sensor network nodes. In this a

general data format is adopted which allows any type of data to be transmitted and interpreted by

any node. In the solution the data fields in the message are identified by tags describing the

contents of the field. The semantics of the tags must be defined and assigned with a specific

meaning before system deployment.

The structure of the data is based on object-subject-value expressions. The expressions are three

tuples , a brief description of each tuple is given:

 Object - describes the situation parameter type, such as, situation types or other object

types(e.g. in case of a mathematical equation the mathematical operation are also objects)

1010101110110101011101100111
0110011101100111011001110110
0111011001110110011101100111
0110011101100111111011001111
1101100111111011001111110110

011111101100111

Assembly

Operations Field
Constant

Pool

Chapter 3 – Interoperability on Low Power Devices

IonLPD – Interoperability on Low Power Devices 25

 Subject - Refers to another expression, in order to enable an expression hierarchy.

 Value - contains the value of the situation parameter

For further understanding an example will be given. The objective of this example is to create a

complex expression that given a temperature in Celsius units, will convert the temperature to

Fahrenheit units. For that, there is the requirement of defining the tags, as shown on Table 3.1.

Table 3.1 – Constants for the conversion example, retrieved from (Preden and Pahtma 2009)

Since the tags are defined, there is the need of defining the expression , that

converts Celsius () units to temperature in Fahrenheit units (). In order to express the equation

in the expression format outlined above, the use of constants listed in Table 3.1 is a requirement.

The constants in the table are arbitrarily chosen for the example only. Using the constants from

Table 3.1 the following expressions can be formed.

The following expression hierarchy can be visible in Figure 3.4.

Figure 3.4 - Expression hierarchy for conversion example, retrieved from (Preden and Pahtma

2009)

Chapter 3 – Interoperability on Low Power Devices

IonLPD – Interoperability on Low Power Devices 26

3.3 Execution Engine

The Execution Engine presented in the Interoperability on Low Power Devices is based on the

EMF Virtual Machine architecture (Wagelaar 2011) but with changes to be suitable to low power

devices. In order to understand the architecture a brief description, on the main modules, is

presented:

 Control - This module is responsible to control the flow of information to execute the

model transformation.

 Model Handler - The Model Handler module provides primitives to handle models data.

 Virtual Machine - The Virtual Machine module is responsible to execute the model

transformation operations.

The architecture and the described modules are presented in Figure 3.5.

Figure 3.5 – Execution Engine Architectural Solution

3.3.1 Logical Architecture Specification

The Logical Architecture Specification provides a description of the logical modules presented in

the system. Each logical module is described with their purpose, methods and workload

description. The Figure 3.6 represents a basic example of a logical module (Module 1). The upper

block is an API that represents a set of methods that are available to other modules to use. The

bottom block is a Caller Interface that represents methods that the module uses to communicate

with other modules. Each module description provided in this work follows the structure presented

in this section.

Execution Engine

Control Model Handler

Virtual Machine

Chapter 3 – Interoperability on Low Power Devices

IonLPD – Interoperability on Low Power Devices 27

Figure 3.6 - Example of module with API and Caller Interface

3.3.1.1 Control

The control module is responsible to monitor the data flow of the execution engine. The control

module is the maestro of the execution engine, since it assigns “work” to other modules in order to

make the whole process of the model transformation execution occur in consonance to what is

described in the interoperability specification. It invokes methods from every module presented in

the execution engine.

The Figure 3.7 shows this module composition.

Figure 3.7 – Control

The following interface is an API:

 Request Handler Interface

The Request Handler Interface is an API that provides methods to enable a model

transformation execution. These methods use the model data and the lite interoperability

specification as an input to start the execution of the transformation process.

Module 1

Caller Interface

API

Request Handler

Interface

Model Handler Interface Virtual Machine Interface

Control

Chapter 3 – Interoperability on Low Power Devices

IonLPD – Interoperability on Low Power Devices 28

Each of the following interfaces are caller interfaces:

 Model Handler Interface

The Model Supplier Interface is a caller interface that invokes methods to load, access or

change data of the model.

 Virtual Machine Interface

The Virtual Machine Interface is a caller interface that invokes methods to execute

interoperability specification operations.

The workload of this logical module starts at the Request Handler API. Thus, the Control module

will invoke a method, through the Model Supplier Interface, to load the model data. Afterwards, it

will process the interoperability specification and act according to the information interpreted.

Depending on the information processed the Control module may use the Model Supplier caller

interface and the Virtual Machine interface, to access or change model data and to invoke existing

methods on the Virtual Machine, respectively. Once the interoperability specification is processed

it will require the output of the execution.

3.3.1.2 Model Handler

The Model Handler logical module is responsible for interpreting, exporting and providing model

data to the execution engine. The interpreting function is designed to receive model data, analyse it

and construe model information readable by the system. The exporting function does the opposite,

since it gathers the system model data and turns it into model data so it can be exported as an

output of a model transformation. It is also responsible to provide or change specific model

elements data to the execution engine.

The Figure 3.8 shows this module composition.

Figure 3.8 - Model Handler

Model Interface

Model Handler

Chapter 3 – Interoperability on Low Power Devices

IonLPD – Interoperability on Low Power Devices 29

Each of the following interfaces are API’s:

 Model Interface

The Model interface is an API that provides methods to load a model data and to get and

set data over specific fields of an interpreted model data to the system. It also provides

methods to retrieve an entire model according to a system constructed model.

The workload of this logical module starts through the Model Interface API with the loading of a

model data that will be stored in memory. Once the model data is loaded to memory, the module

will provide methods to get and set specific model data information. In the end of the model

transformation execution process, this module is responsible to provide methods to retrieve the

translated model data.

3.3.1.3 Virtual Machine

The Virtual Machine is responsible to execute interoperability specification instructions over model

data according to information provided by other modules.

The Figure 3.9 shows this module composition:

Figure 3.9 – Virtual Machine

The following interface is an entry interface:

 Execution Provider Interface

The Lite Language interface is an API that provides methods to execute an instruction over

specific model data.

This logical module is responsible to provide methods to execute instructions over a specific model

data. It all starts in the Execution Provider Interface where the method to execute an instruction is

called, afterwards the module requires access to specific model data in order to execute that

instruction. Once the result of the execution is achieved, the module stores the outcome of the

operation in memory.

Virtual Machine

Execution Provider Interface

Chapter 3 – Interoperability on Low Power Devices

IonLPD – Interoperability on Low Power Devices 30

3.3.2 Detailed architecture

The set of logical modules described in the previous section with their respective interfaces provide

a new detailed overall architecture of the execution engine, as showed in Figure 3.10.

.

Figure 3.10 - Detailed Architecture

3.3.3 Architecture Module Sequence

Each module individually performs a specific task, however to meet the requirements proposed for

the execution engine they must work as one. The purpose of this section is to provide a description

over the overall functionality of the execution engine with the aid of an UML sequence diagram

(Fowler and Scott 2000). On the sequence diagram of the architecture, every main module is

represented through a lifeline block and the memory is represented through an entity. The actions

are represented by a closed-end arrow, and the returns of those actions are represented through a

dashed line and an open-end arrow.

The workflow of the execution engine starts at the Control module since this is the logical module

responsible to handle new model transformation requests. These requests require the existence of a

lite version of the interoperability specification data (ATL) and a lite version of the model data

Execution Engine

Control

Request Handler Interface

Virtual Machine Interface Model Supplier Interface

Model Handler

Model interface

Virtual Machine

Execution Provider Interface

Chapter 3 – Interoperability on Low Power Devices

IonLPD – Interoperability on Low Power Devices 31

(Data) as an input, so that the model transformation execution can be performed. Once the request

is made the Control module invokes a method on the Model Handler Module to load model data to

memory.

At this point, the interoperability specification still has not been interpreted and processed, but

since the model data is loaded on the memory, all conditions are gathered to start the execution of a

model transformation. The Control Module will be responsible to interpret the interoperability

specification. That interpretation requires the reading of an instruction list contained in the

interoperability specification file. All instructions must be read and processed so that the model

transformation execution could be accomplished.

For each instruction contained in the interoperability specification, the Control module must

analyse which actions to execute according to the instruction provided.

 If the instruction is a “get”, the Model Handler logical module will load data to memory so

that the virtual Machine can use it to process an instruction.

 If the instruction is a “set”, the Model Handler logical module will set a new value on the

model data information, according to information contained in memory.

 If the instruction is not a “set” or a “get”, the Control module will invoke a method, with

the instruction as an input, on the Virtual Machine module, so that the virtual machine

execute that instruction and retrieve the result of it to memory.

Once all instructions are processed, the Control Module will request the Model Handler module the

output of the execution process. The workflow of the architecture when executing a model

transformation is represented in the Figure 3.11.

Chapter 3 – Interoperability on Low Power Devices

IonLPD – Interoperability on Low Power Devices 32

Figure 3.11 - Sequence Diagram of the Execution Engine

Chapter 4 – Testing and Validation

IonLPD – Interoperability on Low Power Devices 33

 - Testing and Validation Chapter 4

4.1 Testing Methodology

Testing is the experimentation process performed to find errors in a system according to

expectations defined by requirements or specifications. This process is usually carried out in a

controlled environment where normal and exceptional use is simulated. Testing show the presence

of errors, not their absence and it does not ensure the complete correctness of the implementation

(Tretmans 2001).

Several testing methodologies exist to evaluate solutions, each one with a specific purpose and a

specific field of application. A standard testing methodology is used to evaluate the present

solution, leading to the use of an international standard for conformance testing of Open Systems,

i.e. the ISO 9646: “Open Systems Interconnection (OSI) Conformance Testing Methodology and

Framework”(Technology 1991).

ISO 9646 specifies OSI conformance testing and abstract test suites standards. This standardization

promotes a comparability and acceptance of test results produced in different environments,

reducing the need for repeated conformance testing on the same solution (Technology 1991).

An approach based on the standard ISO 9646 is used in this work, as seen in Figure 4.1 this

methodology is divided in five different stages. The first stage is the hypothesis, which consists in a

proposition that attempts to explain a phenomenon. The second stage consists in a definition of

tests in order to be executed. The third stage is a Proof of concept that consists in the

implementation of a system to evaluate its basic functionalities and demonstrate its feasibility. The

fourth stage is the Test Execution where tests are executed and analysed, leading to a specific

verdict that derives from the comparison of the initial requirements defined and the output of the

execution (Tretmans 2001).

Chapter 4 – Testing and Validation

IonLPD – Interoperability on Low Power Devices 34

Figure 4.1- Global View of the Conformance Testing Process, based on (Technology 1991)

The abstract tests are specified with a well-defined notation, independent of any implementation.

The notation used is TTCN-2 where the internal behavior of the system is not relevant, being the

sequence of events the core of the concept referred (Tretmans 1992).

The TTCN-2 is presented in a tabular form which shows the various parts that define the test, like,

a chain of successive events, a verdict and a header. Each table possesses a header, where the test

name, the purpose, the inputs and outputs are stated. The chain of successive events is indicated by

increasing the indentation of the same, and is identified by a line number.

The events that compose the chain are divided in two types: actions and questions. The actions are

represented with an exclamation mark (“!”) at the beginning of the event, define the interaction

with the system. The questions, which are represented with a question mark (“?”), define the

expect answers from the system. The sequence ends with the specification of the verdict that is

assigned when the execution of the sequence ends.

The verdict can output three results: “Success”, “Fail” and “Inconclusive”. Success indicates that

the test was executed successfully with the expect result, Fail indicates that the implementation

does not conform to the specification, and Inconclusive indicates that no judgment can be retrieved

from the test performed.

Hypothesis

Test

Definition

Proof of

Concept

Test

Execution
Verdict

Chapter 4 – Testing and Validation

IonLPD – Interoperability on Low Power Devices 35

Table 4.1 - Example of a TTCN-2 based table test

Invocation of model transformations

Test name: Test the invocation of a model transformation

Purpose: Check if the execution engine process the request, and provide the result of the transformation

Inputs: I1: Model Data, I2: Interoperability Specification, I3:Expected output

Outputs: O1: Result of the model transformation execution

Line Number Behaviour Verdict

1 ! Invoke the model transformation with parameters (I1,I2)

 2 ? Returned data as transformation execution result (O1)

 3 ? Result (O1) is equal to Expected (I3) SUCCESS

4 ? Result (O1) is different from the Expected (I3) FAIL

5 ? No Data Result INCONCLUSIVE

An example of a TTCN-2 based table test is shown in Table 4.1. It exemplifies an invocation of a

model transformation. The test starts with the invocation of a model transformation to the

execution engine. The next step is verifying if there is any data returned from the model

transformation execution. If there is an output of the model transformation and the expected result

is equal to the output, the verdict of the test is “SUCCESS”, otherwise if the output of the

transformation is not equal to the expected output then the verdict of the test is “FAIL”. In case the

invocation is made and there is no output of the test the result of the test is “INCONCLUSIVE”,

since it is not possible to evaluate the transformation.

A TTCN-2 based table test is defined with the purpose of representing the execution process.

However, there is the need of representing the model transformation tests performed considering

the definition in Table 4.1. An example of a test case is shown in Table 4.2. The parameters of the

table are the inputs for testing, the expected results and the results obtained during the test. Each

row of Table 4.2 represents a specific test case. With this approach more than one test case can be

represented for each abstract test.

Table 4.2 - Example of a test case

T
es

t

Input Output
Result

(Line number)

I1: Model Data
I2:Interoperability

Specification

I2:Expected

Result O1: Result Expected Actual

1 M1 IS2 M2 M2 (3) (3)

2 M1 IS2 M3 M4 (3) (4)

3 No Data No Data No Data No Data (3) (5)

Chapter 4 – Testing and Validation

IonLPD – Interoperability on Low Power Devices 36

4.2 Proof of Concept Implementation

TinyOS and consequently nesC (Gay, Levis et al. 2003) were chosen for the proof of concept

implementation, since the purpose of this work is to implement an execution engine able to provide

model transformations on low power devices. Thus, “the component-based structure of TinyOS

allows for an application designer to select from a variety of system components in order to meet

application specific goals”(Hill and Culler 2002).

Therefore, a reliable language to the Interoperability on Low Power Devices proof of concept

implementation is nesC (Gay, Levis et al. 2003). The nesC language is an extension to the C

programming language designed to embody the structuring concepts and execution model of

TinyOS.

However, the implementation of the Interoperability on Low Power Devices proof of concept,

reside on the transformation of the Eclipse Modeling Framework Virtual Machine (EMF VM)

implemented in Java to a Virtual Machine implemented in nesC. Therefore, according to the

solution presented, there is the requirement of handling the inputs of the EMF Virtual Machine,

such as, the Model Data (XML) and the Interoperability Specification (ATL), to be operated on

low power devices.

The Model Data is described through a XML. The solution consists in converting the XML to a

Lite XML model, maintaining the same information. The conversion consists in two distinct parts.

The first part is a Java library able to convert a XML to a lite language, expressed in a hash table,

and vice versa. The second part consists in a library contained on tinyOS that is responsible to

handle the hash table data.

4.3 Test Definition and Execution

Considering the previous test methodology presented, two tests are presented:

 Lite language translation - In this test case is verified if the system can perform a lite

language translation of a given model data. The main goal of the test is to test if the system

can translate model data to a lite format without losing any data information.

 Model transformation execution - In this test case is verified if the system can perform a

model transformation execution, according to an interoperability specification and a lite

model data, and retrieve the expected result of the execution.

A detailed definition over each test is presented in the next two sections.

Chapter 4 – Testing and Validation

IonLPD – Interoperability on Low Power Devices 37

4.3.1 Lite language translation

Test definition

This test is performed to verify the translation of a XML file to a lite language that will be used by

the Execution Engine. The purpose is to test several XML structures, data types and tag definition

tables as an input of the translation to verify if the lite language maintains all the information

contained on the XML.

To perform the proposed test the model data and the tag definition will be the input of a model data

translation to lite language execution. If the execution returns a translation result, it proves that the

translation execution occurred and returned some data. Therefore, there is the requirement of

verifying if the output changed format and contains the original data elements. Thus a new

translation will be executed in order to verify if the output of the process is exactly the same as the

original file.

The execution of the test can fail in two conditions, if there is no output of any model data

translation execution performed and if the output of the second model data translation contains

different data elements of the original ones. The test definition is described through a TTCN based

table and is presented in Table 4.3.

Table 4.3 - Lite language translation - Test definition

Test the model data translation to lite language format

Test name: Test translation of model data to lite language format

Purpose: Check if the translation is possible and able to provide the expected result with different inputs

Inputs: I1: Model Data, I2: Tag Definition table

Outputs: O1:Model Data that results of the first model data translation, O2: Model Data that results of the

second model data translation

Line Number Behaviour Verdict

1 ! Execute a model data translation with parameters (I1, I2)

 2 ? Returned data as translation result (O1)

 3 !Execute a model data translation with parameters (O1, I2)

 4 ?Returned data as translation result (O2)

5 ? Result (O2) contains original data elements SUCCESS

6
? Result (O2) is different from the original data

elements
FAIL

7 ? No Data Result INCONCLUSIVE

8 ?No Data Result INCONCLUSIVE

Chapter 4 – Testing and Validation

IonLPD – Interoperability on Low Power Devices 38

Test execution

To verify the validity of the proposed test, several tests are performed according to different

models, models data and tag definition tables. The main goal of the tests is to verify the reliability

of the system tested according to the previous definitions.

All tests performed and their respective results are presented in Table 4.4.

Table 4.4 - Lite language translation - Test execution

T
es

t

Input Output
Result

(Line number)

I1: Model Data
I2:Tag Definition

Table
O1: First Result O2:Second Result Expected Actual

1 M1 TDT1 LM1 M1 (5) (5)

2 M2 TDT2 LM2 M2 (5) (5)

3 M2 No Data No Data No Data (8) (8)

Each test is previously defined with a specific propose, therefore every test is performed

considering different inputs that are discriminated next:

 Test 1 - In this test, the model input is described by an ecore whose contains several data

types elements contained in one class (Test1), as shown in Figure 4.2.

Figure 4.2 - Lite Language translation Test 1 - Model description

Therefore the model data (I1) needs to be defined in order to test the data translation to a

lite format. The data used in the test is shown in Figure 4.3.

Chapter 4 – Testing and Validation

IonLPD – Interoperability on Low Power Devices 39

Figure 4.3 – Lite Language translation Test 1 - Model data

Finally the last input for the translation process needs to be defined, the tag definition table.

The tag definition table (I2) contains all the tags required to provide the translation, as

shown in Table 4.5.

Table 4.5 - Lite Language translation Test 1 - Tag definition table

Type Constant Description

Test1 0x00 XML Class definition

Integer 0xD0 Integer atribute of Test1

Boolean 0xD1 Boolean atribute of Test1

String 0xD2 String atribute of Test1

Float 0xD3 Float atribute of Test1

The outcome of the test (O1) is a model data, as shown in Figure 4.4.

Figure 4.4 - Lite Language translation Test 1 - Execution Outcome

Afterwards a new translation will be performed to verify if O1 contains all data elements

present in I1 model data. The outcome of the model transformation process contains all

Chapter 4 – Testing and Validation

IonLPD – Interoperability on Low Power Devices 40

elements of the model data (I1) as shown in Figure 4.5, which means the translation was a

success.

Figure 4.5 - Lite Language translation Test 1 – Translation Model Data Outcome

 Test 2 - In this case, the model is also described by an ecore which contains several classes

each one with one attribute (T1,T2 and T3), as shown in Figure 4.6.

Figure 4.6- Lite Language translation Test2 - Model description

Once again the model data (I1) is described to accomplish the translation process. The

model data used is shown in Figure 4.7.

Chapter 4 – Testing and Validation

IonLPD – Interoperability on Low Power Devices 41

Figure 4.7 - Lite Language translation Test 2 - Model data

The tag definition table (I2) contains the tags required to provide the translation, as shown

in Table 4.6.

Table 4.6 - Lite Language translation Test 2 - Tag definition table

Type Constant Description

Test2 0x00 XML Class definition

T1 0xD0 Class and Integer atribute of Test2

T2 0xD1 Class and Byte atribute of Test2

T3 0xD3 Class and String atribute of Test2

O1 returned the model data elements contained in the I1, as shown in Figure 4.8

Figure 4.8 - Lite Language translation Test 2 - Execution Outcome

Chapter 4 – Testing and Validation

IonLPD – Interoperability on Low Power Devices 42

A new translation will be performed to verify if O1 contains all data elements present in I1

model data. The outcome of the model transformation process contains all elements of the

model data (I1) as shown in Figure 4.9, which means the translation was a success.

Figure 4.9 - Lite Language translation Test 2 – Translation Model Data Outcome

 Test 3 - In this case, the model data input (I1) will be the same used in the test 2 (Figure

4.7) and the tag definition table (I2) does not contain any tags, as shown in Table 4.7.

Table 4.7 - Lite Language translation Test 3 - Tag definition table

Type Constant Description

- - -

- - -

- - -

- - -

O1 did not return any model data, which means the translation failed

Each outcome of the tests performed as well the expected result is presented in Table 4.4. The

verdict obtained for all the tests performed were in conformance with the expected results.

Chapter 4 – Testing and Validation

IonLPD – Interoperability on Low Power Devices 43

4.3.2 Model transformation execution

Test definition

This test is performed to verify if the execution engine is able to provide an output of a model

transformation execution. The purpose is to test if the execution engine can process a model

transformation request with different inputs (model data and interoperability specification) and

provide the expected result of the transformation.

To perform the test there is the requirement of loading information to the execution engine so that

it can perform the model transformation execution. Thus, the loading process of model data and

interoperability specification is performed, taking model data and interoperability specification as

inputs of each process, respectively. Afterwards a transformation will be invoked with both inputs

to verify if the execution engine performs a model transformation and provide the expected result

according to different file inputs. Thus, once the process is terminated, the output of the model

transformation execution will be compared to the expected result. If the output is equal to the

expected result then the test is a success, otherwise it fails. If there is no output of the model

transformation execution then the test is inconclusive.

Table 4.8 - Model transformation execution - Test definition

Test a model transformation

Test name: Test a model transformation

Purpose: Check if the execution engine can process the request, and provide the expected result of the

transformation with different inputs

Inputs: I1: Model Data, I2: Interoperability Specification, I3:Expected output

Outputs: O1:Model Data that results of the model transformation execution

Line Number Behaviour Verdict

3 ! Invoke the model transformation with loaded parameters (I1,I2)

 4 ? Returned data as transformation execution result (O1)

 5 !Compare returned data to Expected output (I3)

6 ? Result (O1) is equal to Expected (I3) SUCCESS

7 ? Result (O1) is different from the Expected (I3) FAIL

8 ? No Data Result INCONCLUSIVE

Test execution

More than one test is performed considering different inputs, once again, to verify the validity of it.

To perform the tests several inputs were developed with different purposes.

Chapter 4 – Testing and Validation

IonLPD – Interoperability on Low Power Devices 44

All tests performed and their respective results are presented in Table 4.9

Table 4.9 - Model transformation - Test execution

T
es

t

Input Output
Result

(Line Number)

I1:Model

Data

I2:Interoperability

Specification

I3:Expected

Result
Result Expected Actual

1 Model Input IS Output Model Output (6) (6)

2
Model

Degrees
IS Kelvin Model Kelvin (6) (6)

3
Model

Phonebook
IS Dialer Model Dialer (6) (6)

A brief description on each test will be shown next.

 Test 1 – This test consists in a simple model transformation execution where the model

elements are maintained after the process is accomplished. In this test, the model data input

(I1) is described by one element contained in one class (input) and the interoperability

specification (I2) contains all the operations required to provide the model transformation

execution, the target model is the output model data description, as shown in Figure 4.10.

O1 returned the model data elements according to the expected and in conformance with

the target model, which means the model transformation execution was a success.

Figure 4.10 - Model transformation execution test 1 - Initial conditions

 The XML input and output used for this test are present in Figure 4.11.

Source Model
Interoperability

Specification Target Model

Chapter 4 – Testing and Validation

IonLPD – Interoperability on Low Power Devices 45

Figure 4.11 - Model transformation execution test 1 - Model data

 Test 2 - The model transformation presented in the test consists in converting the

temperature in degrees to Kelvin and test if the execution engine can handle heterogeneous

data as an input. In this test, the model data input (I1) is described by an UML with one

element contained in one class (Degrees), the target model is the output model data

description and the interoperability specification (I2) contains all the operations required to

convert degrees to Kelvin, as shown in Figure 4.12. O1 returned the model data elements

with the temperatures in Kelvins in conformance with the temperature in degrees, which

means the model transformation execution was a success.

Figure 4.12 - Model transformation execution test 2 - Initial conditions

Model Data Input Model Data Output

Source Model
Interoperability

Specification Target Model

Chapter 4 – Testing and Validation

IonLPD – Interoperability on Low Power Devices 46

The XML input and output used for this test are present in Figure 4.13.

Figure 4.13 - Model transformation execution test 2 - Model data

 Test 3 - This test consists in converting the data information in a phonebook to a home

dialer. In this test, the model data input (I1) is described by several elements with a specific

purpose contained in one class (Phonebook), the target model is the output model data

description and the interoperability specification (I2) contains all the operations required to

convert the information, as shown in Figure 4.14. O1 returned the model data elements

with the expected data in conformance with the phonebook and the target model

description, which means the model transformation execution was a success.

Figure 4.14 - Model transformation execution test 3 - Initial conditions

Model Data Input Model Data Output

Source Model
Interoperability

Specification Target Model

Chapter 4 – Testing and Validation

IonLPD – Interoperability on Low Power Devices 47

The XML input and output used for this test are present in Figure 4.15.

Figure 4.15 - Model transformation execution test 3 – Model data

Once again the SUCCESS is present in all the tests performed according to the previous stated

conditions.

4.4 Verdict

Several tests were performed in order to reach conclusions. Therefore, the main conclusion to

retrieve from the tests performed is that the implemented proof of concept successfully passed all

tests. It provides model transformation execution on a low power device and can handle the

heterogeneity of data.

Two tests were performed and were developed considering the features of the problem previous

presented. The problem consists in executing model transformation in a heterogeneous network

composed by resource constrained devices.

The lite language translation test proved that the tested model data can be translated to a lite format

maintaining the same information contained in the original model data. Therefore the proposed

solution can overcome the resources constrains of low power devices.

The model transformation execution proved that the execution is possible on a low power device

with resource constrains. Therefore the proposed solution can handle the heterogeneity of data,

through a model transformation execution.

Model Data Input Model Data Output

Chapter 4 – Testing and Validation

IonLPD – Interoperability on Low Power Devices 48

Since all tests defined were executed, it can be concluded that the formulated hypothesis is a valid

hypothesis. Thus, the proposed solution is able to handle all the features of the problem provided in

earlier chapters.

Chapter 5 – Conclusions and Future Work

IonLPD – Interoperability on Low Power Devices 49

 - Conclusions and Future Work Chapter 5

“Internet of Things” enhances things of our everyday life and interconnects them for information

sharing, consequently the user can have access to data and act in consonance with it. However

those things will most likely be different sensors or actuators, leading to a heterogeneous

environment with heterogeneous data. In order to lead interoperability in the Internet of Things

network the Plug and Interoperate has been defined. The goal of Plug and Interoperate is to allow

devices from different manufacturers plug to a heterogeneous network and interoperate with it,

through the execution of interoperability specifications, avoiding the remanufacturing of every

device in the network.

To use the Plug and Interoperate concept on an environment composed by a network of battery

powered devices, two characteristics were defined: Resource Constrains, which presents the need

of operating interoperability specifications on a network composed by low power devices with

resource constrains and Disparate Data Format Handler, which presents the need of providing

interoperability on a network composed by devices with different data formats. Regarding the

presented characteristics, the following question emerges: how to operate interoperability

specifications in low power devices?

A research was performed in order to identify which technologies can provide interoperability on

low power devices. The research leads to four different state of art elements, Atomic

Transformation Code Virtual Machine (ATC VM), Eclipse Modeling Framework Virtual Machine

(EMFVM), Kermeta and Viatra2.0. All elements are Model Driven and handle the characteristics

of the problem as follows:

 Resource Constrains - The studied elements require significant resource usage to process a

model transformation, due to the fact that all execution engines relies on a Java-based

architecture and require the parsing of their inputs to enable a model transformation

execution.

Chapter 5 – Conclusions and Future Work

IonLPD – Interoperability on Low Power Devices 50

 Disparate data format handler – The state of art elements studied have a common solution

expressed in their architecture to handle disparate data formats, the Eclipse Modeling

Framework (EMF) that can virtually support any data format. The difference presented on

the studied elements resides on the way EMF is used. The ATC Virtual Machine and

Kermeta use EMF as a model handler and a model repository. The EMF Virtual Machine

directly access to the Eclipse Modeling Framework, using it as a model handler and

repository. Viatra2 access model information from the EMF through a plugin that provides

the translation of language to the Viatra2 model transformation engine.

None of the elements presented can solve the the problem described, but some elements contain

interesting approaches to solve specific problem characteristics. The EMF Virtual Machine

accesses directly to EMF and can virtually handle any data format, since it can support countless

model handlers. Both, ATC VM and EMF VM, uses a byte code format to describe the

interoperability specification, which is a directly processed by both virtual machines, contributing

for the resource constrains handling. Viatra2 clearly distinguishes the processes in design time and

execution time which can contribute to a resource aware solution.

Considering the performed study, this work purposes two specific approaches to provide the

execution of a model transformation on low power devices:

 Execute the minimum of processes in run-time, to make low power devices to execute

only run time processes required to a model transformation execution.

 Use of a lite language, to overcome the processing and memory limitations that exist

on low power devices.

According to both approaches a solution is presented and is structured in three main parts, the ATL

compilation, which represents the compilation of a model transformation language into executable

code, the Lite language, that is designed to express XML on a simple lite format and the Execution

Engine, that is responsible to execute a model transformation and handle lite models data.

The ATL compilation purpose is to provide the compilation of a model transformation language

that is described through a relational language structure, into a textual assembler file that will be

directly interpreted by the execution engine. The compilation process consists in a compilation of

an ATL file to a set of instructions readable by the execution engine. There are 3 types of

instructions, operand stack handling, control instructions and model handling instructions.

Chapter 5 – Conclusions and Future Work

IonLPD – Interoperability on Low Power Devices 51

The Lite language purpose is to provide a lite file that contains the model data but is described in a

different format, to avoid the use of resource intensive processes to interpret model data. To do so,

XML fields and parameters are identified with hexadecimal tags in order to compile the XML file

to a hexadecimal format. The structure of data is based on object-subject-value expressions, where

object describes the situation parameter, subject refers to another expression and value contains the

value of the object.

The Execution engine is responsible to execute a model transformation and handle lite models. The

architecture of the execution engine is composed by three main modules:

 Control – This module is responsible to control the data flow of the execution engine

and process to process the interoperability specification.

 Model Handler – This module is a library designed to provide primitives to handle lite

models

 Virtual Machine – This module is responsible to execute the model transformation

operations contained on the interoperability specification.

The approach passed by a testing process that consisted in the definition and execution of two tests.

The first test consists in a lite language translation and intends to verify the translation of a XML

file to a lite language that will be used by the execution engine. Several tests were performed and

showed that the conversion is possible to several xml data types, meaning that the solution can

handle resource constrain.

The second test performed consists in a model transformation execution and intends to verify if the

solution is able to provide an output of that process. Several tests were performed and showed that

the model transformation execution is possible to several model data inputs. Therefore, it can be

concluded that executing model transformations on low power devices is possible and the solution

handles heterogeneous data. Thus, this test was a success.

The result of both tests was a success. Thus, it can be concluded that the hypothesis proposed in

this work is valid, meaning that Interoperability on Embedded system can handle the resource

constrains of low power devices, and it successfully handle heterogeneous data.

From this work resulted one scientific article, “Interoperability specification execution on

embedded systems” which was published in the 6
th
 Iberian Conference on Information Systems and

Technologies (CISTI) 2011, presenting an early development stage of this work.

Chapter 5 – Conclusions and Future Work

IonLPD – Interoperability on Low Power Devices 52

5.1 Future Work

An interesting enhancement that could be applied to the solution purposed is the possibility to

support data compilation into lite formats on the low power device. For example, in this solution

when a model transformation is executed on a low power device, there is the requirement of two

inputs, a lite language format with the model data and an interoperability specification already

processed. An interesting approach is that both files transformation process occur in the device

itself instead of outside.

Another interesting approach would be to enhance the lite language transformation process in order

to enable the use of more data types onto the language. For example, in this solution the

transformation process does not fully support string data types since it cannot fully translate all

characters present on the XML data type. Therefore if the translation could be supported to provide

a reliable transformation, an interesting advancement would be applied to the solution.

Chapter 6 - Bibliography

IonLPD – Interoperability on Low Power Devices 53

 - Bibliography Chapter 6

ATLAS (2005). "Specification of the ATL Virtual Machine."

Atzori, L., A. Iera, et al. (2010). "The internet of things: A survey." Computer networks

54(15): 2787-2805.

Bézivin, J., G. Dupé, et al. (2003). First experiments with the ATL model transformation

language: Transforming XSLT into XQuery.

Bray, T., J. Paoli, et al. (2000). Extensible markup language (XML) 1.0, W3C

recommendation.

Drey, Z., C. Faucher, et al. (2009). "Kermeta language reference manual." Institut de

Recherche en Informatique et Systèmes Aléatoires, France.

Fowler, M. and K. Scott (2000). UML distilled: a brief guide to the standard object

modeling language, Addison-Wesley Longman Publishing Co., Inc.

Gay, D., P. Levis, et al. (2003). The nesC language: A holistic approach to networked

embedded systems, ACM.

Chapter 6 - Bibliography

IonLPD – Interoperability on Low Power Devices 54

Gsottberger, Y., X. Shi, et al. (2004). "Embedding low-cost wireless sensors into universal

plug and play environments." Wireless Sensor Networks: 291-306.

Hill, J. and D. Culler (2002). "A wireless embedded sensor architecture for system-level

optimization." Intel Research IRB-TR-02-00N.

IEEE (1990). "IEEE Standard Computer Dictionary: Compilation of IEEE Standard

Computer Glossaries." Institute of Electrical and Electronics Engineers Inc.

Jones, J. (2003). "Abstract syntax tree implementation idioms." Pattern Languages of

Program Design.

Jouault, F. and I. Kurtev (2006). On the Architectural Alignment of ATL and QVT, ACM.

Karl Aberer, M. H., Ali Salehi (2006). "Middleware support for the "Internet of Things"."

5th GI/ITG KuVS Fachgespräch "Drahtlose Sensornetze".

Kleppe, A. G., J. Warmer, et al. (2003). MDA explained: the model driven architecture:

practice and promise, Addison-Wesley Longman Publishing Co., Inc.

Kopetz, H. (2011). Real-Time Systems: Design Principles for Distributed Embedded

Applications, Springer.

Lorenzo, J., J. Luna, et al. Implementación de un motor de transformaciones con soporte

mof 2.0 qvt, DSDM.

Matula, M. (2003). "NetBeans metadata repository." NetBeans Community.

Chapter 6 - Bibliography

IonLPD – Interoperability on Low Power Devices 55

OMG (2003). " MOF 2.0 Query / Views / Transformations RFP (revised). OMG

Document ad/2002-04-10."

Preden, J. and R. Pahtma (2009). Exchanging situational information in embedded

networks, IEEE.

Sánchez-Barbudo, A., E. V. Sánchez, et al. (2008). Providing an open Virtual-Machine-

based QVT implementation.

Schafersman, S. (1994). "An introduction to science: Scientific thinking and the scientific

method." online whitepaper, January.

Schafersman, S. (1997). "An introduction to science: Scientific thinking and the scientific

method." Department of Geology, Miami University, Oxford OH. http://www. geo.

sunysb. edu/esp/files/scientific-method. html (accessed July 9, 2011).

Steinberg, D., F. Budinsky, et al. (2008). EMF: Eclipse Modeling Framework, Addison-

Wesley Professional.

Technology (1991). " Open systems interconnection, conformance testing methodology

and framework.".

Tretmans, G. J. (1992). "A formal approach to conformance testing."

Tretmans, J. (2001). "An overview of osi conformance testing." Samson, editor,

Conformance Testen, in Handboek Telematica 2: 4400.

http://www/

Chapter 6 - Bibliography

IonLPD – Interoperability on Low Power Devices 56

Uhrig, S. and J. Wiese (2007). jamuth: an IP processor core for embedded Java real-time

systems, ACM.

Varró, D. and A. Balogh (2007). "The model transformation language of the VIATRA2

framework." Science of Computer Programming 68(3): 214-234.

Varró, D., A. Balogh, et al. (2006). The viatra2 transformation framework, Citeseer.

Varró, D., A. Balogh, et al. (2006). "The VIATRA2 Transformation Framework Model

Transformation by Graph Transformation."

Wagelaar, D. (2011). "A Revised Semantics for Rule Inheritance and Module

Superimposition in ATL."

