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Abstract 

 Model transformation is the process of turning one data format into another according to a 

specification that contains the operations needed to accomplish it. Therefore it assumes a relevant 

role on handling interoperability on an “Internet of Things” environment composed by 

interconnected heterogeneous things with heterogeneous information. However, operate 

interoperability specifications on this environment is challenging, because model transformation 

technologies were developed considering an environment composed of devices with processing 

power and memory, as opposed to the environment exposed. The proposed solution consists in a 

specific approach, the clear separation of run-time and design time processes and the redefinition of 

formats used to describe model data and interoperability specification without changing their 

information. To do so an execution engine architecture is specified, able to execute model 

transformations according to a lite model data format and an interoperability specification defined 

as part of the solution. 

 

Keywords: Internet of Things, Interoperability, Heterogeneity, low power devices, Execution 

Engine. 
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Resumo 

Transformação de modelos é o processo de transformar um formato de dados noutro de acordo com 

uma especificação que contém as operações necessárias para fazê-lo. Então, este processo assume 

um papel relevante para suportar interoperabilidade num ambiente “Internet of Things” composto 

por coisas heterogéneas interconectadas, com informação heterogénea. Contudo, operar 

especificações de interoperabilidade neste ambiente é desafiante, dado que as tecnologias de 

transformações de modelos foram desenvolvidas considerando um ambiente composto por 

dispositivos com poder de processamento e memória, ao contrário do ambiente anteriormente 

exposto. A solução proposta consiste numa abordagem específica, que se baseia na separação clara 

de processos em run-time e design-time e pela redefinição de formatos usados para descrever os 

dados do modelo e a especificação de interoperabilidade sem mudar a informação contida nos 

mesmos. Para tal, foi especificada a arquitectura de um motor de execução capaz de executar 

transformações de modelos de acordo com um formato de dados lite e uma especificação de 

interoperabilidade definidos como parte da solução. 

 

Palavras-Chave: Internet of Things, Interoperabilidade, Heterogeneidade, Dispositivos de baixo 

consumo, Motor de transformação de modelos. 
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  Introduction Chapter 1 

We shall not walk away from our future. We shall harness the power of the IoT to shape the future 

together.” 

From Gérald Santucci on The Internet of Things: A Window to Our Future 

 

1.1 Motivation Scenario: Plug and Interoperate 

“Internet of Things” intends to enhance things, going from books to cars, electrical devices to food, of 

our everyday life with information and interconnect them. Thus the users can access the data to 

analyze or act according to all aspects of the physical world (Karl Aberer 2006). Accordingly, 

everyday things are connected, have an identity, are readable, can acquire intelligence, gather 

information from different sources and act accordingly to that information, with user requirement or 

autonomously (Kopetz 2011). 

As Luigi Atzori (Atzori, Iera et al. 2010) stated “Potentialities offered by the IoT make possible the 

development of a huge number of applications”. “Internet of Things” is an emerging technology that is 

used in several scenarios. According to Atzori and Iera (Atzori, Iera et al. 2010) there are 5 relevant 

application scenarios to take into consideration such as transportation and logistics, healthcare, smart 

environments, personal and social and futuristic as shown in the Figure 1.1. 

 

Figure 1.1 - Application domains and relevant major scenarios, based on (Atzori, Iera et al. 2010) 
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One application consists in a comfortable home scenario. In this house, according to the profile of 

each inhabitant, the coffee will be ready at the right time; the bathtub will be filled with water at the 

desirable temperature and the requested time; the right media will be played through television or 

radio, according to the preferences of the user; the heat of the room will be adapted according to the 

weather and the user profile; and in addition the electric equipment’s will be automatically turned off 

in order to provide an optimization of the energy consumption (Atzori, Iera et al. 2010). This will lead 

to a maximization of the user’s comfort according to the environment status and the user profile.   

In these “Internet of Things” scenarios the existence of several actuators and sensors is a requirement, 

however it mostly lead to a heterogeneous environment with non-standardized data. Since, due to the 

lack of data standard in this field, each manufacturer operates data in a different way. This conducts to 

a large number of heterogeneous devices and sensor networks and consequently generates an 

interoperability problem in the “Internet of Things” domain. 

 

Figure 1.2 - An application scenario of Internet of Things 

Interoperability “is the ability of two (or more) systems or components to exchange information and to 

use the information that has been exchange” (IEEE 1990). For example, considering the same 

domestic environment composed of sensors and actuators, as shown in Figure 1.2, with the aim to 

prevent a house fire, a smoke detector (sensor) is installed and sends data to a water sprinkle 

(actuator). The actuator receives information from the sensor in an integer value form and acts 

according with it. The presence of carbon monoxide is detected by the sensor, however it can be 

detected through several types of concentration units, such as g/mL, g/cm
3
 or kg/L. According to the 
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scenario, how will the water sprinkler interpret information and act accordingly? It can not, since there 

is no interoperability between the sensor and the actuator, even though the data exchange has been 

done correctly. 

In order to assure interoperability in the “Internet of Things”, the Plug and Interoperate concept has 

been developed and defined by the research group Uninova - GRIS. Therefore, Plug and Interoperate 

aims to allow that devices from different manufacturers could be plugged to a heterogeneous network 

and interoperate with it without the need of remanufacturing every device that composes the network. 

For this proposal, the system must transform disparate data into a known data format which arises due 

to the existence of non-standardized data, readable and usable in a heterogeneous environment. 

The previous scenario presented can be used as an example of the Plug and Interoperate. Considering 

that a new sensor enters in the house network. This sensor uses a specific data format unknown to the 

house network, consequently the information will not be spread through the network. The data 

exchange in the network will only be possible if exists a specification that tells the system how to 

convert the unknown data format to a known one in the network. Thus this specification assumes a 

relevant role in the Plug and Interoperate solution and it will be referred as interoperability 

specification. 

Interoperability specification is a method of supporting the transformation of one data format into 

another one in order to achieve interoperability between different data formats. The executors are 

responsible for interpreting interoperability specifications and data formats, transforming the last one 

into another data format. In Figure 1.3 is represented an information exchange between a source 

system (sender) and a target system (receptor), by using an executor to transform the information 

according to the interoperability specification, allowing the information exchange. 

 

 

 

 

Figure 1.3 - Source to target information exchange through Interoperability specification 

 

 

Information Information Source System Executor Target System 

Interoperability 

Specification 
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1.2 Problem: Operate Interoperability Specifications in a low power device 

environment 

The Plug and Interoperate concept is executed in the network in an “Internet of Things” environment 

where the executor is present. However and taking into consideration the previous environment, the 

implementation of such executor in this context is not trivial due to the resource constrains, such as 

low processing power and memory (Gsottberger, Shi et al. 2004), associated to heterogeneous devices 

that compose the environment.  

The devices referred are normally battery powered and with wireless connection to provide 

information anywhere at any time and with flexibility to be installed in different places. Consequently, 

there is no need of networked power supply, neither physical network connection. Since the devices 

power is supplied by battery, a low processing unit is required to extend their activity for the longest 

time as possible for information gathering. On the other hand the incremental code migration
1
 has 

been achieved using XML (Bray, Paoli et al. 2000), these devices lack the RAM to store even the 

simplest XML elements. Thus, the executor has to be implemented considering the low processing 

power and memory constrains of the device. 

Besides the presented issues related with resource constrains, there is still the need to handle disparate 

data formats which can be achieved with the operation of interoperability specifications. However, 

these operations are developed in different languages, such as ATL (Bézivin, Dupé et al. 2003) and 

QVT (OMG 2003), that were developed without considering the constrains of these devices. 

Therefore the challenge is to understand and find new routes to operate interoperability specifications 

in these resource constrained devices to provide interoperability in heterogeneous environments. This 

challenge leads to the following research question: 

 

 

 

This research question will support the development of this master thesis and answering it will be the 

challenge of the work. In order to achieve the previous goal, the problem needs to be characterized as 

follows.  

                                                      
1
 add, remove or replace code fragments in a remote program 

How to operate interoperability specifications in a low power device? 
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Resource constrains 

The operation over interoperability specifications, developed over different languages, such as ATL 

(Bézivin, Dupé et al. 2003) or QVT (OMG 2003), were developed without any resource constrains 

concern. Thus, these operations are done in personal computers that use a resourceful processor meant 

to be flexible and used for a wide range of applications and with a lot of memory resources.  Low 

power devices compose the “Internet of Things” environment and are different from personal 

computers because they have low processing power and low memory, due to the battery power and 

design constrains, respectively. Accordingly, the problem is how to operate interoperability 

specifications considering the resource constrain of devices that compose the environment.  

Disparate data format handler 

The lack of standard data formats in a heterogeneous environment generates the need to support 

disparate data formats. This occurs because devices manufacturer only provide the data formats 

without semantic details. For example, considering one low power device in the heterogeneous 

environment that uses an UML data format and other device uses a XML data format. To exchange 

information between them, the interoperability specification needs to be defined and processed 

otherwise the communication does not occur between both in this environment. 

 

1.3 Work Methodology 

The Work Methodology used in this thesis is inspired on the Scientific Method described in 

(Schafersman 1997). This work approach, as shown in Figure 1.4, is composed of the following steps: 

1. Characterise the problem; 

2. Do a background research; 

3. Formulate hypothesis; 

4. Set up an experiment; 

5. Test hypothesis through experimentation; 

6. Draw conclusions; 

7. Publication of results. 
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Figure 1.4 - Work approach used in this thesis 

The steps presented in the picture will be defined and explained as following: 

 

1. Characterise the problem 

In this step, a significant problem is identified and so are its respective characteristics. It will end with 

a research question that will be the base of the research work. The problem identified in this thesis is 

how to operate interoperability specifications in a low power device. 

2. Do background research 

This step is where scientific data from prior work, associated to the research question, is exposed. This 

leads to the requirement of gathering information about execution engines that enables interoperability 

in heterogeneous low power device environments. 

3. Formulate hypothesis 

The formulation of hypothesis is one of the steps in this work approach. Based on the background 

research the hypothesis must be an “informed, testable, and predictive solution to a scientific 
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problem” (Schafersman 1997) that explains the characterization of the problem, in a way that can be 

tested. In this thesis, the hypothesis focuses on the problem of operate interoperability specifications 

on heterogeneous low power devices. 

 

4. Set up an experiment 

This step consists in an experiment setup in order to validate the formulated hypothesis. This 

experiment is used as a proof-of-concept defined by taking into account the characterization of the 

problem and the formulated hypothesis. 

5. Test hypothesis through experimentation 

In this step, several tests over the experimentation were defined in order to obtain the outcome of it. 

This outcome is analysed and interpreted considering the characteristics of the problem in order to 

validate the hypothesis purposed. If the results can be quantitative and qualitative analyzed, the 

outcome should be applied to the results. 

6. Draw of conclusions 

After the test is completed, it is important to analyse the outcome of the experimentation and verify the 

validity of the hypothesis. This analysis can enframe in the hypothesis or not, which can lead to the 

confirmation of the hypothesis or the denial of the same. If the hypothesis is confirmed then it will 

answer the research question according to experimentation. Otherwise, it must return to point 3 where 

a new hypothesis is formulated. 

7. Publication of results 

In this step, the publication of results is made according to the outcome of the experimentation in the 

research work. This step only occurs if the outcome answers the hypothesis defined in the thesis. 

 

1.4 Dissertation outline 

This thesis is divided in five chapters and since the first chapter, presents the motivating scenario and 

the problem of the thesis, a brief description on the other four will be given: 
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 State of the Art - The second chapter provides technologies that implement the concept of 

operate interoperability specification associated to the research question. In the end of the 

chapter, an analysis of each state-of-art element will be given according to the problem 

defined in the first chapter and the features that each element provides to this work. 

 Interoperability on Low Power Devices - The third chapter presents the proposed 

solution to provide an answer on how to operate interoperability specifications on low 

power devices. It starts with the presentation of the concept behind the solution. Then, it is 

the solution with their respective description. Finally it ends with a sequence diagram that 

provides a global view of the solution. 

 Testing and Validation - The fourth chapter provides the tests used to validate the 

formulated hypothesis. It begins with the description of the methodology used to test the 

hypothesis. A description of the implemented proof of concept and the test definition and 

execution will be presented. Then the results are presented and it is verified if the initial 

objectives were fulfilled through an analysis of the test results. 

 Conclusions and Future Work - The final chapter of this work presents a summary of 

the dissertation, giving a highlight of the most important aspects of the research as well as 

a potential direction for future research regarding the obtained results. 
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 - State of the Art Chapter 2 

 

2.1 State of the Art Review 

In this chapter an extensive research is made in order to identify which solutions do exist to operate 

interoperability specification in low power devices. Several solutions were identified but only five 

will get the main focus due to the fact that these are suitable approaches to achieve the research 

goal. The elements in this research use Model Driven Interoperability concepts, which are 

summarized next. 

Model Driven use models to describe elements of a system with a concrete viewpoint, expressed 

with the aid of a well-defined language. Furthermore, it can be characterized by model 

transformations that represent relations between models and meta-models. In this work the models 

are the information that is transformed, meta-models are the language that describes the 

information and model transformation is described by an interoperability specification defined 

between those models and meta-models (Kleppe, Warmer et al. 2003). In order to operate 

interoperability specifications execution engines are used. The execution engine intends to enhance 

software interoperability, by executing the translation of one data language to another one 

according to the interoperability specifications.  

2.1.1 Individual Review 

Several transformation languages with one or more execution engines were considered: 

 Atomic Transformation Code Virtual machine - The ATC VM is responsible to 

interpret and to process the ATC language file providing QVT- based transformations. 

 Eclipse Modeling Framework Virtual Machine – The EMF VM is a byte code 

interpreter responsible to transform Ecore data files using ATL language to describe model 

transformations. 

 Kermeta – Kermeta is an executable meta-modelling language designed to define 

operational semantics of meta-models and structures specification. 
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 Viatra2.0 – Viatra2.0 is a model transformation engineering framework that aims at 

supporting the execution of transformations between several modeling languages. 

 

Atomic Transformation Code Virtual machine  

ATC VM is a virtual machine for QVT (Queries, Views and Transformations)-based 

transformations which is responsible for performing transformations on several model data types. It 

has been developed over the Open Canarias S.L. a model transformation project which target goal 

was to comply with OMG-MDA, therefore the QVT specification was targeted. The Virtual-

Machine technology drive by its own byte-code model transformation language named Atomic 

Transformation Code (ATC) which is the main characteristic of the solution purposed  (Sánchez-

Barbudo, Sánchez et al. 2008). 

The ATC VM architecture is based on the Eclipse Core and the Eclipse Modeling Framework 

(EMF) (Steinberg, Budinsky et al. 2008) and it is currently available as a set of Eclipse plug-ins. 

The Eclipse Modeling Framework project is a Java-based modelling framework and code 

generation facility for building tools and other applications based on structured data model. EMF is 

implemented in java and provides tools and runtime support to produce a set of Java classes and 

adapter classes of the model. 

The ATC Virtual machine (ATC VM) also known as Virtual Transformation Engine (VTE) is 

responsible to interpret and to process the ATC language file. The ATC language file derives from 

a translation of the meta-models registered on the Eclipse Modeling Framework to an ATC 

language file provided by the ATC tool. ATC language file contains all the semantics of any 

programming language decision, loops and own data types. It is a byte code model transformation 

language that contains the interoperability specification and the meta-model data. The ATC Virtual 

Machine and its respective layered architecture summarized is shown in Figure 2.1.  
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Figure 2.1 - ATC Virtual Machine architecture, retrieved from (Lorenzo, Luna et al.) 

Analysis: 

Regarding the ATC tool from an architectural point of view, it can be concluded that it is a Java-

based architecture implemented on top of the Eclipse platform and Eclipse Modeling Framework 

(EMF) (Steinberg, Budinsky et al. 2008). The Eclipse platform is a multi-purpose plugin-based 

Java IDE, and the Eclipse Modeling Framework (EMF) is a full-fledged Java platform for aid 

Model Driven application development, that provides among other things, an abstraction layer to 

provide access to several model languages types. Both elements described leads to the fact that the 

Virtual Transformation Engine (VTE) is implemented on top of Java-based technologies. One 

problem of Java is the need of suitable run-time environment, a Java Virtual Machine (JVM), 

which requires significant resources in terms of memories and computing power (Uhrig and Wiese 

2007). 

The purpose of the VTE is to interpret ATC model and execute the ATC language model 

transformation instances, so it does not directly process other transformation languages or model 

languages. It can however process other model transformation languages and model languages 

registered in the Eclipse Modeling Framework (EMF), for which ATC translation support has been 

provided. This translation support is achieved through a traditional parsing, a model generator and 

a model transformation, the whole process described, requires memory and processing power 

(Gsottberger, Shi et al. 2004) in order to be accomplished. 

 

Eclipse Modeling Framework Virtual Machine  

One of the technologies found, was the EMF Virtual machine, this virtual machine is the 

responsible for providing model transformations for several model data files.  The EMF virtual 
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machine is a byte code interpreter responsible to transform Ecore data files to describe information 

and using an ATL language to describe the model transformation. It is part of the Eclipse Modeling 

Project (EMP), which focuses on the evolution and promotion of model-based development 

technologies within the Eclipse community by providing a unified set of modelling frameworks, 

tools and standards implementations. 

The EMF virtual machine tool architecture is based on the Eclipse Core and it is implemented on 

top of the Eclipse Modeling Framework (EMF) (Steinberg, Budinsky et al. 2008) and Netbeans 

MetaData Repository (MDR) (Matula 2003), which can be seen in Figure 2.2. The EMF and the 

MDR, between other things, are model handlers implemented in Java that consist on an abstraction 

layer to provide access to the XML-based model (e.g. ecore data files).  This Virtual Machine 

could also be based on other model handlers as suggested by the “etc.” box in Figure 2.2. The ATL 

compiler, also known as ATL VM Code Generator (ACG), is implemented on top of the EMF VM 

and is a domain specific language designed to express the compilation of an ATL program model 

transformation into ASM code executable by the EMF Virtual Machine (Jouault and Kurtev 2006). 

The EMF virtual machine is derived from the current ATL Virtual Machine and is a byte code 

interpreter which manages OCL and ATL type’s hierarchy, providing model transformations, 

supported by an execution environment that provides the realisation of operations necessary to the 

model transformation accomplishment. The necessary inputs in order to achieve that goal, on the 

EMF Virtual Machine, are the meta-model and model registered in the Eclipse Modeling 

Framework (EMF) Repository and the interoperability specification, described in the only model 

transformation language EMF Virtual Machine can process directly, the ASM file. Typically all 

inputs are XML-based files, where the model and meta-model are interpreted by a model handler 

and the interoperability specification by the EMF Virtual Machine itself. 

 

Figure 2.2 - EMF engine architecture, retrieved from (Jouault and Kurtev 2006) 

Analysis: 

Architecturally, the EMF Virtual Machine is based on the Eclipse core, and is implemented on top 

of Eclipse Modeling Framework (EMF) (Steinberg, Budinsky et al. 2008) and Netbeans MetaData 

Repository (MDR) (Matula 2003). Both technologies are full-fledged java components based 
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platform for aid application development, leading to the conclusion that in order to provide these 

technologies to the EMF Virtual Machine architecture, the Java Virtual Machine will be a 

requirement to process the Java language, leading to a significant resource usage (Uhrig and Wiese 

2007).  

The EMF Virtual Machine tool is responsible to provide model transformation, according to an 

interoperability specification expressed by an ASM file, which is the only file the EMF Virtual 

Machine can process directly. The ASM file is an output of ACG that results from the compilation 

process of a XML-based ATL file, this process requires parsing, interpretation and transformation 

into XML-based ASM file, although “XML-based parsing requires certain computing power” 

(Gsottberger, Shi et al. 2004). Once the ASM is obtained, the EMF Virtual Machine parses it, in 

order to access the interoperability specification information. 

On the other hand, in order to execute a model transformation, besides the interoperability 

specification the EMF Virtual Machine needs to have access to model and meta-model data. This 

information is provided by the Eclipse Modeling Framework (EMF) (Steinberg, Budinsky et al. 

2008), Netbeans MetaData Repository (MDR) (Matula 2003) or any other model handler, which 

virtually gives support to any data format. The problem is that models and meta-models are mostly 

described with the aid of a XML-based file, making the parsing of information a requirement for 

model handlers to provide data access to the EMF Virtual Machine, leading to a high resource 

usage (Gsottberger, Shi et al. 2004) in order to accomplish this process. 

 

Kermeta 

Kermeta has been developed as a core language for an MDE (Model Driven Engineering) platform. 

It is an executable meta-modelling language, which is designed to define both operational 

semantics of meta-models and structures specification. This action language can specify the body 

of operations in meta-models complying with the OMG Essential Meta Object Facility (EMOF) 

(OMG 2003). This technology provides tools for transforming its meta-models from and to EMOF 

and Ecore meta-models. The tool is included in the modelling layer of the RNTL platform, and 

used in projects like OpenDevFactory and Speeds (Drey, Faucher et al. 2009). 

The Kermeta architecture is built as an extension to Eclipse Modeling Framework (EMF) 

(Steinberg, Budinsky et al. 2008) within the Eclipse development environment. The Eclipse 

Development environment is a Java IDE to aid application development, where the Eclipse 

Modeling Framework (EMF) is integrated. The Eclipse Modeling Framework (EMF) unifies Java, 
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XML and UML, technologies so that they can be used together to build better integrated software 

tools, as the Kermeta virtual machine. The Eclipse Modeling Framework (EMF) is implemented 

using Java, but it is used to implement development tools for other languages, in this case Kermeta 

language. 

The Kermeta language is supported by a Kermeta virtual machine, based on the Java Virtual 

Machine, responsible to provide model transformations according to operations specified by the 

Kermeta language. In order to execute a model transformation, the kermeta tool requires 2 inputs, 

the interoperability specification expressed by a .kmt file (kermeta language) and the meta-model 

expressed by a registered meta-model in the Eclipse Modeling Framework Repository (EMF). 

Regarding the meta-model, it is a XML-based file processed by the Eclipse Modeling Framework 

directly, however Kermeta uses an internal mapping in order to import Ecore model as Kermeta 

model. On the other hand the interoperability specification, specified by the Kermeta language, is 

processed directly by the tool itself, as seen in the Figure 2.3. 

 

Figure 2.3 - Processing Kermeta language 

Analysis: 

Analysing Kermeta from an architectural point of view, it can be concluded that the technology 

possesses a Java-based architecture and is also implemented on top of one, Eclipse Modeling 

Framework (EMF) (Steinberg, Budinsky et al. 2008). In order to process the elements that compose 

the Kermeta Virtual Machine architecture, a Java Virtual Machine is needed to execute the Java 

language, leading to the requirement of processing power and memory (Uhrig and Wiese 2007). 
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The model transformation execution process in the Kermeta Virtual Machine is achieved recurring 

to two inputs, the Kermeta language and the meta-model or Kermeta model. The Kermeta language 

is processed by the Kermeta Virtual Machine, through the parsing of the Kermeta language file 

resulting into an Abstract Syntax Tree (AST) (Jones 2003) and then loaded and translated into a 

Kcore model. The process described, parsing and translation, are resource intensive processes 

(Gsottberger, Shi et al. 2004). 

On the other hand this tool  accesses the meta-model information, through the Eclipse Modeling 

Framework (EMF) (Steinberg, Budinsky et al. 2008). The EMF is responsible to provide the 

Kermeta Virtual Machine the ability of processing several meta-model types, since the Virtual 

Machine natively integrates Ecore definitions. However it requires a translation of the EMF meta-

model into a Kermeta model, leading to the conclusion that this process requires the parsing and 

translation of information requiring processing power in order to be accomplished (Gsottberger, 

Shi et al. 2004).   

 

Viatra2.0 

“Viatra2.0 (VIsual Automated model TRAnsformations) is a general-purpose model transformation 

engineering framework that aims at supporting the entire life-cycle, i.e. the specification, design, 

execution, validation and maintenance of transformations within and between various modeling 

languages and domains in the MDA“ (Varró, Balogh et al. 2006). Viatra2.0 is available as part of 

the Eclipse GMT Subproject and is being developed at the Fault Tolerant Systems Research Group 

at the Budapest University of Technology and Economics, and it was inserted in several projects 

such as the project HIDE. 

Viatra2 have a Java based architecture, where there are three main modules, the Eclipse Modeling 

Framework (EMF) (Steinberg, Budinsky et al. 2008), the Viatra2.0 Model transformation Plug-in 

and the Viatra Model Space, as shown in Figure 2.4.  Viatra2.0 is implemented on top of the 

Eclipse Modeling Framework (EMF) (Steinberg, Budinsky et al. 2008) and the model 

transformations in Viatra2.0 tool are primarily executed within the framework. In order to provide 

that model transformation execution in consonance with the Eclipse Modeling Framework (EMF) 

(Steinberg, Budinsky et al. 2008) the tool is fitted with the Viatra2.0 Model transformation plug-in. 

This element is the main responsible to handle and transform heterogeneous meta-models and their 

respective data into a Viatra2.0 data format, which is achieved through XML, Model and Xform 

parsers and their respective interpreters. The Viatra2.0 Model Space is responsible to provide 

model transformation execution. 
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Figure 2.4 - An overview of the Viatra2 transformation execution, retrieved from (Varró, 

Balogh et al. 2006) 

The main purpose of Viatra Model Space is to provide a model transformation execution engine to 

the Viatra2 tool. To achieve model transformation the engine requires 2 inputs, an interoperability 

specification and a meta-model. The interoperability specification is expressed by a Graph 

Transformation rules (GT) or an Abstract State Machines (ASM) (Varró and Balogh 2007) this file 

requires the interpretation and compilation by the engine in order to be accessible to it. The meta-

models in this technology are mostly represented through Ecore, but the Eclipse Modeling 

Framework (EMF) (Steinberg, Budinsky et al. 2008) and the Viatra2.0 Model Transformation 

Plug-in provides support to several meta-models data types.  Regarding the execution Viatra2.0 

enables the separation of design (and validation) and execution time, as shown in Figure 2.5. 

 

Figure 2.5 - Viatra2 execution overview, retrieved from (Varró, Balogh et al. 2006) 

Analysis: 

The Viatra2 tool, from an architectural point of view, is integrated in the Eclipse Modeling 

Framework (EMF) for general-purpose model transformation engineering framework, to support 

various model transformation languages and domains in the MDA. It has built-in support, through 

the Viatra2.0 Model transformation Plugin, for different data formats and different transformation 

languages, giving this tool the ability to support heterogeneous data formats and interoperability 
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specifications. The problem is that both framework are Java-based technologies, requiring resource 

intensive processes in order to be executed correctly (Uhrig and Wiese 2007). 

Viatra2 tool requires the interoperability specification and the meta-model so it can execute a 

model transformation. In order, to provide the model transformation execution there is the 

requirement to access the information in the inputs of the tool. To achieve this goal the tool recurs 

to XML, XForm and Model parsers to compilers and interpreters. The whole process is done in 

design time and requires memory and computing power to be achieved (Gsottberger, Shi et al. 

2004). The model transformation execution is done in runtime and is described by the translation of 

the inputs and the execution according to an interoperability specification, this translation. The 

translation described is achieved through a model transformation and a rule interpreter, being this a 

resource intensive process (Gsottberger, Shi et al. 2004). 

2.1.2 Synthesis 

Presented and described each state-of-art element, it is now time to resume the main features of 

each element relating it to each one of the characteristics of the problem: Handling disparate data 

formats and Resource constrains.  

In order to handle disparate data formats, all the technologies have a common solution expressed in 

their architecture, the Eclipse Modeling Framework (EMF) (Steinberg, Budinsky et al. 2008). The 

main difference between the technologies studied is the way they use EMF. The ATC Virtual 

Machine and Kermeta use this technology as a model handler and model repository, and both have 

a translation support from EMF models to their native language type. The EMF Virtual Machine 

directly access to the Eclipse Modeling Framework, or any other model handler to process model 

information, providing to this technology an extensive support to heterogeneous data.  Viatra2 

access information from the EMF through the Viatra2 Model Transformation Plugin layer, which 

was designed to provide the translation of languages to the Viatra2 model transformation engine 

and to provide support to other languages the EMF cannot process. 

Regarding the execution engine, all of the technologies studied, need the parsing of their respective 

inputs information, leading to the requirement of having processing power to achieve this goal 

(Gsottberger, Shi et al. 2004). Besides that these execution engines rely on a Java-based 

architecture requiring a Java Virtual Machine to process the Java language, leading to a significant 

resource usage (Uhrig and Wiese 2007) by all the technologies addressed. 

A brief analysis of each element according to each feature of the problem, previously defined, is 

shown in Table 2.1. Each row of the table represents the elements studied and each column the 

features of the problem. 
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Table 2.1 - Method synthesis and features coverage 

 Resource Constrains Disparate data handler 

ATC VM 

No, since it is implemented on top of 

Eclipse and the EMF project and 

possesses a Java-based architecture. 

There is also the requirement of parsing 

inputs. 

Yes, it uses a byte-code model transformation 

language, this language contains all the 

semantics of any programming language, 

which makes possible the support of any model 

language by this tool 

EMFVM 

No, the EMF Virtual Machine tool is 

based in resource intensive technologies, 

such as XML parsers, and Eclipse Ecore.  

Yes, this technology supports only ecore data 

files, but since it is based on several model 

handlers, virtually any model is possible to be 

supported by this tool. 

Kermeta 

No, the tool is based in resource intensive 

technologies, such as XML parsers, 

Eclipse Core and the Eclipse Modeling 

Framework. The Kermeta virtual 

machine has a Java-based architecture. 

Yes, since the Kermeta meta-models can be 

easily transferred from/to other systems. This 

tool can virtually support any data type. 

Viatra2 

No, the Viatra2 tool is integrated in the 

Eclipse Modeling framework, and it 

recurs to a XML serializer and a XForm 

parser, in order to parse the models data 

an then interpret it. 

Yes, the Viatra2 is integrated in the Eclipse 

framework in order to support various model 

transformation languages and domains in the 

MDA. 

 

 

2.2 Advancement 

After reviewing and analysing all elements of the state of art, it can be concluded that none of the 

technologies presented can solve all the features of the problem described. In order to provide a 

suitable solution, different functionalities of each technology were selected with the purpose of 

fulfill all the requirements previously stated. 

Regarding the handling of disparate data formats, all systems rely on the Eclipse Modeling 

Framework (EMF) (Steinberg, Budinsky et al. 2008). Among the studied elements, the EMF 

Virtual Machine is the only technology that directly access to the information on the Eclipse 

Modeling Framework and is architecturally designed to support countless model handlers. Virtually 
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this characteristic of the EMF Virtual Machine grants support to any data format, providing the 

most suitable approach to the solution. 

In terms of resource constrains, none of the technologies studied fulfill the needs of the solution but 

there are, in some of the elements, interesting characteristics to contribute to it. One interesting 

approach is the separation of design time and execution time provided by Viatra2 which can 

severely contribute to a resource aware solution. Another interesting approach is made by the ATC 

VM and EMF VM, which consists in the translation of the interoperability specification to a byte-

code format. This byte-code format directly provides, to the virtual machine, the operation 

necessary to the transformation execution without the need of translation. The only problem is both 

virtual machines require a XML-Parser to process the interoperability specification. 

One major issue regarding the resource constrains is the constant need of XML-parsers in all 

technologies studied. To avoid this issue, the need of redefining interoperability specification, 

models data to a new lite format, is of extreme importance. Since EMF Virtual Machine is the 

technology that provides better support to disparate data, it will be used as a reference on the 

solution purposed. 
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 - Interoperability on Low Power Chapter 3 

Devices 

 

The purpose of this work is to support interoperability specification execution on low power 

devices. To accomplish this goal, two different approaches are taken in consideration: 

 Execute the minimum of processes in run-time - This is made to enable low power 

devices to execute the only the run time processes required to accomplish a model 

transformation execution. 

 Use of a lite language - This language is designed to overcome the processing and 

memory limitations that exist on low power devices. 

The first approach relies on the minimum execution of processes in run time. This approach arises 

to allow some run time demanding processes to be executed by resourceful devices in design time. 

This stems from the model transformation execution done by the EMF Virtual Machine
2
, 

(Steinberg, Budinsky et al. 2008) which requires intensive resource usage and far too demanding 

processes, like file compilation and XML-parsing.  

The second approach relies on the use of a lite language. This language is created due to the fact 

that the EMF Virtual Machine execution requires access to important data, such as model data
3
, to 

provide a model transformation execution. Two problems arises from this, the storage of that 

information and the XML-parsing to access that data. These procedures require computing and 

memory power, so they should therefore, be avoided on low power devices. 

 

                                                      
2
 A model transformation execution engine 

3
 XML-based file with the data according to the meta-model definition whose describe something in a system 
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The model transformation defined by Eclipse consists in an interoperability specification 

(described through an ATL) between two models (described through Ecore). Those models contain 

data that is operated through an execution engine to provide a model transformation. In order to 

provide model transformations on an embedded system a solution is presented on Figure 3.1. 

 

 

 

 

 

 

 

Figure 3.1 – Approach example 

This chapter goal is to describe the presented solution and will be structured as follows: 

 ATL compilation - Designed to express the compilation of a model transformation 

language into an executable code that will be processed by the Execution Engine. 

 Lite Language - Designed to express the information contained in a XML-file on a simple 

lite format. 

 Execution Engine - Responsible to execute a model transformation and handle lite models 

data.  
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3.1 ATL compilation 

A valid way to use ATL compilation in low power devices is to provide a model transformation 

language in a textual assembler file that will be interpreted by the execution engine. Unlike this, 

EMF Virtual Machine uses an assembler language file to describe a model transformation 

expressed in a XML data type. 

The compilation process is based on ATL Virtual Machine specification (ATLAS 2005) and it 

consists in a compilation of an ATL file to a set of instructions readable by the execution engine. 

These instructions are: 

 Operand Stack Handling - This instruction provides a number of instructions that enable 

direct manipulation of the operant stack. It defines instructions like push, pop, load, store, 

among others. 

 Control Instructions - This cause the ongoing execution to continue from an instruction 

that may be different from the previous one. It defines instructions like if, goto, iterate, 

enditerate and call. 

 Model Handling Instructions - This instruction set is dedicated to models and model 

elements handling. It defines instructions like new, get, put and findme. 

3.1.1  ASM text file 

The Eclipse Modeling Framework Virtual machine is designed to read the ASM file format and 

correctly perform the operations specified therein. The ASM file is an assembly file encoded by a 

XML. Thus the ASM file is composed by XML elements in an ordered structure that contains a 

constant pool (cp), a field and one or more operation fields, as shown in Figure 3.2. 

 

Figure 3.2 - ASM structure, retrieved from (ATLAS 2005) 
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This ASM file uses a reference system that connects every XML element. Therefore the approach 

followed to avoid the XML parsing on low power devices consists in interconnecting every XML 

element and turning the ASM into an assembly language file as shown in Figure 3.3. 

 

 

Figure 3.3 - ASM Compilation process 

 

3.2 Lite Language 

Interpreting a model data defined in a XML requires processes like parsing and interpretation, 

although “XML-based parsing requires certain computing power” (Gsottberger, Shi et al. 2004). 

Therefore a lite language in a textual format is defined to represent the model data information in 

another format.To do so, the XML fields and parameters are identified with hexadecimal tags, and 

the XML file is compiled to a hexadecimal format, to reduce the use of intensive resource 

processes to interpret the model data. Both files contain the same information but are described in 

different formats. 

The compilation process is based on (Preden and Pahtma 2009), that consists on an appropriate 

structuring and encoding of data suitable for use by Wireless Sensor network nodes. In this a 

general data format is adopted which allows any type of data to be transmitted and interpreted by 

any node. In the solution the data fields in the message are identified by tags describing the 

contents of the field. The semantics of the tags must be defined and assigned with a specific 

meaning before system deployment.  

The structure of the data is based on object-subject-value expressions. The expressions are three 

tuples                         , a brief description of each tuple is given: 

 Object - describes the situation parameter type, such as, situation types or other object 

types(e.g. in case of a mathematical equation the mathematical operation are also objects) 

 

 

1010101110110101011101100111
0110011101100111011001110110
0111011001110110011101100111
0110011101100111111011001111
1101100111111011001111110110

011111101100111 
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 Subject - Refers to another expression, in order to enable an expression hierarchy. 

 Value - contains the value of the situation parameter 

For further understanding an example will be given. The objective of this example is to create a 

complex expression that given a temperature in Celsius units, will convert the temperature to 

Fahrenheit units. For that, there is the requirement of defining the tags, as shown on Table 3.1. 

Table 3.1 – Constants for the conversion example, retrieved from (Preden and Pahtma 2009)

 

Since the tags are defined, there is the need of defining the expression              , that 

converts Celsius (  ) units to temperature in Fahrenheit units (  ). In order to express the equation 

in the expression format outlined above, the use of constants listed in Table 3.1 is a requirement. 

The constants in the table are arbitrarily chosen for the example only. Using the constants from 

Table 3.1 the following expressions can be formed. 

                                                                    

                                                                     

The following expression hierarchy can be visible in Figure 3.4. 

 

Figure 3.4 - Expression hierarchy for conversion example, retrieved from (Preden and Pahtma 

2009) 
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3.3 Execution Engine 

The Execution Engine presented in the Interoperability on Low Power Devices is based on the 

EMF Virtual Machine architecture (Wagelaar 2011) but with changes to be suitable to low power 

devices. In order to understand the architecture a brief description, on the main modules, is 

presented: 

 Control - This module is responsible to control the flow of information to execute the 

model transformation. 

 Model Handler - The Model Handler module provides primitives to handle models data. 

 Virtual Machine - The Virtual Machine module is responsible to execute the model 

transformation operations. 

The architecture and the described modules are presented in Figure 3.5. 

 

 

 

 

 

Figure 3.5 – Execution Engine Architectural Solution 

 

3.3.1 Logical Architecture Specification 

The Logical Architecture Specification provides a description of the logical modules presented in 

the system. Each logical module is described with their purpose, methods and workload 

description. The Figure 3.6 represents a basic example of a logical module (Module 1). The upper 

block is an API that represents a set of methods that are available to other modules to use. The 

bottom block is a Caller Interface that represents methods that the module uses to communicate 

with other modules. Each module description provided in this work follows the structure presented 

in this section. 

Execution Engine 

Control Model Handler 

Virtual Machine 
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Figure 3.6 - Example of module with API and Caller Interface 

 

3.3.1.1 Control 

The control module is responsible to monitor the data flow of the execution engine. The control 

module is the maestro of the execution engine, since it assigns “work” to other modules in order to 

make the whole process of the model transformation execution occur in consonance to what is 

described in the interoperability specification. It invokes methods from every module presented in 

the execution engine.  

The Figure 3.7 shows this module composition. 

 

 

 

Figure 3.7 – Control 

The following interface is an API: 

 Request Handler Interface 

The Request Handler Interface is an API that provides methods to enable a model 

transformation execution. These methods use the model data and the lite interoperability 

specification as an input to start the execution of the transformation process. 
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Each of the following interfaces are caller interfaces: 

 Model Handler Interface 

The Model Supplier Interface is a caller interface that invokes methods to load, access or 

change data of the model. 

 Virtual Machine Interface 

The Virtual Machine Interface is a caller interface that invokes methods to execute 

interoperability specification operations. 

The workload of this logical module starts at the Request Handler API. Thus, the Control module 

will invoke a method, through the Model Supplier Interface, to load the model data. Afterwards, it 

will process the interoperability specification and act according to the information interpreted.  

Depending on the information processed the Control module may use the Model Supplier caller 

interface and the Virtual Machine interface, to access or change model data and to invoke existing 

methods on the Virtual Machine, respectively. Once the interoperability specification is processed 

it will require the output of the execution. 

3.3.1.2 Model Handler 

The Model Handler logical module is responsible for interpreting, exporting and providing model 

data to the execution engine. The interpreting function is designed to receive model data, analyse it 

and construe model information readable by the system. The exporting function does the opposite, 

since it gathers the system model data and turns it into model data so it can be exported as an 

output of a model transformation. It is also responsible to provide or change specific model 

elements data to the execution engine. 

The Figure 3.8 shows this module composition. 

 

Figure 3.8 - Model Handler 
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Each of the following interfaces are API’s: 

 Model Interface 

The Model interface is an API that provides methods to load a model data and to get and 

set data over specific fields of an interpreted model data to the system. It also provides 

methods to retrieve an entire model according to a system constructed model. 

The workload of this logical module starts through the Model Interface API with the loading of a 

model data that will be stored in memory. Once the model data is loaded to memory, the module 

will provide methods to get and set specific model data information. In the end of the model 

transformation execution process, this module is responsible to provide methods to retrieve the 

translated model data. 

3.3.1.3 Virtual Machine 

The Virtual Machine is responsible to execute interoperability specification instructions over model 

data according to information provided by other modules. 

The Figure 3.9 shows this module composition: 

 

 

Figure 3.9 – Virtual Machine 

The following interface is an entry interface: 

 Execution Provider Interface 

The Lite Language interface is an API that provides methods to execute an instruction over 

specific model data. 

This logical module is responsible to provide methods to execute instructions over a specific model 

data. It all starts in the Execution Provider Interface where the method to execute an instruction is 

called, afterwards the module requires access to specific model data in order to execute that 

instruction. Once the result of the execution is achieved, the module stores the outcome of the 

operation in memory. 

 

Virtual Machine 

Execution Provider Interface 
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3.3.2 Detailed architecture  

The set of logical modules described in the previous section with their respective interfaces provide 

a new detailed overall architecture of the execution engine, as showed in Figure 3.10. 

. 

 

 

 

 

 

 

 

 

 

Figure 3.10 - Detailed Architecture 

3.3.3 Architecture Module Sequence 

Each module individually performs a specific task, however to meet the requirements proposed for 

the execution engine they must work as one. The purpose of this section is to provide a description 

over the overall functionality of the execution engine with the aid of an UML sequence diagram 

(Fowler and Scott 2000). On the sequence diagram of the architecture, every main module is 

represented through a lifeline block and the memory is represented through an entity. The actions 

are represented by a closed-end arrow, and the returns of those actions are represented through a 

dashed line and an open-end arrow.  

The workflow of the execution engine starts at the Control module since this is the logical module 

responsible to handle new model transformation requests. These requests require the existence of a 

lite version of the interoperability specification data (ATL) and a lite version of the model data 
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(Data) as an input, so that the model transformation execution can be performed. Once the request 

is made the Control module invokes a method on the Model Handler Module to load model data to 

memory. 

At this point, the interoperability specification still has not been interpreted and processed, but 

since the model data is loaded on the memory, all conditions are gathered to start the execution of a 

model transformation. The Control Module will be responsible to interpret the interoperability 

specification. That interpretation requires the reading of an instruction list contained in the 

interoperability specification file. All instructions must be read and processed so that the model 

transformation execution could be accomplished. 

For each instruction contained in the interoperability specification, the Control module must 

analyse which actions to execute according to the instruction provided.  

 If the instruction is a “get”, the Model Handler logical module will load data to memory so 

that the virtual Machine can use it to process an instruction. 

 If the instruction is a “set”, the Model Handler logical module will set a new value on the 

model data information, according to information contained in memory. 

 If the instruction is not a “set” or a “get”, the Control module will invoke a method, with 

the instruction as an input, on the Virtual Machine module, so that the virtual machine 

execute that instruction and retrieve the result of it to memory. 

Once all instructions are processed, the Control Module will request the Model Handler module the 

output of the execution process. The workflow of the architecture when executing a model 

transformation is represented in the Figure 3.11. 
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Figure 3.11 - Sequence Diagram of the Execution Engine 
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 - Testing and Validation Chapter 4 

 

4.1 Testing Methodology 

Testing is the experimentation process performed to find errors in a system according to 

expectations defined by requirements or specifications. This process is usually carried out in a 

controlled environment where normal and exceptional use is simulated. Testing show the presence 

of errors, not their absence and it does not ensure the complete correctness of the implementation 

(Tretmans 2001). 

Several testing methodologies exist to evaluate solutions, each one with a specific purpose and a 

specific field of application. A standard testing methodology is used to evaluate the present 

solution, leading to the use of an international standard for conformance testing of Open Systems, 

i.e. the ISO 9646: “Open Systems Interconnection (OSI) Conformance Testing Methodology and 

Framework”(Technology 1991).  

ISO 9646 specifies OSI conformance testing and abstract test suites standards. This standardization 

promotes a comparability and acceptance of test results produced in different environments, 

reducing the need for repeated conformance testing on the same solution (Technology 1991). 

An approach based on the standard ISO 9646 is used in this work, as seen in Figure 4.1 this 

methodology is divided in five different stages. The first stage is the hypothesis, which consists in a 

proposition that attempts to explain a phenomenon. The second stage consists in a definition of 

tests in order to be executed. The third stage is a Proof of concept that consists in the 

implementation of a system to evaluate its basic functionalities and demonstrate its feasibility. The 

fourth stage is the Test Execution where tests are executed and analysed, leading to a specific 

verdict that derives from the comparison of the initial requirements defined and the output of the 

execution (Tretmans 2001). 
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Figure 4.1- Global View of the Conformance Testing Process, based on (Technology 1991) 

 

The abstract tests are specified with a well-defined notation, independent of any implementation. 

The notation used is TTCN-2 where the internal behavior of the system is not relevant, being the 

sequence of events the core of the concept referred (Tretmans 1992). 

The TTCN-2 is presented in a tabular form which shows the various parts that define the test, like, 

a chain of successive events, a verdict and a header. Each table possesses a header, where the test 

name, the purpose, the inputs and outputs are stated. The chain of successive events is indicated by 

increasing the indentation of the same, and is identified by a line number.  

The events that compose the chain are divided in two types: actions and questions. The actions are 

represented with an exclamation mark (“!”) at the beginning of the event, define the interaction 

with the system. The questions, which are represented with a question mark (“?”), define the 

expect answers from the system. The sequence ends with the specification of the verdict that is 

assigned when the execution of the sequence ends. 

The verdict can output three results: “Success”, “Fail” and “Inconclusive”. Success indicates that 

the test was executed successfully with the expect result, Fail indicates that the implementation 

does not conform to the specification, and Inconclusive indicates that no judgment can be retrieved 

from the test performed. 
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Table 4.1 - Example of a TTCN-2 based table test 

Invocation of model transformations 

Test name: Test the invocation of a model transformation 

Purpose: Check if the execution engine process the request, and provide the result of the transformation 

Inputs: I1: Model Data, I2: Interoperability Specification, I3:Expected output 

 

Outputs: O1: Result of the model transformation execution 

Line Number Behaviour Verdict 

1 !  Invoke the model transformation with parameters (I1,I2) 

 2 ? Returned data as transformation execution result (O1)  

 3 ? Result (O1) is equal to Expected (I3) SUCCESS 

4 ? Result (O1) is different from the Expected (I3) FAIL 

5 ? No Data Result INCONCLUSIVE 

 

An example of a TTCN-2 based table test is shown in Table 4.1. It exemplifies an invocation of a 

model transformation. The test starts with the invocation of a model transformation to the 

execution engine. The next step is verifying if there is any data returned from the model 

transformation execution. If there is an output of the model transformation and the expected result 

is equal to the output, the verdict of the test is “SUCCESS”, otherwise if the output of the 

transformation is not equal to the expected output then the verdict of the test is “FAIL”. In case the 

invocation is made and there is no output of the test the result of the test is “INCONCLUSIVE”, 

since it is not possible to evaluate the transformation. 

A TTCN-2 based table test is defined with the purpose of representing the execution process. 

However, there is the need of representing the model transformation tests performed considering 

the definition in Table 4.1. An example of a test case is shown in Table 4.2. The parameters of the 

table are the inputs for testing, the expected results and the results obtained during the test. Each 

row of Table 4.2 represents a specific test case. With this approach more than one test case can be 

represented for each abstract test. 

Table 4.2 - Example of a test case 

T
es

t 

Input Output 
Result  

(Line number) 

I1: Model Data 
I2:Interoperability 

Specification 

I2:Expected 

Result O1: Result Expected Actual 

1 M1 IS2 M2 M2 (3) (3) 

2 M1 IS2 M3 M4 (3) (4) 

3 No Data No Data No Data No Data (3) (5) 
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4.2 Proof of Concept Implementation 

TinyOS and consequently nesC (Gay, Levis et al. 2003) were chosen for the proof of concept 

implementation, since the purpose of this work is to implement an execution engine able to provide 

model transformations on low power devices. Thus, “the component-based structure of TinyOS 

allows for an application designer to select from a variety of system components in order to meet 

application specific goals”(Hill and Culler 2002). 

Therefore, a reliable language to the Interoperability on Low Power Devices proof of concept 

implementation is nesC (Gay, Levis et al. 2003). The nesC language is an extension to the C 

programming language designed to embody the structuring concepts and execution model of 

TinyOS. 

However, the implementation of the Interoperability on Low Power Devices proof of concept, 

reside on the transformation of the Eclipse Modeling Framework Virtual Machine (EMF VM) 

implemented in Java to a Virtual Machine implemented in nesC. Therefore, according to the 

solution presented, there is the requirement of handling the inputs of the EMF Virtual Machine, 

such as, the Model Data (XML) and the Interoperability Specification (ATL), to be operated on 

low power devices. 

The Model Data is described through a XML. The solution consists in converting the XML to a 

Lite XML model, maintaining the same information. The conversion consists in two distinct parts. 

The first part is a Java library able to convert a XML to a lite language, expressed in a hash table, 

and vice versa. The second part consists in a library contained on tinyOS that is responsible to 

handle the hash table data. 

4.3 Test Definition and Execution 

Considering the previous test methodology presented, two tests are presented: 

 Lite language translation - In this test case is verified if the system can perform a lite 

language translation of a given model data. The main goal of the test is to test if the system 

can translate model data to a lite format without losing any data information. 

 Model transformation execution - In this test case is verified if the system can perform a 

model transformation execution, according to an interoperability specification and a lite 

model data, and retrieve the expected result of the execution. 

A detailed definition over each test is presented in the next two sections. 
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4.3.1 Lite language translation 

 

Test definition 

This test is performed to verify the translation of a XML file to a lite language that will be used by 

the Execution Engine. The purpose is to test several XML structures, data types and tag definition 

tables as an input of the translation to verify if the lite language maintains all the information 

contained on the XML. 

To perform the proposed test the model data and the tag definition will be the input of a model data 

translation to lite language execution. If the execution returns a translation result, it proves that the 

translation execution occurred and returned some data. Therefore, there is the requirement of 

verifying if the output changed format and contains the original data elements.  Thus a new 

translation will be executed in order to verify if the output of the process is exactly the same as the 

original file. 

The execution of the test can fail in two conditions, if there is no output of any model data 

translation execution performed and if the output of the second model data translation contains 

different data elements of the original ones. The test definition is described through a TTCN based 

table and is presented in Table 4.3.  

Table 4.3 - Lite language translation - Test definition 

Test the model data translation to lite language format 

Test name: Test translation of model data to lite language format 

Purpose: Check if the translation is possible and able to provide the expected result with different inputs 

Inputs: I1: Model Data, I2: Tag Definition table 

 

Outputs: O1:Model Data that results of the first model data translation, O2: Model Data that results of the 

second model data translation 

Line Number Behaviour Verdict 

1 !  Execute a model data translation with parameters (I1, I2) 

 2 ? Returned data as translation result (O1)  

 3 !Execute a model data translation with parameters (O1, I2) 

 4 ?Returned data as translation result (O2)  

5 ? Result (O2) contains original data elements SUCCESS 

6 
? Result (O2) is different from the original data 

elements 
FAIL 

7 ? No Data Result INCONCLUSIVE 

8      ?No Data Result INCONCLUSIVE 
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Test execution 

To verify the validity of the proposed test, several tests are performed according to different 

models, models data and tag definition tables. The main goal of the tests is to verify the reliability 

of the system tested according to the previous definitions.  

All tests performed and their respective results are presented in Table 4.4. 

Table 4.4 - Lite language translation - Test execution 

T
es

t 

Input Output 
Result  

(Line number) 

I1: Model Data 
I2:Tag Definition 

Table 
O1: First Result O2:Second Result Expected Actual 

1 M1 TDT1 LM1 M1 (5) (5) 

2 M2 TDT2 LM2 M2 (5) (5) 

3 M2 No Data No Data No Data (8) (8) 

 

Each test is previously defined with a specific propose, therefore every test is performed 

considering different inputs that are discriminated next: 

 Test 1 - In this test, the model input is described by an ecore whose contains several data 

types elements contained in one class (Test1), as shown in Figure 4.2. 

 

Figure 4.2 - Lite Language translation Test 1 - Model description 

Therefore the model data (I1) needs to be defined in order to test the data translation to a 

lite format. The data used in the test is shown in Figure 4.3.   



Chapter 4 – Testing and Validation 

IonLPD – Interoperability on Low Power Devices       39 

 

 

Figure 4.3 – Lite Language translation Test 1 - Model data 

Finally the last input for the translation process needs to be defined, the tag definition table. 

The tag definition table (I2) contains all the tags required to provide the translation, as 

shown in Table 4.5. 

Table 4.5 - Lite Language translation Test 1 - Tag definition table 

Type Constant Description 

Test1 0x00 XML Class definition 

Integer 0xD0 Integer atribute of Test1 

Boolean 0xD1 Boolean atribute of Test1 

String 0xD2 String atribute of Test1 

Float 0xD3 Float atribute of Test1 

 

The outcome of the test (O1) is a model data, as shown in Figure 4.4. 

 

Figure 4.4 - Lite Language translation Test 1 - Execution Outcome 

Afterwards a new translation will be performed to verify if O1 contains all data elements 

present in I1 model data. The outcome of the model transformation process contains all 
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elements of the model data (I1) as shown in Figure 4.5, which means the translation was a 

success. 

 

Figure 4.5 - Lite Language translation Test 1 – Translation Model Data Outcome  

 

 Test 2 - In this case, the model is also described by an ecore which contains several classes 

each one with one attribute (T1,T2 and T3), as shown in Figure 4.6. 

 

Figure 4.6- Lite Language translation Test2 - Model description 

Once again the model data (I1) is described to accomplish the translation process. The 

model data used is shown in Figure 4.7. 
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Figure 4.7 - Lite Language translation Test 2 - Model data 

The tag definition table (I2) contains the tags required to provide the translation, as shown 

in Table 4.6. 

Table 4.6 - Lite Language translation Test 2 - Tag definition table 

Type Constant Description 

Test2 0x00 XML Class definition 

T1 0xD0 Class and Integer atribute of Test2 

T2 0xD1 Class and Byte atribute of Test2 

T3 0xD3 Class and String atribute of Test2 

 

O1 returned the model data elements contained in the I1, as shown in Figure 4.8 

 

Figure 4.8 - Lite Language translation Test 2 - Execution Outcome 
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A new translation will be performed to verify if O1 contains all data elements present in I1 

model data. The outcome of the model transformation process contains all elements of the 

model data (I1) as shown in Figure 4.9, which means the translation was a success. 

 

Figure 4.9 - Lite Language translation Test 2 – Translation Model Data Outcome  

 

 Test 3 - In this case, the model data input (I1) will be the same used in the test 2 (Figure 

4.7)  and the tag definition table (I2) does not contain any tags, as shown in Table 4.7.  

Table 4.7 - Lite Language translation Test 3 - Tag definition table 

Type Constant Description 

- - - 

- - - 

- - - 

- - - 

 

O1 did not return any model data, which means the translation failed 

Each outcome of the tests performed as well the expected result is presented in Table 4.4. The 

verdict obtained for all the tests performed were in conformance with the expected results. 
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4.3.2 Model transformation execution 

 

Test definition 

This test is performed to verify if the execution engine is able to provide an output of a model 

transformation execution. The purpose is to test if the execution engine can process a model 

transformation request with different inputs (model data and interoperability specification) and 

provide the expected result of the transformation. 

To perform the test there is the requirement of loading information to the execution engine so that 

it can perform the model transformation execution. Thus, the loading process of model data and 

interoperability specification is performed, taking model data and interoperability specification as 

inputs of each process, respectively. Afterwards a transformation will be invoked with both inputs 

to verify if the execution engine performs a model transformation and provide the expected result 

according to different file inputs. Thus, once the process is terminated, the output of the model 

transformation execution will be compared to the expected result. If the output is equal to the 

expected result then the test is a success, otherwise it fails. If there is no output of the model 

transformation execution then the test is inconclusive. 

Table 4.8 - Model transformation execution - Test definition 

Test a model transformation 

Test name: Test a model transformation 

Purpose: Check if the execution engine can process the request, and provide the expected result of the 

transformation with different inputs 

Inputs: I1: Model Data, I2: Interoperability Specification, I3:Expected output 

 

Outputs: O1:Model Data that results of the model transformation execution 

Line Number Behaviour Verdict 

3 !  Invoke the model transformation with loaded parameters (I1,I2) 

 4 ? Returned data as transformation execution result (O1) 

 5 !Compare returned data to Expected output (I3)  

6 ? Result (O1) is equal to Expected (I3) SUCCESS 

7 ? Result (O1) is different from the Expected (I3) FAIL 

8 ? No Data Result INCONCLUSIVE 

 

Test execution 

More than one test is performed considering different inputs, once again, to verify the validity of it. 

To perform the tests several inputs were developed with different purposes. 
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All tests performed and their respective results are presented in Table 4.9 

Table 4.9 - Model transformation - Test execution 

T
es

t 

Input Output 
Result  

(Line Number) 

I1:Model 

Data 

I2:Interoperability 

Specification 

I3:Expected 

Result 
Result Expected Actual 

1 Model Input IS Output Model Output (6) (6) 

2 
Model 

Degrees 
IS Kelvin Model Kelvin (6) (6) 

3 
Model 

Phonebook 
IS Dialer Model Dialer (6) (6) 

 

A brief description on each test will be shown next. 

 Test 1 – This test consists in a simple model transformation execution where the model 

elements are maintained after the process is accomplished. In this test, the model data input 

(I1) is described by one element contained in one class (input) and the interoperability 

specification (I2) contains all the operations required to provide the model transformation 

execution, the target model is the output model data description, as shown in Figure 4.10. 

O1 returned the model data elements according to the expected and in conformance with 

the target model, which means the model transformation execution was a success. 

 

Figure 4.10 - Model transformation execution test 1 - Initial conditions 

 The XML input and output used for this test are present in Figure 4.11.  

Source Model 
Interoperability 

Specification Target Model 
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Figure 4.11 - Model transformation execution test 1 - Model data 

 Test 2 - The model transformation presented in the test consists in converting the 

temperature in degrees to Kelvin and test if the execution engine can handle heterogeneous 

data as an input. In this test, the model data input (I1) is described by an UML with one 

element contained in one class (Degrees), the target model is the output model data 

description and the interoperability specification (I2) contains all the operations required to 

convert degrees to Kelvin, as shown in Figure 4.12. O1 returned the model data elements 

with the temperatures in Kelvins in conformance with the temperature in degrees, which 

means the model transformation execution was a success. 

 

Figure 4.12 - Model transformation execution test 2 - Initial conditions 

 

 

 

Model Data Input Model Data Output 

Source Model 
Interoperability 

Specification Target Model 



Chapter 4 – Testing and Validation 

IonLPD – Interoperability on Low Power Devices       46 

 

The XML input and output used for this test are present in Figure 4.13. 

 

Figure 4.13 - Model transformation execution test 2 - Model data 

 Test 3 - This test consists in converting the data information in a phonebook to a home 

dialer. In this test, the model data input (I1) is described by several elements with a specific 

purpose contained in one class (Phonebook), the target model is the output model data 

description and the interoperability specification (I2) contains all the operations required to 

convert the information, as shown in Figure 4.14. O1 returned the model data elements 

with the expected data in conformance with the phonebook and the target model 

description, which means the model transformation execution was a success. 

 

Figure 4.14 - Model transformation execution test 3 - Initial conditions 
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Source Model 
Interoperability 

Specification Target Model 
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The XML input and output used for this test are present in Figure 4.15. 

 

Figure 4.15 - Model transformation execution test 3 – Model data 

Once again the SUCCESS is present in all the tests performed according to the previous stated 

conditions. 

 

4.4 Verdict 

Several tests were performed in order to reach conclusions. Therefore, the main conclusion to 

retrieve from the tests performed is that the implemented proof of concept successfully passed all 

tests. It provides model transformation execution on a low power device and can handle the 

heterogeneity of data. 

Two tests were performed and were developed considering the features of the problem previous 

presented. The problem consists in executing model transformation in a heterogeneous network 

composed by resource constrained devices. 

The lite language translation test proved that the tested model data can be translated to a lite format 

maintaining the same information contained in the original model data. Therefore the proposed 

solution can overcome the resources constrains of low power devices. 

The model transformation execution proved that the execution is possible on a low power device 

with resource constrains. Therefore the proposed solution can handle the heterogeneity of data, 

through a model transformation execution. 

Model Data Input Model Data Output 
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Since all tests defined were executed, it can be concluded that the formulated hypothesis is a valid 

hypothesis. Thus, the proposed solution is able to handle all the features of the problem provided in 

earlier chapters. 
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 - Conclusions and Future Work Chapter 5 

 

“Internet of Things” enhances things of our everyday life and interconnects them for information 

sharing, consequently the user can have access to data and act in consonance with it. However 

those things will most likely be different sensors or actuators, leading to a heterogeneous 

environment with heterogeneous data. In order to lead interoperability in the Internet of Things 

network the Plug and Interoperate has been defined. The goal of Plug and Interoperate is to allow 

devices from different manufacturers plug to a heterogeneous network and interoperate with it, 

through the execution of interoperability specifications, avoiding the remanufacturing of every 

device in the network.   

To use the Plug and Interoperate concept on an environment composed by a network of battery 

powered devices, two characteristics were defined: Resource Constrains, which presents the need 

of operating interoperability specifications on a network composed by low power devices with 

resource constrains and Disparate Data Format Handler, which presents the need of providing 

interoperability on a network composed by devices with different data formats. Regarding the 

presented characteristics, the following question emerges: how to operate interoperability 

specifications in low power devices? 

A research was performed in order to identify which technologies can provide interoperability on 

low power devices. The research leads to four different state of art elements, Atomic 

Transformation Code Virtual Machine (ATC VM), Eclipse Modeling Framework Virtual Machine 

(EMFVM), Kermeta and Viatra2.0. All elements are Model Driven and handle the characteristics 

of the problem as follows:  

 Resource Constrains -  The studied elements require significant resource usage to process a 

model transformation, due to the fact that all execution engines relies on a Java-based 

architecture and require the parsing of their inputs to enable a model transformation 

execution. 
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 Disparate data format handler – The state of art elements studied have a common solution 

expressed in their architecture to handle disparate data formats, the Eclipse Modeling 

Framework (EMF) that can virtually support any data format. The difference presented on 

the studied elements resides on the way EMF is used. The ATC Virtual Machine and 

Kermeta use EMF as a model handler and a model repository. The EMF Virtual Machine 

directly access to the Eclipse Modeling Framework, using it as a model handler and 

repository. Viatra2 access model information from the EMF through a plugin that provides 

the translation of language to the Viatra2 model transformation engine. 

None of the elements presented can solve the the problem described, but some elements contain 

interesting approaches to solve specific problem characteristics. The EMF Virtual Machine 

accesses directly to EMF and can virtually handle any data format, since it can support countless 

model handlers. Both, ATC VM and EMF VM, uses a byte code format to describe the 

interoperability specification, which is a directly processed by both virtual machines, contributing 

for the resource constrains handling. Viatra2 clearly distinguishes the processes in design time and 

execution time which can contribute to a resource aware solution. 

Considering the performed study, this work purposes two specific approaches to provide the 

execution of a model transformation on low power devices: 

 Execute the minimum of processes in run-time, to make low power devices to execute 

only run time processes required to a model transformation execution. 

 Use of a lite language, to overcome the processing and memory limitations that exist 

on low power devices.  

According to both approaches a solution is presented and is structured in three main parts, the ATL 

compilation, which represents the compilation of a model transformation language into executable 

code, the Lite language, that is designed to express XML on a simple lite format and the Execution 

Engine, that is responsible to execute a model transformation and handle lite models data. 

The ATL compilation purpose is to provide the compilation of a model transformation language 

that is described through a relational language structure, into a textual assembler file that will  be 

directly interpreted by the execution engine. The compilation process consists in a compilation of 

an ATL file to a set of instructions readable by the execution engine. There are 3 types of 

instructions, operand stack handling, control instructions and model handling instructions. 
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The Lite language purpose is to provide a lite file that contains the model data but is described in a 

different format, to avoid the use of resource intensive processes to interpret model data. To do so, 

XML fields and parameters are identified with hexadecimal tags in order to compile the XML file 

to a hexadecimal format. The structure of data is based on object-subject-value expressions, where 

object describes the situation parameter, subject refers to another expression and value contains the 

value of the object. 

The Execution engine is responsible to execute a model transformation and handle lite models. The 

architecture of the execution engine is composed by three main modules: 

 Control – This module is responsible to control the data flow of the execution engine 

and process to process the interoperability specification. 

 Model Handler – This module is a library designed to provide primitives to handle lite 

models 

 Virtual Machine – This module is responsible to execute the model transformation 

operations contained on the interoperability specification. 

The approach passed by a testing process that consisted in the definition and execution of two tests. 

The first test consists in a lite language translation and intends to verify the translation of a XML 

file to a lite language that will be used by the execution engine. Several tests were performed and 

showed that the conversion is possible to several xml data types, meaning that the solution can 

handle resource constrain. 

The second test performed consists in a model transformation execution and intends to verify if the 

solution is able to provide an output of that process.  Several tests were performed and showed that 

the model transformation execution is possible to several model data inputs. Therefore, it can be 

concluded that executing model transformations on low power devices is possible and the solution 

handles heterogeneous data. Thus, this test was a success. 

The result of both tests was a success. Thus, it can be concluded that the hypothesis proposed in 

this work is valid, meaning that Interoperability on Embedded system can handle the resource 

constrains of low power devices, and it successfully handle heterogeneous data. 

From this work resulted one scientific article, “Interoperability specification execution on 

embedded systems” which was published in the 6
th
 Iberian Conference on Information Systems and 

Technologies (CISTI) 2011, presenting an early development stage of this work. 
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5.1 Future Work 

An interesting enhancement that could be applied to the solution purposed is the possibility to 

support data compilation into lite formats on the low power device. For example, in this solution 

when a model transformation is executed on a low power device, there is the requirement of two 

inputs, a lite language format with the model data and an interoperability specification already 

processed. An interesting approach is that both files transformation process occur in the device 

itself instead of outside. 

Another interesting approach would be to enhance the lite language transformation process in order 

to enable the use of more data types onto the language. For example, in this solution the 

transformation process does not fully support string data types since it cannot fully translate all 

characters present on the XML data type. Therefore if the translation could be supported to provide 

a reliable transformation, an interesting advancement would be applied to the solution. 
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