
ELSA CRISTINA BATISTA BENTO CARVALHO

Probabilistic Constraint

Reasoning

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia In-

formática, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnolo-

gia.

LISBOA

2012

ii

Probabilistic Constraint Reasoning

Copyright c⃝ Elsa Cristina Batista Bento Carvalho, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa tem o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro

meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios

cient́ıficos e de admitir a sua cópia e distribuição com objectivos educacionais ou de

investigação, não comerciais, desde que seja dado crédito ao autor e editor.

For Laura with love.

My endless source of inspiration with her tender heart and ingenious mind.

Acknowledgements

For me, writing this thesis was like a long, long journey, with many ups and

downs. In every step of the way I faced challenges that made me grow as

a researcher and as a person. But the journey is coming to an end and is

now time to remember and be grateful to those who crossed my path and

helped me to achieve my goal in many different ways.

I am deeply indebted to my supervisors, Jorge Cruz and Pedro Barahona.

Through their helpful suggestions, they wisely guided me in this process and

taught me how to do research. They were always available for mind storming

meetings and actively participated in the construction of this work. During

the writing of the thesis, their insightful comments were determinant to the

final result. Thank you Jorge for your inspired ideas. Thank you Pedro for

your careful and knowledgeable revisions.

I am grateful to Dinis Pestana, Śılvio Velosa and Sandra Mendonça for

their enlightening comments and discussions in probability theory. Thank

you Dinis for revising the chapter of probability theory. Thank you Śılvio

for your genuine interest in my work and for your valuable help on some

probabilistic details. Thank you Sandra for our dinners, where we discussed

about probabilities. And thank you for many other things.

I am grateful to Alexandre Goldsztejn for his valuable contribution to this

work, while collaborating in the development of verified quadrature meth-

ods. The thesis would not be the same without this core component.

I am grateful to Davide D’Alimonte, Guiseppe Zibordi and all his research

team in JRC for their collaboration in the ocean color inversion problem.

Thank you Davide for your interest in this work and your suggestion of

ocean color inversion as an application problem. Without your expert help

and guidance it would have been difficult to address this problem. Moreover,

you were fundamental to promote a closer contact with other experts in the

area as Guiseppe and his team in JRC. Thank you Guiseppe and Jean-

François for disclosing sensitive data, fundamental for our experiments, and

for your motivating interest in our proposed solution.

To my colleagues at FCT, Marco, Alexandre and Armando, who are also

good friends. They were doing or had already made a similar journey. Their

examples made me understand that it was possible to successfully reach the

end and their motivating comments were a good aid in difficult moments.

To my colleagues at UMa for their patience and valuable support.

To my friends, who were fundamental to remember me that there is life

beyond the PhD. Thank you Lulu for your tenderness and joy; Margarida

for your solidarity and friendship; Elci, my journey companion, for your

sensible advices and solid presence; Cećılia for your sense of humor and for

caring so much; Professora Rita for being an example to look up to; Elias

for your valuable friendship and your inspired mathematical explanations;

Leonel for being who you are and Pedro for your enthusiastic support while

listening to my research achievements. Thank you Filipe for so many things.

To my parents for their unconditional and loving support, for being there

whenever I need them, without criticizing or making questions and for being

such a solid home to return to.

To my dear sister that always helped me through the storms. She is a

lighthouse in my life.

And to you Laura, my dearest daughter, for waiting so patiently that mum

finishes writing her book.

Abstract

The continuous constraint paradigm has been often used to model safe

reasoning in applications where uncertainty arises. Constraint propagation

propagates intervals of uncertainty among the variables of the problem,

eliminating values that do not belong to any solution. However, constraint

programming is very conservative: if initial intervals are wide (reflecting

large uncertainty), the obtained safe enclosure of all consistent scenarios

may be inadequately wide for decision support. Since all scenarios are

considered equally likely, insufficient pruning leads to great inefficiency if

some costly decisions may be justified by very unlikely scenarios. Even

when probabilistic information is available for the variables of the problem,

the continuous constraint paradigm is unable to incorporate and reason

with such information. Therefore, it is incapable of distinguishing between

different scenarios, based on their likelihoods.

This thesis presents a probabilistic continuous constraint paradigm that

associates a probabilistic space to the variables of the problem, enabling

probabilistic reasoning to complement the underlying constraint reasoning.

Such reasoning is used to address probabilistic queries and requires the com-

putation of multi-dimensional integrals on possibly non linear integration

regions. Suitable algorithms for such queries are developed, using safe or ap-

proximate integration techniques and relying on methods from continuous

constraint programming in order to compute safe covers of the integration

region.

The thesis illustrates the adequacy of the probabilistic continuous constraint

framework for decision support in nonlinear continuous problems with un-

certain information, namely on inverse and reliability problems, two differ-

ent types of engineering problems where the developed framework is partic-

ularly adequate to support decision makers.

Resumo

O paradigma por restrições em domı́nios cont́ınuos tem sido amplamente

utilizado para modelar racioćınio seguro, em aplicações onde existe in-

certeza. A propagação de restrições propaga intervalos de incerteza entre

as variáveis do problema, eliminando valores que não pertencem a nenhuma

solução. No entanto, se os intervalos iniciais forem grandes, a cobertura

obtida pode ser demasiado abrangente, sendo insuficiente para suportar

decisões. Considerando todos os cenários igualmente verośımeis, tal facto

pode resultar em tomadas de decisão de custo elevado devido à existência de

cenários muito improváveis. Mesmo quando estão dispońıveis distribuições

de probabilidade para as variáveis do problema, o paradigma por restrições

em domı́nios cont́ınuos não consegue incorporar nem raciocinar com essa

informação.

Neste trabalho desenvolvemos um paradigma de restrições em domı́nios

cont́ınuos que associa um espaço probabiĺıstico às variáveis do problema,

permitindo efectuar racioćınio probabiĺıstico. Tal racioćınio baseia-se na

avaliação de informação probabiĺıstica que requer a computação de integrais

multidimensionais em regiões possivelmente não lineares. São desenvolvi-

dos algoritmos capazes de avaliar essa informação, usando técnicas de inte-

gração seguras ou aproximadas e dependendo de métodos de programação

por restrições em domı́nios cont́ınuos para obter coberturas da região de

integração.

A plataforma probabiĺıstica de restrições em domı́nios cont́ınuos é adequada

para suporte à decisão em problemas não lineares em domı́nios cont́ınuos,

com incerteza. A sua aplicabilidade é ilustrada em problemas inversos e

problemas de fiabilidade, que são duas classes distintas de problemas de

engenharia, representativas do tipo de racioćınio com incerteza requerido

pelos decisores.

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Contributions . 2

1.1.1 Probabilistic Continuous Constraint Space 3

1.1.2 Probabilistic Constraint Reasoning 3

1.1.3 Prototype Implementation . 4

1.1.4 Application to Inverse Problems 4

1.1.5 Application to Reliability Problems 5

1.2 Dissertation Guide . 5

I Continuous Constraints and Uncertainty 9

2 Continuous Constraint Programming 11

2.1 Interval Analysis . 11

2.1.1 Interval Arithmetic . 12

2.1.2 Inclusion Functions . 18

2.1.3 Interval Methods . 24

2.2 Continuous Constraint Satisfaction Problems 26

vii

CONTENTS

2.3 Computing Feasible Space Approximations 30

2.3.1 Constraint Propagation . 31

2.3.2 Consistencies . 32

2.3.3 Constraint Reasoning . 35

2.4 Summary . 43

3 Probabilistic Uncertainty Quantification 45

3.1 Probability . 45

3.2 Conditional Probability . 49

3.3 Random Variables . 53

3.3.1 Moments . 56

3.3.2 Some Continuous Probability Distributions 58

3.4 Random Vectors . 59

3.4.1 Moments . 62

3.4.2 Conditioning . 63

3.5 Numerical Computations . 65

3.5.1 Probabilistic Framework Outline 66

3.5.2 Integration with Taylor Models 66

3.5.3 Integration with Monte Carlo . 72

3.6 Summary . 75

II Probabilistic Constraints 77

4 Probabilistic Constraint Programming 79

4.1 Probabilistic Continuous Constraint Space 81

4.2 Probabilistic Constraint Events . 83

4.3 Safe Integral Enclosure . 88

viii

CONTENTS

4.4 Probability Enclosure . 90

4.5 Conditional Probability Enclosure . 93

4.6 Algorithms . 96

4.6.1 Probability Enclosure . 97

4.6.2 Conditional Probability Enclosure 101

4.7 Alternative Approximate Computations 105

4.8 Experimental Results . 107

4.8.1 Development Environment . 107

4.8.2 The PC Events . 108

4.8.3 Probability Enclosure . 110

4.8.4 Conditional Probability Enclosure 112

4.9 Summary . 113

5 Random Vectors 115

5.1 Probabilistic Enclosures . 115

5.2 Conditional Probabilistic Enclosures . 124

5.3 Algorithms . 129

5.4 Probability Distributions . 131

5.4.1 Probability Distributions for Functions of Random Vectors . . . 135

5.5 Alternative Approximate Computations 140

5.6 Experimental Results . 141

5.6.1 The PC Events . 141

5.6.2 Probabilistic Enclosures . 142

5.6.3 Probability Distributions . 144

5.6.4 Conditional Probabilistic Enclosures 150

5.7 Summary . 151

ix

CONTENTS

III Application to Decision Problems 153

6 Nonlinear Inverse Problems 155

6.1 Inverse Problems . 156

6.2 Classical Techniques . 157

6.3 Probabilistic Constraint Approach . 163

6.4 Seismic Event Model . 168

6.5 Population Growth Model . 169

6.6 Ocean Color Inversion . 175

6.6.1 Ocean Color . 176

6.6.2 Related Work . 177

6.6.3 Probabilistic Constraint Approach 178

6.6.4 Experimental Results . 180

6.7 Summary . 186

7 Reliability Problems 187

7.1 Reliability Analysis . 189

7.1.1 Reliability Based Design . 190

7.2 Classical Techniques . 192

7.3 Probabilistic Constraint Approach . 197

7.3.1 Reliability Assessment . 197

7.3.2 Reliability Based Design . 204

7.3.3 Reliability Based Design Optimization 213

7.4 Short Rectangular Column . 219

7.5 Summary . 223

x

CONTENTS

8 Conclusions and Future Work 225

8.1 Probabilistic Constraint Programming 225

8.2 Prototype . 228

8.3 Application to Decision Problems . 229

Appendices 233

A Constraint Reasoning Algorithm 233

A.1 Parametrization . 233

A.2 Algorithm Convergence . 237

B Integration with Taylor Models 241

B.1 Proof of Property 3.16 . 241

B.2 Numerical Computations of Example 3.2 244

References 247

xi

CONTENTS

xii

List of Figures

2.1 Model and propagate uncertainty. (a) Model uncertainty in the mea-

surement of the radius. (b) Propagation of uncertainty to the calculus

of the diameter. 12

2.2 Enclosure of the area exact value: 3 ≤ area = π ≤ 4. 14

2.3 Joint box covers of the feasible space inside the curve lines. 38

2.4 Joint box covers obtained when computing the volume of a circle with

radius 1, centered in (0,0). 43

3.1 (a) Bivariate Gaussian distributed probability space; (b) Conditional

probability space distribution given the evidence x− 1 ≤ y ≤ x+ 1. . . 52

3.2 Mapping from the sample space Ω to R, by the random variable X. . . . 53

4.1 (a) Joint PDF of X (b) Constraints. 83

4.2 Some possible events of a probability space defined by a PC. 85

4.3 Boxes and constraint . 86

4.4 Events and PDF used in examples. 98

4.5 Joint box covers of the PC event H1 computed when using algorithm 6

with a safe integration method. The boundary boxes are light gray and

the inner boxes are gray. 99

4.6 Joint box covers computed when using algorithm 7 with δ = 0.05. The

common/other boundary boxes are light blue/gray, the common/other

inner boxes are dark blue/gray. 105

xiii

LIST OF FIGURES

4.7 Joint box covers of the PC event H1 computed when using algorithm 6

with an approximate integration method. The boundary boxes are light

gray and the inner boxes are gray. 106

4.8 Probability density functions used for testing. 108

4.9 Events used for testing. 109

5.1 PDF and box cover used in examples. 117

5.2 Restricting the values of random variables. 119

5.3 Integrand functions. 121

5.4 H5 and its joint box cover H� . 125

5.5 Event H and joint box covers of D and H computed with algorithms 10

and 11 with a safe integration method. The boundary boxes are light

gray and the inner boxes are gray. 131

5.6 Integrand functions used to computed the expected values and variances. 132

5.7 Joint box covers produced when computing probability distributions. . . 136

5.8 Marginal probability distributions. 136

5.9 Joint box cover of H (top) and correspondent joint box cover of Y (bot-

tom). 137

5.10 Joint box cover and distribution produced by algorithm 13. 140

5.11 Probability density functions used for testing. 141

5.12 Events used for testing. 142

5.13 Probability distributions of Z = ⟨X,Y ⟩ conditioned by events Hi ob-

tained with algorithm 12 with PDF f1. 145

5.14 Probability distributions of Z = ⟨X,Y ⟩ conditioned by events Hi ob-

tained with algorithm 12 with PDF f2. 145

5.15 Marginal probability distributions of X and Y conditioned by events Hi

obtained with algorithm 12 with PDF f1. 146

5.16 Marginal probability distributions of X and Y conditioned by events Hi

obtained with algorithm 12 with PDF f2. 146

xiv

LIST OF FIGURES

5.17 Probability distributions of XY conditioned by PC events obtained with

algorithm 12 with PDF f1. 147

5.18 Probability distributions of XY conditioned by PC events obtained with

algorithm 12 with PDF f2. 148

5.19 Probability distributions conditioned by D obtained with algorithm 12

with PDF f1. 148

5.20 Probability distributions conditioned by D obtained with algorithm 12

with PDF f2. 149

5.21 Probability distribution of ⟨X + Y,X⟩|D with PDF f2. 149

6.1 Least squares approaches a) search for a single best-fit solution that

maximize the likelihood of the observations. Bounded-error approaches

b) compute a set of solutions consistent with the observations. 159

6.2 In linear problems, least squares approaches a) compute the mean value

of the distribution of the parameter values given the observed data.

Bounded-error approaches b) compute an interval that includes all m-

values consistent with the observations. 160

6.3 In nonlinear problems, least squares approaches a) may provide wrong

results assuming the computed value to be the mean of a parameter

normal distribution given the observed data. Bounded-error approaches

b) still provide reliable enclosures for all m-values consistent with the

observations. 162

6.4 Probability distribution of the parameterm obtained by the PC framework.167

6.5 Epicentral coordinates of the seismic event. Joint distribution. 170

6.6 Epicentral coordinates of the seismic event. Marginal distributions (a)

for m1 and (b) for m2. 171

6.7 Enclosure of the CCSP feasible space. 172

6.8 Exponential model. (a) Joint distribution; Marginal distributions (b) for

m1 and (c) for m2. 173

xv

LIST OF FIGURES

6.9 Logistic model. Marginal distributions (a) for m1, (b) for m2 and (c) for

m3. 174

6.10 Expected US population in 1920. (a) Exponential and (b) logistic models.174

6.11 The forward model is a function from the optically active seawater com-

pounds (Chla, NPPM and CDOM) to the remote sensing reflectance

(Rrs) at a given wavelength (λ). 177

6.12 Joint and marginal uncertainty distributions computed by the PC frame-

work. 182

7.1 X space and U space. 193

7.2 Geometrical illustration of the reliability index. 193

7.3 Problems with multiple design points. 195

7.4 Example of a linear limit-state in the original space and non-linear in

the standard normal space. 199

7.5 Non linear limit-state function g(x1, x2) = 0. 201

7.6 Examples of series and parallel systems found in [111]. 202

7.7 A design problem. 206

7.8 Reliability distribution over the design space. 210

7.9 Reliability distribution over the design space. 213

7.10 Reliability based design optimization. 216

7.11 Reliability based design optimization. 217

7.12 Multiple optimal designs. 218

7.13 Pareto-optimal frontier . 218

7.14 Reliability distribution over the design space for problem ColumnB. . . 221

7.15 Plots of g(2000, 500, 5, h, b) (red line) and g(2000, 500, e5, h, b) (green line).222

7.16 Reliability distribution over the design space for problem ColumnC. . . 222

7.17 Reliability distribution over the design space for problem ColumnD. . . 223

xvi

List of Tables

3.1 Enclosure for the quadrature of f in B by Taylor models integration with

increasing order n. 72

3.2 Estimated integral of f in B by Monte Carlo integration and correspon-

dent error estimate. 75

4.1 Probabilities of Bi and Bi ∩H5 using formulas (4.1) and (4.2). 87

4.2 Enclosures for the probability of Bi ∩H5. 91

4.3 Definition of constraints and events. 98

4.4 Definition of constraints and events. 108

4.5 Probability enclosures for events Hi with PDF f1, obtained with both

versions of algorithm 6, their numerical computations with Mathematica

and respective timings. 111

4.6 Probability enclosures for events Hi with PDF f2, obtained with both

versions of algorithm 6, their numerical computations with Mathematica

and respective timings. 111

4.7 Midpoints of the conditional probability enclosures for H given Hi ob-

tained by the PCTM version of algorithm 7 and respective timings (in

seconds). 112

4.8 Relative error percentages of the conditional probabilities of H given

Hi obtained with Mathematica when compare with those computed by

algorithm 7. 112

xvii

LIST OF TABLES

4.9 Speedup of algorithm 7 when compared with the alternative method

(with algorithm 6) that uses two completely independent joint box covers.113

5.1 Probability enclosures of Bi using property 4.4. 118

5.2 Enclosures for the probability of Bi ∩Hj 118

5.3 Enclosures for the integrals
∫
B xjf(x)dx,

∫
B x2jf(x)dx and

∫
B x1x2f(x)dx.122

5.4 Exact values of
∫
B xjf(x)dx,

∫
B x2jf(x)dx and

∫
B x1x2f(x)dx. 123

5.5 Enclosures for the probability of Bi ∩Hj ∩H5. 125

5.6 Exact values for the integrals over the region defined by H5. 128

5.7 Definition of constraints and events. 143

5.8 Probability enclosures for events Hi with PDF f1, obtained with both

versions of algorithm 6 and respective timings. 143

5.9 Probability enclosures for events Hi with PDF f2, obtained with both

versions of algorithm 6 and respective timings. 143

5.10 Expected values and variances conditioned by events Hi obtained by

PCTM and PCMC versions, with PDF f1. 150

5.11 Enclosures for expected values and covariances conditioned by events Hi

obtained with PCTM version, with PDF f2. 150

5.12 Approximations for expected values and covariances conditioned by events

Hi obtained with PCMC version, with PDF f2. 151

6.1 Arrival times (in seconds) of the seismic waves observed at six seismic

stations. 168

6.2 US Population (in millions) over the years 1790 (0) to 1910 (120). . . . 170

6.3 Matrix of coefficients computed from the forward model of figure 6.11

and the values for the constants. 179

6.4 The 12 experimental cases were simulated by using the forward model to

compute the observed parameter values from the above model parame-

ters values. 180

xviii

LIST OF TABLES

6.5 Interval enclosures of E[Chla] and STD[Chla] computed by the PCTM

version of algorithm 11. 182

6.6 Approximations of E[Chla] and STD[Chla] computed by the PCMC

version of algorithm 11. 183

6.7 Approximations of E[Chla] and STD[Chla] computed by the AMC al-

gorithm after 10 minutes with several sampling sizes N 184

6.8 E[Chla] and STD[Chla] obtained by the PC algorithms for different

accuracies. 186

7.1 Probability of failure ×102. 200

7.2 Probability of failure ×102. 201

7.3 Probability of failure ×103. 203

7.4 Probability of failure ×102. 204

7.5 Reliability values for some particular designs. 211

xix

LIST OF TABLES

xx

Chapter 1

Introduction

A mathematical model typically describes a system by a set of variables and a set of

constraints that establish relations between the variables. In this thesis we focus on

continuous domains, i.e. variables ranging over intervals of real numbers and relations

defined on these intervals. Uncertainty and non linearity play a major role in modeling

most real world continuous systems. When the model is non linear small approximation

errors may be dramatically magnified. Any framework for decision support in contin-

uous domains must provide an expressive mathematical model to represent the system

behavior performing sound reasoning that accounts for the uncertainty and the effect

of non linearity. Two classical approaches to reason with uncertainty exploit different

scenarios consistent with the mathematical model.

When safety is a major concern, all possible scenarios must be considered. For this

purpose, intervals can be used to include all possible values of the variables. This is

the approach adopted in continuous constraint programming which uses safe constraint

propagation techniques to narrow the intervals, thus reducing uncertainty. Nevertheless

this approach considers all the scenarios to be equally likely, leading to great inefficiency:

some costly decisions may be taken due to very unlikely scenarios.

In contrast, stochastic approaches reason on approximations of the most likely scenarios.

They associate a probabilistic model to the problem thus characterizing the likelihood

of the different scenarios. Some methods use local search techniques to find most likely

scenarios, which may lead to erroneous decisions due to approximation errors, non

linearity as well as the inherent incompleteness of such type of search. Moreover, there

may be other scenarios relevant to decision making which are ignored by this single

1

Chapter 1. Introduction

scenario approach. Other stochastic methods use extensive random sampling over the

different scenarios to characterize the complete probability space. However, even after

intensive computations, no safe conclusion can be drawn from these methods, because

a significant subset of the probabilistic space may have been missed.

The fundamental motivation of this work is thus to extend the continuous constraint

framework with enough expressive power so as to allow the representation of uncertain

information characterized by probability distributions. This will clearly broaden the

range of problems that can be modeled in the continuous constraint paradigm, making

it a more appealing tool for decision support in engineering and science, where problems

in continuous domains with uncertainty and non linearity are common.

This work extends the classical continuous constraint approach, by complementing the

interval representation of uncertainty with a probabilistic characterization of the dis-

tribution of possible values. A new formalism is thus available, allowing to reason with

probabilistic information, while maintaining all the advantages (e.g. safety) of contin-

uous constraint reasoning, producing probability enhanced intervals for the acceptable

values of the problem variables. Since probabilistic reasoning in continuous domains in-

volves multi dimensional integral computations, both safe and approximate techniques

to obtain such integral values were addressed.

To assess the adequacy of the proposed formalism, the probabilistic constraint frame-

work was applied to several decision support problems in continuous domains, in the

presence of stochastic uncertainty and non linearity by means of a prototype that im-

plemented all the algorithms presented in the thesis.

Two main classes of problems that can benefit with the proposed techniques, where un-

certainty and non linearity are present were exploited: inverse problems and reliability

problems. A comprehensive comparison of the probabilistic constraint framework with

classical techniques that address those problems was performed.

1.1 Contributions

The main contributions of this thesis can be summarized as follows.

2

1.1 Contributions

• Extension of the continuous constraint paradigm to handle and reason with prob-

abilistic information, providing a new formalism to model continuous constraint

problems that includes probability distributions for the variables of the problem.

• Theoretically characterization of the framework that performs probabilistic con-

straint reasoning and address its operational aspects.

• Development of a prototype, that implements the operational aspects of the prob-

abilistic constraint framework, to test its capabilities as an alternative approach

to decision support in the presence of stochastic uncertainty and non linearity.

• Illustration of the adequacy and potential of the framework by applying the pro-

totype to inverse problems and reliability problems.

1.1.1 Probabilistic Continuous Constraint Space

A new formalism, the probabilistic continuous constraint space, PC, was defined that

incorporates information on probability distributions of the variables of the problem,

a joint probability density function. This associates a probabilistic space to a continu-

ous constraint satisfaction problem, CCSP, allowing to formulate several probabilistic

queries and obtain a set of probabilistic data associated with the problem.

The two basic components of probability theory, events and random variables, are

identified within a probabilistic continuous constraint space. PC events are represented

by regions that satisfy (subsets of) the constraints of the underlying CCSP. The random

variables are represented by the CCSP variables which now have an associated joint

probability density function.

1.1.2 Probabilistic Constraint Reasoning

Probabilistic constraint reasoning, relies on constraint reasoning to cover the events

with adequate sets of boxes, and on integration techniques to compute probabilities of

events, expected values and variances of random variables.

The representation of events by sets of boxes is twofold: it aims at transforming a

complex problem (integration on a non linear region) into simpler problems (integra-

tion on boxes) and to provide guaranteed bounds (when safe integration techniques

3

Chapter 1. Introduction

are available) for the computed quantities by distinguishing between boxes completely

included in the event and those that are not.

In this context, a fundamental operational issue in probabilistic constraint reasoning

is the computation of multi dimensional integrals in boxes. In contrast to approxi-

mate numerical methods, a more powerful technique was developed (with Alexandre

Goldsztejn) to obtain safe integration bounds. On the other hand, trading safety with

efficiency, an approximate Monte Carlo integration hybrid technique was implemented,

benefiting from the pruning of the sampling space with constraint programming.

1.1.3 Prototype Implementation

Besides the theoretical formalization of the proposed probabilistic constraint frame-

work, its operational behavior is exploited and tested in a prototype implementation.

Since continuous constraint programming is a key aspect of the framework, this pro-

totype was implemented over RealPaver 1.0, a state-of-the-art interval solver, that

provides methods from continuous constraint programming and allows to easily extend

them with probabilistic reasoning.

Several methods were thus implemented that, given one or more files describing the

problems (e.g. PC events, probabilistic continuous constraint spaces) compute different

types of probabilistic results: conditional and unconditional probabilities of PC events,

conditional and unconditional expected values and covariance matrices of random vec-

tors and parametric probability distributions of random vectors. A simple optimization

algorithm is also provided that allows to compute Pareto-optimal frontiers given multi

objective problems.

1.1.4 Application to Inverse Problems

Inverse problems aim to estimate parameters of a model of the system behavior from

observed data. Uncertainty arises from measurement errors on the observed data or

approximations in the model specification. Non linear model equations can cause a

severe amplification of the uncertainty, and an arbitrarily small change in the data may

induce an arbitrarily large change in the values of the model parameters.

4

1.2 Dissertation Guide

The probabilistic continuous constraint approach overcomes many problems posed by

classical techniques. It associates a priori probabilistic information to the observed

data range of values, produces a characterization of the complete solution space in

terms of a posteriori probability distributions for the range of values of the model pa-

rameters given the evidence provided by the constraints, and guarantees robustness of

the solutions found when safe integration techniques are used. This allows decision

makers to compare different values for sets of model parameters based on their likeli-

hoods, instead of being artificially restricted to a single solution or to be confronted

with several solutions without being able to differentiate between them.

1.1.5 Application to Reliability Problems

Reliability problems aim to find reliable decisions according to a model of the system

behavior, where both decision and uncontrollable variables may be subject to uncer-

tainty. Given the choices committed in a decision, its reliability quantifies the ability

of the system to perform the required functions under variable conditions. Many relia-

bility problems include optimization criteria, modeled by objective functions over both

the uncontrollable and decision variables.

The paradigm proposed in this thesis does not suffer from the limitations of classical

methods, guaranteeing safe bounds for the reliability of a decision. Furthermore, where

classical techniques only provide a single decision point for a given target reliability, the

proposed approach provides a global view of the whole decision space reliability. For

example, in reliability based optimization, our method computes a safe Pareto-optimal

frontier given the optimization criteria and the maximization of the reliability value,

providing valuable information on the tradeoff between the system reliability value and

its desired behavior.

1.2 Dissertation Guide

This dissertation is divided in three main parts.

The first part describes the relevant concepts of continuous constraint programming

and probability theory and is composed of chapters 2 and 3.

5

Chapter 1. Introduction

Chapter 2 focuses on the main concepts of continuous constraint programming, by intro-

ducing interval analysis (interval arithmetic, inclusion functions and interval methods),

continuous constraint satisfaction problems and methods to solve them (constraint

propagation and constraint reasoning). Although describing classical notions and tech-

niques, the topics are biased towards the probabilistic continuous constraint framework

proposed in the thesis.

Chapter 3 introduces relevant concepts of probability theory, presenting unconditional

and conditional probabilities, random variables and random vectors, in a continuous

probability space. In this context, two numerical integration methods are presented to

compute either safe or approximate enclosures for exact integral values: Taylor Models

and Monte Carlo methods, respectively.

The second part addresses probabilistic constraint reasoning, defining a formalism to

represent probabilistic information in continuous constraint problems and describing

techniques to reason with this new information and compute probabilistic data. It is

composed of chapters 4 and 5.

Chapter 4 defines the probabilistic continuous constraint space and its semantics, and

identifies the kind of problems that can be formulated within this probabilistic space.

The concept of probabilistic constraint event is introduced and both safe and approx-

imate methods to obtain enclosures for their unconditional and conditional probabil-

ities are described. Experimental results illustrate the capabilities of the proposed

algorithms.

Chapter 5 addresses the probabilistic features of random vectors within a probabilistic

continuous constraint space. It presents methods to compute safe and approximate

enclosures for probabilities (conditional or not) of random vectors when restricted to

a range of values, as well as for unconditional and conditional expected values and

covariance matrices of random vectors. It also presents methods to compute probability

distributions of a subset of the identity random vector and of random vectors defined as

functions of the former. Experimental results illustrate the capabilities of the proposed

algorithms.

The third part presents the application of the proposed framework to decision problems,

showing how they can be cast as probabilistic continuous constraint spaces and using

6

1.2 Dissertation Guide

methods proposed in part II to solve them. Comparisons are made with the classical

techniques to solve this kind of problems.

Chapter 6 illustrates the application of the probabilistic continuous constraint frame-

work to decision problems on non linear inverse problems. Inverse problems are defined

and classical techniques to solve them presented, highlighting drawbacks of such ap-

proaches. The definition of an inverse problem as a probabilistic continuous constraint

space is addressed and the capabilities of the PC framework are illustrated in three

application problems. The first two show how to deal with non linear inverse problems,

in general. The last, more complex, problem uses the framework on a real world ocean

color application.

Chapter 7 illustrates the application of the probabilistic continuous constraint frame-

work to reliability analysis problems. Reliability analysis problems are presented to-

gether with classical techniques to solve them, and some of their drawbacks discussed.

The formulation of reliability analysis problems as probabilistic continuous constraint

spaces is presented and the advantages of the PC framework are illustrated on a set of

application problems.

Chapter 8 summarizes the work accomplished during this research and points out di-

rections for future work.

7

Chapter 1. Introduction

8

Part I

Continuous Constraints and

Uncertainty

Chapter 2

Continuous Constraint Programming

In the constraint programming paradigm, relations between variables are stated by

means of constraints. By specifying the properties of solutions separately from their

search, constraint programming is a form of declarative programming. In continu-

ous constraint programming the domains of the variables are real intervals and the

constraints are equations or inequalities represented by closed-form expressions. Con-

sequently, interval analysis, which addresses the use of intervals in numerical computa-

tions, is an important component of continuous constraint programming. The relevant

definitions and issues related to interval analysis are presented in section 2.1.

The main definitions regarding continuous constraint satisfaction problems (CCSP)

(e.g. the variables of the problem, their interval domains and the constraints that

relate them) as well as the continuous constraint reasoning approach to solve a CCSP

are presented in section 2.2.

Section 2.3 subsequently overviews state of the art techniques related to continuous

constraint reasoning, presenting alternative implementations for the general concepts

of section 2.2, focusing on the approach adopted in the present thesis and introducing

important concepts for the proposed framework.

2.1 Interval Analysis

Interval analysis was introduced in the late 1950s [90] as a way to represent bounds

in rounding and measurement errors, and to reason with these bounds in numerical

11

Chapter 2. Continuous Constraint Programming

computations. Numerical methods that yield reliable results were developed to achieve

this goal. In this section we address concepts and methods related to interval analysis,

namely interval arithmetic, inclusion functions and interval methods.

2.1.1 Interval Arithmetic

Interval arithmetic is an extension of real arithmetic that allows numerical computations

to be made with expressions where the operands assume interval values (i.e., a range

of real values) instead of real values.

Example 2.1. Consider a circular object with a measured radius r of 1.0 cm. The

observer is not certain about this measurement, and considers an error of 1 mm around

it. The measured value thus ranges between 0.9 cm and 1.1 cm, i.e., r ∈ [0.9, 1.1] cm, as

illustrated in figure 2.1(a). Using interval arithmetic and the relation between diameter

(d) and radius (d = 2r) it is d ∈ [2, 2]× [0.9, 1.1] = [1.8, 2.2] cm, as illustrated in figure

2.1(b).

(a) (b)

Figure 2.1: Model and propagate uncertainty. (a) Model uncertainty in the measurement
of the radius. (b) Propagation of uncertainty to the calculus of the diameter.

This simple example illustrates the capabilities of intervals to represent uncertainty and

interval arithmetic to guarantee rigorous results while reasoning with uncertain values.

Definition 2.1 (Real Interval) A real interval is a closed connected set of real

numbers.

12

2.1 Interval Analysis

Non-empty intervals are represented by capital letters1,

X = [x, x] = {x ∈ R : x 6 x 6 x},

where x (x) ∈ R ∪ {−∞,+∞} is the interval lower (upper) bound and x ≤ x.

The empty interval is represented by ∅.

An interval is bounded if both bounds are real numbers (i.e. x, x ̸∈ {−∞,+∞}).
Otherwise it is unbounded.

An interval where the lower and upper bounds are equal (i.e., x = x = x) is called

degenerated interval and is represented by [x, x] or only [x].

As usual IR denotes the set of all intervals over R, defined as

IR = {[x, x] : x, x ∈ R ∪ {−∞,+∞}, x ≤ x} ∪∅.

Informally, a real number is a value that represents a quantity along a continuum and

can be thought of as a point on an infinitely long line. In general it requires an infinite

decimal representation, such as π = 3.1415926535 . . . , where the sequence continues

indefinitely, possibly non-periodically. Since there are infinitely many, not all real

numbers are machine representable, since machines are restricted to represent a finite

set of elements.

To address this limitation, computers use a floating point system2 for representing real

numbers, whose elements are a finite subset, F, of the reals, the F-numbers. This subset

includes the real number zero (0) as well as the infinity symbols −∞ and +∞ (which

are not reals). It is totally ordered, following the ordering of R. For any F-number

f ∈ F we have that −∞ ≤ f ≤ +∞ and f− (f+) is the F-number immediately below

(above) f in the total order. By definition, −∞− = −∞ and +∞+ = +∞.

Definition 2.2 (F-Interval) An F-interval is the empty interval or an interval

where both its bounds are F-numbers.

1Closed non-empty intervals will be considered, except when ±∞ are in their bounds.
2The IEEE has standardized the computer representation for binary floating point numbers in

IEEE 754 [66]. This standard is followed by almost all modern machines.

13

Chapter 2. Continuous Constraint Programming

Definition 2.3 (Canonical Interval) A canonical interval is either a degenerated

interval or an interval where the lower and upper bounds are two consecutive F-
numbers.

Since computers use floating point arithmetic, which relies on a finite set of elements,

the result of numerical computations is often not the correct mathematical value, but

an F-number that approximates it. Although exact values may not be represented,

F-intervals can rigourously enclose a value that is not machine representable.

Example 2.2. Consider the area of a circle with radius r = 1.0 cm, where area = πr2.

Since π is not machine representable, a computer may only achieve an approximation

of this value. In fact, given an interval that binds the value of π it is possible to enclose

the correct value of the area. For example, assuming that π ∈ [3, 4], interval arithmetic

guarantees that area ∈ [3, 4]× [1, 1]2 = [3, 4], which encloses the exact value of the area

(π), as shown in figure 2.2.

Figure 2.2: Enclosure of the area exact value: 3 ≤ area = π ≤ 4.

The previous example overcomes the insufficiencies of a floating point system by repre-

senting π with an interval (in this case a very crude one) and computing the area with

interval arithmetic. Although the method does not provide the exact value for the area,

it encloses its value with a given precision. Clearly, the narrower is the representation

14

2.1 Interval Analysis

of π the narrower is the computed interval representing the area. This method can be

extended to any real number.

A classical example is the number 0.1 (a real number that is not an F-number in

binary representation). If the machine rounding mode is set downwards, then it is

represented by the largest F-number not greater than 0.1. If the rounding mode is set

upwards, then it is represented by the smallest F-number not lower than 0.1. Either

way, whenever a mathematical computation is made with this number, the rounding

error will be propagated to the result, possibly resulting in a crude approximation of

the exact value.

Given a real number r ∈ R, there are two F-numbers, ▽r and △r ∈ F, that are the

closest machine representations of r. ▽r is the largest F-number not greater than r,

whereas △r is the smallest F-number not lower that r. By definition ▽−∞ = −∞,

△−∞ = smallest F-number, ▽+∞ = largest F-number and △+∞ = +∞.

Definition 2.4 (F-Interval Approximation of a Real Interval) For any real

interval X = [x, x], there is a corresponding F-interval, given by Fapx(X) =

[▽x,△x], such that X ⊆ Fapx(X).

To acknowledge and consider rounding errors, instead of computing with the real num-

ber 0.1, interval arithmetic adopts the corresponding interval [▽0.1,△0.1].

Interval analysis is thus an important tool to bound rounding errors in computations

due to machine limitations on their representation of real numbers.

In the following, the term interval will be used in a generic way to refer both to real

intervals and to F-intervals, unless otherwise stated.

Since intervals are sets, all set operations can be applied to them, namely, union (∪),
intersection (∩) and inclusion (⊆). While the intersection between two intervals is still

an interval, this is not the case with the union of two disjoint intervals, where the result

is a set that cannot be represented exactly by a single interval.

To address this situation another important binary operation, union hull, represented

by the symbol ⊎, is defined as the smallest interval containing all the elements of its

15

Chapter 2. Continuous Constraint Programming

arguments. It differs from normal union only when the arguments are disjoint. Given

two intervals X = [x, x] and Y = [y, y], then X ⊎ Y = [min(x, y),max(x, y)].

Several useful functions over intervals will be used in this thesis. In particular, the

functions that retrieve the lower and upper bounds and that compute the center and

the width of a non-empty interval X = [x, x] are, respectively, denoted as:

inf(X) = x

sup(X) = x

mid(X) = (x+ x)/2

wid(X) = x− x

Functions inf , sup and mid are undefined for an empty interval, whereas wid(∅) = 0.

The generalization of intervals to several dimensions is of major relevance in this thesis.

Definition 2.5 (Box) An n-dimensional box (or n-box) B is the Cartesian product

of n intervals and is denoted by I1 × · · · × In, where each Ii is an interval:

B = {⟨d1, . . . , dn⟩ : d1 ∈ I1, . . . , dn ∈ In}

If ∃1≤i≤n Ii = ∅ then B is an empty box and is represented by ∅.

If ∃1≤i≤n Ii is degenerated then B is a degenerated box.

If ∀1≤i≤n Ii is bounded then B is a bounded box.

Extending the interval notation, the set of all boxes over Rn is denoted by IRn.

Definition 2.6 (F-Box) An F-box is a box where all its dimensions are F-intervals.

The operations defined on intervals, namely, union, union hull, intersection and in-

clusion can be generalized to boxes. Intersection, union and union hull are obtained

by applying the corresponding interval operation componentwise and, except for the

union, the result is a box. For the inclusion operation the result is the conjunction of

the componentwise interval inclusion operation.

16

2.1 Interval Analysis

Other useful functions over boxes define their width, volume and center. Given a

non-empty box B = I1 × · · · × In:

wid(B) = max(wid(Ii)), 1 ≤ i ≤ n

vol(B) =
n∏

i=1

wid(Ii)

mid(B) = ⟨mid(I1), . . . ,mid(In)⟩

Contrary to functions wid and vol, function mid is undefined for an empty box.

Given a basic arithmetic operator (sum, difference, product or quotient) the corre-

sponding interval arithmetic operator is an extension of the former to real intervals,

both the operands and result being replaced by real intervals. The obtained interval

is the set of all the values that result from a point-wise evaluation of the arithmetic

operator on all the values of the operands. In practice these extensions simply consider

the bounds of the operands to compute the bounds of the result, since the involved

operations are monotonic.

Definition 2.7 (Basic Interval Arithmetic Operators) Let X and Y be two

bounded intervals. The basic arithmetic operators on intervals are defined as:

X ⋄ Y = {x ⋄ y : x ∈ X ∧ y ∈ Y } with ⋄ ∈ {+,−,×, /}

Under the basic interval arithmetic, X/Y is undefined if 0 ∈ Y .

Given two real intervals [x, x] and [y, y] these operations can be defined as:

[x, x] + [y, y] = [x+ y, x+ y]

[x, x]− [y, y] = [x− y, x− y]

[x, x]× [y, y] = [min(xy, xy, xy, xy),max(xy, xy, xy, xy)]

[x, x]/[y, y] = [x, x]× [1/y, 1/y] if 0 ̸∈ [y, y]

To extend these evaluations to F-intervals we must consider the outward rounding of

each bound to the closest F-number. Given two F-intervals, Z and W , and a real

interval R defined by R = Z ⋄W with ⋄ ∈ {+,−,×, /}, then the F-interval resulting
from this operation is Fapx(R).

17

Chapter 2. Continuous Constraint Programming

The properties of basic operations for intervals present some remarkable differences

from their properties in R. Consider, for instance, X = [x, x] and the operation X−X.

The result is equal to [x− x, x− x] and not [0], as could be expected. This is because

X − X is interpreted as {x − y : x, y ∈ X}, rather than {x − x : x ∈ X}. Thus, the

subtraction does not take into account the dependency of the two occurrences of X.

Addition and multiplication remain associative and commutative, but multiplication

is not distributive with respect to addition. Instead, in interval arithmetic the weaker

subdistributivity property holds: X ∗ (Y + Z) ⊆ X ∗ Y +X ∗ Z.

Several extensions to the basic interval arithmetic were proposed over the years and

are available in extended interval arithmetic libraries [1, 21, 74, 107], namely a) redefi-

nition of the division operator, allowing the denominator to contain zero [69, 104], b)

generalization of interval arithmetic to unbounded interval arguments and results as

union of disjoint intervals [62], and c) extension of the set of basic interval operators to

other elementary functions (e.g., exp, ln, power, sin, cos).

2.1.2 Inclusion Functions

Since the properties of interval operations differ from their properties in R it is not

always possible to obtain sharp enclosures for the image of a real function by simply

using interval arithmetic. In fact, different expressions for a real function f : Rn → R,
which are mathematically equivalent, do not yield the same result when variables are

replaced by intervals. Usually these results are much larger than the exact image of f

over a box B.

For example, whereas the real expression x−x is equivalent to 0, its interval arithmetic

evaluation for x ∈ [x, x] is not [0], but rather the interval [x − x, x − x], as discussed

previously. In fact, this interval includes the correct value 0, but its width is twice the

width of the original interval (much wider than the width of [0] - the exact interval for

the expression over [x, x]).

Consequently, in interval analysis special attention has been devoted to the definition

of interval functions that compute sharp interval images of real functions [91].

The concepts presented in this section are adapted from [67] and we chose to use

the more generic definition of inclusion function instead of that of interval extension

18

2.1 Interval Analysis

proposed by Moore [91]. In this context it is important to explicitly define the closely-

related concepts of function and expression and distinguish between real and interval

functions.

A function is a mapping from elements of a set, the domain, to another set, the

codomain. The subset of the codomain restricted to the elements that are mapped

by the function is the image of the function.

In a real function f : Rn → R, the elements of the domain are n-tuples of real values

and the elements of the codomain are real values. The image of a real function f over

a domain D, {f(x) : x ∈ D} is denoted by f∗(D).

A function may be represented by a closed-form expression and, as a direct consequence

of arithmetic operators properties (e.g., distributive and commutative properties of the

addition and multiplication real operators), different expressions may represent the

same function.

In an interval function [f] : IRn → IR, the elements of the domain are n-boxes and the

elements of the codomain are intervals.

Definition 2.8 (Inclusion Function) Consider a real function f : Rn → R. An

interval function [f] : IRn → IR is an inclusion function of f iff:

∀B ∈ IRn f∗(B) ⊆ [f](B)

Therefore, any inclusion function [f] over a box B, produces an outer estimate of f∗(B).

In fact, [f] provides a sound evaluation of f , since the correct real value is not lost.

The following properties are usually considered for inclusion functions.

Property 2.1 (Inclusion Functions Properties) An inclusion function of f ,

[f] : IRn → IR, is:
Thin if [f](x) = f(x), for any point x ∈ Rn.

Convergent if, for any sequence of boxes Bk ∈ IRn, with k ∈ N,

lim
k→∞

wid(Bk) = 0⇒ lim
k→∞

wid([f](Bk)) = 0.

19

Chapter 2. Continuous Constraint Programming

Optimal if, for any B ∈ IRn, [f](B) = f∗(B).

Inclusion Monotonic if, for any boxes B1, B2 ∈ IRn,

B1 ⊆ B2 ⇒ [f](B1) ⊆ [f](B2).

Notice that, if f is continuous, a convergent inclusion function is necessarily thin. The

convergence of inclusion functions is required for proving the convergence of interval

algorithms.

Definition 2.9 (Order of Convergence) Let [f] be an inclusion function of f

over a box B ∈ IRn. The convergence order of [f] is o if there exists a positive

constant k such that the inequality

wid([f](B′))− wid(f∗(B′)) ≤ k(wid(B′))o

holds for every B′ ⊆ B.

Obtaining inclusion functions is one of the most important problems that interval analy-

sis deals with. Besides the natural inclusion functions, more advanced forms of inclusion

functions have been proposed. Among those, the most popular include centered forms

(e.g., Centered interval extension and Mean Value interval extension), introduced by

Moore in [91] and are specially useful when the variables domains are sufficiently small.

Taylor forms are higher degree generalizations of the centered forms and are based on

the Taylor series expansion around a point, where the error term is bounded by an

interval.

Both natural inclusion functions and Taylor inclusion functions are used in this thesis

and described next.

Natural Inclusion Functions

The natural inclusion function [f]N of a real function f simply replaces real arith-

metic by interval arithmetic, each variable by its interval domain and constants by

degenerated intervals.

20

2.1 Interval Analysis

Natural inclusion functions are thin and inclusion monotonic. Moreover if f is contin-

uous inside a box B, the natural inclusion function of f is optimal when each variable

occurs only once in f [91]. When a variable appears several times in f , the evaluation

by interval arithmetic generally produces an over-estimate of the optimal image enclo-

sure, because the correlation between occurrences of the same variable is lost and two

occurrences of the same variable are handled as independent variables. This is known

as the dependency problem of interval arithmetic.

When computing an expression using interval arithmetic, the form of the expression

can thus dramatically impact on the width of the resulting interval.

Example 2.3. Consider the two arithmetic expressions

(a+ b)x and ax+ bx

which are, of course, equivalent. However their natural extensions are not. For example,

replacing the points, a, b and x, by the intervals, A = [10] , B = [−10] and X = [10, 20],

their natural extensions are:

(A+B)X = [0]× [10, 20] = [0]

AX +BX = [100, 200] + [−200,−100] = [−100, 100]

Evaluating the first expression produces an interval that is as narrow as possible,

whereas evaluation of the second expression does not produce such a sharp result be-

cause it contains multiple occurrences of the interval variable X.

The natural inclusion function [f]N for f is convergent inside any bounded box B where

it is defined. Furthermore, if f is Lipschitz continuous inside B1 then [f]N has a linear

order of convergence in B [96].

For a given real function the best inclusion functions, in the sense of minimal over-

estimation, are those that minimize the dependency problem. Although it is often

1Intuitively, a Lipschitz continuous function is limited in how fast it can change. A line joining
any two points on the graph of this function will never have a slope steeper than a certain number.
A function f : B ⊆ Rn → R that is differentiable in B is Lipschitz continuous if its first derivative is
bounded.

21

Chapter 2. Continuous Constraint Programming

impossible to construct inclusion functions without multiple occurrences of the same

variable, inclusion functions with fewer repeated occurrences are usually preferable.

Taylor Inclusion Functions

A Taylor model [84] is a kind of Taylor form that computes a high order polynomial

approximation of a function through a multivariate Taylor expansion around a point,

with a remainder term that rigorously bounds the approximation error.

To define multivariate Taylor models and inclusion functions it is useful to adopt multi-

index notation, which simplifies multivariate generalizations of more familiar univariate

definitions.

A multi-index α = ⟨α1, . . . αk⟩ is a k-tuple of non-negative integers. For a multi-index

α and a tuple x = ⟨x1, . . . , xk⟩ ∈ Rk, the following operations can be defined.

• Norm: |α| = α1 + · · ·+ αk.

• Factorial: α! =

k∏
i=1

αi!.

• Power: xα =

k∏
i=1

xαi
i .

• Higher order derivative:
∂α

∂xα
=

∂|α|

∂xα1
1 . . . ∂xαk

k

Example 2.4. Let α = ⟨2, 3, 1⟩ and x = ⟨4,−1, 2⟩. Then

• |α| = 2 + 3 + 1 = 6

• α! = 2!× 3!× 1! = 12

• xα = 42 × (−1)3 × 21 = −32

• ∂α

∂xα = ∂6

∂x2
1∂x

3
2∂x

1
3

Definition 2.10 (Taylor Model) Given a function f : Rk → R, n + 1 times

continuously differentiable in a box B ⊆ Rk and x̃ a point in B, then the nth order

Taylor model of f around x̃ in B is a pair ⟨p,R⟩, where p is a polynomial and R an

interval, satisfying f(x) ∈ p(x) +R, for all x ∈ B.

22

2.1 Interval Analysis

A common way of building a Taylor model adopts a multivariate Taylor expansion of

f . Using multi-index notation, the nth order Taylor expansion of f in B, expanded at

x̃ ∈ B, is:

f(x) = f(x̃) +
n∑

|α|=1

1

α!

∂αf(x̃)

∂xα
(x− x̃)α +

∑
|α|=n+1

rα(ξ)(x− x̃)α

where ξ lies between x and x̃ and rα(ξ) is defined as

rα(ξ) =
1

α!

∂αf(ξ)

∂xα

Since x, x̃ ∈ B, then ξ is also in B. Therefore, given an inclusion function
[
∂αf
∂xα

]
(B) of

the partial derivative ∂αf(ξ)
∂xα , the remainder is bounded by the inclusion function:

rα(ξ) ∈ [rα](B) =
1

α!

[
∂αf

∂xα

]
(B)

The above Taylor expansion yields ⟨p,R⟩, a Taylor model of f in B where:

p(x) = f(x̃) +
n∑

|α|=1

1

α!

∂αf(x̃)

∂xα
(x− x̃)α (2.1)

and

R =
∑

|α|=n+1

[rα](B)(B − x̃)α (2.2)

The Taylor inclusion function for f , denoted as [f]T , is based on the Taylor models

introduced in [16].

Definition 2.11 (Taylor Inclusion Function) Given the Taylor model ⟨p,R⟩ of
f in B, with p defined as in (2.1) and R defined as in (2.2), then a Taylor inclusion

function for f in B (of the same order as the Taylor model) is given by [f]T (B) =

[p](B) +R.

If [p](B) is an optimal inclusion function then the nth-order Taylor inclusion function

has order of convergence (n+ 1) as shown in [83].

23

Chapter 2. Continuous Constraint Programming

Nevertheless, in practice, the computation of an optimal inclusion function for p(B)

is a difficult problem, since it requires the computation of the image of an nth degree

polynomial. In [83], very effective approximation methods are presented that maintain

the order of convergence of n+ 1.

2.1.3 Interval Methods

Interval methods for finding roots of equations with one variable are frequently used in

constraint programming due to their efficiency and reliability. In particular the inter-

val Newton method combines the classical Newton method, the mean value theorem,

and interval analysis. The result is an iterative method that can be used to prove

non-existence of solutions of a nonlinear equation or to provide rigorous bounds for

the solutions (eventually proving existence and uniqueness of such solutions). Such

capabilities can be used either in isolation to provide an enclosure for the zeros of a

real function, or as part of branch and prune algorithms to provide rigorous bounds for

particular solutions.

Univariate Interval Newton Method

Given a function f : R → R continuous and differentiable, and an interval X, the

univariate interval Newton method computes an enclosure for the set {x ∈ X : f(x) =

0} as follows.

The well known mean value theorem can be formulated as:

∀x1,x2∈X ∃ξ∈X f(x1)− f(x2) = (x1 − x2)f
′(ξ) (2.3)

Assuming that there exists x∗ ∈ X such that f(x∗) = 0 and x̃ ∈ X, making x1 = x∗

and x2 = x̃ in (2.3)

∃ξ∈X 0 = f(x∗) = f(x̃) + f ′(ξ)(x∗ − x̃)

and hence x∗ = x̃ − f(x̃)
f ′(ξ) for some ξ ∈ X. If [f ′](X) is an inclusion function of the

24

2.1 Interval Analysis

derivative of f over X, then we can replace f ′(ξ) for all its possible values in X

x∗ ∈ x̃− f(x̃)

[f ′](X)
for any x̃ ∈ X (2.4)

The previous equation forms the basis of the univariate interval Newton operator:

N(X) = x̃− f(x̃)

[f ′](X)
(2.5)

Because of (2.4), any solutions of f(x) = 0 that are in X must also be in N(X).

Furthermore N(X) ⊂ X implies that there is a unique solution of f(x) = 0 within

N(X), and hence within X [92, 98].

Therefore, given a continuous and differentiable function f(x), the interval version of

the Newton’s method computes an enclosure of a zero x∗ in an interval X by iterating

Xk+1 = N(Xk) ∩Xk, (2.6)

where X0 = X.

The interval Newton iteration (2.6) may achieve a quadratic order of convergence [57],

i.e., the width of Xk+1 at every step is up to a constant factor, less than the square

of the width at the previous step, Xk. However, the quadratic order is only achieved

when the iteration is contracting, i.e., when N(Xk) ⊆ Xk. When this condition is not

fulfilled, the progression can be slow.

In the above definitions f has been assumed to be a real function. However, the defini-

tion can be naturally extended to deal with interval functions that include parametric

constants represented by intervals [58]. In this case the intended meaning is to rep-

resent the family of real functions defined by any possible real valued instantiation

for the interval constants. The existence of a root means that there is a real valued

combination, among the variable and all the interval constants, that zeros the function.

Multivariate Interval Newton Methods

Multivariate interval Newton methods (interval Newton method for multivariate func-

tions) are specially suited for finding roots of systems of n equation with n variables.

25

Chapter 2. Continuous Constraint Programming

They are more complex to implement than their univariate counterpart since they

require the computation of the inverse of the interval Jacobian matrix. The use of

different methods to compute this matrix distinguish the different multivariate interval

Newton methods (e.g. [59, 75, 91]).

Multivariate methods share the properties presented for the univariate method, with

the exception of the quadratic convergence property that is only verified in specific

conditions. These methods can be effectively applied in cases where the search space

is a small box enclosing a single root either to isolate the root or to prove its existence

and uniqueness. However, for large boxes, the narrowing achieved by these methods

does not justify, in general, the computational costs of their implementation.

2.2 Continuous Constraint Satisfaction Problems

Continuous Constraint Satisfaction Problems (hereafter referred as CCSPs) are math-

ematical problems defined over a set of variables ranging over real intervals. In this

section we present the basic notions of constraint satisfaction methods for CCSPs.

Definition 2.12 (Domain of a Variable) The domain of a variable is the set of

values that the variable can assume. In CCSPs, the domains of the variables are

real intervals.

Constraints further reduce the values from the domains of its variables which are ac-

ceptable.

Definition 2.13 (Numerical Constraint) A numerical constraint c is a pair

(s, ρ), where s (the constraint scope) is a tuple of n variables ⟨x1, . . . , xn⟩ and ρ

(the constraint relation) is a subset of the box B = I1 × · · · × In, ρ ⊆ B (where Ii is

the domain of variable xi).

We consider constraint relations of the form ρ = {d ∈ B ∩Df : f(d) ⋄ 0}, where
f : Df → R is a function represented by a closed-form expression and ⋄ ∈ {=,≤}.

26

2.2 Continuous Constraint Satisfaction Problems

A CCSP is defined by a set of numerical constraints, together with the variables used

in those constraints and their domains.

Definition 2.14 (Continuous Constraint Satisfaction Problem) A CCSP is

a triple ⟨X,D,C⟩ where X is a tuple of n real variables ⟨x1, . . . , xn⟩, D = I1×· · ·×In
is a bounded box, where each real interval Ii is the domain of variable xi, and C is

a finite set of numerical constraints on (subsets of) the variables in X.

The Cartesian product of the variable domains, D, is the initial domain or initial search

space of the CCSP.

Since different constraints in a CCSP may have different scopes, these can be obtained

by projection.

Definition 2.15 (Tuple Projection) Let ⟨x1, . . . , xn⟩ be an n-tuple of variables

and d = ⟨d1, . . . , dn⟩ a corresponding n-tuple of values. Let s = ⟨xi1 , . . . xim⟩ be a

tuple of m variables where 1 ≤ ij ≤ n. The tuple projection of d wrt s is:

d[s] = ⟨di1 , . . . , dim⟩

For simplicity, when s is a tuple with a single variable the brackets are ignored both

in s and in the result of the projection (i.e., the result is a real value).

Tuple projection can be extended to box projection to deal with the domains of the

variables in a CCSP.

Definition 2.16 (Box Projection) Let ⟨x1, . . . , xn⟩ be an n-tuple of variables and

B = I1×· · ·×In a corresponding box. Let idx = ⟨i1, . . . , ij⟩ be an m-tuple of indices,

where 1 ≤ ij ≤ n, m ≤ n, whose corresponding tuple of variables is s = ⟨xi1 , . . . xim⟩.
The box projection of B wrt idx is the m-dimensional box:

Πidx(B) = {d[s] : d ∈ B}

For simplicity, when idx is a tuple with a single index the brackets may be ignored.

27

Chapter 2. Continuous Constraint Programming

Example 2.5. Consider the tuple of variables ⟨x1, x2, x3, x4⟩ and a box B =

[21.1, 25.5]× [2.1, 6.2]× [11.5, 19.3]× [−3.1,−2.6]. For s = ⟨x2, x4⟩ it is idx = ⟨2, 4⟩ and
Π⟨2,4⟩(B) = [2.1, 6.2]× [−3.1,−2.6].

A tuple of values satisfies a constraint if its projection onto the constraint scope is in

the constraint relation. Hence, the definition of solution of a CCSP.

Definition 2.17 (Solution) A solution of the CCSP ⟨X,D,C⟩ is a tuple d ∈ D

that satisfies all the constraints in C:

∀(s,ρ)∈C d[s] ∈ ρ

Whereas in some CCSPs it is important to determine individual solutions, in many

practical situations, due to the continuous nature of such solutions, the ultimate goal

is to characterize the complete set of solutions.

Definition 2.18 (Feasible Space) The feasible space of the CCSP P = ⟨X,D,C⟩
is the set F(P) ⊆ D of all solutions of the CCSP, defined as:

F(P) = {d ∈ D : ∀(s,ρ)∈C d[s] ∈ ρ}

When there is no possible ambiguity F is used to denote the feasible space of a CCSP.

Constraint reasoning aims at eliminating values from the initial search space that do

not satisfy the constraints, by pruning and subdividing the search space until a stopping

criterion is satisfied. Pruning is accomplished by eliminating sets of values that can be

proved inconsistent.

Definition 2.19 (Consistency) A set D′ ⊆ D is consistent with CCSP ⟨X,D,C⟩
iff it contains at least one solution (otherwise it is inconsistent):

∃d∈D′ ∀(s,ρ)∈C d[s] ∈ ρ

28

2.2 Continuous Constraint Satisfaction Problems

To eliminate value combinations incompatible with a particular constraint, safe nar-

rowing operators (mappings between sets) are associated with the constraint. These

operators must be correct (do not eliminate solutions) and contracting (the obtained

set is contained in the original).

Definition 2.20 (Narrowing Operator) Let ⟨X,D,C⟩ be a CCSP. An operator

N : 2D → 2D, that defines a mapping between subsets of D, is a narrowing operator

associated with a constraint (s, ρ) ∈ C iff:

∀D′⊆D,

{
N(D′) ⊆ D′ (contractance)

∀d∈D′ d ̸∈ N(D′)⇒ d[s] ̸∈ ρ (correctness)

The previous definition can be easily extended to consider a narrowing operator as-

sociated with more than one constraint (e.g. a narrowing operator derived from the

multivariate interval Newton method). Nevertheless, for simplicity, we only consider

narrowing operators associated with a single constraint.

The following properties are usually considered for narrowing operators.

Property 2.2 (Properties of Narrowing Operators) Let ⟨X,D,C⟩ be a

CCSP and D ⊆ Rn. A narrowing operator N : 2D → 2D is:

Inclusion Monotonic if, for any D1, D2 ⊆ D, D1 ⊆ D2 ⇒ N(D1) ⊆ N(D2).

Idempotent if, for any D′ ⊆ D, N(N(D′)) = N(D′).

A set D′ ⊆ D is a fixed point of N iff N(D′) = D′.

Once narrowing operators are associated with the constraints of the CCSP, the prun-

ing of variables domains can be achieved through constraint propagation. Narrowing

operators associated with a constraint eliminate some incompatible values from the do-

main of its variables and this information is propagated to all constraints with common

variables in their scopes. The process terminates when a fixed point is reached i.e., the

domains can not be further reduced by any narrowing operator.

29

Chapter 2. Continuous Constraint Programming

Definition 2.21 (Constraint Propagation Algorithm) Let ⟨X,D,C⟩ be a

CCSP and Ns be a set of narrowing operators associated with the constraints in

C. A constraint propagation algorithm CPA defines a mapping between subsets of

D where:

∀D′⊆D,

CPA(D′,Ns) ⊆ D′ (contractance)

∀d∈D′ d ̸∈ CPA(D′,Ns)⇒ ∃(s,ρ)∈C d[s] ̸∈ ρ (correctness)

∀N∈Ns N(CPA(D′,Ns)) = CPA(D′,Ns) (fixed point)

The pruning achieved through constraint propagation is highly dependent on the ability

of the narrowing operators for discarding inconsistent value combinations [35]. Further

pruning is usually obtained by splitting the domains and reapplying constraint prop-

agation to each sub-domain. In general, continuous constraint reasoning is based on

such a branch and prune process which will eventually terminate due to the imposition

of conditions on the branching process (e.g. small enough domains are not considered

for branching).

Remarkably, since no solution is lost during the process, constraint reasoning provides

a safe method for computing an enclosure of the feasible space of a CCSP.

In this thesis we are interested in computing two set representations of the feasible

space of a CCSP ⟨X,D,C⟩: one which includes it and another which is included in it.

Constraint reasoning provides safe methods for computing these set representations, as

described in detail in the next section.

2.3 Computing Feasible Space Approximations

It is usually impossible to exactly compute the feasible space of a CCSP, namely when

it corresponds to a region with a non-linear boundary. For this reason, most constraint

programming techniques rely on specific sets - boxes or unions of boxes - to represent

such feasible space safely, although (possibly) not exactly.

This section presents state of the art techniques that implement such constraint rea-

soning. In subsection 2.3.1 the constraint propagation algorithm is presented together

30

2.3 Computing Feasible Space Approximations

with standard techniques for filtering the variables domains. Subsection 2.3.3 addresses

boxes and feasible space representations, as well as the algorithms to compute them.

Since we are dealing with the computational aspects of constraint reasoning, in the

following we consider F-boxes.

2.3.1 Constraint Propagation

The constraint propagation algorithm for continuous domains is an adaptation of the

original propagation algorithm AC3 [89] for finite domains. It consecutively applies

each of the narrowing operators, associated with the constraints, to a given box. In

each step, if the domain of a variable is reduced, this information is propagated to

all other narrowing operators for which the current box is no longer a fixed point.

Propagation terminates when the obtained box is a fixed point for all the narrowing

operators, or, more realistically, when the boxes are considered sufficiently small.

It can be proved [100] that the propagation algorithm is correct and terminates inde-

pendently from the order of application of the narrowing operators during the process.

Moreover, if the narrowing operators are inclusion monotonic then the propagation

algorithm is confluent (the result is independent from their order of application) and

converges to the greatest common fixed point included in the initial search space [67].

In the following we assume that a narrowing operator N associated with constraint

f ⋄ 0, discards a box B whenever the evaluation of the inclusion function [f] over B

results on an interval that can not satisfy the constraint:

• when ⋄ is = then ∀B⊆D 0 ̸∈ [f](B)⇒ N(B) = ∅;

• when ⋄ is ≤ then ∀B⊆D 0 ≤ inf([f](B))⇒ N(B) = ∅.

Algorithm 1 is a pseudo-code description of the constraint propagation algorithm. It

starts with a box B and the set of constraints of a CCSP. The algorithm maintains

two sets of narrowing operators: Ns contains the narrowing operators for which B

is not guaranteed to be a fixed point; S contains the narrowing operators for which

B is a fixed point. Initially set S is empty and Ns contains all narrowing operators

associated with the constraints (line 1). As the narrowing operators of Ns are applied

to B (line 4), they are transferred to S if B becomes a fixed point of that operator

(lines 6 − 8). The opposite may also happen to all the narrowing operators in S for

31

Chapter 2. Continuous Constraint Programming

Algorithm 1: CPA(B,C)

Input: B: box; C: set of constraints;
Output: B: box;

1 S ← ∅; Ns← narrowingOps(C);
2 while (Ns ̸= ∅) do
3 N← choose(Ns);
4 B′ ← N(B);
5 if B′ = ∅ then return ∅;
6 if B′ = B then
7 Ns← Ns \ {N};
8 S ← S ∪ {N};
9 else

10 P ← {N′ ∈ S : ∃xi∈vars(N′) Πi(B) ̸= Πi(B
′)};

11 Ns← Ns ∪ P ;
12 S ← S \ P ;

13 end
14 B ← B′

15 end
16 return B;

which the narrowed box B′ is no longer guaranteed to be a fixed point (lines 9 − 13).

A narrowing operator N′ is no longer guaranteed to be a fixed point of the current box

if some interval regarding a variable in the constraint scope was narrowed. The loop

stops when no more narrowing operators can be applied (line 2) and returns the current

box (line 16). Whenever the application of a narrowing operator N to a box B results

in an empty box, the execution terminates by returning ∅ (line 5), guaranteeing the

correctness of the CPA.

2.3.2 Consistencies

The fixed point obtained through constraint propagation characterizes a local consis-

tency among the variables of the problem, which depends on the narrowing operators

associated with each constraint (local) and the value combinations that are not pruned

by them (consistent).

The most common local consistencies used in CCSPs, hull-consistency [81] (or 2B-

consistency) and box-consistency [15, 36] (or some variation of them), are based on

arc-consistency [89], extensively used in finite domains. Arc-consistency eliminates a

32

2.3 Computing Feasible Space Approximations

value from a variable domain if there is no support for this value in the domains of the

other constraint variables.

Hull Consistency

Hull-consistency guarantees arc-consistency only at the bounds of the variable domains.

Intuitively, a constraint is hull-consistent with respect to a box, if there exists a solution

of the constraint in every face of the box.

Definition 2.22 (Hull-Consistency) Let c = ⟨s, ρ⟩ be a numerical constraint and

xk ∈ s a variable. Let B be a box, where Πk(B) = [xk, xk] is an F-interval.

⟨c, xk⟩ is hull-consistent wrt B iff there are two points, p1, p2 ∈ B such that:

p1[s], p2[s] ∈ ρ (p1 and p2 satisfy c)

p1[⟨x⟩] ∈ [xk, x
+
k) (p1 is in the box face with smallest x value)

p2[⟨x⟩] ∈ (x−k , xk] (p2 is in the box face with largest x value).

Constraint c is hull-consistent wrt B iff, for every variable xi ∈ s, ⟨c, xi⟩ is hull-

consistent wrt B.

Algorithm HC3 [15, 34] enforces hull-consistency on a set of primitive constraints ob-

tained from the decomposition of the original constraints. Since it deals with primitive

constraints it takes advantage of this simplified form to invert the constraints with re-

spect to each of its variables. It then replaces the other variables by its interval domains

and evaluates the resulting expression using interval arithmetic. The intervals obtained

for each of the constraint variables are then intersected with their original domains.

Algorithm HC4 [14] produces similar results but avoids explicit decomposition of a

complex constraint, maintaining a tree representation of the original constraint. More

recent algorithms [115] replace the tree by a representation of constraints with direct

acyclic graphs (DAGs), thus allowing common sub-expressions to be shared and en-

hancing the constraint propagation process.

33

Chapter 2. Continuous Constraint Programming

Box Consistency

Box-consistency guarantees hull-consistency on unary projections of the constraints.

Roughly speaking it consists of replacing all but one variable by its interval domain in

the definition of hull-consistency.

Definition 2.23 (Box-Consistency) Let c = ⟨s, ρ⟩ be a numerical constraint,

with f(x1, . . . , xn) ⋄ 0 (see definition 2.13) and xk ∈ s a variable. Let B be a

box where Π⟨1,...,n⟩(B) = I1 × · · · × Ik−1 × [xk, xk]× Ik+1 × · · · × In is an F-box.

⟨c, xk⟩ is box-consistent wrt B (parameterized by the inclusion function [f]) iff:

∃r1 ∈ [f](I1, . . . , Ik−1, [xk, x
+
k], Ik+1, . . . , In) r1 ⋄ 0

∃r2 ∈ [f](I1, . . . , Ik−1, [x
−
k , xk], Ik+1, . . . , In) r2 ⋄ 0

Constraint c is box-consistent wrt B (parameterized by the inclusion function [f])

iff, for every variable xi ∈ s, ⟨c, xi⟩ is box-consistent wrt B.

Algorithm BC3 [61] enforces box-consistency by combining binary search with the

interval Newton method [91] to isolate the leftmost and rightmost zeros of the resulting

system of univariate equations. Efficient enforcing algorithms result from the inclusion

of adaptive shaving processes [49].

Definition 2.24 (Consistent CCSP) A CCSP ⟨X,D,C⟩ is (hull or box) consis-

tent wrt D′ ⊆ D iff every constraint c ∈ C is (respectively hull or box) consistent

wrt D′.

More sophisticated consistency techniques combine the above algorithms and extend

them based on the structure of the constraints. Algorithm BC4 [14] applies HC3 to

variables with a single occurrence in a constraint, and uses BC3 otherwise, minimizing

the dependency problem [91]. Other algorithms exploit the monotonicity properties

of the constraints [9] and show that hull-consistency can be enforced in polynomial

time if the constraint functions are all monotonic [29]. Algorithm I −CSE [7] exploits

common sub-expressions obtaining a DAG that is rewritten into a new optimized system

of constraints that can be processed by the tree-based algorithms.

34

2.3 Computing Feasible Space Approximations

Several consistency techniques rely on the combination of constraints to improve the

precision of domain reductions. kB-consistency [81] and Box-k-consistency [8] are gen-

eralizations of hull and box-consistency that enforce consistency properties on the over-

all constraint set. Algorithms Box-k [8] and IBB [97] were proposed for handling to-

gether subsystems of k constraints from the original constraint set. Some algorithms

[50], restricted to equation constraints, apply variants of the multivariate interval New-

ton method [91] that operate on the whole system of equations. Other algorithms [113],

are based on constructive interval disjunction relying on the enforcement of other consis-

tencies on slices of the current box and posterior assemblage of the obtained sub-boxes.

2.3.3 Constraint Reasoning

This subsection is concerned with specific needs of the probabilistic constraint frame-

work proposed in this thesis and discusses how constraint reasoning computes two set

representations of the feasible space of a CCSP.

Since the constraint satisfaction methods used in this work reason over boxes we will

start by defining some relations between them.

Definition 2.25 (Almost Disjoint Boxes) Two boxes A and B are almost dis-

joint iff vol(A ∩B) = 0.

This definition can be extended to a set of boxes, as presented below.

Definition 2.26 (Mutually Almost Disjoint Set of Boxes) A set of boxes

{B1, . . . , Bn} is mutually almost disjoint (or almost disjoint, for simplicity) iff

∀i ̸=j∈{1,...,n} Bi and Bj are almost disjoint.

For simplicity, when the context allows it, we will refer to the feasible space of a CCSP

simply as CCSP.

Constraint reasoning applies, repeatedly, branch and prune steps to reshape the initial

search space (a box) maintaining a set of working boxes during the process, character-

ized as follows.

35

Chapter 2. Continuous Constraint Programming

Definition 2.27 (Outer Box Cover) Let ⟨X,D,C⟩ be a CCSP. The almost dis-

joint set of boxes {B1, . . . , Bn}, where ∀1≤i≤n(Bi ⊆ D ∧ vol(Bi) > 0), is an outer

box cover of F iff

F ⊆
n∪

i=1

Bi.

An outer box cover of F is denoted by F�. The union of its boxes is an outer

approximation of F and is denoted by F+.

A complementary concept is that of inner box cover. An inner box of a CCSP is a box

totally contained in the feasible space, i.e., a box where all its points are solutions of

the CCSP.

Definition 2.28 (Inner Box) Given a CCSP ⟨X,D,C⟩, a box B ⊆ D with

vol(B) > 0 is an inner box wrt F iff B ⊆ F.

There are techniques that identify inner boxes [67]. When the feasible space is defined

by inequality constraints, one such simple technique relies on natural inclusion func-

tions of the functions induced from the constraints relations, replacing the variables by

the intervals of the box, and checking whether all values in the resulting interval are

solutions for the constraints. When the feasible space is defined by equation constraints

there are no inner boxes (see appendix A for an implementation).

Definition 2.29 (Inner Box Cover) Let ⟨X,D,C⟩ be a CCSP. The almost dis-

joint set of boxes {B1, . . . , Bn}, where ∀1≤i≤n(Bi ⊆ D ∧ vol(Bi) > 0), is an inner

box cover of F iff

n∪
i=1

Bi ⊆ F.

An inner box cover of F is denoted by F�. The union of its boxes is an inner

approximation of F and is denoted by F−.

36

2.3 Computing Feasible Space Approximations

We are particularly interested in maintaining an inner box cover that is a subset of the

outer box cover, hence, the notion of joint box cover.

Definition 2.30 (Joint Box Cover) Let ⟨X,D,C⟩ be a CCSP. A joint box cover

of F, be denoted by F�, is a pair ⟨F� ,F�⟩, where F� ⊆ F�.

The boxes of a joint box cover of a CCSP that are not in the inner box cover are called

boundary boxes.

Definition 2.31 (Boundary Box) Given a CCSP ⟨X,D,C⟩ and a joint box cover

of F, F� = ⟨F� ,F�⟩, B is a boundary box with respect to F� iff B ∈ F� \ F�.

Definition 2.32 (Boundary Box Cover) Given a CCSP ⟨X,D,C⟩ and a joint

box cover of F, F� = ⟨F� ,F�⟩, the boundary box cover is F� \ F�.

The union of its boxes is a boundary approximation and is denoted by ∆F.

Often, it is important to know whether a joint box cover represents the feasible space

more accurately than another. The tighter relation (≼) serves this purpose.

Definition 2.33 (Tighter Joint Box Cover) Given a CCSP ⟨X,D,C⟩ and two

joint box covers of F, F�1 = ⟨F�1 ,F�1⟩ and F�2 = ⟨F�2 ,F�2⟩, F�2 is tighter than

F�1, (written F�2 ≼ F�1) iff:

∪
F�1 ⊇

∪
F�2 and

∪
F�1 ⊆

∪
F�2 and ∀B2∈F�2

∃B1∈F�1
B2 ⊆ B1

Two joint box covers, F�1 and F�2 , are comparable iff F�1 ≼ F�2 or F�2 ≼ F�1 . Since

not all joint box covers are comparable, the previous relation is a partial order.

37

Chapter 2. Continuous Constraint Programming

Property 2.3 (Partial Order) Given a CCSP ⟨X,D,C⟩, the ≼ relation over

joint box covers of F is a partial order, since we have:

F� ≼ F� (reflexivity)

if F�1 ≼ F�2 and F�2 ≼ F�1 then F�1 = F�2 (antisymmetry)

if F�1 ≼ F�2 and F�2 ≼ F�3 then F�1 ≼ F�3 (transitivity).

Figure 2.3 shows the inner (white rectangles) and outer (white plus grey rectangles)

box covers of the feasible space represented by the area inside the curve lines. In figure

2.3(b) the boundary box, marked with a circle in figure 2.3(a), is replaced by two

smaller boundary boxes, one inner box and one non-solution box, providing a tighter

joint box cover.

(a) Joint box cover (b) Tighter joint box cover

Figure 2.3: Joint box covers of the feasible space inside the curve lines.

Given a joint box cover of a CCSP, the constraint reasoning step in algorithm 2 provides

a way of computing a new tighter joint box cover.

A number of functions are input parameters to this algorithm: a) the split function

defines how to partition a box into two or more sub-boxes; b) the inner predicate

verifies whether a box is an inner box of the set of CCSP constraints; c) the eligible

predicate checks whether a box is eligible for further processing; and d) the order

function specifies which box, from the outer box cover, is retrieved for such processing.

The algorithm removes a box from the outer box cover that verifies the eligible predicate

and is selected by the order function (line 1), and splits it (line 3). The algorithm

subsequently modifies the inner and outer box covers of the joint cover. If the retrieved

38

2.3 Computing Feasible Space Approximations

Algorithm 2: crStep(F� , C, split, inner, eligible, order)

Input: F� : CCSP joint box cover; C: set of constraints; split: function;
inner, eligible: predicate; order: criteria;

Output: F�out : CCSP joint box cover;
1 B ← remove(F� , eligible, order);
2 if B = ∅ then return F� ;
3 S ← split(B);
4 if B ∈ F� then
5 F� ← F� \ {B};
6 L� ← S;
7 L� ← S;

8 else
9 L� ← {CPA(Bi, C) : Bi ∈ S};

10 L� ← {Bi ∈ L� : inner(Bi, C)};
11 end
12 return ⟨F� ∪ L� ,F� ∪ L�⟩;

box is already in the inner box cover (line 4) then it is replaced by the boxes resulting

from the split, which are also added to the outer box cover1 (lines 5 − 7). Otherwise

(line 8) the boxes resulting from the split, are pruned by the constraint propagation

algorithm and added to the outer box cover (line 9). Those that are inner boxes are

also added to the inner box cover (line 10). The result is the modified joint box cover

(line 12).

Property 2.4 (Constraint Reasoning Step Result) Given a CCSP ⟨X,D,C⟩
and a joint box cover F� of F, the result of applying the constraint reasoning step

to F� results in a tighter joint box cover, i.e., crStep(F� , C, ·) ≼ F�.

Proof. Let us denote by F�0 the original joint box cover and by F�1 the joint box

cover resulting from applying the constraint reasoning step. By definition 2.33, we need

to prove that F+
0 ⊇ F+

1 and F−
0 ⊆ F−

1 and ∀B2∈F�2
∃B1∈F�1

B2 ⊆ B1.

If the retrieved box B is the empty box then the algorithm stops by returning the

original joint box cover and the conditions above hold.

1In fact this is an abstraction of the real implementation procedure that simply keeps a flag in each
box signaling if it is an inner box.

39

Chapter 2. Continuous Constraint Programming

Otherwise, if the retrieved box B is an inner box then, in both the inner and outer box

covers, B is replaced by the set of sub-boxes resulting from the split, S. More formally,

F+
1 = F+

0 \ B ∪
∪

S and F−
1 = F−

0 \ B ∪
∪
S. Since

∪
S = B then F+

1 = F+
0 and

F−
1 = F−

0 and ∀Bi∈S Bi ⊆ B and the conditions above hold.

Otherwise, each box resulting from the split is processed by the CPA algorithm. In the

outer box cover B is replaced by the boxes that result from this processing, L� . More

formally F+
1 = F+

0 \B∪
∪

L� . Since CPA is a contracting algorithm then B ⊇
∪
L� . So

F+
0 ⊇ F+

1 and the first condition above holds. The inner box cover is augmented with

the boxes resulting from the CPA algorithm that are identified as inner boxes (possibly

none), L� . More formally F−
1 = F−

0 ∪
∪

L� . So, since F−
0 ⊆ F−

1 , the second condition

above holds. Finally, since B was replaced by the boxes in L� that resulted from

splitting B and applying a contracting algorithm to each of them, then ∀Bi∈L� Bi ⊆ B

and the third condition above holds. �

The constraint reasoning algorithm, presented in algorithm 3, applies repeatedly the

constraint reasoning step until a stopping criterion is reached.

Algorithm 3: cReasoning(F� , C, split, inner, eligible, order, stop)

Input: F� : CCSP joint box cover; C: set of constraints; inner, eligible, stop:
predicates; split: function; order: criteria;

Output: F�out : CCSP joint box cover;
1 F′

� ← F� ;

2 while (¬stop(F�)) do
3 F� ← crStep(F′

� , C, split, inner, eligible, order);

4 if F� ̸= F′
� then F′

� ← F� ;

5 else break;

6 end
7 return F� ;

Algorithm 3 reasons over a given CCSP joint box cover by consecutively applying the

crStep algorithm (lines 1 and 3 − 4) until the stopping criterion is reached (line 2) or

there are no more eligible boxes to process in the outer box cover (lines 4 − 5). Then

it returns the resulting joint box cover (line 7). The stopping criterion is imposed by

the stop predicate given as input to this algorithm.

Notice that cReasoning (and ultimately crStep) is parameterizable by using distinct

inner, eligible and stop predicates, split functions and order criteria. Section A.1 of

40

2.3 Computing Feasible Space Approximations

appendix A, presents alternatives for parameterizing algorithms 2 and 3, resulting in

distinct cReasoning versions used in this thesis. It also defines the default parametriza-

tion for the inner and eligible predicates and the split function.

To study the convergence of the cReasoning algorithm we assume that the algorithm

is implemented with an infinite precision interval arithmetic.

Let F�k
= ⟨F�k

,F�k
⟩ be the joint box cover computed at iteration k of the while loop

in cReasoning and ∆kF = F+
k \ F

−
k .

Property 2.5 (Convergence) Let ⟨X,D,C⟩ be a CCSP and cReasoning∞ a fam-

ily of cReasoning algorithms where the stop predicate returns false, the inner pred-

icate is innerd, the split function is fair and the conjunction of the order criterion

and the eligible predicate imposes a fair choice wrt boundary boxes.

Consider a sequence (F�k
)k∈N computed by cReasoning∞ such that F�k

=

crStep(F�k−1
, C, split, innerd, true, order) and where F�0 = ⟨{D},∅⟩ is the input

joint box cover of cReasoning∞. Then

lim
k→∞

vol(∆kF) = 0

Proof. See section A.2 in appendix A. �

In practice, limitations of interval arithmetic precision imposes bounds to this theoret-

ical convergence result.

To conclude, we illustrate the use of cReasoning algorithm with specific parametriza-

tion, to solve different problems (see appendix A for the default parametrization).

Example 2.6. Consider a CCSP ⟨X,D,C⟩ for which we want to find one inner box.

The pseudo-code for this function is given in algorithm 4. The cReasoning algorithm is

used, with the orderLIFO criterion that induces the behavior of a LIFO data structure

to F� , and the stop predicate causes cReasoning to stop when the first inner box is

found (line 1). All other arguments of cReasoning are parameterized by their defaults.

41

Chapter 2. Continuous Constraint Programming

Algorithm 4: findInnerSolution(⟨X,D,C⟩, ε)
Input: ⟨X,D,C⟩: CCSP; ε: double;
Output: B: box;

1 stop(⟨F� ,F�⟩) ≡ F� ̸= ∅;
2 ⟨F� ,F�⟩ ← cReasoning(⟨{D},∅⟩, C, split2, innerd, eligibleε, orderLIFO, stop);
3 return getF irst(F�);

Example 2.7. Consider the feasible space F of a CCSP ⟨X,D,C⟩. Given a joint box

cover F� = ⟨F� ,F�⟩ of F, for any box Bi ∈ F� , an enclosure for the volume of Bi ∩ F

is:

vol(Bi ∩ F) ∈ [volF](Bi) =

{
[vol(Bi)] if Bi ∈ F�

[0, vol(Bi)] otherwise

and an enclosure for the volume of the feasible space is given by:

vol(F) ∈ [vol](F�) =
∑

Bi∈F�

[volF](Bi)

Algorithm 5 computes an enclosure for the volume of F using cReasoning, where the

stopδ predicate imposes a specified accuracy δ for the volume enclosure computed over

its argument (line 1); and the orderV criteria chooses boxes by decreasing order of

the width of their volume enclosures. In fact, given the uncertainty on their volume

enclosures, only boundary boxes are chosen for processing. The other arguments are

parameterized by their defaults.

Algorithm 5: feasibleSpaceV olume(⟨X,D,C⟩, ε, δ)
Input: ⟨X,D,C⟩: CCSP; ε, δ: double
Output: I: interval;

1 stopδ(F�) ≡ wid([vol](F�)) ≤ δ;
2 F� ← cReasoning(⟨{D},∅⟩, split2, innerd, eligibleε, orderV , stopδ);
3 return [vol](F�);

Now consider the CCSP Circle where X = ⟨x, y⟩, D = [−1, 1]× [−1, 1] and C = {C1}
with C1 : x

2 + y2 ≤ 1. The exact volume of the Circle feasible space is π.

Figures 2.4 (a) and (b) show the joint box covers resulting from applying algorithm 5

to Circle, ε = 10−8 and, respectively, δ = 0.5 and δ = 0.1. The enclosures obtained

for the volume were [2.720664277013146, 3.21952974686935] for δ = 0.5 with a total

42

2.4 Summary

of 152 boxes and [3.060639819475821, 3.160525625764372] for δ = 0.1 with a total of

744 boxes. An extra test was made for δ = 0.0001 (not shown in the figure) and the

obtained enclosure for the volume was [3.141511312676047, 3.141611312486993] with a

total of 725265 boxes.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

(a) δ = 0.5

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

(b) δ = 0.1

Figure 2.4: Joint box covers obtained when computing the volume of a circle with radius
1, centered in (0,0).

2.4 Summary

This chapter focused on the core concepts of continuous constraint programming, by

introducing interval analysis (interval arithmetic, inclusion functions and interval meth-

ods), continuous constraint satisfaction problems and methods to solve them (constraint

propagation and constraint reasoning). Although describing classical notions and tech-

niques, the topics are biased towards the probabilistic continuous constraint framework

proposed in the thesis.

In the next chapter relevant concepts of probability theory, the other component of the

framework, will be introduced.

43

Chapter 2. Continuous Constraint Programming

44

Chapter 3

Probabilistic Uncertainty Quantification

Although many other general models of uncertainty have been developed (e.g. imprecise

probabilities [116], Dempster-Shafer theory of evidence [109] and random sets [72],

fuzzy sets [120], possibility theory [2], probability bounds [45], convex model [12], and

others) probability theory is the traditional approach to handle uncertainty that we

have adopted in this thesis.

The thesis combines two models of uncertainty: a) ranges of possible values for un-

certain variables, and b) probability distributions over those ranges. This chapter

overviews the foundations of probability theory by describing its central objects: events

and random variables, which are mathematical abstractions of non-deterministic events

or measured quantities. In particular, we are interested in events occurring in contin-

uous sample spaces and in continuous random variables. In section 3.1 the theoretical

concepts of probability theory are introduced, followed by section 3.2, which presents

the concept of conditional probability. Next, sections 3.3 and 3.4 describe, respectively,

random variables and random vectors as well as their properties. Finally, section 3.5

presents two techniques to compute integrals over boxes: the first based on Taylor

models, results in a guaranteed enclosure for the integral value and the other, based on

Monte Carlo integration, results in an approximate enclosure for that value.

3.1 Probability

Probability theory studies models of random phenomena intended to describe random

experiments, i.e., experiments that can be repeated (indefinitely) and where future

45

Chapter 3. Probabilistic Uncertainty Quantification

outcomes cannot be exactly predicted even if the experimental situation can be fully

controlled, given the underlying randomness affecting such experiments.

Definition 3.1 (Sample Space) The sample space Ω is the set of all possible dis-

tinct outcomes of a random experiment.

Sample spaces may be finite, countable infinite, or uncountable infinite. Intuitively, an

event is the outcome or set of outcomes of a random experiment that share a common

attribute.

Definition 3.2 (Event) An event H in a sample space Ω is a measurable subset

of Ω, i.e., H ⊆ Ω.

Each outcome, ω, of an experiment is represented by a point in Ω and is called a

sample point. An event on the sample space is represented by an appropriate collection

of sample points. The event containing a single sample point is called atomic event.

When the sample space is finite (or even countable infinite) probabilities on every

possible subset of this space can be defined. However, this is not so for uncountably

infinite sample spaces.

The Vitali set is an example of a subset of R for which it is not possible to define a

probability measure. This set is so complicated that if we try to define a probability

measure on it, we will run into contradiction [101, p. 22] and [103, p. 698 - 671]. This is

why we need to restrict the definition of events to certain collection of subsets, denoted

as σ-algebras.

Definition 3.3 (σ-Algebra) A σ-algebra A on a set Ω is a non-empty collection of

subsets of Ω, that is closed under complements and countable unions of its members,

as defined below.

A ⊆ 2Ω

H ∈ A⇒ H ∈ A, where H denotes the complement of H

∀i∈I Hi ∈ A⇒
∪
i∈I

Hi ∈ A where I is a countable index set

46

3.1 Probability

Property 3.1 (σ-Algebra Properties) From the previous axioms, a σ-algebra

on Ω contains Ω itself, the empty set, and is closed under countable intersections of

its members, i.e.,

∅ ∈ A

Ω ∈ A

∀i∈I Hi ∈ A⇒
∩
i∈I

Hi ∈ A where I is a countable index set

We are now able to define a measurable space.

Definition 3.4 (Measurable Space) A measurable space is a pair ⟨Ω,A⟩, where
A is a σ-algebra on Ω.

In this context, a subset of Ω is an event iff it belongs to A.

If Ω is countable then A can be defined as the power set of Ω, i.e. A = 2Ω, which

is trivially a σ-algebra and the largest that can be created using Ω. When dealing

with uncountable sets we can end up with an untractable set if we use the power set.

However, when Ω ⊆ R (R is an uncountable infinite set) there is an adequate σ-algebra

on R, known as Borel σ-algebra.

Definition 3.5 (Borel σ-Algebra) The Borel σ-algebra on R, represented by B,

is generated by all open (or closed) intervals and is a standard (or implicit) σ-algebra

on Euclidean spaces.

When S1, . . . , Sn are sets and Ai σ-algebras for each Si then a σ-algebra An can be

used for product set Sn = S1 × · · · × Sn, generated by the collection of all product

sets of the form A1 × · · · × An where Ai ∈ Ai for each i. Hence, the notion of Borel

σ-algebra can be generalized to Rn, denoted as Bn.

We now define a probability measure with respect to the sample space Ω.

47

Chapter 3. Probabilistic Uncertainty Quantification

Definition 3.6 (Probability Measure) Given a measurable space ⟨Ω,A⟩, the

probability measure (or simply, probability) P (·) is a function that maps sets in

A into the set of real numbers and satisfies the following three axioms:

A1 : ∀H∈A P (H) ≥ 0

A2 : P (Ω) = 1

A3 : P

(∞∪
i=1

Hi

)
=

∞∑
i=1

P (Hi) where ∀i Hi ∈ A and ∀i ̸=j Hi ∩Hj = ∅

The third axiom is known as countable additivity, and states that the probability of

a union of a finite or countably infinite collection of disjoint events is the sum of the

corresponding probabilities.

The concepts of sample spaces, σ-algebras and probability measure can be combined

in the definition of probability space.

Definition 3.7 (Probability Space) A probability space is a triple ⟨Ω,A, P ⟩
where Ω is the sample space, A is a σ-algebra on Ω, and P is the probability measure

defined on the measurable space ⟨Ω,A⟩.

The definition of probability measure implies some properties of the corresponding

function P (·) as shown below.

Property 3.2 (Probability Measure Properties) Any probability measure

P (·) has the following properties for any two events A and B:

• P (∅) = 0

• P (A) = 1− P (A)

• If A ⊆ B then P (A) ≤ P (B)

• P (A) ∈ [0, 1] Numeric bounds of probability

• P (A ∪B) = P (A) + P (B)− P (A ∩B) General additivity

48

3.2 Conditional Probability

• P (
∪n

i=1Bi) ≤
∑n

i=1 P (Bi) Boole’s inequality

Consider n events A1, . . . , An, then the inclusion-exclusion principle states

P

(
n∪

i=1

Ai

)
=

n∑
i=1

P (Ai)−
∑

i,j:i<j

P (Ai ∩Aj)

+
∑

i,j,k:i<j<k

P (Ai ∩Aj ∩Ak)− · · ·+ (−1)n−1P

(
n∩

i=1

Ai

)

The general additivity and Boole’s inequality properties are derived from the

inclusion-exclusion principle.

The countable additivity property, which assumes disjoint events, is adapted to almost

disjoint events, as follows.

Definition 3.8 (Almost Disjoint Events) Two events H1 and H2 in Bn are al-

most disjoint iff P (H1 ∩H2) = 0.

Property 3.3 (Probability of an Almost Disjoint Set of Events) Given a

mutually almost disjoint set of events1S = {S1, . . . , Sn} such that ∀iSi ∈ Bn:

P

(
n∪

i=1

Si

)
=

n∑
i=1

P (Si)

Proof. Directly from the inclusion-exclusion principle (in property 3.2) and the defi-

nition of almost disjoint events. �

3.2 Conditional Probability

Probabilistic reasoning [102] aims at incorporating new information, known as evidence,

by updating an a priori probability describing what is known in the absence of the

1A set of events is mutually almost disjoint iff, given any two events in the set, they are almost
disjoint.

49

Chapter 3. Probabilistic Uncertainty Quantification

evidence into an a posteriori probability given the evidence. For incorporating this

evidence, conditioning is used. The probability of some event A, given the occurrence

of some other event B is denoted as P (A|B). The a posteriori probability is the

conditional probability when the evidence is taken into account.

More formally, let Ω be a sample space and let P (·) denote the probability assigned to

the events in Ω. These probabilities should be revised once an event B has occurred

into the conditional probability, P (·|B). The conditional probability measure must

satisfy the fundamental properties, stated in definition 3.6, required to any probability

measure. Moreover, since the probability of a sure event must be 1, then the probability

of B given B must be 1. Similarly, since the probability of an impossible event is zero,

the probability of any event disjoint from B must be zero.

Given two events, A1 ⊆ B and A2 ⊆ B, if A1 is k times more likely than A2 before

receiving the information B, then it remains k times more likely after receiving such

information. This is because all the outcomes in A1 and A2 remain possible and, hence,

there is no reason to expect that the ratio of their likelihoods changes.

The previous properties are summarized, in a more formal way, as follows.

Property 3.4 (Conditional Probability Measure Properties) Given a prob-

ability space ⟨Ω,A, P ⟩ and evidence B ∈ A, with P (B) > 0:

1. Probability measure. P (·|B) satisfies all the properties of a probability mea-

sure.

(a) ∀A∈AP (A|B) ≥ 0

(b) P (Ω|B) = 1

(c) P

(∞∪
i=1

Ai|B
)

=

∞∑
i=1

P (Ai|B) where ∀i Ai ∈ A and ∀i̸=j Ai ∩Aj = ∅

2. Sure event. P (B|B) = 1.

3. Impossible events. If A ⊆ B then P (A|B) = 0.

4. Constant likelihood ratios. If A1 ⊆ B and A2 ⊆ B (with P (A2) > 0), then
P (A1)
P (A2)

= P (A1|B)
P (A2|B) .

50

3.2 Conditional Probability

The definition of conditional probability P (·|B) can now be derived, from the absolute

probability P (·) defined in Ω (note that P (·) = P (·|Ω)), for any given event A ⊆ A.

From property (4) above, and considering A1 = A and A2 = B, follows that P (A)
P (B) =

P (A|B)
P (B|B) . From property (2), this can be rewritten as P (A)

P (B) = P (A|B), for any A ⊆ B.

Now consider an event A not totally contained in B.

A = (A ∩B) ∪ (A ∩B) set algebra.

P (A|B) = P (A ∩B|B) + P (A ∩B|B) (A ∩B) ∩ (A ∩B) = ∅.

P (A ∩B|B) = 0 (A ∩B) ⊆ B and P (B|B) = 0.

P (A|B) =
P (A ∩B)

P (B)
(A ∩B) ⊆ B.

Hence, the definition.

Definition 3.9 (Conditional Probability) Given a probability space (Ω,A, P),

if A,B ∈ A are two events with P (B) > 0 the conditional probability of A given B

is defined as:

P (A|B) =
P (A ∩B)

P (B)

We can then conclude that, for any event A ∈ A and evidence B ∈ A, the conditional

probability measure P (A ∩ B|B)(= P (A|B)) is related to the probability measure

P (A ∩B) by a constant scale factor α = 1
P (B) .

Given two events A and B in some situations P (A|B) = P (A), i.e., the knowledge of B

does not affect the probability of A. In this case we say that A and B are independent

and hence the appropriate definition of independent events is P (A ∩B) = P (A)P (B),

which can be generalized as follows.

Definition 3.10 (Mutually Independent Events) The events of a set

{A1, . . . , An} are mutually independent iff all subsets {Aν1 , . . . , Aνk} of these

51

Chapter 3. Probabilistic Uncertainty Quantification

events verify

P

(
k∩

i=1

Aνi

)
=

k∏
i=1

P (Aνi)

Given a probability space ⟨Ω,A, P ⟩ and evidence B, a new probability space can be

defined as follows.

Definition 3.11 (Conditional Probability Space) Given a probability space

(Ω,A, P), let B ∈ A be some event with P (B) > 0. On the same measurable

space ⟨Ω,A⟩, let the probability measure Q be defined as:

Q(A) = P (A|B)

Then (Ω,A, Q) is also a probability space and is called a conditional probability space.

Example 3.1. Consider a probability space where Ω = R2 characterized by a

bivariate Gaussian distribution. Consider as evidence the event defined by the set of

points that satisfy the inequalities x − 1 ≤ y ≤ x + 1. Figure 3.1 (a) illustrates the

probability space distribution when the evidence is not considered and figure 3.1 (b)

the conditional probability space distribution given the evidence.

(a) (b)

Figure 3.1: (a) Bivariate Gaussian distributed probability space; (b) Conditional proba-
bility space distribution given the evidence x− 1 ≤ y ≤ x+ 1.

52

3.3 Random Variables

3.3 Random Variables

Intuitively, a random variable X is a measurement of interest in some random exper-

iment. A variable X is random in the sense that its value depends on the outcome

of the experiment, which cannot be predicted with certainty before the experiment is

run. Each time the experiment is run, an outcome ω ∈ Ω occurs, and a given random

variable X takes on the value X(ω).

A real-valued random variable is a function from the sample space Ω into the real

numbers, i.e., it assigns a real number to every element of the sample space, as shown

in figure 3.2.

Ω

ω1

ω2

ω3

RX(ω1) X(ω3)X(ω2)

X

Figure 3.2: Mapping from the sample space Ω to R, by the random variable X.

Definition 3.12 (Random Variable) A function X : Ω → R is a real-valued

random variable defined on the probability space ⟨Ω,A, P ⟩ iff, for any S ∈ B, we

have:

{
ω ∈ Ω : X(ω) ∈ S

}
∈ A

Note that a statement about a random variable defines an event. We adopt the

notation {X ∈ S} to express, more compactly, the event induced via the random

variable X.

We can notice that, if the outcome of an experiment is in Rn, the projection to any of

its coordinates is also a random variable.

53

Chapter 3. Probabilistic Uncertainty Quantification

Definition 3.13 (Projection Random Variable) A random variable Xi : Ω →
R, with Ω ⊆ Rn, is a projection random variable wrt coordinate i if Xi(ω1, . . . , ωn) =

ωi.

Property 3.5 (Function of a Random Variable) Let X be a random variable

defined on the probability space ⟨Ω,A, P ⟩ and g : R → R a Borel measurable func-

tion1. Then Y = g(X) is also a random variable.

To specify probability measures for random variables, it is often convenient to adopt

functions from which the probability measure immediately follows, namely the cumu-

lative distribution function (CDF) and the probability density function (PDF).

The cumulative distribution function describes the probability that a random variable

X, with a given probability distribution, takes a value less or equal than any x ∈ R.

Definition 3.14 (Cumulative Distribution Function) The CDF of a random

variable X, is a function FX : R→ [0, 1], which specifies a probability measure as:

FX(x) = P ({X ≤ x})

Property 3.6 (CDF Properties) For any x, y ∈ R:

0 ≤ FX(x) ≤ 1

limx→−∞FX(x) = 0

limx→+∞FX(x) = 1

x ≤ y ⇒ FX(x) ≤ FX(y)

A random variable is a continuous random variable (the main focus of this thesis) if its

CDF FX(·) is absolutely continuous. Hence a probability density function (PDF) may

be defined.
1A real-valued function g such that the inverse image of the set of real numbers greater than any

given real number x, is a Borel set, i.e. g−1([x,+∞[) ∈ B.

54

3.3 Random Variables

Definition 3.15 (Probability Density Function) For a continuous random

variable X, with CDF, FX(·), differentiable everywhere, its PDF is given by:

fX(x) =
dFX(x)

dx

From the previous definition, we can conversely retrieve the CDF of a random variable

X, from its PDF

FX(x) =

∫ x

−∞
fX(u)du

According to the properties of differentiation, for very small ∆x,

P ({X ∈ [x, x+∆x]}) =
∫ x+∆x

x
fX(x)dx ≈ fX(x)∆x

Thus, fX(x) is not the probability of that event, i.e. fX(x) ̸= P ({X = x}), but rather
the probability mass per unit area near x, representing a likelihood in its neighborhood.

The following properties can be derived from the CDF properties in property 3.6.

Property 3.7 (PDF Properties) A PDF fX(·) has the following properties:

fX(x) ≥ 0∫ ∞

−∞
fX(x)dx = 1

The next statement defines the probability of an event induced via a random variable.

Definition 3.16 (Probability of an Event) Given a random variable X on the

probability space (Ω,A, P) with PDF fX(·) and a set S ∈ B, the probability of the

event H = {ω ∈ Ω : X(ω) ∈ S} is given by:

∫
S

fX(x)dx = P ({X ∈ S}) = P (H)

55

Chapter 3. Probabilistic Uncertainty Quantification

In particular, if S = [a, b], the probability of event H = {ω ∈ Ω : a ≤ X(ω) ≤ b}, is
P (H) =

∫ b
a fX(x)dx.

Since the number of possible outcomes of a continuous random variable is uncountable

infinite, the probability that X takes any single value a (that is a ≤ X ≤ a) is zero1

and probabilities for a continuous random variable over intervals should be considered.

This probability can be interpreted as the area under the graph of the PDF between

the interval bounds.

Although the probability that a continuous random variable takes a specific value is

zero, this does not necessarily mean that such value cannot occur. In fact it means

that the point (event) is one of an infinite number of possible outcomes. Formally, each

value has an infinitesimally small probability, which statistically is equivalent to zero

[105, p. 64].

3.3.1 Moments

In many situations we do not need all the detail on the randomness patterns in-built

in the PDF (or CDF). A rather limited number of raw moments (or central moments)

supply enough information for our purposes. Namely, under very broad conditions, an

approximation using a Gaussian distribution (central limit theorem) is efficient.

Any probability distribution has a set of numerical characteristics associated with it

(such as the expected value, the variance, the skewness, etc.), related to the moments

of the probability density function.

The first moment of the PDF (centered at zero) is the expected value, i.e., the popula-

tion mean, denoted by E[X] or, more compactly, by µ. It is a measure that corresponds

to the physical concept of center of mass of the distribution.

Definition 3.17 (Expected Value) Given a random variable X with PDF fX(·)
the expected value of X is

E[X] =

∫
R
xfX(x)dx

1It is assumed that the PDF f(·) is bounded, since the CDF is differentiable everywhere.

56

3.3 Random Variables

provided that

∫
R
|x|fX(x)dx <∞.

Sometimes we are interested in computing the expected value of a random variable Y =

g(X) when the probability distribution of X is known and the probability distribution

of Y is not explicitly known.

Definition 3.18 (Law of the Unconscious Statistician) Given a random

variable X on the probability space with PDF fX(·) and a random variable

Y = g(X) then, the expected value of Y is

E[Y] =

∫
R
g(x)fX(x)dx

provided that

∫
R
|g(x)|fX(x)dx <∞.

Notice, however, that given the random variables X and Y = g(X) the CDF (and

PDF) of Y may be obtained using standard techniques [105, sec. 2.5].

Property 3.8 (Expected Value Properties) Given random variable X and Y

on the same probability space, the expected value has the following properties:

E[a] = a for any constant a ∈ R

E[aX] = aE[X] for any constant a ∈ R

E[X + Y] = E[X] + E[Y] (Linearity of the Expected Value)

The second moment of the PDF (centered at its mean µ), is the variance, denoted

by V ar[X] or, more compactly, by σ2. The variance and the closely-related standard

deviation are measures of how concentrated the distribution is around its mean.

Definition 3.19 (Variance and Standard Deviation) Given a random vari-

able X on the probability space ⟨Ω,A, P ⟩ with PDF fX(·), the variance of X is

57

Chapter 3. Probabilistic Uncertainty Quantification

defined as:

V ar[X] = E[(X − E[X])2]

The standard deviation is given by σ =
√

V ar[X].

From the properties of the expected value an alternative expression for the variance

follows.

Property 3.9 (Computational Expression for the Variance) From the

properties of the expected value we have that:

V ar[X] = E[X2]− E[X]2

3.3.2 Some Continuous Probability Distributions

Many probability distributions are so important in theory or applications that they

have been given specific names. In the following we describe the main continuous

probability distributions used in this thesis.

The uniform distribution assigns equal probability density to every value in a given

range. A random variable X uniformly distributed in the range [a, b] is denoted by

X ∼ U(a, b) and has PDF:

fX(x) =
1

b− a
x ∈ [a, b]

Possibly the most common distribution, used as a first approximation to describe ran-

dom variables that tend to cluster around a single mean value, is the normal (or

Gaussian) distribution. A random variable X normally distributed is denoted by

X ∼ N(µ, σ2), where µ is the mean and σ2 the variance and has PDF:

fX(x) =
1√
2πσ

e−
1

2σ2 (x−µ)2 , x ∈ R

58

3.4 Random Vectors

The graph of this function is bell -shaped. When µ = 0 and σ2 = 1 the distribution is

called standard normal.

A random variable X distributed accordingly to a cosine distribution in the range

[µ − a, µ + a] is denoted by X ∼ C(µ, a), where µ is the mean point and a defines the

range of the distribution and has PDF:

fX(x) =
1

2a

[
1 + cos

(
x− µ

a
π

)]
, x ∈ [µ− a, µ+ a]

A cosine distribution C(µ, a) is related to a triangular distribution, T(µ, µ − a, µ + a),

but its PDF is differentiable everywhere.

3.4 Random Vectors

In may situations we may be interested in dealing with several random variables.

Definition 3.20 (Random Vector) A vector-valued function X : Ω → Rn is a

random vector X = ⟨X1, . . . , Xn⟩ defined on the probability space (Ω,A, P), iff, for

any S = S1 × · · · × Sn ∈ Bn we have:

{ω ∈ Ω : X1(ω) ∈ S1 ∧ · · · ∧Xn(ω) ∈ Sn} ∈ A

Each component of the vector is a real-valued random variable on the same proba-

bility space (Ω,A, P).

The event induced via the random vector will be expressed, compactly, by {X ∈ S}.

Property 3.10 (Function of a Random Vector) Let X = ⟨X1, . . . , Xn⟩ be a

random vector defined on the probability space ⟨Ω,A, P ⟩ and g : Rn → Rm a Borel

measurable function1. Then Y = g(X) is an m-dimensional random vector.

The realization of the random vector is denoted by x = ⟨x1, . . . , xn⟩. Nevertheless,

when used explicitly as the argument of a function, the brackets will be omitted.

1A function such that the inverse image of any m-dimensional Borel set is an n-dimensional Borel
set, i.e., for any B ∈ Bm we have that g−1(B) ∈ Bn.

59

Chapter 3. Probabilistic Uncertainty Quantification

When Ω is a subset of Rn, it is useful to consider the identity random vector that

represents the outcome of the experiment itself.

Definition 3.21 (Identity Random Vector) A random vector X =

⟨X1, . . . , Xn⟩ is an identity random vector if each Xi is its real-valued projec-

tion random variable wrt coordinate i.

Specifically, points of Rn have the form ⟨ω1, . . . , ωn⟩, where ωi ∈ R, so

X(ω1, . . . , ωn) = ⟨X1(ω1, . . . , ωn), . . . , Xn(ω1, . . . , ωn)⟩ = ⟨ω1, . . . , ωn⟩.

The concepts presented in the previous section can be extended to random vectors as

we will show next.

Definition 3.22 (Joint Cumulative Distribution Function) Given a random

vector X = ⟨X1, . . . , Xn⟩, its joint CDF is defined by:

FX(x1, . . . , xn) = P ({X1 ≤ x1 ∧ · · · ∧Xn ≤ xn})

A more compact way to express this is FX(x) = P ({X ≤ x}), x ∈ Rn.

From the joint CDF of a random vector the marginal cumulative distribution functions

can be defined.

Definition 3.23 (Marginal Cumulative Distribution Function) Given a

random vector X = ⟨X1, . . . , Xn⟩ with joint CDF FX(·), the marginal CDF of each

Xi, FXi(·), is defined as:

FXi(xi) = FX(∞, . . . ,∞, xi,∞, . . . ,∞)

Similarly, a marginal cumulative distribution can be derived from the random vector

for any subset of its random variables (allowing the other variables to take any values).

The concept of probability density function can also be extended to random vectors.

60

3.4 Random Vectors

Definition 3.24 (Joint Probability Density Function) Given a random vec-

tor X = ⟨X1, . . . , Xn⟩ with CDF FX(·), everywhere differentiable in every xi, the

joint PDF of X is defined by:

fX(x1, . . . , xn) =
∂nFX(x1, . . . , xn)

∂x1 . . . ∂xn

From this definition, the joint CDF of a random vector, can be retrieved from its joint

PDF by integration:

FX(x1, . . . , xn) =

∫ xn

−∞
. . .

∫ x1

−∞
fX(u1, . . . , un)du1 . . . dun

For simplicity, when S = S1 × · · · × Sn ⊆ Rn, the symbol
∫
S will be used to represent

n consecutive integrations. The ith integration region is defined by Si, with 1 ≤ i ≤ n.

When S = Rn the integrations are from −∞ to ∞.

Like in the single dimensional case, fX(x1, . . . , xn) ̸= P (X1 = x1, . . . , Xn = xn). Nev-

ertheless we can use the joint PDF of a random vector to compute the probability of

an event.

Definition 3.25 (Probability of an Event) Given a random vector X on the

probability space (Ω,A, P) with PDF fX(·) and a set S ∈ Bn, the probability of the

event H = {ω ∈ Ω : X(ω) ∈ S} is given by:

P (H) = P ({X ∈ S}) =
∫
S
fX(x)dx x ∈ Rn

In particular, if S = [a1, b1]× · · · × [an, bn], the probability of the associated event H is

given by P (H) =
∫ bn
an

. . .
∫ b1
a1

fX(x1, . . . xn)dx1 . . . dxn.

As for CDFs, from the joint PDF of the random vector marginal PDFs for each com-

ponent random variable are obtained by integrating out the unwanted dimensions.

61

Chapter 3. Probabilistic Uncertainty Quantification

Definition 3.26 (Marginal Probability Density Function) Given a random

vector X = ⟨X1, . . . , Xn⟩ with PDF fX(·), then fXi(·) is the marginal PDF of

each Xi, defined as:

fXi(xi) =

∫
Rn−1

fX(x1, . . . , xn)dx1 . . . dxi−1dxi+1dxn

Marginal joint PDFs can be extended to any combination of k component random

variables, with k ≤ n, obtaining the joint PDF for the k random variables.

In the special case where the random variables are independent their joint density may

be computed from their individual densities.

Definition 3.27 (Independent Random Variables) Let X = ⟨X1, . . . , Xn⟩
be a random vector on the probability space (Ω,A, P) with marginal PDFs

fX1(·) . . . , fXn(·). The Xi are independent random variables iff their joint PDF

is the product of their marginal PDFs:

fX(x1, . . . , xn) = fX1(x1) . . . fXn(xn)

3.4.1 Moments

Expected values can be defined for random vectors, as follows.

Definition 3.28 (Expected Value) The expected value of a random vector X =

⟨X1, . . . , Xn⟩ with joint PDF fX(·) is:

E[X] = ⟨E[X1], . . . , E[Xn]⟩ =
⟨∫

Rn

x1fX(x)dx, . . . ,

∫
Rn

xnfX(x)dx

⟩
=

⟨∫
R
x1fX1(x1)dx1, . . . ,

∫
R
xnfXn(xn)dxn

⟩
where fXi is the marginal PDF of the random variable Xi.

62

3.4 Random Vectors

Definition 3.29 (Expected Value of a Function of a Random Vector) Let

X = ⟨X1, . . . , Xn⟩ be a random vector with joint PDF fX(·) and Y = g(X1, . . . , Xn)

a random variable. The expected value of Y is:

E[Y] =

∫
Rn

g(x1, . . . , xn)fX(x1, . . . , xn)dx1 . . . dxn

Intuitively, the covariance matrix generalizes the notion of variance to multiple dimen-

sions.

Definition 3.30 (Covariance between Two Random Variables) The covari-

ance between two random variables X and Y with joint PDF fXY (·) is:

Cov(X,Y) = E[(X − E[X])(Y − E[Y])]

Property 3.11 (Computational Expression for the Covariance) From the

properties of the expected value:

Cov(X,Y) = E[XY]− E[X]E[Y]

Definition 3.31 (Covariance Matrix) Let X = ⟨X1, . . . , Xn⟩ be a random vec-

tor with joint PDF fX(·). The covariance matrix Σ of X is a matrix whose element

in the i, j position is the covariance between its ith and jth elements:

Σij [X] = Cov(Xi, Xj)

Notice that each diagonal element Σii is the variance of the ith variable, i.e., Σii[X] =

Cov(Xi, Xi) = E[XiXi]− E[Xi]E[Xi] = V ar[Xi].

3.4.2 Conditioning

The probability of random vectors can be affected by the occurrence of some event on

such random vector.

63

Chapter 3. Probabilistic Uncertainty Quantification

Definition 3.32 (Conditional Joint Cumulative Distribution Function)

Given a random vector X on the probability space ⟨Ω,A, P ⟩ and a possible event

B ∈ A, (i.e. P (B) > 0), the conditional joint CDF given B is defined by:

FX|B(x) = P ({X ≤ x}|B) =
P ({X ≤ x} ∩B)

P (B)
, x ∈ Rn

Similarly the conditional joint PDF can be defined for a random vector, given the

evidence.

Definition 3.33 (Conditional Joint Probability Density Function) Let

B ∈ A be a possible event (P (B) > 0), X an n-dimensional random vector on

the probability space ⟨Ω,A, P ⟩, with conditional joint CDF given B, FX|B(·),
everywhere differentiable in every xi, (1 ≤ i ≤ n). The conditional joint PDF of X

given B is defined by:

fX|B(x) =
∂nFX|B(x)

∂x1 . . . ∂xn

The conditional joint PDF can also be expressed directly in terms of the unconditional

joint PDF.

Property 3.12 (Alternative Expression for the Conditional PDF)

Consider random vector X, the set B′ = {X(ω) : ω ∈ B} ⊆ Rn and its

indicator function:

1B′(x) =

{
1, x ∈ B′

0, x ̸∈ B′

An alternative expression for the conditional joint PDF of X given B is

fX|B(x) =
fX(x)1B′(x)

P (B)

Thus, fX|B(·) is proportional to fX(·) on the set B′, and zero elsewhere.

64

3.5 Numerical Computations

The marginal CDFs and PDFs of each random variable Xi (with 1 ≤ i ≤ n) can be

retrieved as defined in 3.23 and 3.26, respectively.

Similarly it is possible to define the conditional expected value of a random variable

given an event.

Definition 3.34 (Conditional Expected Value) Let B ∈ A be an event with

P (B) > 0 and X = ⟨X1, . . . , Xn⟩ be a random vector with conditional joint PDF

given B, fX|B(·). The conditional expected value of X given B is:

E[X|B] = ⟨E[X1|B], . . . , E[Xn|B]⟩ =
⟨∫

R
x1fX1|B(x1)dx1, . . . ,

∫
R
xnfXn|B(xn)dxn

⟩
where fXi|B is the conditional marginal PDF of the random variable Xi.

Definition 3.35 (Conditional Expected Value of a Function) Let B ∈ A be

an event with P (B) > 0, X = ⟨X1, . . . , Xn⟩ be a random vector with conditional

joint PDF given B, fX|B(·), and Y = g(X) a random variable. The conditional

expected value of Y given B is:

E[Y |B] =

∫
Rn

g(x)fX|B(x)dx

Since the conditional expected value E[X|B] can be regarded as the mean of the con-

ditional distribution of the random vector X given B, all the properties of the uncon-

ditional expected value also apply.

Other conditional moments of a random variable, namely the conditional variance and

the closely-related conditional standard deviation, are defined analogously.

3.5 Numerical Computations

Since many definitions in this chapter depend on the computation of multidimensional

integrals, we introduce two alternative methods of computing the integral of a function

over a box: the first, relying on Taylor models, provides a safe enclosure for the exact

65

Chapter 3. Probabilistic Uncertainty Quantification

integral value; the second, based on Monte Carlo integration techniques, provides only

approximate enclosures, but is faster to execute.

These methods will be used in the next chapter to calculate enclosures for the proba-

bility of events and also for expected values and variances of random vectors.

3.5.1 Probabilistic Framework Outline

For problems defined over the n-dimensional Euclidean space, Rn (or some subset of it),

we adopt ⟨Rn,Bn⟩ as the measurable space, where the sample space is an n-dimensional

Euclidean space and Bn is the n-dimensional Borel σ-algebra.

This sample space is included in Rn and the original events coincide with the events

induced via the random variables, so the identity random vector (see definition 3.21)

is used. Hence, an event H ∈ Bn and the event HX induced via the identity random

vector X on H ⊆ Rn are identical, i.e., HX = {ω ∈ Ω : X(ω) ∈ H} = H.

Moreover, a probability measure P (·) in the measurable space ⟨Rn,Bn⟩ is based on

the joint PDF, fX(·), of the random vector X. Therefore, for any event H ∈ Bn, the

probabilistic measure is given by P (H) =
∫
H fX(x)dx x ∈ Rn.

Summarizing, the probabilistic model considered in our framework is characterized by

the following elements:

• Measurable space: ⟨Rn,Bn⟩;

• Random vector: identity random vector X with joint PDF fX(·);

• Probability measure: P (H) =

∫
H
fX(x)dx x ∈ Rn;

• Probability space: ⟨Rn,Bn, P ⟩

3.5.2 Integration with Taylor Models

In numerical analysis, the term quadrature is a synonym for numerical integration and

several algorithms exist for calculating the numerical value of a definite integral.

The basic problem considered by numerical integration is to compute an approximate

solution to a definite integral

S =

∫ b

a
f(x)dx.

66

3.5 Numerical Computations

If f is a smooth well-behaved function, integrated over a small number of dimensions

and the limits of integration are bounded, there are many methods of approximating the

integral. Nevertheless precise error bounds are rarely available. The error estimates,

which are sometimes delivered, are not guaranteed and are sometimes unreliable.

Interval analysis techniques provide several methods [37, 71, 114] for unidimensional

quadrature. These methods can be useful in our framework whenever the random

variables of the probabilistic model are independent. In this case the joint PDF is the

product of individual PDFs (see definition 3.27) and computing the probability of an

event reduces to quadrature enclosures of univariate functions.

Methods to compute quadrature enclosures for multivariate functions are nevertheless

needed when independence is not assumed on the random variables of the probabilistic

model and a single joint PDF is provided. Quadrature methods can be based on Taylor

models, (see definition 2.10). The Taylor model used here is slightly different from that

presented in §2.1.2, since we will center the error component. To do so, in the adapted

Taylor model of a function f in a box B, the polynomial part is defined by

p(x) = f(x̃) +

n∑
|α|=1

1

α!

∂αf(x̃)

∂xα
(x− x̃)α +

∑
|α|=n+1

cα (x− x̃)α (3.1)

and the remainder is defined by

R =
∑

|α|=n+1

([rα](B)− cα)(B − x̃)α (3.2)

with [rα](B) = 1
α!

[
∂αf
∂xα

]
(B), cα = mid([rα](B)) and x̃ = mid(B).

Property 3.13 (Equivalent Inclusion Functions) The formula presented in

definition 2.11 is equivalent to the inclusion function of the Taylor model that centers

the error component (presented above).

Proof. For the error-centered formula we have [f](B) = [p](B) + R, with p and R,

defined above. R can be rewritten as

R =
∑

|α|=n+1

[rα](B) (B − x̃)α −
∑

|α|=n+1

cα (B − x̃)α

67

Chapter 3. Probabilistic Uncertainty Quantification

and the inclusion function of f becomes

[f](B) =f(x̃) +

n∑
|α|=1

1

α!

∂αf(x̃)

∂xα
(B − x̃)α +

∑
|α|=n+1

cα (B − x̃)α+

∑
|α|=n+1

[rα](B) (B − x̃)α −
∑

|α|=n+1

cα (B − x̃)α.

Since the third and the last terms cancel we obtain the formula of definition 2.11. �

The computation of an enclosure, [I]∗, for the quadrature of a multivariate function f

is justified by the following lemma used in [17] and proved here for completeness.

Lemma 3.1 Let f(x) ∈ p(x) +R for all x in a given box B ∈ IRm. Then∫
B
f(x)dx ∈ [I]∗(f,B) =

∫
B
p(x)dx+R vol(B)

Proof. Since p(x) +R ≤ f(x) ≤ p(x) +R, ∀x ∈ B, it is∫
B
p(x) +R dx ≤

∫
B
f(x) dx ≤

∫
B
p(x) +R dx

Since
∫
B k dx = k vol(B) for any constant k, we obtain∫

B
p(x) dx+R vol(B) ≤

∫
B
f(x) dx ≤

∫
B
p(x) dx+R vol(B)

and so the statement holds. �

The enclosure provided by lemma 3.1 can be very sharp. Its computation reduces to

the computation of the quadrature
∫
B p(x)dx and of the remainder R.

Property 3.14 The quadrature
∫
B p(x)dx can be computed by the analytic formula:

∫
B
p(x)dx = vol(B) f(x̃) +

n∑
|α|=1

Kα

∫
B
(x− x̃)αdx+

∑
|α|=n+1

cα

∫
B
(x− x̃)αdx

where Kα = 1
α!

∂αf(x̃)
∂xα and

∫
B(x− x̃)αdx is given by property 3.15.

68

3.5 Numerical Computations

Proof. The quadrature
∫
B p(x)dx in a box B = B1 × · · · ×Bm can be expanded as

∫
B
p(x)dx =

∫
B
f(x̃)dx+

∫
B

n∑
|α|=1

Kα (x− x̃)αdx+

∫
B

∑
|α|=n+1

cα (x− x̃)αdx

= vol(B)f(x̃) +

n∑
|α|=1

Kα

∫
B
(x− x̃)αdx+

∑
|α|=n+1

cα

∫
B
(x− x̃)αdx

where Kα = 1
α!

∂αf(x̃)
∂xα is a constant. �

The formula for
∫
B(x− x̃)αdx is now addressed.

Property 3.15 The analytic formula to compute
∫
B(x − x̃)αdx, where B = B1 ×

· · · ×Bm and x̃ = mid(B), is given by:

∫
B
(x− x̃)αdx =

0 if ∃αi∈α odd(αi)

m∏
i=1

(wi)
αi+1

2αi(αi + 1)
otherwise

where wi = Bi −Bi.

Proof.

∫
B
(x− x̃)αdx =

m∏
i=1

∫
Bi

(xi − x̃i)
αidxi =

m∏
i=1

(xi − x̃i)
αi+1

αi + 1

∣∣∣∣Bi

Bi

This computation is simplified since we consider x̃ = mid(B). Focusing on the ith

component of the product, we have

(xi − x̃i)
αi+1

αi + 1

∣∣∣∣Bi

Bi

=

(
Bi −

Bi+Bi

2

)αi+1

αi + 1
−

(
Bi −

Bi+Bi

2

)αi+1

αi + 1
=

=

(
Bi−Bi

2

)αi+1

αi + 1
−

(
−Bi−Bi

2

)αi+1

αi + 1

69

Chapter 3. Probabilistic Uncertainty Quantification

Denoting Bi −Bi as wi, the previous formula can be further simplified to

(wi)
αi+1 − (−1)αi+1(wi)

αi+1

2(αi+1)(αi + 1)
=

0 if odd(αi)

(wi)
αi+1

2αi(αi + 1)
if even(αi)

It is then enough to have a single odd αi for the product to be zero. Otherwise it is

the product of non-zero terms. So property 3.15 holds. �

In practice, computing
∫
B p(x)dx can only produce an approximate value, due to

floating-point arithmetic rounding errors. By using interval arithmetic a rigorous en-

closure of the scalar value can be maintained.

The computation of Taylor models of arbitrary expansion orders for multivariate func-

tions, both for the polynomial part and for the remainder R, require the evaluation

of higher order derivative tensors performed in interval arithmetic. The few available

tools for computing higher order partial derivatives [30, 54] are based on floating-point

arithmetic and, thus, are inadequate for our needs.

In the work developed with Goldztejn and Cruz [48], we adopted an implementation of

the recursive calculation in the forward mode of the chain-rule based technique know

as automatic differentiation [18]. The idea is to pre-compile the integrand expression

into a program code that computes all the derivative enclosures wrt to a box required

by the Taylor model, and retrieves them, as needed. When computing the polynomial

part, the box is an infinitesimal box around the midpoint of the domain of integration.

When computing the remainder R the box is the domain of integration itself.

Property 3.16 (Order of Convergence) The quadrature computed as in lemma

3.1 has an order of convergence n + 2 + m in a box B ∈ IRm, when an n-order

Taylor model is used.

Proof. See appendix B, section B.1. �

In fact, when computing the integral of f inside a large box B, R can be very wide

(independently of the Taylor model order). To guarantee that the obtained enclosure

is adequate we proceed as follows.

70

3.5 Numerical Computations

Definition 3.36 (Safe Enclosure for the Integral of f over B) Let f(x) ∈
p(x) +R for all x in B ∈ IRm and [f] a convergent inclusion function inside B:∫

B
f(x)dx ∈ [I](f,B) = [I]∗(f,B) ∩ [f](B)vol(B)

where [I]∗ is computed as in lemma 3.1.

Since the bound on the Taylor expansion improves as the box size decreases applying

Taylor model based integration to sub-boxes whose union is the original box leads to a

tighter enclosure of the initial integral [17, 93].

Property 3.17 (Tighter Enclosure for the Integral of f over B) Consider

a box B and an almost disjoint set of boxes {Bi : 1 ≤ i ≤ n} such that ∪ni=1Bi = B.

Then

∫
B
f(x)dx ∈

n∑
i=1

[I](f,Bi) and wid([I](f,B)) ≥ wid

(
n∑

i=1

[I](f,Bi)

)
.

We illustrate the previous computations by means of an example.

Example 3.2. Consider the standard bivariate normal PDF, with correlation coeffi-

cient ρ = 0.5, given by:

f(x, y) =
1

2π
√

1− ρ2
exp(−x2 − 2ρxy + y2

2(1− ρ2)
)

Using the method based on Taylor models to compute the enclosure for the quadrature

of this function in the box B = [0, 0.5] × [0, 0.5] (see Lemma 3.1) and adopting the

Taylor model of order n = 2 around the midpoint of B, x̃ = ⟨0.25, 0.25⟩, we obtain the

enclosure for the quadrature of f in B (see appendix B, sectionB.2, for the intermediate

computations):∫
B
f(x)dx ∈

∫
B
p(x)dx+R vol(B) =

0.042870434037233 (97) + 0.0022615212900009× [−1, 1] =

[0.0406089127472329, 0.0451319553272347].

71

Chapter 3. Probabilistic Uncertainty Quantification

To illustrate the convergence of the method based on Taylor models, table 3.1 shows

the enclosures for the quadrature of f obtained with increasing orders (n = 2, n = 5,

n = 10, n = 15 and n = 20), around the midpoint of B.

n Quadrature enclosure
2 0.04[06089127472329, 51319553272347]
5 0.042[8745381053786, 9201526531358]
10 0.04289729[31109425, 138828026]
15 0.042897298499[1777, 7946]
20 0.042897298499486[0, 6]

Table 3.1: Enclosure for the quadrature of f in B by Taylor models integration with
increasing order n.

3.5.3 Integration with Monte Carlo

Deterministic numerical integration algorithms are well suited for a small number of

dimensions, but difficulties arise in multivariate functions of high dimensions, both

because the number of required function evaluations increases rapidly with the number

of dimensions, and because the boundary of a multidimensional region may be highly

non-linear making the reduction of the problem to a series of nested one-dimensional

integrals infeasible.

Monte Carlo methods [56] provide an alternative approach to estimate the value of

definite multidimensional integrals, with high dimensions. As long as the function is

reasonably well-behaved, the integral can be estimated by randomly selecting N points

in the multidimensional space and averaging the function value on these points. This

method displays 1√
N

convergence, i.e., by quadrupling the number of sampled points

the error is halved, regardless of the number of dimensions.

Definition 3.37 (Monte Carlo Integration) Let H ⊆ Rn be a region with a

possible non-linear boundary, B an n-dimensional box and f : Rn → R a function.

Consider N random sample points uniformly distributed inside B, {x1, . . . ,xN} and

72

3.5 Numerical Computations

the indicator function 1H defined as:

1H(x) =

{
f(x) if x ∈ (H ∩B)

0 otherwise

The average of fH on the N sample points is:

⟨1H⟩ =
∑N

i=1 1H(xi)

N

Monte Carlo integration estimates the integral of f over (H ∩B) with:∫
B
1H(x)dx =

∫
(H∩B)

f(x)dx ≈ ÎH(f,B) = ⟨1H⟩vol(B)

Property 3.18 (Convergence) By the law of large numbers Monte Carlo esti-

mate converges to the true value of the integral:

lim
N→∞

ÎH(f,B) =

∫
(H∩B)

f(x)dx

Besides obtaining an estimate of the integral value (by the law of large numbers), Monte

Carlo integration provides an estimate of the uncertainty in the estimate (by the central

limit theorem). For more details see [70, section 2.7],[108, chapter 2].

Definition 3.38 (Standard Deviation of the Estimate) From the central

limit theorem the standard deviation of the estimate of the integral, ÎH(f,B), as

calculated in 3.37 is:

σ(ÎH(f,B)) = vol(B)

√
⟨12H⟩ − ⟨1H⟩2

N

where ⟨12H⟩ is the average of 12H on the N sample points:

⟨12H⟩ =
∑N

i=1(1H(xi))
2

N

73

Chapter 3. Probabilistic Uncertainty Quantification

The standard deviation provides a statistical estimate of the error on the result given

by Monte Carlo integration. By the central limit theorem, since the error is assumed to

be normally distributed, this means that the probability that the true value is within

one sigma error is about 2/3.

The error estimate is not a strict error bound since random sampling of the region

of interest may not uncover all the important features of the function, resulting in an

underestimate of the error. Furthermore there is no guarantee that the error is normally

distributed, so the error term should be taken only as an indicator.

Property 3.19 (Order of Convergence) The central limit theorem ensures that

Monte Carlo integration converges with order of 1√
N
.

Since the order of convergence of Monte Carlo integration is decelerating much of

the effort in the development of this method has been focused on variance reduction

techniques [22, 108] (e.g. antithetic variables, control variates, importance sampling

and stratified sampling).

Recursive stratified sampling is an adaptive method that estimates, on each step, the

integral and the error using the basic Monte Carlo algorithm. If the error estimate is

larger than a given accuracy the integration region is divided into subregions and the

procedure is recursively applied to them. The estimate and its error are obtained by

adding up the partial results. By choosing the subregion with the highest error estimate

to process next this method concentrates sampling in regions of higher variance making

it more effective. If the subregions and the number of samples in each subregion are

adequately chosen then this method can lead to a significant variance reduction when

compared with the basic Monte Carlo.

Example 3.3. Consider again function f of example 3.2. We use the basic Monte

Carlo integration method to compute an approximate value for the quadrature of this

function in box B = [0, 0.5] × [0, 0.5] together with its standard deviation (in the

example H = B and, as such, the domain of integration is B). Three different values

for N are used: N = 5, N = 25 and N = 125 and the results are shown in table

3.2. The first column presents the number of sample points, the second presents the

74

3.6 Summary

N IMC(B) σ(IMC(B)) [IMC(B)− σ(IMC(B)), IMC(B) + σ(IMC(B))]
5 0.04194 0.00063 [0.04131, 0.04257]
25 0.04256 0.00032 [0.04224, 0.04288]
125 0.04304 0.00016 [0.04288, 0.0432]

Table 3.2: Estimated integral of f in B by Monte Carlo integration and correspondent
error estimate.

approximate value obtained for the quadrature and the last shows the estimate for the

error (standard deviation).

Although the results obtained agree with those obtained with Taylor models (see table

3.1) only when N = 125 does the interval ([0.04288, 0.0432]) enclose the correct value.

It is possible to observe the order of convergence of the method (the estimated error

decreases by half when the number of samples is approximately quadrupled).

3.6 Summary

This chapter introduced relevant concepts of probability theory, presenting uncondi-

tional and conditional probabilities, random variables and random vectors, in a con-

tinuous probability space. In this context, two numerical integration methods were

presented to compute either safe or approximate enclosures for exact integral values:

Taylor Models and Monte Carlo methods, respectively.

The next part of the thesis presents the proposed probabilistic continuous constraint

framework, showing how to combine continuous constraint programming and proba-

bility theory. In particular, the next chapter introduces the concept of probabilistic

continuous constraint space and presents methods to compute safe and approximate

enclosures for unconditional and conditional probabilities of events within such space.

75

Chapter 3. Probabilistic Uncertainty Quantification

76

Part II

Probabilistic Constraints

Chapter 4

Probabilistic Constraint Programming

Although the classical CSP framework is a powerful and expressive paradigm to repre-

sent many kinds of real world problems, the CSP research community early noticed that

it had important limitations to cope with real world situations where the knowledge was

not completely available nor crisp. Such situations had an impact on several aspects of

a CSP, namely on the effective number of constraints to be satisfied, on the existence of

preferences for the possible values of the variables, on the distinction between decision

variables (for which the decision maker can set a value) and uncontrollable variables

(that represent states of nature). All these aspects justified extensions of the CSP

framework, namely for finite domain problems, each addressing one or more of these

issues.

For example [110] formalizes a model that considers some variable values to be pre-

ferred over others, presenting such preferences by a probability distribution over the

variables values. Other proposals aim to represent real world problems where it is

not mandatory to satisfy all the constraints [41] or where a constraint has a certain

probability of being part of the problem [43]. Fuzzy CSP, associates values to each

tuple of constraints, or to each constraint, which indicate the level of preference for

satisfying them. In [19] the authors propose a formalism, based on semirings, to unify

previous approaches that associate preferences either to the values in the domain of a

variable, or to sets of constraints. In [44, 117] the authors extend the CSP framework to

deal with decision problems under uncertainty. A distinction is made between decision

and uncontrollable variables, the latter representing knowledge about the world by a

probability distribution of their values.

79

Chapter 4. Probabilistic Constraint Programming

All the above approaches deal with discrete domains and although the ideas may be,

in some cases, similar to those explored in this thesis, both the techniques and the

modeled problems are necessarily different, since we consider continuous domains.

A combination of probabilistic and interval representations of uncertainty appears in

[76]. This approach is specially suited for data processing problems, where an estimate

for an output quantity is computed by applying a known deterministic algorithm to

the available estimates for other quantities. Hence, intervals are maintained represent-

ing possible values of both variables and parametric descriptors of their distributions

(e.g., expected values). Throughout interval propagation such intervals are maintained

consistent by an evaluation process that extends basic interval arithmetic operations

(see [76] for details). Contrary to constraint approaches, that are based on undirected

relations, this approach is highly dependent on the availability of a directed algorithm

to compute the intended information for the output variable from the input estimates,

making it less general than constraint based paradigms.

Quantified CSPs [13] address the distinction between decision and uncontrollable vari-

ables. Uncontrollable variables are assumed to be universally quantified, and the goal

is to find values for the decision variables that satisfy the problem constraints, for any

possible values of the uncontrollable variables. Nevertheless this approach does not

include probabilistic information.

The main contribution of the present thesis is the proposal of the Probabilistic Contin-

uous Constraint Framework as an extension of the Continuous Constraint Satisfaction

paradigm to complement the interval bounded representation of uncertainty with a

probabilistic characterization of the distribution of values.

The proposed approach provides an extra characterization of uncertainty by considering

a probabilistic space associated with a CCSP. By reasoning over this probabilistic space

and considering adequate events on it, it is possible to compute the relevant probabilistic

features, allowing decisions to be more suitably informed.

In this chapter the framework is defined and formalized and its main properties are

highlighted. In section 4.1 the notion of Probabilistic Continuous Constraint Space is

defined, based on the concepts presented in the previous chapters of this thesis. Section

4.2 presents the specific characteristics of the events handled by the Probabilistic Con-

straint framework and conceptually specifies how to compute the probability of such

80

4.1 Probabilistic Continuous Constraint Space

events. Subsequently, section 4.3 specifies how to compute safe enclosures for the value

of multidimensional integrals over regions defined by the events. Relying on safe inte-

gration methods and on continuous constraint reasoning, sections 4.4 and 4.5 propose

techniques to compute safe enclosures for, respectively, the probability and conditional

probability of events. Section 4.6 proposes algorithms to compute the enclosures dis-

cussed in the two previous sections and section 4.7 focuses on an alternative, if only

approximate, method to compute enclosures for multidimensional integrals over events

and discusses the impact of adopting such method. Finally, section 4.8 applies the

proposed algorithms to a set of benchmarks and discusses the results obtained.

4.1 Probabilistic Continuous Constraint Space

A Probabilistic Continuous Constraint Space (hereafter referred as PC) associates a

probabilistic space to a continuous constraint satisfaction problem. In the following

a PC is defined incrementally, based on the definitions of sections 3.1, 3.5.1 and 2.2.

Firstly, a probability space is associated with a CCSP.

Definition 4.1 (PC Probability Space) Given a CCSP L = ⟨X,D,C⟩, the as-

sociated probability space is ⟨Ω,Bn, P ⟩ where Ω ⊇ D ∈ IRn, Bn is the n-dimensional

Borel σ-algebra on Ω and P is a probability measure.

Secondly, the variables of the PC are mapped onto random variables.

Definition 4.2 (PC Random Vector) Given a PC probability space on

⟨⟨x1, . . . , xn⟩, D,C⟩, an identity random vector X = ⟨X1, . . . , Xn⟩ is considered,

with joint PDF f(·). Each component random variable Xi : Rn → R is defined as:

Xi(Ω) = Πi[Ω]

Thirdly, the probability measure P is defined.

81

Chapter 4. Probabilistic Constraint Programming

Definition 4.3 (PC Probability Measure) Given a probability space ⟨Ω,Bn, P ⟩
and the identity multivariate random variable X with joint PDF f(·), the probability

measure P that assigns a probability to any event H ∈ Bn is defined as:

P (H) =

∫
. . .

∫
H
f(x1, . . . , xn)dxn . . . dx1

Finally, a Probabilistic Continuous Constraint Space may be defined.

Definition 4.4 (Probabilistic Continuous Constraint Space) A Probabilis-

tic Continuous Constraint Space is a pair ⟨⟨X,D,C⟩, f⟩ where ⟨X,D,C⟩ is a CCSP

and f is the joint PDF of the identity multivariate random variable X defined on

the probability space associated with the PC.

A PC defines a probabilistic model that encodes probabilistic information. In this

context, a problem over a PC is defined as follows.

Definition 4.5 (Probabilistic Continuous Constraint Problem) Given a

PC ⟨⟨X,D,C⟩, f⟩, a Probabilistic Continuous Constraint Problem is a query that

requires the computation of probabilistic information over elements of the PC (PC

events1or random variables).

Given a PC, the following problems can be formulated in the PC framework:

• Probability of a PC event;

• Probability that a random vector takes a range of values;

• Expected value of a random vector;

• Covariance matrix of a random vector;

• Probability distribution of a random vector;

• Conditional version of the above problems, given a PC event.

1See definition 4.2 in the next section.

82

4.2 Probabilistic Constraint Events

Next we show an example of a PC.

Example 4.1. Consider PC Example = ⟨⟨X = ⟨x1, x2⟩, D = [0, 1] × [0, 1], C⟩, f⟩,
where f(x1, x2) = 2−2x1 (shown in figure 4.1 (a)), C = {C1 : (x1−0.3)2+(x2−0.4)2 ≤
0.04, C2 : (x1−0.6)2+(x2−0.3)2 ≤ 0.04, C3 : (x1−0.75)2+(x2−0.5)2 ≤ 0.01} (shown
in figure 4.1 (b)), Ω = D and the associated random vector X = ⟨X1, X2⟩.

As expected

∫
Ω
f(x1, x2)dx1dx2 = 1.

Notice that there are no solutions to the underlying CCSP when all constraints are

imposed (as can be seen in figure 4.1 (b)). Nevertheless the formulation of PC problems

is not affected in that constraints are associated to events and the problems of interest

(e.g. querying the probability of events) involve a subset of these constraints.

(a) f(x1, x2)

C3
C1

C2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

(b) C1, C2 and C3

Figure 4.1: (a) Joint PDF of X (b) Constraints.

4.2 Probabilistic Constraint Events

Given a PC ⟨⟨X,D,C⟩, f⟩), we are interested in calculating the probability of events.

In this context an event can be a box B ⊆ D, a constraint (s, ρ) ∈ C or a conjunction

of such events.

83

Chapter 4. Probabilistic Constraint Programming

Definition 4.6 (Probabilistic Constraint Event) Given a PC P =

⟨⟨X,D,C⟩, f⟩, H is a probabilistic constraint event wrt P iff it is the feasible space

of a CCSP ⟨X,DH, CH⟩, where DH ⊆ D and CH ⊆ C, i.e., H = F(⟨X,DH, CH⟩).

We will often consider two special cases of PC events: box events and constraint events.

A box event is the feasible space of a CCSP with no constraints, i.e., F(⟨X,DH,∅⟩) =
DH. A constraint event is the feasible space of a CCSP with a single constraint, i.e.,

F(⟨X,DH, CH⟩) where DH = D and CH = {(s, ρ)}.

When there is no ambiguity wrt the CCSP to which a PC event is related, this will be

denoted by H (similarly to the F used to denote the feasible space of a CCSP).

In this thesis we only consider inequality constraints defined by closed-form expressions

(as in definition 2.13) and we assume that the corresponding PC events are in the Borel

σ-algebra of Ω.

Example 4.2. Consider PC Example (see example 4.1) and figure 4.2, that shows

its three constraints (C1, C2 and C3) and five boxes (Bi ⊆ D, with 1 ≤ i ≤ 5).

The figure highlights four PC events obtained by conjunction of box and constraint

events, namely:

H1 = F(⟨X,B1,∅⟩) ∩ F(⟨X,B2,∅⟩) = F(⟨X,B1 ∩B2,∅⟩) = B1 ∩B2

H2 = F(⟨X,D, {C2}⟩) ∩ F(⟨X,D, {C3}⟩) = F(⟨X,D, {C2, C3}⟩)

H3 = F(⟨X,B3,∅⟩) ∩ F(⟨X,D, {C2}⟩) = F(⟨X,B3, {C2}⟩)

H4 = F(⟨X,B4,∅⟩) ∩ F(⟨X,B5,∅⟩) ∩ F(⟨X,D, {C1}⟩) ∩ F(⟨X,D, {C2}⟩)

= F(⟨X,B4 ∩B5, {C1, C2}⟩).

The probability of a PC event H, given a PDF f(·), is computed from the multidimen-

sional integral of f(·) on the region defined by the event.

Definition 4.7 (Probability of a PC Event) Given a PC ⟨⟨X,D,C⟩, f⟩ and a

PC event H, the probability of H is defined as:

P (H) =

∫
H

f(x)dx

84

4.2 Probabilistic Constraint Events

Figure 4.2: Some possible events of a probability space defined by a PC.

Example 4.3. Figure 4.3 (a) shows boxes Bi (1 ≤ i ≤ 4) and constraint C1,

informally defined as x2 ≤ x1. Consider PC Triangle = ⟨⟨X,D, {C1}⟩, f⟩ (with X, D

and f defined as in the PC Example) and the following events:

H1 = B1 = F(⟨X, [0, 0.5]× [0.5, 1],∅⟩) H2 = B2 = F(⟨X, [0.5, 1]× [0.5, 1],∅⟩)

H3 = B3 = F(⟨X, [0, 0.5]× [0, 0.5],∅⟩) H4 = B4 = F(⟨X, [0.5, 1]× [0, 0.5],∅⟩)

H5 = F(⟨X,D, {C1}⟩) H6 = D = F(⟨X,D,∅⟩)

From definition 4.7, the probability of a box event H = [a, b]× [c, d] is:

P (H) =

∫ b

a

∫ d

c
f(x1, x2) dx2dx1 = (2b− b2 − 2a+ a2)(d− c) (4.1)

So, P (H1) =
3
8 , P (H2) =

1
8 , P (H3) =

3
8 , P (H4) =

1
8 , and, as expected, P (H6) = 1 .

The probability of the constraint event H5 can be obtained analytically:

P (H5) =

∫ 1

0

∫ x1

0
f(x1, x2) dx2dx1 =

1

3

85

Chapter 4. Probabilistic Constraint Programming

B1 B2

B4

C1 :

B3

x2 = x1

x2 b x1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

(a)

B1

B11 B9

B12

B8

B10

B4

B5

B6

B7

C1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

(b)

Figure 4.3: Boxes and constraint

In the following we will use concepts from §2.3.31.

Since a PC event is the feasible space of a CCSP, an outer box cover of a PC event (see

definition 2.27) can be used to define its probability.

Property 4.1 (Probability of a PC Event through an Outer Box Cover)

Given a PC event H and an outer box cover H� = {B1, . . . , Bn} of H, the probability

of H is given by:

P (H) =
∑

B∈H�

P (B ∩H)

In the following PH(B) will denote P (B ∩H), where B ∈ H�.

Proof. Since H� is an almost disjoint set of boxes then SH = {Bi ∩H : 1 ≤ i ≤ n}
is an almost disjoint set of events. Given that H =

∪
SH, by property 3.3, P (H) =

P (
∪

SH) =
∑

Hi∈SH
P (Hi). �

1Given an event H and a joint box cover H� = ⟨H� ,H�⟩ of H, then H� is an outer box cover
of H and H+ =

∪
H� is an outer approximation of H; H� ⊆ H� is an inner box cover of H and

H− =
∪

H� is an inner approximation of H; and ∆H =
∪

(H� \H�) is a boundary approximation
of H. H� and H� are, by definition, mutually almost disjoint sets of boxes.

86

4.2 Probabilistic Constraint Events

This property is illustrated in our working example.

Example 4.4. Consider the PC Triangle (example 4.3) and the boxes shown in

figure 4.3 (b).

B1 = [0, 0.5]× [0.5, 1] B4 = [0.5, 1]× [0, 0.5]

B5 = [0.25, 0.5]× [0, 0.25] B6 = [0.75, 1]× [0.5, 0.75]

B7 = [0.75, 1]× [0.75, 1] B8 = [0.5, 0.75]× [0.5, 0.75]

B9 = [0.25, 0.5]× [0.25, 0.5] B10 = [0, 0.25]× [0, 0.25]

B11 = [0, 0.25]× [0.25, 0.5] B12 = [0.5, 0.75]× [0.75, 1]

The probability of the conjunction of a box event B = [a, b]× [a, b] (diagonal box) with

the constraint event H5 is given by:

P (B ∩H5) =

∫ b

a

∫ x1

a
(2− 2x1) dx2dx1 = −2ab+ b2 + ab2 − 2

3
b3 + a2 − 1

3
a3 (4.2)

Table 4.1 shows the probabilities of each Bi (4 ≤ i ≤ 10) using formula (4.1) and of

the conjunction of Bi with H5, using formulas (4.1) and (4.2) as adequate.

B P (B) PH5(B)
B1 = H1 3/8 0
B2 = H2 1/8 1/24
B3 = H3 3/8 1/6
B4 = H4 1/8 1/8

B5 5/64 15/192
B6 1/64 3/192
B7 1/64 1/192
B8 3/64 4/192
B9 5/64 7/192
B10 7/64 10/192

Table 4.1: Probabilities of Bi and Bi ∩H5 using formulas (4.1) and (4.2).

Let H� = {Bi : 4 ≤ i ≤ 10} be an outer box cover of event H5. By definition 4.1,

the probability of H5 is given by
10∑
i=4

PH5(Bi). Using the values of table 4.1 we obtain

P (H5) =
64
192 = 1

3 . As expected, this result is exactly the same as that obtained when

the box cover was not used (in example 4.3).

87

Chapter 4. Probabilistic Constraint Programming

4.3 Safe Integral Enclosure

Definition 4.7 and property 4.1 can rarely be applied to arbitrary PC events. Unlike

the examples presented in the previous section, the multidimensional integral cannot

be easily computed, in general, since (1) the definite integral of f may have no closed-

form solution and/or (2) the event H may establish a complex nonlinear integration

boundary.

To cope with (1) two approaches can be adopted: (a) compute a safe enclosure [IH](f,B)

for the integral of f over an event H within an adequate box B, i.e.,
∫
B∩H f(x)dx ∈

[IH](f,B); or (b) compute an approximate enclosure [̂IH](f,B), i.e.,
∫
B∩H f(x)dx ≃

[̂IH](f,B). All definitions and properties presented in this chapter assume safe enclo-

sures, except in section 4.7 that proposes a method to compute approximate enclosures

and discusses the impact of adopting such approximate enclosures.

Section 3.5.2 presented a method based on Taylor models that can be used to compute

safe enclosures for the integral of a function over a box. To compute an integral of a

function over some region defined as a box, definition 3.36 can be applied to obtain

a sharp enclosure. However, when the region is some unknown subset of the box

(eventually empty) a cruder enclosure can be used, ranging from zero to the integral of

the function maximum (minimum) over the entire box.

Property 4.2 (Safe Enclosure for the Integral of h over (Box ∩ PC Event))

Given a joint box cover H� = ⟨H� ,H�⟩ of a PC event H and a Taylor model

⟨p,R⟩ of a function h : Rn → R inside an n-dimensional box B ∈ H�:∫
B∩H

h(x)dx ∈ [IH](h,B) =

{
[I](h,B) if B ∈ H�

[0] ⊎ [h](B) vol(B) otherwise

where [I] is computed as in 3.36 and [h] is a convergent inclusion function of h.

Proof. If B ∈ H� then (B ∩H) = B and
∫
(B∩H) h(x)dx =

∫
B h(x)dx ∈ [I](h,B).

88

4.3 Safe Integral Enclosure

If B ̸∈ H� , let I = [h](B) and, consequently, ∀x∈B I ≤ h(x) ≤ I then

Ivol(B ∩H) ≤
∫
(B∩H)

h(x)dx ≤ Ivol(B ∩H)⇔ (4.3)

min(0, I)vol(B) ≤
∫
(B∩H)

h(x)dx ≤ max(0, I)vol(B)⇔ (4.4)∫
(B∩H)

h(x)dx ∈ [0] ⊎ vol(B)[h](B) (4.5)

Transition from (4.3) to (4.4) is based on the fact that vol(B ∩H) ≤ vol(B) and so

min(0, I)vol(B) ≤ Ivol(B ∩H) and Ivol(B ∩H) ≤ max(0, I)vol(B)). Transition from

(4.4) to (4.5) comes from equality
[
min(0, I),max(0, I)

]
= [0] ⊎ I = [0] ⊎ [h](B). �

To deal with the complex nonlinear integration boundary of a PC event H and obtain

guaranteed enclosures for the exact integral of H, we can use property 4.2, as follows.

Property 4.3 (Enclosure for the Integral of h over a PC Event) Given a

joint box cover H� = ⟨H� ,H�⟩ of a PC event H, an enclosure for the integral

of a function h : Rn → R in H is given by:∫
H

h(x)dx ∈ [I](H� , h) =
∑

B∈H�

[IH](h,B)

Proof. Given the almost disjoint set of boxes H� then {B ∩ H : B ∈ H�} is a

partition1of H. Since integrals are additive with respect to the partitioning of the

integration region into pairwise disjoint regions then∫
H

h(x)dx =
∑

B∈H�

∫
B∩H

h(x)dx

Given an enclosure for
∫
B∩H h(x)dx, as computed in property 4.2, by the properties of

interval arithmetic : ∫
H

h(x)dx ∈
∑

B∈H�

[IH](h,B) = [I](H� , h)

�
1By definition, the sets of a partition P are pairwise disjoint. However, in this case, they are

89

Chapter 4. Probabilistic Constraint Programming

4.4 Probability Enclosure

All the definitions and properties that follow consider, implicitly, an underlying PC

⟨⟨X,D,C⟩, f⟩.

When computing the probability of an event, the integrand function, h = f , is positive

and property 4.2 can be presented in a simplified way.

Property 4.4 (Enclosure for the Probability of (Box ∩ PC Event))

Consider a PC event H and a joint box cover ⟨H� ,H�⟩ of H. An enclosure for

the probability of H ∩B, for any box B ∈ H� is given by:

∀B∈H� PH(B) ∈ [PH](f,B) =

{
[I](f,B) if B ∈ H�

[0, sup([f](B)) vol(B)] otherwise

To obtain guaranteed enclosures for the exact probability of a PC event H, we adapt

property 4.3 to the probability enclosure of H within a box B, as follows.

Property 4.5 (Enclosure for the Probability of a PC Event) Consider a

PC event H and a joint box cover H� = ⟨H� ,H�⟩ of H. An enclosure for the

probability of H is given by:

P (H) ∈ [P](H� , f) =
∑

B∈H�

[PH](f,B)

Proof. Similar to the proof of property 4.3. �

These property is illustrated in our working example.

Example 4.5. Consider PC Triangle data (from example 4.3), the constraint event

H5 (with P (H5) =
1
3) and its joint box cover H�1 = ⟨{B2, B3, B4}, {B4}⟩. Table 4.2

shows enclosures for the probabilities of the conjunction of each Bi withH5 (2 ≤ i ≤ 10)

using property 4.41.

pairwise almost disjoint, i.e., ∀A,B∈P A ̸= B ⇒ vol(A ∩ B) = 0. For the purpose of this proof this is
enough, since the integration in sets of measure zero is zero.

1We chose to simplify the very sharp enclosures obtained for the rational numbers (with 16 digits
precision) with a high order Taylor model, by showing the corresponding fraction.

90

4.4 Probability Enclosure

(a)

B [PH5](f,B)
B2 [0, 1/4]
B3 [0, 1/2]
B4 [1/8]

(b)

B [PH5](f,B)
B5 [5/64]
B6 [1/64]
B7 [0, 1/32]
B8 [0, 1/16]
B9 [0, 3/32]
B10 [0, 1/8]

Table 4.2: Enclosures for the probability of Bi ∩H5.

Using the values of table 4.2 (a) and property 4.5 we obtain P (H5) ∈ [P](H�1 , f) =[
1
8 ,

7
8

]
which, as expected, encloses the correct value

(
1
3

)
obtained analytically.

The previous example shows that a specific joint box cover may not provide a tight

enclosure for the probability of an event. To get better bounds for the exact prob-

ability it is necessary to consider larger inner approximations and/or smaller outer

approximations.

Property 4.6 (Tighter Probability Enclosure) Given a PC event H and two

joint box covers of H, H�1 and H�2, such that H�2 ≼ H�1 then:

wid([P](H�2 , f)) ≤ wid([P](H�1 , f))

Proof. In the following consider [T0](f,B) = [0, sup([f](B))vol(B)] for a box B

and H� = H� \ H� . For a box B1 ∈ H�1 let S�B1
= {B2 ∈ H�2 : B2 ⊆ B1},

S�B1
= {B2 ∈ H�2 : B2 ⊆ B1} and S�B1

= {B2 ∈ H�2 : B2 ⊆ B1}.

By property 4.4,

wid([P](H�1 , f)) =wid

 ∑
B1∈H�1

[I](f,B1)

+ wid

 ∑
B1∈H�1

[T0](f,B1)

91

Chapter 4. Probabilistic Constraint Programming

and by property 2.33,

wid([P](H�2 , f)) = wid

 ∑
B1∈H�1

∑
B2∈S�B1

[I](f,B2)

+

wid

 ∑
B1∈H�1

 ∑
B2∈S�B1

[I](f,B2) +
∑

B2∈S�B1

[T0](f,B2)

 (4.6)

For the first term of the previous sum we have:

wid

 ∑
B1∈H�1

∑
B2∈S�B1

[I](f,B2)

 =
∑

B1∈H�1

wid

 ∑
B2∈S�B1

[I](f,B2)

≤

∑
B1∈H�1

wid ([I](f,B1)) property 3.17

= wid

 ∑
B1∈H�1

[I](f,B1)

For the second term, (4.6), of the previous sum we have:

(4.6) =
∑

B1∈H�1

 ∑
B2∈S�B1

wid ([I](f,B2)) +
∑

B2∈S�B1

wid ([T0](f,B2))

≤

∑
B1∈H�1

 ∑
B2∈S�B1

wid ([T0](f,B2)) +
∑

B2∈S�B1

wid ([T0](f,B2))

=

∑
B1∈H�1

∑
B2∈S�B1

wid ([T0](f,B2))

=
∑

B1∈H�1

∑
B2∈S�B1

sup([f](B2))vol(B2)

≤
∑

B1∈H�1

∑
B2∈S�B1

sup([f](B1))vol(B2) monotonicity of [f]

=
∑

B1∈H�1

sup([f](B1))
∑

B2∈S�B1

vol(B2)

92

4.5 Conditional Probability Enclosure

≤
∑

B1∈H�1

sup([f](B1))vol(B1) = wid

 ∑
B1∈H�1

[T0](f,B1)

So,

wid([P](H�2 , f)) ≤ wid

 ∑
B1∈H�1

[I](f,B1)

+ wid

 ∑
B1∈H�1

[T0](f,B1)

= wid([P](H�1 , f))

�

The illustration of these concepts in our working example follows.

Example 4.6. Consider PC Triangle data (from example 4.3), the constraint event

H5 and its joint box cover H�2 = ⟨{Bi : i ∈ {4, . . . , 10}}, {B4, B5, B6}⟩. Using the

values of table 4.2 and property 4.5 we obtain P (H5) ∈ [P](H�2 , f) =
[
7
32 ,

17
32

]
.

Property 4.6 holds for the joint box covers H�1 (example 4.5) and H�2 of H5, where

H�2 ≼ H�1 , i.e., wid
([

7
32 ,

17
32

])
= 5

16 ≤
12
16 = wid

([
1
8 ,

7
8

])
.

4.5 Conditional Probability Enclosure

Probabilistic reasoning by conditioning is an important aspect of probability theory as

presented in §3.2. This section shows how the proposed PC framework can incorporate

this kind of reasoning.

As defined in 3.9, the conditional probability of a PC event H1 given another PC event

H2 is formalized as follows.

Definition 4.8 (Conditional Probability of a PC Event) Given two PC

events H1,H2 where P (H2) > 0, the probability of H1 given H2 is defined as:

P (H1|H2) =
P (H1 ∩H2)

P (H2)
=

∫
H1∩H2

f(x)dx∫
H2

f(x)dx

93

Chapter 4. Probabilistic Constraint Programming

This definition is illustrated in the following example.

Example 4.7. Consider the PC and events of example 4.3. The probability of each

box event conditioned by the constraint event, i.e., P (Hi|H5), with 1 ≤ i ≤ 4 is given

by P (Hi|H5) =
P (Hi ∩H5)

P (H5)
. So, using the values of table 4.1, we obtain

P (H1|H5) =
P (H1 ∩H5)

P (H5)
=

0

1/3
= 0 P (H2|H5) =

P (H2 ∩H5)

P (H5)
=

1/24

1/3
=

1

8

P (H3|H5) =
P (H3 ∩H5)

P (H5)
=

1/6

1/3
=

1

2
P (H4|H5) =

P (H4 ∩H5)

P (H5)
=

1/8

1/3
=

3

8

Since the conjunction of events is also an event, and taking into account previous

results, the computation of the conditional probability of an event H1 given another

event H2 can be based on an outer box cover of the conditioning event H2 (which is

also an outer box cover of the event H1 ∩H2).

Property 4.7 (Conditional Probability through an Outer Box Cover)

Consider two PC events H1,H2 where P (H2) > 0 and an outer box cover H�2 of

H2 (and of H∩ = H1 ∩H2). The conditional probability of H1 given H2 is:

P (H1|H2) =

∑
B∈H�2

PH∩(B)

∑
B∈H�2

PH2(B)

Proof. Since H�2 is an outer box cover of H2 and of H∩, from property 4.1 we have:

P (H∩) =
∑

B∈H�2

PH∩(B) and P (H2) =
∑

B∈H�2

PH2(B)

So, from definition 4.8, property 4.7 holds. �

Example 4.8. Consider the PC and events of example 4.3 and the boxes of example

4.4, where H�5 = {Bj : 4 ≤ j ≤ 10} is an outer box cover of H5. By property 4.7

and using the values of table 4.1:

94

4.5 Conditional Probability Enclosure

P (H1 ∩H5) =

10∑
j=4

P (Bj ∩H1 ∩H5) =

10∑
j=4

P (∅) = 0

P (H2 ∩H5) =

10∑
j=4

P (Bj ∩H2 ∩H5) = P (B6) + P (B7 ∩H5) + P (B8 ∩H5) =
1

24

P (H3 ∩H5) =
10∑
j=4

P (Bj ∩H3 ∩H5) = P (B5) + P (B9 ∩H5) + P (B10 ∩H5) =
1

6

P (H4 ∩H5) =

10∑
j=4

P (Bj ∩H4 ∩H5) = P (H4) =
1

8

Consequently,

P (H1|H5) =
0

1/3
= 0 P (H2|H5) =

1/24

1/3
=

1

8

P (H3|H5) =
1/8

1/3
=

1

2
P (H4|H5) =

1/6

1/3
=

3

8

As expected, the results obtained using the outer box cover are exactly the same as in

the previous example.

In property 4.7 the same outer box cover is used for both H2 and H∩. However, since

H∩ ⊆ H2, there might be tighter outer box covers for it which allow the computation

of narrower enclosures for conditional probabilities.

Property 4.8 (Enclosure for the Conditional Probability) Consider two

events H1 and H2, where P (H2) > 0, a joint box cover H�2 of H2 and a joint box

cover H�∩ of H∩ = H1 ∩ H2. An enclosure for the conditional probability of H1

given H2 is given by:

P (H1|H2) ∈ [P](H�∩ ,H�2 , f) =

∑
B∈H�∩

[PH∩](f,B)

∑
B∈H�2

[PH2](f,B)

95

Chapter 4. Probabilistic Constraint Programming

Proof. Since P (H1|H2) =
P (H1∩H2)

P (H2)
(see definition 4.8) and, from property 4.5

P (H1 ∩H2) ∈ [P](H�∩ , f) =
∑

B∈H�∩

[PH∩](f,B)

P (H2) ∈ [P](H�2 , f) =
∑

B∈H�2

[PH2](f,B)

then, by the properties of interval arithmetic,

P (H1|H2) ∈ [P](H�∩ ,H�2 , f) =
[P](H�∩ , f)

[P](H�2 , f)

�

Example 4.9. Consider the PC Triangle (see example 4.3), the event H5 with

[P](H�2 , f) =
[
7
32 ,

17
32

]
(H�2 is a joint box cover of H5, see example 4.6), the event

H∩ = H2 ∩H5 (with P (H2 ∩H5) =
1
24 , see table 4.1) and its joint box cover H�∩ =

⟨{B6, B7, B8}, {B6}⟩ (see figure 4.3(a)). Using the values of table 4.2 and property 4.5

we obtain:

P (H2 ∩H5) ∈
8∑

i=6

[PH∩](f,Bi) =

[
1

64
,
7

64

]

Then, by property 4.8 we obtain:

P (H2|H5) =
1

8
∈ [P](H�∩ , f)

[P](H�2 , f)
=

[
1
64 ,

7
64

][
7
32 ,

17
32

] = [1

34
,
1

2

]

4.6 Algorithms

This section presents algorithms to compute probability and conditional probability

enclosures of PC events as presented in the previous sections.

The generic function cReasoning (algorithm 3, page 40), which computes joint box

covers for the feasible space of a CCSP, is the core of several algorithms proposed in

96

4.6 Algorithms

this and the next chapter. It is parameterizable by using distinct inner, eligible and

stop predicates, split functions and order criteria (see section A.1 in appendix A). The

default parametrization is presented and, for simplicity, the corresponding algorithm is

denoted as cReasoningprob with the default parameters omitted.

Property 4.9 (Default parametrization for cReasoning) The default

parametrization for function cReasoning(F� , C, inner, split, eligible, order, stop)

(algorithm 3) considers defaults of section A.1 (appendix A) and parameter-

izes:

• the stop predicate as stopδ(H�) ≡ wid([P](H)) ≤ δ, imposing a specified accu-

racy δ to the probability enclosure computed over its joint box cover argument

(as presented in property 4.5).

• the order criteria as orderP , imposing a choice of boxes by decreasing order of

uncertainty in their probability, i.e. in decreasing order of wid([P](B)). So,

boxes with largest uncertainty in their probability are chosen for processing,

contributing to larger decreases of the uncertainty of the total probability.

4.6.1 Probability Enclosure

Algorithm 6 computes an enclosure for the probability of a PC event P (H) according

to property 4.5.

Algorithm 6: probabilityEnclosure(⟨⟨X,D,CH⟩, f⟩, ε, δ)
Input: ⟨⟨X,D,CH⟩, f⟩: PC; ε, δ: double
Output: [P](H): interval;

1 ⟨H� ,H�⟩ ← cReasoningprob(⟨{D},∅⟩, CH);
2 return [P](⟨H� ,H�⟩, f);

Considering a PC where its set of constraints, CH, is associated with the PC event

H, algorithm 6 yields increasingly tighter covers by successive applications of crStep

(algorithm 2, page 39), within cReasoningprob, until the intended precision δ for the

probability is reached (line 1). The final outer box cover for H is used to return the

interval that encloses the exact probability of H (line 2). The parametrization of the

cReasoningprob algorithm (see property 4.9) directs it to reduce the uncertainty on the

97

Chapter 4. Probabilistic Constraint Programming

C1 x2y + y2x ≤ 0.5 CH1 = {C1}
C2 cos(3x) + cos(3y) ≤ 0.5 CH2 = {C2}

Table 4.3: Definition of constraints and events.

total probability, by choosing the boxes with higher uncertainty in their probability

and thus successively approaching the stopping condition.

Algorithm 6 is correct and converges to the exact probability value (see property 4.10).

Its correctness is guaranteed because the initial pair ⟨{D},∅⟩ is a joint box cover of

H = F(⟨X,D,CH⟩) and, inside cReasoningprob, every iteration of crStep produces a

tighter joint box cover of H. So, when cReasoningprob stops ⟨H� ,H�⟩ is a joint box

cover of H and, by property 4.5, P (H) ∈ [P](⟨H� ,H�⟩, f).

The algorithm is an abstraction of the real procedure that is implemented. In practice

the algorithms that rely on the probability enclosure as a stopping condition maintain

it during the algorithm and update such enclosure as the joint box cover is updated.

In this particular case, that enclosure is the return value and is not recomputed in the

end.

Example 4.10. Consider PC ⟨⟨X,D,C⟩, f⟩ where X = ⟨x, y⟩, D = [−π, π]× [−π, π],
C = {C1, C2} (defined in Table 4.3) and f = e−

1
2 (x2+y2)

2π is the bi-normal distribution

(figure 4.4 (a)) defined over Ω = R2. H1 and H2 are PC events (shown in figure 4.4).

(a) f = e
− 1

2
(x2+y2)

2π

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b) H1

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(c) H2

Figure 4.4: Events and PDF used in examples.

Figure 4.5 presents the covers resulting from applying algorithm 6 to compute enclosures

for the probability of the PC event H1 with δ = 0.5 and δ = 0.1. Notice that the innerd

98

4.6 Algorithms

predicate was not able to identify, as inner boxes, some boxes completely included in

the feasible space.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(a) Probability with δ = 0.5

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b) Probability with δ = 0.1

Figure 4.5: Joint box covers of the PC event H1 computed when using algorithm 6 with
a safe integration method. The boundary boxes are light gray and the inner boxes are gray.

To study the convergence of algorithm 6 we assume that the algorithm is implemented

with an infinite precision interval arithmetic.

Property 4.10 (Algorithm Convergence) Let ⟨⟨X,D,C⟩, f⟩ be a PC and H =

F(⟨X,DH, CH⟩) a PC event, with DH ⊆ D and CH ⊆ C.

Consider a sequence (H�k
)k∈N computed by probabilityEnclosure(⟨X,DH, CH⟩, 0, 0)

such that H�k
= crStep(H�k−1

, CH, split2, innerd, eligibleε, orderP). Then

lim
k→∞

wid([P](H�k
, f)) = 0.

Proof. This proof is based on a similar one given in [48].

In the following consider H′
� = {B ∈ H� : wid([PH](f,B)) > 0}, sets of boundary

boxes H� \H� are represented by H� and

εk = max
B∈H′

�k

wid(B). (4.7)

99

Chapter 4. Probabilistic Constraint Programming

Since the conjunction of the orderP criterion and eligible0 predicate defines a fair

selection strategy wrt boxes in H′
�k

and split2 is fair, then when k approaches infinity

the width of all boxes in H′
�k

approaches zero and so does εk.

For ϵ > 0, f̄ϵ is the ϵ-maximum width of the interval resulting from evaluating [f] over

every box smaller than ϵ:

f̄ϵ = max{wid([f](B)) : B ⊆ D ∧ wid(B) ≤ ϵ}. (4.8)

Since [f] is a convergent inclusion function, lim
ϵ→0

f̄ϵ = 0.

Algorithm cReasoningprob with δ = 0 and ε = 0 belongs to the cReasoning∞ family of

algorithms since split2 is fair and the conjunction of the orderP criterion and eligible0

predicate define a fair selection strategy wrt boundary boxes1 (see property 2.5).

We have

[P](H�k
, f) =

∑
B∈H�k

[PH](f,B)

=
∑

B∈H�k

[I](f,B) +
∑

B∈H�k

[0, sup([f](B))vol(B)]

and so

wid ([P](H�k
, f)) =

∑
B∈H�k

wid ([I](f,B)) +
∑

B∈H�k

wid ([0, sup([f](B))vol(B)])

We now prove that both terms of the above sum converge to zero as k approaches

infinity.

For the first term we have:

∑
B∈H�k

wid ([I](f,B)) =
∑

B∈H′
�k

wid ([I](f,B))

=
∑

B∈H′
�k

wid ([I]∗(f,B) ∩ [f](B)vol(B)) definition 3.36

1Notice that orderP will not choose boxes with wid([PH](f,B)) = 0, but there are no boundary
boxes on such situation.

100

4.6 Algorithms

≤
∑

B∈H′
�k

wid ([f](B)) vol(B)

≤
∑

B∈H′
�k

f̄εkvol(B) formulas (4.7) and (4.8)

= f̄εk
∑

B∈H′
�k

vol(B)

≤ f̄εkvol(D)
∪

H′
�k
⊆ D

Since f̄εk converges to zero as k approaches infinity and given that vol(D) is a constant,

the whole term converges to zero as k approaches infinity.

For the second term we have:

∑
B∈H�k

wid ([0, sup([f](B))vol(B)]) =
∑

B∈H�k

sup([f](B))vol(B)

≤
∑

B∈H�k

sup([f](D))vol(B) monotonicity of [f]

= sup([f](D))
∑

B∈H�k

vol(B)

Since
∑

B∈H�k
vol(B) = vol(∆kH), by property 2.5, it converges to zero as k ap-

proaches infinity. Given that sup([f](D)) is a constant, the whole term converges to

zero as k approaches infinity. �

In practice, computational limitations imposed by the floating-point system and interval

arithmetic, make it impossible for algorithm 6 to tighten the probability bounds beyond

a certain threshold. In fact, the algorithm may stop before reaching the desired precision

if ε forces cReasoningprob algorithm to end before the uncertainty on the probability

enclosure is less than δ.

4.6.2 Conditional Probability Enclosure

Property 4.8 uses two distinct joint box covers: one for the conditioning event H2

(the feasible space of ⟨X,D,CH2⟩) and another for the conjunction of events H1 ∩H2

(the feasible space of ⟨X,D,CH1 ∪ CH2⟩). So, we can use algorithm 6 to compute,

independently, the probabilities of both the conditioning event and the conjunction of

101

Chapter 4. Probabilistic Constraint Programming

events, maintaining two distinct joint box covers. Nevertheless these two covers have

common boxes and a more efficient algorithm, that avoids duplicate box processing,

can be exploited.

This algorithm (algorithm 7) relies on a dedicated constraint reasoning algorithm (al-

gorithm 8) that computes simultaneously the two joint box covers. Considering a PC,

two sets of constraints, CH1 and CH2 , associated with, respectively, the conditioned

event and the conditioning event, cReasConj yields increasingly tighter joint box cov-

ers of both H∩ and H2, until the required accuracy δ for the conditional probability

is reached (line 2). The final joint box covers are used to compute an enclosure for

the exact conditional probability of H1 given H2 (line 3). The function parameters for

cReasConj are similar to those of algorithm 6.

Algorithm 7: conditionalProbabilityEnclosure(⟨⟨X,D,C⟩, f⟩, CH1 , CH2 , ε, δ)

Input: ⟨⟨X,D,C⟩, f⟩: PC; CH1 , CH2 : set of constraints; ε, δ: double
Output: I: interval;

1 stopδ(H�∩ ,H�2) ≡ wid([P](H�∩ ,H�2 , f)) ≤ δ;
2 H� ← ⟨{D},∅⟩;
3 ⟨H�∩ ,H�2⟩ ←
cReasConj(H� ,H� , CH1 , CH2 , split2, innerd, eligibleε, orderP , stopδ);

4 return [P](H�∩ ,H�2 , f);

The correctness of algorithm 7 is guaranteed because the initial pair ⟨{D},∅⟩ is a joint

box cover of both H2 = F(⟨X,D,CH2⟩) and H∩ = F(⟨X,D,CH1 ∪ CH2⟩) and, inside

cReasConj, every iteration of crStep produces tighter joint box covers of H2 and H∩.

So, when cReasConj stops H�2 and H�∩ , are a joint box cover of, respectively, H2

and H∩. Then, by property 4.8, P (H1|H2) ∈ [P](H�∩ ,H�2 , f).

Algorithm 8 is an adaptation of algorithm 3, but receives an additional set of constraints

CH2 and maintains two joint box covers. It successively updates its joint box covers

(lines 1− 16) until the stopping criterion is reached (line 1), returning them in the end

(line 17).

The boxes to process are chosen among the boxes of the two covers (line 2). Unless

the chosen box B is a common boundary box, the joint box covers are updated as in

algorithm 3, with the boxes resulting from the split. When it is a common boundary box

102

4.6 Algorithms

Algorithm 8: cReasConj(H�∩ ,H�2 , CH1 , CH2 , split, inner, eligible, order, stop)

Input: H�∩ , H�2 : joint box covers; CH1 , CH2 : set of constraints; split, order:
function; inner, eligible, stop: predicate;

Output: ⟨H�∩ ,H�2⟩: pair of joint box covers
1 while (¬stop(H�∩ ,H�2)) do
2 if (B ← choose(H�2 ∪H�∩ , eligible, order)) = ∅ then break;
3 S ← split(B);
4 if B ∈ H�2 ∨B ∈ H�∩ then
5 if B ∈ H�2 then ⟨H�2 ,H�2⟩ ← ⟨(H�2 \ {B}) ∪ S, (H�2 \ {B}) ∪ S⟩;
6 if B ∈ H�∩ then ⟨H�∩ ,H�∩⟩ ← ⟨(H�∩ \ {B}) ∪ S, (H�∩ \ {B}) ∪ S⟩;
7 else if B ∈ H�2 ∧B ∈ H�∩ then
8 ⟨H�∩ ,H�2⟩ ← commonBoundaryBoxes(H�∩ ,H�2 , CH1 , CH2 , B, S);
9 else

10 if B ∈ H�2 then C ← CH2 ; H� ← H�2 ; H� ← H�2 ;
11 else C ← CH1 ; H� ← H�∩ ; H� ← H�∩ ;
12 L� ← {CPA(Bi, C) : Bi ∈ S};
13 H� ← H� ∪ {Bi ∈ L� : inner(Bi, C)};
14 H� ← (H� \ {B}) ∪ L� ;
15 end

16 end
17 return ⟨H�∩ ,H�2⟩;

103

Chapter 4. Probabilistic Constraint Programming

(line 7), the boxes in S are processed by function commonBoundaryBoxes (algorithm

9), which adequately updates both joint box covers.

Algorithm 9: commonBoundaryBoxes(H�∩ ,H�2 , CH1 , CH2 , B, S)

Input: H�∩ ,H�2 : joint box covers; CH1 , CH2 : set of constraints; B: box; S:
set of boxes

Output: ⟨H�∩ ,H�2⟩out: pair of joint box covers;
1 foreach Bi ∈ S do
2 if (N2 ← CPA(Bi, CH2)) ̸= ∅ then
3 H�2 ← H�2 ∪ {N2}; if inner(N2, CH2) then H�2 ← H�2 ∪ {N2};
4 if (N∩ ← CPA(N2, CH1)) ̸= ∅ then
5 if inner(N2, CH1) then
6 H�∩ ← H�∩ ∪ {N2};
7 H�∩ ← H�∩ ∪ {N2};
8 end
9 else if inner(N2, CH2) then H�∩ ← H�∩ ∪ {N∩};

10 else H�∩ ← H�∩ ∪ {N2};
11 end

12 end

13 end
14 return ⟨⟨H�∩ \ {B},H�∩⟩, ⟨H�2 \ {B},H�2⟩⟩;

Algorithm 9 processes a set of boxes S, resulting from the split of a common boundary

box B. Whenever a box Bi from S results in an inner box of H2 (when narrowed wrt

CH2 - N2) but in a boundary box of H∩ (when N2 is narrowed wrt CH1 - N∩) then

N2 is added to the inner and outer box covers of H2 and N∩ is added to the outer

box cover of H∩. From now on each box, N2 and N∩, is processed independently in

its corresponding cover. In every other case the processing of each box Bi from S is

similar to that of algorithm 3, but two covers must be updated.

This procedure avoids duplicated processing of boxes, keeping the same box in both

covers whenever it is a common inner or boundary box. Only when a common box has

different roles in each joint box cover (inner box for H2 and boundary box for H∩) it

is duplicated and the boxes are processed independently thereafter.

Example 4.11. Consider the PC and events of example 4.10. Figure 4.6 presents the

covers resulting from applying algorithm 7 to compute an enclosure for the conditional

probability of H1 given H2, with δ = 0.05. It shows the joint box cover of (a) H2 and

(b) H1 ∩H2.

104

4.7 Alternative Approximate Computations

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

(a) Joint box cover of H2

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

(b) Joint box cover of H1 ∩H2

Figure 4.6: Joint box covers computed when using algorithm 7 with δ = 0.05. The
common/other boundary boxes are light blue/gray, the common/other inner boxes are
dark blue/gray.

4.7 Alternative Approximate Computations

When safety is not a major concern, an alternative approach can be used to compute

an approximate enclosure for the integral of a function over a region defined by the

conjunction of a box and a PC event. This can be done adopting to Monte Carlo

integration as presented in section 3.5.3. In fact the approximate value computed as

defined in 3.371 can be immediately adopted to obtain an estimate for the value of∫
H∩B h(x)dx. Since there is an error estimate associated with the value computed in

definition 3.37 (the standard deviation of the estimate in definition 3.38), we assume

an approximate interval that should contain the exact value of the integral of h(x) over

the conjunction of a box and a PC event.

Definition 4.9 (Approximate Enclosure for the Integral of h over (B ∩ H))

Consider a PC event H, a joint box cover ⟨H� ,H�⟩ of H and a function h : Rn → R.
An approximate enclosure for the integral of h over H∩B, for any box B ∈ H�, is:

∀B∈H� [IH](h,B) ≈

[̂IH](h,B) = [ÎH(h,B)− σ(ÎH(h,B)), ÎH(h,B) + σ(ÎH(h,B))]

1The indicator function 1H is implemented with the inner predicate for degenerated box arguments.

105

Chapter 4. Probabilistic Constraint Programming

where ÎH is defined 3.37 and σ(IMC(B)) is defined in 3.38.

From this generic definition, an approximate enclosure for the probability of the con-

junction of a box and a PC event [̂PH](f,B) is given by [̂IH](f,B).

Replacing the safe enclosures [PHi
](f,B) by the approximate ones, [̂PHi

](B, f), in prop-

erties 4.5 and 4.8 will originate approximate enclosures for the probability and condi-

tional probability of an event, respectively [̂P](H� , f) and [̂P](H�∩ ,H�2 , f). Neverthe-

less, due to the approximate nature of this approach, property 4.6 is no longer verified

when safe enclosures are replaced by the corresponding approximate ones.

In algorithms 6 and 7 when safe enclosures (both in the pseudo code and in the

cReasoning parametrization) are replaced by the corresponding approximate enclo-

sures, there is a loss of robustness and of the convergence properties.

Figure 4.7 presents the covers resulting from applying algorithm 6 with the approximate

integration method to compute enclosures for the probability of the PC event H1 with

δ = 0.05 and δ = 0.01.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(a) Probability with δ = 0.05

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b) Probability with δ = 0.01

Figure 4.7: Joint box covers of the PC event H1 computed when using algorithm 6 with
an approximate integration method. The boundary boxes are light gray and the inner
boxes are gray.

106

4.8 Experimental Results

4.8 Experimental Results

In this section we present the results of applying the algorithms proposed in the pre-

vious section to a set of events. Some results are compared with those obtained with

Mathematica v8.0.1.0 [119]. All the experiments were performed on an Intel Core Duo

at 1.83 GHz with 1 GB of RAM.

We consider two versions of the algorithms: PCTM uses the validated quadrature

method based on Taylor models (in these experiments we use Taylor Models of order

2) and provides safe enclosures of the desired quantities; PCMC uses Monte Carlo

integration (with N = 100 random sample points) and provides estimates for the

computed quantities.

4.8.1 Development Environment

The proposed algorithms in this thesis were implemented over the interval-based solver

RealPaver 1.0 [52], using the C++ programming language and following an object-

oriented design. The result is an operational prototype application that can readily

be used to test new problems.

RealPaver is an open source, continuous constraint programming framework whose

constraint solving engine implements a branch-and-prune algorithm that can be ar-

ticulated with state-of-the-art constraint propagation and consistency techniques. By

default, RealPaver uses BC4 [14] (see section 2.3.2) to efficiently combine hull and box

consistency. Interval arithmetic computations are supported by Gaol, an open source

C++ library for interval arithmetic [1] that guarantees correct rounding.

RealPaver also provides a modeling language to easily model constraint systems. The

modular design of RealPaver [51] makes it easy to extend with new box splitting meth-

ods, choice strategies for bisecting domains and search strategies (e.g. worst-first search

strategy). Therefore it is ideal to implement crStep and cReasoning (chapter 2, pages

39 and 40) algorithms which require customization (different values for their functional

parameters).

107

Chapter 4. Probabilistic Constraint Programming

C1 x2y + y2x ≤ 0.5 CH1 = {C1}

C2 cos(3x) + cos(3y) ≤ 0.5 CH2 = {C2}

C3, C4 −1.5 ≤ ex+1.5(y + 1.5)3 + ey+1.5(x+ 1.5)3 ≤ 8 CH3 = {C3, C4}

C5 sin(3x) + sin(3y)2 ≥ 0.5 CH4 = {C5}

C6, C7 10cos(5x)2 + 10cos(5y)2 ≤ (x2 + y2)2, x2 + y2 ≤ 4 CH5 = {C6, C7}

C8, C9 0 ≤ 2x+ y − 5 log(x2)sin(y) ≤ 1 CH6 = {C8, C9}

C10, C11 1 ≤ cos(x)(ecos(y) − cos(x)− sin(y))5 ≤ 6 CH7 = {C10, C11}

C12, C13 0.5 ≤ cos(10x) + cos(10y) ≤ 1 CH8 = {C12, C13}

Table 4.4: Definition of constraints and events.

4.8.2 The PC Events

Consider the CCSP CP whereX = ⟨x, y⟩, D = [−π, π]×[−π, π] and C = {C1, . . . , C13},

compactly defined in Table 4.4. Consider two PCs, ⟨CP, f1⟩ and ⟨CP, f2⟩, where f1

is the bi-normal distribution (figure 4.8 (a)) defined over Ω1 = R2 and f2 is a custom

distribution defined over Ω2 = D (figure 4.8 (b)). Consider the events Hi, with 1 ≤

i ≤ 8 (shown in figure 4.9), whose associated subset of constraints, CHi
, is defined in

the last column of Table 4.4.

(a) f1 = e
− 1

2
(x2+y2)

2π
(b) f2 = 1+cos(x2+y)

4π2

Figure 4.8: Probability density functions used for testing.

108

4.8 Experimental Results

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(a) H1

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b) H2

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(c) H3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(d) H4

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(e) H5

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(f) H6

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(g) H7 (h) H8

Figure 4.9: Events used for testing.

109

Chapter 4. Probabilistic Constraint Programming

4.8.3 Probability Enclosure

Here we present the results of applying algorithm 6 to the set of events defined above and

compare them with the approximate ones obtained using Mathematica. In this context

Mathematica is not used to solve a Continuous CSP (i.e. find solutions) but rather

to compute the probability of events, and so it can be compared with our approach.

For that purpose function NProbability is used with the default parametrization. This

function relies on function NIntegrate with its default global adaptive integration

strategy and the integration region is defined by boolean functions that check whether

the constraints (associated with the event) are satisfied.

The next tables show the results of applying both versions of algorithm 6 and Math-

ematica to previously defined events, with f = f1 (table 4.5) and f = f2 (table 4.6).

The PCTM version of the algorithm was parameterized with ε = 10−15, δ = 0.001

and a Taylor model order of 2 and the PCMC version with ε = 10−15, δ = 0.005 and

N = 100 sample points. The first two columns refer to results of the PCTM version

of algorithm 6: the enclosure for the probability of the event, [P (H)], and the CPU

time to compute it. The next three columns refer to results of the PCMC version of

algorithm 6: the numerical approximate probability of the event, P̂ (H), the CPU time

to compute it and a lower bound E for the relative error of P̂ (H) based on the safe

enclosure [P (H)], as follows.

E =

(
P̂ (H)− [P (H)]

)
/[P (H)] if P̂ (H) ≥ [P (H)](

[P (H)]− P̂ (H)
)
/[P (H)] if P̂ (H) ≤ [P (H)]

0 otherwise

(4.9)

The last three columns refer to the approximate Mathematica results with the same

meaning as the previous three columns.

The results from tables 4.5 and 4.6 show that significant errors may be incurred in the

computation of probabilities when events correspond to highly non-linear constraints

even with the classical bi-normal distribution. Whereas Mathematica provides approx-

imate values with small errors for events with high probability (with an execution time

similar to that used by our safe methods), for events with low probability it provides

faster results, but the errors incurred are so important as to make the approximate

110

4.8 Experimental Results

PCTM PCMC Mathematica

H [P (H)] T (s) P̂ (H) T (s) E (%) P̂ (H) T (s) E (%)

H1 [0.8044,0.8054] 5 0.8051 3 0.00 0.8051 1 0.00

H2 [0.6798,0.6808] 6 0.6807 5 0.00 0.6809 23 0.01

H3 [0.2542,0.2552] 5 0.2549 1 0.00 0.2525 29 0.66

H4 [0.4977,0.4987] 7 0.4985 3 0.00 0.4466 24 10.25

H5 [0.1105,0.1115] 71 0.1114 3 0.00 0.0870 27 21.31

H6 [0.0566,0.0576] 20 0.0576 1 0.00 0.0349 15 38.26

H7 [0.1356,0.1366] 65 0.1370 1 0.29 0.0773 26 43.02

H8 [0.1223,0.1233] 185 0.1235 17 0.16 0.0048 15 96.04

Table 4.5: Probability enclosures for events Hi with PDF f1, obtained with both versions
of algorithm 6, their numerical computations with Mathematica and respective timings.

PCTM PCMC Mathematica

H [P (H)] T (s) P̂ (H) T (s) E (%) P̂ (H) T (s) E (%)

H1 [0.6557,0.6567] 10 0.6564 4 0.00 0.6565 2 0.00

H2 [0.6910,0.6920] 10 0.6918 12 0.00 0.6920 10 0.01

H3 [0.2589,0.2599] 23 0.2597 2 0.00 0.2471 8 4.58

H4 [0.4993,0.5003] 12 0.5001 8 0.00 0.3305 9 33.81

H5 [0.0563,0.0573] 31 0.0573 1 0.00 0.0401 10 28.87

H6 [0.0588,0.0598] 25 0.0583 1 0.85 0.0173 10 70.48

H7 [0.0864,0.0874] 36 0.0876 1 0.23 0.0239 10 72.36

H8 [0.1228,0.1238] 279 0.1238 25 0.00 0.0085 9 93.08

Table 4.6: Probability enclosures for events Hi with PDF f2, obtained with both versions
of algorithm 6, their numerical computations with Mathematica and respective timings.

probabilities largely useless (e.g. for cost-benefit analysis where events associated to

the malfunctioning of a system are expected to be rare).

Several combinations of δ and ε can be made. Here, we chose a very small ε so the

algorithm stops when the required accuracy (δ) for the probability is achieved (a larger

ε could cause the algorithm to stop without reaching that accuracy). Choosing a

smaller δ (maintaining ε) would increase the computation time and, evidently, the

accuracy of the probability enclosure. In the events presented here, higher order degree

approximations take longer to compute, but the increase in accuracy is not significant.

111

Chapter 4. Probabilistic Constraint Programming

4.8.4 Conditional Probability Enclosure

The results of applying version PCTM of algorithm 7 to the set of events in section

4.8.2 with the bi-normal PDF f1 and its comparison with those obtained with separate

computations of the joint box covers are now presented. Furthermore these results are

compared with the approximate ones obtained with Mathematica.

Table 4.7 shows, for each event Hi, the midpoint of the enclosure for the conditional

probability of every other event given Hi, [P (H|Hi)], and the CPU time, in seconds,

to compute such enclosure using PCTM version of algorithm 7, parameterized with

ε = 10−15, δ = 0.001 and a Taylor model order of 2. Table 4.8 refers to the results

P̂ (H|Hi) obtained with Mathematica, showing a lower bound for the relative error of

P̂ (H|Hi) based on the safe enclosure [P (H|Hi)] computed as in formula (4.9).

[P (H|H1)] [P (H|H2)] [P (H|H3)] [P (H|H4)] [P (H|H5)] [P (H|H6)] [P (H|H7)]
H mid T mid T mid T mid T mid T mid T mid T
H1 0.7790 32 0.7722 46 0.6605 46 0.6983 785 0.6827 452 0.7052 547
H2 0.6584 27 0.8926 32 0.7453 49 0.6066 727 0.7878 430 0.7633 569
H3 0.2825 10 0.2892 19 0.2213 16 0.3570 381 0.9890 77 0.3089 255
H4 0.4613 28 0.4837 31 0.4327 34 0.5135 710 0.4508 269 0.5860 431
H5 0.8360 61 0.1140 67 0.1556 67 0.1144 55 0.1531 129 0.1526 239
H6 0.5590 19 0.5730 25 0.2200 10 0.5170 14 0.7890 147 0.3580 52
H7 0.1039 71 0.1412 71 0.1651 58 0.1602 63 0.1872 404 0.8540 58

Table 4.7: Midpoints of the conditional probability enclosures for H given Hi obtained
by the PCTM version of algorithm 7 and respective timings (in seconds).

H E(H|H1) E(H|H2) E(H|H3) E(H|H4) E(H|H5) E(H|H6) E(H|H7)

H1 0.75 % 0.12 % 1.17 % 5.33 % 42.88 % 21.31 %

H2 0.68 % 0.59 % 2.80 % 6.81 % 24.95 % 41.01 %

H3 0.10 % 0.98 % 57.07 % 29.86 % 100.00 % 100.00 %

H4 12.84 % 11.44 % 61.21 % 91.60 % 92.34 % 4.09 %

H5 26.59 % 25.64 % 44.49 % 92.64 % 65.02 % 100.00 %

H6 22.82 % 64.81 % 100.00 % 94.73 % 72.64 % 100.00 %

H7 58.28 % 55.26 % 100.00 % 33.87 % 100.00 % 100.00 %

Table 4.8: Relative error percentages of the conditional probabilities of H given Hi

obtained with Mathematica when compare with those computed by algorithm 7.

112

4.9 Summary

The results from Tables 4.7 and 4.8 regarding the computation of conditional proba-

bilities confirm the findings for the unconditional case. As before, the errors incurred

by Mathematica with the computed approximate solutions are more significant when

the events have low probability. But now the situation is more complex since a condi-

tional probability can be high but resulting from the division of two small probabilities.

Hence, significant errors are now observed in relatively large conditional probabilities

(e.g. in the case of P (H6|H2) ≈ 0.5730, Mathematica computes a probability with an

error of 64.81%). Moreover, in some cases the error is 100%, in which case Mathematica

reports that (possible) events may never occur, which is an extreme case of their useless

value regarding cost-benefit analysis.

Table 4.9 refers to the gains (g) obtained with algorithm 7 when compared with the

alternative method (with algorithm 6) that uses two completely independent joint box

covers, one for H∩Hi and other for Hi. The comparison was based on the total number

of boxes of the computed covers which is proportional to the CPU time.

H g(H|H1) g(H|H2) g(H|H3) g(H|H4) g(H|H5) g(H|H6) g(H|H7)
H1 33.99 % 28.46 % 32.20 % 40.78 % 42.08 % 40.45 %
H2 25.28 % 35.13 % 35.40 % 40.60 % 42.53 % 40.85 %
H3 10.45 % 20.77 % 25.02 % 32.07 % 24.77 % 30.37 %
H4 24.93 % 24.75 % 19.62 % 35.38 % 31.69 % 36.22 %
H5 6.76 % 7.05 % 0.60 % 6.54 % 21.10 % 26.00 %
H6 2.80 % 2.79 % 2.04 % 6.04 % 9.08 % 6.08 %
H7 9.05 % 8.02 % 7.40 % 6.68 % 13.26 % 19.25 %

Table 4.9: Speedup of algorithm 7 when compared with the alternative method (with
algorithm 6) that uses two completely independent joint box covers.

While the computation time of safe enclosures for the conditional probability of events

typically doubles that of unconditional probabilities (as it requires the division of two

such values) algorithm 7 minimizes such effect, by speeding up the computations by

around 25%, as shown in Table 4.9.

4.9 Summary

In this chapter the definition and the semantics of probabilistic continuous constraint

space, the core of the proposed probabilistic continuous constraint framework, was pre-

113

Chapter 4. Probabilistic Constraint Programming

sented and the kind of problems that can be formulated within this probabilistic space

were identified. The concept of probabilistic constraint event was introduced and both

safe and approximate methods to obtain enclosures for their unconditional and condi-

tional probabilities were described. Experimental results illustrated the capabilities of

the proposed algorithms.

The next chapter presents methods to compute safe and approximate enclosures for

conditional or unconditional probabilistic features of random vectors within a proba-

bilistic continuous constraint space, and to provide their probability distributions.

114

Chapter 5

Random Vectors

Once addressed the probability of PC events in the previous chapter, we now discuss

how to compute enclosures for probabilistic features of random vectors (RV) in uncon-

ditional (section 5.1) and conditional probability spaces (section 5.2), in the scope of

the Probabilistic Constraint framework. Section 5.3 presents algorithms to compute

the enclosures discussed in the two previous sections. Then, Section 5.4 describes how

to compute non parametric probability distributions of random vectors. All definitions

and properties presented in this chapter assume safe enclosures for multidimensional

integrals, except in section 5.5 that discusses the impact of adopting an approximate

method to compute such enclosures. Finally, section 5.6 shows and discusses the results

of applying the proposed algorithms to a set of benchmarks.

The definitions and properties that follow consider a PC ⟨⟨X,D,C⟩, f⟩, where D ∈ IRn.

For the sake of generality, in the following we consider X to be the identity random

vector associated with the PC probability space and Y = ⟨Y1, . . . , Ym⟩ to be a generic

random vector where each Yi is as a function of X1, i.e. Yi = gi(X), defined on the

same probability space.

5.1 Probabilistic Enclosures

We start with enclosures for the probability of random vectors’ values as well as ex-

pected values and the covariance matrices of random vectors.

1See property 3.10

115

Chapter 5. Random Vectors

Notice that we are only able to compute enclosures for expected values of random

vectors (and consequently for covariance matrices) when Ω corresponds exactly to D,

i.e., when Ω is bounded. This is due to the limitations of the proposed integration

methods to compute improper integrals. When Ω is unbounded, expected values for

random vectors are computed, necessarily, conditioned by D.

Since restricting the range of values of a random vector is an event, an enclosure for

the probability that a random vector takes certain values can be obtained directly from

property 4.5, as follows.

Property 5.1 (Enclosure for the Probability of a RV) Given any bounded

box BY = I1 × · · · × Im ∈ IRm, the probability that random vector Y takes val-

ues in BY , P (Y ∈ BY) = P (Y1 ∈ I1, . . . , Ym ∈ Im), is P (H) where H is the PC

event:

H = F(⟨X,D, {I1 ≤ g1(X) ≤ I1, . . . , Im ≤ gm(X) ≤ Im}⟩)1

An enclosure for the probability P (H) can be computed as in property 4.5.

Proof. It follows from definition 3.20, that addresses events induced via random

vectors. �

This property can be illustrated as follows.

Example 5.1.

Consider PC ⟨⟨X = ⟨x1, x2⟩, D = [0, 1]× [0, 1], C⟩, f⟩, where f(x1, x2) = 2−2x1 (shown

in figure 5.1 (a)), Ω = D and the associated random vector X = ⟨X1, X2⟩ and a box

cover2 D� = {B1} ∪ {Bi : 4 ≤ i ≤ 12} of D (shown in figure 5.1 (b)).

Table 5.1 shows enclosures for the probabilities of the boxes in D� , computed as in

property 4.4. While the first column considers the boxes to belong to an inner joint

box cover, the second column considers them to be boundary boxes3.

1Notice that Ii ≤ gi(X) ≤ Ii is an abbreviated way to represent the two constraints whose relations
are defined by: ρi1 = {d ∈ D : Ii − gi(d) ≤ 0} and ρi2 = {d ∈ D : gi(d)− Ii ≤ 0}.

2The indices were maintained from the examples of chapter 4.
3We chose to simplify the very sharp enclosures obtained for the rational numbers (with 16 digits

precision) with a high order Taylor model, by showing the corresponding fraction. Likewise, in the
cruder computations, the obtained rational numbers are shown as fractions.

116

5.1 Probabilistic Enclosures

(a) f(x1, x2)

B1

B11 B9

B12

B8

B10

B4

B5

B6

B7

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2
(b) Box cover

Figure 5.1: PDF and box cover used in examples.

Figure 5.2 shows the events H6, H7, H8 and H9 resulting from restricting the values of

random vectors to boxes. In the first three figures the random vector is Y = ⟨X1, X2⟩,
while in the last it is Y = ⟨X1 −X2⟩.

Given the joint box covers:

H�6 = ⟨{B4, B6, B7}, {B6, B7}⟩

H�7 = ⟨{B1, B6, B7, B8, B12}, {B1, B6, B7, B8, B12}⟩

H�8 = ⟨{B4, B5, B9}, {B5, B9}⟩

H�9 = ⟨{Bi : i ∈ {4, . . . , 10}}, {B5, B6}⟩

for events, respectively, H6, H7, H8 and H9, table 5.2 shows probability enclosures of

those events over the boxes Bi (using directly the values of table 5.1).

WithY = ⟨X1, X2⟩ (i.e. gi(X) = Xi) and using the values of table 5.2 and property 4.5,

we obtain enclosures for the probability of events H6, H7 and H8 using, respectively,

the joint box covers H�6 , H�7 and H�8 are:

P (X1 ≥ 0.75) = P (H6) =
2

32
∈ [P](H�6 , f) =

[
1

32
,
9

32

]
P (X2 ≥ 0.5) = P (H7) =

1

2
∈ [P](H�7 , f) =

[
1

2

]

117

Chapter 5. Random Vectors

B [I](f,B) [0, sup([f](B)) ∗ vol(B)]
B1 [3/8] [0, 1/2]
B4 [1/8] [0, 1/4]
B5 [5/64] [0, 3/32]
B6 [1/64] [0, 1/32]
B7 [1/64] [0, 1/32]
B8 [3/64] [0, 1/16]
B9 [5/64] [0, 3/32]
B10 [7/64] [0, 1/8]
B11 [7/64] [0, 1/8]
B12 [3/64] [0, 1/16]

Table 5.1: Probability enclosures of Bi using property 4.4.

B [PH6](f,B) [PH7](f,B) [PH8](f,B) [PH9](f,B)
B1 [3/8]
B4 [0, 1/4] [0, 1/4] [0, 1/4]
B5 [5/64] [5/64]
B6 [1/64] [1/64] [1/64]
B7 [1/64] [1/64] [0, 1/32]
B8 [3/64] [0, 1/16]
B9 [5/64] [0, 3/32]
B10 [0, 1/8]
B12 [3/64]

Table 5.2: Enclosures for the probability of Bi ∩Hj .

P (0.25 ≤ X1 ≤ 0.75 ∧X2 ≤ 0.5) = P (H8) =
8

32
∈ [P](H�8 , f) =

[
5

32
,
13

32

]

Now with Y = ⟨X1−X2⟩ (i.e., g1(X) = X1−X2) and using the values of table 5.2 and

property 4.5, an enclosure for the probability of H9 using the joint box cover H�9 is:

P (0 ≤ Y1 ≤ 0.5) = P (H9) =
7

24
∈ [P](H�9 , f) =

[
3

32
,
21

32

]

The exact probability values were obtained analytically.

Obtaining the expected value of a random variable Yi = gi(X) with respect to the joint

PDF f(x) of X implies the computation of a multidimensional integral of gi(x)f(x)

118

5.1 Probabilistic Enclosures

B1

B11 B9

B12

B8

B10

B4

B5

B6

B7

H6

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

(a) H6 : X1 ≥ 0.75

H7

B1

B11 B9

B12

B10

B4

B5

B6

B7

B8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

(b) H7 : X2 ≥ 0.5

B1

B11 B9

B12

B8

B10

B4

B5

B6

B7

H8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

(c) H8 : 0.25 ≤ X1 ≤ 0.75 ∧X2 ≤ 0.5

B1

B11 B9

B12

B8

B10

B4

B5

B6

B7

H9

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

(d) H9 : 0 ≤ X1 −X2 ≤ 0.5

Figure 5.2: Restricting the values of random variables.

over a box (i.e., the Cartesian product of the ranges of random variables Xi). A safe

enclosure for such value can be computed as in definition 3.36. The integration is not

made directly over D, but rather on a partition H� of D, since this allows tighter

enclosures to be obtained (see property 3.17).

Property 5.2 (Enclosure for the Expected Value of a RV) Given a joint

box cover D� = ⟨D� ,D�⟩ of D = F(⟨X,D, {}⟩), where D� = D� and D = Ω,

an enclosure for the expected value of Y is given by:

[E](Y ,D� , f) = ⟨[E](Y1,D� , f), . . . , [E](Ym,D� , f)⟩

119

Chapter 5. Random Vectors

where, ∀1≤i≤m

E[Yi] ∈ [E](Yi,D� , f) =
∑

B∈D�

[I](gif,B)

Proof. Definition 3.29 states that E[gi(X)] =

∫
Rn

gi(x)f(x)dx and the computation

of the expected value implies the computation of an integral over an unbounded box

Rn. Nevertheless, since we assume Ω = D, then Ω is a bounded box and the joint PDF

f is defined over D and 0 elsewhere. Then∫
Rn

gi(x)f(x)dx =

∫
Ω
gi(x)f(x)dx+

∫
Rn\Ω

gi(x)f(x)dx

=

∫
Ω
gi(X)f(x)dx

since

∫
Rn\Ω

gi(x)f(x)dx = 0.

Finally, by property 3.17,

∫
Rn

gi(x)f(x)dx ∈
∑

B∈D�

[I](gif,B). �

Adopting the expression for variance in property 3.11, an enclosure for the covariance

matrix of a random vector can also be defined.

Property 5.3 (Enclosure for the Covariance Matrix of a RV) Given a

joint box cover D� of D = F(⟨X,D, {}⟩), where D� = D� and D = Ω, an

enclosure for the covariance matrix Σ of Y is given by:

Σij [Y] = Cov(Yi, Yj) ∈ [Σij](Y ,D� , f) = [Cov](Yi, Yj ,D� , f)

= [E](YiYj ,D� , f)− [E](Yi,D� , f)[E](Yj ,D� , f)

In particular, Σii[Y] = V ar[Yi] ∈ [V ar](Yi,H� , f) = [E](Y 2
i ,D� , f) −

[E]2(Yi,D� , f)1.

1Since the variance of a random variable is always ≥ 0 the resulting interval is intersected with
[0,+∞[.

120

5.1 Probabilistic Enclosures

Proof. From property 5.2, E[YiYj] ∈ [E](YiYj ,D� , f), E[Yi] ∈ [E](Yi,D� , f) and

E[Yj] ∈ [E](Yj ,D� , f). By the properties of interval arithmetic

Cov(Yi, Yj) = E[YiYj]− E[Yi]E[Yj] ∈ [E](YiYj ,D� , f)− [E](Yi,D� , f)[E](Yj ,D� , f)

�

(a) x1f(x) (b) x2f(x) (c) x2
1f(x)

(d) x2
2f(x) (e) x1x2f(x)

Figure 5.3: Integrand functions.

Example 5.2. Consider the PC of example 5.1, the random vector Y = ⟨X1, X2⟩ (i.e.
gi(X) = Xi) and the box covers D� = D� = {Bi : i ∈ {4, . . . , 12}}∪{B1} (Bi are the

boxes in figure 5.1 (b)). Let D� = ⟨D� ,D�⟩ be a joint box cover of D = F(⟨X,D, {}⟩).

Table 5.3 shows very crude enclosures for integrals of several integrand functions (shown

in figure 5.3) over boxes, computed with Taylor models of order 0. Using such values,

an enclosure for the expected value of Y is:

[E](Y ,D� , f) =

⟨ ∑
B∈D�

[I](x1f,B),
∑

B∈D�

[I](x2f,B)

⟩

=

⟨[
1

16
,
13

16

]
,

[
13

64
,
61

64

]⟩
,

121

Chapter 5. Random Vectors

B [I](x1f,B) [I](x21f,B) [I](x2f,B) [I](x22f,B) [I](x1x2f,B)

B1

[
0, 14
] [

0, 18
] [

1
8 ,

1
2

] [
1
16 ,

1
2

] [
0, 14
]

B4

[
0, 14
] [

0, 14
] [

0, 18
] [

0, 1
16

] [
0, 18
]

B5

[
1
64 ,

3
64

] [
1

256 ,
3

128

] [
0, 3

128

] [
0, 3

512

] [
0, 3

256

]
B6

[
0, 1

32

] [
0, 1

32

] [
0, 3

128

] [
0, 9

512

] [
0, 3

128

]
B7

[
0, 1

32

] [
0, 1

32

] [
0, 1

32

] [
0, 1

32

] [
0, 1

32

]
B8

[
1
64 ,

3
64

] [
1

128 ,
9

256

] [
1
64 ,

3
64

] [
1

128 ,
9

256

] [
1

128 ,
9

256

]
B9

[
1
64 ,

3
64

] [
1

256 ,
3

128

] [
1
64 ,

3
64

] [
1

256 ,
3

128

] [
1

256 ,
3

128

]
B10

[
0, 1

32

] [
0, 1

128

] [
0, 1

32

] [
0, 1

128

] [
0, 1

128

]
B11

[
0, 1

32

] [
0, 1

128

] [
3

128 ,
1
16

] [
3

512 ,
1
32

] [
0, 1

64

]
B12

[
1
64 ,

3
64

] [
1

128 ,
9

256

] [
3

128 ,
1
16

] [
9

512 ,
1
16

] [
3

256 ,
3
64

]
Table 5.3: Enclosures for the integrals

∫
B
xjf(x)dx,

∫
B
x2
jf(x)dx and

∫
B
x1x2f(x)dx.

an enclosure for the expected values of ⟨X2
1 , X

2
2 ⟩ is:

[E](⟨X2
1 , X

2
2 ⟩,D� , f) =

⟨ ∑
B∈D�

[I](x21f,B),
∑

B∈D�

[I](x22f,B)

⟩

=

⟨[
3

128
,
73

128

]
,

[
25

256
,
199

256

]⟩
,

an enclosure for the expected value of X1X2 is:

[E](X1X2,D� , f) =
∑

B∈D�

[I](x1x2f,B) =

[
3

128
,
73

128

]

and an enclosure for the covariance matrix of Y is:

[Σ](Y ,D� , f) =

[
[V ar](X1,D� , f) [Cov](X1, X2,D� , f)

[Cov] (X2, X1,D� , f) [V ar](X2,D� , f)

]

=

[[
0, 145256

] [
− 145

1024 ,
577
1024

][
− 145

1024 ,
577
1024

] [
231
4096 ,

351
4096

]]

We can observe that, even without uncertainty in the integration region (which is

122

5.1 Probabilistic Enclosures

exactly covered by D�), there is uncertainty in the computed quantities due to the

source of uncertainty in the computation of the integrals (intentionally high in this

example).

Table 5.4 shows the results of computing analytically the integrals involved in the

above computations (which are included in the corresponding intervals of table 5.3).

The correct values for the expected values and covariance matrix are then computed

from those values, and shown to be within the safe bounds computed previously.

B
∫
B x1f(x)dx

∫
B x21f(x)dx

∫
B x2f(x)dx

∫
B x22f(x)dx

∫
B x1x2f(x)dx

B1
1
12

5
192

9
32

7
32

1
16

B4
1
12

11
192

1
32

1
96

1
48

B5
11
384

67
6144

5
512

5
3072

11
3072

B6
5

384
67

6144
5

512
19

3072
25

3072

B7
5

384
67

6144
7

512
37

3072
35

3072

B8
11
384

109
6144

15
512

19
1024

55
3072

B9
11
384

67
6144

15
512

35
3072

11
1024

B10
5

384
13

6144
7

512
7

3072
5

3072

B11
5

384
13

6144
21
512

49
3072

5
1024

B12
11
384

109
6144

21
512

37
1024

77
3072

D 1
3

1
6

1
2

1
3

1
6

Table 5.4: Exact values of
∫
B
xjf(x)dx,

∫
B
x2
jf(x)dx and

∫
B
x1x2f(x)dx.

The exact value for the expected value of Y is:

E[Y] =

⟨ ∑
B∈D�

∫
B
x1f(x)dx,

∑
B∈D�

∫
B
x2f(x)dx

⟩

=

⟨∫
D
x1f(x)dx,

∫
D
x2f(x)dx

⟩
=

⟨
128

384
,
256

512

⟩
=

⟨
1

3
,
1

2

⟩
∈
⟨[

1

16
,
13

16

]
,

[
13

64
,
61

64

]⟩
,

for the expected values of ⟨X2
1 , X

2
2 ⟩ is:

E[⟨X2
1 , X

2
2 ⟩] =

⟨ ∑
B∈D�

∫
B
x21f(x)dx,

∑
B∈D�

∫
B
x22f(x)dx

⟩

123

Chapter 5. Random Vectors

=

⟨∫
D
x21f(x)dx,

∫
D
x22f(x)dx

⟩
=

⟨
1024

6144
,
1024

3072

⟩
=

⟨
1

6
,
1

3

⟩
∈
⟨[

3

128
,
73

128

]
,

[
25

256
,
199

256

]⟩
and for the expected value of X1X2 is:

E[X1X2] =
∑

B∈H�

∫
B
x1x2f(x)dx =

512

3072
=

1

6
∈
[

3

128
,
73

128

]
.

The exact values for the covariance matrix of Y are:

Σ(Y) =

[
1
18 0

0 1
12

]
∈

[[
0, 145256

] [
− 145

1024 ,
577
1024

][
− 145

1024 ,
577
1024

] [
231
4096 ,

351
4096

]]
.

5.2 Conditional Probabilistic Enclosures

We now address conditional probabilistic features of random vectors (RVs), such as the

conditional probability of random vectors as well as the conditional expected values

and conditional covariance matrices of random vectors.

Property 5.4 (Enclosure for the Conditional Probability of a RV) Given

a PC event H2 where P (H2) > 0 and any bounded box BY = I1 × · · · × Im ∈ IRm,

the probability that random vector Y takes values in BY given H2,

P (Y ∈ BY |H2) = P (Y1 ∈ I1, . . . , Ym ∈ Im|H2), is P (H1|H2) where H1 is

the PC event:

H1 = F(⟨X,D, {I1 ≤ g1(X) ≤ I1, . . . , Im ≤ gm(X) ≤ Im}⟩)

An enclosure for the conditional probability P (H1|H2) can be computed as in prop-

erty 4.8.

Proof. It follows from definition 3.20, that addresses events induced via random

vectors. �

124

5.2 Conditional Probabilistic Enclosures

B9

B8

B10

B4

B5

B6

B7

C1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Figure 5.4: H5 and its joint box cover H� .

Example 5.3. Consider PC Triangle = ⟨⟨X = ⟨x1, x2⟩, D = [0, 1] × [0, 1], C⟩, f⟩,
where f(x1, x2) = 2 − 2x1 (shown in figure 5.1 (a)), C = {C1 : x2 − x1 ≤ 0} (shown

in figure 5.4), Ω = D, the event H5 = F(⟨X,D, {C1}⟩) and its joint box cover H� =

⟨{Bi : i ∈ {4, . . . , 10}}, {B4, B5, B6}⟩ (Bi are the boxes in figure 5.4). From example

4.6 we have that [P](H�5 , f) =
[
7
32 ,

17
32

]
.

LetY = ⟨X1, X2⟩. Figures 5.2 (a) to (c) show the eventsH6, H7 andH8, resulting from

restricting the values of Y to boxes. Table 5.5 shows enclosures for the probabilities of

those events intersected with event H5 over the boxes Bi.

B [PH5∩H6](f,B) [PH5∩H7](f,B) [PH5∩H8](f,B) [PH5∩H9](f,B)
B4 [0, 1/4] [0, 1/4] [0, 1/4]
B5 [5/64] [5/64]
B6 [1/64] [1/64] [1/64]
B7 [0, 1/32] [0, 1/32] [0, 1/32]
B8 [0, 1/16] [0, 1/16]
B9 [0, 3/32] [0, 3/32]
B10 [0, 1/8]

Table 5.5: Enclosures for the probability of Bi ∩Hj ∩H5.

Using the values of table 5.5 and property 4.8, enclosures for the conditional prob-

ability of events H6, H7 and H8 given PC event H5 using, respectively, the joint

box covers H�∩6
= ⟨{B4, B6, B7}, {B6}⟩, H�∩7

= ⟨{B6, B7, B8}, {B6}⟩ and H�∩8
=

125

Chapter 5. Random Vectors

⟨{B4, B5, B9}, {B5}⟩ are:

P (H6|H5) =
15

96
∈ [P](H�∩6

,H�5 , f) =
[P](H�∩6

, f)

[P](H�5 , f)
=

[
1
64 ,

19
64

][
7
32 ,

17
32

] = [1

34
,
19

14

]
P (H7|H5) =

1

8
∈ [P](H�∩7

,H�5 , f) =
[P](H�∩7

, f)

[P](H�5 , f)
=

[
1
64 ,

7
64

][
7
32 ,

17
32

] = [1

34
,
1

2

]
P (H8|H5) =

5

8
∈ [P](H�∩8

,H�5 , f) =
[P](H�∩8

, f)

[P](H�5 , f)
=

[
5
64 ,

27
64

][
7
32 ,

17
32

] = [5

34
,
27

14

]

Now let Y = ⟨X1 −X2⟩. Figure 5.2 (d) shows the event H9 resulting from restricting

the values of Y to a box. Using the values of table 5.5 and property 4.8, an enclosure

for the conditional probability of H9, using the joint box cover H�∩9
= ⟨{Bi : i ∈

{4, . . . , 10}}, {B5, B6}⟩, is:

P (H9|H5) =
7

8
∈ [P](H�∩9

,H�5 , f) =

[
3
32 ,

21
32

][
7
32 ,

17
32

] = [3

17
, 3

]

Notice that the example illustrates the computation of conditional probability enclo-

sures using very simple (and crude) joint box covers. As a consequence the obtained

enclosures for the conditional probability values provide little information (in some

cases the intervals range from almost 0 to values higher than 1).

The exact conditional probability values were obtained analytically.

Relying on properties 4.3 and 4.5, an enclosure for the conditional expected value of a

random variable given a PC event can be computed as follows.

Property 5.5 (Enclosure for the Conditional Expected Value of a RV)

Given a PC event H where P (H) > 0 and a joint box cover H� of H, an enclosure

for the conditional expected value of Y given H is computed as:

[E](Y , f |H�) = ⟨[E](Y1, f |H�), . . . , [E](Ym, f |H�)⟩

where, ∀1≤i≤m

E[Yi|H] ∈ [E](Yi, f |H�) =
[I](H� , gif)

[P](H� , f)

126

5.2 Conditional Probabilistic Enclosures

Proof. Given a random variable Y = g(X) and a joint PDF f for X, by definition

E[Y |H] =

∫
H
g(x)f(x)dx

P [H]

Since, by properties 4.3 and 4.5, respectively,∫
H

g(x)f(x)dx ∈ [I](H� , gf) and P (H) ∈ [P](H� , f)

then, by the properties of interval arithmetic,

E[Y |H] ∈ [E](Y, f |H�) =
[I](H� , gf)

[P](H� , f)

�

The enclosure for the conditional covariance matrix of a random variable given a PC

event can be computed using the enclosure for the conditional expected value, as follows.

Property 5.6 (Enclosure for the Conditional Covariance Matrix) Given a

PC event H where P (H) > 0 and a joint box cover ⟨H� ,H�⟩ of H, an enclosure

for the covariance matrix Σ of Y is given by:

Σij [Y |H] ∈ [Σij](Y , f |H�) = [Cov](Yi, Yj , f |H�)

= [E](YiYj , f |H�)− [E](Yi, f |H�)[E](Yj , f |H�)

In particular, Σii[Y |H] = V ar[Yi|H] ∈ [E](Y 2
i , f |H�)− [E](Yi, f |H�)2.

Proof. Similar to the proof of property 5.3. �

An example is used to illustrate the previous properties.

Example 5.4. Consider again PC Triangle, the event H5 = F(⟨X,D, {C1}⟩) and

its joint box cover H�5 = ⟨{Bi : i ∈ {4, . . . , 10}}, {B4, B5, B6}⟩ (Bi are the boxes in

figure 5.4).

127

Chapter 5. Random Vectors

Using the values of tables 5.3 and 5.41 we compute:

[I](H� , x1f) =
∑

B∈H�

[IH5](x1f,B) =

[
1

32
,
5

32

]
+

[
1

8

]
=

[
5

32
,
9

32

]

[I](H� , x2f) =

[
3

64
,
5

64

]
+

[
13

256

]
=

[
25

256
,
33

256

]
[I](H� , x

2
1f) =

[
3

256
,
25

256

]
+

[
81

1024

]
=

[
93

1024
,
181

1024

]
[I](H� , x

2
2f) =

[
3

256
,
25

256

]
+

[
7

384

]
=

[
23

768
,
89

768

]
[I](H� , x1x2f) =

[
3

256
,
25

256

]
+

[
25

768

]
=

[
17

384
,
50

384

]

The exact values for the above integrals, computed analytically, are shown in table 5.6.

∫
H5

x1f(x)dx
∫
H5

x2f(x)dx
∫
H5

x21f(x)dx
∫
H5

x22f(x)dx
∫
H5

x1x2f(x)dx
1
6

1
12

1
10

1
30

1
20

Table 5.6: Exact values for the integrals over the region defined by H5.

From example 4.6 we have that [P](H� , f) =
[
7
32 ,

17
32

]
, so we can obtain enclosures for

the conditional expected values of Y , ⟨X2
1 , X

2
2 ⟩ and X1X2 given the PC event H5, as

in property 5.5:

[E](Y , f |H�) =

⟨[
5

17
,
9

7

]
,

[
25

136
,
33

56

]⟩
[E](⟨X2

1 , X
2
2 ⟩, f |H�) =

⟨[
93

544
,
181

224

]
,

[
23

408
,
89

168

]⟩
[E](X1X2, f |H�) =

[
1

12
,
25

42

]

Likewise we can obtain enclosures for the conditional covariance matrix of Y given the

PC event H5, as in property 5.6:

[Σ](Y , f |H�) =

[
[V ar](X1, f |H�) [Cov](X1, X2, f |H�)

[Cov] (X2, X1, f |H�) [V ar](X2, f |H�)

]

1For boxes in H� the values of table 5.4 are used, by assuming that Taylor models of high order
can compute such sharp enclosures.

128

5.3 Algorithms

=

[
[0, 0.7216] [−0.6744, 0.5412]

[−0.6744, 0.5412] [0, 0.4960]

]

From example 4.3 we have that P [H5] =
1
3 so, using the values of table 5.6, the exact

values for the quantities computed above are:

E[Y |H5] =

⟨
1

2
,
1

4

⟩
E[⟨X2

1 , X
2
2 ⟩|H5] =

⟨
3

10
,
1

10

⟩
E[X1X2|H5] =

3

20
Σ(Y |H5) =

[
1
20

1
40

1
40

3
80

]

5.3 Algorithms

In this section we present algorithms to compute tight enclosures for the probability

features of the previous sections.

Computing an enclosure for the probability that a random vector takes values in a

box (property 5.1) reduces to compute the probability of the corresponding event.

So, algorithm 6 (section 4.6, page 97) is adequate for such computation. Likewise,

computing an enclosure for the conditional probability can be done with algorithm 7

(section 4.6, page 102).

Properties 5.2 and 5.3 justify algorithm 10 to compute enclosures for the expected value

and covariance matrix of a random vector Y . It receives a PC and random vector Y

and relies on cReasoningprob function (see property 4.9 for the parametrization) to

obtain a partition of D (line 1) and then, uses such partition to compute and return

the required enclosures (line 2).

Algorithm 10: moments(⟨⟨X,D,C⟩, f⟩,Y , ε, δ)

Input: ⟨⟨X,D,C⟩, f⟩: PC; Y = ⟨g1(X), . . . , gm(X)⟩: random vector; ε, δ:
double;

Output: ⟨E,Σ⟩: pair with a tuple of intervals and an array of intervals;
1 ⟨D� ,D�⟩ ← cReasoningprob(⟨{D}, {D}⟩, {});
2 return ⟨[E](Y ,D� , f), [Σ](Y ,D� , f)⟩;

129

Chapter 5. Random Vectors

The correctness of the algorithm is guaranteed since the initial pair ⟨{D}, {D}⟩ is a

joint box cover of D = F(⟨X,D, {}⟩) and, inside cReasoningprob, every iteration of

crStep produces tighter joint box covers of D. So, when cReasoning stops D� is a

joint box cover of D and, by properties 5.2 and 5.3, ∀Yi∈Y E[Yi] ∈ [E](Yi,D� , f) and

∀Yi∈Y ∀Yj∈Y Cov(Yi, Yj) ∈ [Cov](Yi, Yj ,D� , f).

Algorithm 11 computes enclosures for the conditional expected value (as in property

5.5) and covariance matrix (as in property 5.6) of a random vector Y , given the con-

ditioning event. It receives a PC where the constraints are those associated with the

conditioning event H and random vector Y . It relies on function cReasoningprob to

obtain successively tighter covers of H, until the required probability accuracy δ is

achieved (line 1), and then uses the resulting cover to compute and return the required

enclosures (line 2).

Algorithm 11: conditionalMoments(⟨⟨X,D,CH⟩, f⟩,Y , ε, δ)

Input: ⟨⟨X,D,CH⟩, f⟩: PC; Y = ⟨g1(X), . . . , gm(X)⟩: random vector; ε, δ:
double;

Output: {EH,ΣH}: pair with a tuple of intervals and an array of intervals;
1 ⟨H� ,H�⟩ ← cReasoningprob(⟨{D},∅⟩, CH);
2 return ⟨[E](Y , f |H�), [Σ](Y , f |H�)⟩;

Using a similar reasoning as in algorithm 10, the correctness of algorithm 11 is guar-

anteed .

On both algorithms, the accuracy of the enclosure for the total probability defines

the stopping criterion, since this quantity is a good indicator for the accuracy of the

computed enclosures. Likewise, the probability enclosures of the computed boxes define

the order criterion of such algorithms.

Example 5.5. Consider PC ⟨⟨X,D,C⟩, f⟩ where X = ⟨x, y⟩, D = [−π, π]× [−π, π],
CH = {−1.5 ≤ ex+1.5(y + 1.5)3 + ey+1.5(x + 1.5)3 ≤ 8}, f = 1+cos(x2+y)

4π2 is a custom

distribution defined over Ω = D (figure 5.6 (a)) and H is a PC event (shown in figure

5.5(a)).

Figures 5.5 (b) and (c) present the covers resulting from applying, respectively, algo-

rithms 10 and 11 to compute enclosures for the unconditional and conditional (given

event H) expected values and covariance matrices of Y = ⟨X1, X2⟩ with δ = 0.1. The

130

5.4 Probability Distributions

results were:

[E](Y ,D� , f) =
⟨
[−0.1337, 0.1331], [−0.3753,−0.1271]

⟩
[Σ](Y ,D� , f) =

[
[2.8001, 3.8311] [−0.3329, 0.3302]
[−0.3329, 0.3302] [2.4031, 3.3819]

]
[E](Y , f |H�) =

⟨
[−1.9294,−0.6117], [−2.0134,−0.7278]

⟩
[Σ](Y , f |H�) =

[
[0, 3.5560] [−3.3417, 1.7674]

[−3.3417, 1.7674] [0, 3.5664]

]

Figure 5.6 shows the integrand functions involved in the previous computations.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(a) H

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

(b) D�

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

(c) H�

Figure 5.5: Event H and joint box covers of D and H computed with algorithms 10 and
11 with a safe integration method. The boundary boxes are light gray and the inner boxes
are gray.

5.4 Probability Distributions

Probability distributions describe the probability that random variables fall within a

specified range of values. There are two main types of models for probability distribu-

tions: parametric, which are based on parametric families of probability distributions

(e.g. Gaussian, uniform) and nonparametric, whenever they do not follow any standard

probability distribution. For nonparametric models, techniques are used to compute

the distribution of a random variable without assuming a particular shape for it.

131

Chapter 5. Random Vectors

(a) f(x, y) = 1+cos(x2+y)

4π2 (b) xf(x, y) (c) yf(x, y)

(d) x2f(x, y) (e) y2f(x, y) (f) xyf(x, y)

Figure 5.6: Integrand functions used to computed the expected values and variances.

In this section an algorithm is presented to compute a nonparametric conditional prob-

ability distribution of a random vector and output it in tabular form, for subsequent

processing. This information is necessary in many real world applications as shown in

part III of this thesis.

Additionally, since a graphical output is an important means to convey information, the

result of the algorithm can be used for graphical plotting, thus providing an adequate

display of the shape of the distribution of the variables of interest across their range. Its

purpose is to graphically summarize the distribution and to illustrate: 1) the location

of the values, 2) its scale, 3) its skewness, and 4) whether multiple modes in the

distribution exist.

In our context, given a PC ⟨⟨X,D,C⟩, f⟩, the aim is to compute the probability dis-

tribution of (a subset of) the implicit random vector X given a PC event H. For this

purpose, some kind of discretization is convenient, so the range of the random variables

of interest is divided into a grid of equal-sized intervals.

132

5.4 Probability Distributions

Definition 5.1 (m-Dimensional Grid on S) Given a tuple of positive values

α = ⟨α1, . . . αm⟩, a grid Gα on S ⊆ Rm is a set of almost disjoint grid boxes such

that:

∀G=I1×···×Im∈G⟨α1,...αm⟩ ∀1≤i≤m ∃k∈Z Ii = [kαi, (k + 1)αi]

Each αi defines the spacing between two consecutive grid points on the ith dimension.

S is an m-dimensional box that defines the grid bounds.

The conditional probability for each grid box it obtained by computing the probability

of the conjunction of this box and the conditioning event. For this purpose we compute

an adequate joint box cover of the conditioning event.

Definition 5.2 (Grid Joint Box Cover) A joint box cover H� is a grid joint

box cover wrt a grid Gα iff every box in the cover is included in a single grid box of

Gα.

Algorithm 12 computes the conditional probability distribution of a random vector

Z = ⟨Xi1 , . . . , Xim⟩ given a PC event H. It outputs an m-dimensional array M of

probability enclosures and a box H that encloses the conditioning event H, defining

the region characterized by the distribution (line 16).

The algorithm is composed of four main steps:

1. Compute a grid Gα on H (lines 1 − 5). The grid bounding box H is computed

by reducing the initial search space D through constraint reasoning (cReasoning

is used on the constraints CH, during a predefined amount of time imposed by

stopT) and making the union hull of the boxes in the resulting outer box cover

(lines 1−2). The grid spacings α are based on H and on the number of partitions

for each dimension ⟨l1, . . . , lm⟩ (line 3). To ensure that H bounds are on the grid,

H is adequately inflated1 (lines 4 − 5). Time spent in this step should be very

1The implementation of such operation imposes that inflating does not go beyond the limits of
ΠZidx(D).

133

Chapter 5. Random Vectors

Algorithm 12: marginalDistribution(⟨⟨X,D,C⟩, f⟩, CH, Zidx, ε, δ, L)

Input: ⟨⟨X,D,C⟩, f⟩: PC; CH: set of constraints; Zidx = ⟨i1, . . . , im⟩: tuple of
variables indexes; ε, δ: double; L = ⟨l1, . . . , lm⟩: tuple of integers

Output: ⟨M,H⟩: pair with an m-dimensional matrix of intervals and an
m-box;

1 ⟨H� ,H�⟩ ←
cReasoning(⟨{D},∅⟩, CH, split2, innerd, eligibleε, orderW , stopT);

2 ∀1≤i≤n Hi ←
⊎

B∈H� Πi(B);

3 ∀1≤j≤m αj ← wid(Hij)/lj ;
4 ∀1≤j≤m

(
Ij ←

[
floor(inf(Hij)/αj), ceil(sup(Hij)/αj)

]
; Hij ← αjIj

)
;

5 HD ← H1 × · · · ×Hn; H ← ΠZidx
(HD);

6 ⟨H� ,H�⟩ ←
cReasoning(⟨{HD},∅⟩, CH, splitα, innerd, eligibleα, order↓, false);

7 ⟨H� ,H�⟩ ←
cReasoning(⟨H� ,H�⟩, CH, split2, innerd, eligibleε, orderP , stopδ);

8 ∀1≤k1≤wid(I1) . . . ∀1≤km≤wid(Im) M [k1] . . . [km]← [0]; P ← [0];

9 foreach (B ∈ H�) do
10 ∀1≤j≤m Bj ← Π⟨ij⟩(B);

11 ∀1≤j≤m kj ← ceil(sup(Bj)/αj)− inf(Ij);
12 M [k1] . . . [km]←M [k1] . . . [km] + [PH](B);
13 P ← P + [PH](B);

14 end

15 ∀1≤k1≤wid(I1) . . . ∀1≤km≤wid(Im) M [k1] . . . [km]← M [k1]...[km]
P ;

16 return ⟨M,H⟩;

small and the computed boxes are discarded, although HD is given as input to

the next step.

2. Compute a grid joint box cover H� of H wrt Gα (line 6). Function cReasoning

is used over HD with a grid oriented parametrization, i.e., splitα splits the boxes

on grid points and eligibleα chooses boxes that are not completely inside a grid

box. The stop ≡ false implies that the algorithm only stops when there are no

more eligible boxes (see appendix A for details on splitα and eligibleα).

3. Refine the grid joint box cover with cReasoning until the required accuracy for

the total probability enclosure is achieved (imposed by stopδ) or every box is

already sufficiently small (imposed by eligibleε) (line 7).

4. Calculate the probability distribution for Z. For each grid dimension on H, the

134

5.4 Probability Distributions

number of grid units (stored in Is) defines the number of cells in the corresponding

array dimension, which are initialized to zero (line 8). For each box in the outer

cover, its corresponding array cell is identified (lines 10− 11) and its probability

contribution is added up to the value in that cell (line 12). The total probability

of the conditioning event is computed during this process (lines 8 and 13) and

used in the end to normalize the computed probabilities (line 15).

In practice, when computing marginal conditional distributions for each Xi and for

combinations of such random variables, algorithm 12 does not need to be called several

times (one for each intended marginal distribution). In fact, once computed the joint

box cover of event H, it can be used to compute any set of marginal distributions.

In some situations it is desirable to directly provide the grid spacings, α, instead of

computing them from the number of partitions for the grid. This is easily accomplished

by skipping step 1 above (and replace HD by D in line 6). Likewise, in some cases,

it is unnecessary, or even undesirable, to normalize the computed distribution, thus

skipping lines 13 and 15.

Example 5.6. Consider PC ⟨⟨X,D,C⟩, f⟩ where X = ⟨x, y⟩, D = [−π, π]× [−π, π],
f = e−

1
2 (x2+y2)

2π is a bi-normal distribution defined over Ω = Rn. Consider CH =

{x2y + y2x ≤ 0.5} ⊆ C and the corresponding PC event H.

Figure 5.7 presents the joint box covers for event H, obtained by algorithm 12 when ap-

plied to the above PC, CH and Z = ⟨X,Y ⟩: a) shows the result of step 1 for L = ⟨20, 20⟩
and time = 30ms; b) presents the result of step 2 for ⟨α1, α2⟩ = ⟨0.314159, 0.314159⟩;
and c) shows result of step 3 with δ = 0.01 and ε = 10−15.

Figures 5.8 (a) and (b) present the conditional probability distributions of, respectively,

⟨X,Y ⟩|H and X|H, computed by algorithm 12 from the final joint box cover shown in

figure 5.7 (c). In figure 5.8 (a), darker colors represent more likely regions.

5.4.1 Probability Distributions for Functions of Random Vectors

Given a probabilistic constraint space, we are also interested in the more general case

of computing nonparametric probability distributions of Y = ⟨Y1, . . . , Ym⟩ where each

135

Chapter 5. Random Vectors

(a) Initial joint box cover. (b) Grid joint box cover. (c) Final joint box cover.

Figure 5.7: Joint box covers produced when computing probability distributions.

(a) Distribution of ⟨X,Y ⟩|H

Α

Π-Π

(b) Distribution of X|H

Figure 5.8: Marginal probability distributions.

Yi = gi(X) is as a function of X1 defined on the same probability space.

The approach to compute such probability distributions is very similar, in concept,

to the approach presented in the previous section, since a grid over the range of Y

is considered. Nevertheless, in the present case, two distinct spaces exist: (a) the

n-dimensional box D, over which the conditioning event H is defined, and (b) the

m-dimensional box DY which is the range of Y over D. In fact we deal with n +m-

dimensional virtual boxes B × [g1](B)× · · · × [gm](B).

Space D is subject to constraint reasoning to obtain joint box covers of the conditioning

1See property 3.10.

136

5.4 Probability Distributions

event. Moreover space DY is computed from space D using the corresponding inclusion

functions, [gi], and every joint box cover in space D has a corresponding set of boxes

in space DY (that is not necessarily almost disjoint).

Hence there is no direct manipulation of space DY through constraint reasoning and

no grid will be imposed, directly, over such space. This is problematic since it may

bias the computation of probability distributions. Therefore this effect is minimized by

choosing boxes of the joint box cover in space D whose corresponding box in DY is not

completely inside a grid box and, indirectly, obtain a set of boxes in space DY , where

each box is contained in a single grid box of DY or is small enough to have a negligible

impact in the computed distribution.

Figure 5.9 illustrates the correspondence between boxes in space D and boxes in space

DY (in this case 1-dimensional boxes, i.e., intervals), for three boxes of a joint box cover

of event H. The random vector Y is defined as Y = ⟨g[X] = X1 +X2⟩. Considering

α = 0.5, only box B2 in space D originates a box in space DY that is inside a grid box.

The others originate boxes that span for more that one grid box.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Y = g(X) = X1 +X2

1
X2

X1

2

3

B1 = @0.4, 0.8D ´ [-0.8, 0]

B2 = @0.4, 0.6D ´ [0.6, 0.8]

B3 = @2.4, ΠD ´ [-0.8, 0]

[g](B1L = @-0.4, 0.8D

[g](B2L = @1, 1.4D

[g](B3L = @1.6, ΠD

321

Figure 5.9: Joint box cover of H (top) and correspondent joint box cover of Y (bottom).

137

Chapter 5. Random Vectors

Algorithm 13: marginalDistributionY (⟨⟨X,D,C⟩, f⟩, CH, G, ε, δ, L)

Input: ⟨⟨X,D,C⟩, f⟩: PC; CH: set of constraints; G = {[g1], . . . , [gm]}: set of
inclusion functions; ε, δ: double; L = ⟨l1, . . . , lm⟩: tuple of integers

Output: ⟨M,HY ⟩: pair with an m-dimensional array of intervals and a box;
1 ⟨H� ,H�⟩ ←
cReasoning(⟨{D},∅⟩, CH, split2, innerd, eligibleε, orderW , stopT);

2 ∀1≤i≤mHYi ←
⊎

B∈H� [gi](B); ∀1≤i≤nHi ←
⊎

B∈H� Πi(B);

3 ∀1≤i≤m αi ← wid(HYi)/li;
4 ∀1≤i≤m Ii ← [floor(inf(HYi)/αi), ceil(sup(HYi)/αi)];
5 HY ← α1I1 × · · · × αmIm; H ← H1 × · · · ×Hn;
6 ⟨H� ,H�⟩ ← cReasoning(⟨{H},∅⟩, CH, split2, innerα, eligibleε, orderP , stopδ);
7 ∀1≤k1≤wid(I1) . . . ∀1≤km≤wid(Im) M [k1] . . . [km]← [0]; P ← [0];

8 foreach (B ∈ H�) do
9 ∀1≤i≤mBi ← [gi](B);

10 ∀1≤i≤m Ji ← [(floor(inf(Bi)/αi)− inf(Ii))+ 1, ceil(sup(Bi)/αi)− inf(Ii)];
11 indexSet = {⟨j1, . . . , jm⟩ : ∀1≤i≤m ji ∈ Ji ∧ ji ∈ N};
12 foreach (⟨j1, . . . , jm⟩ ∈ indexSet) do
13 M [j1] . . . [jm]←M [j1] . . . [jm] + [PH](B);
14 end
15 if (innerd(B,CH)) then P ← P + [P](B) else P ← P + [PH](B);

16 end

17 ∀1≤k1≤wid(I1) . . . ∀1≤km≤wid(Im) M [k1] . . . [km]← M [k1]...[km]
P ;

18 return ⟨M,HY ⟩;

To compute the probability distribution of a random vector Y , an algorithm similar to

algorithm 12 is developed, with the necessary adaptations to incorporate the differences.

Besides replacing parameter Zidx by a set of inclusion functions (one for each Yj), the

four steps are adapted as follows:

1. The grid Gα is now computed on space DY . So, the grid bounding box HY =

[g1](H) × · · · × [gm](H) is computed from the boxes in the outer box cover of

the first call to cReasoning, by applying the corresponding inclusion functions to

each box and then considering their union hull (lines 1− 5).

2. Since there is no point in computing a grid joint box cover of H (the grid will not

be in space D), this step is discarded.

3. This step computes a grid joint box cover with cReasoning until the required

accuracy for the total probability enclosure is achieved (imposed by stopδ) or every

138

5.4 Probability Distributions

box is already sufficiently small (imposed by eligibleε) (line 7). The boxes are

considered inner boxes if they satisfy the constraints CH and their corresponding

box in space DY is inside a single grid box (imposed by the innerα predicate

described in appendix A). This extra condition is important as it makes such

boxes good candidates for processing (by assigning them a probability enclosure

with a large width) and, eventually, transform their descendants into inner boxes

or small enough such that their contribution is negligible and does not bias the

probability distribution.

4. This step calculates the probability distribution for Y . The main difference is

that each relevant box in DY (computed on line 9) can span for more than one

grid box. So, more than one corresponding array cell can be identified (lines

10− 11) and the box probability contribution is added up to the values in those

cells (lines 12 − 14). Notice that, when computing the total probability of the

conditioning event (line 15), boxes are considered inner boxes when they satisfy

the innerd predicate (wrt the constraints CH) and the corresponding probability

enclosure is added up.

Example 5.7. Consider PC and data of example 5.6. Figure 5.10 presents the result

of algorithm 13 when applied to the referred PC, CH and G = {[g](⟨X,Y ⟩) = X + Y },
L = ⟨20⟩, time = 30ms, δ = 0.2 and ε = 10−15: a) shows the final joint box cover of

event H; b) shows the obtained distribution of Y1 = X + Y .

Marginal probability distributions of a random vector that mixes random variables of

X with functions over that random vector (i.e., g1[X], . . . , gn[X]) can also be computed

by creating a more generic algorithm that combines algorithms 12 and 13. In this case

special care must be taken when classifying inner boxes after line 6 of algorithm 12.

Before the next call to cReasoning, H� must be recomputed to include exclusively

those boxes that satisfy the predicate innerα.

139

Chapter 5. Random Vectors

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(a) Final joint box cover.

-2Π 2Π

(b) Distribution of X + Y .

Figure 5.10: Joint box cover and distribution produced by algorithm 13.

5.5 Alternative Approximate Computations

Instead of using the safe integration method provided by the Taylor model based in-

tegration, Monte Carlo integration can be used as an alternative approach to compute

approximate enclosures for unconditional or conditional expected values and variances

and approximate probability distributions.

From the generic definition 4.9, an approximate enclosure [̂I](H� , h) for [I](H� , h) in

property 4.3 can be achieved by replacing [IH](h,B) by its approximate Monte Carlo

enclosure [̂IH](h,B).

Using such approximate enclosure, [̂I](H� , ·), in property 5.2 and, subsequently in

property 5.3, originates the corresponding approximate Monte Carlo enclosures for the

expected value, [̂E](Y ,H� , ·), and covariance matrix, [̂Σ](Y ,H� , ·), of a random vector.

Likewise, replacing [I](H� , ·) and [P](H� , ·) by their approximate counterparts in prop-

erty 5.5 and, subsequently, in property 5.6, we obtain the approximate Monte Carlo

enclosures for the conditional expected value [̂E][Y , ·|H�] and for the conditional co-

variance matrix, [̂Σ][Y , ·|H�].

In algorithms 10, 11, 13 and 13 (and its auxiliary functions) both in the pseudo code

and in the cReasoning parametrization, the considered enclosures can be replaced by

the corresponding approximate Monte Carlo enclosures trading computational speed

with a potential loss of correctness.

140

5.6 Experimental Results

5.6 Experimental Results

In this section we present the results of applying the algorithms proposed in the previous

section to a set of events. Two versions of the algorithms, implemented over RealPaver

1.0, are considered in the experiments: PCTM uses the validated quadrature method

based on Taylor models and provides safe enclosures of the computed quantities; PCMC

uses Monte Carlo integration and provides estimates for the computed quantities. All

the experiments were performed on an Intel Core Duo at 1.83 GHz with 1 GB of RAM.

5.6.1 The PC Events

Consider the CCSP CP where X = ⟨x, y⟩, D = [−π, π] × [−π, π] and C = {Ci : i ∈
{1, 6, 7, 11, . . . , 18}}1, compactly defined in Table 5.7. Consider two PCs, ⟨CP, f1⟩ and
⟨CP, f2⟩, where f1 is the bi-normal distribution (figure 5.11 (a)) defined over Ω1 = R2

and f2 is a custom distribution defined over Ω2 = D (figure 5.11 (b)). Consider the

events Hi (shown in figure 5.12), whose associated subset of constraints is defined in

the last column of table 5.7.

We can observe that PDF f1 has axial symmetry wrt axis z, while f2 has not. Moreover

events H1, H5 and H7 have reflection symmetry: H1 wrt to the diagonal axis x = y;

H5 wrt to axis x, y and the diagonal axis x = y and x = −y; and H7 wrt to axis y.

(a) f1 = e
− 1

2
(x2+y2)

2π
(b) f2 = 1+cos(x2+y)

4π2

Figure 5.11: Probability density functions used for testing.

1The event indexes were maintained from chapter 4.

141

Chapter 5. Random Vectors

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(a) H1

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b) H5

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(c) H7

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(d) H9

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(e) H10

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(f) H11

Figure 5.12: Events used for testing.

5.6.2 Probabilistic Enclosures

Tables 5.8 and 5.9 show the results of applying both versions of algorithm 6 (in chapter

4) to the events H9, H10 and H11 resulting from restricting the values of random

variable X and Y , respectively, to the boxes [−2, 2] × [−2, 2], [−π, 0] × [−π, π] and
[0, π]× [0, π], with PDF f1 (table 5.8) and PDF f2 (table 5.9). The PCTM version of

the algorithm was parameterized with ε = 10−15, δ = 0.001 and a Taylor model order

of 2 and the PCMC version with ε = 10−15, δ = 0.005 and N = 100 random sample

points.

The first two columns refer to the PCTM version results: the enclosure for the proba-

bility of the event, [P (H)], and the CPU time, in milliseconds, to compute it. The last

three columns refer to the PCMC version results: the numerical approximate probabil-

ity of the event, P̂ (H), the CPU time, in milliseconds, to compute it and a lower bound

E for the relative error of P̂ (H) based on the safe enclosure [P (H)], as in formula 4.9.

142

5.6 Experimental Results

C1 x2y + y2x ≤ 0.5 CH1 = {C1}

C6, C7 10cos(5x)2 + 10cos(5y)2 ≤ (x2 + y2)2, x2 + y2 ≤ 4 CH5 = {C6, C7}

C10, C11 1 ≤ cos(x)(ecos(y) − cos(x)− sin(y))5 ≤ 6 CH7 = {C10, C11}

C12, . . . , C15 −2 ≤ x ≤ 2, −2 ≤ y ≤ 2 CH9 = {C12, . . . , C15}

C16 x ≤ 0 CH10 = {C16}

C17, C18 0 ≤ x, 0 ≤ y CH11 = {C17, C18}

Table 5.7: Definition of constraints and events.

PCTM PCMC

H [P (H)] T (ms) P̂ (H) T (ms) E (%)

H9 [0.9105,0.9115] 180 0.9110 1740 0

H10 [0.4978,0.4988] 130 0.4982 570 0

H11 [0.2486,0.2496] 50 0.2490 80 0

Table 5.8: Probability enclosures for events Hi with PDF f1, obtained with both versions
of algorithm 6 and respective timings.

PCTM PCMC

H [P (H)] T (ms) P̂ (H) T (ms) E (%)

H9 [0.4472,0.4482] 120 0.4478 560 0

H10 [0.4995,0.5004] 310 0.5000 1740 0

H11 [0.2103,0.2113] 100 0.2108 260 0

Table 5.9: Probability enclosures for events Hi with PDF f2, obtained with both versions
of algorithm 6 and respective timings.

143

Chapter 5. Random Vectors

The expected value of Z = ⟨X,Y ⟩ and its covariance matrix, when the joint PDF of

Z is f2, computed by the PCTM version of algorithm 10, with parameters ε = 10−15,

δ = 0.001 and a Taylor model order of 2, are:

E[Z] ∈ ⟨[−0.0013, 0.0013], [−0.2471,−0.2447]⟩

Σ[Z] ∈
[

[3.2846, 3.2951] [−0.0030, 0.0030]
[−0.0030, 0.0030] [2.8643, 2.8741]

]

and for the PCMC version, with parameters ε = 10−15, δ = 0.005 and N = 100 random

sample points, are:

Ê[Z] = ⟨−0.00004,−0.2460⟩

Σ̂[Z] =

[
3.2899 0.00005
0.00005 2.8692

]

5.6.3 Probability Distributions

The figures for the probability distributions presented in this subsection are based

on the midpoints of the interval enclosures for the grid boxes probabilities returned

by algorithms 12 and 13 in array M . Due to the similarity of the results obtained

with both versions of the algorithms, only those obtained with the PCTM version are

presented here.

Figures 5.13 and 5.14 show the distributions of Z = ⟨X,Y ⟩ conditioned by H1, H5

and H7, computed by algorithm 12 for, respectively, ⟨CP, f1⟩ and ⟨CP, f2⟩ with L =

⟨200, 200⟩ and T = 30 ms (for step 1) and ε = 10−15 and δ = 0.001 (for step 3) and a

Taylor order of 2. In figure 5.13, darker colors represent more likely regions. Figures

5.15 and 5.16 show marginal distributions of X and Y for, respectively, ⟨CP, f1⟩ and

⟨CP, f2⟩ with the same parameters. The time spent to compute the joint box covers

to obtain the presented distributions was less than 1 minute for all events and both

PDFs.

Due to the symmetry characteristics of events H1 andH5 and PDF f1, the distributions

for Y |H1 and for Y |H5 (not shown in figure 5.15) are equivalent, respectively, to those

for X|H1 and for X|H5.

144

5.6 Experimental Results

(a) Distribution of Z|H1 (b) Distribution of Z|H5 (c) Distribution of Z|H7

Figure 5.13: Probability distributions of Z = ⟨X,Y ⟩ conditioned by events Hi obtained
with algorithm 12 with PDF f1.

(a) Distribution of Z|H1 (b) Distribution of Z|H5 (c) Distribution of Z|H7

Figure 5.14: Probability distributions of Z = ⟨X,Y ⟩ conditioned by events Hi obtained
with algorithm 12 with PDF f2.

145

Chapter 5. Random Vectors

-3 -2 -1 0 1 2 3

(a) Distribution of X|H1

-2 -1 0 1 2

(b) Distribution of X|H5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

(c) Distribution of X|H7

-2.0 -1.5 -1.0 -0.5 0.0 0.5

(d) Distribution of Y |H7

Figure 5.15: Marginal probability distributions of X and Y conditioned by events Hi

obtained with algorithm 12 with PDF f1.

-2 -1 0 1 2

(a) Distribution of X|H5

-2 -1 0 1 2

(b) Distribution of Y |H5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

(c) Distribution of X|H7

-2.0 -1.5 -1.0 -0.5 0.0 0.5

(d) Distribution of Y |H7

Figure 5.16: Marginal probability distributions of X and Y conditioned by events Hi

obtained with algorithm 12 with PDF f2.

146

5.6 Experimental Results

-10 -5 0 5 10

(a) Distribution of (XY)|H1

-4 -2 0 2 4

(b) Distribution of (XY)|H5

-4 -2 0 2 4

(c) Distribution of (XY)|H7

0 2 4 6 8 10

(d) Distribution of (XY)|H11

Figure 5.17: Probability distributions of XY conditioned by PC events obtained with
algorithm 12 with PDF f1.

Figures 5.17 and 5.18 show the distributions of ⟨XY ⟩ conditioned by events H1, H5,

H7 and H11, computed by algorithm 13 for, respectively, ⟨CP, f1⟩ and ⟨CP, f2⟩ with
L = ⟨100⟩ and T = 30 ms (for step 1) and ε = 10−15 and δ = 0.01 (for step 3) and a

Taylor order of 2.

Figures 5.19 and 5.20 show the distributions of ⟨X+Y ⟩, ⟨XY ⟩, ⟨X2+Y 2⟩ andX/(Y +4)

conditioned by event D, computed by algorithm 13 for, respectively, ⟨CP, f1⟩ and

⟨CP, f2⟩ with the same parametrization as above, except for δ = 0.05. As expected,

the sum of two normally distributed random variables has a normal shaped distribution

(figure 5.19 (a)).

The impact of the conditioning events H1, H5 and H7 on the distribution of XY

(figures 5.17 and 5.18) when compared with the unconditional case (i.e., conditioned

only by D, in figures 5.19 (b) and 5.20 (b)) is more noticeable for events H5 and H7,

since the region missed by event H1 has a small contribution to the overall probability.

Finally, figure 5.21 presents the distributions of ⟨X + Y,X⟩ conditioned by event D,

computed by the algorithm that combines algorithms 12 and 13, for ⟨CP, f2⟩ with the

same parametrization as above.

147

Chapter 5. Random Vectors

-10 -5 0 5 10

(a) Distribution of (XY)|H1

-4 -2 0 2 4

(b) Distribution of (XY)|H5

-4 -2 0 2 4

(c) Distribution of (XY)|H7

0 2 4 6 8 10

(d) Distribution of (XY)|H11

Figure 5.18: Probability distributions of XY conditioned by PC events obtained with
algorithm 12 with PDF f2.

-6 -4 -2 0 2 4 6

(a) Distribution of (X + Y)|D
-10 -5 0 5 10

(b) Distribution of (XY)|D

0 5 10 15 20

(c) Distribution of (X2 + Y 2)|D
-3 -2 -1 0 1 2 3

(d) Distribution of (X/(Y + 4))|D

Figure 5.19: Probability distributions conditioned by D obtained with algorithm 12 with
PDF f1.

148

5.6 Experimental Results

-6 -4 -2 0 2 4 6

(a) Distribution of (X + Y)|D
-10 -5 0 5 10

(b) Distribution of (XY)|D

0 5 10 15 20

(c) Distribution of (X2 + Y 2)|D
-3 -2 -1 0 1 2 3

(d) Distribution of (X/(Y + 4))|D

Figure 5.20: Probability distributions conditioned by D obtained with algorithm 12 with
PDF f2.

Figure 5.21: Probability distribution of ⟨X + Y,X⟩|D with PDF f2.

149

Chapter 5. Random Vectors

PCTM PCMC

H xi [E[xi|H]] [V ar[xi|H]] Ê[xi|H] V̂ ar[xi|H]

H1 x [-0.1305,-0.1292] [0.7818,0.7849] -0.1299 0.7836

y [-0.1305,-0.1292] [0.7818,0.7849] -0.1297 0.7836

H5 x [-0.0046, 0.0046] [1.3815,1.4065] -0.0005 1.3912

y [-0.0046, 0.0046] [1.3815,1.4065] -0.0013 1.3934

H7 x [-0.0035, 0.0035] [0.6271,0.6404] 0.0098 0.6396

y [-0.3526,-0.3443] [0.8380,0.8578] -0.3535 0.8525

Table 5.10: Expected values and variances conditioned by events Hi obtained by PCTM
and PCMC versions, with PDF f1.

H Z [E[Z|H]] [V ar[v|H]] [Cov(X,Y)]

H1 X [-0.3856, -0.3821] [2.7446, 2.7581] [-0.2166, -0.2078]

Y [-0.6153, -0.6117] [2.0964, 2.1092]

H5 X [-0.0084, 0.0084] [1.0592, 1.0989] [-0.0138, 0.01378]

Y [-0.6793, -0.6470] [1.3513, 1.4401]

H7 X [-0.0058, 0.0058] [0.8626, 0.8869] [-0.0121, 0.0121]

Y [-1.0121, -0.9885] [0.7694, 0.8308]

Table 5.11: Enclosures for expected values and covariances conditioned by events Hi

obtained with PCTM version, with PDF f2.

5.6.4 Conditional Probabilistic Enclosures

The joint box covers produced in the experiments of the previous section (to compute

conditional probability distributions of Z = ⟨X,Y ⟩ given events H1, H5 and H7 with

the PCTM version of algorithm 12) were used to compute conditional expected values

and variances of X and Y . Those values, as well as the ones obtained with the PCMC

version of the algorithm, are shown in table 5.10 for PDF f1 and in tables 5.11 and 5.12

for PDF f2. All approximations computed by the PCMC version have an very small

error percentage (almost always 0%) when compared with the enclosures computed by

the PCTM version. Time spent to compute the moments, after the computation of the

joint box covers, was less than 15 seconds in the PCTM version, while in the PCMC

version was less than 5 seconds, for all events and both PDFs.

150

5.7 Summary

H Z Ê[Z|H] V̂ ar[Z|H] [Ĉov(X,Y)]

H1 X -0.3831 2.7513 -0.2113

Y -0.6138 2.1017

H5 X -0.0040 1.0782 0.0021

Y -0.6619 1.3951

H7 X -0.0036 0.8770 0.0048

Y -0.9963 0.8018

Table 5.12: Approximations for expected values and covariances conditioned by events
Hi obtained with PCMC version, with PDF f2.

5.7 Summary

The main focus of this chapter was on probabilistic features of random vectors within

a probabilistic continuous constraint space. It presented methods to compute safe and

approximate enclosures for probabilities (conditional or not) of random vectors when

restricted to a range of values, as well as for unconditional and conditional expected

values and covariance matrices of random vectors. It also presented methods to compute

probability distributions of a subset of the identity random vector and of random vectors

defined as functions of the former. Experimental results illustrated the capabilities of

the proposed algorithms.

The third part of the dissertation presents the application of the proposed framework to

decision problems, showing how they can be cast as probabilistic continuous constraint

spaces and using methods proposed in part II to solve them. Comparisons are made

with the classical techniques to solve that kind of problems. In particular, the next

chapter focuses on nonlinear inverse problems.

151

Chapter 5. Random Vectors

152

Part III

Application to Decision Problems

Chapter 6

Nonlinear Inverse Problems

Many problems of practical interest can be formulated as nonlinear inverse problems

[112]. Such problems aim at finding the parameters of a model, given by systems of

equations, from noisy data. These are typically ill-posed problems that may have no

exact solutions, multiple solutions or unstable solutions.

Classical approaches for these problems are based on nonlinear regression methods [11]

which search for the model parameter values that best-fit a given criterion. Best-fit

approaches, often based on local search methods, provide single scenarios that may be

inadequate to the characterization of the parameters.

In contrast, continuous constraint programming provides a framework to characterize

the set of all scenarios consistent with the constraints of a problem given the uncer-

tainty on its parameters. This is achieved through constraint reasoning, where initial

intervals, representing the uncertainty on parameter values, are safely narrowed by re-

liable interval methods. Nevertheless, the application of classical constraint approaches

to nonlinear inverse problems [53, 68] suffer from a major pitfall of considering the same

likelihood for all values in the intervals.

In this chapter we show how the probabilistic constraint (PC) framework can be used

as an effective tool for dealing with nonlinear inverse problems and we illustrate its

main features in three application problems. The first two problems, a model for the

propagation of seismic waves and a model for the population growth, are drawn from

the literature on inverse problems and illustrate how the PC framework can deal with

nonlinear inverse problems, in general. The last problem is more complex, addressing

155

Chapter 6. Nonlinear Inverse Problems

ocean color inversion, and is intended to show that the PC framework can be used in

real world applications.

6.1 Inverse Problems

Inverse problems aim to estimate parameters from observed data based on a model

of the system behavior. The model variables are divided into model parameters,

m = (m1, . . . ,mn), whose values completely characterize the system and observable

parameters, o = (o1, . . . , ok), that can be measured. The model is typically a forward

mapping g from the model parameters to the observable parameters and allows to

predict the results of measurements based on the model parameters.

o = g(m) (6.1)

In the inverse theory literature several authors use the term inverse problem to refer

exclusively to continuous inverse problems, i.e. inverse problems where the observations

and/or the parameters are described by functions. Nevertheless, other authors (see, for

example, [88, 112]) classify inverse problems depending on the way the parameters and

observations are described. If both are discrete, i.e., described by a vector of values,

they are discrete inverse problems or parameter estimation problems. These are the

problems we consider in the present work and we simply call them inverse problems.

Uncertainty arises from measurement errors on the observed data or approximations in

the model specification. When the model equations g are nonlinear, the problem is a

nonlinear inverse problem. Nonlinearity and uncertainty play a major role in modeling

the behavior of most real systems.

Nonlinear inverse problems are typically ill-posed problems: they may have no exact

solutions (no combination of parameter values is capable of exactly predicting all the

observed data), solutions are not necessarily unique (different combinations of parame-

ter values may lead to the same observable values) and the stability of solutions is not

guaranteed (small changes in the observed data may result in arbitrarily large changes

in the model parameters).

156

6.2 Classical Techniques

6.2 Classical Techniques

In [88] Menke states that there are many different points of view regarding what consti-

tutes a solution to an inverse problem. He also presents some possible forms an answer

to an inverse problem might take such as estimates, bounding values and probability

distributions of the model parameters. In this section we cover methods for these three

approaches to inverse problems: nonlinear regression methods provide an estimate of

the model parameters; bounded error estimation gives guaranteed bounding values for

the model parameters; and other stochastic approaches provide a posteriori probability

distributions of the model parameters.

Classical approaches for addressing nonlinear inverse problems are based on nonlinear

regression methods [11] which search for the model parameter values that best-fit a

given criterion. A regression model specifies a dependent variable y by a function of

one or more independent variables x1 and model parameters m:

y ≈ f(x,m) (6.2)

If a set of k observations of the system is known {⟨xi, yi⟩} and a random error εi

is assumed to represent the measurement error around the observed quantity yi, the

regression model becomes:

yi = f(xi,m) + εi, 1 ≤ i ≤ k (6.3)

Equations (6.1) and (6.3) are similar if we consider oi = yi and gi(m) = f(xi,m),

except that the error term εi appears explicit in (6.3). Based on several assumptions

on the distribution of the errors εi, nonlinear regression methods search for the model

parameter values that minimize a suitable criterion. Moreover, with additional assump-

tions on the regression model, adequate analytic techniques may be used to characterize

the uncertainty around the obtained parameter values.

1To simplify the notation we assume a single independent variable x. In the case of multiple
independent variables, x should be replaced by a vector of variables x.

157

Chapter 6. Nonlinear Inverse Problems

For instance, the least squares criterion minimizes a quadratic norm of the difference

between the vector of observed data and the vector of model predictions:

k∑
i=1

(yi − f(xi,m))2 =

k∑
i=1

ε2i , 1 ≤ i ≤ k (6.4)

If errors εi are independent and normally distributed with zero mean and constant vari-

ance, then the least squares estimator is the maximum likelihood estimator (estimates

values of the model parameters that produce a distribution that gives the observed

data the greatest probability). Additionally, if f is linear with respect to the model

parameters, then the values of the parameters given the observed data are necessarily

normally distributed and confidence regions can be analytically computed.

An alternative constraint approach is known as bounded-error estimation or set mem-

bership estimation [53, 68]. The idea is to replace the search for a single best-fit

solution with the characterization of the set of all solutions consistent with acceptable

measurement errors around the observations. Bounded-error estimation assumes reli-

able bounds for each measurement error εi, namely ai ≤ εi ≤ bi, and applies constraint

solving techniques to compute the feasible space of:

yi − bi ≤ f(xi,m) ≤ yi − ai, 1 ≤ i ≤ k (6.5)

A safe enclosure of the feasible space provides insight on the remaining uncertainty

about the model parameter values. However this approach has the major pitfall of

considering the same likelihood for all consistent solutions.

Consider the example illustrated in figure 6.1 (a) of a simple linear regression model

yi = mx + εi with a single parameter m and 2 observations ⟨x1, y1⟩ = ⟨1, 1⟩ and
⟨x2, y2⟩ = ⟨2, 3⟩. The measurement errors ε1 and ε2 are assumed to be independent

and normally distributed with zero mean and standard deviation σ = 1/3. From the

different possible values for parameter m the least squares method computes m∗ = 1.4

that maximizes the likelihood of the observed data (solid line). For a given value

of parameter m the likelihood of each observed data is the probability of making a

measurement error with a magnitude equal to the difference between the observed and

158

6.2 Classical Techniques

the predicted values (as illustrated in the figure for m∗). Since measurement errors are

assumed independent the overall likelihood of the observed data is the product of such

probabilities.

m� 1.0

m� 1.4

m� 1.5

m� 2.0

Hx1,o1L

Hx2,o2L

N Ho1,Σ1L N Ho2,Σ2L

m� 0.5

m� 2.5

0.5 1.0 1.5 2.0
x

1

2

3

4

5

y� m x

(a) least squares

m� 1.0

m� 1.5

m� 2.0

Hx1,o1L

Hx2,o2L

@o1±Ε1D

@o2±Ε2D

m� 0.5

m� 2.5

0.5 1.0 1.5 2.0
x

1

2

3

4

5

y� m x

(b) bounded-error

Figure 6.1: Least squares approaches a) search for a single best-fit solution that maximize
the likelihood of the observations. Bounded-error approaches b) compute a set of solutions
consistent with the observations.

Figure 6.1 (b) illustrates the bounded-error approach for the same problem. Assuming

acceptable measurement errors between ±1 around the observed values (±3σ in the

previous approach) only some m-values (corresponding to all the lines that cross both

vertical segments) are consistent with the model and the observations. The result of

the bounded-error estimation is that m ∈ [1, 2] without providing any specification of

the values distribution.

Figure 6.2 (a) illustrates the probability distribution of the parameter values given

the observed data and the regression model of the previous example. Each straight

line concerns a single observation ⟨xi, yi⟩ and represents the measurement error εi as

a function of the parameter value m (these are straight lines because the model is

linear with respect to m). The dashed curve in the upper graphic represents the

least squares criterion (square root) as a function of the parameter value m. Clearly,

such function has a single minimum, which in this case is at m = 1.4. The right

hand side of the upper graphic shows the measurement error distribution (equal for

each measurement). The solid curves in the lower graphic represent the probability

distribution of the parameter values given each observation. They are obtained by

computing to each m-value the ε-value of the respective line and then assigning the

probability of such error (informally: go straight vertical up to the respective line and

159

Chapter 6. Nonlinear Inverse Problems

then straight right to get the probability value in the upper right graphic). After

normalization, the obtained curves are necessarily normal distributions since the slopes

of the straight lines determine the mean and the variance of the distribution but cannot

reshape the error distributions into non normal distributions. The dashed curve in the

lower graphic represents the probability distribution of the parameter values given

all the observations and is obtained by pointwise multiplication of the solid curves

(and posterior normalization). Clearly, it must be also a normal distribution and,

as expected, its mean value is exactly the m-value that minimizes the least squares

criterion.

Ε1 � o1 -m x1

Ε2 � o2 -m x2

Ε1
2
+ Ε2

2

-1 1 2 3
m

-2

-1

1

2

Ε

pHΕiL

-2

-1

0

1

2

NH0,ΣL

pHm Ε1 � o1 -m x1L

pHm Ε2 � o2 -m x2L

pHm Ε1 � o1 -m x1 , Ε2 � o2 -m x2L

-1 0 1 2 3
m

(a) least squares

Ε1 � o1 -m x1

Ε2 � o2 -m x2

-1 1 2 3
m

-2

-1

1

2

Ε

IΕ

-2

-1

0

1

2

I1

I2

I1Ý I2
Im

-1 0 1 2 3
m

(b) bounded-error

Figure 6.2: In linear problems, least squares approaches a) compute the mean value of the
distribution of the parameter values given the observed data. Bounded-error approaches
b) compute an interval that includes all m-values consistent with the observations.

Figure 6.2 (b) is similar to figure 6.2 (a) but instead of considering probability distri-

butions for the measurement errors only reliable bounds are assumed. In this case, the

results are no longer normal probability distributions but single intervals representing

all possible parameter values consistent with the observations.

As seen in the previous figures, least squares approaches may be adequate for char-

160

6.2 Classical Techniques

acterizing the uncertainty on the model parameters given the observations. This is

the case for linear and some weakly nonlinear problems, where efficient computational

techniques exist to solve them as curve fitting problems.

However, in generic nonlinear problems, best-fit approaches may be inadequate for

several reasons. Due to nonlinearity, the minimization function may have multiple

local and global minima. Without an explicit formula for obtaining the best-fit values,

minimization is usually performed through local search algorithms. If such algorithms

converge to local minima, the solution obtained is no longer a maximum likelihood

solution (there are solutions more likely than these provided by the method). Even

when a maximum likelihood solution is found, the probability distribution of the model

parameters given the observations may not be realistically approximated by a normal

distribution and so the computation of any confidence regions based on such assumption

will be inadequate.

Consider the previous example but now with the nonlinear regression model yi = (m−
1)2x+ εi, as shown in figure 6.3. Note that the model is linear with respect to x, and

so, each m-value determines a straight line similar to those in figure 6.1 (the difference

is that a line with slope s is obtained now with m = 1 ±
√
s). In particular, if in the

previous case the best-fit value was m∗ = 1.4 now it must be m∗ = 1±
√
1.4.

Figure 6.3 (a) is analogous to figure 6.2 (a) with the model replaced by the above

nonlinear regression model. Now, each curve representing the measurement error εi as

a function of the parameter value m, induces a bimodal probability distribution for the

parameter values. Consequently, the probability distribution of the parameter values

given the observations (dashed curve in the lower graphic) is far from being a normal

distribution. From the dashed curve in the upper graphic it is clear that there are

2 global minima (at maximum likelihood values m∗ = 1 ±
√
1.4). If a least squares

method is applied to this problem it will eventually converge to one of these minimums

and any inferences about confidence regions would be based on the assumption that

such minimum is the mean value of a normal distribution for the parameter values

which is completely wrong in this case. Note that this would not be the case if the

domain of m is restricted to [2, 3] since in this region the curves in the upper graphic

can be reasonably approximated by straight lines and so, the resulting distributions are

nearly Gaussian.

161

Chapter 6. Nonlinear Inverse Problems

Ε1 � o1 - Hm- 1L2 x1

Ε2 � o2 - Hm- 1L2 x2

Ε1
2
+ Ε2

2

-1 1 2 3
m

-2

-1

1

2

3

Ε

pHΕiL

-2

-1

0

1

2

3

NH0,ΣL

pIm Ε1 � o1 - Hm- 1L2 x1M

pIm Ε2 � o2 - Hm- 1L2 x2M

pIm Ε1 � o1 - Hm- 1L2 x1 , Ε2 � o2 - Hm- 1L2 x2

-1 0 1 2 3
m

(a) least squares

Ε1 � o1 - Hm- 1L2 x1

Ε2 � o2 - Hm- 1L2 x2

-1 1 2 3
m

-2

-1

1

2

3

Ε

IΕ

-2

-1

0

1

2

3

I1

I3I2

I1Ý I2 I1Ý I3

-1 0 1 2 3
m

(b) bounded-error

Figure 6.3: In nonlinear problems, least squares approaches a) may provide wrong results
assuming the computed value to be the mean of a parameter normal distribution given the
observed data. Bounded-error approaches b) still provide reliable enclosures for all m-
values consistent with the observations.

Figure 6.3b) illustrates that the bounded-error approach is robust with respect to non-

linearity in the sense that consistent solutions are not lost and the resulting 2 enclosures

provide a reliable characterization of the consistent parameter values.

Other stochastic alternatives to deal with nonlinear problems that are inadequate to

best-fit approaches, associate an explicit probabilistic model to the problem [112]. In

these approaches, prior information on the model parameters is represented by a prob-

ability distribution, which is transformed into an a posteriori probability distribution,

by incorporating the forward model and the actual result of the observations (with

their uncertainties). They typically rely on extensive random (Monte Carlo) sampling

to characterize the a posteriori distributions of the parameter values (such as those

in figure 6.3a)). However, as explained in section 6.6.4, pure Monte Carlo techniques,

contrary to constraint approaches, cannot prune the sampling space based on model

information, and this may be a significative drawback, specially in nonlinear problems.

162

6.3 Probabilistic Constraint Approach

6.3 Probabilistic Constraint Approach

The PC approach extends the reliable constraint framework, robust to nonlinearity,

with a stochastic representation of the uncertainty on the parameters. Similarly to the

stochastic approaches it associates an explicit probabilistic model to the problem, and

similarly to error-bounded approaches it assumes reliable bounds for the measurement

errors.

To use the PC framework it is thus necessary to specify a joint probability density func-

tion on the parameters taking into account the knowledge about the forward model and

the observed data. For that purpose, we consider the joint PDF, pM ,E(m, ε), repre-

senting the initial knowledge about the parameter and measurement error distributions

without including the forward model and the observations. By conditioning it to the

event defined by the forward model instantiated with the observed data, we obtain the

desired joint PDF, as presented next.

Property 6.1 (Marginal Conditional PDF for the Parameters) Consider a

joint PDF, pM ,E(m, ε) for the multivariate random variables M and E that rep-

resent, respectively, the parameters and the measurement errors. The marginal

conditional PDF for the multivariate random variable M given the event H =

{⟨vm, vε1 , . . . , vεk⟩ ∈ Rn+k : ∀1≤i≤k vεi = yi − f(xi,vm)} is:

pM |H(m) = α pM ,E(m, y1 − f(x1,m), . . . , yk − f(xk,m))

where the xi and yi are constants and α is a normalization constant:

α = 1
/∫

Rn

pM ,E(m, y1 − f(x1,m), . . . , yk − f(xk,m))dm

Proof. For simplicity we consider a single observation ⟨x, y⟩ with measurement error

ε, but the proof can be extended to multiple observations, by considering a multiple

integral. The symbol
∫ vm

−∞n is a multiple integral (with n dimensions) where the ith

integral is between −∞ and the ith element from the n-tuple m. The function h(·)

denotes y − f(x, ·).

163

Chapter 6. Nonlinear Inverse Problems

Consider the CDF FM |H(m) such that pM |H(m) =
∂nFM|H

∂m (m). Let us expand the

CDF formula.

FM |H(m) = P (M ≤m|H) =
P ({M ≤m} ∩H)

P (H)

= lim
δ→0

∫ m

−∞n

∫ h(v)+δ

h(v)−δ
pM ,E(v, ε)dεdv∫

Rn

∫ h(v)+δ

h(v)−δ
pM ,E(v, ε)dεdv

By variable substitution ε = 2uδ + h(v)− δ and, consequently dε = 2δdu, we obtain

lim
δ→0

∫ m

−∞n

∫ 1

0
pM ,E(v, 2uδ + h(v)− δ)2δdudv∫

Rn

∫ 1

0
pM ,E(v, 2uδ + h(v)− δ)2δdudv

= lim
δ→0

2δ

∫ m

−∞n

∫ 1

0
pM ,E(v, 2uδ + h(v)− δ)dudv

2δ

∫
Rn

∫ 1

0
pM ,E(v, 2uδ + h(v)− δ)dudv

=

∫ m

−∞n

∫ 1

0
pM ,E(v, h(v))dudv∫

Rn

∫ 1

0
pM ,E(v, h(v))dudv

=

∫ m

−∞n

pM ,E(v, h(v))dv∫
Rn

pM ,E(v, h(v))dv

Making α = 1
/∫

Rn

pM ,E(v, h(v))dv, we get

FM |H(m) = α

∫ m

−∞n

pM ,E(v, h(v))dv

By derivation we obtain pM |H(m) =
∂nFM|H

∂m (m) = α pM ,E(m, h(m)) and thus prop-

erty 6.1 holds. �

We are now able to define how to model an inverse problem as a PC.

Definition 6.1 (Inverse Problem as a Probabilistic Constraint Space)

Consider an inverse problem with n model parameters m1, . . . ,mn whose range is

D ∈ IRn, k observations ⟨x1, y1⟩, . . . , ⟨xk, yk⟩ having measurement errors ε1, . . . , εk

164

6.3 Probabilistic Constraint Approach

with reliable bounds [ai, bi], 1 ≤ i ≤ k, a forward model defined by the equation

y = f(x,m1, . . . ,mn) and a marginal conditional PDF pM |H(·) for the model

parameters as defined in property 6.1. This inverse problem is modeled as a PC,

⟨⟨X,D,C⟩, p⟩, such that:

D ∈ IRn

X = ⟨m1, . . . ,mn⟩

C = {yi − bi ≤ f(xi,m1, . . . ,mn) ≤ yi − ai : 1 ≤ i ≤ k}1

p = pM |H(m) = α pM ,E(m, y1 − f(x1,m), . . . , yk − f(xk,m))

Together with the probabilistic model specified by the PDF, the PC approach considers

the same set of constraints (6.5) enforced in the error-bounded approaches. The reliable

bounds assumed for each measurement error may be tuned with their respective values

distribution. For instance, if a Gaussian error distribution is assumed with zero mean

and variance σ2, then enforcing values to be within [−3σ, 3σ] captures about 99.7%

of possibilities. In the limit, if all the error bounds are set to [−∞,+∞], the method

degenerates into a stochastic problem with no constraints to be enforced.2

When defining a joint PDF representing the parameter and measurement error distri-

butions without including the forward model and the observations, there might be no

reason to believe that some parameter values are more likely than others. Their joint

initial distributions are typically uniform3. Assuming that an error in one measurement

does not affect the error in any other measurement, without considering the forward

model, they can be naturally assumed independent and so, their joint initial distribu-

tions are the product of their individual distributions. With such assumptions, a joint

PDF for the parameters and measurement errors is:

pM ,E(m, ε1, . . . , εk) = αm

k∏
i=1

pi(εi)

1Notice that yi − bi ≤ f(xi,m1, . . . ,mn) ≤ yi − ai is an abbreviated way to represent the two
constraints whose relations are defined by: ρi1 = {d ∈ D : yi − bi − f(xi, d) ≤ 0} and ρi2 = {d ∈
D : f(xi, d)− yi + ai ≤ 0}.

2The PC framework still requires initial bounds for the parameter values.
3This is not mandatory and other distributions can be considered.

165

Chapter 6. Nonlinear Inverse Problems

where αm is a constant (resulting from the uniform parameter distributions) and pi is

the PDF assumed for the measurement error εi. Notice that measurement error distri-

butions may be non Gaussian but take any other form adequate to the instrumentation

used in the respective observation. In the limit, the method degenerates into an error-

bounded problem if all the measurement errors are considered uniform. Moreover, the

independence assumption can be dropped as long as a joint PDF is explicitly specified

as a function of the model parameters and the measurement errors.

Once established the PC ⟨⟨X,D,C⟩, p⟩ that represents the inverse problem, the PC

approach relies on probabilistic constraint programming to compute any probabilistic

information on the model parameters consistent with the experimental results. This

is done by computing conditional probabilistic information, conditioned by the event

H = F(⟨X,D,C⟩), the feasible space of the CCSP that models the inverse problem.

Given that conditioning is always used when computing probabilistic information as-

sociated with an inverse problem (e.g., marginal distributions for the parameters, ex-

pected values, covariance matrix) the PDF p can be used without the normalizing

constant α (see property 6.1), since it appears both on the numerator and denominator

of the computations and so it will cancel. Consequently α can be ignored without

changing the computed values.

Conditional distributions of model parameters are computed using algorithm 12 (section

5.4, page 134) where H is the conditioning event. The arguments for this algorithm

are: the PC that models the inverse problem; the constraints associated with the

conditioning event CH = C; and the indices of the model parameters for which the

conditional distribution will be computed, Zidx. The remaining arguments are defined

case by case: δ, which imposes the stopping criterion by defining the accuracy for the

probability enclosure, ε used in the eligibleε predicate, and L (or α) that defines the

number of partitions for the grid (or the grid spacings).

The PC associated with a given inverse problem can be easily extended to make predic-

tions on the outcomes of new measurements. For this purpose a random variable that

represents the new unknown observable parameter is defined as a function of the model

parameters, using the forward model, i.e., Yi = gi(m) = f(xi,m). Then algorithm 13

(section 5.4, page 138) is used to compute the conditional distribution of each Yi given

166

6.3 Probabilistic Constraint Approach

the event H. The arguments of the algorithm are similar to those previously described

(with G = {[f](xi,m)}).

The graphics for the probability distributions presented in the next sections are based

on the midpoints of the interval enclosures for the grid boxes probabilities returned by

algorithms 12 or 13 in array M .

In the case of the nonlinear example (figure 6.3) where the observations are ⟨x1, y1⟩ =
⟨1, 1⟩ and ⟨x2, y2⟩ = ⟨2, 3⟩, the probabilistic model would be:

p(m) = α× 1

σ
√
2π

e
−
1

2

(1− 1× (m− 1)2

σ

)2
1

σ
√
2π

e
−
1

2

(3− 2× (m− 1)2

σ

)2
and the constraints:

1− 3σ ≤ 1× (m− 1)2 ≤ 1 + 3σ

3− 3σ ≤ 2× (m− 1)2 ≤ 3 + 3σ

with σ = 1/3. Figure 6.4 illustrates the results obtained by the PC framework for

the probability distribution of the parameter m conditioned by the above constraints,

similar to the a posteriori distribution shown in figure 6.3 (a) (dashed line). Moreover,

the PC framework is able to guarantee that all possible m values must be within

the set [−0.4143, 0] ∪ [2, 2.4143], which agree with the results from the bounded error

approach shown in figure 6.3 (b) (dashed line). Additionally, the enclosures obtained

for the conditional expected value and variance are respectively [0.9999, 1.0001] and

[1.3938, 1.3939], which in face of the information provided in figure 6.4 are clearly not

representative of the parameter distribution.

0.0 0.5 1.0 1.5 2.0
m

Figure 6.4: Probability distribution of the parameter m obtained by the PC framework.

167

Chapter 6. Nonlinear Inverse Problems

6.4 Seismic Event Model

Consider the example of a nonlinear inverse problem extracted from [112]. The goal is

to estimate the epicentral coordinates of a seismic event. The seismic waves produced

have been recorded at a network of six seismic stations at different arrival times. Table

6.1 presents their coordinates and the observed arrival times.

(xi km, yi km) (3, 15) (3, 16) (4, 15) (4, 16) (5, 15) (5, 16)

ti s 3.12 3.26 2.98 3.12 2.84 2.98

Table 6.1: Arrival times (in seconds) of the seismic waves observed at six seismic stations.

Clearly, the model parameters are the epicentral coordinates (m1,m2) of the seismic

event, and the observable parameters are the six arrival times ti which are related by

a forward model with six equations (one for each seismic station i):

ti = fi(xi, yi,m1,m2) =
1

v

√
(xi −m1)

2 + (yi −m2)
2 (6.6)

It is assumed that: seismic waves travel at a constant velocity of v = 5km/s; mea-

surement errors on the arrival times are independent and are normally distributed

N(0, σ = 0.1) with reliable bounds within [−3σ, 3σ]; the two parameters have initial

ranges I1 and I2 and are uniformly distributed U(Ij , Ij), with 1 ≤ j ≤ 2.

The PDF p for the measurement errors is:

pi(εi) =
1

σ
√
2π

e
−
1

2

(εi
σ

)2

The joint PDF for the model parameters and measurement errors is:

pM ,E(m0,m1, ε1, . . . , ε6) = αm

6∏
i=1

pi(εi) (6.7)

where αm is a constant resulting from the uniform parameter distributions.

168

6.5 Population Growth Model

This inverse problem is modeled as a PC ⟨⟨X,D,C⟩, p⟩ where:

X = ⟨m1,m2⟩

D = I1 × I2

C =

{
ti − 3σ ≤ 1

v

√
(xi −m1)

2 + (yi −m2)
2 ≤ ti + 3σ : 1 ≤ i ≤ 6

}
p(m1,m2) = α

6∏
i=1

pi

(
ti −

1

v

√
(xi −m1)

2 + (yi −m2)
2

)
from property 6.1 and (6.7)

Figure 6.5 shows the conditional distribution of the model parameters, computed by al-

gorithm 12, with D = [−100, 100]×[−100, 100], δ = 0.01, grid spacings α = ⟨0.07, 0.07⟩,

Zidx = ⟨1, 2⟩ (i.e., Z = ⟨m1,m2⟩), ε = 10−15 and uses the validated quadrature method

with a Taylor model order of 2.

Besides identifying which combinations of m1 and m2 values are consistent, figure 6.5

illustrates its joint probability distribution, allowing to identify regions of maximum

likelihood (darker colors represent more likely regions). An external contour was added

to illustrate the safe enclosure of the feasible space obtained with classical constraint

reasoning. Clearly the most likely region is concentrated in a much smaller area.

Figure 6.6 presents conditional probability distributions for each of the model parame-

ters, m1 and m2, computed by algorithm 12, with a parametrization similar to the one

previously used, with (a) Z = ⟨m1⟩ and (b) Z = ⟨m2⟩.

To compute the maximum likelihood point as in classical best-fit approaches, the PC

framework can be embedded within an optimization algorithm that searches the maxi-

mum likelihood feasible point with guarantees of global optimality. For this example, it

can be easily proved that the maximum likelihood point is in [14.70, 14.77]× [4.65, 4.72].

6.5 Population Growth Model

Another example of an inverse problem with a simple nonlinear forward model is a

population growth model. Consider the data summarized in Table 6.2 based on the

USA census over the years 1790 (normalized to 0) to 1910 with a 10 year period.

169

Chapter 6. Nonlinear Inverse Problems

m

m1

2

Figure 6.5: Epicentral coordinates of the seismic event. Joint distribution.

ti 0 10 20 30 40 50 60 70 80 90 100 110 120

yi 3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 39.8 50.2 62.9 76.0 92.0

Table 6.2: US Population (in millions) over the years 1790 (0) to 1910 (120).

Assuming that an exponential growth is an acceptable model for the population growth,

the forward model is defined by the set of equations (one for each observation i):

yi = fi(ti,m1,m2) = m1e
m2ti

where m1 and m2 are the model parameters whose values must be estimated from the

observed data.

The measurement errors are assumed to have reliable bounds [−δi, δi], 1 ≤ i ≤ k, where

δi is an acceptable difference between the ith observation yi and the respective predicted

value. Moreover observations are assumed to be more likely near the predicted values

and this is modeled by a cosine distributions of the errors1 C(δi, 0) such that the PDFs

are

pi(εi) =
1

2δi

[
1 + cos

(
εi
δi
π

)]
, εi ∈ [−δi, δi]

1A Gaussian distribution was also used with similar results. Nevertheless this choice illustrates the
generality of the framework.

170

6.5 Population Growth Model

2 4 6 8 10 12 14 16 18
m 1

(a)

0 5 10 15 20 25
m2

(b)

Figure 6.6: Epicentral coordinates of the seismic event. Marginal distributions (a) for
m1 and (b) for m2.

The two parameters are assumed to have initial ranges I1 and I2 and to be uniformly

distributed U
(
Ij , Ij

)
, with 1 ≤ j ≤ 2.

Assuming independence in the error measurements, the joint PDF for the model pa-

rameters and measurement errors is:

pM ,E(m1,m2, ε1, . . . , ε13) = αm

13∏
i=1

pi(εi) (6.8)

where αm is a constant resulting from the uniform parameter distributions.

Applying bounded-error estimation to this inverse problem, it can be formulated as a

CCSP P = ⟨X,D,C⟩ such that:

P =
⟨
⟨m1,m2⟩, D = I1 × I2, {yi − δi ≤ m1e

m2ti ≤ yi + δi : 1 ≤ i ≤ 13}
⟩

(6.9)

In the following consider D = [0, 100] × [0.01, 0.1] and δi = 3 for all observations

presented in Table 6.2.

Figure 6.7 shows an enclosure of the feasible space that is computed by cReasoning

algorithm (algorithm 3) with arguments ⟨{D},∅⟩, the constraints of P , stop ≡ false,

order ≡ order↓ and the other parameters use their defaults with ε = 10−5 (see section

A.1, appendix A). From the figure, it is clear which combinations of the model param-

eter values are consistent with the initial uncertainty assumptions, the forward model

and the observations.

171

Chapter 6. Nonlinear Inverse Problems

m 1

m .10 2
3

Figure 6.7: Enclosure of the CCSP feasible space.

This inverse problem may be formulated as a PC with:

⟨X,D,C⟩ = P from (6.9)

p(m1,m2) = α
13∏
i=1

pi (yi −m1e
m2ti) from property 6.1 and (6.8)

Figure 6.8 shows conditional distributions computed by algorithm 12 with δ = 0.001,

grid spacings α = ⟨10−3, 10−6⟩ and ε = 10−15. For figures 6.8 (a) Z = ⟨m1,m2⟩, (b)
Z = ⟨m0⟩ and (c) Z = ⟨m1⟩ and so they present, respectively, the joint probability

distribution of the model parameters and their marginal distributions.

Besides identifying which value combinations of m1 and m2 are consistent, figure 6.8 (a)

illustrates their joint conditional probability distribution, allowing to identify regions

of maximum likelihood.

If instead of an exponential model, a logistic model is considered for the population

growth, then the forward model is defined by the set of equations:

yi = fi(ti,m1,m2,m3) =
m3

1 +m1e−m2ti

where m1, m2 and m3 are the model parameters, assumed to have initial ranges I1, I2

and I3 and to be uniformly distributed U
(
Ij , Ij

)
, with 1 ≤ j ≤ 3.

172

6.5 Population Growth Model

m1m .102
3

(a)

m 1

(b)

m .102
3

(c)

Figure 6.8: Exponential model. (a) Joint distribution; Marginal distributions (b) for m1

and (c) for m2.

Assuming independence in the error measurements, the joint PDF for the model pa-

rameters and measurement errors is now:

pM ,E(m1,m2,m3, ε1, . . . , ε13) = αm

13∏
i=1

pi(εi) (6.10)

where αm is a constant resulting from the uniform parameter distributions.

The formulation of this new inverse problem as a PC is given by:

X = ⟨m1,m2,m3⟩

D = I1 × I2 × I3

C =

{
yi − δi ≤

m3

1 +m1e−m2ti
≤ yi + δi : 1 ≤ i ≤ 13

}
p(m1,m2,m3) = α

13∏
i=1

pi

(
yi −

m3

1 +m1e−m2ti

)

Again we consider D = [10, 100]× [0.02, 0.05]× [100, 400] and δi = 3 for all observations

presented in Table 6.2.

Figure 6.9 shows conditional distributions computed by algorithm 12 with δ = 0.01, grid

spacings α = ⟨1, 10−4, 1⟩ and ε = 10−15. For figures 6.8 (a) Z = ⟨m1⟩, (b) Z = ⟨m2⟩
and (c) Z = ⟨m3⟩.

Figure 6.10 illustrates the predictions for the population size in 1920 (t14 = 130) in

173

Chapter 6. Nonlinear Inverse Problems

m .101
-1

(a)

m .102
3

(b)

m .103
-1

(c)

Figure 6.9: Logistic model. Marginal distributions (a) for m1, (b) for m2 and (c) for m3.

the previous problem with both, (a) the exponential model and (b) the logistic model.

This information was computed with algorithm 13, using a parametrization similar with

the ones described above (both for the exponential and logistic models) but with G =

{[g14](m) = m1e
m2t14} for the exponential model and G =

{
[g14](m) = m3

1+m1e−m2t14

}
1

for the logistic model.

Note that the real observed value for the population size in 1920 was 106.0 (not shown

in table 6.2) which is in good agreement with the predictions of the logistic model, but

outside the bounds predicted by the exponential model.

(b)

y14

(a)

y14

Figure 6.10: Expected US population in 1920. (a) Exponential and (b) logistic models.

An insight about the quality of a particular model for a specific inverse problem may

1In both cases, [g14] is the natural inclusion function for g14.

174

6.6 Ocean Color Inversion

be achieved by analyzing the maximum likelihood regions. The marginal conditional

distributions for the model parameters provide valuable information for inspecting the

quality of a particular model. Not only they allow easy identification of maximum

likelihood regions as peaks of such distributions, but also display the complete shape

of the uncertainty dispersion showing, for instance, if it is unimodal.

In the presented example, given the unimodality of the conditional distributions for

both models, a quantitative measure of their quality may be obtained by evaluat-

ing any numerical best-fit criterion at their maximum likelihood points. The boxes

that enclose such points for the exponential and the logistic models are, respectively,

⟨[6.159, 6.160], [0.022770, 0.022771]⟩ and ⟨[45, 46], [0.0318, 0.0319], [181, 182]⟩. The least

squares criterion (formula (6.4)) evaluated at this boxes results, respectively, in I1 =

[7.78, 7.82] and I2 = [0.39, 3.43]. Since the maximum likelihood points are included in

those boxes and any value of I2 is smaller than any value of I1, according to the chosen

criterion, the logistic model is a better representation for the population growth than

the exponential model.

6.6 Ocean Color Inversion

This section illustrates how the PC framework can be used in Ocean Color (OC), a

research area which is widely used in climate change studies and has potential applica-

tions in water quality monitoring.

The aim of ocean color data inversion is to determine concentrations of optically ac-

tive seawater compounds (OC products) of the water from observed remote sensing

reflectance. Semi-analytical approaches [80, 85, 118] handle this problem as a nonlin-

ear inverse problem where field data is used to configure a forward mathematical model

that expresses sea-surface reflectance as a function of the OC products. Thus the PC

framework can be applied to invert the forward model and compute all OC product

scenarios consistent with the model, characterized by a probability distribution condi-

tioned by the measurement error.

Such information is of extreme importance to understand the impact of measurement

uncertainties on the derived OC products, providing support to: a) investigate the

applicability of ocean color inversion schemes in different water types; and b) define

175

Chapter 6. Nonlinear Inverse Problems

accuracy requirements for the radiometric sensors to guarantee specified levels of uncer-

tainty for the estimated concentrations. This is an innovative contribution to the OC

community, enabling a more informative exploitation of remote sensing products. Fur-

thermore, this approach is general and can be extended to different parameterizations

of the semi-analytical model.

6.6.1 Ocean Color

Ocean Color (OC) studies rely on the fact that, as sunlight enters the ocean, it in-

teracts with particulate and the dissolved materials, besides the seawater itself. In-

herent Optical Properties (IOPs) of the water quantify the result of this interaction

in terms of scattering and absorption values. The light fraction that ultimately leaves

the sea-surface and can be measured from space borne sensors (after correcting for the

atmosphere contribution) is a function of these IOP values.

OC derived products include inorganic and organic optically active seawater com-

pounds, that can change the magnitude and spectral characteristics of the radiance

leaving the sea-surface by scattering and absorbing light in different ways. These com-

pounds can be estimated based on the relation between them and the remote sensing

measurements of sea-surface reflectance.

Semi-analytical methods are based on forward OC models (the analytical part) that

express sea-surface reflectance as a function of optically active seawater compounds.

The functional form of the forward model results from the radiative-transfer theory.

However, some of the model coefficients rely on in situ bio-optical measurements (the

empirical part).

Semi-analytical approaches mostly follow the same general forward model (varying on

its configuration) and aim to estimate seawater compounds from satellite radiometric

measures of sea-surface reflectance at specific wavelengths.

Forward Model

The forward relation between the remote sensing reflectance (Rrs) at a given wavelength

(λ) and the IOPs (absorption a, and backscattering bb) is modeled as in [94] and shown

in figure 6.11.

176

6.6 Ocean Color Inversion

Figure 6.11: The forward model is a function from the optically active seawater com-
pounds (Chla, NPPM and CDOM) to the remote sensing reflectance (Rrs) at a given
wavelength (λ).

The OC products targeted in this study are the total concentration of chlorophyll-a and

phaeopigments (Chla), the concentration of non-pigmented particles (NPPM) and the

colored dissolved organic matter absorption at 400nm wavelength (CDOM). The to-

tal absorption, a, results from the additive contribution of the absorption of seawater

(aw), phytoplankton (aChla), non-pigmented particulate matter (aNPPM) and colored

dissolved organic matter (aCDOM) at a given wavelength (λ). The total backscattering,

bb, is given by the additive contribution of the backscattering of seawater (bw), phyto-

plankton (bChla) and non-pigmented particulate matter (bNPPM) at a given wavelength

(λ). The colored dissolved organic matter does not produce any light scattering effect.

The aw(λ) and bw(λ) are constant for a given wavelength. The A(λ) and B(λ) constants

parameterize the phytoplankton chlorophyll-specific absorption coefficient.

6.6.2 Related Work

In many OC studies, the accuracy of the inverted parameters is characterized by means

of standard statistical measures (e.g., mean relative error, root mean square error or

coefficient of determination), by comparison with in situ measurements [3]. These

procedures are dependent on the data set used to make the comparison, and are not

obtained by uncertainty propagation through the mathematical model. Moreover this

analysis cannot provide reliable estimates of how ocean color uncertainties vary with

time and space, since they output a single global value for uncertainty characterization,

based on the bulk of data available.

177

Chapter 6. Nonlinear Inverse Problems

Some methods have been recently proposed to characterize uncertainty in a case-by-

case basis (e.g., taking into account variations in time and space). In [85] the authors

use a method for constructing the confidence intervals after nonlinear regression, based

on linear approximations. This method was proposed in [11] and is also used in other

OC approaches.

In [118], the original nonlinear model is transformed into a set of predefined linear

model configurations which are inverted, resulting in a large set of possible solutions

subsequently filtered to keep only those that closely (given an acceptance criteria)

reproduce the input reflectance. The value of the parameters and their uncertainty

estimate are given, respectively, by the median and percentiles obtained from the final

set of solutions.

More recently, Lee et. al [80] proposed a method based on the algebraic inversion

of the forward model to obtain a quasi-analytical algorithm from the remote sensing

reflectance to the OC products. Based on the theory of error propagation over such

algorithm, analytical expressions are derived to describe how the uncertainty on the

remote sensing reflectance propagates into the OC products. However, the algebraic

inversion relies on simplifications of the forward model and the results obtained based

on the theory of error propagation may be compromised by the problem of nonlinearity.

The PC framework is suitable to characterize uncertainty in a case-by-case basis. Be-

sides the innovative inversion method, the main difference to the existing methods is

that it outputs the range of values, for the OC products, that are consistent with the

given formulation of the model and the noisy measurements. This, per se, is already an

add-on of this methodology, since existing similar approaches are reduced to output a

single set of values for the retrieved OC products (the most likely scenario). Moreover,

the proposed approach is able to fully propagate the uncertainty of the noisy mea-

surements (expressed by their PDFs), through the mathematical model and produce

probability distributions for the computed range of values.

6.6.3 Probabilistic Constraint Approach

Consider the inverse problem that estimates OC products from reflectance measure-

ments, obtained at different wavelengths, based on the forward model of section 6.6.1.

178

6.6 Ocean Color Inversion

λi K1(λi) K2(λi) K3(λi) K4(λi) K5(λi) K6(λi) K7(λi) K8(λi)
412 0.00544 0.03224 0.7130 0.05645 1.6096 0.00008564 0.007329 0.010832
443 0.00902 0.03935 0.6565 0.03855 0.9503 0.00006368 0.006816 0.010446
490 0.01850 0.02726 0.6384 0.02163 0.4274 0.00004209 0.006162 0.009933
510 0.03820 0.01804 0.7382 0.01691 0.3042 0.00003477 0.005921 0.009736
555 0.06900 0.00703 0.9693 0.00972 0.1416 0.00002562 0.005441 0.009333
670 0.43460 0.01848 0.8522 0.00236 0.0200 0.00001098 0.004507 0.008494

Table 6.3: Matrix of coefficients computed from the forward model of figure 6.11 and the
values for the constants.

The model parameters are the OC products Chla, CDOM and NPPM , represented

by variables m1, m2 and m3. The observable parameters are all the reflectance mea-

surements yi obtained at wavelengths λi. Six different wavelengths are considered,

corresponding to the central bandwidths of the SeaWiFS [86] sensor, represented by

the vector λ = (412, 443, 490, 510, 555, 670) nm.

Based on [121] we assume Gaussian measurement error distributions pi with mean

µi = 0 and where standard deviation, σi, is 5% of the obtained measurement yi (except

for λ6 in which it is 6% of y6):

pi(εi) =
1

σi
√
2π

e
−
1

2

(εi
σi

)2
with σi =

{
0.05× yi, 1 ≤ i ≤ 5

0.06× yi, i = 6
(6.11)

Given the above wavelengths and based on the forward model, Rrs(λ) (in figure 6.11)

we define the mapping from the model parameters to the observed parameters, where

1 ≤ i ≤ 6:

yi = f(λi,m1,m2,m3) =
0.044

K1(λi) +K2(λi)m
K3(λi)
1 +K4(λi)m2 +K5(λi)m3

K6(λi) +K7(λi)m0.62
1 +K8(λi)m3

+ 1

(6.12)

and K is a 6×8 matrix of coefficients (shown in table 6.3), calculated from the forward

model of figure 6.11.

Assuming ranges between 0 and 50 for all model parameters and a maximum error of

3 standard deviations from the measured values, the inverse problem is modeled as a

179

Chapter 6. Nonlinear Inverse Problems

PC ⟨⟨m1,m2,m3⟩, [0, 50]3, C⟩, p⟩ where:

C = {yi − 3σi ≤ f(λi,m1,m2,m3) ≤ yi + 3σi : 1 ≤ i ≤ 6} (6.13)

p(m1,m2,m3) = α
6∏

i=1

pi (yi − f(λi,m1,m2,m3)) (6.14)

6.6.4 Experimental Results

This section shows the kind of results the PC framework is able to provide, its innovative

contributions and the limitations of alternative available methods. The work is not

meant to make an expert critical analysis on the parameter values and uncertainty

results that were obtained.

All experiments were carried out on an Intel Core i7 CPU at 1.6 GHz and are based

on any time implementations of algorithms 11 (page 130) and 12 (page 134)1. Two

versions of the algorithms were considered in the experiments: PCTM uses the validated

quadrature method based on Taylor models (with order 4) and provides safe enclosures

of the computed quantities; PCMC uses Monte Carlo integration and provides estimates

for the computed quantities.

In this context we studied a set of 12 simulated cases representative of different seawater

types that can be found in nature. For each, the model parameters were established

(see table 6.4) and the values of the observed parameters generated with the forward

model. Such simulated values were used instead of real measurements so that the

estimated parameter values can be compared with the exact values used to simulate

the observations.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12
Chla 1 5 10 0 0 0 0 0 0 0.1 1 10

NPPM 0.374 1.141 1.843 0.5 1 5 0.5 0.5 0.5 0.1 0.5 2
CDOM 0.012 0.035 0.055 0 0 0 0.1 0.5 2 0.5 5 0.5

Table 6.4: The 12 experimental cases were simulated by using the forward model to
compute the observed parameter values from the above model parameters values.

1This is achieved by replacing the stopping criterion of the cReasoning function call at line 7 of
algorithm 12 with the adequate stopT predicate to impose the required runtime limit.

180

6.6 Ocean Color Inversion

The results shown next are supported by experiments in all 12 cases. To simplify the

interpretation, we present in more detail the results for a single case (#2), where the

simulated observed values computed by equation (6.12) were:

y = f(λ, 5, 1.141, 0.035) = (5.469, 5.831, 7.611, 7.746, 7.775, 1.811)× 10−3

Uncertainty Characterization with Probabilistic Constraints

To characterize the uncertainty on the model parameters given the measurements,

algorithm 12 is used over the conditioning event H = F(⟨⟨m1,m2,m3⟩, [0, 50]3, C⟩),
with L = ⟨100, 100, 100⟩, imposing a grid defined by partitions of size 100 in each

dimension. Conditional expected values E[mi|H] and variances V ar[mi|H] for each

model parameter are computed using the resulting joint box cover and algorithm 11.

In case (#2), algorithm 12 returns the bounding box H = [0, 32.9136] × [0, 2.5025] ×
[0, 0.0938] which encloses all possible values for the parameters Chla, NPPM and

CDOM . This is not too informative, specially for the large range of consistent values for

Chla. However, by considering a grid over this cover, the distribution of the uncertainty

between the different consistent scenarios is quantified.

The results obtained with the anytime implementation of the PCTM version to com-

pute those conditional probabilities together with the conditional expected values and

variances for the model parameters are shown in figure 6.12.

The graphics of the figure are based on the midpoints of the interval enclosures for

the grid boxes conditional probabilities, obtained by the algorithm after about 20

minutes of CPU time. Figure 6.12 (a) illustrates the joint distribution, which iden-

tifies regions of maximum likelihood (darker colors represent more likely regions).

Figure 6.12 (b) shows the marginal distributions for the combination of Chla and

NPPM values and figure 6.12 (c) the marginal distribution for Chla. Although

not shown in the figures the computed grid box with the highest probability value

[4.9455, 5.2746]× [1.1206, 1.1455]× [0.0345, 0.0354] includes the exact model parameter

values (5, 1.141, 0.035) used to simulate the measured values.

Table 6.5 shows the results obtained by algorithm 11 to compute enclosures for the ex-

pected value of Chla (E[Chla|H]) and its standard deviation (
√

V ar[Chla|H]). These

181

Chapter 6. Nonlinear Inverse Problems

(a) (b) (c)

Figure 6.12: Joint and marginal uncertainty distributions computed by the PC frame-
work.

enclosures, shown in columns 2 and 5 (with 4 digits precision), get sharper with time

(column 1). Columns 3 and 6 show the enclosures midpoint and columns 4 and 7 its

maximum error (half of the interval width).

E[Chla] STD[Chla]
enclosure midpoint error enclosure midpoint error

10 min [6.2339, 7.0518] 6.6429 0.4090 [2.3757, 3.1078] 2.7418 0.3661
20 min [6.4522, 6.8483] 6.6503 0.1981 [2.5802, 3.0024] 2.7913 0.2111
60 min [6.5428, 6.7583] 6.6505 0.1077 [2.6939, 2.9412] 2.8175 0.1236
300 min [6.5893, 6.7119] 6.6506 0.0613 [2.7584, 2.9087] 2.8335 0.0751

Table 6.5: Interval enclosures of E[Chla] and STD[Chla] computed by the PCTM version
of algorithm 11.

When we replace the Taylor model validated method with the Monte Carlo approx-

imated method (PCMC version), results can be obtained much faster but without

guarantees of correctness.

Table 6.6 shows the results obtained with the PCMC version of algorithm 12. Due to

the added value of constraint programming to reduce the sampling space, only a small

number of samples, N , within each grid box, is necessary to obtain approximations

close to the correct values1. Furthermore, the graphics produced with this method are

all very similar to the graphics presented in figure 6.12.

1Of course, such claim is only supported by comparison with the validated enclosures of table 6.5.

182

6.6 Ocean Color Inversion

N E[Chla] STD[Chla]
2 min 5 6.6625 2.8746
3 min 10 6.6623 2.8742
4 min 20 6.6624 2.8740
9 min 50 6.6623 2.8739

Table 6.6: Approximations of E[Chla] and STD[Chla] computed by the PCMC version
of algorithm 11.

The need for Constraint Programming

Notice that the PCMC version is an hybrid algorithm that benefits from the contribu-

tion of constraint programming to reduce the sample space into a sharp enclosure of

the feasible space, combined with the efficiency of Monte Carlo integration to obtain

fast approximate estimates for the parameters distribution.

These results could not be obtained as efficiently with a pure Monte Carlo approach

(without the contribution of constraint programming). To test this assertion a pure

adaptive Monte Carlo integration algorithm, adapted from [6], was implemented - de-

noted hereafter as AMC. The algorithm follows a stratified sampling technique to ensure

that important regions get more samples. It applies a global subdivision strategy for

partitioning the initial sample space D into sub-boxes, performing a basic Monte Carlo

integration with N sampling points in each box to compute estimates of the integral

and the standard error as presented in section 3.5.3. The algorithm keeps splitting the

box with largest estimated standard deviation. The overall estimated integral, is kept

updated as the sum of the estimated integrals of each box of the partition.

Table 6.7 shows the results obtained after 10 minutes CPU time by the AMC algorithm

with several different sampling sizes N . Columns 2 and 3 are the estimates for Chla

expected value and standard deviation. Column 4 shows the number of boxes in the

partition when execution ends. Column 5 is the total number of solutions found during

the sampling process. Column 6 presents an interval whose lower (upper) bound is the

smallest (largest) value of Chla found in the sampled solutions.

One major difficulty for the application of the adaptive Monte Carlo algorithm to

these studies is its high sensitivity to the sampling size N . As illustrated in table

6.7, with similar execution times and total number of samplings, when N increases,

183

Chapter 6. Nonlinear Inverse Problems

N E[Chla] STD[Chla] #boxes #solutions [Chla]

20 14.4406 0.2249 188102 6475002 [3.5154, 18.3783]
100 19.8885 0.8382 37785 6504800 [11.2931, 21.8806]
1000 14.2240 1.4436 4035 5845064 [12.5075, 18.7562]
10000 6.6492 2.8464 585 2579803 [0.0289, 24.9730]
100000 6.6837 2.8704 69 404389 [0.0455, 26.9990]
1000000 6.6863 3.0763 8 1692 [0.1778, 30.1990]
10000000 7.9807 3.1657 2 283 [0.4448, 30.8870]

Table 6.7: Approximations of E[Chla] and STD[Chla] computed by the AMC algorithm
after 10 minutes with several sampling sizes N .

both the number of boxes in the final partition (#boxes) and the number of solutions

found (#solutions), decrease. #boxes decreases because each box takes longer to sam-

ple. #solutions decreases because with less boxes the stratification effect is attenuated

(stratification induces more sampling in regions were solutions have been previously

found since their standard error estimations are larger).

With very large sampling sizes, the decrease of #solutions prevents obtaining good

approximations within reasonable execution times because the set of solutions found

is not representative of the total integration region. On the other hand, with too

small sampling sizes, the sampling is strongly biased towards regions of previously

found solutions, and boxes where no solutions were found will not be further sampled.

Therefore, with too small sampling sizes, despite its larger number, the set of solutions

found is still not representative of the total integration region because stratification

prevented the sampling of some regions (this is illustrated in the last column of table

6.7 where the Chla sampling ranges for small N are clearly not representative of all

the possible Chla values - see figure 6.12 (c).

In fact, good approximations for E[Chla] and STD[Chla], can only be provided (within

reasonable execution times) with an appropriate sampling size which is highly depen-

dent on the feasible space. In table 6.7 it is clear that the best N value should be

between 10000 and 100000. However, if the measurement accuracy is improved (as in

the examples of table 6.8), these numbers become completely inadequate as the algo-

rithm is no longer able to find enough solutions (with N = 10000 no solution was found,

in the 10% case, after 1 hour CPU time!).

184

6.6 Ocean Color Inversion

In the present study, besides computing the overall expectations and standard devia-

tions, we are interested in providing an overview of the uncertainty distribution. This

is done by producing results as those shown in figure 6.12, in which a partitioning of

the sample space with a good granularity around the feasible space is necessary. This

is a major difficulty for the adaptive Monte Carlo algorithm, since, without constraint

programming, such cannot be done in reasonable CPU time.

For example, the graphics in figure 6.12 were produced partitioning the enclosing box

of figure 6.12 (a) into 100 × 100 × 100 = 1000000 grid boxes. Through constraint

programming 803852 (over 80%) of those grid boxes were discarded (because they do

not contain solutions) and only the remaining 196148 were used for the computation

of their conditional probabilities. The complete process took about 2 minutes CPU

time. From table 6.7 we can see that this cannot be achieved with the adaptive Monte

Carlo algorithm. A similar granularity is only attainable with very small sampling sizes

leading to the undesirable properties that we have discussed before.

The Impact of Measurements Accuracy

An important contribution of the PC approach to the OC community is its ability to

address different assumptions on the measurements accuracy to understand how these

may affect the uncertainty on the retrieved OC products. Such studies can be used to

define accuracy requirements for the radiometric sensors to guarantee specified levels

of uncertainty for the estimated concentrations.

Table 6.8 shows the results obtained with different measurement accuracies. The first

row was computed with the error standard deviation σi specified in equation (6.11)

and the others with a percentage of that value (column 1). For each of these accu-

racies columns 2 and 4 show the enclosures for E[Chla] and STD[Chla] obtained by

the PCTM version of algorithm 11 after 20 minutes of CPU time. The approximate

values computed by the PCMC version of algorithm 11 are given in columns 3 and 5

respectively. All the PCMC computations were performed with a sampling size N = 5

and took less that 1.5 minutes of CPU time (except the first one that took 2 minutes).

It is clear from table 6.8 that, with improved measurement accuracy, the expected

value of Chla (similar results were obtained for the other OC products) converges to

185

Chapter 6. Nonlinear Inverse Problems

E[Chla] STD[Chla]
σi PCTM PCMC PCTM PCMC

100% [6.4522, 6.8483] 6.6625 [2.5802, 3.0024] 2.8746
50% [5.3235, 5.4604] 5.3949 [1.1343, 1.2653] 1.2293
10% [4.9788, 5.0559] 5.0175 [0.1940, 0.2392] 0.2324
5% [4.9789, 5.0335] 5.0063 [0.0921, 0.1198] 0.1163
1% [4.9742, 5.0309] 5.0025 [0.0064, 0.0238] 0.0232

Table 6.8: E[Chla] and STD[Chla] obtained by the PC algorithms for different accura-
cies.

the exact value used to simulate the observations (Chla = 5) and the standard deviation

approaches zero. This provides insight on the magnitude of the incurred errors, with

different sensor accuracies, that allows to estimate the OC product by its expected

value, or justify the use of other estimates (e.g. the most likely value, i.e. that in the

most probable grid box).

6.7 Summary

This chapter illustrated the application of the probabilistic continuous constraint frame-

work to decision problems on nonlinear inverse problems. Inverse problems were defined

and classical techniques to solve them were presented, highlighting drawbacks of such

approaches. The definition of an inverse problem as a probabilistic continuous con-

straint space was presented and the capabilities of the PC framework were illustrated

in three application problems. The first two showed how to deal with nonlinear inverse

problems, in general. The last, more complex, problem showed that the framework can

be used in real world applications.

The next chapter, following a similar structure, illustrates the application of the frame-

work to reliability problems.

186

Chapter 7

Reliability Problems

Reliability analysis studies the ability of a system to perform its required function

under variable conditions. In this context reliability assessment quantifies the chance of

system failures at any stage of a system’s life; reliability based design is concerned with

choosing design alternatives that improve reliability, minimizing the risk of failure; and

reliability based design optimization considers other criteria (e.g. cost minimization) in

addition to maximizing reliability. This research area has application in a wide range

of different industries including the aeronautical [99], nuclear [78], chemical [47] and

building [65] industries.

When modeling a design problem there is often a distinction between controllable (or

design) variables, representing alternative actions available to decision makers, and un-

controllable variables (or states of nature) corresponding to external factors outside

their reach. Uncertainty affects both types of variables. There can be variability on

the actual values of the design variables (e.g. the exact intended values of physical

dimensions or material properties may not be obtained due to limitations of the man-

ufacturing process). Or there can be uncertainty due to external factors that represent

states of nature (e.g. earthquakes, wind). In both cases, it is important to quantify the

reliability of a chosen design.

Reliability is often reported in terms of the probability of adequate functioning of a sys-

tem and its exact quantification requires the calculation of a multi-dimensional integral

with a non-linear integration boundary. Because there is rarely a close-form solution,

this calculation is one of the major concerns of classical approaches to solve reliabil-

ity problems, which adopt approximation methods that rely on several simplifications

187

Chapter 7. Reliability Problems

of the original problem to compute a reliability estimate, often leading to inaccurate

results, especially in highly non-linear problems.

Since designs with a high reliability estimate but high uncertainty on such estimation

are not credible solutions, it is important to obtain bounds to such estimate. In practice,

decision makers prefer an option with a marginally lower reliability estimate but where

safe lower bounds to this estimate are computed with sound engineering models and

techniques.

Such safe bounds are not available with classical approaches, but they can be provided

by constraint programming which focuses on finding values for design variables that

satisfy the constraints of a problem, since these are the variables over which the problem

solver has some degree of choice. However, decisions have to be made taking into

account the uncertainty regarding the uncontrollable variables.

A possible approach to deal with such uncertainty is to adopt a quantified constraint

paradigm [13], where uncontrollable variables are assumed to be universally quantified,

and the goal is to find values of design variables that satisfy the problem constraints,

for any possible values of the uncontrollable variables. However, not all scenarios are

equally likely, and this safe approach is often inadequate, as it does not provide solutions

with a high likelihood to succeed.

In this chapter we show the ability of the Probabilistic Continuous Constraint frame-

work to model reliability problems and thus compute safe bounds for the reliability of

a system, allowing to distinguish between different system design scenarios and address

reliability based design optimization. Section 7.1 introduces the concepts of reliability

assessment, reliability based design and reliability based design optimization. Section

7.2 describes the classical techniques used to address those problems, pointing their

main drawbacks. In section 7.3 the probabilistic constraint approach to address the

problem formulations of reliability analysis is presented and the capabilities of the PC

framework are highlighted in a set of illustrative examples. In section 7.4 a common

engineering benchmark is studied (short rectangular column), where the advantages of

using the PC framework are highlighted.

188

7.1 Reliability Analysis

7.1 Reliability Analysis

A limit-state is a condition beyond which a system no longer fulfills the desired function-

ality. Reliability analysis calculates and predicts the probability of limit-state violations

at any stage of a system’s life.

The probability of occurrence of a limit-state violation in a system represents its prob-

ability of failure, Pf , whereas Ps = 1 − Pf represents its reliability. Failure events are

represented as limit-state constraints:

g(x) < 0 (7.1)

where g is a limit-state function and x is a realization of the random vector X (defined

in ΩX) that represents all the relevant uncertainties influencing the probability of failure

and has joint PDF fX : ΩX → [0,+∞]. Whereas g(x) < 0 denotes the failure region,

g(x) = 0 and g(x) > 0 indicate the failure surface and safe region, respectively. As

such, the failure and success events are:

F = {x ∈ ΩX : g(x) < 0} and S = {x ∈ ΩX : g(x) ≥ 0}

So the probability of failure, Pf , is defined as the probability of the failure event:

Pf = P (x ∈ F) =

∫
g(x)<0

fX(x)dx (7.2)

Consequently, the probability of success, Ps, i.e. the reliability, is its complement:

Ps = P (x ∈ S) =

∫
g(x)≥0

fX(x)dx (7.3)

In fact, we are interested in problems that can be defined by one or more limit-state

functions, as the one in equation (7.1). In this context, in a series system, its global

failure occurs when at least one of various limit-state functions is violated. Whereas, in

a parallel system, its global failure occurs when all the limit-state functions are violated.

So, for a series system with n limit-state functions, gi, the failure and success events

189

Chapter 7. Reliability Problems

are:

FS =

n∪
i=1

{x ∈ ΩX : gi(x) < 0} and SS =

n∩
i=1

{x ∈ ΩX : gi(x) ≥ 0} (7.4)

Thus, its probability of failure and reliability are, respectively, PS
f = P (x ∈ FS) and

PS
s = P (x ∈ SS).

Likewise, for a parallel system with n limit-state functions, the failure and success

events are:

FP =
n∩

i=1

{x ∈ ΩX : gi(x) < 0} and SP =
n∪

i=1

{x ∈ ΩX : gi(x) ≥ 0} (7.5)

And its probability of failure and reliability are, respectively, PP
f = P (x ∈ FP) and

PP
s = P (x ∈ SP).

7.1.1 Reliability Based Design

Contrary to conventional deterministic design, where generally empirically based safety

factors are used, reliability based design (RBD) directly relates design parameters to

the reliability, or its complement, the probability of failure.

The basic goal of RBD is to ensure that the probability of failure of a system does not

exceed an acceptable threshold, and an acceptable design (i.e., a value assignment to

the design parameters) would be one in which the probability of failure respects this

threshold.

In this context, the limit-state function depends also on the design parameters Y and

is defined as g(x,y) where y ∈ ΩY . As such, the failure and success events associated

to each decision y ∈ ΩY are1:

F (y) = {x ∈ ΩX : g(x,y) < 0} and S(y) = {x ∈ ΩX : g(x,y) ≥ 0}

Thus, the RBD goal can be stated as the constraint:

Pf = P (x ∈ F (y)) ≤ tol (7.6)

1When series or parallel systems are considered these events can be adapted based on, respectively,
(7.4) and (7.5).

190

7.1 Reliability Analysis

in which tol is an acceptable target probability of failure. As such, reliability based

design, assumes a conscious choice on an acceptable level of design risk and then pro-

ceeds to a particular design consistent with this choice. In contrast to the traditional

or partial factors of safety approach, consistency between the computed design risk and

the uncertainties inherent in the design process is assured by reliability analysis.

In practice many reliability based design problems include optimization criteria and

are called reliability based design optimization (RBDO) problems [38]. Besides the

information about the failure mode of a system (modeled by the limit-state functions),

they include information about its desired behavior, modeled by one or more objective

functions, hi, over the uncontrollable variables X and design parameters Y . The aim

is to obtain reliable decisions that are optimal wrt the objective functions.

Formally, a reliability based optimization design problem can be stated as:

Minimize hi(x,y)

subject to P (x ∈ F (y)) ≤ tol,

x ∈ ΩX , y ∈ ΩY .

Within this formulation of an RBDO problem, several cases can be considered [38]. For

instance, if we want to minimize the probability of failure, one of the objective functions

is Pf . In multi objective RDBO, instead of a single optimal solution, a Pareto-optimal

frontier may be obtained to represent the best solutions.

In this context, a Pareto-optimal frontier is the set of designs not strictly dominated

by another design. Consider two designs y1 and y2, then y1 strictly dominates y2 if it

satisfies the Pareto criterion:

∀i h′i(y1) ≤ h′i(y2)
∧
∃i h′i(y1) < h′i(y2)

where h′i(y) is defined from a suitable transformation of hi(x,y)
1.

1One possibility is to use the conditional expected value, h′
i(y) = E[hi(x,y)|g(x,y) ≥ 0].

191

Chapter 7. Reliability Problems

7.2 Classical Techniques

Reliability assessment involves the calculation of a multi dimensional integral in a

possibly highly non-linear integration boundary (equations (7.2) or (7.3)). Analytical

computation of such integral is usually impossible, so various simulation-based and

analytical methods have been proposed to deal with this problem.

In [60], Hasofer and Lind introduced the reliability index technique for calculating

approximations of the desired integral with reduced computation costs. The reliability

index has been extensively used in the first and second order reliability methods (FORM

[64] and SORM [46]). Using such methods, an approximation to Pf can be obtained

by analytical techniques.

The main idea is to move the reliability problem from the space of random vector

X to the space of standard normal statistically independent random variables U =

⟨U1, . . . , Un⟩ using a suitable transformation U = T (X), such as Rosemblatt [106] or

Nataf [95] transformations (see [63, 87] for an overview). In the U space, equation (7.2)

can be expressed as:

Pf =

∫
g(u)≤0

fU (u)du =
n∏

i=1

∫
g(u)≤0

ϕUi(ui)dui

where ϕUi is the standard normal PDF of random variable Ui.

This process is illustrated in figure 7.1 in a two dimensional case. Figure 7.1 (a) shows

the original X space, with random vector X = ⟨X1, X2⟩. For illustration purposes we

assume independent random variables X1 ∼ N(µ1, σ1) and X2 ∼ N(µ2, σ2). Figure 7.1

(b) presents the standard normal U space obtained using transformation ⟨U1, U2⟩ =
T (⟨X1, X2⟩) =

⟨X1−µ1

σ1
, X2−µ2

σ2

⟩
. The linear limit-state function g(x) = ax1 + bx2 + c

has been transformed into the limit-state function g(u) = aσ1u1+bσ2u2+aµ1+bµ2+c

by replacing xi with σiui + µi. Notice that, in this particular case, the transformed

limit-state function is still linear but, in general, such transformations may induce non

linearity in the resulting limit-state functions.

In FORM an approximation to the probability of failure is obtained by making the

failure surface g(U) = 0 linear at the design point, u∗, often called most probable

192

7.2 Classical Techniques

 g(X) > 0
Safe Region

 g(X) = 0
Failure Surface

 g(X) > 0
Failure Region

fX HXM

X1

X2

(a) X space where X is distributed as fX .

 g(U) > 0
Failure Region

U1

U2

 g(U) = 0
Failure Surface

ΦHUM

 g(U) > 0
Safe Region

(b) U space where each Ui is standard normally
distributed.

Figure 7.1: X space and U space.

point of failure (MPP). This is the point on the failure surface closest to the origin and

with the highest probability (local maximum) in the failure domain of the standard

normal space. The distance from the origin to the design point is the reliability index

β = ∥u∗∥. These concepts are geometrically illustrated in figure 7.2.

u*

U1

U2

 Β g(U) = 0

 g'(U) = 0

Α

Figure 7.2: Geometrical illustration of the reliability index.

Since the standard normal space is rotational symmetric the probability of failure can

be directly obtained using the reliability index:

Pf = Φ(−β) (7.7)

193

Chapter 7. Reliability Problems

where Φ is the standard normal cumulative probability function.

As the limit state function is in general non-linear it is not possible to know the design

point in advance and this has to be found iteratively. The design point is thus, the

solution to the constrained optimization problem:

β = min
u∈{g(u)=0}

∥u∥

This problem, being the most expensive part of the FORM algorithm, may be solved in

a number of different ways (see [42] for an overview). An appropriate iteration scheme

converges after some iterations, providing the design point u∗ as well as the reliability

index β, which may be related directly to the probability of failure as in equation (7.7).

However, as with any non convex optimization problem, it is not guaranteed that the

solution point will be the global minimum-distance point.

FORM usually works well when the failure surface has only one minimal distance point

and the function is nearly linear in the MPP neighborhood. However, for increasingly

non linear failure surface the probability of failure estimated by FORM becomes in-

creasingly inaccurate (and possibly unreasonable) [87]. To address such non linearity

SORM incorporates some curvature in the limit state approximation. In this case the

probability of failure, based on the reliability index and on a correction factor, becomes

[20]:

Pf = Φ(−β)
n−1∏
i=1

1√
1 + βκi

where κi are the principal curvatures of the limit state. This method essentially uses a

parabolic approximation to the failure surface being more accurate for large values of

β.

In the methods discussed so far, it is assumed a single limit-state function with a single

design point where only the region around such point contributes to the probability

of failure. In limit-state functions with multiple design points (and in problems with

multiple limit-state functions), application of FORM or SORM around a single design

point results in erroneous estimates for the probability of failure. So, the problem of

identifying the multiple design points must be addressed. In [73] a method is presented

194

7.2 Classical Techniques

to search for multiple design points: when one design point is identified, the failure sur-

face is deformed around such point to avoid its repeated identification and the process

is re-initialized to find the next design point until no more design points exist. In [10]

the authors use a method based on evolutionary strategies to search for multiple design

points. In series systems, generally there exists one design point for each limit-state

function (which contributes to the identification of the feasible region). In contrast, in

parallel systems there usually exists one design point for each pairwise intersection of

limit-state functions (again contributing to the identification of the unfeasible region).

Problems with multiple design points are illustrated in figure 7.3, (figure 7.3 (b) was

adapted from [111]).

Β1Β2
u1
*u2

*

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

(a) Multiple MPPs. (b) Series system.

Figure 7.3: Problems with multiple design points.

Once all design points are identified, FORM or SORM approximations are constructed

at these points and the failure probability is computed by series system reliability

analysis (for multiple design points in a single limit-state function or series systems) or

by parallel system reliability analysis (for parallel systems) (see [111, Notes 6 and 7]

for details).

As already stated, reliability based design optimization intends to provide reliable de-

signs wrt a set of objective functions. As such, the methods described above are

used within the classical techniques that address such problems, including double-loop

approaches [79] (consisting of a design optimization loop which repeatedly calls a re-

liability analysis method in a series of inner loops). The computational effort of such

approaches may be prohibitive in some cases and other alternatives were proposed.

195

Chapter 7. Reliability Problems

The sequential optimization and reliability assessment (SORA) [40] decouples the pro-

cess in two sequential steps: a deterministic design optimization step followed by a set

of reliability assessment loops. Other methods convert the problem into single-loop

deterministic optimization [5, 31, 82]. For an overview of such methods see [38].

In general, the accuracy of the approximations computed with FORM and SORM

is penalized by several assumptions taken to implement them, more noticeable when

multiple design points exist.

A first assumption is that the joint PDF in (7.2) can be approximated by a multivariate

Gaussian. Various normal transformation techniques must be applied [63] when the

original space includes non-normal random variables which may lead to major errors.

A second assumption is that the feasible space determined by a single constraint can

be reasonably approximated on the most probable point, on the constraint boundary.

Instead of the original constraint, a tangent plane (FORM) or a quadratic surface

(SORM), fitted at the MPP, is used to approximate the feasible region. However, the

non linearity of the constraint may lead to unreasonable approximation errors. Firstly,

local optimization methods [60] used to search for the MPP are not guaranteed to

converge to a global minimum. Secondly, an approximation based only on a single

MPP does not account for the possibly significant contributions from the other points

[73]. Finally, the linear or quadratic approximation of the constraint may be unrealistic

for highly non-linear constraints.

A third assumption is that the overall reliability can be reasonably approximated from

the individual contributions of each constraint when a series system is considered. In

its simplest form, only the most critical constraint is used to delimit the unfeasible

region. This may obviously lead to over estimation of the overall reliability. More

accurate approaches [39] take into account the contribution of all the constraints but,

to avoid overlapping the contribution of each pair of constraints, they have to rely on

approximations of the corresponding joint bivariate normal distributions.

Sampling techniques, based on Monte Carlo simulation (MCS) [55], work well for small

reliability requirements, but as the desired reliability increases the number of samples

must also increase to find at least one infeasible solution. As the number of variables

increases, specially for non-linear problems, the MCS approach becomes inadequate for

practical use, due to its prohibitively high computation cost.

196

7.3 Probabilistic Constraint Approach

Since Monte Carlo method is basically a sampling process, the results are subjected

to sampling error that decreases with the sample size. However, using procedures

known as variance reduction techniques the error may be reduced without increasing

the sample size. One of such procedures with a high convergence rate is the Monte

Carlo with Importance Sampling (MCIS) [87]. In MCIS, the regions of interest for the

simulation process are those around the points in the failure domain having the largest

values, i.e., the design points.

Given the simplifications adopted and their approximate nature, none of the above

methods provides guarantees on the reliability values computed, specially for non-

linear problems. In contrast, the Probabilistic Continuous Constraint framework does

not suffer from this limitation, guaranteeing safe bounds for the probability of failure.

7.3 Probabilistic Constraint Approach

Reliability analysis can be used to analyze existing systems, thus constituting a rational

tool for those in charge of decision-making. On the other hand, reliability calculations

can be used in the design process. In this case, it is usually advantageous to combine

reliability analysis with optimization algorithms, in order to achieve an optimal and

reliable design in view of uncertainties. In the following we describe how the PC

framework can be used to obtain safe results on such problem formulations.

7.3.1 Reliability Assessment

For the formulation of a reliability assessment problem as a PC, we distinguish between

series and parallel systems. The formulation of a series system as a PC follows.

Definition 7.1 (Series System as a Probabilistic Constraint Space)

Consider a series system with an associated random vector X = ⟨X1, . . . , Xn⟩ with
joint PDF fX defined in ΩX ⊆ Rn and a set of k limit-state functions gi that define

the success event SS as in (7.4). The system is modeled as a PC, ⟨⟨X,D,C⟩, f⟩,
such that:

D ⊆ ΩX X = ⟨x1, . . . , xn⟩

C = {gi(x) ≥ 0 : 1 ≤ i ≤ k} f = fX(x)

197

Chapter 7. Reliability Problems

Its reliability is given by PS
s = P (F(⟨X,D,C⟩)) whereas its probability of failure is

1− PS
s .

Likewise, the formulation of a parallel system as a PC is described next.

Definition 7.2 (Parallel System as a Probabilistic Constraint Space)

Consider a parallel system with an associated random vector X = ⟨X1, . . . , Xn⟩
with joint PDF fX defined in ΩX ⊆ Rn and a set of k limit-state functions

that define the failure event FP as in (7.5). This system is modeled as a PC,

⟨⟨X,D,C⟩, f⟩, such that:

D ⊆ ΩX X = ⟨x1, . . . , xn⟩

C = {gi(x) ≤ 0 : 1 ≤ i ≤ k} f = fX(x)

Its probability of failure is given by PP
f = P (F(⟨X,D,C⟩)) whereas its reliability is

1− PP
f .

From the previous definitions algorithm 6 (page 97) can easily be used to compute

the probability of event H = F(⟨X,D,C⟩) and obtain enclosures for the reliability (or

probability of failure) of series or parallel systems. Its arguments are ⟨⟨X,D,C⟩, f⟩ and
CH = C.

Notice that reliability problems do not impose bounds on the random variables, which

is not possible to model in the PC framework, where D ⊆ ΩX must be a bounded box.

Thus, to guarantee the safety of the computed probability enclosures when using the

validated quadrature method, a small correction factor must be added to such enclosure.

When D ⊂ ΩX it is necessary to quantify the probability neglected by algorithm 6.

First an enclosure for the probability of event D = F(⟨X,D, {}⟩) is computed, [P](D).

The enclosure for the neglected probability is [P](ΩX \ D) = 1 − [P](D). Then the

term [0, sup ([P](ΩX \D))] is added to the enclosure computed by algorithm 6.

Experimental Results

To illustrate the limitations of the classical techniques (FORM, SORM and Monte

Carlo) described in section 7.2, several examples of reliability problems found in the

198

7.3 Probabilistic Constraint Approach

literature are modeled as PCs.

The results obtained with the classical approaches are compared with those computed

with the safe version of algorithm 61 with δ = 10−6, ε = 10−15 and a Taylor or-

der of 2, hereafter simply referred as PCTM algorithm. In the experiments, function

NProbability2 with the default parametrization, is also used to compute the required

probabilities as a complementary source of comparison. All the experiments were per-

formed on an Intel Core Duo at 1.83 GHz with 1 GB of RAM.

The first example illustrates the non linearity induced in the limit-state function re-

sulting from the transformation of a non Gaussian distribution into a standard normal

distribution.

Example 7.1. Consider the reliability problem, originally introduced in [63], with

X = ⟨X1, X2⟩, joint PDF fX(x1, x2) = (x1 + x2 + x1x2)e
−(x1+x2+x1x2) defined in

Ω = [0,∞[×[0,∞[and limit-state function g(x1, x2) = 18− 3x1 − 2x2.

Although the limit-state function is linear in the original space, it becomes highly non

linear and has two design points in the standard normal space, due to the strong non

normality of the random variables. Figure 7.4 shows the limit-state function (a) in the

original space and (b) and (c) in the standard normal space with the transformations,

respectively T1(X) and T2(X), described in [63].

2 4 6 8 10
X1

-4

-2

2

4

6

8

10

X2

(a) Linear limit-state.

U1

U2

(b) U = T1(X) [63].

U2

U1

(c) U = T2(X) [63].

Figure 7.4: Example of a linear limit-state in the original space and non-linear in the
standard normal space.

1Safe version is a shortcut for the version of the algorithm that uses the verified quadrature method,
based on Taylor models, to compute the probability.

2From Mathematica v8.0.1.0 [119].

199

Chapter 7. Reliability Problems

The problem is formulated as a PC:

X = ⟨x1, x2⟩ D = [0, 15]× [0, 15]

C = {g(x1, x2) ≤ 0} f = fX(x1, x2) (7.8)

The bounds chosen for D guarantee a negligible probability for the neglected Ω region,

[P](Ω \D) ≤ 6.2× 10−7.

The results obtained with the classical approaches (from [73]) and with the PCTM

algorithm (after adding the correction term) are shown in table 7.1. It presents the

approximations obtained by FORM and SORM methods when only one of the design

points is considered and when both are considered for both transformations T1(X) and

T2(X). For Monte Carlo (MC) and PCTM algorithm this does not apply.

u∗
1 alone u∗

2 alone u∗
1 and u∗

2 MC PCTM

FORM SORM FORM SORM FORM SORM

T1(X) 0.269 0.279 0.023 0.016 0.292 0.296

T2(X) 0.404 0.294 0.014 0.015 0.417 0.308 0.294 [0.2943, 0.2946]

Table 7.1: Probability of failure ×102.

It is clear from table 7.1 that the results obtained with FORM and SORM have a great

variability, depending on the chosen configuration, and, except for one, are outside

the safe enclosure computed by PCTM algorithm (obtained in about 4 seconds CPU

time). Using Mathematica the obtained result (in less than 1 second CPU time) was

0.2944 × 10−2, which is in accordance with the enclosure computed by the PCTM

algorithm.

The next example illustrates a non linear limit-state function where the original space

is normal (although not standard normal).

Example 7.2. Consider the reliability problem from [33], with X = ⟨X1, X2⟩, where
X1 ∼ N(10, 5) and X2 ∼ N(10, 5) are independent random variables defined in Ω = R2,

and limit-state function g(x1, x2) = x41 + 2x42 − 20. Figure 7.5 shows the limit-state

function and the failure region of this problem.

200

7.3 Probabilistic Constraint Approach

Failure Region

g(x1,x2)=0

-4 -2 0 2 4

-4

-2

0

2

4

X1

X
2

Figure 7.5: Non linear limit-state function g(x1, x2) = 0.

The problem is formulated as a PC:

X = ⟨x1, x2⟩ D = [−40, 60]× [−40, 60]

C = {g(x1, x2) ≤ 0} f =
1

50π
e
− 1

2

[(
x1−10

5

)2
+
(

x2−10
5

)2
]

(7.9)

Since 10 standard deviations around the mean value are assumed, the bounds chosen for

D guarantee a negligible probability for the neglected Ω region, [P](Ω\D) ≤ 2.8×10−13.

The results obtained with the classical approaches (from [33, pag. 132-136]) where two

SORM versions are considered (see [33, Chapter 4] for details) and with the PCTM

algorithm (after adding the correction term) are shown in table 7.2.

FORM SORM Breitung SORM Tvedt MC PCTM

0.9005 0.2221 0.2087 0.1950 [0.1851, 0.1853]

Table 7.2: Probability of failure ×102.

The result obtained with FORM grossly overestimates the probability of failure. Those

obtained with both versions of SORM are closer to the correct value, however are still

far from the exact value. Simulation with Monte Carlo produces the result closer to the

correct value with an 5.23% error. Using Mathematica the obtained result (in about

7 seconds CPU time) was 0.1853 × 10−2, which is in accordance with the enclosure

computed by the PCTM algorithm (in about 4 seconds CPU time).

201

Chapter 7. Reliability Problems

The following examples are found in [111] to illustrate series and parallel systems.

Safe Region

-10 -5 0 5 10
-10

-5

0

5

10

X1

X
2

(a) Series system.

Failure Region

-10 -5 0 5 10
-10

-5

0

5

10

X1

X
2

(b) Parallel system.

Figure 7.6: Examples of series and parallel systems found in [111].

Example 7.3. Consider the reliability problem from [111, Note 6], with X =

⟨X1, X2⟩, where X1 and X2 are independent standard normal random variables defined

in Ω = R2, and the series system defined by the limit state functions:

g1(x1, x2) = ex1 − x2 + 3 g2(x1, x2) = x1 − x2 + 5

g3(x1, x2) = ex1+4 − x2 g4(x1, x2) = 0.1x21 − x2 + 4

Figure 7.6 (a) shows the limit-state functions and the safe region of this problem.

The problem is formulated as a PC:

D = [−10, 10]× [−10, 10] X = ⟨x1, x2⟩

C = {gi(x,y) ≥ 0 : 1 ≤ i ≤ 4} f =
1

2π
e−

1
2
(x2

1+x2
2)

Again 10 standard deviations around the mean value are assumed for the bounds of D,

with [P](Ω \D) ≤ 2.8× 10−13.

The results obtained with the classical approach for series systems analysis, where

simple (SB) and Ditlevsen (DB) bounds are considered (see [111, Note 6] for details)

202

7.3 Probabilistic Constraint Approach

and with the PCTM algorithm1 (after adding the correction term) are shown in table

7.3.

SB DB PCTM

[0.2241, 0.5190] [0.3516, 0.4091] [0.3124, 0.3135]

Table 7.3: Probability of failure ×103.

The simple bounds are too wide to be informative, while the more accurate Ditlevsen

bounds do not include the exact value in the safe enclosure computed by the PCTM

algorithm (in about 75 seconds CPU time). The result obtained with Mathematica

(in about 2 seconds CPU time), 0.0312989× 10−2, is in accordance with the enclosure

obtained with the PCTM algorithm.

Example 7.4. Consider the reliability problem from [111, Note 7], with X =

⟨X1, X2⟩, where X1 and X2 are independent standard normal random variables defined

in Ω = R2, and the parallel system defined by the limit state functions:

g1(x1, x2) = ex1 − x2 + 1 g2(x1, x2) = x1 − x2 + 1

g3(x1, x2) = ex1+2 − x2 g4(x1, x2) = 0.1x21 − x2 + 2

Figure 7.6 (b) shows the limit-state functions and the failure region of this problem.

The problem is formulated as a PC:

D = [−10, 10]× [−10, 10] X = ⟨x1, x2⟩

C = {gi(x,y) ≤ 0 : 1 ≤ i ≤ 4} f =
1

2π
e−

1
2
(x2

1+x2
2)

Again 10 standard deviations around the mean value are assumed for the bounds of D,

with [P](Ω \D) ≤ 2.8× 10−13.

The results obtained with the classical approach for parallel systems analysis, where

simple and Ditlevsen bounds are considered (see [111, Note 7] for details) and with the

PCTM algorithm (after adding the correction term) are shown in table 7.4. No results

were available for the Monte Carlo method.
1In fact, the probability of failure was obtained from the reliability computed by the PCTM algo-

rithm.

203

Chapter 7. Reliability Problems

SB DB PCTM

[0.0762, 2.1692] [0.1264, 0.2256] [0.1703, 0.1705]

Table 7.4: Probability of failure ×102.

Like in the series system example, the simple bounds are too wide to be informative.

In this case, the more accurate Ditlevsen bounds include the safe enclosure computed

by the PCTM algorithm (in about 5 seconds CPU time) but are much wider. The

result obtained with Mathematica (after about 5 seconds CPU time), 1.7039× 10−3, is

in accordance with the enclosure obtained with the PCTM algorithm.

7.3.2 Reliability Based Design

When dealing with reliability based design problems, both uncontrollable variables

X and design parameters Y are considered. The reliability of a given design is the

probability of success of the modeled system given the choices made on the design

parameters, and can be obtained by reliability assessment techniques.

In the context of the PC framework we consider continuous design parameters and a

given design ∆ is an interval instantiation of such parameters (a box), where the values

in each interval are indifferent among each other, i.e., are equally likely. Consider, for

instance, that a design parameter describes the length of an element in centimeters and

adequate values range between 1 and 10. If it is impossible to produce elements with

an accuracy of more than one millimeter, then possible instantiations would consider

intervals with a granularity of 0.1.

The space ΩX associated with random vector X is extended with the design space ΩY ,

where the random vector Y is assumed uniformly distributed with PDF fY = 1
vol(ΩY) .

Since design parameters and uncontrollable variables are probabilistically independent

the joint PDF f : ΩX × ΩY → [0,+∞] is (see definition 3.27):

f(x,y) = fX(x)× fY (y)

204

7.3 Probabilistic Constraint Approach

For a single limit-state function, the failure and success events associated with a design

∆ ⊆ ΩY are1:

F (∆) = {⟨x,y⟩ ∈ ΩX ×∆ : g(x,y) < 0}

S(∆) = {⟨x,y⟩ ∈ ΩX ×∆ : g(x,y) ≥ 0}

The probability of failure (reliability) of design ∆ is the conditional probability of the

failure event (success event) given ∆:

Pf (∆) = P (⟨x,y⟩ ∈ F (∆)|y ∈ ∆) = α

∫
F (∆)

fX(x)dxdy

Ps(∆) = P (⟨x,y⟩ ∈ S(∆)|y ∈ ∆) = α

∫
S(∆)

fX(x)dxdy

where α = 1
vol(∆) .

The formula for Pf (∆) can be derived as follows (a similar derivation can be done for

Ps(∆)):

Pf (∆) = P (⟨x,y⟩ ∈ F (∆)|y ∈ ∆) =
P (⟨x,y⟩ ∈ F (∆))

P (y ∈ ∆)

=

∫
F (∆)

f(x,y)dxdy∫
∆ fY (y)dy

=

1
vol(ΩY)

∫
F (∆) fX(x)dxdy

1
vol(ΩY)

∫
∆ dy

=

∫
F (∆) fX(x)dxdy

vol(∆)

Example 7.5. Consider the design problem, illustrated in figure 7.7, with an un-

controllable variable X1 defined in ΩX = [0, 18] with a truncated Gaussian PDF fX , a

design parameter Y1 defined in ΩX = [0, 18] with uniform PDF fY = 1
18 and a limit-

state function g(x1, y1) = 18 − y1 − x1. The success event S (grey area) is defined by

g(x1, y1) ≥ 0.

One possible decision is ∆ = [8, 9] (with granularity 1), where F (∆) and S(∆) are,

respectively, the white and black areas inside the rectangle. Its probability of failure

1When series or parallel systems are considered these events can be adapted based on, respectively,
(7.4) and (7.5).

205

Chapter 7. Reliability Problems

Figure 7.7: A design problem.

and reliability are:

Pf ([8, 9]) = α

∫ 9

8

∫ 18

18−y1

fX(x1)dx1dy1

Ps([8, 9]) = α

∫ 9

8

∫ 18−y1

0
fX(x1)dx1dy1

where α = 1
vol([8,9]) = 1.

Reliability based design of series and parallel systems, can be formulated as probabilistic

continuous constraints spaces as follows.

Definition 7.3 (RBD of a Series System as a PC) Consider a RBD of a se-

ries system with an associated random vector X = ⟨X1, . . . , Xn⟩ with joint PDF fX

defined in ΩX ⊆ Rn, a set of m design parameters Yi assuming values in ΩY ∈ IRm

and a set of k limit-state functions gi that define the success event of a design

∆ ⊆ ΩY as:

k∩
i=1

{⟨x,y⟩ ∈ ΩX ×∆ : gi(x,y) ≥ 0}

206

7.3 Probabilistic Constraint Approach

This RBD of a series system is modeled as a PC, ⟨⟨X,D,C⟩, f⟩, such that:

D = DX × ΩY where DX ⊆ ΩX X = ⟨x1, . . . , xn, y1, . . . , ym⟩

C = {gi(x,y) ≥ 0 : 1 ≤ i ≤ k} f =
fX(x)

vol(ΩY)

The reliability of design ∆ is given by PS
s (∆) = P (F(⟨X,DX × ∆, C⟩)|DX × ∆)

whereas its probability of failure is 1− PS
s (∆).

Likewise, the formulation of an RDB of a parallel system as a PC is described next.

Definition 7.4 (RBD of a Parallel System as a PC) Consider a RBD of a

parallel system with an associated random vector X = ⟨X1, . . . , Xn⟩ with joint

PDF fX defined in ΩX ⊆ Rn, a set of m design parameters Yi assuming values

in ΩY ∈ IRm and a set of k limit-state functions gi that define the failure event of

a design ∆ ⊆ ΩY as:

k∩
i=1

{⟨x,y⟩ ∈ ΩX ×∆ : gi(x,y) < 0}

This RBD of a parallel system is modeled as a PC, ⟨⟨X,D,C⟩, f⟩, such that:

D = DX × ΩY where DX ⊆ ΩX X = ⟨x1, . . . , xn, y1, . . . , ym⟩

C = {gi(x,y) ≤ 0 : 1 ≤ i ≤ k} f =
fX(x)

vol(ΩY)

The probability of failure of design ∆ is PP
f (∆) = P (F(⟨X,DX ×∆, C⟩)|DX ×∆)

whereas its reliability is 1− PP
f (∆).

To obtain a PC that models a single design ∆ ⊆ ΩY , we simply replace ΩY by ∆ in

the above definitions and algorithm 6 (page 97) can be used to compute an enclosure

for its reliability (or probability of failure), with arguments ⟨⟨X,DX × ∆, C⟩, f⟩ and
CH = C.

Similarly to section 7.3.1, when ΩX is unbounded then a sufficiently large bounded box

DX is considered and a correction term is added to the probability enclosure computed

by algorithm 6.

207

Chapter 7. Reliability Problems

Given the design space ΩY , the PC framework is able to characterize the reliability

of all meaningful designs ∆i within such space, given a granularity specified by the

decision maker. Algorithm 12 (page 134) with arguments ⟨⟨X,DX × ΩY , C⟩, f⟩ and
CH = C, and some slight adaptations, can be used for this purpose.

Algorithm 14 incorporates the necessary modifications to algorithm 12 and furthermore

allows an extra parameter that guarantees that only designs with a reliability greater

than a given threshold are considered. It computes enclosures for the marginal relia-

bility (or probability of failure) of every meaningful design in ΩY for a subset of design

parameters Z = ⟨Yi1 , . . . , Yim⟩. The granularity for each considered design parameter

is indicated in the corresponding grid spacing αj . It outputs an m-dimensional array

M of reliability enclosures and a box H that encloses the design space, defining the

region characterized by the distribution.

In the pseudo code [R] represents the computed reliability enclosure for a design which

depends on the kind of system addressed. For series systems [R](H�B , f) = [P](H�B , f)

whereas for parallel systems [R](H�B , f) = 1 − [P](H�B , f). This is extensive to the

probability enclosure used in the stopδ≤ criterion.

The algorithm starts by computing the hull of the considered design space, using the

grid spacings αj and the ranges of the relevant design parameters (lines 1 − 2). This

is necessary because such hull may exceed the initial ranges of the design parameters.

That excess, not greater than αj in each parameters bound, must be accounted for to

guarantee the correctness of the computed reliability for designs in the hull boundaries.

The PDF f given as argument must be modified to compute the reliability of each

design. This is not directly included in the original PDF because it depends on the

granularity, αi, chosen for each design parameter (line 3).

The grid boxes are computed using cReasoning (algorithm 3, page 40) with a grid

oriented parametrization (see section A.1 in appendix A) (line 4). Then, each grid box

(a design) is further refined by another call to cReasoning until the required accuracy

for its reliability enclosure is achieved or its reliability is assuredly smaller than the given

threshold tol (imposed by stopδ≥) or every box is already sufficiently small (imposed

by eligibleε) (line 7). The reliability of non neglected designs is computed and stored

in the corresponding array cell (lines 8− 12).

208

7.3 Probabilistic Constraint Approach

Algorithm 14: designDistribution(⟨⟨X,D,C⟩, f⟩, CH, Zidx, ε, δ, α, tol)

Input: ⟨⟨X,D,C⟩, f⟩: PC; CH: set of constraints; Zidx = ⟨i1, . . . , im⟩: tuple of
variables indexes; ε, δ: double; α = ⟨α1, . . . , αm⟩: tuple of doubles; tol:
double

Output: ⟨M,H⟩: pair with an m-dimensional array of intervals and an m-box;
1 ∀1≤j≤m

(
Ij ←

[
floor(inf(Dij)/αj), ceil(sup(Dij)/αj)

]
; Dij ← αjIj

)
;

2 H ← ΠZidx
(D);

3 vol∆ ←
m∏
i=1

αi; f ← f × vol(H)

vol∆
;

4 ⟨H� ,H�⟩ ← cReasoning(⟨{D},∅⟩, CH, splitα, innerd, eligibleα, order↓, false);
5 ∀1≤k1≤wid(I1) . . . ∀1≤km≤wid(Im) M [k1] . . . [km]← [0];

6 foreach (B ∈ H�) do
7 H�B ← cReasoning(⟨{B},∅⟩, CH, split2, innerd, eligibleε, orderP , stopδ≤);
8 if (sup([R](H�B , f)) ≥ tol) then
9 ∀1≤j≤m Bj ← Π⟨ij⟩(B);

10 ∀1≤j≤m kj ← ceil(sup(Bj)/αj)− inf(Ij);
11 M [k1] . . . [km]← [R](H�B , f);

12 end

13 end
14 return ⟨M,H⟩;

Experimental Results

The application of the PC framework to RDB, on two mathematical examples repre-

senting series systems from reliability analysis literature (e.g. [38]) follows.

Algorithm 14 was implemented over RealPaver 1.0, and the presented results were

obtained using the Taylor model integration technique (PCTM version), where a Taylor

model of order 2 was used. The experiments were carried out on an Intel Core i7 CPU

at 1.6 GHz.

Example 7.6. Consider an RBD of a series system with two design parameters, Y1

and Y2, whose values range over ΩY = [1, 10] × [1, 10] and two independent random

variables, X1 ∼ N(µ1 = 0, σ1 = 0.2) and X2 ∼ N(µ2 = 0, σ2 = 0.2) with joint PDF fX ,

that represent variability around the design values. The limit-state functions are:

g1(x1, x2, y1, y2) =
1

20
(y1 + x1)

2(y2 + x2)− 1

g2(x1, x2, y1, y2) = − (y1 + x1)
2 − 8(y2 + x2) + 75

209

Chapter 7. Reliability Problems

g3(x1, x2, y1, y2) = 5(y1 + x1)
2 + 5(y2 + x2)

2 + 6(y1 + x1)(y2 + x2)

− 64(y1 + x1)− 16(y2 + x2) + 124

Such system can be formulated as a PC where:

D = [−1, 1]× [−1, 1]× ΩY X = ⟨x1, x2, y1, y2⟩

C = {gi(x,y) ≥ 0 : 1 ≤ i ≤ 3} f =
fX(x)

vol(ΩY)

Since 5 standard deviations around the mean value are assumed, the bounds chosen for

DX guarantee a negligible probability for the neglected ΩX region, [P](ΩX \ DX) ≤
1.2× 10−6.

(a)

(2.2, 5)

(4, 4)

(6.6, 6)

(3, 2)

2 4 6 8

2

4

6

8

10

Y1

Y
2

(b)

Figure 7.8: Reliability distribution over the design space.

Algorithm 14 was applied to the above PC, with CH = C, with all design parameters

(Zidx = ⟨3, 4⟩), a granularity for each design of αi = 0.05, a required precision for the

reliability of δ = 5% and a threshold for the reliability of tol = 10% (i.e. only designs

with a reliability of at least 10% are considered). Figure 7.8 (a) is obtained from M

and H computed by such call to the algorithm.

The figures for the probability distributions presented in this and other examples are

based on the midpoints of the interval enclosures for the grid boxes probabilities re-

turned by algorithm 14 in array M . In the figures, the more reliable a design is the

darker is its color representation (black is 100% reliable whereas white is 0%).

210

7.3 Probabilistic Constraint Approach

We can observe that reliability is smaller around the boundaries (defined by functions

g′i = gi(µ1, µ2, y1, y2)), and even designs outside such boundaries, but close to them,

have reliability greater than 0 (although small).

This is because random variables X1 and X2 account for some variability of the design

variables. Thus a binormal distribution is centered on each design (assuming that each

design is a point) and it may cover some area within the boundaries representing the

safe region.

This idea is illustrated in figure 7.8 (b), where four designs, (2.2, 5), (3, 2), (4, 4) and

(6.6, 6), are represented (yellow dots) with circles representing their distribution (re-

gions outside the outer circle have negligible probability). The circle corresponding to

design (4, 4) is completely inside the region defined by the boundaries and, as such, has

a very high reliability. Design (3, 2) is outside that region but the corresponding circle

still has some area inside and so, its reliability is greater than 0. On the other hand

design (2.2, 5) is inside the boundary region, but some area of the corresponding circle

is outside, decreasing its reliability. Finally, the circle corresponding to design (6.6, 6),

completely outside the region, has reliability 0.

Based on figure 7.8 (a) decision makers may choose particular designs of interest and

obtain sharp enclosures for their reliability. For a particular design (y1, y2) = (a, b) its

reliability can be assessed as explained in section 7.3.1 by considering the PC:

D = [−1, 1]× [−1, 1] X = ⟨x1, x2⟩

C = {gi(x1, x2, a, b) ≥ 0 : 1 ≤ i ≤ 3} f = fX(x)

For the decisions illustrated in figure 7.8 (b) the enclosures for their reliability obtained

with the PCTM version of algorithm 6 with δ = 10−4 and ε = 10−15 (after adding the

correction term) are presented on table 7.5. All the results were obtained in less than

10 seconds CPU time.

Design Reliability

(2.2, 5) [0.8350, 0.8352]

(3, 2) [0.1332, 0.1334]

(4, 4) [0.9999, 1.0000]

(6.6, 6) [0.0000, 0.0001]

Table 7.5: Reliability values for some particular designs.

211

Chapter 7. Reliability Problems

Example 7.7. Consider an RBD of a series system with two design parameters, Y1

and Y2, whose values range over ΩY = [−400, 300]× [−100, 100] and two independent

random variables, X1 ∼ N(µ1 = 0, σ1 = 10) and X2 ∼ N(µ2 = 0, σ2 = 10) with joint

PDF fX , that represent variability around the design values. The limit-state functions

are:

g1(x1, x2, y1, y2) = (y1 + x1)
2 − 1000(y2 + x2)

g2(x1, x2, y1, y2) = (y2 + x2)− (y1 + x1) + 200

g3(x1, x2, y1, y2) = (y1 + x1) + 3(y2 + x2) + 400

Such system can be formulated as a PC where:

D = [−50, 50]× [−50, 50]× ΩY X = ⟨x1, x2, y1, y2⟩

C = {gi(x,y) ≥ 0 : 1 ≤ i ≤ 3} f =
fX(x)

vol(ΩY)

Again 5 standard deviations around the mean value are assumed for the bounds of DX ,

with [P](ΩX \DX) ≤ 1.2× 10−6.

Algorithm 14 is applied to the above PC, with CH = C, with all design parameters

(Zidx = ⟨3, 4⟩), a granularity for each design of αi = 1, a required precision for the

reliability of δ = 5% and a threshold for the reliability of tol = 90% (i.e. only designs

with a reliability of at least 90% are considered). Figure 7.9 is obtained from the values

of M and H obtained from such algorithm.

Again, figure 7.9 allows decision makers to have a global view of the problem. Based

on this information and on their expertise, they can choose to further explore one or

more regions of interest, with increased accuracy.

Figures 7.9 (b) and (c) illustrate a possible zoom on two such regions, respectively

[−300,−200]×[−50, 50] and [120, 220]×[−50, 50], obtained from the results of algorithm

14, with smaller granularity for each design parameter αi = 0.5 and tighter accuracy

requirements δ = 1%.

Such process can be successively applied to guide decision makers on their search for

good designs with adequate granularity and confidence on the risk assessment.

212

7.3 Probabilistic Constraint Approach

(a)

(b) (c)

Figure 7.9: Reliability distribution over the design space.

7.3.3 Reliability Based Design Optimization

Reliability based design optimization (RDBO) is a particular case of RDB where one

or more objective functions, that characterize the desired behavior of the system, are

considered. As such, the formulation of an RBDO of a series or a parallel system as

a PC is the same as for the RBD of such system. What is inherently different is the

information computed in each case.

Our approach to RBDO problems aims at obtaining a Pareto-optimal frontier of non

dominated designs wrt the maximization of reliability and the minimization of the

expected values of the objective functions. As already stated in section 7.1.1, each

objective function hi is defined over the uncontrollable variables X and the design

parameters Y , i.e., hi : ΩX × ΩY → R.

213

Chapter 7. Reliability Problems

Since there is no optimization algorithm available in the PC framework to compute

the desired information, algorithm 15, adapted from algorithm 14, is presented here for

that purpose.

Besides computing the grid (lines 1−4), as in algorithm 14, the new optimization algo-

rithm constructs the set L of non dominated solutions (lines 5−24). Each solution is a

pair: the first element is a box (the design); and the second is a vector of values corre-

sponding to the objective functions evaluated at that design. The first position of such

vector contains the reliability of the design (line 10). Since minimization is assumed in

the Pareto criterion, its complement is considered. The other vector positions contain

the conditional expected value of each objective function given the design (line 11).

When a new solution ⟨B,O⟩ is computed, all the designs in L, dominated by such

solution, are excluded from L and ⟨B,O⟩ is, assuredly, a non dominated solution (lines

13 − 16). Otherwise, if some other design in L dominates this solution, then it is,

assuredly, dominated and it is no longer necessary to further inspect L (lines 17− 20).

If the new solution ⟨B,O⟩ was not identified as dominated then it is inserted in the set

of non dominated solutions L (line 22).

In lines 25 − 29 the information associated with each non dominated solution in L is

inserted in its corresponding grid cell in array M .

Experimental Results

To illustrate the results obtained with algorithm 151 the same examples of section 7.3.2

are used, where objective functions are considered.

Example 7.8. Consider the PC of example 7.6 and the objective function:

h1(x1, x2, y1, y2) = y1 + y2.

Algorithm 15 was applied to this PC, with design parameters (Zidx = ⟨3, 4⟩), h = ⟨h1⟩, a
granularity for each design of αi = 0.1, a required precision for the reliability of δ = 5%

and a threshold for the reliability of tol = 80.134% (two Gaussian standard deviations).

The non dominated designs, shown in figure 7.10 (a), were obtained near the feasible

region above the intersection of functions g′1 and g′3. Figure 7.10 (b) shows the relation

1Using the same settings as the experiments in RBD.

214

7.3 Probabilistic Constraint Approach

Algorithm 15: designOptimization(⟨⟨X,D,C⟩, f⟩, CH, Zidx, ε, δ, α, tol)

Input: ⟨⟨X,D,C⟩, f⟩: PC; CH: set of constraints; Zidx = ⟨i1, . . . , im⟩: tuple of
variables indexes; h = ⟨h1(X), . . . , hl(X)⟩: tuple of functions; ε, δ, tol:
double; α = ⟨α1, . . . , αm⟩: tuple of doubles;

Output: ⟨M,H⟩: pair with an m-dimensional array of intervals and an m-box;
1 ∀1≤j≤m

(
Ij ←

[
floor(inf(Dij)/αj), ceil(sup(Dij)/αj)

]
; Dij ← αjIj

)
;

2 H ← ΠZidx
(D);

3 vol∆ ←
m∏
i=1

αi; f ← f × vol(H)

vol∆
;

4 ⟨H� ,H�⟩ ← cReasoning(⟨{D},∅⟩, CH, splitα, innerd, eligibleα, order↓, false);
5 ∀1≤k1≤wid(I1) . . . ∀1≤km≤wid(Im) M [k1] . . . [km]← ∅;

6 L← ∅;
7 foreach (B ∈ H�) do
8 flag ← unknown;
9 H�B ← cReasoning(⟨{B},∅⟩, CH, split2, innerd, eligibleε, orderP , stopδ>);

10 if (sup([P]′(H�B , f)) ≥ tol) then
11 O[0]← −1× [P]′(H�B , f);
12 ∀1≤i≤l O[i]← [E](hi, f |H�B);
13 foreach (⟨B′, O′⟩ ∈ L) do
14 if (dominates(O,O′)) then
15 L← L \ ⟨B′, O′⟩;
16 flag = nonDominated;

17 end
18 if (flag = unknown ∧ dominates(O′, O)) then
19 flag = dominated;
20 break;

21 end

22 end
23 if (flag ̸= dominated) then L← L ∪ {⟨B,O⟩};
24 end

25 end
26 foreach (⟨B,O⟩ ∈ L) do
27 ∀1≤j≤m Bj ← Π⟨ij⟩(B);

28 ∀1≤j≤m kj ← ceil(sup(Bj)/αj)− inf(Ij);
29 M [k1] . . . [km]← ⟨B,O⟩;
30 end
31 return ⟨M,H⟩;

215

Chapter 7. Reliability Problems

between the reliability values and the corresponding h1 values for the obtained designs.

This provides, to decision makers, important information on the trade-off between the

system reliability and its optimal behavior.

Y1

Y2

1 2 3 4 5 6 7 8

2

3

4

5

6

7

8

9

(a) Pareto-optimal frontier.

82 84 86 88 90 92 94 96 98 100
6

6.5

7

7.5

Reliability (%)

O
pt

im
al

 F
un

ct
io

n
Va

lu
e

(m
in

im
iz

e
Y1

 +
 Y

2)

(b) Trade-off between h1 and the reliability.

Figure 7.10: Reliability based design optimization.

While the PC framework outputs a safe Pareto-optimal frontier, classical RBDO tech-

niques output a single design point (corresponding to the optimum value of the objective

function) given a target reliability, with no guarantees of global optimality.

The PC framework can easily incorporate a method to obtain the best design (or set

of designs) given the objective functions, for a target reliability. For instance, for

target reliability 84.134% the global optimum for objective function h1 is proved to be

enclosed in [6.00, 6.02]. It was proved that there are no designs with reliability 84.134%

and h1 values less than 6.00 and a particular design was found with Y1 = 3.11 and

Y2 = 2.91 with the desired reliability (in fact, proved to be above 84.147%), such that

h1(3.11, 2.91) = 6.02.

Although the PC framework (with the PCTM version of the algorithm) is considerably

slower than the classical techniques it provides more information, being a good trade-off

between efficiency and guaranteed safe results.

For the same series system consider another objective function.

Example 7.9. Consider the PC of example 7.6 and the objective function:

h2(x1, x2, y1, y2) = y1 + y2 + sin(3y21) + sin(3y22)

216

7.3 Probabilistic Constraint Approach

with several local optima, shown in figure 7.11 (a).

Algorithm 15 was applied to this PC, with design parameters (Zidx = ⟨3, 4⟩), h = ⟨h2⟩,
a granularity for each design of αi = 0.1, a required precision for the reliability of

δ = 5% and a threshold for the reliability of tol = 80.134% (two Gaussian standard

deviations).

The results of the algorithm allow to identify and characterize the local optima of

objective function h2 wrt their reliability, producing an overview of the Pareto-optimal

frontier, shown in figure 7.11 (b).

2.8
3

3.2
3.4

2.8

3

3.2

3.4

3

4

5

6

7

8

9

Y1
Y2

(a) Objective function h2.

Y2

Y1

(b) Pareto-optimal frontier.

Figure 7.11: Reliability based design optimization.

Example 7.10. Consider the PC of example 7.7 and the objective function:

h3(x1, x2, y1, y2) = −y2

Typically, the optimal design lies on a constraint boundary or at the the intersection

of more than one constraint, as shown in figure 7.12. When uncertainty is considered

in design variables, such optimal design has a very low reliability (see example 7.6).

To satisfy a given reliability target, unreliable optimal designs must be sacrificed and

designs well within the safe region should be chosen.

As can be observed in the figure, for this problem and objective function h3 two deter-

ministic optimal designs exist A (is the global optimum) and B (is a local optimum).

217

Chapter 7. Reliability Problems

Nevertheless, when considering uncertainty in design variables, design B′ (near the lo-

cal optimum B) is better wrt objective function h3 and a given target reliability, than

design A′ (near the global optimum) for the same reliability.

 A B

 B' A'

-400 -300 -200 -100 0 100 200 300

-100

-50

0

50

100

Y1

Y
2

Figure 7.12: Multiple optimal designs.

Algorithm 15 was applied to the PC, with design parameters (Zidx = ⟨3, 4⟩), h = ⟨h3⟩, a
granularity for each design of αi = 0.5, a required precision for the reliability of δ = 5%

and a threshold for the reliability of tol = 90%.

The results of the algorithm allow to identify and characterize the optimum region of

objective function h3 wrt their reliability, producing an overview of the Pareto-optimal

frontier, shown in figure 7.13. As expected, the non dominated designs obtained were

able to eliminate every design in the region near the deterministic global optimum A.

Y2

Y1

Figure 7.13: Pareto-optimal frontier

218

7.4 Short Rectangular Column

7.4 Short Rectangular Column

Consider the engineering problem (a common benchmark used in reliability based design

optimization [77]) where the goal is to determine the depth h and width b of a short

column (the design parameters) with rectangular cross section, where 15 ≤ h ≤ 25 and

5 ≤ b ≤ 15.

The random variables are the bending moment M ∼ N(µ1 = 2000, σ1 = 400), the

yield stress P ∼ N(µ2 = 500, σ2 = 100) (with correlation ρ = 0.5) and the axial force

Y ∼ LogN(µ3 = 5, σ3 = 0.5)1 with joint PDF fA(M,P, Y) = fMP (M,P) × fY (Y)

where:

fMP (M,P) =
1

2πσ1σ2
√

1− ρ2
e
− 1

2(1−ρ2)

[(
M−µ1

σ1

)2
−2ρ

(
M−µ1

σ1

)(
P−µ2
σ2

)
+
(

P−µ2
σ2

)2
]

fY (Y) =
1

Y σ3
√
2π

e
− 1

2

(
ln(Y)−µ3

σ3

)2

The limit-state function is:

g(M,P, Y, h, b) = 1− 4M

(bh2Y)
− P 2

(bhY)2

The objective is to minimize the total mass given by o(h, b) = hb. The results reported

in [4, 32, 73, 77] refer that, for an allowed probability of failure of 0.00621 (i.e., a target

reliability of 0.99379), the optimal design is (h, b) = (25, 8.668), with objective function

value hb = 216.7.

This problem can be formulated as PC ColumnA where:

D = [0, 4000]× [0, 1000]× [10, 2000]× [15, 25]× [5, 15] X = ⟨M,P, Y, h, b⟩

C = {g(M,P, Y, h, b) ≥ 0} f =
fA(M,P, Y)

vol([15, 25]× [5, 15])

Algorithm 14 was applied to this PC, with CH = C, with design parameters (Zidx =

⟨4, 5⟩), a granularity for each design of αi = 0.5, a required precision for the reliability

of δ = 10% and a threshold for the reliability of tol = 30%.

1LogN represents the lognormal distribution.

219

Chapter 7. Reliability Problems

Contrary to what was expected, from RBDO references (henceforth denoted as RBDO

techniques), all the designs within [15, 25]× [5, 15] had a very high reliability.

Using the PC framework for reliability assessment, the reliability of design (h, b) =

(15, 5), for which hb = 75 is minimum, is above 0.9999 (for the allegedly optimal design

(h, b) = (25, 8.668) it is also above 0.9999). This value clearly satisfies the constraints

for the allowed probability of failure and the optimization criterion. Nevertheless, in

all reliability analysis studies (to which we had access) this is never the optimal design

found.

To try to reproduce the results obtained by the RBDO techniques, a different problem

configuration is considered where Y ∼ N(µ3 = 5, σ3 = 0.5) and no correlation exists

between random variables M and P . The joint PDF is:

fB(M,P, Y) ==
1

2π
√
2πσ1σ2σ3

e
− 1

2

[(
M−µ1

σ1

)2
+
(

P−µ2
σ2

)2
+
(

Y −µ3
σ3

)2
]

Such problem can be formulated as PC ColumnB where:

D = [0, 4000]× [0, 1000]× [10, 2000]× [15, 25]× [5, 15] X = ⟨M,P, Y, h, b⟩

C = {g(M,P, Y, h, b) ≥ 0} f =
fB(M,P, Y)

vol([15, 25]× [5, 15])

Using the PC framework for reliability assessment, the reliability of design (h, b) =

(15, 5) is now below 0.0001 and for design (h, b) = (25, 8.668) it is above 0.9957. These

results agree with those obtained by the RBDO techniques.

Figure 7.14 shows the results computed by algorithm 14 applied to PC ColumnB (with

the same parameters as above). The dotted red line plots function g(µ1, µ2, µ3, h, b)

where the random variables were replaced by their means (in Gaussian space).

Since in the original configuration the left bounds of each design parameter provided

the optimal reliable design, we searched for better designs within smaller bounds. Thus,

another problem configuration is considered where the random variables have the same

joint PDF, fA, but with different bounds for h and b: 3 ≤ h ≤ 15 and 0 ≤ b ≤ 5.

220

7.4 Short Rectangular Column

Figure 7.14: Reliability distribution over the design space for problem ColumnB.

Such problem can be formulated as PC ColumnC where:

D = [0, 4000]× [0, 1000]× [10, 2000]× [3, 15]× [0, 5] X = ⟨M,P, Y, h, b⟩

C = {g(M,P, Y, h, b) ≥ 0} f =
fA(M,P, Y)

vol([3, 15]× [0, 5])

Figure 7.15 plots g with random variables M , P and Y replaced by their means (in

Gaussian space). In problem ColumnB they are, respectively, 2000, 500 and 5, and the

plot of g(2000, 500, 5, h, b) is the red line. In problem ColumnC they are, respectively,

2000, 500 and e5, and the plot of g(2000, 500, e5, h, b) is the green line. The doted

squares represent the bounds for the design parameters in problem ColumnB (red) and

ColumnC (green).

Algorithm 14 was then applied to PC ColumnC (with the same parameters as above)

and the obtained results are presented in figure 7.16.

It can now be observed from the figure, where darker regions represent designs with

higher reliability, that not all design have the same high reliability. Using the PC

framework for reliability assessment we tested some promising designs (in the black

region and with small values for the objective function hb) and found design (h, b) =

(15, 1.7) with the objective function value hb = 25.5 and reliability above 0.9978.

221

Chapter 7. Reliability Problems

5 10 15 20 25
0

2

4

6

8

10

12

14

Figure 7.15: Plots of g(2000, 500, 5, h, b) (red line) and g(2000, 500, e5, h, b) (green line).

Figure 7.16: Reliability distribution over the design space for problem ColumnC.

In order to search for other designs with reliability above 0.99379 and objective function

value less or equal than 25.5 a new problem, ColumnD, was formulated:

D = [0, 4000]× [0, 1000]× [10, 2000]× [0, 25]× [0, 15] X = ⟨M,P, Y, h, b⟩

C = {g(M,P, Y, h, b) ≥ 0, (h− α1)(b− α2) ≤ 25.5} f =
fA(M,P, Y)

vol([0, 25]× [0, 15])

The extra constraint in C discards boxes where all corresponding objective function

values are assuredly above 25.5. The correction terms αi correspond to the granularity

of each design parameter and is used to avoid narrowing design boxes where not all

corresponding objective function values are above 25.5. Such narrowing would bias the

reliability computation of those boxes.

222

7.5 Summary

Algorithm 14 was applied to PC ColumnD, with CH = C, Zidx = ⟨4, 5⟩, αi = 0.1,

δ = 5% and tol = 0.99379. The results obtained are presented in figure 7.17. Clearly

only a narrow strip of sufficiently reliable designs satisfy the imposed constraints. The

region near the upper bound of design parameter h and the lower bound of design

parameter b is the most promising one. So we considered h = 25 and performed

a dichotomic search (using the PC framework for reliability assessment) for b values

between 0.5 and 1.0. An optimal design (h, b) = (25, 0.7) was found, with objective

function value hb = 17.5 and reliability above 0.9939.

o(h, b) = 25.5

gHΜ1, Μ2, eΜ3, h, bL = 0

0 5 10 15 20 25

0

2

4

6

8

h

b

Figure 7.17: Reliability distribution over the design space for problem ColumnD.

This study shows the suitability of the PC framework for RBDO analysis, which allows

directly addressing the original problem formulation with no simplifying assumptions.

Moreover, it illustrates the magnitude of the errors that can be made when approxi-

mations for probability distributions are considered.

7.5 Summary

This chapter illustrated the application of the probabilistic continuous constraint frame-

work to reliability analysis problems. Reliability analysis problems were presented, clas-

sical techniques to solve them were addressed and some of their drawbacks discussed.

The formulation of reliability analysis problems as probabilistic continuous constraint

spaces was presented and the advantages of the PC framework were illustrated on a set

of application problems.

223

Chapter 7. Reliability Problems

224

Chapter 8

Conclusions and Future Work

The main contribution of this thesis is to extend the classical continuous constraint

paradigm with probabilistic reasoning, since this was an important feature for appli-

cations in science and engineering. In particular three main tasks were established:

the formalization of the probabilistic continuous constraint paradigm to integrate con-

straint reasoning and probabilistic reasoning; the implementation of a prototype to

test the algorithms proposed within the paradigm; and the identification of significant

problems in science or engineering that could benefit with the proposed techniques.

8.1 Probabilistic Constraint Programming

To formalize the probabilistic constraint paradigm, a generic description and some

preliminary results were published in [23], while a more formal characterization was

published in [24].

In this thesis the proposed probabilistic continuous constraint paradigm was completely

formalized and theoretically grounded by characterizing its affinity with probability

theory and with classical methods from constraint programming.

The core of the paradigm, the probabilistic continuous constraint space, was defined

and its semantics specified, the queries that can be formulated within such probabilis-

tic space were identified and the concepts of probabilistic constraint event and random

vector were introduced. Both safe and approximate methods to obtain enclosures were

described (and their properties discussed) namely for (a) conditional and unconditional

225

Chapter 8. Conclusions and Future Work

probabilities of events; (b) conditional and unconditional expected values and covari-

ance matrices of random vectors; and (c) probability distributions of random vectors.

Besides constraint reasoning, a core component of the framework is the computation of

multi dimensional integrals in possibly non linear regions. Two distinct methods were

presented to achieve this goal, although other existing techniques could be incorporated.

A safe (or validated) integration method based on Taylor models was theoretically

characterized, implemented and tested in the context of the framework. Its convergence

analysis is mainly due to Alexandre Goldsztejn and is not a contribution of the present

work, being presented here for completeness [48].

The need for a more efficient method that can produce results more rapidly, although

with no safety guarantees, motivated the development of an approximate Monte Carlo

integration method, hybridized with constraint programming (sampling is only per-

formed in regions not discarded by constraint programming). This was particularly

useful in the application of the framework to ocean color inversion. Its success strongly

relies on the hybridization, since even a non-naif Monte Carlo (stratified) method re-

vealed not only to be hard to tune but also impractical in small error settings. This is

a promising approach that deserves to be further explored in other application areas.

Since the Monte Carlo integration method appeared at a latter stage of this research, the

theoretical characterization of the framework mostly assumes safe integration methods

(although the impact of adopting the approximate Monte Carlo method is still ad-

dressed) and some of the experimental results do not include Monte Carlo integration

(e.g. in the application of the framework to reliability analysis).

The validated version of the framework, for probability assessment and calculation of

expected values and variances of random vectors, was tested on a set of mathematical

problems, for a proof of concept. Its robustness when dealing with (a) events defined

by highly non linear regions, (b) highly non linear PDFs and (c) events with a small

probability of occurrence became evident in the set of experiments. The results of

probability assessment were compared with those obtained with Mathematica, a pow-

erful tool of reference. Clearly, the calculation of probabilities for rare events is very

problematic with such tool and may even be considered useless on some of the cases

we tested.

226

8.1 Probabilistic Constraint Programming

Experiments using the approximate hybridized Monte Carlo integration method re-

vealed to be a good trade-off between safety and efficiency, producing, significantly

faster, results with only a very small error.

A dedicated algorithm to compute conditional probabilities, exploiting the common-

alities of the involved events, was developed and tested on the set of mathematical

problems, where results obtained were better than those obtained with a cruder ap-

proach that computes separately the probabilities of the conditioning and conditioned

events.

Computing the probability of disjunctions of events can also be done within the frame-

work. However, in the future, it would be interesting to provide a more efficient algo-

rithm that accounts for common regions of the events.

The thesis also presents an algorithm to compute nonparametric probability distribu-

tions of random vectors and output them in tabular form, for subsequent processing.

This is an important feature of the framework, mainly on real world problems such as

inverse and reliability problems. In such problems, plots of the results obtained provide

an adequate display of the shape of the computed distributions and convey extra infor-

mation such as the location of the values, its scale, its skewness and whether multiple

modes in the distribution exist.

A potential limitation of the framework is its scalability to more complex problems,

with higher dimensions, given the continuous constraint paradigm that supports it, as

well as the used integration methods. For some classes of problems and for high ac-

curacy requirements, the time necessary to obtain the desired results may drastically

increase or even become computationally prohibitive. In the future, experimental re-

search on this subject should be performed, to adequately characterize the behavior of

the algorithms in several classes of problems and to seek more efficient algorithms.

Further, attention should be paid in the future, in identifying the influence of different

algorithm parameterizations (e.g. accuracy of the computed probability enclosure,

minimum authorized width for the boxes, Taylor order or number of samples) in the

obtained results.

In the present framework uncertainty is treated by assuming probability distributions

in all the variables of the problem. However, in many practical engineering applications,

227

Chapter 8. Conclusions and Future Work

distributions of some random variables may not be precisely known or uncertainties may

not be appropriately represented with distributions and are only known to lie within

specified intervals. In the future the probabilistic continuous constraint paradigm can

be extended to address problems where uncertain variables are characterized by a mix-

ture of probability distributions and intervals.

Moreover, in some practical engineering applications, both continuous and discrete

random variables coexist. The extension of the framework to combine both types of

random variables would amplify the range of problems that can be tackled.

8.2 Prototype

All the algorithms presented in this thesis were implemented in C++, over the interval-

based solver RealPaver 1.0 [52]. This solver provides a set of useful continuous con-

straint methods and its design makes it easily extensible. The new probabilistic func-

tionalities were incorporated, following a similar design.

An operational prototype application was built, that can readily be used for testing

new problems, with minimum configuration efforts. In fact, each algorithm corresponds

to an executable program to which a set of adequate arguments is given as input. This

process could be further automated, allowing the user to choose the desired functionality

within a unique executable.

In general, the results obtained by a given algorithm with an initial parametrization,

can guide the user in future parameterizations, allowing some control over the reasoning

process (although not during ongoing search): circumscribe reasoning to specific regions

of the search space; analyze the robustness of a particular solution; or redefine some

input parameters.

In the future, we seek to develop a unique (executable) prototype, requiring minimum

configuration efforts, that can be made available to the research community (by dis-

closing the source code), with proper programmer and user manuals. This is of great

importance as it may allow fruitful collaborations with other research groups, result in

future extensions to this work and bring to light further application problems.

228

8.3 Application to Decision Problems

8.3 Application to Decision Problems

Two classes of decision problems were identified as adequate to apply the probabilistic

continuous constraint framework: non linear inverse problems and reliability problems.

In both cases nonlinear continuous instances exist, with uncertain information charac-

terized by probability distributions.

Three papers on this subject were published: [25] that discusses the application of (a

preliminary version of) the framework to solve inverse problems; [26] that explains the

application of the framework to reliability problems and how it can be extended to deal

with reliability-based optimization problems; and [27] that addresses the capabilities

of the framework to deal with decision problems in the presence of uncertainty and

non-linearity. A journal paper that addresses the application of the framework to a

real world inverse problem, ocean color inversion, was recently submitted [28].

On the two classes of problems, the potentiality of the probabilistic continuous con-

straint framework was validated in a systematic way. First by identifying the major

drawbacks of classical techniques, for each class of problems. Then by testing the

framework on typical problematic instances, certifying its robustness.

In the context of inverse problems, ocean color inversion was modeled within the frame-

work. Preliminary results presented to Ocean Color domain experts confirmed the rele-

vance of improving methods to control error propagation in the adopted semi-analytical

model, an important issue for decisions about the sensors used in satellite-based studies.

The certified results obtained are a first step towards a tighter collaboration.

In reliability based design optimization, a common engineering benchmark was stud-

ied (short rectangular column), where the advantages of the framework were clearly

highlighted. Its ability to directly address the original problem formulation without

simplifying assumptions, avoided errors that are inevitable when approximations for

probability distributions are considered.

In the problems addressed, the implemented framework was assessed in terms of ac-

curacy and robustness, not in terms of computation times. Usually, to obtain such

guaranteed results and to characterize the complete search space, requires some over-

head in the computation time when compared with other methods that only produce

229

Chapter 8. Conclusions and Future Work

approximate results. Although such overheads could be kept within reasonable bounds,

further comparisons should be made to fully assess these differences.

This work was motivated by the recognition that constraint solving alone is insufficient

to model real life problems, where handling of uncertainty is unavoidable. The pure

constraint programming paradigm may handle such uncertainty representing variables

within safe domains, but does not distinguish different likelihoods for values within

such intervals, leading to decision support poorly informed.

This thesis extends the continuous constraint programming with probability informa-

tion and is a step forward a better modeling of such problems within constraint pro-

gramming. The resulting probabilistic constraint framework is thoroughly justified,

and its adequacy shown in some realistic engineering problems.

The research now presented opens several opportunities for further research, discussed

in this last chapter. We expect to continue research along these lines, so as to more

strongly establish the probabilistic constraint framework as a competitive alternative

to classical techniques in engineering design problems (and possibly in a wider scope)

to combine safety and uncertainty in such problems.

230

Appendices

231

Appendix A

Constraint Reasoning Algorithm

This appendix presents alternatives for parameterizing algorithms crStep (algorithm

2) and cReasoning (algorithm 3) as well as the convergence analysis of the last.

A.1 Parametrization

This section presents alternatives, used in this thesis, for parameterizing algorithms 2

and 3 (in chapter 2, pages 39 and 40), indicating implementations for the inner, eligible

and stop predicates, the split function and the order criterion. It is meant to be used

as a reference guide, so the context of each implementation is omitted and explained

locally in the part of the thesis that references this appendix.

The arguments of the generic inner predicate are a box and a set of constraints and

of the eligible predicate and split function is a box, nevertheless some of their im-

plementations require more arguments. For the sake of simplicity and generality the

specification of those other implementations omit the extra arguments, leaving those

details for the real implementation.

Inner Predicate

The inner predicate verifies if a box B is an inner box wrt a set of constraints under

specific conditions (e.g., when the box is sufficiently small).

Its default parametrization, innerd, relies on natural inclusion functions of the functions

induced from the constraints relations, replacing the variables by the intervals of the

233

Chapter A. Constraint Reasoning Algorithm

box, and checking whether all values in the resulting interval are solutions for the set

of constraints. Algorithm 16 presents the respective pseudo code and example A.1

illustrates the concept.

Algorithm 16: innerd(B,C)

Input: B: box; C: set of constraints;
Output: flag: boolean;

1 if ∃(s,ρ)∈C isEquation(ρ) then return false;

2 foreach ((s, ρ) ∈ C) do
3 f ← getFunction(ρ);
4 I ← [f]N (B);
5 if (Ī > 0) then return false;

6 end
7 return true;

In the algorithm function isEquation verifies if the constraint relation is an equation,

function getFunction retrieves the mathematical function f induced from the con-

straint relation ρ and [f]N represents its natural inclusion function. When at least one

constraint is an equation there are no inner boxes and the algorithm returns false.

When all constraints are inequalities, if the upper bound of [f]N (B) is greater than 01

for at least one constraint, B is not an inner box. Otherwise B is an inner box.

Example A.1. Consider the constraint C1 whose relation ρ is given by x+ y− 5 ≤ 0

and the box B = [1, 2]× [1, 2]. Function innerd(B, {C1}) verifies if [1, 2] + [1, 2]− [5] ≤
0 ⇔ [−3,−1] ≤ 0. Since every value in the interval [−3,−1] is less or equal to 0, B is

an inner box.

In section 5.4 a grid oriented implementation for the inner predicate is required, innerα,

such that innerα(B,C) ≡ innerd(B,C)∧insideGrid([g1](B)×· · ·×[gm](B), ⟨α1, . . . , αm⟩).

Function insideGrid verifies if an m-dimensional box B is contained in a grid box of

an m-dimensional grid. Its pseudo code is presented in algorithm 17.

1Only the relation ≤ is being considered in inequalities.

234

A.1 Parametrization

Algorithm 17: insideGrid(I1 × · · · × Im, ⟨α1, . . . , αm⟩)
Input: I1 × · · · × Im: box; ⟨α1, . . . , αl⟩: tuple of doubles;
Output: flag: boolean;

1 flag ← true;
2 for i← 1 to m do

3 flag = flag ∧ (ceil(Ii/αi)− floor(Ii/αi) ≤ 1);
4 end
5 return flag;

Eligible Predicate

The eligible predicate verifies if a box B is eligible to split. The default parametrization,

eligibleε, requires that the width of box B is largest than a given ε, i.e. eligibleε(B) ≡
wid(B) > ε.

Eligible Grid

In section 5.4 a grid oriented implementation for the eligible predicate is required,

eligibleα, such that eligibleα(B) ≡ ¬insideGrid(ΠZidx
(B), ⟨α1, . . . , αm⟩).

Stop Predicate

The stop predicate verifies if it is possible to interrupt the cReasoning algorithm based

on the current state of the joint box cover.

In this thesis most of the algorithms that use cReasoning compute an enclosure of a

quantity based on the boxes of a joint box cover (e.g., enclosure for the probability of

an event, enclosure for the integral of a function over a region, enclosure for the volume

of a region, enclosure for the reliability of a design, etc.). Usually the goal is to stop

when the computed enclosure satisfies a given criterion, namely:

• stopδ verifies if the enclosure has reached the desired accuracy, δ;

• stopδ ≥ verifies if the enclosure has reached the desired accuracy, δ or if its upper

bound is less than a given threshold, tol.

Other alternative to interrupt the loop in cReasoning is to stop after a predefined

amount of time T , resulting in the stopT predicate.

235

Chapter A. Constraint Reasoning Algorithm

Split Function

Function split is any generic technique that splits a box in two or more sub-boxes. Its

default parametrization, split2, splits the box largest interval in its midpoint, resulting

in two sub-boxes.

Split Grid

In section 5.4 a grid oriented implementation for the split function is required, splitα.

Algorithm 18 presents the pseudo-code of such function, that splits an n-dimensional

box in a grid point of a chosen grid interval, wrt a grid with spacings ⟨α1, . . . αm⟩,

producing a list with two sub boxes (lines 11 − 16). The chosen interval is the one,

among the m dimensions, that has largest width and simultaneously spans for more

than one unit grid interval in that dimension (lines 1− 10).

Algorithm 18: splitα(B, ⟨x1, . . . , xm⟩, ⟨α1, . . . , αm⟩)
Input: B: box; ⟨x1, . . . , xm⟩: tuple of variables; ⟨α1, . . . , αm⟩: tuple of doubles;
Output: {Bl, Br}: set of boxes;

1 w ← 0; j ← 0;
2 for i← 1 to m do
3 Ii ← Πi(B);
4 if (wid(Ii) > w) then

5 if (ceil(Ii/αi)− floor(Ii/αi) > 1) then
6 j ← i;
7 w ← wid(Ii);

8 end

9 end

10 end
11 Ij ← Πj(B);
12 lg ← floor(mid(Ij)/αi)αi; rg ← ceil(mid(Ij)/αi)αi;
13 if (mid(Ij)− lg ≤ rg −mid(Ij)) then p← lg; else p← rg;
14 Bl ← B; Πj(Bl)← [Ij , p];

15 Br ← B; Πj(Br)← [p, Ij];
16 return {Bl, Br};

236

A.2 Algorithm Convergence

Order Criterion

The order criterion imposes an order on the boxes of outer covers, specifying how

they are selected for processing. Usually it gives preference to boxes with highest

contribution to reach the condition imposed by the stop predicate. Namely:

• orderP , orders the boxes by decreasing order of the width of their probability

enclosure;

• orderW orders the boxes by decreasing order of their width;

• orderLIFO induces the behavior of a LIFO data structure to the outer cover;

• order↓ induces a depth first search.

A.2 Algorithm Convergence

This section discusses the convergence of algorithm cReasoning (algorithm 3) assuming

that it is implemented with an infinite precision interval arithmetic.

The proof is based on a similar one presented in [48]. So, we directly use some results

from such paper, as the following proposition, which states that a convergent inclusion

function [g] of g allows computing arbitrarily sharp enclosures of the set {x ∈ D :

g(x) = 0}, where D ⊆ Rn.

Proposition A.1 Consider a continuous function g : Rn → R and an inclusion

function [g] of g that is convergent inside a bounded D. Let Ω0 = {x ∈ D : g(x) = 0}
and consider an arbitrary set Ω+

0 ⊆ Rn such that Ω0 ⊆ int(Ω+
0), where int(E) is the

interior of E. Then there exists ε > 0 such that for all B ⊆ D we have wid(B) ≤ ε

and 0 ∈ [g](B) imply B ⊆ Ω+
0 .

Proof. For a proof see [48]. �

In the following consider:

• CCSP ⟨X,D,C⟩, where D ⊆ Rn and C = {(s1, ρ1), . . . , (sm, ρm)}, with ρi = {x ∈
D : gi(x) ⋄i 0};

237

Chapter A. Constraint Reasoning Algorithm

• F�k
= ⟨F�k

,F�k
⟩ to be the joint box cover computed at iteration k of the while

loop in cReasoning;

• ∆kF = F+
k \ F

−
k ;

• εk = max
B∈F�k

\F�k

wid(B);

• F�0 = ⟨{D},∅⟩ to be the input joint box cover of cReasoning;

• cReasoning∞ to be parameterized as follows:

• the stop predicate returns false;

• the inner predicate is innerd (defined in section A.1);

• the conjunction of the order criterion and the eligible predicate imposes a fair

selection strategy wrt boundary boxes;

• the split function is fair.

Intuitively, the fairness of the selection strategy guarantees that when k approaches

infinity, all eligible boxes will have been split an infinite number of times. The fairness

of the split strategy furthermore guarantees that when the number of splits of a box

approaches infinity its width approaches zero (split2, defined in section A.1, is fair).

The next property states that the width of the largest boundary box approaches zero

as k approaches infinity.

Property A.1 Consider a sequence (F�k
)k∈N computed by cReasoning∞ such that

F�k
= crStep(F�k−1

, C, split, inner, true, order). Then lim
k→∞

εk = 0.

Proof. [Sketch] The fairness of the selection and of the split strategies guarantees that,

for all boxes in F�k
\F�k

, when k approaches infinity their width approaches zero and

so does εk. For a formal definition of fairness of the split and selection strategies and

a proof of this property see [48]. �

Given a function g whose set of roots is the union of the constraint boundaries, the

next property states that, for every joint box cover F�k
, the evaluation of the inclusion

function [g] over a boundary box results in an interval that contains zero.

238

A.2 Algorithm Convergence

Property A.2 Let g : D → R be a continuous function defined as g(x) = g1(x) ×

· · · × gm(x) such that Ω0 = {x ∈ D : g(x) = 0} =
m∪
i=1

{x ∈ D : gi(x) = 0}. Given the

properties of narrowing operators and of the innerd predicate:

∀k>0∀B∈F�k
\F�k

0 ∈ [g](B)

Proof. Let us start by notice that lines 9 and 10 of crStep (algorithm 2) guarantee

that boxes added to F�k
are the ones not removed by CPA algorithm and those added

to F�k
are the ones identified as inner boxes by the inner predicate (consequently such

boxes do not belong to F�k
\ F�k

).

The proof is carried out by contradiction. Assume that exists k and B ∈ F�k
\ F�k

such that 0 ̸∈ [g](B). In that case one of the following is true:

• ∀i inf([gi](B)) > 0;

• ∀i sup([gi](B)) < 0.

In the first case, by the properties of the narrowing operators (see section 2.3.1), CPA

algorithm would have removed box B. In the second case, by the properties of the

innerd predicate, if all constraints are inequalities B would have been added to F�k
.

Otherwise, if some constraint is an equation, B would have been removed by CPA

algorithm. In either case B ̸∈ F�k
\ F�k

which is a contradiction. �

Property A.3 (Convergence) Consider a sequence (F�k
)k∈N computed by

cReasoning∞ such that F�k
= crStep(F�k−1

, C, split, inner, true, order). Then

lim
k→∞

vol(∆kF) = 0.

Proof. Notice that Ω0 =
∪m

i=1{x ∈ D : gi(x) = 0} is a null-volume set since it is the

union of m null-volume sets. So, by definition of a null-volume set, for all δ > 0 there

exists a set of boxes S such that vol (
∪

S) ≤ 1
2n δ and Ω0 ⊆

∪
S. Now define

S+ = {mid(B) + 2(B −mid(B)) : B ∈ S},

239

Chapter A. Constraint Reasoning Algorithm

informally each box of S sees each of its dimension inflated by a ratio of 2. Thus we

now have vol (
∪

S+) ≤ δ and Ω0 ⊆ int (
∪

S+). By proposition A.1 there exists ε′δ

such that for all B ⊆ D, wid(B) ≤ ε′δ and 0 ∈ [g](B) implies B ⊆
∪
S+. Since the

boxes B ∈ F�k
\ F�k

satisfy B ⊆ D, wid(B) ≤ εk and, by property A.2, 0 ∈ [g](B) we

obtain that εk ≤ ε′δ implies ∆kF ⊆ (
∪

S+) and thus vol(∆kF) ≤ δ. As this holds for

an arbitrary δ > 0 and εk converges to zero, we have that vol(∆kF) also converges to

zero. �

240

Appendix B

Integration with Taylor Models

B.1 Proof of Property 3.16

The following properties, used next in the proof of property 3.16, relate the width of

some operations on intervals.

Property B.1 (Width of the Sum of Intervals) Given two intervals I1 =

[a, b] and I2 = [c, d] then wid(I1 + I2) = wid(I1) + wid(I2).

Proof. By definition wid([a, b] + [c, d]) = wid([a + c, b + d]) = (b + d) − (a + c) =

−a + b − c + d. Since wid([a, b]) + wid([c, d]) = (b − a) + (d − c) = −a + b − c + d,

property B.1 holds. �

Property B.2 (Width of the Product of Intervals) When I1 = [−a, a] and

I2 = [−b, b] or I2 = [0, b] then wid(I1 I2) ≤ wid(I1)wid(I2).

Proof. In the first case wid(I1 [−b, b]) = wid([−ab, ab]) = 2ab and wid(I1)wid([−b, b]) =
2a 2b = 4ab. In the second, wid(I1 [0, b]) = wid([−ab, ab]) = 2ab and wid(I1)wid([0, b]) =

2ab. Hence, property B.2 holds in both cases. �

Property B.3 (Width of a Power of a Centered Interval) When

I = [−a, a] is an interval centered at 0 and j is a positive integer then

wid([−a, a]j) ≤ (wid([−a, a]))j.

241

Chapter B. Integration with Taylor Models

Proof. Since

wid([−a, a]j) =
{

wid([0, aj]) = aj if even(j)
wid([−(aj), aj]) = 2aj if odd(j)

and (wid([−a, a]))j = (2a)j = 2jaj , property B.3 holds. �

Property B.4 (Width of the Product of Powers of Centered Intervals)

Consider a box B ∈ IRm, its midpoint x̃ and a multi-index α = ⟨α1, . . . , αm⟩ where
|α| = n, then wid((B − x̃)α) ≤ (wid(B))n.

Proof. All the intervals of box (B − x̃) are centered at 0, i.e. (B − x̃) = [−a1, a1]×

· · · × [−am, am] and each interval as the same width as its counterpart in box B.

Since (B − x̃) = [−a1, a1]× · · · × [−am, am] we have that

wid((B − x̃)α) = wid([−a1, a1]α1 . . . [−am, am]αm) multi-index power

≤ wid([−a1, a1]α1) . . . wid([−am, am]αm) property B.2

≤ (wid([−a1, a1]))α1 . . . (wid([−am, am]))αm property B.3

≤ (wid(B))α1 . . . (wid(B))αm definition of box width

= (wid(B))n |α| = n

and hence property B.4 holds. �

Now follows the proof of property 3.16, restated here for completeness.

Property B.5 (Order of Convergence) The quadrature computed as in lemma

3.1 has an order of convergence n + 2 + m in a box B ∈ IRm, when an n-order

Taylor model is used.

Proof. Property 3.16 states that, for all B′ ⊆ B (see definition 2.9):

wid

(∫
B′

p(x)dx+R vol(B′)

)
− wid

(∫
B′

f(x)dx

)
≤ k(wid(B′))n+2+m (B.1)

242

B.1 Proof of Property 3.16

In fact, the left hand side can be expanded to

wid

(∫
B′

p(x)dx

)
+ wid(R)vol(B′)− wid

(∫
B′

f(x)dx

)
(B.2)

Since the result of an integral over a box is a scalar we have that

wid

(∫
B′

p(x)dx

)
= 0 and wid

(∫
B′

f(x)dx

)
= 0

Hence (B.2) can be rewritten as wid(R)vol(B′).

By definition of volume and width of a box we have the inequality vol(B′) ≤ (wid(B′))m.

We will now focus on wid(R). From (3.2), R =
∑

|α|=n+1

([rα](B
′)− cα)(B

′ − x̃)α hence

wid(R) = wid

 ∑
|α|=n+1

([rα](B
′)− cα)(B

′ − x̃)α

 (B.3)

=
∑

|α|=n+1

wid(([rα](B
′)− cα)(B

′ − x̃)α) (B.4)

given property B.1.

Since ([rα](B
′)− cα) is centered at 0 and (B′ − x̃)α is centered at 0 if ∃αi∈α odd(αi) or

has the form [0, a] otherwise, then, by property B.2

wid(([rα](B
′)− cα)(B

′ − x̃)α) ≤ wid([rα](B
′)− cα)wid((B

′ − x̃)α)

Hence, from (B.4),

wid(R) ≤
∑

|α|=n+1

wid([rα](B
′)− cα)wid((B

′ − x̃)α)

=
∑

|α|=n+1

wid([rα](B
′))wid((B′ − x̃)α) cα is a constant, wid(cα) = 0

≤
∑

|α|=n+1

kαwid(B
′)wid((B′ − x̃)α) [rα](B

′) as linear convergence

≤
∑

|α|=n+1

kαwid(B
′)(wid(B′))n+1 property B.4

=
∑

|α|=n+1

kα(wid(B
′))n+2

243

Chapter B. Integration with Taylor Models

≤ l max(kα)(wid(B
′))n+2 l = number of terms in

∑
= k(wid(B′))n+2 with k = l max(kα)

Consequently wid(R)vol(B′) ≤ k(wid(B′))n+2(wid(B′))m = k(wid(B′))n+2+m and so

inequality (B.1) holds. �

B.2 Numerical Computations of Example 3.2

Consider function f : R2 → R, that describes the standard bivariate normal PDF, with

correlation coefficient ρ = 0.5, given by:

f(x, y) =
1

2π
√

1− ρ2
exp(−x2 − 2ρxy + y2

2(1− ρ2)
)

We use the method based on Taylor models to compute the enclosure for the quadrature

of this function in the box B = [0, 0.5]× [0, 0.5] (see Lemma 3.1), adopting the Taylor

model of order n = 2 around the midpoint of B, x̃ = ⟨0.25, 0.25⟩.

We start by calculating the remainder R. For that purpose we calculate [rα](B), for

each pair where |α| = 3. These pairs are α30 = ⟨3, 0⟩, α21 = ⟨2, 1⟩, α12 = ⟨1, 2⟩ and

α03 = ⟨0, 3⟩.

In the following formulas g(x, y) = 8
27

√
3π
exp(−2

3(x
2 − xy + y2)).

[rα30](B) =
1

3!

[
∂3f

∂x3

]
(B) =

[
g(x, y)

6
(−8x3 + y3 + 12x2y − 6xy2 + 18x− 9y)

]
(B)

[rα21](B) =
1

2!

[
∂3f

∂x2∂y

]
(B) =

[
g(x, y)

2
(4x3 − 2y3 − 12x2y + 9xy2 − 9x+ 9y)

]
(B)

[rα12](B) =
1

2!

[
∂3f

∂x∂y2

]
(B) =

[
g(x, y)

2
(−2x3 + 4y3 + 9x2y − 12xy2 + 9x− 9y)

]
(B)

[rα03](B) =
1

3!

[
∂3f

∂y3

]
(B) =

[
g(x, y)

6
(x3 − 8y3 − 6x2y + 12xy2 − 9x+ 18y)

]
(B)

For each α, we have that cα = mid([rα](B)).

244

B.2 Numerical Computations of Example 3.2

Let us now calculate (B − ⟨[0.25] , [0.25]⟩)α, for each α.

(B − ⟨[0.25] , [0.25]⟩)α30 = ([0, 0.5]− [0.25])3 ([0, 0.5]− [0.25])0

= [−0.25, 0.25]3 [−0.25, 0.25]0 = [−1/64, 1/64] [1]

= [−1/64, 1/64]

(B − ⟨[0.25] , [0.25]⟩)α21 = ([0, 0.5]− [0.25])2 ([0, 0.5]− [0.25])1

= [−0.25, 0.25]2 [−0.25, 0.25]1 = [1/16] [−0.25, 0.25]

= [−1/64, 1/64]

It is easy to confirm that (B − x̃)α12 = (B − x̃)α21 and (B − x̃)α03 = (B − x̃)α30 . So

R = [−1/64, 1/64] ([rα30](B)− cα30 + [rα21](B)− cα21+

[rα12](B)− cα12 + [rα03](B)− cα03)

Using interval analysis to compute R we obtain 0.0090460851600035 × [−1, 1]. Since

vol(B) = 0.25, then R vol(B) = 0.0022615212900009× [−1, 1].

Now we compute
∫
B p(x)dx using property 3.14, by calculating the following terms:

T1 = vol(B)f(x̃) = 0.25× 0.176276287962736 (64) = 0.044069071990684 (21)

T2 =
2∑

|α|=1

Kα

∫
B
(x− x̃)αdx

T3 =
∑
|α|=3

cα

∫
B
(x− x̃)αdx = 0

The term T3 is 0 because when |α| = 3 all the possible pairs for α (⟨3, 0⟩, ⟨2, 1⟩, ⟨1, 2⟩

and ⟨0, 3⟩) contain an odd number (see property 3.15).

In the term T2, when |α| = 1 all the possible pairs for α (⟨1, 0⟩ and ⟨0, 1⟩) contain

an odd number, so |α| = 1 can be ignored from the sum. When |α| = 2 the possible

pairs for α are ⟨2, 0⟩, ⟨1, 1⟩ and ⟨0, 2⟩, and ⟨1, 1⟩ can be ignored since it contains odd

245

Chapter B. Integration with Taylor Models

numbers. So, the term T2 simplifies to

T2 =
1

2!

[
∂2f

∂x2

]
(x̃)

(0.5)3

223

(0.5)1

201
+

1

2!

[
∂2f

∂y2

]
(x̃)

(0.5)1

201

(0.5)3

223

=
1

273

([
∂2f

∂x2

]
(x̃) +

[
∂2f

∂y2

]
(x̃)

)
By this calculations we obtain∫

B
p(x)dx = T1 + T2

= 0.044069071990684 (21)− 0.001198637953450 (43)

= 0.042870434037233 (97)

We can notice that the polynomial part is almost a scalar (the intervals are there just

to guarantee bounds for floating-point rounding errors).

Finally we compute the desired enclosure for the quadrature of f in B:∫
B
f(x)dx ∈

∫
B
p(x)dx+R vol(B) =

0.042870434037233 (97) + 0.0022615212900009× [−1, 1] =

[0.0406089127472329, 0.0451319553272347].

246

References

[1] Gaol, Not Just Another Interval Library. www.sourceforge.net/projects/gaol.

18, 107

[2] In G. D. Cooman, D. Ruan, and E. Kerre, editors, Foundations and Applications

of Possibility Theory, pages 88–98. World Scientific, 1995. 45

[3] Remote sensing of inherent optical properties: Fundamentals, tests of algorithms,

and applications. IOCCG Report NUMBER 5, 2006. 177

[4] H. Agarwal, S. Gano, V. Perez, C. Mozumder, J. Renaud, and L. Watson. Ho-

motopy methods for constraint relaxation in unilevel reliability based design op-

timization. Engineering Optimization, 41(6):593–607, 2009. 219

[5] H. Agarwal, J.Lee, L. Watson, and J. Renaud. A unilevel method for reliability

based design optimization. In 45th Structures, Structural Dynamics, and Mate-

rials Conf., 2004. 196

[6] M. Alrefaei and H. Abdul-Rahman. An adaptive Monte Carlo integration algo-

rithm with general division approach. Math. Comput. Simul., 79:49–59, October

2008. 183

[7] I. Araya, B. Neveu, and G. Trombettoni. Exploiting common subexpressions in

numerical CSPs. In CP, pages 342–357, 2008. 34

[8] I. Araya, G. Trombettoni, and B. Neveu. Filtering numerical CSPs using well-

constrained subsystems. In CP, pages 158–172, 2009. 35

[9] I. Araya, G. Trombettoni, and B. Neveu. Exploiting monotonicity in interval

constraint propagation. In AAAI, 2010. 34

247

REFERENCES

[10] F. Barranco-Cicilia, E. C.-P. de Lima, and L. Sudati-Sagrilo. Structural Re-

liability Analysis of Limit State Functions With Multiple Design Points Using

Evolutionary Strategies. Ing. invest. y tecnol., 10:87 – 97, 2009. 195

[11] D. M. Bates and D. G. Watts. Nonlinear Regression: Iterative Estimation and

Linear Approximations, pages 32–65. Wiley, 1988. 155, 157, 178

[12] Y. Ben-Haim and F. Elishako. Convex models of uncertainty in applied mechanics.

Elsevier Science, 1990. 45

[13] F. Benhamou and F. Goualard. Universally quantified interval constraints. In

Principles and Practice of Constraint Programming, pages 67–82, 2000. 80, 188

[14] F. Benhamou, F. Goualard, L. Granvilliers, and J. Puget. Revising hull and box

consistency. In Proceedings of the 1999 international conference on Logic pro-

gramming, pages 230–244, Cambridge, MA, USA, 1999. Massachusetts Institute

of Technology. 33, 34, 107

[15] F. Benhamou, D. McAllester, and P. van Hentenryck. CLP(intervals) revisited.

In ISLP, pages 124–138. MIT Press, 1994. 32, 33

[16] M. Berz and G. Hoffstätter. Computation and application of Taylor polynomials

with interval remainder bounds. Reliable Computing, 4(1):83–97, 1998. 23

[17] M. Berz and K. Makino. New methods for high-dimensional verified quadrature.

Reliable Computing, 5:13–22, 1999. 68, 71

[18] C. H. Bischof, P. Hovland, and B. Norris. On the implementation of automatic

differentiation tools. Higher-Order and Symbolic Computation, 21(3):311–331,

2008. 70

[19] S. Bistarelli, U. Montanari, and F. Rossi. Constraint solving over semirings. In

In Proc. IJCAI95, pages 624–630. Morgan, 1995. 79

[20] K. Breitung. Asymptotic Approximation for Multinormal Integrals. J. Eng.

Mech., 110(3):357 – 366, 1984. 194

[21] H. Brönnimann, G. Melquiond, and S. Pion. The design of the Boost interval

arithmetic library. Theor. Comput. Sci., 351:111–118, February 2006. 18

248

REFERENCES

[22] R. E. Caflisch. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica,

7(-1):1–49, 1998. 74

[23] E. Carvalho, J. Cruz, and P. Barahona. Probabilistic reasoning with continuous

constraints. AIP Conference Proceedings, 936(1):105–108, 2007. 225

[24] E. Carvalho, J. Cruz, and P. Barahona. Probabilistic continuous constraint sat-

isfaction problems. In ICTAI (2), pages 155–162, 2008. 225

[25] E. Carvalho, J. Cruz, and P. Barahona. Probabilistic reasoning for inverse prob-

lems. In Advances in Soft Computing, volume 46, pages 115–128. Springer-Verlag,

2008. 229

[26] E. Carvalho, J. Cruz, and P. Barahona. Probabilistic constraints for reliabil-

ity problems. In Proceedings of the 25th Annual ACM Symposium on Applied

Computing (SAC 2010), Sierre, Switzerland, 2010. ACM. 229

[27] E. Carvalho, J. Cruz, and P. Barahona. Reasoning with uncertainty in continuous

domains. In Advances in Intelligent and Soft Computing. Springer-Verlag, 2010.

229

[28] E. Carvalho, J. Cruz, and P. Barahona. Probabilistic Constraints for Nonlinear

Inverse Problems. Accepted for publication in Constraints, 2012. 229

[29] G. Chabert and L. Jaulin. Hull consistency under monotonicity. In I. P. Gent,

editor, Principles and Practice of Constraint Programming - CP 2009, volume

5732 of Lecture Notes in Computer Science, pages 188–195. Springer, 2009. 34

[30] I. Charpentier and J. Utke. Fast higher-order derivative tensors with Rapsodia.

Optimization Methods Software, 24(1):1–14, 2009. 70

[31] X. Chen, T. Hasselman, and D. Neill. Reliability-based structural design opti-

mization for practical applications. In 38th Structures, Structural Dynamics, and

Materials Conf., 1997. 196

[32] G. Cheng, L. Xu, and L. Jiang. A sequential approximate programming strat-

egy for reliability-based structural optimization. Computers and Structures,

84(21):1353 – 1367, 2006. 219

249

REFERENCES

[33] S. Choi, R. Grandhi, and R. Canfield. Reliability-Based Structural Design.

Springer, 2010. 200, 201

[34] J. Cleary. Logical arithmetic. Future Computing Systems, 2(2):125–149, 1987. 33

[35] H. Collavizza, F. Delobel, and M. Rueher. A note on partial consistencies over

continuous domains. Lecture Notes in Computer Science, 1520:147–161, 1998. 30

[36] H. Collavizza, F. Delobel, and M. Rueher. Comparing partial consistencies. Re-

liable Computing, 5(3):213–228, 1999. 32

[37] G. Corliss and L. Rall. Adaptive, self-validating numerical quadrature. SIAM J.

Sci. Stat. Comput., 8:831–847, 1987. 67

[38] K. Deb, D. Padmanabhan, S. Gupta, and A. Mall. Handling uncertainties through

reliability-based optimization using evolutionary algorithms, 2006. 191, 196, 209

[39] O. Ditlevsen. Narrow reliability bounds for structural system. J. St. Mech.,

4:431–439, 1979. 196

[40] X. Du and W. Chen. Sequential optimization and reliability assessment method

for efficient probabilistic design. In Probabilistic Design, ASME Design Engineer-

ing Technical Conferences, pages 225–233, 2002. 196

[41] D. Dubois, H. Fargier, and H. Prade. The calculus of fuzzy restrictions as a

basis for flexible constraint satisfaction. In Fuzzy Systems, 1993., Second IEEE

International Conference on, volume 2, pages 1131–1136, 1993. 79

[42] M. Eldred, B. Bichon, and B. Adams. Overview of Reliability Analysis and De-

sign Capabilities in DAKOTA. In Workshop on Reliable Engineering Computing,

pages 1–26. 2006. 194

[43] H. Fargier and J. Lang. Uncertainty in constraint satisfaction problems: a prob-

abilistic approach. In Proc. of ECSQARU, pages 97–104. Springer-Verlag LNCS

747, 1993. 79

[44] H. Fargier, J. Lang, R. Martin-Clouaire, and T. Schiex. A constraint satisfaction

framework for decision under uncertainty. In In Proc. of the 11th Int. Conf. on

Uncertainty in Artificial Intelligence, pages 175–180, 1995. 79

250

REFERENCES

[45] S. Ferson, V. Kreinovich, L. Ginzburg, D. S. Myers, and K. Sentz. Con-

structing Probability Boxes and Dempster-Shafer Structures. SAND2002-4015,

(January):1–143, 2003. 45

[46] B. Fiessler, H.-J. Neumann, and R. Rackwitz. Quadratic limit states in structural

reliability. J. Engrg. Mech. Div., 105:661–676, 1979. 192

[47] H. Goel, J. Grievink, P. Herder, and M. Weijnen. Integrating reliability optimiza-

tion into chemical process synthesis. Reliability Engineering and System Safety,

78(3):247–258, 2002. 187

[48] A. Goldsztejn, J. Cruz, and E. Carvalho. Convergence analysis and adaptive

strategy for the certified quadrature over a set defined by inequalities. Submitted

to Journal of Computational and Applied Mathematics, 2011. 70, 99, 226, 237,

238

[49] A. Goldsztejn and F. Goualard. Box consistency through adaptive shaving. In

SAC, pages 2049–2054, 2010. 34

[50] A. Goldsztejn and L. Granvilliers. A new framework for sharp and efficient res-

olution of ncsp with manifolds of solutions. Constraints, 15(2):190–212, 2010.

35

[51] L. Granvilliers. RealPaver User’s Manual, version 0.4, 2004.

pagesperso.lina.univ-nantes.fr/~granvilliers-l/realpaver. 107

[52] L. Granvilliers and F. Benhamou. Algorithm 852: Realpaver: an interval solver

using constraint satisfaction techniques. ACM Trans. Math. Softw., 32(1):138–

156, 2006. 107, 228

[53] L. Granvilliers, J. Cruz, and P. Barahona. Parameter estimation using interval

computations. SIAM J. Scientific Computing, 26(2):591–612, 2004. 155, 158

[54] A. Griewank, D. Juedes, and J. Utke. Algorithm 755: ADOL-C: A package for the

automatic differentiation of algorithms written in C/C++. ACM Transactions

on Mathematical Software, 22(2):131–167, 1996. 70

251

REFERENCES

[55] A. Halder and S. Mahadevan. Probability, Reliability and Statistical Methods in

Engineering Design. Wiley, 1999. 196

[56] J. Hammersley and D. Handscomb. Monte Carlo Methods. Methuen, London,

1964. 72

[57] E. Hansen. A globally convergent interval method for computing and bounding

real roots. BIT Numerical Mathematics, 18:415–424, 1978. 25

[58] E. Hansen. Global Optimization Using Interval Analysis. Marcel Dekker, New

York, 1992. 25

[59] E. Hansen and S. Sengupta. Bounding solutions of systems of equations using

interval analysis. Bit, 21:203–221, 1981. 26

[60] A. M. Hasofer and N. C. Lind. Exact and invariant second-moment code format.

J. Engrg. Mech. Div., 1974. 192, 196

[61] P. V. Hentenryck. Numerica: a modeling language for global optimization. In

IJCAI’97: Proceedings of the 15th international joint conference on Artifical in-

telligence, pages 1642–1647, San Francisco, CA, USA, 1997. Morgan Kaufmann

Publishers Inc. 34

[62] T. Hickey, Q. Ju, and M. V. Emden. Interval arithmetic: From principles to

implementation. J. ACM, 48(5):1038–1068, 2001. 18

[63] M. Hohenbichler and R. Rackwitz. Non-normal dependent vectors in structural

safety. J. Engrg. Mech. Div., 107:1227–1238, 1981. 192, 196, 199

[64] M. Hohenbichler and R. Rackwitz. First-order concepts in system reliability.

Struct. Safety, (1):177–188, 1983. 192

[65] M. Huang, C. Chan, and W. Lou. Optimal performance-based design of wind

sensitive tall buildings considering uncertainties. Comput. Struct., 98-99:7–16,

2012. 187

[66] IEEE. IEEE standard for binary floating-point arithmetic. ACM SIGPLAN

Notices, 22(2):9–25, 1985. 13

252

REFERENCES

[67] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis.

Springer, 2001. 18, 31, 36

[68] L. Jaulin and E. Walter. Set inversion via interval analysis for nonlinear bounded-

error estimation. Automatica, 29(4):1053–1064, 1993. 155, 158

[69] W. M. Kahan. A more complete interval arithmetic, 1968. 18

[70] M. Kalos and P. Whitlock. Monte Carlo Methods. John Wiley & Sons, 2009. 73

[71] R. B. Kearfott. Interval Computations: Introduction, Uses, and Resources. Eu-

romath, Bulletin 2(1):95–112, 1996. 67

[72] D. Kendall. Foundations of a Theory of Random Sets. In E. Harding and

D. Kendall, editors, Stochastic Geometry, pages 322–376. John Wiley & Sons,

1974. 45

[73] A. Kiureghian and T. Dakessian. Multiple design points in 1st and 2nd-order

reliability. Str. Safety, 20(1):37–49, 1998. 194, 196, 200, 219

[74] O. Knüppel. PROFIL/BIAS – A Fast Interval Library. Computing, 53:277–287,

1994. www.ti3.tu-harburg.de/knueppel/profil. 18

[75] R. Krawczyk. Newton-algorithmen zur bestimmung von nullstellen mit fehler-

schranken. Computing, 4(3):187–201, 1969. 26

[76] V. Kreinovich. Probabilities, intervals, what next? optimization problems related

to extension of interval computations to situations with partial information about

probabilities. 29(3):265–280, 2004. 80

[77] N. Kushel and R. Rackwitz. Two basic problems in reliability-based structural

optimization. Math Meth Operat Res, 46:309–333, 1997. 219

[78] A. Lakner and R. Anderson. Reliability engineering for nuclear and other high

technology systems : a practical guide. Elsevier Applied Science Publishers, 1985.

187

[79] J. Lee, Y. Yang, andW. Ruy. A comparative study on reliability-index and target-

performance-based probabilistic structural design optimization. Computers and

Structures, 80:257–269, 2002. 195

253

REFERENCES

[80] Z. Lee, R. Arnone, C. Hu, P. J. Werdell, and B. Lubac. Uncertainties of op-

tical parameters and their propagations in an analytical ocean color inversion

algorithm. Appl. Opt., 49(3):369–381, 2010. 175, 178

[81] O. Lhomme. Consistency techniques for numeric CSPs. In Proc. of the 13th

IJCAI, pages 232–238, 1993. 32, 35

[82] J. Liang, Z. Mourelatos, and J. Tu. A single-loop method for reliability-based

design optimisation. Int. J. Prod. Dev., 1-2(5):76–92, 2008. 196

[83] Q. Lin and J. Rokne. Interval approximation of higher order to the ranges of

functions. Computers and Mathematics with Applications, 31(7):101 – 109, 1996.

23, 24

[84] K. Makino and M. Berz. Taylor models and other validated functional inclusion

methods. International Journal of Pure and Applied Mathematics, 4(4):379–456,

2003. 22

[85] S. Maritorena and D. A. Siegel. Consistent Merging of Satellite Ocean Color Data

Sets Using a Bio-optical Model. 94(4):429–440, 2005. 175, 178

[86] C. R. McClain, G. C. Feldman, and S. B. Hooker. An Overview of the Sea-

WiFS Project and Strategies for Producing a Climate Research Quality Global

Ocean Bio-optical Time Series. Deep Sea Research Part II: Topical Studies in

Oceanography, 51(1-3):5–42, 2004. 179

[87] R. Melchers. Structural Reliability Analysis and Prediction. Civil Engineering

Series. John Wiley & Sons, 1999. 192, 194, 197

[88] W. Menke. Geophysical data analysis: discrete inverse theory. International

geophysics series. Academic Press, 1989. 156, 157

[89] U. Montanari. Networks of constraints: Fundamental properties and application

to picture processing. Information Sciences, 7(2):95–132, 1974. 31, 32

[90] R. Moore. Automatic error analysis in digital computation, 1959. 11

[91] R. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, 1966. 18, 19, 20,

21, 26, 34, 35

254

REFERENCES

[92] R. Moore. A test for existence of solutions to nonlinear systems. SIAM Journal

on Numerical Analysis, 14(4):611–615, 1977. 25

[93] R. Moore, R. Kearfott, and M. Cloud. Introduction to Interval Analysis. SIAM,

2009. 71

[94] A. Morel and L. Prieur. Analysis of Variation in Ocean Colour. Limnol.

Oceanogr., 22:709–722, 1977. 176

[95] A. Nataf. Remarks on a multivariate transformation. Comptes Rendus de lA-

cademie des Sciences, 225(1):42–43, 1962. 192

[96] A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univ. Press,

1990. 21

[97] B. Neveu, G. Trombettoni, and G. Chabert. Improving inter-block backtracking

with interval Newton. Constraints, 15(1):93–116, 2010. 35

[98] K. Nickel. On the Newton method in interval analysis, 1971. 25

[99] E. Nikolaidis, D. Ghiocel, and S. Singhal. Engineering Design Reliability Appli-

cations: For the Aerospace, Automotive and Ship Industries. CRC Press, 2007.

187

[100] W. Older and A. Vellino. Constraint arithmetic on real intervals. pages 175–195,

1993. 31

[101] J. Oxtoby. Measure and Category. Springer-Verlag, 1980. 46

[102] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible

inference. Morgan Kaufmann, 1988. 49

[103] D. Pestana and S. Velosa. Introdução à Probabilidade e à Estat́ıstica, Volume I.

Fundação Calouste Gulbenkian, Lisboa, 2010. 46

[104] D. Ratz. On extended interval arithmetic and inclusion monotonicity, 1996. 18

[105] V. K. Rohatgi. An introduction to probability theory and mathematical statistics.

Wiley series in probability and mathematical statistics. Wiley, 1976. 56, 57

255

REFERENCES

[106] M. Rosenblatt. Remarks on a multivariate transformation. Ann. Math. Stat.,

3(23):470–472, 1952. 192

[107] S. M. Rump. INTLAB - INTerval LABoratory. In T. Csendes, editor, De-

velopments in Reliable Computing, pages 77–104. Kluwer Academic Publishers,

Dordrecht, 1999. http://www.ti3.tu-harburg.de/rump/. 18

[108] B. Segovia. Interactive Light Transport with Virtual Point Lights. PhD thesis,

University Claude Bernard Lyon 1, 2007. 73, 74

[109] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.

45

[110] N. Shazeer, M. Littman, and G. Keim. Constraint satisfaction with probabilistic

preferences on variable values. In Proc. of National Conf. on AI, 1999. 79

[111] J. Sørensen. Notes in Structural Reliability Theory, 2004. xvi, 195, 202, 203

[112] A. Tarantola. Inverse Problem Theory and Methods for Model Parameter Esti-

mation. SIAM, Philadelphia, PA, USA, 2004. 155, 156, 162, 168

[113] G. Trombettoni and G. Chabert. Constructive interval disjunction. In CP, pages

635–650, 2007. 35

[114] Ulrike and Storck. Numerical integration in two dimensions with automatic re-

sult verification. In E. Adams and U. Kulisch, editors, Scientific Computing

with Automatic Result Verification, volume 189 of Mathematics in Science and

Engineering, pages 187 – 224. Elsevier, 1993. 67

[115] X. Vu, H. Schichl, and D. Sam-Haroud. Interval propagation and search on

directed acyclic graphs for numerical constraint solving. J. Global Optimization,

45(4):499–531, 2009. 33

[116] P. Walley. Statistical reasoning with imprecise probabilities. Chapman and Hall,

1991. 45

[117] T. Walsh. Stochastic constraint programming. In ECAI, pages 111–115. IOS

Press, 2002. 79

256

REFERENCES

[118] P. Wang, E. S. Boss, and C. Roesler. Uncertainties of inherent optical properties

obtained from semianalytical inversions of ocean color. Applied Optics, 44, 2005.

175, 178

[119] I. Wolfram Research. Mathematica Edition: Version 8.0. Wolfram Research, Inc.,

Champaign, Illinois, 2010. 107, 199

[120] L. Zadeh. Fuzzy sets as a basis for theory of possibility. Fuzzy Sets and Systems,

1:3–28, 1978. 45

[121] G. Zibordi and K. Voss. Field radiometry and ocean colour remote sensing.

In V. Barale, J. Gower, and L. Alberotanza, editors, Oceanography from Space,

chapter 18, pages 307–334. Springer, 2010. 179

257

