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 Reactive oxygen and nitrogen species (ROS and RNS) are produced 

by phagocytic cells of the human immune system to attack invading 

pathogens due to their ability to damage DNA and the metal centres of 

proteins. In order to survive inside the host, bacteria activate genes that 

encode detoxifier enzymes, like the Escherichia coli nitric oxide-reductase 

flavodiiron protein, also known as flavorubredoxin (FlRd), and repairing 

proteins, such as the E. coli YtfE di-iron protein involved in the recovery of 

damaged Fe-S centres. Using E. coli and Staphylococcus aureus, the work 

presented in this thesis aimed at unravelling: i) the role of E. coli FlRd in 

bacteria exposed to a combination of oxidative and nitrosative stresses, ii) 

the identification and characterisation of S. aureus YtfE homologue, iii) the 

study of E. coli YtfE mechanisms that allow the repair of damaged Fe-S 

clusters, and iv) the identification of proteins that interact with E. coli YtfE. 

 To analyse the role of E. coli FlRd in cells submitted to both 

hydrogen peroxide and nitric oxide, the transcription and expression of 

norV was explored by means of β-galactosidase and immunoblotting 

assays, respectively. Under these conditions, it was observed that the norV 

transcription and expression were hindered. To identify if the lack of norV 

expression was related to its regulator, the NorR transcription factor, the 

gene was cloned and expressed, and the protein was purified and the 

binding of nitric oxide to NorR in the presence of hydrogen peroxide was 

studied. EPR experiments revealed that upon incubation of NorR with nitric 

oxide and hydrogen peroxide the oxidation promoted by H2O2 of the mono-

iron centre of NorR impairs the ligation of nitric oxide. We also exploited 

the NorR ATPase activity, a requisite for FlRd activation, in the presence of 

Abstract 
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oxidative and nitrosative stress. The results revealed that, under these 

conditions, the ATPase activity was not triggered. The role of E. coli FlRd 

was also examined in vivo upon infection of macrophages with the E. coli 

wild type and the norV mutant strain. We showed that the contribution of 

flavorubredoxin to survival of E. coli depends on the stage of macrophage 

infection, and that the absence of protection observed at the early phase is 

related to the inhibition of the NorR activity by the oxidative burst. 

 In this dissertation, a homologue of E. coli YtfE was found in 

Staphylococcus aureus encoded by the scdA gene. To address its role in S. 

aureus, the scdA gene was disrupted and the viability of the mutant 

assessed, which resulted in a strain more sensitive to oxidative stress. 

Furthermore, upon exposure to nitric oxide and hydrogen peroxide, the 

scdA staphylococcal mutant strain exhibited more pronounced inhibition of 

the aconitase activity, an enzyme dependent on the integrity of [4Fe-

4S]2+/1+ clusters. S. aureus scdA was able to complement the E. coli ytfE 

mutant strain as it rescued the ability of the mutant to repair damaged Fe-S 

clusters. In contrast, the Isc (Iron-sulphur cluster) or Suf (Sulfur formation) 

systems, which contain proteins involved in the assembly of Fe-S clusters, 

were unable to complement the same mutant strain. Hence, it was 

concluded that S. aureus ScdA is involved in the repair of Fe-S clusters. A 

comprehensive search of the amino acid sequence database revealed that 

homologues of E. coli YtfE and S. aureus ScdA are found in the proteomes of 

a wide range of bacteria, fungi, protozoa, and in several pathogens 

including Neisseria gonorrhoeae, Haemophilus influenzae and Bacillus 

anthracis. Thus, this family of proteins was named Ric for Repair of iron 

centres. 

 The role of E. coli YtfE in the repair of oxidatively and nitrosatively 

damaged Fe-S clusters was also addressed by analysing the assembly of Fe-
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S centres in the scaffold protein IscU and in the [2Fe-2S]2+/1+ cluster-

containing ferredoxin in the presence of YtfE. For this purpose, the cysteine 

desulphurase IscS, the scaffold IscU and the E. coli holo-YtfE proteins were 

recombinantly produced and purified. UV-visible and resonance Raman 

studies demonstrated that holo-YtfE promotes the assembly of Fe-S 

clusters in IscU and in the apoform of ferredoxin. 

 In order to identify the proteins that interact in vivo with E. coli 

YtfE, the bacterial adenylate cyclase two-hybrid system (BACTH) was used. 

This study was performed in two ways: in the first, the interaction of YtfE 

with specific proteins was analysed; in the second, the E. coli proteome was 

screened for YtfE interactants. Since the assembly of Fe-S clusters requires 

cysteine desulphurases as sulphur donors and scaffold proteins to 

assemble the centre, it was analysed whether YtfE interacts in vivo with 

these proteins. Hence, the cysteine desulphurases IscS and SufS, and the 

scaffold protein IscU were cloned in the BACTH system plasmids. The 

results showed that E. coli YtfE is able to interact with both IscS and SufS. In 

the second part of this study, using two libraries that covered 

approximately 30% of E. coli genome, we detected protein interactants that 

were confirmed by further BACTH assays to interact with E. coli YtfE. 

 Overall, this thesis has contributed to enlarge our understanding of 

the role of two di-iron proteins in the resistance of microbial pathogens to 

oxidative and nitrosative stresses which are inflicted by the host during the 

infection process. 
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 As espécies reativas de oxigénio e de azoto (ERO e ERA) são 

produzidas por células fagocíticas do sistema imunitário para atacar os 

agentes patogénicos devido à sua capacidade de danificar o ADN e os 

centros metálicos das proteínas. Para conseguirem sobreviver dentro do 

hospedeiro, as bactérias ativam genes que codificam enzimas 

destoxificantes, tais como a proteína flavo-di-férrica que reduz o óxido 

nítrico em Escherichia coli, também conhecida como flavorubredoxina 

(FlRd), e proteínas reparadoras, como a proteína di-férrica YtfE de E. coli 

que está envolvida na recuperação de centros ferro-enxofre danificados. 

Utilizando E. coli e Staphylococcus aureus, o trabalho apresentado nesta 

tese pretendeu determinar: i) o papel de FlRd de E. coli em bactérias 

expostas a uma combinação de stress oxidativo e nitrosativo; ii) a 

identificação e caracterização do homólogo da YtfE em S. aureus; iii) o 

estudo de mecanismos usados por YtfE de E. coli para reparar os centros 

danificados de Fe-S; e iv) a identificação de proteínas que interagem com 

YtfE de E. coli. 

 Para avaliar-se o papel de FlRd de E. coli em células tratadas com 

peróxido de hidrogénio e óxido nítrico, a transcrição e a expressão do gene 

norV foi analisado usando-se ensaios de β-galactosidase e immunoblotting, 

respectivamente. Nestas condições, observou-se que a transcrição e 

expressão de norV foram eliminadas. Para identificar se a falta de expressão 

de FlRd estava relacionada com o seu regulador, o fator de transcrição 

NorR, a proteína foi clonada, expressa, purificada e a ligação de óxido 

nítrico à NorR na presença de peróxido de hidrogénio foi estudada. 

Experiências de EPR revelaram que, após a incubação de NorR com óxido 

Resumo 
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nítrico e peróxido de hidrogénio, a oxidação do centro mono-férrico de 

NorR promovida por H2O2, prejudica a ligação do óxido nítrico. Também 

explorámos a atividade ATPase de NorR, um requisito para a ativação de 

FlRd, na presença do stress oxidativo e nitrosativo. Os resultados 

mostraram que, sob estas condições, a atividade ATPase não foi 

despoletada. O papel de FlRd de E. coli foi também examinado in vivo após a 

infeção dos macrófagos com a estirpe selvagem de E. coli e com a estirpe 

mutada no gene norV. Mostrámos assim que a contribuição de 

flavorubredoxina para a sobrevivência de E. coli depende da fase de infeção 

dos macrófagos, e que a ausência de proteção observada na fase inicial está 

relacionada com a inibição da atividade de NorR durante o stress oxidativo. 

 Nesta dissertação, foi encontrado um homólogo de YtfE de E. coli 

em S. aureus codificado pelo gene scdA. Para estudar a sua função em S. 

aureus, o gene scdA foi interrompido e a viabilidade do mutante avaliada, o 

que resultou numa estirpe mais sensível ao stress oxidativo. Para além 

disso, após exposição ao óxido nítrico e ao peróxido de hidrogénio, esta 

estirpe estafilocócica mutada no gene scdA exibiu uma maior inibição da 

atividade de aconitase, uma enzima dependente da integridade dos seus 

centros [4Fe-4S]2+/1+. A proteína ScdA de S. aureus conseguiu 

complementar a estirpe de E. coli mutada no gene ytfE resgatando a 

capacidade do mutante para reparar os centros Fe-S danificados. Em 

contrapartida, os sistemas Isc (Iron-sulphur cluster) e Suf (Sulfur 

formation), que contém proteínas envolvidas na montagem dos centros Fe-

S, foram incapazes de complementar a mesma estirpe mutante. Assim, 

conclui-se que a proteína ScdA de S. aureus participa na reparação dos 

centros Fe-S. Uma análise global da base de dados de amino ácidos revelou 

que homólogos de YtfE de E. coli e de ScdA de S. aureus existem nos 

proteomas de várias bactérias, fungos, protozoários, e em vários 
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organismos patogénicos incluindo Neisseria gonorrhoeae, Haemophilus 

influenzae e Bacillus anthracis. Deste modo, esta família de proteínas foi 

chamada Ric (Repair of iron centres). 

 O papel de YtfE de E. coli na reparação dos centros Fe-S danificados 

pelo stress oxidativo e nitrosativo foi também abordado ao analisar-se a 

formação de centros Fe-S na proteína molde IscU e na ferredoxina que 

contém centros [2Fe-2S] 2+/1+ na presença de YtfE. Com este propósito, a 

cisteína desulfurase IscS, a proteína molde IscU e a holo-proteína YtfE 

foram produzidas recombinantemente e purificadas. Estudos 

espectroscópicos de UV-visível e ressonância Raman demonstraram que a 

holo-YtfE promove a montagem de centros Fe-S na IscU e na apo-forma de 

ferredoxina. 

 Para se poder identificar as proteínas que interagem in vivo com 

YtfE de E. coli usou-se o sistema BACTH (Bacterial Adenylate Cyclase Two-

Hybrid). Este estudo foi efetuado de duas maneiras: na primeira foi 

analisada a interação de YtfE com proteínas específicas; de seguida, o 

proteoma de E. coli foi sondado para se encontrar as proteínas que 

interagem com YtfE. Uma vez que a montagem de centros Fe-S requer 

cisteínas desulfurases como dadores de enxofre e proteínas molde para 

montar o centro, analisou-se se YtfE interage in vivo com estas proteínas. 

Assim, as proteínas cisteínas desulfurases IscS e SufS e a proteína molde 

IscU foram clonadas nos plasmídeos do sistema BACTH. Os resultados 

mostraram que YtfE de E. coli é capaz de interagir com IscS e SufS. Na 

segunda parte deste estudo, usando duas bibliotecas que cobrem 

aproximadamente 30% do genoma de E. coli, detetámos proteínas 

interagentes cuja interação com YtfE de E. coli foi confirmada por ensaios 

adicionais de BACTH. 
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 No geral, esta tese contribuiu para aumentar o nosso conhecimento 

acerca do papel de duas proteínas que contém centros di-férricos na 

resistência de micróbios patogénicos aos stresses oxidativo e nitrosativo 

que são provocados pelo hospedeiro durante a infeção. 
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Chapter I 

Nitric Oxide, an antibacterial molecule of the immune system 

 

"Though NO's structure is simple, nitric oxide is now regarded as the 

most significant molecule in the body, absolutely crucial to your well-

being.” 

Louis Ignarro, Nobel Prize (1998) 

 

 

I.1 – The innate immune system 

 

The immune system is a mechanism involving several biological 

structures and processes that protects an organism against disease through 

recognition and elimination of the infectious agent (1). The immune system 

is divided in three levels: anatomic and physiological barriers, innate 

immunity and adaptive immunity (2). 

The anatomic and physiological barriers are the first line of defense  

against invading microorganisms and include intact skin, surface of mucous 

membranes, mucociliary clearance mechanisms and low stomach pH (1, 2). 

In contrast, the adaptive immunity occurs after several days of 

infection and the peak of primary adaptive response, which is characterized 

by lymphocyte activation and proliferation, only takes place after 5-7 days 

post-infection (3). The adaptive immune response exhibits four 

immunological attributes: specificity, diversity, memory and self/nonself 

recognition. Moreover, the adaptive immune system is centralized in two 
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classes of specialized lymphocytes, the T and B cells, which display an 

extremely diverse repertoire of antigen-specific recognition receptors that 

enable specific identification and elimination of pathogens, as well as 

adaptive immune methods that ensure tailored immune responses and 

long lived immunological memory against reinfection (1). The adaptive 

immunity is divided into humoral immunity, which is involved in the 

eradication of microbes present in the blood or fluid by generating 

antibodies which are produced by B-cells, and cellular immunity, that 

involves the suppression of cancer cells and microbes hidden inside cells 

mediated by killer T-cells (3). 

While the adaptive immune system is a later response found only in 

vertebrates, the innate immunity occurs in eukaryotes, from humans to 

earthworms,  acting within seconds upon encounter with a pathogen, 

generating a protective inflammatory response (1). The innate immunity 

consists of immunological effectors that provide robust, immediate and 

nonspecific immune responses, which include evolutionarily primitive 

humoral, cellular, and mechanical processes that play a vital role in the 

protection of the host from pathogenic challenge (1). 

The pathogen recognition is the first and crucial step in innate 

immunity, performed by a limited arsenal of pattern recognition receptors 

(PRRs), like Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-

like receptors (NLRs), and RIG-like helicases (RLH), that are able to 

recognize conserved structures of microorganisms called pathogen-

associated molecular patterns (PAMPs) (1-3). 

In addition, the ingestion of extracellular particulate material (such 

as pathogens) by phagocytosis is one of the most important innate defense 

mechanisms (1). Phagocytosis involves binding of the particle to be 

phagocytosed and ingestion with consequent activation of the phagocyte 
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(1, 4). This process is performed by specialized cells (the phagocytes), such 

as neutrophils, dendritic cells and macrophages, that engulf and kill the 

pathogenic microorganisms (1, 3).  When bacteria enter into mammalian 

cells by phagocytosis, the innate immune sensors, like TLRs or NLRs, 

triggered by bacterial ligands, initiate pro-inflammatory responses and 

innate immune effector functions (1, 5). Phagocytes internalize 

microorganisms into specialized vesicles known as phagosomes which will 

acidify and fuse with lysosomes (intracellular vesicles that contain a variety 

of antimicrobial factors), forming a phagolysosome (5, 6). The antimicrobial 

factors generated within the phagolysosome include reactive oxygen and 

nitrogen species (ROS and RNS, respectively) (1, 7). Pathogens in this stage 

of infection can be divided in two types: the extracellular pathogens that 

survive outside host cells because phagocytosis will eliminate them, and 

intracellular pathogens that invade host cells within which they survive 

and replicate (5). 

The phagocytic cells macrophages are the main tools of innate 

immunity being found in almost every tissue of the host, and are 

responsible for the initial killing of the majority of the engulfed bacteria. 

Upon infection, macrophages secrete TNFα (Tumor Necrosis Factor α) and 

IL-12 (Interleukin 12) that lead NK (Natural Killer) cells to produce IFNγ 

(InterFeroN-γ), which will result in the increase of macrophage bactericidal 

activity (8-10). These specialized phagocytes are implicated in other 

physiological processes, such as development of the haematopoietic 

system, bone remodeling and wound healing (11, 12). 

Note that only vertebrates have the adaptive immune system, 

leaving most eukaryotic organisms to survive with innate immunity alone.  

Interestingly, new discoveries have been made regarding innate immunity 

that have discouraged the initial role of this system as the ‘non specific’ 
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system but rather as a critical regulator of human inflammatory disease (2). 

Now, it is clear that innate immunity is specific as it is able to discriminate 

self-molecules from pathogens through the evolutionary conserved 

receptors TLRs that also act as adjuvant receptors creating a bridge 

between innate and adaptive immunity (3). More important, innate 

immune responses are crucial for the initiation of adaptive immune 

responses in vertebrates, conferring a specific and long lasting protection 

(1). 

 

I.1.1 – Oxidative Stress 

 

Reactive oxygen species produced by phagocytes are necessary for 

efficient host defense against bacterial and fungal infections (13). However, 

the oxygen toxicity is also a problem for non-pathogen aerobic organisms 

as ROS are inevitable byproducts of aerobic metabolism (14). Reactive 

oxygen species are derivatives of molecular oxygen, that include singlet 

oxygen, superoxide anion, hydrogen peroxide and hydroxyl radicals (Figure 

I.1). The generation of all these reactive oxygen species is designated as 

oxidative burst (15). 

 

Figure I.1 – The redox states of oxygen with reduction potentials. O2 –
molecular dioxygen; O2

- - Superoxide anion; H2O2 – hydrogen peroxide; HO• –
hydroxyl radical; OH- - hydroxyl anion; e- - electrons ; and H+ - protons. Adapted
from (14).

O2 O2
- H2O2 HO• OH-

e- e-, 2H+ e-, 2H+ e-, H+

-0.16 V +0.94 V +0.38 V +2.33 V
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Upon phagocytosis in macrophages, a membrane-bound oxidase is 

activated that reduces oxygen to superoxide anion (O2-), a reactive oxygen 

intermediate extremely toxic to ingested microorganisms. This membrane-

bound oxidase, designated as Phox (NADPH oxidase), pumps electrons into 

the phagolysosome catalyzing the following reaction: 2O2 + NADPH  2O2
- 

+ NADP+ + H+ (16). This enzyme is dormant in the resting phagocyte but 

becomes activated when the cell receives stimuli, like infectious bacteria 

and certain inflammatory polypeptides (17). Phagocytes produce 

superoxide in the order of 500 nM/h (18, 19). Phox contains haem as 

prosthetic group and is an important defense mechanism in microbial and 

parasite killing as mice deficient in Phox have enhanced bacterial burden 

when compared to wild type (10, 20, 21). Further, humans who don’t 

possess a functional Phox suffer from immunodeficiency due to recurrent 

bacterial and fungal infections (22). Superoxide anion is a reactive 

compound capable of acting as an oxidant or reductant in biological 

systems, and can diffuse for considerable distances before it exerts toxic 

effects. Furthermore, extracellularly generated O2- can gain access to 

intracellular targets via cellular channels (23). The superoxide anion also 

generates other powerful oxidizing agents, including hydroxyl radicals 

(OH•) and hydrogen peroxide (H2O2, through superoxide dismutase 

enzyme) (Figure I.1) (2). 

Another compound that is involved in microorganism killing is 

hypochlorous acid (HOCl) (24-26). This ROS is produced by 

myeloperoxidase (MPO), a haem-containing enzyme present in activated 

macrophages and neutrophils (26). Mice deficient in MPO are more 

susceptible to infection (27). In addition, HOCl reacts with ferrous iron to 

form the hydroxyl radical. Superoxide anion also reacts with ferrous iron to 
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form hydrogen peroxide which, subsequently, reacts with Fe(II) to form the 

hydroxyl radical (Fenton reaction: H2O2 + Fe(II)  OH• + OH― + Fe(III)) 

(Figure I.1) (28). All these highly toxic products are capable of killing 

pathogens (16, 29). 

Hydrogen peroxide is an uncharged species and readily diffuses 

across cell membranes (23). Therefore, H2O2 stress emerges inside cells 

whenever this species is present in the extracellular space (15). During 

respiratory burst, phagocytic cells produce hydrogen peroxide in the order 

of 750 nM/h (18, 19). 

 Reactive oxygen species are involved in the killing of pathogens by 

directly reacting with lipids, proteins, DNA and cell carbohydrates (Figure 

I.2) (15, 30).  The lipid peroxidation occurs essentially in biological 

membranes which serve as impermeable barriers and in cellular transport 

processes (Figure I.2). The superoxide anion and the hydroxyl radical are 

the ROS known to initiate the process of autocatalytic lipid peroxidation in 

eukaryotes, but 

apparently not 

in bacteria as 

most bacterial 

membranes lack 

polyunsaturated 

fatty acids (18, 

30, 31). This 

process leads to 

the conversion 

of unsaturated 

lipids into polar lipid hydroperoxides, which causes increased membrane 

Figure I.2 – Major targets of reactive oxygen species.
Adapted from (30).
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fluidity, efflux of cytosolic solutes and loss of membrane-protein activities. 

Ultimately, lipid peroxidation results in the damage of the membrane and 

cell death (18, 30). Also, products of oxidized lipids initiate further 

oxidative damage (14, 30). 

Although DNA does not react with ROS at physiological pH, the 

negatively charged phosphodiester backbone of DNA binds to metal ions, 

especially iron (Figure I.2). Consequently, hydroxyl radical is generated, 

attacking sugars, purines and pyrimidines of DNA and generating multiple 

products (32, 33). Interestingly, DNA seems to be a more important target 

of ROS in bacteria as the membrane lipid peroxidation through ROS is 

unlikely in these organisms (30). 

Protein susceptibility to oxidative damage depends on several 

factors, such as the relative content of oxidation-sensitive amino acid 

residues (methionine, cysteine or tryptophan), the presence of metal-

binding sites (e.g. Fe-S clusters, chapter II), protein localization in the cell 

and solvent exposition that depends upon molecular conformation (Figure 

I.2). The newly synthesized proteins are the most prone to oxidative 

damage, indicating that complete folding and incorporation into protein 

complexes confers protection from oxidative-driven degradation (30). 

Although the oxidative damage affects proteins of important metabolic 

pathways, the fact is that protein oxidation may not lead to cell death as the 

importance of a metabolic pathway for cell vitality can depend strongly on 

the environmental situation, hence some oxidation-sensitive proteins may 

be dispensable under some conditions, while required in other (30). The 

oxidized amino acid residues can form irreversibly carbonyl products. 

Carbonylated proteins are degraded by the proteosome, however there is a 

limit to the cell capacity to process these modified proteins, as the 

proteosome is also a target for oxidative inactivation. Consequently, 
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carbonylated proteins that are not degraded form toxic aggregated species 

leading ultimately to loss of cell viability (30). 

Pathogenic microorganisms subvert or resist the action of oxidative 

burst through a range of strategies that also involve the up-regulation of 

antioxidant proteins that transform ROS into less toxic products. The 

scavenger enzymes for superoxide anion are SOD (SuperOxide Dismutase) 

and SOR (SuperOxide Reductase). Superoxide dismutation can occur 

spontaneously with a constant rate of 105 M-1.s-1, or under the catalytic 

influence of SOD with a constant rate of ~109 M-1.s-1, that varies between 

different organisms (34). Four types of prokaryotical SODs exist: the 

copper-zinc (Cu/Zn-SOD), the manganese (Mn-SOD), the iron (Fe-SOD) and 

the nickel (Ni-SOD) (17). Most bacteria possess Fe-SOD and Mn-SOD in 

their cytoplasm. The Fe-SOD is usually the constitutively expressed 

enzyme, while Mn-SOD is in general induced by oxygen stress (35). The 

periplasmic bacterial Cu/Zn-SOD is constitutively expressed and confers 

infection resistance to pathogenic bacteria  (36, 37). Superoxide reductases 

are used by anaerobic organisms to scavenge superoxide anion, rather than 

SODs (15, 38). This enzyme reacts with superoxide anion with a rate 

constant of ∼109 M−1. s−1, that differs depending on the organism (39). 

For hydrogen peroxide, the pathogens possess two families of 

scavenger enzymes (15, 40): peroxidases with rate constants of 107-108 M-

1.s-1 (41, 42), and catalases with rate constants of ~106 M-1.s-1 (43). Both 

families of enzymes in general catalyze the reaction: RH2 + H2O2  R + 

2H2O, where R=O2 for catalases. One well known peroxidase is AhpCF 

(Alkyl hydroperoxide reductase) an important scavenger of hydrogen 

peroxide in several bacteria (44). Catalases and peroxidases exist in several 

pathogens such as in Mycobacterium tuberculosis, Staphylococcus aureus, 
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Helicobacter pylori, Streptomyces sp., Leishmania major and Escherichia coli 

(15, 45). Known bacterial species produce more than one catalase and 

several peroxidases that can scavenge H2O2, being able to handle the ROS 

that results from oxidative burst (18). 

To resist ROS, bacteria sense these molecules through specific 

regulators whose regulons include genes encoding proteins involved in the 

protection against oxidative burst.  The OxyR (Oxygen stress Regulator) 

regulon includes  genes encoding catalase and AhpC, glutathione reductase 

and glutaredoxin that restores intracellular thiol/disulphide balance, 

proteins involved in DNA protection (Dps, chapter II), and important 

regulators such as fur (ferric uptake regulator, Chapter II) (46-48). PerR 

(Peroxide Regulator) is another major regulator of the peroxide stress 

resistance present in Gram-positive and Gram-negative microorganisms 

(49). Its regulon includes genes encoding catalases and peroxidases, genes 

involved in haem biosynthesis, regulators as fur and the zinc uptake system 

(49, 50). SoxRS (Superoxide Regulator and Sensor) is a well-distributed 

bacterial regulator that responds to superoxide stress by inducing the 

expression of superoxide scavenger proteins and enzymes that repair 

damaged proteins and DNA (see also I.2) (15, 51). 

 

I.1.2 – Nitrosative Stress 

  

At first, nitric oxide (NO) was considered to be merely an 

atmospheric pollutant. However, in 1992, NO was designated as “the 

molecule of the year” due to its role as a biological regulator and since then 

various aspects of its biology have been reviewed extensively. 
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Nitric oxide is a small soluble radical molecule (30 Da) that can 

stabilize its unpaired electron by reacting with species containing other 

unpaired electrons or by interacting with the d-orbitals of transition metals 

(e.g. iron) (52). NO is  soluble in water (1.6 mM at 37ºC), where it has a 

short half-life, between 3 and 20 s (53, 54). Reactive nitrogen species (RNS) 

include species derived from nitric oxide (Figure I.3), that arise in 

physiological environments, and include NO2
- (nitrite), S-nitrosothiols, 

peroxynitrite (ONOO•), dinitrosyl-iron complexes (DNIC, chapter II), among 

others (Figure I.3) (55). NO and related nitrogen oxides are endogenous 

regulators of cell and tissue 

function and have a role in 

various body functions, 

including the vasodilatation 

of smooth muscle, 

neurotransmission, 

regulation of wound healing 

and non-specific immune 

responses to infection, host 

defense and cytotoxicity (52, 

56). Peroxynitrite, the 

product of the reaction of 

NO and superoxide, is 

involved in inflammation 

(57) and in bacteria killing 

(10, 58-60).  

 

 

Figure I.3 – Reactive nitrogen species
formation. RNH2 – guanidino nitrogen of L-
arginine, RSH - sulphydril, H+ - proton, e- -
electron, RSNO - nitrosothiol, •NO – nitric
oxide, O2

- - superoxide anion, ONOO- -
peroxinitrite, O2 - dioxygen, NO2

- - nitrite,
RSOH – sulfenic acid, •NO2 – nitrogen dioxide,
NO3

- - nitrate. Adapted from (55).

RNH2

•NO

NO2
-

•NO2

NO3
-

RSNO

RSOH

OONO-

O2
•-

RSH + O2

NO2
-

RSH H+ + e-

N2O3

O2

e-

e-

e-



Chapter I 

 

17 
 

In mammalian cells, nitric oxide is produced by NOS (Nitric Oxide 

Synthase). This class of enzymes is widely distributed throughout the 

mammalian tissues. Endothelial (eNOS, constitutive), neuronal (nNOS, 

constitutive) and inducible (iNOS) isoforms are prompted to convert 

arginine into nitric oxide (L-arginine + O2 + NADPH  NO + L-citrulline + 

NADP+) (57). The NOS isoforms are soluble and contain flavin adenine 

dinucleotide (FAD), flavin mononucleotide (FMN) and haem iron as 

prosthetic groups, requiring also the cofactor tetrahydrobiopterin (BH4) 

(61). The constitutive forms are low-activity enzymes that produce small 

amounts of NO as a signaling molecule (62). The inducible form is an 

enzyme produced by phagocytes when they are stimulated (63). 

When macrophages are activated with bacterial cell-wall 

components, such as lipopolysacharide (LPS), together with a T-cell-

derived cytokine (IFN-γ), they express high levels of inducible nitric oxide 

synthase (64-68). iNOS is present in other phagocytic cells of the immune 

system, such as dendritic cells and natural killer cells (69). The activity of 

iNOS affords effective protection against infection (69). The NO produced 

diffuses across membranes and can kill or inhibit a broad range of 

organisms, such as bacteria, fungi, parasitic worms and protozoa, persisting 

for a longer period of time, when compared to the short-lived oxidative 

burst (31, 55, 70). The most important targets of nitric oxide and RNS are 

protein thiols, aromatic amino acid residues, metal centres, lipids and 

nucleotide bases (DNA), resulting in the blockage of essential microbial 

physiological processes such as respiration and DNA replication (71-76). 

Mice deficient in iNOS are more susceptible to infection by many 

intracellular pathogens like Mycobacterium tuberculosis, Listeria 

monocytogenes, Leishmania spp., Salmonella enterica, Candida albicans, 
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Porphyromonas gingivalis, Trypanosoma cruzi and Plasmodium falciparum, 

when compared to the wild type (10, 55, 77-85). 

 

Interestingly, nitric oxide synthase enzymes were also found to be 

produced by bacteria. As occurs for their homologues in mammals, all the 

bacterial NOS possess a haem ring and are able to convert L-arginine to 

nitric oxide, but in contrast they lack the associated NOSred (C-terminal 

flavoprotein reductase domain) (86-91). Moreover, the NO release rates are 

lower when compared to mammalian NOS (86). Homologues were found 

mostly in Gram-positive bacteria (e.g. Streptomyces sp., Bacillus sp. and 

Sthapylococcus sp.) and so far in one Gram-negative bacterium (Sorangium 

cellulosum) (87). In bacteria, this enzyme is able to provide protection 

against oxidative and nitrosative stress, as expression of bacterial NOS will 

result in production of small concentrations of NO, which leads to the 

activation of sensors that respond to nitric oxide (see I.2). The result is the 

activation of regulons, which include genes encoding enzymes that 

participate in protection against oxidative and nitrosative stress (87, 90, 

91).  

 

I.2 – Bacterial response to nitrosative stress 

  

The ability to scavenge or detoxify NO produced by phagocytic cells 

is a survival characteristic in several microorganisms that depends on 

genetic, biochemical and physiological factors. Bacteria possess many 

mechanisms of defence against nitrosative stress. One of these strategies 

involves bacterial regulators/sensors that will activate large-scale changes 

in global gene expression, as well as detoxification systems for nitric oxide 
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(92). Till now several transcriptional regulators that contain different 

transition metal cofactors had been identified, from Fe-S clusters to haem 

centres, which control gene expression towards the stimuli nitric oxide. 

Fe-S clusters containing-regulators that respond to nitric oxide are 

SoxR, FNR (Fumarate and Nitrate reduction Regulator) and IscR (Iron-

Sulphur Cluster assembly system Regulator). SoxR belongs to the MerR 

(Mercury Resistance) family, regulates the stress response to superoxide 

and nitric oxide and contains a [2Fe-2S] cluster (93, 94). SoxR switches on 

the transcription of the gene encoding the regulator SoxS, which 

consequently activates the expression of SoxRS regulon members. The 

SoxRS switches on in response to NO, inducing the expression of genes 

encoding a superoxide dismutase, a DNA repair enzyme (endonuclease IV), 

and a nitroreductase, among others (95, 96). 

The FNR subfamily members belong to a large family of widely 

distributed regulators that control gene expression in response to nitric 

oxide (and other ligands such as oxygen) activating the transcription of NO-

related genes (94). The cofactor in this regulator differs between 

organisms, as a Fe-S cluster was identified in E. coli, whereas in other 

bacteria this regulator has a haem group (e.g. Pseudomonas sp. DNR) (93, 

94). The most studied regulator of this family is FNR that contains a [4Fe-

4S] cluster that forms DNICs (DiNitrosyl Iron Complexes, see Chapter II) 

upon reaction with NO (93, 94). FNR controls gene expression during 

anaerobic growth and one of the genes from the E. coli FNR regulon is the 

important NO-detoxifying protein flavohaemoglobin, whose characteristics 

will be further discussed (II.3.1/2). Moreover, Neisseria gonorhoeae FNR 

regulates aniA, a gene coding a nitrite reductase (93, 94). Also, in 

Campylobacter jejuni, the NssR (Nitrosative stress Regulator, an FNR family 

member) regulon includes two genes encoding globin-like proteins, which 
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are important for nitric oxide detoxification (97). Another important Fe-S 

cluster-containing regulator that senses NO is IscR whose role and 

characteristics will be further discussed in Chapter II. 

NsrR (Nitrite sensitive repressor Regulator) is a regulator of NO 

metabolism in gamma- and beta-proteobacteria but also in Gram-positive 

bacteria like Bacillus and Streptomyces species (98). This transcription 

factor binds a Fe-S centre through a sequence motif that contains three 

conserved cysteine residues (99-101). NsrR contains in its regulon genes 

encoding flavohaemoglobin and nitrite reductase proteins (98, 102). 

 

The major sensor of nitric oxide in eukaryotes is the soluble 

guanylate cyclase which contains a haem cofactor that binds NO, resulting 

in cyclization of GTP to cyclic GMP, which leads to the activation of several 

pathways. The haem is located in a domain that displays a high sequence 

identity to a family of sensors designated as H-NOX (Haem NO/OXygen 

binding) which are widespread in Bacteria, like Vibrio chloraea, Clostridium 

botulinum, Shewanella oneidensis and Thermoanaerobacter tencongensis 

(93, 94). The physiological role of these regulators is poorly understood in 

bacteria; nevertheless, two studies carried out in Legionella pneumophila 

and Vibrio fischeri showed that H-NOX regulates biofilm formation and iron 

metabolism, respectively (103, 104). Mycobacterium tuberculosis contains 

the DosRST (Dormancy survival) system. Most DosR-regulated genes are 

induced in activated macrophages in a NO synthase-dependent manner, 

and the DosRST regulon includes glbN encoding a truncated haemoglobin 

which has a role in NO detoxification (93, 94). 

 

Chapter II will describe the role of the regulatory protein Fur that 

contains a non-haem iron centre as cofactor and is widely distributed in 
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bacteria. This regulator is inactivated upon exposure to NO due to the 

formation of DNIC species leading to derepression of the Fur regulon (105). 

Furthermore, the regulon of PerR (a Fur homologue) is also derepressed 

upon exposure to nitric oxide in vivo (106). 

The regulatory and biochemical properties of the specific NO 

regulator, NorR, will be discussed in the flavodiiron proteins subchapter. 

 

I.3 – NO detoxification systems 

 

Among several mechanisms used by bacteria to resist nitrosative 

stress are the nitric oxide detoxification systems. In enteric bacteria, three 

proteins were identified as NO detoxificants: the periplasmic cytochrome c 

nitrite reductase formate-dependent, NrfA; the flavorubredoxin, FlRd and 

its associated oxidoreductase, NorW; and the flavohaemoglobin protein, 

Hmp. 

   

 I.3.1 – Flavodiiron family of proteins 

  

 Flavodiiron proteins (FDP) represent a large family of enzymes, 

widespread among Archaea, Bacteria and Protozoa, which contain a 

conserved two-domain structural core, built by a metallo-β-lactamase-like-

domain at the N-terminal region harbouring a non-haem diiron site, and a 

flavodoxin-like domain, containing a FMN moiety (107, 108). FDPs possess 

NO reductase activity and are involved in microbial resistance to nitric 

oxide (107, 108). Although, the two-domain structural core is conserved in 

this family of proteins, several members have extra domains fused at the C-

terminal (107, 108). Therefore, depending on the domain composition, the 
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proteins were divided into four classes, from A to D: class A in which 

proteins contain only the two domain core; class B with enzymes that have 

an extra rubredoxin-like domain containing a FeCys4 binding motif; class C 

where proteins have an additional module that contains significant 

similarities to NAD(P)H:flavin oxidoreductases; and class D with proteins 

containing NAD(P)H:rubredoxin oxidoreductase and rubredoxin modules 

fused to flavodiiron core (107-109). 

 The first reports of a protein from FDP class A arose with work on 

Desulfovibrio gigas. The protein was named ROO (Rubredoxin:oxygen 

oxidoreductase) and was shown to accept electrons directly from the 

rubredoxin partner (107, 108). ROO has NO reductase activity, its deletion 

results in sensitivity to NO and the expression of this enzyme is able to 

complement the norV (encoding a FDP class B enzyme) mutant of E. coli 

under anaerobic conditions (110). 

The class C enzymes were so far found in cyanobacteria and some 

eukaryotic oxygenic phototrophic organisms (107, 111). In this class of 

enzymes, the long electron transfer chains are not required, as the fusion of 

the NAD(P)H:flavin oxidoreductases module to the flavodiiron core allows 

the protein to accept electrons directly from NAD(P)H and perform several 

intra-molecular electron transfer steps onto the diiron centre, which 

reduces the diatomic substrate. This enzymes are proposed to reduce 

dioxygen to water, avoiding the formation of ROS (112). A recent study in 

Synechocystis sp. showed that FDP proteins of class C are induced upon 

nitrosative stress (113). 

The class D enzymes were found so far encoded in the genomes of 

Clostridiales and of the pathogen Trichomonas vaginalis; further studies are 

required to understand the role of these protein in NO protection. 
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Class B enzymes are more widespread when compared to class C 

and D. The first enzyme of this family of proteins shown to bind NO and to 

possess a quite considerable NO reductase activity was FlRd from E. coli 

encoded by norV (114, 115). norV is in an operon with norW which encodes 

for the NADH-dependent flavorubredoxin reductase. This gene 

organisation was thus far observed in all enterobacterial  genomes (107). 

Nitric oxide reductases are enzymes that catalyze the two electron 

reduction of NO to N2O: NADH + 2NO  N2O + H2O + NAD+, and in 

enterobacteria this activity is performed under microaerobic or anaerobic 

conditions (116, 117). E. coli flavorubredoxin is a cytoplasmatic protein that 

possesses a NO reductase activity with a turnover of 15-20 mol of NO.mol 

enzyme-1.s-1 (114). The mechanism studied in this organism, by Vicente et 

al., revealed that flavorubredoxin reductase rapidly shuttles electrons 

between NADH and FlRd, which are necessary for the NO reduction (118). 

The electron accepting site in FlRd, the rubredoxin centre, is in very fast 

redox equilibrium with flavin mononucleotide (118). Moreover, structural 

studies suggest that E. coli rubredoxin domain of FlRd acts independently 

being freely available to participate in redox reactions with other protein 

partners (119). 

E. coli and Salmonella enterica strains mutated in norV were more 

sensitive to NO donors under anaerobic conditions (116, 120). The 

expression of the norVW operon is induced by RNS, anaerobically and 

aerobically, during nitrate/nitrite respiration under the regulation of FNR 

and the nitrate/nitrite responsive regulators NarL/NarP (121, 122). 

Moreover, norV is upregulated in macrophage-internalized Salmonella sp. at 

a time that corresponds to the NO burst (123), while the loss of FlRd did not 

reduce the ability of bacteria to survive within macrophages, up to this 
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point (95). In enterobacteria, the operon norVW is located upstream of the 

divergently transcribed gene norR that encodes for the nitric oxide 

regulator NorR (Figure I.4). E. coli norVW is regulated by NorR (92, 95, 124, 

125) and studies showed that depletion of norR causes a similar phenotype 

as the deletion of norV, and completely abolishes the nitrosative induction 

of norVW (92, 116, 126-128). 

NorR is a NO sensor in bacteria and a member of the bacterial 

enhancer-binding protein family (bEBP) (125, 129, 130). This regulator is a 

tri-partite σ54-dependent protein constituted by the following domains: a C-

terminal DNA-binding HTH (helix-turn-helix) domain that binds to the 

conserved sequence 80–150 bp upstream of the bacterial promoter; a 

central domain belonging to AAA+ family, responsible for ATPase activity 

and interaction with σ54 subunit of RNA polymerase; and a N-terminal 

regulatory GAF domain (GMP-regulated cyclic nucleotide 

phosphodiesterase, Adenyl cyclase and FhlA) that is required for the 

protein activity by binding ATP and which contains a mono-nuclear iron 

centre (Figure I.4A) (128, 131). The NorR non-haem mono-iron centre has a 

distorted octahedral symmetry and is coordinated by three aspartate 

residues, an arginine and a cysteine (132, 133). The activation of this sensor 

requires the formation of a mononitrosyl-iron complex in the N-terminal 

GAF domain and the Kd binding of NO to E. coli NorR is 50 nM (129). 
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Figure I.4 – Model of NorR-dependent activation of
norVW. (A) NorR contains the regulatory GAF domain
(blue), the AAA+ domain (green) and DNA-binding domain
(light red). (B) norR (orange arrow) is located upstream of
the norVW operon (gray and purple arrows). (C) The
intergenic region between norR and norVW contains three
NorR binding sites (dark red, 1, 2 and 3). NorR binds to the
DNA, through the HTH domain (light red), in the absence of
NO; the N-terminal GAF domain (blue) represses the
activity of the AAA+ domain (green). (D) The binding of
NorR to the three binding sites induces the formation of an
oligomer. (E) In the presence of NO (ON-state), nitric oxide
(orange) binds to the iron center in the GAF domain (blue),
occurring relieve of the repression of the AAA+ domain
(green). (F) NorR catalyzes the hydrolysis of ATP necessary
for remodeling of σ54-RNA polymerase (grey) that results in
transcription initiation. Adapted from (128, 129, 137).
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Three NorR binding sites were identified in the intergenic region 

between norR and the divergently transcribed genes (Figure I.4C) (134, 

135). The NorR binding sites domain comprises a GT-(N7)-AC motif flanking 

an AT-rich central region. All these binding sites need to be occupied for NO 

induction of the norV genes (128) as disruption of any of the three NorR 

binding sites prevents activation of norV expression by NorR (136). 

Furthermore, NorR binds to the three binding sites cooperatively (Figure 

I.4C) (135). Recent work, by Tucker et al., revealed that the three binding 

sites are required for NorR-dependent catalysis of open complex formation 

by σ54 RNA polymerase holoenzyme (E54) (137). In addition, the formation 

of NorR oligomers is necessary for maximal ATPase activity of NorR, which 

is necessary to remodel the closed E54 and allow melting of the promoter 

DNA (137). A model was proposed in which NorR binds to the DNA sites in 

the absence of NO and the N-terminal GAF domain negatively regulates the 

activity of the AAA+ domains by preventing access to σ54 (Figure I.4C/D) 

(131). The binding of NorR to the three DNA sites induces conformational 

changes that stimulate the formation of a higher-order oligomer (Figure 

I.4D) (131). In the presence of NO, nitric oxide binds to the iron centre in 

the GAF domain forming a mononitrosyl iron species. The repression of the 

AAA+ domain is relieved, enabling ATP hydrolysis by NorR, coupled to 

conformational changes in the AAA+ domain (Figure I.4E) (131). Then, the 

interaction and remodeling of σ54-RNA polymerase occurs, leading to the 

formation of an open complex and transcription initiation (Figure I.4F) 

(131). 
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 I.3.2 – Globin family – Flavohaemoglobin 

 

Globins are an ancient and heterogeneous group of proteins found 

in all kingdoms of life. These proteins have a highly-conserved α-helical 

‘globin fold’ and contain a b-type haem as cofactor. Microbial globin family 

encloses three classes: the single domain bacterial haemoglobins, the 

truncated haemoglobins (trHb) and the flavohaemoglobins (Hmp). The 

classes share high sequence homology and structural similarity in their 

globin domain, but the physiological role of globins varies among 

organisms (138). Globins can be found in both intracellular and 

extracellular compartments and encounter widely varying levels of NO and 

O2 (138). 

The first class of globins is typified by Vitreoscilla globin (Vgb), the 

first bacterial globin isolated, that contains two haem b groups per 

molecule (139). Single domain bacterial haemoglobins are also found in 

Aquifex aeolicus, Campylobacter and Clostridium (138). These proteins do 

not exhibit NO-consuming activity in the presence of NADH when assayed 

in cell-free extracts, as they do not contain a reductase domain (138). 

Nevertheless, a role for NO protection was shown for the globin CgB of 

Campylobacter jejuni and Campylobacter coli, upon experiments showing 

that gene expression is induced upon exposure to nitrosative stress, and 

that C. jejuni cgB mutant shows higher sensitivity to NO releasing 

compounds (97, 140). 

Truncated haemoglobins possess 20-40 less residues than the 

single-domain haemoglobins. The function of these proteins is not 

completely understood. However, several trHbs have been implicated in 

tolerance to nitrosative stress and others appear to be involved in 
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respiration (138). One example of proteins from this class is Mycobacterium 

tuberculosis and Salmonella sp. HbN that confer protection against 

macrophages producing NO (138). 

 

Flavohaemoglobins 

 The main difference between flavohaemoglobin class and the rest of 

the family is an additional C-terminal flavin-containing oxidoreductase 

domain. The flavohaemoglobin class is formed by a very homogenous 

group of proteins that shares highly conserved active sites in both the 

haem- and flavin-binding domains (141). Flavohaemoglobins are 

widespread in Bacteria where they play a role in virulence, and 

homologues exist in the protozoa (e.g. Giardia intestinalis) and also in fungi 

(142-145). 

Hmp acts as NO dioxygenase under aerobic conditions, catalyzing 

the following reaction: 2•NO + 2O2 + NADPH  2NO3
- + NADP+ + H+, where 

the C-terminal FAD-containing reductase domain uses the reducing power 

of cellular NAD(P)H to regenerate the ferrous haem (146-148). This enzyme 

was also shown to act as NOR (nitric oxide reductase) under conditions of 

low partial pressures of oxygen (148). In addition, E. coli Hmp was able to 

act as an alkylhydroperoxide reductase interacting with membrane lipids 

(149, 150). Both NO dioxygenase and NO reductase activities were shown 

to be important for the Hmp NO stress resistance (92, 147, 151, 152). In 

contrast to typical Hmps, S. aureus flavohaemoglobin, which has 30% 

similarity with E. coli Hmp, acts rather as NO reductase and is important in 

a microaerobic environment (153, 154). 
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 In E. coli, the role of Hmp in resistance to nitrosative stress was 

demonstrated using viability (155), cell respiration (72) and macrophage 

killing assays (156). In Salmonella sp., Yersinia pestis and S. aureus, hmp is 

important for bacterial viability and NO detoxification in macrophages 

(143-145, 157, 158). Hmp also protects Pseudomonas aeruginosa, Erwinia 

crhysanthemi, Bacillus subtilis and Cryptococcus neoformans from 

nitrosative stress generated by different donors (159-162). Moreover, in 

yeast, a strain mutated in hmp shows NO accumulation (163). 

 

hmp is induced by nitrosative stress (106, 159, 164-166), in 

stationary cell growth (167, 168), with low levels of iron (164), in the 

presence of paraquat (167) and upon oxygen limitation (169, 170). Its 

Figure I.5 – The regulation of Hmp by NsrR. The hmp transcription start
site and consensus NsrR-binding sites are shown in blue and red,
respectively. Nitric oxide binds to the Fe-S cluster of NsrR. Binding of NO to
the NsrR Fe-S cluster leads to derepression of the Hmp promoter and
increased expression of Hmp. Flavohaemoglobin protects microbes from
NO attack through its dioxygenase activity under aerobic conditions.
Adapted from (147).
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regulation is complex, as it involves several transcription factors whose 

nature depends on the microorganism. The best understood and most 

highly conserved Hmp-regulating transcription factor is the global 

repressor NsrR. NsrR is the regulator of Hmp response to NO donors, acting 

as repressor in Salmonella sp. (144, 171), B. subtilis (106, 161) and E. coli 

(172), under aerobic and anaerobic conditions (Figure I.5).  

The promoter region of hmp contains a FNR binding site and this 

regulator represses anaerobically the hmp transcription (164). Fur is 

considered a weak repressor of hmp in E. coli and Salmonella sp. with its 

effects probably indirect (173). The role of MetR as a regulator of Hmp is 

not well defined (125, 155). In B. subtilis, apart from NsrR, Hmp is regulated 

by the two-component ResDE (histidine kinase, ResE and response 

regulator, ResD), a transduction system induced by oxygen limitation and 

NO (161, 174). In S. aureus, regulation of hmp expression by NO is also 

dependent on a ResDE homologue, the regulator SrrAB (Staphylococcal 

respiratory response) (158). 

 

I.3.3 – Nitrite Reductases 

 

In general, nitrite reductases are enzymes that are able to reduce 

nitrite and belong to the denitrification pathway, an important step of the 

nitrogen cycle. Besides this primary function as nitrite reductase, some 

proteins also exhibit nitric oxide reductase activity. 

E. coli NrfA was the first nitrite reductase enzyme recognized to 

perform NO reduction (175). This protein possesses a pentahaem 

cytochrome c and catalyzes the six-electron reduction of nitrite (176). NrfA 

homologues are expressed in the periplasm of a wide range of Gamma, 
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Delta and Epsilon proteobacteria. The importance of NrfA in the 

metabolism of NO by E. coli was revealed by the higher sensitivity of nrfA 

mutant to NO under anaerobic conditions when compared to the wt strain 

(177). The nrfA mutant of Haemophilus influenzae also showed higher 

sensitivity, and the double mutant ΔnrfA ΔnorV of Salmonella enterica 

serovar Typhimurium was unable to grow in the presence of NO donors 

under anaerobic conditions (178, 179). The anaerobic nitric oxide 

detoxification by NrfA involves a five-electron reduction of NO, with rates 

comparable to bacterial respiratory nitric oxide reductases, like NorBC 

from Paracoccus denitrificans (180, 181). The NO reduction by NrfA in E. 

coli has a Km of 300 µM (pH=7) which is higher than the one measured for 

FlRd and Hmp (175). Additionally, in E. coli, the nrf operon is regulated by 

the NO-sensitive repressor NsrR (182), though no regulation with NO was 

observed (95, 121). However, in H. Influenzae, the nrfA is regulated by FNR 

upon exposure to NO donors (178). 

 

 A recent study evaluated the importance of the three NO 

detoxifying proteins in enterobacteria, FlRd, Hmp and NrfA. Single mutants 

defective in norV, hmp and nrfA and even the mutant ΔnorV Δhmp ΔnrfA 

reduced NO at the same rate as the parental strain. Therefore, alternative 

mechanisms of NO reduction in enterobacteria remain to be discovered 

(183). 

The work presented in this dissertation gives an important 

contribution to the knowledge on flavorubredoxin and its regulator NorR in 

NO protection upon macrophage infection (Chapter III). 
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Chapter II 

Iron, an essential metal for the living systems 

 

“It is safe to say that, with only a few possible exceptions in the 

bacterial world, there would be no life without iron.” 

A. Earnsham in Chemistry of the Elements 

 

 

II.1 – Chemical properties and biological role 

 

Iron is the element 26 in the periodic table, the second most 

abundant metal and fourth most abundant element in the earth’s crust. 

This metal is the most important transition element involved in biological 

systems and one of the most versatile, having the capacity to acquire 

various oxidation states (from –II to +VI). In biological systems, iron 

prevails in one of two oxidation states, the Fe3+ (ferric) or Fe2+ (ferrous) 

form. Moreover, iron can adopt different spin states in both forms, 

depending on its ligand environment (1, 2). Ferrous iron reacts with oxygen 

resulting in reactive oxygen species (ROS) (3): 

  Fe(II) + O2  Fe(III) + O2―   (A) 

  2O2― + 2H+  H2O2 + O2   (B) 

  H2O2 + Fe(II)  OH• + OH― + Fe(III)  (C) 

Scheme 1 – Iron reactivity and the resulting reactive oxygen species. (A) Iron 

oxidation, (B) Superoxide dismutation and (C) Fenton reaction. 
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Iron is present in living cells performing an essential role in a wide 

range of biological reactions. Proteins that incorporate iron in their 

prosthetic groups can profit from its flexible physicochemical properties 

and use it as a biocatalyst or electron carrier. Hence, iron is present in the 

catalytic centre of a large variety of proteins that participate in a broad 

diversity of processes in cells such as photosynthesis, nitrogen fixation, 

methanogenesis, respiration, gene regulation and DNA biosynthesis (1, 2). 

The abundance of proteins involved in iron uptake emphasises the 

importance of iron in biological systems. 

 

II.2 – Iron uptake and homeostasis 

 

 Upon infection, mammalian cells and pathogens compete for iron 

since pathogenic microorganisms require this metal for many metabolic 

pathways and detoxifying systems are iron-dependent enzymes, while the 

host restricts iron as a way to combat pathogens. The host uses several iron 

limitation systems like chelation of ferric iron with specific proteins such as 

lactoferrin, transferrin, lipocalin-1, lipocalin-2 and siderophores, and 

exportation of iron from the mammalian cells using Fpn1 (ferroportin 1) (4, 

5). In contrast, pathogens have developed strategies to acquire iron from 

the host, which will be discussed next. 

 

      II.2.1 – Iron uptake systems 

 

While the human body has ~10-24 M of free iron (6), an iron 

concentration between 10-6 and 10-7 M is required by most pathogens for 

various metabolic processes (7, 8).  
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One of the most known strategies of microorganisms to obtain iron 

from the host is by siderophore iron acquisition. Siderophores are Fe3+ 

chelators with low molecular mass (<1 kDa) whose uptake mechanisms 

vary between Gram-positive and Gram-negative bacteria (8). Free ferric 

iron is chelated by a siderophore and the complex siderophore-Fe3+ binds 

to a siderophore receptor which transfers the ferrisiderophore to a 

transporter, directly, in Gram-positive bacteria, or via a periplasmic binding 

protein, in Gram-negative bacteria, plus the inner membrane TonB protein 

(a transporter of small molecules, T-one phage) assisted by ExbB and ExbD 

(encoded by exbB and exbD genes, comprised in the exb operon, export 

bacteriocin). Once in the cytoplasm, the ferrisiderophore is either degraded 

by an esterase or releases iron through a reductive process, which leaves 

the iron chelator intact and available to be used in another process of iron 

chelation (8). 

A different strategy used by pathogens to acquire iron, which 

occurs at the surface of the cell, is the reduction of exogenous Fe(III) to 

Fe(II), that can be then transported into the cell. This key biological process 

during cellular iron uptake is used by bacteria and yeast, namely Lysteria 

monocytogenes, Legionella pneumophila and Saccharomyces cerevisiae (2). 

Other mechanism by which pathogenic bacteria obtain iron involves the 

use of LIP (Labile Iron Pool) of the host, a pool of redox-active iron that is 

loosely bound to low molecular weight chelators and is available for 

metabolic purposes, used by Gram-negative bacteria (Salmonella sp., 

Francisella tularensis and Chlamydia trachomatis) and protozoa 

(Leishmania donovani) (4, 9-12). In addition, some bacteria can resist the 

effect of lipocalin-2, an important immunity protein that is able to capture 

iron-laden bacterial siderophores (13, 14). Interestingly, Salmonella sp. can 

even use this protein to directly obtain iron from the host (15). 
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Furthermore, Neisseria meningitidis can degrade the mammalian cellular 

iron storage ferritin and Listeria monocytogenes is able to extract iron from 

this protein (7, 16-18). Some pathogens uptake iron by expressing 

receptors for the host iron binding proteins transferrin and lactoferrin (19, 

20).  

Several microorganisms can acquire iron from the host using 

transport systems for ferrous iron, such as the Feo transporter (Ferrous 

iron) (21). Other transporters are the metal-type ABC that have specificity 

for iron but don’t require outer membrane receptors (22). Examples of 

these transporters are SitABCD (Salmonella iron transporter protein found 

in Salmonella typhimurium), FbpABC (Ferric iron binding protein found in 

Neisseria gonorhoeae) and FutABC (Ferric iron uptake and transport 

protein in Synechocystis PCC 6803) (8). 

Another source of iron is haem, the biggest body intracellular iron 

pool (80%), that is found bound to haemoglobin, myoglobin and other 

haem-containing enzymes (23). Pathogens can use haem by extracting it 

from proteins and, once inside the bacteria’s cytoplasm, haem is either 

broken down via a haem oxygenase with the formation of biliverdin and CO 

or it can be de-ferrated in a reaction that leaves the tetrapyrrole ring intact 

(24, 25). 

 

     II.2.2 – Iron storage proteins 

 

Iron storage is a vital step for survival, as iron needs to be stored in 

a non-toxic readily available form (8). Iron is stored in three types of 

protein: ferritin (Ftn), bacterioferritin (Bfr) and the DNA-binding protein 

Dps (26).  Ferritins and bacterioferritins have a molecular weight (MW) of 
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~500 KDa and are composed of 24 identical or similar subunits. These 

subunits form a spherical protein shell that accommodates the iron storage 

reservoir which has capacity to store 4000 iron atoms. The major 

difference between Ftns and Bfrs is the presence of haem groups that are 

non-covalently bound to the latter protein. In bacteria, both proteins have 

an important role during stress conditions (27, 28). Interestingly, in E. coli, 

up to 50% of cellular iron is stored by ferritin alone (29). 

Dps is a DNA-binding protein that is capable of providing protection 

to cells during exposure to severe environmental assaults, including 

oxidative stress, nutritional deprivation, high pressure, ultra-violet and 

gamma irradiation, thermal and alkaline/acid stress (30). This iron storage 

protein uses H2O2 to catalyze the oxidation of Fe2+ at its ferroxidase centre 

generating water rather than ROS. Consequently, this results in the 

protection of DNA from Fenton-mediated oxidative stress (26). In E. coli, 

the gene dps is regulated in exponentially growth by OxyR and in stationary 

phase by IHF (histone-like Integration Host Factor). Moreover, Dps is an 

iron storage protein with lower capacity when compared to Ftn and Bfr 

because it is only formed by 12 subunits (~250 kDa), capable of holding 

~500 iron atoms (30). 

These iron-storage proteins obtain iron in the soluble ferrous form 

but after the ferroxidation step, catalyzed by their ferroxidase centre, the 

metal is stored in the oxidized ferric form (8, 31). When required for 

intracellular metabolism, iron is mobilized upon reduction of the oxy-

hydroxide core of these proteins (32), which is performed by ferric 

reductase proteins (33). In the case of E. coli, the yqjH gene that is part of 

the Fur (Ferric-uptake regulator protein) regulon was shown to encode a 

ferric reductase protein required for iron homeostasis (34). 
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      II.2.3 – Regulation of iron homeostasis 

  

A need for a tight control of iron uptake is required as the 

accumulation of potentially dangerous free iron results ultimately in 

bacterial death. The regulation of iron levels in the cell involves sensing the 

cellular concentration of the metal and responding appropriately by 

modulating the uptake, storage and efflux of iron. 

 One of the most well-known regulators of iron metabolism is Fur 

that functions as a global regulator of iron homeostasis controlling both the 

induction of iron uptake encoding genes (under iron limitation) and the 

expression of iron storage proteins as well as iron-utilizing enzymes (when 

iron is sufficient). In E. coli, the Fur regulon includes 35 iron acquisition and 

other ‘non-iron’ function genes such as the ones encoding proteins that 

participate in respiration, TCA (TriCarboxylic Acid) cycle, glycolysis, 

methionine biosynthesis, DNA synthesis and oxidative stress resistance. In 

Gram-negative bacteria, Fur is the most important iron regulator (35, 36), 

while in Gram-positives other regulators were described (e.g. DtxR, 

Diphtheria Toxin Regulator, family of proteins) along with Fur-like proteins 

(37-39). Fur is abundant in cells during exponential growth and doubles in 

the stationary phase (8). This transcription factor contains two equal 

subunits of 17 kDa forming a homodimer. Fur is able to bind one ferrous 

ion per subunit, as well as other similar metals and even haem (8). Upon 

binding of the metal, Fur affinity towards DNA increases by a 1000 fold. 

Nevertheless, only Fe(II) binds with sufficient affinity to significantly 

activate Fur at physiological metal concentrations (40). The affinity of Fur 

for Fe2+ is ~10 µM, which is compatible with the levels of free ferrous iron 

in the bacterial cell, and so bacterium is able to respond to the 
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physiologically relevant fluctuations of iron in the cell (8). The protein acts 

as a transcriptional repressor upon interaction with Fe2+ (Figure II.1). The 

repression occurs because Fur box overlaps the promoter region of the 

regulated genes (2, 8). Hence, two Fur-Fe2+ dimers recognize and bind to 

the Fur box from each DNA strand blocking the access of RNA polymerase 

to the promoter and therefore preventing the transcription of downstream 

genes (Figure II.1) (41, 42). Fur is also induced by SoxRS and by OxyR in 

response to oxidative stress (8).  

Fur can also act indirectly as an inducer due to the existence of the 

small RNA (sRNA) RyhB, which facilitates the degradation of mRNAs that 

are regulated by Fur (Figure II.1).  The presence of Fur bound to ferrous 

iron leads to repression of RyhB, such that degradation of the transcripts 

that are Fur-induced does not proceed, resulting in their expression (Figure 

II.1). In E. coli, Fur-dependent induction of acnA, bfr, sdh and sodB genes 

(coding for aconitase A, bacterioferritin, succinate dehydrogenase and 

superoxide dismutase B, respectively) was eliminated when ryhB was 

inactivated, which indicates that their Fur dependence is mediated by RyhB 

(Figure II.1) (8, 42). Furthermore, the E. coli fur mutant contains 70% less 

iron content when compared to the wild type, due to the lack of iron 

storage proteins and to the lower levels of cellular iron-containing proteins. 

Bacteria using Fur as a regulator of iron metabolism modulate the 

expression of iron-requiring proteins in response to iron availability, and 

make use of iron for more important processes. Moreover, previous work 

showed that when E. coli is not able to acquire enough iron using 

siderophores, the organism suppresses the synthesis of its most abundant 

Fe-S enzymes by RyhB/Fur regulation, resulting in a less efficient 

metabolism, and redirects the little iron present to the indispensable iron 

enzymes of essential biosynthetic pathways (43). 



Iron, an essential metal for the living systems 

 

56 

 

Fur is not the only iron regulator. In mammals, the inactive form of 

IRP (Iron-Regulatory Protein) is identical to the cytoplasmic isoform of the 

iron-sulphur protein aconitase, containing a [4Fe-4S]2+ cluster. When iron 

is scarce, the apo-form (IRP) prevails, blocking ferritin synthesis and 

protecting transferrin receptor mRNAs. When iron becomes available 

again, holo-aconitase is reconstituted, the protein loses its function as IRP, 

but can now perform aconitase activity. Hence, the assembly and 

disassembly of the iron-sulphur cluster will act as a regulatory step on iron 

homeostasis (44). 

 

 

 

 

 

 

Figure II.1 – Fur regulation mechanisms. When iron is abundant, the Fur-
Fe2+ dimer blocks the transcription of downstream genes (Fe acquisition
genes). Also, the presence of Fur-Fe2+ represses the transcription of the small
RNA RyhB, leading to enhanced translation of iron-containing proteins.
Under iron limiting conditions, Fur loses its iron and apo-Fur has a reduced
affinity for the Fur box allowing the transcription of iron acquisition genes.
Furthermore, apo-Fur no longer represses RyhB leading to degradation of Fe-
containing proteins transcripts. [Adapted from (8)].
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II.3 – Iron containing proteins 

 

The biological function of iron is almost entirely dependent of its 

incorporation into proteins, either as mono- and binuclear species, or in 

more complex forms as part of iron-sulphur (Fe-S) clusters or haem groups. 

Based on the coordination chemistry of iron, the iron-containing proteins 

can be divided in two main groups: the haemic and non-haemic proteins. 

 

      II.3.1 – Haem proteins 

 

Haem is a prosthetic group that belongs to the tetrapyrrole family 

and forms a complex macrocycle with four five-membered pyrrole rings 

attached to one another in a cyclic form via one-carbon bridges. The most 

common haem structure found in nature is iron-protoporphyrin IX 

(protohaem or haem b), although other haem centres exist like haem a or 

haem o (45-47). The haem biosynthesis in eukaryotes and prokaryotes is a 

complex pathway divided in eight enzymic steps, being the first step the 

formation of aminolevulinic acid and the last step the insertion of ferrous 

iron into the tetrapyrrole macrocycle of protoporphyrin IX (48, 49). Haem 

containing proteins perform a variety of functions and are present in 

respiratory and photosynthetic electron transport chains and act as 

regulatory enzymes to modulate gene expression at transcriptional and 

translational levels (46, 48). A large number of proteins involved in the 

uptake, trafficking and sensing of haem are present in prokaryotes, 

showing the importance of this cofactor in evolved systems (45). 
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      II.3.2 – Non-haem iron-containing proteins: 

       Mono, dinuclear iron and mixed metal centres 

 

In nature, a wide variety of non-haem iron centres occur, ranging 

from the simplest one, mononuclear iron centre, to the more complex 

geometry, the Fe-S clusters. The structure of the centres and the role of the 

most relevant non-haem iron-containing proteins will be next summarized. 

 

The simplest type of mononuclear iron centre is the Fe(Cys)4 which 

consists of a tetracoordinated iron bound to cysteines. Nevertheless, these 

iron centres can be penta or hexacoordinated or have other ligands. A large 

number of mononuclear iron proteins participate in oxygen insertion into 

organic substrates and electron transfer reactions (2, 50, 51). Furthermore, 

the mononuclear iron-containing proteins possess a role in regulation as, 

for example, NorR, the regulator of flavorubredoxin, whose centre binds NO 

(52) (the mechanism and biological role of this regulator was discussed on 

chapter I). 

The family of dinuclear iron proteins has typically a carboxylate-

bridged diiron centre. Usually, this prosthetic group holds two irons bound 

to the protein by four carboxylate and two histidine ligands and the iron 

ions are bridged by one or two carboxylates. Alternatively, the bridging 

ligands can be substituted by oxo or hydroxo groups (named diiron-oxo 

centres). Although this is the characteristic centre, the number and type of 

ligands and even the oxidation state of the iron changes, occurring in 

nature different types of dinuclear iron centres (53). This family of proteins 

can be involved in several metabolic processes, like oxygen transport, iron 

storage, DNA or fatty acid synthesis (2, 54). A class of enzymes recently 
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identified and designated as Ric (Repair of iron centres) proteins,  also 

contain a diiron centre, as well as a group of enzymes called flavodiiron 

proteins that function as nitric oxide and oxygen reductases (55, 56) (a 

subject that will be described in chapter IV and was explored in chapter I, 

respectively). 

Another class of non-haem iron proteins is the mixed metal iron-

containing proteins which are not widely distributed in Nature. One 

example is [Ni-Fe] which is the cofactor of hydrogenases, enzymes that 

catalyze the production and oxidation of H2 in microorganisms (57). Also, a 

[Mn-Fe] centre was recently identified in the ribonucleotide reductase of 

the pathogen Chlamydia trachomatis (58). Moreover, in plants, a [Zn-Fe] 

centre was discovered in purple acid phosphatase enzymes in contrast with 

the di-iron centre identified in mammals (59). 

 

      II.3.3 – Iron-sulphur containing proteins 

 

Even though Fe-S clusters are one of the most ancient prosthetic 

groups, it was not until the mid-1960’s that Fe-S containing proteins were 

discovered. These proteins are present in all kingdoms of life. In bacteria, 

these proteins integrate more than 120 distinct classes of enzymes from 

which more than 50% of all Fe-S clusters containing proteins are involved 

in electron transfer systems and 17% are non-redox enzymes (60). There 

are over 30 different Fe-S cluster binding motifs, the most prevalent being 

CX2CX2CX3C (60). Fe-S proteins size range from 6 to 500 kDa and can 

enclose up to nine centres (61). The relative abundance of Fe-S proteins 

differs between the phylogenetic groups. In mammalian proteomes, 

although very few Fe-S proteins were identified till now, the lack of Fe-S 
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clusters leads to severe diseases as Friedreich’s ataxia or even X-linked 

sideroblastic anaemia with cerebellar ataxia (62). 

 

                    II.3.3.1- Types of Fe-S clusters and biological relevance 

 

 The most common type of Fe-S clusters are [2Fe-2S], [4Fe-4S] and 

[3Fe-4S] (Figure II.2) though more complex clusters such as [7Fe-8S] and 

[8Fe-8S] exist in bacterial nitrogenases. Several spectroscopic methods, 

namely UV-Visible, EPR, resonance Raman and Mössbauer, revealed the 

structural framework 

and the chemical and 

magnetic properties of 

Fe-S centres (61). 

Cysteine is the most 

common protein ligand 

but others ligands like 

histidine, aspartate and 

arginine are also 

observed (63). Another 

characteristic of Fe-S 

centres is their possible 

interconversion of 

[2Fe-2S], [3Fe-4S] and 

[4Fe-4S] due to the facile ligand-exchange reactions, coupled to electron 

transfer from biological reductants (43, 64). Due to the protein 

environment surrounding Fe-S clusters, the redox properties of their 

ligands is very flexible and this prosthetic group can operate as electron 

carrier in diverse metabolic processes (43, 44). 

Figure II.2 – Structure of common types of Fe-S
clusters. Fe - iron atom; S - sulphur atom; and Cys -
cysteine ligands. [Adapted from (64)].
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The ability of Fe-S clusters to transport electrons makes these 

cofactors important participants in respiratory and photosynthetic electron 

transfer chains, as well as in carbon, oxygen, hydrogen, sulphur and 

nitrogen metabolisms. Furthermore, Fe-S clusters are able to carry 

electrons through long distances. For example, membrane-bound fumarate 

reductase (the enzyme that converts fumarate to succinate) possesses 

three redox Fe-S clusters that transfer electrons from membrane-bound 

menaquinone to the cytosolic fumarate (43, 65). 

Moreover, Fe-S proteins are involved in control of gene expression, 

sensing of iron, dioxygen, superoxide and nitric oxide, and in recognition 

and repair of DNA damage (64). An important family of proteins that 

contain [4Fe-4S]2+ clusters are the dehydratases, enzymes that catalyze the 

removal of oxygen and hydrogen from the substrate, and which include 

fumarase, aconitase, anaerobic ribonucleotide reductase and lipoate 

synthase, among others (43). In this family of proteins, the cluster has three 

of the four iron atoms with a cysteine thiolate ligand and the fourth iron is 

solvent-exposed. The binding of substrate will occur via additional 

coordination of the fourth iron atom by both a carboxylate residue and the 

hydroxyl group that will be abstracted (43). 

 

                    II.3.3.2- Fe-S clusters assembly mechanisms 

 

Although Fe-S clusters can be formed in vitro upon reaction of an 

apoprotein with ferrous iron and sulphide salts (66), in vivo assembly 

machineries are required, as iron and sulphide are toxic to the cells in the 

concentrations necessary for the assembly of this prosthetic group (67). 

The prevalence of Fe-S containing proteins in metabolic pathways 

of most organisms led some scientists to theorize that iron-sulphur 
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compounds had a significant role in the origin of life in the iron-sulphur 

world theory (68). In this model, in early Earth, the environment was 

anaerobic and iron and sulphur were present in abundance. Consequently, 

Fe-S clusters could be assembled spontaneously into polypeptide 

structures. However, 2.75 billion years ago as the first photosynthetic 

organisms (cyanobacteria) began to use photosystem II, the product 

oxygen led to oxidation of iron and, consequently, to the decomposition of 

Fe-S clusters. As a result, iron could not exist free in the cell due to its high 

reactivity, and organisms owing proteins specific for assembly of Fe-S 

clusters along with proteins required for the delivery of iron and sulphur 

prevailed (43). 

Figure II.3 –General scheme of Fe-S cluster assembly. Fe and S atoms are
assembled within a scaffold protein and clusters are then transferred to
apoproteins. S2- is derived from cysteine through the action of cysteine
desulphurases [Adapted from (85)].
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The formation of Fe-S centres comprises three main pillars: the 

existence of a scaffold protein that receives the nascent Fe-S cluster, the 

sulphur source provided by cysteine desulphurases, and the iron donor. 

Once the prosthetic group is formed in the scaffold protein, the ultimate 

step is the delivery to the suitable apo-protein (Figure II.3) (60). 

 

Nif system, Nitrogen fixation 

The Nif system was the first mechanism for Fe-S cluster biogenesis 

revealed in Azotobacter vinelandii, while searching for nitrogenase 

maturation factors (69). Nif discovery started with the identification of two 

proteins, NifU (the scaffold protein) and NifS (the cysteine desulphurase) 

(70). This assembly mechanism is usually present in nitrogen-fixing 

organisms. Although catalytically inefficient, nitrogenases are required to 

fix nitrogen, being necessary to be abundantly produced in nitrogen-fixing 

cells. Therefore, due to the high demand of the prosthetic group of these 

enzymes, the need for a specialized biogenesis system of Fe-S clusters of 

nitrogenases occurs (63). Interestingly, NifU/S were identified in 

Helicobacter pylori, indicating that Nif system is not restricted to nitrogen-

fixing organisms (71). 

The cysteine desulphurase NifS is a pyridoxal phosphate (PLP)-

containing enzyme (72). This cofactor is essential for fold-stability and 

enzyme activity (73). In general, cysteine desulphurases are homodimeric 

proteins that catalyze the conversion of L-cysteine to L-alanine and an 

enzyme-bound persulphide that transfers elemental sulphur directly to the 

scaffold proteins. The trafficking of sulphur in this way avoids the toxicity 

of this element (74, 75). 

The NifU protein contains a N-terminal U-type scaffold domain; a 

central ferredoxin-like domain with a redox-active [2Fe-2S]2+/1+ cluster of 
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unknown function that participates in a redox process during cluster 

assembly; and a C-terminal domain with a CXXC motif (67). Although the N-

terminal and the C-terminal domains can assemble Fe-S clusters and 

subsequently donate them to apoproteins, the C-terminal domain is the 

only one required for nitrogenase Fe-S cluster assembly (70, 76). 

 

Isc system, Iron-sulphur clusters 

A second system was discovered in A. vinelandii that also 

participates in Fe-S cluster assembly, Isc. The Isc system is present in 

several organisms from bacteria, to yeast and humans and is usually 

considered the housekeeping Fe-S cluster assembly pathway (63, 70, 77). 

The genes of the Isc system are organized in the operon iscRSUA-hscBA-fdx-

iscX that encodes for the following proteins: a regulatory protein, IscR; a 

cysteine desulphurase, IscS; a scaffold protein, IscU; an A-type protein, 

IscA; a DnaJ-like co-chaperone (HscB); a DnaK-like chaperon (HscA); a 

ferredoxin; and IscX, a protein of unknown function (63, 70, 77). However, 

depending on the organism some genes can be absent from the operon. 

IscS is the cysteine desulphurase of Isc but is also able to donate 

sulphur in other metabolic processes such as thiamine, biotin and 

thionucleotides synthesis (63, 70). The importance of this protein was 

revealed as iscS deletion in A. vinelandii is lethal (70). Moreover, iscS 

mutation in E. coli results in general growth defect, under normal and 

oxidative stress conditions, due to the deficiency in many biosynthetic 

pathways and to the lower activity of Fe-S containing enzymes (78-80). 

Crystallographic studies in E. coli revealed that an extensive surface area 

centred on the active site Cys328 is essential for the interaction of  IscS 

with IscU, IscX, IscS and CyaY (whose roles will be described next), forming 

a quaternary complex (81). Cysteine desulphurase activity of IscS is 
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modulated by iron and sulphide, since desulphurase activity is gradually 

inhibited as the amount of iron and sulphide bound to IscS increases (82). 

IscU is a U-type scaffold protein that acts as the primary site for Fe-

S cluster assembly in the Isc system. The U-type scaffold proteins, in 

general, contain three conserved cysteines arranged in the CX24-26CX42-43C 

motif that is required for cluster ligation, but only IscU has the LPVVK motif 

required for interaction with HscA (Heat-shock cognate protein, whose 

function will be further discussed) (83-85). These conserved cysteine 

residues and one conserved non-cysteinyl ligand (aspartate) are necessary 

for cluster formation (86, 87) and for the transfer of intact Fe-S clusters to 

apo-proteins as these residues facilitate the release of the Fe-S clusters (88-

90). E. coli iscU deletion strain has growth deficiency when compared to 

wild type and very low activity of several Fe-S containing enzymes (79, 91). 

ISCU (homologue of IscU) is the main scaffold protein in mammals and 

mutation of the gene in humans leads to a severe inherited disease called 

myopathy (77, 92). 

The formation of Fe-S clusters in U-type scaffolds occurs by the 

following steps: first, the IscU homodimer assembles a [2Fe-2S]2+ cluster, 

followed by insertion of another 2Fe-2S cluster; next, a two-electron direct 

reductive coupling occurs and the two [2Fe-2S]1+ form a [4Fe-4S]2+ (86, 87). 

The first [2Fe-2S]2+ cluster formed in IscU homodimer is stable and 

resistant to iron chelators, the two [2Fe-2S]2+ clusters are only 

intermediates in the formation of the [4Fe-4S]2+. Furthermore, if the [4Fe-

4S]2+ cluster is exposed to O2, it converts back to one [2Fe-2S]2+ cluster-

bound form of IscU (67). Interestingly, Fe-S clusters formed in IscU are 

degraded in the presence of oxidative stress and consequently the Isc 

system is inactivated in the presence of ROS (93). The transfer of sulphur 

from the cysteine persulphide on IscS to cysteine residues on IscU is direct, 
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as a complex between IscS and IscU monomers was observed (86, 94, 95), 

involving a persulphide or polysulphide linkage (75, 96, 97). 

IscA was previously shown to assemble a Fe-S cluster 

spectroscopically in vitro. Like IscU, IscA has three cysteines conserved in 

the C-terminal region (CX42-44DX20CGC) required for cluster ligation (63, 

70). IscA has a tetrameric structure resembling a basket-shape with a 

central cavity between the two dimers (63). IscA accepts iron-sulphur 

clusters from IscU, but not vice-versa, and transfers them in vitro to various 

apo-proteins (63). Hence, at first, IscA was proposed to act as an iron-

sulphur scaffold protein either for cluster donation to a subset of Fe-S 

proteins or as an intermediate in cluster transfer from U-type scaffold to 

apoproteins (70). However, the deletion of IscU in A. vinelandii was lethal 

and IscA could not substitute for IscU as a scaffold protein (98). 

A new role was proposed for IscA to act as an iron donor for Fe-S 

cluster assembly in IscU. E. coli IscA binds one iron per dimer and is able to 

donate the iron for cluster assembly on IscU (99-101). In addition, the iron 

in IscA is mobilized, in vitro, in the presence of L-cysteine making it 

available for Fe-S cluster assembly in E. coli IscU (102). 

IscR is a transcriptional regulator that contains, besides a DNA 

binding domain, a [2Fe-2S]2+ cluster. This protein has three cys residues 

which are the ligands for the [2Fe-2S]2+ cluster of the holo-protein (103, 

104). Work in Kiley’s laboratory revealed that IscR possesses two distinct 

types of DNA target sequences. Type-1 sites are preferentially regulated by 

[2Fe-2S]-IscR under anaerobic conditions when the cluster is presumed to 

be stable, and type-2 sites are bound by both [2Fe-2S]- and apo-IscR and 

these promoters are usually regulated under aerobic conditions when apo-

IscR becomes more abundant (105). The Fe-S cluster of IscR is a sensor for 

the Fe-S cluster status of the cell. When sufficient Fe-S clusters are present 
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in the cell to satisfy the metabolic needs, the holo-IscR represses the isc 

operon (type-1 site). However, when these clusters are in low 

concentrations, IscR loses the centre resulting in the derepression of the isc 

locus (70, 103). Apo-IscR is also able to activate the expression of another 

Fe-S cluster assembly system, the Suf (Sulfur assimilation), in response to 

oxidative stress (type-2 site). Therefore, under stress conditions, when the 

[2Fe-2S] cluster of IscR is lost, both Suf and Isc systems can be transcribed 

(70, 103). The IscR regulon is not restricted to Fe-S cluster assembly 

pathways; for example, in E. coli, this transcription factor regulates about 

37 genes (type-1 and type-2 sites), among which are erpA gene (encoding 

the essential respiratory protein A whose role will be discussed next), 

genes that encode Fe-S proteins and genes related to oxidative stress 

adaptation, such as sodA (encoding the superoxide dismutase A) (106). As a 

result, IscR enables the organism to adapt to the varying conditions, from 

mounting a response to oxidative and nitrosative stress to switch from 

anaerobic to aerobic respiratory pathways and vice versa. 

HscB and HscA (Heat shock cognate proteins) are associated with 

Fe-S protein maturation, as their deletion in E. coli perturbs Fe-S cluster 

assembly in vivo (91, 107). HscA interacts with the cluster-loaded or 

apoform of IscU assisted by HscB, which in turn interacts with both IscU 

and HscA. HscA exhibits a low level of intrinsic ATPase activity that is 

stimulated by interaction with HscB and highly stimulated upon interaction 

with both HscB and IscU (63). The proposed roles of these proteins are the 

stabilization of clusters assembled on IscU or facilitating cluster transfer 

from IscU to acceptor proteins in an ATP-dependent reaction (67).  In fact, 

the latter role was demonstrated for the HscA and HscB proteins of A. 

vinelandii because the rate of [2Fe-2S]2+ cluster transfer from IscU to 

apoferredoxin was shown to be 20-fold enhanced  in the presence of both 
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proteins, in an ATP-dependent manner (67, 90). Nonetheless, in E. coli, 

these chaperones were able to bind and stabilize [2Fe-2S] clusters in IscU 

that could be donated to acceptor proteins such as apoferredoxin (108). 

Although the exact role of both proteins was not yet identified, they are 

involved in the optimization of the delivery step of Fe-S clusters. 

Another gene that belongs to the isc operon is fdx encoding a 

ferredoxin. This protein contains a redox-active [2Fe-2S]2+ cluster and was 

proposed to be the electron donor for the reductive coupling of the two 

[2Fe-2S]2+ cluster to the [4Fe-4S]2+ cluster in IscU (109). 

The expression of the isc operon is induced upon exposure to 

oxidative stress and to iron restriction in an IscR-dependent manner (70, 

106). Isc is also directly regulated in response to cellular iron status via 

Fur/RyhB regulation (110). 

Interestingly, E. coli ΔiscS and ΔiscU are viable due to the existence 

of proteins with similar function involved in the assembly of Fe-S clusters, 

the most well-known of which are those belonging to the Suf system (91, 

107). 

 

Suf system 

The sufABCDSE operon was originally identified in E. coli (111), but 

the Suf system is well distributed in bacteria, being found in proteobacteria 

and cyanobacteria. Usually, Suf is proposed to be the operative system 

under oxidative stress and iron limited conditions (70, 112). 

The importance of Suf in assembly of Fe-S clusters was unveiled 

when the mutation of cysteine desulphurase encoding gene (sufS) led to the 

loss of the Fe-S centre in the ferric iron reductase protein, FhuF (Ferric 

hydroxamate uptake) (111). Although, IscS and SufS have similar roles, IscS 

specific activity is 20-fold higher when compared to that of SufS (113). This 
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difference might be related to the active-site orientation of the cysteine 

desulphurases, as IscS active-site is highly exposed contrary to SufS that 

isn’t solvent accessible (114, 115). 

SufS and SufE interact with each other and E. coli SufS uses Cys364 

to donate the sulphur atom to the active-site Cys51 on the SufE protein 

(116, 117). The formation of the complex SufS-SufE promotes SufS cysteine 

desulphurase activity to levels comparable to that of IscS and the presence 

of SufBCD (whose role will be further discussed) results in an even higher 

activity of SufS (118, 119). SufE interacts and transfers sulphur directly to 

SufB for Fe-S cluster assembly (120). Furthermore, a strain mutated in 

sufSE has impaired growth under iron starvation and is lethal in a ΔiscS 

background (121). 

SufC is a cytoplasmic ABC-ATPase that forms a soluble complex 

with SufB and SufD and has enhanced ATPase activity in the presence of 

SufB (122, 123). SufB was proposed to act as a primary scaffold protein for 

[4Fe-4S] clusters in the bacterial SUF system (67). In a recent work, 

SufBC2D and SufB2C2 complexes were shown to contain a [4Fe-4S] cluster 

that was transferred to target apo-proteins (124). While SufD is 

dispensable for sulphur transfer, it is absolutely required for iron 

acquisition during Fe-S clusters assembly as well as SufC (125). In 

summary, SufS cysteine desulphurase transfers persulphide sulphur from 

SufE to a SufBC2D complex, and the SufBC2D functions as a Fe-S scaffold 

system to assemble nascent Fe-S clusters. Although the specific mechanism 

of SufBCD complex action is yet to be defined, the proteins that belong to 

the complex are very important to Suf system as the deletion of any of the 

three components (SufB, SufC or SufD) abolishes Suf function in vivo, 

resulting in lower activity of Fe-S containing proteins under stress 

conditions (121, 126-128). Furthermore, sufC mutation resulted in 



Iron, an essential metal for the living systems 

 

70 

 

decreased virulence of Erwinia chrysanthemi (126, 127). As occurs for sufSE 

mutant, a strain mutated in sufBCD or in any of these genes has impaired 

growth under iron starvation and is lethal in a ΔiscS background (121). 

Another gene present in the suf operon is sufA which encodes a 

protein that belongs to the A-type scaffold family, SufA. This protein 

interacts with SufBCD to accept Fe-S clusters formed on the SufBCD 

complex, acting as a Fe-S shuttle protein to ultimately transfer the cluster 

to apoproteins (70, 129, 130). In E. coli, SufA binds iron, and sulphur atoms 

provided by the SufS–SufE cysteine desulphurase system (131). The 

importance of SufA is not clear as deletion of sufA leads to a phenotype 

much less severe in comparison to the phenotype obtained when other suf 

genes are mutated (121, 128). Only the deletion of both sufA and iscA genes 

results in a null-growth phenotype in E. coli (132). Moreover, the fact that E. 

coli survival is recovered upon addition of branched-chain aminoacids and 

thiamine (products of [4Fe-4S] clusters-containing enzymes), led to the 

proposal for a role of IscA/SufA in the assembly of [4Fe-4S] clusters rather 

than [2Fe-2S] (132). 

SufU is a U-type scaffold protein whose gene is not present in the 

suf operon of enterobacteria and cyanobacteria, but exists in the genome of 

Gram-positive bacteria, like Bacillus subtilis and S. aureus. The role of this 

protein in the Fe-S clusters assembly is not yet known. Work in B. subtilis 

presented a model where the activity of SufS is a ‘ping-pong’ mechanism 

leading to successive sulphur loading of the conserved cysteine residues in 

SufU (Cys41, 66 and 128) upon interaction of SufU with SufS (133). In 

Enterococcus faecalis, SufU enhances SufS cysteine desulphurase activity 

(134). 

A gene adjacent to and divergently transcribed from sufBCDS locus 

called sufR is present in some bacteria being frequently found in 
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cyanobacteria. The product of this gene contains a Fe-S cluster and was 

proposed to be the sensor that controls the transcription of suf in these 

organisms (70).  

In general, the suf operon is induced upon exposure to hydrogen 

peroxide in an OxyR-dependent manner and de-repressed upon iron 

limitation in a Fur-dependent manner (121). OxyR, IHF, apo-IscR and Fur-

Fe2+ bind directly to the promoter region of this operon activating its 

expression, except Fur-Fe2+ that represses suf expression (135). 

Interestingly, an E. coli strain mutated in both Isc and Suf systems leads to 

bacterial death and the isc mutant phenotype can be suppressed 

overexpressing the suf operon (128). Therefore, both systems are proposed 

to possess overlapping roles (135). 

 

In addition, another Fe-S cluster biogenesis system nominated Cia, 

after Cytosolic iron-sulphur protein assembly, is present in eukaryotes and 

is responsible for the maturation of essential cytosolic and nuclear 

apoproteins (136). 

 

Bacterial genome analyses revealed that the number and type of Fe-

S clusters biosynthetic machineries varies between microorganisms and 

depends on their biological needs (77). For example, A. vinelandii contains 

the Nif and Isc system, E. coli has Isc and Suf, in H. pylori only the Nif system 

was identified so far, cyanobacteria have Suf and Isc, and E. chrysanthemi 

possesses all three systems (71, 91, 98, 107, 126, 137). In eukaryotes, the 

assembly systems are localized in different organelles, since homologues of 

Isc pathway are found in mitochondria, while the Suf system possess 

homologues localized in chloroplasts of photosynthetic organisms (70). 
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Additional proteins in Fe-S cluster assembly 

The proteins that belong to Isc, Suf and Nif systems are not the only 

ones that participate in Fe-S assembly. An extra cysteine desulphurase was 

identified in E. coli, the CsdA (Cysteine sulphinate desulphinase) protein. 

CsdA activity is enhanced by CsdE (whose gene is located next to csdA) in a 

SufS-SufE-type manner (138). This CsdA-CsdE pair is proposed to be 

involved in Fe-S cluster assembly as it provides sulphur in vitro for 

reconstitution of a [4Fe-4S] centre and restores cluster assembly of Fe-S 

enzymes in an iscS mutant strain. However, a double csdA-csdE mutant 

strain has no phenotype relative to Fe-S cluster assembly (70). Moreover, 

CsdA participates in two separate sulphur transfer pathways by interacting 

with SufE-SufBCD (Fe-S biogenesis) or interacting with CsdE and CsdL 

(involved in the synthesis of a yet unknown compound) (139). 

ErpA is an A-type scaffold protein, first identified in E. coli. An erpA 

mutation leads to an E. coli strain unable to respirate in the presence of 

oxygen or alternative electron acceptors, such as nitrate (140). ErpA affects 

the synthesis of the quinone precursor isopentenyl diphosphate, possibly 

due to the requirement of [4Fe-4S] clusters by the enzymes that participate 

in this pathway, IspG and IspH (Isoprenoid synthesis). Furthermore, ErpA 

assembles [2Fe-2S] and [4Fe-4S] clusters and transfers the cluster to apo-

IspG (140). A recent study showed that ErpA is essential for the maturation 

of Fe-S clusters-contaning enzymes that participate in the formate-nitrate 

respiratory pathway in E. coli (141). 

Nfu proteins (NifU-like proteins) are found in bacteria, 

cyanobacteria, plants and other higher eukaryotes, and contain a redox-

active CXXC motif which is generally present in the C-terminal domain of 

NifU (67). These proteins assemble [4Fe-4S]2+ clusters in vitro and transfer 



Chapter II 

73 
 

them to apo-proteins (67, 87, 142). In addition, E. coli nfuA gene (encoding 

an Nfu homologue with N-terminal similar to A-type Fe-S scaffold proteins) 

is essential for growth under oxidative stress and iron starvation 

conditions (143). Upon oxidative stress, E. coli NfuA is recruited by the Suf 

system to secure Fe-S transfer to aconitase, NADH dehydrogenase 

(respiratory complex I) and Isp (143). NfuA receives Fe-S clusters from 

SufBCD, interacts with ErpA and IspH and transfers Fe-S centres to ErpA 

and IscA (143). Moreover, as IscU is the main Fe-S scaffold protein in 

several organisms, Nfu proteins could be transporter intermediates of 

[4Fe-4S] clusters or chaperones for clusters assembled on IscU (67). In 

organisms that use Suf as the major Fe-S assembly system, Nfu-type 

proteins could function as scaffolds for Fe-S clusters, since usually Suf does 

not possess U-type scaffold proteins (67). 

Glutaredoxins (Grxs) are small proteins widespread in eukaryotes 

and prokaryotes that reduce persulphide bridges or glutathionylated 

proteins and are involved in Fe-S clusters biosynthesis (144, 145). In 

prokaryotes, several functions were proposed for Grxs, from facilitating Fe-

S cluster assembly to storage and delivery of these clusters to apoproteins 

(67). An E. coli strain mutated in grxD and isc genes resulted in cell lethality 

(146). Furthermore, the E. coli monothiol glutaredoxin GrxD can form a Fe-

S containing heterodimeric complex with BolA (Bolus, homologue of Fra2P 

in eukaryotes), as occurs in higher eukaryotes, where a role in Fe–S cluster 

transport was reported for this protein (147, 148). In humans grxD 

mutation leads to a disease called sideroblastic anaemia (149). 

 

A question that remains open in Fe-S cluster assembly is the 

process of in vivo iron donation. Iron delivery is thought to occur through 

the existence of metallochaperones that acquire iron and directly donate 
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this metal to the Fe-S cluster assembly pathway, protecting iron from 

chelation by other cellular components and limiting this substrate for 

Fenton reaction (70). 

Based on in vivo and in vitro results, frataxin and the bacterial 

homologue CyaY were shown to be good candidates for iron donation to U-

type scaffolds (92, 150). Frataxin binds iron and is required for Fe-S cluster 

assembly and homeostasis; in addition, a mutation in the gene coding for 

this protein leads to a neurodegenerative disease, Friedrich ataxia (151). In 

E. coli and Salmonella enterica, deletion of cyaY only resulted in the 

reduction of the levels of Fe-S cluster-containing respiratory complexes 

(152, 153). Nevertheless, bacterial CyaY is able to partially rescue the 

frataxin (Yfh1) deletion in yeast (154). Moreover, E. coli CyaY can bind 

either ferric iron up to 8 Fe3+/polypeptide or ferrous iron up to 2.5 

Fe2+/polypeptide (70). 

A study showed that CyaY participates in iron-sulphur cluster 

assembly as an iron-dependent inhibitor of cluster formation, through 

binding to the desulphurase IscS. The authors showed that interaction with 

IscS involves the iron binding surface of CyaY, which is conserved 

throughout the frataxin family (155). In addition, a more recent work 

supports the role of CyaY as an inhibitor of the iron sulphur cluster 

assembly rates by showing that CyaY directly inhibits the enzymatic 

activity of IscS (156). CyaY is able to interact with both IscS and IscU 

forming a complex. CyaY strengthens the affinity of IscU and IscS, slowing 

down the Fe-S cluster assembly (157). As a result, bacterial CyaY is now 

considered to be an iron sensor that acts as a regulator of Fe-S cluster 

assembly. 

Furthermore, a protein of unknown function, YfhJ (previously 

named IscX), whose gene is encoded in the isc operon, also binds iron with 
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low affinity and interacts with IscS. Both YfhJ and CyaY compete for the 

same site on IscS, so YfhJ acts as a modulator of the inhibitory properties of 

CyaY. In addition, YfhJ rescues the rate of enzymatic cluster formation 

which is inhibited by CyaY (158). 

Interestingly, a recent study showed that frataxin in eukaryotes 

binds to cysteine desulphurases and stimulates their activity, enhancing the 

rate of Fe-S cluster assembly (159). These results separate the role of 

frataxin in eukaryotes from that of bacterial CyaY and the difference 

between eukaryotic and prokaryotic roles could be due to evolutionary 

differences between the cysteine desulphurases. 

In Salmonella enterica, the deletion of the apbC and apbE 

(alternative pyrimidine biosynthetic pathway) genes leads to the reduced 

activities of dehydratases enzymes, the same phenotype as Salmonella 

enterica isc mutant (160). The phenotype was rescued by addition of an 

inorganic source of iron which led to the proposal that these proteins could 

act as iron donors for in vivo Fe-S cluster assembly (160). However, a study 

in this organism showed that derepression of the isc operon or 

overexpression of iscU from a plasmid compensates for the lack of ApbC 

during growth on tricarballylate (whose metabolism requires [4Fe-4S] 

containing dehydratase enzymes) proposing a functional redundancy 

between ApbC and IscU (161). 

 

Several enzymes contain more complex clusters that are derived 

from chemical modifications of simple iron–sulphur clusters. Some 

examples of these clusters are the cofactors of carbon monoxide 

dehydrogenase/acetylCoA synthase complexes (contains per dimer two 

nickel, 11-13 iron, 14 inorganic sulphur and one zinc atoms), nitrogenases 

(e.g. Fe7MoS9), hydrogenases (e.g. [Ni-Fe]S4), and Hcp (Hybrid-cluster 
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protein with [4Fe-2S-2O] ). The assembly process of these type of clusters 

starts with the synthesis of iron–sulphur precursors through the activity of 

the Isc or Suf systems or, in the case of nitrogenases, by Nif mechanism. The 

initial Fe-S clusters are modified by specialized radical S-adenosyl-L-

methionine dependent Fe–S enzymes (radical SAM enzymes) that 

introduce specific modifications to the simpler cluster in the form of unique 

non-protein ligands. The clusters are assembled on a scaffold and are 

ultimately inserted into stable forms of the apo-proteins to form active 

enzymes (162). 

 

                    II.3.3.3- Damage and repair of Fe-S clusters 

 

Prokaryotes and eukaryotes are exposed to oxidative and 

nitrosative stress prompted by extracellular sources of reactive oxygen 

species and nitric oxide, like the host organism. One of the main targets of 

these reactive species are Fe-S containing proteins, whose prosthetic group 

will be damaged. Although the organisms possess Fe-S cluster assembly 

systems, it may not be energetically favourable to assemble a Fe-S cluster 

from scratch, when the cell can simply repair the cluster that was damaged. 

 

Oxidative and nitrosative Fe-S cluster damage 

Fe-S containing proteins are sensitive to oxidative damage due to 

the electrostatic attraction of ROS to the catalytic iron atom. In the presence 

of ROS, the cluster is oxidized and will degrade, losing the iron atom that 

sustains the enzymatic activity (163): 
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[4Fe-4S]2+ + Ox  [4Fe-4S]3+ + Red (1) 

[4Fe-4S]3+  [3Fe-4S]1+ + Fe2+ (2) 

 

Scheme 2 – Oxidative damage of dehydratase Fe-S clusters. Ox – Oxidant; Red – 

Reductant; (1) – Oxidation of the cluster; (2) – Loss of the catalytic iron. 

 

Till now several enzymes were shown to be damaged by reactive 

oxygen species (163). The [4Fe-4S]2+ dehydratase clusters are more prone 

to damage as they are solvent-exposed and small oxidants enter more 

easily into contact with the active cluster site (43). Several ROS, like the 

superoxide anion, hydrogen peroxide and peroxynitrite, are able to oxidize 

these clusters (43). Inactivation rates were measured for the dehydratase 

enzymes with superoxide and hydrogen peroxide being in the range of 106-

107 M-1s-1 and 102-103 M-1s-1, respectively (43, 164). In vivo, it was 

demonstrated that upon continuous exposure to ROS, the damaged [3Fe-

4S]1+ can be further degraded causing further iron release (43). 

 

Upon reaction of Fe-S clusters with nitric oxide, the immediate 

formation of DNICs occurs, the dinitrosyl iron complexes, [(NO)2Fe(SR)2], 

that are characterized by a specific electron 

paramagnetic signal at g=2.03 (Figure II.4)  

(165). Several in vitro studies showed that 

DNIC formation is responsible for the 

destruction of Fe-S clusters and loss of 

enzyme function of proteins exposed to NO 

(166-171). The dehydratase enzymes are 

the major biological targets of nitric oxide 

due to their Fe-S clusters solvent-exposure 

RS

RS

NO

NO

Fe

Figure II.4 – Representation
of a dinitrosyl iron complex
(DNIC). RS – thiolate ligand;
NO – nitric oxide; Fe – iron
atom.
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(167, 172, 173). Other Fe-S enzymes known to be damaged in vivo by NO 

are the [4Fe-4S] clusters of E. coli endonuclease III and Mycobacterium 

tuberculosis regulatory protein WhiB3 (174, 175). 

Even though the enzymatic activity of Fe-S proteins is usually 

destroyed upon oxidative and nitrosative stress, leading to disruption of 

multiple catabolic and biosynthetic pathways, some profit can be obtained 

from the iron reactivity, as Fe-S clusters can act as sensors of ROS and NO. 

The dimeric SoxR regulator contains a [2Fe-2S]2+ cluster per 

subunit that senses both superoxide and nitric oxide. Upon oxidative stress, 

SoxR activates the expression of the transcription factor SoxS, which results 

in the stimulation of its regulon, whose gene products help in the removal 

of superoxide and repair of damaged proteins and DNA, among others (44) 

(see Chapter I). 

Another regulator that exploits the Fe-S clusters reactivity is the 

homodimeric protein FNR that contains an oxygen-labile [4Fe-4S]2+ cluster 

per monomer. This transcription factor controls the switch from aerobic to 

anaerobic metabolism, repressing the expression of genes that function in 

aerobic respiration and activating the expression of genes that will permit 

the reduction of alternative electron acceptors. FNR is inactivated by NO, 

via formation of monomeric and dimeric dinitrosyl-iron-dithiol complexes, 

leading to the expression of its regulon that encode for proteins necessary 

for a wide number of metabolic pathways (44, 176) (see Chapter I). 

NsrR contains a [2Fe-2S]2+ cluster and plays an important role in 

the response of pathogens against reactive nitrogen species, being able to 

repress a total of 20 genes in E. coli that are known to protect bacteria 

against RNS (177). Upon nitrosative damage, NsrR is nytrosilated and 

consequently this protein derepresses its regulon (see Chapter I). 
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Repair of oxidatively and nitrosatively damaged Fe-S clusters 

Oxidative stress in vivo is believed not to get as far as the 

degradation of clusters to the point that it is necessary to assemble 

completely new Fe-S clusters. For example, oxidative damage of the [4Fe-

4S]2+/1+ dehydratase clusters leads to the formation of an inactive [3Fe-4S]+ 

centre; however upon stop of the stress, the enzyme activity is fully 

recovered with a half time of approximately 3-5 minutes, even when 

protein synthesis is blocked (79, 178, 179). In vitro, the oxidatively 

damaged enzymes can be recovered by addition of iron and the reducing 

agent, DTT: [3Fe-4S]+ + e-  [3Fe-4S]0, followed by [3Fe-4S]0 + Fe2+  [4Fe-

4S]2+ (180). In vivo, the mechanism of reactivation presumably requires the 

consecutive donation of an electron donor and ferrous iron, and frataxin 

was suggested to have a role in the activity of aconitase by donating iron to 

convert damaged [3Fe-4S]+ cluster back to the active [4Fe-4S]2+ form (181). 

Moreover, the [4Fe-4S] cluster of E. coli endonuclease III was repaired by 

addition of ferrous ion, IscS and L-cysteine (174). A study in S. enterica 

revealed that ferritin B is a major Fe source for the repair of oxidatively 

damaged Fe-S clusters (182). 

Recently, it was reported that in a strain accumulating low levels of 

H2O2, the [4Fe–4S] cluster of isopropyl malate isomerase (LeuC, Leucine 

biosynthesis) is damaged beyond the [3Fe–4S] state, to [2Fe–2S] or even to 

full degradation (93). The cluster is then reconstructed probably by the Suf 

system which is active under oxidative stress conditions (93). In contrast, 

inactivated apo-FNR seems to depend upon the Isc system to recover its 

[4Fe–4S] cluster (183). 
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The repair of DNICs is proposed to initially require a substrate to 

remove the nitrosylated iron with the concomitant release of ferrous iron. 

L-cysteine can be that substrate as it mediates the destabilization of 

dinitrosyl iron complexes in proteins, promotes the reassembly of a new 

iron-sulphur cluster and reacts with molecular thiols or protein thiols to 

yield S-nitrosothiols (184-186). In the repair of nitric oxide-modified [2Fe-

2S] cluster of E. coli ferredoxin, the dinitrosyl iron complexes are directly 

transformed back to the ferredoxin [2Fe-2S] cluster using only the cysteine 

desulphurase IscS and L-cysteine in vitro, without the need of addition of 

iron or any other protein components. The removal of the dinitrosyl iron 

complex from ferredoxin and the prevention of the reassembly of the [2Fe-

2S] cluster showed that the iron in the dinitrosyl iron complex is reused to 

repair the iron-sulphur clusters (166, 184, 185). 

 

Besides frataxin, other proteins were proposed to be iron sources 

during the repair process of either nitrosylated or oxidized Fe-S clusters, 

such as the Ric proteins, that were first identified in E. coli and whose 

properties will be elucidated next, and the previously referred S. enterica 

ApbC and ApbE proteins (187). 

 

In conclusion, the biochemical properties of the damaged Fe–S-

containing protein and/or the degradation status of the cluster direct the 

choice of the repair pathway. Nevertheless, the oxidatively damaged Fe-S 

cluster repair always requires a source of iron and a reducing agent, while 

the nitrosatively damaged Fe-S cluster repair needs a substrate to remove 

NO from denitrosylated iron. 
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                    II.3.3.4- YtfE, a protein that repairs Fe-S clusters 

 

The discovery of E. coli YtfE 

 The transcriptome profile of E. coli exposed to NO releasers 

strongly depends on the experimental conditions used and the short list of 

genes induced in all assays includes ytfE (10, 188-190). ytfE is induced by 

nitrite/nitrate, nitric oxide gas and NO releasers, under aerobic and 

anaerobic conditions, in rich and minimal media (10, 177, 188-191). 

Nonetheless, the ytfE induction by nitrate/nitrite only occurs upon nitrate 

reduction, so ytfE is activated probably due to low levels of NO that are 

produced by E. coli as a by-product of nitrate and nitrite respiration (177, 

191). Moreover, ytfE was found to be induced by heat shock, a condition 

that causes protein denaturation (192). In a study with uropathogenic E. 

coli, ytfE was upregulated upon infection, contributing to the pathogenicity 

of this strain (193). In addition, in a microarray study where an E. coli strain 

resistant to triclosan was exposed to this germicide, ytfE was also induced 

(194). 

 The regulation of YtfE was first shown to be performed by the nitric 

oxide-sensitive transcriptional regulator NsrR in a bioinformatic study 

according to the presence of NsrR-binding motifs in ytfE promoter region 

(106), which was confirmed by a later study using reporter fusions (191). 

In order to discover the mechanistic regulation of ytfE, more studies have 

to be carried on. 

 

Role of YtfE in the repair of Fe-S clusters 

 The first studies revealed a role of YtfE not only for nitrosative 

stress but also upon oxidative stress as an E. coli strain deleted in ytfE had 

increased sensitivity, when compared to wild type, in the presence of nitric 
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oxide (189) or hydrogen peroxide (195). In addition, an E. coli ΔytfE strain 

had lower enzymatic activity of Fe-S proteins (e. g. fumarase and aconitase) 

(196) and the role of YtfE in the oxidative and nitrosative damage and 

repair of Fe-S clusters-containing proteins was investigated (195). 

Hence, cells overexpressing two E. coli dehydratases, aconitase B 

and fumarase A, were submitted to hydrogen peroxide and nitric oxide and 

the fate of the [4Fe-4S]2+/1+ cluster was followed by whole-cell EPR. The 

results showed that the formation of oxidatively damaged Fe-S species and 

DNICs occurred at a higher rate and to a larger extent in cells lacking an 

active YtfE protein (195). Moreover, the loss of enzymatic activities was 

more pronounced in ΔytfE when compared to wild type (195). Also, in E. 

coli ytfE mutant no repair was detected and only the addition of purified 

recombinant YtfE protein promoted the regain of activity similar to the one 

observed in E. coli wild type strain, clearly showing that the repair is 

dependent on YtfE (195) 

 

YtfE is a di-iron protein 

 E. coli YtfE is a homodimeric complex (24 kDa each monomer) and 

contains two iron atoms per polypeptide chain (196). The characterization 

by UV-visible and EPR spectroscopies have established that the iron atoms 

form a non-haem binuclear iron centre of the histidine/carboxylate type 

(196). The UV-visible spectra of YtfE exhibits a broad band at c. 360 nm in 

the oxidized form, which is bleached once the protein is reduced (196). The 

di-iron centre of YtfE has reduction potentials, assessed by an EPR 

monitored redox titration of E=+260 and +110 mV (196).  

 Moreover, E. coli YtfE was analyzed by resonance Raman and 

XAS/EXAFS (X-ray Absorption Spectroscopy/Extended X-ray Absorption 
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Fine Structure) spectroscopies, which led to a model centre (Figure II.5). In 

this model, the di-iron centre is proposed to be bridged by a µ-oxo and one 

or two µ-carboxo bridges, and putatively coordinated by six histidinyl 

residues and two or three carboxylate ligands (from aspartate and 

glutamate residues) (56).  

 The binuclear iron centre 

is the active centre since the E. 

coli apo-YtfE is unable to 

promote the repair of oxidatively 

damaged Fe-S clusters (195). 

However, further studies are 

required to determine the 

importance of this iron centre in 

the repair of Fe-S clusters. 

 The role of YtfE in the 

repair of Fe-S clusters was 

studied and chapters IV, V and VI 

describe the work done under 

the scope of this thesis. 
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Summary 

 Mammalian cells of innate immunity respond to pathogen invasion 

by activating proteins that generate a burst of oxidative and nitrosative 

stress. Pathogens defend themselves from the toxic compounds by 

triggering a variety of detoxifying enzymes. Escherichia coli 

flavorubredoxin is a nitric oxide reductase that is expressed under 

nitrosative stress conditions. We report that, in contrast to nitrosative 

stress alone, exposure to both nitrosative and oxidative stress abolishes the 

expression of flavorubredoxin. EPR experiments showed that under these 

conditions, the iron centre of the flavorubredoxin transcription activator 

NorR loses the ability to bind nitric oxide. Accordingly, triggering of the 

NorR ATPase activity, a requisite for flavorubredoxin activation, was 

impaired by treatment of the protein with the double stress. 

 Studies on macrophages revealed that the contribution of 

flavorubredoxin to the survival of E. coli depends on the stage of 

macrophage infection and the lack of protection observed at the early 

phase is related to inhibition of the NorR activity by the oxidative burst. We 

propose that the time dependent activation of flavorubredoxin contributes 

to the adaptation of E. coli to different fluxes of hydrogen peroxide and 

nitric oxide to which bacterium is submitted during the course of 

macrophage infection. 
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III.1 – Introduction 

In order to control infection, mammalian phagocytes express 

NADPH oxidase (Phox) which produces superoxide that spontaneously 

dismutates to hydrogen peroxide, and the inducible nitric oxide synthase 

(iNOS) that generates nitric oxide (NO) (1). However, microorganisms 

possess a diverse range of defense mechanisms for sensing and responding 

to these stresses that are crucial for survival and virulence. To detoxify 

reactive oxygen species (ROS), microbes utilize an array of enzymes that 

include scavengers of superoxide and hydrogen peroxide such as 

superoxide dismutases or reductases, peroxidases and catalases (2-4). 

Nitric oxide detoxification is achieved by NO dioxygenases and reductases 

which are widespread in denitrifying bacteria, nitrate-dissimilating fungi, 

pathogenic bacteria and protozoa (5-7). 

E. coli contains three NO detoxifying enzymes, namely the 

cytochrome c nitrite reductase (NrfA), flavohaemoglobin (Hmp) and a 

flavodiiron protein known as flavorubredoxin (FlRd encoded by the norV 

gene) (8-10). NrfA is a periplasmic enzyme with high NO reductase activity 

(11) but its role in vivo is still under debate (12).  Hmp acts as a NO 

dioxygenase or reductase but the latter activity is low (10, 13). On the 

contrary, FlRd seems to be dedicated to scavenge NO under anaerobic 

conditions with a significant activity (14). While most studies have focused 

on non-pathogenic E. coli strains, the two encoding genes hmp and norV are 

also present in uropathogenic, enteropathogenic and enterohemorrhagic E. 

coli strains, as well as in closely related pathogens like Salmonella or 

Shigella genus. In E. coli, strains deleted in hmp or norV genes have higher 

sensitivity to NO under aerobic and anaerobic conditions, respectively (15, 

16). Although the NO reduction rate of single mutants defective in hmp or 
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norV is similar to that of parental strains, the double hmp-norV mutant 

exhibits a clear defect in the ability to anaerobically metabolize NO (15, 17). 

The expression of hmp is highly induced by NO, under aerobic and 

anaerobic conditions, through a complex regulation that involves at least 

three regulators, namely FNR, MetR and the NO-sensitive repressor NsrR 

(18-20). The transcription of the norV gene is strongly up-regulated in cells 

cultured anaerobically and exposed to NO through the activation of the 

nitric oxide sensor, NorR (21, 22). The norR gene is divergently transcribed 

from the norVW operon that encodes FlRd and its redox partner, the NADH-

flavorubredoxin reductase (NorW) (21, 23). Induction of norVW occurs 

upon ligation of NO to NorR and binding of the regulator to three motifs 

present in the promoter region of norVW (24). NorR is a σ54-dependent 

transcription factor formed by three domains: a N-terminal regulatory GAF 

domain harboring a mononuclear iron site that binds NO, a central AAA+ 

domain responsible for ATPase activity and interaction with σ54 subunit of 

RNA polymerase and a C-terminal DNA binding domain that interacts with 

enhancer sequences (21, 24, 25). The binding of NO to the ferrous iron 

centre stimulates the ATPase activity of NorR and enables NorR to activate 

the transcription of norV (25). 

In this work, we addressed the behavior of E. coli FlRd in the 

presence of the combined effects of NO and hydrogen peroxide, having 

analyzed the norV gene transcription and the protein expression profile. 

Furthermore, the survival of E. coli norV mutant strain in activated 

macrophages was also studied. 
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III.2 – Materials and Methods 

 Reagents and bacterial strains. 

Hydrogen peroxide (Carl-Roth), spermine NONOate (Cayman 

Chemical) prepared in 0.01 M NaOH (herein named NO donor) and pure 

NO-saturated anaerobic water solution (~ 2mM) (26) were used as stress 

inducers. 

The strains and plasmids utilized in this study are described in 

Table V.1.  

 

 Immunoblotting assays. 

E. coli K12 ATCC 23716 cells were grown anaerobically in Luria 

Bertani (LB) medium at 37ºC and 150 rpm to the early exponential phase 

(OD600~0.3) and collected after treatment with NO (50 µM), hydrogen 

peroxide (3 mM) or (NO, 50 µM + H2O2, 3 mM) for 45 min. Cells were 

disrupted in a French pressure cell (Thermo Electron Corporation), the cell 

extracts were cleared by centrifugation (30 min 12000 g at 4ºC) and their 

protein concentration determined by the bicinchoninic acid (BCA) method 

(27). Protein samples (75 µg) were separated by SDS-PAGE, transferred 

onto nitrocellulose membranes and detected with polyclonal antibodies 

raised against E. coli FlRd and Hmp as previously described (15).  

 

 β-galactosidase activity assays. 

Cultures of E. coli RK4353 carrying pAA182-PnorV (24) were grown 

anaerobically in LB, at 37ºC and 150 rpm, to an OD600~0.3. At this point, 

they were treated for 25 min with: NO (50 µM) or spermine NONOate (25 

µM), hydrogen peroxide (3 mM or 25 µM), NO (50 µM) plus H2O2 (3mM), 

spermine NONOate (25 µM) plus H2O2 (25 µM).  Double treatments were 
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also performed sequentially, in which the second chemical was added 10 

min after the first, and cells incubated for further 15 min, to a total of 25 

min. Cells were lysed and assayed for β-galactosidase activity, as previously 

described (24). At least three independent cultures were analyzed in 

duplicate. 

 

Table III.1 – Bacterial strains and plasmids used in this work 

Name Description/Genotype Source 

E. coli strains   

XL2-Blue F´ proAB lacIqZΔM15 Tn10 (Tetr) endA1, supE44, thi-1, 

recA1, gyrA96, relA1, lac 

Lab stock 

BL21Gold(DE3) F–, ompT, hsdS(rB– mB–) dcm+ Tetr gal λ(DE3) endA Hte Stratagene 

Wild type  E. coli K-12 ATCC 23716  ATCC 

RK4353 lacZ mutant strain, [(argF-lac)U169] (28) 

ΔnorV LMS2710, K-12 norV mutant [ΔnorV::CmR] (15) 

Δhmp LMS2552, K-12 hmp mutant [Δhmp::KmR] (15) 

ΔnorVΔhmp  LMS5262, K-12 hmp and norV double mutant [Δhmp::KmR 

ΔnorV::CmR] 

(15) 

Plasmids   

pAA182-PnorV Plasmid pAA182 carrying the entire norV promoter fused 

to lacZ, Ampr 

(24) 

pET24a T7-based expression vector, KmR Novagen 

pME2337 pET24a carrying the norV coding region  (29) 

pET28a T7-based expression vector, KmR Novagen 

pET28a-norR pET28a with the norR coding region cloned NdeI/EcoRI, 

bearing an N-terminal His6-tag fusion. 

This work 

pFLAG-CTC Vector for protein expression under the influence of the 

tac promoter, AmpR 

Sigma 

pFLAG-norV pFLAG-CTC carrying norV coding region subcloned 

NdeI/HindIII from pME2337 

This work 
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 Macrophage assays. 

Murine macrophages J774A.1 (LGC Promochem) were maintained 

at 37ºC in a 5% CO2/air atmosphere in Dulbecco’s Modified Eagle medium 

(DMEM) supplemented as previously described (30). For infection studies, 

macrophages were seeded 5x105 cells/well and incubated for 24 h prior to 

being activated for 16 h with 0.3 µg/ml interferon-γ (Sigma) and 1.6 µg/ml 

lipopolysaccharide (Sigma). The medium was then changed to DMEM 

without antibiotics and macrophages were infected with bacterial 

suspensions at a multiplicity of infection (MOI) of 20, for 30 min at 37ºC. 

Bacterial suspensions were prepared from cells of E. coli K-12 wt, ∆norV, 

and ∆hmp grown aerobically in LB to an OD600~0.3, harvested, washed 

three times with PBS and resuspended in DMEM. Non-internalized bacteria 

were killed upon incubation in DMEM supplemented with penicillin-

streptomycin antibiotics (Gibco-Invitrogen) and internalized bacteria were 

further incubated in macrophages up to 48 h. At the indicated times, 

macrophages were lysed with 2% saponin and intracellular bacterial 

content assessed by CFU counting of viable cells. 

For the complementation studies, norV gene was excised from 

plasmid pME2337 (29) and cloned into NdeI-HindIII digested pFLAG-CTC, 

yielding pFLAG-norV (Table III.1). E. coli K-12 wild type and ∆norV∆hmp 

cells carrying the empty pFLAG and pFLAG-norV were grown aerobically 

for 16 h in LB medium with 100 µg/mL ampicillin and 1 mM isopropyl β-D-

1-thiogalactopyranoside (IPTG), harvested, washed thrice with PBS and 

resuspended in DMEM. 
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 E. coli NorR: gene expression, production of recombinant 

protein, ATPase activity assays and EPR studies. 

For the production of recombinant E. coli NorR, the DNA coding 

region was cloned into NdeI-EcoRI digested pET28a and expressed in E. coli 

BL21Gold (DE3) cells as previously reported (25). NorR was isolated from 

the soluble fraction of E. coli cells and purified under anaerobic conditions 

in a Coy model A-2463 anaerobic chamber. Cell extracts were incubated 

with 1 mM MgATP and Fe(NH4)2(SO4) at room temperature for 1 h (31), 

and then loaded into a HisTrap HP column (GE Healthcare), equilibrated in 

20 mM Tris-HCl pH 7.4, 500 mM NaCl and 20% glycerol (buffer A). The 

fraction containing NorR was eluted with 250 mM imidazole, concentrated 

in an Amicon ultrafiltration cell (Millipore) and desalted in a Superdex 30 

column (GE Healthcare) equilibrated with buffer A. The protein purity was 

evaluated by SDS-PAGE, and the concentration and iron content 

determined by BCA and 2,4,6-tripyridyl-1,2,3-triazine (TPTZ) methods, 

respectively (27, 32). The purified NorR contained ~0.9 Fe atoms per 

monomer. 

 For the ATPase activity assays (33), the reaction mixtures contained 

30 mM ATP (Sigma), 1 mM phosphoenolpyruvate (PEP, Sigma), 5 nM 320 

bp DNA fragment that spans the entire norV promoter (24), 7 U pyruvate 

kinase (Roche Applied Science), 23 U lactate dehydrogenase (Roche 

Applied Science), 2 mM MgCl2 and 300 nM E. coli NorR in 50 mM Tris-HCl, 

pH 8.0 plus 100 mM KCl. Activities were evaluated at 37º C for 20 min, 

upon addition of 0.3 mM NADH, following its oxidation at 340 nm (ε=6.22 x 

103 M-1cm-1). For these assays, NorR was left untreated or incubated for 5 

min with 20 µM NO, 100 µM hydrogen peroxide, and with mixtures of both 

chemicals. 
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EPR spectra were acquired on a Bruker EMX spectrometer 

equipped with an Oxford Instrument continuous flow helium cryostat and 

recorded at 9.38 MHz at a temperature of 6-7 K. For whole-cell EPR, E. coli 

BL21(DE3)Gold cells carrying pT7.7-NorR (24) were grown for 16 h at 

28ºC in LB supplemented with 50 µM IPTG. The cells were washed twice 

and resuspended in 1/100 of the culture volume in Tris-HCl 20 mM pH 7.5. 

Aliquots (300 μL) were treated at room temperature with 150 µM NO, 4 

mM H2O2, both added simultaneously or sequentially with an interval of 5 

min. 

The purified NorR (75 µM) was incubated for 5 min at room 

temperature with 2 equivalents of H2O2, potassium ferricyanide and NO 

before being transferred to EPR tubes and frozen in liquid nitrogen. All 

manipulations and incubations were made in an anaerobic chamber. 

 

III.3 – Results 

 Expression of E. coli FlRd is reduced under the combined effect 

of oxidative and nitrosative stress. 

 In the present work, we have compared the expression of FlRd in 

cells exposed to nitric oxide, H2O2 and a combination of the two. 

Immunoblotting assays revealed that E. coli NO-treated cell extracts 

contained increased amounts of FlRd, which is consistent with the reported 

induction of norV by NO (21, 22, 34). On the contrary, cells exposed to 

hydrogen peroxide and to nitric oxide plus hydrogen peroxide displayed a 

very low level of FlRd (Figure III.1A). Although hydrogen peroxide was not 

expected to induce expression of FlRd, in cells treated nitric oxide plus 

hydrogen peroxide the marked decreased amount of FlRd was surprisingly. 

One possible explanation was that compounds resultant from the chemical 
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reaction between H2O2 and NO that have no ability to trigger norV 

expression were being generated. However, this seems not to be the case 

since the expression of the NO detoxifier Hmp was similar in E. coli cells 

treated only with NO and exposed to NO plus H2O2 (Figure III.1A). 

To assess whether the lower amount of FlRd was due to 

transcriptional alterations, the activation of the reporter fusion containing 

the norV promoter was evaluated. While the norV promoter was activated 

by NO, no activation occurred in cells treated with hydrogen peroxide and 

also in cells exposed to NO plus H2O2 (Figure III.1B). When E. coli was first 

treated with H2O2 (10 min) and then with NO (15 min), the promoter 

activation was very low and almost comparable to that observed upon 

simultaneous exposure to the two stresses for 25 min (Figure III.1B). Initial 

exposure to NO (10 min) followed by H2O2 (15 min) resulted in 

approximately 3-fold less activation of the promoter than exposure to NO 

alone for 25 min, consistent with an abolishment/impairment of NO 

induction upon introduction of the oxidative stress. 

We next performed a set of experiments using lower concentrations 

of NO and H2O2 (25 µM) that are within the range of physiological 

concentrations described to be produced by macrophages (35-37). Under 

these conditions, the activation of the promoter in cells sequentially and 

simultaneously exposed to both stresses was higher than in non-exposed 

cells but considerably lower than that caused by NO alone (Figure III.1C). 

Hence, we concluded that, in cells submitted to both nitric oxide 

and hydrogen peroxide, the expression of FlRd is essentially impaired. 
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 Effect of hydrogen peroxide on the NorR properties. 

 It is well established that the transcription of E. coli norR is not 

altered upon exposure to nitrosative stress (21). However, the lack of norV 

induction by NO in the presence of H2O2 led to the analysis of hydrogen 

peroxide effect in norR transcription levels. We observed that hydrogen 

peroxide didn’t cause changes in the levels of norR mRNA (data not shown).   

Given that the compromised expression of FlRd in cells treated with  

NO plus H2O2 could not be attributed to lowered NorR levels, we 

Figure III.1 – Analysis of FlRd
expression in cells exposed to
combined nitrosative and
oxidative stress.
(A) Immunoblotting analysis of E.
coli K-12 cells grown anaerobically
and exposed, for 45 min, to 50 µM
NO and 3 mM H2O2, using antibodies
against flavorubredoxin (FlRd) and
flavohaemoglobin (Hmp). (B, C) β-
galactosidase activities of E. coli
RK4353 cells carrying plasmid
pAA182-PnorV that contains the
norV promoter-lacZ fusion. Cells
cultured anaerobically in LB were
treated, at an OD600=0.3, with (B) 50
µM NO and/or 3 mM H2O2; (C) 25 µM
spermine NONOate and/or 25 µM
H2O2. All cultures were submitted to
the stresses for a total of 25 min.
Sequential exposures were done by a
first 10 min exposure to H2O2

followed by 15 min treatment with
NO/NO donor and by exposure for
10 min to NO/NO donor followed by
15 min treatment with H2O2. Results
are means  SE of three independent
cultures assayed in duplicate.
Activities are expressed in nmol of o -
nitrophenol/min.mg of bacterial dry
mass.
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hypothesized that the ligation of NO to the mononuclear iron site located in 

the GAF domain of NorR, which triggers the NorR activation of the norV 

promoter (25), was impaired in the presence of hydrogen peroxide, a study 

that was addressed by EPR spectroscopy. 

To this end, E. coli cells over-expressing NorR protein were exposed 

to NO, H2O2 and a combination of both, and the EPR spectra recorded 

(Figure III.2A). The spectrum of cells treated with 150 µM NO displayed an 

intense signal with g values at 4.1 and 3.93 attributed to a high spin 

ferrous-NO complex with a total spin S=3/2 and a rhombicity of E/D ~0.03, 

as previously observed (25), compatible with the formation of a 

mononitrosyl-iron complex. Cells treated with 4 mM H2O2 exhibited a g=4.3 

signal that is characteristic of high-spin (S=5/2) ferric ions. The EPR 

spectrum of cells exposed simultaneously to NO and H2O2 revealed in the 

g=4 region only the resonance at g=4.3 due to the ferric ions, i.e., the signal 

corresponding to the Fe-NO species was absent.  

Cells were also treated with NO and H2O2 but in a sequential mode. 

For cells treated first with NO (5 min) and further exposed to H2O2 (5 min), 

the EPR spectrum contained only one signal, at g=4.3, suggesting that H2O2 

destroys the already formed iron-NO complex. The EPR spectrum of cells 

that were exposed first to H2O2 (5 min) and then to NO (5 min), exhibited 

an overlay of signals at g=4.3, 4.1 and 3.93 that could be attributed to the 

superimposition of the resonances due to the high-spin ferric iron and the 

Fe-NO species. 
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 A similar study was conducted using the purified recombinant E. 

coli NorR (Figure III.2B). The as-isolated NorR is essentially EPR silent, 

suggesting that it is purified in the ferrous form. Upon reaction with 

hydrogen peroxide, a resonance at g=4.3 develops that is consistent with 

the oxidation of the mononuclear iron centre. NorR incubation with NO  

resulted in the formation of a high-spin ferrous-NO complex (Figure III.2B), 

Figure III.2 – EPR analysis of the
influence of H2O2 on the binding of
NO to the mononuclear iron centre
of NorR. (A) Whole cell EPR analysis
of E. coli overexpressing NorR. E. coli
cells carrying pT7.7-NorR were
recorded in the absence of stress (a),
after 5 min treatment with 150 µM NO
(b), 4 mM H2O2 (c), after sequential
treatment with 150 µM NO (5 min)
followed by 4 mM H2O2 (5 min) (d), 4
mM H2O2 (5 min) followed by 150 µM
NO (5 min) (e), and after simultaneous
5 min treatment with 150 µM NO and
4 mM H2O2 (f). (B) EPR spectra of the
purified NorR protein (75 µM) as
isolated (a), treated for 5 min with 150
µM H2O2 (b), 150 µM NO (c), with NO
and H2O2 (150 µM each) (d). With the
exception of spectrum (c), all spectra
have the same intensity scale. EPR
spectra were recorded at 9.39 MHz
microwave frequency, 2.4 mW
microwave power and at 6-7 K.
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with g-values at 4.19, 3.83, and 2.0, that were slightly different from those 

of the protein in whole cells; upon treatment with H2O2 plus NO the 

spectrum displayed a single signal at g=4.3, as also observed in whole cells 

under the same conditions. Moreover, the intensity of this signal is similar 

to that of H2O2 treated protein, indicating that formation of a ferric-NO 

species didn’t occur. To confirm that lack of formation of the Fe-NO 

complex was due to iron oxidation, identical experiments were performed 

with NorR oxidized with potassium ferricyanide, which revealed that there 

was no binding of NO (data not shown). 

Altogether, it was concluded that the presence of H2O2 inhibits the 

binding of NO to the iron centre of NorR, due to oxidation of the 

mononuclear iron centre, impairing the formation of nitrosylated ferrous 

site. 

 

The ATPase activity of NorR is induced by conformational changes 

triggered by the formation of the mononitrosyl-iron complex (25). Since 

our results suggest that hydrogen peroxide prevents binding of NO, the 

ATPase activity of NorR under these stress conditions was examined (Table 

IIIV.2). The basal level of the ATPase activity of NorR remained essentially 

unchanged when the protein was exposed to H2O2; in contrast, when 

treated with NO, the activity increased approximately 7-fold. However, in 

the presence of both NO and H2O2, no enhancement of the activity was seen, 

thus confirming that hydrogen peroxide hinders the NO-dependent ATPase 

activity of NorR. 
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Table III.2 – ATPase activity of NorR upon treatment with NO and H2O2 

NO 

 

H2O2
 

 

ATPase activity 

(µmol ATP/min.mg protein) 

– – 0.4 ± 0.1 

– + 0.4 ± 0.1 

+ – 2.9 ± 0.4 

+ + 1.1 ± 0.1 

NorR was treated for 5 min with 100 μM H2O2, 20 μM NO and with a mixture of the two. The 

results represent the average of three independent samples ± SE. 

 

 Role of FlRd in protection of E. coli within macrophages. 

 The contribution of FlRd to the survival of E. coli was investigated in 

macrophages and compared with the other soluble NO detoxifier, Hmp. To 

this purpose, macrophages were infected with E. coli wild type and strains 

mutated in norV and hmp genes. The results showed that up to 6 h 

macrophage infection, ∆norV cell counts had no significant difference when 

compared to wild type cells while the survival of ∆hmp was lower (Figure 

III.3A). However, for longer incubation times survival of the ∆norV mutant 

strain within macrophages decreased and became similar to that of the 

∆hmp strain (Figure III.3B), indicating that FlRd enhances the long-term 

survival of E. coli within macrophages.  

 No differences in the survival of the wild type and the ∆norV mutant 

upon incubation in macrophages were observed within the first 6 h of 

macrophage infection, which in light of our earlier findings that norV 

induction in response to NO is compromised when H2O2 is present, may be 

due to the NorR inhibition caused by the macrophage oxidative burst. 

However, if regulation by NorR was lifted and flavorubredoxin was 

expressed, it should be able to detoxify nitric oxide and afford protection to 

E. coli. To test this hypothesis, we designed a complementation experiment 
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in which macrophages were incubated for 6 h with a strain expressing the 

norV gene from a NorR-independent, IPTG controlled plasmid. To avoid 

scavenging of NO by Hmp, it was necessary to use the double ∆norV∆hmp 

mutant strain whose phenotype within macrophages, in this early range of 

time, is due to the absence of hmp. Under these conditions, the behavior of 

the E. coli wild type strain was rescued (Figure III.3B) therefore showing 

that when expressed independently of its own promoter, i.e., when not 

regulated by NorR, FlRd confers protection to E. coli against macrophages.   

 

 

 

 

 

Figure III.3 – Survival of E. coli wild type and norV mutant upon
macrophage infection. (A) Murine macrophages J774A.1 were infected with
E. coli K-12 wild type (white), ΔnorV (gray) and Δhmp (black). Viabl e counts E.
coli cells were determined at the indicated times. Data from 24 h and 48 h
infection are depicted in the right Y-axes scale, and data from early times are
expanded in the inset. (B) Intracellular survival of E. coli wild type carrying
the empty vector pFLAG (white), ΔhmpΔnorV carrying pFLAG (gray) and
carrying pFLAG-norV plasmid that expresses norV from a NorR-independent
promoter (black), after 6 h infection in macrophage. Values are means  SE
from at least 6 independent experiments. *, P < 0.05 (ANOVA One-way and
Bonferroni multiple comparison test).
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III.4 – Discussion 

In this study we present evidence that combination of NO and H2O2 

impairs induction of FlRd, the flavodiiron NO reductase of E. coli. The cell 

growth was performed under anaerobic conditions to avoid the 

interference of oxygen and the possible formation of peroxynitrite that is 

generated under aerated environments when superoxide, derived from 

molecular oxygen, reacts with NO. 

It was previously shown that the Fe(II)-GAF domain of NorR 

inhibits its ATPase activity and that binding of NO to the iron centre is 

required to stimulate the 

ATPase activity (25). Our 

EPR studies suggest that 

upon incubation of NorR 

with NO plus H2O2, the 

oxidation of the iron 

centre blocks the NO 

ligation. Consequently, the 

ATPase activity of NorR 

was not triggered. Hence, 

it might be concluded that 

NorR needs to be in the reduced state in order to bind NO and to promote 

the transcription of norV, i.e., the iron oxidation state influences the 

activation of NorR (Figure III.4).  

We observed that hmp accounts for the successful E. coli infection in 

macrophages demonstrating the importance of the protein for bacterial 

stress resistance, which is in agreement with previous reports (38, 39). 

Moreover we provide evidence that Hmp protects E. coli at all stages of 

Figure III.4 – Schematic representation of FlRd
expression under stress conditions. The
ferrous mononitrosyl–iron complex formed in
NorR upon exposure to NO promotes
transcription of the norV gene. In the presence of
hydrogen peroxide, the iron center is oxidized
and no longer able to bind NO resul ting in lack of
norV expression.
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macrophage infection was provided by us. On the contrary, the 

contribution of norV to survival of E. coli within macrophages exhibited a 

time dependent profile, as protection only occurred for incubations in 

mammalian cells longer than 8 h. Therefore, the previous failures to 

demonstrate a role for FlRd in the protection against macrophage killing 

were most probably due to the macrophage infection times studied, which 

ranged from 15 to 120 min (40). Interestingly, a study of the gene 

expression profile of Salmonella enterica following macrophages infection 

indicated that induction of norV transcription is higher at times 

correspondent to the generation of the NO burst (41). An apparent 

oscillation in norV mRNA levels was also detected in E. coli exposed to 

acidified nitrite and grown under aerobic conditions while no variation was 

observed under anaerobic conditions, also suggesting that oxygen is 

required for the oscillatory expression pattern of norV (34). 

 The expression of NADPH oxidase and nitric oxide synthase is 

induced in macrophages upon phagocytosis of bacteria and the subsequent 

production of superoxide and nitric oxide is used to suppress bacterial 

growth (1, 42). Studies on the production of chemical species by 

macrophages during the first hours after bacteria invasion revealed that 

H2O2, resultant from spontaneous dismutation of superoxide via SODs, is 

the most abundant specie (43, 44). The ROS level is considered to abate 

within 6-10 h with increasingly abundant generation of nitrosative species 

(35). In spite of the toxicity of the species generated, macrophages do not 

provide complete protection against infection partially because several 

bacterial proteins have the ability to detoxify oxygen and nitrogen reactive 

species. Moreover, some bacteria contain more than one enzyme that 

apparently detoxifies the same chemical species. This is the case of E. coli 

that has, at least, two soluble NO scavenging enzymes. So far, the need for 
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two systems remained largely unclear. The present data revealed, to our 

best knowledge, for the first time that FlRd has a time-differentiated action 

within macrophages. The blockage of norV expression that is expected to 

occur during the first stage of macrophage infection due to the 

predominance of hydrogen peroxide decreases the ability of bacteria to 

scavenge NO produced by macrophages. Consequently, the remaining NO 

will stimulate the expression of Hmp as its encoded gene is regulated by 

iron-sulphur containing transcription factors, such as NsrR, that only upon 

binding to NO lift their repression and trigger the Hmp NO activity. Over 

time, macrophages decrease the oxidative burst while the NO production 

increases, which will allow binding of NO to NorR and subsequent 

triggering of norV expression.  

It is recognized that, at low concentrations, NO has a protective role 

to bacteria as it activates transcription factors such as SoxRS, OxyR and Fur, 

whose regulons encode antioxidant enzymes (45). Bacillus subtilis and 

Staphylococcus aureus express a NO-synthase enzyme that is proposed to 

play a critical role in adaptation to oxidative stress (46, 47). While a gene 

encoding NO-synthase is apparently absent in E. coli, the existence of two 

NO detoxifying systems may go beyond the need for functional redundancy 

to represent an alternative way of tuning the intracellular NO 

concentration. Moreover, it endows bacteria to take profit from the fact 

that mammalian Phox and iNOS activities peak at different times after 

phagocytosis providing a metabolic flexibility that helps protecting E. coli 

from the variety of environmental conditions experienced during the 

course of macrophage infection. Indeed, survival within macrophages is an 

important mechanism of infection of pathogens (48, 49). 

Flavodiiron-like proteins are found widespread in nature including 

in several commensal and pathogenic Gram-negative and Gram-positive 
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bacteria that colonize the human oro-gastric tract (8, 9). These include 

members of the genera Bacillus, Bacteroides, Clostridium, Fusobacterium, 

Ruminococcus, Porphyromonas, Prevotella, Vibrio, Salmonella, Shigella, 

Yersinia and uropathogenic, enteropathogenic and enterohemorrhagic E. 

coli strains. Consistent with the significant in vitro activity of this enzyme, 

in this work we succeeded in demonstrating the contribution of FlRd to 

microbial survival against the iNOS-mediated host immune defenses. 
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Summary 
Expression of two genes of unknown function, Staphylococcus 

aureus scdA and Neisseria gonorrhoeae dnrN, is induced by exposure to 

oxidative or nitrosative stress. We show that DnrN and ScdA are di-iron 

proteins that protect their hosts from damage caused by exposure to nitric 

oxide and to hydrogen peroxide. Loss of FNR-dependent activation of aniA 

expression and NsrR-dependent repression of norB and dnrN expression on 

exposure to NO was restored in the gonococcal parent strain but not in a 

dnrN mutant, suggesting that DnrN is necessary for the repair of NO 

damage to the gonococcal transcription factors, FNR and NsrR. Restoration 

of aconitase activity destroyed by exposure of S. aureus to NO or H2O2 

required a functional scdA gene. Electron paramagnetic resonance spectra 

of recombinant ScdA purified from Escherichia coli confirmed the presence 

of a di-iron centre. The recombinant scdA plasmid, but not recombinant 

plasmids encoding the complete Escherichia coli sufABCDSE or 

iscRSUAhscBAfdx operons, complemented repair defects of an E. coli ytfE 

mutant. Analysis of the protein sequence database revealed the importance 

of the two proteins based on the widespread distribution of highly 

conserved homologues in both gram-positive and gram-negative bacteria 

that are human pathogens. We provide in vivo and in vitro evidence that Fe-

S clusters damaged by exposure to NO and H2O2 can be repaired by this 

new protein family, for which we propose the name repair of iron centres, 

or RIC, proteins. 
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IV.1 – Introduction 

Neutrophils and macrophages of the mammalian immune system 

produce reactive oxygen and reactive nitrogen species that have important 

roles in killing pathogenic bacteria by damaging such cellular components 

as DNA, lipids, and proteins. Particularly vulnerable to inactivation are 

iron-sulphur (Fe-S) proteins, which were among the first catalysts used by 

nature (1). They participate in numerous cellular processes in virtually all 

organisms where they fulfill crucial redox, catalytic, and regulatory 

functions (2-4). Specialized systems have evolved that facilitate the 

assembly and insertion of Fe-S clusters into proteins, namely, the products 

of isc, suf, and csd operons (3, 5, 6). Analysis of bacterial genomes shows 

that one or more of these systems can be present in any organism for the in 

vivo maturation of Fe-S proteins. The isc operon encodes several proteins 

that are necessary for de novo synthesis, and at least one of them, IscS, is 

proposed to be required for cluster repair (7). The Suf system sustains Fe-S 

cluster biogenesis during iron starvation and oxidative stress (7-9), and 

CSD is proposed to act as a sulphur-generating system (10). Despite their 

established roles in pathogen survival, little is known about how oxidative 

and nitrosative damage to Fe-S clusters is repaired since so far only IscS is 

proposed to have such a function (7, 11, 12). 

Transcriptomic studies have shown that nitrosative stress 

conditions elicit increased expression of not only the isc and suf operons 

but also various genes of known and unknown function (13-18). The 

products of some of these genes are required to detoxify the reactive 

nitrogen species and are under the control of iron-sulphur regulators. For 

example, the hmpA gene present in various bacteria encodes an enzyme 

that catalyzes the oxidation of NO to nitrate in aerobic cultures or the 
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reduction to nitrous oxide during anaerobic growth (19-22). In Escherichia 

coli, expression of hmpA is repressed by FNR, the regulator of fumarate and 

nitrate reduction, which contains an [4Fe-4S]2+/1+ iron-sulphur centre that 

is essential for the binding of FNR to its DNA binding site. FNR, originally 

identified as an oxygen-sensitive transcription regulator, is also inactivated 

on exposure to nitric oxide, providing a mechanism by which FNR-

repressed genes respond to nitrosative stress (23, 24). Similarly, the 

repressor activity of NsrR, which from sequence analysis is assumed to 

contain an [2Fe-2S] iron-sulphur centre, is inactivated on exposure to nitric 

oxide (25-27). There is overlap between the biological responses to 

oxidative stress caused by exposure to hydrogen peroxide and to 

nitrosative stress (28-32). This overlap includes various iron-sulphur-

containing enzymes and the transcription factors that regulate their 

synthesis, which is a reflection of the fact that iron-sulphur centres are 

damaged by both reactive oxygen and nitrogen species. In addition, the 

perturbation of iron homeostasis that occurs under stress conditions 

causes changes in the transcriptional regulation of a large number of genes 

involved in iron metabolism, many of which code for iron-containing 

proteins (4, 33). 

Analysis of the data available for the gram-positive pathogen 

Staphylococcus aureus and for the gram-negative pathogens Neisseria 

meningitidis and Neisseria gonorrhoeae, organisms that have serious 

impacts on human health, revealed that exposure to nitric oxide and 

hydrogen peroxide causes the induction of genes encoding putative iron-

containing proteins. Examples include the S. aureus scdA, whose expression 

was reported to be induced by both NO and hydrogen peroxide (17, 28), 

and the gonococcal dnrN, which is induced when the NsrR repressor 

protein is inactivated by NO (27). We therefore investigated whether either 
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of these proteins is implicated in protection against nitric oxide or 

hydrogen peroxide, reactive nitrogen and oxygen species generated by the 

human body as part of its defenses against infection by pathogenic bacteria, 

and in iron metabolism. The results of in vivo and in vitro experiments 

revealed a role for these proteins in the repair of iron-sulphur centres of 

both transcription factors and housekeeping enzymes damaged by 

oxidative and nitrosative stress. Furthermore, the analysis of protein 

databases emphasizes their importance since related proteins were found 

in a wide range of prokaryotic and eukaryotic pathogens. 

 

IV.2 – Materials and Methods 

 

Strains, plasmids, and primers. 

Bacterial strains and plasmids used in this work are listed in Table 

IV.1 and oligonucleotides are listed in Table IV.2. To disrupt the scdA gene 

(SAOUHSC_00229) of S. aureus NCTC 8325, an 820-bp fragment spanning 

the upstream region and 5’ end of the gene was amplified by PCR using the 

primers ScdAmutEco and ScdAmutBam, and the fragment was cloned into 

pSP64D-E (34). The resulting plasmid, pSPScdA, was electroporated into S. 

aureus RN4220, and transformants were selected on tryptic soy agar (TSA; 

Difco) plates containing erythromycin (10 µg/ml). The correct integration 

of pSPScdA into the chromosome of RN4220 in the strain obtained, 

LMSA0229 (scdA::Ermr), was confirmed by single-colony PCR analysis. 

The dnrN gene of N. gonorrhoeae (open reading frame NGO0653) 

was interrupted with a kanamycin resistance cassette using crossover PCR 

(35). Primers DnrNA plus DnrNB and DnrNC plus DnrND were used to 

generate DNA fragments upstream and downstream of the dnrN gene. The 
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flanking fragments were cleaned and combined in a crossover PCR with 

primers DnrNA and DnrND, yielding a single fragment with an AgeI 

restriction site between the upstream and downstream sequences. The 

crossover PCR product was cloned into pGEM T-Easy (Promega, Madison, 

WI), yielding pGEMDnrN. A kanamycin resistance cassette was amplified 

from pSUB11 by PCR using primers KanAgeIFwd and KanAgeIRev, which 

introduced AgeI sites at each end of the resultant fragment, and was ligated 

into AgeI-digested pGEMDnrN, yielding pGEMDnrN-KO. The dnrN::kan 

fragment was generated by digestion of pGEMDnrN-KO with EcoRI and was 

transformed, as previously described (36), into piliated N. gonorrhoeae 

strain F62, yielding strain JCGC704. 

 

Growth of S. aureus and sensitivity assays. 

S. aureus RN4220 and LMSA0229 strains were streaked onto TSA 

plates and incubated for 16 h at 37°C. Isolated colonies were cultivated 

aerobically in tryptic soy broth medium (Difco) for 16 h at 37°C and 150 

rpm. These were used to inoculate, in duplicate, 20 ml of fresh tryptic soy 

broth, adjusting the starting optical density at 600 nm (OD600) to 0.1. The 

cultures, grown aerobically at 37°C, were treated with 10 mM H2O2 or left 

untreated. After 4 h of growth, 5 µl of serial dilutions of the cultures was 

spread onto TSA plates and incubated overnight. 

 

 

 

 

 

 

 



Chapter IV 

135 

 

Table IV.1 – Strains and plasmids used in this study 

Name Description Source 

E. coli  strains 

BL21(DE3)Gold Protein expression cells Stratagene 

K-12 ATCC 23716 Parental strain Laboratory stocks 

LMS4209 K-12 (ATCC 23716) ytfE::CmR (14) 

  S. aureus strains 

NCTC 8325 Parental strain Laboratory stocks 

RN4220 Restriction negative derivative of NCTC 8325, transformable 

by electroporation 
Laboratory stocks 

LMSA0229 RN4220 scdA::ErmR This study 

N. gonorrhoeae strains 

F62 Parental strain Laboratory stocks 

JCGC704 dnrN::kanR This study 

JCGC212 kat::ermC (37) 

JCGC705 kat::ermC  dnrN::kanR This study 

        Plasmids 

pSP64D-E Cloning vector carrying an erythromycin resistance cassette (38) 

pSPScdA Upstream region and 5'-end of scdA cloned into pSP64D-E, 

next to the erythromycin resistance cassette 
This study 

pSUB11 Epitope tagging plasmid carrying 3xFLAG tag and kanamycin 

resistance cassette 
(39) 

pGEM-T Easy Cloning vector Promega 

pGEMDnrN Sequences upstream and downstream of the dnrN gene 

(NGO0653) cloned into pGEM-T Easy 
This study 

pGEMDnrN-KO 
Sequences upstream and downstream of the dnrN gene 

(NGO0653) flanking a kanamycin resistance cassette cloned 

into pGEM-T Easy 

This study 

pET28a(+) T7 based expression vector that inserts a sequence encoding 

a (His)6-tag at the N-terminus 
Novagen 

pET-ScdA S. aureus scdA gene cloned into pET28a(+) This study 

pGS57 Fumarase A expressing plasmid (40) 

pUC18 Cloning vector Laboratory stocks 

pScdA pUC18 carrying the scdA gene of S. aureus  and its promoter 

region 
This study 

pYtfE pUC18 carrying the ytfE gene of E. coli and its promoter 

region 
(41) 

pRKISC Plasmid for expression of the E. coli isc operon (42) 

pRKSUF Plasmid for expression of the E. coli suf operon (43) 
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Table IV.2 – Oligonucleotide primers used in this study 

Name Description Sequence (5'  3') 

DnrNA Deletion of gonococcal dnrN TTTTTGAACACCATCAGGGTCGG 

DnrNB Deletion of gonococcal dnrN GGCTGAGGTGGCCAAGGAAAATATCCCAAAGCCC 

DnrNC Deletion of gonococcal dnrN TAAAAGGAACCGGTGGAGTCGGATATTTCAATGC 

DnrND Deletion of gonococcal dnrN GCCGTAAACGGTTAGTCGGCG 

KanAgeIFwd Amplification of KanR cassette CGTAACCGGTAAAGCCAGTCCGCAG 

KanAgeIRev Amplification of KanR cassette CGATACCGGTGGAGGATCATCCAGC 

ScdANheI Expression of S. aureus ScdA AGGAGGTTAGCTAGCATGATAAAT 

ScdAEcoRI Expression of S. aureus ScdA ACTGCTGGAATTCTTTTTGCCAA 

ScdAHindIII Complementation of S. aureus scdA GAAGTGCAAAGCTTACTTAGCAA 

ScdAmutEco Deletion of S. aureus scdA  TTGGCGAATTCCATTATGATGTC 

ScdAmutBam Deletion of S. aureus scdA AACAAGGATCCATTCCCACACTT 

aniA_RT_539F Detection of aniA transcript in qRT-PCR TCGGTATGCACATCGCCAA 

aniA_RT_705R Detection of aniA transcript in qRT-PCR GGCAACGGCTTTGTCCATATC 

dnrN_RT_33F Detection of dnrN transcript in qRT-PCR CTTTGGCGCAACCGTTGAT 

dnrN_RT_160R Detection of dnrN transcript in qRT-PCR CAATTTCCGCCGGAAAGGT 

norB_RT_133F Detection of norB transcript in qRT-PCR TCCGCCTGGTTGGATTTGA 

norB_RT_251R Detection of norB transcript in qRT-PCR CGGCTTTGATTGCGGTATTCA 

polA_RT_441F Detection of polA transcript in qRT-PCR CGTTACGCTGGTGAACACGAT 

polA_RT_546R Detection of polA transcript in qRT-PCR GATCAGCGCGAGATAATCACG 

 

Growth of N. gonorrhoeae and sensitivity to hydrogen 

peroxide. 

N. gonorrhoeae was grown on gonococcal agar plates and in 

gonococcal broth (GCB; BD, Oxford, United Kingdom). Solid and liquid 

media were supplemented with 1% (v/v) Kellogg’s supplement (44). For 

liquid cultures, 2 µl of a stock of N. gonorrhoeae was plated onto a 

gonococcal agar plate and incubated in a candle jar at 37°C for 24 h. 

Bacteria from this plate were swabbed onto a second plate and incubated 

in the same way for a further 16 h. The entire bacterial growth from this 

second plate was swabbed into 10 ml of GCB and incubated at 37°C in an 

orbital shaker at 100 rpm for 1 h. This 10-ml preculture was then 
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transferred into 50 ml of GCB in a 100-ml conical flask and incubated in the 

same way. For growth in the presence of nitrite, 1 mM NaNO2 was added 

after 1 h, and 4 mM NaNO2 was added 1 h later. 

A modified disk diffusion assay was used to compare areas of 

growth inhibition of various gonococcal strains (37). For growth 

experiments, different concentrations of H2O2 were added to 60 ml of 

oxygen-limited cultures of the gonococcal kat mutant and the kat dnrN 

double mutant in 100-ml conical flasks, and growth was monitored for the 

following 5 h. Greatest differences between the two strains were observed 

when the H2O2 concentration added was 0.5 mM. 

 

Complementation assays in E. coli. 

A DNA fragment of 955 bp comprising the promoter and coding 

regions of scdA was amplified by PCR from S. aureus NCTC 8325 genomic 

DNA, using the primers ScdAHindIII and ScdAEcoRI, and cloned into pUC18 

digested with HindIII and EcoRI, generating the plasmid pScdA. The E. coli 

ytfE mutant strain LMS4209 was transformed with the plasmids pYtfE, 

pScdA, pRKISC, and pRKSUF that express, respectively, the E. coli ytfE gene, 

S. aureus scdA gene, E. coli isc operon, and the suf operon from their own 

promoters. E. coli strains were grown in LB medium under anaerobic 

conditions (i.e., closed flasks completely filled), from a starting OD600 of 0.1. 

When cultures reached an OD600 of 0.3, they were treated with 4 mM 

hydrogen peroxide (Sigma) or left untreated, and the growth was followed 

for ~3 h. 

 

Production of the S. aureus recombinant ScdA protein.  

The coding region of the scdA gene was amplified by PCR from 

genomic DNA of S. aureus NCTC 8325 using the primers ScdANheI and 
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ScdAEcoRI and cloned into pET-28a (Novagen) that allows insertion of a 

nucleotide sequence that encodes a His6 tail at the N terminus. The 

resulting plasmid, pET-ScdA, was sequenced to ensure the integrity of the 

cloned sequence. The recombinant protein was overproduced in cells of E. 

coli BL21 Gold(DE3) (Stratagene) grown aerobically in M9 minimal 

medium, which was supplemented with 10 mM glucose, 100 µM 

Fe(NH4)2(SO4)2, and 30 µg/ml kanamycin; cells were cultured at 37°C and 

150 rpm. At an OD600 of 0.3, the cultures were induced with 400 µM 

isopropyl-1-thio-β-D-galactopyranoside (IPTG, Sigma). After the 

temperature was lowered to 30°C, cultures were grown for 6 h at 130 rpm 

and harvested by centrifugation. Cells were resuspended in ice-cold buffer 

A (20 mM Tris-HCl, pH 7.6), disrupted in a French press (Thermo Electron 

Corporation), and ultracentrifuged at 100,000 x g for 2 h at 4°C. The soluble 

extract was loaded onto an immobilized metal affinity chromatography 

Sepharose Fast Flow column (GE Healthcare) and ScdA was eluted at 300 

mM imidazole and immediately dialyzed against buffer A. The protein was 

found to be pure, as judged by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis, and this sample was used for further characterization. 

Protein concentration was determined by a bicinchoninic acid 

protein assay (Pierce) (45), and the iron content was determined by the 

TPTZ (2,4,6-tripyridyl-1,2,3-triazine) method (46). Molecular mass 

determination was performed in a Superdex 200 (10/300) GL column (GE 

Healthcare) using standard proteins. The electron paramagnetic resonance 

(EPR) spectrum was obtained in a Bruker EMX spectrometer equipped with 

an Oxford Instruments continuous-flow helium cryostat and was recorded 

at a 9.39-MHz microwave frequency with 2.4 mW of microwave power at 

10 K. 
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Repair of the damaged [4Fe-4S] cluster of E. coli fumarase A. 

 Cells of the E. coli ytfE mutant strain transformed with pGS57 were 

grown aerobically with 1 mM IPTG to an OD600 of ~0.5, collected by 

centrifugation, resuspended (1/100) in fumarase assay buffer (47), and 

lysed by four freeze-thaw cycles. Two minutes before the stresses were 

imposed, 100 µg/ml tetracycline was added to the cell extracts to inhibit de 

novo protein synthesis. After 1 min of incubation with 4 mM H2O2 or 5 min 

with 150 µM NO, 400 U/ml of catalase or 40 µM hemoglobin (Sigma) was 

added, respectively, and the fumarase activity was determined at fixed time 

points. Purified ScdA protein was added at a final concentration of 20 µM 

immediately after the stresses were removed. 

Fumarase activity was determined spectrophotometrically by 

following the disappearance of fumarate as described by Massey (47). The 

cell samples were quickly thawed at room temperature, cleared by the 

addition of 0.5% (wt/vol) sodium deoxycholate and then diluted in 50 mM 

sodium phosphate buffer, pH 7.3. The reactions were started by the 

addition of 10 mM fumarate and followed (at 295 nm, ε=0.07 mM-1 cm-1). 

Enzyme activities were determined at 25°C and are defined as units (µmol 

of fumarate consumed per min) per mg of total protein. The enzyme 

activities were determined in duplicate from two independent cultures and 

are presented as averaged values, with error bars representing one 

standard deviation. 

 

Determination of the aconitase activity in S. aureus.  

Aconitase activity was determined in cell lysates of S. aureus 

RN4220 and scdA mutant that had been grown aerobically in LB medium at 

37°C to an OD600 of 0.5. The cells were collected by centrifugation, 

resuspended (1/200) in assay buffer (50 mM Tris-HCl, pH 7.7, 0.6 mM 
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MnCl2), and lysed by a 10-min incubation at 37°C with 75 µg/ml 

lysostaphin (Sigma). Cell lysates were exposed to 100 µM NO (prepared as 

previously described in (48)) or 3 mM H2O2 and at specific times aliquots 

were frozen in liquid nitrogen and later assayed. To monitor the repair of 

the damaged enzyme, the lysates were treated with tetracycline (100 

µg/ml, Sigma) prior to exposure to H2O2 for 5 min or NO for 15 min. Upon 

addition of catalase (400 U/ml, Sigma) or hemoglobin (40 µM, Sigma), the 

aliquots were collected and frozen. Aconitase activity was determined by 

following the formation of NADPH through the indirect method described 

by Gardner (49). Samples were quickly thawed at room temperature, 

cleared by the addition of 0.5% (wt/vol) sodium deoxycholate, and 

immediately inserted into suba-sealed cuvettes with deaerated assay buffer 

that contained 0.2 mM NADP+ and 1 U of isocitrate dehydrogenase (Sigma). 

The reaction was initiated with 50 mM sodium citrate. Aconitase activities 

determined at 25°C in duplicate from two independent cultures are defined 

as units (µmol of NADPH formed per min) per mg of total protein and are 

presented as averaged values, with error bars representing one standard 

deviation. 

 

Quantitative real-time PCR analysis of gene expression. 

Relative gene expression was measured using quantitative reverse 

transcription-PCR (qRT-PCR) as described previously (27). RNA was 

stabilized by mixing 500 µl of bacterial culture with 900 µl of RNAlater 

solution (Ambion). After a 5-min incubation at room temperature, the 

bacteria were harvested by centrifugation at 3,000 x g for 10 min. RNA was 

isolated from the pellet using an RNeasy mini kit (Qiagen) using the 

manufacturer’s protocol. Genomic DNA was removed from the purified 

RNA using Turbo DNase (Ambion). The RNA was reverse transcribed to 
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cDNA using a Superscript first-strand synthesis kit (Invitrogen). For each 

sample, a control to check for DNA contamination in the RNA preparation 

was included from which reverse transcriptase was omitted. Transcript 

levels were measured by quantitative real-time PCR using SensiMix with 

Sybr green detection (Quantace) and an ABI 7000 sequence analyzer 

(Applied Biosystems). Primers designed using PrimerExpress (Applied 

Biosystems) are described in Table III.2. Transcript levels were quantified 

using the ΔΔCT (where CT is threshold cycle) method (50) relative to 

expression of the polA gene. Expression levels were normalized for each 

strain prior to shock with nitrite. For each experiment, quantitative real-

time PCR was used to determine transcript levels on three independent 

cDNA samples derived from three independent cultures. 

 

Determination of rates of NO reduction by washed bacterial 

suspensions. 

N. gonorrhoeae strain F62 and its dnrN mutant were grown as 

described above in oxygen-limited cultures supplemented with nitrite and 

harvested by centrifugation, and the rates of NO reduction were assayed 

using a Hansatech Instruments oxygen electrode adapted for increased 

sensitivity to NO (51). All solutions used for these assays were purged of 

oxygen for at least 10 min using oxygen-free nitrogen gas. The 

concentration of NO at the start of the assay was 200 µM, and the bacterial 

density assayed was in the range of 1 to 2 mg of dry mass ml-1. 
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IV.3 – Results and Discussion 

  

 Effect of a mutation in S. aureus scdA and Neisseria 

gonorrhoeae dnrN on recovery from oxidative and nitrosative stress. 

 To assess the function of ScdA in S. aureus, the effects of NO and 

H2O2 on growth of scdA mutant and its parent were compared. The scdA 

mutant strain showed 

no morphological 

defects, contrary to 

what had been 

previously described 

(52). Although no 

differences could be 

detected between the 

wild type and mutant 

strain in response to 

exposure to NO (data 

not shown), the scdA 

mutant was more 

sensitive to oxidative 

conditions than its 

parent (Figure IV.1). Hence, ScdA constitutes an efficient protection system 

against hydrogen peroxide.  

 In N. gonorrhoeae, binding sites for the NO-sensitive transcription 

factor NsrR, a member of the Rrf2 family of transcription factors, were 

identified at the promoters of aniA that controls the expression of the gene 

encoding a copper-containing nitrite reductase similar to NirK in other 

Figure IV.1 – The sensitivity of S. aureus to
hydrogen peroxide increases in the absence of
scdA. (A) Serial dilutions of cultures of S. aureus
RN4220 (wt) and the scdA mutant strain after 4 h of
growth in the presence (+) or absence (–) of 10 mM
H2O2. A representative pl ate of independent
experiments performed in duplicate is shown. (B )
Growth of S. aureus RN4220 (squares) and the scdA
mutant (circles) monitored by the OD600 in cul tures
untreated (filled symbols) or treated with 10 mM
H2O2 (open symbols). Mean values of two
independent cultures are given, with error bars
showing the standard deviations.
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bacteria; norB encoding the single subunit nitric oxide reductase; and a 

gene of unknown function, dnrN. All of these genes are known to be 

induced upon exposure to nitric oxide (27, 53). The gonococcal DnrN 

protein is 16% identical and 31% similar in amino acid sequence to S. 

aureus ScdA, suggesting that it might be a functional homologue of ScdA. A 

dnrN deletion mutant was constructed and the effects of the mutation on 

recovery from exposure to NO were assessed. As the gonococcal dnrN gene 

is monocistronic, the possibility of secondary effects of the mutation on 

downstream genes was discounted. Since gonococci generate NO as the 

product of nitrite reduction during oxygen-limited growth, it was predicted 

that the dnrN mutant might be more sensitive to sudden exposure to 

nitrite, which will be converted rapidly to NO, than its dnrN+ parent. Sudden 

addition of nitrite to a culture in which AniA has accumulated but NorB 

synthesis has not been induced will lead to the sudden generation of NO, 

which would cause damage from which only the parent strain can recover. 

In contrast, if aniA and norB transcription are gradually induced 

sequentially because nitrite is available during adaptation to oxygen-

limited growth, both the mutant and the parent are able to adapt. 

 To test these predictions, the mutant and parent strains were first 

grown in oxygen-limited medium supplemented with 5 mM nitrite. FNR, 

the regulator of fumarate and nitrate reduction during anaerobic growth, is 

essential in gonococci for expression of several genes including the nitrite 

reductase aniA. As the culture became oxygen-limited, FNR gradually 

became activated inducing the transcription of aniA. The consequent 

production of NO, generated during nitrite reduction, induced synthesis of 

the gonococcal nitric oxide reductase, NorB, which scavenges the NO 

present in the cell. We propose that, under these conditions, the 

concentration of NO available is low; therefore, the mutant grew only 
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slightly more slowly than the parent and growth of both strains stopped at 

similar cell densities (Figure IV.2A).  

 Parallel cultures were also grown in the absence of nitrite, in which 

case expression of the nitrite reductase aniA would still occur (36, 54), but, 

as NO would not be formed, norB would remain repressed by NsrR. When 

the cultures became oxygen-limited, nitrite was added, resulting in a 

sudden pulse of NO generation. As predicted, after an initial inhibition of 

growth the parent strain, F62, recovered, but growth inhibition of the dnrN 

mutant persisted (Figure IV.2B). It was concluded that the gonococcal dnrN 

mutant is more sensitive than its parent to damage induced by a sudden 

exposure to nitric oxide generated from nitrite. 

 A NO-sensitive electrode was used to eliminate the alternative 

possibility that the dnrN mutant is defective in its ability to reduce NO 

compared with the parent strain (55). The rates of NO reduction by 

bacteria harvested from these cultures were measured using an NO-

sensitive electrode. The average values for the two strains were 

indistinguishable, 162 (±18) nmol of NO reduced min-1.mg of bacterial dry 

mass-1 for the mutant compared with 164 (±46) nmol of NO reduced min-1. 

mg of bacterial dry mass-1 for the parental strain. Furthermore, these rates 

of NO reduction were sufficiently high to exclude the possibility that NO 

accumulates to a higher concentration in cultures of the mutant, causing 

more severe or even different types of damage (55). 

 Pathogenic Neisseria synthesize an extremely active catalase that 

masks any protective functions of other proteins that protect the bacteria 

from exposure to hydrogen peroxide (56).  To reveal whether DnrN plays 

any role in protection against oxidative stress, the dnrN deletion mutation 

was transferred into N. gonorrhoeae strain JCGC212, from which the kat 

gene has been deleted. The effects of exposure to hydrogen peroxide on 
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Figure IV.2 – Effect of a dnrN mutation on the recovery of N. gonorrhoe ae
from damage induced by sudden exposure to nitric oxide or hydrogen
peroxide. A & B. Deletion of dnrN results in a growth phenotype in N.
gonorrhoeae. The optical density at 650 nm of oxygen-limited cultures of N.
gonorrhoeae strains F62 (dnrN+; solid lines) and JCGC704 (dnrN; dotted lines)
was measured at hourly intervals. A. Growth in the presence (filled symbols) or
absence (open symbols) of 5 mM nitri te. B. Growth in the absence of nitrite
until an OD650 of around 0.4 (about 0.16 mg dry mass ml-1), followed by shock
with 0.5 mM NaNO2 (arrows). Error bars show standard deviation of duplicate
cultures. C & D. Effect of hydrogen peroxide on the growth of kat and dnrN kat
mutants. C. Oxygen-limited cul tures of N. gonorrhoeae JCGC212 (kat; solid lines)
and JCGC807 (dnrN kat; dotted lines) were grown in the absence of nitrite. Half
of the cultures were shocked with 0.5 mM hydrogen peroxide at an OD650 of
around 0.4 (shown by arrow; open squares) while the remaining cultures were
not treated (filled diamonds). The growth experiment was repeated twice. D. N.
gonorrhoeae strains F62 (wild-type), JCGC704 (dnrN), JCGC212 (kat) and
JCGC807 (dnrN kat) were first grown on GC agar plates for one day at 37 C. A
lawn of each strain was spread onto a fresh GC agar plate supplemented with 1
mM sodium nitrite. A 12 mm filter paper disc was seeded in the centre of the
plate with 10 l of 30 % hydrogen peroxide, and plates were incubated for 4
days at 37 C in an anaerobic jar. The area of growth inhibition was calculated.
Error bars are standard deviations of triplicate samples.
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growth of both the dnrN kat double mutant and its isogenic dnrN+ strain in 

liquid medium were then compared. Despite the absence of catalase 

activity, at very low concentrations of H2O2 (<0.5 mM), growth of neither 

the mutant nor the parental strain was significantly inhibited. Conversely, 

growth of both strains was completely inhibited at high concentration of 

H2O2. However, the dnrN mutant was more sensitive than its parent at an 

intermediate concentration of H2O2 (Figure IV.2C). Disk diffusion assays 

confirmed that the kat dnrN double mutant was also more sensitive than 

the kat single mutant to growth in the presence of hydrogen peroxide on 

solid medium (Figure IV.2D). These results implicated DnrN in protection 

not only against nitrosative stress, but also in oxidative stress.  

 

 Increased sensitivity of the gonococcal dnrN mutant to damage 

to iron-sulphur centres of the transcription factors, FNR and NsrR. 

 The results presented above established that strains mutated in the 

gonococcal dnrN and in S. aureus scdA have increased susceptibility to 

exogenous hydrogen peroxide. This phenotype is frequently correlated 

with elevated levels of intracellular free iron to which the degradation of 

iron-sulphur centres contributes (57). In addition, one possible explanation 

for the sensitivity of the gonococcal dnrN mutant to nitrosative stress is 

that sudden exposure to NO damaged the iron-sulphur centres of FNR, 

NsrR, and also many other iron-sulphur proteins. As there is currently no 

system for over-expressing proteins in the gonococcus, the strategy devised 

to demonstrate the role for DnrN in repair of nitrosative damage was to 

monitor by quantitative real-time PCR the accumulation of mRNA 

synthesized under the control of the two transcription factors, FNR and 

NsrR, in which iron-sulphur centres are critical for function. First, we 
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exploited the NO-induced damage to the oxygen-sensing [4Fe-4S]2+/1+ iron-

sulphur centre of FNR that results in loss of DNA-binding and transcription 

activation and consequent loss of aniA expression. The qRT-PCR 

experiments showed that the loss of aniA expression immediately after 

exposure to NO 

was followed by 

restoration of the 

accumulation of 

aniA mRNA in 

the parental 

strain, but not in 

the mutant 

(Figure IV.3A). 

This result 

confirmed that 

the damage was 

repaired more 

rapidly in a 

parental strain, 

F62, than in a 

dnrN mutant.  

  

 The NsrR protein, which is also predicted to contain a Fe-S centre 

(25), represses the expression of the norB gene, but repression is lifted on 

exposure to low concentrations of NO (27, 58). If the interpretation of the 

effects of a dnrN mutation on aniA expression is correct, it can be predicted 

that exposure to NO would result in a rapid increase in norB expression. 

Repression would be restored rapidly in the parental dnrN+ strain, but not 

Figure IV.3. Quantitative
RT-PCR analysis of gene
expression before and
after shock with nitrite.
N. gonorrhoeae strains F62
(parent) and JCGC704
(dnrN) were grown in
oxygen-limited conditions
in the absence of nitrite to
an OD650 of ~0.4, then
shocked with 0.5 mM
NaNO2. RNA was isolated
pre-shock and 20, 60, 120
and 180 minutes after the
shock and qPCR was used
to quantify aniA (A), norB
(B) and dnrN (C)
transcript. Quanti ties are
normalized against the
pre-shock transcript level
for each strain.
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in a dnrN mutant.  This prediction was confirmed (Figure IV.3B). 

Furthermore, dnrN mRNA also accumulated rapidly in the parental strain 

following NO exposure, but the level of this transcript also decreased 

rapidly as NsrR repression was restored (Figure IV.3C). 

 

 In the absence of S. aureus scdA the activity of the iron-sulphur 

enzyme aconitase is decreased. 

 S. aureus synthesizes a single aconitase, a dehydratase of the 

tricarboxylic acid cycle, that contains a [4Fe-4S]2+/1+ cluster that is 

susceptible to damage by NO and oxidants such as hydrogen peroxide. In 

the absence of scdA, the activity of aconitase was found to be 33% lower 

than in the S. aureus parent strain. Furthermore, when cell lysates of S. 

aureus were exposed to NO or to hydrogen peroxide, a faster decrease of 

the aconitase activity was observed in the scdA mutant than in its parent 

(Figure IV.4A and C). We also tested the influence of ScdA in the recovery of 

aconitase activity upon damage caused by oxidative or nitrosative stress. 

The aconitase activities of cell lysates prepared from each culture during 

subsequent incubation in the absence of NO or H2O2 were then assayed. 

Tetracycline was added to cultures of each strain to inhibit de novo protein 

synthesis and, after a brief exposure to NO or H2O2, haemoglobin or 

catalase was added to scavenge excess NO or H2O2. Aconitase activity was 

restored rapidly only in the parental strain (Figure IV.4B and D).  
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 Major contribution of Staphylococcus aureus di-iron ScdA to 

repair of stress-induced damage to the iron-sulphur centre of 

fumarase. 

 The phenotype of the S. aureus scdA mutant resembles the one 

recently described for E. coli ytfE mutant. In both cases, the activities of 

Figure IV.4 – Nitric oxide and hydrogen peroxide-induced
damage to aconitase is more pronounced and the repair of
the damage is severely impaired in the absence of scdA. Cell
lysates of S. aureus RN4220 parent strain (white bars) and the
scdA mutant (black bars) were subjected to 3 mM H2O2 (A,B) or
100 M NO (C,D). For the time course of damage (A and C) the
aconitase activity was monitored for 30 min. To follow the repair
of aconitase, after 2 min with H2O2 (B) or 15 min with NO (D),
catalase and haemoglobin were added to interrupt the exposures
(time zero) and the activity was then monitored. The values are
averages of duplicate determinations from two (B and D) or four
(A and C) independent experiments with error bars representing
one standard deviation unit. The asterisk (*) represents
statistical significance (p < 0.05) using a Student's t-test. The
values are normalized for the initial activity of each strain (wild
type: 17.1 mU/mg protein and scdA: 11.5 mU/mg protein).
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iron-sulphur containing enzymes are lower in the mutant (41).  To 

determine whether ScdA and YtfE also 

showed similar biochemical 

properties, the recombinant S. aureus 

ScdA was produced in E. coli and 

characterized. The purified ScdA 

protein was isolated as a dimer with a 

molecular mass of 57 kDa and 

contained two iron atoms per 

monomer. The visible spectrum 

exhibited a broad band at 350 nm, 

characteristic of iron-containing proteins (data not shown). S. aureus ScdA 

exhibited an EPR spectrum with g-values of 1.96, 1.92 and 1.86 (Figure 

IV.5), which are within the range of values usually observed for proteins 

containing di-iron centres, including the E. coli YtfE (41, 59).  

 The similarity between the E. coli YtfE and S. aureus ScdA proteins 

led us to investigate whether the recombinant ScdA could support the in 

vitro repair of a damaged [4Fe-4S] cluster, as shown for E. coli YtfE (60). 

Indeed, addition of purified ScdA protein to cell lysates of E. coli ΔytfE 

expressing fumarase A and exposed to hydrogen peroxide (Figure IV.6A) or 

nitric oxide (Figure IV.6B) demonstrated that ScdA promotes restoration of 

the fumarase activity to the levels observed before damage. These results 

show that S. aureus ScdA is essential for the repair of a [4Fe-4S]2+/1+ protein 

whose cluster is damaged by oxidative or nitrosative compounds. 

Figure IV.5 – ScdA protein of S.
aureus has a di-iron centre. EPR
spectrum of the as prepared ScdA
protein, recorded at 8 K with 9.4
GHz microwave frequency and 2.4
mW microwave power.
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 S. aureus scdA, but not suf or isc operons, complements the 

hydrogen peroxide sensitivity of the E. coli ytfE mutant. 

 Next, we addressed the question of whether S. aureus scdA could 

replace the function of ytfE.  To this end, E. coli ytfE mutant strain was 

transformed with plasmids encoding either the E. coli ytfE or the S. aureus 

scdA genes, and sensitivity of the strains was measured under oxidative 

stress conditions generated by hydrogen peroxide. The ytfE mutant was 

more sensitive to hydrogen peroxide than the parent and hypersensitivity 

was suppressed by expression in trans of either the E. coli ytfE or the S. 

aureus scdA genes (Figure IV.7). 

 The E. coli isc and suf operons are proposed to encode proteins that 

may also be involved in the repair of Fe-S clusters. However, the resistance 

of the ytfE mutant to hydrogen peroxide was not restored by the plasmid 

Figure IV.6 – The ScdA protein of S.
aureus repairs the [4Fe-4S] cluster
of fumarase A after damage by
nitric oxide and hydrogen peroxide.
Fumarase activity was monitored in
lysates of E. coli K-12 cells (white bars)
and E. coli ytfE mutant cells (black
bars) expressing fumarase A after
treatment with tetracycline and
subjection to (A) 4 mM H2O2 for 1 min,
or to (B) 150 M NO for 10 min.
Immediately after terminating the
stresses by the addition of catal ase or
haemoglobin, purified ScdA protein
was added to ytfE mutant cell lysates
(grey bars) and the activity was
measured (time zero) and monitored
for 30 min. The values are normalized

for the initial activity ("before") of each strain (wild type: 3.7 U/mg protein
and ytfE: 2.9 U/mg protein), and are mean values of two experiments
analysed in duplicate. Error bars represent 1 standard deviation unit.
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pRKSUF neither by pRKISC 

(Figure IV.7), containing the 

full sufABCDSE and 

iscRSUAhscBAfdx operons of 

E. coli, respectively (42, 43). 

Hence, the ISC and SUF 

system cannot replace YtfE, 

even though SUF was 

reported to operate under 

stress conditions as 

oxidative stress and iron 

starvation (8, 9). Note that, 

however, the plasmid 

containing the complete set 

of suf genes could 

complement most defects of 

the ΔiscRSUAhscBAfdx strain 

(43). We conclude that S. 

aureus ScdA and E. coli YtfE 

have similar biochemical 

roles. 

 

 Phylogenetic analysis of ScdA and DnrN homologues. 

 The amino acid sequences of S. aureus ScdA and gonococcal DnrN 

share 25 and 31% identity and 46 and 41% similarity to E. coli YtfE, 

respectively. Moreover, a comprehensive search of the amino acid 

sequence database revealed that DnrN, ScdA and E. coli YtfE are members 

of a large family of proteins that occur widely in the bacterial phyla 

Figure IV.7 – S. aureus scdA, but not the
suf or isc operons of E. coli, complement
the sensitivity to hydrogen peroxide of
the E. coli ytfE mutant. E. coli K-12 parent
strain (wt), ytfE mutant strain (ΔytfE), ytfE
strain expressing E. coli ytfE in trans
(ΔytfE+pytfE), ytfE strain expressing S.
aureus scdA in trans (ΔytfE+pscdA), ytfE
strain expressing the E. coli isc operon in
trans (ΔytfE+pisc) and ytfE strain expressing
the E. coli suf operon in trans (ΔytfE+psuf)
were grown in LB under anaerobic
conditions. Cultures were left untreated
(filled symbols), or treated with 2 mM H2O2,

at an OD600 ~0.3 (open symbols). Mean
values of two independent experiments with
error bars representing the standard
deviation are shown.



Chapter IV 

153 

 

Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria and Acidobacteria. 

In particular, homologues of these proteins are encoded in the genomes of a 

significant number of human pathogens, such as Bacillus anthracis, 

Haemophilus influenzae and species of the genera Salmonella, Shewanella, 

Yersinia or Clostridium. Interestingly, two orthologue sequences were 

found in the eukaryotic organism (Trichomonas vaginalis), which is also a 

human pathogen. 

 Since a recent study in the pathogenic yeast Cryptococcus 

neoformans suggests that this eukaryote contains a homologue of the E. coli 

YtfE (61), this protein (CNA2870) and other putative fungal homologues 

were included in the analysis, in spite of the low sequence similarity of 

CNA2870 with the ScdA, DnrN and YtfE proteins (7-8% identity and 16-

17% similarity). Using all the above-mentioned amino acid sequences, a 

dendrogram was constructed (Figure IV.8) showing two main groups, one 

that includes the ScdA/DnrN/YtfE-like proteins and the other with the 

CNA2870-like proteins, in agreement with the low identity (3-11%) and 

similarity (9-22%) values between the sequences from both groups. The 

group of the ScdA/DnrN/YtfE-like proteins is apparently divided into two 

other groups, one comprising the majority of the proteobacteria and 

another containing the sequences of several taxa. The ScdA protein of S. 

aureus and the DnrN protein of N. gonorrhoeae are clustered separately due 

to the low amino acid sequence identity between the two proteins (16%). 

 The alignment of amino acid sequences of the proteins (Figure IV.S1 

in section IV.5) that produced the dendrogram in Figure IV.8 revealed 

conservation of some regions (particularly within the ScdA/DnrN/YtfE-like 

sequences) and a high degree of conservation of the residues His84, His105, 

His129, Glu133, His160 and His204 (numbering refer to residues in E. coli YtfE). 

Exceptions are observed for three yeast-like sequences in which Glu133 was 
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substituted by an Asp. Based upon studies with E. coli YtfE, these residues 

are proposed to constitute the ligand sphere for the di-iron centre (our 

unpublished results). In particular, they are located in conserved α-helix 

regions of a predicted secondary structure (Figure IV.S1), corroborating the 

importance for the function of the four-helix-bundle protein fold that is 

predicted for ScdA/DnrN/YtfE and characterizes many other di-iron 

proteins. 

 

 

  

Figure IV.8 – Unrooted dendrogram of ScdA/DnrN family of proteins. The
dendrogram was generated with Clustal X and manipul ated in TreeView. A
total of 73 sequences from S. aureus ScdA and N. gonorrhoeae DnrN
homologues were aligned and the dendrogram was bootstrapped by exclusion
gap positions and correcting for multiple substi tutions. Shaded boxes
distinguish the different taxonomic groups. Abbreviations for the organisms are
described in the legend of the annexed Figure III.S1 (see Section III-5).
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RIC, a new family of proteins involved in the repair of iron centres. 

 The work presented above has revealed the presence in a wide 

range of human, animal and plant pathogens of a family of di-iron proteins 

that have similar functions. Based upon in vivo and in vitro evidence, we 

have shown that these proteins are present in both gram-positive and 

gram-negative bacteria, and that the two main branches of this protein 

family can repair Fe-S clusters damaged by exposure to NO and H2O2. Our 

work corroborates and significantly extends the proposal of Rodionov et al. 

(53), based on the bioinformatic analysis of complete genome sequences, 

that DnrN in pathogenic Neisseria is involved in the response to nitrosative 

stress.  Future research must focus on the exact chemical reactions 

catalysed by this protein family during the repair process, for example, 

removal of the nitrosated iron atoms or reinsertion of iron once the 

primary damage has been removed by other proteins. As it is not known 

whether the substrates on which these protein work are limited to those 

with iron-sulphur centres, we propose the name RIC, for repair of iron 

centres, for this new and widely distributed protein family. 
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IV.6 – Annex 

Figure III.S1 – Amino acid sequence analysis of the ScdA/DnrN/YtfE family of 
proteins.  Sequence alignment of ScdA of S. aureus, DnrN of N. gonorrhoeae and 
YtfE of E. coli with homologues selected from the database and produced with 
Clustal X, version 1.81. Residues that are strictly conserved in all sequences are 
highlighted in black boxes, and dark grey boxes highlight residues conserved in 
more than 80% of the sequences. Light grey boxes highlight residues that are 
conserved in more than 90% of the sequences that contain the N-terminus domain. 
Represented at the top of the alignment is a consensus of the predicted secondary 
structures obtained from PSIPRED server for the sequences aligned. Full lines 
represent coil regions, arrows represent β-sheet and cylinders represent α-helices. 
The grey filled cylinders represent the 4 α-helices regions that are conserved for all 
sequences, except those belonging to the subgroup of sequences that include those 
from Fungi. Stripped symbols represent conserved secondary structure present in 
the sequences that contain the N-terminus domain. Organism and protein 
sequence gi number corresponding to each abbreviation: Acicryptum (148260835) 
Acidiphilium cryptum JF-5; Acbacterium (94967396) Acidobacteria bacterium 
Ellin345; Apleuropneumoniae (126097862) Actinobacillus pleuropneumoniae L20; 
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Asuccinogenes (150840754) Actinobacillus succinogenes 130Z; Ajellomyces 
(154277908) Ajellomyces capsulatus NAm1; Alehrlichei (114226155) 
Alkalilimnicola ehrlichei MLHE1; Alkmetalliredigens (149951947) Alkaliphilus 
metalliredigens QYMF; Altmacleodii (88775658) Alteromonas macleodii 'Deep 
ecotype'; Andehalogenans (85775066) Anaeromyxobacter dehalogenans 2CP-C; 
Aspclavatus1 (119398655), Aspclavatus2 (119403875) and Aspclavatus3 
(121706066) Aspergillus clavatus NRRL1; Aspfumigatus1 (70981708), 
Aspfumigatus2 (70983051) and Aspfumigatus3 (66851946) Aspergillus fumigatus 
Af293; Aspnidulans (67903302) Aspergillus nidulans FGSC A4; Aspniger1 
(134054653) and Aspniger2 (134080860) Aspergillus niger; Asporyzae 
(83773074) Aspergillus oryzae; Aspterreus (115383664) Aspergillus terreus 
NIH2624; Banthracis (47502589) Bacillus anthracis str. 'Ames Ancestor'; Bcereus 
(30020272) Bacillus cereus ATCC 14579; Blicheniformis (52080458) Bacillus 
licheniformis ATCC 14580; Bthuringiensis (118477580) Bacillus thuringiensis str. 
Al Hakam; Bacfragilis (60682784) Bacteroides fragilis NCTC 9343; Caulobacter 
(113935146) Caulobacter sp. K31; Chaetomium (116178806) Chaetomium 
globosum CBS 148.51; Cacetobutylicum (15893368) Clostridium acetobutylicum 
ATCC 824; Cbeijerinckii (150016894) Clostridium beijerinckii NCIMB 8052; 
Cperfrigens (18309757) Clostridium perfringens str. 13; Ctetani (28211509) 
Clostridium tetani E88; Coprinosis1 (116503767),Coprinosis2 (116506575) and 
Coprinosis3 (116503768) Coprinosis cinerea okayama7#130; Corefficiens 
(25029316) Corynebacterium efficiens YS-314; Cryptococcus (134106553) 
Cryptococcus neoformans var. neoformans B-3501A; Dshibae (118673578) 
Dinoroseobacter shibae DFL 12; Enterobacter (145316920) Enterobacter sp. 638; 
Ercarovotora (50122527) Erwinia carotovora subsp. atroseptica SCRI1043; Ecoli 
K-12 (16132031) Escherichia coli K-12; Ecoli EDL933 (15804800) Escherichia coli 
O157:H7 EDL933; Fbacterium (88712189) Flavobacteriales bacterium HTCC2170; 
Fljohnsoniae (146154587) Flavobacterium johnsoniae UW101; Gbkaustiophilus 
(56419306) Geobacillus kaustophilus HTA426; Gbthermodenitrificans 
(138894332) Geobacillus thermodenitrificans NG80-2; Gbemidjiensis (144942836) 
Geobacter bemidjiensis Bem; Glovleyi (18745009) Geobacter lovleyi SZ; Grforsetti 
(120435756) Gramella forsetii KT0803; Hinfluenzae (148827101) Haemophilus 
influenzae PittGG; Hachejuensis (83643602) Hahella chejuensis KCTC 2396; 
Hearsenicodyxans (133738491) Herminiimonas arsenicoxydans; 
Hyneptunium(114800024) Hyphomonas neptunium ATCC 15444; Idloihiensis 
(56459308) Idiomarina loihiensis L2TR; Kpneumoniae (150957923) Klebsiella 
pneumoniae subsp. pneumoniae MGH 78578; Magnaporthe (39940942) 
Magnaporthe grisea 70-15; Msucciniciproducens (52307350) Mannheimia 
succiniciproducens MBEL55E; Mysmegmatis (118473167) Mycobacterium 
smegmatis str. MC2 155; Neosartorya1 (119501631), Neosartorya2 
(119483756),Neosartorya3 (119481719) and Neosartorya4 (119490985) 
Neosartorya fischeri NRRL 184; Neurosporacrassa (28916965) Neurospora crassa; 
Ngonorrhoeae (59717975) Neisseria gonorrhoeae FA 1090; Nmeningiditis 
(15677230) Neisseria meningitidis MC58; Padenitrificans (69938253) Paracoccus 
denitrificans PD1222; Pedobacter (149276683) Pedobacter sp. BAL39; 
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Pepropionicus (118504809) Pelobacter propionicus DSM 2379; Phaeosphaeria 
(111068832) Phaeosphaeria nodorum; Pstutzeri (11071577) Pseudomonas 
stutzeri; Pstorquis (91216610) Psychroflexus torquis ATCC 700755; Reutropha 
(72122218) Ralstonia eutropha JMP134; Rpickettii (121531262) Ralstonia pickettii 
12J; Rsolanacearum (17549179) Ralstonia solanacearum GMI1000; Rhsphaeroides 
(145556675) Rhodobacter sphaeroides ATCC 17025; Robbiformata (88806027) 
Robiginitalea biformata HTCC2501; Roseovarius (85705585) Roseovarius sp. 217; 
Ruxylanophilus (108765272) Rubrobacter xylanophilus DSM 9941; Sacdegradans 
(90020223) Saccharophagus degradans 2-40; Salenterica (29144697) Salmonella 
enterica subsp. enterica serovar Typhi Ty2; Saltyphimurium (16767645) 
Salmonella typhimurium LT2; Schizosaccharomyces (6224597) 
Schizosaccharomyces pombe; Sclerotinia (154693903) Sclerotinia sclerotiorum 
1980; Shamazonensis (119776368) Shewanella amazonensis SB2B; Shbaltica 
(146865931) Shewanella baltica OS223; Shputrefaciens(124546375) Shewanella 
putrefaciens 200; Shboydii (81247951) Shigella boydii Sb227; Shdysenteriae 
(83569422) Shigella dysenteriae 1012; Simeliloti (14523766) Sinorhizobium 
meliloti 1021; Sousitatus (116622425) Solibacter usitatus Ellin6076; Saureus 
(88194036) Staphylococcus aureus NCTC8325; Sepidermis (27467357) 
Staphylococcus epidermidis ATCC 12228; Shaemolyticus (70725629) 
Staphylococcus haemolyticus JCSC1435; Strcoelicor (8052384) Streptomyces 
coelicor A3(2); Tvaginalis1 (121909109) and Tvaginalis2 (121888849) 
Trichomonas vaginalis G3; Vshiloni (148836556) Vibrio shilonii AK1; Ybercovieri 
(77958756) Yersinia bercovieri ATCC 43970; Yfrederiksenii (77973982) Yersinia 
frederiksenii ATCC 33641; Yintermedia (77977615) Yersinia intermedia ATCC 
29909; Ymollaretii (77961285) Yersinia mollaretii ATCC 43969; Ypestis 
(16123677) Yersinia pestis CO92; Ypseudotuberculosis (51588079) Yersinia 
pseudotuberculosis IP 32953. 
 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                                                                        
                                                                                                                                                                                                        
Saureus               : -----------------------------------------MINKNDIVADVVTDYPKAADIFRSVGIDFCCGGQVSIEAAALEKKNVDLNELLQRLNDVEQT---NTPGSLNPKFLNVSSLIQYIQSAYHEPLREEFKNLTPYVTKLSK-------------VHGPNH- : 112
Sepidermidis          : -----------------------------------------MITKEDIVADVVTDYPKSADIFRNAGIDFCCGGQESIASAVNHKPNIDLNSLLNKLNHIDNT---EGNSTINPKFLNVESLIQYIQSAYHETLKEEFKNLTPYMTKLAK-------------VHGPSH- : 112
Shaemolyticus         : -----------------------------------------MITNESIVAEIVTDIPLSADIFRKYGIDFCCGGNISINEAVKNKKVDAETLIDEINELPNH-----DQGNINVKYLDAPSLIQYIQSRYHETMREEFKNLSPYVTKVAK-------------VHGPNH- : 110
EcoliK-12.            : -----------------------------------------MAYRDQPLGELALSIPRASALFRKYDMDYCCGGKQTLARAAARKELDVEVIEAELAKLAEQ------PIEKDWRSAPLAEIIDHIIVRYHDRHREQLPELILQATKVER-------------VHADKP- : 109
EcoliEDL933           : -----------------------------------------MAYRDQPLGELALSIPRASALFRKYDMDYCCGGKQTLARAAARKELDVEVIEAELAKLAEQ------PIEKDWRSAPLAEIIDHIIVRYHARHREQLPELILQATKVER-------------VHADKP- : 109
Shiboydii             : -----------------------------------------MAYRDQPLGELALSIPRASALFRKYNMDYCCGGKQTLARAAARKELDVEVIEAELAKLAEQ------PIEKDWRSAPLAEIIDHIIVRYHDRHREQLPELILQATKVER-------------VHADKP- : 109
Salenterica           : -----------------------------------------MAYRDQPLGELALSIPRASALFRQYDMDYCCGGKQTLARAAARHDVDIDIIEAQLAQLAEQ------PIEKDWRAVPLADIIDHIVVRYHDRHREQLPELILQATKVER-------------VHADKP- : 109
Saltyphimurium        : -----------------------------------------MAYRDQPLGELALSIPRASALFRQYDMDYCCGGKQTLARAAARHDVDIDIIEAQLAQLAEQ------PIEKDWRAVPLADIIDHIVVRYHDRHREQLPELILQATKVER-------------VHADKP- : 109
Shidysenteriae        : -----------------------------------------MAYRDQPLGELALSIPHASALFRKYDMDYCCGGKQTLARAAARKELDVEVIEAELAKLAEQ------PIEKDWRSAPLAEIIDHIIVRYHDRHREQLPELILQATKVER-------------VHADKP- : 109
Ercarotovora          : -----------------------------------------MAYRDQSLGELAIAIPRATKLFRELNLDFCCGGKQTLSRAAGKKDLNIDELEAQLEKLAAQ-----PSDARDWREAPLADIIAYIIPRFHDRHREQLPELILMAKKVER-------------VHHDKA- : 110
Kpneumoniae           : -----------------------------------------MAFRDQPLGELALTIPRASALFRQYDMDYCCGGKQTLARAASRKALDVAVIEAELAKLAEQ------PLSRDWRAAPLAEIIDHIIVRYHDRHREQLPELILQATKVER-------------VHADKP- : 109
Enterobacter          : -----------------------------------------MAFRDQPLGELVLSIPRASALFRKYDMDYCCGGKQTLERAALRKELDVDAIEAELAQLAEQ------PIDKDWRTVALGEIIDHIIVRYHDRHREQLPELILQATKVER-------------VHADKA- : 109
Ymollaretii           : -----------------------------------------MDYRNQSLGALAIAIPRATKLFRHYQLDFCCGGKQTLLRAANKLELDIDELEAQLSALQAE-----PPSSEDWQRQPLTNLIDFIISRYHNRHREQLPELILMAEKVER-------------VHGEKP- : 110
Ybercovieri           : -----------------------------------------MDYRNQSLGALAIAIPRATKLFRHYQLDFCCGGKQTLLRAANKLELDIDELEAQLSALQAE-----PQSAEDWQQQPLTNLIDFIISRYHNRHREQLPELILMAEKVER-------------VHGEKP- : 110
Yintermedia           : -----------------------------------------MDYRNQSLGALAIAIPRATKLFRHHQLDFCCGGKQTLLRAANKLNLDIDELEAQLNALQSE-----PQSSEDWQQQPLANIIDFIISRYHNRHREQLPELILMAEKVER-------------VHGEKP- : 110
Yfrederiksenii        : -----------------------------------------MDYRNQSLGALAIAIPRATKLFRQHQLDFCCGGKQTLLRAANKLNLDIDELEAQLSALHIE-----PQSSEDWQQRSLTDIINFIISRYHNRHREQLPELILMAEKVER-------------VHGEKP- : 110
Ypestis               : -----------------------------------------MDYRNQSLGALAIAIPRATKLFRQHQLDFCCGGKQTLLRAANKLNLDIDALEAQLSALQTE-----PHSSEDWQQQPLTNLISFIISRYHDRHREQLPELVLMAEKVER-------------VHGEKP- : 110
Ypseudotuberculosis   : -----------------------------------------MDYRNQSLGALAIAIPRATKLFRQHQLDFCCGGKQTLLRAANKLNLDIDALEAQLSALQTE-----PHSSEDWQQQPLTNLISFIISRYHDRHREQLPELVLMAEKVER-------------VHGDKP- : 110
Hinfluenzae           : -----------------------------------------MSFAQQKLSELAVSIPGATKIFREYDLDFCCGGSVLLEVAAQQKNLNLAEIEKRLTDLQQSKA---ENNDKDWTSASYAEMIDHIITRFHNRHREQLPELITLAEKVEN-------------VHGDRD- : 112
Msucciniproducens     : -----------------------------------------MSFANQKLSDIALTVPGAIQLFREYDLDYCCGGAVELAVAVQEKNLDINEINARLTELQNNPV---NAEERDWTSASFDELIDYIVPRFHDGHRSQLPELITLAEKVEQ-------------VHGDRP- : 112
Asuccinogenes         : -----------------------------------------MSFANQKLGEIAATIPGATQLFREYDLDFCCGGAEELSAAAQQKNINLAEIEAKLIKLQQNP----TTPEKDWTTANYDEFTQFIVTRFHDRHREQLPELIRLAETVER-------------VHAERD- : 111
Rsolanacearum         : -----------------------------------------MPLLDQPLGHLARNIPGATGIFHEYQLDFCCGGQHSLRDAAQAKGIDAAPIAARLQALQAEA---TPDGAVDWSAVSPSMLIDHILERFHERHREQLPELIRLARRVEH-------------VHGDRP- : 112
Rpickettii            : -----------------------------------------MALLDQPLGHLARNIPGATGIFHEYQLDFCCGGQHSLREAAQARGIDAGPIAERLEALNAA---VTPDQVVDWTTVSPSMLIDHIVERFHDRHREQLPELIRLARRVEH-------------VHGDRE- : 112
Reutropha             : -----------------------------------------MRLQDQPLGQLARRIPGATGIFHGYDLDFCCGGKQTLRDAAVAKGLDADAIESRLQTLQRD----SEPVQTDWGAVPPASLIAHILTRFHERHREQLPELIRLARRVEH-------------VHGDRP- : 111
Hearsenicoxydans      : -----------------------------------------MDILDQSLGQLACSVAGATRIFNDYQLDFCCGGKYSLRNAAQEKGIDAEEVARRLASLQGA------TDVTDWNAESSETLIVHILLRFHDRHRQQLPELIRLARKVER-------------THGNRK- : 109
Pstutzeri             : ---------------------------------------MTTDLIDHTLGHLACSVPGATRVFRQFRLDFCCGGDLSLREAAQLIDVDPQVIAGALLALEPE------DSEKDWRAAPAGELIEYILARFHERHRDQFPELIRLASRVEH-------------VHGGRP- : 111
Hachejuensis          : -----------------------------------------MTLLDRPVGWIARNLPGSTRLFREYQLDFCCGGAKKLRDALTEKELEPDVVLERLNALQE-------EPDDNWSNAGRPELIDHILTRYHARHREQLPELIHLARRVEH-------------VHGERD- : 108
Fbacterium            : ----------------------------------------MIITENKTVGETVTENIKTAHIFKKYGIDFCCGGGISINKACEKKNVDFSKLVEELQLVDKTQ------KAYDYDKWELGFLIDHIVNIHHAYVTESIPLILQYSARVAE-------------VHGHHY- : 110
Pstorquis             : ----------------------------------------MVSIKDKTVAELVSENINTAHVFKKHGIDFCCGGGISISRACKKNQVKLDVLLNDLQNLEDKG------RTYDYKKWNLHFLAQHIQNVHHSYVEDSIPLLIQYSNKVAS-------------VHSKTN- : 110
Pedobacter            : ------------------------------------METIGILKKEETIGEIVTSDFRKAQVFKSFGIDFCCGGKKTVAEVCEKKGINPDTVINALNQLNAQDS----TTENEHSKWNIAFLAEYIVNTHHEYVKENIPFMTELAEKVAR-------------VHGAEH- : 116
Grforsetii            : ----------------------------------------MENLIEKPIGQIVAEDYRTAQIFKNHKIDFCCQGNRSIQDAAEKSKIDAQLVIDEINAVQQAEQ----EGTIDFKSWPLDLLADYIEKTHHRYVEEKISVLKPYLEKLCR-------------VHGERH- : 112
Robbiformata          : ----------------------------------------MEQTLQQPIGQWVADDYRTAQVFKKHKIDFCCKGNRTVAEVALKKGLDPDNLLQELTAVLRSEG-----PREDCTSWPLDLLADYIEKIHHRYVEATLPTLKQYLDKLCK-------------VHGERH- : 111
Fljohnsoniae          : ----------------------------------------MENLKNKTIGSFVAQDYRTAAVFSKYRIDFCCKGNRTVDEVCEKQNIDADVLLQNIHEVIQSEN----NGSIDFNSWPLDLLADYIEKTHHRYVEDKTHTLLAFLDKLCK-------------VHGANY- : 112
Tvaginali1            : ----------------------------------------MESFGERTVGSIVAESFKSASTFAKFGIDFCCHGYNKLNVACKEAGVSLEDVYNELNKPAVSG-----SAHAEFSTWPLDLLVDYVLKIHHRGIRKNAPNTQRLLSKVDG-------------VHGEHH- : 111
Tvaginali2            : --------------------------------------MDKASLAQQSVGSIVANSFSTANVFAKFGIDFCCHGYVKLLDACKTAKVPLDTVYDALMENEKSQK----SNGIEFSKWPLDLLIDYVLKTHHRNIRKYGPETLKLISKVVK-------------VHGEKH- : 114
Bacfragilis           : -------------------------------------MKVMKDYKLMAVGQIVADCFDYAKVFNKYGIDFCCNGDVSLADACGKMGIDADCLLEELKQIKSEQ-----SLTLDFKSWPIDLLVDYILKFHHRNIRYQGPQILQLLDRVCE-------------AHAGKH- : 114
Pepropionicus         : ----------------------------------------MKVTSNSSVGEIVAADFRTAKVFEKHGIDFCCGGQVSLAASCTEKGIDQKIIEEELESIKNQPV----ERSQNYTAWALPFLADYIVNTHHAYLNENMEQIAAYANKIAG-------------VHGGHH- : 112
Glovleyi              : ---------------------------------------MQEITGNKTIGEIVATDFRTATVFEKHGIDFCCGGKVALAATCTEKRLDLNTITSELEAVQNEPV----ERDQNYSSWSLPFLADYIVNTHHVYLKENDEQIAAYARKIAG-------------VHGAHH- : 113
Gbemidjiensis         : --------------------------------MEKTAKIPVEATDSETVGAVVARDYRAAGVLEKYGIDFCCGGNVPLDAACRDKGVDPQAVRRELEEAAARPL----DRSQNYDAWELPFLADYIVNTHHVYLKESIPTIAAYSQKIAE-------------VHGANH- : 120
Acbacterium           : -----------------------------------------MVDTNKTVRDIAVELPYAPKVFEKLGIDFCCGGKRPLSEACHASGIAVGEVVNHLESAEKAIQEGRESAAKNWSISTVSEVLDQILSRHHVYVREESPRIQQLFAKVAS-------------KHGENH- : 115
Sousitatus            : ---------------------------------------MTTLTPERTVGQIAAALPASVRVFEKHGIDFCCGGSVPITDACRRAGVDAALLLHEIDQAGQAP----AADATDWLTAPLPALMDHILDTHHVYMKAQLPRLEAMLAKVLE-------------AHGDRHG : 114
Shputrefaciens        : ------------MSATHQSNAVLATADLSSERLDHQEASASSPWLAKKVGELVAEDFRRAHVFSQFGIDFCCGGGKSLAVACERANVEPAKVVAALNAATLTG-----CKEDQLNQLPLDQLIEYIESTHHQYVREKAPLLIEYSEKMVR-------------AHGEHY- : 139
Shbaltica             : --MSATSIPQDVQTSVHGVSSQPRHAAQLSQGSELSESAQDSHWLARKVGELVAEDFRRAHVFSQFGIDFCCGGGKPLAVACERADIDPAKVVAALNAITLTG-----SKEDELNQLPLDQLVEYIESTHHQYVREKAPLLVEYSEKMVR-------------AHGEHY- : 149
Shamazonensis         : --------------------------------------MYSQALLECSVGELVAQDYRRAHVFSRFGIDFCCGGGRPLKEACDRADADPSEVMQALLHSAATG-----AAEDQLDKLPLAELIDYIEATHHTYVREKAPLLLEYAAKMVR-------------AHGENY- : 113
Bthuringiensis        : --------------------------------------MEHTFTETSIVGEIVTQFPKASDLFKSYRIDFCCGGNKPLIDAIHERNLSATEVITELNTLYHNTKRLNESEIDWKNASYRELIDYVI-HKHHRYLNEELPQLSPYVTKVLR-------------VHGANH- : 117
Banthracis            : --------------------------------------MEHTFTETSIVGEIVTQFPKASDLFKSYRIDFCCGGNKPLIDAIHERNLSATEVITELNTLYHNTKRLNESEIDWKNASYRELIDYVI-HKHHRYLNEELPQLSPYVTKVLR-------------VHGANQ- : 117
Bcereus               : --------------------------------------MEHTFTETSIVGEIVTQFPKASNLFKSYRIDFCCGGNKPLIDAIHERNLSATEVLTELNTLYHNTKRLNESEIDWKNASYRELIDYVI-NKHHRYLNEELPQLSPYVTKVLR-------------VHGASQ- : 117
Gbthermodenitrificans : --------------------------------------MEQRFTEQSLIGDIVTQFPKAADLFKARRIDFCCGGQRPLKEAIEERGLDGEALLRELNALYAEAQ---NKPTGNWSEAPLTDLVDHIVSTHHRYLNEELPQLSPYVTKVLR-------------VHGMHH- : 115
Gbkaustophilus        : --------------------------------------MEQRFTEQSLIGDIVAEIPKAADLLKAHRIDFCCGGQRPLKEAIEELGLDGEALLRELNTLYAEAQ---NKPAGNWGEAPLADLVDHIINTHHRYLNEELPQLSPYVTKVLR-------------VHGMHH- : 115
Cbeijerinckii         : ---------------------------------------MNTFNSNQKIGEIVTKFPNAADIFKEYKIDFCCGGDRPLITAINEQGVNEAEILEKINASYEKLQNKLYTNNKNWVEAPFDELVDHIVNVHHGYLYENLPKISELTTKILR-------------VHGGNH- : 117
Cacetobutylicum       : --------------------------------------MQNVFNVNQKIGDIVVKFPRAIEILKRYKIDFCCGGDRVLEEAIKEQGLNGQEIIDEINEDYNKYIMEEVKDRDWATEPYSKLIEHVI-NTHHAYLNETLPRLSELTTKILR-------------VHGAKH- : 117
Alkmetalliredigens    : --------------------------------------MKNIFSGEDKVGEIVAKCPKASEVFQKYQIDFCCGGDRSLRVVLQEQNLNEERVLSALTEAHNKVMSLQDKGIDWQMAPFSDLIDHVI-STHHTYLVRELPKLSDLTTKIYR-------------VHGVDHG : 118
Blicheniformis        : --------------------------------------MEAVFDQNTKTGDIVTRFPRASRLLKEYRIDFCCGGNRPIGEAIKEQDLNEEEILARINTLYQETKALNAKETNWSEAPYSQLIDHVI-HTHHAYLYEVLPELSGFVTKVYR-------------VHGIHH- : 117
Cperfringens          : --------------------------------------MEKLIRKDYSLGEVVTVYPAVVKKFNDMELDYCCGGNKSLELALKEKGVDVDKFVEDLNKEFKEFK-FENSQYVDWREKSSEELISHIVETHHGETFRLLKEIDPLMVKVFR-------------VHFSHDP : 118
Ctetani               : --------------------------------------MKNIININQKLGEVVSIFPGSSRIFNDAKIDYCCGGHDTLGEALKGKGMNLDEFIQKLNEEYEKFI-SSNEEHIDWRKEKPVVLMRHIVDTHHDYTKKELKEIDGLLSKILK-------------VHFEHHG : 118
Ruxylanophilus        : -----------------------------------------MISAERRVDELVVERPARSRVFERFGIDYCCGGGVPLREAC-EVAGVEPEVVISELERLDFGP----EEGPAVAEMGVEEMVDHIVRVHHDYLREELPRLGAMVEKVAR-------------VHGGSH- : 110
Andehalogenans        : ---------------------------------------MPAIDRNATVAEIVTAHAVTARVFQKHRIDFCCHGNVSVAEAC-RPRALDPDAVFAELDAALPQA----DGDEDPRALSTFALVARIVDRHHAYLRRTLPFLEPLAHKVAS-------------VHGDHN- : 112
Rhsphaeroides         : -------------------------------------MSDISLTLDSEVGEVAARLPGAAGLFRRHGISFCCGGGQSLAEAA-GNRNLAPEALLSELQA-------LATAAQAEAPAETAALIEHILARYHETHRRELADLIPLAEKVEA-------------VHGDHE- : 111
Simeliloti            : MPFSCTNISVQGRGFCSEWLQRVLSQGHLWQATPDKEQIMTGIRLDNTVAAIAAELPGAAELFRGHDISFCCGGNVQLSEAAVKAGVAPSALLAELQA--------LVVAARRDAPAETSDLIGHILDRYHQTHRAELAWLIPLAQKVER-------------VHGDHP- : 148
Padenitrificans       : --------------------------------MEEINMTDITLAPDSIVGDIAARLPGAADVFRRAGISFCCGGNATLADAAAKAGMDLPALTAELQS--------LIDRAGRDAPAETPALIDHILTRYHDTHREELGWLIGLAERVEM-------------VHGDHD- : 116
Caulobacter           : ----------------------------------------------MRLGARVPRVRGGGTPMTEHVRLAVLDRATVPQDAAVDFALDPADTRAIEGY------LVLNGPDDPRAAQQATALIDHILTRYHQVHMEDFPQAIALARKVEA-------------VHAADA- : 104
Acicryptum            : -------------------------------MSGQIETPADAGLLNAPVGQIAASRAGAASVFQTFGIDFCCQGKRTLAEALAGQGIAPSPVLAALM-------SAAAEPLDDWRDAPTPALIDHIKTRYHAVHLAELPNLRDLAAKVEA-------------THRKHP- : 118
Vshilonii             : -----------------------------------------MNINNTSLCDIIKNVPGSINVLKSYNINVYINLRKTLNEVLVIDDIFKYSNMIDELNELSRDN----KELLKFCDIPHQELIKYIIANFHIKHRDQLNRAIELAKRVET-------------VHYDHP- : 111
Sacdegradans          : ------------------------------------------------MDILHSTLSEFLAIAPSAKQYLTSLGIEMQDDTQLLSALQKVNKQDCIPRCEFLYR--RAMAERDWSAISNKDLVRYIIRNYHDVHRQQIATLIDLARKVEA-------------IHFGEP- : 106
Altmacleodii          : ------------------------------------------MLLTQPLGQLATRIAGATAVFHQFKLDFCCGGQQSLGEAIAKRGLNQQEVLQALENLQHQK-----DPAINWHAEPAPKLIDYILVNFHQKHRQQLPELIRLAKRVET-------------VHGDSP- : 109
Ngonorrhoeae          : -----------------------------------------------------------------------------------------------------------MTDFSVWEAAPFGATVDHILQRYHNVHRAQFEELVPLAQKVAQ-------------VHADTF- :  49
Nmeningitidis         : -----------------------------------------------------------------------------------------------------------MTDFSVWETAPFGATVDHILQRYHNVHRAQFEELVPLAQKVAQ-------------VHADTF- :  49
Apleuropneumoniae     : ---------------------------------------------------------------------------------------------------------MSVLTDKDWRTAPLGEIIDFIIPRFHDTHRNQLPTLIELAEKVES-------------VHADSA- :  51
Dshibae               : -------------------------------------------------------------------------------------------------------------MTDQPPLHDPAELTRYIETRYHARHRDQLPLLAELSAMVEA-------------VHIDDP- :  47
Roseovarius           : -------------------------------------------------------------------------------------------------------------MTEAAPIHDTAALTRYIEVRYHARHRAQLPALVKLAEMVED-------------LHCDDT- :  47
Hyneptunium           : -------------------------------------------------------------------------------------------------------------MTDAAPIQNASDLTRYIETRYHQTHREQLPVLAELAAKVER-------------VHAGHE- :  47
Alehrlichei           : -----------------------------------------------------------------------------------------------------MTPSTQCPTDSSELPEATGALIDYILTTFHDAHRRELPPLIELARKVEA-------------VHAGHP- :  55
Idloihiensis          : ---------------------------------------------------------------------------------------------------MSTFDDRLQTAEQQWQDASPKHLIEHIYLRFHQRHREQLPELKQLAMRVEA-------------VHGDHP- :  57
Strcoelicor           : --------------------------------------------------------------------------------------------------------------------MGHGGNVIDELTTDHREVEELFGKIEALPPGHKDRKLYADQATIELVRHSVAEE :  54
Mysmegmatis           : ------------------------------------------------------------------------------------------------------------------MAGSRGNIIDDI-IADHREFESVFVEIESSDD-PRTQPELVEHVISGIVRHAVAEE :  54
Corefficiens          : ---------------------------------------------------------------------------------MAASCDHGYTRGPQEKSPGNISTAERIPTMAHADQPASSTDVTAILTADHKDMRDLLAQVHLTTD-PEQRRNLVDTVTAEVMRHSVAEE :  88
Coprinosis1           : ----------------------------------------------------------------------------------------------------------------MTSNPSAQHTLLQIITSDHRDIEAFYNEYLKNAGNKDGQTRWANQLTWTIARHSISEE :  58
Coprinosis2           : ----------------------------------------------------------------------------------------MMMQTRLLRRTVLPTVRYPLARTLATTAPGHVRLLQAI-TDDHREIEAFYDQYLKNGGNTDAQQRWANQLTWEIARHSISEE :  81
Coprinosis3           : -------------------------------------------------------------------------------------------------------------------MASSSNPLSAAVAGDHQEMYEYYDQYLKNRGDKAAQQRWVNQLIWEIARHAVGEE :  55
Phaeosphaeria         : ------------------------------------------------------------------------------------MFSARTFITPVARAAFRSQAVHAPVNSRLASIRAASTISEAI-TKDHRELKEYYNEIVNNPDNIDHQTRYGNQFTWELARHSVAEE :  85
Magnaporthe           : -----------------------------------------------------------------------MLLSRSVALASAQLRAVARPQALLLNTSRPLFGQRQFASASASAGSGFVKISDAI-KKDHQELEQYYNEVINSTDQEHQQKFGNQ-FTWELARHSVAEE :  97
Ajellomyces           : ---------------------------------------------------------------------------------------------MPELVISCIVLTLQFIYLSHTTPVAMVSISDSV-TKDHKELEAFHNQIVNADNDIIKTRFQNQ-FVWELARHSAAEE :  75
Neurosporacrassa      : ------------------------------------------------------------------------MYRLATHTGLRQVPRSIANSISRPALATPRFIQPVAIRTMMDSPYSAVKVSDRV-KHDHAELEKQYRNILAAEDEDTKVRWQNQ-FIWELARHSIAEE :  96
Chaetomium            : -----------------------------------------------------------------------------------------------------------------MAASAATRVSERI-KHDHDELREYYNNIKNAQRDDDKVKWQNQ-FVWELARHSVAEE :  55
Schizosaccharomyces   : ------------------------------------------------------------------------------------------------MLQYSKKKVSLNFFPVRLLSYKMTRISDAI-FKDHRKLQSDYQNIKSANDYDTATRWQNQ-FVWELARHSVGEE :  72
Aspfumigatus1         : ---------------------------------------------------------------------------------MAVPLRLLRPIPLSVPIFRFQFLPIAARSVSTSPIQMIGRITDTV-KQDHREIEACYQRIINAKDRDEQTRYQNL-FTWELARHSIGEE :  87
Neosartorya1          : ---------------------------------------------------------------------------------MAVPVRLLRPIPLSIPISRFQSFPIAARSVSTSPIQMIGRITDTV-KQDHREIEACYQRIINAKDRDEQTRYQNL-FTWELARHSIGEE :  87
Aspclavatus1          : -------------------------------------------------------------------------------------MASIRVLRPIHTHLHPYSYSLPIARAVSTTPIMTGRITDTV-KQDHRQLEACYDKIMHATDRDDQIRFQNL-FTWELARHSIGEE :  83
Neosartorya3          : ----------------------------------------------------------------------------------------------------------------------MARLMDAI-KKDHRELEEYYKIIVSSRDTDEQIRFQNK-FTWELARHAIGEE :  50
Aspclavatus2          : ---------------------------------------------------------------------------------------------------------------------MSTRISDVI-KRDHRELEAYYNTITSSNDPDEQTRFQNK-FSWELARHAVGEE :  51
Aspfumigatus3         : -------------------------------------------------------------------------------MAATHGRKSTADSNVSEPHVLRGNVSHQVQAFTDWSQARRFRILDTI-KHDHSEIKSFYELIVSSPGPEEQTKYQNQ-FTWELARHTVGEE :  89
Neosartorya4          : -------------------------------------------------------------------------------MAATHGRKSTADSNVSEPHVLRGNISHQVQAFTDWSQARRFRILDTI-KHDHREIKSFYELIVSSTDPEEQTKYQNQ-FTWELARHAVGEE :  89
Aspclavatus3          : -------------------------------------------------------------------------------MAATHGRKPTTDDSIFEPHILRGNLTDQVQAFSDWAAAPKFRILDTI-KHDHREITSFYELLLKATEPDDATKCQNQ-FVWELARHAVAEE :  89
Cryptococcus          : --------------------------------------------------------------------------------MLSSRAFSPRTIFNRAALSPLAISTRFFASPTTSSMAGNTSVADAV-KHDHRELEEYYDQIIKATDADTKTRYQNL-FTWELARHSVGEE :  88
Aspfumigatus2         : --------------------------------------------------------------------------------MFPRCFASRATLTSRPSTLTPFPSTLIQNRTFAITSPTMTRLADAI-KDDHRELEEAYNKILSAKTSDEKTRWQNQ-FTWELARHSIGEE :  88
Neosartorya2          : --------------------------------------------------------------------------------MFPRCLASRTTLTLRPSTVTPFTSKLIQNRTFAITSPTMTRLADAI-KDDHRELEEAYNKILSAKTSDEKTRWQNQ-FTWELARHSIGEE :  88
Asporyzae             : ----------------------------------------------------------------------------------MYSSRYLFKPFRAPTHYSLARTTLGASRGFRTTAPAATRVSEVI-KNDHRELEDQYNRILSAKTKDEKEQWQNQ-FTWELARHSIGEE :  86
Aspniger2             : ----------------------------------------------------------------------------------MSFALCARRSFRGPEASLFSKAVRTPKRDFRITAPAAIRVSELI-KNDHQELRGAYHQILSAQTNDDRVRWQNQ-FTWELARHSIGEE :  86
Aspniger1             : ------------------------------------------------------------------------------------MTSRYILNSSRPILRPLLSIPKQHRSISQSPIIMAPRISEAI-KTDHREIEDYYNKILNSATEKEKIEWQNQ-FTWELARHSIAEE :  84
Aspterreus            : ---------------------------------------------------------------------------------------------------------------------MATRIIDTI-KTDHREIEDYYNKVLGSATDKEKVEWQNQ-FTWELARHSIAEE :  51
Aspnidulans           : ---------------------------------------------------------------------------------MSIRFLNPTRPLRQLSITAPRYITPLQQRFISQSPIAMTRIIDAI-KQDHREIEDYYNKILSATTEKEKIQWQNQ-FTWELARHSIGEE :  87
Sclerotinia           : ----------------------------------------------------------------------------------------------------------------------MTTITDAI-LKDHQEIREYADKVRQATDDDTRGRWQNQ-FTWELARHSIGEE :  50
                                                                                                                                                                                                        



                                                                                                                                                                                                        
                                                                                                                                                                                                        
Saureus               : PYLVELKETYDTFK------NGMLEHMQ-----KEDDVDF----PKLIKYEQG---------EVVDDINTVIDDLVSDHIATGELLVKMSELTSSYEPPIEACGTWRLVYQRLKALEVLTHEHVHLENHVLFKKVS---------------------------------- : 224
Sepidermidis          : PYLLKLQDLYREFR------DSMLDHIR-----KEDEEDF----PKLIQYSQG---------QDVQNIKIILEDLINDHEDTGQLLNVMNQLTSDYQTPEEACGTWKLVYQRLQNIERQTHQHVHLENHVLFKKVS---------------------------------- : 224
Shaemolyticus         : PFLIQLQDLYRQYR------DGMLEHMA-----QEDEHDF----PALIKLSRG---------EQVDHSSDIIQSLVDDHTQTGQLLEDMRELTSQYQPPSEACQTWRLVYHRLMNLERETHEHVHLENHVLFNKFS---------------------------------- : 222
EcoliK-12.            : SVPKGLTKYLTMLH------EELSSHMM-----KEEQILF----PMIKQGMGS-------------QAMGPISVMESEHDEAGELLEVIKHTTNNVTPPPEACTTWKAMYNGINELIDDLMDHISLENNVLFPRALAGE------------------------------- : 220
EcoliEDL933           : SVPKGLTKYLTMLH------EELSSHMM-----KEEQILF----PMIKQGMGS-------------QAMGPISVMESEHDEAGELLEVIKHNTNNVTPPPEACTTWKAMYNGINELIDDLMDHISLENNVLFPRALAGE------------------------------- : 220
Shiboydii             : SVPKGLTKYLTMLH------EELSSHMM-----KEEQILF----PMIKQGMGS-------------QAMGPISVMESEHDEAGELLEVIKHTTNNVTPPPEACTTWKAMYNGINELIDDLMDHISLENNVLFPRALAGE------------------------------- : 220
Salenterica           : NVPRGLTKYLTALH------EELSSHMM-----KEEQILF----PMIKQGMGR-------------QATGPISVMESEHDEAGELVDVIKHVTQNVTPPPEACTTWKAMYNGINEMIDALMEHISLENNVLFPRALAGE------------------------------- : 220
Saltyphimurium        : NVPRGLTKYLTALH------EELSSHMM-----KEEQILF----PMIKQGMGR-------------QATGPISVMESEHDEAGELVDVIKHVTKNVTPPPEACTTWKAMYNGINEMIDDLMEHISLENNVLFPRALAGE------------------------------- : 220
Shidysenteriae        : SVPKGLTKYLTMLH------EELSSHMM-----KEEQILF----PMIKQGMGS-------------QAMGPISVMESEHDEAGELLEVIKHTTNNVTPPPEACTTWKAMYNGINELIDDLMDHISLENNVLFPHALAGE------------------------------- : 220
Ercarotovora          : DCPHGLANQLTAIY------NELSQHMM-----KEERILF----PMIGQGMGA-------------NAAAPISVMEHEHDDAGRDVEVVKELTNGVVPPEGACNTWRALYSGINEFITDLMEHIHLENNLLFPRALRGE------------------------------- : 221
Kpneumoniae           : NVPKGLTKYLTMLH------QELSSHMM-----KEEQILF----PMIKQGMGA-------------QAGGPISVMESEHDEAGELLEVIKHITHNVTPPPEACTTWKAMYNGINEMIDDLMEHISLENNVLFPRALGGK------------------------------- : 220
Enterobacter          : SVPRGLAKYLTMLH------EELFSHMM-----KEEQILF----PMIKQGMGS-------------QAMGPISVMESEHDDAGELLEVIKHTTDNVTPPADACTTWKAMYNGINELIDDLMEHISLENNVLFPRALAGE------------------------------- : 220
Ymollaretii           : ACPRGLAAELTAIL------EELTQHMY-----KEEQILF----PMIQRGMGS-------------QAGGPIFVMEAEHDAVGQQLEVVKQLTQNMTPPEGACNTWRALYTGINEFMTDLMEHIHLENNLLFPRALKGE------------------------------- : 221
Ybercovieri           : ACPRGLAAELTAIL------EELTQHMY-----KEEQILF----PMIQRGMGS-------------QAGGPIFVMEAEHDAVGLQLEVVKQLTQNVTPPDGACNTWRALYTGINEFMTDLMEHIHLENNLLFPRALKGE------------------------------- : 221
Yintermedia           : ACPRGLAVELTAIL------EELTQHMY-----KEEQILF----PMITRGMGS-------------QASGPIFVMEAEHDAVGQQLEVVKQLTQNVTPPEGACNTWRALYTGINEFITDLMEHIHLENNLLFPRALKGE------------------------------- : 221
Yfrederiksenii        : ACPRGLAAELTAIL------EELTQHMY-----KEEQILF----PMIKRGMGS-------------QASGPIFVMEAEHDAVGQQLEVVKQLTQNMTPPEGACNTWQALYNGINEFITDLMEHIHLENNLLFPRALKGE------------------------------- : 221
Ypestis               : TCPRGLAAELSAIL------EELTQHMY-----KEEQILF----PMIQRGMGS-------------QASGPIFVMEAEHDAVGQQLDVVKQLTQNVTPPEGACNTWRALYTGINEFITDLMEHIHLENNLLFPRALRGE------------------------------- : 221
Ypseudotuberculosis   : TCPRGLAAELSAIL------EELTQHMY-----KEEQILF----PMIQRGMGS-------------QASGPIFVMEAEHDAVGQQLDVVKQLTQNVTPPEGACNTWRALYTGINEFITDLMEHIHLENNLLFPRALRGE------------------------------- : 221
Hinfluenzae           : DCPIGVTAQLEKIY------AELSQHLM-----KEEQILF----PMIKMGNYA-------------MASMPIRVMEMEHDEAGQDVEVIKSLTNNCTPPADACFSWKALYSGINEFIDDLMHHIHLENNILFPRVLNEK------------------------------- : 223
Msucciniproducens     : DCPTGVAAELRNML------TDLTQHMM-----KEEQILF----PMIKAGNYM-------------MARMPIQVMEMEHAEMGDQLEVLKSLTDNLTPPADACTSWLALYSGIEHFIDELMLHTHTENNILFPRVRNAA------------------------------- : 223
Asuccinogenes         : DCPAGLTTELQTLY------DHLSQHFI-----KEEKVLF----PMIRAGHYA-------------MAVMPIRVMEMEHAEAGEQLETLQSLTNNVTVPADACATWRALYAGISTFIDDLMEHTHLENNILFPRVRAEA------------------------------- : 222
Rsolanacearum         : ECPVGLSELLEAMW------QELESHMQ-----KEEQILF----PMLARGHGL-------------RAGGPIAVMRMEHDQHGEALQRLMTLTNDITPPRAACTTWRALYLGLSVFREDLMEHIHLENNILFEGAVAAD------------------------------- : 223
Rpickettii            : DCPVGLADLLDGMQ------QELESHMQ-----KEEQILF----PMLSRGHGS-------------RAGGPIAVMRMEHDQHGDALQQLMTLTNDITLPRGACTTWRALYLGLRAFREDLMEHIHLENNVLFEGAAGAG------------------------------- : 223
Reutropha             : DCPVGLADHLVAMR------SELEAHMQ-----KEEQILF----PMLARGLQA-------------AATAPITVMRMEHDDHGEALQRLAALTNDITLPRAACNTWRALYLGLRTLREDLMEHIHLENNILFEPAAVVAAND---------------------------- : 225
Hearsenicoxydans      : DCPVGLTDHLSEMQ------QELESHMK-----KEEQILF----PLLLCGQAA-------------LVGGPITIMRMEHEQHGDALQHLLALTNDINLPSAACNTWRALYFALRVFREDLMEHIHLENNILFENAALMRSAHA--------------------------- : 224
Pstutzeri             : ECPNGLAEHLWNMQ------QELESHML-----KEEQILF----PMLQRGMRF-P-----------QAQGPISVMRYEHQEHGNALEQLAALTDDITPPANACNTWRALYRGLEEMRSDLMQHIHLENNVLFRNAEASMPVQSAQVVEPVVEIRP--------------- : 239
Hachejuensis          : ECPNGLAQHLTEMF------QELESHMM-----KEENILF----PILLAGMSG-M-----------QAQGPISVMRMEHDHHGEALAQLEALTNNITPPKGACNTWRALYAGLAQLRDDLMQHIHLENNILFTDVVEDAHG----------------------------- : 222
Fbacterium            : KEVIEINTLFGEVS------IELKAHLK-----DEETILF----PYVKQMVKAEKEETRIGLADFGSVSNPIKTMFEEHEGAGDAFKKIAQLTNNYTPPQDACNTFRALYAKLEEFEQDLHQHIHLENNILFPKAIQLEKSL---------------------------- : 237
Pstorquis             : PELIQIKKLFAEVA------NELSQHLR-----KEELILF----PFIAKMEAAFKKGEKVERPHFGTIENPIAMMEDEHEAAGDKFKEIADLTNNYTLPPHACNTYKALYHKLEEFENDLHLHIHLENNILFPKALAMEKETLS-------------------------- : 239
Pedobacter            : PELVKVAELFGIVA------NELISHLM-----KEERMLF----PFIKELHAAQINGTQIPPTVFGDVSNPIQMMESEHEQAGDILRSIREITNNFALPQEACNSYTILFKKLEEFENDLHRHVHLENNILFPKTLAVKKELESA------------------------- : 246
Grforsetii            : PELFEITEHFNKSA------GELASHMK-----KEEIILF----PAVRKMVQAKQTGIKLEKPHFGTVENPIQMMMMEHETEGERFRLIEKLSNNYTPPQDACNTYRVTFALLQEFENDLHRHIHLENNILFPKSAELEKELNGQV------------------------ : 243
Robbiformata          : PELHEIREHLYASA------GELAMHMK-----KEELVLF----PWIRKMENARQSGTSPGRPKFKTVKNPIAAMMDEHDNEGERFRKIAALSDDYQAPSDACATYRVAYALLQEFEADLHRHIHLENNILFPKAQELERVFTAPSGNRG-------------------- : 246
Fljohnsoniae          : PELFKINELFIGCA------GELSQHMK-----KEELILF----PFVKRMTKTKESDGILSQPSFGSVSNPIAMMMHEHDNEGERFREIAALTDHYTPPADACTTYKVTFAMLKEFEEDLHKHIHLENNILFPKAVLLEKDFVEVE------------------------ : 243
Tvaginali1            : PELHEVKKLFNQSI------DELTKHLA-----KEEEMLF----PYIVELFNASETGTQIAPNKYGSVQSIIDSLKTEHEAEGSRYFHLAKITNNYTCPPDGCNSFRLVYQQIHDFVDALFEHIHIENNIIFPLAIELEKKYVKKEE----------------------- : 243
Tvaginali2            : PELHEVKKNFLNSL------NDLENHLQ-----KEEQVLF----PFVYQLCEADAKGLTMGRMHCMTVDNPIRVMMEEHENEGARYFHMAKLTNNYTAPADGCNSYKLAYSQIKQFNEALFEHIHIENNLIFPQASALEKKIVFGAE----------------------- : 246
Bacfragilis           : PELYEVRELFQESW------IDLNNHLT-----KEEMVLF----PYIYDLFDAVAQHRPIPAFHCGSVSSPISVMMSEHDAEGERFRRISGLTHGYLVPGDACSSYRLLLEMLRTFEDNLHHHIHLENNIVFPKAIELQENCE--------------------------- : 242
Pepropionicus         : PELYEIASIFGKIV------TDMVPHLK-----EEEEILF----PAIKRIEAGKIAGLTKETKDLELIRLSLEKLQKEHEAIGDAVHAIRHLAKGYAIPDDVCNTFRITYQKLEEFEDDLHKHVHLENNILFLKAAQL-------------------------------- : 235
Glovleyi              : PEVIRIATIFEKIA------TDMVGHLK-----EEEEVFF----PALKRADAARTAGSTPEAKDRETIRVSLLRLHREHEEIGDAIHEIRHLANDYVIPDDVCNTFMLTYKKLSEFEDDLHKHVHLENNILFLKATQL-------------------------------- : 236
Gbemidjiensis         : PEAVEIAAIFRKVG------EDMMLHLQ-----KEEEKLF----PAIKRLAELKAKGTSADAQEVAGLKEVLADLSHEHDEVGAAVHEIRRLANDYTVPGDVCNTFMVTYEKLKEFEDDLHKHVHLENNILFPKAARV-------------------------------- : 243
Acbacterium           : PELVQAKELFDALA------GELMVHLM-----KEEQILF----PYVRRMEESQVSGEPLPPSCFGTVRNPIQMMFMEHDSAGELLKEIRKQTNDLKAPPDACISFQSLYRDLLAFEADLHQHIHLENNVLFPKVLEMEGAE---------------------------- : 242
Sousitatus            : ETLRALAAVYGPMK------AELDAHLL-----KEERILF----PMIRTGQ-----------SNCGGVQNPIRVMLFEHDSAGDALAGMRRLTAGYTPPPDACNTFRALYYELSEMERDLHRHIHLENNILFPRALAE-------------------------------- : 226
Shputrefaciens        : AEIIPFAGWVRALI------EDLMPHLM-----KEEKILF----PAIRALS-----QGEHVEGCFGHIGNPINAMQHEHEEAGAILQKLHELTNDFTPPEHACTTWRVCYATLAEFEADLHQHIHLENNILFPKSLDLAQ------------------------------ : 259
Shbaltica             : TEIIPFAGWVRALV------EDLMPHLM-----KEEKILF----PAIRGLS-----QGEQVETCFGHMGNPINAMQHEHEEVGLILQKLRELTNDFTPPEHACTTWRVCYATLAEFEADLHQHIHLENNILFPKALGLAQ------------------------------ : 269
Shamazonensis         : SEIKPLAGWIRALV------DDLMPHLL-----KEEQILF----PAIRALA-----AGEQVNGCFGHIGNPVRAMEYEHEDAGNVLKKLRELTGDFTPPPHACTTWRICYHTLAEFEADLHRHIHLENNVLFPKTLKLTQG----------------------------- : 234
Bthuringiensis        : PHLAKIHKLFHELK------MELEQHLI-----KEETEDF----PLILEFE------KNPTDENYAKLRKVVDELENEHNHAGNIIKELRKVTNDFTPPEGACGTYRLVYNRLEALESDLFEHIHLENNILFPRAITRA------------------------------- : 235
Banthracis            : PHLAKIHKLFHELK------MELEQHLI-----KEETEDF----PLILEFE------KNPTDENYAKLRKVVDELENEHNHAGNIIKELRKVTNDFTPPEGACGTYRLVYNRLEALESDLFEHIHLENNILFPRAITRA------------------------------- : 235
Bcereus               : PHLAQIHKLFHELK------MELEQHLI-----KEETEDF----PLILEFE------QNPIDENYVKLRKIVDELENEHNHAGNIIKELRKVTNDFTPPEGACGTYRLVYQRLEALESDLFEHIHLENNILFPRAITRA------------------------------- : 235
Gbthermodenitrificans : PHLSRVHKLFHELK------TELEQHLI-----KEETGAF----PLILQFA------DNPSPENREAVERAVRELVNEHDAAGDLIKEIREITNDFTPPEDACGTYRLVYSRLAALEEDLFTHIHLENNVLFPRVLAAVKA----------------------------- : 235
Gbkaustophilus        : PHLSHVHKLFHELK------TELEQHLI-----KEETGAF----PLILQFA------DNPSPENREAVERAVRELVNEHDAAGDLMKEIREITNDFTPPEDACGTYRLVYSRLAALEDDLFTHIHLENNILFPRVLAAVKN----------------------------- : 235
Cbeijerinckii         : SELSKVHKLFHTVK------MELEAHLI-----EEETIQY----PAIKEYL------RSNSEVDLDKAINIINQLQDEHTGAGDILKELRKVTNDYKAPSDGCNTYKLTYAKLEEMESDIFQHIHLENNILFPRLS-ELKK----------------------------- : 236
Cacetobutylicum       : SELAKVHKLLHSLK------MELEQHLI-----KEEEIVF----PLIQEYE------RTGNNETLSNAVEKIIELEEEHEGAGSILKELREVTKNYELPEDACNSYKAAYKLLEDVEDDTFRHIHLENNIMFPRLVSESKKHK--------------------------- : 239
Alkmetalliredigens    : KVLSKVHKLFHSLK------MELDQHLI-----KEEEILF----PLIKAYE------AQPSNELLVKAINVIDELESEHEGAGDILKELRHITDQYQVPSGGCHSYELTFKGLEMLESDLFQHIHLENNILFPRLE-ALKK----------------------------- : 237
Blicheniformis        : PELAQVHQLFHQLK------TELEHHLF-----QEEEHIF----PKVMAYE------ETRSMDRLAEAVQTIDVLEQEHEAAGSILKELRRVTNDYTLPEGACTTYTLTYLKLDELETDLFQHIHLENNILFPRLEAEANQ----------------------------- : 237
Cperfringens          : ELLMKVHSLFGKLK------CELEEHLL-----KEENILF----PLMIKYD------KAKNEKEKKEIEEDIRIIVNEHEAAGDILKELAEVTDDYKVPEWGCISFKLLYDYLHDLEKDLFIHIHKENNILFARY----------------------------------- : 232
Ctetani               : EELLKVHRLFGLLK------IELEEHLI-----KEEENLF----PLIEEYE------LTKNKNVKEEIDKFIKETENEHDEAGDILKELEKITRDFTVPEGVCTTFKLTYDKIHALEKDLFIHIYKENSVLFNMF----------------------------------- : 232
Ruxylanophilus        : PELYELCEVFAELR------GELEEHTE-----KEERVLF----PACIELA------SGRRPAALGYVRALVSSLVSEHVESGEGLRSIREITRGYRVPEDACNTYRAMLDGLAELERDTHEHVFKENSLLFPRVVAAEEALERR------------------------- : 234
Andehalogenans        : PRLFGVRDAYLELA------AALEPHLD-----HEEAVLF----PALLSPA-----------PDREILRKELEGMMSDHLQVGALLERIRALSEGFTVPEWGCRSYRVLMSELETLETDVLRHVHLENHVLMPRFAGRATAEARG------------------------- : 231
Rhsphaeroides         : EAPHGLMLLLDDMR------DEMEDHMQ-----KEEQILF----PMMRMGG-------------APMIFQPIAVMRAEHDSHGEQLRRLEHLTRGFAPPEGACRSWHALYAGVRKFADDLVAHMHLENEVLFPRFERQATA----------------------------- : 224
Simeliloti            : SAPIGLSQVLERLR------DDLESHMM-----KEEQVLF----PIMRRGG-------------SAVIAHPITQMRDEHEEEAEHLRTVEHVTHGLSLPPGACGSWTALYTGLRKFTDDLVTHMHLENAVLFPRFETQAQAAV--------------------------- : 263
Padenitrificans       : EAPLGLTEALVALR------DDLELHMS-----KEETVLF----PAILQGA-------------GAMLAGPIRVMQAEHEDTGQLLRRIEHVTHGLTLPVGACGSWTALYTGLRKLCDDVVAHIHLEEEVLFPRVLAA-------------------------------- : 226
Caulobacter           : ECPDGLADHLALMA------DELAGHQR-----KEETALF----PMMRQGG-------------GPMVRIAIARMQVEHRDVVEQLTRLAVITKDFTPPQEACRTWRALNQLCRKLDRELREHMRLEDAILFPHFAGAV------------------------------- : 215
Acicryptum            : AVPDGLAETLSRMI------AELRLHQQ-----REEVVLF----PLLAQGG-------------GEMARAAIQVMRAEHEDHGAVLAGIEAITGGRVAPQGACATWRALYLGLGKFHDDLMMHVHLENNVLFPRFEAEEEAGEGNPASGANH------------------ : 242
Vshilonii             : KCPLGLSECLEGIE------NDLCSHME-----KEEQILF----PMISQGI---------------YPDGPIFVMEKDHDDHIQALSELMTLVNYLEVHEDACQSWKKLYLLLEQFESDILTHIALENNILFKN------------------------------------ : 215
Sacdegradans          : DCPTGITKALKKIY------SDLDIHML-----KEERTVF----PHFINSPR-------------TNYDEQIKNAQHDHEDHLTAIHSIKALTKTFSPPAKASHYWLDLYEQLEMLYLDLTDHTYLEDSVLFMRS----------------------------------- : 213
Altmacleodii          : DCPHGLAAHLHDMQ------QELESHML-----KEEQILF----PMLRQGI---------------YPYGPISVMLEEHQEHGDALKKLDELSFEQQLPLGACNTWTALYLGLKELKEDLMQHILLENEILFVEPTKPGHGEQHCCGSCQ-------------------- : 229
Ngonorrhoeae          : P--AEIAGLLADMR------DELLMHMM-----KEERMLF----PMINQGVGR-------------GAAMPISVMMHEHEEHDRAIARLKELTGNFHAPEGACGSWTRLYALAKEMADDLNDHIHLENDILFARVLDS-------------------------------- : 157
Nmeningitidis         : P--AEIAELLAYMQ------NELLMHMM-----KEERMLF----PMINQGVGR-------------GAAMPIGVMMHEHEEHDRAIARLKELTDNFQPPEGACGSWTRLYALAKEMVEDLNDHIHLENDILFARVLDS-------------------------------- : 157
Apleuropneumoniae     : DCPKGLAELIRKVY------ADLVNHMM-----KEEQILF----PLIKAGRGK-------------MAAAPISVMEAEHDEAGNDVEEIQKLTNNFTLPEGACTSWRNLYQGLQEFAADLDAHVDLENNNLFPRALAGDQP----------------------------- : 164
Dshibae               : RAPAGLAAVLDRMI------GDMEVHMK-----KEELILF----PAIRNGG-------------GPGIENPIAAMRADHDNHAFELSEIRRITGGPDLPDDACGSWTRLYRGLEEFMDDLQEHIRLENDVLFPQFERETRLEA--------------------------- : 162
Roseovarius           : GVPKGLSDLLAGMV------GEMEVHMK-----KEELILF----PAIRKGG-------------GPGLEHPIAVMRADHDSHGHEIDQIRRLTHDMTTPAGACTSWATLYDGLEEFVGDLTEHIRLENDVLFPKFEPAR------------------------------- : 158
Hyneptunium           : RAPKGLRELLRQMI------GELEVHMK-----KEELILF----PAIRAGG-------------TPGLAHPIAVMRADHDDHGRAIAAIAQLTYNLELPEGACGTWTRLYAGLAEFITDLTSHIRLENEVLFPQFDQVNHTDT--------------------------- : 162
Alehrlichei           : QVPAGLADALEATR------IDLEDHML-----KEENVLF----PFMRQGM--------------SPLSAPIGRMRHEHADHEESLLRLQALAGGFEPPEDACDSWRTLYVGVRHLTGELRTHMRVENELLFPRFE---------------------------------- : 162
Idloihiensis          : EAPVGLTEHLDNLM------QELESHMT-----KEEQILF----PLLSRGV---------------YPGGPISVMESEHVQHEGELNRIGELTNNLTLPEGACGTWTALYKGLKELQDDLHEHIHLENNLLFVEKKASAPEHGKDFCCGSCQ------------------ : 179
Strcoelicor           : AYLYPAVREHVPGGGALA-DKELEDHAG-----AEQIMKDLEGCAAD--------------DAEFDRLIGKLMSEIREHVADEEGNLFPRLREACPAD----ALDELGEKVRRAKKTAPTRPHPAAPDKPPMDKLLAPGAGMVDRVRDALSGRGRSG------------- : 187
Mysmegmatis           : QYVYPAARSVLPDGDEVA-DHELEEHAE----AEEVMKAIEKTDPED---------------SRYGELVRRLIDDIRHHIEEEESGMLSKLRDACPPE----RLHELSEEFQRAKSLAPTRPHPLAPDHPPANKILGPGAGLVDRLRDILSGRNS--------------- : 185
Corefficiens          : MYVYPVMEEHLPNG------AEEVEHDK-----KEHDELVTVMKELE---------GVDAAHPDFIELVKKFEEMLAHHAKDEEEDQFPKLRAHLPRE----QLEELGEKVEQAKKLAPTRPHPSAPHSELFHKTVGAGVGMVDRLRDKLTGRAT--------------- : 219
Coprinosis1           : LVVYPQFEKHLGDKGRAMAEQDRQDHQF----VKDRLKLLEDMEVGS---------------SQYDATLKEIMTELKKHMASEETEDLPLLEQKLGFE----NSISVAKSFERTKNFVPTRSHPNAPAKPPFETLAGLLAAPIDKLKDAFSKFPSDQAVENVSQSATTTA : 205
Coprinosis2           : LVVYPLLEKVMADQGHVLAESDRDDHQF----VKDRLKKLESIEVGT---------------TAYNAILKDIMDHLKEHMRKEETEQFPQLEAKLGED----QSISTARSFERTKAFVPTRSHPNAPNKPPYETLAGLMAAPMDKLMDAFSKFPSKDERESVSNAATSRI : 228
Coprinosis3           : IVIYPLMEQHLGAKGVELADNDRRDHQF----VKENLYKLENMEVGT---------------ENYDALLKTVIDHLRVHNDSEEQTDLPMLYEKIGAE----GAQQAAASFKRTKKFAPTHPHPSAPDKPPFETVVGLMTAPIDKLRDMFEQFPSTEEKKQASQN----- : 197
Phaeosphaeria         : LLVYPALEKYLGDK-----GKEHADHDR-----AEHHKVKVLLKEFQNM----SAKD-----TGYVPKLKEIWSLLEHHIEDEESKDLPALEKALSSSDNRGSSESLAKNFGRTKAFVPSRSHPSAGENPYFEGPMGMLAAPIDHIADIFRKFPDGTVSPNPSKK----- : 231
Magnaporthe           : LLVYPAFETHLGEEGRQMAEDDRKQHHEVKILLKEFQNMRSNDSEYV-------------------PKLKELWAKLSLHIQEEESHDMPALEKAIELD--AEASETMARNFHRTKMFVPSRSHPSAGENPYFESAMGLMAAPMDKLADMFRKFPDAAEKEGKK------- : 239
Ajellomyces           : LLLYPALEKHLADGKERV-EKDRERHQK----TKEQLMEFQSMKPTD---------------ANFEPTVNSLMDNLSAHMRDEEGDNLPALENAISNE----DSEELSKSFKRTKMFVPTRLHPAAPNQPAFESVIGFMMAPIDKLADTFRRFP---------------- : 205
Neurosporacrassa      : IIVYPAFEKFVPNGLVMA-EKDRAEHQRVKNLLYEFEKMTPSS-PDFL------------------PTLDKLWDALSDHITEEERDDLPALEENIDVE----YSSKLASSFNTTKHFVPTHSHPSAPDKPPYETAIGLLTTPMDKLIDMFRKFPKEDKKA---------- : 232
Chaetomium            : IVVYPAFEKHIPNGMVMA-EKDRSEHQQ----VKEKLHTFQSLAPTD---------------PTFHSTIDSLWEALAQHMQEEERDDLPALEQALDDE----ASGQLARSFDRTKHFVPTRSHPSAPDRPPYETAVGMLATPLDKLRDMFRRFPEGKPGANYLKAF---- : 197
Schizosaccharomyces   : IVVYPKFEKYLGEEGKEMAEKDRHEHQL----VKEMLYKFQSMKANQ---------------SNFIPALDELMESLQKHIDEEEQHDIPFLEKHLSEE----ESLHMASSFERTKKFVPTHSHPSAPNKPPFETVAGLFAAPIDKLRDMMEKWP---------------- : 203
Aspfumigatus1         : LVVYPAFEKHLPDGISIA-EKDRREHQT----VKEKLKKFQNLDPSN---------------ADFIPTIKSLMADLAEHIKEEETNDLVKLDQALSHD----DSVSLSKSFDRTKIFVPTRSHPSAPNKPPYETAVGLLTAPIDQLADLFRKWPHEGQQSPMGHERPMGH : 233
Neosartorya1          : LVVYPAFEKHLPDGISMA-EKDRREHQT----VKEKLKKFQNLDPSN---------------ADFIPTLKSLMGDLAEHIREEETNDLVKLDQALSHD----DSVSLSKSFDRTKMFVPTRSHPSAPNRPPYETAVGLLTAPIDQLADLFRKWPHEGQESPMGHQRPMGH : 233
Aspclavatus1          : LVVYPAFEKHLPDGVSMA-DKDRREHQT----VKEKLKKFQNLDPSN---------------PEFMSTIKSLMVDLAQHIKEEETNDLVKLDQALSHG----DSVGLSKSFERTKMFVPTRSHPSAPSKPPFETAVGLLTAPIDQLADLFRKWPHEGQASR--------- : 220
Neosartorya3          : LVVYPALEKYLPGGAETA-DKDREEHQT----IKEKLQKFQDMHPSD---------------ASFMPILKSMMADLEKHIEEEETIDFVKLEDAITPK----ESESLSKSFGRTKMFVPTRSHPNTPNKPPFETVVGLLAAPIDHLADMFRKWPDDVINPNPSSE----- : 191
Aspclavatus2          : LVVYPAMEKYLRDGKETA-DKDRREHQV----VKDKLEKFQNMHATE---------------PAFLPTIKSLMTDLFQHIDEEETIDFVKLESAITPK----ESDRLARSFGRTKMFVPTRSHPSAPNKPPFETVVGLLTAPMDHLADLFRKWPEEITPNPSTG------ : 191
Aspfumigatus3         : LVIYPALEKYLDDGKELA-RKDRAEHQT----VKEKLKAFQDMKSTD---------------PRFIPTLQSLWDDLQEHIRHEETEDIQLLEDVLSEQ----ESLGLSQSLNRTKLFVPSHAHPGAPSTPPFETAIGLLTAPIDRLSDLFRKWPAT-------------- : 221
Neosartorya4          : LVVYPALEKYLDDGKELA-RKDRAEHQT----VKEKLKAFQDMKSTD---------------PRFIPTLQSLWDDLQEHIHHEETEDIQLLEDALSEQ----ESLGLSQSLNRTKLFVPSHAHPGAPSTPPFETAVGLLTAPIDRLSDLFRKWPAM-------------- : 221
Aspclavatus3          : LVVYPAMEKYLDGGKEMA-DRDRAEHQT----VKERLKLFQDLKSTD---------------PRFLPTLTSLMADLKEHMMSEEAEDIPRLDSALSEE----ESVGLSQSLNRTKIFVPSRSHPSAPSAPPFETAVGLLTAPLDHIADVFRKWPS--------------- : 220
Cryptococcus          : LVVYPALEKYVDGGKALA-DRDREEHQK----VKEMLYKFQQLSPSD---------------SEFEPTIKKLMSDLAEHIKEEETEDLVKLEQAVPSS----ESSSLAASFKRTKMFAPTRSHPSAPDKPPFETVAGLLAAPLDKLGDVFRKFPNE-------------- : 220
Aspfumigatus2         : LIVYPLMEKNLPNGKEMA-DKDRAEHQI----VKEHLYKFQSLSSED---------------AEFEPTLKSLWSNLGQHIKEEESDDLPSLEKTLDQD----DSEKHTKKFMRTKKFIPTRSHPSAPDKPPFETVAGLMAAPIDHLADLFRKFPEESKSQLPP------- : 227
Neosartorya2          : LIVYPLMEKNLPNGKEMA-DKDRAEHQI----VKEHLYKFQGLSPED---------------PEFEPTLKSLWNNLGQHIKEEESEDLPSLEKTLDQD----DSEKHTKKFMRTKKFIPTRSHPSAPDKPPFETVAGLMAAPIDHLADLFRKFPEESKSQLPP------- : 227
Asporyzae             : LVVYPRMEKVLDNGKTMA-DHDRHEHQI----VKEDLYKFQGLQPDD---------------PEFIPTLKTLWANLAQHIKEEETQDLPALEHALSDS----DSDGMARSFGRTKKFIPTRSHPAAPDKPPYETVAGLMSAPMDRLGDLLRKFPDEARS----------- : 221
Aspniger2             : LVVYPEMELKLNNGKAMA-QHDREEHQV----IKELLYTFQGLQPDD---------------TEFIPTLKSLWANLEQHIKEEESQDLPALESALGDS----ASESMARSFGRTKNFIPTRSHPAAPDQPPYETVVGLMSAPIDRLGDMLRKFPDQKA------------ : 220
Aspniger1             : LVVYPQFEKSIPDGRAMA-DKDRKEHQS----VKEQLKKFQNMKPAD---------------PEFESTIRALMKDLSEHIKEEESQDLPKLEDAVSAE----ESEKLSKSFGRTKMFVPSRSHPSAPDKPPFETAIGLMTAPIDHLADLFRKWPHTSGMPNPSTK----- : 225
Aspterreus            : LVVYPQFEKKLPDGRSLA-DKDRKEHQS----VKEQLKKFQNMKPSD---------------PEFESTIKALMQDLSEHIKEEETQDLPKLEDALTTE----ESEGLSKSFGRTKIFVPSRSHPSAPDKPPFETAIGLMTAPIDHLADLFRRWPHTSGMPNPSTK----- : 192
Aspnidulans           : LVVYPVFEKNLPDGRAMA-DKDRHEHNT----VKEKLKQFQNMKPSD---------------PNFEPTLKSLMSTLSEHIQEEESQDLPKLEDAISSE----ESEKLSKSFGRTKMFVPSRSHPSAPDKPPFETVVGLLTAPIDHISDLFRSWPHTKGMPNPSTK----- : 228
Sclerotinia           : LVVYPAFTKHLGMQGQKMADEDRAEHQT----VKEALYKFQNLKPSD---------------ADLIPTLDALMKNLNEHIKGEEADDLPALESALESH----ESESMARSFGRTKAFVPSRSHPSAPSKPPFETVVGLMTAPIDHLGDMLRKFPDKTISPNPSTK----- : 192
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Summary 

 Escherichia coli di-iron YtfE was shown to be involved in the repair 

of iron-sulphur proteins, as deletion of ytfE generates a strain with lower 

activity of iron-sulphur enzymes and compromised in repairing damaged 

iron-sulphur centres. Additionally, YtfE promotes the recovery of iron-

sulphur enzymes inactivated by oxidative and nitrosative stresses. 

 In the present work, using UV-visible and resonance Raman 

experiments, we show that YtfE promotes the assembly of iron-sulphur 

clusters in proteins that contain this type of centre, namely apo-ferredoxin 

and the scaffold protein IscU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter V 

 

169 
 

V.1 – Introduction 

 Iron-sulphur (Fe-S) clusters are among the most ancient and 

functionally versatile prosthetic groups in nature that underpin the action 

of multiple proteins involved in key metabolic pathways. In bacteria, two 

major systems assist the assembly of iron-sulphur clusters, namely the 

house-keeping Isc (Iron-sulphur cluster) and the stress dedicated Suf 

(Sulfur assimilation) systems. Both machineries require the action of 

pyridoxal-phosphate-dependent cysteine desulphurases (IscS, SufS), 

scaffold proteins (IscU, SufU) and A-type carriers (IscA, SufA) to build and 

transfer the nascent iron-sulphur cluster to the target apo-protein. A-type 

carriers IscA/SufA were also reported to bind iron and are proposed to act 

as iron donors for assembly of Fe-S clusters in IscU/SufU (1). Apart from Isc 

and Suf systems, E. coli encodes YtfE which was previously demonstrated to 

promote the recovery of iron-sulphur enzymes (2). Loss of ytfE generates 

an E. coli strain with a wide range of growth–defective phenotypes, like 

slower growth of anaerobic cultures when using fumarate or nitrite as the 

terminal acceptors, and lower aconitase, fumarase and 6-phosphogluconate 

dehydratase activity (3). Moreover, YtfE is also required to restore the 

activity of fumarase and aconitase upon exposure to oxidative and 

nitrosative damage (2). 

 Highly conserved homologues of the E. coli YtfE protein have a 

widespread distribution particularly among pathogens, forming the Ric 

(Repair of iron centres) family of proteins ((4) and chapter IV). The 

importance of Rics in vivo has also been proved for Neisseria gonorrhoeae 

and Staphylococcus aureus (chapter IV) and for survival of Haemophilus 

influenza in nitric oxide producing macrophages (5). 
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 The study of E. coli and S. aureus Rics revealed that the proteins 

contain a di-iron centre of the histidine/carboxylate type ((6) and chapter 

IV). The UV-visible spectra of oxidized Rics exhibit a broad band at 350 nm 

and the EPR spectra display all the principal g-values below 2 (g=1.96, 1.92 

and 1.88), characteristic of the S=½ state of mixed valence and anti-

ferromagnetically coupled Fe(III)-Fe(II) state of the binuclear iron centre. 

The resonance Raman (RR) spectrum of the oxidized E. coli YtfE displays a 

band at 490  cm-1, attributed to a symmetric Fe–O–Fe stretching mode of 

the µ-oxo-bridged di-iron centre, which is proposed to be bridged by one or 

two µ-carboxylate bridges and coordinated by six histidines, aspartate or 

glutamate residues (6).  

 To further understand the functional mechanism of Rics, we tested 

whether E. coli YtfE is able to participate in the in vitro assembly of an iron-

sulphur cluster. 

 

V.2 – Materials and Methods 

 Protein production 

 E. coli YtfE was produced in E. coli BL21(DE3) Gold (Stratagene) 

transformed with pET-YtfE (3). Cells were grown aerobically in a 10-L 

fermenter, at 30 ºC, in M9 minimal medium with 20 mM glucose (Merck), 

30 µg.mL-1 kanamycin (Sigma) and 100 µM FeSO4 (Merck). When cells 

reached an OD600~0.3, protein expression was induced with 200 µM 

isopropyl-1-thio-β-D-galactopyranoside (IPTG, Sigma) and the growth 

continued for 7 h. Cells were disrupted in a French Pressure cell (Thermo 

Electron Corporation), the protein was purified by first separating the 

soluble extract over a Q-Sepharose High-Performance column (GE 

Healthcare) using a linear gradient (0-1 M NaCl) at 2.5 mL/min, and YtfE 
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eluted at ~200 mM NaCl. Protein fractions were subsequently loaded onto 

a Superdex S-75 gel filtration column (GE Healthcare), equilibrated in 20 

mM Tris-HCl plus 150 mM NaCl, pH 7.5 (buffer A). 

 E. coli IscS and IscU proteins, fused to an His-tag at the N- and C-

terminal respectively, were produced in E. coli M15:pREP4 cells harbouring 

pQE30-(His)6-IscS and pQE60-IscU-(His)6, and proteins were purified as 

previously described (7). Spinach ferredoxin was acquired from Sigma. 

 The purity of all proteins was confirmed by SDS-PAGE, their 

concentration assayed by the bicinchoninic acid method (8) and the iron 

content determined by the TPTZ (2,4,6-tripyridyl-1,2,3-triazine) method 

(9). 

 

 Assembly of iron-sulphur clusters 

 The [2Fe-2S]2+/1+ cluster of spinach ferredoxin (Sigma) was 

removed by incubation with trichloroacetic acid (TCA, 10%) on ice for 30 

min, the apo-protein was then washed with TCA (1%) and resuspended in 

buffer A. The reconstitution of the Fe-S centre was achieved by anaerobic 

incubation of the apo-ferredoxin (25 µM) with IscS (2.5 µM), L-cysteine (2 

mM), DTT (10 mM) and Fe(SO4)2(NH4)2 (500 µM) or di-iron YtfE (50 µM). 

After an overnight incubation, reconstituted ferredoxin was separated from 

the other components using a Superdex S-75 column and the amount of 

iron-sulphur cluster in ferredoxin was quantified by measuring the 

absorbance of the visible spectrum at 415 and 459 nm. The amount of iron-

sulphur cluster in ferredoxin was quantified using the ratio Abs280/Abs415 

and Abs280/Abs459. 

 The cluster formation in E. coli IscU was monitored by UV-visible 

spectroscopy and performed, anaerobically, in two ways. First, E. coli IscU 

(50 µM) was mixed in buffer A, with IscS (4 µM), DTT (4 mM), holo-YtfE 
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(150 µM), and the reactions initiated by addition of L-cysteine (2.5 mM). 

Second, IscU (50 µM) was incubated in 50 mM Tris-HCl pH 7.5, with Na2S 

(2.4 mM) and DTT (4 mM). The reaction was initiated by addition of holo-

YtfE (150 µM). The amount of iron-sulphur cluster in IscU was determined 

at 456 nm (10), after subtracting the intensity of the same band of a control 

sample that contained all components, except the apo-protein. 

 

 Resonance Raman spectroscopy 

 For RR studies, anaerobic reactions, containing IscU (70 µM), IscS 

(3.5 µM), DTT (4 mM), L-cysteine (3 mM), with or without holo-YtfE (200 

µM), after 150 min, were concentrated in an ultrafiltration cell (Vivaspin 

500, Vivascience Sartorius) to ~2 mM IscU and introduced in a cryostat 

(Linkam) mounted on a microscope stage. Spectra were recorded at -190 

ºC from droplets of frozen samples in backscattering geometry by using a 

confocal Raman microscope (Jobin Yvon, XY), equipped with 1200 l/mm 

grating and a liquid-nitrogen-cooled back-illuminated CCD detector. The 

457-nm line from an Argon ion laser (Coherent Innova 70) was used for 

excitation, with the laser power at the sample set to 13 mW and 

accumulation time of 40 seconds. 

 

V.3 – Results 

 In the present work, we analyzed whether the presence of holo-YtfE 

could promote the formation of Fe-S clusters in the recipient proteins such 

as the apo-form of spinach ferredoxin and E. coli IscU, monitored by means 

of UV-visible and resonance Raman (RR) spectroscopies.  
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 Reconstitution of ferredoxin by YtfE 

 After incubation of apo-ferredoxin with di-iron YtfE, in the presence 

of L-cysteine and IscS, the visible spectrum exhibited bands at 415 and 459 

nm (Figure V.1A) that increased in intensity over time, reaching a 

maximum after 75 min. These bands are typical of a [2Fe-2S]2+/1+ 

containing ferredoxin (Figure V.1B). After overnight incubation, we 

estimated that ~70% of a single [2Fe-2S]2+ cluster was formed in 

ferredoxin (Figure V.1B).  

 

 Assembly of iron-sulphur centre in IscU 

 The visible spectrum of the sample containing holo-YtfE, IscU, IscS 

and L-cysteine exhibited a band at ~456 nm (Figure V.1C), typical of the  

formation of [2Fe-2S]2+ cluster in IscU (10, 11). The intensity of this band 

after subtraction from that of the control (overall reaction without the 

scaffold protein IscU), showed that ~100% of a single [2Fe-2S]2+ centre 

was formed per IscU/homodimer. Moreover, the percentage of 

reconstitution of [2Fe-2S]2+ centre in IscU varied with the concentration of 

YtfE used in the assay (Table V.1).  

 

  

 

 

 

 To infer if the cluster formation in IscU promoted by YtfE was 

influenced by the presence of IscS, similar experiments were performed but 

replacing IscS by an excess of Na2S. The visible spectrum of IscU in these 

conditions differed from that obtained when using IscS and the percentage 

[YtfE] (µM) % [2Fe-2S]2+ IscU*

50 40

150 100

Table V.1 – Assembly of [2Fe-2S]2+ cluster in IscU. 

*Percentage of cluster formed after 75 min 
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of [2Fe-2S]2+ centre formed reached only ~50% after 75 min (Figure V.1D). 

No further changes were observed even after an overnight incubation. 

 

 

  

Figure V.1 – Formation of [2Fe-2S]2+ clusters mediated by YtfE. (A, B) Visible
spectra of apo-ferredoxin (25 µM) upon incubation with IscS (2.5 µM), L-Cys (2
mM) and holo-YtfE (50 µM) (A). Spectra are represented at 0, 15, 30 and 75 min
(from bottom to top) after subtracting the contribution of YtfE. (B) Visible
spectra of holo-ferredoxin (25 µM, dotted line), and apo-ferredoxin (25 µM) after
an overnight incubation with holo-YtfE (50 µM) or Fe(SO4)2(NH4)2 (500 µM,
black line and traced line, respectively). (C, D) Visible spectra of IscU (50 µM)
depicting the Fe-S cluster formed upon incubation with holo-YtfE (150 µM), IscS
(4 µM) and L-cysteine (2.5 mM) (C), or Na2S (2.4 mM) (D). Spectra were
subtracted from that of the control for 0, 15, 30, 60 and 75 min (C) and 0, 1, 5, 15,
60 and 75 min (D) (bottom to top).
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 Resonance Raman studies of Fe-S cluster assembly in IscU 

 The presence of Fe-S clusters in E. coli IscU was also analyzed by RR 

spectroscopy, after incubation of IscU, L-Cys, IscS, in the presence and in 

the absence of di-iron YtfE, and using an excitation laser line at 457 nm. 

Note that RR bands originating from YtfE do not contribute to the spectrum 

due  to the lack of sufficient resonance enhancement under the 

experimental conditions employed (6). The spectrum reveals several bands 

around 340 cm-1 (Figure V.2, spectrum a), which are absent from the 

spectrum of the sample lacking holo-YtfE (Figure V.2, spectrum b). The 

bands are broad and asymmetric indicating the presence of several 

populations. Vibrational modes at 295, 345, 395 and 420 cm-1 fall into the 

range of frequencies characteristic of [2Fe-2S]2+ clusters (6, 10, 12-14), and 

are attributed to 

terminal (t) modes B3u 

(295 cm-1) and Ag (345 

cm-1) and bridging (b) 

modes Ag (396 cm-1) and 

B2u (420 cm-1) of the 

Fe2S2bS4t cluster (15). The 

shoulders at 336 and 356 

cm-1 are indicative of 

bridging and terminal 

modes of [4Fe-4S]2+ 

clusters, and these bands 

were also observed in 

the spectrum of IscU 

from E. coli (12). The 

Figure V.2 – Resonance Raman spectrum of
the Fe-S cluster formed in E. coli IscU via YtfE.
RR spectra of a reaction of IscU, L-Cys, IscS and
DTT in the presence (a) and in the absence of
holo-YtfE (b). Spectra were acquired at -190 º C
with 457 nm excitation, a laser power of 13 mW,
and accumulation time of 40 s.



Escherichia coli YtfE is able to promote the formation of iron-sulphur clusters 

 

176 

 

modes assigned to the [2Fe-2S]2+ centre show slight downshifts in 

comparison with those previously reported (12), but are consistent with 

the energies of vibrational modes observed in other [2Fe-2S]2+ clusters (6, 

10, 13-15). The origin of the intense band at 308 cm-1 is not clear at this 

point; nevertheless, it might be due to contributions from non-resolved ice 

lattice mode (~312 cm-1) and, possibly, from another adventitious iron-

thiolate species (16).  

 

V.4 – Discussion 

 Organisms have developed multicomponent systems that promote 

the biogenesis of Fe-S proteins while protecting the cellular surroundings 

from the potentially deleterious effects of free iron and sulphur (1, 17). The 

Isc and Suf systems are the mechanisms for Fe-S clusters assembly in E. coli 

encoded by the operons iscRSUAhscBAfdx and sufABCDSE, respectively. IscS 

and SufS are the cysteine desulphurases that provide the sulphur required 

for the assembly process and at the same time protect the cell from free 

sulphur (1, 17). Although, several iron-binding proteins like IscA, SufA, 

frataxin (CyaY) and YggX were shown to give iron for the in vitro 

maturation of Fe-S clusters, the iron donor for iron-sulphur clusters 

assembly was not yet identified (11, 18, 19). 

 The data here obtained reveal that the holo-YtfE promotes the 

formation of iron-sulphur clusters in apo-ferredoxin and IscU, which 

suggests that YtfE could function as an iron donor in the assembly of these 

clusters. The process seems to involve the di-iron centre of YtfE. This 

agrees with previous results showing that the cluster was required for the 

recovery of the aconitase and fumarase activities (2). 
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 In summary, the present work helped to clarify the role of YtfE in 

the repair of Fe-S centres. 
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Summary 

 Escherichia coli YtfE is required for the repair of oxidatively and 

nitrosatively damaged Fe-S clusters, a requisite for pathogens to survive 

inside the host. Our previous data revealed that E. coli YtfE promotes the 

assembly of Fe-S centres in the scaffold protein IscU and in the apo-form of 

spinach ferredoxin. 

 In this work, we searched for E. coli YtfE interactants in vivo using 

the bacterial adenylate cyclase two-hybrid system (BACTH). To this end, we 

first performed the analysis of YtfE interaction with the cysteine 

desulphurases IscS and SufS, and with IscU. Our results show that YtfE is 

able to interact with IscS and SufS. In the second part, two libraries 

covering for part of E. coli genome were used to find the protein 

interactants of YtfE. The full sequence of the positive interactants was 

cloned into BACTH system plasmids to confirm the interactions with YtfE. 

 Overall, the BACTH system allowed identifying proteins that 

interact with E. coli YtfE.  
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VI.1 – Introduction 

 Proteins that contain iron-sulphur clusters are the most ubiquitous 

metalloproteins in nature, performing a wide range of biological processes 

that are essential to the metabolism of the cell (1, 2). Fe-S clusters are 

formed, in bacteria, by two major systems: the house-keeping Isc (Iron-

sulphur cluster) and the stress dedicated Suf (Sulfur assimilation). The 

assembly of Fe-S centres involves three main proteins: the scaffold protein 

that receives the nascent Fe-S cluster, the cysteine desulphurase that 

provides the sulphur source using cysteine, and the iron donor (3). When 

Fe-S clusters are damaged by oxidative and nitrosative stress, a family of 

proteins named Ric (Repair of iron centres) is required for the repair of 

these clusters ((4, 5) and chapter IV). Ric proteins are widespread in nature 

and are present in human, animal and plant pathogens (chapter IV). The 

genes encoding these proteins are induced by nitrosative stress and their 

deletion leads to strains of Escherichia coli or Staphylococcus aureus or 

Neisseria gonorrhoeae  with a wide-range of growth defective phenotypes 

including lower activity of Fe-S containing enzymes ((4-6) and chapter IV). 

Previous work in our laboratory showed that addition of holo-YtfE (Ric 

homologue in E. coli) is able to recover the activity of  the [4Fe-4S]2+/1+ 

clusters of aconitase and fumarase after damage by oxidative and 

nitrosative stresses (5). Furthermore, the assembly of Fe-S clusters in IscU 

and apo-ferredoxin is promoted by YtfE (chapter V). 

 The bacterial adenylate cyclase two hybrid system (BACTH) is used 

to detect protein-protein interactions in vivo. This method is based on 

interaction-mediated reconstitution of the adenylate cyclase activity. The 

catalytic domain of adenylate cyclase from the bacteria Bordetella pertussis 

consists of two fragments, T18 and T25 (Figure VI.1A), that are not active 
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when physically separated (Figure VI.1B). Here, the proteins of interest 

were genetically fused to the two fragments and co-expressed in an E. coli 

cya strain (i.e. a strain deficient in endogenous adenylate cyclase). 

Interaction of the two hybrid proteins results in a functional 

complementation between the T25 and T18 fragment (Figure VI.C), leading 

to cAMP synthesis that binds to the catabolite activator protein, CAP, and 

will consequently activate several operons, such as lactose operon and 

maltose regulon (Figure VI.D) (7-9). 

 The goal of the current study was to search for proteins that 

interact with YtfE and therefore may be involved in the repair of Fe-S 

clusters. For this purpose, using the BACTH system, members of Isc and Suf 

systems were tested for interactions with E. coli YtfE. Furthermore, the E. 

coli proteome was screened for YtfE interactants that were then cloned in 

the BACTH plasmids for confirmation purposes. 

 

VI.2 – Materials and Methods 

Bacterial strains 

 The non-reverting adenylate cyclase deficient (cya) E. coli reporter 

strain, DHM1 (genotype: F-, cya-854, recA1, endA1, gyrA96 (Nalr), thi1, 

hsdR17, spoT1, rfbD1, glnV44(AS)), was used for detection of protein-

protein interactions and grown in Luria-Bertani (LB) broth or on LB agar. E. 

coli XL2Blue (genotype: F´ proAB lacIqZΔM15 Tn10 (Tetr) endA1, supE44, 

thi-1, recA1, gyrA96, relA1, lac) was used as the cloning host. 
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Plasmids construction 

 The plasmids used in this work are shown in Table VI.1. The 

construction of the plasmids was carried out with the primers described in 

Table VI.2. Standard protocols were used for molecular cloning, PCR, DNA 

analysis and transformation. Briefly, ytfE, iscS, sufS, iscU and dps genes were 

individually amplified by PCR using E. coli K12 ATCC23716 genomic DNA 

as template. The amplified DNA fragments were digested with BamHI/SalI 

(ytfE) and BamHI/KpnI (iscS, sufS, iscU and dps) and subcloned into the 

corresponding sites of pUT18, pUT18C, pKT25 and pKNT25 to check for 

T25 T18

ATP
cAMP

T25
T18

cAMP

T25 T18

ATP
cAMP

X Y

cAMP

CAP CAP

cAMPcAMP

cAMP-CAP promoter

Reporter gene
(lac, mal, etc…)

ON

A B C

D

Figure VI.1 – Principle of BACTH system. The catalytic domain of adenylate
cyclase (CyaA) is formed by two fragments, T25 and T18 (A), that are inactive
when physically separated (B). When the two fragments are fused to
interacting polypeptides (X and Y), the complementation between T25 and
T18 fragments occurs and then cAMP is synthesized (C). Cyclic AMP binds to
CAP and turns on the expression of several genes, like lac and mal operons
involved in lactose and maltose catabolism (D). ATP – adenosine
tryphosphate; AMP – adenosine monophosphate; cAMP – cyclic AMP ; CAP –
catabolite activator protein. Adapted from [8].
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possible dependence of the interactions on the N- or C-terminal location of 

the protein. The resulting recombinant plasmids expressed hybrid proteins 

in which the complete amino acid sequence of YtfE, IscS, IscU, SufS and Dps 

were fused to the C- or N-terminal of the T25 and T18 fragments of 

adenylate cyclase of B. pertussis (Figure VI.2). All recombinant clones were 

sequenced to ensure that no undesired mismatches had been introduced 

during the PCR amplification procedure. 

Table VI.1 – List of plasmids used in this study.  

Plasmids  

Name Description Source/ 

Reference 

pUT18/ 

pUT18C 

Vector that allows construction of in-frame fusions at the N-terminus/C-

terminus of T18 fragment (amino acids 225–399 of CyaA) 
(7) 

pKT25/ 

pKNT25 

Vector that allows construction of in-frame fusions at the C-terminus/N-

terminus of T25 fragment (amino acids 1–224 of CyaA) 
(7) 

pUT18/ 

pUT18C-YtfE 
ytfE fused to T18 fragment in the N/C-terminal This study 

pKT25/ 

pKNT25-YtfE 
ytfE fused to T25 fragment in the C/N-terminal This study 

pUT18/ 

pUT18C-IscS 
iscS fused to T18 fragment in the N/C-terminal This study 

pKT25/ 

pKNT25-IscS 
iscS fused to T25 fragment in the C/N-terminal This study 

pUT18/ 

pUT18C-SufS 
sufS fused to T18 fragment in the N/C-terminal This study 

pKT25/ 

pKNT25-SufS 
sufS fused to T25 fragment in the C/N-terminal This study 

pUT18/ 

pUT18C-IscU 
iscU fused to T18 fragment in the N/C-terminal This study 
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Cont. Table VI.1 – List of plasmids used in this study.  

Name Description Source/ 

Reference 

pKT25/ 

pKNT25-IscU 
iscU fused to T25 fragment in the C/N-terminal This study 

pUT18/ 

pUT18C-Dps 
dps fused to T18 fragment in the N/C-terminal This study 

pKT25/ 

pKNT25-Dps 
dps fused to T25 fragment in the C/N-terminal This study 

pUT18-Zip Leucine zipper fused to T18 fragment in the N-terminal (7) 

pKT25-Zip Leucine zipper fused to T25 fragment in the C-terminal (7) 

pUT18-TorD torD fused to T18 fragment in the N-terminal Simon Andrews 

lab 

pKT25-TorD torD fused to T25 fragment in the C-terminal Simon Andrews 

lab 

BamHI 

pUT18 plasmid that contains chromosomal fragments obtained 

via partial digest of the MC4100 chromosomal DNA with 

Sau3A1 and cloned into BamHI site  

Simon Andrews 

lab (Tracy Palmer, 

Dundee, UK) 

BamHI+1 

pUT18 plasmid with a +1 frameshift in the polylinker that 

contains chromosomal fragments obtained via partial digest of 

the MC4100 chromosomal DNA with Sau3A1 and cloned into 

BamHI site  

Simon Andrews 

lab (Tracy Palmer, 

Dundee, UK) 

 

BACTH complementation assays 

 For BACTH complementation assays, DHM1 cells were co-

transformed with the plasmids carrying ytfE in various combinations with 

the complementary plasmids harbouring iscS, sufS, iscU and dps. Co-

transformants were selected on LB-agar plates containing 1 mM IPTG 

(isopropyl β-D-1-thiogalactopyranoside), 100 µg/mL ampicillin, 30 µg/mL 
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kanamycin and 40 µg/mL of X-gal (5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside), and incubated for 36 h at 30º C. 

Table VI.2 – List of primers used in this study. 

Primers  

Name Sequence (5’-3’) 

YtfEFw/rev GAGGTGTCGACTATGGCTTATC 

CTTTTAGGATCCTCACCCGCC 

DpsFw/Rev GTTAATTACTGGGATCCAACATCAAGAGG 
 

TCCTGTCAGGTACCCGCTTTTATC 
 

IscSFw/rev GAGTGATGGATCCAGTTTATAGAG 

GGCTCATCAGGTACCCGGTATCG 

SufSFw/Rev CAGCAGGTGCGGATCCGAATCG 

GTTTGCTGGGGGTACCGGGAGG 

IscUFw/Rev GAATCAGGGGATCCTATAATGGC 

GAAGCAAAGGTACCGTTGAGGTTT 

T25Fw/Rev ATGCCGCCGGTATTCCACTG 

CGGGCCTCTTCGCTATTACG 

NT25Fw/Rev CACCCCAGGCTTTACACTTTATGC 

CAATGTGGCGTTTTTTTCCTTCG 

T18Fw/Rev CATTAGGCACCCCAGGCTTTAC 

GAGCGATTTTCCACAACAAGTC 

T18CFw/rev CATACGGCGTGGCGGGGAAAAG 

AGCGGGTGTTGGCGGGTGTCG 

 

 To search the E. coli proteome for possible interactants of YtfE, 

about 1 µg of plasmid DNA library (BamHI or BamHI+1) was used to co-

transform E. coli DHM1 electrocompetent cells harbouring pKT25-YtfE. The 

DNA libraries, a kind gift of Dr. Simon Andrews, were obtained by partial 

digestion of the E. coli MC4100 chromosomal DNA with Sau3A1 and cloned 

into the BamHI site of the pUT18 plasmid (BamHI) and pUT18 plasmid 

with a +1 frameshift in the polylinker (BamHI+1). Blue colonies on 
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selective plates appearing within 36 hours of incubation at 30º C contained 

pUT18 plasmids 

encoding potential 

genes for polypeptides 

that interact with E. 

coli YtfE. To isolate the 

pUT18 plasmids, the 

colonies were selected 

on LB-agar plates 

supplemented with 

ampicillin, and the 

plasmids isolated were 

reintroduced into 

competent DHM1 cells 

containing pKT25-YtfE, 

empty pKT25 vector or pKT25-TorD to confirm the interactions. 

 DHM1 cells co-transformed with the plasmid containing the gene of 

interest (ytfE/iscS/sufS/iscU/dps) and the complementary empty plasmid 

were used as negative controls. DHM1 cells transformed with the plasmid 

harbouring the gene of interest and the complementary vector containing 

torD were used to test for “false positives”. TorD is a protein that binds 

non-specifically with a wide variety of polypeptides, hence with this 

experience we could analyse the non-specificity of the interactions (10). 

 The efficiency of the interactions was evaluated by quantifying the 

β-galactosidase activities in liquid cultures. 

 

 

 

Figure VI.2 – Schematic representation of hybrid
proteins obtained after using pUT18, pUT18C,
pKT25 and pKNT25 plasmids for cloning. Protein
– YtfE, IscS, SufS, IscU or Dps. T25 – fragment T25
from the adenylate cyclase catalytic domain from B.
pertussis. T18 – fragment T18 from the adenylate
cyclase catalytic domain from B. pertussis. A –
cloning using pUT18C pl asmid; B – cloning using
plasmid pUT18; C – cloning using plasmid pKT25; D
– cloning using pKNT25 plasmid.
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β-galactosidase assays 

 For β-galactosidase assays, 3-4 representative colonies of each 

transformation plate were inoculated, in duplicate, in LB broth 

supplemented with the appropriate antibiotics. After an overnight growth 

at 37º C, the culture was re-inoculated 1/100 into fresh LB supplemented 

with ampicillin, kanamycin and IPTG. After 16 hours growth, at 30º C, 1 mL 

of cultures displaying an OD600~0.5 were collected by centrifugation (5 min 

at 5000 rpm). The pellets were resuspended in 100 µl BugBuster HT 1x 

(Novagen) for cellular lysis and incubated at 37º C for 30 min. Cellular 

debris were removed by centrifugation (10 min at 12000 rpm) and 20 µl of 

each suspension was used in duplicate for the enzymatic reaction in a 

microtitre plate reader. The β-galactosidase assays were initiated upon 

addition of the following reaction mixture: 0.27% β-mercaptoethanol (v/v), 

0.9 mg/mL ONPG (o-nitrophenyl-β-D-galactopyranoside) in Buffer A (60 

mM Na2HPO4.7H2O, 40 mM NaH2PO4.H2O, 1 mM MgSO4.7H2O and 10 mM 

KCl). The absorbance was measured at 420 nm, each 2 min and the reaction 

was held for 1.5 h at 28º C.  The β-galactosidase specific activity (11) is 

defined in units per milligram of protein. For conversion of microplate 

reader Abs420 values into standard spectrophotometer values, a correction 

factor of 2.2 was determined using serial dilutions of an O-nitrophenyl 

(ONP) solution. 

 

 The hybrid plasmids extracted from positive clones of the libraries 

were sequenced using the T18Fw primer, and genes identified by BLAST 

search using the E. coli K12 MG1655 genome database. 
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VI.3 – Results 

E. coli YtfE interacts with IscS and SufS 

 The formation of YtfE-promoted Fe-S centre in the scaffold protein 

IscU and in the presence of the cysteine desulphurase IscS led us to analyse 

via BACTH assays possible interactions of YtfE with IscU, IscS and SufS, a 

cysteine desulphurase expressed by E. coli under oxidative stress 

conditions ((3) and chapter V).  

 While no interaction was observed between YtfE and IscU, the 

formation of a complex 

between YtfE and IscS 

was inferred by the 4-6 

times higher β-

galactosidase activity 

in comparison to that 

of the control. The 

interaction seems to be 

independent of YtfE 

configuration as 

judged by the similar 

values obtained when 

YtfE was expressed 

either as N- or C-

terminal part of the 

pUT18 fusion protein 

(Figure VI.3). 

 The results also revealed that YtfE interacts with SufS but the 

formation of the complex was only observed when the N-terminal of SufS 
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Figure VI.3 – Interaction of E. coli YtfE with IscS,
IscU and SufS. The interaction of YtfE, cloned in the
C-terminal (black bars) or in the N-terminal (grey
bars) of Cya domain, was ev aluated in cells co-
transformed with the complementary plasmids
containing iscS, iscU or sufS genes fused to a second
Cya domain. Empty vectors co-transformed with
vectors containing iscS, sufS or IscU genes (white
bars) served as negative controls. Values are mean ±

standard error of two independent cultures analyzed
in duplicate. *p<0.05 (One-way ANOVA Bonferrani
multiple comparison test).
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fused to the T25 fragment was complemented with YtfE fused to the T18 

fragment in either position (Figure VI.3). 

 Hence, YtfE interacts in vivo with all known sulphur-supply proteins 

of the iron-sulphur biogenesis systems of E. coli.  

 

Identification of protein interactions with YtfE in E. coli proteome 

 To identify possible interactions of YtfE with proteins from E. coli, 

DHM1 cells containing pKT25-YtfE were co-transformed with two libraries 

BamHI and BamHI+1 (Figure VI.4). The size of each library is 

approximately 1.7 x 103 clones and the plates for the co-transformants of 

each library resulted in over 3 x 103 clones with ~1 blue colony out of a 

total of 100 colonies. In order to confirm the positive interactions and to 

exclude “false positives”, the plasmids isolated from blue colonies were co-

transformed in DHM1 cells harbouring pKT25, pKT25-YtfE or pKT25-TorD 

and the β-galactosidase activities were measured (Figure VI.4 and VI.5). In 

this second round, only nine plasmids were selected to be sequenced as 

they fulfilled two conditions. First, the negative control in which DHM1 

cells:pKT25 were co-transformed with the selected plasmids gave β-

galactosidase activity lower than the cells containing pKT25-YtfE. Second, 

the cells containing pKT25-TorD, the control for “false positives”, had β-

galactosidase activities lower when compared to the cells harbouring 

pKT25-YtfE. The selected plasmids satisfying these requirements were 

nominated from A to I and their β-galactosidase activities are represented 

in Figure VI.5. 
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 The plasmids were sequenced using the T18Fw primer (Table VI.2) 

and the results analysed using the BLAST program 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) for E. coli K12 MG1655 genome 

(Figure VI.6). Plasmid A (BamHI library) and F (BamHI+1 library) lack 

fragments of E. coli genome. The sequencing of plasmids B to E from BamHI 

library revealed, upstream of the T18 domain, the same fragment of E. coli 

genome, namely rhtA, a gene encoding a inner membrane transporter 

involved in resistance to homoserine and threonine (Figure VI.6, yellow 

arrow). The chromosomal fragments contained in the vectors have a 

maximum of 2 kbp, i.e. it also contains part of the gene downstream of rhtA 

that encodes Dps (DNA binding protein from starved cells) (Figure VI.6). 

A B

T18-E with 
T25 empty

T18-E with 
T25-YtfE

T18-E with 
T25-TorD

Figure VI.4 – Representative plates obtained during the BACTH assays for
E. coli YtfE interaction with libraries BamHI and BamHI+1. In A, a selective
plate obtained for DHM1 cells containing pKT25-YtfE co-transformed with
BamHI+1 library is exemplified. Arrows indicate blue colonies (positive
interaction). In B, the colonies of the interaction of polypeptides from plasmid
E (BamHI+1 library) with pKT25 (negative control), pKT25-YtfE or pKT25-
TorD (false positive control) are exhibited . All transformations are performed
in LB-agar selective plates with IPTG/X-Gal as described in Materials and
Methods and are represented for growth after 36 hours at 30º C.
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 Dps is an iron storage protein formed by 12 subunits capable of 

holding ~500 iron atoms (12, 13). In E. coli, Dps has a protective role 

against oxidative stress as its ferroxidase centre removes Fe2+ and H2O2 

from solution preventing the occurrence of the Fenton reaction (12, 13). 

 The sequencing results of plasmids G to I from BamHI+1 library 

exhibited, upstream of the T18 fragment, the full sequence of efp and ecnA 

and part of ecnB (Figure VI.6, yellow arrow). All sequenced fragments are 

in-frame with the ORF encoding the T18 fragment. 

  

 

 

 

Figure VI.5 – BACTH analysis of interactions with E. coli YtfE. The efficiency of
functional complementation between the indicated hybrid polypeptides was
quantified by β-galactosidase activities in E. coli DHM1 cell lysates harbouring the
complementing plasmids, as described in Materials and Methods. A to I
designates the plasmids extracted from libraries BamHI (A to E) and BamHI+1 (F
To I) that were co-transformed with T25 empty plasmid (white bars), T25
fragment associated with YtfE (grey bars) or T25 domain linked to TorD (black
bars). Each bar represents the mean value ± standard error from results of at
least three independent cultures.
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 The efp gene encodes the elongation factor EF-P,  a translation 

factor that facilitates in vitro the formation of the first peptide bond (Figure 

VI.6) (14, 15). The ecnA gene belongs to the gene cluster ecnAB that express 

two small cell-membrane associated lipoproteins (Figure VI.6). EcnAB form 

a toxin-antitoxin module which regulates a programmed bacterial cell 

death under high osmolarity conditions. The entericidin A (EcnA) functions 

as an antidote to the bacteriolytic entericidin B (EcnB) (16). 

 At first glance, Dps is a protein that may be involved with YtfE in the 

repair of Fe-S clusters due to its role in iron storage and cellular protection 

under oxidative stress conditions (12). Hence, the direct interaction of YtfE 

with Dps was tested. 

 

 

 

 

rhtA dps B, C, D and E

ecnAefp ecnB sugEyjeK G, H and I

Figure VI.6 – Schematic representation of the results obtained after
sequencing the selected plasmids extracted from BamHI and BamHI+1
libraries. The resul ts were acquired by blasting the sequencing results using
BLAST against E. coli MG1655 genome. Yellow arrow represents the part of the
plasmid sequenced which matches the E. coli genome. Plasmids B, C, D and E,
extracted from BamHI library, and plasmids G, H and I, from BamHI+1 library,
contained the same fragment of E. coli genome. Genes: rhtA – resistance to
homoserine and threonine; dps – DNA-binding protein from starved cells ; yjeK –
predicted lysine 2,3-aminomutase; efp – elongation factor-peptidyltransferase;
ecnA – entericidin A ; ecnB – entericidin B ; sugE – supressor of groE.
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E. coli YtfE interacts with the iron storage protein Dps 

 The formation of a complex 

between the two proteins was inferred 

by the 4-5 times higher β-galactosidase 

activities in comparison to that of the 

control (Figure VI.7). The interaction 

seems to be independent of the YtfE 

interacting domain as judged by the 

similar values obtained when YtfE was 

expressed either as N- or C-terminal 

part of the pUT18 fusion protein. 

However, the interaction is dependent 

on the Dps domain due to the higher 

values achieved when the C-terminal of 

Dps was fused to the T25 Cya domain 

(Figure VI.7). 

 In conclusion, YtfE interacts in 

vivo with Dps, confirming the results 

obtained from the libraries. 

 

VI.4 – Discussion 

 In this work, E. coli was screened in vivo for protein interactions 

with YtfE using a bacterial adenylate cyclase two-hybrid system approach.  

 The oxidative and nitrosative stresses cause iron-sulphur cluster 

degradation, therefore creating a demand for their repair to maintain the 

integrity of the cellular metabolic pathways. According to our data (chapter 

Figure VI.7 – Interaction of E. coli
YtfE with Dps. The interaction of
YtfE cloned in the C-terminal
(white bars) or in the N-terminal
(grey bars) of Cya Domain was
evaluated in cells co-transformed
with the complementary plasmid
containing dps gene fused to the N-
terminal of the second Cya domain.
Empty vectors co-transformed with
vectors containing dps or ytfE genes
served as negative controls. Values
are means ± standard error of at
least three independent cul tures
analyzed in duplicate. *p<0.05
(One-way ANOVA Bonferrani
multiple comparison test).
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V), the recovery of Fe-S clusters via YtfE may occur by transfer of iron to 

the dismantled cluster. If the damage leads to the complete destruction of 

the cluster, we showed that YtfE has the ability to interact with IscS/SufS, 

acting together to provide both the iron and the sulphur required for the 

reassembling process, through an as yet unknown mechanism. Moreover, 

the positive interaction with IscS suggests that YtfE may also have a role in 

the assembly of Fe-S clusters. It is noteworthy that, although deletion of 

ytfE is associated with a clear phenotype under oxidative and nitrosative 

stress conditions, we observed that non-stressed cells also have lower 

aconitase and fumarase activity in the absence of ytfE (4). 

 The second part of this work involved the identification of novel E. 

coli YtfE interactants by screening the E. coli proteome. The results 

revealed a new interactant, the ferritin-like protein, Dps. Further studies 

are required to understand how Dps is involved with YtfE in the repair of 

Fe-S clusters under stress conditions. 

 

 Although the bacterial two-hybrid system is an in vivo method to 

identify protein-protein interactions, other in vitro and in vivo techniques 

are required to characterize the interaction of YtfE with IscS, SufS and Dps, 

such as co-immunoprecipitation, Far-Western blotting and surface plasmon 

resonance (Biacore). In summary, by providing evidence for interaction 

with IscS, SufS and Dps, the present work helped to identify other players 

that could be involved with YtfE in Fe-S cluster assembly/repair. 
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Chapter VII 

Discussion and general conclusions 

 

VII.1 – Discussion 

 

 VII.1.1 – The role of Escherichia coli flavorubredoxin 

 

 One of the main purposes of this dissertation was to determine the 

role of flavorubredoxin in the protection of bacteria upon nitrosative and 

oxidative stress. Bacteria are exposed to nitric oxide generated from mainly 

two sources: from nitrite and nitrate reduction (denitrification pathway), 

or as products of the inducible nitric oxide synthase, one of the mammalian 

host defence mechanisms (1-6). 

 To survive the deleterious effects of nitric oxide, microbes are able 

to detect and detoxify NO and to repair the damage provoked in the cellular 

targets (5-8). One important enzyme involved in nitric oxide 

detoxification is Escherichia coli flavorubredoxin (9, 10). The results 

obtained in this thesis show that norV transcription is hindered in the 

presence of oxidative and nitrosative stress. Moreover, it was 

demonstrated that the lack of norV transcription is related to its regulator, 

NorR (11-14). Upon oxidation of the NorR mono-iron centre, nitric oxide no 

longer binds, compromising the activation of norV (chapter III). 

 Consistent with the data, the mononuclear iron centres were shown 

to be damaged by oxidative stress and, in the presence of traces of oxygen, 

NorR loses its iron atoms (15, 16). Furthermore, purification of the 

recombinant protein under aerobic condition yields a  NorR protein devoid 



Discussion and General Conclusions 

208 
 

of iron (17). However, the nitrosylated mono-iron centre of Ralstonia NorR 

is stable under aerobic conditions (16). When the levels of oxidative stress 

are low, E. coli can reduce the oxidized mono-iron centre through an iron 

reductase that would lead to NO binding and consequently activation of 

norV transcription. In order to comprehend the instability of the mono-iron 

centre, the structure of NorR must be determined to unveil the iron centre 

position and exposure. 

  

  Besides flavorubredoxin, two other major nitric oxide detoxifying 

systems are present in E. coli: the periplasmic formate dependent 

cytochrome c nitrite reductase, NrfA, and the flavohaemoglobin, Hmp 

(Figure VII.1)(18). The combined activity of the three enzymes allows E. 

coli to be flexible in its metabolism and hence helps its survival in a range of 

different environments. For 

example, upon infection, 

bacteria are exposed to high 

concentrations of nitric oxide 

generated by macrophages in 

low dioxygen environments 

(~1% of oxygen within 

infected tissues). Under these 

conditions, the three 

enzymes are catalytically 

efficient and FlRd and NrfA 

act as NO reductases 

whether Hmp acts as NO 

denitrosylase or reductase 

(9, 18-21). 

Figure VII.1 – The cellular location of
proteins involved in the detoxification of
nitric oxide in Escherichia coli. NrfA –
Peripl asmic nitrite reductase; NorVW –
flavorubredoxin, NorV, and its reductase
NorW; Hmp – flavohaemoglobin; NO – nitric
oxide; NH4

+ - ammonium; N2O – nitrous oxide;
NO3

- - nitrate. Adapted from [18].
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  A study revealed that deletion of nrfA slightly attenuated the 

virulence of Salmonella enterica in mice (22). It has been proposed that 

NrfA in the periplasm provides the first line of defence against external NO 

generated by the host. Thus, the lack of NrfA is not critical for virulence, as 

Flrd and Hmp are present in the cytoplasm to detoxify the NO that escapes 

NrfA control (19). In E. coli, Hmp was shown to have a role in bacterial 

viability and NO detoxification in macrophages (23). Moreover, Hmp was 

shown to be important for pathogenicity in Erwinia chrysanthemi and 

Salmonella enterica (24, 25). Our data reveal that Hmp is able to protect 

bacteria at all stages of macrophage infection and FlRd protects bacteria 

against the attack of macrophages depending on the stage of infection. The 

requirement of flavorubredoxin and flavohaemoglobin to scavenge nitric 

oxide under different phases of infection is schematized in Figure VII.2.  

To understand how bacteria respond upon macrophage infection, 

microarrays studies have been performed using different pathogens. In the 

earlier phase of infection (oxidative burst), microbes activate systems that 

detoxify ROS such as superoxide dismutase B and C, catalase, peroxidases 

(AhpC and Tpx) and SoxRS (the superoxide regulator and sensor that 

regulates genes involved in oxidative and nitrosative stress protection) (26-

30). Upon nitric oxide burst, the microorganisms activate the inducible NO 

detoxifying systems flavohaemoglobin and flavorubredoxin (27, 31, 32). 

However, according to our results, Hmp is able to protect bacteria in all 

stages of macrophage infection. The regulation of hmp is complex since the 

response to nitric oxide inducers involves at least  three repressors FNR, 

NsrR and the methionine repressor MetR (33, 34) (Table VII.1). Microarray 

experiments performed with several microorganisms revealed that hmp is 

one of the few genes whose expression is always induced by NO, under 

aerobic and anaerobic conditions, independently of the agent used to 
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generate nitrosative stress (8, 13, 35-39). Besides NO induction, hmp is also 

up-regulated upon iron limitation (23, 24, 40). Interestingly, hmp induction 

occurs only when NO is present in the cell environment, as constitutive 

hmp transcription in E. coli in the absence of NO generates oxidative stress 

by virtue of oxygen reduction to superoxide anion by Hmp (41, 42). 

 E. coli FNR contains a Fe-S cluster and in the presence of nitrosative 

stress the centre is nitrosylated resulting in FNR derepression of its 

regulon. Both hmp and norV were shown to be regulated by FNR (43-45). 

Figure VII.2 – Schematic
representation of nitric oxide
detoxification during
macrophage infection. (A) In the
early phase of macrophage
infection, upon oxidative burst,
Hmp detoxifies NO and NorR iron
centre is oxidized. Consequently,
FlRd is not any longer expressed.
The nitric oxide present activates
transcription factors, like OxyR and
SoxRS, whose regulons encode ROS
detoxificants, such as KatG, AhpC
and SodA. (B) Upon NO burst, the
latter phase of macrophage
infection, the mono-iron centre of
NorR is nitrosylated and FlRd is
expressed, as well as Hmp, which
are required for NO detoxification.
ROS – reactive oxygen species; NO
– nitric oxide; NorR – Nitric oxide
reductase Regulator; NorR-Fe3+ -
NorR with mono-iron centre
oxidized; FlRd – flavorubredoxin;
Hmp – flavohaemoglobin; OxyR –
Oxidative stress Regulator; SoxRS –
Superoxide Response and Sensor;
KatG – Catalase; AhpC – alkyl
hydroperoxide reductase; SodA –
Superoxide dismutase A; NorR-
Fe2+-NO – nitrosylated NorR mono-
iron centre.
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However, studies suggest that the repression of norV by FNR occurs due to 

an indirect effect (43, 45). Therefore, the NO-regulation of norV is mainly 

performed by NorR, and FNR does not possess a relevant role (Table VII.1). 

  

 Homologues of the NorR regulatory protein are found in some 

gamma- and beta-proteobacteria and their regulon contains various 

enzymes involved in nitric oxide detoxification (46). The NorR-encoding 

gene is located upstream and is divergently transcribed from the norVW 

operon in enterobacteria, like E. coli, Salmonella enterica, Hahella 

chejuensis, Shigella flexneri, Vibrio fischeri, among others. In addition, norR 

is upstream of the flavohaemoglobin encoding gene (hmp or fhp) in 

Pseudomonas spp. Polaromonas sp., Azotobacter vinelandii, Burkholderia 

fungorum and Vibrio cholerae (46). Work with V. cholerae showed that 

NorR is the regulator of hmpA in this organism (47). In Pseudomonas  

aeruginosa, fhp (flavohaemoglobin protein) is regulated by FhpR (a NorR 

type σ54-dependent activator) in the presence of nitric oxide inducers (48). 

Further studies are required to understand if the NorR sensitivity to 

oxidative stress also occurs in organisms where NorR regulates other genes 

besides norV. 

 

 

 

 

 

 

 

 

 

 



Discussion and General Conclusions 

212 
 

Table VII.1 - Transcriptional machinery involved in NO-regulated Hmp and 

FlRd expression. Adapted from (57). 

  

 The norV gene is not located downstream of norR in 

microorganisms like Porphyromonas gingivalis, Fusobacterium nucleatum, 

Clostridium acetobutylicum, Photobacterium profundum and Rhodobacter 

capsulatus. For example, in Ph. profundum, upstream of the norVW operon 

are two regulatory binding sites for NsrR (46), the regulator of NO 

metabolism in gamma- and beta-proteobacteria (46). In C. acetobutylicum, 

the norV gene is downstream and divergently transcribed from soxR 

encoding a Fe-S containing regulatory protein involved in oxidative stress 

protection (33).  

 The detoxification of nitric oxide is clearly implicated in the 

resistance of bacteria against the mammalian immune system. Nonetheless, 

some microorganisms possess apparently only one detoxifying system, like 

Porphyromonas gingivalis and Fusobacterium nucleatum, two human 

pathogens, which apparently contain only flavorubredoxin in their 

Organism Signal/ Stimulus 
Transcription 

factor/Component 

Activator or 

Repressor 
Molecular mechanism Refs 

Hmp      

Escherichia coli  Exogenous NO, murine 

macrophages, NO2− respiration 

NsrR  Repressor  NO ligation to Fe–S cluster  (46, 49, 

50) 

E. coli  Exogenous NO  MetR  Activator  Unknown  (51) 

E. coli  Anaerobiosis, nitrate respiration  FNR  Repressor  O2 and/or NO ligation to 

Fe–S cluster 

(40, 52) 

Salmonella 

enterica  

Exogenous NO, stimulated 

macrophages  

NsrR  Repressor  NO ligation to Fe–S cluster  (42) 

Pseudomonas 

aeruginosa  

Exogenous NO, denitrification  FhpR  Activator  Activation via a conserved 

sequence in flavoHb 

promoter  

(48, 53) 

Bacillus subtilus  Exogenous NO  ResDE (two-

component kinase)  

Activator  Unknown (54, 55) 

FlRd      

E. coli Exogenous NO NorR Activator NO ligation to Fe-S cluster (12, 56) 

S. enterica Murine macrophages NorR Activator NO ligation to Fe-S cluster (27) 
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genomes. Interestingly, the norV gene is not divergently transcribed from 

norR in these organisms, which could indicate that NorR is not the 

regulator of flavorubredoxin gene. 

 The results obtained in chapter III reveal the importance of 

flavorubredoxin for bacteria survival inside macrophages. Future studies 

are required to further understand the advantage of NorR sensitivity to 

ROS and if this inactivation mechanism also occurs for other mono-iron 

containing regulators/enzymes. 

 

 VII.1.2 – The function of the Ric family of proteins 

 

 Previous work in our laboratory with E. coli YtfE revealed a role for 

this protein in the repair of oxidatively and nitrosatively damaged Fe-S 

clusters (8, 58, 59). A homologue of E. coli YtfE was recognised in 

Staphylococcus aureus, the previously annotated ScdA protein, and our data 

showed that this enzyme is also involved in the repair of Fe-S centres. 

Although S. aureus is highly resistant to nitrosative stress (35), this 

bacterium only contains apparently a flavohaemoglobin system to detoxify 

NO (35, 60, 61). Moreover, it contains a nitroreductase that protects against 

GSNO (S-Nitrosoglutathione) (62). The discovery of a novel mechanism 

used by S. aureus to resist nitrosative stress is of high relevance to the 

study of this pathogen. The homologues of E. coli YtfE and S. aureus ScdA 

are widespread in bacteria, fungi and protozoa and we suggested that this 

family of proteins be named Ric for Repair of Iron Centres. 

 In Haemophilus influenzae, the ric mutant strain is less resistant to 

NO donors and this gene is critical for survival in activated NO-producing 

macrophages (63). Before the reports on E. coli ytfE, Vollack and Zumft 
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published that Pseudomonas stutzeri DnrN, a Ric homologue, controlled the 

transcription of the nirS operon (coding for cytochrome cd1 nitrite 

reductase), as P. stutzeri dnrN mutant had a higher induction of the nirS 

operon after challenge with nitric oxide (64). At the time, no explanation for 

this effect was put forward; however, the behaviour is similar to what 

occurs with norB gene in N. gonorrhoeae (Chapter IV). In the gonococcus, 

dnrN deletion affects the regulation of norB as its regulator, NsrR, suffers 

more pronounced nitrosylation, leading to its inactivation and 

consequently derepression of norB. Hence, in the wild type strain, the 

recovery of the NsrR cluster allows reactivation of its repressor function, 

while in the mutant strain high levels of norB were still observed due to the 

failure to repair the nitrosylated NsrR centre (Chapter IV). 

 R. eutropha NorA shares a high degree of identity with E. coli Ric 

(49%) and also contains a di-iron centre (65). A study showed that this 

protein binds nitric oxide, a general characteristic of the di-iron proteins, 

and its high cytoplasmic concentration (~20 µM) led the authors to 

propose that NorA is a NO scavenger (65). Contrary to what occurs in E. 

coli, the growth of R. eutropha norA mutant in media supplemented with 

nitrate was not impaired significantly (65, 66), showing that the activity of 

nitrate reductase (Nar), an Fe-S containing enzyme, does not depend on 

NorA. Although the two proteins are highly similar in their amino acid 

sequence, more studies have to be performed to understand if R. eutropha 

NorA and E. coli YtfE serve similar physiological functions. 

 

 As previously reported, E. coli, S. aureus and N. gonorrhoeae ric are 

induced upon exposure to nitric oxide. Moreover, in S. enterica and Yersinia 

pestis, the ric genes were significantly up-regulated during host-pathogen 

interaction (27, 67, 68). 



Chapter VII 

215 
 

 A bioinformatic study firstly raised the hypothesis that the nitric 

oxide-sensitive transcriptional regulator NsrR controlled the expression of 

E. coli ytfE, based on the presence of NsrR binding motifs in the ric 

promoter region (46). This prediction was confirmed as E. coli NsrR was 

able to bind to the ytfE promoter region and in the absence of NsrR, the ytfE 

expression was up-regulated (69, 70). In other enterobacteria, N. 

gonorrhoeae and N. meningitidis, the expression of the ric genes is also 

regulated by NsrR (50, 71, 72). In P. stutzeri, the induction of the ric gene 

(whose role is similar to E. coli ric) in response to NO depends on the DnrD 

regulator (64). 

 The E. coli ric gene is up-regulated when Fur is absent (58); 

nevertheless, no binding of Fur to the ric promoter could be observed. 

Hence, the derepression of ric in E. coli fur mutant strain might be the 

product of indirect effects, possibly at the level of the regulation of NsrR. 

Also in an E. coli fnr mutant strain the ric gene is derepressed (58) and FNR 

binds to the ric promoter (45). However, no canonical FNR binding sites 

were found in the E. coli ric regulatory region and FNR binds to a site with 

poorer match to FNR consensus sequence (45). 

 A comprehensive analysis of all genomes available shows a high 

variability of the ric gene organization. Figure VII.3 displays the genomes in 

which ric is located near genes encoding proteins related to oxidative and 

nitrosative stress resistance. For example, in Neisseria sp., a thioredoxin 

gene is found upstream and divergently transcribed from ric, while in fungi 

a kat gene (encoding the hydrogen peroxide-detoxifying enzyme catalase) 

precedes ric. In R. eutropha, Acidobacteria bacterium and Hahella chejuensis, 

the gene norB, encoding a NO reductase, is located downstream of ric. A 

different organization is found in the Bacillus genus, where the genes 

following the ric gene encode a nitrite reductase. In Acidiphilium cryptum, 
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the ric gene is located downstream of a gene encoding a truncated globin, a 

protein that might be involved in nitric oxide detoxification (73), and 

upstream of a putative [4Fe-4S] cluster-containing ferredoxin. In Pelobacter 

propionicus, ric is included in a gene cluster that contains hcp (encoding the 

hybrid cluster protein, that in E. coli affords protection against oxidative 

stress (74)), and fdp, which codes for a putative nitric oxide reductase of 

the flavodiiron protein family (75, 76). In S. aureus, the lytSR cluster that 

encodes for proteins involved in the protection of bacteria from host attack 

and antibiotic resistance is located upstream of the ric gene (77). 

Previously, scdA (the ric homologue in S. aureus) was annotated as having a 

role in cell morphogenesis, due to the observation that a mutation in scdA 

caused a morphological defect (78). However, this phenotype probably 

resulted from a polar effect on the downstream lytSR genes as our results 

revealed that a S. aureus scdA mutant strain showed no morphological 

defects (chapter IV), while lytS mutants were shown to possess a 

morphological deficiency (79). 

 In the genomes of two Ralstonia species, of Herminiimonas 

arsenicoxydans, Hahella chejuensis, Anaeromyxobacter dehalogenans and 

Idiomarina ihoihensis, ric is downstream and divergently transcribed from 

the NO-sensor NorR, which suggests that NorR is a regulator of ric genes. In 

fact, the ric gene (norA) in Ralstonia eutropha was demonstrated to be 

regulated by NorR (66). Among all presently available genomes, including 

all enterobacteria, ric is never found in the close vicinity of the NsrR 

regulator. 
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Figure VII.3 – Genomic organization of the ric genes. Arrows depict
genes, white blocks indicate regions not conserved, and black dots indicate
regions of gene insertion. Black arrows indicate the ric genes, stripped
arrows represent hypothetical genes, and grey arrows highlight the
following genes: fd, for a putative [4Fe-4S] ferredoxin; fdp, for a putative
flavodiiron NO reductase; hcp, for a hybrid cluster protein; kat, catalase; lytR
and lytS, autolysis regulatory system; nirB and nirD, nitrite reductase; norB,
NO reductase; norR, for the NO sensor/regulator; trHb, putative truncated
globin; and trxA, thioredoxin I.
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 Previous studies (8, 58, 59) and the work presented in chapter IV 

showed the importance of Rics in the repair of Fe-S clusters. As described 

in chapter II, upon oxidative and nitrosative stress, [4Fe-4S] clusters are 

damaged differently (Figure VII.4). In order to obtain a repaired Fe-S 

centre, it is not necessary to assemble de novo a completely new centre. In 

fact, an E. coli strain mutated in ytfE in the presence of hydrogen peroxide 

contains oxidatively damaged Fe-S clusters (59), and the Isc and Suf Fe-S 

clusters assembly systems were not able to complement the mutated strain 

(Chapter IV). In conclusion, the role of YtfE in E. coli is different from that of 

the Isc and Suf assembly systems.  

   

 Although the repair of oxidatively and nitrosatively damaged Fe-S 

centres most probably occurs through different mechanisms, the iron 

Figure VII.4 – Schematic representation of the oxidative and nitrosative
damage to [4Fe-4S] cluster of dehydratase enzymes and the model
mechanism for the repair of Fe-S clusters with the proposal for the
intervention of the Ric proteins. The depicted effects for the nitrosative
damage upon the [4Fe-4S] cluster are only an illustrative representation of DNIC
formation. Fe – iron; Fe3+ - ferric iron; NO – nitric oxide; H2O2 – hydrogen
peroxide; Cys – Cysteine residues; S – sulphur atom; H – hydrogen bond; HOH –
water molecule; and OH – hydroxide molecule.

Fe3+

Fe

Ric

Fe

Fe

Fe

S

S

S

S

S

S

S

Cys

Cys

Cys
Fe

Fe

Fe

Fe

S

S

S

OH

HOH

HO

Cys

Cys

Cys
S

S

NO
NO

NO

NO
NO

NO

NO
NO

Fe

Fe

Fe

Fe

Fe

S

S

S

OH

HOH

HO

Cys

Cys

Cys

S

S

S

S

Substrate

Fe



Chapter VII 

219 
 

reinsertion is always required; therefore, we previously proposed the 

involvement of Ric proteins in the enzymatic process needed to recruit and 

integrate iron (59) (Figure VII.4). 

 

 The assembly of Fe-S clusters in vivo requires specific machineries 

as iron and sulphur are toxic to the cells in the concentrations necessary for 

the formation of this prosthetic group (80). The source of the sulphur atom 

in Fe-S clusters is L-cysteine, as a result of the action of cysteine 

desulphurases (IscS) (Figure VII.5). These enzymes degrade L-cysteine into 

L-alanine, sequestering the 

released sulphur anion (S2-) on a 

specific cysteine residue, 

making sulphur atoms available 

without releasing it in solution 

(81). However, the iron source 

used to build Fe-S clusters is 

still a matter of debate. Current 

models propose that a 

metallochaperone acquires iron 

and directly donates the metal 

for the assembly pathway by 

interacting with Fe-S clusters 

assembly proteins. This 

pathway would protect iron 

from chelation by other cellular components and limit the reaction of iron 

with oxygen and reactive oxygen species (81). 

 Some proteins were proposed to be the iron donors for the 

assembly of Fe-S clusters in bacteria. CyaY, the frataxin homologue in 

Figure VII.5 – Biosynthesis of Fe-S
clusters performed in chapter V. Apo-Fd –
Apo-ferredoxin; Holo-Fd – holo-ferredoxin;
IscU – scaffold protein of Isc system; Fe-S –
iron-sulphur cluster; IscS – cysteine
desulphurase of Isc system; S2- - sulphide;
Fe2+ - inorganic iron; holo-YtfE – di-iron
containing YtfE protein; DTT – reducing
agent dithiothreitol.
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bacteria, was shown in vitro to bind iron and to be required for Fe-S 

clusters assembly (82). However, this enzyme has a weak iron binding 

constant  (2.6x105 M-1) and when E. coli cells are supplemented with 

exogenous iron, CyaY is not able to bind iron (83-85). Moreover, deletion of 

cyaY in E. coli does not cause a phenotype associated with Fe-S clusters 

assembly deficiency and recently it was proposed that CyaY acts instead as 

an inhibitor of Fe-S clusters assembly (86, 87). Other predicted iron donor 

proteins are IscA and SufA, which belong to the Isc and Suf pathways, 

respectively, and are able to bind iron, possibly donating the iron for the 

assembly of Fe-S clusters in vitro. Nonetheless, in vivo phenotypic analyses 

failed to provide any evidence favouring a role of either proteins in Fe-S 

cluster assembly (82, 88). Moreover, IscA and SufA are not able to interact 

with cysteine desulphurases or scaffold proteins (81, 89). IscA binds iron 

with a very high affinity constant (3x1019 M-1 (90-92)) and the maximal iron 

binding is 0.45 Fe per monomer of IscA (90). 

 The work presented in this dissertation showed that in the 

presence of IscS, L-cysteine, the reducing agent DTT and an excess of 

inorganic iron, Fe-S clusters were assembled in apo-ferredoxin (chapter V). 

Replacement of the inorganic iron by holo-YtfE, promotes the assembly of 

Fe-S clusters in the apo-ferredoxin and also in the scaffold protein IscU 

(Figure VII.5) (chapter V). 

 Although preliminary data, our results and the previous data 

obtained in our laboratory (chapter V and (58, 59)) suggest that YtfE may 

function as the iron donor for the repair of Fe-S clusters as: 1)YtfE is an 

iron binding protein with two iron atoms per monomer; and 2) the di-iron 

YtfE form is able to promote the assembly of iron-sulphur centres in IscU 

and apo-ferredoxin.  

 



Chapter VII 

221 
 

 To identify whether other proteins were required for YtfE repair 

function, we analyzed the possible interaction of E. coli YtfE with proteins 

of Fe-S cluster assembly systems and explored the E. coli proteome to find 

YtfE interactants. The experiments were performed using the bacterial 

adenylate cyclase two hybrid (BACTH) system. 

 Our data revealed that E. coli YtfE was able to interact with IscS but 

not with IscU. Consistent with these results YtfE was able to promote the 

formation of Fe-S clusters either in the presence of IscS and L-cysteine or 

using an inorganic source of sulphur (Na2S) in the scaffold protein IscU. 

However, the Fe-S clusters assembly was more efficient in the presence of 

IscS (100% of [2Fe-2S]2+/1+ cluster formed per IscU dimer versus 50% 

when using Na2S). In addition, spectroscopic studies by Ding et al. revealed 

that E. coli IscS along with L-cysteine were required to repair the 

nitrosatively damaged [4Fe-4S]2+/1+ and [2Fe-2S] 2+/1+ centres of 

endonuclease III and ferredoxin, respectively (93, 94). 

 The results also showed that YtfE is able to interact with SufS, the 

cysteine desulphurase of the operative mechanism under oxidative and 

iron limited conditions (82). In conclusion, YtfE interacts in vivo with all 

known cysteine desulphurases of the iron-sulphur biogenesis system in E. 

coli. When the oxidative and nitrosative stress persist, the Fe-S clusters can 

be completely degraded. At this point, YtfE can interact with IscS/SufS to 

provide both the iron and the sulphur required for the reassembling 

process. Moreover, the interaction of YtfE and IscS suggests a role for YtfE 

in the assembly of Fe-S clusters under non-stress conditions. 

 In this dissertation, using the BACTH system, our data revealed that 

the ferritin-like protein Dps (DNA-binding protein from starved cells) 

interacts with YtfE. The first identified role of Dps in E. coli was in 

protection of the cell against oxidative stress (95, 96). The Dps crystal 
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structure revealed similarity to the iron storage protein ferritin and that it 

is able to accommodate ~500 iron atoms (97, 98). The ferroxidase activity 

of Dps uses hydrogen peroxide, removing Fe(II) and H2O2 from solution, 

which results in a strong inhibition of the Fenton reaction that leads to the 

protection of DNA, RNA, proteins and lipids (98-100). 

 It is interesting that E. coli YtfE is able to interact with Dps as both 

proteins are involved in the protection of bacteria upon oxidative stress 

which is directly related to the iron metabolism (99, 101). Under oxidative 

stress conditions, Dps could store free iron that is released from several 

sources like damaged iron-sulphur clusters (102). Once the iron is “safely” 

stored in Dps, YtfE could interact with the iron storage protein to provide 

the iron required for the repair and reassembly of Fe-S clusters. This 

process could involve the donation of iron from Dps to YtfE. To rescue the 

iron from ferritin-like proteins (e.g. Dps), other enzymes are needed. When 

the iron is required for cell metabolism, as for Fe-S clusters assembly, the 

metal is mobilized upon reduction of the oxy-hydroxide core of the ferritin-

like proteins, using iron reductase systems (103, 104). Hence, if Dps and 

YtfE acted together to provide the iron required for the reassembly/repair 

of Fe-S clusters, an iron reductase system should be present during this 

process to recover the iron that is stored in Dps making it available for YtfE 

to deliver it, for example, to the scaffold protein IscU. 

 A similar model was proposed in a study by Ding et al. which 

showed that the iron stored in the E. coli iron storage protein ferritin A 

could be retrieved by the proposed iron donor IscA to re-assemble Fe-S 

clusters in the scaffold protein IscU (102). 

 Future work needs to be developed to understand the underlying 

mechanisms of E. coli YtfE in the assembly/repair of Fe-S clusters and to 

elucidate the relevance of E. coli YtfE interaction with IscS, SufS and Dps. 
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VII.2 – General conclusions 

  

 This dissertation contributed to further understand the 

mechanisms used by bacteria to resist the deleterious effects of nitrosative 

and oxidative stress, by studying the role of two di-iron proteins: 

flavorubredoxin and Ric (in E. coli and S. aureus). Overall, the results 

obtained showed that: 

 When cells are exposed to oxidative and nitrosative stress, the 

transcription and expression of flavorubredoxin is hindered. The 

lower FlRd expression is related to the oxidation of NorR mono-

iron centre that loses the ability to bind nitric oxide. Upon 

macrophage infection, E. coli FlRd protects bacteria in a later phase 

of infection when the oxidative burst is not present. 

 A homologue of E. coli Ric was found in S. aureus. The deletion of 

this gene resulted in a staphylococcal strain more sensitive to 

hydrogen peroxide and unable to repair Fe-S clusters. Homologues 

of the two diiron proteins were found distributed in several 

pathogenic microorganisms and the family of proteins was named 

Ric for Repair of iron centres. 

 The E. coli Ric protein was able to promote the assembly of Fe-S 

clusters in the scaffold protein IscU and in the apoform of 

ferredoxin. 

 Finally, E. coli Ric was found to interact in vivo with the cysteine 

desulphurases IscS and SufS, and with Dps, a ferritin-like protein. 
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