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Abstract 

 
 Methicillin-resistant Staphylococcus aureus (MRSA) is an important human pathogen, causing a 

wide range of infections. MRSA has not only developed an intrinsic resistance to all β-lactams, but has 

also acquired resistance to virtually all classes of antimicrobial agents. The characteristic MRSA 

phenotype is conferred by the presence of mecA gene which is regulated by a sensor-inducer (MecR1) 

and a repressor (MecI). However, mecA induction by its cognate sensor/inducer is very inefficient and, 

therefore, it is believed that optimal expression of β-lactam resistance in MRSA requires a non-functional 

MecR1-MecI system. Surprisingly, no correlation was found between the presence of functional MecR1-

MecI and the level of β-lactam resistance in a representative collection of epidemic MRSA strains, 

suggesting the existence of other mecA regulators. 

In these studies, we show that the mecA regulatory locus is not a two-component system but, 

actually, it is a three-component system containing besides mecR1-mecI, the previously unidentified anti-

repressor mecR2. The crystal structure of MecR2 reveals a three-domain architecture, with an N-terminal 

DNA-binding-like domain, an intermediate scaffold domain, and a C-terminal dimerization domain, 

important to the functional dimeric oligomerization state. MecR2 disturbs the binding of the repressor 

MecI to the mecA promoter, which leads to its proteolytic inactivation independently from MecR1, 

presumably by non-specific cytoplasmatic proteases. Our data also demonstrates that in the presence of 

functional mecR1-mecI genes, mecR2 is essential for a robust induction of mecA transcription and, 

consequently, for the optimal expression of resistance phenotype in MRSA. These observations point to a 

revision of the current model for the transcriptional control of the mecA gene. 

 

 

Keywords: MRSA; β-lactam resistance; mecA regulation; anti-repressor MecR2; repressor  MecI 
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Resumo 

 
 Os Staphylococcus aureus  resistentes à meticilina (MRSA, do inglês “methicillin-resistant 

Staphylococcus aureus”) são um importante agente patogénico, que em certas circunstâncias podem 

causar infecções. Para além de terem desenvolvido resistência a todos os antibióticos β-lactâmicos, os 

MRSA são também frequentemente resistentes a outras classes de agentes antimicrobianos. O fenótipo 

caracteristico dos MRSA deve-se à presença do gene mecA, que é regulado por um sensor/transdutor 

(MecR1) e um repressor (MecI). No entanto, como a indução do gene mecA através do MecR1 é muito 

ineficiente, pensa-se que os MRSA só conseguem expressar elevados níveis de resistência aos β-

lactâmicos se o sistema MecR1-MecI não estiver funcional. Curiosamente, dados recentes demonstram 

ausência de relação entre a expressão das proteínas  MecR1-MecI funcionais e o nível de resistência 

aos β-lactâmicos numa colecção de estirpes MRSA epidémicas. 

 Os resultados aqui apresentados mostram que o locus que regula a transcrição do gene mecA 

contém três genes reguladores (mecR1-mecI-mecR2). A resolução da estrutura tridimensional do MecR2 

revela que esta proteína é constituída por três domínios, um semelhante a domínios com capacidade de 

ligação ao ADN, um intermédio e um de dimerização. Os nossos resultados indicam que o MecR2 

desestabiliza a ligação do repressor  à região operadora do gene mecA, e que a  inativação do MecI 

ocorre independente do MecR1, sendo efectuada possivelmente por proteases nativas. Este estudo 

demostra ainda que nas estirpes MRSA, que contêm os genes mecR1-mecI funcionais, o gene mecR2 é 

essencial para induzir eficazmente a transcrição do mecA. Em conjunto, estes dados revelam que o 

actual modelo que descreve o controlo da transcrição do gene mecA, deve ser repensado. 

 

 
Palavras-chave: MRSA; resistência aos β-lactâmicos; regulação do gene mecA; Anti-repressor MecR2; 

repressor  MecI 
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General Introduction 

3 

 

1.1 Staphylococcus aureus  as a human pathogen 

 1.1.1 General features    
 Staphylococcus aureus are a gram-positive cocci and microscopically are observed as individual 

organisms, in pairs, in irregular, or in grapelike clusters. The term Staphylococcus is derived from the 

Greek term staphyle, meaning "a bunch of grapes." S. aureus are non-motile, non–spore-forming bacteria 

and their colonies are usually large (6-8 mm in diameter), smooth, and translucent (see Figure 1.1). S. 

aureus were first recognized by Koch in 1878 and Pasteur in 1879  [1] but their more detailed 

characterization only came some years later with Ogston [2] and Rosenbach [3], who described two 

pigmented colony types of staphylococci and proposed the appropriate nomenclature: Staphylococcus 

aureus (golden-like) and Staphylococcus albus (white). The latter species is now named Staphylococcus 

epidermidis. The colonies of most strains of S. aureus are pigmented, ranging from cream-yellow to 

orange, which is due to the presence of triterpenoid (C30) carotenoids, rather than the more typical C40 

carotenoids [4, 5]. S. aureus is part of the human flora, mainly in the axillae, the inguinal and perineal 

areas, and the anterior nares, whereas, S. epidermidis is ubiquitous in skin [6].  

 

 
Figure 1.1 - Scanning Electron Microscopy of S. aureus N315. Adapted from [7]. 

 

 At a biochemical level, S. aureus is a facultative anaerobe, which can grow by aerobic respiration 

or lactic acid fermentation of glucose. It is catalase positive, and can survive in NaCl concentrations of up 

to 15 percent. While most staphylococci are coagulase-negative, S. aureus is coagulase positive [8] and 

can grow between 10ºC and 45ºC. The G +C content of S. aureus DNA is within the range of 30 to 38 
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mol percent, being staphylococci one of the members of the low G +C group of the gram-positive 

bacterial phylogenetic group [9].  

The staphylococcal cell is surrounded by a mesh-like structure 20-40 nm thick, called peptidoglycan, 

which is composed of a series of short glycan chains of c.a. 20 alternating N-acetyl-muramic-acid and β-

1,4-N-acetylglucosamine residues [10]. Peptidoglycan is an essential and specific component of the 

bacterial cell wall found on the outside of the cytoplasmic membrane of almost all bacteria [11, 12]. Its 

main function is to preserve cell integrity and it also contributes to the maintenance of a defined cell 

shape and serves as a scaffold for anchoring other cell envelope components such as proteins and 

teichoic acids [13]. S. aureus-specific pentaglycine interpeptide cross-bridges are assembled in the 

cytoplasm by auxiliary genes femX [14], femA [15], and femB [16], which attach the glycine residues to 

the L-lysine residue of the stem peptide, in a sequential manner  [17]: FemX adds the first glycine, FemA 

adds the 2nd and 3rd, whereas, the FemB adds the 4th and 5th. FemA and FemB are not 

interchangeable, meaning that inactivation of one of these genes results in cell walls that contain mono-or 

triglycine cross-bridges, respectively.    

 
 

 1.1.2 Colonization and infection 
 

 The capacity to asymptomatically colonize healthy individuals is a biological property of S. 

aureus, with approximately 30% of humans being asymptomatic nasal carriers of S. aureus [18]. Indeed, 

S. aureus carriers have a higher risk of acquiring S. aureus related infections and are an important 

dissemination vehicle of S. aureus, either by direct contact (i.e. skin-to-skin contact with a carrier or 

infected individual) or by contact with contaminated surfaces or objects [19-21]. 

Due to its capacity to cause opportunistic infections, S. aureus should always be considered a 

potential pathogen which, in certain circumstances, may cause a variety of suppurative (pus-forming) 

infections and toxinoses in humans [19]. Examples are superficial skin lesions such as boils, styes and 

furunculosis or more serious infections such as pneumonia, mastitis, phlebitis, meningitis, mastitis, 

phlebitis and urinary tract infections and even deep-seated infections, such as osteomyelitis and 

endocarditis. Moreover, S. aureus is a major cause of hospital acquired (nosocomial) infection of surgical 

wounds and infections associated with indwelling medical devices [18]. S. aureus is also responsible for 

food poisoning by releasing enterotoxins into food, and for the toxic shock syndrome by releasing 

superantigens into the blood stream [22-24].  

The pathogenicity of S. aureus is a complex process involving a diverse array of extracellular and 

cell wall components that are coordinately expressed during different stages of infection; i.e. colonization, 

escape from the host defense, growth and cell division, and bacterial dispersion. The adaptive response 

is highly coordinated and is modulated by regulatory elements via signal transduction pathways [19]. 
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Genomic analysis has revealed two major families of global regulators in S. aureus: two-component 

regulatory systems (TCRS) [25, 26] and the SarA homologs, a family of proteins homologous to SarA [25, 

27], of  which the best-characterized regulators of virulence factors are the accessory gene regulator (agr) 

and the staphylococcal accessory regulator (SarA), respectively. The agr locus consists of two divergent 

transcripts, RNAII and RNAIII, driven by two distinct promoters, P2 and P3, respectively [28]. RNAIII is the 

effector of the agr response that involves up-regulation of genes involved in exoprotein synthesis and 

down-regulation of genes encoding surface proteins [29, 30]. Unlike agr, the sar locus activates the 

synthesis of both extracellular (e.g. hemolysins) and cell wall-associated proteins (e.g. fibronectin-binding 

protein) [31]. These extracellular proteins can be divided into two groups depending on when they are 

expressed in cells growing in rich medium: proteins that are expressed only when cell densities are low 

and proteins exclusively expressed at high cell densities. By virtue of their proteolytic activities and toxin 

effects on host cells, the exotoxins synthesized during the post-exponential phase facilitate the local 

invasion and hematogenous dissemination phases of S. aureus infections [32].  

The virulence factors of S. aureus can be classified in three different groups: (i) those which are 

involved in the attachment to the host cells, such as collagen-binding protein, coagulase or fibronectin-

binding proteins A and B; (ii) factors  involved in the invasion of host cells and consequently tissue 

penetration, such as α-toxin and hemolysins; and (iii) virulence factors involved in evasion of host 

defences such as protein A, lipase and toxic shock syndrome toxin 1, [33-37]. The coordinated regulation 

of virulence determinants during the exponential and post exponential phases has a decisive contribution 

to the development of S. aureus infections.  

 

 1.1.3 Antibiotic resistance  
 

 S. aureus has been a stumbling block for anti-microbial chemotherapy able to develop resistance 

to all therapeutic agents deployed in clinical practice. Antibiotics, which literally means agents “against 

life”, are molecules that prevent microbes, both bacteria and fungi, from growing. One of the first 

documented identification of an antibiotic compound dates from 1929 by Alexander Fleming, who 

observed that a culture plate of S. aureus had been contaminated by a blue-green mould (Penincillinium 

notatum) and that colonies of S. aureus adjacent to the mould could not grow. Then, Fleming grew the 

mould in a pure culture and found that it produced a substance that killed a number of disease-causing 

bacteria.  He named the substance penicillin and realised that his discovery might have therapeutic value 

if the antibiotic could be produced in large quantity [38].  

Antibiotics can be classified according to their mode of action, cellular target, and main clinically 

relevant mechanism of resistance. According to the physiological cellular target, antibiotics are often 

grouped into four major classes (see Figure 1.2): cell wall synthesis, protein synthesis, nucleic acid 

synthesis, or folic acid metabolism inhibitors. The cell wall synthesis inhibitors, such as the β-lactams and 

the glycopeptides are the most representative and widely used class of antibiotics against S. aureus 
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infections. The β-lactams (e.g. penicillins and cephalosporins) bind covalently to PBPs, and also inhibit 

the reticulation of the pentapeptidic chains of the peptidoglycan precursors. The glycopeptides 

(vancomycin and teicoplanin), also target cell wall synthesis. These later antibiotics bind the D-Ala-D-Ala 

termini of peptidoglycan precursors, blocking the transpeptidation reaction carried out by PBPs. Although 

glycopeptides are the last resort to treat methicillin resistant S. aureus (MRSA) infections, strains with 

reduced susceptibility to these antibiotics have already been reported [39, 40]. Vancomycin intermediate 

S. aureus (VISA) strains are characterized by a thickening of the cell wall, which is believed to reduce the 

ability of vancomycin to diffuse into the division septum of the cell, whereas, the vancomycin resistant S. 

aureus (VRSA) modify peptidoglycan precursors ending in D-Ala-D-Ala to D-Ala-D-Lac instead, with low 

affinity for glycopeptides [41-43].  

 

 
 Figure 1.2 - The bacterial cell with the 4 main antibiotic targets; cell-wall synthesis, nucleic acid 

synthesis, protein synthesis, and folic acid metabolism. Examples of the most representative and most used 

antibiotics are shown, as well as their specific targets. mRNA, messenger RNA; tRNA, transfer RNA; PABA, p-

aminobenzoic acid; DHFA, dihydrofolic acid; THFA, tetrahydrofolic acid. Adapted from  [54].  
 

 Another class of antibiotics are the inhibitors of protein synthesis such as the macrolides, 

lincosamides and streptogramins, which target the 50S subunit of the ribosome. On the other hand, 

tetracyclines and aminoglycosides selectively block the 30S subunit of the ribosome. This antimicrobial 

class also inhibit the elongation step of the protein synthesis and prevent the association of aminoacyl-
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trRNA to the receptor site on the mRNA-ribosome complex. Currently, most S. aureus strains are fully 

resistant to this antibiotic class, either by the active efflux of the macrolides and tetracyclines   to outside 

of the cell, or by modification of the target (ribosomal methylation) [44-46].  

The inhibition of the nucleic acids synthesis is accomplished by drugs belonging to the quinolones 

and fluoroquinolones family. This antibiotic class binds to enzymes involved in DNA coiling (e.g. 

topoisomerase IV and DNA girase), to DNA polymerase and inhibits the chromosomal replication. 

Mutations in grlA, the gene encoding topoisomerase IV subunit A, are the main resistance mechanism in 

S. aureus [47-50].  

Finally the inhibitors of acid folic synthesis class, such as the sulfamides and diaminopyridines, 

selectively bind to enzymes involved in the synthesis of acid folic [51, 52]. Bacterial resistance to 

sulfamides reported in S. aureus is mainly due to chromosomal point mutations leading to an increased 

production of p-aminobenzoic acid [53]. 

 

 

  1.1.3.1 Resistance to β-lactam antibiotics  
 

 β-lactam antibiotics are the most widely used class of antimicrobial agents, mainly because they 

have broad spectrum, have low toxicity and have low cost. These agents are characterized by a four-

membered β-Lactam ring and target the bacterial enzymes involved in the last steps of cell wall synthesis, 

the so-called penicillin-binding proteins (PBPs) [55, 56] (see Figure 1.3). β-lactams mimic the D-Ala-D-Ala 

dipeptide, particularly regarding the distribution of three electrostatic-negative wells, and act as suicide 

inhibitors. The active site serine attacks the carbonyl of the β-lactam ring, resulting in the opening of the 

ring and formation of a covalent acyl-enzyme complex. This complex is hydrolysed very slowly, thus 

effectively preventing further reactions [57, 58]. This antibiotic class encloses a large number of drugs 

which can be divided into several groups according to their chemical structure, such as: penicillins 

derivatives (penicillin G, cloxacillin and ampicillin-like agents); cephalosporins (have a 3,6-dihydro-2H-1,3-

thiazine ring fused to the β-lactam ring as  in cefoxitin);  carbapenems (contain a β-lactam ring fused to a 

five-membered ring as in imipinem);  monobactams (with a second thiazole ring not fused to the β-lactam 

ring) and β-lactamase inhibitors ( e.g. clavulanic acid combined with pecicillin) [59, 60].  The mechanism 

of penicillin resistance is due to the production of a plasmid borne β-lactamase enzyme encoded by the 

blaZ gene [61, 62]. Penicillinase-resistant penicillins, such as methicillin, were then developed to treat 

those infections, with apparently success, but shortly after MRSA strains began to arise and spread. 

MRSA have spread first in hospital settings and then, within community, in parallel to the earlier 

emergence and spread of penicillin-resistant S. aureus [54, 63]. Nowadays, most S. aureus strains are 

resistant to natural penicillins, as well as to aminopenicillins and antipseudomonal penicillins [54, 64, 65]. 

This mechanism of resistance is not due to β-lactamase production but rather to the expression of an 
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S. aureus strains were fully susceptible to penicillin G when it was initially introduced in early 1940s, 

until the appearance of the first penicillin-resistant S. aureus, in 1942 [74, 75]. Penicillin-resistant S. 

aureus were uncommon at the beginning, appearing only in healthcare settings, but in a very few years 

an increasing number of resistant isolates were detected and became increasingly prevalent in the 

community as well [76]. During the 1950s others antibiotics with a broad spectrum of activity like, 

tetracycline, streptomycin and  chloramphenicol started  to be widely used against a variety of different 

bacteria, and also against S. aureus isolates positive for the β-lactamase [77].  

In 1961, methicillin, the first semi synthetic penicillinase-resistant penicillin, was introduced into 

clinical practice, specifically for the treatment of penicillin-resistant S. aureus infections. However, its 

introduction was rapidly followed by reports of methicillin-resistant isolates, and the outcome of infections 

caused by MRSA were worse than the outcome of those that resulted from methicillin-sensitive strains 

[78, 79]. In the early 1980s and 1990s methicillin-resistant clones started also to be reported in the 

community - Community-associated MRSA (CA-MRSA), in individuals with no prior hospital exposure [80, 

81]. CA-MRSA isolates carry a distinct molecular makeup and lack the multidrug resistance pattern 

usually harboured by nosocomial MRSA strains [82-85]. 

Another landmark of antimicrobial chemotherapy was the emergence of S. aureus clinical isolates 

with reduced susceptibility to vancomycin (the so-called intermediate resistance or VISA) in 1997 in 

Japan [86]. Shortly after, other cases were reported in other countries [40, 87], as well as infections 

caused by highly vancomycin-resistant S. aureus (VRSA) that have remained relatively rare [88, 89].   

 

  1.1.4.1 Hospital-acquired MRSA (HA-MRSA) 
 

 MRSA has been recognized as a major problem both in hospital and community in many 

countries and data collected by the SENTRY Antimicrobial Surveillance Program indicates average 

prevalences of MRSA in hospitals from different regions worldwide, as follows: 23% in Europe, 36% in 

USA, 29% in Latin America, 23% in Australia and 67% in Japan [90-93]. Data from the European 

Antimicrobial Resistance Surveillance Network (EARSS) have shown that the prevalence of MRSA in 

European countries is not uniform, varying widely between the Northern and Southern countries [94]. 

While the MRSA prevalence either in Scandinavian countries or Netherlands is extremely low, (below 1% 

and 5%, respectively), the minimum rate of MRSA prevalence in Southern countries is 25% reaching 50% 

in some of these countries [95].    

Nosocomial MRSA is remarkable for its pattern of spread, being associated with just a few genetic 

lineages [96]. Historically, two hypothesis for the evolution of MRSA have been proposed: (i) the single-

clone theory described by Kreiswirth and colleagues, which suggests that all MRSA clones have the 

same MSSA ancestor that acquired the PBP2a [97], and (ii) the multi-clone theory, which suggests that 

PBP2a has been acquired several times by different MSSA lineages [96]. Recent data from several 

studies supports the multi-clone theory [96, 98-100].  
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Crisostomo et al [101] have studied a collection of MSSA and MRSA isolates recovered in Denmark 

and the U.K. in the 1960s, and showed a close relationship between the MRSA clones and the prevalent 

epidemic MSSA lineages in the 1960s, which suggests that those epidemic MSSA lineages were the first 

recipients of the SCCmec element, the polymorphic chromosomal cassette that harbours the mecA gene 

coding for PBP2a. MRSA and MSSA lineages shared phenotypic and genetic properties, including phage 

group, antibiotype, pulsed-field gel electrophoresis pattern, spaA type and multilocus sequence-type (ST). 

For instance,  MSSA isolates belonging to ST250 group were proposed to represent the progeny of a 

strain that served as one of the first S. aureus recipients of the methicillin-resistance determinant in 

Europe [101, 102]. The early MRSA were referred to as Archaic clone. Two different studies carried out 

by Enright et al and Gomes et al have corroborated these findings and further clarified the origins of early 

MRSA clones [96, 100]. Robinson and colleagues have  investigated the frequency of SCCmec transfer, 

using  a collection of 147 MRSA strains from different countries, demonstrating that the acquisition of 

SCCmec element has occurred at least 20 times and that its acquisition was four times more common 

than its replacement [103]. Furthermore, SCCmec type IV is twice more predominant when compared 

with other SCCmec, which might mean that most of the MRSA clones emerged through the acquisition of 

this SCCmec element. This success could be related with its small size, facilitating its transfer among 

staphylococci [103, 104].  

Interestingly, S. aureus strains associated with pandemic MRSA lineages were easier transformed 

by a mecA-containing  plasmid than other S. aureus lineages, suggesting that the genetic background is 

important for the stability and maintenance of SCCmec  [105]. Additionally, some S. aureus lineages are 

not able to integrate the SCCmec element into their chromosome, apparently due to their specific 

attBSCC sequence (designated orfX)  which varies among the different S. aureus lineages [106]. 

However, the main S. aureus lineages share the ability to become MRSA [107, 108].  

The prevalence of nosocomial MRSA clones can shift over time, either in one region or in a specific 

hospital [109-111]. For instance, in a Portuguese hospital between 1996 and 2005 the ST239-MRSA-III 

(Brazilian clone) was replaced by the ST22-MRSA-IV (EMRSA-15) clone [112]. Moreover, sporadic 

isolates (MRSA strains from single patients) and minor clones (MRSA strains from a single hospital) have 

been reported additionally to the major HA-MRSA clones [113].  

 

  1.1.4.2 Community-acquired MRSA (CA-MRSA) 
 

     Since the 1990s, the epidemiology of MRSA has changed because infections are no longer 

confined to the hospital settings, and have also started to appear in healthy community individuals without 

established risk factors for the acquisition of MRSA. Several CA-MRSA clones have spread worldwide, 

not only in the community but, in most recent years, also in healthcare facilities as well, replacing the 

classic HA-MRSA clones in some hospitals [64, 114, 115]. CA-MRSA was firstly reported in Western 

Australia in 1993 from indigenous populations with no previous contacts with the nosocomial setting [81]. 
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CA-MRSA prevalence varies substantially among countries, with high prevalence rates in the USA 

(USA300 clone), Australia (mainly the ST30 clone) and Europe (mainly the ST80 clone) [116], whereas 

prevalence rates are low in Scandinavia countries, Switzerland or Netherlands [91, 117]. Outbreaks of 

CA-MRSA infections have been described in specific populations groups, such as prison inmates [118], 

military recruits [119], native Americans [120] and competitive sports participants [121]. CA-MRSA has 

mainly been isolated from skin and soft tissues, such as abcesses, cellulitis, folliculitis and impetigo [120, 

122-124]. In addition, severe necrotising pneumonia caused by CA-MRSA has already been described 

[123] .  

When comparing CA-MRSA with HA-MRSA, several differences have been found, mainly in 

predominant SCCmec types, growth rates, and distribution of antibiotic resistance and toxin genes [116, 

125]. The majority of CA-MRSA isolates harbour the SCCmec type IV, type V or type VII [103, 126, 127]. 

However, SCCmec types I, II, and III can also be found in some CA-MRSA isolates [31, 128]. It has been 

proposed that CA-MRSA are associated with several specific lineages of S. aureus, by the acquisition of 

SCCmec elements, mainly SCCmec type IV, by MSSA strains [126, 129]. In fact, detailed molecular 

characterization of CA-MRSA has shown that the genetic background of CA-MRSA strains are distinct 

from the predominant HA-MRSA clones within defined geographic regions, suggesting that CA-MRSA did 

not emerge from local HA-MRSA [116]. Moreover, the larger clonal diversity of CA-MRSA compared to 

HA-MRSA suggests that more S. aureus lineages have the ability to evolve to CA-MRSA strains than to 

HA-MRSA [96, 126, 130]. Many studies have reported that specific genetic backgrounds together with 

PVL (which is a specific S. aureus exotoxin) and SCCmec types IV or V, are genetic markers for CA-

MRSA [129, 131, 132]. The existence of pvl positive MSSA strains in the community which share the 

same genetic background than the pvl positive CA-MRSA corroborates this hypothesis [100, 133]. 

However, other studies reporting on PVL-positive CA-MRSA which harbour SCCmec elements other than 

type IV or V [134], and on PVL-negative CA-MRSA have contradict that those genetic markers are 

specific for CA-MRSA strains  [135-137].  

Until recently, it was believed that dissemination of PVL-positive CA-MRSA clones was restricted to 

continents, i.e. the ST1 and ST8 clones in USA, the ST80 clone in Europe and the ST30 clone in 

Australia  [116]. However, at the present, the five major PVL-positive CA-MRSA clones appear to be 

disseminating worldwide: the ST1 clone has been also observed in Asia, USA and Europe; the ST8 clone 

in USA and Europe; the ST30 clone in South America and Europe; and the ST59 and ST80 clones in 

Asia, Europe, USA and Middle-East [71, 133, 136, 138-142]. In addition to these major CA-MRSA clones, 

several minor PVL-positive CA-MRSA clones have been also reported worldwide [143-145]. CA-MRSA 

clones, such as USA 300, are often more virulent than the HA-MRSA clones, and it has been proposed 

that not only PVL is involved in skin or soft-tissue infections, but others genes such as hla (which encodes 

for an α-hemolysine involved in pathogenesis of pneumonia) or the mobile genetic element found in 

USA300 (called arginine catabolic mobile element (ACME)), may be also involved.  ACME seems to be 

essential and contributes to the growth and survival of this clone, playing an important role in virulence as 
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well [146, 147]. The observation that these CA-MRSA clones have already spread worldwide, even in 

healthcare facilities is worrying, since PVL-positivity is related to high mortality and morbidity.  

In addition to the MRSA emergence in the community, MRSA has also emerged in the farm 

environment [148]. In 2003, a new MRSA clone isolated from pigs and pig farmers in The Netherlands, 

which was not related to HA-MRSA or CA-MRSA, was reported [149] and since then MRSA clones have 

been isolated from other animals, such as, pets and horses [150-152]. One interesting characteristic 

related with this clone, is the presence of a new DNA methylation enzyme, making these strains non-

typeable by pulsed-field gel electrophoresis (PFGE) with restriction endonuclease SmaI. This clone is 

characterized by ST398 and carries a SCCmec type V [149, 153].  The same clone has also been 

reported in USA, in Asia and in other European countries, such as: Italy, Portugal, Germany or France 

[151, 154-157]. 

Transmission of MRSA between animals and humans has been previously described, mainly 

associated with colonized companion animals, horses, and persons who take care of them [150, 158]. 

Therefore, the surveillance of MRSA clones from animal origin should be considered in order to 

understand the transmission routes and reservoirs of these clones and to re-define control measures that 

favour the prevention of infections caused by them [150]. Currently, little information exists concerning the 

genetic determinants or metabolic changes responsible for the enhanced epidemicity of the farm-

associated MRSA strains, and consequently, few strategies exist that might control the spread of these 

pathogens [149, 159].   

 

  1.1.4.3 SCCmec element 
 

 The acquisition of the SCCmec element, which harbours the central determinant of methicillin 

resistance, the mecA gene, is the genetic event required for S. aureus to become a MRSA. This mobile 

element inserts  into the S. aureus chromosome at a specific site (attBSCC), which is located closely to 

the chromosomal replication origin, at the 3’ end of an open reading frame (ORF) with unknown function 

(orfX) [160]. The genetic origin of SCCmec is still unknown. However, it has been speculated that 

SCCmec element was acquired by S. aureus from coagulase negative staphylococci (CoNS) [161, 162]. 

A study published by Wielders et al seems to support this idea, since from a neonate, who had not been 

previously in contact with MRSA, an epidemic MSSA and a S. epidermidis resistant strain and shortly 

after an isogenic MRSA strain were isolated. Moreover, the SCCmec element found in MRSA strain 

appeared to be identical to the one carried by the S. epidermidis isolate. This finding documents the in 

vivo transmission, by horizontal transfer, of the mecA gene between the two staphylococcal species 

[163]. In addition, Tsubakishita et al have recently shaded some light on this matter, reporting a plasmid 

in Macrococcus caseolyticus carrying a transposon containing an unusual form of the mec gene complex 

which is located in the same operon than blaZ, revealing a potential mechanism of the generation of a 
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new SCCmec-like element in those species [164]. Moreover, the same authors in another recent study 

observed a similar sequence between the mecA locus of the Staphylococcus fleurettii chromosome and 

the mecA-containing region (~12 kbp long) of SCCmec in S. aureus, which suggests that the mec gene 

complex found in MRSA might have been assembled in this species [165]. 

So far, eleven main types of SCCmec elements (SCCmec type I to type XI) and several variants, 

which range in size from 20.9 to 66.9 kb, have been described and characterized [166-168]. This 

classification is based on the mec complex class and type of ccr complex [126, 169-173]. The mec gene 

complex is composed of the mecA gene, its regulatory elements mecI-mecR1, and insertion sequences 

which can be located upstream or downstream of mecA [174]. Several SCCmec types carry insertion 

sequences upstream and downstream of mecA gene (for instance, SCCmec types I, and IV carry 

insertion sequence IS1272, whereas SCCmec V harbours the insertion sequence IS431), that truncate 

completely the mecI repressor as well as the most part of mecR1, leading to a de-repression of the 

structural mecA gene [169, 174, 175].  The cassette chromosome recombinase (ccr) genes, which belong 

to the invertase/resolvase class, and allow the integration and/or excision of SCCmec from the S. aureus 

genome [172]. The ccr gene complex can be constituted by two genes (ccrA and ccrB) or by a single 

gene (ccrC) [171, 176]. Besides the mec complex and the ccr genes, the remaining parts of the SCCmec 

are called the J (“joining”) regions (J1 to J3). The J1 region is located between the chromosomal right 

junction and the ccr genes, while the J2 region corresponds to the region between  ccr genes and the 

mec complex and the region spanning from the mec complex to orfX is called J3 [169, 171, 174, 177-

180]. Several variants of the SCCmec type I to type IV are defined by differences in the J regions [178, 

180-182]. The J regions are no essential components to the cassette, although in some cases they 

harbour additional antibiotic determinants, particularly in SCCmec type II and III. In fact, the SCCmec 

elements are important reservoirs of non-β-lactam resistant genes. SCCmec types I, IV, V, VI, VII only 

contain the resistant gene mecA, while SCCmec types II, III and VIII, contain other resistance 

determinants to multiple classes of antibiotics (e.g. aminoglycosides and macrolides) due to the presence 

of additional resistance genes integrated in genetic mobile elements like plasmids (e.g. pUB110, pI258 

and pT181) and transposons (Tn554 and ΨTn554). Additionally, the SCCmec element also contain 

several ORFs with unknown function, as well as genes coding for virulence factors that are involved in 

infections (pls or clf genes).  

Several characteristics are common at all types of SCCmec that had been describes so far, (i) the 

ccr gene complex [176]; (ii) the structural mecA gene and its regulatory locus; and (iii) the typical flanking 

nucleotide sequences, which are inverted and directed repeats located at both ends of the SCCmec 

[183].   

 

  1.1.4.4. mecA gene origin 
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 The mecA gene is not exclusive to MRSA strains, and can be also found in methicillin-resistant 

coagulase-negative staphylococci [184, 185]. Based on DNA and amino acid sequences homologies, it 

has been proposed that the mecA gene of S. aureus may have evolved from a fusion event between a β-

lactamase gene and a PBP gene [186].  

Couto et al have shown that a close homologue of the S. aureus mecA gene was ubiquitous in 

epidemiologically unrelated isolates of S. sciuri [187]. The introduction of the mecA homologue from S. 

sciuri strain, which was methicillin susceptible, in a MSSA strain conferred resistance to β-lactams and 

allowed growth and continuous  synthesis of peptidoglycan in the presence of high β-lactam antibiotic 

concentrations [188]. Furthermore, comparing the transpeptidase and transglycosylase domains of the 

mecA gene in S. sciuri and MRSA, they share 96% and 80% of similarity, respectively. Antignac et al 

have provided further evidence for the proposition that the genetic resistance determinant mecA present 

in MRSA strains has evolved from S. sciuri, by reconstructing the methicillin resistant phenotype in S. 

aureus strain COL (lacking the SCCmec), using the homologous mecA S. sciuri (pbpD gene) [189] . The 

authors demonstrated that S. aureus transductants were able to produce large amounts of the 84-KDa S. 

sciuri PBP 4 and exhibited properties typical of those of wild type strain, including broad-spectrum, high-

level, and homogeneous resistance to structurally different β-lactams [187]. Recently another divergent 

mecA homologue was found out in a MRSA clone isolated from human and bovine populations and 

characterized by a novel staphylococcal SCCmec (SCCmec type-XI) [190]. 

 

 

1.2. Regulation of gene expression in Prokaryotes 
 

 Adaptation to predictable environmental changes is dependent to a large extent on the ability of 

an organism’s proteins and RNAs to be regulated at the level of gene expression [191]. Changes in gene 

regulation might contribute to morphological diversity. Jacob and co-workers [192] in the 1970s, 

developed the concept that changes in patterns of gene expression (rather than evolution of new genes) 

have had a decisive role in generating much of  the biological diversity. Since then, this concept has been 

extended and supported by the work of many authors as well as evolutionary studies [193-195].  

Two steps of gene expression are essentially the same in all forms of life: a gene is transcribed into 

mRNA and consequently that mRNA is translated into protein. Moreover, all cells contain at least one 

form of RNA polymerase and the machinery which is responsible for  the translation of the mRNA into 

protein [196]. At any given time, a cell – from a prokaryote or eukaryote organism – expresses only a 

subset of its genes to direct production of other molecules, ensuring the synthesis of only the necessary 

mRNAs and proteins, and in appropriate amounts, to accomplish the genetic programs, such as: the 

presence of other cells, sporulation, apoptosis, or a response to a specific environmental condition [193, 

197].   
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Regulation of the gene expression in bacteria occurs primarily at the transcription level. However, a gene 

can be switch on or off by many mechanisms which can perturb different steps in its expression, from 

transcription initiation to protein degradation or modification [198-200].  Because this field of research 

became too wide, for the present purposes, this section will focus mainly on the mechanisms by which 

the transcription initiation of a bacterial gene can be regulated through the binding of a protein to the 

DNA. 

 

 

 1.2.1 Initiation of transcription  
 

 RNA polymerase (RNAP), which is the main enzyme involved in gene expression and is 

responsible for mRNA synthesis, comprises four subunits (α’ α’’ β β’). In bacteria, the RNAP core enzyme 

is typically found to be associated with another essential subunit, called sigma factor (σ), forming the 

holoenzyme (see Figure 1.4), which confers promoter-specific transcription initiation in RNAP and 

restricts transcription initiation to the promoter sequences [201].  Several different σ factors are known 

and each of which promotes the binding of RNAP to a specific set of promoters. However, the 

holoenzyme which carries the σ70 is the most common form, transcribing most of the genes [202-205]. 

The remaining σ factors are commonly referred to as alternative sigma factors and they can recognize 

different -10 and -35 regions, for instance -12 and -24 in the case of σ54, directing transcription of specific 

groups of genes under specific cellular conditions [206].  

The process of transcription initiation is a sophisticated multi-step process, and in a simplified way, it 

begins when RNAP holoenzyme binds to a specific promoter region forming a closed complex, in which 

DNA is completely double-stranded [204, 207, 208]. Melting of the DNA strands causes the formation of 

an open complex. This open complex when in the presence of the four nucleoside triphosphates, 

proceeds to an initiated complex which can be temporarily engaged in an iterative abortive transcription 

process, generating and releasing short new RNA chains [204, 209, 210].  
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 Figure 1.4 - Schematic representation of the RNA polymerase core with the isoforms present in 

E.coli. The core enzyme has four subunits, β and β’ which are present in a single copy, whereas the α subunit is 

present in two copies and is attached at one carboxy-terminal domain by a flexible linker. The holoenzymes’s name 

mirrors the σ subunit size. Adapted from [188]. 
 

 1.2.2 Promoter recognition  
 

 A promoter is a sequence of DNA from which RNAP initiates transcription. The RNAP together 

with the σ70 subunit recognizes four different and important sequence of elements, such as: two 

hexamers centered at or near positions -10 and -35 upstream from the transcription start site (designated 

by their locations as the -10 and -35 regions, respectively), the spacer DNA separating them, and a 

region between -40 and -60 (the UP element), which is a very A+T-rich region recognized by the carboxyl 

domain of the α-subunit (see Figure 1.5) [203, 211, 212]. The canonical sequences of the -10 and -30 

regions as read on the nontemplate strand are, TATAAT and TTGACA, respectively [213]. It has been 

shown that both sequences are directly recognized by the σ factor, although, the sequence in the -35 

region is recognized by an helix-turn-helix (HTH) domain, whereas, the -10 sequence is recognized by a 

different domain [214, 215]. A consensus length of 17 bp has been established for the spacer between 

the -10 and -35 regions and promoters with such a spacer length have been found to be more active in 

vitro, as well as in vivo, than those with shorter or longer spacers [216, 217]. Some differences can be 

found in promoter recognition. For example some promoters apparently work quite well without a 

recognizable -35 region and any activating proteins, due to an extended -10 region with the sequence 

TGNTATAAT [204, 218].   
 

 

holoenzymes

Core enzymeαCTD

holoenzymes

Core enzymeαCTD
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 Figure 1.5 - The RNA polymerase-promoter interactions. A promoter with consensus sequences for 

the -35 and -10 regions as well as the UP-element (boxed) is shown. The σ subunit can simultaneously bind to -10 

and -35 promoter regions, whereas the UP-element, if present, is recognized by the carboxi-terminal extensions of 

the α subunits. W represents adenine or thymine; N represents any base; and a subscript describes the number of 

reiteration of the respective base [188].  

 

 

Different promoters in bacterial cell can bind to RNAP unequally. So far, three main strategies to 

direct RNAP to specific promoter have been described: (i) several parts of DNA that form each promoter 

may differ in terms of efficiency by which they are recognized by RNA polymerase; (ii) many bacteria 

have different σ subunits, and since the σ subunit of RNAP is responsible for promoter recognition, 

changes in the activity or concentration of a particular σ subunit can redirect RNA polymerase towards a 

specific set of promoters; and (iii) transcription factors (activators and repressors) are present in all 

bacteria and can bind to particular promoters activating or repressing the transcription initiation [219, 

220]. The global response to the physiological requirements of the cell will be achieved depending on the 

combination of those strategies, as well as the overall topology of DNA, dictating the strength of the 

promoter. Intrinsic properties of the promoter can also be changed by specific regulatory proteins at any 

RNAP-promoter binding point. A weak promoter will be under a positive control whereas a strong 

promoter will be down-regulated and in case of promoters which are constitutively expressed, 

transcription will be initiated at a prefixed rate [209].  
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 1.2.3 The molecular mechanisms regulating transcription initiation 

  1.2.3.1 Activators vs repressors 
 

 
The modulation of the activity of proteins that control the initiation of transcription – activators and 

repressors - can occur by either intracellular or extracellular stimuli that signal for a particular regulatory 

pathway. These stimuli are sensed by the transcription factors, leading to their activation or inactivation. 

An activator is a factor that increases the affinity of the RNAP to the promoter, whereas, a repressor 

function is to block or to make difficult the access of the RNAP to the promoter or impeding the clearance 

process [221, 222].  

Two types of activators can be described considering whether they directly bind or not to the RNA 

polymerase: (i) Activators that bind directly to the RNAP enzyme, either by small surface-exposed 

patches, referred as activating regions, which interact with specific targets in RNA polymerase, or by 

overlapping the -35 region of the target promoter. Consequently, this kind of activators can potentially 

contact different parts of RNAP or binding to promoter’s target DNA site well upstream of the -35 region, 

leading to the contact between the promoter and the RNAP α subunit C-terminal domain. (ii) Activators 

that do not make direct contact with RNAP. In this case, the activator function is achieved by inducing a 

conformational change in the target promoter, for instance, as observed for the MecR protein encoded by 

the mercury resistance locus [223-226].  

In both activators and repressors, alterations in the DNA structure and protein-protein interactions, 

either between DNA-binding regulatory proteins or between them and subunits of the RNAP are essential 

mechanisms of action. There are regulatory proteins responsible for the regulation of global cell response 

(for example, the regulation of carbon metabolism in E.coli) whereas, others control only a set of 

promoters involved in a more specific cell response (for example, the regulation of L-arabinose 

degradation by AraC in E. coli) [227, 228].  

 

  1.2.3.2 The helix-turn-helix domain 
 

 The helix-turn-helix (HTH) domain is a common denominator in basal and specific transcription 

factors among a large majority of bacterial regulatory proteins [229]. In structural terms, the HTH domains 

have evolved from the basic 3-helical cores: the tetra-helical bundle, the winged-helix and the ribbon-

helix-helix type configurations [229, 230]. In functional terms, the HTH domains are present in most 

transcription factors of all prokaryotic genomes and some eukaryotic genomes. They have been recruited 

to a wide range of functions beyond transcription regulation, which include DNA repair and replication, 

RNA metabolism and protein-protein interactions in diverse signalling contexts. Beyond their basic role in 
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mediating macromolecular interactions, the HTH domains have also been incorporated into the catalytic 

domains of diverse enzymes [231, 232]. This domain consists in one α-helix, a turn, and a second α-helix, 

arranged perpendicularly in a very peculiar way that has the ability to insert into the major groove of DNA 

[233]. The side chains of amino acids exposed along the recognition helix make sequence-specific 

contacts with edges of base pairs. A second helix lies across the DNA, helping the recognition of the helix 

position and strengthening the binding. The differences in the residues along the outside of recognition 

helices largely account for differences in the DNA-binding specificities of regulators [234, 235] . Protein-

DNA recognition trough the HTH motifs appears associated with several features; generally DNA-binding 

sites are at least partially palindromic, normally the proteins bind DNA as a homo-oligomers and, as 

mentioned above, the sequence specific recognition is usual made by the second α-helix of the HTH motif 

through  the major groove of DNA. The local DNA configuration and conformation, as well as its 

curvature, bending and flexibility are also important to establish the specificity of protein-DNA interactions 

[236, 237]. In activator molecules or dual function regulators, the HTH motif is located either at NH2 or 

COOH-terminal, whereas, in repressor proteins the same motif is exclusively present at the NH2-

terminus. Additionally, the HTH motif is normally bound to a larger response domain, which transmits the 

signal to the DNA-binding domain that allows or prevents the binding to the operator sequences [238, 

239].  

 

 

1.3. Regulation of β-lactam resistance in S. aureus 

 1.3.1 Cell-wall biosynthesis: the cellular target of β-lactams  
 

 The biosynthesis of peptidoglycan is a complex process involving many different cytoplasmic and 

membranes steps. The first stage consists in the formation of the soluble nucleotide precursors, from 

UDP-GlcNAc to UDP-MurNAc-pentapeptide. In particular, the synthesis of the peptide moiety is 

performed by a series of enzymes designated as the Mur ligases which are responsible for the additions 

of l-alanine, d-glutamic acid, meso-diaminopimelic acid (A2pm) or l-lysine, and d-alanyl-d-alanine to UDP-

MurNAc, respectively [240-243].  

The membrane stage of peptidoglycan biosynthesis is catalyzed by the MarY enzyme, which 

transfers the muramyl-pentapedtide from UDP-Mur-Nac-pentapedtide to the membrane acceptor 

localized on the cytoplasm. The UDP-GlcNac precursor is then linked to the muramyl residue of lipid I to 

form β-1,4 glycosidic bond [244, 245]. The last steep in peptidoglycan synthesis is the transpeptidation 

and transglycolysation reactions, which are responsible for the formation of peptide and glycosidic bonds 

and  are catalysed by the Penicillin Binding Proteins (PBPs) and monofunctional glycosyltransferases 

(MGTs) [246] (see Figure 1.6). The penicillin-binding domains of PBPs (which are transpeptidases or 
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species, sporulation [250, 255, 256]. In gram-positive bacteria, PBPs are exocellular being anchored 

through short hydrophobic carboxy – or amino-terminal sequences to the outer face of the cytoplasmatic 

membrane, whereas, in gram-negative they are pseudoperiplasmatic  [257]. The enzymatic activities 

associated with PBPs are transpeptidation, endopeptidation, DD-carbopeptidation and also 

transglycosilation, in the case of bibunctional PBPs [258].  

According to their structure, PBPs can be divided in two main groups: high-molecular weight (HMW) 

PBPs and low-molecular weight (LMW) PBPs. HMW PBPs have two characteristic domains and a 

membrane spanning non-cleavable signal peptide, which traps the enzyme to the external surface of the 

cell membrane. The C-terminal domain is responsible for transpeptidation activity and β-lactam antibiotics 

covalently bind to its catalytic centre [249, 259]. Based on catalytic activity of their N-terminal domain, 

HMW PBPs are divided in two classes (A and B). The class A of HMW PBPs are bifunctional enzymes 

capable of both transglycosylation and transpeptidation, because its N-terminal region has 

transglycosylase activity [256]. The class B of LMW PBPs are monofunctional DD-peptidases, involved in 

peptidoglycan trimming and have no penicillin-binding domain [255].  

S. aureus has four native PBPs: PBP1 (85 KDa), PBP2 (81 KDa), PBP3 (75 KDa) and PBP4 (41 

KDa). PBP1 and PBP3 are HMW class B and PBP2 is HMW class A, whereas PBP4 is LMW [255, 260, 

261]. Contrary to PBP 1 and PBP 2, PBPs 3 and 4 are not essential for growth and survival of S. aureus.  

However all the native PBPs have high affinity for β-lactams [262-264]. The essential function of PBP1 is 

intimately integrated into the mechanism of cell division, playing an important role in septum’s formation 

[265]. PBP2 is the major peptidoglycan transpeptidase and also the most abundant among the native 

PBPs, being the only bifunctional PBP present in S. aureus [266, 267]. It is believed that PBP3 is a 

transpeptidase functioning in no growing cells [268], and PBP4 is a DD-carboxipeptidase and 

transpeptidase involved in secondary cross-linking of the peptidoglycan [269].    

 

  1.3.1.2 PBP2a 
 

 Penicillin binding protein 2a (PBP2a) is the key determinant of the broad-spectrum β-lactam 

resistance in MRSA strains. Because of its low reactivity for β-lactams, PBP2a provides transpeptidase 

activity to allow cell wall synthesis at β-lactam concentrations that inhibit the β-lactam-sensitive PBPs 

normally produced by S. aureus [270-273]. PBP2a is a high molecular weight membrane bound 

transpeptidase with 668 amino acids, and 76.162 KDa [186, 270, 273], and is located on the extracellular 

surface of the cytoplasmic membrane, where it catalizes the final steps of cell wall assembly [256, 274]. 

Although PBP2a is the most abundant PBP in MRSA cells this abundance appears not to be correlated 

with the level of resistance [275, 276]. Even in strains where mecA gene is expressed constitutively, 

PBP2a appears not to be involved in cell wall synthesis, with exception of cells which have been treated 

with β-lactam antibiotics [277]. 
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The action mechanism of PBP transpeptidation based on a serine-derived acyl-enzyme, is very 

similar to that present in β-lactamases, including the three-active site signature sequences [SXXK, 

(S/Y)XN and KTS/KTG] [278-280]. Lim and Strynadka [281] revealed the three soluble domain structures 

of the PBP2a, which are, the N-terminal  lobe (corresponding to the anchor characteristic of the HMW 

PBPBs), a centralized non-penicillin binding domain of unknown function and a C-terminal transpeptidase 

domain, which has a folding pattern that is typical of the PBP transpeptidases and the serine β-

lactamases. However, in the case of PBP2a, the active site motif of the nucleophilic serine which is 

located on a α-helix is sequestered within an extended narrow groove. This structural difference gives to 

PBP2a a uniqueness in comparison to the native PBPs, decreasing drastically the efficiency with which β-

lactam antibiotics trap the enzyme as a penicilloyl-intermediate complex [281, 282].  

Upon exposure to β-lactam antibiotics, the native PBP2 of MRSA strains loses its transpeptidase activity, 

which is taken over in those strains by PBP2a. However, as PBP2a has no transglycosylase activity, 

MRSA peptidoglycan biosynthesis depends on the functional cooperation between the transglycosylase 

domain of the native PBP2 and the transpeptidase domain of PBP2a [283]. Although MRSA strains are 

able to grow in the presence of β-lactams, striking changes in muropeptide composition can be observed, 

such as: severe decreasing of trimeric and higher oligomeric components (from almost 50% to less than 

10%), while the proportion of monomeric and dimeric components drastically increases (from about 15% 

up to 50%) [277, 284]. The anomalous composition of the cell wall in those strains in the presence of the 

β-lactam antibiotics reflects the limited capacity of PBP2a for cross-linking more than single monomeric 

glycan chains [277].  

 

  1.3.1.3 Factors affecting methicillin resistance  
 

 Although PBP2a is essential to confer β-lactam resistance to MRSA, this resistance may be 

affected by any factor that interferes with PBP2a or with the mecA expression. Resistance to high levels 

of methicillin depends, in addition to PBP2a, on chromosomally encoded factors – the aux (auxiliary) or 

fem genes [285, 286]. The aux genes are located in the S. aureus genome, outside of the SCCmec, and 

are mainly  involved in the synthesis and degradation of the peptidoglycan or cell wall turnover, although 

some appear to have putative regulatory functions, and others encode proteins with as yet unidentified 

functions [17, 287-289]. In this section, we will briefly discuss some of these factors as well as their 

impact on β-lactam resistance.  

It has been shown that a different configuration of stem peptide influences methicillin resistance. For 

instance, the addition of glycine to the growth medium led to stem peptides of peptidoglycan ending in 

two glycine residues instead of two alanine residues. This alteration converts a highly resistant 

homogeneous strain to a heterogeneous phenotype [253, 290]. Additionally, inactivation of murE gene 

reduces the UDP-linked muramyl pentapeptides and accumulates of UDP-linked muramyl dipeptides in 

the cell wall precursor pool, also leading to reduction of methicillin resistance [291]. It has been 
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demonstrated that inactivation of llm gene (similar to the teichoic acid linkage unit synthesis gene tagO 

from B. subtilis) decreases the levels of β-lactam resistance, leading a homogeneous strain to a 

heterogeneous phenotype, and it is also involved with increased autolytic activity [292]. Alteration of the 

pentaglycine cross-bridge configuration has also a strong impact on the levels of methicillin resistance in 

MRSA. Inactivation of either femA or femB genes results in a reduction of methicillin resistance and also 

affects the secretion of virulence factors which could diminish the ability of cell to cause infection [293-

295]. Genes such as: fmtA-C, hmrA and hmrB, pbp2 (genes that are associated with peptidoglycan 

biosynthesis), sigB, dtl (involved in stress response and virulence), and ctaA (involved in stress response 

induced by starvation) also play a pivotal role on modulation of methicillin resistance [243, 287, 296]. 

 Besides the aux genes, many authors have demonstrated that several chemical compounds also 

have the capacity to modulate methicillin resistance, such as: baicalin (which is a flavone compound) 

[297], Triton X-100, polidocanol (a dodecyl polyethylenneoxide ether) [298]  and glycerol monolaurate 

[299]. It is thought that those compounds target the cytoplasmic membrane and may interfere with the 

signalling domain of MecR1, but not directly with PBP2a. However, compounds such as 

polyoxotungstates [300] ant totarol [301], lead to a decrease on PBP2a synthesis, but the mechanism of 

how this is achieved is still unknown.    

 

  1.3.1.4 Heterogeneity 
  

 MRSA strains appears to be consistent in that they all contain and express the mecA gene, 

although, the degree of antibiotic resistance varies widely from one strain to another and also within the 

progeny of a single MRSA isolate, revealing a surprisingly degree of heterogeneity in  the phenotypic 

expression levels of antibiotic resistance (since a few micrograms per milliliter to several milligrams per 

millilitre) [302-304]. Some of these strains, which have this heterogeneous phenotype, display relatively 

low MIC ranging from 4-24 mg/L, and, at the clinical setting, are difficult to detect with conventional 

antimicrobial susceptibility tests and can be easily misinterpreted as sensitive (MSSA) [305].  This 

peculiar characteristic observed over the decades in most MRSA strains is the phenomenon referred to 

as  heteroresistance in which, methicillin resistant strains show a basal resistance to low concentrations 

of β-lactam antibiotics and give rise to a few subclones able to grow at high concentrations of the 

antibiotic [306, 307].  However, the number of those highly resistant subclones, their resistance levels and 

the frequency with which they arise in a culture are strain-specific and reproducible, implying a strong 

genetic control in the population structure of these bacteria [308]. The genetic basis of heteroresistance is 

still not fully understood. One study proposed that, once these highly resistant subclones – referred to as 

Homo*- arose in a population, they are very stable and do not revert readily to a heterogeneous 

phenotype [305]. Chromosomal mutations (chr*), involving genes other than those which are present in 

the SCCmec element, have been suggested to contribute to high level resistance in these subpopulations 
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[309]. Some genes such as, hmrA; hmrB; lytA and the dlt operon are putative candidates to undergo chr* 

mutations which may contribute to the appearance of these more resistant subpopulations [310-312].   

 According to its heterogeneous resistance profiles, MRSA strains can be divided in four different 

classes, which range from diverse degrees of heterogeneous resistance to strains which have a 

homogeneous resistance profile [304].  Cultures of strains which belong to expression classes 1; 2 and 3 

show heterogeneous resistance profile, whereas, cultures of strains which belong to expression class 4 

have a resistance homogeneous profile (all cells are highly resistance with a methicillin MIC ≥ 800 µg/ml). 

The main difference among expression classes 1, 2 and 3 is the methicillin MIC for the majority of the 

cells, which is only slightly higher than MSSA strains in expression class 1, between 6 and 12 µg/ml in 

class 2, between 50 and 200 µg/ml in class 3, and higher than 800  µg/ml  in class 4 [304].  

 Although heterogeneity has a molecular base and chr* mutations, other factors have been found 

that also contribute to heterogeneity, such as: temperature, pH, osmolarity, growth medium, growth 

phase, trace metals, chelating agents and visible light have strong influence in methicillin resistance 

levels [309, 313]. Moreover, no mechanism or genetic model that explains the difference among these 

different classes has been proposed yet.  

 

 1.3.2 bla-system 
 

 The main mechanism of β-lactam resistance, particularly amongst Gram-negative bacteria, is the 

production of enzymes, called β-lactamases, which have hydrolytic activity and are able to disrupt the 

amide bond of the characteristic β-lactam ring [314]. β-lactamases can be considered as ancient 

enzymes that were quite rare until the introduction of  the β-lactam antibiotics into medicine and 

agriculture around sixty years ago [315]. Described for the first time in Escherichia coli isolates, even 

before the clinical use of penicillin, these enzymes have since then been described in Gram-negative, 

Gram-positive bacteria and in mycobacteria [316, 317]. β-lactamase enzymes can be plasmid or 

chromosomally encoded and may also be associated with mobile genetic elements such as integrons and 

transposons [318, 319].   

  Most S. aureus isolates carry a plasmid-encoded β-lactamase, although the bla operon can be also 

found in the chromosome [320]. In β-lactamase-producing S. aureus isolates, the β-lactamase is usually 

inducible [321]. Four classes of S. aureus β-lactamase enzymes have been identified by serologic [322, 

323] and kinetic [324] methods. Those enzymes can be organized into four classes (A to D) [324]. 

Classes A, C and D are usually located on plasmids and share a similar fold as well as a similar 

mechanism of action leading to β-lactam inactivation [325, 326]. This mechanism involves formation of a 

serine nucleophile by deprotonation of the active site serine with a general base, and nucleophile attack 

of the β-lactam ring to form an acyl-enzyme intermediate. Consequently, hydrolysis of the acyl-enzyme 

intermediate is carried out through a general base activated by a water molecule [317, 327]. The 

differences among the catalytic mechanism of the serine β-lactamases are related with the type of 
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Figure 1.7 - Schematic representation of BlaR1 membrane protein. Adapted from [278]. 

 

 BlaR1 is a high molecular weight sensor-transducer transmembrane protein with two domains 

[256]. The amino-terminal domain, with approximately 38-KDa - the transducer - exhibits four 

transmembrane segments (TM1-TM4) that form a four-α-helix bundle embedded in the plasma bilayer 

[334]. These transmembrane segments are interconnected by three loops (L1-L3), the loop L1 and L3 are 

facing the cytoplasm, whereas the L2 loop is exposed in the outside of the cell (see Figure 1.7). The L3 

segment has a zinc metalloprotease domain, harbouring a histidine sequence and a glutamic acid, which 

is believed to cleave the repressor BlaI [338, 339]. The carboxyl-terminal domain of BlaR1 with 

approximately 27- KDa, is fused at the carboxyl end of the TM4 extending to the extracellular medium. 

This domain possesses the amino acid sequences signature of penicillin binding proteins [340, 341]. BlaI 

is present as a dimmer in solution and its DNA-binding function is located at the N-terminus, whereas, the 

dimerization function is located in the C-terminal region [332, 342].  

 

 
 Figure 1.8 - Overall view of BlaI bound to DNA. The DNA sequence is shown in colors and the model 

is labeled with the same colors. The dyad axes of DNA are indicated by a line and a bullet.  Adapted  from [335]. 
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 In the absence of penicillin, the DNA-binding protein BlaI bind in dimers to the operator region, 

thus repressing mRNA transcription from both blaZ and blaR1-blaI, whereas a paired proline PXXP motif 

in L2 loop and the C-terminal of BlaR1 are bound non-covalently (see Figure 1.8) [341]. The induction of 

the blaZ transcription mechanism begins with the binding of the β-lactam to the serine active site of the 

extracellular sensor domain of BlaR1 [341].  The serine acylation event disturbs the L2 loop::C-terminal 

domain binding, leading to a conformational alteration of the extracellular L2 Loop. This event generates 

a signal transduction that is propagated trough the transmembrane α-helices [334, 341], leading to the 

conversion of the intracellular zinc metalloprotease domain of BlaR1 from an inactive proenzyme into an 

active protease, presumably by autoproteolysis [332, 334, 338, 343, 344]. The activated zinc 

metalloprotease directly or indirectly cleaves BlaI, allowing the synthesis of blaZ mRNA and blaR1-blaI 

mRNA. Actually, the molecular mechanism that promotes the BlaI cleavage by the zinc metalloprotease 

domain of BlaR1 is not fully understood. Thus, Filée and colleagues [345]  have proposed an alternative 

theory, suggesting that in B. licheniformis a coactivator (BlaR2), dependent of the activated BlaR1 

receptor, combined with the cellular penicillin stress are required for BlaI inactivation. Moreover, the 

induction process does not promote a complete BlaI cleavage, and about 40-50% of the intact dimer is 

still present [339]. However, recent studies carried out by Llarrull and colleagues [346], using a 

heterologous expression system, have shown that S. aureus BlaR1 directly cleaves the repressor BlaI.   

 

 1.3.3 mec-system 
 

 Methicillin resistance in staphylococci is mediated by the chromosomally localized mecA gene, 

which is responsible for the synthesis of the PBP2a [296, 347]. This extra PBP, which has reduced β-

lactam affinity, is able to mediate the cell wall synthesis, after native PBPs have been inactivated by the 

β-lactam antibiotics [270, 348].  mecA transcription can be regulated by the mecR1-mecI regulators, 

located immediately upstream from mecA promoter and transcribed in opposite direction [79, 349, 350]. 

MecI repressor was found to be a homodimer, both unbound and in complex with the double-stranded 

DNA promoter mecA, consisting in an 11-KDa DNA binding domain and a 3-KDa dimerization domain 

[351, 352]. Whereas, MecR1 is a high-molecular weight class C PBP, consisting of a ~38-KDa N-terminal 

(putative) integral-membrane metalloprotease and a ~27-KDa C-terminal extracellular β-lactam sensor 

connected by a linker [353]. The genetic organization of the mec locus is similar to the β-lactamase 

operon, and there is a good homology between the sensor inducers (the identity of the sensor domains is 

43%, of the protease domains is 33%, and of the full length proteins is 34%) and the repressors (sharing 

61% identity to each other) (see Figure 1.9) [276, 321, 332, 341, 349, 354, 355], and conformational 

analysis has shown a conservation of the structural motifs [31, 334, 356]. Furthermore, several studies 

have shown that proteolytic cleavage in both repressors occurs at the same two amino acids in the same 

relative position [332, 350]. Due to their similarity, both regulatory systems have been shown to regulate 

the mecA expression. Both purified MecI and BlaI, as well as the heterodimers MecI-BlaI are able to 
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consensus sequence encountered within the repressor is protected and different from the MecR1 (auto) 

lytic cleavage site, so much so it is difficult to conceive that MecR1 is able to directly cleave MecI.  

Despite the similarities in terms of structure and function, the bla and mec systems still retain distinct 

identities. For instance, both sensor-transducers (MecR1 and BlaR1) are specific for their cognate 

repressors and are not functionally interchangeable [357], i.e. the MecI repression may only be released 

when induced by MecR1 and the same happens with the BlaI and BlaR1 [357].  Additionally, the kinetics 

of the signal transduction, which leads to mecA induction, is quite different: some minutes if mediated by 

blaR1-blaI, versus, several hours when mecA is induced by its cognate regulatory genes [276, 363]. The 

poor induction of PBP2a expression in isolates carrying the mec regulatory locus fully functional may be 

explained by the fact that the repressor MecI is a tight regulator of mecA transcription and also because 

most β-lactam antibiotics do not activate MecR1 efficiently [364-366].  Consequently, some isolates, 

referred to as “pre-MRSA” are, in clinical terms, methicillin-sensitive despite carrying the mecA gene [349, 

364]. Nevertheless, selective pressure by antibiotic usage has apparently promoted the appearance of 

MRSA isolates with deletions or mutations within the mecA promoter or mecI coding region, giving rise to 

an inactive repressor and constitutive PBP2a expression or, as most strains are β-lactamase positive, 

blaI-blaR1 mediated inducible PBP2a expression [367-370]. In agreement with this observation, studies 

carried out in vitro have shown that inactivation of the mecI gene leads to increased levels of β-lactam 

resistance [349, 364].  Therefore, it has been proposed that MRSA strains with high MIC (minimal 

inhibitory concentration) to β-lactams, as many contemporary MRSA isolates, must have no functional 

mecI-mecR1 genes [364]. 

  However, in a recent study a correlation between mecI-mecR1 functionality, and β-lactam 

resistance could not be established in a collection of pandemic MRSA clones [371]. On the other hand, in 

spite of the clear negative effect of the presence of MecI on the phenotypic expression of resistance, and 

in an apparent contradiction with what was previously described, Rosato et al have found that either mecI 

or blaI must be functional in all MRSA, suggesting that this may be a protective mechanism preventing 

overproduction of a toxic protein [372]. Moreover, Oliveira et al have overexpressed a wild-type copy  of 

MecI in trans in a large collection of prototype MRSA strains, and surprisingly, MecI overexpression did 

not affect the phenotypic expression of β-lactam resistance in the majority of those strains, suggesting the 

existence of other mecA regulators [371]. As a matter of fact, several authors based on disparate 

observations have postulated the existence of a third element mediating the signal transduction between 

the MecR1 and MecI proteins [344, 345, 352, 371, 373]  
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2.1 Abstract 
 

 Methicillin-resistant Staphylococcus aureus (MRSA) is an important human pathogen, which is 

cross-resistant to virtually all β-lactam antibiotics. MRSA strains are defined by the presence of mecA 

gene. The transcription of mecA can be regulated by a sensor-inducer (MecR1) and a repressor (MecI), 

involving a unique series of proteolytic steps. The induction of mecA by MecR1 has been described as 

very inefficient and, as such, it is believed that optimal expression of β-lactam resistance by MRSA 

requires a non-functional MecR1-MecI system. However, in a recent study, no correlation was found 

between the presence of functional MecR1-MecI and the level of β-lactam resistance in a representative 

collection of epidemic MRSA strains. Here, we demonstrate that the mecA regulatory locus consists, in 

fact, of an unusual three-component arrangement containing, in addition to mecR1-mecI, the up to now 

unrecognized mecR2 gene coding for an anti-repressor. The MecR2 function is essential for the full 

induction of mecA expression, compensating for the inefficient induction of mecA by MecR1 and enabling 

optimal expression of β-lactam resistance in MRSA strains with functional mecR1-mecI regulatory genes. 

Our data shows that MecR2 interacts directly with MecI, destabilizing its binding to the mecA promoter, 

which results in the repressor inactivation by proteolytic cleavage, presumably mediated by native 

cytoplasmatic proteases. These observations point to a revision of the current model for the 

transcriptional control of mecA and open new avenues for the design of alternative therapeutic strategies 

for the treatment of MRSA infections. Moreover, these findings also provide important insights into the 

complex evolutionary pathways of antibiotic resistance and molecular mechanisms of transcriptional 

regulation in bacteria. 

 

2.2 Introduction 
  

 Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of infections in hospitals in 

many countries and has also become an important community- and livestock-associated pathogen [1-3]. 

Recently, a report from CDC has reassessed the burden of MRSA infections in the USA, putting the 

number of deaths attributable to MRSA in front of those related to HIV-AIDS, Alzheimer disease or 

homicide [4]. MRSA are resistant to virtually all β-lactam antibiotics, one of the most clinically relevant 

class of antimicrobial agents. In addition, contemporary MRSA strains are frequently resistant to many 

other antimicrobial classes leaving clinicians with few therapeutic options. 
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 The MRSA characteristic phenotype is due to an extra penicillin-binding protein (PBP2A) coded 

by the mecA gene [5], which has a remarkable reduced reactivity for many β-lactams [6]. In addition, 

>95% of MRSA strains have also a β-lactamase enzyme coded by blaZ that confers penicillin-resistance 

[7-9]. The mecA transcription can be controlled by the divergent mecR1-mecI regulatory genes, coding for 

a sensor-inducer and a repressor, respectively [10]. This genetic organization of the mecA locus is similar 

to that of the β-lactamase, which contains the structural gene blaZ and the homologous blaR1-blaI 

regulatory genes. In fact, there is a cross-talk between both systems [11-14], and the signal-transduction 

mechanisms are believed to be identical [15, 16], involving two proteolytic steps, in contrast with the most 

common bacterial signal transduction mechanism that involves the phosphorylation of regulatory proteins 

[17]. Specifically, the currently accepted model of mecA regulation involves two main steps: (i) binding of 

the β-lactam antibiotic to the extracellular sensor domain of MecR1 leads to the autocatalytic cleavage of 

the sensor-inducer and activation of the cytoplasmatic inducer domain, which appears to be a 

prometalloprotease; (ii) the activated inducer domain of MecR1 either directly cleaves the promoter-

bound MecI dimers or promotes the repressor cleavage, which disables the ability of the repressor protein 

to dimerize and bind to the mecA promoter, enabling the expression of the resistance gene. MecR1 once 

cleaved can no longer transmit signal but, since the expression of mecR1-mecI is also up-regulated, the 

mecA induction continues as long as the antibiotic is present in the environment. 

 Some details of the signaling mechanism involved in the transcriptional control of mecA are still 

elusive. For instance, induction of mecA by MecR1 has been described as extremely slow [12, 13], so 

that cells with intact mecR1-mecI regulatory system appear phenotypically susceptible in spite of the 

presence of mecA – the so-called “pre-MRSA” phenotype [10, 18]. Based on these observations, it has 

been postulated that high-level resistance to β-lactams, characteristic of many contemporary MRSA 

clinical strains, implies a non-functional mecR1-mecI regulatory system. In agreement with this 

hypothesis, several studies have described the accumulation of point mutations and/or gene deletions in 

the mecR1-mecI coding sequences [19-23]. Still, in some of these studies [19, 21, 23], based on 

contradictory observations, the existence of alternative mecA regulatory mechanisms has also been 

proposed. In fact, in a recent study, we could not establish any correlation between the mecR1-mecI 

integrity and the β-lactam resistance phenotype in a representative collection of epidemic MRSA strains 

and, unexpectedly, overexpression in trans of a wild-type copy of MecI had no effect on the phenotypic 

expression of resistance in most strains [24]. 

 Here, we identify the missing link that explains the puzzling observations described above. We 

demonstrate that the mecA regulatory locus is in fact a three-component system that contains, besides 

mecR1-mecI genes, the mecR2 gene, which is co-transcribed with mecR1-mecI. In vitro and in vivo 

assays show that MecR2 acts as an anti-repressor by interacting directly with MecI repressor, disturbing 

its binding to the mecA promoter, which results in its inactivation by proteolytic cleavage. In MRSA strains 

with functional mecR1-mecI genes, MecR2 is essential for the full induction of mecA transcription, 

compensating for the inefficient induction of mecA by mecR1 and enabling the optimal expression of β-
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lactam resistance. These findings suggest a need to revise the current model for the induction of mecA 

expression in clinical MRSA strains and open new avenues for the design of alternative therapeutic 

strategies targeting the regulatory pathway of mecA expression. In addition, this unusual combination of 

repressor, sensor-inducer and anti-repressor, together with the unique modulation of a series of 

proteolytic cleavage steps underlying the signal transduction mechanism, provides important insights into 

the evolution of antibiotic-resistance and transcriptional control of genes in bacteria. 

 

2.3 Results and Discussion 
 

 2.3.1 The mecA cognate regulatory locus is a three-component system 
  

 Since the MRSA phenotype is not affected by the overexpression in trans of the mecA repressor 

[24], we hypothesized that a third regulator might be involved in the mecA transcriptional control. Taking 

into account that mecA gene is part of a large polymorphic exogenous DNA fragment (the so called 

SCCmec element), which has integrated in the chromosome [25], we reasoned that the putative 

additional regulator should be located within this chromosomal cassette, most likely upstream to the 

mecA gene; i.e. genetically linked to the mecR1-mecI region. Upon analysis of prototype sequences of 

SCCmec types II and III, which are characterized by complete mecR1-mecI coding sequences [26], we 

found a highly conserved region (99.9% homology) immediately downstream of mecI. This region 

contains the divergent small coding sequence for a phenol-soluble modulin, psm-mec, involved in S. 

aureus virulence and colony spreading [27, 28], and a putative open-reading frame (ORF) that, due to a 

difference in four-tandem thymine residues, has a variable length (Figure 2.1A): 870bp in SCCmec type II 

prototype strain N315 (accession no. D86934, positions 41794-40925) and 1149bp in SCCmec type III 

prototype strain HU25 (accession no. AF422694, positions 4729-3861). Both variants are homologous to 

the repressor of the xylose operon of S. xylosus, XylR (accession no. X57599) with an amino-acid identity 

of 60-64%; the four-thymine deletion in strain N315 eliminates the N-terminal DNA-binding helix-turn-helix 

domain of XylR (Figure 2.1B). Available genomic and SCCmec sequence data demonstrate that both 

ORF variants are disseminated in S. aureus and in other staphylococcal species containing SCCmec 

sequences (Figure 2.2). We coined the name of mecR2 for this putative ORF.  
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 Figure 2.1 - The mecA regulatory locus is a three-component system. (A) Genetic organization of 

the mecA regulatory locus in major SCCmec types I-V and prototype MRSA strains used in this study. The magnified 

DNA sequence shows the two mecR2 start codons in SCCmec type III and III (boxed), the stop codon (boxed), the 

four-thymine deletion in SCCmec type II (underlined), and the putative terminator (inverted arrows). (B) Multiple 

sequence alignment between the repressor of the xylose operon (XylR) and MecR2 from prototype SCCmec types II 

and III strains. Green – identical residues; red – similar residues; white – divergent residues. The figure was prepared 

using “The Sequence Manipulation Suite” freely available at http://www.bioinformatics.org. 
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 Figure 2.2 - Multiple sequence alignment between the repressor of the xylose operon (XylR) and 

the anti-repressor MecR2 found in staphylococci. Species names (strain code in parenthesis): Sxy – S. xylosus, 

Svi – S. viridians, Ssc – S. sciuri, Sau – S. aureus, Spi – S. pseudintermedius, Sfl – S. fleuretti, Sep – S. epidermidis. 

Green – identical residues; red – similar residues; white – divergent residues. The figure was prepared using “The 

Sequence Manipulation Suite” freely available at http://www.bioinformatics.org. 

 

 Analysis of the upstream sequences of the putative mecR2 gene revealed no obvious 

promotersequences. A putative terminator region, consisting of two perfect inverted repeats of 19 base 

pairs, was identified downstream the stop codon of mecR2. No terminator sequences were found in the 

mecI-mecR2 intergenic region, suggesting that the putative mecR2 gene might be co-transcribed together 

with mecR1-mecI from the mecR1 promoter. This hypothesis was confirmed by transcriptional analysis of 

mecR2 by reverse-transcriptase PCR (RT-PCR) in prototype strains N315 and HU25. Using internal 

primers for the putative coding region of mecR2 a positive signal was detected in both prototype strains. 

Moreover, using pairs of primers spanning the mecI-mecR2 and mecR1-mecI regions, positive signals 

were detected suggesting that mecR1-mecI-mecR2 genes are co-transcribed from the mecR1 promoter 

(Figure 2.3).   

 

 

 

 

psm‐mec psm‐mec 

psm‐mec 
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 Figure 2.3 - Transcriptional analysis of mecR2. (A) Genetic organization of the mecA regulatory locus 

and location of primers used in the RT-PCR assays. (B) Gel electrophoresis of the RT-PCR products obtained with 

total RNA from strains N315 and HU25, respectively. MM, molecular weight marker (1Kb DNA ladder); lanes 1-2, 

mecI-mecR2 co-transcript; lanes 3-4, mecR1-mecI co-transcript; lanes 5-6, mecR2 transcript; lanes 7-9, positive 

controls, PCR reactions using the same primer pairs and chromosomal DNA from strain N315 as template; lanes 10-

11, negative control, RT-PCR reactions without the reverse-transcription step for total RNA preparations of strains 

N315 and HU25, respectively, using the primer pair MR2-RT1/MR2-RT2 (i.e. the one originating the smallest 

amplicon). 

 

 2.3.2 mecR2 is involved in the optimal expression of β-lactam resistance 
 
 We next evaluated the role of mecR2 on the MRSA phenotype by constructing a series of 

recombinant strains using two parental strains with contrasting phenotypes. The first of these, strain COL 

is highly resistant to methicillin, has no mecI, has a partially deleted mecR1, expresses mecA 

constitutively, is negative for β-lactamase [29], and is mecR2 negative. The second, strain N315 has a 

low-level methicillin-resistance phenotype, carries wild-type mecR1-mecI sequences, has an inducible 

expression of mecA, carries a β-lactamase plasmid [10, 18], and is mecR2 positive. In previous studies, 

we have observed a sharp decrease in resistance to oxacillin in strain COL overexpressing in trans the 

repressor mecI (COL+mecI), whereas the great majority of other MRSA strains tested, including strain 

N315, did not show alterations in the oxacillin-resistance phenotype [24]; being oxacillin a methicillin 

analogue that has replaced methicillin in clinical use. In this study, we have cloned the mecI-mecR2 

region from strain N315 in the same plasmid vector.  When strain COL was transformed with this 

recombinant plasmid (COL+mecI-mecR2) the resistant-phenotype was completely restored and so was 

the constitutive expression of mecA (Figure 2.4).  

To exclude possible artifacts due to the overexpression of genes from multi-copy plasmids, we 

reconstructed the mecR1-mecI-mecR2 regulatory locus of prototype strain N315 in the chromosome of 

strain COL, using an insertion-deletion strategy with a thermosensible plasmid (Figure 2.5). First, we 

inserted the wild-type sequences of mecR1-mecI (strain COL::RI), which caused a decrease of oxacillin-

resistance when compared to the parental strain COL, in agreement with the poor induction of mecA by 

MecR1 alone (Figure 2.6). Compared to COL+mecI (Figure 2.4), the decrease of oxacillin-resistance in 

COL::RI was less severe, most likely due to the lower levels of MecI repressor when expressed from the 

chromosome and to the presence of the inducer MecR1. Upon introduction of the complete mecA 

regulatory locus; i.e. mecR1-mecI-mecR2 (strain COL::RI-R2), the phenotype of parental strain COL was 

fully restored, suggesting that in the presence of functional mecR1-mecI, mecR2 is required for the 

optimal expression of resistance. When we re-introduced the recombinant plasmid over-expressing mecI 

in recombinant strain COL::RI-R2 (strain COL::RI-R2+mecI) no effect was detected on the phenotypic 

expression of resistance, suggesting that mecR2 expressed from its “native” chromosomal location is able 
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 Figure 2.6 - Reconstruction of the mecA regulatory locus in prototype strain COL. Reconstruction 

of the mecR1-mecI locus in the chromosome of strain COL (COL::RI) causes a decrease of the resistance level to 

oxacillin, which can be reverted by the reconstruction of the full mecA regulatory locus, mecR1-mecI-mecR2 

(COL::RI-R2). Overexpression of mecI in COL::RI-R2 no longer cause a decrease in the resistance level to oxacillin 

(COL::RI-R2 + mecI). As control, the overexpression of mecI in strain COL::RI, originated a phenotype similar to 

COL+mecI (Fig. 2). The oxacillin-resistance levels were evaluated by diffusion disks containing 1 mg of oxacillin (left) 

or by population analysis profiles (PAP’s) (right). 

 

 Of note, first attempts to complement the mecR2 null-mutant by overexpression it in trans only 

succeeded if mecR2 was co-overexpressed together with mecI (data not shown). This requirement for low 

MecR2 cellular amounts and/or equimolar cellular amounts of MecI and MecR2, suggests that at high 

cellular concentrations MecR2 function may be lost, either due to oligomerization or (non-specific) 

interference with essential cellular targets. A classical example of the requirement for equimolar ratios 

between interacting proteins is the Escherichia coli helicase DnaB / replication factor DnaC complex, in 

which the replication is inhibited when DnaC is in excess [30].   
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 Figure 2.7 - Role of mecR2 on the optimal expression of β-lactam resistance. (A) Deletion of 

mecR2 from the chromosome of strain N315 (N315::ΔmecR2) causes a decrease on the resistance level 

to oxacillin, which can be reverted upon complementation with mecR2 expressed from an inducible 

promoter (N315::ΔmecR2+spac::mecR2) in the presence of the inducer (IPTG 100μM). (B) The poor 

expression of oxacillin resistance by recombinant strain COL::RI, can also be reverted upon 

complementation with mecR2 expressed from an inducible promoter (COL::RI+spac::mecR2) in the 

presence of the inducer (IPTG 100μM). The oxacillin-resistance levels were evaluated by diffusion disks 

containing 1 mg of oxacillin (left) and by population analysis profiles (PAP’s) (right).  
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2.3.3 mecR2 is required for the full induction of mecA transcription 
 
 We next analyzed the effect of mecR2 on the induction profile of mecA transcription in parental 

strain N315, its null-mutant for mecR2, and in the complemented mutant, by Northern blotting (Figure 8A) 

and quantitative Real-time RT-PCR (qRT-PCR) analysis (Figure 2.8B). In relative terms, upon induction 

with sub-MIC oxacillin, a much stronger induction of mecA transcription was observed in the parental 

strain than in the mecR2 null-mutant (N315::ΔmecR2), in which the amount of mecA transcript seems to 

be not sustained during the last two time-points. In the complemented mutant 

(N315::ΔmecR2+spac::mecR2) there was a sustained induction of mecA transcription throughout the 

time-course of the experiment. However, in the complemented strain, although the resistant phenotype of 

the parental strain was fully restored (as illustrated in Figure 2.7A), the amount of mecA transcript was 

substantially lower and virtually identical to the mecR2 null-mutant. Although this discordance is in 

agreement with previous studies reporting on the lack of a correlation between the cellular amounts of 

mecA transcript or protein and the phenotypic level of resistance [31, 32], we cannot formally exclude 

other possible explanations, such as MecR2 having multiple targets that affect the resistance phenotype. 

Nevertheless, these data suggest that the mecR2 interferes with the induction of mecA transcription in 

response to β-lactams.   
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is no need for high cellular levels of inducer, repressor or anti-repressor. Actually, the basal transcription 

of mecR1-mecI-mecR2 is only necessary to assure that the repressor protein is still present when the 

antibiotic induction stops, so that the transcription of the resistance gene is shutdown. The apparent very 

low transcription level of mecR2 in parental strain N315 may also explain the lack of complementation 

when mecR2 was over-expressed in trans. In fact, this artificial system, when compared to wild-type 

strains, presumably generates extremely high cellular amounts of MecR2, which may originate a loss of 

function by oligomerization or non-specific interactions with other cellular targets. Finally, the apparent 

residual mecR2 transcription levels may also explain our failed attempts to analyze by Northern blotting 

the transcription of mecR2 in prototype MRSA strains, even with large amounts of total RNA (10–30 μg) 

and long autoradiograph expositions (72h). To our knowledge, Northern blotting analysis of mecR1-

mecI/blaR1-blaI transcripts was described in only two studies and, in both cases, clear signals were 

obtained only when regulatory genes were overexpressed from recombinant plasmids [33, 34].   

 

 

 
 Figure 2.10 - mecR2 transcription analysis. qRT-PCR analysis of the mecR2 induction profile in 

parental strain N315 and its complemented mecR2 mutant (N315::ΔmecR2+spac::mecR2, IPTG 100μM). Cultures 

were induced with a sub-MIC concentration of oxacillin (0.05mg/L). For comparative purposes with qRT-PCR for 

mecA and graphic legibility, relative amounts of mecR2 transcripts were multiplied by a factor of 109 for parental 

strain N315 and 108 for the complemented mecR2 mutant.  
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 2.3.5 mecR2 is essential for the optimal expression of β-lactam resistance 
in strains with functional mecI-mecR1 regulatory locus.  
 
 Among the five major SCCmec types, only SCCmec types II and III are characterized by 

complete mecR1-mecI regulatory locus [26] – Figure 2.1A. SCCmec type III strains appear to have a 

conserved point mutation within mecI coding sequence resulting in a truncated non-functional repressor 

protein [24, 35]. Concerning SCCmec type II strains, the accumulation of deleterious mutations has also 

been described in some strains [19-23]. However, data from our MRSA collections [24], as well as from 

available genomic and SCCmec type II sequences, suggest that many strains have wild-type sequences 

for mecI (and mecR1). For instance, in a BLAST analysis against the mecI sequence from strain N315, 

c.a. 20 entries were found with 100% sequence identity, mostly from S. aureus strains but also from a few 

coagulase-negative staphylococci (S. epidermidis, S. saprophyticus, S. fleurettii, S. cohinii, etc.). These 

observations suggest that the mecR2 function may be required for the optimal expression of β-lactam 

resistance in those SCCmec type II strains with wild-type sequences for mecI and mecR1.  

 In order to explore that hypothesis, we sought to test the role of mecR2 in the phenotypic 

expression of β-lactam resistance in prototype strains of epidemic MRSA clones characterized by 

SCCmec type II. The MRSA population has a very strong clonal structure and only a few epidemic clones 

are responsible for the majority of infections worldwide [36, 37]. Three epidemic MRSA clones 

characterized by SCCmec type II have been described [38]: clone ST5-II, “New York/Japan” or USA100; 

clone ST36-II, EMRSA-16 or USA200; and clone ST45-II or USA600. MRSA clones ST5-II and ST36-II 

are two of the most important nosocomial clones in the USA and UK, respectively. Prompted by this 

epidemiological data, we evaluated the role of mecR2 in three representative strains of those SCCmec 

type II clones selected from a large US collection of MRSA [39]: strains USA100, USA200 and USA600. 

For this purpose, the chromosomal mecR2 deletion of strain N315 (N315::ΔmecR2) was transduced into 

those strains originating the recombinant strains: USA100::ΔmecR2, USA200::ΔmecR2 and 

USA600::ΔmecR2. In the three prototype strains, deletion of mecR2 caused a sharp decrease of the 

phenotypic expression of β-lactam resistance, which could be complemented by expressing mecR2 in 

trans under the control of an inducible promoter (spac::mecR2) (Figure 2.11A). We have also analyzed 

the effect of mecR2 on the induction of mecA transcription in strains USA100, USA200 and USA600 by 

Northern blotting. Compared to N315, the three parental strains expressed mecA at higher levels and, in 

agreement with what was observed for strain N315 (Figure 2.8), deletion of mecR2 caused a sharp 

decrease on the mecA induction and transcription levels (Figure 2.11B). 
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 Figure 2.11 - mecR2 is essential for the optimal expression of β-lactam resistance in strains with 

functional mecI-mecR1 regulatory locus. (A) Deletion of mecR2 from the chromosome of prototype epidemic 

strains USA100, USA200 and USA600 harboring SCCmec type II causes a decrease on the resistance level to 

oxacillin, which can be reverted upon complementation with mecR2 expressed from an inducible promoter 

(spac::mecR2) in the presence of the inducer (IPTG 100μM). (B) Northern blot analysis of the mecA induction profile 

in parental strains USA100, USA200 and USA600 and respective mecR2 null-mutants. Cultures were induced with a 

sub-MIC concentration of oxacillin (0.05mg/L) and samples were taken at 0’, 10’ and 60’. For comparative purposes 

the profile of parental strain N315 was also repeated. Note that film was exposed for 4h whereas in Figure 2.8A it was 

exposed for 48h. 
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 2.3.6 mecR2 function is not dependent on mecR1 neither on the β-
lactamase locus 
 
 Since strains N315, USA100, USA200, and USA600 have complete mecR1-mecI genes and 

strain COL has a truncated mecR1 gene but with a complete N-terminal inducer domain, with the 

previous experiments we could not formally exclude that MecR2 function is dependent of at least the N-

terminal inducer domain of MecR1. Therefore, we sought to test the effect of mecR2 in a prototype 

SCCmec type V MRSA strain, characterized by an extensive deletion of mecR1 spanning both N- and C-

terminal domains [40] – Figure 2.1A. Among our collections, we selected strain HT0350 [41], since it was 

the only strain also negative for the β-lactamase locus [24]. Similar to what was observed for strain COL, 

overexpression of MecI in strain HT0350 (HT0350+mecI) caused a sharp decrease of resistance level, 

which was fully reverted with the co-overexpression of MecI and MecR2 (HT0350+mecI-mecR2) – Figure 

2.12A. These data suggests that the effect of mecR2 on the expression of β-lactam resistance in S. 

aureus is not dependent of mecR1, and as such MecR2 may act as an anti-repressor. 

 Since mecA transcription can be co-regulated by the regulators of the β-lactamase (bla) locus, 

blaR1-blaI, and parental strains N315, USA100, USA200 and USA600 are bla positive, we sought to 

evaluate the effect of bla genes on the observed mecR2-induced phenotypes. For this purpose, we took 

advantage of the fact that the experimental strategy used to construct the mecR2 knockout in prototype 

strain N315 generated an intermediate mutant strain which lost the β-lactamase plasmid, probably due to 

the multiple passages, many of which at 45ºC. As in all other chromosomal manipulations, the mecR2 

genetic deletion was transduced back to the parental β-lactamase positive strain N315 to generate the 

final deletion mutant (N315::ΔmecR2) tested in all previous experiments. As illustrated in Figure 2.12B, in 

both variants of the mecR2 chromosomal deletion, there was a sharp decrease of the β-lactam 

resistance. Together with the experimental data for strains COL and HT0350, both bla negative, this 

assay indicated that the mecR2 function on the phenotypic expression of β-lactam resistance is not 

dependent on the presence of the β-lactamase plasmid.  

 In addition, in order to exclude an interaction of MecR2 with bla regulators, we sought to evaluate 

the phenotype of a mecR2 deletion mutant in prototype strain HU25, a highly resistant MRSA strain which 

is positive for the bla locus and has a truncated non-functional MecI protein due to a premature stop 

codon [24]. Previous studies have shown that in the presence of oxacillin, the transcription of mecA is 

readily induced in strain HU25, presumably by the bla system [24]. As illustrated in Figure 2.12C, the 

absence of mecR2 in strain HU25 (strain HU25::ΔmecR2) had no effect on the phenotypic expression of 

oxacillin resistance, suggesting that MecR2 is not required for the mecA induction mediated by the BlaR1-

BlaI system. 
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 Figure 2.12 - The mecR2 function is not dependent of mecR1 neither of the β-lactamase locus 

and does not interfere with the function of β-lactamase regulatory genes. (A) Prototype strain HT0350 is 

negative for mecR1-mecI and for the β-lactamase locus. Co-overexpression of mecI and mecR2 in strain HT0350 

(HT0350+mecI-mecR2), reverts the effect of mecI overexpression (HT0350+mecI). (B) The strategy used to delete 

mecR2 in prototype strain N315 generated an intermediate mutant that has lost the β-lactamase plasmid. The 

chromosomal mecR2 deletion was then transduced back to the parental strain generating a β-lactamase positive 

mecR2 null mutant. In both variants, the deletion of mecR2 caused a sharp decrease of the resistance level to 

oxacillin. (C) Prototype strain HU25 is positive for mecR2 and the β-lactamase locus and has a truncated non-

functional MecI. Deletion of mecR2 in strain HU25 (HU25::ΔmecR2) has no effect on the phenotypic expression of 

oxacillin resistance. 

 

 2.3.7 MecR2 interacts directly with MecI 
 
 The MecR2 is homologous to the transcriptional repressor of the xylose operon, XylR [42], which 

has an N-terminal DNA-binding domain and a C-terminal dimerization domain. The mecR2 gene in the 

prototype strain N315 has no DNA binding domain due to a deletion of four tandem-thymine residues, 
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which, together with the genetic experiments done with this variant (Figures 2.7, 2.11 and 2.12), suggests 

that only the dimerization domain is involved in the MRSA phenotype. Therefore, we reasoned that the 

mode of action of MecR2 might involve a direct interaction with the MecI dimer, through its dimerization 

domain, which eventually would interfere with its binding to the mecA promoter.  
 As a first attempted to characterize the hypothetic interaction between MecI and MecR2 proteins 

in vivo, we used the yeast two-hybrid (YTH) strategy (Matchmaker GAL4 Two-Hybrid System, Clontech 

Laboratories, Inc), in which the coding regions of mecI and mecR2 genes were obtained through high-

fidelity PCR amplification using the chromosomal DNA of N315 strain as a template, and MI-YTH / MIP5  

( to amplified the mecI gene) and MR2-YTH / MR2 P1 (to amplified the mecR2 gene) as a primers (see 

Table 2.3). Both PCR products were digested with NcoI and BamHI restriction enzymes and fused to the 

binding and activation domains of transcription factor GAL4, into the two-hybrid pAS-21 and pACT-1 

plasmids. The ligation products were consequently transformed into the E. coli strain DH5α, AmpR.  

Mating of S. cerevisiae strains and colony lift assays for detection of β-galactosidase activity were 

performed according to the manufacture’s recommendations. Unfortunately, after many attempts we were 

not able to get a positive signal supporting the interaction between the MecI and MecR2.  

 As the YTH has failed, we evaluated the MecR2-MecI interaction using a bacterial two-hybrid 

(BTH) in vivo strategy [43]. In these experiments, we used the small mecR2 variant present in prototype 

strain N315. As in-house controls, the MecI::MecI interaction, previously demonstrated using the yeast 

two-hybrid strategy [44], as well as the MecR2::MecR2 interaction were also evaluated. Positive results 

were observed in 4 out of the 8 MecI::MecR2 combinations and in 1 of 4 MecI::MecI combinations (Figure 

2.13A). No MecR2::MecR2 interaction was detected in the four combinations tested (data not shown) 

and, as such, the assay was not conclusive in this case. Altogether, these observations provide evidence 

for a MecR2::MecI direct interaction.  

  

 2.3.8 MecR2 interferes with the binding of MecI to the mecA promoter 
  

 Next, we evaluated the interference of purified MecR2 protein with the binding of MecI to the 

promoter of mecA (PmecA) at several molar ratios by the electrophoretic mobility shift assay (EMSA), a 

strategy previously used to study the binding of purified MecI protein to PmecA [14, 24]. In these 

experiments, we expressed in E. coli the full MecR2 protein from prototype strain HU25, since the shorter 

variant of strain N315 could not be expressed and purified in a soluble form at high concentrations. As 

illustrated in Figure 2.13B, MecR2 interferes with the binding of MecI to PmecA in a concentration-

dependent manner: the heavier band presumably reflecting the binding of MecI dimers to PmecA 

decreases in intensity, whereas the intermediate band reflecting the binding of MecI monomers to PmecA 

and the lighter free DNA band increase in intensity. In line with the genetic experiments, this effect was 
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optimal for a MecR2::MecI molecular ratio below one; in the presence of excess MecR2 the binding of 

MecI to PmecA was restored. This in vitro loss of effect at higher concentrations of MecR2 suggests that 

under these conditions MecR2 may be trapped in a non-active conformation; e.g. MecR2 may 

oligomerize in a concentration-dependent manner and stop interacting with MecI. It should be noted that 

in wild-type strains, mecI and mecR2 are co-transcribed from the mecR1 promoter and, as such, the 

cellular amounts of both proteins are likely to be similar. Since in these experiments we used the full 

MecR2 variant containing a putative N-terminal DNA binding, control EMSA experiments with MecR2 

alone were performed to verify that purified MecR2 did not bind to PmecA alone (Figure 2.14A). In 

addition, control experiments with mixtures of MecI and MBP (maltose-binding protein), which has an 

identical molecular weight to MecR2 were performed to demonstrate that inhibition of MecI binding to 

PmecA is specific for MecR2 (Figure 2.14B). Finally, in order to exclude the hypothesis that at higher 

concentrations MecR2 binds (not specifically) to secondary sites in PmecA DNA in a MecI-dependent 

manner, EMSA assays with MecI-MecR2 mixtures were also performed with a much smaller DNA 

fragment (39bp instead of 212bp) containing the MecI protected sequences and the same results were 

obtained (data not shown). Altogether, these assays demonstrate that MecR2 acts as an anti-repressor 

disturbing the binding of MecI to the mecA promoter.  
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 Figure 2.13 - MecR2 interacts directly with MecI, interfering with the binding of MecI to the mecA 

promoter and fostering the proteolysis of MecI. (A) In vivo analysis of the MecR2::MecI interaction using the 

bacterial two-hybrid strategy. This strategy is based on the restoration of the adenylate cyclase (CyaA) activity of E. 

coli, which activates a specific reporter gene, lacZ. Interactions between protein fusions were evaluated in liquid 

cultures through the hydrolysis of the chromogenic X-gal substrate by the activated β-galoctasidase. The 

MecR2::MecI interaction was evaluated using the eight possible combinations: fusions either with T25 or T18 

fragments of CyaA at either the N’ or C’ terminals. Tube 1, T18-MecR2::MecI-T25; tube 2, T18-MecR2::T25-MecI; 

tube 3, MecR2-T18::MecI-T25; tube 4, MecR2-T18::T25-MecI; tube 5, MecR2-T25::T18-MecI; tube 6, T25-

MecR2::T18-MecI; tube 7, MecR2-T25::MecI-T18; tube 8, T25-MecR2::MecI-T18; tube 9, positive control provided by 

the manufacturer (Zip-T25::Zip-T18); tube 10, negative control (T25::T18); tube 11, “in-house” positive control testing 

the MecI-MecI interaction T18-MecI::T25-MecI. (B) Electrophoretic mobility shift assay (EMSA) of the binding of 

purified MecI to a labeled 212bp DNA fragment encompassing the mecA promoter in the presence of purified MecR2. 

MecI concentration was constant in all binding reactions (0.05 μg). Lane 1, negative control, labeled DNA only; lane 

2, 8-fold excess of MecI; lane 3, 4-fold excess of MecI; lane 4, binding control, MecI only; lane 5, 2-fold excess of 

MecI; lane 6, equimolar amounts of MecI and MecR2; lane 7, 2-fold excess of MecR2; lane 8, control for specific 

binding, MecI with a 125 molar excess of unlabelled DNA. (C) Western blotting analysis of MecI cleavage in total 

protein extracts (60-80 mg/lane). Lane 1, prototype strain N315; lane 2, mecR2 null-mutant (N315::∆mecR2); lane 3, 

strain HT0350 co-overexpressing MecI and MecR2 (HT0350+mecImecR2); lane 4, strain HT0350 overexpressing 

MecI (HT0350+mecI). Cultures of N315 and N315::ΔmecR2 cultures were induced with a sub-MIC concentration of 

oxacillin (0.05mg/L).  
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scissile bonds more accessible to proteolytic inactivation. To test this hypothesis, we compared by 

Western blotting the MecI proteolysis in total protein extracts from prototype strain N315 versus its mecR2 

null-mutant under induction conditions, and from strain HT0350 overexpressing MecI-MecR2 versus 

HT0350 overexpressing MecI only. As illustrated in Figure 2.13C, in the absence of MecR2, intact MecI 

accumulates in both pairs of strains analyzed. Because parental strain HT0350 is negative for all mecA 

regulators and its derivatives used in these experiments overexpress constitutively MecI-MecR2 or MecI, 

the observed MecR2-induced proteolysis of MecI does not involve MecR1 (neither BlaR1) and, most 

likely, is mediated by unspecific cytoplasmatic proteases.  

 

 

2.4 MecR2, the missing link in the signal-transduction mechanism of 
mecA expression 
 
 The findings described in this report clarify some critical aspects of the unique signal transduction 

mechanism underlying the induction of mecA gene.  
 First, we demonstrated that the cognate mecA regulatory locus contains, besides MecR1-MecI, 

the anti-repressor MecR2. MecR2 compensates for the inefficient MecR1-mediated induction of mecA, 

being essential for the optimal expression of β-lactam resistance (Figures 2.6, 2.7 and 2.11A), and 

enabling the full induction of mecA transcription (Figures 2.8 and 2.11B). These findings explain the 

puzzling observation of the poor mecA induction by MecR1, reported in studies analysing the effects of 

mecR1-mecI only (without mecR2) on mecA expression in recombinant strains [12, 13]; an experimental 

artefact also observed in this study with recombinant strain COL::RI (artificially made positive for mecR1-

mecI only) and in the mecR2 null mutant strains (Figures 2.7 and 2.11). Because wild-type MRSA strains 

positive for mecR1-mecI are also positive for mecR2, these strains are in fact able to express optimal 

levels of β-lactam resistance and, as such, mecA is efficiently induced upon exposure to β-lactams by its 

cognate three-component regulatory system.  

 Second, the findings herein described also clarify the relevance and specificity of MecI proteolysis 

observed upon induction with β-lactams [16, 45-48]. Our data demonstrates that MecI proteolysis is 

required for optimal expression of resistance and that MecR2 alone (i.e. without MecR1, Figure 2.12A) 

interferes specifically with the MecI function and promotes its inactivation by proteolytic cleavage, 

presumably mediated by (non-specific) native cytoplasmatic proteases (Figure 2.13C). Our findings 

contrast with published observations for the blaR1-blaI system of Bacillus licheniformis, demonstrating 

that the proteolysis of the repressor is a secondary event not required for induction of resistance [48], and 

also for the blaR1-blaI system of S. aureus demonstrating that BlaR1 directly promotes the BlaI cleavage 

[15]. Altogether, these observations suggest the existence of subtle differences between the mecR1-
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mecI-mecR2 and the blaR1-blaI regulatory systems and that, in S. aureus, BlaR1 may accumulate the 

MecR1 and MecR2 functions. 

 Our findings lead us to propose a revised model for the induction of mecA expression in wild-type 

MRSA strains (Figure 2.15): (i) in the presence of β-lactams, MecR1 is activated and induces the 

transcription of mecA and mecR1-mecI-mecR2; (ii) the anti-repressor MecR2, destabilizes MecI-dimers, 

disturbing their binding to the mecA promoter and fostering their proteolytic inactivation, resulting in a 

sustained induction of mecA transcription; (iii) when depletion of β-lactam occurs, MecR1 is no longer 

activated and a steady state is established consisting of stable MecI-dimers bound to the mecA promoter 

(and protected from proteolysis) and residual copies of MecR1 at the cell membrane; the remaining free 

MecR2 molecules are most likely degraded by the cellular protein turnover pathway. This model implies 

that in the absence of MecR2, functional MecI-dimers are more resilient to proteolytic inactivation and 

outcompete the MecR1 signalling, a hypothesis supported by the Western blotting experiments (Figure 

2.13C).  

 

 

2.5 Concluding remarks 
 

 This study demonstrates that the central element of methicillin-resistance in S. aureus, the mecA 

gene, can be regulated by a three-component system consisting of a transcriptional repressor, a sensor-

inducer and an anti-repressor, a very unusual arrangement for the transcriptional control of genes in 

bacteria. In addition, the induction of the resistance gene expression involves a unique series of 

proteolytic steps, being the proteolytic cleavage of the repressor modulated by the anti-repressor.  
 This study also sheds light on the evolution of antibiotic-resistance genes. The mecA gene itself 

is probably ancient and predates the use of antibiotics in clinical practice [49, 50]. Before its recent 

acquisition by MRSA, mecA was assembled into a gene complex containing its transcriptional regulators 

and incorporated into a mobile genetic element. Tsubakishita et al. have proposed that the mecA gene 

complex found in MRSA has been assembled in the animal-related Staphylococcus fleurettii species [51]. 

Remarkably, in this species the mecA-mecR1-mecI locus was found immediately upstream to the 

complete and functional xylose operon, containing the XylR repressor homologous to MecR2. This 

suggests that a specific selection acted on XylR, a transcriptional repressor of sugar metabolism, to 

originate the MecR2 function, an anti-repressor of an antibiotic-resistance gene, and that the three-

component mecA regulatory locus was assembled in S. fleuretti before being transferred to S. aureus. 

 In short, this study points to a revision of the model for the transcriptional control of mecA by its 

cognate regulatory locus, which may pave the way for the design of alternative therapeutic strategies 

targeting the induction mechanism of the resistance gene [52, 53]. If successful, these strategies may 

extend the clinical utility of β-lactams for the treatment of MRSA infections. Recycling β-lactams is 
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particularly relevant given that MRSA pose a substantial burden for the public health, are often multi-drug 

resistant and, in the past 40 years, very few new classes of antibiotics have reached the clinic.  

 

 

 
 Figure 2.15 - Model for the mecA induction by MecR1-MecI-MecR2. In the presence of a β-lactam 

antibiotic, MecR1 is activated and rapidly induces the expression of mecA and mecR1-mecI-mecR2. The anti-

repressor activity of MecR2 is essential to sustain the mecA induction since it promotes the inactivation of MecI by 

proteolytic cleavage. In the absence of β-lactams, MecR1 is not activated and a steady state is established with 

stable MecI-dimers bound to the mecA promoter and residual copies of MecR1 at the cell membrane.  
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2.6 Materials and Methods  
 

 2.6.1 Bacterial strains and growth conditions 
  

The bacterial strains and plasmids used in this study are listed in Tables 2.1 and 2.2, 

respectively. S. aureus strains were routinely grown at 37°C with aeration in tryptic soy broth (TSB, Difco) 

or on tryptic soy agar plates (TSA, Difco). E. coli strains were grown with aeration at 37°C in Luria-Bertani 

broth (LB, Difco) or in Luria-Bertani agar (LA, Difco). Recombinant E. coli strains were selected and 

maintained with ampicillin at 100μg/mL. Recombinant S. aureus strains were selected and maintained 

either with tetracycline at 5 or 40μg/mL, chloramphenicol at 20μg/mL, or erythromycin at 10μg/mL, as 

appropriate. Phenotypic analysis of β-lactam resistance in S. aureus parental and recombinant strains 

was performed by diffusion-disks containing 1mg of oxacillin, oxacillin E-test (AB Biodisk), or by 

population analysis profiles (PAPS) at 30°C for 24-48h, as previously described [24, 54, 55]. Oxacillin is a 

methicillin analogue and has replaced methicillin in clinical use.  

 

 2.6.2 DNA manipulations 
 

  DNA manipulations were performed by standard methods [56, 57]. Total DNA from S. aureus was 

isolated from bacterial cultures with the Wizard Genomic DNA purification Kit (Promega) according to the 

manufacturer’s recommendations and using lysostaphin (0.5 mg/mL) and RNAse (0.3 mg/mL) in the lysis 

step. Plasmid DNA was isolated from bacterial cultures with the High Pure Plasmid Isolation Kit (Roche). 

For plasmid DNA isolation from S. aureus strains the culture pellets were resuspended in “Suspension 

Buffer” supplemented with 0.1 mg/mL of lysostaphin and incubated at 37°C for 30-60 minutes. Restriction 

enzymes were used as recommended by the manufacturer (New England Biolabs). Dephosphorylation of 

vector arms and insert ligation was performed with Rapid DNA Dephos & Ligation kit (Roche), according 

to the manufacturer’s recommendations. Routine PCR was performed with GoTaq Flexi DNA polymerase 

(Promega). PCR amplification of cloning inserts was performed by high-fidelity PCR (Pfu Turbo DNA 

polymerase, Strategene). DNA purification from PCR and digestion reactions was performed with High 

Pure PCR Product Purification Kit (Roche). For ligation protocols, the inserts and linearized plasmids 

were resolved in a low melting agarose gel (1%) (Invitrogen) and DNA bands were purified with Gene 

Clean Turbo kit (MP Biomedicals), following the manufacturer’s recommendations. DNA sequencing was 

performed by Macrogen (www.macrogen.com) or STAB Vida (www.stabvida.com). All primers used in 

this study are listed in Table 2.3. 
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 Table 2.1 - Strains used in this study 
Strain Relevant characteristics Source /Reference

E. coli DH5α Recipient strain for recombinant plasmids  

E. coli Bl21 (DE3) Recipient strain for expression vector pCri8a Novagene 

S. aureus RN4220 Restriction-deficient derivative of reference strain 

NCTC8325-4 

R. Novick 

S. aureus COL Prototype MRSA strain, homogeneous Oxar, ΔmecR1 

(no C-terminal inducer domain, ΨIS1272 insertion), mecI 

negative, mecR2 negative, β-lactamase negative, clone 

ST250-I 

Stratagene 

A. Tomasz [29] 

S. aureus N315 Prototype MRSA strain, heterogeneous Oxar, wild-type 

mecR1-mecI, mecR2 positive, β-lactamase positive, 

clone ST5-II 

K. Hiramatsu [18, 

24] 

S. aureus HU25 Homogeneous Oxar, wild-type mecR1, truncated mecI, 

mecR2 positive, β-lactamase positive, clone ST239-III 

[24, 58] 

S. aureus USA100 Epidemic MRSA strain NRS382, complete mecR1-mecI 

locus, mecR2 positive, β-lactamase positive, clone ST5-II 

[39] 

S. aureus USA200 Epidemic MRSA strain NRS383, complete mecR1-mecI 

locus, mecR2 positive, β-lactamase positive, clone ST36-

II 

[39] 

S. aureus USA600 Epidemic MRSA strain NRS387, complete mecR1-mecI 

locus, mecR2 positive, β-lactamase positive, clone ST45-

II 

[39] 

S. aureus HT0350 Heterogeneous Oxar, deleted mecR1-mecI (IS431 

insertion), β-lactamase negative, clone ST377-V 

J. Étienne [41] 

COL + pGC::mecI COL overexpressing mecI in trans [24] 

COL + 

pGC::mecI-mecR2 

COL co-overexpressing the mecI-mecR2 locus in trans This study 

COL::erm COL with erm gene inserted into the chromosome 

upstream to the mecI gene (control) 

This study 

COL::RI COL with the mecR1-mecI locus inserted into the 

chromosome upstream to mecI gene 

This study 

COL::RI-R2 COL with the mecR1-mecI-mecR2 locus inserted into the 

chromosome upstream to mecI gene 

This study 

COL::RI-R2 + 

pGC::mecI 

COL::RI-R2 overexpressing mecI in trans This study 

N315::ΔmecR2 mut N315 mecR2 null mutant intermediate, β-lactamase 

negative 

This study 

N315::ΔmecR2 N315 mecR2 deletion backcross, β-lactamase positive This study 
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Table 2.1 Strains used in this study (cont.)  

N315::ΔmecR2 

+ pSPT::spac 

N315::ΔmecR2 transformed with  pSPT181 containing 

the Pspac inducible promoter (control) 

This study 

N315::ΔmecR2 + 

pSPT::mecR2 

N315::ΔmecR2 overexpressing mecR2 in trans This study 

N315::ΔmecR2 + 

pSPT::mecI-mecR2 

N315::ΔmecR2 overexpressing mecI and mecR2 in trans This study 

N315::ΔmecR2 + 

pSPT::spac-mecR2 

N315::ΔmecR2 expressing mecR2 in trans from the 

inducible Pspac promoter 

This study 

COL::RI + 

pSPT::spac-mecR2 

COL-IR expressing mecR2 in trans from the inducible 

Pspac promoter 

This study 

USA100::ΔmecR2 USA100 mecR2 null mutant, β-lactamase positive This study 

USA100::ΔmecR2 

pSPT::spac-mecR2 

USA100::ΔmecR2 expressing mecR2 in trans from the 

inducible Pspac promoter 

This study 

USA200::ΔmecR2 USA200 mecR2 null mutant, β-lactamase positive This study 

USA200::ΔmecR2 

pSPT::spac-mecR2 

USA200::ΔmecR2 expressing mecR2 in trans from the 

inducible Pspac promoter 

This study 

USA600::ΔmecR2 USA600 mecR2 null mutant, β-lactamase positive This study 

USA600::ΔmecR2 

pSPT::spac-mecR2 

USA600::ΔmecR2 expressing mecR2 in trans from the 

inducible Pspac promoter 

This study 

HT0350 + pSPT::mecI HT0350 overexpressing mecI in trans This study 

HT0350 + 

pSPT::mecI-mecR2 

HT0350 co-overexpressing mecI and mecR2 in trans This study 

DH5α + pProEX::mecI E. coli DH5α overexpressing mecI This study 

BL21 + pCri8a::mecR2 E. coli BL21 (DE3) overexpressing mecR2 This study 
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Table 2.2 - Plasmids used in this study 

Strain Relevant characteristics                                                 Source/Reference 

pGC-2 E. coli - S.aureus shuttle vector, high-copy number, insert expression driven 

by bacteriophage promoters SP6 and T7, Apr, Cmr 

P. Matthes 

pSPT181 (ts) E. coli - S. aureus shuttle vector, thermosensible, insert expression driven by 

bacteriophage promoter SP6, Apr, Tcr 

[59] 

pSP64E E. coli pSP64 vector with a 1.2 kb BamH1-SalI fragment containing the erm 

gene from Tn551 (integrative vector in S. aureus), Apr, Eryr  

[60] 

pDH88 E. coli - B. subtilis shuttle vector containing the IPTG inducible Pspac 

promoter and the transcriptional repressor LacI, Apr, Cmr 

[61] 

pSPT::spac pSPT181 with 1.6 kb EcoR1-BamH1 fragment containing the IPTG inducible 

Pspac promoter and the transcriptional repressor LacI from pDH88, Apr, Tcr 

This study 

pCri8a pET30 (Invitrogen) derivative containing His6-GST-Tev fragment, Kanr [62] 

pGC::mecI pGC2 with mecI gene from strain N315  [24] 

pGC::mecI-mecR2 pGC2 with mecI gene and the mecR2 locus from strain N315 This study 

pSPT::IS-erm pSPT181 with a 0.6 kb fragment of IS1272 and a 1.2 kb BamH1-SalI 

fragment containing the erm gene from pSP64E 

This study 

pSPT::IS-erm-

ΔmecR1 
pSPT::IS-erm with a 0.5 kb fragment of the N-terminal domain of mecR1 

This study 

pSPT::IS-erm-

mecI-mecR1 

pSPT::IS-erm with a 1.9 kb fragment containing mecI-mecR1 from strain 

N315 

This study 

pSPT::IS-erm-

mecR2-mecI-

mecR1 

pSPT::IS-erm with a 3.5 kb fragment containing mecR2-mecI-mecR1 from 

strain N315 

This study 

pSPT::cat-ΔmecR2 pSPT181 vector containing the chloramphenicol acetyl transferase (Cmr) from 

pGC-2 flanked by 1.0 kb up and downstream vicinities of mecR2 

This study 

pSPT::mecR2 pSPT181 vector containing the mecR2 gene from strain N315 This study 

pSPT::mecI pSPT181 vector containing the mecI gene from strain N315 This study 

pSPT::mecI-

mecR2 
pSPT181 vector containing the mecI and mecR2 genes from strain N315 

This study 

pSPT::spac-

mecR2 

pSPT181 vector containing the mecR2 gene from strain N315 under control 

of the Pspac  inducible promoter 

This study 

pProEX::mecI Expression vector pPROEXTM Hta (Invitrogen) with His6 tag N-terminal fusion 

to mecI gene from strain N315, Apr 

[63] 

pCri8a::mecR2 pCri8a with mecR2 gene from strain HU25 This study 
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 Table 2.3 - Primers used in this study 

Name Sequence (5’ → 3’) * 
MA-P1 AAATCGATGTAAAGGTTGGC
MA-P2 GTTCTG CAG TAC CGGATT TG 
MA-RT1 AACATTGATCGCAACGTTCAAT 
MA-RT2 TGGTCTTTCTGCATTCCTGGA 
MA-PF1 ATA TCG TGA GCA ATG AAC TG  
MA-PR1 TAT ATA CCA AAC CCG ACA AC  
MI-P1 TATAGAATTCGCACAACAAATTTCTGAGCG 
MI-P2 GATCGGATCCATGCATATGGATTTCACTGG 
MI-P3 TCTAGGATCCTCAACGACTTGATTGTTTC 
MI-P4 TAATCTGCAGCACAACAATTTTCTCAG 
MI-P5 GCGGTTTCAATTCACTTGTC 
MI-P6 TGGTTTTTGGACTCCAGTCC 
MI-BTH1 TATATCTAGAGGATAATAAAACGTATGAAATATCATCTGC 
MI-BTH2 TCTAGGTACCCGTTTATTCAATATATTTCTCAATTCTTCTATTTC 
MI-Box1 TTGACATAAATACTACATTTGTAATATACTACAAATGTA 
MI-Box2 AGACTACATTTGTAG TATATTACAAATGTAGTATTT ATG  
MR-P1 TATACCCGGGAAAGTTCGTCATTGGAATCG 
MR-P2 GATCGGATCCATACGCTTGTTTCGATTAGG 
MR-P3 GCACTTTATGATTCAATGCC 
MR2-P1 GTTAGGATCCGCTATCAACATTTACCAGCA 
MR2-P2 TATAGTCGACCAAAATACTAGAAATCGTTGCC 
MR2-P3 TAATCTGCAGCACAACAATTTTCTCAG 
MR2-P4 TATAGGATCCTGCTGGTAAATGTTGATAGC 
MR2-P5 TAATCTCGAGTTAGAAGTCTTACACACTCC 
MR2-P6 ATTACCCGGGCTATCAACATTTACCAGCA 
MR2-P7 TATACCCGGGTATGGGGTAGGCAATTATGG 
MR2-P8 CTACTAACCTTTTCATCAGG 
MR2-RT1 AATGAAGCGAATCTTTCAGC 
MR2-RT2 AATTGCTAATGTACCACCTAGC 
MR2-RT3 CCATTCCATGAAACTGAAGG 
MR2-RT4 AACGCTGAAAGATTCGCTTC 
MR2-BTH1 TCTATCTAGAGTACAATTATTTTGATGGTAATGTC 
MR2-BTH2 TCTAGGTACCCGTGCTTTTATATCTAAGTAAATATCATTAATCG 
MR2-Cri1 TTAATACGCCATGGTTGATAAAAAAGAGTGCTAAGG 
MR2-Cri2 GGATCCTCGAGCTATTATGCTTTTATATCTAAG 
IS1272-P1 TATACTGCAGATGATTGTTCAGAATGTCC 
IS1272-P2 TATAGTCGACAAGAGTTAAGAGCCATTGC 
CAT-P1 TAATCTGCAGAAGAAAGCAGACAAGTAAGC 
CAT-P2 TGTAGTCGACAAACCTTCTTCAACTAACGG 
pta-RT1 AGAAGCAATCATTGATGGCGA 
pta-RT2 ACCTGGCGCTTTTTTCTCAG 
MI-YTH TGGACCATGGATAATAAAACGTATGAAATATCATCTCC 
MR2-YTH TCGACCATGGCATACAATTATTTTGATGGTAATGTC 
GAL4-BD GAAGAGAGTAGTAACAAAGG 
GAL4-AD TATTCGATGATGAAGATACC 
 
* Restriction sites are underlined. For primers MI-Box1/MI-Box2 the MecI protected sequences are 
underlined. 
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 2.6.3 Construction of recombinant S. aureus strains 
 

 All recombinant plasmids used in this work were firstly constructed and stabilized in E. coli DH5α, 

electroporated into S. aureus restriction-deficient strain RN4220 and finally transduced by the 80α phage 

to the desired parental strain, as previously described [64, 65]. The Integrity of plasmid inserts was 

confirmed by restriction analysis, PCR and DNA sequencing. The integrity of chromosomal insertion-

deletions was confirmed by PCR, DNA sequencing and Southern blotting of pulsed-field gel 

electrophoresis of chromosomal DNA. Chromosomal insertion-deletions were backcrossed by phage 

transduction to the original parental strains. 

 To co-overexpress mecI and mecR2 in strain COL, a fragment containing the mecI-mecR2 region 

from strain N315 was amplified using primers MI-P1/MR2-P1, double-digested with EcoR1/BamH1 and 

cloned into pGC2, originating the recombinant plasmid pGC::mecI-mecR2. To reconstruct the mecA 

regulatory locus in the chromosome of strain COL, we first construct pSPT::IS-erm, a pSPT181 derivative 

containing the terminal fragment from IS1272 located in the upstream vicinity of mecA in strain COL and 

the erythromycin (erm) resistance cassette gene from Tn551. The 0.6 kb terminal fragment of IS1272 was 

amplified from strain COL using primers IS1272-P1/IS1272-P2, double-digested with PstI/SalI and cloned 

into pSPT181, originating pSPT::IS. The erm cassette was recovered from the pSP64E plasmid by 

BamHI/SalI double-digestion and was cloned into pSPT::IS, originating pSPT::IS::erm. To reconstruct the 

mecR1-mecI locus in strain COL (strain COL::RI), we amplified by high-fidelity PCR a 1.9 kb DNA 

fragment from strain N315 chromossomal DNA, containing the wild-type coding sequences of mecR1 and 

mecI genes, using primers MI-P2/MR1-P1. The fragment was double-digested with BamH1/AvaI and 

directionally cloned into pSPT::IS-erm, originating pSPT::IS-erm-mecI-mecR1. To reconstruct the full 

mecA regulatory locus in strain COL (strain COL::RI-R2), we amplified by high-fidelity PCR a 3.5 kb DNA 

fragment from strain N315 chromossomal DNA, containing the mecR1-mecI-mecR2 locus, using primers 

MR2-P1/MR1-P1. The fragment was double-digested with BamH1/AvaI and directionally cloned into 

pSPT::IS-erm, originating pSPT::IS-erm-mecR2-mecI-mecR1. As control, we constructed a strain with a 

integrated erm gene in the mecA upstream vicinity (strain COL::erm): a 0.5 kb DNA fragment containing 

the terminal fragment of the N-terminal cytoplasmatic domain of mecR1, was amplified using primers 

MR1-P1/MR1-P2, double-digested with BamH1/AvaI and cloned in pSPT::IS-erm, originating pSPT::IS-

erm-ΔmecR1. The integration into COL chromosome of the three recombinant plasmids (pSPT::IS-erm-

mecI-mecR1, pSPT::IS-erm-mecR2-mecI-mecR1 and pST::IS-erm-ΔmecR1) was performed by an 

insertion-deletion strategy by homologous recombination (Figure 2.5). First, insertion into the 

chromosome was promoted by growing transductants in TSB at a non-permissive temperature (45°C) 

without antibiotic selection for 2-3 days, with daily re-inoculum in fresh medium. Serial dilutions were 

plated onto TSA plates supplemented with erythromycin (Ery) and tetracycline (Tc). Single-colonies Ermr-
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Tcr were screened for chromosomal insertion of the plasmids by PCR and the absence of plasmid DNA 

was confirmed. Resolution of integrates by homologous-recombination was promoted by growing 

selected single colonies in TSB supplemented with tetracycline at 40μg/mL at the permissive temperature 

of 30°C for 4-5 days, with daily re-inoculum in fresh medium. Finally segregation of the excised plasmids 

was promoted by growing cultures at 45°C without antibiotic selection for 2-3 days, with daily re-inoculum 

in fresh medium. Culture aliquots were plated onto TSA plates supplemented with erythromycin and 

single colonies Ermr-Tcs were selected by replica plating onto TSA plates supplemented with 

erythromycin or tetracycline. 

 To construct the mecR2 gene null mutant in strain N315, two DNA fragments of 1000bp 

corresponding to the 5’ and 3’ vicinities of the mecR2 gene were amplified by PCR from strain N315 DNA 

using primers MR2-P2/MR2-P3 and MR2-P4/MR2-P5, respectively. The cat gene coding for 

chloramphenicol resistance was also amplified by PCR from pGC2 plasmid with primers CAT-P1/CAT-P2. 

The three fragments were double-digested with SalI/PstI, BamH1/XhoI and XhoI/SalI, respectively, and 

then sequentially cloned into pSPT181, originating the pSPT::cat-ΔmecR2 recombinant plasmid. 

Following the same insertion-deletion strategy described above, but selecting for chloramphenicol 

resistance instead of erythromycin resistance, we obtained the recombinant strain N315::ΔmecR2 in 

which the chromosomal copy of mecR2 was replaced by the cat gene (Figure 2.5). To complement the 

N315∆mecR2 null-mutant three recombinant plasmids were constructed: (i) pSPT::mecR2, pSPT181 

vector containing at the XmaI site the mecR2 gene from strain N315, obtained by PCR with primers MR2-

P6/MR2-P7 (the proper insert orientation was selected by restriction analysis using the HindIII site within 

mecR2 gene); (ii) pSPT::mecImecR2, pSPT181 containing the mecI-mecR2 genes of strain N315, 

constructed by sequential cloning, first, at the BamH1/PstI, the mecI gene site obtained with primers MI-

P3/MI-P4 and then, at the XmaI site, the mecR2 gene obtained with primers MR2-P6/MR2-P7; (iii) 

pSPT::spac-mecR2, pSPT181 with the mecR2 gene under the control of Pspac promoter, constructed by 

sequential cloning the 1.6kb EcoR1-BamH1 fragment from plasmid pDH88 containing the spac locus 

(Pspac-polylinker-lacI repressor) and then, at the XmaI site of the spac polylinker, the mecR2 gene from 

strain N315 obtained with primers MR2-P6/MR2-P7. As control, N315ΔmecR2 was transformed with a 

pST181 derivative containing the spac locus only (pSPT::spac). 

 To generate the mecR2 gene null mutant in prototype strains USA100, USA200, USA600, and 

HU25 the chromosomal deletion of strain N315::ΔmecR2 was transduced by bacteriophage infection with 

selection for chloramphenicol resistance, originating recombinant strains USA100::ΔmecR2, 

USA200::ΔmecR2, USA600::ΔmecR2 and HU25::ΔmecR2. Mutant strains USA100::ΔmecR2, 

USA200::ΔmecR2 and USA600::ΔmecR2 were then complemented with recombinant plasmid 

pSPT::spac-mecR2.  
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 2.6.4 Transcription analysis 
  
 Total RNA extraction and purification was performed as previously described [66]. Briefly 

overnight cultures were grown in TSB, supplemented with antibiotics when appropriate, and then diluted 

1:50 in fresh TSB and grown to the mid-log phase (OD620~0.7). Cultures were stabilized with two volumes 

of RNAprotect Bacteria Reagent (Qiagen), according to the manufacturer’s recommendations.  The cells 

were centrifuged and pellets were ressuspended in 1 mL of Trizol reagent (Invitrogen). The resuspended 

cells were transferred to a new tube with silica beads (Lysing Matrix B tubes, Bio101) and cell lysis was 

performed in the FastPrep FP120 apparatus (Bio 101). RNA was extracted with chloroform, precipitated 

with isopropanol, washed twice with ethanol at 80% and rssuspended in diethyl pyrocarbonate (DEPC)-

treated water. For the analysis of the mecA and mecR2 induction profiles, after cultures were grown to 

OD620~0.7, oxacillin at 0.05 μg/mL was added and cultures were incubated for an additional 60 minutes. 

Samples were taken either at 0, 5, 15, 30, and 60 or at 0, 10 and 60 minutes, stabilized, pelleted and kept 

on ice until being simultaneously processed. For RT-PCR and qReal-time RT-PCR experiments (see 

below), total RNA preps were treated twice with DNAse (RNase-Free DNase Set I, Qiagen) and purified 

with RNeasy Mini Kit (Qiagen), according to the manufacture’s recommendations. Control PCR reactions 

were performed to test the absence of DNA contamination in total RNA preps.  
 Transcription analysis of mecR1-mecI-mecR2 was performed by RT-PCR for mid-log phase 

induced cultures (oxacillin at 0.05μg/mL) of strains N315 and HU25 with primer pairs MR2-RT1/MR2-RT2 

(mecR2 transcript), MI-P5/MR2-P8 (mecI-mecR2 co-transcript), MR1-P3/MI-P6 (mecR1-mecI co-

transcript), and MA-P1/MA-P2 (mecA transcript, inducible positive control). RT-PCR reactions were set-

up using the One-Step RT-PCR kit (Qiagen), according to the manufacture’s recommendations. To 

control the absence of DNA contamination, all samples were tested in a parallel reaction without the 

reverse-transcription step. To control the size of the amplified transcripts, PCR reactions with 

chromosomal DNA were also performed in parallel. The mecA transcript was detected in both induced 

and non-induced samples suggesting that the RT-PCR assay was too sensitive to discriminate between 

basal and induced transcription levels. 
 The induction profiles of mecA and mecR2 were determined by quantitative Real-time RT-PCR 

(qRT-PCR) and/or Northern blotting. For the qRT-PCR data analysis, relative gene expression was 

expressed as a ratio to the transcript of pta, a housekeeping gene with constitutive expression [67]. 

Standard curves were generated using serial dilutions (0.4-40 ng/reaction) of genomic DNA and primers 

MR2-RT3/MR2-RT4, MA-RT1/MA-RT2 and pta-RT1/pta-RT2 for amplification internal fragments of 

mecR2, mecA, and pta, respectively. qRT-PCR reactions were performed with QuantiTect SYBR Green 

RT-PCR Kit (Qiagen); each 25µl reaction containing 12.5μl SybrGreen mix, 0.25μl RT enzyme mix, 12.5 

pmol of each primer and 40 ng of purified RNA. Amplification consisted of an initial RT step at 50°C for 30 

min, followed by a denaturation step at 95°C for 15 min, then by 45 cycles of 30 s at 94°C, 30 s at 53°C 

and 30 s at 72°C. For each RNA sample three independent qReal-Time RT-PCR experiments were 
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carried out. Fluorescence was measured at the end of the annealing-extension phase of each cycle. A 

threshold value for the fluorescence of all samples was set manually. The reaction cycle at which the 

PCR product exceeds this fluorescence threshold was identified as the threshold cycle (CT). The CT was 

then converted to relative quantity of mRNA by using a standard curve. To verify the specificity of the 

PCR amplification products, melting curve analysis was performed between 60 – 95°C.  
 For Northern blot analysis, total RNA (5 µg) was resolved through a 1.2% agarose-0.66M 

formaldehyde gel in MOPS (morpholine propanesulfonic acid) running buffer (Sigma). Blotting of RNA 

onto Hybond N+ membranes (Amersham) was performed with Turboblotter alkaline transfer systems 

(Schleicher & Schuell). For detection of mecA specific transcripts, a DNA probe was constructed by PCR 

amplification with primers MA-P1 and MA-P2. After purification the probe was labeled with a Ready To Go 

labeling kit (Amersham) by using [a-32P]dCTP (Amersham) and was hybridized under high-stringency 

conditions. The blots were subsequently washed and autoradiographed.  
 

 

 2.6.5 Bacterial two-hybrid assays 
 

 This strategy is based on the restoration of the adenylate cyclase (CyaA) activity by 

heterodimerization of protein fusions containing the T25 and T18 fragments, which form the catalytic 

domain of CyaA. CyaA is involved on cAMP synthesis, which binds to CAP forming the cAMP/CAP 

complex that activates a specific reporter gene, lacZ [43]. All strains and plasmids used in the bacterial 

two-hybrid studies are described in Table 2.4. Both genes, mecI and mecR2, were amplified from the 

chromosomal DNA of strain N315 by high-fidelity PCR, using primers MI-BTH1/MI-BTH2 for mecI and 

MR2-BTH1/MR2-BTH2 for mecR2. PCR products were double-digested with KpnI/XbaI and fused to T25 

or T18 fragments either at the N’ or C’ terminals, using plasmids pUT18, pUT18c, pKNT25 and pKT25, 

originating the following fusion proteins: T18-MecI, MecI-T18, T25-MecI, MecI-T25, T18-MecR2, MecR2-

T18, T25-MecR2 and MecR2-T25. The eight MecI::MecR2 recombinant plasmid combinations were co-

transformed into the reporter strain Escherichia coli BTH101 and grown on Luria-Bertani (LB) and LA 

agar supplemented with 8 µg/mL 5-bromo-4-choro-3-indolyl-β-D-galactopyranoside (X-gal), 50 µg/mL 

kanamycin, 100 µg/mL ampicillin, 100 µg/mL streptomycin, 500 μM (IPTG) and 2 % glucose. As a 

positive control, plasmids p25Zip and p18Zip, containing two leucine zipper domains, were also co-

transformed into E.coli BTH101 strain. Additionally, as in-house controls, the previously reported 

MecI::MecI interaction based on the yeast two-hybrid strategy [44] was evaluated, as well the MecR2-

MecR2 interaction, by co-transforming the four combinations of mecI-containing plasmids and the four 

combinations of mecR2-containing plasmids, respectively. 
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Table 2.4 - Strains and plasmids used in the bacterial two-hybrid assays  

Strains/ Plasmids Relevant characteristics Source 

E. coli BTH 101 Reporter strain, cya- [43] 

pUT18 BTH plasmid; N-terminal cyaA-T18 fusion; Ampr [43] 

pUT18c BTH plasmid; C-terminal cyaA-T18 fusion; Ampr [43] 

pKT25 BTH plasmid; C-terminal cyaA-T25 fusion; Kanr [43] 

pKNT25 BTH plasmid; N-terminal cyaA-T25 fusion; Kanr [43] 

p18Zip BTH control  plasmid;  Ampr [43] 

p25Zip BTH control plasmid; Kanr [43] 

pUT18::mecI BTH plasmid containing mecI::cyaA-T18 fusion This study 

pUT18c::mecI BTH plasmid containing cyaA-T18::mecI fusion This study 

pKT25::mecI BTH plasmid containing cyaA-T25::mecI fusion  This study 

pKNT25::mecI BTH plasmid containing mecI::cyaA-T25 fusion This study 

pUT18::mecR2 BTH plasmid containing mecR2::cyaA-T18 fusion This study 

pUT18c::mecR2 BTH plasmid containing cyaA-T18::mecR2 fusion This study 

pKT25::mecR2 BTH plasmid containing cyaA-T25::mecR2 fusion This study 

pKNT25::mecR2  BTH plasmid containing mecR2::cyaA-T25 fusion This study 

  

 2.6.6 Electrophoretic mobility shift assays (EMSA) 
 

 To overexpress and purify MecR2 protein, a mecR2 gene insert was obtained from the 

chromosome of strain HU25 by high-fidelity PCR amplification with primers MR2-cri1/MR2-cri2 and 

double-digestion with NcoI/XhoI. The mecR2 insert was then cloned in frame into the expression vector 

pCri8a, generating the recombinant plasmid pCri8a::mecR2, expressing mecR2 with a N’ terminal His6 

tag. pCri8a::mecR2 was stabilized in E. coli DH5α and then transformed to E. coli Bl21 (DE3). MecR2 

protein overexpression was carried out in LB medium supplemented with 50 mg/mL kanamycin, at 18°C, 

and induced at an OD600~0.5 with 1 μM Isopropyl β-D-1-thiogalactopyranoside (IPTG) for 5h. MecI protein 

was overexpressed from recombinant strain DH5α+pPROEX::mecI [63], using LB medium supplemented 

with 100 μg/mL ampicillin, at 37°C and induced at an OD600~0.5 with 1 μM IPTG for 3h. Protein extracts 

were purified as previously described [63]. The purity of the proteins was assessed by 10% tricine SDS-

PAGE analysis and mass-spectroscopy. The concentrations of purified MecR2 and MecI were estimated 

using the Protein Assay Kit II (BioRad), as recommended by the manufacturer. For the electrophoretic 

mobility shift assay we used the chemiluminescent-based DIG Gel Shift Kit (Roche), following the 

manufacturer’s recommendations. As DNA target we used a 212bp fragment encompassing the mecA 
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promoter and operator sequences from prototype strain N315 obtained by PCR amplification with primers 

MA-PF1/MA-PR1. The binding of each purified protein to the mecA promoter (PmecA) was first evaluated 

and then MecI-MecR2 mixtures were tested. As control the binding to PmecA of MecI-MBP (Maltose-

binding protein, MBP2*, New England Biolabs) mixtures were also evaluated. EMSA assays with MecI-

MecR2 mixtures were also performed with a smaller 39bp DNA fragment containing the MecI protected 

sequences, obtained by annealing primers MI-Box1/MI-Box2. 

 

 2.6.7 Western blotting 
 

 To prepare protein extracts of S. aureus, parental and recombinant strains were grown in TSB 

supplemented with oxacillin at sub-MIC concentration (0.05μg/mL) until mid-log phase (OD620~0.7). Cell 

pellets were frozen in liquid nitrogen, thawed and resuspended in Buffer A (50mM Tris-HCl; 10mM MgCl2; 

0.5mM PMSF) containing 10µg/mL DNase I. Cells were broken mechanically in a French press followed 

by centrifugation (22,000 × g, 20 min, 4°C) to remove unbroken cells and cell debris. The supernatants 

containing the cytoplasmic proteins were recovered and filtered through 0.45-μm-pore-size membrane 

filters. Protein extracts (60-80 µg) were resolved in a 18% Tris-Glycine SDS-PAGE.  

 After electrophoresis, the proteins were transferred to a 0.45 µm nitrocellulose membrane (Trans-

Blot, Bio-Rad). The membranes were blocked at room temperature for 1 hour, in 20 mL of Blocking 

solution - Tween- Phosphate Buffered Saline (137 mM NaCl; 2.7 mM KCl; 4.3 mM Na2HPO4; 1.47 mM 

KH2PO4; 0.05% Tween-20) with 6% low-fat milk. MecI protein was detected by imunoblot analysis using 

a custom polyclonal antibody (Eurogentec) raised against purified MecI (1/1.000 dilution) and a 1/50.000 

dilution of secondary antibody (Goat Anti-Rabbit IgG (H+L) Peroxidase Conjugated Antibody, Pierce) in 

10% Blocking solution. The immune complexes were detected using an enhanced chemiluminescence 

system (SuperSignal West Pico Chemiluminescent; Pierce), according to the manufacturer’s instruction. 

Membranes were exposed to Amersham Hyperfilm ECL film (GE Healthcare).  
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3.1 Abstract 
 

 Methicillin resistance in Staphylococcus aureus is elicited by a signal-transduction system 

consisting of the MecI-MecR1-MecA axis encoded by the mec divergon. Recently, MecR2 was further 

identified as the long-sought gene of mec-mediated antibiotic resistance. Here we show that MecR2 

tightly but transiently binds the mecA repressor, MecI. The crystal structure of MecR2 reveals a three-

domain architecture, with an N-terminal DNA-binding-like domain, an intermediate scaffold domain, and a 

C-terminal dimerization domain, which contributes to a functional dimeric oligomerization state. This 

architecture positions the two DNA-binding-like domains on the same face of the dimer, at distances a 

priori suited for recognition of the major groove of double-stranded DNA. The protein shows structural 

similarity to transcriptional repressors of the ROK (repressors, open reading frames, and kinases) family 

of proteins, which bind DNA and/or sugar molecules. However, purified MecR2 did not bind DNA in vitro 

and functional analysis in vivo of three mutants affecting residues participating in sugar binding in related 

ROK proteins, E228 →A, N178E→AA, and E248 → A, revealed no loss of function in an in vivo assay. 

Accordingly, MecR2 function in methicillin resistance solely consists in sequestering MecI away from its 

cognate promoter region, and this facilitates proteolytic inactivation by non-specific cytoplasmatic 

proteases.  

 

3.2 Introduction 
 

 Staphylococcus aureus is the most prevalent human infective agent associated with hospital-

borne and community infections due to its extraordinary capacity to become resistant to antibiotics: it was 

the first bacterial pathogen reported to become insensitive to penicillin [1-4]. Among the distinct strains is 

methicillin-resistant Staphylococcus aureus  (MRSA), which currently refers to multidrug-resistant strains 

that are generally resistant to β-lactam antibiotics  - penicillins and cephalosporins - but also to other 

chemotherapeutics such as aminoglycosides, glycopeptides, macrolides, lincosamides, and 

fluoroquinolones [3, 5-7]. MRSA is characterized by its ability to thrive due to the biosynthesis of a 

penicillin-binding protein with low susceptibility towards β-lactam antibiotics, termed PBP2a, PBP2’ or 

MecA. The latter is encoded by gene mecA, which is contained in a transducible mobile element, 

staphylococcal chromosomal cassette mec (SCCmec) [8, 9]. SCCmec types II, III and VIII further includes 

two genes, mecI and mecR1, which encode, respectively, a transcriptional repressor, MecI, and an 

integral-membrane zinc-dependent sensor/signal transducer metalloproteinase, MecR1 [10]. This system 

is homologous to the blaI-blaR1-blaZ signal transduction system that triggers synthesis of a β-lactamase 

(BlaZ) in both MRSA and methicillin-susceptible S. aureus, as well as in Bacillus licheniformis [11-13]. 

The currently accepted working model hypothesis for these systems foresees that MecI/BlaI constitutively 
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represses its own biosynthesis and that of MecR1/BlaR1 and MecA/BlaZ through binding to the mec 

promoter [9, 14, 15]. Once MecR1/BlaR1 detects the presence of extracellular β-lactam antibiotic through 

its sensor domain, a signal is transmitted across the membrane to the intracellular zinc-dependent 

metalloproteinase domain, which becomes autoactivated through proteolytic cleavage [16]. This renders 

functional MecR1/BlaR1, which, in turn, would cleave MecI/BlaI. This cleavage would render the dimeric 

repressor inactive and release it from its DNA binding site. Finally, release of transcriptional repression 

would enable biosynthesis of MecA/BlaZ. 

 However, some lines of evidence are not explained by this ternary model: (i) the reported 

cleavage sites of MecR1/BlaR1 and MecI/BlaI are not compatible with a single proteolytic substrate 

specificity [17]; (ii) the structure of MecI and BlaI in complexes with target DNA revealed that the 

repressor cleavage site is found within an α-helix and is not surface accessible [17-19], as would be 

required for proper proteolytic processing; and (iii) highly-resistant MRSA strains did not show significant 

variation in the phenotypic expression of resistance when wild-type MecI was overexpressed in trans [20]. 

These and other findings led several authors to postulate the existence of a further regulatory element, 

MecR2/BlaR2, although no candidate molecules were suggested [4, 9, 15, 19, 21-25].   

 Most recently, comparative genomic sequence analysis revealed that, in some clinical MRSA 

strains, a putative gene is found upstream of mecA, which is co-transcribed with mecI and mecR1 [26]. Its 

transcript could be detected by reverse-transcriptase PCR in oxacillin-induced cultures of two prototype 

clinical MRSA strains. Furthermore, in the presence of fully functional MecR1-MecI, this gene was 

essential to sustain the mecA induction readily induced by MecR1, enabling the optimal expression of β-

lactam antibiotic resistance. Finally, in vitro and in vivo assays showed that the encoded protein acts as 

an anti-repressor by disturbing MecI binding to the mecA promoter and promoting its MecR1-independent 

inactivation proteolysis. Collectively, these findings indicated that the long-sought gene encoding 

MecR2/BlaR2 had been found, and so it was termed mecR2 [26]. In order to shed light on the structural 

determinants of fold and function of MecR2, we developed an efficient protocol to produce large 

quantities of purified protein, assayed its binding capacity to MecI by bio-layer interferometry, solved its X-

ray crystal structure, and report here the essential structural features, which were further cross-checked 

by mutational studies. 

 

3.3 Results and Discussion 

 3.3.1 Large-scale recombinant heterologous overexpression and 
purification of MecR2 

 
  An efficient recombinant overexpression system for MecR2 in Escherichia coli was developed, 

and subsequent two-step chromatographic purification enabled to obtain large amounts of pure protein. 
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The protein was well folded as suggested size-exclusion chromatography and proved suitable for 

structural and functional studies. 

 

 3.3.2 Biological activity of purified MecR2  
 

 Previously, the effects of mecR2 on the optimal expression of oxacillin-resistance were studied 

using the short variant present in prototype strain N315 [26]. This variant lacks the putative N-terminal 

DNA binding domain present in the MecR2 variant of prototype strain HU25, used here for the resolution 

of the MecR2 tri-dimensional structure. In order, to confirm the biological activity of this larger MecR2 

variant together with the additional N-terminal sequences containing the His6-tag and the TEV protease 

cleavage site, the insert of pCri8a::mecR2 was inserted into the S. aureus expression vector 

pSPT181::spac containing the IPTG-inducible Pspac promoter, resulting in recombinant plasmid 

pSPT::spac-mecR2-3D. This recombinant plasmid was then transduced into the mecR2 deletion N315 

mutant (N315::ΔmecR2) and its ability to restore the oxacillin-resistance phenotype of parental strain 

N315 was evaluated. As illustrated in Figure 3.5, in the presence of the inducer (IPTG 100μM) the 

phenotype of N315 was fully restored, demonstrating that the MecR2 variant used for the crystallization 

experiments is biologically active.  
 

 3.3.3 MecR2 establishes a non-obligate triggered transient interaction with 
MecI  

 
 Interaction between recombinant MecR2 and MecI proteins - the latter was obtained as 

previously reported [17,18] - was assayed by bio-layer interferometry. This is a label-free technique in 

solution that measures the shift in wavelength of the interference pattern of light reflecting from a protein 

layer immobilized on a biosensor tip (stationaty phase)  here MecI due to binding by a partner kept in 

solution (mobile phase) here MecR2 [27, 28]. This technique allows for real-time measurements and 

enables to accurately and precisely assess binding association and dissociation rates by determining the 

variation in thickness of the bio-layer due to protein binding. The response in the steady state correlates 

with the dissociation constant (KD) according to the equation: 
Response (R) = (Rmax x [ligand]) / (KD + [ligand]) 

 Figure 3.1A depicts the association and dissociation curves for the different concentrations 

assayed (colored lines) and the corresponding theoretical simulations (red lines). Representation of the 

experimental response (R) in steady state against ligand concentration (Figure 3.1B) and fitting to the 

theoretical aforementioned equation allowed to estimate a KD value of 1.2±0.3nM. The magnitude of this 

value reveals a strong binding affinity between the two proteins, proving that these proteins interact, at 
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 3.3.4 Overall structure of MecR2  
 

 The crystal structure of MecR2 was solved by a combination of multiple-wavelength anomalous 

diffraction and ab initio approaches, and two molecules are present in the asymmetric unit of the crystal, 

monomers A and B (see Table 3.1 for crystallographic data). The monomer structure reveals an 

elongated shape of roughly 45x60x80Å that is subdivided into three domains: an N-terminal DNA-binding-

like domain (NDD), an intermediate scaffold domain (ISD), and a C-terminal dimerization domain (CDD) 

(Figure 3. 2A; the orientation of the left panel is hereafter taken as a reference). NDD (residues P0/D3-H70) 

starts at the front surface, close to the top of the molecule, and enters a small αβ domain. It consists of 

three α-helices (α1-α3) followed by a β-ribbon (β1β2) whose tip the loop connecting β1 and β2 (Lβ1β2) is 

disordered (Figure 3.2B). These elements conform to the architecture of a winged helix-turn-helix domain 

as observed in DNA-binding transcriptional repressors, which generally evince disordered β-ribbon tips 

when not bound to operator DNA [30]. In the latter, α1 and α2 contribute to creating a scaffold for 

adequate positioning of helix α3. This is the recognition helix that penetrates the major groove of double-

stranded DNA, as found e.g. in the DNA-binding domains (DBDs) of MecI and BlaI [17-19].  

 After strand β2, the polypeptide chain enters ISD (residues L71-N193 + S346-A376), which contains a 

central twisted five-stranded β-sheet (β3-β9 plus β9) that is parallel for all but one of its strands and 

shows connectivity -1,-1,+3x,+1x (Figures 3.2B,C). On its right, the sheet accommodates two helices (α4 

and α5) and a short β-hairpin (β7β8), which is inserted between β6 and β5 and is folded back towards the 

sheet (Figure 3.2A, B); on its left, two perpendicular helices (α6 and α12) are found. Inserted between the 

latter helices is the CDD (residues L194-T345), which starts with a five-stranded β-sheet (β10-β12 plus β15-

β16), which is equivalent to the one found in ISD both in connectivity and topology (Figures 3.2B, C). On 

its bottom side, this sheet is decorated with helices inserted between β12 and β15 (α7-α9) and between 

β15 and β16 (α10 and α11). In addition, a long β-ribbon (β13β14) is inserted between β12 and α7; it 

contributes to oligomerization (see below).  

 The overall architecture of ISD and CDD is such that the two respective β-sheets trap helices α6 

and α12 in between in such a manner that a pseudo-twofold axis is generated relating, respectively, one 

sheet plus one helix with the other sheet-helix pair (Figure 3.2B). This entails that α6 could be formally 

assigned either to ISD or CDD. The interface between these two domains contributes to a ligand-binding 

cleft (Figures 3.2B and 3.3A). It is framed by Lβ6β7 and β7 at its top; β10, Lβ10β11, β11 plus Lβ12β13 

and Lβ14α7 at its bottom; Lβ9α6 and α6 at its back; residue Y82 of Lβ3β4 on its right; and R200 of β10 and 

E177 of β9 on its left (Fig. 3.A). The cleft accommodates two potassium cations and a phosphate anion in 

monomer A; in monomer B only the leftmost cation site (see Figure 3.3A) is conserved, which is 

coordinated by atoms N181 Oδ1, A210 O, and A226 O at distances of 2.6-2.9Å. Further three (monomer B) 

and four (monomer A) solvent molecules at distances of 3.0-3.6Å complete the ligand sphere of this site. 

The rightmost potassium of monomer A is much more loosely bound, with just two protein atoms at 
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 Figure 3.2 - Monomer structure of MecR2. (A) Ribbon-type plot of MecR2 in three orthogonal views 

depicting the NDD (cyan helices and blue strands), ISD (yellow helices and orange strands), and CDD (pink helices 

and magenta strands). The bound potassium and phosphate ions (monomer A) are depicted as green and 

orange/red CPK models, respectively. (B) Topology scheme of MecR2 showing the regular secondary structure 

elements of MecR2 with their labels and delimiting amino-acid positions. A twofold axis relating the b-sheets of ISD 

and CDD is depicted in discountinuous trace. The position of the ligand-binding cleft is further indicated. (C) Cartoon 

depicting the topology of the main building element of ISD and CDD, the five-stranded b-sheet and its three flanking 

helices. Each structural element carries the labels as found in the two domains. The arrows hallmark insertion points 

of distinct secondary structure elements within each domain: j for ISD and k for CDD.   

 

 3.3.5 MecR2 is a functional dimer  
 

 MecR2 eluted as a dimer in a calibrated size-exclusion chromatography assay. Consistently, the 

two molecules found in the crystal asymmetric unit give rise to a dimer with a surface of interaction of 

1465Å2 (~8% of the total surface of a monomer), which is in the range generally described for protein-

protein complexes (1600 ±350Å2; [31]) and much larger than generally observed for artificial crystal 

packing contacts. It evinces a surface complementarity (0.72) that is likewise in the range reported for 

protein oligomers and protein/protein inhibitor interfaces (0.70-0.76; [32]). This interaction includes 83 

contacts (<4Å), among them hydrophobic contacts between nine residues of either monomer and 34 

hydrogen bonds and polar interactions. Protein segments involved are provided by the CDD of each 

monomer: Lα6β10, Lβ11β12, the second half of α9 and Lα9β15, and β-ribbon β13β14. The two 

monomers are not completely equivalent, and this gives rise to an rmsd value upon superposition of 

0.97Å for 353 Cα-atoms deviating less than 3Å of out 361 common residues. Analysis of inter-domain 

flexibility based on the elastic network model revealed potential hinge motions at the two domain 

junctions of each monomer, which increase on going from the CDDs to the NDDs (Figure 3.3 C). 
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Figure 3.3 - Ligand-binding cleft and quaternary structure of MecR2. (A) Detail of the ligand-binding 

cleft of MecR2 monomer A in stereo. Selected residues, the phosphate anion and the two potassium cations 

are labeled. (B) MecR2 dimer made up of monomer A (right; in the same orientation as in Figure 3.2A, left) and 

monomer B (left). The three domains are depicted in cyan/blue (NDD), salmon/orange (ISD), and 

purple/magenta (CDD). Potassium and phosphate ions are shown as green and orange/red CPK models, 

respectively. (C) Same as (B) showing the result of the analysis of inter-domain flexibility based on the elastic 

network model. (D) Superposition in stereo of MecR2 NDDs as found within the dimer (cyan Cα-model; 

recognition helices in dark blue) onto the MecI DBDs (pink Cα-model; recognition helices in magenta) as found 

within its complex with target DNA (green stick model; [17]). 

 

 3.3.6 Structural similarities  
 

 Sequence similarity searches suggested that MecR2 be grouped with the ROK family of proteins 

(from repressors, open-reading frames, and kinases), which includes transcriptional repressors and sugar 

kinases [33-35]. One archetypal well studied ROK protein is xylose transcriptional repressor (XylR), which 

regulates xylose utilization as a carbon source in bacteria [36-40], but there are no structural data on XylR 

available. Escherichia coli protein Mlc is the only functionally and structurally characterized ROK-family 

protein with DNA-repressor function [34, 41]. Mlc is a dimeric/tetrameric transcriptional repressor that 

controls the utilization of glucose in E. coli [42]. It evinces overall fold similarity and quaternary 

arrangement with MecR2 and is likewise subdivided into three domains equivalent to NDD, ISD, and 

CDD. In addition, two unpublished structures corresponding to proteins of unknown function deposited 

with the Protein Data Bank (PDB) by structural genomics consortia from Thermotoga maritime (PDB code 

2HOE) and Vibrio cholerae (PDB code 1Z05) further displayed high structural similarity scores with 

MecR2. These are the only three-domain ROK proteins structurally reported, which add up to a large 

group of mostly dimeric or tetrameric two-domain ROK proteins, sugar kinases that bind and 

phosphorylated glucides and mostly possess only ISDs and CDDs [33-35, 43]. 
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Table 3.1 - Crystallographic data  

Dataset Native 1 Native 2 Selenomethionine 
absorption peak 

Selenomethionine 
inflection point 

Cell constants 
(P212121; a, b, c, in 
Å) 

66.47, 73.22, 157.38 67.39,73.14,157.22 66.62, 73.25, 157.82 66.62, 73.25, 157.82 

Wavelength (Å) 0.97626 0.97919 0.97881 0.97908 

No. of measurements 
/ unique reflections 402,549  /  45,488 356,882  /  39,911 213,853 / 34,902 154,830 / 24,460 

Resolution range (Å) 
(outermost shell) a 

49.2 – 2.10 (2.21 – 
2.10)

49.6 – 2.20 (2.32 – 
2.20)

49.3 – 2.30 (2.42 – 
2.30)

49.3 – 2.57 (2.75 – 
2.57) 

Completeness (%) 99.6 (98.7) 99.1 (95.0) 99.5 (97.2) 99.9 (100.0) 

Rmerge 
b,c 0.087 (0.716) 0.104 (0.420) 0.054 (0.454) 0.089 (0.708) 

Rr.i.m. (= Rmeas) b,c / 
Rp.i.m. b,c 

0.092 (0.777) / 0.030 
(0.299) 

0.110 (0.465) /0.035 
(0.194) 

0.065 (0.568) / 0.035 
(0.336) 

0.106 (0.843) / 0.057 
(0.451) 

Average intensity 
(<[<I> / σ(<I>)]>) 19.8 (2.7) 17.0 (3.6) 22.9 (3.1) 19.8 (2.6) 

B-Factor (Wilson) (Å2) 
/ Average multiplicity 32.4  /  8.8 (6.4) 27.4  /  8.9 (5.2) 45.7  /  6.1 (4.7) 55.8  /  6.3 (6.4) 

Overall anomalous 
completeness (%) / 
multiplicity 

- - 98.3 / 3.2 99.4 / 3.3 

Resolution range used 
for refinement (Å) 49.2 – 2.10    

No. of reflections used 
(among these, test 
set) 

45,433 (762)    

Crystallographic Rfactor 
(free Rfactor) c 0.190 (0.229)    
No. of protein atoms / 
solvent molecules / 5,813  /  278 /    

     ligands / ions 6 glycerol / 4 K+, 1 
PO43-    

Rmsd from target 
values 
 bonds (Å)  /  angles 
(°) 

0.010  /  1.04    

Average B-factors for 
protein atoms (Å2) 49.2    

Main-chain 
conformational angle 
analysis 

d
 Residues in 

favored regions / 
outliers / all residues  

705 / 0 / 714    

a
 Values in parentheses refer to the outermost resolution shell.

 b
 Friedel mates were treated separately during 

processing of selenomethionine-derivative data. c For definitions, see Table 1 in (66).  d According to MOLPROBITY 
(62). 
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 3.3.7 MecR2 has a non-functional ligand-binding cleft  
   

 As MecR2, Mlc has a ligand-binding cleft carved into the molecule at the interface between ISD 

and CDD. It further has an adjacent regulatory zinc-binding site, which is required for repressor activity 

[34] and is provided by the segment topologically equivalent to the protruding β-ribbon β13 β14 in MecR2. 

In contrast to the latter, however, this segment is folded back towards the body of the molecule in Mlc, in 

a similar fashion as in the ROK sugar kinases glucokinase from E. coli [46] and glucomannokinase from 

Arthrobacter sp. [47], where it contributes to shaping the floor of a sugar-binding cleft. This segment 

encompasses a widely conserved consensus sequence among ROK proteins, CXCGXXGCXE [34, 43], 

which contains three zinc-binding cysteine residues. A similar site is also found in Bacillus subtilis 

fructokinase YdhR [48], an undescribed putative glucokinase from Enterococcus faecalis (PDB 2QM1), 

an undescribed putative regulatory protein from Salmonella typhimurium (PDB 2AP1), and the 

aforementioned protein from V. cholerae, so that ROK family members containing this consensus 

sequence share a conserved metal-binding site. In contrast, MecR2 lacks these cysteine residues, and its 

chain trace is completely different, giving rise to an extended β-ribbon engaged in dimerization (see 

above). The latter is similar in the aforementioned protein from T. maritima, although in this case the 

ribbon is four residues shorter and contributes less to dimerization than in MecR2. Merely the last 

glutamate of the consensus sequence is found in the latter two proteins - E248 in MecR2 - and it 

contributes to the ligand-binding cleft (see above). Another ROK-signature motif comprising the C-

terminal residues EXGH is found in several ROK proteins about ten residues upstream of the previous 

consensus sequence (see Figure 4 in [43]). The histidine - missing in MecR2 - is engaged in zinc binding 

in Mlc and the V. cholerae protein, while the glutamate - equivalent to E228 in MecR2 - is engaged in sugar 

binding in E. coli glucokinase and Arthrobacter sp. glucomannokinase, together with the conserved 

residues at positions equivalent to E248, N178, and E179 in MecR2. The latter two residues are engaged in 

phosphate anion binding (see above). Although these residues are likewise conserved in Mlc, this protein 

does not bind glucose, i.e. its inactivation does not depend on allosteric-changes induced by sugar 

binding [49]: inactivation is exerted through recruitment by the glucose transporter protein EIICBGlc of the 

phosphotransferase system [50-52]. In contrast, XylR binds xylose, glucose, and glucose-6-phosphate in 

vitro [40], i.e. it is a three-domain transcriptional repressor with a functional regulatory sugar-binding cleft. 

Overall, these findings entail that ROK proteins include members that bind sugars such as the sugar 

kinases and XylR but also some that do not such as Mlc.  
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 3.3.8 MecR2 has a non-functional DNA-binding domain  
 

 Three-domain ROK transcriptional repressors like Mlc and XylR possess N-terminal DBDs 

engaged in DNA-operator binding and, thus, in the regulation of the transcription of the respective effector 

genes [33, 38]. MecR2 NDD likewise conforms to the structural determinants of such a DBD (see above). 

The reported structures of Mlc, T. maritima and V. cholerae are DNA-unbound, and they display the two 

recognition helices of a dimer in a relative spatial arrangement that is not adequate for binding to two 

successive turns of the major groove of dsDNA [33, 40]. This is consistent with the finding that structural 

flexibility of Mlc was identified as essential for its DNA-binding activity and for its regulation [40]. 

Therefore, we performed a structural superposition of MecR2 NDD onto the DBD of MecI in complex with 

its cognate operator sequence [17], which showed good overall fit of the monomers of both structures. 

However, detailed inspection revealed that MecR2 helix α3 is one turn shorter than in MecI (Figure 3.3D), 

thus precluding some of the interactions observed between MecI and DNA. In addition, the relative 

arrangement of the two domains of each protein is completely different: the two NDDs in MecR2 could not 

recognize DNA in the present conformation (Figure 3.3D). These findings led us to assess the DNA-

binding capacity of MecR2, which revealed that the latter does not bind to a c.a. 200-bp dsDNA 

encompassing the mec promoter region [26]. In addition, a naturally occurring N-terminally truncated 

variant of MecR2 (residues M1-M94 according to UniProt Q99XE2) showed anti-repressor activity in vivo. 

Accordingly, MecR2 possesses a structurally conserved but functionally irrelevant NDD. 
 

 3.3.9 Functional implications of MecR2  
   
 The similarity of MecR2 with ROK-family bacterial sugar kinases and transcriptional repressors, 

both in the overall monomeric structures and the general dimeric quaternary arrangements, on one side, 

and its strong but transient MecI-binding capacity, on the other, have evolutionary and functional 

implications. Accordingly, XylR would represent the first step in evolution from a former two-domain ROK 

sugar-binding kinase - putatively evolved from a common ancestral hexokinase (42,50) - refurbished to 

produce a three-domain DNA-binding transcriptional repressor. The latter still binds and is thus 

allosterically regulated by sugar through N-terminal fusion with a winged helix-turn-helix DBD. Mlc would 

represent the next step - as already anticipated in (33) - to a three-domain DNA-binding transcriptional 

repressor that does not bind sugar nor is regulated by binding to an inducer or by proteolytic cleavage but 

through sequestration by a glucose transporter, i.e. through a protein-protein interaction (40,49). Finally, 

MecR2 would represent a last step in such an evolution, in which a three-domain Mlc-like repressor would 

have also lost its DNA-binding ability to render a dimeric protein sequester of a dimeric transcriptional 

repressor, MecI. The inter-domain flexibility of the anti-repressor MecR2 would be consistent with the 
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adaptability required for such a protein-binding protein. Finally, MecI sequestering would suppress its 

repressor activity and facilitate its cleavage by non-specific proteolysis. 
 

 

 3.3.10 Characterization of the MecR2::MecI interaction 
 

 Evidence for a direct interaction between MecR2 and MecI proteins was previously obtained 

using a bacterial two hybrid strategy and electrophoretic shift assays of the binding of MecI to the mecA 

promoter in the presence of MecR2 [26]. In this study, we sought to characterize in more detail this 

protein interaction. First, we first evaluated the in vitro cross-linking of purified MecI and MecR2 proteins. 

The SDS-PAGE analysis of the cross-linking reactions revealed a time-dependent transition from MecI 

and MecR2 monomers to a mixture of MecI dimers, MecR2 dimers and MecI::MecR2 tetramers (Figure 

3.4A). Control cross-linking experiments with each protein alone also showed a time-dependent 

dimerization of MecI, whereas for MecR2, dimerization was much less effective and not time-dependent 

(Figure 3.4B and 3.4C, respectively). These data suggest binding of two MecR2 monomers to the MecI 

dimer (which is its active form) and that MecI may induce MecR2 dimerization.  
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 3.3.11 Site-directed mutagenesis of MecR2 
 

 Based on MecR2 structural data analysis, two disordered regions were identified that may be 

involved in the interaction with MecI: regions S55-K62 and the T150-I160. Two MecR2 mutant variants 

were generated to evaluate this hypothesis: a deletion of S55-K62 (ΔS55-K62) and a substitution of T150-

I160 by four glycines (T150-I160→GGGG). In addition, based on the MecR2 similarity to the 

transcriptional repressor of the xylose operon (XylR), the three putative ligand-binding cleft mutants were 

mutagenized, as follows: N178E→AA, E228→A, and E248→A. The biological activity of MecR2 mutagenized 

variants was evaluated using the complementation assay of deletion mutant N315::ΔmecR2 with mecR2 

variants expressed from pSPT181::spac vector, containing the IPTG-inducible Pspac promoter. Figure 

3.5 summarizes all data. Concerning the two disordered regions, the T150-I160→GGGG variant failed to 

complement the N315::ΔmecR2 phenotype, suggesting that this region is important for MecR2 function. 

The S55-K62 segment belongs to the putative N-terminal DNA binding domain and, as such, the lack of 

effect of its deletion is in agreement with previous data suggesting that this domain is not involved on the 

MecR2 function.  Concerning the mutant variants for the three putative ligand-binding clefts, no loss of 

MecR2 function was observed, suggesting that MecR2 function is not modulated by ligand-binding. In 

comparison to XylR, which binds to xylose, glucose and glucose-6-phospate [40], MecR2 acting as an 

anti-repressor of mecA transcription seems to have lost this activity. Most likely this functional divergence 

has evolved in S. fleuretti, the species in which the mecA three-component regulatory system, mecR1-

mecI and mecR2, appears to have been assembled [26] .In fact, in S. fleuretti mecA positive stains, the 

mecR1-mecI locus is linked to the full xylose operon and these strains, contrary to MRSA strains, do 

ferment xylose [53]. 
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 Figure 3.5 - Biological activity of purified MecR2 and mutagenized MecR2 variants. The purified 

MecR2 variant used in the crystallization assays (marked as WT here) and the site-directed MecR2 mutants were 

cloned into the S. aureus expression vector pSPT181::spac under the control of the IPTG-inducible Pspac promoter.  

The biological activity of MecR2 variants was then evaluated by testing the complementation of the phenotype of the 

mecR2 null-mutant in prototype strain N315 (N315::ΔmecR2) transformed with the pSP181::spac recombinant 

vectors expressing the mecR2 variants.  
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3.4 Materials and Methods  

 3.4.1 Recombinant overexpression and purification  
 
 The bacterial strains and plasmids used in this study are listed in Table 3.2. The mecR2 gene 

was amplified from genomic DNA from S. aureus strain HU25 by PCR and cloned into expression vector 

pCri8a (between NcoI and XhoI restriction sites) that adds an N-terminal His6-tag and a TEV protease 

cleavage site. This cloning strategy entailed that the N-terminus of the protein (according to UniProt entry 

Q99XE2) was preceded by the twenty-residue segment M-20GSSHH-15HHHHS-10SGENL-5YFQG-1P0 

(amino-acid one-letter-code; upper-case numbers depict numbering of selected residues within this 

segment). The expression vector was transformed into Escherichia coli BL21 DE3 cells and 1 liter 

cultures of transformed bacteria were induced for protein expression with 0.1mM isopropyl-β-D-1-

thiogalactopyranoside at 18ºC for 24h when the optical density at ʎ=600nm (OD600) reached 0.6. Cultures 

were subsequently centrifuged at 7,000×g (4ºC, 20min) and pellets were resuspended in 70ml ice-cold 

buffer A (20mM Tris-HCl, 0.5M NaCl, pH8.0). Cells were lysed by cell disruption with a cell disruptor 

(Constant Cell Disruption Systems) operated at 1.35kBar and the lysate was subsequently centrifuged at 

75,600×g in an Avanti J-25 centrifuge with a JA-25.50 rotor (4ºC, 20min). The soluble fraction containing 

His6-TEV-MecR2 was applied onto a His-trap FF crude column (GE Helthcare) attached to an ÄKTA 

Purifier UPC-10 FPLC system and previously equilibrated with buffer A. The protein was eluted with an 

imidazole gradient (0 to 0.5M imidazole in buffer A) and fractions containing the protein were subjected to 

a final size-exclusion chromatography step in a Superdex 75 16/60 column (GE Healthcare), previously 

equilibrated with 20mM Tris-HCl, 0.2M NaCl, pH7.4. Protein purity was assessed by 10%-tricine SDS-

PAGE. TEV protease digestion of the N-terminal His6-tag was assayed under different conditions but 

yields were not satisfactory, so that crystallization trials were performed using tagged MecR2. The 

selenomethionine variant of MecR2 was obtained in the same way, except that 30min before induction 

the cells were added to 500ml of medium lacking methionine and containing 25mg of selenomethionine 

(Sigma-Aldrich) instead. 

 

 3.4.2 Biological activity of purified MecR2  
  
  In order to confirm the biological activity of recombinant MecR2 protein expressed from 

pCri8a::mecR2, the insert containing the full mecR2 coding sequence plus the additional N-terminal 

sequence containing the His6-tag and the TEV protease cleavage site was cloned into the S. aureus 

expression vector containing the Pspac IPTG-inducible promoter (pSPT181::spac).  Briefly, using flanking 
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primers MR2-3D F1/R1 the insert sequence was amplified with the Phusion High-Fidelity DNA 

Polymerase (New England Biolabs) and, after digestion with XmaI (New England Biolabs), was inserted 

into the XmaI linearized pSPT181::spac plasmid using the Rapid DNA Dephos & Ligation kit (Roche), 

according to the manufacturer’s recommendations. Ligation reactions were transformed to E. coli DH5α. 

Recombinant plasmid integrity was confirmed by restriction analysis and the correct insert direction was 

confirmed by PCR using primer pairs spacF1/MR2-RT2 and spacR1/MR2-RT1. Insert sequences were 

also confirmed by DNA sequencing at STAB Vida (www.stabvida.com). After stabilization in E. coli, the 

recombinant plasmid was electroporated into S. aureus restriction-deficient strain RN4220 and finally 

transduced by the 80α phage to the knock-out mecR2 mutant strain N315 (N315::ΔmecR2), as previously 

described ([55, 56] The ability of the recombinant mecR2 expressed in trans to complement the 

N315::ΔmecR2 oxacillin-resistance phenotype was then evaluated, as previously described [26]. 

 

 3.4.3 Site-directed mutagenesis of MecR2  
 

 MecR2 mutant variants were obtained by two-step overlap extension PCR, as previously 

described [57, 58]. Briefly, a round of two independent PCR reactions was performed with two 

complementary mutagenic primers and the two flanking mecR2 primers generating two intermediate PCR 

products with overlapping terminals (see Table 3.3). As an example, for S55-K62 deletion primer pairs 

MR2-3D F1/MR2-SDM2 and MR2-3D R1/MR2-SDM1 were used. The template for these PCR reactions 

was the recombinant plasmid pCri8a::mecR2 used for the expression and purification of MecR2 protein. 

Both intermediate PCR products were then 50-fold diluted and mixed to form the DNA template of the 

second PCR, using primers spanning the entire mecR2 gene (MR2–3D F1/R1). All PCR reactions were 

performed with the Phusion High-Fidelity DNA Polymerase (New England Biolabs). The mutagenized 

mecR2 amplicons were digested with XmaI and ligated to pSPT181::spac as described above for the 

“wild-type purified” MecR2. 

 

 3.4.4 In vitro MecR2::MecI crosslinking 
 

 MecR2 protein was overexpressed and purified as described above. MecI was overexperssed 

and purified as previously described [59]. For the cross-linking experiments, MecI and MecR2 proteins 

were mixed at 0.09mg/mL each (a low concentration to minimize intermolecular cross-linking) in 50μl of 

100mM HEPES, pH9.0, containing the paraformaldehyde (PFA) cross-linking agent at 0.1% (v/v). The 

cross-linking reactions occurred at room temperature and were stopped with 10μl 5x Laemmli buffer (with 

β-mercaptoethanol) at distinct time points. Samples were analyzed by 10%-tricine SDS-PAGE gels 

stained with Coomassie-blue. Control experiments were performed with both purified proteins alone at the 

same experimental conditions.  
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Table 3.2 - Strains and plasmids used in this study 

Strain/Plasmid Relevant characteristics Source 

Strains   
E. coli DH5α Recipient strain for recombinant plasmids Stratagene 
E. coli Bl21 (DE3)  Recipient strain for expression vector pCri8a Novagene 
BL21 + pCri8a::mecR2 E. coli BL21 (DE3) overexpressing mecR2 with a 

N-terminal His6-tag and a TEV protease cleavage 
site 

This study 

S. aureus RN4220 Restriction-deficient derivative of reference strain 
NCTC8325-4  

R. Novick 

S. aureus N315 Prototype MRSA strain, heterogeneous Oxar, 
wild-type mecR1-mecI, mecR2 positive, β-
lactamase positive, clone ST5-II 

K. Hiramatsu 
[60] 
 

S. aureus HU25 Homogeneous Oxar, wild-type mecR1, truncated 
mecI, mecR2 positive, β-lactamase positive, clone 
ST239-III 

[61] 

N315::ΔmecR2 N315 mecR2 deletion backcross, β-lactamase 
positive 

[26] 

N315::ΔmecR2 + 
   pSPT::spac-mecR2 

N315::ΔmecR2 expressing mecR2 in trans from 
the inducible Pspac promoter 

This study 

   
Plasmids   
pCri8a   pET30 (Invitrogen) derivative containing His6-

GST-Tev fragment, Kanr 
[62] 

pSPT181::spac pSPT181 with 1.6 kb EcoR1-BamH1 fragment 
containing the IPTG inducible Pspac promoter 
and the transcriptional repressor LacI from 
pDH88, Apr, Tcr 

[26] 

pCri8a::mecR2 pCri8a with mecR2 gene from strain HU25 This study 
pSPT181::spac-mecR2 
3D (wild-type) 

pSPT181 vector containing the mecR2 gene with 
a N-terminal His6-tag and a TEV protease 
cleavage site from pCri8a::mecR2 

This study 

pSPT181::spac-mecR2 
ΔS55-K623 

pSPT181 vector containing the mecR2 mutant 
variant ΔS55-K623 

This study 

pSPT181::spac-mecR2 
T150-I160→GGGG  

pSPT181 vector containing the mecR2 mutant 
variant T150-I160→GGGG  

This study 

pSPT181::spac-mecR2 
N178E→XX 

pSPT181 vector containing the mecR2 mutant 
variant N178E→XX 

This study 

pSPT181::spac-mecR2 
E228→X 

pSPT181 vector containing the mecR2 mutant 
variant E228→X 

This study 

pSPT181::spac-mecR2 
E248→X 

pSPT181 vector containing the mecR2 mutant 
variant E248→X 

This study 
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 3.4.5 Bio-layer interferometry  
 

  Binding studies were performed with a FortéBio Octet Red96 biosensor at 25°C in 96-well 

microplates by using 200μl-reaction volumes and amine-reactive biosensor tips (Menlo Park, CA), which 

were incubated for 5min in coupling buffer (100mM 2-[N-morpholino]ethanesulfonic acid, pH4.0) 

immediately before usage. Recombinant purified MecI protein [18] was immobilized through covalent 

attachment to the biosensor by employing 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide and N-

hydroxysuccinimide essentially as described [63]. MecR2 was assayed as soluble ligand at 

concentrations ranging between 0.028nM and 35.6nM in 0.01% phosphate-buffered saline with Tween 20 

to avoid unspecific interactions. The binding reaction was blocked with ethanolamine according to 

manufacturer’s instructions. A regeneration step with 0.05% sodium dodecyl sulfate in 1M NaCl solution 

was intercalated between successive assays to optimize resolution. Results were analyzed using 

dedicated software from FortéBio.  

Table 3.3 - Primers used in this study  

Name Sequence (5’ → 3’) * 

MR2-3D  F1 TATACCCGGGAAGGAGATATACCATGGGCA 

MR2-3D  R1 TATACCCGGGGCTATTATGCTTTTATATCTA 

Spac F1 GAAGATTTATTTGAGGTAGC 

Spac R1 TTATGGCTTGAACAATCACG 

MR2-RT1 AATGAAGCGAATCTTTCAGC 

MR2-RT2 AATTGCTAATGTACCACCTAGC 

MR2-SDM 1 ATGAGGTTGGTGAGGGTGATAAACCTATTCTTCTGAAGGT 

MR2-SDM 2 ACCTTCAGAAGAATAGGTTTATCACCCTCACCAACCTCAT 

MR2-SDM 3 TGGATAATGAGCAGCATGTGGGTGGAGGTGGAATTTCAATTCCA 

MR2-SDM 4 TTCTTAGCAATTGAAATTCCACCTCCACCCACATGGTGCTCATTATC

MR2-SDM 9 ATGGGGAAGCGGGTGCAATTGGAAAAACACT 

MR2-SDM 10 AGTGTTTTTCCAATTGCACCCGCTTCCCCAT 

MR2-SDM 11 TCTTTCATAAGATTGCAGATATTTTTTCACA 

MR2-SDM 12 TGTGAAAAAATATCTGCAATCTTATGAAAGA 

MR2-SDM 13 CCAGTCGTAGTTGAAGCTGCAGCGAATCTTTCAGC 

MR2-SDM 14 GCTGAAAGATTGGCTGCAGCTTCAACTACGACTCC 

* Restriction sites are underlined. 
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 3.4.6 Crystallization and structure analysis 
  

 Crystallization assays were performed by the sitting-drop vapor diffusion method. Reservoir 

solutions were prepared by a Tecan robot and 100nL crystallization drops were dispensed on 96x2-well 

MRC plates (Innovadyne) by a Cartesian (Genomic Solutions) nanodrop robot at the High-Throughput 

Crystallography Platform (PAC) at Barcelona Science Park for initial screenings both at 20 and 4ºC in a 

Bruker steady-temperature crystal farm and using initial protein concentrations of 5.4 and 2.7mg ml-1. 

Preliminary crystallization hits were improved and best conditions were scaled up to the microliter range 

in 24-well Cryschem crystallization dishes (Hampton Research). Crystals suitable for structure analysis 

were obtained at 5.4mg ml-1 in 20 mM Tris-HCl, 200 mM NaCl, pH7.4 by using 0.2M NaCl, 20% PEG 

1000, 0.1M KH2PO4/Na2HPO4, pH6.2 as reservoir solution. Crystals were cryo-protected with reservoir 

solution implemented with 30% glycerol. Crystallization conditions for the selenomethione-derivatized 

protein were similar to the native ones. Complete diffraction datasets were collected from liquid-N2 flash-

cryo-cooled crystals at 100K (provided by an Oxford Cryosystems 700 series cryostream) at beam lines 

ID23-1 on an ADSC Quantum Q315r CCD detector and ID29 on a Dectris PILATUS 6M pixel detector, 

respectively, of the European Synchrotron Radiation Facility (ESRF, Grenoble, France) within the Block 

Allocation Group "BAG Barcelona.” Crystals were orthorhombic, with two molecules per asymmetric unit. 

Diffraction data were integrated, scaled, merged, and reduced with programs XDS [64] and SCALA [65] 

within the CCP4 suite of programs [66] (see Table 3.1).  

 The structure of MecR2 was solved by a combination of multiple-wavelength anomalous 

diffraction with SHELXE/D [67] and ab initio approaches with ARCIMBOLDO [68] by using two native 

datasets and two datasets from a selenomethionine-derivatized crystal collected at the selenium 

absorption peak and the inflection point as determined by a previous XANES scan (Table 3.1). The 

resulting electron density map enabled straightforward tracing of the entire polypeptide chain on a Silicon 

Graphics Octane2 workstation with TURBO-Frodo program [69]. Subsequent crystallographic refinement 

with BUSTER/TNT [70], which included TLS and non-crystallographic refinement, alternated with manual 

model building until completion of the model. The latter comprised residues M1 to A376 according to 

UniProt entry Q99XE2 plus an N-terminal proline resulting from the cloning strategy (termed P0; see 

above) of molecule A, and D3 to A376 of molecule B. Three loop segments were disordered and were thus 

omitted from the final model: E52-S58 and L152-E158 of molecule A, and G51-P63 of molecule B. In addition, 

one phosphate anion, four potassium cations, six glycerol molecules, and 278 solvent molecules were 

assigned (Table 3.1). 
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3.5 Miscellaneous  
 

 Figures were prepared with SETOR [71], CHIMERA [72], and TURBO-Frodo. Structure similarities 

were determined with DALI [73]. Experimental model validation was performed with MOLPROBITY [45] 

and WHATIF [74]. Close contacts (<4Å) and interaction surfaces (taken as half of the surface area buried 

at the complex interface) were calculated with CNS [75], and interface shape complementarity was 

computed with SC [32] within CCP4 [66]. In all cases, a probe radius of 1.4Å was used. Inter-domain 

flexibility was ascertained with HINGEPROT employing standard settings ([76]; see 

http://bioinfo3d.cs.tau.ac.il/HingeProt). The final coordinates available from the PDB at www.pdb.org 

(access code XXXX). 
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4.1 Conclusion 
 

 

 Infections caused by Staphylococcus aureus in the pre-antibiotic era were associated to a 

significant mortality rate of about 80%. The introduction of benzylpenicillin in the early 1940s caused a 

dramatic decrease in death rates from bacterial pneumonia and meningitis, leading to a spectacular 

success in curing formerly untreatable staphylococcal diseases [1]. However, an enzyme capable of 

inactivating the active β-lactam ring of penicillin was described firstly in E.coli [2], and shortly after, 

penicillinase production was also reported in S. aureus [3]. Four years later, over 50% of S. aureus 

nosocomial isolates recovered from London patients were resistant to penicillin [4, 5]. The introduction of 

penicillinase-stable penicillins (such as methicillin), provided temporary relief for clinicians, but methicillin 

resistant Staphylococcus aureus (MRSA) strains rapidly emerged [6]. At the same time, important 

achievements were made concerning the development and characterization of new antimicrobial classes, 

such as: the sulfonamides, streptomycin, tetracyclines, macrolides, cephalosporins and glycopeptides [7, 

8]. However, once again, shortly after these antibiotics were introduced into clinical practice, resistance 

mechanisms rapidly emerged [9-11]. Antibiotic resistance is now widespread and has become a major 

problem in the treatment of clinical infections caused by S. aureus [12-14]. The spread of MRSA poses 

serious therapeutic problems within the hospital environment [15, 16]. Every year about two million 

patients acquire nosocomial infections in US hospitals [17], and about 60% of those infections involve 

antibiotic resistant bacteria [18]. Since 2000, only two new antibiotic classes have been introduced to 

treat MRSA infections, and, clinical resistance to both has already been described [19, 20]. Currently, 

glycopeptides (e.g. vancomycin and teicoplanin) have been the last-resort antibiotics against MRSA. 

Nevertheless, the large-scale use of glycopeptides has led to the emergence of resistance. The current 

prevalence of MRSA in most countries and the emergence of vancomycin intermediate Staphylococcus 

aureus  (VISA) and vancomycin resistant Staphylococcus aureus  (VRSA) [21, 22], demonstrates that the 

clinical options for treating these infections may become very limited.  

 Several strategies are being developed in order to overcome the health threat caused by the 

spreading of multi-resistant pathogens. First, new antibiotic compounds are being developed, such as the 

protein synthesis inhibitor – tigecycline [23], or the new anti-MRSA cephalosporins and carbapenems, 

which are stable against hydrolysis and show affinity to PBPs, including PBP2a, [24-26]. Second, 

synergistic combinations of different antibiotics are used, such as the combination of clavulanic acid 

which has poor antibacterial activity, with another β-lactam (e.g. amoxicillin), originating drugs for clinical 

use [27]. Third, new target-inhibitor combinations are being explored, using modern biochemical and 

genomic tools, combined with powerful synthetic-chemical-library methods, which enables a rapid 

identification of the target as well as a possible design of new drugs [28, 29]. 

 MRSA isolates are broadly resistant to penicillins and cephalosporins [30]. β-lactams are 

rendered inactive against S. aureus by two primary mechanisms of resistance: (i) the expression of a β-
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lactamase encoded by blaZ gene, that hydrolyses penicillins before it can reach the cellular targets, and 

(ii) the production of a single additional penicillin binding protein, PBP2a, encoded by mecA gene,  with a 

remarkably low affinity to β-lactams [31]. The regulatory proteins that mediate mecA and blaZ 

transcription, (MecR1-Mec1 and BlaR1-BlaI, respectively) share high homology in terms of structure and 

function, so much so that there is a cross-talk between both systems [32, 33], and the signal-transduction 

mechanisms are believed to be similar [34, 35]. The currently accepted model for the induction of mecA 

transcription is based on two main proteolytic steps, as follows: (i) the binding of the β-lactam antibiotic to 

the extracellular sensor domain of MecR1, generates a transmembrane signal that leads to a 

conformational change and consequent activation of the intracellular (auto)-proteolytic domain, and (ii) 

the proteolytic cleavage of the cytosolic MecI within its dimerization domain, by the activated MecR1 

intracellular domain, directly or indirectly, leading to mecA transcription and consequent expression of the 

resistance phenotype [34, 35]. 

 Understanding the molecular pathways that lead to the optimal expression of mecA might be 

crucial to develop complementary therapeutic strategies and possibly new drugs against MRSA. To 

achieve this goal, it is important to clarify some molecular details involved in the control of mecA. The 

induction of mecA by MecR1 has been described as extremely slow, so that cells carrying the mec locus 

fully functional appear phenotypically susceptible in spite of the presence of mecA [33, 36, 37]. Moreover, 

there is still no evidence supporting a direct interaction between the inducer MecR1 and the repressor 

MecI. As a matter of fact, several authors based on contradictory observations have postulated the 

existence of a third element mediating the signal transduction between the MecR1 and MecI proteins [38-

40].  

 We demonstrated that the mecA regulatory locus has a three-component arrangement, harboring 

besides the previously well described mecR1-mecI regulatory genes, an anti-repressor - the mecR2 

gene, which is co-transcribed together with mecR1-mecI from the mecR1 promoter. The mecR2 gene is 

highly conserved among MRSA strains carrying the SCCmec Type II and III, as well as, in other 

staphylococcal species containing SCCmec sequences. In order to access the impact of the mecR2 gene 

on the MRSA phenotype several mecR2 mutants were constructed in prototype MRSA strains with high 

variety in terms of phenotype. The deletion of mecR2 gene caused a sharply decrease in the phenotypic 

levels of β-lactam resistance, demonstrating that mecR2 is essential for the optimal expression of β-

lactam resistance in strains with functional mecI-mecR1 regulatory locus.  

 Altogether, our data shades some light on some open questions of the mecA regulatory 

mechanism. First, the effect of mecR1-mecI overexpression (without mecR2) on mecA induction profile in 

MRSA recombinant strains was previously evaluated, showing that the induction of mecA is very 

inefficient [33, 36, 37]. However, since all MRSA strains carrying mecR1-mecI regulatory genes fully 

functional are also positive to mecR2; indeed, those MRSA strains are able to fully induce the 

transcription of mecA by its cognate regulators (mecR1-mecI-mecR2) in the presence of β-lactams.  
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 Second, due to the high similarity between the bla and mec systems, it is believed that the 

regulatory mechanisms that control the induction of mecA and blaZ are identical [34, 41, 42]. However the 

role and specificity of the repressor proteolysis appears to be different in the mec and bla systems. For 

instance, it has been proposed that in B. licheniforms the proteolysis of BlaI is not required for the 

induction of β-lactam resistance [38]. However, overexpression of the bla regulatory proteins of S. aureus 

in recombinant E. coli strains showed that BlaR1 directly cleaves the repressor BlaI [43], in agreement 

with previous studies in S. aureus [34]. Actually, our findings suggest subtle differences in terms of the 

proteolytic pathway leading to the induction of both structural genes (mecA and blaZ), corroborating also 

the hypothesis that the MecI repressor is not cleaved by the activated MecR1 [39, 40].  Our studies have 

shown that in the mec system, MecI proteolysis appears to be essential for induction of mecA 

transcription but that it occurs independently from the activated MecR1 and it is promoted by MecR2.  

 Third, the induction of mecA when mediated by its cognate sensor-inducer appears to be much 

less efficient than when mediated by BlaR1 [33, 42]. According to our results, we can speculate that the 

assembling of the anti-repressor mecR2 to the mecA gene complex found in MRSA might have been an 

evolutionary strategy to compensate the inefficient induction mediated by MecR1. Most likely, since 

BlaR1 has high affinity to β-lactams and consequently induces blaZ transcription [42], we can infer that in 

bla system, BlaR1 accomplishes the same functions performed by MecR1 and MecR2.   

 The MecR2 crystal structure suggests that the anti-repressor MecR2 is a functional dimer, 

containing an N-terminal DNA-binding-like domain, an intermediate scaffold domain and C-terminal 

dimerization domain. The MecR2 protein shows structural similarity with xylose repressor (XylR) of 

Staphylococcus xylosus, which belongs to the ROK transcriptional repressors family. In order to evaluate 

the specific domains and residues identified from the MecR2 structural data analysis that might be 

important to MecR2 function, several mecR2 mutant variants were generated. Complementation studies 

have shown that only the mecR2 mutagenized variant lacking the disordered region T150-I160 located 

within the dimerization domain (that might be involved in the interaction with MecI), fails to complement 

the N315::∆mecR2 phenotype. These observations suggest that the dimerization domain is critical for the 

MecR2 function and might be directly involved in the interaction with MecI. 

 Based on the results reported on this thesis we propose a revision of the current model for the 

control of mecA transcription in MRSA (see Figure 4.1), as follows. Upon exposure to β-lactams the 

extracellular domain of MecR1 becomes active, triggering rearrangements which transmits a 

conformational change across the membrane, leading to the activation of the intracellular metalloprotease 

domain. Shortly after, the activated MecR1 cytoplasmic domain induces the cleavage of the repressor 

MecI, allowing the transcription of mecA along with mecR1-mecI-mecR2. The increasing amount of 

MecR2 molecules promote the local melting of MecI scissile bound, leaving it accessible to proteolytic 

cleavage presumably by native proteases. Although mecA induction can be achieved solely by MecR1-

MecI, MecR2 is required for a fully mecA transcription, meaning that, MecR2 is essential to compensate 

the poor induction mediated by MecR1; i.e. the disruption of MecI mediated by the anti-repressor MecR2 
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is essential to a sustained induction of mecA transcription as long as the β-lactam is present. In the 

absence of β-lactams, the extracellular sensor domain of MecR1 is no longer activated, and the signal 

transduction is interrupted. This leads to the binding of MecI-dimers to the mecA promoter, remaining the 

residual copies of MecR1 anchored at the cell membrane. This model assumes that, in the absence of β-

lactams, MecR2 is readily degraded by the cellular turnover pathway. 

 

 

 

 
 Figure 4.1 - Model depicting the transcriptional induction of mecA in the presence of β-lactams 

mediated by the regulator proteins MecR1-MecI-MecR2. In the presence of a β-lactam antibiotic, MecR1 is 

activated and rapidly induces the expression of mecA and mecR1-mecI-mecR2. The anti-repressor activity of MecR2 

is essential to sustain the mecA induction since it promotes the inactivation of MecI by proteolytic cleavage. In the 

absence of β-lactams, MecR1 is not activated and a steady state is established with stable MecI-dimers bound to the 

mecA promoter and residual copies of MecR1 at the cell membrane.  
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4.2 Future Perspectives 
 

 The work present on this thesis highlights important details concerning the “players” that 

efficiently regulate the expression of methicillin resistance in MRSA. We found that the mec regulatory 

locus consists, in an unusual three-component arrangement enclosing, in addition to mecR1-mecI, the 

mecR2 gene coding for an anti-repressor. The anti-repressor MecR2 is essential to optimal expression of 

β-lactam resistance in MRSA that carry the mec regulatory system fully functional. The main function of 

MecR2 in methicillin resistance is to bind directly to mecA repressor (MecI) leaving it accessible to 

proteolytic cleavage, presumably by native proteases. However, others aspects mainly regarding the 

MecI proteolysis, remain to be clarified. Thus, the experiments that will be done in order to clarify the MecI 

proteolysis event could be divided in three different themes, as follows: 

 
(i) MecR2-MecI complex tridimensional structure 
 
 Since the X-ray 3D structure of the PBP2A (mecA), MecI, MecR1 [44] and MecR2 have already 

been resolved, we will aim to resolve the structure of the MecI-MecR2 complex. Both proteins will be 

expressed and purified according to the methods previously optimized [45] (see chapter III).  MecR2 

protein crystallizes preferentially with polyethylene glycol (PEG)  and salts (sodium chloride or ammonium 

sulphate), as precipitants and buffers at pH 7-8, both at 4 and 20ºC, while MecI protein crystallizes 

spontaneously in the chromatography collection tube. The structural data will be then used to modulate 

the molecular details of the interactions involved in the control of mecA expression.  
 

(ii) Validation of the key molecular interactions between MecI::MecR2 revealed by the 3D-struture 
 
 Functional analysis in vivo using MecR2 mutagenized variants revealed loss of function only 

when the disordered region T150-I160 (which may be involved in the interaction with MecI, based on 

MecR2 3D structural data analysis), was substituted by four glycine (see chapter III).  In order to evaluate 

MecI key interactions identified by the 3-D structures using site directed mutagenesis, single point 

mutations will be introduced, both in residues engaged in mecA-binding promoter, and in residues 

involved in the transient interaction with the anti-repressor MecR2. The mutagenized mecI variants will be 

expressed in trans using the prototype strain COL (which expresses mecA constitutively, has no mecI 

and is β-lactamase negative) in order to evaluate its biological activity.  

 

 

 

 



Chapter IV 

130 

 

(iii) Identification of native proteases presumably involved in the proteolytic cleavage of the mecA 
repressor (MecI) 
 
 It has been proposed that the proteolysis of MecI observed during mecA induction is not 

dependent of the activated MecR1 inducer domain [38-40]. We have also corroborated this hypothesis, 

showing that MecR2-induced proteolysis of MecI does not involve MecR1 and, most likely, is mediated by 

unspecific cytoplasmic proteases. Since the MecR1 inducer domain was previously described as a 

putative protometalloprotease, in this task we will evaluate the role of native metalloproteases in the 

observed MecI cleavage. So far two metalloproteases have been described in S. aureus: the Aureolysin 

[46] and the FtsH metalloproteases [47]. Additionally, the role of a global protease, ClpP protease [48] on 

MecI preteolysis will be also evaluated. The chromosomal protease deletions will be transduced to our 

prototype MRSA strains and mutants for the mecA regulators in order to evaluate the effect on the 

phenotype expression of β-lactam resistance. Preliminary experiments conducted with the aur mutant 

have shown a decrease on the levels of oxacillin resistance when compared with the wild type strain. This 

may suggest that the Zinc-dependent aureolysin metalloprotease might be involved in the MecI cleavage. 

Western blotting analysis will be done to compare the MecI proteolysis from total proteins extracts of wild 

type strains versus protease mutants after induction with a β-lactam. The impact of these three protease 

mutants on the optimal expression of β-lactam resistance will be also evaluated. Eventually, the same 

strategy will be used to evaluate the role of other native proteases. 
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