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Abstract 

 

 Information currently available on neurotoxicity of chemicals is scarce and there are a 

growing number of new compounds to be tested. Therefore, new strategies are necessary to identify 

neurotoxic agents with speed, reliability and respect for animal welfare.  

 The limited availability of primary human brain cells means that there is a need for human cell 

lines that reliably model human neurons and astrocytes. Despite the advances in stem cell research, 

numerous challenges must be overcome before this technology can be widespread used, such as low 

differentiation efficiency.  

Human pluripotent embryocarcinoma NTera2/cloneD1 (NT2) cell line is an alternative cell 

source from which neurons and astrocytes can be derived in vitro. 

 The aim of this work was to develop scalable and reproducible novel human cellular models 

using NT2 cells as source of differentiated neural phenotypes. 

 A 2D culture system for astrocytic differentiation was implemented. After 4 weeks of 

differentiation with retinoic acid followed by 5 weeks maturation with mitotic inhibitors, astrocytes 

obtained expressed vimentin, GFAP, S100- and GLT-1 as characterized by immunodetection and 

qRT-PCR.  

 Then, a 3D culture approach was adopted, using stirred suspension culture systems, in which 

cell-cell and cell-extracellular matrix interactions occur, mimicking better the in vivo situation. NT2 

cells, inoculated as single cells, spontaneously aggregated without compromising their pluripotency. 

Optimization of stirring rate allowed control of aggregate size along time. After 3 weeks of RA 

treatment and 2 weeks of maturation, neurons expressing βIII-tubulin, MAPs and synaptophysin and 

astrocytes expressing vimentin, GFAP, S100- and GLT-1 were detected, as characterized by 

immunodetection and qRT-PCR. Furthermore, astrocytes presented a 2.5-fold higher yield than that 

observed in 2D culture systems. 

Results showed that NT2 differentiated cells are promising models for neurotoxicity testing. 

Furthermore, the 3D culture systems developed herein can contribute to increase the relevance of these 

studies, recapitulating human neuron-astrocyte interactions in a 3D cellular context. 

  

 

Keywords: human stem cells, NTera2/cloneD1 cell line, neural differentiation, stirred suspension 

culture systems, 3D cell models, aggregates. 
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Resumo 

 

 A informação disponível em termos da neurotoxicidade de compostos é escassa além de 

existir um número crescente de compostos que precisam de ser caracterizados. Assim, é necessário 

desenvolver novas estratégias que permitam identificar agentes neurotóxicos com rapidez e reduzir a 

experimentação animal.  

Devido à escassez de culturas primárias de células neurais humanas há a necessidade de 

modelos neurais humanos alternativos. As células estaminais humanas são uma fonte promissora, no 

entanto para a sua implementação ainda é necessário superar desafios como a baixa eficiência de 

diferenciação. 

 A linha celular NTera2/cloneD1 (NT2) é uma linha pluripotente, derivada de um 

teratocarcinoma embrionário humano, sendo uma fonte alternativa para obtenção de neurónios e 

astrócitos humanos. 

 O objectivo deste trabalho foi desenvolver um novo modelo celular humano usando a linha 

celular NT2 como fonte de células diferenciadas com fenótipos neurais. 

 Procedeu-se à implementação de um sistema de cultura 2D para diferenciação astrocítica. 

Após 4 semanas de diferenciação com ácido retinóico e 5 semanas de maturação com inibidores de 

mitose foi detectada, por imunodetecção e qRT-PCR, a presença de astrócitos que expressam 

vimentina, GFAP, S100- e GLT-1. 

 Seguidamente foi desenvolvida uma estratégia de cultura 3D, baseada em sistemas de cultura 

agitados, que permite interacções célula-célula e célula-matriz extracelular, mimetizando melhor a 

situação in vivo. As células foram inoculadas como suspensão celular e agregaram espontaneamente, 

sem comprometer o seu estado de pluripotência. A optimização da velocidade de agitação permitiu 

controlar o tamanho dos agregados durante a cultura. Após 3 semanas de tratamento com ácido 

retinóico e 2 semanas de maturação foi detectada, por imunodetecção e qRT-PCR, a presença de 

neurónios que expressam III-tubulina, MAPs e sinaptofisina e astrócitos que expressam vimentina, 

GFAP, S100- e GLT-1. O rendimento em astrócitos foi 2,5 vezes maior que nos sistemas de cultura 

2D. 

 Os resultados obtidos mostraram a linha celular NT2 diferenciada adoptando uma estratégia de 

cultura 3D é um modelo promissor para estudos de neurotoxicidade.  

 

 

Palavras-chave: células estaminais humanas, linha celular NTera2/cloneD1, diferenciação neural, 

sistemas de cultura agitados, modelos celulares 3D, agregados. 
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I. Introduction 

I.1 Brain cells 

The brain, part of the central nervous system (CNS), is the most complex organ in mammals 

that controls most vital functions and is constituted mainly by neurons and glial cells. 

 Neurons are one of the most highly specialized cell types and the core components of nervous 

system. All neurological processes are dependent on complex cell-cell interactions between single 

neurons or groups of related neurons. Neurons can be described according to their size and shape, 

neurochemical characteristics, location and connectivity and all of these features are determinants of 

their particular functional role in the brain (Byrne and Roberts, 2009). According to the 

neurotransmitter used for signaling process, two major classes of neurons, which represent more than 

90% of neurons in brain, can be considerate: inhibitory GABAergic interneurons that make local 

contacts and use GABA and excitatory glutamatergic neurons that used glutamate as neurotransmitter. 

Other types of neurons localized in more specialized areas include cholinergic neurons that use 

acetylcholine as neurotransmitter and are mostly motor neurons, serotonergic neurons that use 

serotonin as neurotransmitter and are mostly found in raphe nuclei, specific regions of the brainstem 

that innervate to the forebrain and dopaminergic neurons that reside mostly within the substance nigra 

and contain the catecholamine-synthesizing enzyme tyrosine-hydroxylase as well as dopamine as 

neurotransmitter (Brodal, 2010; Byrne and Roberts, 2009).  

Even though the large number of neurons, glial cells occupy the most part of the brain volume. 

The proportion of glial cells to neurons varies between animal and brain regions but seems to be 

correlated with animal size as the mouse, human and elephant brain possess approximately 65%, 90% 

and 97% of glial cells (Allen and Barres, 2009). 

Glia and neurons mainly share a common origin from precursor cells derived from the 

embryonic the germ layer known as the neuroectoderm. A notable exception is microglia, which are 

part of the immune system and enter in the brain from the blood circulation early during development 

(Allen and Barres, 2009).  

There are three major types of glial cells in the mature human central nervous system: 

microglia, oligodendrocytes and astrocytes (Allen and Barres, 2009), as describe in Fig. I.1. 
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Figure I.1: Different types of CNS cells. Glial cells interactions with neurons and blood vessels. Adapted from Allen and 

Barres (2009). 

 

Microglial cells share many properties with tissue macrophages since these cells are involved 

in destruction of pathogens and removal of cellular debris from normal cell turnover or sites of injury 

(Allen and Barres, 2009). 

Oligodendrocytes, which are restricted to CNS, secret myelin (essential for electric signaling) 

that wraps some neuronal axons and forms an insulating coat, known as myelin sheath, critical for the 

rapid conduction of electrical signals required for the normal functioning of the CNS. Schwann cells 

are also included in glial cells and perform the same role than oligodendrocytes, but only in peripheral 

nervous system (Allen and Barres, 2009). 

Astrocytes are found through the brain and spinal cord and are the predominant glial cell type. 

In terms of number, surface area and volume, greatly outnumbering neurons, often 10:1, and constitute 

20 to 50% of the volume of most brain areas (Byrne and Roberts, 2009; Magistretti and Ransom, 

2002).  

Although astrocytes come in many morphologies and present distinct functions they share 

common unique cytological properties including, as the name suggests, star shape and processes. They 

are also characterized by the presence of glial end feet on capillaries. 

Classically, astrocytes have been divided in two main subtypes, protoplasmic and fibrous, on 

the basis of differences in their cellular morphologies and anatomical locations (Sofroniew and 

Vinters, 2010). 
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The brain is constituted by gray matter, made up of neuron cell bodies, dendrites and 

unmyelinated axons and by white matter made up of bundles of axons that are myelinated. Astrocytes 

in white matter are fibrous astrocytes, usually associated with neuronal axons and are complex cells 

with 50 to 60 long branching processes that radiate from the cell body and terminate in end-feet at the 

pial surface, on blood vessels, or freely among axons. Astrocytes in gray matter are protoplasmic 

astrocytes, closely associated with neuronal cell bodies and synapses and have profuse, short stubby 

processes that contact blood vessels and the pial surface (Allen and Barres, 2009; Magistretti and 

Ransom, 2002). Furthermore, protoplasmic astrocytes differ between the various regions of grey 

matter and even within a single brain region, neighbor astrocytes are probably different. This is not 

surprising, because, if astrocytes fulfill different functions, they must be adapted to specific brain 

regions (Allen and Barres, 2009). 

Despite their differences, astrocytes usually express intermediate filaments composed of a glial 

fibrillary acidic protein, commonly referred to as GFAP. Nevertheless, fibrous astrocytes contain more 

GFAP filaments than protoplasmic astrocytes and these are the most common type of astrocytes. 

Furthermore, GFAP expression by astrocytes in human CNS, exhibits both regional and local 

variabilities and some types of astrocytes have been described as GFAP-negative (Sofroniew and 

Vinters, 2010). On the other hand GFAP has been identified in other cell types besides astrocytes 

(Middeldorp et al., 2010). 

Other astrocytic markers are S100-β, glutamine synthetase (Byrne and Roberts, 2009; 

Magistretti and Ransom, 2002) and aquaporin 4 (reviewed by Molofsky et al., 2012; Oberheim et al., 

2009). 

S100-β belongs to the S-100 family of calcium binding proteins and is expressed by astrocytic 

precursors and mature astrocytes (Donato et al., 2009; Reali et al., 2011). S-100β can be released to 

the extracellular space by mature astrocytes and depending on the concentration can play a 

neurotrophic or a neurotoxic role. Normally it is present in brain extracellular space at subnanomolar 

to nanomolar concentrations, protecting neurons against oxidative stress and promoting neurite 

outgrowth as well as astrocytic uptake of glutamate (Reali et al., 2011; Wang and Bordey, 2008).  

Glutamine synthetase is an enzyme that is required for production of glutathione and for 

glutamate recycling in neurotransmission since it catalyses the conversion of ammonia and glutamate 

to glutamine, being essential component of the glutamine-glutamate cycle (Fig. I.2) in which 

astrocytes take up glutamate, convert it into glutamine and then redistribute glutamine to neurons 

(Gupta et al., 2012; Wang and Bordey, 2008).  
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Figure I.2: Glutamate-glutamine cycle. Astrocytes take up glutamate, convert it into glutamine by the enzyme glutamine 

synthetase and then redistribute glutamine to neurons. Glutamine is taken up by neurons, which use it to generate glutamate 

and GABA, potent excitatory and inhibitory neurotransmitters and then release it again to the extracellular space. EAAT are 

excitatory aminoacid transporters and VGluT1 is vesicular glutamate transporter 1. Adapted from Purves et al. (2001). 

 

Aquaporin 4 belongs to the aquaporin family of integral membrane proteins that conduct water 

through the cell membrane (reviewed by Molofsky et al., 2012; Oberheim et al., 2009). 

Astrocytes are a major source of extracellular matrix proteins and adhesion molecules in the 

CNS. They are known to in vivo and in vitro, secrete cytokines and providing nutrients, growth factors 

and many other factors, involved in the regulation of development, morphology, proliferation, 

differentiation, protection, survival and restoration of distinct neuronal cells (Hartley et al., 1999). 

Radial glial cells are a glial cell type that can be found from the earliest stages of CNS 

development and have a remarkably diverse range of critical functions in CNS development (Sild and 

Ruthazer, 2011). These functions include serving as multipotent progenitors of neurons and glia both 

during development as well as in response to injury (Sild and Ruthazer, 2011). Furthermore, radial glia 

serve as scaffold for the migration of newly formed neurons along their radial glial processes and play 

a critical role in defining the cytoarchitecture of the CNS , helping to direct axonal and dendritic 

process outgrowth and regulating synaptic development and functions (Purves et al., 2001; Sild and 

Ruthazer, 2011; Solozobova et al., 2012). Although do not participate directly in synaptic interactions 

and electrical signaling, their supportive functions help in define synaptic contacts and maintain the 

signaling abilities of neurons (Purves et al., 2001).  

Beyond their role in brain development, astrocytes act as mediators of inflammatory response 

and are involved in a wide range of CNS pathologies including inflammatory, post-ischemic and 

various neurodegeneratives diseases (Ozdener, 2007; Sandhu et al., 2002). 

Astrocytes are essential to the stability of neuronal function providing mechanical, metabolic 

and trophic support and being responsible for the major mechanism underlying the developmental 

function and regenerative capacity of the CNS, making the neuronal-astrocytic relationship as the 

basic unit of function in the CNS (Byrne and Roberts, 2009; Hartley et al., 1999; Hill et al., 2008). 

Impairment of astrocytic functions, such as maintenance of antioxidant defense and cellular energy 
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levels can critically influence neuronal survival (Takuma et al., 2004). Moreover, most of the growth 

factors also act in a specific manner on the development and functions of astrocytes and 

oligodendrocytes. So, astrocytes are important for the normal homeostatic regulation of the neural 

microenvironment.  

During neurotransmission, neurotransmitters and ions are released at high concentrations in 

the synaptic cleft. The rapid removal of these substances is important so that they do not interfere with 

future synaptic activity. The presence of astrocyte processes around synapses positions them well to 

regulate neurotransmitter uptake and inactivation. These possibilities are consistent with the presence 

in astrocytes of transport systems for many neurotransmitters. For instance, glutamate reuptake is 

performed mostly by astrocytes (Fig. I.3), which convert glutamate into glutamine through enzymatic 

activity of glutamine synthetase and then release it to the extracellular space.  

Glutamine is taken up by neurons, which use it to generate glutamate and GABA, potent 

excitatory and inhibitory neurotransmitters, respectively (Byrne and Roberts, 2009). Reuptake of 

glutamate is carried out by high-affinity sodium-dependent glutamate transporters that belong to a 

family of integral membrane transport protein. There are five mammalian isoforms of sodium-

dependent glutamate transporters, named excitatory amino acid transporter (EAAT): EAAT1 (or 

GLAST, glutamate-aspartate transporter), EAAT2 (or GLT-1, glutamate transporter 1), EAAT3, 

EAAT4 and EAAT5. These five EAAT subtypes that share approximately 50-60% aminoacid 

sequence homology differ in regional, cellular, and developmental distribution (Chao et al., 2010; Kim 

et al., 2011). In general, the predominant isoforms expressed by astrocytes are GLAST and GLT-1, 

whereas EAAT3 and EAAT4 are found on cortical neurons and EAAT5 is found almost exclusively in 

retinal cells (Kim et al., 2011; Sanchez et al., 2009). GLAST is predominant in the cortex at early 

stages during the first postnatal week and GLT-1 expression increases progressively with maturation, 

starting during the second week to become the major transporter thereafter. GLAST is also present in 

the precursor population, named radial glial cells although its expression in human radial glia 

population is heterogeneous (Cantini et al., 2012; Howard et al., 2008). 

Astrocytes are also thought to be involved in the exchange of chemicals between the 

circulatory system and nervous tissue and to form the selectively permeable and protective blood brain 

barrier (BBB), which is a specialized system of brain microvascular endothelial cells that restricts the 

access of circulating chemicals to the brain and spinal cord, protecting the brain from toxic substances 

in the blood, filters the excess of toxic molecules from the brain to the blood stream and supplies the 

CNS with nutrients (Wang and Bordey, 2008). Its major function is to maintain, in a variety of ways, 

an appropriate chemical environment for neuronal signaling (Allen and Barres, 2009). 

For a long time, astrocytes were thought to physically form the blood–brain barrier and, in 

fact, astrocytes are indeed the blood–brain barrier in lower species. However, in higher species, 

astrocytes are responsible for inducing and maintaining the tight junctions in endothelial cells that 

effectively form the barrier (Magistretti and Ransom, 2002; Purves et al., 2001). The dynamic 
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interactions between astrocytes and endothelial cells regulate BBB stability and permeability since 

astrocytes specialized processes ensheath the brain vasculature and are believed to regulate the 

induction of BBB, such as tight junctions formation and expression of transporter systems (Wang and 

Bordey, 2008).  

Astrocytes play a major role in detoxification of the CNS by sequestering metals and a variety 

of neuroactive substances of endogenous and xenobiotic origin and also take part in angiogenesis, 

which may be important in the development and repair of the CNS (Byrne and Roberts, 2009).  

This way, astrocytes protect not only against excitotoxicity by clearing excess of excitatory 

neurotransmitters from the extracellular space but also are involved in response to neurotoxicants, 

presenting a protective role of neurons (Woehrling et al., 2007). 

 The multifaceted nature of the astrocytic-neuronal unit provides numerous potential sites of 

disruption for neurotoxic chemicals and whilst astrocytes are less susceptible to damage than neurons 

they may undergo degeneration or activation (Tieu et al., 2001; Woehrling et al., 2011). 

 

I.2 Need for new cellular models for neurotoxicity studies 

The developmental, structural and functional features of the Central Nervous System (CNS) 

are known to be particularly complex due to the high elaborate neuronal connectivity and the intimate 

physical, communicative and metabolic interactions between all cell types present in CNS, including 

neurons, astrocytes, oligodendrocytes and microglial cells (Honegger, 2011). Therefore, the CNS 

belongs to the critical target organs of xenobiotics and other potential toxicants because of the high 

vulnerability of this organ and the serious consequences that adverse effects have for entire organism, 

resulting in neurologic deficits that negatively affects families and society (Honegger, 2011; Moors et 

al., 2009). 

Chemicals may adversely affect the CNS in various ways. They may perturb commitment of 

neural stem cells, cell migration, synaptogenesis, cell death, formation of transmitters and receptors, 

trimming of connections, myelinization and development of the BBB. Impairment of the CNS can lead 

to a variety of health effects such as altered behavior, mental retardation and other 

neurodevelopmental disabilities and diseases (Coecke et al., 2007). 

Given the little information available on neurotoxicity and the growing number of chemicals 

that need to be tested, new testing strategies and approaches are necessary to identify neurotoxic 

agents with speed, reliability and respect for animal welfare, with the ultimate goal to generate tests 

with higher high-throughput that can provide mechanistic data and possibly predict the levels of 

exposure that may cause adverse effect in humans (Tofighi et al., 2011). 

Current testing guidelines propose investigation in rodents, mainly rats, and the risk of human 

neurotoxicity from drugs and other chemicals is estimated via the addition of safety factors to toxicity 

data derived from in vivo animal models. However, there are reservations regarding extrapolation from 
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experimental animals to the human population and these methods are extremely time and cost-

effective (Moors et al., 2009; Woehrling et al., 2010). Actually, $3 billion a year are estimated to be 

spent worldwide on animal experiments (Vliet, 2010). 

The increasing of the number of chemicals to be tested, for which no neurotoxicity data exist, 

will incur in unacceptable costs in terms of animals and person-years (Moors et al., 2009) turning the 

whole animal approach economically and practically unsuitable for rapid toxicological screening of 

the large number of agents arising and it is widely considered that reliable high throughput in vitro 

paradigms are urgently required (Woehrling et al., 2010). Furthermore, according to the “3R 

Principle” of Russel and Burch (1959) alternative testing strategies are needed to address animal 

welfare by refining and reducing animal experiments. 

In the European Union challenging timelines for phasing out of many standard tests using 

laboratory animals were established in Seventh Amending Directive in 2003. In continuation of this 

policy the New European Chemicals Legislation (REACH) favors alternative methods to conventional 

in vivo testing for the test of chemicals, if validated and appropriate, for minimizing the volume of 

testing and, thereby, reducing costs and the use of animals (Lilienblum et al., 2008).  

Concerning CNS drug development, on average, a screen of 10000 molecules will identify one 

lead compound and takes a further 10 to 15 years before any final product can reach the market 

(Tralau and Luch, 2012). Additionally, CNS drugs cost more and take longer to bring to market than 

other types of drugs. Only 8% of CNS drugs that make it to clinical trials end up being approved, 

about half the average success rate across all therapeutic areas. Moreover, clinical trials are often more 

complex for CNS disorders and when CNS drugs fail they tend to do so in late stage clinical trials, 

after a significant investment has been made (Miller, 2010). Adding to this animal models are far from 

being perfect at predicting which compounds will be effective in humans since about 20-30% of 

adverse drug reactions are not detected during preclinical safety tests (Miller, 2010; Vliet, 2010).  

There are morphological and functional differences between rodent and human derived neural 

cells, which include differences in protein expression, cell signaling pathways, responses to stimuli 

and affinity for ligands, rising the need for good human cell model systems (Liu et al., 2007; 

McPartland et al., 2007; Saha and Pahan, 2006). For example, inducible nitric oxide synthase, an 

important inflammatory enzyme produced by microglia in rodents is produced by astrocytes in 

humans (Lim et al., 2007). While rodents and humans both possess fibrous and protoplasmic 

astrocytes, humans also have uniquely evolved interlaminar and polarized astrocytes. In addition, 

human protoplasmic astrocytes are far more complex with ten-fold more primary processes and a 

diameter three-fold larger than their rodent counterparts (Oberheim et al., 2006). 

It has becoming clear that efforts to prevent such failure should concentrate on create 

affordable and sensitive methods and to develop alternative human-cell based in vitro alternative 

models for investigation of neurotoxic effects in human neural cells, mainly neurons and astrocytes, 

providing considerable advantages over their rodent-derived counterparts, avoiding the added 
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complication of interspecies data extrapolation and aiming to evaluate more efficiently toxic 

interactions (Hill et al., 2008; Moors et al., 2009; Tralau and Luch, 2012).  

Thus, in order to obtain the neurotoxicology data required for regulatory chemical registration 

it has become a priority to develop alternative screening strategies which generate rapid and 

economical results that are acceptably predictive for humans (Lilienblum et al., 2008). 

 

I.3 Cell Sources 

 Since the use of human origin tissues is limited because of a lack of  availability, an 

insufficient potential to generate the necessary number of cells and ethical concerns, when developing 

a preliminary screen to detect acute neurotoxicity in vitro, it is commonly agreed that a battery of cell 

in vitro systems are the most suitable alternatives, with measurable, general biochemical and neuronal 

specific endpoints that most closely reconstructs the in vivo situation (Harry and Tiffany-Castiglioni, 

2005; Podrygajlo et al., 2009).  

Cell lines have the advantage of being easy to obtain and allow production of larger numbers 

of cells, however, they may have different characteristics, for example, in terms of gene expression, 

when compared with primary cultures (Harry and Tiffany-Castiglioni, 2005; Unsworth et al., 2010). 

Therefore, current in vitro systems do not reflect completely in vivo absorption, distribution, 

metabolism and excretion of tested compounds and results need to be interpreted with caution, so it is 

necessary to develop new culture systems and models more similar to in vivo situation.  

Additionally, in search of an in vitro model suitable for the detection and study of 

neurotoxicants, one should opt for a culture system able to reproduce closely the developmental stages 

occurring in the CNS, as well as the organ-specific structural and functional features. 

A wide range of cell systems are under investigation for their suitability for inclusion in 

neurotoxicity test batteries, including primary cortical and forebrain neurons, dissociated and 

reaggregated mixed brain cell cultures from rodents and continuous neuroblastoma cell lines, which 

have the disadvantage of continuous proliferation, not generating post-mitotic cell-types (Conti and 

Cattaneo, 2010; Gupta et al., 2012). However, whilst each of these models has demonstrated numerous 

advantages regarding the identification of potential neurotoxicants, they had not or had a few number 

of astrocytes and so may not model consistently the basic CNS functions unit. Woehrling et al. (2007) 

and Gupta et al. (2012) demonstrated that screens focusing solely on the direct effect of compounds on 

isolated neurons will overlook potentially important neuroprotective activities that act via astrocytes or 

other non-neuronal cell. Therefore, neuronal-astrocytic interactions have important implications in 

neurotoxicity and the use of astrocytes in an in vitro neurotoxicity testing model may prove more 

relevant to human CNS structure and function than neuronal cells alone. Generally, astrocyte 

containing cell systems show increased tolerance to toxicant insult and impairment of astrocytic 

functions such as maintenance of antioxidant defense and cellular energy levels, which can critically 

influence neuronal survival (Gupta et al., 2012; Woehrling et al., 2007; Woehrling et al., 2010).  
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In vitro, human astrocytes have been shown to protect neurons against insults such as 

glutamate excitotoxicity and oxidative stress through the release of growth factors (Gupta et al., 2012; 

Sandhu et al., 2003) and subsequently neuronal tolerance of many toxicants may be substantially 

increased by the proximity of astrocytes (Woehrling et al., 2007). 

Primary cultures derived from fetal brain tissues have been the first models of human brain 

and for the last 2 decades multipotent neural stem cells (NSC) or neural progenitor cells (NPC) have 

been isolated from multiple brain regions  

Following the neural development neural stem cells started to differentiate to neural progenitor 

cells (NPC) that have a limited capacity for self-renewal and may retain multipotency or present 

reduced differentiation potential (Conti and Cattaneo, 2010). All neuronal types are generated from 

neuronal progenitor cells as well as astrocytes and oligodendrocytes are generated from glial 

progenitor cells (Fig. I.3). 

 

Figure I.3: CNS development. Adapted from Louvi and Artavanis-Tsakonas, (2006). 

 

However, although these methods provide viable neurons and astrocytes capable of physical 

maturation, the temporal development and phenotype of these cells varies with tissue age, in vitro 

expansion and culturing method (Conti and Cattaneo, 2010; Zhang, 2006). More recently protocols 

have been developed for the in vitro derivation of human neural stem cells (hNSC) and, further, 

human neurons and astrocytes from human pluripotent stem cells (hPSC), both embryonic and induced 

(Conti and Cattaneo, 2010; Krencik et al., 2011; Zhang, 2006) (Fig. I.4). 
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Figure I.4: Neural stem cells (NSC) populations that can be isolated or generated in vitro. ESC represents embryonic stem 

cells, NEPs neuroepithelial cells and RG radial glia cells. Adapted from Conti and Cantaneo (2010). 

 

hESC are capable of differentiating in all cell types and allow the systematic functional 

evolution of neural development under highly reproducible conditions. However, an obvious source of 

these cells is from aborted human embryos, so they are ethically difficult to obtain and are a limited 

resource (Tonge and Andrews, 2010; Unsworth et al., 2010). 

Human induced pluripotent stem cells (hiPSC) are generated by reprogramming of somatic 

cells and can also can be differentiated into any tissue, including CNS, while maintaining the genetic 

background of the individual of origin (Mariani et al., 2012). 

Recently, Krencik et al. (2011) described astrocytic differentiation from hESC-derived neural 

aggregates over 180 days, observing expression of astrocytic markers GFAP and S100- and 

glutamate uptake and Gupta et al. (2012) developed a model using hESC for in vitro human glial-

neuronal modeling, demonstrating generation of highly enriched functional human astrocytes that 

expressed GFAP, S100-, Aquaporin 4, presented functional glutamate uptake capacity and promoted 

survival of neurons following oxidative injury. 

Although the use of NSC, hESC or hiPSC holds great promise and remarkable advances have 

been made in expansion, differentiation and characterization of these cells (Haycock, 2011), not all 

cells differentiate equally (Haycock, 2011; Teng et al., 2002) and numerous challenges must be 

overcome, such as the low differentiation efficiency and the high complexity and duration of 

differentiation protocols, before the use of this technology can be widespread, in particular with 

respect to high-throughput neurotoxicity screening. 

So, the limited availability and potential to culture primary human brain cells as well as the 

time needed to obtain mature neurons and astrocytes and the low differentiation efficiency of hPSCs 

means that there is still a need for cell lines that reliably model human neurons, and also glial cells, for 

neurotoxicity studies.  
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I.4 NTera-2/ clone D1 cell line  

Immortal PSC and ECC, such as NTera-2 / clone D1 (NT2) cell line can provide an unlimited 

number of cells, with less time-consuming and easier differentiation protocols to overcome this 

problem (Tonge and Andrews, 2010). 

The NT2 cell line, a hEC cell line, represents a promising alternative as it is a homogeneous 

pluripotent cell line that closely resembles the human embryonic stem cells derived from the 

blastocyst inner cell mass. The NT2/D1 cell line was derived from a xenograph tumor of the 

embryonal human teratocarcinoma cell line Tera-2 (Andrews et al., 1984; Ozdener, 2007; Sandhu et 

al., 2002) and is considered to be a malignant counterpart of human embryonic stem cells (Pal and 

Ravindran, 2006). 

NT2 cell line shows potential as a valuable research tool and has been used in a large number 

of biomedical investigations in last two decades. This cell line presents the ability to proliferate rapidly 

in vitro and differentiate by treatment with retinoic acid (RA) into morphologically distinct cell types, 

including neurons (Andrews et al., 1984; Lee and Andrews, 1986; Pleasure and Lee, 1993) and 

astrocytes (Bani-Yaghoub et al., 1999; Goodfellow et al., 2011; Sandhu et al., 2002). Additionally, 

oligodendrocytes have also been derived from NT2 cells (Pal and Ravindran, 2006).  

Retinoic acid is a locally synthesized differentiation factor for the developing nervous system 

(McCaffery and Drager, 2000) being a developmentally regulated morphogen that has diverse roles, 

including patterning of the hidbrain, motor neuron specification and limb bud patterning (Tonge and 

Andrews, 2010). It activates the early events of cell differentiation, which then induce context-specific 

programs (McCaffery and Drager, 2000). 

Experiments with RA have shown that it can promote the differentiation of a wide variety of 

cell lines, including hECC, as well as neuronal precursors or primary stem cell cultures, acting as a 

universal differentiation agent (McCaffery and Drager, 2000). Although employed to drive 

differentiation of embryonic stem cells to a diverse number of cell types, retinoic acid mediated 

differentiation of pluripotent stem cells is most commonly used as a robust approach to differentiate 

cells along the neural lineage (Tonge and Andrews, 2010). RA mediated neural differentiation of 

hESC and hECC is a multi-step process, whereby RA exposure initially causes pluripotent stem cells 

to differentiate and secondly facilitates the cells to acquire a neural phenotype (Tonge and Andrews, 

2010). 

Recent studies have described pioneering protocols and confirmed the ability of NT2 cells to 

differentiate into both neuronal and astrocytic like cells (Goodfellow et al., 2011; Lim et al., 2007; 

Ozdener, 2007; Sandhu et al., 2002). Moreover, highly purified neuronal cells or astrocyte-like cells 

can be obtained from cultures after purification steps (Lim et al., 2007; Serra et al., 2009), however 

although neuronal differentiation is well characterized, astrocytic-like cells are poorly characterized 

and protocols are not well defined. 
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 In the developmental CNS, the prenatal neurogenesis process is followed by the formation of 

astrocytes. It has been found that human NT2 pluripotent cell line differentiate in post-mitotic neurons 

first and via a late developmental window give rise to the proliferation of astrocytes, originating 

neurons-astrocytes co-cultures and showing similarities with the human in vivo CNS development 

(Bani-Yaghoub et al., 1999).  

However, NT2 system presents one drawback that is the time needed to generate purified post-

mitotic neurons and astrocytes, which is long, although not to long than the time needed for hPSC 

neural differentiation. So, new systems that allow the differentiation of NT2 cell line in a less time-

consuming process are still needed. 

 

i. Neurons derived from NTera-2/ clone D1 cell line 

The originally established method of NT2 cell differentiation involves 6 weeks of RA 

treatment and 7-10 days of mitotic inhibitors treatment (Pleasure et al., 1992). More recently new 

protocols have emerged, in which NT2 cells can generate post-mitotic neurons upon five weeks 

treatment with retinoic acid and 7-10 days of mitotic inhibitors treatment (Serra et al., 2007).  

Serra and colleagues (2007 and 2009) significantly shortened the time-consuming process for 

differentiate NT2 cells into post-mitotic neurons developing a 3D culture system, using stirred tank 

culture systems and subsequent purification steps in a total of 23-28 days, which involves 2 days of 

expansion, 3 weeks of RA treatment, neurospheres harvesting and 7 days of mitotic inhibitors 

treatment, followed by purification of neuronal cells. 

Neurons derived from NT2 cell line clearly resemble human fetal primary neurons, 

elaborating processes that differentiate into axons and dendrites, expressing immature forms of neuron 

specific markers and retaining considerable plasticity when replated multiple times, yet maintaining a 

post-mitotic and committed neuronal phenotype (Pleasure et al., 1992). NT2 neurons have a post-

mitotic phenotype such as normal neurons in CNS, since BrdU was not incorporated in nuclei of NT2 

neurons after 3 days exposure, whereas it was incorporated into 95.5 ± 0.49% of precursor cells after 

4h exposure, under the same conditions (Podrygajlo et al., 2009). 

NT2 neuronal cells have been characterized by various laboratories and have been shown to 

possess characteristics of primary human neurons in a variety of  assays performed, showing that NT2 

neurons are an obvious alternative to primary human fetal neuronal cells (Goodfellow et al., 2011; 

Sandhu et al., 2003).  

Characterization of NT2 neurons identified several neurotransmitter phenotypes, depending on 

the culture conditions. Guillemain et al. (2000) detected the GABAergic, catecholaminergic and 

cholinergic phenotypes as the predominant and the serotonergic phenotype was also detected but a 

minor extent. Moreover, a large number of NT2 neurons could express GABA and another 

neurotransmitter or neuropeptide at the same time (Guillemain et al., 2000). Furthermore, Podrygajlo 

and colleagues (2009) verified that approximately 40% of the NT2 neurons display glutamatergic 
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markers and a major subset shows immunoreactivity to cholinergic markers, such as choline acetyl-

transferase. Accordingly, Coyle and colleagues (2011) verified that NT2 neurons differentiated under 

monolayer culture conditions mainly expressed both GABAergic and glutamatergic phenotypes. On 

the other hand, electron microscopy demonstrated that NT2 neurons elaborate classical synaptic 

contacts (Guillemain et al., 2000). So, these neurons were capable of forming both glutamatergic 

excitatory and GABAergic inhibitory functional synapses (Guillemain et al., 2000). Additionally,     

co-culture of NT2 cell line with mouse stromal cell line PA6 or with PA6-conditioned medium allows 

for the generation of slightly more functional NT2-derived dopaminergic neurons (Schwartz et al., 

2012). 

Moreover, NT2 neurons have been successfully used in transplantation studies in several 

mouse models and in phase I clinical trials in human stroke patients and have been shown to 

ameliorate motor and cognitive impairment in animal models of ischemic stroke, pioneering cell 

therapy applications in CNS (Kondziolka and Wechsler, 2008; Watson et al., 2003).  

 

ii. Astrocytes derived from NTera-2/ clone D1 cell line 

NT2 cells can also generate astrocytes, in a later developmental window, upon four weeks 

treatment with RA, 6 days of expansion, 4 or 5 weeks treatment with different concentrations of 

mitotic inhibitors and one selective trypsinization step (Bani-Yaghoub et al., 1999; Lim et al., 2007). 

Astrocytes derived from NT2 cells were found to express GFAP, Conexin 43 and the high 

affinity glutamate transporters GLAST and GLT-1, which are reported to be expressed predominantly 

on astrocytes (Bani-Yaghoub et al., 1999; Sanchez et al., 2009; Sandhu et al., 2002) but further 

characterization of the astrocytes derived from NT2 cells is still lacking. 

In mixed cultures NT2 astrocytes support the growth and survival of NT2 neurons, 

reproducing the importance of neurons-astrocytes interactions (Sandhu et al., 2002), including 

protection of neurons from glutamate excitotoxicity and oxidative stress (Sandhu et al., 2003; 

Woehrling et al., 2007). Although, in vivo, astrocytes outnumber neurons by at least 10:1, astrocytes 

derived from NT2 cells have been shown to support neuronal function at a ratio of 1:4 in vitro 

(Woehrling et al., 2010). 

In the presence of astrocytes, NT2 neurons have been shown to remain viable up to 1 year, 

whereas without astrocytes they survive no more than 3months (Ozdener, 2007). 

As previous referred, astrocytes provide key metabolic and protective support to neurons 

during toxic challenge in vivo and generally the astrocyte-containing cell systems showed increased 

tolerance to toxicants compared with NT2 neurons mono-culture in vitro (Woehrling et al., 2010), 

conducing to a more realistic results when these cells are used and neurotoxicity testing model. 
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I.5 Two and three dimensional culture systems 

Over the last two decades the constant inadequacy of conventional two dimensional (2D) 

culture systems, where cells can be grown in a monolayer using tissue culture-flasks or dishes but fail 

to resemble the in vivo developmental microenvironment (reviewed by Pampaloni et al., 2007) has 

been demonstrated. Although 2D culture systems have the advantage of being easily manipulated, 

monitored and characterized, they are limited to their spatial environment since they lack structural 

architecture, have low comparability with in vivo systems and increased drug sensitivity because cells 

have a majority of their surface exposed (Honegger, 2011; Kim, 2005; LaPlaca et al., 2010).  

At the same time, it has become evident that cell differentiation and tissue development in vivo 

are strongly dependent on cell spatial arrangement and directional cues. Cells are influenced by 

complex environmental stimuli, central to which is the local microenvironment, so extracellular 

context profoundly affects cell behavior. For example, the matrix surrounding cells have been shown 

to have widespread effects on cellular functions for a variety of cell types including neural cells (Irons 

et al., 2008). 

The extracellular matrix (ECM) is the frequently used term for the complex mixture of 

proteins and glycans beyond the membrane of the cell. Laminin and fibronectin are the 2 major ECM 

glycoproteins critical to neural development and both affect cellular adhesion, migration, proliferation 

and differentiation (Solozobova et al., 2012). Laminin is the major adhesive protein of the basal 

lamina (Colognato and P. D. Yurchenco, 2000) and fibronectin is a common adhesive protein of the 

interstitial matrix (Pankov and Yamada, 2002). Other brain ECM components include hyaluron, 

tenascins and lecticans (such as neurocan and brevican that are specific of nervous tissue) that interact 

to form a ternary complex (Dityatev and Schachner, 2003; Yamaguchi, 2000). Compositionally, this 

variable microenvironment is not simply a scaffold for cells to hold on to, but a communicating 

structure providing an underpinning to cell behavior, identity and function and the complexity of this 

environment is difficult to reproduce, or mimic (Honegger, 2011; Solozobova et al., 2012; Yamada 

and Cukierman, 2007). 

In three dimensional (3D) culture systems each cell is surrounded by other cells and by ECM 

in all sides, providing nutritional and structural support from all directions, contrasting with a 2D 

environment where can only can adhere by one side and receive nutrition from the other (East et al., 

2009; Honegger, 2011). The complex 3D network of cell-cell and cell-matrix interactions not only 

affects the distribution and function of physiologically occurring factors but also is relevant in the 

penetration and action of drugs (reviewed by Kim et al., 2004). Cell morphology and signaling are 

often more physiological than routine 2D culture and permit much better real-time and fixed imaging 

by microscopy than in animals. On the other hand, a 3D environment provides a higher surface area 

for growth and migration (Honegger, 2011; Yamada and Cukierman, 2007). 
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Cells, such as human fibroblasts, melanoma cells, stem cells and neuronal cells, growing in 3D 

culture environments closely resemble the in vivo situation and present morphology, cell-cell and cell-

matrix interactions, proliferation rates, migration, gene expression, differentiation, cellular signaling or 

pathological susceptibility more similar to in vivo than those growing in 2D culture systems 

(Cukierman et al., 2002; Hindie et al., 2006; Irons et al., 2008; LaPlaca et al., 2010; Liu et al., 2006 ; 

Willerth et al., 2006; Yamada and Cukierman, 2007).  

3D culture systems that are able to reproduce or mimic some elements of the ECM have been 

developed, using several methods (Honegger, 2011; Yamada and Cukierman, 2007) , including 

organotypic slice cultures, gel scaffold cultures, cell microcarriers and spontaneous aggregation of 

cells to form 3D spheroids (Haycock, 2011). These vary in terms of cell dispersion and preservation of 

tissue function and organization (Kim, 2005; Kim et al., 2004; LaPlaca et al., 2010).  

In organotypic slice cultures (Fig. I.5) dissected organ slices are placed on porous substrates, 

supported by a metal grid and cultured in the air-liquid growth medium interface (reviewed by 

Pampaloni et al., 2007). These cultures allow for reconstruction of tissue-like organization and are 

mainly used in studies where an absolute requirement for tissue-specific information is needed 

(Haycock, 2011), however cell viability and differentiation phenotype are limited to few days 

(reviewed by Mazzoleni et al., 2009). 

 
Figure I.5: 3D culture methods. a. Organotypic slice cultures: dissected organ slices are placed on porous substrates, 

supported by a metal grid and cultured in the air-liquid growth medium interface. b. Cells on microcarrier cultures: cells 

growth on the surface of the microcarrier beads. c. Cellular aggregates: cells were allowed to spontaneously aggregate, 

forming aggregates that then can be induced to differentiate. Adapted from Pampaloni et al. (2007). 

 

There are several types of scaffolds available, suitable for 3D cell culture like filters, gels or 

sponges and porous microcarriers (Justice et al., 2009). Choosing the correct type of scaffold several 

parameters need to be considered such as its shape, cell adhesion sites and the flow of gases nutrients 

and metabolites through the scaffold (Haycock, 2011). Otherwise, spatial variations in nutrients, 
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oxygen and metabolites concentrations may exist and modify cell behavior randomly through the 

scaffold (reviewed Mazzoleni et al., 2009). 

Filter well inserts are devices that hold a filter membrane in a culture vessel of choice, 

allowing for an upper compartment and lower compartment on either side and were one of the first 

technologies that began to approach a 3D-like exposure of cells to a substrate, by allowing all 

membrane sides to interact with the environment and also allowing for the study of both surfaces of a 

cell monolayer (Justice et al., 2009). Filter well inserts come in a vast array of formats, sizes, coatings 

and pore sizes, depending on the cell type used and the assay performed (Justice et al., 2009). 

Scaffolds as gels and sponges use purified ECM molecules and biopolymers to recreate in vivo 

cues for cells. Most common gels are gelatin, collagen and laminin and sponges are generally 

lyophilized gels with large pores for cellular microenvironments (Justice et al., 2009). The scaffold 

based culture systems are gaining popularity as the 3D matrix is used to promote multilayer growth of 

cells and as cells divide they fill the interstices within the scaffold to form a 3D culture (reviewed by 

Kim, 2005). Although scaffolds present a great potential in recreating the natural physical and 

structural environment of living tissues, the constituents of the scaffold can profoundly affect the 

properties of the culture (Tan et al., 2001) and these culture methods are difficult to control in terms of 

diffusion of gases and nutrients (reviewed by Serra et al., 2012). 

Microcarriers are small spheres (Fig. I.5), typically with less than 500µm in diameter, which 

can be porous or non porous and whose enormous surface area of up to 500cm
2
/g allow for culture 

large numbers of cells in small volumes (Justice et al., 2009). Cells on the surface of non porous 

microcarriers assume a configuration suchlike to that in 2D monolayers and cell damage due to 

physical forces can occur (Kehoe et al., 2010; Serra et al., 2012). In porous microcarriers cells can 

grow in a 3D environment nevertheless, limited mass and gas diffusion inside the pores can occur 

(reviewed by Serra et al., 2012). Moreover, microcarriers can be customized, for example by attaching 

various synthetic peptides or ECM molecules, such as collagen or laminin, to accommodate the 

adhesion needs of diverse cell types (Justice et al., 2009; Kehoe et al., 2010). The primary advantages 

of microcarriers is that they support the aggregation of anchorage dependent cells and cell lines which 

do not spontaneously aggregate, providing an effective vehicle to promote the culture of these cells. 

However this approach also has some disadvantages including adhesion of microcarriers to each other 

and formation of larger spheroid-like structures and additional operating costs due to material costs 

(reviewed by Kim, 2005; Serra et al., 2012). Conventionally, microcarrier bead cultures involve 

growth in stirred tank vessels to assist in mixing and provision of nutrients. 

Although 3D cell cultures can be generated by culturing cells on artificial substrates, as 

previous referred, spontaneous cell aggregation can also be exploited (Fig. I.5) generating more or less 

spherical cellular 3D aggregates where cells can be grown maintaining cellular function and inducing 

cellular differentiation, also allowing to obtain cultures in a more in vivo-like environment (reviewed 

by Kim et al., 2004).  
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Neural cells can be propagated as floating cell aggregates, called neurospheres which contain 

progenitors mixed with differentiated cells embedded in a complex extracellular matrix (Rodrigues et 

al., 2011). The tissue-specific environment within the aggregates enables the cells to interact in a 

physiological manner by physical contacts as well as by the exchange of soluble messengers and 

metabolites. Intrinsic factors enable extensive cellular differentiation and the formation of hystotypic 

structures, such as extracellular matrix, mature synapses, functional neuronal networks and myelinated 

axons (Honegger, 2011). In vivo-like cell-cell interactions may lead to increase cellular survival and 

more realistic gene expression and cellular behavior. For example, it has been shown that neurons 

differentiated from brain neural stem cells are viable longer when grown in 3D cultures than in 

monolayer cultures (LaPlaca et al., 2010). Furthermore, 3D cultures have been shown to result in 

longer neurite outgrowth, higher levels of survival and different patterns of differentiation when 

compared with 2D monolayers (LaPlaca et al., 2010). 

In 3D culture of neural cells neurites are able to extend in all directions (Fig. I.6) and these 

systems are able to reconstitute spontaneously a histotypic brain architecture to reach a high level of 

structural and functional maturity (Honegger, 2011; LaPlaca et al., 2010).  

 

Figure I.6: Neuronal cultures in 2D (left) and 3D (right). Neurons in 2D have flattened morphology, while neurons in 3D 

presented round morphology with cell interactions possible in all spatial dimensions. Adapted from LaPlaca et al. (2010). 

 

Primary rat brain neurons and astrocytes can be grown and long-term maintained under 3D 

conditions (Santos et al., 2005) and this culture method proved to be a very valuable tool for 

interpretation and confirmation of detailed events of cellular metabolism through the different 

developmental stages of brain aggregate cultures (Santos et al., 2007). 

Furthermore, in cultures of primary astrocytes changing from conventional 2D monolayer to a 

3D setting leads to downregulation of astrocytic activation markers, indicating that astrocytes in 3D 

are less reactive than their 2D counterparts, thus resembling the physiologically in vivo situation (East 

et al., 2009). 
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Despite research with neurospheres has largely focused on their application for 

neuroregeneration in diseases of the central nervous system, a few studies have also utilized 

neurospheres for toxicity studies in vitro, by analyzing a variety of endpoints such as viability, 

proliferation, migration, differentiation, neurite outgrowth and apoptosis, providing support for their 

use in hazard identification for chemicals that may cause neurotoxicity (Breier et al., 2010) 

However, 3D aggregate cultures have some limitations, such as diffusion limitations of 

nutrients and oxygen through the aggregates, which increase with density and size of the aggregates 

and accumulation of toxic byproducts in the center of aggregates with higher diameters, which might 

affect cell viability, proliferation and gene expression (Irons et al., 2008; LaPlaca et al., 2010). In 

addition, 3D cultures typically are randomly oriented, varying in their ability to mimic in vivo tissue 

conditions, since several tissue architectures are difficult to reproduce. Nonetheless, the potential 

advantages warrant the use of 3D cultures rather than glass or plastic support, as cell respond 

differently depending on the extracellular mechanical properties (Irons et al., 2008; LaPlaca et al., 

2010). 

Nonetheless, until the moment, 3D cell culture systems have failed to be widely adopted 

because automated methods do not yet exist. Until recently the reality was that 2D cultures are 

entrenched within the drug testing infrastructure creating a challenge to introducing 3D culture 

methods (Justice et al., 2009). 

 

I.6 Stirred culture systems 

In the past years, with the recent advances in engineering, 3D culture systems have proved to 

be crucial tools to initiate, maintain and differentiate cells in larger quantities as a result of greater 

control over culture composition that is physic-chemically defined, availability of new culture systems 

where culture conditions can be monitored and tightly controlled and greater choice in the method of 

inducing 3D growth (Kasper et al., 2009).  

For cells to growth as 3D aggregates conditions in which the adhesive forces between the cells 

are greater than for the substrate where cells are plated on are required. The simplest way to achieve 

these conditions is by using static matrix cultures or liquid overlay techniques in static culture systems, 

which prevents matrix deposition and where no shear stress exist. Although spheroids generated in 

liquid overlay cultures maintain the cellular composition and differentiation of intact tissue, mass 

transfer and cell survival are limited (reviewed by Mazzoleni et al., 2009). 

Alternative methods to grow cells as aggregates are gyratory rotation techniques, using 

gyratory shakers, rotary culture systems and stirred suspension culture systems such as spinner-flasks 

or controlled stirred tank bioreactors. 

Gyratory rotation techniques involves placing a cell suspension of specific concentration in an 

Erlenmeyer flask containing a specific amount of media and this flask is rotated is a gyratory rotation 
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incubator until spheroids of required size be produced (reviewed by Kim et al., 2004; Mazzoleni et al., 

2009). 

In rotary culture systems (Fig. I.7), developed by NASA, cells in liquid medium are 

maintained in a dynamic fluid suspension mixed by minimal hydrodynamic forces, by stimulating 

microgravity. The culture flask rotates whole on its horizontal axes providing end over end mixing of 

cells, mass transfer is attained and shear forces are minimized by the vessel being completely filled 

with medium. The low shear environment produced allow cells to aggregate, grow in a three-

dimensional environment and then differentiate (reviewed by Kim et al., 2004; Mazzoleni et al., 

2009). However, in spite of all its advantages, the rotary bioreactor is very expensive comparing with 

other culture systems, and has low scalability. Additionally, it has problems related to homogeneity, 

being difficult to control the aggregate size, to handle and to sampling (reviewed by Serra et al., 2012).  

Stirred suspension culture systems, using stirred tank bioreactors (Fig. I.7) prevent adherence 

of cells to the vessel by using the same principle of inhibiting meaningful contact with the culture 

vessel wall (Kim, 2005). Stirred vessels consist of a cylindrical glass container with a stirring element 

(impeller) at the bottom of the vessel and impeller mixing maintains the cells in suspension. They are 

used for growing cells as a suspension culture in liquid media (Kasper et al., 2009; Kehoe et al., 2010; 

Kim, 2005).  

Oxygen and nutrient delivery to the cells is much more efficient in stirred systems, where the 

fluid movement induces mixing of oxygen and nutrients throughout the medium and is thought to aid 

in mass transport of nutrients to and waste from the aggregates, reducing the external mass-transfer 

limitations (Kasper et al., 2009; Kim, 2005). 

 

Figure I.7: Suspension culture systems: rotary culture system (a) and stirred culture system (b). Adapted from 

http://www.thco.com.tw and from http://www.dasgip.com/catalog/. 

 

Spinner-flasks are the most popular and widely used technique to produce 3D models in vitro 

and are considered as one of the most basic and essential stirred tank bioreactor but it is not controlled. 

http://www.thco.com.tw/
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On the other hand, computer controlled stirred tank bioreactors have a simple design, can be scaled-up 

and are generally defined as devices in which biological and/or biochemical processes can be 

developed under closely monitored and tightly controlled environmental and operating conditions, 

allowing monitor and control of parameters such as mixing, pH, temperature, oxygen, pressure, 

nutrient supply and waste removal (Hutmacher and Singh, 2008).  

One noteworthy factor heavily hindering homeostatic control in cell culture systems is the 

abrupt change in the concentration of metabolites, catabolites, signal molecules and pH when the 

culture medium is exchanged in periodic batches. In traditional static culture procedures, this effect 

can be avoided performing partial medium changes, however requiring additional repeated manpower 

involvement. 

Bioreactor technology also offers the option of work in a perfusion mode, which is the better 

solution by enabling either semi-continuous automatic replenishment of exhausted media at defined 

time-points or feedback-controlled addition of fresh media, aimed to re-establishing a homeostatic 

parameter to a pre-defined set point (Kasper et al., 2009). 

Due to tight control of culture variables stirred tank bioreactors present a high level of 

reproducibility between experiments and allow for easy-sampling and better homogeneity of cultures 

(Martin et al., 2004; Rodrigues et al., 2011).  

Furthermore, control and automation introduced by bioreactors for specific experimental 

bioprocess allow for transfer to large-scale applications (Martin et al., 2004).  

Bioreactors represent not only powerful technical tools to support and direct the in vitro 

development of living, functional tissues, but also dynamic culture model systems to study 

fundamental mechanisms of cell functions and reactions to neurotoxicants under physiologically 

relevant conditions (Kasper et al., 2009). 

Further, stirred tank culture systems provide the culture of cells using several culture strategies 

including aggregates, microcarriers or scaffolds and, most important, stirred suspension bioreactors are 

heavily utilized in the biotechnology industry. Hence, systems developed around this bioreactor type 

may be easier to translate to a commercial production setting than entirely novel designs (Kehoe et al., 

2010).  

Summarizing, the core principles for stirred tank bioreactors are: maintaining sterility, good 

mass transfer, suitable for scale-up, reproducibility of samples, controlled metabolic environment and 

ability to impose physiologically relevant mechanical stimulation to cells. 

Biotechnological advances in suspension culture systems that exploit cell-cell and cell-matrix 

interactions, adequate for neural cells namely small scale bioreactors and low shear-stress impellers 

had been advantageous for the implementation of novel in vitro models for neurotoxicity research 

(Irons et al., 2008).  
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I.7 Thesis Aim 

The main aim of this thesis was the development of a robust and scalable human cellular 

model for neurotoxicity studies, using the human pluripotent NT2 cell line as source of differentiated 

neural phenotypes. The requirements for development of a model of high relevance, that can better 

mimic the in vivo situation, include: 1) presence of the major central nervous system cell populations - 

neurons and astrocytes; and 2) a 3D dimensional context, essential for correct trafficking and 

communication between neurons and astrocytes. To meet these requirements, both 2D and 3D culture 

strategies were explored.  

The first objective consisted in the implementation of a 2D culture system for NT2 cells 

differentiation and astrocytic maturation, based on protocols recently described in the literature, as 

well as the implementation of methodologies required for characterization of astrocytic-like cells. In 

parallel, neuronal populations obtained following this protocol were also characterized. 

The second objective was the development of a 3D culture system for neural differentiation of 

NT2 cells, using stirred suspension culture systems. This approach was chosen aiming at obtaining 

improved differentiation and maturation into both neurons and astrocytes, in a 3D cellular context. 

Additionally, the feasibility of combining 3D differentiation and 2D maturation to obtain a 2D cell 

model composed of human neurons and astrocytes, with higher yields and in a less time-consuming 

process that the traditional 2D differentiation, was evaluated.  
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II. Materials and Methods 

 

II.1. Cell proliferation 

NT2 cells from European Collection of Cell Cultures (ECACC) were cultured in proliferation 

medium (PM, Table I) and were sub-cultured twice a week at 3-3.5x10
4
 cell/cm

2
. For sub-culture cells 

were rinsed with phosphate-buffered saline (PBS), washed for 4 minutes with PBS and trypsinized 

using 0.05% trypsin-EDTA (Invitrogen), for 2 minutes. Viable cells were counted using trypan blue 

exclusion test as described on section II.6. 

 

II.2. Media formulation 

For NT2 cell culture and differentiation into neurons and astrocytes several media were used. 

These media and its composition are described on Table II.1: 

 

Table II.1: Media and its composition 

Medium Composition 

Proliferation medium (PM) DMEM, 10% FBS, 1% P/S 

Differentiation medium (DM) DMEM, 10% FBS, 1% P/S, 10 µM retinoic acid (RA) 

Mitotic inhibitors medium I (MI I) 

DMEM, 5% FBS, 1% P/S, 

1 µM cytosin-β-D-arabinofuranoside (c-Ara), 

10 µM 5-fluoro-2’-deoxyuridine (FdUr) 

10 µM uridine (Urd) 

Mitotic inhibitors medium II (MI II) 
DMEM, 5% FBS, 1% P/S, 

10 µM FdUr, 10 µM Urd 

Astrocytic culture medium (AM) DMEM, 5% FBS, 1% P/S,10 µM Urd 

50:50 neuronal culture medium 

Equal amounts of conditioned medium collected from 

Replate I (from neuronal differentiation, section II.3) 

and MI I medium 

3D Maturation medium (MM) DMEM, 5% FBS, 1% P/S  

DMEM is Dubelco´s modified Eagle’s medium (Invitrogen), FBS is fetal bovine serum (Invitrogen), P/S is Pen-

Strep (Invitrogen). Mitotic inhibitors are cytosin-β-D-arabinofuranoside (c-Ara) and 5-fluoro-2’-deoxyuridine 

(FdUr) and Urd is uridine, all bought from Sigma. 

 

II.3. Neuronal differentiation in 2D culture systems 

For neuronal differentiation NT2 cells were seeded at 3x10
4
 cell/cm

2
 in T75-flasks and allowed 

to adhere for 24 hours before changing to DM. Differentiation was performed for 4 or 5 weeks, with 

medium changes 3 or 2 times per week, respectively (Fig. II.1). At the end of differentiation the 

resulting multilayer of cells was washed 10 min. with PBS, trypsinized for 2 min., split 1: 4.5 (Replate 

I) and further cultured for 10 days in MI I medium. Afterwards, pure NT2 neurons were mechanically 



24 

 

dislodged after 2 minutes of typsin:DMEM (1:3) incubation and plated on Poly-D-Lysine (PDL) and 

Matrigel-coated plates in 50:50 neuronal culture media for at least 7 days. 

 

 

Figure II.1: Schematic design of 2D culture system for NT2 cell neuronal differentiation and maturation. Differentiation was 

induced by 10 or 12 RA treatments (5 weeks, media exchange 2 times per week and 4 weeks, media exchange 3 times per 

week, respectively). Maturation of neuronal cells was performed by further culturing cells in media containing mitotic 

inhibitors (MI I: 1 µM c-Ara, 10 µM FdUr,10 µM Urd). Neurons were dislodged and a culture of pure neurons was obtained. 

 

II.4. Astrocyte differentiation in 2D culture systems 

For astrocytic differentiation the protocol previously described by Goodfellow et al. (2011) was 

applied. NT2 cells were seeded at 3x10
4
 cell/cm

2
 in T75-flasks and allowed to adhere for 24 hours 

before changing to DM. Differentiation was performed for 4 weeks, with medium changes 3 times per 

week (Fig. II.2). The resulting multilayer of cells was washed 10 min. with PBS, trypsinized for 2 

min., split 1:2 and cultured in standard medium for 3 days. Hereafter cells were seeded at 3.3–4.7x10
5
 

cell/cm
2
 inT75 flasks and cultured for 3 days in proliferation medium. After this period the medium 

was exchanged to MI I medium and cells further cultured for 1 week. Afterwards, NT2 neurons were 

mechanically dislodged after 1 minute trypsin incubation and the underlying layer of cells remaining 

in the flasks was further cultured in MI II medium for 2 weeks, followed by 2 weeks of AM medium. 

Medium exchanges were performed 3 times per week in first 2 weeks of MI treatment and 2 times per 

week thereafter. At the end of this period the monolayer of cells was trypsinized and seeded in new 

T75-flasks or in 24 well plates for immunofluorescence microscopy (Section II.9) and allowed to 

recover for 1 week in standard medium. Afterwards, cells were processed and pellets were stored at -

80ºC to Western blot and qRT-PCR analysis (Sections II.10 and II.11, respectively). 

 

 

Figure II.2: Schematic design of 2D culture system for NT2 cell astrocytic differentiation and maturation. Differentiation was 

induced by 12 RA treatments (4 weeks, media exchange 3 times per week). Maturation of astrocytic cells was performed by 

further culturing cells in media containing different maturation media, with different concentrations of mitotic inhibitors (MI 

I: 1 µM c-Ara, 10 µM FdUr,10 µM Urd, MI II: 5 µM FdUr,10 µM Urd and AM: 10 µM Urd). 
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II.5. Neural differentiation in stirred suspension culture systems 

 Undifferentiated NT2 cells were inoculated in silanized 125mL spinner-flasks, with straight 

blade paddle impeller (from Corning® Life Sciences, Fig. II.3) at a density of 6.7x10
5
 cell/mL (5x10

7
 

cell/spinner-flask). Inoculation was performed in 75mL of standard 

medium, with a stirring rate of 40 rpm, in order to promote cell 

aggregation. On the next day 50 mL of fresh standard medium were 

added. Aggregate kinetics was monitored daily on first 4 culture days 

and weekly thereafter (Section II.8) and stirring rate was gradually 

increased accordingly until 60 rpm, to control the aggregate size and 

avoid aggregate cumpling. Cells were allowed to aggregate for 3 

days. From third culture day onward, cells were induced to 

differentiate, by performing 50% medium exchange with fresh 

medium containing 20µM RA to obtain a final concentration of 10µM in the spinner-vessel (Fig. II.4). 

The medium exchange was performed by transferring half of the culture supernatant to centrifuge 

tubes and centrifuging the aggregates at 200g for 5 minutes. The collected aggregates were 

ressuspended in the same volume of fresh standard medium containing 20 µM RA and the aggregate 

suspension obtained was added to the remaining cell suspension in the spinner-vessel. A 50% medium 

exchange was performed three times per week, during three weeks differentiation. 

After 3 weeks of RA treatment aggregates were maintained in culture for 2 weeks more in 3D 

maturation medium, with 50% medium exchange twice per week. 

On the first and third days the expression of pluripotence markers was evaluated by flow 

cytometry analysis (Section II.12). 

 At several time points (days 1-3, 10, 17, 23, 30 and 37) aggregates were collected and seeded 

on PDL-coated glass coverslips, approximately 5 aggregates per well, for immunofluorescence 

microscopy characterization (Section II.9) and pellets were stored at -80ºC to Western blot and qRT-

PCR analysis (Sections II.10 and II.11, respectively). At each time point, viable cells and nuclei were 

counted, viability of cells was evaluated and the diameter of aggregates was measured (Sections II.7 

and II.8).  

Figure II.3: Spinner-flask from 

Corning® Life Sciences 
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Figure II.4: Schematic design of 3D culture system for NT2 neuronal and astrocytic differentiation and maturation. 

Differentiation was induced by 9 RA treatments (3 weeks, media exchange 3 times per week). For maturation both 3D and 

2D culture approaches were pursued. 2D approach: low concentration of mitotic inhibitors (MI I: 1 µM c-Ara, 10 µM 

FdUr,10 µM Urd, MI II: 5 µM FdUr,10 µM Urd and AM: 10 µM Urd); 3D approach: low concentration of mitotic inhibitors 

or without mitotic inhibitors.  

 

II.6. Maturation in 2D culture systems 

After 3 weeks of RA treatment, 10 mL of culture were collected and aggregates were seeded 

in T75-flasks and allowed to adhere. Maturation was performed during 5 weeks, in MI I medium for 1 

week followed by MI II medium for 2 weeks and AM medium for more 2 weeks, with medium 

exchanges 3 times per week in first 2 weeks of MI treatment and 2 times per week thereafter. At the 

end of this period the monolayer of cells was trypsinized and seeded on 24 well plates for 

immunofluorescence microscopy characterization (Section II.9) and allowed to recover 1 week in 

standard medium. Afterwards, cells were processed and pellets were stored at -80ºC to Western blot 

and qRT-PCR analysis (Sections II.10 and II.11). 

 

II.7. Cell concentration and viability determination 

Aggregates were pellet by gravity, washed with PBS and dissociated by a 2-5 minute incubation 

with 0.05% trypsin-EDTA, followed by cell ressuspension in proliferation medium.  

Viable cells were counted using the trypan blue exclusion test. Cells were diluted in 0.1% 

trypan blue in order to obtain an approximate concentration of 1-2x10
5
cell/mL. Non viable cells, 

whose membrane is damaged are stained by trypan blue and appear blue at the microscope whilst 

viable cells are not stained and appear white and bright.  

Nuclei were counted in order to obtain total cell number using crystal violet method that stains 

nuclei in a deep purple color. Cells were lysed using lysis solution (1% Triton X-100 in 0.1 M citric 
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acid), overnight, at 37ºC and nuclei were diluted in 0.1% crystal violet in lysis solution. Cell and 

nuclei density was assessed using a Fuchs-Rosental hemacytometer. 

Viability was evaluated using the FDA (fluorescein diacetate, 1:500) and PI (propidium iodide, 

1:1000) dual staining and aggregates were analyzed using a fluorescence microscope (Leica 

DM6000). FDA is a non fluorescent cell permeant ester that stains viable cells, measuring both 

enzymatic activity and cell membrane integrity. Enzymatic activity is required because intracellular 

esterases are necessary to hydrolyze fluorescein diacetate, yielding fluorescein, which is a product that 

exhibits green fluorescence when excited by blue light and cell membrane integrity is required for 

intracellular retention of fluorescein, slowing the loss of fluorescence. PI is a red fluorescent molecule 

used as DNA-binding probe for dying or died cells because it can penetrate cell membranes of non 

viable cells and intercalate into its double-stranded nucleic acids. Hence, with FDA and PI staining 

viable cells present green fluorescence and non viable cells present red fluorescence.  

 

II.8. Aggregate size determination 

For aggregate size determination, aggregate suspensions were observed by phase contrast 

microscopy and aggregate size measured using ImageJ software. The average diameter was calculated 

by measurement of three diameters of each aggregate of a minimum of 100 aggregates and aggregates 

with less than 20µm diameter, generally duplets or triplets, were not considered (Serra et al., 2007). 

 

II.9. Characterization by immunofluorescence microscopy 

Cells were grown on PDL and matrigel-coated glass coverslips, inoculated at 1.5x10
5
 cell/cm

2
 

for neurons and 4x10
4
 cell/cm

2
 for astrocytes, rinsed gently with PBS and fixed in 4% (w/v) 

paraformaldehyde (PFA) solution in PBS with 4% (w/v) sucrose for 20 min., at RT. After 2 washes in 

PBS, fixed cells were blocked with 0.2% gelatin from cold water fish skin (FSG) in PBS, for 30min., 

at RT. For intracellular epitopes cells were permeabilized with 0.1% Tx-100 in 0.125% FSG in PBS, 

for 20min., at RT. Primary antibodies diluted in 0.125% FSG in PBS, for extracellular epitopes, or in 

0.125% FSG + 0.1% Tx-100 in PBS, for intracellular epitopes, were incubated for 2 hours at RT. The 

list of primary antibodies and dilutions are presented on Table II.2. Negative controls with omission of 

primary antibody were included. 

For fluorescent labeling, coverslips were washed two times in PBS and then incubated for 2 

hours, at RT, in the dark with fluorescent labeled secondary antibody (AlexaFluor 488 goat anti-mouse 

IgG, AlexaFluor 488 goat anti-mouse IgM or AlexaFluor 594 goat anti-rabbit IgG, Invitrogen) diluted 

1:500 in 0.125% FSG in PBS . After 2 washes with PBS, coverslips were mounted in ProLong Gold 

antifade reagent with DAPI (Invitrogen) for nucleus staining. Preparations were visualized using a 

fluorescence microscope (Leica DM6000). The obtained images were processed using ImageJ 

software and only linear manipulations were realized. The number of positively labeled cells was 

quantified by counting 10 to 20 randomly selected fields of at least two independent experiments. 
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Table II.2: List of primary antibodies and dilutions used for immunofluorescence microscopy 

Antibody Cell type Supplier Dilution used 

Anti-SSEA4 Pluripotent stem cells Santa Cruz Biotechnology 1:50 

Anti-Tra-1-60 Pluripotent stem cells Santa Cruz Biotechnology 1:50 

Anti-Tra-1-81 Pluripotent stem cells Santa Cruz Biotechnology 1:50 

Anti-Oct-4 Pluripotent stem cells Santa Cruz Biotechnology 1:50 

Anti-Nestin Undifferentiated NT2 cells  

and neural progenitors 

Millipore 1:200 

Anti-SSEA1-FITC Pluripotent stem cells in early 

differentiation stages  

Santa Cruz Biotechnology 1:50 

Anti-III-Tubulin Neurons Millipore 1:200 

Anti-MAPS Mature neurons Sigma 1:200 

Anti-Synaptophysin Neurons Millipore 1:200 

Anti-Vimentin NT2 cells and 

glial lineages 

Sigma 1:200 

Anti GFAP Astrocytes Millipore 1:200 

Anti-GFAP Astrocytes DAKO 1:600 

Anti-GLAST Astrocytes Frontier Science 1:500 

Anti-GLT-1 Astrocytes Frontier Science 1:500 

 

 

II.10. Protein extraction and Western blot analysis 

Cells were collected and sedimented by centrifugation. Pellets were washed twice with PBS, 

snap freezed in liquid N2 and stored at -80ºC until Western blot analysis. 

Cells were thawed on ice and lysed in TX-100 lysis buffer (50mM Tris, 5mM EDTA, 150 mM 

NaCl, 1% Triton X-100 and 1x complete protease inhibitors cocktail (Roche)) for 30 minutes at 4ºC, 

with occasional agitation. Protein quantification was carried out using the Micro BSA
TM

 Protein Assay 

Kit (Thermo Scientific). 

Protein samples were subjected to a gel electrophoresis using a NuPAGE 4-12% Bis-Tris Gel 

with MES running buffer (Invitrogen) and electrophoretically transferred to polyvinylidene difluoride 

(PVDF) membrane. Membranes were blocked for at least one hour at RT with Tris-buffered saline 

with 0.1% (w/v) Tween 20 (TTBS) and 5% non-fat dried milk powder (blocking solution). 

Membranes were then incubated with primary antibodies overnight, at RT, diluted in blocking solution 

with 0.1% sodium azide. The list of primary antibodies and dilutions are presented on Table II.3. Anti-

α-tubulin antibody was used as loading control to confirm equal loading of total protein. Thereafter, 

membranes were washed with TTBS, 4 times for 5 minutes and incubated 2 hours at RT with 

secondary antibodies (HRP-conjugated, ECL anti-mouse IgG or anti-rabbit IgG, GE Healthcare) 
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diluted 1:5000 in blocking solution. Membranes were developed using Amersham ECL Prime 

Western Blotting Detection Reagent (GE Healthcare) and visualized using a ChemiDoc
TM

 XRS+ 

System (BioRad).  

Blots were stripped by incubating membranes 2 times for 10 minutes with stripping buffer 

(15g/L glycine, 1g/L SDS and 1% Tween 20, pH 2.2), followed by 2 washes of 10 minutes with PBS 

and 2 washes of 5 minutes with TTBS. After that membranes were blocked in blocking solution and 

incubated with a different primary antibody, as described above. 

 

Table II.3: List of primary antibodies and dilutions used for Western blot analysis 

Antibody Cell type Supplier Dilution used 

Anti-Nestin Undifferentiated NT2 cells  

and neural progenitors 

Millipore 1:5000 

Anti-α-Tubulin All cell types  

(loading control) 

Millipore 1:5000 

Anti-III-Tubulin Neurons Millipore 1:1000 

Anti-Synaptophysin Neurons Millipore 1:1000 

Anti-Vimentin NT2 cells and 

glial lineages 

Sigma 1:5000 

Anti-GFAP Astrocytes DAKO 1:5000 

 

 

II.11. qRT-PCR analysis 

Cells were collected and sedimented by centrifugation. Pellets were washed twice with PBS, 

snap freezed in liquid N2 and stored at -80ºC until qRT-PCR analysis. 

Cells were thawed on ice and ressuspended in 200µL PBS. Total RNA was extracted with 

High Pure RNA Isolation kit (Roche). Total RNA was quantified using a NanoDrop 2000c 

(ThermoScientific) and stored at -80ºC until be used to cDNA synthesis.  

 For cDNA synthesis, the concentrations of RNA were normalized by dilution in sterile 

deionized water and the synthesis was performed with Transcriptor High Fidelity cDNA Synthesis kit 

(Roche), using Anchored-oligo(dT)18 Primer. cDNA was stored at -20ºC until be used for qRT-PCR 

analysis.  

 qRT-PCR analysis was performed in a LightCycler 480 Multiwell Plate 96 (Roche), according 

to Light-Cycler 480 SYBR Green I Master Kit (Roche), always maintaining reagents and well plates 

on ice. cDNA was diluted 1:2 and primers were used in a concentration of 5 µM, in 20µL reactions 

and each sample was performed in triplicates. The list of used primers and its sequence is presented in 

Table II.4 and the thermal parameters used are described on Table II.5. Cycles threshold (Ct’s) and 
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melting curves were determined using LightCycler 480 software, version 1.5 (Roche) and results were 

processed using the 2
-ΔΔCt

 method for relative gene expression analysis (Livak and Schmittgen, 2001). 

The changes in gene expression were normalized using the housekeeping gene RPL22 (ribosomal 

protein L22) as internal control. Statistical analysis was carried out using GraphPad Prism 5 software. 

 

Table II.4:  List of primers and its sequence used for qRT-PCR analysis 

Gene Cell type 
Primers forward (top) 

and reverse (bottom) 
Product size (bp) 

RPL22 - 

 

CACGAAGGAGGAGTGACTGG 

TGTGGCACACCACTGACATT 
116 

Nestin 

 

Undifferentiated NT2 cells 

and neural progenitors 

TAAGGTGAAAAGGGGTGTGG 

GCAAGAGATTCCCTTTGCAG 
90 

βIII-tubulin Neurons 

 

GGGCCTTTGGACATCTCTTC 

CCTCCGTGTAGTGACCCTTG 
90 

GFAP Astrocytes 

 

AGAGAGGTCAAGCCAGGAG 

GGTCACCCACAACCCCTACT 
115 

S-100β Astrocytes 

 

GGAGACGGCGAATGTGACTT 

GAACTCGTGGCAGGCAGTAGTAA 
120 

GLAST Astrocytes 

 

TACCATCCATGGAGCACGAG 

ACCTGGTGACCACCACACAC 
98 

GLT-1 Astrocytes 

 

CCAGGAAAAACCCCTTCTCC 

TCTTCCAGGCAACGAAAGGT 
112 

 

 

Table II.5: Thermal parameters used in qRT-PCR 

 Cycles 
Analysis 

mode 

Temperature 

(ºC) 
Time Ramp rate 

Acquisition 

mode 

Denaturation 1 None 95 00:10:00 4.4 None 

Amplification 45 Quantification     

   95 00:00:10 4.4 None 

   62 00:00:10 2.2 None 

   72 00:00:15 4.4 Single 

Melting 1 Melting curves     

   95 00:00:05 4.4 None 

   60 00:01:00 2.2 None 

   97 00:00:00 0.11 Continuous 

Cooling 1 None 40 00:00:30 2.2 None 
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II.12. Flow cytometry analysis 

Cells were first trypsinized into a single cell suspension and washed 2 times with flow 

cytometry (FC) buffer (1%FBS in PBS). Primary antibodies were diluted in 50 µL of FC buffer 

(0.6µg/1x10
6
 cell) and incubated with a cell suspension containing 1x10

6
 cell/ tube, for one hour, with 

gentle agitation. Isotype controls were used, in the proportion 20µL of isotype control to 30µL of FC 

buffer, to evaluate the percentage of unspecific ligations binding. The list of primary antibodies and 

isotype controls used are presented on Table II.6. Cells were washed 2 times with FC buffer and 

incubated with secondary antibodies diluted 1:200 in 50 µL of FC buffer (Alexa 488 goat anti-mouse 

IgG or Alexa 488 goat anti-mouse IgM), 30 minutes, 4ºC with gentle agitation. Washing in FC buffer 

was repeated 2 times and cells were ressuspended in FC buffer. Results were acquired with a CyFlow


 

space instrument (Partec). A total of 10000 events were registered per sample to determine the 

percentage expression of cell surface markers, using the appropriate scatter gates to avoid cellular 

debris and aggregates. Isotype control samples were used to define negative population. Statistical 

analysis was carried out using GraphPad Prism 5 software. 

 

Table II.6: List of primary antibodies and dilutions used for flow cytometry analysis 

Antibody Cell type Supplier Dilution used 

Anti-SSEA1-FITC Pluripotent stem cells in 

early differentiation stages 

Santa Cruz Biotechnology 0.6µg/1x10
6
 cell 

Anti-SSEA4 Pluripotent stem cells Santa Cruz Biotechnology 0.6µg/1x10
6
 cell 

Anti-Tra-1-60 Pluripotent stem cells Santa Cruz Biotechnology 0.6µg/1x10
6
 cell 

Anti-Tra-1-81 Pluripotent stem cells Santa Cruz Biotechnology 0.6µg/1x10
6
 cell 

Isotype control IgG - Santa Cruz Biotechnology 20µL/ 1x10
6
 cell 

Isotype control IgM - Santa Cruz Biotechnology 20µL/ 1x10
6
 cell 

Isotype control FITC - Santa Cruz Biotechnology 20µL/ 1x10
6
 cell 
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III. Results and Discussion 

III.1. NT2 cell differentiation in 2D culture systems  

III.1.1. Astrocytic differentiation 

The first step of this thesis work was to implement a 2D system for astrocytic differentiation 

of NT2 cells, based on protocols previous described in literature. Although differentiation of 

astrocytes has been reported previously from this cell line the procedure was not well established and 

results obtained concerning differentiated cell yields and phenotype diverged between reports 

(Goodfellow et al., 2011; Lim et al., 2007; Sandhu et al., 2002). Therefore, one of the focus of this 

thesis was the implementation of methodologies that would allow the characterization of astrocytes, 

namely immunofluorescence microscopy, Western blot and qRT-PCR. 

The procedure used for astrocytic differentiation of NT2 cells was based on the most recently 

described protocol (Goodfellow et al., 2011; Lim et al., 2007). RA-induced differentiation was 

performed for 4 weeks, with 3 media exchanges per week. After this, cells were seeded at lower 

density and treated with different concentrations of mitotic inhibitors during additional 5 weeks (Fig. 

II.2, Materials and Methods, Section II.4). Three independent experiments were performed in 

duplicate. 

 In all assays the pluripotency state of cells was evaluated by immunofluorescence microscopy 

and by flow cytometry before initiating differentiation.  

Undifferentiated cells presented positive staining for the pluripotent stem cell marker analyzed 

(Fig. III.1): SSEA-4, a cell-surface glycan expressed in hPSC, Tra-1-60 and Tra-1-81, two 

glycoproteins present in the pericellular matrix of PSC. Flow cytometry analysis confirmed that the 

majority of cells were positive for SSEA-4 (72.5 ± 7.6 %), Tra-1-60 (71.0 ± 5.5 %) and Tra-1-81 (73.4 

± 4.7 %). 

The Oct-4 transcription factor was also detected by immunofluorescence microscopy (Fig III.1). 

The presence of Oct-4 in human embryo is crucial to form the pluripotent inner cell mass, showing its 

importance in vivo (Bergsmedh et al., 2011) and in vitro it has an essential role in the maintenance of 

pluripotency and self-renewal of hPSC (Ji et al., 2009 ).  

Moreover, NT2 undifferentiated did not stain for SSEA-1 (Fig. III.1; 0.7 ± 0.5 % positive cells 

detected by flow cytometry) a cell-surface glycan epitope marker of early differentiation stages of 

hPSC (Reubinoff et al., 2000). 



34 

 

 

Figure III.1: Characterization of undifferentiated NT2 cells by immunofluorescence microscopy. Detection of SSEA-1, 

SSEA-4, Tra-1-60, Tra-1-81, Oct-4, nestin and vimentin. Nuclei were labeled with DAPI. Data were from one representative 

experiment of 6 independent experiments. 



35 

 

NT2 cells were also characterized by detection of nestin and vimentin (Fig. III.1). These are 

intermediate filament proteins expressed in precursor cells of neuroepithelial origin and also in 

undifferentiated NT2 cells revealing the neuroepithelial commitment of this cell line (Pleasure and 

Lee, 1993). Nestin, a large intermediate filament protein, expressed in neuroepithelium during the 

development is required for survival, renewal and mitogen-stimulated proliferation of neural 

progenitor cells (Wiese et al., 2004).  

Vimentin, a type III intermediate filament protein is present in radial glia cells, astrocytic 

precursors and mature astrocytes (Sanai et al., 2004). 

For astrocytic differentiation, after 12 RA treatments (4 weeks, media exchange 3 times per 

week) cells were splitted 1:2 and three days later seeded at 4x10
5
 cell/ cm

2
 in T75-flasks and 

maintained in culture for five additional weeks in low concentrations of mitotic inhibitors (Materials 

and Methods, Section II.4).  

 Astrocytic-like cells at the end maturation process represented 6.1 ± 4.1% of total cells in 

culture at the end of RA treatment, being astrocytic differentiation efficiency similar to neuronal 

differentiation efficiency (Table III.1). The result was media ± standard deviation from 3 independent 

experiments. 

At the end of maturation two different types of cells were clearly distinguished in NT2 

astrocytic cultures by phase contrast microscopy (Fig. III.2).  

 

Figure III.2: Phase contrast images of NT2 astrocytic cultures after MI treatment. White arrows indicate cells with 

morphological features of protoplasmic astrocytes and black arrows indicate cells with morphological features of fibrous 

astrocytes. Data are representative of 3 independent experiments. 

 

One population consisted of smaller cells with irregular processes (black arrows), and the 

other of larger and flattened cells (white arrows), rarely projecting into processes or with shorter 

processes extending from the almost round cytoplasmic cell body. These morphologic characteristics 

found in NT2 astrocytic cultures are consistent with stellate or fibrous astrocytes and protoplasmic 

astrocytes, respectively. 

The existence of two types of astroglia has been described in mammalian central nervous 

system, being protoplasmic astrocytes found in gray matter and fibrous astrocytes found in white 
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matter (Magistretti and Ransom, 2002). Evidences of cells with morphologic features of both glial 

types in NT2 astrocytic cultures had also been found by other authors (Goodfellow et al., 2011; 

Sandhu et al., 2002). 

 In order to further characterize NT2 astrocytic cultures at a molecular level, Western blot, 

immunofluorescence microscopy and qRT-PCR analysis were performed. 

 The presence of GFAP, an intermediate filament protein characteristic of differentiated and 

mature brain astrocytes (Eng et al., 2000) and widely used as astrocytic marker was analyzed by 

immunofluorescence microscopy (Fig. III.3).  

 

 

Figure III.3: Characterization of NT2 astrocytic cultures by immunofluorescence microscopy. Detection of GFAP. Nuclei 

were labeled with DAPI. White arrows indicate cells with morphological features of protoplasmic astrocytes. Data are 

representative of 3 independent experiments. 

 

 GFAP-positive cells were detected through the cultures. The majority of these cells presented 

morphological aspects consistent with fibrous or stellate astrocytes (small cells with irregular 

processes) and showed an intense staining for GFAP. A second, less represented GFAP-positive cell 

population was also identified, characterized by lower intensity staining of the intermediate filament 

protein and morphological features of protoplasmic astrocytes (large cells with short processes, Fig. 

III.4, white arrows). The percentage of GFAP positive cells, determined by immunofluorescence 

microscopy (Materials and Methods, Section II.9) was of 31.1 ± 7.6 %. This is in the same range of 
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values reported previously in the literature, approximately 30-40% of NT2 astrocytic cells expressing 

GFAP (Burkert et al., 2011; Lim et al., 2007; Unsworth et al., 2010). 

 By double staining of GFAP and vimentin it was observed that all cells in astrocytic cultures 

were positive for vimentin, including the GFAP-positive cells (Fig. III.4). 

 

 

Figure III.4: Characterization of NT2 astrocytic cultures by immunofluorescence microscopy. Detection of GFAP and 

vimentin. Nuclei were labeled with DAPI. Data are from one representative experiment of 3 independent experiments. 

 
 The co-expression vimentin and GFAP was once regarded as a marker of progenitor astrocytic 

cells, since vimentin was known to be present in progenitor cells, however, experiments with vimentin 

knockout mice have shown that vimentin is essential for the correct assembly of GFAP filaments also 

in mature brain astrocytes (Eng et al., 2000; Middeldorp et al., 2010; Sanai et al., 2004). For NT2-

derived astrocytic cultures, it has been reported that immature NT2-derived astrocytes were vimentin-

positive, whereas mature astrocytes were both vimentin and GFAP-positive and that GFAP expression 

correlated with the maturation and activation of astrocytes (Goodfellow et al., 2011). 

 However, NT2 undifferentiated cells are also characterized by the expression of vimentin. 

Therefore, in order to verify if vimentin +/ GFAP – cells in astrocytic cultures correspond to 

undifferentiated NT2 cells or to multipotent progenitors, astrocytic cultures were probed for Oct-4 and 

nestin (Fig. III.5). 
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Figure III.5: Characterization of NT2 astrocytic cultures by immunofluorescence microscopy. Detection of Oct-4 and Nestin. 

Nuclei were labeled with DAPI. Data are from one representative experiment of 3 independent experiments. 

 

 Oct-4 was not detected in NT2 astrocytic cultures and for nestin low staining levels were 

detected in a small percentage of cells (Fig. III.6).  

Furthermore, by qRT-PCR it was observed that nestin expression was downregulated for 

astrocytic differentiation (Fig. III.6), with a 7-fold decreased in gene expression compared to NT2 

undifferentiated cells. These results indicated that pluripotent cells were no longer present in astrocytic 

cultures, although a small number of progenitor cells were still present. These probably corresponded 

to multipotent progenitors as nestin is expressed in the majority of mitotically active CNS progenitors 

that give rise to both neurons and glia (Michalczyk and Ziman, 2005). 

N
es

tin

G
FA

P 

S10
0-

G
L
A

ST

G
L
T
-1

-20

0

20

40

100

200

300

400

500

600

F
o

ld
 c

h
a

n
d

e 
in

 g
en

e 
ex

p
re

ss
io

n

(n
o

rm
a

li
ze

d
 f

o
r 

N
T

2
 c

el
ls

)

 

Figure III.6: Characterization of NT2 astrocytic cultures by qRT-PCR. Nestin, GFAP, S-100, GLAST and GLT-1 gene 

expression normalized for NT2 undifferentiated cells. Data are mean ± SD of 3 independent experiments realized in 

duplicate. 
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The relatively low percentage of GFAP positive cells detected in NT2 astrocyte-like cells may 

be due to lack of sensitivity of the immunodetection method, in particular if a large number of 

protoplasmic astrocytes were present in culture, as these have lower levels of GFAP than fibrous 

astrocytes (Lim et al., 2007; Molofsky et al., 2012). 

Moreover, GFAP is not present through all astrocytic cytoplasm and GFAP 

immunohistochemistry does not label all portions of the astrocyte but only the main branches. GFAP 

in entirely absent from the finally branching astrocyte processes and is often not detectably present in 

cell body (Sofroniew and Vinters, 2010). Consequently, GFAP immunohistochemistry can markedly 

underestimate the extent of astrocyte branching in comparison with other means of detection, such as 

expression of reporter proteins, for example GFP (Sofroniew and Vinters, 2010). 

Additionally, in the human CNS, GFAP is detected in protoplasmic astrocytes in gray matter 

and stellate or fibrous astrocytes in white matter but also in neural progenitors such as radial glia (Eng 

et al., 2000; Middeldorp et al., 2010). As so, GFAP labeling does not provide a definitive evidence of 

the presence of astrocytes. 

Therefore, the expression of GFAP in NT2 astrocytic cultures was confirmed by qRT-PCR and 

the culture was further characterized in terms of astrocytic marker expression, namely S100- and the 

glutamate transporters GLAST and GLT-1 (Fig. III.6). 

It was observed that expression of GFAP increased 112.4 ± 40.3 times in NT2 astrocytic-like 

cells, comparatively with NT2 undifferentiated cells. Concomitantly, the expression of the astrocytic 

marker S100- increased 451.0 ± 52.5 times indicating that the cultures acquired features of the 

astrocytic lineage since S100- is a calcium-binding protein expressed in CNS, which is expressed 

since the astrocytic precursor stage and is secreted by mature astrocytes in the CNS (Donato et al., 

2009; Reali et al., 2011). 

The presence of the major glutamate transporters expressed on the surface of astrocytic cells 

GLAST and GLT-1 was also evaluated. 
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Figure III.7: Characterization of NT2 astrocytic cultures by immunofluorescence microscopy. Detection of GLAST and 

GLT-1. Nuclei were labeled with DAPI. Data are from one representative experiment of 3 independent experiments. 

 

Both GLAST and GLT-1 were detected by immunofluorescence microscopy in NT2 astrocytic 

cultures (Fig. III.7). Quantification of expression by qRT-PCR (Fig. III.6) indicated that both GLAST 

and GLT-1 were upregulated by 23-fold and by 8-fold, respectively, relatively to undifferentiated NT2 

cells. 

Other authors had also reported the expression of GLAST and GLT-1 in NT2 astrocytes 

(Sanchez et al., 2009; Sandhu et al., 2002) with a lower level of expression of GLT-1than GLAST. 

Sandhu et al. (2002) also concluded that this fact can be due to the absence of neurons in NT2 

astrocytic cultures. 

GLT-1 and GLAST have been termed astroglial transporters and are considered astrocytic 

markers due to their predominant and widespread expression in astrocytes (Dunlop et al., 1999). 
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In humans, GLAST is the major subtype of glutamate transporters expressed during the CNS 

development and in the cortex during the first postnatal week, being expressed in radial glial cells and 

other neural progenitor cells (Cantini et al., 2012; Howard et al., 2008). GLT-1 increases during the 

second postnatal week to become the major isoform of glutamate transporters found in CNS thereafter, 

being responsible for 90% of total glutamate uptake by all EAATs in human adult brain (Kim et al., 

2011) and exclusively detected in astrocytes.  

The factors that influence the density and distribution of GLT-1 in astrocytes are poorly 

understood (Benediktsson et al., 2012). Recent studies reported that GLT-1 expression in regulated by 

neurons to ensure local uptake capacity and consequently expression is increased when astrocytes are 

cultured with neurons. Astrocytes cultured without neurons often cease to express GLT-1 

(Benediktsson et al., 2012). Moreover, the expression of GLT-1 in situ varies among astrocytes in 

different brain regions and over the surface of individual cells, with highest density found in 

membranes adjacent to neurons (Regan et al., 2007). 

So, the detection of GLT-1 in NT2 astrocytic cells is indicative that mature astrocytes were 

present in culture; however the high levels of GLAST expression indicated that probably radial glial 

cells or other neural progenitor cells were also in culture. 

 In summary, the co-expression of vimentin and GFAP as well as the detection of GLT-1 in 

NT2 astrocytic cultures were indicative of the presence of mature astrocytes. However, a small 

number of nestin-positive neural progenitor cells were also present in culture, expressing nestin, 

vimentin and probably in co-expression with GLAST, as these three markers are characteristic of 

radial glia progenitors (Middeldorp et al., 2010). 

 

III.1.2. Neuronal differentiation 

Concerning neuronal differentiation in 2D culture systems, the protocol previously implemented 

I the laboratory involved 10 RA treatments during 5 weeks, with media exchange 2 times per week 

(Serra et al., 2007). Therefore, in this work, neuronal differentiation was characterized using the 12 

RA treatments protocol implemented for astrocytic differentiation (4 weeks with media exchange 3 

times per week) and compared with the previously implemented 10 RA treatments protocol (Fig. II.2, 

Materials and Methods, Section II.4). For each method 3 independent experiments were performed in 

duplicate. 

Cells were differentiated by 10 or 12 RA treatments, according to scheme presented on Fig II.1 

(Materials and Methods, Section II.3). For neuronal differentiation cells were replated and further 

cultured with high concentrations of MI for 10 days (Materials and Methods, Section II.7). After this 

period, neurons were mechanically dislodged from the background layer of cells making use of their 

different adhesive capacities, in order to obtain a neuronal enriched culture.  
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At the end of RA treatment the total number of differentiated cells obtained was evaluated 

(Table III.1). For the 10 RA treatments differentiation protocol (5 weeks, media exchange 2 times per 

week), the fold increase in cell concentration was 43.3 ± 6.7, compared to 39.5 ± 4.0 for the 12 RA 

treatments protocol (4 weeks, media exchange 3 times per week), with no significant differences.  

Furthermore, NT2 neurons dislodged at the end of the maturation process represented 3.2 ±0.8% 

of total cells in culture with 10 RA treatments protocol and 7.4 ± 2.4 % when using the 12 RA 

treatments protocol.  

 

Table III.1: Differentiation efficiencies obtained with 10 or 12 RA treatments. 

 

Differentiation 
protocol 

Fold increase in  Neuronal differentiation  
efficiency (%) cell concentration 

10 RA treatments 
(5 weeks,  

2 x per week) 
43.3 ± 6.7 3.2 ± 0.8* 

12 RA treatments 
(4 weeks,  

3 x per week) 
39.5 ± 4.0 7.4 ± 2.4* 

Results presented are means ± standard deviation (SD) from 3 independent experiments. Asterisk 

represent significant difference (P < 0.05) by one-way ANOVA analysis with Tukey’s post multiple 

comparison test. 

 

These results showed that at the end of differentiation process differences were observed in 

terms of fold change in cell concentration between both protocols. Importantly, the differentiation 

efficiency was significantly higher when using the 12 RA treatments protocol. 

NT2 neurons were characterized by immunofluorescence microscopy. Differentiated neurons, 

characterized by small oval cell soma and long projections, were identified by detection of neuronal 

marker βIII-tubulin (Fig. III.8). Double staining with anti-nestin antibody revealed that neuronal cells 

were negative for this intermediate filament and it only was detected in cells that did not present 

typical neuronal morphology. These non-neuronal cells were negative for Oct-4, indicating that did 

not correspond to pluripotent undifferentiated NT2 cells and were probably neural progenitor cells. 
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Figure III.8: Characterization of NT2 neuronal cultures by immunofluorescence microscopy. Detection of βIII-tubulin and 

nestin. Nuclei were labeled with DAPI. Data are from one representative experiment of 3 independent experiments. 

 

Additionally, NT2 neurons stained positive for neuronal microtubule associated proteins 

(MAPs), namely Tau and MAP2 and synaptophysin, detected in a vesicular punctuate pattern                

(Fig. III.9). 

 

Figure III.9: Characterization of NT2 neuronal cultures by immunofluorescence microscopy. Detection of MAPs and 

synaptophysin. Nuclei were labeled with DAPI. Data are from one representative experiment of 3 independent experiments. 
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The presence of these MAPs, which are expressed in mature neurons (Dehmelt and Halpain, 

2004) as well as the vesicular localization of synaptophysin, a glycoprotein present in the membrane 

of pre-synaptic vesicles (Wiedenmann and Franke, 1985) indicated that mature human neurons were 

obtained from NT2 cells using the experimental conditions described. 

These results are in accordance with previous observations that demonstrated that NT2 

neurons elaborate classic synaptic contacts (Guillemain et al., 2000) and stain for synapsin, a soluble 

protein associated with the reserve pool of synaptic vesicles (Podrygajlo et al., 2009; Tegenge et al., 

2011) and for the integral synaptic vesicle protein synaptogamin (Podrygajlo et al., 2009). 

Based on these results, the 12  RA treatments protocol was chosen as the most efficient for 

2D neural differentiation of NT2 cells, since it allowed a 20% shortening in the duration of the 

differentiation process, together with a 2-fold increase in neuronal differentiation efficiency. 

 

Altogether, presented results showed that a protocol to obtain mature neurons and astrocytes 

from NT2 undifferentiated cells using retinoic acid as inducing differentiation agent for 4 weeks was 

successfully implemented. Neurons were detected in culture first and after 10 days treatment of 

differentiated cells with high concentration of mitotic inhibitors neurons already expressed βIII-

tubulin, MAPS and synaptophysin. Astrocytes were detected in culture only after an extended time of 

treatment with mitotic inhibitors and after 5 weeks treatment with low concentrations of mitotic 

inhibitors it was possible obtain a culture in which mature astrocytes were present, expressing 

astrocytic markers such as vimentin, GFAP and S100-β as well as the glutamate transporters GLAST 

and GLT-1, similarly to the in vivo situation in human adult brain.  

In neuronal and astrocytic differentiation, incubation with mitotic inhibitors led to an 

elimination of proliferating NT2 cells and the cultures become gradually enriched in differentiated 

NT2 neurons, with extensive neuritic networks, and NT2 astrocytes. As NT2 neurons are post-mitotic 

cells (Pleasure et al., 1992) they were not affected by mitotic inhibitors. NT2 astrocytes, on the other 

hand, have slower proliferation rates (Sanchez et al., 2009; Sandhu et al., 2002) and therefore were 

much less affected by mitotic inhibitors than rapidly proliferating NT2 undifferentiated cells or 

multipotent neural progenitors (Przyborski et al., 2000).  

This pattern of astrocytes appearing in a later developmental window than neurons, 

recapitulating CNS development is similar to that observed for neuroepithelial cells derived from 

human embryonic stem cells that gradually give rise to neurons, in the first month of differentiation 

and later appear astrocytes or oligodendrocytes, after 2 or 3 months of differentiation (Hu et al., 2010). 

NT2 neurons and astrocytes obtained using the described 2D culture system resembled human 

neurons and astrocytes, however, do not mimic the in vivo situation because cells are limited in spatial 

microenvironment and are not completely in contact with other cells and with an extracellular matrix.  
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III.2. NT2 neural differentiation in a stirred suspension culture system 

Serra et al. (2007, 2009) developed a novel culture strategy for neuronal differentiation where 

NT2 cells were cultured as 3D aggregates using stirred culture systems. This culture strategy allowed 

for higher similarity to in vivo environment, favoring contact cell-cell and cell-ECM interactions (East 

et al., 2009; Honegger, 2011). Furthermore, it has previously been shown that a 3D culture strategy 

promotes an increased synchrony of the response of undifferentiated cells to RA (Tonge and Andrews, 

2010), resulting in a significant reduction of  the differentiation process length compared to 2D 

neuronal differentiation as well as a 10-fold increase in the final yields of NT2-derived neurons (Serra 

et al., 2007).  

In this thesis, the previously described 3D strategy based on a stirred suspension culture process 

was further developed aiming at obtaining an improved differentiation process for both neurons and 

astrocytes from NT2 cells, with higher efficiency and reduced process time. Additionally, the 

feasibility of using this culture strategy for attaining a human 3D neural cell model for neurotoxicity 

studies with higher biological relevance was also evaluated. 

Undifferentiated NT2 cells were inoculated in spinner-vessels at a density of 6.7x10
5
 cell/mL 

(5x10
7
 cell/ spinner-flask) and after an initial aggregation period of 3 days cells were differentiated by 

RA treatment for three weeks (Fig. II.4).  

In a first approach maturation in 3D was evaluated after 3 weeks of RA-induced differentiation 

aggregates were maintained in stirred suspension culture for additional 2 weeks, with low 

concentration or without mitotic inhibitors (Fig. II.4). For both strategies cultures were characterized 

after each week of maturation and the yield of NT2 astrocytic cells obtained evaluated. Readouts 

monitored included viability, aggregate size and cell phenotype by immunofluorescence microscopy, 

Western blot and qRT-PCR.  

Furthermore, after 3 weeks of RA treatment aggregates were collected to T75-flasks and the 

maturation process implemented for 2D astrocytic differentiation (Materials and Methods, Section 

II.6) applied in order to improve the process for obtaining a 2D co-culture of neuronal and astrocytic 

cells with higher yields and in a less time-consuming process. Aggregates were seeded on T75-flasks, 

cells allowed to migrate and cultured for additional 5 weeks under mitotic inhibitor treatments, as 

previously described on materials and Methods, Section II.6.  

 The method described by Serra et al. (2007, 2010) made use of stirred systems equipped with 

glass ball impellers, which favored aggregation due to reduced shear stress (Santos et al., 2007; Serra 

et al., 2010). This vessel configuration presents disadvantages concerning scaling-up as it is not 

available in large scale stirred systems, therefore a more robust and scalable vessel design was tested 

for NT2 cell aggregation and differentiation- the Corning® Proculture® spinner flasks (Fig. II.3). 

These spinner flasks are equipped with baffles, which improve aeration and agitation of aggregates 
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culture, while the novel straight blade paddle configuration ensures optimal stirring with reduced shear 

stress  

In first 3 culture days cells were allowed to aggregate and maintained in proliferation medium 

(see Materials and methods, section II.5). Stirring rate was adjusted in order to promote cell 

aggregation, to control aggregate size and to avoid aggregate clumping. Six hours after inoculation 

cells started to aggregate and on third day of culture aggregates had a medium diameter of                     

55.0 ± 23.8 µm (Fig. III.10).  
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Figure III.10: Aggregate size profile along culture time in a stirred suspension culture system. Aggregate diameter 

measurements according to described in Materials and Methods, Section II.8. Data are mean ± SD of the diameter of at least 

100 aggregates from one representative experiment of 2 independent experiments. *** indicate significant difference with P 

< 0.001 by one-way ANOVA analysis with Tukey’s post multiple comparison test. 

 

Cell viability along culture time was evaluated using FDA and PI dual staining (Materials and 

Methods, Section II.7).  

It was observed that until day 3 of culture aggregates presented mostly viable cells (green); a 

few non viable cells were found (red) correspond to single cells that were not incorporated in the 

aggregates (Fig. III.11), as assessed by FDA/ PI fluorescent viability assay. 

By phase contrast microscopy (Fig III. 11) it was observed that cells started to aggregate 6 

hours after inoculation, already existing in culture some duplets and triplets. At day 1, some small 

aggregates were already observed. On following days, cells continued to aggregate, with ann increase 

in aggregate´s size. At day 3, when differentiation started, aggregates had a medium diameter of         

55.0 ± 23.8 µm (Fig. III.10), in agreement with Serra et al. (2007), which described that NT2 cells, 

upon growing in stirred suspension culture, started forming small cell aggregates ranging from 50 to 

100 µm within 48 hours. 
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Figure III.11: Monitorization of 3D cultures along aggregation, differentiation and maturation without mitotic inhibitors  

(Fig. II.4). Images obtained by phase contrast microscopy and by fluorescence microscopy. Viable cells were stained with 

FDA (green) and non viable cells were stained with PI (red). Data are from one representative experiment of 2 independent 

experiments. 



48 

 

The pluripotency state of the cells was evaluated at day 3 by immunofluorescence microscopy 

and by flow cytometry, using the cell surface markers SSEA-1, SSEA-4, Tra-1-60, Tra-1-81, and the 

intracelualr markers Oct-4 and nestin.  

Immunofluorescence microscopy analysis showed that at both day 0 and day 3 all cells in 

culture were oct-4 and nestin-positive (Fig. III.12) and that the majority of cells were stained for the 

stem cell surface markers (Fig. III.13). 

 

 

Figure III.12: Characterization of 3D cultures by immunofluorescence microscopy. Detection of Oct-4 and nestin at day 0 

and day 3 of culture. Nuclei were labeled with DAPI. Data are from one representative experiment of 2 independent 

experiments. 
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Figure III.13: Characterization of 3D cultures by immunofluorescence microscopy. Detection of SSEA-1, SSEA-4, Tra-1-60 

and Tra-1-81 at day 0 and day 3 of culture. Nuclei were labeled with DAPI. Data are from one representative experiment of 2 

independent experiments. 

 

Quantification by flow cytometry analysis revealed that the percentage of cells positive for the 

pluripotent stem cell markers SSEA-4, Tra-1-60 and Tra-1-81 increased significantly after aggregation 

(from approximately 70% at day 0 to 85% at day 3, Fig. III.14). 
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Figure III.14: Characterization of 3D cultures by flow cytometry. Detection of SSEA-1, SSEA-4, Tra-1-60 and Tra-1-81 at 

day 0 and day 3. Data are mean ± SD of 6 independent experiments. *** indicate significant difference (P < 0.001) by one-

way ANOVA analysis with Tukey’s post multiple comparison test. 

 

Furthermore, it was observed that NT2 undifferentiated cells did not express SSEA-1 at day 0 or 

at day 3, indicating that cells did not differentiate spontaneously when expanded as 3D aggregates 

(less than 1% positive cells, as quantified by flow cytometry). 

These results demonstrated the feasibility of culturing NT2 cells as 3D aggregates using straight 

blade paddle impeller spinner-flasks from Corning®. NT2 cells could aggregate without altering the 

pluripotency state or inducing spontaneous differentiation. Moreover, the expression of the 

pluripotency markers SSEA-4, Tra-1-60 and Tra-1-81 was significantly increased as previously 

reported by Serra et al. (2009). 

At day 3 of culture differentiation of aggregates was induced by RA treatment for 3 weeks (Fig. 

II.4) and samples were collected at several time points along culture time (1, 2 and 3 weeks of 

differentiation). Initially, aggregates had a ragged appearance; however, as differentiation progressed 

the aggregates became more round and with a more compact appearance typical of neurospheres 

cultures (Serra et al., 2007). 

Aggregates diameter increased along the differentiation time (Fig. III.10); at the end of the 

first differentiation week (day 10) the aggregate diameter was 76.3 ± 25 µm, increasing significantly 

to 105.4 ± 50.7 µm during the second week (day 17), and to 179.0 ± 76.5µm during the third week of 

differentiation (day 24). Nevertheless, aggregate diameter was kept below 200 µm during the culture 

time, avoiding the formation of necrotic centers, as revealed by FDA/PI viability analysis (Fig III.11). 

After 3 weeks of differentiation aggregates where further cultured in maturation media with 

and without mitotic inhibitors (Fig. II.4). When maturation medium containing mitosis inhibitors (1 

µM c-Ara, 10 µM FdUr and 10 µM Urd) was used, similarly to the protocol developed for astrocytic 

maturation in 2D culture conditions, a rapid loss of aggregate integrity and cell viability was observed 

(Fig. III.15).  
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Figure III.15: Monitorization of 3D cultures after 1 week maturation with mitotic inhibitors (Fig. II.4). Images obtained by 

phase contrast microscopy and by fluorescence microscopy. Viable cells were stained with FDA (green) and non viable cells 

were stained with PI (red). Data are from one representative experiment of 2 independent experiments. 

 

On the other hand, when media without MI was used for the maturation stage, aggregates 

maintained their integrity (Fig. III.11, day 30 and 37), without significant changes in aggregate size 

(Fig. III.10). 

These results showed that the stirring parameters successfully controlled aggregate size, 

allowing for an efficient transport of nutrients and oxygen to the center of neurospheres. The 

continuous growth of the aggregates probably occur because although the majority of cells were being 

differentiated and becoming post-mitotic, some of them maintained them undifferentiated phenotype 

and continued to proliferate or were in a differentiation state in which cells still proliferating and 

consequently increasing the diameter of aggregates. During the maturation stage the maintenance of 

aggregate size probably occurs because at this time points the majority of cells were already 

differentiated and neurons are post-mitotic cells (Pleasure et al., 1992), while astrocytes present a very 

slow proliferation rate (Costa et al., 2011).  

 Along differentiation and maturation without MI, aggregates were collected from the spinner 

cultures for phenotypic characterization. By immunofluorescence microscopy analysis it was observed 

that Oct-4 was no longer detected after 1 week of differentiation (Day 9) (Fig. III.16). Furthermore, 

detection of pluripotent stem cell markers SSEA-4, Tra-1-60 and Tra-1-81 was reduced along 

differentiation time (Fig. III.16); at the end of differentiation SSEA-4 was not detected and Tra-1-60 

and Tra-1-81 were detected in a small number of cells. These results indicated that cells lost their 

pluripotency state since oct-4 was not detected. 
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Figure III.16: Characterization of 3D cultures by immunofluorescence microscopy. Detection of pluripotency markers Oct-4, 

SSEA-1, SSEA-4, TRA-1-60 and Tra-1-81 along differentiation (day 10, 17 and 24). Nuclei were labeled with DAPI. Data 

are from one representative experiment of 2 independent experiments. 
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 Along differentiation and maturation in 3D stirred suspension culture systems, the presence of 

neuronal and astrocytic markers was evaluated by immunofluorescence microscopy, Western blot and 

qRT-PCR. The neuronal marker III-tubulin was detected by immunofluorescence microscopy in 

cultures derived from aggregates harvested at day 17, although in a reduced number of cells. At this 

time point the majority of cells were still nestin-positive precursors (Fig. III.18); along the 

differentiation time the number of neurons increased, presenting more developed neuritic networks at 

day 24. The number of III-tubulin-positive cells continued to increase during the 3D maturation stage 

until day 37, with a concomitant reduction of nestin-positive cells (Fig. III.19). These observations 

were corroborated by Western blot analysis, in which low levels of III-tubulin protein were early 

detected at day 10 and increased until day 37 (Fig. III.17). 

  

 

Figure III.17: Characterization of 3D cultures by Western blot. Detection of synaptophysin, III-tubulin, GFAP and vimentin. 

* GFAP proteolytic fragment. Data are from one representative experiment of 2 independent experiments. 

 

 

 

 

* 
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Figure III.18: Characterization of 3D cultures by immunofluorescence microscopy. Detection of nestin, III-Tubulin, MAPs and synaptophysin along 

differentiation (day 10, 17 and 24). Nuclei were labeled with DAPI. Data are from one representative experiment of 2 independent experiments. 
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Figure III.19: Characterization of 3D cultures by immunofluorescence microscopy. Detection of nestin, III-Tubulin, MAPs, 

synaptophysin and GFAP along maturation without mitotic inhibitors (day 30 and 37). Nuclei were labeled with DAPI. Data 

are from one representative experiment of 2 independent experiments. 
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In terms of gene expression, by qRT-PCR analysis it was observed a significant upregulation 

of III-tubulin gene during the first week of differentiation (day 3 to day 10) and after that the levels 

of expression were maintained, until the end of the culture (Fig. III.20). 
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Figure III.20: Characterization of 3D cultures by qRT-PCR. Nestin, III-tubulin, GFAP, S100-, GLAST and GLT-1 gene 

expression normalized for NT2 undifferentiated cells (day 0). Data are mean ± SD of 2 independent experiments. Asterisks 

indicate significant difference (* P<0.05, ** P<0.01 and *** P<0.001) by one-way ANOVA analysis with Tukey’s post 

multiple comparison test. 

 

Expression of nestin increased significantly during the first week of differentiation induction 

(day 3 to day 10) and was maintained in higher levels during the next week (until day 17). From day 

17 until day 30 nestin expression decreased significantly and was maintained from then on in lower 

levels. The initial increasing in nestin expression is probably due to the proliferation of nestin-positive 

neural progenitor cells (Przyborski et al., 2000); with the advance in differentiation process these 

neural progenitor cells gave rise to differentiated neurons and astrocytes that were nestin negative 

cells, since nestin is replaced by tissue-specific intermediate filament proteins during differentiation 

(Michalczyk and Ziman, 2005). 

The presence of MAPs and synaptophysin was evaluated in order to confirm the mature 

phenotype of NT2 neurons in aggregate cultures. MAPs started to be detected by immunofluorescence 

microscopy at day 17(Fig III.18); the number of MAPs-positive cells increased along differentiation 

and maturation as well as the intensity of the staining particularly in neuritic processes (Fig III.19). 

Synaptophysin was detected in the typical vesicular staining only after 1 week of maturation           
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(Fig III.19), although in cells in cell extracts protein could be detected from day 23 (Fig. III.17). These 

observations indicated that mature NT2 neurons forming synaptophysin-positive presynaptic vesicles 

were present in culture after a maturation period, indicating that synapse maturation occurs within the 

neurospheres. 

Concerning astrocyte characterization, at day 24 GFAP was already detected by 

immunofluorescence microscopy although at low levels (Fig. III.21). At day 37 the percentage of 

GFAP-positive increased (Fig. III.22), representing 77.5 ± 4.9% of all cells in culture. 

By Western blot analysis (Fig. III.17) GFAP was not detected until day 30, increasing at day 

37. The expression of GFAP was also evaluated by qRT-PCR (Fig. III.20) and significant increase in 

gene expression were only detected during the maturation period. These results indicated that the 

maturation step was determinant to obtain NT2 astrocytic cells that expressed GFAP. 

Vimentin was detected at all time points by immunofluorescence microscopy (Fig. III.21 and 

Fig. III.22), as confirmed by Western blot (Fig. III.17), since it was present in NT2 undifferentiated 

cells and also in NT2 astrocytic cells. However, by Western blot analysis it was observed that the 

levels of protein increased from day 10 to day 17, and were maintained until the end of culture. This 

probably occurred because until day 10 vimentin-positive precursors proliferated and from day 17 

onwards vimentin-positive NT2 astrocytic cells were the predominant cell type in the culture. 
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Figure III.21: Characterization of 3D cultures by immunofluorescence microscopy. Detection of GFAP, vimentin, GLAST and GLT-1 along differentiation (day 

10, 17 and 24). Nuclei were labeled with DAPI. Data are from one representative experiment of 2 independent experiments. 
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Figure III.22: Characterization of 3D cultures by immunofluorescence microscopy. Detection of GFAP, vimentin, GLAST 

and GLT-1 along maturation without mitotic inhibitors (day 30 and 37). Nuclei were labeled with DAPI. Data are from one 

representative experiment of 2 independent experiments. 
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In order to confirm the mature phenotype of astrocytes, expression of S100-, GLAST and 

GLT-1 was also evaluated. 

Expression of S100- increased significantly from day 10 to 17 and was maintained without 

significant differences until day 30 (145.8 ± 20.4 - fold changes in gene expression, Fig. III.20). 

During the maturation period there was further upregulation of the gene, with a significant increase in 

expression from day 30 to 37.  

Expression of S100- was detected earlier than GFAP, probably because this calcium-binding 

protein is present in neural precursor cells already committed with the astrocytic lineage (Donato et 

al., 2009). Accordingly, it has been described that during glial differentiation of hiESC S-100 

positive cells appear in culture after 4 weeks of differentiation whereas GFAP-positive astrocytes with 

a stellate-like morphology appeared only 3 months of culture (Mariani et al., 2012). 

Both glutamate transporters, GLAST and GLT-1, were detected from day 9 until the end of 

culture although GLT-1 was detected almost all non-neuronal cells, contrary to GLAST that was 

detected in a more reduced number of cells (Fig. III.21 and Fig. III.22). By qRT-PCR analysis it was 

observed that GLAST expression increased significantly from day 10 to day 17 and then was 

maintained until the end of culture and GLT-1 expression also increased significantly from day 10 to 

day 17, although decreased from day 17 to day 23 and then was maintained until the end of culture 

(Fig. III.20).  

The expression of S100- as well as the detection of glutamate transporters GLAST and GLT-

1 in NT2 aggregates indicated that mature astrocytes were present in culture and the end of maturation 

period. Nevertheless, some nestin-positive neural progenitor cells were still present in the aggregates, 

as well as GLAST-positive cells probably corresponding to astrocytic precursors or mature astrocytes 

(reviewed by Had-Aissouni, 2012). 

In summary, the use of stirred suspension culture systems allowed obtaining a co-culture of 

mature neuronal and astrocytic cells, with III-tubulin and GFAP positive cells homogenously 

distributed throughout the neurospheres(Fig. III.19).  

At the end of 3D maturation most of the cells were neurons (III-tubulin-positive) or 

astrocytes (GFAP-positive) cells and the percentage of astrocytic cells was around 77%. Therefore, the 

percentage of neuronal cells was lower than 13%. These results are in good agreement with the human 

brain, in which neurons and astrocytes are present in a 1:10 ratio. Additionally, it has also been 

reported that NSC, derived from embryonic CNS, which generate neurons and astrocytes in an 

approximate ratio of 1:5, respectively (Schwars, 2007). 

Neurons appeared early in culture, during the first weeks of differentiation, whilst an 

additional maturation period was necessary to obtain astrocytes, as previously observed in 2D culture 

systems. Although neurons were detected earlier in culture, the additional maturation period was 

required to obtain mature neurons, expressing MAPs and vesicular synaptophysin. 
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Similarly, hESC differentiate into neurons in the first month and into astrocytes after 2 to 3 

months (Hu et al., 2010). These astrocytes stained positive for GFAP, S100- and GLAST (Gupta et 

al., 2012). Furthermore, in vivo, the prenatal neurogenesis process (4
th
 to 20

th
 week of pregnancy) is 

followed by the differentiation of astrocytes (beginning of the 19
th
 week) (Froes and Carvalho, 1998). 

Together, these results indicate that the order and timing of neuronal and astrocytic 

differentiation of NT2 cells resemble those in hESC and in normal brain development (Froes and 

Carvalho, 1998; Gupta et al., 2012; Krencik et al., 2011). Nevertheless, NT2 cell differentiation has 

the advantage of being a much simpler process, as it requires only RA as differentiation factor and less 

time-consuming than hESC or NSC differentiation (Gupta et al., 2012; Krencik et al., 2011), thus 

providing a more amenable and cost-effective cell model for neurotoxicity studies.  
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III.3. 2D maturation 

After 3 weeks of RA-induced differentiation in stirred suspension culture system, aggregates 

were collected and seeded in T75-flasks and maturation of cells was performed following the protocol 

implemented for 2D culture systems with low concentrations of mitotic inhibitors treatment for 5 

weeks (Materials and Methods, Sections II.4 and II.6, Fig. II.4). 

By phase contrast microscopy, it was observed that after 1 week of culture in 2D culture 

system cells with an astrocytic-like morphology (phase-dark star shaped process bearing cells started 

to migrate from the aggregate (Fig. III.23). 

 

Figure III.23: Maturation in 2D culture conditions: phase contrast microscopy of cells after 3 weeks of differentiation in 3D 

culture and 1 week of maturation with mitotic inhibitors (Fig. II.4). Data are from one representative experiment of 2 

independent experiments. 

 

After 5 weeks of maturation in 2D culture conditions, it was observed that all cells have 

already migrated, with complete dissociation of the aggregates and by that time the cultures were 

composed of 2 cell populations with distinct morphological features: cell with neuronal-like 

morphology (smaller and phase-bright cells) and astrocytic-like cells, with neuronal cells forming 

neurites networks on top of astrocytic cells (Fig. III.24). 

 

Figure III.24: Maturation in 2D culture conditions: phase contrast microscopy of cells after 3 weeks of differentiation in 3D 

culture and 5 weeks of maturation with mitotic inhibitors (Fig. II.4). Data are from one representative experiment of 2 

independent experiments. 
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At the end of 2D maturation process less III-tubulin-positive neurons were detected by 

immunofluorescence microscopy (Fig. III.25), when compared to the 3D maturation (Fig. III.19). 

Nevertheless, these neurons presented staining for MAPs and a vesicular pattern synaptophysin 

labeling, indicating that mature neurons were obtained. 

 

 

Figure III.25: Characterization of maturation in 2D culture system, after differentiation in 3D culture. Detection of III-

Tubulin, MAPs, synaptophysin, GFAP, vimentin, GLAST and GLT-1. Nuclei were labeled with DAPI. Data are from one 

representative experiment of 2 independent experiments. 
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GFAP-positive cells significantly increased after maturation (74 ± 5.3 % of cells). Mature 

astrocytes were also obtained since GLAST and specially GLT-1 were also detected by 

immunofluorescence microscopy (Fig. III.25). 

Results showed that differentiation of cells in 3D followed by maturation of cells in 2D 

allowed obtaining a culture where NT2-derived mature neurons and astrocytes were present.  

Although this strategy was less time consuming and more efficient than differentiation in 2D 

culture system (74 ± 5.3 % and 31.1 ± 7.6 %, respectively), it was not an adequate model since few 

neuronal cells were obtained at the end of 2D maturation. Additionally, the process was less efficient 

and more time consuming than NT2 cell neural differentiation and maturation in 3D cultures (Fig. 

III.26). 

 

 

For 2D neuronal differentiation more than 6 weeks were needed to obtain mature neurons and 

for 2D astrocytic differentiation 10 weeks were needed to obtain cultures with mature astrocytes. The 

strategy combining 3D differentiation with 2D maturation allowed obtaining a co-culture of neurons 

and astrocytes within 8 weeks.  
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Figure III.26: Percentage of GFAP positive cells in NT2 astrocytic cultures obtained by different culture systems. Data are 

mean ± SD of 2 independent experiments. *** indicate significant difference (P < 0.001) by one-way ANOVA analysis with 

Tukey’s post multiple comparison test. 

 

Comparasion of the percentage of GFAP positive cells (Fig. III.26) showed that 3D stirred 

suspension culture systems are better suited for NT2 astrocytic differentiation than 2D culture systems. 

Furthermore, maturation of cells in a 2D or a 3D environment, after 3 weeks differentiation in a stirred 
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suspension culture system, was equivalent since differences between GFAP postive cells percentage 

were not significant, showing that an increased synchrony in response to RA of undifferentiated NT2 

cells in a 3D environment (Tonge and Andrews, 2010) is a crucial step of this process to improve the 

differentiation yields. 

Nevertheless, the 3D culture system was the more efficient and less time consuming process 

that allowed obtaining a neuronal-astrocytic co-culture, with mature neural cells in 5 weeks. 

Another advantage of 3D stirred culture system is that it is scaleable, unlike the 2D culture 

system.  

Stirred suspension culture method gave rise to a more complex and robust model for 

neurotoxicity studies since cell-cell and cell-ECM interactions can occur and consequently favoring 

neuron-astrocyte interactions. Therefore, astrocytes have potential to protect neurons against some 

insults and subsequently neuronal tolerance can be increased by the proximity of astrocytes and these 

effects cannot be predicted in models where only neuronal cells were used. 

Although human stem cells are powerful tools for neural differentiation and development of 

models for neurotoxicity studies, a lot of exogenous factors such as growth factors and ECM 

components, are required to maintain their stem cell status and also to induce cells to follow a standard 

course of neuronal development, serially differentiating from pluripotent cells to neural progenitors 

and then to fully differentiated neurons (Karumbayaram et al., 2009). Moreover, stem cells are not 

ready available, also by ethical reasons regarding the use of human embryo-derived cells to maintain 

and the needed reagents and media are expensive (Dhara and Stice, 2008; Stewart et al., 2003). 

Besides, the maintenance of NT2 cells and their neural differentiation is less demanding and is more 

amenable to scale-up and increase the yield of differentiated cell types. 

In conclusion, stirred suspension culture system is a suitable method for NT2 cell line 

differentiation in neuronal and astrocytic cells and allow to obtain a promising model for neurotoxicity 

studies, in which both neurons and astrocytes are represented and, furthermore, many features of 

human neurons and astrocytes are highly conserved in NT2-derived neural cells.  

This model is more relevant to human CNS structure and functions than models with only 

neuronal cells, probably mimicking better the in vivo situation, since it model better the basic CNS 

functions unit.  

Moreover, in this model is used a human cell line being easy to obtain cells and to maintain 

these cells in culture and allowing to high-throughput screening. Due to the fact of cells were from 

human origin interspecies data extrapolation is avoided in neurotoxicity studies. 
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IV. Conclusion 

 

In this work a 2D culture system for astrocytic differentiation of NT2 cells was successfully 

implemented in the Laboratory, as well as analytic tools essential for evaluation of astrocytic 

differentiation efficiency.  

Moreover, a human 3D neural cellular model was developed using stirred suspension culture 

systems. By integrating an aggregation step with efficient differentiation and maturation processes, 

this culture strategy allowed the generation of human neural aggregates highly enriched in mature 

neurons and astrocytes. Furthermore, the yields of neuronal and astrocytic differentiation were 

improved and the time of the process was significantly reduced, when compared to the standard static 

differentiation protocols.  

This efficient and robust scalable culture strategy is a promising tool for generation of large 

numbers of human differentiated 3D neural aggregates, required for the implementation of high-

throughput neurotoxicity studies. 
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V. Perspectives 

 

For validation of the cellular model for neurotoxicity testing, assays will be performed with 

prototypical neurotoxicants, such as glutamate, acrylamide or hydroxyurea. Endpoints of cell viability, 

detection of neuronal and astrocytic markers by qRT-PCR, Western blot and immunofluorescence 

microscopy, as well as functional endpoints such as glutamate uptake, glutamine synthesis, cellular 

energy (ATP) and caspase-3 activation will be used to evaluate the neurotoxic effect. 

Further characterization of NT2 neuronal and astrocytic phenotypes obtained using 3D culture 

systems includes the identification of the neurotransmitter phenotypes of NT2 neurons (by 

immunofluorescence microscopy, Western blot and qRT-PCR analysis).Synaptic functionality will be 

evaluated by loading the neurons with fluorescent styril amphiphilic dyes (e.g. FM1-43) that are 

endocytosed and released following stimulation.   

Astrocytes will be evaluated in terms of functionality by performing glutamate uptake assays 

and synthesis of glutamine determined by Nuclear Magnetic Resonance (NMR).  

Metabolic traffic between neurons and astrocytes in co-culture will also be evaluated by 

combining NMR with metabolic flux analysis tools. 

Moreover, the 3D cell culture strategy developed could be further improved by using 

controlled stirred tank bioreactors. It is expected that by optimizing parameters such as mixing, pH, 

temperature, oxygen and nutrient supply, higher differentiation yields and improvement of the 

maturation process will be obtained. 
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