
Sérgio António Inácio da Silva

Licenciado em Engenharia Informática

Type-based Protocol Conformance and
Aliasing Control in Concurrent Java Programs

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Co-orientadores : João Ricardo Viegas da Costa Seco,
Prof. Auxiliar,
Universidade Nova de Lisboa
Hugo Torres Vieira,
Prof. Auxiliar,
Universidade de Lisboa

Júri:

Presidente: Prof. Rodrigo Seromenho Miragaia Rodrigues

Arguente: Prof. Salvador Luís Bettencourt Pinto de Abreu

Vogal: Prof. João Ricardo Viegas da Costa Seco

Novembro, 2012

iii

Type-based Protocol Conformance and Aliasing Control in Concurrent Java
Programs

Copyright c© Sérgio António Inácio da Silva, Faculdade de Ciências e Tecnologia, Uni-
versidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

To my grandfathers, António and José

vi

Acknowledgements

Firstly, I would like to express my gratitude to both of my advisors: João Seco for his
guidance, support and perseverance throughout the last three years, giving me the op-
portunity to learn so much; to Hugo Vieira for his guidance, readiness to discuss new
ideas, support and razor-sharp comments and observations throughout the development
of this dissertation.

To my parents Flávio and Clara, whom have sacrificed so much, for their unwaver-
ing support, making it possible for me to progress in my academical studies. To my
big brother and sister, João and Patrícia, for their constant support. I cannot thank you
enough.

To Sara, for the unforgettable moments together, ever-present friendship and love,
constant support and encouragement and for putting up with my ramblings and shenani-
gans. Thank you.

To my colleagues at FCT, whom I have met throughout these 5 years, thank you for
your support and making it a good place to work in. A special thanks to Tiago, Paulo,
Ricardo and Bruno, for their companionship, brainstorming sessions and allowing me to
learn about their own theses.

To my friends, thank you for the good times. A special thanks to Pires for always be-
ing there, his good spirits, constant concern with the progress of this work and awesome
movie sessions!

To my colleagues at Safira, Bruno, Andreia, Pedro, Gonçalo, Lukasz, Jan, Pietro and
Luís thank you for your support and encouragement.

This work was partially supported by the PTDC/EIA-CCO/104583/2008 research
scholarship.

vii

viii

Abstract

In an object-oriented setting, objects are modeled by their state and operations. The
programmer should be aware of how each operation implicitly changes the state of an
object. This is due to the fact that in certain states some operations might not be available,
e.g., reading from a file when it is closed. Additional care must be taken if we consider
aliasing, since many references to the same object might be held and manipulated. This
hinders the ability to identify the source of a modification to an object, thus making it
harder to track down its state. These difficulties increase in a concurrent setting, due to
the unpredictability of the behavior of concurrent programs.

Concurrent programs are complex and very hard to reason about and debug. Some of
the errors that arise in concurrent programs are due to simultaneous accesses to shared
memory by different threads, resulting in unpredictable outcomes due to the possible
execution interleavings. This kind of errors are generally known as race conditions.

Software verification and specification are important in software design and imple-
mentation as they provide early error detection, and can check conformity to a given
specification, ensuring some intended correctness properties. To this end, our work
builds on the work of Spatial-Behavioral types formalism providing object ownership
support. Our approach consists in the integration of a behavioral type system, developed
for a core fragment of the Java programming language, in the standard Java development
process.

Keywords: Java, Verification, Type Systems, Concurrency, Spatial-Behavioral Types

ix

x

Resumo

Em programas object-oriented, os objectos são modelados pelo seu estado e operações. O
programador deve estar ciente de como cada operação muda implicitamente o estado
do objecto, devido ao facto que, em certos estados algumas operações não estejam dis-
poníveis, e.g., ler de um ficheiro quando este está fechado. Cuidado adicional deve ser
adoptado quando na presença de aliasing, uma vez que podem existir várias referências
para o mesmo objecto, podendo estes ser manipulados de diferentes formas. Devido a
fenómenos de aliasing, determinar a origem de uma modificação num objecto torna-se
difícil, dificultando também qual o conhecimento do seu estado actual. Num cenário
concorrente, identificar o estado actual de um objecto torna-se mais difícil dada a possi-
bilidade de ordens de execução.

A programação concorrente é complexa tornando o seu raciocínio e depuração bas-
tante difíceis, sendo também bastante propensa a erros devido à sua natureza não deter-
minista. Alguns dos erros que surgem em programas concorrentes devem-se a acessos
não controlados a memória partilhada por parte de threads, tendo efeitos imprevisíveis
devido à possibilidade de ordens de execução. Este tipo de erros são geralmente conhe-
cidos como race conditions.

Verificação e especificação de software são técnicas importantes no desenho e imple-
mentação de software, uma vez que permitem verificar estaticamente a ocorrência de
erros, bem como a conformidade a uma dada especificação, assegurando a presença de
algumas propriedades de correcção. Para este fim, o nosso trabalho inspira-se no forma-
lismo de tipos espaciais-comportamentais, fornecendo suporte para ownership e definição
de protocolos em objectos. A nossa abordagem consiste no desenvolvimento de um sis-
tema de tipos baseado em tipos comportamentais para um fragmento da linguagem de
programação Java, integrando-o com o processo de desenvolvimento Java.

Palavras-chave: Java, Verificação, Sistemas de Tipos, Concorrência, Tipos Espaciais-
Comportamentais

xi

xii

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Context . 2

1.3 Proposed Solution . 4

1.4 Contributions . 9

1.5 Outline . 10

2 Background 11
2.1 Spatial-Behavioral Types . 11

2.1.1 The Type Discipline of Behavioral Separation 13

2.1.2 Featherweight Concurrent Java . 14

2.2 Separation Logic . 15

2.3 Concurrent Separation Logic . 18

2.4 Session Types . 19

2.4.1 π-calculus . 19

2.4.2 Session Types . 20

2.5 On Session Types and Concurrent Separation Logic 22

2.6 Summary . 23

3 Related work 25
3.1 Ownership Control . 25

3.2 Typestate . 27

3.3 Summary . 30

4 Core Language and Type System 31
4.1 Syntax . 32

4.2 Type System . 34

4.2.1 Behavioral Types . 35

4.2.2 Subtyping . 39

xiii

xiv CONTENTS

4.2.3 Typing Rules . 45
4.3 Summary . 55

5 Application to Java 57
5.1 Architecture . 57
5.2 Typechecking . 58
5.3 Paper Reviewing Example . 59
5.4 Implementing and Checking the List Interface 63
5.5 Summary . 67

6 Final Remarks 71
6.1 Contributions . 71
6.2 Future Work . 72
6.3 Summary . 73

A More Examples 79

List of Figures

2.1 Syntax of Spatial-Behavioral Types . 12
2.2 Class declaration in FWCJ . 15
2.3 Complete example in FWCJ . 15
2.4 Derivation that fails in the presence of aliasing 16
2.5 Imperative programming language . 16
2.6 Inference rules for memory manipulation statements 17
2.7 π-calculus syntax . 19
2.8 Selection and Branching constructs and (dual) types 21
2.9 Inference rules for BST instantiation . 23

3.1 An example demonstrating ownership types 27
3.2 Ownership graph . 27
3.3 File example in Plaid . 28
3.4 Checking state in Plaid . 28
3.5 Invoking another function with an object as argument 29
3.6 Aliasing in Plaid . 29

4.1 Core Syntax (Definitions) . 32
4.2 Core Syntax (Statements and Expressions) 33
4.3 Contracts in Interfaces . 34
4.4 Core Syntax (Spatial-Behavioral Types) . 35
4.5 Algorithm C . 38
4.6 Algorithm B . 38
4.7 canStop predicate . 42
4.8 Labeled Transition System . 43
4.9 Subtyping Relation . 44
4.10 Typing rules for expressions . 49
4.11 Typing rules for statements . 53
4.12 Typing rules for methods . 54

xv

xvi LIST OF FIGURES

4.13 fieldUsage function . 54
4.14 Typing rule for class . 55
4.15 Typing rule for program . 55

5.1 javac’s different phases . 58
5.2 Annotation Processing . 58
5.3 Paper interface . 60
5.4 Paper Implementation . 62
5.5 Reviewer Interface . 63
5.6 Reviewer Implementation . 63
5.7 Java’s List Interface . 64
5.8 Cell Interface . 64
5.9 Node Interface . 65
5.10 List Implementation (First try) . 65
5.11 Node Interface (Corrected) . 66
5.12 ListNode Class . 67
5.13 NullNode Class . 68
5.14 Linked List Class . 69

Listings

A.1 Correct usage of Cell . 79
A.2 Misused Cell . 80
A.3 Correct concurrent usage of Cell . 81
A.4 Incorrect concurrent usage of Cell . 82
A.5 Incorrect implementation of Cell . 83
A.6 Counter . 84
A.7 Loss of ownership . 85
A.8 Return type restriction . 86
A.9 Correct File usage . 87
A.10 Incorrect concurrent File usage . 88
A.11 Node Interface . 89
A.12 NullNode . 89
A.13 ListNode . 90
A.14 List Interface and Implementation . 91
A.15 Correct concurrent List usage . 92
A.16 Incorrect concurrent List usage . 93

xvii

xviii LISTINGS

1
Introduction

In this chapter we start by motivating our work. We give an overview of the context
in which our work is based on, giving a brief description of other techniques that aim
to tackle some of the challenges that we have identified. Afterwards, we provide a de-
scription of our proposed solution to these challenges, with some practical examples that
highlight the main features. We address the main contributions of our work and conclude
with the outline of this document.

1.1 Motivation

With today’s proliferation of multi-core systems, developing concurrent programs that
fully use the available resources in a system has been a growing concern. As hardware
evolves, the software we write must keep up with this progress and allow for better use
of the available resources.

Concurrent programs are complex and very hard to reason about and debug. Some of
the errors that arise in concurrent programs are due to simultaneous accesses to shared
memory by different threads, resulting in unpredictable outcomes due to the possible
execution interleavings. These kinds of errors are generally known as race conditions.

In order to discipline access to shared memory and control such interferences, several
control mechanisms are at the programmers’ disposal. For example, monitors [Hoa74],
locks, and compare and swap primitives. Their use can be have positive and negative
impacts, in the sense that, although they can effectively discipline synchronization be-
tween threads, if they are not used correctly, their scope might be unnecessarily broad
and the we lose ability to efficiently use the resources at our disposal, or even result in
deadlocks. Hence, given the number of possible execution interleavings, even an expert

1

1. INTRODUCTION 1.2. Context

programmer can fail to detect interferences and deadlocks.

Software verification and specification are important in software design and imple-
mentation as they provide early error detection, and can check conformity to a given
specification, ensuring some intended correctness properties. Among the most com-
monly used approaches are type systems. For example, there are some approaches that
relate to concurrency control that include tools that employ Hoare logic [Hoa69] and its
extension for monitor operations such as ESC/Java [FLL+02], separation logic [Rey02]
and behavioral type systems [Cai08, Mil08, Par11, CS13], that will be the basis of this
work.

1.2 Context

In an object-oriented setting, objects are modeled by their state and operations. The pro-
grammer should be aware of how each operation implicitly changes the state of an object.
This is due to the fact that in certain states some operations might not be available, e.g.,
reading from a file when it is closed. Additional care must be taken if we consider alias-
ing, since many references to the same object might be held and manipulated. This hin-
ders the ability to identify the source of a modification to an object, thus making it harder
to track down its state. These difficulties increase in a concurrent setting, due to the un-
predictability of the behavior of concurrent programs. Many of the errors that appear in
such programs are due to inconsistent states caused by unrestricted concurrent access to
shared memory. Building robust and correct concurrent applications requires advanced
knowledge of concurrency control mechanisms and, even then, over-conservative solu-
tions might be used, e.g., synchronization on an entire method instead of applying a finer
grained synchronization technique that protects critical regions of the code.

Mainstream object-oriented languages, like Java, can statically detect some type and
initialization errors. However, they do not detect errors related to misuse of objects with
respect to a specification. Correct usage of an object is usually enforced through some
internal logic, that constrains the the object’s allowed behavior at runtime. The only
information related to these errors is present, if at all, in runtime errors or in informal
documentation. In fact, if the implicit protocol of a class is not followed, one possible
outcome can be some kind of unexpected behavior at runtime, e.g., reading from a file
that has not been opened.

Some verification techniques have been proposed, that aim to check the correct usage
of resources with respect to a protocol. Session Types, introduced in [Hon93, HVK98],
aim to verify binary communication protocols made via message passing through dedi-
cated channels. In this approach, types describe the sequence of messages, or protocols,
that are exchanged through channels. For example, a channel typed as ?[int] represents a
channel along which we expect to receive a message containing an integer value, while
![int] describes a channel where we output an integer value. Now, if two parties use

2

1. INTRODUCTION 1.2. Context

the same channel to communicate according to ?[int] and ![int], then there will be a syn-
chronization between both parties, since they are performing dual actions. Any binary
communication that follows this synchronization scheme is then guaranteed to evolve,
thus respecting the protocol. Although this approach aims to verify correctness in a mes-
sage passing concurrency paradigm, it has been applied to other contexts such as object-
oriented programming [GVR+10, CV10b] and operating systems [FAH+06].

In [SY86], the programming language concept known as typestate is introduced. It
aims to describe which operations are available under certain conditions, as well as how
they change the state. Plaid is a typestate and object-oriented, concurrent programming
language proposed by Aldrich et al. [ASSS09]. Its syntax resembles that of Java, but
in Plaid typestates are first-class abstractions, and objects are modeled by their possible
states (actually represented as classes). Some variable modifiers were included to control
various forms of aliasing, in order to statically detect incorrect usage of aliases. However,
determining the current state of an object is performed dynamically.

Concurrent Separation Logic (CSL) is a logic proposed by O’Hearn in [O’H04], as
an extension of Separation Logic [ORY01, Rey02] for concurrent programs. CSL aims to
verify the correctness of concurrent programs that directly manipulate shared memory.
Simply put, two concurrent programs can be safely run if they operate in separate parts
of the heap, i.e., they do not compete for the same resources.

This notion of separation relates to the one present in the work done in [Cai08], where
the notion of spatial-behavioral types is introduced. In this work, a type system is pro-
posed for a concurrent object-oriented setting, that aims at statically verifying correct
usage of resources accounting for shared behavior and aliasing, by allowing specification
of owned behaviors that are guaranteed to be independent of any other. Behavioral types
are associated to objects and specify how an object must be used. A notion of behavioral
separation is embedded in types, where U | V denotes a behavior in which U is inde-
pendent of V , i.e., U and V do not compete for the same resources, and therefore can be
exercised concurrently.

The idea of behavioral independence was taken further in the work of [CS13]. In this
work, a behavioral type system is presented, where types bear resemblance in form and
meaning to the ones described in [Cai08], which purpose is to verify the correctness of
programs in a λ-calculus extended with mutable heap variables, records and concurrency
primitives, such as threads and synchronization mechanisms. Type assertions state be-
havioral global constraints on runtime values instead of properties about the program
state, enforcing type safety with regard to interference, in a concurrent setting where
aliasing can occur, by imposing usage control disciplines.

In [Par11] an implementation of a fragment this type system was developed, consist-
ing in a type inference algorithm for a prototype language. However, its concurrency
model was based on the structured par operator and it did not account for object type
variables.

Our work then builds on the work of [Par11, CS13, Mil08], aiming at a fragment of

3

1. INTRODUCTION 1.3. Proposed Solution

the spatial-behavioral type system of [Cai08] including support for object type variables,
ownership types and finer-grained protocol specification at the method level, while tar-
geting a mainstream programming language, namely Java.

1.3 Proposed Solution

The main goal of this work is to define a technique to statically check the correctness of the
behavior of a concurrent, object-oriented program that operates on shared memory, with
respect to a prescribed usage protocol. Our development is based on the work of [Cai08]
and extending [Par11] to support object ownership as well the object-based concurrency
model of the Java programming language, instead of the binary | operator, where e1 | e2

represents the concurrent evaluation of expressions e1 and e2.
Usage protocols are defined in Java interfaces, through the use of the Java annota-

tion system. These protocols, whose syntax is based on spatial-behavioral types [Cai08],
can be placed at some key locations in an interface definition. At the interface decla-
ration level, a behavior annotation will define how the objects belonging to any class
implementing it should be used. Additionally, these annotations can also be specified in
method declarations, where a behaviorally annotated argument provides a kind of con-
tract about the behavior that must be exercised on the argument by any implementation
of the method. On the other hand, an annotation at the return type level restricts the
behavior that can be exercised upon what is returned by the method.

Our type system will be defined on top of a fragment of the Java programming lan-
guage, with a focus on concurrency. We define a set of typing rules, one for each construct
of the language, in which we analyze how resources are used in each one. Concurrent be-
havior is defined according to the Java concurrency model, where we require all threads
to be started and joined after declaration. This constraint is related to how we extract con-
current behavior, i.e., what is the concurrent behavior that is exercised by each thread on
an object. If the thread’s lifetime exceeds that of the method in which it is declared, i.e., if
it is not joined, we are unable to precisely determine when the behavior will end. To this
end, we analyze the thread’s body to determine what use it makes of each resource. With
this information, we examine what is executed concurrently with the thread by analyz-
ing the behavior that occurs within its lifetime, i.e., the behavior that is exercised between
starting and joining the thread. Consider the following example:

public void pushAndPop(int elem) {

Thread t1 = new Thread(new Runnable(){

public void run(){

s1.push(elem);

s2.push(elem);

}

});

t1.start();

4

1. INTRODUCTION 1.3. Proposed Solution

s1.pop();

t1.join();

s2.pop();

}

By analyzing the body of thread t1, we see that it uses fields s1 and s2, of the class
where the method is defined, calling push on both with argument elem. Now, between
starting and joining the thread, a call to pop on y is performed. So, from this information
we are able to determine that two concurrent operations made on field s1. Since in this
case we are concurrently pushing and popping an element from s1, we can conclude that
it represents a race. However, after the thread finishes execution, a pop method call is
performed on s2. Since this happens after the thread finishes we are also able to conclude
that the behavior exercised on s2 is sequential, therefore ruling out any possibility of
concurrent interference. Generalizing, we check the correctness of each declared resource
with respect to a previously defined protocol. This conformance is checked by means of
a subtyping relation, based on behavioral simulation, that captures how a usage that is
given to an object is safe, even if does not exactly match the specification that is provided.

Checking correct usage of objects in a Java program is fully integrated with the com-
pilation process of javac, hence we are able to provide the results of our typechecker
by using the error issuing facilities provided by the compiler. This means we can pre-
cisely pinpoint the method in which the type error occurred, and provide feedback to the
programmer much like in regular Java development.

In order to understand the general idea of this work, we will now present a toy ex-
ample. Consider the following interface

@Protocol("open; (read & write); close")

public interface File {

public void open();

public String read();

public void write(String content);

public void close();

}

public void main(String[] args){

File f = new ...;

f.open();

f.write("content");

f.close();

}

that represents a File. As usual, before using a file for reading or writing, we must open
it, and after using it, it must be closed. This kind of protocol can be defined by the
@Protocol annotation that is done at the interface declaration, and its argument is a
string containing the protocol definition based on method names. In the main method,

5

1. INTRODUCTION 1.3. Proposed Solution

we can see that the usage given to f follows the specified protocol. Now, suppose we
want to write to the file, while opening it the same time:

public static void main(String... args) throws InterruptedException {

final File f = new ...;

Thread t = new Thread(new Runnable(){

public void run(){

f.open();

}

});

t.start();

f.write("content");

t.join();

f.close();

}

By looking at the code that exists in-between starting and joining thread t, we can see
that the write method is being called concurrently with open. Now, according to what
was specified in File interface, this usage is not safe since the given protocol imposes
sequentiality, i.e., opening a file must necessarily be performed before using it in any way,
and the concurrent behavior exercised on f does not ensure that this order is respected.

However, we can still have the write call be made by the thread, but we need to
make sure it occurs after the open method call and so we can write a corrected version
of the previous program that guarantees this temporal constraint:

public static void main(String... args) throws InterruptedException {

final File f = new ...;

Thread t = new Thread(new Runnable(){

public void run(){

f.open();

}

});

t.start();

t.join();

f.write("content");

f.close();

}

Now, suppose we want to model an object that is responsible for copying the content
from one file to another, i.e., reading the content from a file and writing it to the other.

@Protocol("copy*")

public interface FileCopy {

public void copy(@Usage("read")File f1, @Usage("write")File f2);

}

public static void main(String[] args) {

6

1. INTRODUCTION 1.3. Proposed Solution

File f1 = new ...;

File f2 = new ...;

FileCopy fc = new ...;

f1.open();

f2.open();

fc.copy(f1, f2);

f1.close();

f2.close();

}

The FileCopy interface contains a copymethod, taking two File objects as parameters.
This method is responsible for reading the content from the first file f1 and copying it to
the second file f2. In order to ensure that any implementation of FileCopy obeys these
constraints we use the annotations @Usage("read") and @Usage("write") annotations
respectively on each argument.

Considering the main method in the example above, we create two files, f1 and f2

as well as FileCopy object, fc. Initially, we need to open both files to start copying and
this is accomplished by calling the open open function. Copying the content from f1 to
f2 is made by calling function copy on fc, passing both files as arguments. Lastly, we
close both files by calling close on both. From our analysis on this program, we can
conclude that fc is used as copy, f1 is used according to open;read;close, while f2
is used according to open;write;close. Although the behaviors exercised upon the
files do not exactly match the ones that are specified in the File interface, they are still
considered safe as we will see.

Now, suppose we try to copy the content of a file to itself:

public static void main(String... args){

File f1 = new ...;

FileCopy fc = new ...;

f1.open();

fc.copy(f1, f1);

f1.close();

}

In our programming model, we impose that the behavior that is exercised on each ar-
gument must not interfere with one another, i.e., they must be independent. Therefore,
the usage given to f1 by calling copy is read | write, since it is both the source and
destination files, indicating that read and write must be independent. However, the
protocol specification in the File imposes a choice between these two methods, i.e., af-
ter opening the file, the protocol is read & write meaning that only one of these two
methods may be called. Thus, this program is deemed unsafe by our type system.

As discussed previously, we extend the work of [Par11] by including support for
object type variables. This requires careful treatment regarding possible aliasing as well

7

1. INTRODUCTION 1.3. Proposed Solution

as ensuring that the usage of the fields of a class follows what is specified for each type.
In our approach, object ownership consists in every object reference being exclusively
held, i.e., there is only a single reference being used for any object. Our approach to
control aliasing is then based on behavioral types that embody this notion of exclusive
ownership of an object. Consider the scenario in which file f2 is an alias to f1:

public static void main(String[] args) {

File f1 = new ...;

File f2 = f1;

f1.open();

f2.read();

f1.close();

}

In this case, the example would not be considered type safe since assigning f1 to f2

causes loss of ownership of the former, i.e., the only reference that can be used is f2.
Ensuring correct class field usage follows an assign-then-use behavior: after initial-

izing, each field must be used as was prescribed in its type. Consider an adaptation of
File interface to allow concurrent writing, as follows:

@Protocol("open; (reset | write); close")

public interface File {

public void open();

public void reset();

public void write(String content);

public void close();

}

public class FileImpl implements File {

private String contents;

public FileImpl(String cont){ contents = cont; }

public void open(){}

public void reset(){ contents = ""; }

public void write(String content){ contents = content; }

public void close(){}

}

In this implementation, allowing write to be called concurrently with reset may result
in concurrent assignments on the contents field, representing a possible race condition,
thus violating the assign-then-use behavior described previously. Therefore, the imple-
mentation FileImpl is not considered type safe, as it is not able to support concurrent
calls to write and reset as was specified in the File interface.

Our solution then consists in the implementation of a behavioral type system, in-
cluding the concurrent behavior extraction algorithms and subtyping algorithm based

8

1. INTRODUCTION 1.4. Contributions

on a labeled transition system. Our type system will be implemented in the Scala multi-
paradigm programming language and due to the interoperability between Scala and
Java, we are able integrate our type system into Java development by using the Anno-
tation Processor and Compiler Tree API, developing a custom annotation processor that
converts Java source to our core representation, upon which we check the correctness
properties addressed by our type system. The process of checking a program is done af-
ter the parsing of source files and the feedback from the typechecker is given to the user
by using javac standard messaging facilities.

1.4 Contributions

In this section, we present a summary of what was accomplished with this work, high-
lighting our main contributions. Our main goal was to design a behavioral type system
targeting the Java programming language, building on the work done in [Cai08, Mil08,
Par11, CS13], by including support for protocol specification at the method declaration
level, specifying finer grained contracts about the behavior of parameters and returned
objects, object ownership and an object-based concurrency model.

A behavioral type system with support for ownership types

In [Par11] an object-oriented language with concurrency primitives was developed, al-
lowing to verify correct object usage against a protocol specification, however, not sup-
porting any form of aliasing.

Our work extends the approach of [Par11], while building on some key notions pre-
sented in [Cai08, CS13], providing support for ownership types, so as to account for the
construction dynamic data-structures. We provide a way to annotate method declara-
tions that state contracts between the interface and possible implementations, as well as
support for the Java concurrency model.

Application of the behavioral type system to a mainstream language

Our prototype implementation of the type system targets a mainstream language, namely
Java, and may help to disseminate the main ideas around behavioral separation types.
Our application to Java is made possible by the use of standard Java tools, guaranteeing
full integration with the development of Java programs. The developed type system is
invoked upon compiling the source code, hence it can be used as a tool without extensive
configuration.

Furthermore, the specification of usage protocols in interfaces and methods contributes
for providing meaningful information to programmers about how to safely use the be-
haviorally annotated interfaces. The expressiveness of usage protocols is such that it will
allow to distinguish synchronization or independence between methods.

9

1. INTRODUCTION 1.5. Outline

1.5 Outline

In this chapter, we introduced the initial motivation for our work, including an initial
description of previous work upon which we base our development. We then provided
an initial example of the proposed solution, to give a general feel of how it is used and
how does it relate to Java development, followed by the main contributions of our work.

In Chapter 2, we will introduce base techniques used in this dissertation. We begin by
introducing Spatial-Behavioral types, the theoretical basis of our work, followed by other
background approaches such as Separation Logic, that aims to reason about programs
that manipulate memory, and Session Types, a type-based approach that aims to verify
correctness properties of concurrent programs that communicate via message passing.

Afterwards, in Chapter 3 we give a brief overview of other approaches that also aim
to verify correctness properties in concurrent and object-oriented programs, focusing on
ownership control and protocol conformity.

In Chapter 4 we will define our behavioral type system, some auxiliary algorithms to
the system, followed by an explanation of each of the typing rules.

Afterwards, in Chapter 5 we present the technical details of our solution, explaining
how the verification of a Java program is done, from development to the verification
itself. We use a rather simple example to highlight the main features of our solution. We
then describe a more complex example consisting of the annotation and verification of
Java’s List interface. We will discuss a possible usage protocol for this interface, and
provide two implementations using different programming idioms. This example will
serve to explain sensitive implementation details regarding some familiar constructions
that are not possible under our ownership model.

Finally, in Chapter 6 we give some concluding remarks about the work that was done
in this dissertation, discussing some possibilities of future work.

10

2
Background

In this chapter, we present some base techniques used in this thesis. We start by describ-
ing Spatial-Behavioral Types (SBT) [Cai08], from which our work builds on, which mod-
els systems in a distributed object core calculus based on the π-calculus [MPW92]. Next
we overview the fundamental concepts of Separation Logic (SL) [Rey02], an extension of
Hoare logic to reason about heap allocated data-structures. We then describe an extension
of SL to concurrency — Concurrent Separation Logic [O’H04]. (Concurrent) Separation
Logic closely relates to SBT by attempting to statically control reference aliasing, which is
essential to any form of static verification of concurrency control mechanisms. We finish
by referring to Session types [Hon93, HVK98], also related to SBT, as another technique
to discipline concurrent resource usage, via linear constraints. Concurrent Separation
Logic and Session Types are an important resource to this work, since controlling concur-
rent behavior is a challenging task to which the aforementioned techniques have made
significant and related contributions.

2.1 Spatial-Behavioral Types

In this section we present Spatial-Behavioral Types [Cai08], a typing discipline for a gen-
eral distributed, concurrent and object-oriented model, where objects represent both en-
tities as well as resources and types express how they must be used. Any usage given to
an object that does not conform to this specification is erroneous and is liable to make the
system get into an illegal state.

Each object is an aggregate of operations, state and tasks. Object names are passed
around in communication with other objects. Tasks contain code to be run, and can be
executed concurrently with other tasks as long as they are independent, i.e., if they don’t

11

2. BACKGROUND 2.1. Spatial-Behavioral Types

U, V ::= (Types)
stop (Stop)

| U | V (Spatial Composition)
| U ;V (Sequential Composition)
| U ∧ V (Conjunction)
| U◦ (Owned)
| l(U)V (Method)

Figure 2.1: Syntax of Spatial-Behavioral Types

compete for the same resources. Objects can also be composed into networks, where this
composition is denoted as O | O′.

The proposed type system captures essential constraints on resource usage that arise
in concurrent systems. The syntax of types is presented in Figure 2.1 and we now de-
scribe the meaning of each type in terms of expected behavior, relating it to certain prop-
erties of objects. An object satisfies stop if it is idle, i.e., if no operations are running
in it. U | V means that the object satisfies both U and V independently with respect to
resource separation, i.e., behaviors U and V are independent and therefore can be exer-
cised concurrently. An object satisfies U ;V if it satisfies U and V in sequence, i.e., if V is
only satisfied after U . Note that while the previous type represents independent behav-
ior, sequential composition can indicate just the opposite: there is some kind of temporal
dependency when competing for resources, e.g., pushing an element in a stack before
popping it. U ∧ V is satisfied if an object simultaneously satisfies both U and V . An
object satisfies U◦ if it satisfies U , but this view of U is exclusively owned. This means
that the behavior U does not depend on any other on the system, even if there are aliases
to the object. This means that it can, for instance, be stored in the local state. Finally, an
object satisfies l(U)V if it offers a method l that, when an argument of type U is passed,
returns something of type V . Note that the last two described types can be combined
to specify transfer of ownership when passing something as an argument to a method.
For instance, consider an object o that offers a method put(U◦)V , requiring its argument
to be owned. Thus, on the client side, calling o.put(x) causes loss of ownership of x.
However, it could be regained if the type V is U◦.

A subtyping relation for this system is also defined in [Cai08], capturing the natural
substitution principle for behavioral types. For instance, the rule

(A;B) | (C;D) <: (A | C); (B | D)

(which relates to the exchange law of Concurrent Kleene Algebras [HMSW09]) allows us
to derive a rule that expresses interleaving, e.g., (A | B) <: (A;B). Subtyping provides
flexibility to the type system, thus allowing to typecheck more programs, since it defines
how a different behavior than expected can still be used safely.

We now describe the work of [CS13] that builds on the Spatial-Behavioral types to

12

2. BACKGROUND 2.1. Spatial-Behavioral Types

provide rich forms of aliasing and sharing in a concurrent object-oriented setting, fol-
lowed by Featherweight Concurrent Java [Par11] that aims to check concurrent object-
oriented programs by developing a typing algorithm based on Spatial-Behavioral Types
approach.

2.1.1 The Type Discipline of Behavioral Separation

In [CS13], the notion of behavioral separation is introduced as a type-based approach
to discipline interference caused by aliasing and concurrency, building on the notion
of behavioral types that we have presented in Section 2.1. In this work a behavioral
type system is presented, where types bear resemblance in form and meaning to the
ones described in [Cai08], which purpose is to verify the correctness of programs in a
λ-calculus extended with mutable heap variables, records and concurrency primitives,
such as threads and synchronization mechanisms. In this work, program assertions state
behavioral constraints on runtime values instead of properties about the program state,
enforcing type safety with regard to interference, in a concurrent setting where aliasing
can occur, by imposing usage control disciplines.

As in [Cai08], types are a kind of protocol that describe the usage behavior of values.
For example, the type

File , (open : 0 |→ 0); (read : 0 |→ str); (close : 0 |→ 0)

describes the behavior of a file that allows reading once after opening, requiring it to be
closed afterwards; thus, any value that is typed as File must be used exactly as how we
have specified. Notice that the functional type constructor is slightly different from what
was presented previously: U |→ V describes a function that is behaviorally independent
of its argument U and returns a value of type V being passed the proper argument of
type U .

Until now, types only describe single runtime values. In order to express richer con-
straints in program expressions, where multiple different values might be used, the no-
tion of type assertion is introduced. These assertions not only state usage constraints on
the free identifiers of an expression, but also specify fine-grained behavioral dependen-
cies between values. For example, the type assertion

x : U ; y : T

states that x must be used as specified by U and only after can y be used as T . Another
interesting example is the type:

(f : (U |→ V) ; x : U) | y : U.

In this case, both x and y have types that are compatible with the argument type of f .
However, we cannot use x as an argument to the function, since it can only be used after

13

2. BACKGROUND 2.1. Spatial-Behavioral Types

f has been used. Thus, the expression f(x) would not be considered well typed. On the
other hand, the type assertion tells us that y is behaviorally independent of f , fulfilling
the non-interference constraint between functional type of f and its possible argument,
and so f(y) is well typed.

The proposed type system also allows for rich forms of aliasing and sharing by in-
troducing the shared !U and isolated ◦U types. !U types a resource that can be infinitely
used in a separated manner, e.g. U | U , while ◦U states that the value may be safely used
according to U and that this usage is not subject to any other global constraints (which
relates to the previously presented owned type U◦ [Cai08]).

Types for heap variables include primitives that represent usage, writing and reading
capabilities. A freshly allocated heap variable has type var, that denotes any allowed
usage on the variable after allocation. Some constraints are imposed on this usage, as
any variable must first be assigned a value that allows some behavior and only then be
used. As we will see later on, some of our work is based on these notions.

This work presents simple but powerful notions of behavioral separation and, in
novel ways, tackles the problem of dealing with object aliasing and sharing in a con-
current setting, effectively supporting recurrent programming idioms in object-oriented
languages.

2.1.2 Featherweight Concurrent Java

Featherweight Concurrent Java (FWCJ) is a concurrent programming language developed
as an extension to Featherweight Java in [Par11], offering simple primitives for parallel
execution. A type system for FWCJ is developed in [Par11] following closely the spatial-
behavioral types approach, aiming to verify correct object usage in a concurrent setting.

Consider the example shown in Figure 2.2 (taken from [Par11]). Classes are de-
clared in a Java-like manner. The difference is that class headers directly declares the
only constructor together with the class fields. In the example, the only constructor is
Cell(elem:Int) and elem is the only class field. Therefore, calling the constructor with an
integer value as an argument causes elem to be initialized with that same value.

FWCJ interfaces extend Java interfaces with the type that specifies the behavior of ob-
jects. A class implementing an interface must conform to the specified behavior. The be-
havioral specification is done by using construct usage B; where B is a spatial-behavioral
type which syntax resembles the one defined in [Cai08], but adopting a simpler notation
for methods (just its name).

In Figure 2.3 we present a complete example written in FWCJ. The Cell interface de-
clares the get and set methods, offering the behavior specified by (set|get)*, where *

represents zero or more repetitions of the behavior, and CellImpl is simply an imple-
mentation of the Cell interface. The main program is defined with a main block after the
class and interface declarations: a new CellImpl object c is created, initializing its elem

field with 5. The final instruction executes in parallel the set (with argument 6) and get

14

2. BACKGROUND 2.2. Separation Logic

1 class Cell(elem:int) {
2 void set(n:int) {
3 elem = n
4 }
5 int get(){
6 elem
7 }
8 }

Figure 2.2: Class declaration in FWCJ

1 interface Cell {
2 void set(n:int);
3 int get();
4

5 usage (set|get)*;
6 }
7 class CellImpl(elem:int) implements Cell {
8 void set(n:int) {
9 elem = n
10 }
11 int get(){
12 elem
13 }
14 }
15 main{
16 let c = new CellImpl(5) in
17 (c.set(6) | c.get())
18 }

Figure 2.3: Complete example in FWCJ

methods.

The typing algorithm presented in [Par11] aims at statically verifying the correct us-
age of objects, i.e., that objects conform to the behavior specified in the interface. A sub-
typing relation is also defined by means of a labeled transition system: a type τ is subtype
of another type τ ′, if every transition in τ ′ is simulated by a transition in τ . The typing
then consists in analyzing the usage of every object in the program, via a type inference
algorithm, and check if the type declared in the associated interface is a subtype of the
one that is used.

In this work, we aim to extend the approach of [Par11] with support for an object-
oriented concurrency model, ownership types and object type variables as well as fine-
grain protocol specification at the method level. The rest of the chapter focuses on closely
related techniques, namely Separation Logic and Session Types, that address similar chal-
lenges in verifying correctness of concurrent programs.

2.2 Separation Logic

Separation Logic (SL) is an extension of Hoare Logic [Hoa69], proposed by Reynolds
et al. in [ORY01, Rey02]. SL aims to provide a way to reason about imperative pro-
grams that directly manipulate memory, aiming to improve Hoare Logic, in particular

15

2. BACKGROUND 2.2. Separation Logic

{true} x := 3 {x = 3}
{true ∧ y = 2} x := 3 {x = 3 ∧ y = 2}

Figure 2.4: Derivation that fails in the presence of aliasing

P,Q ::= . . . (Program)
x := cons(E) (Allocation)

| dispose E (Deallocation)
| [E] := E (Mutation)
| x := [E] (Lookup)

Figure 2.5: Imperative programming language

with respect to aliasing as can be illustrated by the following example. Consider the
statement x := 3, for which we can obtain the derivation described in Figure 2.4: the
triple {true} x := 3 {x = 3} states that from any state (satisfies true) the statement x := 3

leads to a state where x = 3 is true. Then, starting from a state where y = 2 holds then the
assignment x := 3 leads to a state where x = 3 and y = 2 hold. However, the derivation
fails if x and y are aliases, i.e., if they point to the same memory location.

In Separation logic, usual assertions in Hoare triples are extended with separation
connectives and predicates as well as some useful abbreviations:

• emp denotes the empty heap;

• the points-to predicateE 7→ E′, that denotes a singleton heap that contains one cell,
at address E with content E′;

• the separating conjunctionA∗B states that formulasA andB hold for separate parts
of the heap;

• the separating implication A −∗B states that if the current heap is extended with a
separate part in which A holds, then B holds in such extended heap;

• E 7→ − is shorthand for ∃z.(E 7→ z);

• E 7→ E0, . . . , En is shorthand for (E 7→ E0) ∗ · · · ∗ ((E + n) 7→ En).

Hoare’s simple while language is also extended with statements to manipulate point-
ers through statements that explicitly mutate and read memory, illustrated in Figure 2.5.
Construct x := cons(E1, . . . , En) allocates contiguous memory cells initialized with the
expressions Ei, and stores in x the pointer to the first cell. Statement dispose E deallo-
cates the memory cell with address E. Two new assignment statements are introduced:
[E] := E′ updates the contents of memory cell at address E with content E′; and x := [E]

assigns to x the value at memory cell addressed at E.
Every inference rule defined in Hoare Logic holds in Separation Logic, except for the

constancy rule
{A} P {B}

{A ∧ C} P {B ∧ C}

16

2. BACKGROUND 2.2. Separation Logic

(MUT)
{E 7→ −} [E] := E′ {E 7→ E′}

(DEALL)
{E 7→ −} dispose E {emp}

(ALLOC)
{x = x′ ∧ emp} x := cons(E0, . . . , En) {x 7→ E0{x

′
/x}, . . . , En{x

′
/x}}

(LKUP)
{x = v ∧ E 7→ v′} x := [E] {x = v′ ∧ (E{v/x} 7→ v′)}

Figure 2.6: Inference rules for memory manipulation statements

which allows us to extend a local specification to one containing any assertions that do
not mention names of the program (P). This rule is, nevertheless, unsound in Separation
Logic in the presence of aliasing, as the following example illustrates. If x points to some
unspecified value after assigning value 3 we have that x points to 3, hence

{x 7→ −} [x] := 3 {x 7→ 3}

Then, using the constancy rule, we derive

{x 7→ −} [x] := 3 {x 7→ 3}
{x 7→ − ∧ y 7→ 2} [x] := 3 {x 7→ 3 ∧ y 7→ 2}

since y is not being mentioned by the command [x] := 3. This is clearly unsound when
x and y are aliases. Therefore, the same kind of local reasoning present in Hoare Logic is
not possible in Separation Logic in the presence of aliasing. The ability to reason locally
about programs is regained through the use of the separating conjunction

(FRAME)
{A} P {B}

{A ∗R} P {B ∗R}

which allows to extend the local specification with independent resources. Returning to
the previous example, we may now prove the intended local reasoning as follows

{x 7→ −} [x] := 3 {x 7→ 3}
{x 7→ − ∗ y 7→ 2} [x] := 3 {x 7→ 3 ∗ y 7→ 2}

by applying the frame rule. The conclusion is valid because a situation in which x and y
are aliases is not possible since x 7→ − ∗ y 7→ 2 expresses that x and y are independent.

We now informally describe the rules for the commands introduced in Figure 2.5,
illustrated in Figure 2.6. The inference rule for memory mutating assignment (MUT)
says that if the memory cell at address E contains some unspecified value then, after
the assignment, it contains value E′. The inference rule for memory cell deallocation
(DEALL) states that starting from a singleton heap containing a memory cell at addressE
then, after deallocating it, we are left with an empty heap. The rule for memory allocation
(ALLOC) says that, starting in a state in which the heap is empty, executing the command

17

2. BACKGROUND 2.3. Concurrent Separation Logic

leads to a heap composed of the newly allocated memory cells initialized with the values
Ek{x

′
/x}, where Ek{x

′
/x} is the result of substituting every occurence of x in Ek by a

fresh x′. Finally, the rule for the memory lookup operation (LKUP) states that starting in
a state in which x has value v and the memory cell addressed at E contains a value v′,
then executing the command changes the value of variable x to v′.

Separation logic is useful to reason about shared mutable data structures in the pres-
ence of aliasing. The separating conjunction is a simple but powerful addition to the as-
sertion language as it explicitly describes resource independence. This notion is cen-
tral to guarantee race freedom in a concurrent setting, as discussed in Subsection 2.3.
Some extensions to Separation logic have been proposed, namely Concurrent Separation
Logic [O’H04] presented next. It has also inspired the creation of some verification tools,
for instance, jStar [DP08] is a static analysis tool based on Separation logic for object-
oriented programs written in Java.

2.3 Concurrent Separation Logic

Concurrent Separation Logic (CSL) is a logic proposed by O’Hearn in [O’H04], as an ex-
tension of Separation Logic for concurrent programs. The separating conjunction is one
of the most important primitives in Separation Logic, as it allows to reason about inde-
pendent parts of the heap. This kind of reasoning fits perfectly in a concurrent setting,
in which race freedom is ensured by construction if processes are confined to disjoint
fragments of the heap.

Suppose we add the statement P1 ‖ P2 to the language presented in Section 2.2, in
which both P1 and P2 are executed concurrently. The rule for parallel composition is the
following

{A1} P1 {B1} {A2} P2 {B2}
{A1 ∗A2} P1 ‖ P2 {B1 ∗B2}

and it states that if the two processes act in two separate parts of the heap, their parallel
composition is interference safe, since their effect on the heap is also isolated. To illustrate
this concept, consider the following derivation

{x 7→ −} [x] := 3 {x 7→ 3} {y 7→ −} [y] := 4 {y 7→ 4}
{x 7→ − ∗ y 7→ −} [x] := 3 ‖ [y] := 4 {x 7→ 3 ∗ y 7→ 4}

Race freedom between both processes is ensured since, x 7→ − ∗ y 7→ − states that x and
y are not aliases. On the other hand, a derivation for a racy program such as

{x 7→ − ∗ x 7→ −} [x] := 3 ‖ [x] := 4 {x 7→ 3 ∗ x 7→ 4}

is impossible since x cannot point to disjoint locations of the heap at the same time. Thus,
in the CSL formalism, racy programs do not have valid proof derivations.

18

2. BACKGROUND 2.4. Session Types

P,Q ::= (Processes)
0 (Inaction)

| a(x).P (Input)
| a(x).P (Output)
| (νx)P (Name Restriction)
| P | Q (Parallel Composition)
| P +Q (Alternative Choice)

Figure 2.7: π-calculus syntax

Concurrent Separation Logic introduces a central notion of separation when reason-
ing about concurrent programs that manipulate shared memory, where two concurrent
programs are independent if they act on separate parts of the heap. This view of resource
independence relates to the one in [Cai08], where two behaviors are independent if they
do not compete for the same resources.

2.4 Session Types

A session is a communication protocol between two or more parties, established via a
shared public channel and carried out in a private dedicated channel. Session interac-
tions follow a protocol describing the type and the order of the messages exchanged on
the private channel. These protocols allow to specify alternative behavior, branching
according to the labels of the messages that are exchanged. Session Types, introduced
in [Hon93, HVK98], describe the sequence of messages to be exchanged and their branch-
ing based on labels, in a structured way. We first briefly present the π-calculus in order
to illustrate the Session Types discipline.

2.4.1 π-calculus

The π-calculus was introduced in [MPW92] as an extension of CCS [Mil80]. It is a min-
imalistic language designed to specify and study concurrent systems, focusing on com-
munication. The specification of systems in the π-calculus is very high-level, abstracting
away details that pertain to the real implementation.

We present the syntax for the π-calculus in Figure 2.7. It provides the basic con-
structs to model concurrent interactions. Concurrency is modeled by the construct P | Q,
which denotes a process comprising two active sub-processes P and Q. Communication
is modeled by the input (a(x).P) and output actions (a(x).P), where names can be passed
around. In a process of the form

a(x).P | a(v).Q

a synchronization occurs on channel a, leading to process P{v/x} | Q. Name restriction,
denoted (νx)P , creates a fresh name x whose scope is P . However, since names can be

19

2. BACKGROUND 2.4. Session Types

communicated, the scope of a name may dynamically change. For example, in process

p(x).x(ack) | (νs)(p(s).s(msg))

name s, private to a part of the process, is sent along channel p. Hence, its scope is
enlarged to the whole process. So, the synchronization on channel p leads to process

(νs)(s(ack) | s(msg))

The thread on the left only learns about channel s after synchronization.

The π-calculus is useful to express and verify properties of distributed concurrent
systems at a high level of abstraction. Type systems are among the most popular verifi-
cation techniques for the π-calculus. For instance, [Mil91] addresses the problem of arity
mismatch in communication, i.e., where the number of arguments in an action does not
match the one in its co-action. In [PS96] a type system is proposed that assigns types ac-
cording to the input and output usage of channels. More specialized type systems have
been proposed, e.g., in [CRR02] types that describe the behavior of processes are them-
selves abstract process models, others define a generic framework for π-calculus type sys-
tems [IK04], verify deadlock freedom [Kob06] or analyze the usage of resources [Cai08].

2.4.2 Session Types

A session typing of a π-calculus process involves precisely characterizing the usage of
each channel xi via a session type αi. A typing environment, i.e., a collection of channel
type associations is denoted by ∆. Then, the typing judgment is of the form ∆ ` P which
states that process P is well typed under ∆.

In the following, we give an overview of Session Types adopting the presentation
of [HOP11], for the sake of simplicity. The most basic types are ![α].β, ?[α].β and end,
where α and β are also session types. The first type describes a channel that first outputs
something of type α and then is used as described in β, while the second first inputs
something of type α and then proceeds as described in β. Finally, a channel typed as end
has no behavior and we abbreviate the type α.end simply as α. There is also a notion of
a dual type of a type α, denoted by α that is defined as

?[α].β =![α].β ![α].β =?[α].β end = end

For example, consider the π-calculus process:

pub(x).x(”hi”)︸ ︷︷ ︸
P

| pub(ch).ch(msg)︸ ︷︷ ︸
Q

The main idea is that we type each process individually. Then, the parallel composition
of the two processes is well typed if the channels that occur in both processes have dual

20

2. BACKGROUND 2.4. Session Types

P,Q ::= . . . (Processes)
a / l.P (Selection)

| a . {li : Pi}i∈I (Branching)

α, β ::= . . . (Session Types)
⊕{li : αi}i∈I (Select)

| &{li : αi}i∈I (Branch)

⊕{li : αi}i∈I = &{li : αi}i∈I &{li : αi}i∈I = ⊕{li : αi}i∈I

Figure 2.8: Selection and Branching constructs and (dual) types

types of each other. This is a central notion of the session types formalism. Since the
two types are dual, both processes will perform symmetrical actions and therefore will
always evolve through synchronization on that channel.

Process P is expecting to receive, through pub, a channel that is then used to output
a string. So, the usage given to parameter x is ![string] and therefore the one given to pub
is the input of such channel, typed ?[![string]]. On the other hand, Q sends ch through
the pub channel and then receives a message in ch. So, ch is used according to ?[string].
The argument type of pub is determined by the process that receives in it, shown above.
Thus, in Q, we type pub as the output of the argument type, hence ![![string]]. Therefore,
Q specifies two different usages to ch. The parallel composition of P and Q is, therefore,
well typed since the types for each common channel are dual of each other: pub has types
?[![string]] and ![![string]]; ch has types ![string] and ?[string].

There are other types that allow for richer interactions (cf., [Vas09]). For instance, a
usual situation in this kind of communication is that of a clients’ choice between several
services offered. This notion is referred to as branching and its dual action is selection.
Suppose that we extend the syntax of π-calculus processes with labeled branching and
selection constructs, with their respective session types, as shown in Figure 2.8. A process
of the form a / l.P selects option l offered by a process prefixed at a. On the other hand,
a process of the form a . {li : Pi} offers the options with labels li, behaving as Pi when
chosen. As an example, suppose we have a server that can add two numbers and return
the result or return a number’s symmetric value, encoded as the process

calc . {add : calc(x).calc(y).calc(x+ y), sym : calc(x).calc(−x)}

Then, we type calc as &{add :?[int].?[int].![int], sym :?[int].![int]}. Conversely, the respec-
tive client that only uses the add service, can be encoded as

calc / add.calc(3).calc(3).calc(res)

where calc is typed as ⊕{add :![int].![int].?[int]}. However, the two described types are
not dual to each other. Nevertheless, it should not be mandatory that the client process is

21

2. BACKGROUND 2.5. On Session Types and Concurrent Separation Logic

ready to choose each of the services offered by the server process – in fact, choosing just
one of them is a realistic scenario. Subtyping for session types, as proposed in [GH99],
allows for these kinds of programs to be considered valid. Therefore, considering sub-
typing, we can conclude that the parallel composition of both client and server processes
is well typed.

Session types were originally introduced for describing binary interactions, however
extensions to consider multiparty interaction have been proposed [HYC08, CV10a]. Ses-
sion types have been used outside of the π-calculus setting, such as functional program-
ming [VGR06, GV10], object-oriented programming [GVR+10, CV10b], and in operating
systems design [FAH+06].

2.5 On Session Types and Concurrent Separation Logic

Session Types (ST) is a typing formalism for statically verifying correctness properties
of programs that communicate via message passing. On the other hand, Concurrent
Separation Logic (CSL) is a formal system for reasoning about concurrent programs that
communicate via shared memory. In [HOP11], it is argued that although both of these
formalisms achieve independent reasoning of used resources, be they message channels
or the heap, no formal link has been made between them. This is due to the languages
that are used to model interactions: ST type message channels in π-calculus processes,
while CSL reasons about imperative languages that directly mutate shared memory. In
the aforementioned paper, a relation between ST and CSL is explored.

We now overview simplifications of both formalisms that are proposed in [HOP11] to
simplify comparison, Baby Session Types (BST) and Basic Concurrent Separation Logic
(BCSL).

BST is a stripped-down version of ST, only containing types for input, output and
non-usage (as described in Subsection 2.4). The sequent of the BST typing system has the
form

P .∆

that states that P is well typed under context ∆, where ∆ is a collection of channel type
associations. A subset of π-calculus is used to model processes, containing the inaction,
output, input and composition constructs. A rule worthy of discussion is that of parallel
composition:

P1 .∆1 P2 .∆2

P1 ‖ P2 .∆1 ◦∆2

where ◦ denotes multiset union. For a process in which there occurs synchronization on
some channel, its type in ∆1 should be dual of the one in ∆2. The context that results
from the union ∆1 ◦ ∆2 then denotes a multiset in which two different, but dual types
can occur for said channel. Based on this definition, a context ∆ is consistent if for any
channel name there are at most two occurrences – and when there are two, they must be
dual of each other.

22

2. BACKGROUND 2.6. Summary

(SND)
{k :![α].β ∗ j : α} k!j {k : β}

(RCV)
{A ∗ k : β} P {B}

{A ∗ k :?[α].β} k?j.P {B}

Figure 2.9: Inference rules for BST instantiation

BCSL is inspired on Abstract Separation Logic [COY07] in which the propositions and
primitive commands are abstracted away. In this simplification, primitive commands are
left unspecified. However, some restrictions are imposed. For any two commands c1

and c2, the parallel and sequential composition, c1 ‖ c2 and c1; c2 respectively, must be
defined. Thus, in comparison with CSL, the inference rules for BCSL are fewer. Local
reasoning is retained, as well as the rule for parallel composition showing resource inde-
pendence. On the other hand, in a particular instance of BCSL, additional rules may be
defined for each primitive command.

An instantiation of BCSL with BST (BCSL/ST) is then defined, where pre and post-
conditions are typing judgements in BST. The set of commands Com is extended with
primitives for channel sending k!j and receiving k?j.C. Notice that the former construct
does not have the explicit continuation, as in traditional π-calculus processes. This is the
case because k?j.C binds j in P , whereas the continuation of k!j does not and can be
expressed by the sequential composition ;. Specific inference rules for both constructs are
presented in Figure 2.9. A translation from BST to BCSL programs is then defined, de-
noted by 〈〈P 〉〉, and the soundness and completeness theorem of this transformation states
that P .∆ is provable in BST if and only if {∆} 〈〈P 〉〉 {emp} is provable in BCSL/ST.

The relation between the two formalisms provides some initial insights on how can
we reason about message passing programs in a local and resource independent way. In
conclusion, the relation that was explored in [HOP11] paves the way for further research
in building the bridge between these two apparently disjoint formalisms.

2.6 Summary

In this section we presented some background techniques of this work. Spatial-Behavioral
Types provide a typing discipline in which one can statically verify the correct usage of
object against a defined protocol with a focus on object ownership. Separation Logic de-
fines a proof system for imperative programs that operate on shared memory, focusing
on resource independence. This notion is essential in a concurrent setting, in which race
freedom is ensured as long as independent resources are used by the various processes.
Finally, we gave an overview of Session Types, a formalism to statically determine cor-
rectness properties in programs that communicate through message passing in a struc-
tured way.

23

2. BACKGROUND 2.6. Summary

24

3
Related work

This thesis will ultimately focus on statically determining, using a behavioral type sys-
tem, if concurrent object-oriented programs respect the the protocols that types prescribe,
with a focus on ownership and protocol conformity. In this chapter we overview other
approaches that also aim at verifying correctness properties in concurrent and object-
oriented programs, focusing on ownership control and protocol conformity. We first
describe ownership types [CPN98, CD02] that address the problem of object aliasing
resorting to a notion of ownership, similarly to our type system. Finally, we overview
the typestate concept that aims at statically verifying legal method calls on objects, con-
sidering its state, a notion of protocol conformity which relates to our approach. As an
example, we overview the fundamental concepts of the typestate-oriented programming
language Plaid [ASSS09], that considers a high-level view of object state.

3.1 Ownership Control

Aliasing is one of the most common features in mainstream object-oriented languages. In
fact, without aliasing, implementing most data structures and design patterns would be
hard. However, if changes are made to an object, other objects that refer to it may not be
aware of these modifications. Thus, reasoning about object-oriented programs becomes a
bigger challenge. Statically verifying correction and object encapsulation is hard because
of the inability to determine what objects are aliases of others.

Based on the notion of ownership types introduced by in [CPN98], Drossopoulou and
Clarke developed a type system [CD02] in order to tackle the problem of aliasing control.
In this system, every object has an owner that can be another object or a special constant
world that denotes the entire system. Notice that if an object A owns an object B, it

25

3. RELATED WORK 3.1. Ownership Control

doesn’t necessarily mean that A holds a reference to B.

In object-oriented programs, the owner relationship forms a graph with world as its
root. Consider the example depicted in Figure 3.2, where W denotes world, and the
remaining nodes denote distinct objects. An edge from a node N to M means that N
owns M . So we can generalize ownership by stating that an object A owns B if all paths
from world to B go through A. Therefore, no object outside of owner A can have a
reference to B. So, for instance, we can actually conclude that A also owns E.

A Java extension was proposed in [CD02] to allow owner declarations. These are
made in a way that resembles the declaration of generic types in regular Java classes.
Consider the example of a simple linked list presented in Listing 3.1. As with generic
types, we declare two different types of owners for the linked list: the first is the owner
of the list, while the second is the owner of the data that is stored in the list. Notice that
the owner of each link is the list itself.

Another important concept is that of an effect. In this proposed extension, each method
is accompanied by an effect clause, that represents the boundaries - in the ownership
graph - of which objects are accessed by it. This information is very useful, for in-
stance, when determining if two methods can be called concurrently, without the need
for any synchronization. There are two kinds of effect clauses: writes(w1, . . . , wn) and
reads(r1, . . . , rm), where both wk and rk are objects. Additionally, finer-grain specificity
is possible when describing where a method reads or writes in the ownership graph,
through the use of the under(o[.n]) clause, where o is an object and n is an optional
integer that represents the depth of the ownership tree that will be manipulated. For
instance, under(o) states that a method will operate on o and the objects it owns, while
under(o.1) states that it will operate solely on objects owned by o. A method with a
writes(w1, . . . , wn) clause can write in an object x if is a descendant of wi in the owner-
ship graph, for some i. Conversely, a method with a reads(r1, . . . , rm) clause can read
an object x if it is a descendant of wi or rj , for some i or j. In conclusion, two methods
write in disjoint parts of the ownership graph, then there can be no interference. In the
proposed system, the objects that can be used in these clauses are this or any object field.

Ownership types also allow us to determine when one object is an alias to another.
Suppose we have two lists, declared as List<this,world> and List<this,this> in class
Main. We could conclude that they could never be aliases of each other, since the types
that own the data of both lists are different.

In this work, Java-like classes are annotated in a similar way as generic types, with
zero or more names that represent the owners of the objects instantiated from that class.
With these annotations we are able to conclude if two objects can be aliases, given their
owners. However, this translates to some annotation burden for the programmer. In our
approach, we apply an linear model of ownership, in which every object can have just a
single reference to it being held.

26

3. RELATED WORK 3.2. Typestate

1 class List<owner, data> {
2 Link<this,data> head;
3

4 void addData(Data<data> d) writes under(this){
5 head = new Link<this,data>(d, head);
6 }
7 }
8

9 class Main<> {
10 List<this,world> list;
11

12 Main() writes this {
13 list = new List<this,world>;
14 }
15

16 void populate() writes under(this.1){
17 list.add(new Data<world>);
18 list.add(new Data<world>);
19 }
20

21 static void main() writes under(world) {
22 Main<> main = new Main<>;
23 main.populate();
24 }
25 }

Figure 3.1: An example demonstrating ownership types

W

A B

C D

E
Figure 3.2: Ownership graph

3.2 Typestate

Object-oriented programming is a paradigm that has gained popularity over the years as
it allows modeling real-world entities, but also to create reusable and modular libraries
of abstract entities. However, these libraries are complex aggregates of objects and state.
In mainstream languages, there is no way to enforce the correct order of method calls - or
at least, how to let the user know it is not being respected. Any information about correct
usage of a library is (if it exists at all) present in the documentation.

Typestate is a programming language concept that describes which operations are
available under certain contexts, as well as how these operations change them. While
traditional types determine what operations are permitted and how they are invoked,
typestates determine a subset of these operations made available under a given con-
text [SY86].

In the object-oriented paradigm, with the use of typestates we can effectively specify

27

3. RELATED WORK 3.2. Typestate

1 state File{
2 public final String filename;
3 }
4

5 state ClosedFile extends File{
6 public void open() [ClosedFile >> OpenFile]{}
7 }
8

9 state OpenFile extends File{
10 private FilePtr filePtr;
11

12 public void read(...) {}
13 public void write(...) {}
14 public void close() [OpenFile >> ClosedFile]{}
15 }

Figure 3.3: File example in Plaid

1 if(file instate OpenFile){
2 file.write();
3 ...
4 }

Figure 3.4: Checking state in Plaid

which methods are available at each state and statically check if a certain method call in
the program is allowed. A well-known example is that of files. Reading and writing from
a file is only allowed after having opened it. After that, we may close the file and in this
state, we can only (re-)open it.

Plaid is a typestate and object-oriented, concurrent programming language proposed
by Aldrich et al. [ASSS09]. Its syntax resembles that of Java, but in Plaid typestates are
first-class abstractions. Instead of being modelled by classes, objects are modelled by
their changing states. Despite this difference, inheritance mechanisms for states are equal
to that of Java’s classes. Each object state has its own set of fields and operations that may
cause the state to change. However, a state change in an object can only occur to any other
subtype of its superstate.

An example containing the specification of a File API in Plaid is presented in List-
ing 3.3. The first state, File, is a base state that contains the fields that any File object
contains, in any state. ClosedFile extends the File state and offers the open operation.
This operation causes a state transformation to a new OpenFile state, through the tran-
sition annotation [ClosedFile >> OpenFile]. This new state also extends the File state,
declaring a new field for the actual file pointer. In this state, we can now read from and
write to the file. Notice that both read() and write() operations do not have a transi-
tion annotation and therefore do not change the state.

Dynamically testing if an object is in a given state is achieved throught the use of
the instate operator, that resembles the Java counterpart instanceof, presented in List-
ing 3.4.

There is still the case where objects are passed as arguments to functions. For example,
consider the Plaid code in Listing 3.5. The only way for the read() call to be valid is if

28

3. RELATED WORK 3.2. Typestate

1 int readFromFile(ClosedFile f){
2 openFile(f);
3 int x = f.read();
4 f.close();
5 return x;
6 }

Figure 3.5: Invoking another function with an object as argument

1 void f(A x){
2 ...
3 g();
4 }

Figure 3.6: Aliasing in Plaid

the openFile method actually opens the file, i.e., leaves it in the OpenFile state. This
is achieved by declaring the method as void openFile(ClosedFile >> OpenFile f){},
meaning that there is the guarantee that starting in the ClosedFile state, f will be left
in the OpenFile state after the function returns.

Aliasing and Permissions

The same aliasing problems, described in the Section 3.1, are present in Plaid as tracking
the state of aliased objects is undecidable [BBA08]. To illustrate this problem, consider
the example in Listing 3.6. It could be the case that x is stored in a global variable and,
afterwards, g() does something to change the state of that global variable, and tracking
the state of x becomes harder.

To cope with aliasing, both concerns of aliasing and access control are combined. In
Plaid, they consist in variable modifiers, that can occur in state fields or function argu-
ments much like public and final, and they indicate in what ways an object can (or
cannot) be aliased. We now present each of the modifiers and their meaning.

pure references provide read-only access to the object, stating nothing about the quan-
tity and quality of other references;

unique means that there are no aliases to that object and therefore, the owner of the
object has exclusive access to it;

full guarantees not only unrestricted state modification to the object’s user, but also
that any other reference to it must be read-only;

immutable states that unlimited and immutable aliases to this object can occur, but its
state is never modified;

shared is the least restrictive permission. It gives modifying permissions, but states
nothing about other types of aliasing to the object;

none is a reference that does not allow any kind of access, be it modifying or not. This is
useful for modeling loss of ownership.

29

3. RELATED WORK 3.3. Summary

These modifiers give a clear semantics on how object references are shared and used,
also in a concurrent setting. In Plaid, a dataflow graph can be constructed using these
permissions, statically determining data dependencies.

Plaid is a programming language that implements the notion of typestate first pre-
sented in [SY86], handling state changes as a higher order operation on objects. To this
end, methods are annotated with the state changes that will be made on the parameters
when the same method is invoked. This relates to our approach of annotating method
declarations in Java interfaces, specifying the behavior that is exercised on the arguments.
However, in Plaid, since state is a first class abstraction as checking the current state of an
object is performed through the use of a dynamic operator. In our approach, there is no
notion of state, since the conformance of usage protocols is done statically.

3.3 Summary

In this chapter, we gave an overview of related approaches to static verification of con-
current object-oriented programs. In [CD02], ownership types provide a way to statically
check correctness and resource independence in the presence of aliasing. Disjointness in
owner types of objects allows to statically determine aliasing properties, while the dis-
jointness in methods effects determines that there is no interference between them. Fi-
nally, typestate [SY86] extended the traditional types with a notion of context (or state),
which determines what operations are available. A typestate-oriented programming lan-
guage is proposed in [ASSS09], in which changes in object state are first-class abstrac-
tions. It allows constraint definitions on what forms of aliasing are permitted, as well as
what state changes occur when a method uses an object parameter. State changes dynam-
ically and, as such, the programmer must use primitives to check what state an object is
in.

30

4
Core Language and Type System

Our work targets the verification of Java programs, namely to to verify correctness prop-
erties of programs with respect to usage protocol definitions, taking into account aliasing
and the Java concurrency model, where the definition of usage protocols is possible in
Java through the use of the annotation API.

To this end, we have identified a core fragment of Java focusing on some basic con-
structs, such as conditional, loops, method calls and assignments, and constructs that
represent thread creation, starting and joining.

With the purpose of checking and ensuring correct object usage, we have defined a
behavioral type system upon the aforementioned core fragment of Java, inspired by the
work presented in [Cai08, Par11, CS13]. In our development, types describe the usage
that can be exercised upon objects, and essentially these types are compared to the pro-
tocols that are declared in interfaces and methods. The comparison between types is
supported by a subtyping relation, so that it is still possible to accept a different proto-
col than expected, therefore widening the number of programs addressed by our type
system.

In this chapter, we will introduce our programming model, providing an overview
of the syntax and semantics. Next, we present the developed type system, starting by
presenting the intuitive meaning of each type. We discuss how we can infer concurrent
behavior from a type, presenting an algorithm that aims to determine, given a behavioral
type, what is the concurrent behavior that is exercised by different threads. Afterwards,
we present each of the typing rules, providing a detailed description of its meaning. We
conclude with some remarks regarding our solution.

31

4. CORE LANGUAGE AND TYPE SYSTEM 4.1. Syntax

P ::= D main{s} (Program)
D ::= (Definition)

interface I usage µ {Md} (Interface)
| class C(x : T) implements I {M} (Class)

µ ::= (Protocol)
µ ;µ (Sequence)

| µ | µ (Parallel)
| µNµ (Choice)
| µ◦ (Owned)
| µ∗ (Repetition)
| µ! (Replication)
| m (Method)

T ::= int | string | boolean | void | Id | Id.µ (Basic Types)

Md ::= T m(x : T) (Method Signature)

M ::= (Method)
T m(x : T) {s [return e]} (Standard Method)

| sync T m(x : T) {s [return e]} (Sync Method)

Figure 4.1: Core Syntax (Definitions)

4.1 Syntax

In this language, a program is a set of interface and class definitions, accompanied by a
main entry point. The top-level syntax for definitions is given in Figure 4.1.

Interface definitions are extended with the specification of a protocol that describes
how objects implementing this interface should be used. The specification of a usage pro-
tocol is done according to the protocol language presented in Figure 4.1, which includes
the operators presented in [Cai08, Par11]: method name m, sequential usage µ ; µ, be-
havioral independence µ | µ, choice µNµ, behavioral ownership µ◦, sequential repeated
usage µ∗ and replicated usage µ!.

Classes are defined in a Java-like manner and must implement an interface. Similarly
to [Par11], a class declaration also defines its fields and the only constructor that initial-
izes all of them and method definitions also follow that of Java.

In this language, we define statements and expressions, the former of which do not
denote any value. The body of a method is a block of statements, followed by a return
statement (if the return type of the method is not void). The syntax of statements and ex-
pressions is defined in Figure 4.2. We include some constructions such as the method call
x.m(e), assignment x = e, the conditional if e then s else and while loop while e do s.
We have added two constructs that represent the two main operations on Java thread
objects: start(t) starts the execution of thread t, and join(t) suspends the execution of

32

4. CORE LANGUAGE AND TYPE SYSTEM 4.1. Syntax

s ::= (Statement)
x.m(e) (Method Invocation)

| x = e (Assignment)
| if e then s else s (If)
| while e do s (While)
| start(t) (Thread Start)
| join(t) (Thread Join)
| thread t = thread(s) (Thread Decl)
| T x (Local Variable Decl)
| s (Statement Block)

e ::= (Expression)
x (Identifier)

| v (Value)
| x.m(e) (Method Invocation)
| e op e (Binary Operator)
| new C(e) (Object Creation)

v ::= n | true | false | null | STRING (Value)

Figure 4.2: Core Syntax (Statements and Expressions)

the current thread until t finishes execution. Finally, we include the local variable decla-
ration T x, where T indicates the type associated with name x. The syntax for our core
language borrows from Java syntax in some constructs, while some of the constructs of
the latter are mapped to our own through the use of source code analysis. For instance,
we gather thread typed variables that are declared and intercept calls to start and join

and map them to our own start(t) and join(t) constructs. Also, a declaration of the form
int x = 1; is mapped to int x; x = 1 in our language.

Expressions always denote some value and as expected, together with basic values,
we include the identifier, method call, binary operation and object instantiation expres-
sions. Notice that the method call is included in both expressions and statements. As in
Java, methods returning any type can be called and not have their results stored some-
where, case in which we will not perform any usage upon the result. There are cases
however, where this is not permitted since the result of a method might require some
mandatory usage.
The available types include the usual basic types, int, boolean, string and void as well

as type identifiers Id that refer to the type of an interface or class. We extend this set of
types, with a variant of the type identifier, Id.µ. This type allows us to specify a portion
of the usage that is associated with type Id. This is useful when we want to impose some
constraints on the usage of an object, e.g., when it is passed as an argument to a method.
As an example consider, the following method declaration that reads from a file that is
passed as a parameter:

public void readHelper(File.read! f);

33

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

1 interface I usage m {
2 void m(X.m1;m2 arg)
3 }
4

5 class C implements I {
6 void m(X arg) {
7 arg.m2();
8 arg.m1();
9 }

10 }

Figure 4.3: Contracts in Interfaces

We extend the File type with the read! annotation that constrains the usage of f,
stating that is to be used as a read-only file. We can then be sure that, in the context of a
method call, any file that is passed as an argument to this method will only be used as
read!.

Considering this extension to the type identifier, the binding between a class and the
interface it implements is more than just implementing the methods that are declared
in it. There are contracts that need to be respected in the implementation regarding the
declaration of the restricted capability of what is returned as well as the behavior exer-
cised upon the parameters. Consider the program presented in Figure 4.3. The program
should not be valid, as the implementation of method m does not fulfill the stipulated
contract in interface I that arg must be used according to m1;m2.

There is a constraint regarding the programs that are addressed by our type analysis,
related to thread usage throughout the program. Simply put, threads are a kind of local
linear resource, which we must use after having being created. Thus, we separate thread
declaration from regular variable declaration with the construct thread t = thread(s),
where we require that thread t is initialized upon declaration. Additionally, we require
that every thread is started and joined exactly once in the scope following its declaration.
The reason for this constraint is that we need to know the thread’s body as well as the
entire lifetime of the thread to be able to precisely track down concurrent behavior for
each resource. So, if a thread lives longer than the scope of the method, we are unable to
know what behavior is still being exercised after a method returns. Programs that do not
conform to this restriction are discarded by our type system, as we will see later on.

4.2 Type System

In this section the developed type system will be presented and discussed, starting by
the type language. We introduce and define a subtyping relation on types, that defines
how a behavior that is different from the expected one can safely be used. We also define
some auxiliary functions on types, such as the concurrent behavior extraction function,
and proceed by giving a detailed description of the purpose of each rule.

34

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

τ, σ ::= (SBT)
stop (Stop)

| start(t) (Thread Start)
| join(t) (Thread Join)
| set(τ) (Reference write)
| τ ; τ (Sequential)
| τ | τ (Parallel)
| τ N τ (Choice)
| τ∗ (Repetition)
| τ ! (Replicated)
| τ◦ (Owned)
| m : τ → σ (Method)
| τ ⇒ σ (Class)
| γ (Simple type)

γ ::= int | boolean | string (Basic types)

Figure 4.4: Core Syntax (Spatial-Behavioral Types)

The intent of this behavioral type system, where types describe the way an object is
used, is to check and ensure that every object in a program is used in a way such that is
compatible with its associated protocol. To this end, the system is composed of several
typing rules that check correct usage for each construction - from expressions to classes -
of the presented programming language model, serving as building blocks to ensure the
correctness of an entire program. From each construction, we extract the usage of each
named resource, comparing it to its declared usage.

4.2.1 Behavioral Types

The syntax for types is presented in Figure 4.4. As previously mentioned a behavioral
type τ describes the usage pattern of an object. Most of the types bear a resemblance
in form and meaning to the ones that were presented in Section 2.1, with the addition
of new types to account for the behavior that is exercised on Java threads, and, in turn,
the behavior they themselves exercise in other objects. We will now proceed to precisely
describe the meaning of each type.

The stop type indicates that the object is never used. The method type m : τ ⇒ σ

describes an object that is used by calling a methodm that takes as parameters objects that
are used described by each τi, respectively, and returns an object that is used according
to the behavior described by σ.

The start and join types are two additional types that were created in order to ex-
tract concurrent behavior exercised by threads. The start(t) type describes an object that
will be used by thread t. This type serves as a marker that indicates where the possi-
bly concurrent behavior of t will begin, to help determine which behavior is activated
concurrently with the one exercised by t. Analogously to the start type, the join(t) type

35

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

indicates where the point in which thread t stops using the object. In conjunction with
the previously presented type, we are able to infer the behavior that is exercised concur-
rently with whatever behavior exists in-between occurrences of the start and join types
(for the same thread).

The τ1 ; τ2 type describes an object that is used according to τ1, and only after that as
prescribed by τ2. While the previous type enforces a kind of temporal dependence on
the usages τ1 and τ2, the parallel type is τ1 | τ2 is agnostic of any dependence that exists
between τ1 and τ2. It then describes the behavior of an object that is used according to τ1

and τ2, in any order. This means that the behaviors that the τ1 and τ2 types capture do
not interfere with each other and so both may be activated in parallel. The choice type
τ1 N τ2 describes an object that is either used as stipulated by τ1 or τ2, and this choice is
made by the client using the object.

The τ◦ type types an object whose usage described by τ is completely owned. This
means that there is no other reference to the object being held anywhere else in the pro-
gram. We use this type in order to impose a kind of linearity constraint on aliasing. By
default, basic types, method call results and object instantiations are owned. Basic types
are owned since they are read-only values and are stateless, call results since in order to
return something we must completely own it, and object instantiation due to the fact that
every freshly created object is unique, hence, independent from any other.

The set(τ) type indicates that we perform an assignment on the object, with an object
that should be used as τ . This type is used to keep track of the many possible assignments
that exist on a resource and allows us to check for possible races in concurrent accesses
to the object.

The τ ⇒ σ type is the type associated to each class indicating that it has a set of fields,
each one used as described by each behavioral type τi, respectively. The instantiation of
this class then returns an object that should be used as prescribed by the type σ.

Having presented the intuitive meaning of types, we proceed to the describe the rea-
soning behind the concurrent behavior analysis from an object’s behavioral type, i.e.,
from the information we have about the delimitation of the behavior of a thread, how
we obtain a type that states what behavior is activated in parallel with whatever use the
thread makes of the object.

Analysis of Concurrent Behavior

Types related to threads, start and join, only specify the beginning and end of the behavior
that is exercised by a single thread. So, intuitively, the behavior that occurs between,
or concurrently with these limits is actually activated in parallel with the behavior that
the thread exercises on the object. To this end, we have defined a function that given a
behavioral type τ , a thread name t and the usage that t makes of an object o, τo, extracts
the behavior that occurs between start(t) and join(t) in τ and maps it to a type τ ′ such
that whatever behavior exists between the lifetime of the thread is specified concurrently

36

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

with τo. For example, suppose we type an object o with (we use the short-hand notation
m to express the behavioral type m : ∅ → stop):

(m1 ; start(t) ; m2) ; (m3 ; join(t) ; m4).

We can see that m2 occurs after the thread t is started, and that m3 occurs before it is
joined. So, this behavior should run concurrently with whatever behavior t exerts on o,
and let us call that behavior τo. The behavioral type of o should then be mapped to

m1 ; ((m2 ; m3) | τo) ; m4

and note that m1 and m4 occur in instants that do not interfere with t so, the temporal
dependencies between these behaviors and the lifetime of the thread are maintained.
There are, however, cases in which we do not determine the most precise type as we will
explain later on, and approximate in a sound way the intended mapping.

In order to present the definition of the function that realizes the behavior extraction,
we first present some auxiliary functions. We define some functions that allow us to
determine the set of thread names that are started or joined in a behavioral type.

Definition 4.2.1 (Thread names). We inductively define on types the functions st(τ) and jn(τ),
that extract the set of thread names that are started or joined in τ , respectively, as follows. Addi-
tionally, we define the set of all thread names occurring in τ , th(τ), as st(τ) ∪ jn(τ).

st(start(x)) = {x}

st(τ1; τ2) = st(τ1) ∪ st(τ2)

st(τ1 | τ2) = st(τ1) ∪ st(τ2)

st(τ1 N τ2) = st(τ1) ∪ st(τ2)

jn(join(x)) = {x}

jn(τ1; τ2) = jn(τ1) ∪ jn(τ2)

jn(τ1 | τ2) = jn(τ1) ∪ jn(τ2)

jn(τ1 N τ2) = jn(τ1) ∪ jn(τ2)

We now move on to the definition of the algorithms used to analyze concurrent be-
havior in behavioral types. Firstly, we define algorithm C, that, given a thread name t and
a type τ , extracts the behavior that occurs before, concurrently and after an occurence of
t, either start(t) or join(t).

Definition 4.2.2 (Algorithm C). Given a behavioral type τ and a thread name t, we define
algorithm Ct(τ) on types by case analysis, as described in Figure 4.5.

37

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

Ct(start(t)) = (stop, stop, stop)

Ct(join(t)) = (stop, stop, stop)

Ct(τ1; τ2) =

{
(τ ′, π, τ ′′; τ2), if t ∈ th(τ1) ∧ Ct(τ1) = (τ ′, π, τ ′′)

(τ1; τ ′, π, τ ′′), if t ∈ th(τ2) ∧ Ct(τ2) = (τ ′, π, τ ′′)

Ct(τ1 | τ2) =

{
(τ ′, π | τ2, τ

′′), if t ∈ th(τ1) ∧ Ct(τ1) = (τ ′, π, τ ′′)

(τ ′, π | τ1, τ
′′), if t ∈ th(τ2) ∧ Ct(τ2) = (τ ′, π, τ ′′)

Ct(τ1 N τ2) =
{

(γ1 N γ2, π1 Nπ2, σ1 Nσ2), if t ∈ th(τ1) ∩ th(τ2) ∧ Ct(τi) = (γi, πi, σi)

Figure 4.5: Algorithm C

Btτ (σ) = σ, if t 6∈ th(σ)

Btτ (τ1; τ2) =

Btτ (τ1); τ2, if t ∈ st(τ1) ∩ jn(τ1)

τ1;Btτ (τ2), if t ∈ st(τ2) ∩ jn(τ2)

(γ1; ((σ1; γ2) | τ);σ2) | π1 | π2, if t ∈ st(τ1) ∩ jn(τ2) ∧ Ct(τi) = (γi, πi, σi)

Btτ (τ1 | τ2) =

{
Btτ (τ1) | τ2, if t ∈ st(τ1) ∩ jn(τ1)

τ1 | Btτ (τ2), if t ∈ st(τ2) ∩ jn(τ2)

Btτ (τ1 N τ2) =

Btτ (τ1) NBtτ (τ2), if t ∈ st(τ1) ∩ jn(τ1) ∧ t ∈ st(τ2) ∩ jn(τ2)

Btτ (τ1) N τ2, if t ∈ st(τ1) ∩ jn(τ1)

τ1 NBtτ (τ2), if t ∈ st(τ2) ∩ jn(τ2)

Figure 4.6: Algorithm B

We can now define the main behavior analysis algorithm.

Definition 4.2.3 (Algorithm B). Given a behavioral type σ of an object, a thread name t and
a usage τ that t exercises on the object, we define algorithm Btτ (σ) on types by case analysis, as
illustrated in Figure 4.6.

The first case states that if t does not occur in the thread names of σ, then the result
is exactly σ. For most of the other cases of the algorithm consist in recursive calls for
the inner types for each of the binary operators. The case of parallel composition τ1 | τ2

consists in recursive calls for each of the types. Since a thread cannot be started and
joined concurrently, we can safely assume that the same thread cannot occur in both τ1

and τ2. We apply the same reasoning for the choice type τ1 N τ2, with the exception that
it is possible that a thread can be started and joined in both branches of the type.

The interesting case appears in the sequence type τ1 ; τ2. If a thread is started and

38

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

joined in τ1, then τ2 will remain unchanged since this behavior will surely be exercised
after the thread is joined and therefore will not possibly interfere with the thread’s be-
havior - and we apply the analogous reasoning for τ1. The last case consists of when a
thread is started in τ1 and joined in τ2. The next step is to determine what behavior occurs
inbetween (and in parallel with) the starting and joining of a thread, and produce a type
in which this behavior is |-composed with the behavior of the thread on an object. We
need a way to determine what happens before, in parallel and after the occurrences of t
in both τ1 and τ2, by using algorithm C.

With this information we can now reconstruct the type. So, applying algorithm C to τ1

and τ2 yields two triples (σ1, π1, γ1) and (σ2, π2, γ2). γ1 and σ2 are the behavior that occurs
inbetween starting and joining a thread. So, intuitively, if the behavior of the thread upon
the object is τo, then (γ1 ; σ2) | τo is the expected type containing precisely what behavior
is exercised concurrently within the thread’s lifetime. Now, σ1 and γ2 respectively occur
before starting and after joining the thread, and thus we are able to construct the type
σ1 ; ((γ1 ; σ2) | τo) ; γ2, respecting the temporal dependencies between these types and
the thread’s execution scope. Lastly, π1 and π2 are the behaviors that occur in parallel
with the starting and joining of the thread. The limitation of this approach consists in
how to precisely compose these two types with the previously constructed one and is
related to the inability of the type language to express richer temporal dependencies.
Consider two types τ = m1 ; (start(t) | m2) and σ = (m1 ; start(t)) | m2. Although they
do not have the same meaning, the result of Ct(τ) is exactly the same as that of Ct(σ):

Ct(start(t)) = (stop, stop, stop)

Ct(start(t) | m2) = (stop,m2, stop)

Ct(τ) = (m1,m2, stop)

Ct(start(t)) = (stop, stop, stop)

Ct(m1 ; start(t)) = (m1, stop, stop)

Ct(σ) = (m1,m2, stop)

and so, the temporal dependency between m1 and m2 in τ is lost. Consequently both
types π1 and π2 may or may not be after σ1 and so the conservative and sound way to
correctly place the extracted concurrent behaviors is (σ1 ; ((γ1 ; σ2) | τo) ; γ2) | π1 | π2.

4.2.2 Subtyping

We define the subtyping relation between behavioral types, denoted τ <: σ, that follows
the substitution principle. That is, whenever something of type τ is expected, we can
safely provide something of type σ. Suppose we define a method with an argument such
that we require that the behavior m1 | m2 is exercised upon it. Although this means m1

and m2 can be run concurrently, we don’t actually need to have two threads running in
parallel each calling mi, for instance. Providing a serial behavior m1 ; m2 should also
be valid, since the prescribed parallel composition accepts any execution order - which
relates to the expansion law [Mil89].

Based on the work done in [Par11], our subtyping relation is defined with the help

39

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

of a labeled transition system. A type τ is a subtype of another type σ, if and only if
τ simulates σ, i.e., if σ exhibits a transition to σ′ by some label then τ must exhibit a
matching transition to τ ′, and τ ′ is a subtype of σ′. However, when the behavior of the
supertype reaches the stop type, the subtype must also allow no behavior to be exercised.

In order to grasp the general idea of the subtyping algorithm, we will now move on
to an example. Consider two types τ = m1 Nm2 and σ = m1. τ describes the behavior of
an object that is used by calling either of m1 and m2, while σ describes one that is used
by calling m1. Intuitively, it should be valid if we use an object typed as τ if we use it by
calling m1, since it is one of the branches. Looking at τ , we can see that it has two distinct
transitions, one for each branch:

m1 Nm2
m1−→ stop

m1 Nm2
m2−→ stop.

On the other hand, σ only has one transition m1
m1−→ stop. So we can see that every

transition on σ has a corresponding one in τ . We now need to check if the types after
transition are still in the subtyping relation, i.e., if stop <: stop - and this is true since
both sides of the relation are the same. Therefore, we can conclude that m1 Nm2 <: m1.
However, this is not true for the symmetric case, since m1 Nm2 offers more transition
possibilities thanm1. We present the set of rules that realize the labeled transition system.

Labeled Transition System

The labeled transition system is defined on types in Figure 4.8. The possible labels for
type transitions are also behavioral types and they can be a method call, an assignment,
an owned type, or a basic type usage.

Definition 4.2.4 (Transition on types). τ transitions by a type σ to a type τ ′, if we can derive
τ

σ−→ τ ′ from the rules in Figure 4.8.

Notice that the presented labeled transition system is non-deterministic, since we can
construct a choice type of the form m1 ; m2 Nm1 ; m3, for instance, and we can see that
there are two transitions with matching labels, but to completely different types. Thus
we will have to take into account all transition possibilites when defining the subtyping
relation.

The first three rules, LTS-METHOD, LTS-SET and LTS-BASIC reflect the transition in
which the types match the label, and so all of the types transition to the stop type.

There are two rules defined for the ; operator. The first one, LTS-SEQ, a transition
is made in the left type of the sequence, τ . So the resulting type is the sequential com-
position between the residual type after the transition and the type that occurs after τ . If,
however the τ transitions to the stop type, then we can skip ahead to the continuation,
and this case is represented in the rule LTS-SEQSTOP. So, for instance,m1 ; m2 transitions
by m1 to m2 since m1 transitions to stop (according to LTS-METHOD).

40

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

For parallel composition there are four rules, including symmetric cases. In particular,
LTS-PARL reflects the case in which the left type transitions to some other type, and so
the type evolves to a parallel type in which the left type is the residual after the inner
transition, and the right type remains the same. The LTS-PARSTOPL rule, similarly to
LTS-SEQSTOP, represents the case in which the one of the inner types transitions to the
stop type. Thus in this case, there is a transition to a type that represents the remaining
behavior in the opposite inner type.

The rules for the choice type N are LTS-CHOICEL and LTS-CHOICER. In LTS-CHOICEL,
the type transitions to whatever type remains after performing a transition in the left
branch of the choice. LTS-CHOICER is symmetric to the previous rule, where the transi-
tion is made on the right branch. Notice that since the choice is disjoint, choosing one of
the branches causes the other one to be forgotten.

For repetition types, τ ! and τ∗, we have rules LTS-REPL and LTS-STAR. The repli-
cated type provides behavior to an infinite number of threads. So, the possibility for a
thread to initiate the behavior the type offers must always be available. This notion is
realized in rule LTS-REPL, in which if τ transitions to some type τ ′, then τ ! transitions to
τ ′ | τ !, so that the possibility for a thread to consume behavior τ is always possible. With
sequential repetition, τ∗, there must be the possibility to perform τ any number of times,
sequentially. So, if τ transitions to some type τ ′, then τ∗ transitions to τ ′ ; τ∗, where the
possibility to exercise τ is regained after it the residual τ ′ is exercised.

The rules for the owned type τ◦ are twofold. The LTS-OWNEDSTOP represents a
transition whose label is the entire owned type. This transition will represent a situation
in which there is loss of ownership. The LTS-OWNED rule states that if the inner type τ
transitions by some label to τ ′, then the owned type transitions to the owned version of
the residual type. The reasoning behind this rule is that if we use an object that is owned,
its usage does not cause loss of ownership. So, the remaining behavior is still owned,
which is consistent with the fact that the usage of something that is owned does not need
to be used in its entirety, since there is no other reference to the object.

The last rule, LTS-CANSTOP is a special case of the sequence type, in which the left
inner type does not have a requirement to be used - it can be a sequential or replicated
repetition, for instance. This notion of stoppable behavior is defined in inductive predi-
cate canStop, presented in Figure 4.7.

The CS-STAR and CS-REPL rules represent the possibility of the sequential and repli-
cated repetitions be stopped, since they can be used zero or more times. The CS-OWNED

rule reflects the possibility that an object typed as τ◦ can be used according to τ or not at
all, and therefore the owned type can be stopped. The remaining rules extend the notion
of stoppable behavior to the binary type operators. However, the choice type N only
requires one of the branches to be able to stop, since we can just choose that one.

41

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

CS-STAR

canStop(τ∗)
CS-REPL

canStop(τ !)
CS-OWNED

canStop(τ◦)

CS-CHOICE
canStop(τ) ∨ canStop(τ ′)

canStop(τ N τ ′)

CS-PAR
canStop(τ) canStop(τ ′)

canStop(τ | τ ′)

CS-SEQ

canStop(τ) canStop(τ ′)

canStop(τ ; τ ′)

Figure 4.7: canStop predicate

Subtyping Relation

Having defined the rules for the labeled transition system, we can now define the sub-
typing relation.

Definition 4.2.5 (Subtyping Relation). A type τ is a subtype of a type σ, read τ <: σ, if τ = σ

or if we can derive τ <: σ from the rules in Figure 4.9.

The general subtyping rule SUB-GEN, is built upon the labeled transition system. It
states that if every transition that a type σ is able to do is covered by a compatible one in
τ , and if the residual types after both transitions are in the subtype relation, then τ <: σ.
This rule covers every binary and unary operators on types, and is accompanied by a
set of simpler rules that define the subtyping relation for basic types. Notice that it isn’t
necessarily the case that σ will eventually reach the stop type; it can, for instance, be a
sequential repetition type. We then assume that if τ <: σ are both repeatable behaviors
then, if after checking every behavior, we return to τ <: σ we assume that σ would
continue to be indefinitely simulated by τ and therefore we assume that they are in the
subtype relation.

SUB-METHOD states that a method type m1 is a subtype of a method type m2 if they
have the same name, the return type of m1 is a subtype of m2’s and if each of the argu-
ments inm2 is a subtype of the corresponding one inm1. These subtyping constraints fol-
low the usual notion of covariance in the return types and contravariance in the method
types, present in object oriented type systems.

SUB-CLASS is a similar rule, in which we see a class type as a method that given a set
of fields, returns a fresh object with those fields initialized: field types must be related in
a contravariant way, and the object types in a covariant way.

The rule for the ◦ type, SUB-OWN, states that two owned types are subtypes of each
other if their contents are also subtypes of each other.

The rule for the set type, SUB-SET, states that two assignments on a variable are sub-
type of each other if their contents are contravariant. The general idea behind this rule is
that we do not allow something with less behavior than what is declared to be assigned

42

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

LTS-METHOD

m : τ → σ
m:τ→σ−→ stop

LTS-SET

set(τ)
set(τ)−→ stop

LTS-BASIC
t ∈ {int, boolean, string}

t
t−→ stop

LTS-SEQ

τ
σ−→ τ ′

τ ; τ ′′
σ−→ τ ′; τ ′′

LTS-SEQSTOP

τ
σ−→ stop

τ ; τ ′
σ−→ τ ′

LTS-PARL

τ
σ−→ τ ′

τ | τ ′′ σ−→ τ ′ | τ ′′

LTS-PARR

τ ′
σ−→ τ ′′

τ | τ ′ σ−→ τ | τ ′′

LTS-PARSTOPL

τ
σ−→ stop

τ | τ ′ σ−→ τ ′

LTS-PARSTOPR

τ ′
σ−→ stop

τ | τ ′ σ−→ τ

LTS-CHOICEL

τ
σ−→ τ ′

τ N τ ′′
σ−→ τ ′

LTS-CHOICER

τ ′
σ−→ τ ′′

τ N τ ′
σ−→ τ ′′

LTS-REPL

τ
σ−→ τ ′

τ !
σ−→ τ ′ | τ !

LTS-STAR

τ
σ−→ τ ′

τ∗ σ−→ τ ′ ; τ∗

LTS-REPLSTOP

τ
σ−→ stop

τ !
σ−→ τ !

LTS-STARSTOP

τ
σ−→ stop

τ∗ σ−→ τ∗

LTS-OWNEDSTOP

τ◦
τ◦−→ stop

LTS-OWNED

τ
σ−→ τ ′

τ◦
σ−→ τ ′◦

LTS-SEQCANSTOP

canStop(τ) τ ′
σ−→ τ ′′

τ ; τ ′
σ−→ τ ′′

Figure 4.8: Labeled Transition System

to a variable, which relates to the same notion in Java, i.e., there should be an error when
assigning something of type List to a variable of type ArrayList.

Since the labeled transition system is not defined on stop, we need a way to know
if a behavior is able to stop. Thus the SUB-STOP rule realizes the notion that if, for any
behavioral type τ , canStop(τ) holds, then that means τ is able to stop and therefore is a
subtype of stop.

We now present an example illustrating the application of the subtyping rules. Con-
sider two types τ = (m1 Nm2)∗ and σ = (m1 ; m2) ; m1.

By SUB-GEN, we need to check if every transition in σ is simulated by one in τ and if
both residual types are still in subtyping relation.

43

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

SUB-METHOD
τr <: σr σi <: τi i ∈ {1, . . . , n}

m : τ → τr <: m : σ → σr

SUB-CLASS
τr <: σr σi <: τi i ∈ {1, . . . , n}

τ ⇒ τr <: σ ⇒ σr

SUB-OWN
τ <: σ

τ◦ <: σ◦

SUB-SET
τ ′ <: τ

set(τ) <: set(τ ′)

SUB-STOP
canStop(τ)

τ <: stop

SUB-GEN

∀σ′, γ, ∃τ ′, δ σ
γ−→ σ′ τ

δ−→ τ ′ δ <: γ τ ′ <: σ′

τ <: σ

Figure 4.9: Subtyping Relation

So by applying the LTS-SEQ rule,

LTS-SEQ

LTS-SEQSTOP

LTS-METHOD
m1

m1−→ stop

m1 ; m2
m1−→ m2

σ
m1−→ m2 ; m1

and by LTS-STARSTOP,

LTS-STARSTOP

LTS-CHOICEL

LTS-METHOD
m1

m1−→ stop

m1 Nm2
m1−→ stop

τ
m1−→ τ

and now we have to check if τ <: m1 ; m2. Again, we must apply the SUB-GEN rule. By
LTS-SEQSTOP, we have that

LTS-SEQSTOP

LTS-METHOD
m1

m1−→ stop

m1 ; m2
m1−→ m2

and τ transitions to τ again, by reapplying the same rules as in the previous case. Thus,
we must now check that τ <: m2, by rule SUB-GEN yet again. By applying LTS-METHOD,
we know that m2

m2−→ stop, and

44

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

LTS-STARSTOP

LTS-CHOICER

LTS-METHOD
m2

m2−→ stop

m1 Nm2
m2−→ stop

τ
m2−→ τ

So, we finally check if τ <: stop, which it is because canStop(τ) holds (recall that τ is
of the form τ ′∗), and therefore we can apply rule SUB-STOP. Thus, τ <: σ and we can
conclude that we can use an object according to σ where a usage τ is expected.

Our subtyping relation defines how a different behavior from what was specified can
still be safely used, which is useful to confer some flexibility to our type system, e.g., if a
protocol definition states that we can exercise some behavior τ∗, exercising just once or
none at all should still be considered safe.

4.2.3 Typing Rules

Before moving on to the rules of the type system, we will introduce some key concepts
depicting the general idea behind our development, as well as some auxiliary functions
and operators. As described before, our main goal is to ensure that the behavior of every
object is correct with respect to the protocols prescribed by the types. This behavior is
described by a protocol using the operators that were presented in Figure 4.1. The idea
is then, for each construct of the presented core language, to capture the usage that is
exercised upon every used object (in the scope of that construct). After gathering the
behavior covered by each object’s scope, we then check it against what was prescribed in
its interface. Thus, our typing sequent needs to account for what resources are used in a
program, and how they are being used.

The typing sequent for expressions, methods and classes follows the template

∆ ` X : τ,

that states that X has type τ under environment ∆. The typing sequent for statements
and programs follows the template

∆ ` s

which, similarly to the previous sequent, states that s is well-typed under ∆ but doesn’t
have a type annotation since neither constructions produce a value.

We use ∆ to denote an environment that contains associations between objects names
and behavioral types, x : τ describing the behavior τ exercised upon variable x, and we
use Dom(∆) to denote the set of all names occurring in ∆. The syntax for environments
is given by the grammar:

∆ ::= · | x : τ,∆ (Type Environment)

45

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

We use the notation ∆(x) to denote the associated type with x in ∆. We assume every
name in the environment is unique, and so each name identifies a single variable.

The type syntax admits terms that represent undesired behavior, e.g., a type int |
set(int) indicates that a resource of type int is being read and written upon at the same
time. We impose some well-formedness rules on types so that we can reject types that
are not conformant. To this end we define the predicate hasWrite on types,

hasWrite(set(τ))
hasWrite(τ1) ∨ hasWrite(τ2)

hasWrite(τ1 op τ2)

that indicates if an assignment, that is, an occurrence of the set type exists within a given
type. Since the purpose is to find a single occurrence of an assignment, we recursively
check if any of the inner types of a complex binary type has an occurence. With this
predicate, we can now say that a behavioral type τ1 | τ2 is well-formed if ¬hasWrite(τ1)∧
¬hasWrite(τ2) holds, meaning that no concurrent behavior should involve assignments.
We can apply this sort of reasoning to the replication type τ !. Since this type offers infinite
independent copies of the behavior τ , no assignments can be made in it either, and thus
τ ! is well-formed if ¬hasWrite(τ) holds.

Another well-formedness constraint we impose on types is related to variable usage,
based on the work done in [CS13]. Intuitively, we can only use a variable as long as it is
assigned with a value that allows some behavior to be exercised. Additionally, after we
fully use the prescribed protocol for the type of the variable we can only reuse its’ name
if we assign it a value that again allows some behavior. Generalizing, every variable
must follow an assign-then-use policy that can be specified by our type language. So,
if a variable has type T , its usage throughout the program must follow (with respect to
subtyping) the type (set(T) ; T)∗, that represents the iterated assign-then-use behavior.

In order to ease the notation of the type rules, we extend previously defined type
operators and behavior extraction function to typing environments. As we will see in the
typing rules we will need to compose behavioral types in different environments, though
for the same variable name. Algorithm B is also extended to typing environments in
order to extract concurrent behavior for a set of resources that may be used by a thread.
We extend the type operators to typing environments. Starting with the ; and | operators,

(∆1 op∆2)(x) =

∆1(x) op∆2(x), if x ∈ Dom(D1) ∩ Dom(D2)

∆i(x), if x ∈ Dom(Di)

the aggregation of both environments for this type is an environment in which each x

belonging to both environments is associated with a sequential composition between the
types occurring in each one, in order. Otherwise, it is the type associated to the identifier,
contained in one of the environments. However, the environment aggregation for the

46

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

choice type has a difference

(∆1 N ∆2)(x) =

∆1(x) N ∆2(x), if x ∈ Dom(D1) ∩ Dom(D2)

∆1(x) N stop, if x ∈ Dom(D1)

stop N ∆2(x), if x ∈ Dom(D2)

that resides in the case when x only belongs to one of the environments. The composed
type when x ∈ Dom(∆1) is ∆1(x) N stop since there is a branch in which we choose not
to use x - and the same applies in the analogous case when x ∈ Dom(∆2). For the unary
type operators, the rules are straightforward and follow the equality ∆op(x) = (∆(x))op.

Algorithm B is also extended to environments, being parametrized with a thread
name t and, instead of an usage of an object by t, contains an environment represent-
ing the the usages of every object contained in the definition of t

Bt∆t
(∆) =

⋃
x∈Dom(∆)

x : Bt∆t(x)(∆(x))

Having defined the auxiliary functions and operators, we can now describe the in-
ference rules for the type system, presented in figures 4.10, 4.11, 4.12, 4.14 and 4.15. Our
approach for presenting the type system will be describing the typing rules for each of
the expressions and statements, moving on to methods, classes and concluding with pro-
grams.

We begin by describing the typing rules for expressions, presented in Figure 4.10.
In these rules we assume that every basic type is shared since they are immutable and
therefore can be shared infinitely. Also we assume that every basic type, method call
return type and instantiation return type are implicitly owned, and so we ommit the ◦

annotation.

Null The rule for the null expression

· ` null : stop (NULL)

states that the null object does not offer any behavior, thus it is typed as stop. No
resources are used in this expression and therefore it is well-typed under the empty
environment ·.

Binary Operators The rules for binary operators all follow similar reasoning. For exam-
ple, checking a binary arithmetic expression requires checking both sub-expressions

∆1 ` e1 : int ∆2 ` e2 : int op ∈ {+,−, /, ∗}

∆1 ; ∆2 ` e1 op e2 : int
(ARITHMETIC OPERATOR)

We require that both types are of type int and so, as usual, the compound expres-
sion is also of type int. Additionally, the resources that are used in e1 and e2 are

47

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

composed with the sequence operator in the conclusion, ∆1 ; ∆2, and this is done
for any of the binary expressions.

Identifier The rule for identifier is

x : τ ` x : τ (IDENTIFIER)

that states that x has type τ if the environment contains just the information that
the identifier is used according to the type.

Method Call The method call expression x.m(e) is typed according to the rule

∆i ` ei : τi i ∈ {1, . . . , n}

x : (m : τ → σ) | ∆1 | . . . | ∆n ` x.m(e) : σ
(METHOD CALL)

in which we check each of the arguments.

Behaviorally, we know that object x is used by calling method m, hence in the con-
clusion we have the environment containing an association between x and the be-
havioral type that realizes this usage, x : (m : τ → σ), in which τ are the types
of each argument and σ is the return type. Thus, since calling this method returns
something of σ, the type of this expression is also σ.

Now, we impose independence between the arguments since we do not define a
specific order of evaluation, and so the resulting environment consists of every ∆i

containing the resources of each ei composed using the parallel | operator. Ad-
ditionaly, if the argument contains the same upon which we are performing the
method call, then its usage should also be independent of the method call itself and
therefore the resulting environment is x : (m : τ → σ) and each ∆i composed with
the parallel operator.

New Object Object creation is checked in a similar manner to the method call

∆i ` ei : τi i ∈ {1, . . . , n}

C : (τ ⇒ σ) | ∆1 | . . . | ∆n ` new C(e) : σ
(NEW OBJECT)

in which we check each of the arguments of the constructor that is being called.

Behaviorally, we know that class C is being used to instantiate an object that is
used according to σ. The validity of the usage of σ according to the interface of
C will be checked later on, as we will see. Thus, in the conclusion we include the
environment that contains the association between C and the behavioral type that
realizes the usage of C, C : τ ⇒ σ), where τ represents the types of each of the
arguments and σ is the returned object type upon instantiation. Therefore, the type
of this expression is also σ.

48

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

∆i ` ei : τi i ∈ {1, . . . , n}
x : (m : τ → σ) | ∆1 | . . . | ∆n ` x.m(e) : σ

(METHOD CALL)

∆i ` ei : τi i ∈ {1, . . . , n}
C : (τ ⇒ σ) | ∆1 | . . . | ∆n ` new C(e) : σ

(NEW OBJECT)

∆1 ` e1 : boolean ∆2 ` e2 : boolean op ∈ {&&, ||}
∆1 ; ∆2 ` e1 op e2 : boolean

(LOGICAL OPERATOR)

∆1 ` e1 : int ∆2 ` e2 : int op ∈ {+,−, /, ∗}
∆1 ; ∆2 ` e1 op e2 : int

(ARITHMETIC OPERATOR)

∆1 ` e1 : int ∆2 ` e2 : int op ∈ {≤, <,≥, >}
∆1 ; ∆2 ` e1 op e2 : boolean

(INEQUALITY OPERATOR)

∆1 ` e1 : τ ∆2 ` e2 : τ op ∈ {==, 6=}
∆1 ; ∆2 ` e1 op e2 : boolean

(EQUALITY OPERATOR)

x : τ ` x : τ (IDENTIFIER) · ` null : stop (NULL)

Figure 4.10: Typing rules for expressions

When instantiating an object, like in a method call, we do not impose an order of
evaluation of what is being passed as an argument to the constructor, hence every
∆i that concerns the resources used in each ei is composed using the | operator.
Any objects of the same class that are created in any of the arguments should be
independent of the one we are creating (which is necessarily true since every newly
created object is unique), and so the resulting environment consists of the parallel
composition between each ∆i and the environment that contains the information
about the usage of C.

We will now describe the typing rules for statements, presented in Figure 4.11.

Block In the rule for the statement block

∆1 ` s ∆2 ` l

∆1 ; ∆2 ` s; l
(STATEMENT BLOCK)

we check the statement at the beginning of the block as well as the rest of the block.
The resulting environment is the sequential composition between ∆1, that contains
the resources used in s, and ∆2 containing the resources used in the rest of the
block.

49

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

Assignment When checking an assignment we must first check the type of the expres-
sion on the right-hand side:

∆ ` e : τ

∆ | x : set(τ) ` x = e
(ASSIGNMENT)

We are performing an assignment on x with a resource of type τ and so the en-
vironment x : set(τ) captures this behavior. Now, if x is in ∆ its usage should
be independent of the assignment and so the resulting environment is the paral-
lel composition of both ∆ and x : set(τ) environments. Notice that according to
this rule and the well-formedness rules presented earlier, we can not perform an
assignment of the form x = x+ 1.

If The conditional statement requires checking the condition expression and both branches:

∆ ` e : boolean ∆1 ` s1 ∆2 ` s2

∆ ; (∆1 N ∆2) ` if e then s1 else s2

(IF)

The reasoning behind how the environments are composed in the conclusion is
related to how the execution of such a statement is usually done: firstly, we evaluate
the condition, using the objects contained in ∆. Only afterwards, based on the truth
value of the condition, the appropriate branch is executed, and we combine the
resources of both branches according to ∆1 N ∆2. So, the resulting environment
consists of sequential composition of the environments in this order ∆ ; (∆1 N ∆2).

While Similarly to the conditional statement previously presented, the rule for the while
loop requires that its condition and body are checked:

∆1 ` e : boolean ∆2 ` s

∆1 ; (∆2 ; ∆1)∗ ` while e do s
(WHILE)

We first evaluate the condition, ∆1, then if it is true, repeatedly execute the body of
the loop ∆2, followed by a re-evaluation of the loop’s condition. Of course, if the
condition is initially false, the body of the loop will not run. Thus, we sequentially
compose the environments ∆1 for evaluating the condition and (∆2 ; ∆1)∗ for re-
peatedly executing (zero or more times) the body of the loop and re-checking the
condition.

Method Call This case is identical to the method call in the expressions. The key dif-
ference is that the result of the call will not be used since it is not being stored
anywhere.

∆i ` ei : τi i ∈ {1, . . . , n}

x : (m : τ → stop) | ∆1 | . . . | ∆n ` x.m(e)
(METHOD CALL)

50

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

Therefore, the behavioral type associated to the object upon which we invoke the
method has stop as the return type.

Variable Declaration This rule is a special case of the statement block rule in which the
first statement is a variable declaration. The reason for having the continuation
after the declaration is that we need to know the entire scope of the variable so as
to account for its entire usage, and since the language is a fragment of Java, we do
not include the familiar let-binding construct.

∆, x : τ ` l (set(T ◦);T)∗ <: τ

∆ ` (T x); l
(VARIABLE DECL)

Analyzing the rest of the statement block tells us the resources that are used after the
variable declaration. We know that the usage given to x exists in the environment
that results from checking the continuation, hence the “split” ∆, x : τ , that separates
the usage of x from the rest of the environment.

Intuitively, any usage of x must first be preceded by an assignment of something
that conforms to type T . After using the variable (with respect to subtyping), we
are able to perform another assignment and use it again. This behavior is captured
by the the type (set(T ◦);T)∗. The extracted usage τ of x must then conform to this
protocol, hence the side condition (set(T ◦);T)∗ <: τ . The resulting environment is
∆ since at this point we know that if the side conditions hold, the use of variable x
is considered to be correct and can no longer be used since at this point, its entire
scope has been analyzed.

Thread Start and Join The environments for the start(t) and join(t) have some partic-
ularities.

∆0, t : (start : ∅ → stop) ` start(t) (THREAD START)

∆0, t : (join : ∅ → stop) ` join(t) (THREAD JOIN)

For example, starting a thread t behaviorally means that t is used according to
start : ∅ → stop. Additionally, since t can exercise concurrent behavior with
other resources, starting a thread should also produce an environment containing
xi : start(t), for each xi used by t, which we will denote ∆0. This reasoning is analo-
gous in the case of the join statement, in which ∆0 contains associations of the form
xi : join(t), for each xi used by t.

Thread Declaration Like the variable declaration, thread declaration is also a special

51

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

case of the statement block.

∆, t : τ ` l ∆′ ` s
∆′′ = Bt∆′(∆) (start : ∅ → stop ; join : ∅ → stop) <: τ

∆′′ ` (thread t = thread(s)); l
(THREAD DECL)

Checking the continuation of the statement block tells us the resources that are used
after the declaration of the thread. We know that the usage that is exercised on t

is given in the environment that result from checking the statement block, hence
the “split” ∆, t : τ , where τ denotes this usage of t. Since we impose that every
thread is to be started and joined after declaration we require that the usage τ of t
is a supertype of (start : ∅ → stop ; join : ∅ → stop).

Now, since the t is started and joined in the continuation of the statement block, we
know that it can contain resources that are used by twhich usage contains the types
start(t) and join(t). So, applying algorithm B to environment ∆, with thread t and
resource environment ∆′ that is obtained by checking the thread body, yields the
environment ∆′′ that contains the appropriate concurrent usage for the resources of
t.

Since the entire scope of t has been analyzed and is considered to be correct, the
resulting environment is ∆′′.

There are two rules for methods, void and non-void, presented in Figure 4.12.

Methods In a non-void method, we check the body s and the return expression e.

∆1 ` s ∆2 ` e : τ ∆ = ∆1; ∆2

Ti <: ∆(xi) τ <: Tr i ∈ {1, . . . , n}

∆ \ x ` Tr m(x : T) {s return e} : (m : T → Tr)
(METHOD)

Since the return statement comes after the body, we sequentially compose the re-
spective environments, ∆1 ; ∆2, yielding the environment ∆. Now, the usage that
is given in the method body to each argument must be a supertype of what is de-
clared in the formal parameter, i.e., Ti <: ∆(xi) and that the return type τ of the
return expression is a subtype of the declared return type Tr. The environment
in the conclusion is ∆, excluding the parameters, which we consider correct with
respect to their declaration, and the method is typed as m : T → Tr.

Regarding the void methods, the same constraints on parameters apply but not the
one for the return type, since there is no return statement. The method is then typed
as m : T → stop.

Class Checking a class requires checking each of the declared methods. We know that
the environment of each method only contains occurrences of the class fields and

52

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

∆, t : τ ` l ∆′ ` s
∆′′ = Bt∆′(∆) (start : ∅ → stop ; join : ∅ → stop) <: τ

∆′′ ` (thread t = thread(s)); l
(THREAD DECL)

∆, x : τ ` l (set(T ◦);T)∗ <: τ

∆ ` (T x); l
(VARIABLE DECL)

∆1 ` s ∆2 ` l
∆1 ; ∆2 ` s; l

(STATEMENT BLOCK)
∆ ` e : τ

∆ | x : set(τ) ` x = e
(ASSIGNMENT)

∆i ` ei : τi i ∈ {1, . . . , n}
x : (m : τ → stop) | ∆1 | . . . | ∆n ` x.m(e)

(METHOD CALL)

∆ ` e : boolean ∆1 ` s1 ∆2 ` s2

∆; (∆1 N ∆2) ` if e then s1 else s2
(IF)

∆1 ` e : boolean ∆2 ` s
∆1 ; (∆2 ; ∆1)∗ ` while e do s

(WHILE)

∆0, t : (start : ∅ → stop) ` start(t) (THREAD START)

∆0, t : (join : ∅ → stop) ` join(t) (THREAD JOIN)

Figure 4.11: Typing rules for statements

class names that were instantiated. So, to determine the usage of each field we need
to aggregate the set of resulting environments according to the class’ interface. This
aggregation yields an environment that contains how each field is used by imposing
the protocol that is declared in the interface.

From the types of each method, we need to compose each of them according to the
underlying protocol as well, to determine what is the object type that is returned
every time we instantiate the class in question.

∆i `Mi : τi fieldUsage(I, (τ,∆)) = (σ,∆′)

(set(T ◦j) ; T ◦j)∗ <: set(T ◦j) ; ∆′(xj) i ∈ {1, . . . , n} j ∈ {1, . . . ,m}

∆′ \ x ` class C(x : T) implements I {M} : T ⇒ σ
(CLASS)

This aggregation is defined with the fieldUsage function, inductively defined on
protocols presented in Figure 4.13. This function takes two parameters, the protocol
that is defined in interface I and the set of pairs containing the type and environ-
ment resulting from typechecking each of the methods.

Having the object type σ and protocol-aggregated environment ∆′, we can now
check the correct usage of each field. Similarly to the local variable declaration,

53

4. CORE LANGUAGE AND TYPE SYSTEM 4.2. Type System

∆1 ` s ∆2 ` e : τ ∆ = ∆1; ∆2

Ti <: ∆(xi) τ <: Tr i ∈ {1, . . . , n}
∆ \ x ` Tr m(x : T) {s return e} : (m : T → Tr)

(METHOD)

∆ ` s Ti <: ∆(xi) i ∈ {1, . . . , n}
∆ \ x ` void m(x : T) {s} : (m : T → stop)

(VOID METHOD)

Figure 4.12: Typing rules for methods

fieldUsage(m, (τ,∆)) = (τm,∆m)

fieldUsage(µ1 op µ2, (τ,∆)) = (τ1 op τ2,∆1 op∆2)

fieldUsage(µop) = (τ op,∆op)

Figure 4.13: fieldUsage function

any usage of the field must be preceded by an assignment. The difference is that
the usage of the field by the class is completely owned, hence any usage must be
a supertype of (set(T ◦j) ; T ◦j)∗. We extract the usage of each field from the environ-
ment, ∆′(xj), but we can assume that the field is always initialized since there is
a single constructor that initializes every field. Therefore, the usage to be checked
is actually set(T ◦j) ; ∆′(xj). In the conclusion, the environment that contains the re-
sources used by the class is ∆′ excluding every field, since we have checked their
correctness. Lastly, the class is typed as T ⇒ σ.

Finally, the rule for programs is presented in Figure 4.15.

Program Verifying a program consists in checking each class and the main entry point.
Notice that the environment that results from checking a single class only has names
that correspond to classes in the program. This is also the case for the main state-
ment. So the objective now is to check if every instantiation of a class follows the
specified protocol. We compose with the parallel operator the environments that
contain the class names used in every other class, yielding environment ∆′. This is
because initially, every created object for a given class is independent from the rest.

For each class Ci, we check if its class type τi is compatible with its occurrence in
∆′, ∆′(Ci). We can think of a class as an object factory that offers the possibility
to infinite threads to create new objects, and so the extracted usage for each class
∆′(Ci) must be a supertype of the replicated version of τi, hence τi! <: ∆′(Ci).

54

4. CORE LANGUAGE AND TYPE SYSTEM 4.3. Summary

∆i `Mi : τi fieldUsage(I, (τ,∆)) = (σ,∆′)
(set(T ◦j) ; T ◦j)∗ <: set(T ◦j) ; ∆′(xj) i ∈ {1, . . . , n} j ∈ {1, . . . ,m}

∆′ \ x ` class C(x : T) implements I {M} : T ⇒ σ
(CLASS)

Figure 4.14: Typing rule for class

∆i ` Ci : τi ∆ ` s ∆′ = ∆ | ∆1 | . . . | ∆n

τi! <: ∆′(Ci) i ∈ {1, . . . , n}
· ` I C main{s}

(PROGRAM)

Figure 4.15: Typing rule for program

4.3 Summary

In this chapter, we have presented a core programming model that aims to capture essen-
tial constructs from the Java programming language, also building upon the work done
in [Par11]. We have included, to some extent, support for the object-based thread model,
where we require the thread to be initialized upon declaration, as well as being started
and joined within the scope of the declaration. This restriction was required in order to
fully determine the scope of concurrent behavior on an object. Starting a thread inside a
method but not joining it causes its behavior to exceed the lifetime of the method itself
and we would lose the ability to pinpoint what is the behavior exercised on argument
objects, since there might be some usage being done even after the method returned.

We have also included support for ownership types, although enforcing linearity con-
straints, contrasting with the possibility of shared behavior independence [Cai08] that
allows for richer but controlled forms of aliasing.

Focusing on the presented core language, we have designed a behavioral type sys-
tem whose fundamental purpose is to extract the usage of every object in a program and
checking it against the protocols in its declared interfaces. A program is then considered
correct if every object’s - possibly concurrent - usage is valid with respect to a subtyp-
ing relation, built upon a labeled transition system defined on types. For each declared
variable/field, we impose a write-then-use sequential behavior, that ensures that after an
object is completely used, using it again is only allowed after reassigning a new value
that is able to fulfill the declared capabilities.

55

4. CORE LANGUAGE AND TYPE SYSTEM 4.3. Summary

56

5
Application to Java

One of the contributions of this dissertation is a prototype implementation of the pre-
viously presented type system and applying it to the Java programming language. Our
initial goal was to make the implementation completely integrate with any Java program,
by using standard Java APIs. By using the Pluggable Annotation Processor API released
with Java 6.0, we are able to write an Annotation Processor that analyzes the Java source
files, whose code is run in the annotation processing phase, after the parsing phase. The
ability to define usage protocols and specify a portion of a protocol in method arguments
and return types is accomplished by the use of standard Java annotations. Throughout
this chapter we will present the main features of the implementation with a paper review-
ing example, showing how we can typecheck a Java program. We proceed by discussing
a possible implementation of a java.util interface, concluding with some remarks re-
garding technical details and limitations.

5.1 Architecture

In javac, the annotation processing phase is run after parsing each file, until there are
no more files to process, as depicted in Figure 5.1. The Process Annotations phase calls
upon every Processor whose name is passed as argument to javac. We have defined
our own Annotation Processor whose function is shown in Figure 5.2. For each parsed
source file, we obtain its read-only abstract syntax tree representation by using the Java
Compiler Tree API, and convert it to our own core representation. After all files were
processed, we then invoke the our typechecker to check the program.

Annotations can be persisted at various phases of the compilation process. In our
case, we only require that the annotations exist during the annotation processing phase,

57

5. APPLICATION TO JAVA 5.2. Typechecking

Parse
Source

Process
Annotations

Typecheck
Program.java .class

Compile
Source

Figure 5.1: javac’s different phases

Process Annotations

Obtain Read-Only
AST

Convert to Core
Representation

Figure 5.2: Annotation Processing

i.e., when the code is compiled there is no need to keep the metadata associated with
each of the annotations. We were then able to provide an implementation of the type
system that seamlessly integrates with the Java Compiler, that is invoked by a custom
Annotation Processor after analyzing the Java code.

5.2 Typechecking

Our type system is invoked by means of a custom Annotation Processor. The Java source
code is analyzed by using the Java Compiler Tree API, that provides us a read-only ab-
stract syntax tree (AST) of the entire compilation unit. The read-only constraint was
somewhat restrictive. Thus we have implemented the AST representation for the core
language and using the Compiler Tree API’s visitor classes we have developed a partial
translation from the Java AST to the core language AST, having then defined the type-
checker on this simplified AST. All of the constructions presented in Section 4.1 have
their equivalents in Java, and their translation is straightforward. Additionally, we have
included support for other constructions that are not presented in the core language syn-
tax, such as for loops.

Both the typechecker and AST were implemented in the Scala multi-paradigm pro-
gramming language that offers full interoperability with Java, as well as functional pro-
gramming facilities that are well-known in the design of type systems, allowing for an
elegant and compact implementation. This interoperability allows us to write Java code
that translates the Java AST to our own, and call the main Scala typechecking function

58

5. APPLICATION TO JAVA 5.3. Paper Reviewing Example

from the annotation processor. This way, the typechecking of a program is made on the
Scala side, maintaining a way to issue typechecking errors to javac by using standard
Java classes.

5.3 Paper Reviewing Example

Consider an interface that represents a scientific paper that can be read and annotated
with comments, presented in Figure 5.3. When defining the interface and its protocol,
we are imposing some constraints on whatever the implementation of Paper might be.
Since the read method must only read the textual information of the paper, it can’t per-
form any changes to the internal state, hence the usage of this method can be replicated
(read!). On the other hand, the annotate method will perform changes to the pa-
per’s content, and so it cannot be called concurrently with the read method. Addition-
ally, we would like the paper to be read and reviewed several times, since there can be
more than one reviewer. Thus, the protocol that respects these constraints is (read! &

annotate)*.

Our annotation processor will then analyze the abstract syntax tree that corresponds
to the Paper interface, producing its equivalent in Core representation:

interface Paper usage (read! N annotate)∗ {

string read();

void annotate(cmts : string);

}

A possible implementation of the Paper interface could be the PaperImpl class pre-
sented in Figure 5.4. This simple class merely contains a String field representing the
paper’s content. The translation from this Java class to Core is as follows:

class PaperImpl(content : string) implements Paper {

string read(){

return content;

}

void annotate(cmts : string){

string cont;

cont = content;

content = cont+ cmts;

}

}

59

5. APPLICATION TO JAVA 5.3. Paper Reviewing Example

Now that we have the core representation of the interface and class, we can now check
its correctness. As an example, let us typecheck the annotate method. In order to sim-
plify the derivation, we will begin by checking the each statement in the method’s body
individually and then compose the results.

ASSIGNMENT

IDENTIFIER
content : string ` content : string

cont : set(string), content : string ` cont = content (5.1)

ASSIGNMENT

BINOP

IDENTIFIER
cont : string ` cont : string cmts : string ` cmts : string

IDENTIFIER

cont : string, cmts : string ` cont + cmts : string

content : set(string), cont : string, cmts : string ` content = cont + cmts

(5.2)

Let ∆1 and ∆2 equal the resulting environments from the derivations in 5.1 and 5.2,
respectively. Checking the statement block comprised of both statements then yields:

BLOCK

5.1

∆1 ` cont = content : string

5.2

∆2 ` content = cont + cmts

∆1 ; ∆2 `

(
cont = content;

content = cont + cmts

)
(5.3)

Where ∆1 ; ∆2 denotes the sequential composition between the two environments, that
contains the associations: content : (string ; set(string)), cont : (set(string) ; string) and
cmts : string. We now must check the correctness of the cont local variable.

VARIABLE DECL

5.3

∆1 ; ∆2 `

(
cont = content;

content = cont + cmts

) (∆1 ; ∆2)(cont) = (set(string) ; string)

(set(string) ; string)∗ <: (set(string) ; string)

∆3 `

 string cont;

cont = content;

content = cont + cmts

(5.4)

where ∆3 does not contain cont. This resulting environment then contains the names
content, which is a class field and cmts, the method’s argument, associated to the use
that is exercised upon them by the entire method body. Having checked the statement
block that defines the method’s body (that we abbreviate by s), we can now check the

1 @Protocol("(read! & annotate)*")
2 public interface Paper {
3 public String read();
4 public void annotate(String cmts);
5 }

Figure 5.3: Paper interface

60

5. APPLICATION TO JAVA 5.3. Paper Reviewing Example

correctness of the annotate method itself, which consists in checking the each argument
is correctly used.

VOID METHOD
∆3 ` s string <: string = ∆3(cmts)

∆4 ` void annotate(cmts : string){s} : annotate : (string→ stop) (5.5)

Where ∆4 only contains the usage of the content field, content : string ; set(string).
We check the read method as follows:

NON-VOID METHOD
content : string ` content : string string <: string

content : string ` string read(){return content; } : read : ∅ → string (5.6)

So, the type and environment we get from checking annotate and read respectively
are,

(annotate : string→ stop, content : string ; set(string))

and
(read : ∅ → string, content : string).

By applying function fieldUsage to the set

{(read : ∅ → string, annotate : string→ stop), (content : string, content : string ; set(string))}

we obtain the object type and environment:

((read : ∅ → string)! N (annotate : string→ stop))∗

content : (string! N (string ; set(string)))∗

And the usage of field content conforms to the protocol that is prescribed for each
field in our type system. So we can consider the PaperImpl correct, since it respects the
annotation provided in its interface with respect to the implementation: the readmethod
does not write on the object’s state and therefore can be replicated, and the annotate
method does not interfere with read, due to the synchronization imposed by the combi-
nation of N and ∗.

To illustrate how to constrain the usage that can be exercised on method parameters
and return values, consider the Reviewer interface, described in Figure 5.5. A reviewer
must first receive a paper to review and only then can he perform his review, and this
is done for any paper he might need to review. After reviewing, he can give back the
paper, properly annotated. This protocol is written as (receivePaper ; review ;

getAnnotatedPaper)*. Intuitively, since the paper needs to be received before being
reviewed, we know that in a possible implementation of the Reviewer interface we will
need to store the paper in the object’s state, i.e., the reviewer will have to own it. To this
end, we annotate the argument of function receivePaper with the @Usage annotation,
that takes up two arguments: usage describing what the usage will be given to the
argument, and owned which is a flag that indicates if the provided behavior is owned.

61

5. APPLICATION TO JAVA 5.3. Paper Reviewing Example

1 public class PaperImpl implements Paper {
2 private String content;
3

4 public PaperImpl(String content) {
5 //Constructor must include every field
6 }
7

8 public String read() {
9 return content;

10 }
11 public void annotate(String cmts){
12 //Dummy implementation that simply appends the comments
13 String cont = content;
14 content = cont + cmts;
15 }
16 }

Figure 5.4: Paper Implementation

Notice that we have omitted the usage argument in the annotation - by default it is the
declared interface protocol for the type of the argument.

Now, suppose the reviewer would like his annotations to be protected, that is, no
more annotations are to be made on the paper. This is achieved by restricting the behavior
made available on the return type of the getAnnotatedPaper, by using the @Return
protocol, that has a single parameter containing the protocol. So, in this case, since the
paper should be read-only, we only allow the protocol read! to be exercised upon the
paper upon returning it.

Consider the implementation ReviewerImpl of the Reviewer interface, presented
in Figure 5.6. It has a single field of type Paper, and receiving a paper stores it into the
field. Reviewing it is simply annotating the paper, and returning the reviewed paper
consists in returning the paper field.

Each method consists in a single instruction that uses the paper field in some way.
In receivePaper, it is used as set(Paper◦), where Paper denotes an abbreviation of the
protocol associated with the interface with the same name. The review method consists
of calling annotate upon the field, and so it is used as annotate : string → stop. In the
getAnnotatedPaper method, the field is used as ((read : ∅ → string)!)◦. So, composing
these three environments according to the Reviewer protocol, yields the usage

(set(Paper◦) ; (annotate : string→ stop) ; ((read : ∅ → string)!)◦)∗

and we can see that it obeys the field protocol (set(Paper◦) ; Paper◦)∗, when preceded by
an initialization.

62

5. APPLICATION TO JAVA 5.4. Implementing and Checking the List Interface

1 @Protocol("(receivePaper ; review ; getAnnotatedPaper)*")
2 public interface Reviewer {
3

4 public void receivePaper(@Usage(owned=true)Paper p);
5

6 public void review(String comments);
7

8 @Return("read!")
9 public Paper getAnnotatedPaper();
10 }

Figure 5.5: Reviewer Interface

1 public class ReviewerImpl implements Reviewer {
2 private Paper paper;
3

4 public ReviewerImpl(Paper p){
5 //Constructor must include every field
6 }
7

8 public void receivePaper(Paper p) {
9 paper = p;
10 }
11

12 public void review(String comments) {
13 paper.annotate(comments);
14 }
15

16 public Paper getAnnotatedPaper() {
17 return paper;
18 }
19 }

Figure 5.6: Reviewer Implementation

5.4 Implementing and Checking the List Interface

In this section we will present a full example in which we annotate an interface from the
standard Java API, and provide an implementation. For this example we choose the List
interface from the java.util package. We have chosen this example as it represents the
interface for a data structure, and an implementation of such an interface will allow us
to discuss some details regarding ownership of objects. The source code for the List

interface is presented in Figure 5.7, containing only a few key methods. Our example
implementation consists in a singly linked list. However, due to the lack of generic types
in our formalization, we will describe an implementation of the List interface for Cell
objects, that store a single integer value, allowing for reading and modification. The Cell
interface is presented in Figure 5.8. Infinite readers are allowed but only one writer, and
so we annotate it with the protocol @Protocol("(get! & set)*").

Before getting into the implementation of the list, let us first discuss what the declared
interface protocol should be. Determining the size of the list and checking if an element

63

5. APPLICATION TO JAVA 5.4. Implementing and Checking the List Interface

1 public interface List {
2 public int size();
3

4 public boolean contains(Cell elem);
5

6 public void add(int pos, @Usage(owned=true)Cell elem);
7

8 public Cell remove(int pos);
9 }

Figure 5.7: Java’s List Interface

1 @Protocol("(get! & set)*")
2 public interface Cell {
3 public int get();
4 public void set(int i);
5 }

Figure 5.8: Cell Interface

exists should be independent of each other and themselves. However, adding and re-
moving elements will necessarily write upon memory and should not be allowed to run
concurrently, either with any of the read-only methods and themselves. So, one possible
protocol that realizes these constraints can be

@Protocol("((size & contains)! & add & remove)*")

We define the interface that represents a node of the list, presented in Figure 5.9. The
protocol for the Node is worthy of discussion. Unlike the read-only operations in the
list, with the exception of the atEnd method, the ones in this interface actually return
the reference that the node holds. So, although these operations are read-only, there is
a loss of ownership the moment we decide to retrieve the pointer to the next node or
the content. Hence, each call to getContent/getNext must be succeeded by a call to
setContent/setNext. All of this behavior should be exercised sequentially, and so we
get the protocol:

@Protocol("((getContent;setContent) &

(getNext;setNext) &

atEnd! & setNext & setContent)*")

The constraint that the setX must be called after getX seems awkward at first glance,
since this can potentially mean corrupting the structure of the list in the process, when
used with the wrong arguments. In reality, our linear model of ownership makes it im-
possible to use list nodes this way. Consider part of the implementation of the List

interface, only including the add function as listed in Figure 5.10.

This follows a traditional implementation of the insertion function in which, starting
from the head of the list, iterate over the node structure with as many steps as the pos

64

5. APPLICATION TO JAVA 5.4. Implementing and Checking the List Interface

1 public interface Node {
2 public Cell getContent();
3

4 public void setContent(@Usage(owned=true)Cell c);
5

6 public Node getNext();
7

8 public void setNext(@Usage(owned=true)Node n);
9 }

Figure 5.9: Node Interface

1 public class LinkedList implements List {
2

3 private Node head;
4 //constructor
5

6 public void add(int pos, Cell elem) {
7 int i = 0;
8

9 Node node = head;
10 while(i < pos){
11 Node aux = node.getNext();
12 //node.setNext(?);
13 node = aux;
14 ...
15 }
16 ...
17 }
18 ...
19 }

Figure 5.10: List Implementation (First try)

argument. According to our protocol for interface Node, we are required to call setNext
immediately after obtaining the next node reference. However, this implementation re-
quires us to store this reference in the local variable aux so that we can incrementally
move forward on the list. So, now we need to return the reference to the node and at the
same time store it in the local state, rendering this implementation impossible to accom-
plish, given the linearity we enforce on object ownership.

The solution to this problem is then to provide a kind of functional implementation
in which every operation of the list, except for size is recursively defined in the node
structure. The new version of the Node interface is presented in Figure 5.11. The newly
added removeNext function “disconnects” the node from the next, returning the pointer
to it. As we will see, this function does indeed return the the next node pointer, but
before that it should set its value to something that represents the null pointer (since we
are disconnecting both nodes). Similarly to the previous method, the removeElement
method returns the element of a node, leaving a dummy value in its stead. The protocol
for this interface should allow atEnd and contains to be activated concurrently, while
imposing sequentiality between the rest of the methods, and so a possible protocol is

65

5. APPLICATION TO JAVA 5.4. Implementing and Checking the List Interface

1 @Protocol("((atEnd & contains)! & add &
2 setNext & removeElement &
3 removeNext & remove)*")
4 public interface Node {
5 public boolean atEnd();
6

7 public void add(int pos, @Usage(owned=true)Cell elem);
8

9 public boolean contains(@Usage(usage="get*")Cell elem);
10

11 public Cell remove(int pos);
12

13 public void setNext(@Usage(owned=true)Node n);
14

15 public Cell removeElement();
16

17 public Node removeNext();
18 }

Figure 5.11: Node Interface (Corrected)

@Protocol("((atEnd & contains)! & add & remove & setNext & removeNext)*")

We provide implementations of the Node interface one that implements the full expected
behavior, ListNode in Figure 5.12, and another one that serves as a dummy node im-
plementation, NullNode in Figure 5.13, so that we know that we have reached the end
of the node chain. The reason for this last class is that if we were to assign the null value
to a variable (which at least happens when creating a singleton node, i.e., with no next
pointer), then it would need to be declared as having the stop protocol, and consequently
we would not be able to use said field in any way. For this reason we also include the
atEnd method to determine if we are at a null node.

Having implemented the Node interface, we can define an implementation of the
List interface. As we mentioned earlier, our implementation will be a linked list with
only a list head pointer, as well as a size counter. We present the implementation in
Figure 5.14. The size method consists in returning the size counter. The contains and
method is simply calling upon the head’s contains method with the same argument.
Adding an element first requires us to check if we are inserting at the 0 position, case in
which we just create a new node with the element, having the current head pointer as
next, and setting the head to point to that new node. With removal, we must check if we
are removing at 0 position, and if we are we remove the element contained in the head
pointer, and have it point to the next, obtained by calling removeNext.

A limitation related to the linearity of our approach to aliasing is that we cannot have
a get method. This is because returning the element from a node causes that node to lose
ownership of it, and so in a behavioral sense, retrieving an element has the same effect as
removing it. No implementation can maintain the list coherence in retrieval, except if we
were to return copies of the elements that were being stored, and even then it does not
come close to a real world implementation.

66

5. APPLICATION TO JAVA 5.5. Summary

1 public class ListNode implements Node {
2 private Cell elem;
3 private Node next;
4

5 public ListNode(Cell elem, Node next) {
6 this.elem = elem; this.next = next;
7 }
8

9 public boolean atEnd() {
10 return false;
11 }
12

13 public void add(int pos, Cell elem) {
14 if(pos == 0){
15 Node newNode =
16 new ListNode(elem, next);
17 next = newNode;
18 }
19 else{
20 next.add(pos-1,elem);
21 }
22 }
23

24 public boolean contains(Cell c) {
25 boolean result = false;
26

27 if(elem.get() == c.get()){
28 result = true;
29 }
30 else{
31 result = next.contains(c);
32 }
33

34 return result;
35 }

36 public Cell remove(int pos) {
37 Cell result;
38

39 if(pos == 0){
40 result = next.removeElement();
41 Node aux = next.removeNext();
42 next = aux;
43 }
44 else{
45 result = next.remove(pos-1);
46 }
47

48 return result;
49 }
50

51 public void setNext(Node n) {
52 next = n;
53 }
54

55 public Node removeNext() {
56 Node n = next;
57 next = new NullNode();
58 return n;
59 }
60

61 public Cell removeElement() {
62 Cell el = elem;
63 //Dummy cell
64 elem = new CellImpl(-1);
65 return el;
66 }
67 }

Figure 5.12: ListNode Class

5.5 Summary

In this implementation, we have presented an annotation system that seamlessly with
regular Java development. The main challenges throughout the development of our solu-
tion were related to the implementation of the subtyping relation and associated labeled
transition system presented in Section 4.2. We extended the approach of [Par11] with
support for recursive types in the core language, and deal with cases of the subtyping
relation involving repetition types. In the case of the labeled transition system, determin-
ing valid sets of transition for both the subtype and supertype was a complex task. In the
implementation, the representation of the labeled transition system and its transitions
was something that was reformulated many times, but in the end the result was a cleanly
defined transition system, that we believe is very close to its associated formal definition.

Another main issue, although it was solved relatively early, was the joint compilation
of Java and Scala sources into a single jar file, since Scala code was being used in Java
and vice-versa, traditional ways to compile the source code seemed a daunting task. To
solve this issue, we have used the Maven [mav12] build manager by Apache. This versa-
tile tool provided the necessary facilities not only to have a joint Scala/Java project for the

67

5. APPLICATION TO JAVA 5.5. Summary

1 public class NullNode implements Node {
2 public boolean atEnd() {
3 return true;
4 }
5

6 public void add(int pos, Cell elem) {}
7

8 public boolean contains(Cell c) {
9 return false;

10 }
11

12 public Cell remove(int pos) {
13 return new CellImpl(-1); //Dummy cell
14 }
15

16 public void setNext(Node n) {}
17

18 public Node removeNext() {
19 return new NullNode();
20 }
21 public Cell removeElement() {
22 return CellImpl(-1);
23 }
24 }

Figure 5.13: NullNode Class

development of the implementation, as well as to package and compress the type system
into a distributable jar file.

68

5. APPLICATION TO JAVA 5.5. Summary

1 public class LinkedList implements List {
2

3 Node head;
4 int nElems;
5

6 public LinkedList(Node head, int nElems) {
7 this.head = head;
8 this.nElems = nElems;
9 }
10

11 public int size() {
12 return nElems;
13 }
14

15 public boolean contains(Cell elem) {
16 return head.contains(elem);
17 }
18

19 public void add(int pos, Cell elem) {
20 if(pos >= 0 && pos <= nElems) {
21 if(pos == 0){
22 //Add first
23 Node newNode = new ListNode(elem, head);
24 head = newNode;
25 }
26 else{
27 //We insert after the head
28 head.add(pos-1, elem);
29 }
30 int nElemsAux = nElems;
31 nElems = nElemsAux + 1;
32 }
33 }
34

35 public Cell remove(int pos) {
36 Cell result;
37 if(pos >= 0 && pos < nElems) {
38 if(pos == 0){
39 result = head.removeElement();
40 Node aux = head.removeNext();
41 head = aux;
42 }
43 else{
44 result = head.remove(pos-1);
45 }
46 int nElemsAux = nElems;
47 nElems = nElemsAux - 1;
48 }
49 else{
50 //Dummy cell
51 result = new CellImpl(-1);
52 }
53 return result;
54 }
55 }

Figure 5.14: Linked List Class

69

5. APPLICATION TO JAVA 5.5. Summary

70

6
Final Remarks

In this dissertation, our main goal was to design a behavioral type system targeting the
Java programming language, building on the work done in [Par11], by including support
for protocol specification at the method declaration level, specifying finer grained con-
tracts about the behavior of parameters and returned objects, object ownership and an
object-based concurrency model.

We have proposed an algorithm that is capable of analyzing concurrent behavior from
a behavioral type, given the information about the execution scope of a thread. In order
to check correct object usage in a program, we have presented a behavioral type system,
applied to a core fragment of Java, that guarantees correct use of objects with respect to
a usage protocol specification. We described presented a behavioral type system, aiming
to check behavioral correctness of constructs like branching statements, assignments and
method calls, up to class conformance to a behaviorally annotated interface.

The prototype implementation of our development consisted in a typechecker that
is fully integrated in a Java development environment, allowing programs to be behav-
iorally annotated by using standard Java APIs and annotations.

6.1 Contributions

This work presents a behavioral type system for a fragment of the Java programming lan-
guage, based on spatial-behavioral types proposed in [Cai08]. We have fully integrated
an implementation of the type system with regular Java development by using standard
Java annotations, as well as the Compiler Tree and Annotation Processor APIs.

With our type system, we are able to statically check if concurrent programs follow

71

6. FINAL REMARKS

disciplined usage of objects as prescribed by a protocol annotation on their interface def-
inition. We have included a subtyping algorithm, based on a labeled transition system,
that checks if a different usage than what is expected can still be safely used, which in
turn increases the number of programs that our type system addresses and, in develop-
ment, makes the typechecker less rigid to the programmer.

The validation of our approach was done by developing an example suite of Java
programs that were checked by our type system, aiming not only to test each construct
of the language, but also some complex programming idioms found in Java.

6.2 Future Work

To conclude, we enumerate the aspects of our work that can be improved in the future:

Extraction of Concurrent Behavior Algorithm C poses a limitation in which we lose tem-
poral dependencies imposed by the ; operator between behavior that occurs before
some arbitrary concurrent behavior. It would be interesting to study if this limita-
tion is tied to the algebraic structure of types, or if there is an algorithm that is
capable of producing the most specific type, and if so, provide a proof of this prop-
erty.

Subtyping The general case of the subtyping relation is defined solely upon the pre-
sented labeled transition system. It would be interesting to prove that this case
indeed covers the rest of the type operators for which a subtyping rule isn’t directly
defined.

Support a broader set of Java’s core constructs There are some frequently used construc-
tions that were not included in our programming model, such as calls to the implicit
this object, promoting code reuse. However, this would imply a careful study of
how internal calls change the state of the object and guaranteeing that they do not
break the protocol specification provided in the interface.

Support for richer ownership types In our implementation, we follow a linear model
of object ownership. This strictness limits the construction of programs, such as
dynamic data structures that rely on richer forms of object ownership. Although
in the List example we have provided an example implementation of this data
structure, it did not follow a more traditional implementation that is usually found
in object-oriented languages.

Provide a way to define protocols for Java library interfaces Much like the specification
we provided for the List interface, it would be useful to provide a set of specifi-
cation files for standard Java interfaces, for use when typechecking a program that
uses them. This prototype implementation only checks classes that were defined
by the user and so classes that belong to the Java API are not considered, e.g., the
Object class.

72

6. FINAL REMARKS

6.3 Summary

In this chapter we have provided a sum up of the work that was developed in this dis-
sertation, followed by the main contributions and key aspects that could be improved
in future work. These improvements include some more technical details of the imple-
mentation to improve usability as well as some theoretical aspects that would ensure the
soundness of our approach.

73

6. FINAL REMARKS

74

Bibliography

[ASSS09] Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks.
Typestate-oriented Programming. In OOPSLA, pages 1015–1022, 2009.

[BBA08] Nels E. Beckman, Kevin Bierhoff, and Jonathan Aldrich. Verifying Correct
Usage of Atomic Blocks and Typestate. In Gail E. Harris, editor, OOPSLA,
pages 227–244. ACM, 2008.

[Cai08] Luís Caires. Spatial-Behavioral Types for Concurrency and Resource Control
in Distributed Systems. Theor. Comput. Sci., 402:120–141, July 2008.

[CD02] David G. Clarke and Sophia Drossopoulou. Ownership, Encapsulation and
the Disjointness of Type and Effect. In OOPSLA, pages 292–310, 2002.

[COY07] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local Action
and Abstract Separation Logic. In LICS, pages 366–378, 2007.

[CPN98] David G. Clarke, John Potter, and James Noble. Ownership Types for Flexi-
ble Alias Protection. In OOPSLA, pages 48–64, 1998.

[CRR02] Sagar Chaki, Sriram K. Rajamani, and Jakob Rehof. Types as Models: Model
Checking Message-passing Programs. In POPL, pages 45–57, 2002.

[CS13] Luís Caires and João Seco. The Type Discipline of Behavioral Separation. In
POPL, 2013.

[CV10a] Luís Caires and Hugo Torres Vieira. Conversation Types. Theor. Comput. Sci.,
411(51-52):4399–4440, 2010.

[CV10b] Joana Campos and Vasco T. Vasconcelos. Channels as Objects in Concurrent
Object-Oriented Programming. In Kohei Honda and Alan Mycroft, editors,
Proceedings Third Workshop on Programming Language Approaches to Concur-
rency and Communication-centric Software, volume 69 of EPTCS, pages 12–28,
2010.

75

BIBLIOGRAPHY

[DP08] Dino Distefano and Matthew J. Parkinson. jStar: Towards Practical Verifica-
tion for Java. In OOPSLA, pages 213–226, 2008.

[FAH+06] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen C.
Hunt, James R. Larus, and Steven Levi. Language Support for Fast and Re-
liable Message-based Communication in Singularity OS. In EuroSys, pages
177–190. ACM, 2006.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended Static Checking for Java. SIG-
PLAN Not., 37:234–245, 2002.

[GH99] Simon J. Gay and Malcolm Hole. Types and Subtypes for Client-Server Inter-
actions. In S. Doaitse Swierstra, editor, ESOP, volume 1576 of Lecture Notes
in Computer Science, pages 74–90. Springer, 1999.

[GV10] Simon J. Gay and Vasco Thudichum Vasconcelos. Linear Type Theory for
Asynchronous Session Types. J. Funct. Program., 20(1):19–50, 2010.

[GVR+10] Simon J. Gay, Vasco Thudichum Vasconcelos, António Ravara, Nils Gesbert,
and Alexandre Z. Caldeira. Modular session types for distributed object-
oriented programming. In POPL, pages 299–312, 2010.

[HMSW09] C. A. Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concurrent
Kleene Algebra. In Proceedings of the 20th International Conference on Concur-
rency Theory, CONCUR 2009, pages 399–414, 2009.

[Hoa69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. COMMU-
NICATIONS OF THE ACM, 12(10):576–580, 1969.

[Hoa74] C. A. R Hoare. Monitors: An Operating System Structuring Concept. Com-
munications of the ACM, 17:549–557, 1974.

[Hon93] Kohei Honda. Types for dynamic interaction. In Eike Best, editor, CONCUR
’93, 4th International Conference on Concurrency Theory, Proceedings, volume
715 of Lecture Notes in Computer Science, pages 509–523. Springer, 1993.

[HOP11] Akbar Hussain, Peter W. O’Hearn, and Rasmus L. Petersen. On Separation,
Session Types and Algebra, 2011. Unpublished.

[HVK98] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Lan-
guage primitives and type discipline for structured communication-based
programming. In ESOP, 1998.

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asyn-
chronous Session Types. In POPL, pages 273–284, 2008.

76

BIBLIOGRAPHY

[IK04] Atsushi Igarashi and Naoki Kobayashi. A generic type system for the Pi-
calculus. Theor. Comput. Sci., 311(1-3):121–163, 2004.

[Kob06] Naoki Kobayashi. A New Type System for Deadlock-Free Processes. In
CONCUR, pages 233–247, 2006.

[mav12] Apache Maven Project. http://maven.apache.org/, September 2012.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer, 1980.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall International
Series in Computer Science. Prentice-Hall, Upper Saddle River, NJ, USA.
Prentice Hall, 1989.

[Mil91] Robin Milner. The Polyadic Pi-Calculus: a Tutorial. Technical report, Logic
and Algebra of Specification, 1991.

[Mil08] Filipe Militão. Design and Implementation of a Behaviorally Typed Pro-
gramming System for Web Services. Master’s thesis, Universidade Nova de
Lisboa, Portugal, 2008.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile
Processes, Part I + II. Information and Computation, 100(1):1–77, 1992.

[O’H04] Peter W. O’Hearn. Resources, Concurrency and Local Reasoning. In CON-
CUR, pages 49–67, 2004.

[ORY01] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local Reasoning
about Programs that Alter Data Structures. In CSL, pages 1–19, 2001.

[Par11] Nuno Parreira. Implementação de uma Linguagem Concorrente com Tipos
Comportamentais. Master’s thesis, Universidade Nova de Lisboa, Portugal,
2011.

[PS96] Benjamin C. Pierce and Davide Sangiorgi. Typing and Subtyping for Mobile
Processes. Mathematical Structures in Computer Science, 6(5):409–453, 1996.

[Rey02] John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Struc-
tures. In LICS, pages 55–74, 2002.

[SY86] R. E. Strom and S. Yemini. Typestate: A Programming Language Concept
for Enhancing Software Reliability. IEEE Transactions on Software Engineering,
SE-12(1):157–171, January 1986.

[Vas09] Vasco Thudichum Vasconcelos. Fundamentals of Session Types. In Marco
Bernardo, Luca Padovani, and Gianluigi Zavattaro, editors, SFM, volume
5569 of Lecture Notes in Computer Science, pages 158–186. Springer, 2009.

77

http://maven.apache.org/

BIBLIOGRAPHY

[VGR06] Vasco Thudichum Vasconcelos, Simon J. Gay, and António Ravara. Type-
checking a Multithreaded Functional Language with Session Types. Theor.
Comput. Sci., 368(1-2):64–87, 2006.

78

A
More Examples

@Protocol("(set & get!)*")
public interface Cell {
public int get();
public void set(int i);

}

public class CellImpl implements Cell {
private int data;

public CellImpl(int data) {
this.data = data;

}

public int get() {
return data;

}

public void set(int i){
data = i;

}

public static void main(String[] args){
Cell c = new CellImpl();
c.set(3);
c.get();

}
}

Listing A.1: Correct usage of Cell

79

A. MORE EXAMPLES

@Protocol("set;get")
public interface Cell {

public int get();
public void set(int i);

}

public class CellImpl implements Cell {
private int data;

public CellImpl(int data) {
this.data = data;

}

public int get() {
return data;

}

public void set(int i){
data = i;

}

public static void main(String[] args){
Cell c = new CellImpl(); //Usage should be set;get
c.get();
c.set(3);

}
}

Listing A.2: Misused Cell

80

A. MORE EXAMPLES

@Protocol("(set & get!)*")
public interface Cell {
public int get();
public void set(int i);

}

public class CellImpl implements Cell {
private int data;

public CellImpl(int data) {
this.data = data;

}

public int get() {
return data;

}

public void set(int i){
data = i;

}

public static void main(String[] args){
final Cell c = new CellImpl();
Thread t1 = new Thread(new Runnable(){
public void run(){
c.get();

}
});
Thread t2 = new Thread(new Runnable(){
public void run(){
c.get();

}
});
t1.start();
t2.start();
t2.join();
t1.join();
c.set(3);

}
}

Listing A.3: Correct concurrent usage of Cell

81

A. MORE EXAMPLES

@Protocol("(set & get!)*")
public interface Cell {

public int get();
public void set(int i);

}

public class CellImpl implements Cell {
private int data;

public CellImpl(int data) {
this.data = data;

}

public int get() {
return data;

}

public void set(int i){
data = i;

}

public static void main(String[] args){
final Cell c = new CellImpl();
Thread t1 = new Thread(new Runnable(){
public void run(){

c.get();
}

});
Thread t2 = new Thread(new Runnable(){
public void run(){

c.get();
}

});
t1.start();
t2.start();
c.set(3);
t2.join();
t1.join();

}
}

Listing A.4: Incorrect concurrent usage of Cell

82

A. MORE EXAMPLES

@Protocol("set | get")
public interface Cell {
public int get();
public void set(int i);

}

public class CellImpl implements Cell {
//There is a data race on data
//since it used according to
//set(int) | int
private int data;

public CellImpl(int data) {
this.data = data;

}

public int get() {
return data;

}

public void set(int i){
data = i;

}
}

Listing A.5: Incorrect implementation of Cell

83

A. MORE EXAMPLES

@Protocol("inc")
public interface Counter {

public void inc(@Usage(usage="get;set")Cell c);
}
public class CounterImpl implements Counter {

public void inc(Cell c) {
int x = c.get();
c.set(x+1);

}
}
@Protocol("get;set")
public interface Cell {
public int get();
public void set(int i);

}

public class CellImpl implements Cell {
private int data;

public CellImpl(int data) {
this.data = data;

}

public int get() {
return data;

}

public void set(int i){
data = i;

}

public static void main(String[] args){
Counter co = new CounterImpl();
Cell c = new CellImpl();
co.inc(c); // c: get;set

}
}

Listing A.6: Counter

84

A. MORE EXAMPLES

@Protocol("inc")
public interface Counter {
public void inc(@Usage(owned=true)Cell c);

}
public class CounterImpl implements Counter {

private Cell cell;
public CounterImpl(Cell c){ cell = c; }
public void inc(Cell c) {

int x = c.get();
c.set(x+1);
cell = c;

}
}
@Protocol("(set & get!)*")
public interface Cell {

public int get();
public void set(int i);

}

public class CellImpl implements Cell {
private int data;

public CellImpl(int data) {
this.data = data;

}

public int get() {
return data;

}

public void set(int i){
data = i;

}

public static void main(String[] args){
Counter co = new CounterImpl();
Cell c = new CellImpl();
co.inc(c);

//Will fail since there is loss of
//ownership of c by calling inc
c.set(3);

}
}

Listing A.7: Loss of ownership

85

A. MORE EXAMPLES

@Protocol("inc;getReadOnly")
public interface Counter {

public void inc(@Usage(owned=true)Cell c);

@Return("get!")
public Cell getReadOnly();

}
public class CounterImpl implements Counter {

private Cell cell;

public CounterImpl(Cell c) { cell = c; }
public void inc(Cell c) {
int x = c.get();
c.set(x+1);
cell = c;

}
public Cell getReadOnly(){

return cell;
}

}
@Protocol("(set & get!)*")
public interface Cell {
public int get();
public void set(int i);

}

public class CellImpl implements Cell {

private int data;

public CellImpl(int data) {
this.data = data;

}

public int get() {
return data;

}

public void set(int i){
data = i;

}

public static void main(String[] args){
Counter co = new CounterImpl();
Cell c = new CellImpl();
co.inc(c);

@Usage(usage="get!")Cell c = co.getReadOnly();
c.get();

}
}

Listing A.8: Return type restriction

86

A. MORE EXAMPLES

@Protocol("open; (read! & write)*; close")
public interface File {

public void open();

public String read();
public void write(String content);

public void close();

}
public class FileImpl implements File{

private String data;

public FileImpl(String d){
data = d;

}

public void open() { }
public String read() {

return data;
}
public void write(String content) {

String auxData = data;
data = auxData + content;

}
public void close() { }

public static void main(String args){
final File f = new FileImpl("");

Thread t1 = new Thread(new Runnable(){
public void run(){
f.read();

}
});
Thread t2 = new Thread(new Runnable(){
public void run(){
f.read();

}
});
f.open();
t1.start();
t2.start();
t2.join();
t1.join();
f.close();

}
}

Listing A.9: Correct File usage

87

A. MORE EXAMPLES

@Protocol("open; (read! & write)*; close")
public interface File {

public void open();

public String read();
public void write(String content);

public void close();

}
public class FileImpl implements File{

private String data;

public FileImpl(String d){
data = d;

}

public void open() { }
public String read() {
return data;

}
public void write(String content) {

String auxData = data;
data = auxData + content;

}
public void close() { }

public static void main(String args){
final File f = new FileImpl("");

Thread t1 = new Thread(new Runnable(){
public void run(){

f.read();
}

});
Thread t2 = new Thread(new Runnable(){
public void run(){

f.read();
}

});
t1.start();
t2.start();
//Opening a file concurrently with read()
f.open();
t2.join();
t1.join();
f.close();

}
}

Listing A.10: Incorrect concurrent File usage

88

A. MORE EXAMPLES

@Protocol("((atEnd & contains)! & add & setNext & removeElement & removeNext & remove)*")
public interface Node {
public boolean atEnd();

public void add(int pos, @Usage(owned=true)Cell elem);

public boolean contains(@Usage(usage="get*")Cell elem);

public Cell remove(int pos);

public void setNext(@Usage(owned=true)Node n);

public Cell removeElement();

public Node removeNext();
}

Listing A.11: Node Interface

public class NullNode implements Node {

public boolean atEnd(){
return true;

}

public void add(int pos, Cell elem){}

public boolean contains(Cell elem){
return false;

}

public Cell remove(int pos){
return new CellImpl(-1);

}

public void setNext(@Usage(owned=true)Node n){}

public Node removeNext(){
return new NullNode();

}

@Override
public Cell removeElement() {

return new CellImpl(-1);
}

}

Listing A.12: NullNode

89

A. MORE EXAMPLES

public class ListNode implements Node {
private Cell elem;
private Node next;

public ListNode(Cell elem, Node next) {
this.elem = elem;
this.next = next;

}

public boolean atEnd() {
return false;

}
public void add(int pos, Cell elem) {
if(pos == 0){
Node newNode = new ListNode(elem, next);
next = newNode;

}
else{
next.add(pos-1,elem);

}
}
public boolean contains(Cell c) {
boolean result = false;
if(elem.get() == c.get()){
result = true;

}
else{
result = next.contains(c);

}
return result;

}
public Cell remove(int pos) {

Cell result;
if(pos == 0){
result = next.removeElement();
Node aux = next.removeNext();
next = aux;

}
else{
result = next.remove(pos-1);

}

return result;
}
public void setNext(Node n) {
next = n;

}
public Node removeNext() {

Node n = next;
next = new NullNode();
return n;

}
public Cell removeElement() {

Cell el = elem;
//Dummy cell
elem = new CellImpl(-1);
return el;

}
}

Listing A.13: ListNode

90

A. MORE EXAMPLES

@Protocol("((size & contains)! & add & remove)*")
public interface List {
public int size();
public boolean contains(@Usage(usage="get*")Cell elem);
public void add(int pos, @Usage(owned=true)Cell elem);
public Cell remove(int pos);

}
public class LinkedList implements List {

private Node head;
private int nElems;

public LinkedList(Node head, int nElems) {
this.head = head;
this.nElems = nElems;

}
public int size() {

return nElems;
}
public boolean contains(Cell elem) {
return head.contains(elem);

}
public void add(int pos, Cell elem) {

if(pos >= 0 && pos <= nElems) {
if(pos == 0){
//Add first
Node newNode = new ListNode(elem, head);
head = newNode;

}
else{
//We insert after the head
head.add(pos-1, elem);

}
int nElemsAux = nElems;
nElems = nElemsAux + 1;

}
}
public Cell remove(int pos) {
Cell result;
if(pos >= 0 && pos < nElems) {
if(pos == 0){
result = head.removeElement();
Node aux = head.removeNext();
head = aux;

}
else{
result = head.remove(pos-1);

}
int nElemsAux = nElems;
nElems = nElemsAux - 1;

}
else{
//Dummy cell
result = new CellImpl(-1);

}
return result;

}
}

Listing A.14: List Interface and Implementation

91

A. MORE EXAMPLES

public static void main(String[] args){
final List l = new LinkedList(new NullNode(), 0);
int i = 0;
while(i < 100){
l.add(0,new CellImpl(i));
int x = i;
i = x + 1;

}

Thread t1 = new Thread(new Runnable(){
public void run(){
int j = 0;
while(j < 100){
l.contains(new CellImpl(j));
int x = j;
j = x + 1;

}
}

});

Thread t2 = new Thread(new Runnable(){
public void run(){
int j = 0;
while(j < 100){
l.remove(0);
int x = j;
j = x + 1;

}
}

});

//t1 does not interfere with t2
t1.start();
t1.join();
t2.start();
t2.join();

}

Listing A.15: Correct concurrent List usage

92

A. MORE EXAMPLES

public static void main(String[] args){
final List l = new LinkedList(new NullNode(), 0);
int i = 0;
while(i < 100){
l.add(0,new CellImpl(i));
int x = i;
i = x + 1;

}

Thread t1 = new Thread(new Runnable(){
public void run(){
int j = 0;
while(j < 100){
l.contains(new CellImpl(j));
int x = j;
j = x + 1;

}
}

});

Thread t2 = new Thread(new Runnable(){
public void run(){
int j = 0;
while(j < 100){
l.remove(0);
int x = j;
j = x + 1;

}
}

});

//t1 interferes with t2 since
//remove is being called concurrently with contains
t1.start();
t2.start();
t2.join();
t1.join();

}

Listing A.16: Incorrect concurrent List usage

93

	Introduction
	Motivation
	Context
	Proposed Solution
	Contributions
	Outline

	Background
	Spatial-Behavioral Types
	The Type Discipline of Behavioral Separation
	Featherweight Concurrent Java

	Separation Logic
	Concurrent Separation Logic
	Session Types
	-calculus
	Session Types

	On Session Types and Concurrent Separation Logic
	Summary

	Related work
	Ownership Control
	Typestate
	Summary

	Core Language and Type System
	Syntax
	Type System
	Behavioral Types
	Subtyping
	Typing Rules

	Summary

	Application to Java
	Architecture
	Typechecking
	Paper Reviewing Example
	Implementing and Checking the List Interface
	Summary

	Final Remarks
	Contributions
	Future Work
	Summary

	More Examples

