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Resumo 

Este trabalho enquadra-se num projecto desenvolvido numa colaboração entre a 

Universidade Técnica de Delft (TU Delft) com a empresa Waternet e KWR. Pretende-se 

estudar a viabilidade do aproveitamento de energia térmica associada as águas residuais 

e assim reduzir as emissões de dióxido de carbono (CO2) associadas ao sector 

energético. O presente trabalho parte de um modelo computacional previamente 

desenvolvido que simula recuperação de calor proveniente de águas residuais para casos 

de caudal e temperatura constante.  

Um dos objectivos pretende simular uma descarga de águas residuais. Para tal e por 

forma a torná-los variáveis, foi adicionada uma função Gaussiana às condições de 

fronteira da temperatura da água e caudal. Como segundo objectivo, pretende-se 

determinar a importância dos termos presentes na equação de balanço de calor na água e 

na equação de balanço de calor no ar. Para isso, introduziram-se coeficientes binários por 

cada termo destas equações e processaram-se os sistemas resultantes das combinações 

possíveis. 

Simulou-se com sucesso uma descarga principal para a situação variável, as previsões 

numéricas para a temperatura da água e caudal foram apresentadas. Quanto à avaliação 

dos termos nas duas equações em questão, conclui-se que os termos fluxo de calor tubo – 

água (!!") e fluxo de calor tubo – ar (!!") apresentam ser fulcrais no balaço de calor na 

água e ar, respectivamente. Com o intuito de reduzir oscilações indesejadas o dt foi 

reduzido, verificando-se uma diminuição das oscilações, bem como uma variação na 

altura de água na tubagem que não tinha sido verificada até agora.  

Este trabalho culmina assim com uma secção de desenvolvimentos futuros por forma a 

melhorar os resultados obtidos. Apesar do estado actual destas rotinas não permitir uma 

avaliação precisa das trocas de calor em tubagens, os resultados obtidos são bastante 

promissores. Provando-se que a modelação numérica de recuperação de calor contribuirá 

para o desenvolvimento do projecto principal. 

 

Palavras-chave: Água residual, recuperação de calor, modelação numérica, método Lax-

Wendroff, equações de balanço de massa, equações de blanço de calor. 
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Abstract 

This thesis was carried as a collaboration of Delft University of Technology (TU Delft) and 

the companies Waternet and KWR. The main project aims to study the possibility of 

thermal energy recovery from wastewater, reducing the carbon dioxide (CO2) emissions 

linked to the energy sector. The present work is based on a previous computational model 

that was developed to simulate heat recovery from wastewater for constant flow rate and 

temperature of water.  

The first goal is to simulate a wastewater discharge. In order to achieve this, a Gaussian 

function was added to the boundary conditions for water flow rate and water temperature. 

As a second goal, this work aims to assess the significance of the terms present in the 

water heat balance and air heat balance equations. Binary coefficients were added in each 

term of both equations and then all the combinations were computed.  

The unsteady situation successfully simulated a main discharge and numerical predictions 

for water temperature and flow rate are presented. The deviations associated with the 

modified cases for the two equations suggest that the heat flux pipe to water (!!") and 

heat flux pipe to air (!!") terms are crucial for water and air heat balance predictions, 

respectively. In order to smooth extra oscillations, the time step (dt) was reduced and a 

smaller relative size of oscillations was obtained.  

This work concludes with a section of future developments in order to improve the results 

obtained. Despite of the fact that the current state of these routines does not allow us to 

accurately assess heat exchanges in pipes, promising results were obtained, proving that 

numerical modelling of heat recovery will contribute greatly to the development of the main 

project. 

 

Keywords: Wastewater, heat recovery, numerical modelling, Lax-Wendroff method, mass 

balance equations, heat balance equations.  
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Chapter 1 

Introduction 

1.1 General context 

Changes over the weather and climate are an emergent concern due to growing evidence of 

global warming. Such manifestations have been observed around the world, for instance 

changes in rainfall that causes floods or droughts and severe heat waves are more frequent. 

The glaciers are melting and as consequence the sea levels are increasing. These climate 

oscillations became more common in the past decades (US EPA, 2012).  

In the last century, human activities contributed for the rising atmospheric concentration of 

greenhouse gases (GHG), specifically carbon dioxide (CO2). The main source of these gases is 

the burning of fossil fuels to produce energy, though some agricultural practices, such as 

deforestation, and industrial processes also contribute (US EPA, 2012). 

In the Netherlands the same happens, the principal source for GHG emissions is the energy 

sector. In 2008 the contribution of this sector to the GHG emissions was 83% (PBL, 2010). In 

order to prevent worst impacts of climate change, the GHG emissions are required to be 

reduced to at least 80% by 2050 (IPCC, 2007). 

The municipality of Amsterdam aims to accomplish by 2025 a 40% reduction in CO2 emissions 

when compared to 1999. In agreement with IPCC the target is based on the reduction of 75% of 

CO2 emissions by 2040 compared to the same year. In order to perform these goals 

Amsterdam implemented the Amsterdam Climate Program. In order to achieve these targets, 

the climate policy is focused in energy savings, specifically in an efficient use of fossil fuels and 

the production of sustainable energy frameworks (Amsterdam Climate Office, 2009).  

Waternet is the company that is responsible for water tap supply, wastewater collection and 

treatment, and also responsible for the quality of surface water and the water level in 
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Amsterdam and surrounds (Waternet, 2012). Waternet has a program called Energy from Water 

to meet the target to reduce CO2 emissions through green energy and producing renewable 

energy from water (Nauffal, 2011). 

Wastewater contains a significant amount of energy, this energy could be recovered to produce 

heat and warm water through a heat pump and a heat exchanger installed in sewers 

(Dürrenmatt & Wanner, 2008). This results in heat recovery from wastewater a energy reduction 

in the Urban water cycle (Maxil & Rietveld, 2011). 

This technique of heat recovery form wastewater is presently being used in a major scale in 

countries like Switzerland and Germany. In Switzerland there is 30 facilities in operation. A heat 

exchanger of 200 m in length is installed in the sewer system of Zurich and produces heat and 

warm water for 800 apartments (Dürrenmatt & Wanner, 2008). Over 500 wastewater heat 

pumps are in operation worldwide with thermal ratings from 10kW to 20MW (Schmid 2009). 

Studies made in Switzerland and Germany show that 3% of all buildings could be supplied with 

heat on the basic of wastewater. Due to ideal source temperatures available, wastewater heat 

pumps reach high performance figures. On top of that, this installations to recovery heat from 

wastewater have an outstanding environmental performance (Schmid, 2009). 

A study carried out by the Swiss Federal Office of Energy shows that the amount available of 

energy in wastewater is dependent of the use of water in buildings. The amount of water 

consumed is increasing in countries with strong economic development and increasing standard 

of living and falling in industrial nations, as a result of efforts being made concerning the efficient 

use of water. When planning wastewater energy plants, the long-term development of 

wastewater quantities must therefore be carefully analysed. On top of that, the local availability 

of wastewater as a source of energy is limited. Places where wastewater is available, both 

continuously and in large quantities, are economically interesting, such as hospitals, industry, 

housing estates, etc., since these are the main drains of local settlements and sewage 

treatment plants. The amount of energy available in wastewater is high despite these 

restrictions (Schmid, 2009). 

According to the same study, the economic viability of the use of heat from wastewater depends 

of the prices of traditional sources of energy (oil), system size (heating power requirements) and 

heat-density. The cost of energy production in wastewater heating installations including 

amortization could be 0.07$ to 0.22$ per kWh for a considering the oil prices to be 90$/100L 

(Schmid, 2009). 

A computer model of wastewater heat recovery could be very usefully to study the behaviour of 

this complex system. The heat content in sewage is often known by measuring the flow and 

temperature in situ. Employing a computational model in this situation could minimize 

complicated measurement campaigns.  
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1.2 State of art on heat modelling in sewers  

A literature review was conducted for modelling approaches in the sewer temperature.  

Bischofberger and Seyfied (1984) developed a model to estimate the longitudinal profile of the 

temperature in a sewer pipe. They documented that water (wastewater) temperature in the 

sewer is mostly affected by the heat exchange from water and the air duct, water evaporation 

and heat transfer through the pipe walls, assuming air duct temperature and relative humidity 

constant values (Dürrenmatt & Gujer, 2006). 

Starting with a wastewater temperature model from previous authors, Wanner et al. (2004) 

developed a mathematical model for wastewater temperature in a sewage system. Adding air 

temperature and relative air humidity as variables, the model can predict the cooling-down of 

wastewaters in a sewage system and register the main parameters responsible for it (Wanner et 

al., 2004; Dürrenmatt & Gujer, 2006).   

Other mathematical models were developed, such as Krarti & Kreider (1996), Kurpaska & 

Slipek (1996) and Hollmuller (2003). The first model can predict air temperature along an air 

tunnel for any hour of the day. Kurpaska and Slipek (1996) developed a model to predict the 

temperature and water content at a given time within garden subsoil. Using the concept of 

moisture diffusion and mass transfer coefficients in forced and natural convection similar to heat 

and heat transfer coefficients. Hollumuller (2003) developed a model for air/soil heat exchange 

for constant airflow with harmonic temperature signal as input. These three models aim to 

calculate variations in air temperature, however evaporation and condensation were not 

considered.  

Edwini-Bonsu and Steffler (2004, 2006a and 2006b) focused on the modeling of atmospheric 

pressurization in sanitary sewer conduit by employing computational fluid dynamics methods to 

study odorous-compound emissions, design of ventilation systems and sewer fabric corrosion 

(Edwini-Bonsu & Steffler, 2004; Edwini-Bonsu & Steffler, 2006a; Edwini-Bonsu & Steffler, 

2006b). 

Dürrenmatt and Gujer (2006) developed a model based in Wanner et. al. (2004) Besides the 

temperature of wastewater and air, and relative humidity in the sewers from the previous model, 

a condensation layer was added allowing for the prediction of condensation of water vapour on 

the channel wall. Another developed concern about the air flow. In past models air flow was 

assumed as a constant but here it is calculated by physical models. Dürrenmatt and Gujer 

(2006) presented in the last model the inclusion of manholes and lateral inflows in the sewage 

for the simulation of the temperature profile. 

Two years later Dürrenmatt and Wanner (2008) developed a program called TEMPEST 

(Eawag, Dübendorf, Switzerland) to calculate the dynamics and longitudinal spatial profiles of 

the wastewater temperature in sewage systems. The model is established with the heat balance 

in sewers from Dürrenmatt and Gujer (2006) in Dürrenmatt & Wanner (2008). 
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In a similar context, recent approaches were made in order to directly regenerate the hot water 

supply through greywater heat recovery instead of blackwater. These types of systems were 

used to supply hot water for showers (Meggers & Leibundgut, 2011; Wong et al., 2010; Liu et 

al., 2010). 

1.3 Thesis objective 

The main topic of this project is modelling temperature exchange between sewer pipes, 

wasterwater and air. 

The work developed in this thesis uses a MATLAB® code developed by Bas Wols model at 

KWR Water Research Institute (Nieuwegein, The Netherlands), based on the model from 

Dürrenmatt and Wanner (2008), and this work adapts some of its characteristics. Two goals 

could be highlighted. The first is the implementation of a case of unsteady conditions for the 

water temperature and water flow rate in order to simulate a discharge, since the model was 

previously developed for steady flow conditions. As a second goal, this work aims to assess the 

significance of the terms present in the equations that describe the physics of the model: the 

water and air heat balance equations.  

This thesis also includes the derivation of the model equations from the general equations 

(Saint Venant equations and heat conduction equations). 

1.4 Thesis organization  

This thesis is divided in six chapters: 

Chapter 1 

This chapter explains the general context and objectives of this work. Closes with a short 

summary of the document outline. 

Chapter 2 

Contains the theoretical background. This chapter starts by introducing the Saint Venant 

equations and heat conduction equation. Subsequently, the model equations and the derivation 

process from the general equations to the model equations are presented. Finally, the chapter 

closes with an introduction to the numerical solver Lax Wendroff.  

Chapter 3 

Describes all the methodology followed in this thesis in order to reach the main objectives. The 

first section describes the algorithm. To implement the unsteady conditions a Gaussian function 

was added to the boundary conditions of water temperature and water flow rate. To determine 
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the contribution of each term of the water heat balance equation and air heat balance equation 

it was introduced binary coefficient for each heat flux for both equations and all combination of 

terms were computed.   

Chapter 4 

The fourth chapter encloses the results obtained in this work. This chapter is divided in results 

for steady situation and results for unsteady situation. In both section there are the results from 

the contribution of each term of the water heat balance equation and air heat balance equation, 

i.e. deviation measure between general case and each modified case. Lastly, an extra situation 

was added in order to improve the results for the unsteady situation. 

Chapter 5 

The fifth chapter contemplates a discussion for results obtained.  

Chapter 6 

The last chapter includes the most important conclusions and suggestions for future 

developments associated to the employed model and optimization techniques. 
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Chapter 2 
Background 

In fluid mechanics and hydraulics, the basic principles are the equations of continuity or 

conservation of mass, equation of momentum and conservation of energy (Fox et al., 2008). 

The present work is focused in the continuity equations and momentum equations known as 

Saint Venant Equations. In addition to these two equations a heat balance is required to 

implement the heat exchange over the pipes. 

The heat process inside the pipe is described as the principal of a balance. However, for the 

heat transfer in the pipe and soil the heat exchanger is based in the heat conduction equation. 

The chapter begins with a presentation of the general equations, in Section 2.1 the model 

equations are available in Section 2.2, the next section 2.3 is about the boundary and initial 

conditions. Finally the last Section 2.4 is centred in a numerical solver called Lax-Wendroff. 

2.1 General equations 

An introduction to Saint Venant equations and heat conduction equation are presented. 

2.1.1 Saint Venant equations 

The continuity and momentum equations are developed for one-dimensional unsteady open 

channel flows using the Saint Venant Equations (SVE). It considers open channels in which 

liquid flows with a free surface.  

The SVE has some assumptions and these are valid for any channel cross-sectional shape. 

These are: (1) the flow is one dimensional, the velocity is uniform in a cross-section and the 

transverse free-surface profile is horizontal; (2) the streamline curvature is very small and the 

vertical fluid acceleration are negligible, as a result, the pressure distributions are hydrostatic; 

(3) the flow resistance and turbulent losses are the same as for a steady uniform equilibrium 
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flow for the same depth and velocity, regardless of trends of the depth; (4) the bottom slope is 

small enough to satisfy the following approximation: cos ! ≈ 1,   sin ! ≈ tan ! ≈ !; (5) the water 

density is constant; (6) the SVE were developed for fixed boundary channels: sediment motion 

is neglected (Chanson, 2004). 

Following, continuity equation and momentum equations are presented. 

 

Saint Venant continuity equation 

The mass conservation principle or continuity equation states that the mass of the system 

remains constant. In general, the rate of increase of mass in the control volume is due to the net 

inflow of mass that means the mass within a closed system remains constant with time.  

 !"
!"

+
!"
!"

= 0 (2.1) 

where ! (m2) corresponds to the cross sectional area, ! (m3s-1) to the flow rate, ! (kg.m-3) to the 

density and ∆! (m) to the length of the control volume. ! and ! correspond to time and position 

(Chanson, 2004). 

Saint Venant momentum equation 

The momentum principle applies for a given control volume. The rate of change in momentum 

flux equals the sum of the forces acting on the control volume. The forces acting in the fluid 

control volume are the friction force (!!) due to shear stress along the bottom; the gravity force 

(!!) that relates to the weight of the fluid; and the hydrostatic pressure (!) on the left and right 

hand side of control volume (Chanson, 2004). Figure 2.1 illustrates the open-channel flow with 

these three forces.  

 

Figure 2.1: Open-Channel flow nonuniform flow. (Adapted from Maidment & Merwade, 2005; Fox et al., 
2008; Chanson, 2004).  
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The Saint Venant Momentum Equation yields: 

 
!"
!"

+
!
!"

!!

!
+ !"

! ! + !
!"

+
τ
!
Ω = 0 (2.2) 

with ! as the flow rate (m3s-1), ! the cross sectional area (m2), ! the gravitational force (m2s-1), 

! the water depth (m), ! bottom elevation (m), τ wall sheer stress (-), ! density (kg.m-3), and Ω 

wetted perimeter (m). The first term corresponds to the advection acceleration (inertia), the 

second to the convective acceleration, the third term to the gravity force, and the last one to the 

friction force (Pothof, 2012). 

2.1.2 Heat conduction equation 

The heat conduction equation is valid for isotropic, homogenous or heterogeneous static solids 

and for static incompressible fluids. The next equation is independent of the coordinate system. 

In general is a non linear equation since the thermal conductivity is a function of temperature. If 

the thermal conductivity could be assumed as independent of temperature, the equation 

becomes a linear relation (Bergman et al., 2011). The heat conduction equations yields: 

 ∇ ∙ !  ∇! + !′′′ =   !!!
!"
!"

 (2.3) 

here ∇ is the Del differential operator, ! (Wm-1K-1) is the thermal conductivity, ∇! (K) is the 

gradient of temperature, !′′′ (Wm-3) is the energy generated or consumed per unit of time and 

volume, ! (kg.m-3) is the density, !! (Jkg-1K-1) specific heat capacity, T (K) is the temperature. 

 The same equation in cylindrical coordinates becomes: 

 !
!"

!
!"
!"

+
1
!
!
!"

!  !
!"
!"

+
1
!!

!
!"

!
!"
!"

+ !′′′ = !!!
!"
!"

 (2.4) 

where ! (m) is the cylindrical coordinate radial direction, ! is the cylindrical coordinate polar 

angle.  

2.2 Model Equations 

The model equations came from the Saint Venant Equations and could be classify in three main 

categories: mass balance (described in Subsection 2.2.1), heat balance (in Subsection 2.2.2), 

and finally the third momentum balance (in Subsection 2.2.3). To simplify the visualization of 

the exchange process (heat and mass), Figure 2.2 is presented: 
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Figure 2.2: Schematic representation of a sewer pipe. In the upper view a control volume is defined (red 
dashed outline) and five compartments: sewage, sewer air, condensation layer, located pipe wall and soil. 
The lower view is a section through this control volume with transfer processes: orange arrows indicate 
mass transfer and green arrows denote heat transfer. (Adapted from Dürrenmatt & Gujer, 2006).  

 

2.2.1 Mass balance  

The mass balance in the model has established with the same principle as the continuity 

equation previously mentioned in Section 2.1. The rate at which mass enters a system is equal 

at which mass leaves the system.  
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According to Dürrenmatt and Gujer (2006) it is essential to take into account the possibility of  

transverse mass flow and if there are sources or sinks. The temporal exchange of mass is given 

by the further equation: 

 !(!"∆!)
!"

= (!")! − !" !!∆! + !!!!∆! + !∆! ! (2.5) 

where ! is density (kg.m-3), ! cross sectional area (m2), ∆! length of the control volume (m),  ! 

flow rate (m3.s-1), !! length (m), !! transverse mass flow (kg.m-2s-1) and finally ! represents 

sources or sinks. Assuming density is constant: 

 !(!"∆!)
!"

= (!")! − !" !!∆! + !!!!∆! + !∆! ! (2.6) 

 !
!(!∆!)
!"

= !"! − !"! + !∆!! + !!!!∆! + !∆! ! (2.7) 

 !
!"
!"

= −!
∆!!
∆!

+ !!!!∆! + !∆! ! (2.8) 

 lim
∆!→!

0 !
!"
!"

= −!
∆!!
∆!

+ !!!!∆! + !∆! ! (2.9) 

 
!"
!"

= −
!"
!"

+
1
!
!!!!∆! + !∆! !  (2.10) 

 
!"
!"

= −
!"
!"

+
!
!
!!!!∆! + !∆! !  (2.11) 

 

For the water mass balance the evaporation or condensation, referred as !!", is the transverse 

mass flow (!! = !! = !!"), and has a negative sign since the flux vector is from the control 

volume, Figure 2.2. The exchange process takes place on the water surface with width ! 

(!! = !), and neither sources nor sinks are available in the pipe ( ! = 0) (Dürrenmatt & Gujer, 

2006). 

Employing the terms of Equation 2.11, the mass balance water equation becomes:   

 
!!!
!"

= −
!!!
!"

−
1
!!

!!"! (2.12) 

 
!!!
!"

+
!!!
!"

+
1
!!

!!"! = 0 (2.13) 

here, !! is the water cross sectional area, !! is the water flow rate and  !! is the water density. 

The mass balance for the air channel and water vapour can be derived in the same way as the 

mass balance in water, equation. In air mass balance, !! is the air cross sectional area, !! is 

the air flow rate, and neither transverse mass flow nor sources/sinks are available (Dürrenmatt 

& Gujer 2006). The equation yields: 
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 !!!
!"

+
!!!
!"

= 0 (2.14) 

 

Regarding the water vapour mass balance, let us consider ! is the fraction of water vapour by 

dry air [kg/kg]). The principal to write the water vapour mass balance is the same as the 

previous equations. The transverses mass flows here are two, the evaporation or condensation 

mass flow (!!") and the mass flow due to condensation in the pipe (condensation layer) (!!"), 

these process occurs in wetted perimeter air. Finally as sink the condensation oversaturation or 

condensation in the air volume due to (under)cooling in air (!!") (Dürrenmatt & Gujer, 2006). 

Above there is the equation: 

 

 !!
!"
!"

+ !!
!"
!"

−
1
!!

!!"! − !!!"!! − !!!"!! = 0 (2.15) 

The control parameters ! (Zeta) and ! (Xsi) control the condensation and can take values of 

either zero or one: 

At the condensation layer only steam vapour can be condensated, but water cannot evaporate , 

therefore ! = 1 if !! > !!"#(!!") and ! = 0 in all the other cases. !!  is the partial pressure of 

steam vapour and !!"#(!!") is the saturated vapour pressure at the surface of the condensation 

layer at temperature !!" (Dürrenmatt & Gujer, 2006). 

If the absorbed moisture/loading with steam vapour of the sewer air !  is bigger than the 

saturated loading with steam vapour !!"#, steam vapour condensates over the whole air cross 

sectional area. Hence ! = 1 if ! > !!"#  and ! = 0 if ! ≤ !!"# (Dürrenmatt & Gujer, 2006). 

For the complete expression of Equation 2.13, Equation 2.14 and Equation 2.15 consult Table 

A.1 and Table A.3 of Appendix A. 

 

2.2.2 Heat balance 

In the conduit there are two types of heat exchange: first concerns with a balance inside the 

conduit and for this one, there are water heat balance and air heat balance, the second type 

could be classified as a heat transfer between the water/air part with the physical pipe and soil.  

 

Water heat balance and air heat balance 

The heat balance equations in the model were developed with the same principal as the 

continuity equation in Section 2.1, with some modifications. The rate at which heat enters a 

system is equal at which heat leaves the system. Table 2.1 considers mass and heat 

relationships. 
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Table 2.1: Relation between mass and heat. 

Mass Heat 

! !".!!!  !!!! !.!!!  

!" !". !!!  !!!"! !. !!!  

!! = !! !".!!!!!!  !! =   !! !.!!!!!!  

! −  ! = ! −  

 

Using information from the above table into the Equation 2.11, a new equation emerges, the 

general heat balance equation:  

 !!!!!!
!"

= −
!!!!"!
!"

+ !!!! + !! (2.16) 

In the water heat balance, the transverse mass flow are heat flux pipe to water (!!") and 

occurs in the wetted perimeter (!!), the heat that is lost to the air duct (heat flux water to air) 

(!!" ) and evaporation or condensation (!!" ) from the water. As a source, there is the 

biochemical activity (!!) produced in the wastewater (Dürrenmatt & Gujer, 2006). The next 

equations represent the exchange process: 

 !!!,!!!!!!!
!"

= −
!!!,!!!!!!!

!"
+ !!!! + !!!! (2.17) 

 
!!!!!
!"

= −
!!!!!
!"

+
1

!!,!!!
!!"!! − !!"! − !!"! + !!!!  (2.18) 

 
!!!!!
!"

+
!!!!!
!"

−
1

!!,!!!
!!"!! − !!"! − !!"! + !!!! = 0 (2.19) 

Regards air heat balance, the heat transfer to air comes from the pipe (!!") and water (!!"), as 

a source there is a heat flux oversaturation (!!").	
  

	
  

 !!
!!!
!"

+ !!
!!!
!"

−
1

!!,!!!
!!"!! + !!"! + !!!"!! = 0 (2.20) 

Table A.2 and Table A.3 in Appendix A lists the variables thoroughly the expression in 

Equation 2.19 and Equation 2.20. 

 

Pipe heat balance and soil heat balance 

The pipe heat balance and soil heat balance can be achieved from Equation 2.4 in Section 2.1 

with two simple assumptions. First of all, the heat conduction is considered only in the radial 

direction since the cylinder is long enough to neglected the top and bottom effects (Bergman et 

al., 2011). Applying this assumptions to the heat conductive equation the equation become: 
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1
!
!
!"

!  !
!"
!"

+ !′′′ = !!!
!"
!"

 (2.21) 

As second assumption the energy generated (thermal) within element is neglected (!′′′ = 0), 

the heat conductive equation yields: 

 1
!
!
!"

!  !
!"
!"

= !!!
!"
!"

 (2.22) 

Rearrange the previous equation and substituting ! for !, the heat conductive equation using in 

the model is: 

 
!"
!"

−
!

!!!!
!
!"

!
!"
!"

= 0 (2.23) 

The model equation for pipe heat balance and soil heat balance are listed below. 

Pipe heat balance in water part: 

 
!!!"
!"

−
!!

!!!,!!!
!
!"

!
!!!"
!"

= 0 (2.24) 

here, !!" as pipe temperature for water part, !!,! the specific heat capacity for the pipe, and 

finally !! the density of pipe. 

Pipe heat balance in air part: 

 
!!!"
!"

−
!!

!!!,!!!
!
!"

!
!!!"
!"

= 0 (2.25) 

here, !!" as pipe temperature for the air part, !!,! the specific heat capacity for the pipe, and 

finally !! the density of pipe. 

Soil heat balance in water part: 

 
!!!"
!"

−
!!

!!!,!!!
!
!"

!
!!!"
!"

= 0 (2.26) 

here, !!" as soil temperature for water part, !!,! the specific heat capacity for the soil, and finally 

!! the density of soil. 

Soil heat balance in air part: 

 
!!!"
!"

−
!!

!!!,!!!
!
!"

!
!!!"
!"

= 0 (2.27) 

here, !!" as soil temperature for air part , !!,! the specific heat capacity for the soil, and finally !! 

the density of soil. 

 

For further information about the variables in Equation 2.24, Equation 2.25, Equation 2.26 and 

Equation 2.27, please refer to Table A.2 of Appendix A. 
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2.2.3 Water momentum balance  

The water momentum balance equation can be achieved from Equation 2.2 by developing the 

terms for the gravity force and friction (third and fourth terms). However a few assumptions are 

made beforehand.  

Beginning with the gravity force, the water depth could be represented by ℎ instead of !. 

Additionally the bottom slope (!!) is equal to  sin !   and can be approximated to !! ≈ tan ! =

− !!! !". According to assumption 4 stated in section 2.1, the bottom slope is small enough to 

satisfy the approximation cos ! ≈ 1,   sin ! ≈ tan ! ≈ !. By substituting the third term comes that: 

 !"
! ! + !
!"

= !"
!"
!"

+ !"
!"
!"

= !"
!ℎ
!"

+ !"
!!!
!"

= !"
!ℎ
!"
−!"#! (2.28) 

Now regarding the friction tern in the dynamic laws, the wetted perimeter Ω can be replaced  

by P. Furthermore the wall shear stress is equal to τ = !" !"!!
!"

 and, for the steady uniform flow, 

the friction and gravity forces are in balance: !! = !!. Substituting this into the fourth term, the 

friction term becomes: 

 
1
!
!"

!"!!
!"

! = !"!! = !"!! (2.29) 

Replacing these finals substitutions into the Equation 2.2 yields: 

 
!!!
!"

+
!
!"

!!!

!!
+ !!!

!ℎ
!"

− !!!!! + !!!!! = 0 (2.30) 

Changing the notation for !! and !! by !! and !!, the final equation of momentum balance is: 

 
!!!
!"

+
!
!"

!!!

!!
+ !!!

!ℎ
!"

− !!! !! − !! = 0 (2.31) 

2.3 Boundary and initial conditions 

2.3.1 Boundary conditions 

The succeeding boundary conditions are imposed on the upstream boundary: water 

temperature (!!), air temperature (!!), water flow rate (!!), air flow rate (!!) and humidity (!). 

An stationary relation between water and air flow is assumed in order to calculated the air flow 

rate using semi-empirical formulas: 

 !! = 0.8560
!
!!
!!,!!! (2.32) 

where, !!,! designated the water velocity at the interface water and air: 
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 !!,! = !! 1 +
!!

!!"
3
2
+ 2.30 log

2ℎ
!

 (2.33) 

where, !! is the velocity of water (m.s-1), !! is the friction factor of pipe wall, !!" is the Von 

Karman constant (≈ 4). 

 

2.3.2 Initial conditions 

For the initial conditions the stationary solution is assumed. For the water flow rate, the 

upstream boundary condition is assumed. The air flow rate is calculated from the water flow 

rate. The surface are is solved iteratively by (!! = !!): 

 !! =
!!!!!!!

!"!

! !

 (2.34) 

Regarding the temperature and water vapour, the stationary equations for the water balance of 

water vapour and heat balance for water, air, pipe and soil need to be solved, which from eight 

coupled differential equations (from Equation 2.35 to Equation 2.41). The stationary equations 

represent the stationary solution that is independent of time, therefore the time derivatives can 

be set as zero. 

 
!"
!"

=
1
!!!!

!!"! − !!!"!! − !!!"!!  (2.35) 

 
!!!
!"

=
1

!!!!,!!!
!!"!! − !!"! − !!"! + !!!!  (2.36) 

 
!!!
!"

=
1

!!!!,!!!
!!"!! + !!"! + !!!"!!  (2.37) 

These tree equations are solved numerically, Equation 2.35 to Equation 2.37. View Section 2.4.  

The equations for the temperature in pipe and soil are: 

 !
!"

!
!!!"
!"

= 0 (2.38) 

 !
!"

!
!!!"
!"

= 0 (2.39) 

 !
!"

!
!!!"
!"

= 0 (2.40) 

 
!
!"

!
!!!"
!"

= 0 (2.41) 

 

These four equations can be solved analytically: 
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 !!" ! = !! + !!! − !! !!"
!
2!!

ln
2!
!

+
1
!!"

 (2.42) 

 !!" ! = !!! + !!! − !! !!"
!
2!!

ln
2!

! + 2!! + !!
 (2.43) 

 !!" ! = !! + !!! − !! !!"
!
2!!

ln
2!
!

+
1
!!"

 (2.44) 

 !!" ! = !!! + !!! − !! !!"
!
2!!

ln
2!

! + 2!! + !!
 (2.45) 

the heat transfer flowing water !!" and air !!", !!" and !!" are listed in Table A.3 of Appendix 

A. !!! is the bottom temperature (steady state), ! is the pipe diameter, !! the thickness of pipe, 

and !! the Influence distance of soil.  

The numerical methods begin with initial and boundary conditions. At time ! = 0, the uniform 

steady flow conditions are specified al all the location. (Mujumdar, 2001). In the present work it 

is called stationary solution and is used as initial conditions. Following, an introduction to the 

numerical solvers is present. 

2.4 Numerical solvers  

The many differential equations do not have closed form solution and therefore must be 

approximated numerically. A finite difference method creates a particular discretized system 

through finite differences that approximate the differential equation in order to solve it (Patty, 

2010). In detail, this method consists in approximating the differential operator by replacing the 

derivatives in the equation using differential quotients. The function is partitioned in space and 

in time and approximations of the solution are computed at the space or time points (Pascal & 

De Buhan, 2008).  

The Lax-Wendroff method is a numerical method based on finite differences for solving 

approximately hyperbolic conservation laws (partial differential equations). Peter Lax and Burton 

Wendroff proposed this technique in 1960 (Grove, 1999): 

 !"
!"
+
!"(!)
!"

= 0  ,        !(!, !) (2.46) 

The fundamental concept of this method is to extend !(!, !) for a fixed !  using a Taylor series 

with second order accuracy. Using the partial differential equations to replace the time 

derivatives with spatial derivatives and employing the central differences to approximate the 

resulting spatial derivatives to second order.  

In practice the Lax-Wendroff method is implemented as two step method that is identical with 

the above equation for linear fluxes. 
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 !!!!/!
!!!/! =

!!!!! + !!!

2
−
1
2
−
Δ!
Δ!

(!!!!! − !!!) (2.47) 

 !!!!/!
!!!/! = ! !!!!/!

!!!/!  (2.48) 

 !!!!! = !!! −
Δ!
Δ!

(!!!!/!
!!!/! − !!!!/!

!!!/!) (2.49) 

In order to solve the partial differential equations numerically by finite differences methods a 

condition for convergence is needed. In the present case the Courant-Friedrich-Levy (CFL) 

condition is considered. The time step for each iteration must be less that a certain time. For the 

stability, the Courant number as defined in the next equation must be smaller than one. 

 !"# = !  
Δ!
Δ!

 (2.50) 

Where ! is described as the maximum velocity of the water plus propagation of waves. 

Regarding gas dynamics and in case of discontinuities, this method produces oscillations that 

can destroy the integrity of the computation. In order to inhibit these oscillations, an artificial 

viscosity could be added to the numerical method, for instance the linear artificial viscosity and 

the lapidus artificial viscosity. These two modifications to the Lax-Wendroff fluxes have been 

proven to be useful in practice (Grove, 1999). 

Linear artificial viscosity is implemented by adding a term that simulates the diffuse term. For 

the lapidus artificial viscosity, in order to increase the artificial viscosity in regions of large 

gradient whilst reducing in smooth regions, an adaptive method was developed by Lapidus 

(Grove, 1999).  

Chapter 3 will show how these equations could be implemented in the numerical framework.  
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Chapter 3 
Methods 

This work employs a software previously developed in MATLAB® by Bas Wols at KWR Water 

Research Institute (Nieuwegein, The Netherlands). This model aims to predict temperatures in a 

sewer system and steady flow, in order to find the best locations for heat recovery and help to 

understand the underlying physics of the dynamic system. 

The methodology in this project is organized in two subsections. Section 3.1 describes the 

previously developed algorithm, data structures and result visualization. A few adaptions were 

made to these routines, like the implementation of unsteady regimes for flow rate and 

temperature of water. 

For both steady and unsteady situations, the impact of each term in the equations for water and 

air heat balance equation (Equations 2.19 and 2.20) was studied. A script was developed to 

process all the combinations of terms and compare these results with the situation where all 

terms of the equations are included called general case. This process is present in Section 3.2. 

3.1 Implementation of model  

There is a wide variety of data types in MATLAB® and the ones employed in this project are 

described in Subsection 3.1.1. Furthermore in Subsection 3.1.2 the concepts of conduits and 

nodes are defined, plus a list of few assumptions there is presented. Subsection 3.1.3 describes 

the workflow required to initiate, process and visualize the analysis of a model. Modifications 

made to the code in order to implement unsteady flow regimes are present in Subsection 3.1.4 

as well a comparison between both situation, steady and unsteady situations. 
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Please bear in mind that the developed model does not seek to quantify relations between 

wastewater discharge, airflow, water vapour and temperatures and discharge stimulation. For 

now it allows a qualitative examination of the physical process along the conduit. 

3.1.1 Data types 

MATLAB® is a high-level language that uses matrix data structures, a wide collection of 

functions and offers the user the possibility to develop user defined functions and scripts. The 

variable that stores the properties of modelled sewer system is mentioned as model and is 

based in two basic components known as conduits and nodes. The data structures employed in 

this project were array, structures, cells and variables. Figure 3.1 shows a scheme of the 

model, stored as a structure, and the various fields that are enclosed in it.  

 

Figure 3.1: Representation of model structure with the seven fields: constant conditions (cond), constants 
(const), conditions of pipe (pipe), numerics (num), conditions of the network (line), stationary solution (stat) 
and results data (data). 

 

A description of each one of the seven fields, the type of data, parameters and the respective 

value is made as follows. 

Constant conditions 

The ‘constant conditions’ are defined as a structure (model.cond) with variables enclosed, 

namely the temperature of air and soil, air pressure and humidity. Table 3.1 contains those 

variables and the respective considered value for the simulations.  

Table 3.1: Values for each variable of ‘constant conditions’ (model.cond). 

Parameter Symbol Value 

Air temperature Tair 283 K 

Soil temperature Tsoil 280 K 

Ambient air pressure ! 1000 mbar 

Relative humidity ! 0.8 
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Constants  

The structure ‘constants’ (model.const) contains variables and structures of variables. The 

values considered in our analyses for these variables are listed in the subsequent table. 

Table 3.2: Values for each parameter of ‘constants’ (model.const). 

Parameter Symbol Value 

Gravity acceleration ! 9.81 m3.s-1 

Saturation pressure !!! 1.73E09 mbar 

Saturation temperature !!! 311 K 

Evaporation enthalpy ℎ!" 2453.3E03 J.kg-1 

Density water !! 1000 kg.m-3 

Density air !! 1.188 kg.m-3 

Specific heat capacity water !!,! 4.1813E03 Jkg-1.K-1 

Specific heat capacity air !!,! 1007 Jkg-1.K-1 

Kinematic viscosity water !! 1E-06 m2.s-1 

Kinematic viscosity air !! 1.533E-05 m2.s-1 

Thermal diffusivity water !! 1.4E0-7 m2.s-1 

Thermal diffusivity air !! 2.216E0-5 m2.s-1 

Thermal diffusivity soil !! 0.74E-06 m2.s-1 

Thermal conductivity water !! 0.6 Wm-1.K-1 

Thermal conductivity air !! 0.02569 Wm-1.K-1 

Thermal conductivity soil !! 2.2 Wm-1.K-1 

Prandtl number water/air Pr Pr = !/! 

Binary variables water !!", !!", !!" 1 or 0 

Binary variables air !!", !!" 1 or 0 

 

 

Conditions of conduit  

The ‘conditions of the conduit’ or ‘conditions of the pipe’ are defined as a structure (model.pipe) 

with several variables – Table 3.3. 
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Table 3.3: Values for each parameter of ‘conditions of the pipe’ (model.pipe). 

Parameter Symbol Value 

Shape “pipe” - 

Pipe diameter ! 0.235 m 

Thickness of pipe !! 0.04 m 

Pipe length ! 10 m 

Bottom slope !! 2E-03 m.m-1 

Friction constant !! 2.4E-03 

Density pipe !! 2000 kg.m-3 

Specific heat capacity pipe !! 0.84E003 Jkg-1.K-1 

Influence distance of soil !! 3 m 

Thermal conductivity pipe !! 2.3 Wm-1.K-1 

Spatial grid distance Dx  =  !/n - 

Thermal diffusivity pipe !! =   !!!!/!! - 

 

Numerics parameters 

The ‘numerics’ structure (model.num) contains the parameters that concern the numeric 

simulation as shown in Table 3.4. 

Table 3.4: Values for each parameter of ‘numeric’ (model.num). 

Parameter Symbol Value 

Number of time steps nstep 1000 

Grid size n 100 

Courant number criterium CFL 0.8 

Number of plots nplots 5 

Store solution nsaves times nsaves 1000  

Number of layers in pipe nlayers 5 

Number of layers in soil nsoil 5 

 

 

 



23 

Conditions of the network 

The ‘conditions of the network’ or ‘conditions of the line’ are stored in a structure (model.line). 

The user can choose the connectivity of the pipe network using array ind. For the present 

project a simple conduit with two nodes that represents the extremities of the pipe. Initial 

conditions were set at the first node and no value was setting for the second node (NaN). The 

following table presents the values employed in the simulations.  

Table 3.5: Values for each variables of ‘conditions of the network (line)’ (model.line). 

Parameter Symbol Value 

Connections between conduits 

and nodes 

ind [1 2] 

Temperature of water  !! 283 K 

Temperature of air  !! Initialized at ‘Tair’ 

Water flow rate !! 0.001 m3.s-1 

Air flow rate !! NaN 

Water vapour fraction ! NaN 

Water cross sectional area !! NaN 

 

For the !! , ! and !!  the values are computed by the algorithm. The same happens for !! , 

however this value is initialized with the value of air temperature (Tair) from Table 3.1. 

Stationary solution  

As described in Subsection 3.1.3, one of the first steps in the analysis procedure is the 

determination of the stationary solution. The stationary solution represents the initial conditions 

at the first node. All variables associated with the stationary solution are stored in a structure 

(model.stat). The variables are: position along the pipe (!), bottom height (!! ), air cross 

sectional area (!!), water cross sectional area (!!), water depth (ℎ), water flow rate (!!), air 

flow rate (!!), temperature of water (!!), temperature of air (!!), water vapour fraction (!), 

relativity humidity (! ), saturation pressure (!!"# ), temperature in pipe water part (!!" ), 

temperature in pipe in air part (!!"), temperature soil water part (!!") and temperature soil air 

part (!!"). 

Results data 

The data structures were the results of the PDEs solutions are stored in a cell of structures 

(model.data). Each structure refers to a store time instant and contains a set of arrays 

corresponding to the estimated values for all the fields mentioned in the Stationary solution. 

Each data cell has one line per pipe. In this case the data cell has one line and the number of 
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columns is the same as the number of saved steps (time). Each array has the value of the 

respective field for all the grid positions.  An example for a data cell is displayed in Figure 3.2, 

where the fields !! and !! are shown: 

model.data  =   results  for  ! = 0 … results  for  ! = !!"#$%  

=

!! !!, ! = 0
!! !!, ! = 0

…
!! !!, ! = 0

!!(!!, ! = 0)
!!(!!, ! = 0)

…
!!(!!, ! = 0)

… …

!!(!!, ! = !!"#$%)
!!(!!, ! = !!"#$%)

…
!!(!!, ! = !!"#$%)

!!(!!, ! = !!"#$%)
!!(!!, ! = !!"#$%)

…
!!(!!, ! = !!"#$%)

…  

Figure 3.2: Example for a data cell with !! and !! as fields. 

 

 Here, !! is the position along the pipe for grid size n and !!"#$% is the number of steps in time.  

3.1.2 Conceptual model 

Definitions  

The model is based in two basic components entitled conduits and nodes. A conduit is assumed 

to represent a prismatic pipe with circular cross-section and without discontinuity. Here 

wastewater discharge, airflow, water vapour and temperatures are functions of time and space, 

and are modelled by the balance equations described in Section 2.2 (Dürrenmatt & Wanner, 

2008). 

Nodes define discontinuities originated by lateral inflows, headspace openings, unexpected 

changes of the sewer geometry or material properties, and are modelled by continuity 

conditions. To clarify, a conduit could be a line and the extremities the nodes, so one line have 

two nodes. The boundary conditions of the system are defined in these nodes (Dürrenmatt &  

Wanner, 2008; Dürrenmatt & Gujer, 2006). 

Two system boundaries can be distinguished; the first one is a conceptual boundary and the 

other a physical one. The conceptual boundary defines the part of the drainage system 

(therefore includes all sewers pipes, manholes, etc.) and is referred as node. The physical 

system boundary defines the balance of a volume in a pipe section which is required to derive 

the mathematical equations that describe the operations of heat transfer (Dürrenmatt & Gujer, 

2006). 

Assumptions and simplifications 

These considerations are divided in physical constants, materials and topology, flow and heat 

balance. 

Physical constants: (1) the physical constants of the pipe do not change with temperature (pipe 

or soil will not change of shape or size along the length); (2) thermally and hydraulically 

wastewater behaves as water; (3) water and air are classified as incompressible flows, i.e. 
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density is constant; (4) the specific enthalpy of water vapour is equal to the evaporation 

enthalpy ℎ!" (Dürrenmatt & Gujer, 2006). 

Materials and topology: (5) nodes have no size, they are represented as zero-dimensional 

objects; (6) the pipe defines a line section, which is free of discontinuities (these are taken into 

account in the node); (7) the pipe is defined as a line segment in wich the material propreties 

and topology are constant in space and time; (8) sewers pipes have a circular cross section; (9) 

the soil is isotropic (uniform in all orientations) and homogeneous, therefore a constant thermal 

conductivity is considered; (10) interaction between sewer pipe and soil is limited to a layer 

around the pipe with a thickness of !!; (11) the temperature in the exterior of the layer with 

thickness of !!, is spatially and temporally constant (Dürrenmatt & Gujer, 2006). 

Flow: (12) the connections (or places where water is discharged) are small enough to neglect 

the cross sectional area and use the one-dimensional property of the model; (13) the 

wastewater flow is not affected by the air in the pipe. But on the other side, the air flow is 

affected by the wastewater flow (not a reciprocal interaction between both streams); (14) in the 

calculation of steady-state, a uniform discharge is assumed. The unsteady flow can be modeled 

as a diffusive wave using the Saint-Venant equations; (15) returns flow can be neglected 

(Dürrenmatt & Gujer, 2006).  

Heat balance: (16) heat created by internal and external friction is neglected; (17) the diffusive 

transport of heat in the longitudinal direction is neglected, only the advective heat transport is 

taken into account; (18) the heat balance between soil and pipe takes place only in the radial 

direction; (19) in condensation layer water vapour can condense, whereas water does not 

evaporates; (20) the condensation layer is massless; (21) the mass transport can be treated 

analogously to the heart transport. The mass transfer coefficient is equal to heat transfer 

coefficient divided by ℎ!" (with assumption 4) (Dürrenmatt & Gujer, 2006). 

3.1.3 Analytical model 

The code begins with function fun_start where a sewer model is initialized. Subsequently in 

function sewer_temp_model the model is processed. Finally results visualization is computed 

with function fun_plot, which plots the results along the pipe length for sample times of the 

analysis. Moreover, for the same results a function called fun_plot_t was developed in order to 

visualize the results in time instead of position. The flowchart in Figure 3.3 displays shows a 

scheme of this algorithm. 

 



26 

 

Figure 3.3: Previously developed program in MATLAB® in KWR Water Research Institute (Nieuwegein, 
The Netherlands) by Bas Wols, containing 3 functions: fun_start, sewer_temp_main and fun_plot. Number 
of steps defined by the user. 

Start model 

The model is initializing with function fun_start, this function stores the parameters (constant 

conditions, constants, conditions of conduit or pipe, numerics parameters, conditions of the 

network) in an initial version of the model structure. This function was modified in order to help 

to process different PDEs term combinations as described in Section 3.2. A binary array was 

added as an argument. This binary array indicates which terms in Equation 3.1 and Equation 

3.2 are considered in the analysis. This will be clarified in Section 3.2. 

Model analyses 

In order to compute the numerical model, function sewer_temp_model is called. This function 

receives as argument a model structure initialized from function fun_start. It starts by defining 

the initial conditions for the conduit or pipe, and calculating and storing the stationary solution. 

The stationary solution holds the solution of the PDEs for time instant ! = 0. Subsequently a 

loop spans across all step iterations and calculates the solution for each time step. For each 
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iteration it starts by initializing the conditions at the upstream boundaries, setting the variables 

for the PDEs, and calculating the smallest time interval for the respective step to solve the 

PDEs (according to ∆! as described in Section 2.4). The most important part of the algorithm 

follows, the calculation of the solution of the PDEs at every pipe (n this work, only one pipe was 

modelled) by employing the Lax-Wendroff method for equations 2.13, 2.14, 2.15, 2.19, 2.20 and 

2.31. For equations 2.24, 2.25, 2.26 and 2.27, these equations are analytically resolved. The 

loop finalizes by storing the calculated results in field data for the steps defined in the variable 

num.nsave.  

Print model results in position 

Function fun_plot is the default function for output visualization. This routine prints the obtained 

predictions for water height (ℎ ), water flow rate (!! ), water temperature (!! ), and air 

temperature (!! ) along the length of the pipe for the time instants defined in the variable 

num.nplot. 

Print model results in time 

Function fun_plot allows the representation of the estimations in the length of the pipe. The 

author developed a new function named fun_plot_t to change the way results are arranged and 

plotted. For a given set of positions in the length of the path, this function plots the results as a 

function of time. In order to obtain the variables of the results cell data in time, function datatime 

was developed.  

Function datatime receives as arguments a model structure and an array of positions along the 

pipe, and returns a cell named datatt. The model structure has a field called data that consists 

in a cell that encloses all the results obtained (model.data). This cell has as many positions as 

the number of time steps (nstep). Each position has a structure with fields that correspond to 

the calculated variables, for the corresponding time step. For each saved time step the routine 

gets the value of each variable at the position specified by the user. In conclusion there are two 

routines, one routine capable of displaying the calculated variables in time and another that 

shows them in position of the pipe.  

Print model results in colour map 

To visualise the results, colour maps representations were developed in function fun_plot_color. 

Colour maps are able to represent the system variables as function of time (abscissa) and 

position along the pipe (ordinate), with a colour gradient representing the magnitude of this 

variable in question.  

In order to implement this function the data needed to be compiled from the cell ‘model.data’ 

and arranged in a matrix where rows are the values of the variable in question over the time and 

the columns are the values the position in the pipe. This matrix was then given as an argument 

to default MATLAB function colormap. 
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3.1.4 Boundary conditions 

Previously these routines were only allowing discharge cases for a steady flow was considered. 

Therefore this would correspond to constant boundary conditions (BC) in time. 

Subfunction fun_BC defines the values at the boundary conditions. Some modifications were 

made at this level to allow the code to consider an unsteady situation, where some wastewater 

discharge flow properties varied with time. Unsteady discharges were simulated with time 

dependent boundary conditions for water flow rate (!! ) and temperature in water (!! ). 

Discharges were considered to have a Gaussian function as shown in Figure 3.4. 

 

Figure 3.4: A Gaussian function (!) starts at !! over the numerical time !!, the duration of the discharge is 
!! and the peak has amplitude !. 

 

The modified boundary conditions for this case are described in Table 3.6, where the Gaussian 

is added to a constant flow of water !!,!" and to the water temperature !!,!". 

Table 3.6: Time dependent boundary conditions for water flow rate (!!) and water temperature (!!). 
Where !! correspond to start time, !! is the numerical time, !! the duration of the function and !′ is the 
amplitude. For the water flow rate a ! was added to the variables and a ! for the water temperature. 

Variable Steady situation Unsteady situation  

Water flow rate !!(! = 0, !)   =   !!,!" !! ! = 0, ! =   !!,!" + !!,!" .!′! . exp −
!! − !!!

!

0.5!!"!
 

Water 

temperature 
!!(! = 0, !)   =   !!,!" !! ! = 0, ! =   !!,!" + !!,!" .!′! . exp −

!! − !!! !

0.5!!"!
 

 

3.2 Assess each terms in heat balance equations 

Along with the implementation of time varying boundary condition for water flow and water 

temperature, one of the main goals of this project is to study the impact of each term in the 
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equations for heat balance in water and air (Equations 2.19 and 2.20) defined in Section 2.2. A 

script was developed to compute a model where all terms of the equations are included, that we 

shall call general case, and compare it with several models that respectively correspond to a 

combination of terms in the heat balance equations, hereby mentioned as modified cases (MC). 

The developed model is presented in a flowchart, following Figure 3.5.  

 

 

Figure 3.5: Developed model in MATLAB® with the principal phases. 

 

First of all some modifications were made to function fun_start compared to the previous model 

from Bas Wols. This function receives as argument a binary array and each position of the array 

corresponds to a specific term in the heat balance equations. The terms will be included or not 

in the calculation of the PDEs. 

Regarding Figure 3.5, this figure represents the principal phases of the developed script. It 

starts by initializing the model structure for the general case. Here function fun_start receives as 

argument a binary array containing a non-false value (1) in all its positions. The 

sewer_temp_model for the general case is executed and store. 
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The next phase concerns about the modified cases. A binary matrix is assembled with all 

combinations of equations parameters included in it. Each line corresponds to a modified case 

model and it is described in Subsection 3.2.1. For each line of the matrix, the initial parameters 

for the modified case are stored in a new model structure and processed by running the model. 

Finally the comparison between the general case and each modified case is made by 

calculating the deviation as described in Subsection 3.2.2 and these deviations are plotted – 

Subsection 3.2.3. 

3.2.1 Matrix and modified cases 

In order to determine the contribution of each term of the water heat balance equation (Equation 

2.19) and air heat balance equation (Equation 2.20), all combinations of terms are considered 

and compared to a general case that will include all of them. Binary coefficients were introduced 

for each heat flux for both the equations. The biochemical activity term (!!) was assumed to be 

not significant and therefore was previous neglected in the heat balance water equation. 

The following equations have the binary coefficients ! in bold. The equation for the water heat 

balance, as adapted from Equation 2.19 is 

 
! !!!!

!"
+
! !!!!

!"
−

1
!!,!!!

!!" ∙ !!"!! − !!" ∙ !!"! − !!" ∙ !!"! + !!!! = 0 (3.1) 

where !!" is the binary coefficient for heat flux pipe to water, !!" is the binary coefficient for the 

heat flux water to air and !!" is the binary coefficient for evaporation or condensation. Equation 

2.20 that corresponds to the air heat balance was modified as follows 

 !!
!!!
!"

+ !!
!!!
!"

−
1

!!,!!!
!!" ∙ !!"!! + !!" ∙ !!"! + !!" ∙ !!!"!! = 0 (3.2) 

where !!" is the binary coefficient for the heat flux pipe to the air, and finally !!" is the binary 

coefficient for heat flux due oversaturation. 

Furthermore, a matrix was developed with ten lines and five columns that represent the ten 

possible modified cases (MC) holding the combinations of inclusion of the five studies under 

study. The next table represents the matrix, with the first line corresponding to the general case 

(GC): 

 

Table 3.7: Binary matrix containing the general case and 10 modified cases. 

Cases fRw fwl fvP fRl fkl 

GC 1 1 1 1 1 

MC 1 0 0 0 1 1 

MC 2 0 0 1 1 1 

MC 3 0 1 0 1 1 

MC 4 0 1 1 1 1 
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MC 5 1 0 0 1 1 

MC 6 1 0 1 1 1 

MC 7 1 1 0 1 1 

MC 8 1 1 1 0 0 

MC 9 1 1 1 0 1 

MC 10 1 1 1 1 0 
 

Modified cases MC 1 till MC 7 considered the equation for air heat balance complete, combining 

the terms for the water heat balance equation. The last modified cases MC 8, MC 9 and MC 10 

represent the possible combinations for the air heat balance equation, without changes in the 

water heat balance equation. The general and modified cases are listed below: 

General case 

 ! !!!!
!"

+
! !!!!

!"
−

1
!!,!!!

!!"!! − !!"! − !!"! + !!!! = 0 (3.3) 

 !!
!!!
!"

+ !!
!!!
!"

−
1

!!,!!!
!!"!! + !!"! + !!!"!! = 0 (3.4) 

Modified case 1 

 ! !!!!
!"

+
! !!!!

!"
−

1
!!,!!!

!!"!! − !!"! − !!"! + !!!! = 0 (3.5) 

 !!
!!!
!"

+ !!
!!!
!"

−
1

!!,!!!
!!"!! + !!"! + !!!"!! = 0 (3.6) 

Modified case 2 

 ! !!!!
!"

+
! !!!!

!"
−

1
!!,!!!

!!"!! − !!"! − !!"! + !!!! = 0 (3.7) 

 !!
!!!
!"

+ !!
!!!
!"

−
1

!!,!!!
!!"!! + !!"! + !!!"!! = 0 (3.8) 

Modified case 3  

 ! !!!!
!"

+
! !!!!

!"
−

1
!!,!!!

!!"!! − !!"! − !!"! + !!!! = 0 (3.9) 

 !!
!!!
!"

+ !!
!!!
!"

−
1

!!,!!!
!!"!! + !!"! + !!!"!! = 0 (3.10) 
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Modified case 4 

 ! !!!!
!"

+
! !!!!

!"
−

1
!!,!!!

!!"!! − !!"! − !!"! + !!!! = 0 (3.11) 

 !!
!!!
!"

+ !!
!!!
!"

−
1

!!,!!!
!!"!! + !!"! + !!!"!! = 0 (3.12) 

Modified case 5  

 ! !!!!
!"

+
! !!!!

!"
−

1
!!,!!!

!!"!! − !!"! − !!"! + !!!! = 0 (3.13) 

 !!
!!!
!"

+ !!
!!!
!"

−
1

!!,!!!
!!"!! + !!"! + !!!"!! = 0 (3.14) 

Modified case 6  

 ! !!!!
!"

+
! !!!!

!"
−

1
!!,!!!

!!"!! − !!"! − !!"! + !!!! = 0 (3.15) 

 !!
!!!
!"

+ !!
!!!
!"

−
1

!!,!!!
!!"!! + !!"! + !!!"!! = 0 (3.16) 

Modified case 7  

 ! !!!!
!"

+
! !!!!

!"
−

1
!!,!!!

!!"!! − !!"! − !!"! + !!!! = 0 (3.17) 

 !!
!!!
!"

+ !!
!!!
!"

−
1

!!,!!!
!!"!! + !!"! + !!!"!! = 0 (3.18) 

Modified case 8  

 ! !!!!
!"

+
! !!!!

!"
−

1
!!,!!!

!!"!! − !!"! − !!"! + !!!! = 0 (3.19) 

 !!
!!!
!"

+ !!
!!!
!"

−
1

!!,!!!
!!"!! + !!"! + !!!"!! = 0 (3.20) 

Modified case 9 

 ! !!!!
!"

+
! !!!!

!"
−

1
!!,!!!

!!"!! − !!"! − !!"! + !!!! = 0 (3.21) 

 !!
!!!
!"

+ !!
!!!
!"

−
1

!!,!!!
!!"!! + !!"! + !!!"!! = 0 (3.22) 
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Modified case 10 

 ! !!!!
!"

+
! !!!!

!"
−

1
!!,!!!

!!"!! − !!"! − !!"! + !!!! = 0 (3.23) 

 !!
!!!
!"

+ !!
!!!
!"

−
1

!!,!!!
!!"!! + !!"! + !!!"!! = 0 (3.24) 

 

3.2.2 Deviations 

At this point, the general and each modified case were saved in respective structures. In order 

to compare all modified cases to the general case, an deviation measure was calculated for 

each. The deviation measure consisted in calculating the difference in all grid positions for 

temperature of air (!!) and temperature of water (!!) between general case (!!!" and  !!!") and 

modified case (!!!" and !!!"). These differences of values are done for all the time steps (and 

expressed in percentage), resulting a !! deviation matrix and !! deviation matrix with time steps 

as a row and the grid position as a columns (DeviationTW and DeviationTl). Afterwards, the 

average value of matrix elements (using function mean2) and the standard deviation (function 

std2 ) are calculated for both parameters !!  and !!  resulting in the meanDeviationTW, 

meanDeviationTl, stdDeviationTW and stdDeviationTl. Since there are ten modified cases this 

routine has a looping for them, ten times. Expressing this procedure in equations yields: 

 
Deviation!! =

!!!" − !!!"   
!!!"

∙ 100 (3.25) 

 
Deviation!! =

!!!" − !!!"

!!!"
∙ 100 (3.26) 

 meanDeviation!! = mean2(Deviation!!) (3.27) 

 meanDeviation!! = mean2(Deviation!!) (3.28) 

 stdDeviation!! = std2(Deviation!!) (3.29) 

 stdDeviation!! = std2(Deviation!!) (3.30) 

3.2.3 Plot deviation results 

To show the deviation results would be helpful the results for each modified cases in the same 

figure to facility the comparison between each modified case.  

The chart chosen was a bar chart using the functions deviationbar and bar. The vertical bars 

represent the mean value or average for !! and !! (meanDeviationTW and meanDeviationTl) 

and the deviation bars the standard deviation (stdDeviationTW and stdDeviationTl). 
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Chapter 4 
Results 

This chapter can be separated in two main approaches. The first one encloses the results for 

the steady situation, described in Section 4.1. These results show a simulation from the original 

code by Bas Wols as in Chapter 3 (Subsection 3.1.3) and contain the output variables along the 

length of the pipe and over time for a fixed position. In addition, the deviations associated with 

the removal of some terms in the Equations 2.19 and 2.20 are presented. 

Section 4.2 reports the results for the implemented unsteady situation. The same pipe modelled 

in Section 4.1 is employed. Colour maps for water temperature (!!) and water flow rate (!!) as 

functions of pipe position and time are shown for the general case and the modified cases. 

Since the results in Section 4.2 verified some unexpected oscillatory behaviour, Section 4.3 

concludes with an extra situation where the time step (!" = !"!"#/8) is reduced, in order to 

improve the outcome. 

4.1 Steady situation 

4.1.1 Model results in position 

The original code provided post-processing routines that showed the model results along the 

length of the pipe for a number of time instants defined with variable num.nplot.  
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Figure 4.1: Representation in position of the pipe water depth (ℎ) (4.1a), water flow rate (!!) (4.1b), air 
temperature (!!) (4.1c) and water temperature (!!) (4.1d), for a steady situation of the general case. Line 
colour denotes different time instants (five times depicted, however coincidental).  

 

Figure 4.1 shows the predicted results for four variables: water depth (ℎ), water flow rate (!!), 

air temperature (!!), and water temperature (!!), as function of pipe position, Different times of 

analyse (five times) are represented but since time variation is negligible, curves lay on top of 

each other. 

Figure 4.1a shows ℎ (purple line) and the bold lines represent the pipe walls position. Water 

height is less than 5cm. Regarding Figure 4.1b, !! is 1L/s and constant as expected. Air 

temperature !!, shown in Figure 4.1c, is expected to suffer a slight reduction from 10ºC to 

approximately 8ºC. In Figure 4.1d displays !! and hold a constant value of 10ºC along the 

length of the pipe and for different time instants. 

The most important parameters here are !! and !!, and they are constant as expected in a 

steady regime.  

4.1.2 Model results in time 

The same results from the previous subsection are shown here as function of time instead of 

position using the developed function datatime, that was described in Subsection 3.1.3. 
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Figure 4.2: Representation in time for unsteady situation and general case for three positions in the pipe, 
! = 1m in blue, ! = 5m in red and ! = 10m in black: water depth (ℎ) (4.2a), water flow rate (!!) (4.2b), air 
temperature (!!) (4.2c) and water temperature (!!) (4.2d).  

 

Figure 4.2 shows the same parameters of Figure 4.1 (water depth (ℎ), water flow rate (!!), air 

temperature (!!) and water temperature (!!)), however here is represented the variation in time 

for a fixed length or position in the pipe (!). In this case the values of !, they are: ! = 1m, 

! = 5m and ! = 10m were considered, depicted respectively with blue, red and black colours.  

It is possible to observe in Figure 4.2a a reduction in ℎ with time that follows the lower boundary 

of the pipe wall. Water flow rate !! is represented in Figure 4.2b where some visible variation 

observed, however negligible. Regarding !! , in Figure 4.2c, the same slight reduction as 

reported in Figure 4.1c is present here. For !!, Figure 4.2d, only the black line (! = 10m) is 

visible since the others two do not vary, laying on top of each other.  

The potential of the developed routine datatime is not tangible in this section, since the results 

we obtained for the steady proved to have fairly constant trends in time and position. However 

Section 4.2.2. 

4.1.3 Deviation results 

Simulations for the steady case were performed for the modified cases, i.e., for the different 

combinations of terms for the equations water heat balance and air heat balance as stated in 

Section 3.2. The difference in the output for the general and modified cases is shown in Figure 

4.3. 
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Figure 4.3: Water temperature (!!) over the time for a fixed length ! = 10m. Each line represents the 10 
modified cases for steady situation. 

 

Here, in Figure 4.3 it is possible to see that there are slight variations in the predicted values of 

!!, although looking at the scale, these values vary approximately between 10.002ºC and 

9.989ºC. The water temperature for each modified cases is fairly the same as the general case 

with a maximum difference of 0.01 ºC. This shows that the dynamics in the system are 

consistent and completely disregarding the terms for the equation of water heat balance or the 

equation of air heat balance does not make an impact in our predictions. The same will not be 

verified in Section 4.2, where the unsteady case is considered. 

In order to quantify the difference in the predictions from the modified cases to the general case, 

the deviation measure described in Subsection 3.2.2 was calculated for each one of them. 
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Figure 4.4: Difference between the general case and each modified case for the water temperature (!!) 
(4.4a) and air temperature (!!)  (4.4b) and than the mean and the standard deviation. Steady situation. 

 

Figure 4.4 shows these measures for the ten modified cases. The vertical bars represent the 

mean values for   !!  and !! , and the deviation bars the standard deviation. In order to 

remembering, in the modified cases MC 1 till MC 7 it was considered all the terms for air heat 

balance equation (Equation 2.20) and the possible combinations for the water heat balance 

equation (Equation 2.19). The opposite happens for the MC 8 to MC 10. 

In Figure 4.4a, the modified cases with the highest deviations for !! correspond to MC 1 to MC 

4 where the term heat flux pipe to water (!!") was neglected. For modified cases MC 5 to MC7 

the highest deviations occur when both the terms for heat flux water to air (!!" ) and 

evaporation/ condensation (!!") were neglected. The remaining modified cases (MC 8 to MC 

10) correspond to the terms where all water heat balance equation were considered. The heat 

flux pipe to air seems to be more important than the heat flux due to oversaturation. 

Regarding !!, Figure 4.4b, the largest deviations occur for changes in the equation of heat 

balance in air (Equation 2.19), namely in MC 8 and MC 9 where the term heat flux pipe to air 

(!!") was not included and the deviations correspond to an overvalued of the air temperature. In 

the MC 10 these terms were assumed and the term heat flux due oversaturation (!!") was 

neglected, the deviations indicate an undervalued situation for the air temperature. For the 

others modified cases (MC1 to MC7) the deviations were higher for the ones that did not include 

the term heat flux water to air (!!") was neglected, i.e., MC 1, MC 2, MC 5 and MC 6. The rest 

of the modified cases are related to the water heat balance and they do not have impact in the 

air temperature. 



40 

4.2 Unsteady situation  

This section presents the results for an unsteady regime, as described in Subsection 3.1.4, and 

it is arranged in six subsections. The first two, similarly as in the previous section, report the 

results found for our model variables as function of time and position respectively in the general 

case. Colour maps were developed in order to present the model results for the water 

temperature (!!) and water flow rate (!!) for the general case in both time and distance – 

Subsection 4.2.3. The same type of representation is employed for the modified cases for the 

parameter water temperature in Subsection 4.2.4. Subsection 4.2.5 subsequently reports the 

calculated difference deviations for these modified cases.  

4.2.1 Model results in position 

The following figure illustrated the model results as a function of position, for the unsteady 

situation. 

 

Figure 4.5: Representation in position of the pipe water depth (ℎ) (4.5a), water flow rate (!!) (4.5b), air 
temperature (!!) (4.5c) and water temperature (!!) (4.5d), for an unsteady situation of the general case. 
Line colour denotes different time instants (five times depicted, blue, red, black, green and purple in 
ascending order). 

 

Figure 4.5 shows four parameters as function of pipe position: water depth (ℎ), water flow rate 

(!!), air temperature (!!), and water temperature (!!). Five time instants of the analysis are 

represented in different colour lines.  

Figure 4.5a shows the water depth ℎ along the pipe length, with a practically constant value 

along the length of the pipe for all different time instants. In a discharge, such behaviour is not 

expected. As it will be shown in Section 4.3, this might be due to a problem in the estimation of 

the minimum time step !" as stated in Section 2.4.  
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The water flow rate !! increases non-linearly along the pipe for all time instants – Figure 4.5b. 

The highest values achieved corresponded to the blue line, i.e., the first time instant of the 

analysis, where a 2.5% increase is verified. The magnitude of each peak for !! decrease over 

the time, as the discharge passes though the pipe. 

For !!, it is visible in Figure 4.5c, that its profile is different for each reported times. However in 

general the water temperature tends to decrease along the pipe length. Regarding Figure 4.5d, 

the highest peak of !! corresponds to the discharge, however extras oscillations are present. 

These could arise due to several reasons, such as course grid or large time step. For the last 

time instant (purple line) !! seems to be constant. The green line and black line are coincident 

with the purple line.  

  

4.2.2 Model results in time 

The same results from the previous subsection are shown here as function of time, instead of 

position, using the developed function datatime. 

 

Figure 4.6: Representation in time for unsteady situation and general case for three positions in the pipe, 
! = 1m in blue, ! = 5m in red and ! = 10m in black: water depth (ℎ) (4.6a), water flow rate (!!) (4.6b), air 
temperature (!!) (4.6c) and water temperature (!!) (4.6d). 

 

Figure 4.6 shows the same parameters of Figure 4.5 (water depth (ℎ), water flow rate (!!), air 

temperature (!!) and water temperature (!!)), however here these are represented as function 

of time for a fixed position in the pipe (!). The same values of ! from Section 4.1.2 were 

considered: ! = 1m, ! = 5m and ! = 10m, respectively blue, red and black colours. 

Figure 4.6a displays ℎ following the lower boundary of the pipe wall, maintaining its value 

constant as reported in the previous section (again, not a reasonable result. Water depth 
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fluctuations are negligible and do not accurately represent the discharge). For !!, Figure 4.6b, 

it is visible some initial steep peak followed by smaller oscillations. As mentioned in the previous 

subsection, time step and grid size could be the reason of such behaviour. Post-peak wakes are 

also present in the water temperature, in Figure 4.6d. The evolution of the position of discharge 

wave is visible similarly for the plots regarding !!  and !! . The initial peak and further 

oscillations increase their position in time, while reducing the envelope, i.e., reducing water flow 

rate and temperature. This is probably due to thermal exchange with the pipe, we will confirm in 

Section 4.2.5. 

The potential of the developed routine datatime is evident in this section. The results we 

obtained for the unsteady situation, where a discharge is considered, have a far more complex 

evolution with time. A routine that allows the user to see the profile of system variables with time 

helped in the detection of the wave ripples artefacts that were obtained. However a full picture 

of the results will be better obtained with a colour map, described as follows.  

 

4.2.3 Colour map for general case 

In order to visualize the variables in interest for both time and position, the model results for the 

general case were plotted in a colour map, as shown in Figure 4.7. 

 

Figure 4.7: Colour map representation of water temperature (!!) for the general case of the unsteady 
situation. Vertical axis represent position along the pipe and horizontal axis represent time, the gradient of 
colour represents the temperature in Celsius degree.  

 

The Figure 4.7 illustrates a colour representation of the water temperature (!!) for the general 

case of steady situation. The vertical axis represents the position along the pipe, the horizontal 

axis represents time and the colours define the temperature of water in Celsius degrees. In all 
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colour maps warm colours represent high values for the variable, whereas cold colour represent 

low values. 

The warmer coloured peak corresponds to water temperatures that result from the main 

discharge. It is possible to realise that the temperature wave position covers the full length of 

the pipe in less than 40 seconds. As predictable, the oscillations reported in Figure 4.5 and 

Figure 4.6 are visible in this figure. The previously mentioned decrease in water temperature is 

also perceptible here, with the peak colour varying from dark red to yellow while the discharge 

goes through the pipe. 

This type representation allows the user to have the full picture of the pipe in terms of spatial 

and time behaviour. However, sewer_temp_model and datatime are essential to accurately 

inspect the profile of the variables. 

The following figure represents the colour map for the obtained water flow rate (!!) predictions. 

 

Figure 4.8: Colour map representation of water flow rate (!!) for the general case of the unsteady 
situation. Vertical axis represent position along the pipe and horizontal axis represent time, the gradient of 
colour represents the temperature in Celsius degree. 
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Figure 4.9: Zoom of the previous figure. Water flow rate (!!) for the general case of the unsteady 
situation. Vertical axis represent position along the pipe and horizontal axis represent time, the gradient of 
colour represents the temperature in Celsius degree. 

 

A similar behaviour as observed for !! is present here, Figure 4.9. Initial high water flow rate 

values are reduced while the discharge position increases, that is, losing momentum throughout 

the pipe. The discharge takes about 15 seconds to cover the whole distance. This contrasts 

with the 40 seconds of the temperature wave, most likely due to the different boundary 

conditions given for !! and !! at the inlet, as described in Subsection 3.1.4.  

The next two subsections – Sections 4.2.4 and 4.2.5 – will show what happens when the terms 

of the water heat balance and air heat balance equations are removed. With the help of the 

colour maps and deviation calculation, we will be able to determine which equation terms are 

the most relevant for simulations of unsteady flow conditions. 

4.2.4 Colour maps for modified cases 

In the next figures, the ten modified cases are considered by displaying the results for water 

temperature (!!) in the unsteady situation.  
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Figure 4.10: Colour map representation of water temperature (!!) for the modified case number 1 of the 
unsteady situation. Vertical axis represent position along the pipe and horizontal axis represent time, the 
gradient of colour represents the temperature in Celsius degree. 

 

 

Figure 4.11: Colour map representation of water temperature (!!) for the modified case number 2 of the 
unsteady situation. Vertical axis represent position along the pipe and horizontal axis represent time, the 
gradient of colour represents the temperature in Celsius degree. 
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Figure 4.12: Colour map representation of water temperature (!!) for the modified case number 3 of the 
unsteady situation. Vertical axis represent position along the pipe and horizontal axis represent time, the 
gradient of colour represents the temperature in Celsius degree. 

 

 

Figure 4.13: Colour map representation of water temperature (!!) for the modified case number 4 of the 
unsteady situation. Vertical axis represent position along the pipe and horizontal axis represent time, the 
gradient of colour represents the temperature in Celsius degree. 
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Figure 4.14: Colour map representation of water temperature (!!) for the modified case number 5 of the 
unsteady situation. Vertical axis represent position along the pipe and horizontal axis represent time, the 
gradient of colour represents the temperature in Celsius degree. 

 

 

Figure 4.15: Colour map representation of water temperature (!!) for the modified case number 6 of the 
unsteady situation. Vertical axis represent position along the pipe and horizontal axis represent time, the 
gradient of colour represents the temperature in Celsius degree. 
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Figure 4.16: Colour map representation of water temperature (!!) for the modified case number 7 of the 
unsteady situation. Vertical axis represent position along the pipe and horizontal axis represent time, the 
gradient of colour represents the temperature in Celsius degree. 

 

 

Figure 4.17: Colour map representation of water temperature (!!) for the modified case number 8 of the 
unsteady situation. Vertical axis represent position along the pipe and horizontal axis represent time, the 
gradient of colour represents the temperature in Celsius degree. 
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Figure 4.18: Colour map representation of water temperature (!!) for the modified case number 9 of the 
unsteady situation. Vertical axis represent position along the pipe and horizontal axis represent time, the 
gradient of colour represents the temperature in Celsius degree. 

 

 

Figure 4.19: Colour map representation of water temperature (!!) for the modified case number 10 of the 
unsteady situation. Vertical axis represent position along the pipe and horizontal axis represent time, the 
gradient of colour represents the temperature in Celsius degree. 

 

Colour representations of water temperature (!!) are presented from Figure 4.10 until Figure 

4.19 corresponding to modified cases MC1 till MC10 respectively. Remember that the vertical 

axis represents the position of pipe, the horizontal axis represents time and the colours define 

the temperature of water in Celsius degrees.  
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Analysing each figure is notable the differences between each modified cases on the water 

temperature !!, however these differences are not measurable only for observing the figures. 

The scale for water temperature was maintained in order to ease the comparison. However it is 

difficult to compare all of these results to the ones obtained in the general case, as shown in 

Figure 4.7. In order to quantify these differences, the same deviations measures from the 

previous section are presented for the unsteady case in the following one. 

4.2.5 Deviation results 

In order to quantify the importance of the various terms of the water heat balance and air heat 

balance equations, the deviation difference in relation to the general case, as described in 

Section 3.2.2, was calculated for the predictions of the modified cases. The deviations obtained 

for comparisons in the water temperature !!and air temperature !!  are displayed in Figure 
4.20.  

 

Figure 4.20: Difference between the general case and each modified case for the water temperature 
(4.20a) and air temperature (4.20b). The difference mean is displayed by the vertical bars and the 
standard deviation by the deviation bars. 

 

The vertical bars represent the mean values and the deviation bars the standard deviation 

for  !! and !! respectively in Figure 4.20a and b. To remembering, in the modified cases MC 1 

till MC 7 it was considered all the terms for air heat balance equation (Equation 2.20) and the 

possible combinations for the water heat balance equation (Equation 2.19). The opposite 

happens for the MC 8 to MC 10. 

In the case of !!, Figure 4.20a, larger deviations were obtained for MC 1 to MC 4, since the 

term heat flux pipe to water (!!") was neglected for these four cases. Regarding the other 

cases where the terms associated with water heat balanced were modified, MC 5, MC 6 and 

MC 7, the deviation were lower since the !!" was considered. For these three modified cases 
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the deviation was lightly higher for the situation where the term for evaporation/condensation 

(!!") was neglectd (MC 5 and MC 7) comparing the situation when it was assumed in MC 6 and 

the heat flux water to air (!!") neglected. Between these two terms the !!" seems to have a 

main role when compared with the !!", however this diference is quite small. For MC 8 to MC 

10 the deviations were lower since the all the water air terms were considered.  

Regarding !!, Figure 4.20b, the deviations behaviour is the same as the Figure 4.4b for the 

steady situation. Here the term heat flux pipe to air (!!") seems to be essential flowed by heat 

flux water to air (!!").  

The magnitude of the deviations in !! is higher for the unsteady situation than to the steady 

situation, therefore the deviations for the unsteady situation are more relevant. In conclusion, for 

the water temperature the crucial term is the heat flux pipe to water (!!") and for the air 

temperature changes in heat flux pipe to air (!!") and heat flux water to air (!!") are the ones 

with the most significant impact. The term heat flux water to air (!!") appears in both equations 

and, despite of the fact that it does not have an impact in water temperature, it should be 

considered since it has an influence in air temperature.   

4.3 Unsteady situation for smaller time step 

The numerical artefacts present in Section 4.2 are likely to be associated with an overestimation 

of the minimum time step for the finite differences method (Lax-Wendroff method), leading to 

estimations that are unrealistic. In order to prove this hypothesis and with the intention of 

reducing the oscillations in the results, a smaller !" was chosen for the unsteady general case. 

To do this, the minimum time step defined in Section 2.4 was divided by an arbitrary integer, in 

this case eight. Therefore !" = !"!"#/8, where !"!"#  is the minimum time step estimated with 

the Courant-Friedrich-Levy condition. Figure 4.21 is a representation in position of the pipe, for 

water depth (ℎ), water flow rate (!!), air temperature (!!) and water temperature (!!). Five time 

instances are represented for the colour lines, similarly to what was done in previous sections.  
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Figure 4.21: Representation in position of the pipe for water depth (ℎ)(4.21a), water flow rate (!!) (4.21b), 
air temperature (!!) (4.21c) and water temperature (!!) (4.21d) the lines colours denote different times 
analyse. Unsteady situation and step time !" = !"!"#/8, where !"!"#  is the minimum time step estimated 
with the Courant-Friedrich-Levy condition. 

  

For, Figure 4.21a, the water height along the pipe is no longer constant comparing with Figure 

4.5.  A wave of fluid is now noticeable, being able to simulate the discharge variation in fluid 

content, and the position of this wave changes with time, clarifying the discharge position in the 

pipe. An even smaller !" might be necessary in order to obtain a reasonable value for ℎ.  

Figure 4.21b shows the estimations for !!. The oscillations were smoothed and after the main 

discharge peak a constant line was achieved. The highest values obtained were for the blue line 

(first time instant displayed) and as in previous simulations the value of !! decreases over the 

time, as momentum is lost along the pipe. 

Regarding Figure 4.21c, a similar profile for each time instants is obtained for !!. However it is 

noticeable that the distance covered is smaller than for !! and !! (in Figure 4.21d) and in the 

simulations in Section 4.2. This, again, could be related to the boundary conditions defined in 

the inlet of the pipe. A more reasonable Gaussian, with more realistic parameters, should be 

defined for both !! and !!. Nevertheless the same profile shape is present for !!, !! and !!.  

Figure 4.22 shows the same parameters of Figure 4.21 however here is represented the 

variation in time for a fixed length or position in the pipe (!), plotted with the function datatime. 

In this the values of ! , they are: ! = 1m , ! = 5m  and ! = 10m  were considered, depicted 

respectively with blue, red and black colours. 
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Figure 4.22: General case. Representation in time for three analyses in time, x = 1m in blue, x = 5m in red 
and x = 10m in black, for water depth (ℎ) (4.22a), water flow rate (!!) (4.22b), air temperature (!!) (4.22c) 
and water temperature (!!) (4.22d), for unsteady situation and step time !" = !"!"#/8, where !"!"#  is the 
minimum time step estimated with the Courant-Friedrich-Levy condition. 

 

Figure 4.22a represents the water depth (ℎ) and it is visible for different values of ! the water 

height is varying over the time, as reported in the previous figure. The wave can be 

distinguished for ! = 1m (blue line) and ! = 5m (red line). At ! = 10m no variation is visible 

since the discharge does not reach this point. This is due to the fact that !" was reduced 8-fold, 

but the number of steps was kept constant. Therefore only 10 seconds of analysis were 

processed. For the water flow rate !!, as in Figure 4.22b, it is visible two peaks and smooth 

oscillations, however the situation for ! = 10m (black line) is constant again, for the same 

reasons as previously. Considering the Figure 4.22c, air temperature (!!) has a curious pattern 

due to the fact that the amount of time analysed was not enough to enclose the passage of the 

discharge. 

Finally, in Figure 4.22d, for the last parameter, water temperature (!!), an unsteady regime can 

be distinguished for ! = 1m. It is not possible distinguished the red line since it should be 

overlaid at 10 ºC.  

Colour map representations for !! and !!, in this extra scenario, are present in Figure 4.23 

and Figure 4.24 respectively. Again the vertical axis represents the position in the pipe and the 

horizontal axis represents time. The colours define the temperature of water in Celsius degrees.  
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Figure 4.23: Colour map representation of water temperature (!!) for unsteady situation of general case 
and step time !" = !"!"#/8, where !"!"#  is the minimum time step estimated with the Courant-Friedrich-
Levy condition. Vertical axis represent position along the pipe and horizontal axis represent time, the 
gradient of colour represents the temperature in Celsius degree. 

 

By comparing Figure 4.23 with Figure 4.7 one can notice that the oscillations are still present. 

Therefore the reduction in the duration of the time step was not enough to overcome this point. 

A further reduction in !" and/or an increase in the grid size might succeed. Another more 

obvious observation is the fact that the temperature fluctuations that are created from the 

discharge do not covers the whole length of the pipe, confirming the observations in Figure 

4.21 and Figure 4.22. 

As mentioned, Figure 4.24 is the colour map representation for the water flow rate !! , 

expressed in litres per second. The first observation is that the reduction of !"  duration 

improved the profile of the predictions, since the steep profile variations visible in Figure 4.6b 

are not present here, with a reduction in magnitude of the post-peak wave. 
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Figure 4.24: Colour map representation of water flow rate (!!) for unsteady situation of general case and 
step time !" = !"!"#/8, where !"!"#  is the minimum time step estimated with the Courant-Friedrich-Levy 
condition. Vertical axis represent position along the pipe and horizontal axis represent time, the gradient of 
colour represents the temperature in Celsius degree. 

 

The reduction of the time step contributed to improve the obtained results. However this 

improvement was not marked for all situations. A similar behaviour was found overall, however 

the extra oscillations are smoother, namely for water temperature. This algorithm will need 

further inspection through sensitivity studies to the grid size and time step parameters. These 

have a significant impact in the accuracy of the system solutions and require additional 

examination. Also, the boundary conditions defined for the unsteady water flow and water 

temperature should be refined, in order to feed the algorithm will realistic input. 
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Chapter 5 
Discussion 

The main topic of this work is heat recovery from wastewater and it consists in numerical 

modelling of energy changes in a pipe. A special focus on water temperature (!!) and water 

flow rate (!!) was given. Representations of air temperature (!!) and water depth (ℎ) were also 

included in our results. 

Results for the steady condition show the initial status of the model and code, at the beginning 

of this work, as developed by Bas Wols at KWR Water Research Institute (Nieuwegein, The 

Netherlands). In order to simulate a continuous flow condition, the boundary conditions (BC) 

were constant in time. As expected, the dynamics of this system is not the most interesting and 

obviously far from a real discharge situation. The predictions for the variables were constant 

when represented in length and in time. Therefore, the convenience of routine datatime 

developed in this project was not obvious at this point understandably. 

The calculated difference deviations in the steady situation for !! had the highest values for 

modified cases MC8 and MC9, when the binary coefficient !!" was zero, i.e. when heat flux 

pipe to air (!!") was neglected. In terms of impact on the predictions for the steady case, this 

term was followed by the term heat flux water to air (!!"). The calculated deviations were very 

small, due to the fact that the boundary conditions were constant. Therefore the removal of 

these terms did not have a major impact. However, the highest deviation values for !! were 

obtained for MC1 to MC4, when the binary coefficient !!" was zero. This corresponded to the 

systems without the term heat flux pipe to water (!!"), and therefore affecting more importantly 

the water temperature. 

At this point we can state that in the steady case the terms heat flux pipe to air and heat flux 

pipe to water term are respectively the most relevant terms for the calculation of !!   and !! 

respectively, although for the !! the magnitude of the deviations were likely to be too small to 
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be considered. The modelling of steady flow conditions is therefore not very realistic and 

relevant in the field of wastewater heat recovery modelling.  

In order to simulate a discharge, the boundary conditions applied at the begging of the pipe 

were modified and a Gaussian function was imposed to a baseline for !!  and !!  with the 

intention of having varying water temperature and water flow rate. The unsteady flow situation 

was successfully implemented with fluctuations observed for !! and  !! and, consequently in 

!!   and  ℎ consequently.  

A main wave in both !! and !! is visible, created from the changing BC and the expected 

cooling-down effect was noticed. Reductions in both variables along the pipe proved that the 

algorithm successfully modelled energy conduction in the pipe, since heat and mass balance 

were reduced. This is consistent with previous studies that stated that wastewater temperature 

in the sewer is mostly affected by the heat exchange from water and the air duct, water 

evaporation and heat transfer through the pipe walls (Bischofberger and Seyfied (1984) in 

Dürrenmatt & Gujer, 2006).  

The rate at which the reduction in both variables happens is a matter of further debate and 

needs validation in future developments of this work. At this point the routine datatime proved to 

be very useful. The plotting routines that were implemented previously were not suitable to 

understand the evolution in time of our variables, since you have to choose a limited amount of 

time intervals to be plotted.  

In terms of the deviations of the modified cases in the unsteady situation, when inspecting the 

differences in water temperature, the crucial term is the heat flux pipe to water (!!"). For the air 

temperature the terms that correspond to changes in heat flux pipe to air (!!") and heat flux 

water to air (!!") are the ones with the most significant impact. Note that the term heat flux 

water to air (!!") appears in both equation and even this term does not have a impact in water 

temperature it should be considered since he has a influence in air temperature. 

The magnitude of the deviations for !!   was higher when compared to the magnitude of the 

deviations for !! in both situations (steady and unsteady). As a matter of fact, the !!   deviation 

magnitudes for all MC were the same for these two situations. In air heat balance equation 

(Equation 2.20) the air cross-sectional area (!!) and the air flow rate (!!) are not included of the 

partials derivatives (!"  and !" , respectively) however in air mass balance (Equation 2.14) 

theses variables are included. On top of that, the !! is calculated from the water cross-sectional 

area (!!) and the !! is dependent of time as we can see in continuity equation from SVE 

(Equation 2.1). This might contribute to have no difference in the !! deviation between steady 

and unsteady situations. 

The water depth variations were not meaningful and in addition the obtained results verified 

some unexpected oscillations. These are likely to result from the use of a coarse grid and large 

!". The !" value was predicted for each step from the Courant-Friedrich-Levy (CFL) condition. 

In order to study how !" duration could affect the results its value was reduced it in an eight-fold 
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factor and it different responses were obtained for our system. Namely water height variations 

were perceptible and relative size of the oscillations was smaller. However the nstep was kept 

constant, and the simulations only processed a fraction of the total time of the previous 

analyses. Nevertheless this was enough to compare it with the previous unsteady simulations.   

A colour map representation was also implemented in this work for all systems and proved to be 

a very practical way of observing the overall behaviour of the system in time and distance, even 

if the profile of the obtained variables is not immediately understood. 

Another point that deserves to be mentioned is the fact that the !! and  !! waves were out-of-

phase and could be due to a lack of precision in the parameters of the Gaussian’s given as 

input. The BC can therefore be improved in order to simulate more accurately the behaviour of 

a real discharge, by having a proper relation between the !! and  !! boundary conditions. By 

using real discharge experimental measurements, as exemplified in Figure 5.1 and Figure 5.2 

this could be improved. These data can be used to provide realistic boundary conditions and 

also to validate the predictions of !!, instead of using an idealised Gaussian function. 

 

Figure 5.1: Real data for water temperature at 6th of March 2012 from Waternet. 
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Figure 5.2: Zoom from previous figure. Real data for water temperature at 6th of March 2012 from 
Waternet. 

 

The routines of this work proved to be a very versatile and promising way of modelling heat 

exchanges from wastewaters and the pipe network. A complex dynamical system was modelled 

employing mass balance equations, heat balance equations, momentum equation and heat 

conduction equations. 

The computational time was not significative and further developments in more complex sewer 

networks can be solved in a normal laptop in a matter of hours. However a quantitative 

accuracy was not verified in this work, since these models need further work and validation in 

the aspects mentioned in this chapter. The next subsection addresses some of those points. 
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Chapter 6 
 

Conclusions and future 
developments 

6.1 Conclusions 

Wastewater contains a significant amount of energy. This energy (thermal energy) could be 

recovered through a heat pump and a heat exchanger installed in sewers. A computer model of 

wastewater heat recovery could be very usefully to study the behaviour of this complex system, 

dispensing complicated measurement campaigns.  

The work developed in this thesis uses a MATLAB® code developed by Bas Wols model at 

KWR Water Research Institute (Nieuwegein, The Netherlands), that simulates mass and 

thermal balances in pipe network for steady flow conditions. The first goal of this project was the 

implementation of a case of unsteady conditions for the water temperature and water flow rate, 

in order to simulate a discharge. As a second goal, this work aimed to assess the significance of 

the terms present in the equations that describe the physics of the model: water and air heat 

balance equations (Equation 2.19 and Equation 2.20). 

In order to simulate a discharge, the boundary conditions applied at the begging of the pipe 

were modified and a Gaussian function was imposed to a baseline for !!  and !!  with the 

intention of having varying water temperature and water flow rate. Regarding the second goal, 

binary coefficients were introduced for each term in both water heat balance equation and air 

heat balance equations and all the possible combination (ten modified cases) were computed. 

In order to compare each modified case to the general case, an deviation measure was 

calculated for each. 
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To visualize the results we added to the already existing routine that displays the predictions 

along the length of the pipe for a given set of time instants, a function to plot the results as a 

function of time and a colour map plot to represent system variables !! and !! as function of 

both time and position along the pipe with a colour gradient representing the magnitude of this 

variable in question. For the deviations measure, it was chosen to use a bar chart with the 

information of the mean value (vertical bars) and the standard deviation (deviation bars) for !! 

and !!. 

For the steady situation the predictions for the variables were fairly constant when represented 

in length and in time. Regarding the calculated difference deviations for the water temperature, 

removing all the terms in water heat balance equation does not have considerate impact, since 

the magnitude of the deviations were likely to be to small. However for the air temperature the 

heat flux pipe to air (!!") and the heat flux water to air (!!") should be considered, since they 

create large deviations. In addition, the modelling of steady flow conditions is therefore not very 

realistic and relevant in the field of wastewater heat recovery modelling.  

The unsteady flow situation was successfully implemented with fluctuations observed for !! 

and  !! and consequently in !!   and  ℎ. A main wave in both !! and !! is visible, created from the 

Gaussian function that was imposed to a baseline for !! and !! and the expected cooling-down 

effect was verified. Reductions in both variables along the pipe proved that the algorithm 

successfully modelled the mass and heat balance phenomena. The routine datatime proved to 

be very useful for unsteady conditions. 

The deviations associated with the modified cases in the unsteady situation in water 

temperature predictions, point to the fact that the crucial term is the heat flux pipe to water 

(!!"). For the air temperature the terms that correspond to changes in heat flux pipe to air (!!") 

and heat flux water to air (!!") are the ones with the most significant impact. The magnitude of 

the deviations for air temperature  was higher when compared to the magnitude of the deviations 

for !! in both situations (steady and unsteady). 

The obtained !! and  !! waves were out-of-phase in terms of progression along the pipe. This 

could be due to a lack of precision in the parameters of the Gaussian functions given as input. 

The BC can therefore be improved in order to simulate more accurately the behaviour of a real 

discharge, by having a proper relation between the !! and  !! boundary conditions. 

In order to study how time step !" duration could affect the results, its value was reduced it in 

an eight-fold factor and it different responses were obtained for our system. Namely water 

height variations were perceptible and relative size of the oscillations was smaller. However the 

nstep parameter (number of steps) was kept constant, and the simulations only processed a 

fraction of the total time of the previous analyses.  
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6.2 Future developments 

The model was tested for the parameters and variables presented in Chapter 3, however an 

extra analysis should be run for different parametric values, namely for water temperature and 

air temperature (Table 3.5). A detailed analysis for water flow rate could be useful in order to 

understand the limitations underlying this variable. The simulations presented in Chapter 4 were 

carried for a water flow rate of 1 L/s. The author also tested for 10L/s and the system behaviour 

was quite similar, however the deviation magnitude was less for !! and higher for !!. 

Since this type of pipes have the capacity to fit flow rates of 100L/s even 150L/s, it would be 

relevant to test the model for a higher flow rate, to inspect if the behaviour would be similar and 

what would be the effect in the deviations for water temperature and air temperatures. 

 

In order to smooth the oscillations present in the calculations of !! and !! for the unsteady 

situation a few things could be done. The reduction of !" could be optimized and an increase in 

the density of the grid (num.n) could improve the results. A filter could also be used after each 

time step to inhibit oscillations produced by waves from the St. Venant equations (Dürrenmatt & 

Wanner, 2008). Since in case of discontinuities the Lax-Wendroff method produces oscillations 

that can destroy the integrity of the computation, an artificial viscosity could be added to the 

numerical method. Two examples of artificial viscosity are the linear artificial viscosity and the 

lapidus artificial viscosity (Grove, 1999). Although these methods could reduce the significance 

of the solution, since there is a trade-off: the peaks will be smeared out in order to remove the 

oscillations but the peaks associated with the discharge would also be reduced. 

To study fluid motion and heat exchange in sewer pipes other numerical methods could be 

employed, such as computational fluid dynamics (CFD). However CFD is a technique that is 

applicable to analyse local phenomena and not a complex sewer network. This technique 

required higher computational times since it consists in a more sophisticated and detailed 

approach. 

In order to improve the discharge behaviour, as exemplified in Figure 5.1 and Figure 5.2, real 

discharge experimental measurements could be used. These data can be used to provide 

realistic boundary conditions, instead of using an idealised Gaussian function, and also to 

validate the predictions of !!. 
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Appendix A 

A.1 Exchange processes in mass balance equations 

 

Table A.1: Exchange processes in mass balance equations. 

 Process Equation 

Water mass balance  
Eq. 2.13 

Condensation pipe !!" =   
!!"
ℎ!"

!! − !!"# !!"
!  

Air mass balance  
Eq. 2.14 

Surface area of air !! =
!
4
!! − !! 

Water vapour mass 
balance  
Eq. 2.15 
 
 
1Emperical relation, which in 
case of oversaturation reduces 
the water vapor content to the 
satured value with relaxation 
time !. 

Condensation pipe !!" =   
!!"
ℎ!"

!! − !!"# !!"
!  

Condensation oversaturation1 !!" =
!!
!
! − !!"#  

Steering condensation pipe 
! =

1, !! > !!"# !!"
!

0, !! ≤ !!"# !!"
!  

Steering oversaturation ! = 1, ! > !!"#
0, ! ≤ !!"#

 

 
  



68 

A.2 Heat fluxes in the heat balance equations 

 

Table A.2: Heat fluxes in the heat balance equations. 

 Process Equation 

Water heat balance  
Eq. 2.19 

Heat flux pipe to water !!" =   !!" !!"
! − !!  

Heat flux water to air !!" =   !!" !! − !!  

Evaporation or 
condensation  

!!" = !!" !!"#(!!) − !!  

Biochemical activity !! = !!"#!!"# 

Air heat balance  
Eq. 2.20 
2Emperical relation, 
which in case of 
oversaturation 
increases the heat of 
the air due to 
condensation with 
relaxation time !. 

Heat flux pipe to air !!" =   !!" !!"
! − !!  

Heat flux 
oversaturation2 !!" =   ℎ!"

!"
!
! − !!"#  

Pipe heat balance in 
water part 
Eq. 2.24 

BC heat flux pipe to 
water 

!!" =   !!" !!" − !!  ! = !/2 

BC temperature soil-
pipe (water part) 

!!" = !!" ! = ! 2 + !! 

Pipe heat balance in 
air part 
Eq. 2.25 

BC heat flux pipe to air !!" =   !!" !!" − !!  ! = !/2 

BC temperature soil-
pipe (air part) 

!!" = !!" ! = ! 2 + !! 

Soil heat balance in 
water part 
Eq. 2.26 

BC heat flux pipe to 
water 

!!" =   −!!" ! =   ! 2 + !! 

!!!  (steady state) 
temperature of bottom. 

BC temperature soil 
(water part) 

!!" = !!! ! = ! 2 + !! + !! 

Soil heat balance in 
air part 
Eq. 2.27 

BC heat flux pipe to air !!" =   −!!" ! =   ! 2 + !! 

 BC temperature soil (air 
part) 

!!" = !!! ! = ! 2 + !! + !! 

Heat flux Pipe to water / air 
!!" =   − !!

!!!"
!"

 !!" =   − !!
!!!"
!"

 

 Soil to water /air  
!!" = − !!

!!!"
!"

 !!" = − !!
!!!"
!"
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A.3 Coefficients and others 

 

Table A.3: Coefficients and others. 

Process Equation 

Heat transfer water-air interface !!" =   5.85 !! − !!  

Heat transfer flowing water 
!!" =

!"!!!
!!

 

Heat transfer flowing air 
!!" =

!"!!!
!

 

Heat transfer condensation pipe !!" =   8.75 !!  

Heat transfer condensation water-pipe !!" =   8.75 !! − !!  

Thermal transmittance pipe 
!! =   

!!
!!

 

Saturation pressure !!"# = !!!!"#
!!!
!

 

Relative humidity ! =
!

0.622 + !
!!"!

!!"# !!
 

Partial pressure water vapor !! = !!!"# !!  

Saturation water vapour 
!!"# = 0.622

!!"# !!
!!"! − !!"# !!

 

Constant !!" 1
!!"

=
1
!!"

+
!
2!!

  ln 1 +
2!!
!

+
!
2!!

ln 1 +
2!!

! + 2!!
 

 

Constant !!" 1
!!"

=
1
!!"

+
!
2!!

  ln 1 +
2!!
!

+
!
2!!

ln 1 +
2!!

! + 2!!
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Appendix B 

MATLAB® code for unsteady conditions (case with !"/8). 

B.1 fun_start 

function [model] = fun_start(row) 
  
%% Numerics 
% Number of time steps 
num.nstep               = 1000; 
% Grid size 
num.n                   = 100;                 
% Courant number criterium 
num.CFL_crit            = 0.8; %0.9; 
% Number of plots 
num.nplot               = 5; 
% Store solution nsave times 
num.nsave               = 1000; 
num.nlayer              = 5; 
num.nsoil               = 5; 
  
%% Constant conditions 
% Air temperature 
cond.Tair               = 283; 
% Temperatures 
cond.Tsoil              = 280;              % K 
% Ambient air pressure 
cond.psys               = 1000;              % mbar 
% Relative humidity 
cond.phi                = 0.8;              % - 
  
%% Conditions of network (line) 
% Connections between conduits and nodes 
line.ind      =  [1 2];%[1 3; 2 3; 3 4; 4 5]; %[1 3;2 3;3 4]; % 
% Initial conditions at nodes 
% Temperatures at nodes 
line.node.Tw  = [283 NaN];%[296.5 296.5 NaN 293]; %[20 10 NaN NaN]+273; % 
line.node.Ta  = repmat(cond.Tair,1,max(max(line.ind))); %[25 25 NaN NaN]+293; 
% Initial water flow rate 
line.node.Qw  = [.001 NaN];%[0.00015 0.00016 NaN 293]; % [0.1 0.05 NaN NaN]; %          
% m3/s 
% Initial air flow rate 
line.node.Ql  = NaN(1,max(max(line.ind))); 
% Initial water vapour fraction 
line.node.X   = NaN(1,max(max(line.ind))); 
% Initial area of water in pipe  
line.node.Aw   = NaN(1,max(max(line.ind))); 
% Calculate parameters at the conduits 
line          = fun_line(line); 
  
%% Conditions of conduit (pipe) 
  
% Shape 
pipe.shape              = ['pipe']; 
% Width / diameter of channel 
pipe.D                  = 0.235;                % m  
% Thickness of pipe 
pipe.Dp                 = 0.04;             % m 
% Pipe length 
pipe.L                  = 10;             % m 
% Bottom slope 
pipe.i_bottom           = 2E-3;             % m/m 
% Friction constant 
pipe.cf                 = 2.4E-3;             % - 
% Density pipe 
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pipe.rho                = 2000;             % kg/m^3 
% Heat capacity pipe 
pipe.Cp                 = 0.84E3;              % J/kg/K 
% Influence distance of soil 
pipe.delta_s            = 3;              % m 
% Heat conductivity  
pipe.lambda             = 2.3;                % W/m/K; 
% Spatial grid distance 
pipe.dx                 = pipe.L/num.n;    % m 
% Thermal diffusivity 
pipe.alfa               = pipe.lambda/pipe.Cp/pipe.rho; 
% Store for all pipe circuits 
pipe(1:line.n_cnd)      = pipe(1); 
%% Constants 
% Gravitational constant 
const.g                 = 9.81;             % m^2/s             
% Saturation pressure 
const.ps0               = 1.73E9;           % mbar 
const.Ts0               = -5311;            % K 
const.hfg               = 2453.3E3;         % J/kg  
  
% Density 
const.water.rho         = 1000;             % kg/m^3 
const.air.rho           = 1.188;            % kg/m^3 
  
% Heat capacity 
const.water.Cp          = 4.1813E3;         % J/kg/K 
const.air.Cp            = 1007;              % J/kg/K 
  
% Kinematic viscosity 
const.water.nu          = 1E-6;             % m2/s; 
const.air.nu            = 1.533E-5;          % m2/s; 
  
% Thermal diffusivity 
const.water.alfa        = 1.4E-7;           % m2/s; 
const.air.alfa          = 2.216E-5;           % m2/s; 
const.soil.alfa         = 0.74E-6;  
  
% Heat conductivity  
const.water.lambda      = 0.6;                % W/m/K; 
const.air.lambda        = 0.02569;                % W/m/K; 
const.soil.lambda       = 2.2;                % W/m/K; 
 
% Prandtl number 
const.water.Pr          = const.water.nu./const.water.alfa; 
const.air.Pr            = const.air.nu./const.air.alfa; 
  
%% Sources 
const.sources.water.fRw = row(1); 
const.sources.water.fwl = row(2); 
const.sources.water.fvP = row(3); 
const.sources.air.fRl = row(4); 
const.sources.air.fkl = row(5); 
  
num.nsave               = max(num.nsave,num.nplot); 
%% Store paramaters in model structure 
model.cond              = cond; 
model.const             = const; 
model.pipe              = pipe; 
model.num               = num; 
model.line              = line; 
  
%% 
function line = fun_line(line) 
% function to calculate the variables in the conduits from the values at 
% the nodes 
% Input: 
% line          = line-structure with line network information 
% Output: 
% line          = line-structure with line network information 
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n_cnd    = size(line.ind,1); 
n_node   = max(max(line.ind)); 
  
% Calculate variables at the inner nodes from the outer upstream nodes 
for n = 1 : n_node 
    % Index of conduits with same downstream node as upstream node for n 
    % (connected pipes) 
    ind_cnd      = find(line.ind(:,2)==n); 
    % Index of upstream nodes for connected pipes 
    ind_node     = line.ind(ind_cnd,1); 
    if ~isempty(ind_node) 
        % Set variables 
        line.node.Qw(n) = sum(line.node.Qw(ind_node)); 
        line.node.Tw(n) = 
sum(line.node.Qw(ind_node).*line.node.Tw(ind_node))/sum(line.node.Qw(ind_node)
); 
        line.node.Ql(n) = sum(line.node.Ql(ind_node));         
        %line.cnd.Ta(n) = line.node.Ta(ind_node); 
    end 
end 
  
% Calculate variables at the conduits from the upstream nodes 
for n = 1 : n_cnd 
    % Index of upstream node for conduit n 
    ind_node      = line.ind(n,1); 
    % Set variables 
    line.cnd(n).Qw = sum(line.node.Qw(ind_node)); 
    line.cnd(n).Ql = sum(line.node.Ql(ind_node)); 
    line.cnd(n).Tw = 
sum(line.node.Qw(ind_node).*line.node.Tw(ind_node))/sum(line.node.Qw(ind_node)
); 
    line.cnd(n).Ta = line.node.Ta(ind_node); 
    line.cnd(n).X  = line.node.X(ind_node); 
    line.cnd(n).Aw  = line.node.Aw(ind_node); 
end 
line.n_cnd  = n_cnd; 
line.n_node = n_node; 
 

B.2 fun_sources 

function [S_Aw,S_alfa_w,S_alfa_l,S_X,alfa_Rw,alfa_Rl] = 
fun_sources(cnd,pipe,const,cond,nstep) 
% nlayer          = num.nlayer; 
% n               = num.n; 
  
% S_Tpl           = ones(n+2,nlayer); 
% S_Tpw           = ones(n+2,nlayer);  
       r0       = pipe.Dp + pipe.D/2; 
  
% Heat transfer 
alfa_wl   = 5.85*sqrt(abs(cnd.Ul-cnd.Uw));                          % W/m^2/K 
alfa_vP   = 8.75*sqrt(abs(cnd.Ul-cnd.Uw));                          % 
W/m^2/mbar 
alfa_kP   = 8.75*sqrt(abs(cnd.Ul)); 
alfa_Rw   = cnd.Nu_w.*const.water.lambda./(cnd.Aw./cnd.Pw); 
alfa_Rl   = cnd.Nu_l.*const.air.lambda./(cnd.Al./cnd.Pl); 
  
% Steering parameters 
zeta      = sign(cnd.pL - cnd.psat_p);  zeta(zeta<0) = 0;  
ksi       = sign(cnd.X  - cnd.Xsat);    ksi(ksi<0)   = 0;  
  
if nstep == 0 
    kw        = 1./((pipe.D/(2*pipe.lambda))*log(1+2*pipe.Dp/pipe.D) +  
(pipe.D/(2*const.soil.lambda))*log(1+pipe.delta_s/r0) + 1./alfa_Rw); % + 
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1./cnd.k_RS); 
    kl        = 1./((pipe.D/(2*pipe.lambda))*log(1+2*pipe.Dp/pipe.D) +  
(pipe.D/(2*const.soil.lambda))*log(1+pipe.delta_s/r0) + 1./alfa_Rl); 
%1./(1./alfa_Rl + 1./cnd.k_RS); 
    q_Rw  =  kw.*(cond.Tsoil-cnd.Tw); 
    q_Rl  =  kl.*(cond.Tsoil-cnd.Tl); 
    tau   = 1e-6; 
else 
    q_Rw  = alfa_Rw.*(cnd.Tpw(:,1)-cnd.Tw); 
    q_Rl  = alfa_Rl.*(cnd.Tpl(:,1)-cnd.Tl); 
    tau   = 1; 
end 
%    zeta  = zeta*0; 
    ksi   = ksi*tau; 
  
% Sources  
  
fRw = const.sources.water.fRw; 
fwl = const.sources.water.fwl; 
fvP = const.sources.water.fvP; 
fRl = const.sources.air.fRl; 
fkl = const.sources.air.fkl; 
  
S_Aw      = (1./const.water.rho).*(-alfa_vP/(const.hfg).*(cnd.psat-
cnd.pL).*cnd.B); 
S_X       = (1./const.air.rho).*((alfa_vP/const.hfg).*(cnd.psat-cnd.pL).*cnd.B 
- zeta.*(alfa_kP/const.hfg).*(cnd.pL-cnd.psat_p).*(cnd.Pl-cnd.B) - 
ksi.*const.air.rho.*(cnd.X-cnd.Xsat).*cnd.Al); 
S_alfa_w  = (1./(const.water.Cp*const.water.rho)).*(fRw.*q_Rw.*(cnd.Pw-cnd.B) 
- fwl.*alfa_wl.*(cnd.Tw-cnd.Tl).*cnd.B - fvP.*alfa_vP.*(cnd.psat-
cnd.pL).*cnd.B); % 
S_alfa_l  = (1./(const.air.Cp*const.air.rho)).*(fRl.*q_Rl.*(cnd.Pl-cnd.B) + 
fwl.*alfa_wl.*(cnd.Tw-cnd.Tl).*cnd.B  + 
fkl.*ksi.*const.hfg.*const.air.rho.*(cnd.X-cnd.Xsat).*cnd.Al); 
%kl.*(cond.Tsoil-cnd.Tl) 
 

B.3 sewer_temp_model 

function [model] = sewer_temp_model(model); 
% 1D Model for temperature in sewer lines 
% 
% Lax-Wendroff finite difference method. 
% Reflective boundary conditions. 
  
% Read paramete rs from model-structure 
cond            = model.cond; 
const           = model.const; 
pipe            = model.pipe; 
num             = model.num; 
line            = model.line; 
  
tic 
% Set initial conditions for all conduits 
for n = 1 : line.n_cnd 
    [line.cnd(n).Aw,line.cnd(n).Ql,line.cnd(n).X] = 
fun_equilibrium(line.cnd(n).Qw,line.cnd(n).Ta,pipe(n),cond,const,num); 
    cnd(n)             = fun_init(line.cnd(n),pipe(n),cond,const,num);   
    cnd(n)             = fun_stationary(n,cnd(n),line,pipe(n),cond,const,num); 
end 
% Save stationary solution 
model           = fun_save(model,cnd,line,num,0); 
fprintf('Stationary solution, time elapsed = %3.1f s\n',toc);    
  
  
% Inner loop, time steps. 
for nstep = 1 : num.nstep 
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   %fprintf('Step %i\n',nstep); 
   % Repeat for each conduit 
   for n = 1 : line.n_cnd 
       % Set values at upstream boundaries 
       BC       = fun_BC(nstep,n,cnd,line,cond,num); 
       % Set boundary conditions 
       cnd(n)   = fun_boundary(BC,cnd(n),pipe(n),const,cond,num); 
       % Calculate variables 
       cnd(n)   = fun_variable(cnd(n),pipe(n),cond,const); 
       % Time steps at different conduits 
       dt(n)    = num.CFL_crit*pipe(n).dx/cnd(n).Umax; 
   end 
   % Choose smallest time step 
   dt         = (min(dt/8)); 
    
   % Solve pde for each conduit 
   for n = 1 : line.n_cnd 
       cnd(n)      = fun_pde(dt,cnd(n),pipe(n),num,const,cond); 
   end 
   
   % Printing to screen 
   if mod(nstep,100) == 0 
        fprintf('Step %i, dt = %f s, time elapsed = %3.1f s\n',nstep,dt,toc);    
   end 
  
   % Plotting 
   model.num.dt(nstep) = dt; 
   num.dt(nstep) = dt; 
    
   % Saving 
   model = fun_save(model,cnd,line,num,nstep); 
    
end 
% Plotting 
%fun_plot(model); 
%% fun_init 
function cnd = fun_init(cnd_eq,pipe,cond,const,num); 
% function to set initial conditions  
% Input: 
% cnd_eq        = structure with equilibrium conditions 
% pipe          = structure with pipe information 
% cond          = structure with conditions 
% const         = structure with constants 
% num           = structure with numerical information 
% Output: 
% cnd           = structure with all variables 
  
% Numerical information 
% Number of pipe segments 
n                   = num.n; 
% Number of pipe layes 
nlayer              = num.nlayer; 
% Length pipe segment 
dx                  = pipe.dx; 
  
% Conductivity pipe/soil 
cnd.k_RS            = 
1./((pipe.D/(2*const.soil.lambda))*log(1+2*pipe.delta_s/(pipe.D+2*pipe.Dp))); 
  
% Coordinates soil 
cnd.r               = 
repmat(linspace(pipe.D/2+pipe.Dp,pipe.D/2+pipe.Dp+pipe.delta_s,num.nsoil),n+2,
1); 
cnd.dr              = cnd.r(1,2) - cnd.r(1,1); 
  
cnd.r_pipe          = repmat(linspace(pipe.D/2,pipe.D/2 + 
pipe.Dp,num.nlayer),n+2,1); 
cnd.dr_pipe         = cnd.r_pipe(1,2) - cnd.r_pipe(1,1); 
% Coordinates pipe 
cnd.x               = linspace(0,dx*(n+2),n+2)'; 
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% Bottom  
cnd.zb              = -pipe.i_bottom*cnd.x + pipe.i_bottom*cnd.x(end); 
  
% Initial conditions   
cnd.Aw              = ones(n+2,1)*cnd_eq.Aw; 
cnd.Qw              = ones(n+2,1)*cnd_eq.Qw;   
cnd.Ql              = ones(n+2,1)*cnd_eq.Ql;  
cnd.Tw              = ones(n+2,1)*cnd_eq.Tw;  
cnd.Tl              = ones(n+2,1)*cnd_eq.Ta;  
cnd.X               = ones(n+2,1)*cnd_eq.X; 
cnd.Tpw             = ones(n+2,nlayer)*cond.Tsoil; 
cnd.Tpl             = ones(n+2,nlayer)*cond.Tsoil; 
  
cnd.Tsw             = ones(n+2,num.nsoil)*cond.Tsoil; 
cnd.Tsl             = ones(n+2,num.nsoil)*cond.Tsoil; 
  
% Shape of the pipe 
[cnd.h,cnd.B,cnd.Pw,cnd.Pl,cnd.Al,cnd.Apw,cnd.Apl,cnd.Lpw,cnd.Lpl] = 
fun_shape(cnd.Aw,pipe,num); 
  
% For time iteration 
cnd.Al_old          = cnd.Al; 
cnd.Aw_old          = cnd.Aw; 
  
% Declare other variables 
cnd.i_fric          = zeros(n+2,1);  
cnd.Uw              = zeros(n+2,1); 
cnd.Ul              = zeros(n+2,1); 
cnd.Umax            = zeros(1  ,1); 
cnd.psat            = zeros(n+2,1); 
cnd.psat_l          = zeros(n+2,1); 
cnd.psat_p          = zeros(n+2,1);   
cnd.Xsat            = zeros(n+2,1); 
cnd.phi             = zeros(n+2,1); 
cnd.pL              = zeros(n+2,1); 
cnd.Re_w            = zeros(n+2,1); 
cnd.Re_l            = zeros(n+2,1); 
cnd.Nu_w            = zeros(n+2,1); 
cnd.Nu_l            = zeros(n+2,1); 
  
%% fun_BC 
function BC = fun_BC(nstep,n,cnd,line,cond,num) 
% Function to determine values at boundary conditions 
% Input: 
% nstep         = time step 
% cnd_eq        = structure with equilibrium conditions 
% cond          = structure with conditions 
% num           = structure with numerical information 
% Output: 
% BC            = structure with upstream boundary conditions 
  
% Equilibrium values at conduits 
cnd_eq      = line.cnd(n); 
  
% Nodes indices of conduit n 
ind_cnd     = line.ind(n,:); 
% Find if upstream node is present at downstream nodes of other conduits 
% (connecting conduints) 
ind_cnd_cn  = find(line.ind(:,2)==ind_cnd(1)); 
  
if isempty(ind_cnd_cn) 
    % Start conduit 
     
    if isfield(num, 'dt') 
        timeT = sum(num.dt); 
    else 
        timeT = 0; 
    end 
     
    BC.Qw       = cnd_eq.Qw + fun_BC_time(timeT ,.1,.5,1.5*cnd_eq.Qw,'Gauss'); 
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    BC.Tw       = cnd_eq.Tw + fun_BC_time(timeT,.1,.001,10*cnd_eq.Tw,'Gauss'); 
    BC.Tl       = cnd_eq.Ta ; 
    BC.X        = cnd_eq.X ; 
    BC.Ql       = cnd_eq.Ql ; 
 
else 
 
    % Inner conduits 
    for i = 1 : length(ind_cnd_cn) 
        Qw_cn(i)= cnd(ind_cnd_cn(i)).Qw(end); 
        Tw_cn(i)= cnd(ind_cnd_cn(i)).Tw(end); 
        Tl_cn(i)= cnd(ind_cnd_cn(i)).Tl(end); 
        Ql_cn(i)= cnd(ind_cnd_cn(i)).Ql(end); 
        X_cn(i) = cnd(ind_cnd_cn(i)).X(end); 
    end 
      
    BC.Qw       = sum(Qw_cn); 
    BC.Tw       = sum(Qw_cn.*Tw_cn)./sum(Qw_cn); 
    BC.Ql       = sum(Ql_cn); 
    BC.Tl       = sum(Ql_cn.*Tl_cn)./sum(Ql_cn); 
    BC.X        = sum(Ql_cn.*X_cn)./sum(Ql_cn); 
end 
    BC.Tsoil    = cond.Tsoil; 
     
%% fun_BC_time 
function ft = fun_BC_time(tn,t0,tL,A,type) 
% Function to set time dependent boundary conditions 
% Input: 
% tn            = time 
% t0            = start time 
% tL            = duration 
% A             = amplitude 
% type          = type of function 
% Output: 
% ft            = function value 
switch type 
    case 'Gauss' 
        ft = A*exp(-((tn-t0).^2)./(0.5*tL^2)); 
    case 'constant' 
        ft = A; 
    case 'step' 
        ft = A*0.5*(1+erf((tn-t0)/(tL*sqrt(0.5)))); 
    case 'ramp' 
    %    ft =  
end 
  
%% fun_boundary 
function cnd = fun_boundary(BC,cnd,pipe,const,cond,num) 
% Function to set boundary conditions 
% 
% Input: 
% BC            = structure with upstream boundary conditions 
% cnd           = structure with all variables 
% num           = structure with numerical information 
% 
% Output: 
% cnd           = structure with all variables 
  
% Number of pipe segments 
n               = num.n; 
  
% Upstream boundary conditions 
% Reflective boundary conditions for Aw 
cnd.Aw (1,:)    = cnd.Aw(2,:);    
cnd.Qw (1,:)    = BC.Qw;       
cnd.Ql (1,:)    = BC.Ql; 
cnd.Tw (1:2,:)  = BC.Tw; 
cnd.Tl (1:2,:)  = BC.Tl;  
cnd.X  (1,:)    = BC.X; 
cnd.Tpw(1,:)    = cnd.Tpw(2,:); 
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cnd.Tpl(1,:)    = cnd.Tpl(2,:); 
  
% 
[S_Aw,S_alfa_w,S_alfa_l,S_X,alfa_Rw,alfa_Rl] = 
fun_sources(cnd,pipe,const,cond,1); 
cnd.Tpw(:,1)    = (alfa_Rw.*cnd.Tw + 
(pipe.lambda/cnd.dr_pipe)*cnd.Tpw(:,2))./(alfa_Rw+pipe.lambda/cnd.dr_pipe); 
cnd.Tpl(:,1)    = (alfa_Rl.*cnd.Tl + 
(pipe.lambda/cnd.dr_pipe)*cnd.Tpl(:,2))./(alfa_Rl+pipe.lambda/cnd.dr_pipe); 
  
% Downstream boundary conditions (reflective) 
cnd.Aw (n+2,:)  = cnd.Aw (n+1,:);     
cnd.Qw (n+2,:)  = cnd.Qw (n+1,:); 
cnd.Ql (n+2,:)  = cnd.Ql (n+1,:); 
cnd.Tw (n+2,:)  = cnd.Tw (n+1,:); 
cnd.Tl (n+2,:)  = cnd.Tl (n+1,:);   
cnd.X  (n+2,:)  = cnd.X  (n+1,:); 
cnd.Tpw(n+2,:)  = cnd.Tpw(n+1,:); 
cnd.Tpl(n+2,:)  = cnd.Tpl(n+1,:); 
  
% Boundary conditions for soil 
cnd.Tsw(:,end)  = BC.Tsoil;  
cnd.Tsl(:,end)  = BC.Tsoil;    
  
cnd.Tsw(:,1)    = 
((pipe.lambda/const.soil.lambda)*(cnd.dr/cnd.dr_pipe)*cnd.Tpw(:,end-1) + 
cnd.Tsw(:,2))/(1+(pipe.lambda/const.soil.lambda)*(cnd.dr/cnd.dr_pipe)); 
cnd.Tsl(:,1)    = 
((pipe.lambda/const.soil.lambda)*(cnd.dr/cnd.dr_pipe)*cnd.Tpl(:,end-1) + 
cnd.Tsl(:,2))/(1+(pipe.lambda/const.soil.lambda)*(cnd.dr/cnd.dr_pipe)); 
  
% In the pipe (outer boundary) 
cnd.Tpw(:,end)  = cnd.Tsw(:,1); 
cnd.Tpl(:,end)  = cnd.Tsl(:,1); 
  
%% fun_variable 
function cnd = fun_variable(cnd,pipe,cond,const) 
% Input: 
% cnd           = structure with all variables 
% pipe          = structure with pipe information 
% cond          = structure with conditions 
% const         = structure with constants 
  
% Output: 
% cnd           = structure with all variables 
% Variables 
  
% Friction 
cnd.i_fric   = pipe.cf*cnd.Qw.^2.*cnd.Pw./(const.g*cnd.Aw.^3); 
  
% Velocities 
cnd.Uw       = cnd.Qw./cnd.Aw; 
cnd.Ul       = cnd.Ql./cnd.Al; 
% Maximum velocity water 
cnd.Umax     = max(abs(cnd.Uw)+sqrt(const.g*cnd.h)); 
  
% Saturation pressure 
cnd.psat     = const.ps0.*exp(const.Ts0./cnd.Tw);                  % mbar 
cnd.psat_l   = const.ps0.*exp(const.Ts0./cnd.Tl);  
cnd.psat_p   = const.ps0.*exp(const.Ts0./cnd.Tpl(:,1));   
cnd.Xsat     = 0.622*cnd.psat_l./(cond.psys-cnd.psat_l); 
% Humidity 
cnd.phi      = (cnd.X./(0.622+cnd.X)).*cond.psys./cnd.psat_l;    
% Partial water vapor pressure 
cnd.pL       = cnd.phi.*cnd.psat_l; 
% Reynolds number  
cnd.Re_w     = abs(cnd.Uw).*pipe.D./const.water.nu; 
cnd.Re_l     = abs(cnd.Ul).*pipe.D./const.air.nu; 
% Nusselt number 
cnd.Nu_w     = 0.023*cnd.Re_w.^(4/5).*const.water.Pr^(1/3); 
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cnd.Nu_l     = 0.023*cnd.Re_l.^(4/5).*const.air.Pr^(1/3);  
%% fun_stationary 
function cnd = fun_stationary(ncond,cnd,line,pipe,cond,const,num) 
  
  
% Numerical parameters 
dx              = pipe.dx; 
n               = num.n; 
nlayer          = num.nlayer; 
nsoil           = num.nsoil; 
  
       r0      = pipe.Dp + pipe.D/2; 
       rpipe   = cnd.r_pipe; 
       r       = cnd.r; 
eps = 1; 
while eps > 1E-5 
       cnd      = fun_variable(cnd,pipe,cond,const); 
       % Set values at upstream boundaries 
       BC       = fun_BC(1,ncond,cnd,line,cond,num); 
        
       % Set boundary conditions 
       cnd      = fun_boundary(BC,cnd,pipe,const,cond,num); 
        
       % New values 
       X       = cnd.X; %zeros(n+2,1); 
       Tw      = cnd.Tw; %zeros(n+2,1);        
       Tl      = cnd.Tl;%zeros(n+2,1);        
  
       % Sources 
       [S_Aw,S_alfa_w,S_alfa_l,S_X,alfa_Rw,alfa_Rl] = 
fun_sources(cnd,pipe,const,cond,0); 
  
        kw       = 1./((pipe.D/(2*pipe.lambda))*log(1+2*pipe.Dp/pipe.D) +  
(pipe.D/(2*const.soil.lambda))*log(1+pipe.delta_s/r0) + 1./alfa_Rw); % + 
1./cnd.k_RS); 
        kl       = 1./((pipe.D/(2*pipe.lambda))*log(1+2*pipe.Dp/pipe.D) +  
(pipe.D/(2*const.soil.lambda))*log(1+pipe.delta_s/r0) + 1./alfa_Rl); 
%1./(1./alfa_Rl + 1./cnd.k_RS); 
  
        % Heat flux 
        q_Sw     = kw.*(cond.Tsoil - cnd.Tw); 
        q_Sl     = kl.*(cond.Tsoil - cnd.Tl);    
  
        % Solution for temperature in pipe 
        cnd.Tpw  = repmat(Tw,1,nlayer) + 
repmat(q_Sw,1,nlayer).*((pipe.D/(2*pipe.lambda)) .* log(2*rpipe/pipe.D) + 
(1./repmat(alfa_Rw,1,nlayer))); 
        cnd.Tpl  = repmat(Tl,1,nlayer) + 
repmat(q_Sl,1,nlayer).*((pipe.D/(2*pipe.lambda)) .* log(2*rpipe/pipe.D) + 
(1./repmat(alfa_Rl,1,nlayer))); 
        
        
       % Start solving ode 
       i       = 1:n+1; 
 
       X(i+1)  = cnd.X(i)  + dx*S_X(i)./cnd.Ql(i); 
       Tw(i+1) = cnd.Tw(i) + dx*S_alfa_w(i)./cnd.Qw(i); 
       Tl(i+1) = cnd.Tl(i) + dx*S_alfa_l(i)./cnd.Ql(i); 
  
       % Difference 
       eps     = abs(cnd.Tw - Tw) + abs(cnd.Tl - Tl) + abs(cnd.X - X); 
       eps     = mean(eps(end-1)); 
        
       cnd.X   = X; 
       cnd.Tw  = Tw; 
       cnd.Tl  = Tl; 
end 
% Analytical solution for temperature in pipe and soil 
% Source terms 
[S_Aw,S_alfa_w,S_alfa_l,S_X,alfa_Rw,alfa_Rl] = 
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fun_sources(cnd,pipe,const,cond,0); 
  
% Solution for temperature in soil 
cnd.Tsw  = repmat(cond.Tsoil,n+2,nsoil) + 
repmat(q_Sw,1,nsoil).*((pipe.D/(2*const.soil.lambda)) .* 
log(r./(r0+pipe.delta_s))); 
cnd.Tsl  = repmat(cond.Tsoil,n+2,nsoil) + 
repmat(q_Sl,1,nsoil).*((pipe.D/(2*const.soil.lambda)) .* 
log(r./(r0+pipe.delta_s)));   
%  
figure(2) 
subplot(231) 
hold on 
plot(cnd.x,cnd.Tw) 
subplot(232) 
hold on 
plot(cnd.x,cnd.Tl) 
subplot(233) 
hold on        
plot(cnd.x,cnd.X) 
subplot(234) 
hold on        
plot(cnd.x,cnd.Tpw) 
subplot(235) 
hold on        
plot(cnd.x,cnd.Tpl) 
subplot(236) 
hold on        
plot(cnd.x,cnd.Tsw) 
 
%% fun_pde 
function cnd = fun_pde(dt,cnd,pipe,num,const,cond) 
% Input: 
% cnd           = structure with all variables 
% pipe          = structure with pipe information 
% const         = structure with constants 
% num           = structure with numerical information 
% Output: 
% cnd           = structure with all variables 
  
% r-coordinate (for soil) 
r               = cnd.r; 
r_pipe          = cnd.r_pipe; 
  
% Numerical parameters 
dx              = pipe.dx; 
dr              = cnd.dr; 
dr_pipe         = cnd.dr_pipe; 
nlayer          = num.nlayer; 
n               = num.n; 
  
% Declare variables (for Lax-Wendroff scheme) 
Awx             = zeros(n+1,1); 
Qwx             = zeros(n+1,1);  
Twx             = zeros(n+1,1);  
Tlx             = zeros(n+1,1);  
Xx              = zeros(n+1,1); 
  
% % Temperature fluxes at soil-pipe interface 
% q_Sw     = -const.soil.lambda*(cnd.Tsw(:,2)-cnd.Tsw(:,1))/dr; 
% q_Sl     = -const.soil.lambda*(cnd.Tsl(:,2)-cnd.Tsl(:,1))/dr; 
  
% Source terms 
[S_Aw,S_alfa_w,S_alfa_l,S_X,alfa_Rw,alfa_Rl] = 
fun_sources(cnd,pipe,const,cond,1); 
  
  
% Heat transfer soil 
j = 2:num.nsoil-1; 
cnd.Tsw(:,j) = cnd.Tsw(:,j) + (const.soil.alfa)*(dt/dr^2).*(cnd.Tsw(:,j+1)-
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cnd.Tsw(:,j) - (r(:,j-1)./r(:,j)).*(cnd.Tsw(:,j)-cnd.Tsw(:,j-1))); 
cnd.Tsl(:,j) = cnd.Tsl(:,j) + (const.soil.alfa)*(dt/dr^2).*(cnd.Tsl(:,j+1)-
cnd.Tsl(:,j) - (r(:,j-1)./r(:,j)).*(cnd.Tsl(:,j)-cnd.Tsl(:,j-1))); 
  
% Heat transfer pipe 
j = 2:num.nlayer-1; 
cnd.Tpw(:,j) = cnd.Tpw(:,j) + (pipe.alfa)*(dt/dr_pipe^2).*(cnd.Tpw(:,j+1)-
cnd.Tpw(:,j) - (r_pipe(:,j-1)./r_pipe(:,j)).*(cnd.Tpw(:,j)-cnd.Tpw(:,j-1))); 
cnd.Tpl(:,j) = cnd.Tpl(:,j) + (pipe.alfa)*(dt/dr_pipe^2).*(cnd.Tpl(:,j+1)-
cnd.Tpl(:,j) - (r_pipe(:,j-1)./r_pipe(:,j)).*(cnd.Tpl(:,j)-cnd.Tpl(:,j-1))); 
 
%% First half step 
i        = 1:n+1; 
  
% Mass balance  
Awx(i)   = (cnd.Aw(i+1)+cnd.Aw(i))/2 - dt/(2*dx)*(cnd.Qw(i+1)-cnd.Qw(i)); % + 
S 
  
% New water depths etc in pipe 
[hx,Bx,Pwx,Plx,Alx] = fun_shape(Awx,pipe,num); 
  
% Momentum balance 
Qwx(i) = (cnd.Qw(i+1)+cnd.Qw(i))/2 -  ... 
         dt/(2*dx)*((cnd.Qw(i+1).^2./cnd.Aw(i+1)) - ... 
                    (cnd.Qw(i).^2./cnd.Aw(i))) - ... 
         dt/(2*dx)*const.g*cnd.Aw(i).*(cnd.h(i+1)-cnd.h(i)); % + ... 
  
% Heat transfer 
Twx(i) = ((cnd.Tw(i+1).*cnd.Aw(i+1)+cnd.Tw(i).*cnd.Aw(i))/2 -  ... 
         dt/(2*dx)*((cnd.Qw(i+1).*cnd.Tw(i+1)) - ... 
                    (cnd.Qw(i).*cnd.Tw(i))))./Awx(i);  
  
% Heat transfer 
Tlx(i) = (cnd.Tl(i+1)+cnd.Tl(i))/2 -  ... 
         dt/(2*dx)*cnd.Ql(i).*(cnd.Tl(i+1)-cnd.Tl(i))./cnd.Al(i);                      
  
% Heat transfer 
Xx(i) = (cnd.X(i+1)+cnd.X(i))/2 -  ... 
         dt/(2*dx)*cnd.Ql(i).*(cnd.X(i+1)-cnd.X(i))./cnd.Al(i);             
  
%% Second half step 
i           = 2:n+1; 
  
% Mass balance water 
cnd.Aw(i)   = cnd.Aw(i) - (dt/dx)*(Qwx(i)-Qwx(i-1)) + dt*S_Aw(i); 
%Ql(i) = Ql(i-1) - (dx/dt)*(2*Alx(i-1)-Al(i)-Al(i-1)); 
  
% Update geometric properties 
[cnd.h,cnd.B,cnd.Pw,cnd.Pl,cnd.Al,cnd.Apw,cnd.Apl,cnd.Lpw,cnd.Lpl] = 
fun_shape(cnd.Aw,pipe,num);                 
  
% Momentum balance 
cnd.Qw(i)   = cnd.Qw(i) - ... 
              (dt/dx)*((Qwx(i).^2./Awx(i)) - ... 
                       (Qwx(i-1).^2./Awx(i-1))) - ... 
              (dt/dx)*const.g*Awx(i-1).*(hx(i)-hx(i-1)) + ...                     
              dt*const.g*cnd.Aw(i).*(pipe.i_bottom-cnd.i_fric(i));% + S                      
  
% Mass balance air 
cnd.Ql(i)   = cnd.Ql(i-1) - (dx/dt)*(cnd.Al(i)-cnd.Al_old(i)); 
  
% Heat transfer 
cnd.Tw(i)   = (cnd.Tw(i).*cnd.Aw_old(i) - ... 
              (dt/dx)*((Qwx(i).*Twx(i)) - ... 
                       (Qwx(i-1).*Twx(i-1))) + ... 
               dt*S_alfa_w(i))./cnd.Aw(i); 
  
% Heat transfer  
cnd.Tl(i)   = cnd.Tl(i) - ... 
              (dt/dx)*cnd.Ql(i).*(Tlx(i)-Tlx(i-1))./cnd.Al(i) + ... 
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              dt*S_alfa_l(i)./cnd.Al(i); 
  
% Mass transfer water vapor 
cnd.X(i)    = cnd.X(i) - ... 
              (dt/dx)*cnd.Ql(i).*(Xx(i)-Xx(i-1))./cnd.Al(i) + ... 
              dt*S_X(i)./cnd.Al(i);  
  
% % Heat transfer pipe (water part)             
% cnd.Tpw(i,:) = (cnd.Tpw(i,:).*cnd.Apw(i,:) + ... 
%                 dt*S_Tpw(i,:))./cnd.Apw(i,:); 
%  
% % Heat transfer pipe (air part) 
% cnd.Tpl(i,:) = (cnd.Tpl(i,:).*cnd.Apl(i,:) + ... 
%                 dt*S_Tpl(i,:))./cnd.Apl(i,:); 
  
% Store old surfaces 
cnd.Al_old   = cnd.Al; 
cnd.Aw_old   = cnd.Aw; 
  
%% fun_equilibrium 
function [Aw_eq,Ql_eq,X_eq] = fun_equilibrium(Qw,Tl,pipe,cond,const,num) 
% Function to calculate equilibrium water area, air flow rate and water 
% vapor 
% Input: 
% Qw            = water flow rate 
% Tw            = water temperature 
% pipe          = structure with pipe information 
% const         = structure with constants 
% num           = structure with numerical information 
% Output: 
% Aw_eq         = equilibrium water area 
% Ql_eq         = air flow rate equilibrium 
% X_eq          = water vapour equilibrium 
  
% Initial conditions for iteration 
Aw_eq = 1; 
eps   = 1; 
while eps>1E-3 
    [h,B,Pw,Pl,Al] = fun_shape(Aw_eq,pipe,num); 
    Aw_eq0 = Aw_eq; 
    % Equilibrium between bottom slope and friction 
    Aw_eq = (Qw^2*Pw*pipe.cf/(pipe.i_bottom*const.g))^(1/3); 
    eps = abs(Aw_eq0 - Aw_eq); 
end 
  
% Mean water velocity 
Uw = Qw./Aw_eq; 
Uwstar = Uw*sqrt(pipe.cf); 
kappa = 0.4; 
  
% Velocity at water surface (for pipe) 
Uwc = Uw + (Uwstar/kappa)*(3/2 + 2.3*log10(2*h/pipe.D)); 
  
% Equilibrium discharge of air 
Ql_eq = 0.8560*(B/(Pl))*Uwc*Al; 
  
% Equilibrium water vapour content 
psat0       = const.ps0.*exp(const.Ts0./Tl);                  % mbar  
X_eq        = 0.622*psat0*cond.phi/(cond.psys-psat0*cond.phi); 
  
%% fun_shape 
function [h,B,Pw,Pl,Al,Apw,Apl,Lpw,Lpl] = fun_shape(varargin) 
% Function to calculate the geometric properties of the water area 
% Input: 
% Aw            = cross-sectional area of water 
% pipe          = structure with properties of pipe 
% num           = structure with numerical information 
% Output: 
% h             = water depth 
% B             = width of water surface 
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% Pw            = perimeter of water 
% Pl            = perimeter of air 
% Al            = cross-sectional area of air 
% Apw           = cross-sectional area of water part of pipe layer 
% Apl           = cross-sectional area of air part of pipe layer 
% Lpw           = wetted perimeter of water 
% Lpl           = wetted perimeter of air 
  
% Read variables 
Aw      = varargin{1}; 
pipe    = varargin{2}; 
num     = varargin{3}; 
  
% Number of layes 
nlayer  = num.nlayer; 
% Declare variables 
h = Aw*0; B = Aw*0; Pw = Aw*0; Pl = Aw*0; Al = Aw*0; 
Lpw     = zeros(length(Aw),nlayer); 
Lpl     = zeros(length(Aw),nlayer); 
Apw     = zeros(length(Aw),nlayer); 
Apl     = zeros(length(Aw),nlayer); 
  
% For different shapes of conduit 
switch pipe.shape 
    % Pipe shape 
    case {'pipe'} 
        % Maximum area 
        Aw_max = pi*pipe.D^2/4; 
        Aw(Aw>Aw_max) = Aw_max; 
        % Initialize 
        gamma = Aw*0 + pi; 
        eps = 1; 
        eps_crit = 1E-3*length(Aw); 
        % Determine angle by iteration 
        while eps>eps_crit; 
            dgamma = (gamma-sin(gamma)-(8*Aw/pipe.D^2))./(1-cos(gamma));   
            gamma = gamma - dgamma;  
            eps = sum(dgamma); 
        end 
        % Determine parameters 
        h = (pipe.D/2)*(1-cos(gamma/2)); 
        B = 2*sqrt(pipe.D*h-h.^2); 
        Pw = B + pipe.D*gamma/2; 
        Pl = B + pipe.D*(pi-gamma/2); 
        Al = Aw_max - Aw;         
    case {'square'} 
        Aw_max = pipe.D^2; 
        h = Aw./pipe.D; 
        B = h*0 + pipe.D; 
        Pw = 2*h + 2*pipe.D; 
        Pl = 2*(pipe.D-h) + 2*pipe.D; 
        Al = Aw_max - Aw; 
    case {'triangle'} 
        h = sqrt(2*Aw); 
        B = h; 
        Pw = h*(1+sqrt(3)); 
end 
% Determine pipe layer areas and perimeter for each pipe layer 
for j = 1 : nlayer 
       Lpw(:,j) = (Pw-B).*((j./nlayer)*pipe.Dp + pipe.D)/pipe.D; 
       Lpl(:,j) = (Pl-B).*((j./nlayer)*pipe.Dp + pipe.D)/pipe.D; 
       Apw(:,j) = (0.5*Lpw(:,j) + 0.5*(Pw-B).*(((j-1)./nlayer)*pipe.Dp + 
pipe.D)/pipe.D).*pipe.Dp; 
       Apl(:,j) = (0.5*Lpl(:,j) + 0.5*(Pl-B).*(((j-1)./nlayer)*pipe.Dp + 
pipe.D)/pipe.D).*pipe.Dp; 
end 
  
%% fun_save 
function model = fun_save(model,cnd,line,num,nstep) 
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if mod(nstep,num.nstep/num.nsave) == 0 
    for n = 1 : line.n_cnd 
       data.x  = cnd(n).x; data.zb = cnd(n).zb; 
       data.Al = cnd(n).Al; data.Aw = cnd(n).Aw; data.h = cnd(n).h; data.Qw = 
cnd(n).Qw; data.Ql = cnd(n).Ql; data.Tw = cnd(n).Tw;  
       data.Tl = cnd(n).Tl; data.X = cnd(n).X; data.phi = cnd(n).phi; 
data.psat = cnd(n).psat; data.Tpw = cnd(n).Tpw; data.Tpl = cnd(n).Tpl; 
       data.Tsw = cnd(n).Tsw; data.Tsl = cnd(n).Tsl; 
       if nstep == 0 
           % Stationary solution  
           model.stat = data; 
       else 
           % Time dependent solution 
           model.data{n,num.nsave*nstep/num.nstep} = data; 
       end 
    end 
end 

B.4 datatime 

% Only for one row 
  
function timecell = datatime(model, x) 
  
timecell = cell(length(x), 1); 
  
for i = 1:length(x) 
     
    xi = x(i); 
     
    data = model.data; 
    stat = model.stat; 
    num = model.num; 
     
    sizeSteps = size(data,2)+1; 
     
    zb_t = zeros(sizeSteps, 1); 
    Al_t = zeros(sizeSteps, 1); 
    Aw_t = zeros(sizeSteps, 1); 
    h_t  = zeros(sizeSteps, 1); 
    Qw_t = zeros(sizeSteps, 1); 
    Ql_t = zeros(sizeSteps, 1); 
    Tw_t = zeros(sizeSteps, 1); 
    Tl_t = zeros(sizeSteps, 1); 
    X_t = zeros(sizeSteps, 1); 
    phi_t = zeros(sizeSteps, 1); 
    psat_t = zeros(sizeSteps, 1); 
    Tpw_t = zeros(sizeSteps, num.nlayer); 
    Tpl_t = zeros(sizeSteps, num.nlayer); 
    Tsw_t = zeros(sizeSteps, num.nlayer); 
    Tsl_t = zeros(sizeSteps, num.nlayer); 
 
    Tw_t(1) = stat.Tw(xi); 
    Tl_t(1) = stat.Tl(xi); 
    Qw_t(1) = stat.Qw(xi); 
    Ql_t(1) = stat.Ql(xi); 
    h_t(1) = stat.h(xi); 
    phi_t(1) = stat.phi(xi); 
    zb_t(1) = stat.zb(xi); 
    Al_t(1) = stat.Al(xi); 
    Aw_t(1) = stat.Aw(xi); 
    X_t(1) = stat.X(xi); 
    psat_t(1) = stat.psat(xi); 
    Tpw_t(1,:) = stat.Tpw(xi,:); 
    Tpl_t(1,:) = stat.Tpl(xi,:); 
    Tsw_t(1,:) = stat.Tsw(xi,:); 
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    Tsl_t(1,:) = stat.Tsl(xi,:); 
 
    for lineStep = 1:size(data,2) 
         
        Tsw_t  (lineStep+1,:) = data{lineStep}.Tsw(xi,:); 
        Tsl_t  (lineStep+1,:) = data{lineStep}.Tsl(xi,:); 
        Tw_t  (lineStep+1) = data{lineStep}.Tw(xi); 
        Tl_t  (lineStep+1) = data{lineStep}.Tl(xi); 
        Tpw_t (lineStep+1,:) = data{lineStep}.Tpw(xi,:); 
        Tpl_t (lineStep+1,:) = data{lineStep}.Tpl(xi,:); 
        Qw_t  (lineStep+1) = data{lineStep}.Qw(xi); 
        Ql_t  (lineStep+1) = data{lineStep}.Ql(xi); 
        h_t   (lineStep+1) = data{lineStep}.h(xi); 
        phi_t (lineStep+1) = data{lineStep}.phi(xi); 
        zb_t  (lineStep+1) = data{lineStep}.zb(xi); 
        Al_t  (lineStep+1) = data{lineStep}.Al(xi); 
        Aw_t  (lineStep+1) = data{lineStep}.Aw(xi); 
        X_t   (lineStep+1) = data{lineStep}.X(xi); 
        psat_t(lineStep+1) = data{lineStep}.psat(xi); 
         
    end 
     
    dt = num.dt; 
    t = zeros(sizeSteps, 1); 
     
    for iStep = 1:sizeSteps 
        t(iStep) = sum(dt(1:(iStep-1)*num.nstep/num.nsave)); 
    end 
     
    datat.xi = xi; 
    datat.t = t; 
     
    datat.zb = zb_t; 
    datat.Al = Al_t; 
    datat.Aw = Aw_t; 
    datat.h = h_t; 
    datat.Qw = Qw_t; 
    datat.Ql = Ql_t; 
    datat.Tw = Tw_t; 
    datat.Tl = Tl_t; 
    datat.X = X_t; 
    datat.phi = phi_t; 
    datat.psat = psat_t; 
    datat.Tpw = Tpw_t; 
    datat.Tpl = Tpl_t; 
    datat.Tsw = Tsw_t; 
    datat.Tsl = Tsl_t; 
     
    timecell{i} = datat; 
     
end 
  
end 

B.5 fun_plot 

function fun_plot(model) 
close all 
  
linecolor = {'b','r','k','g','m'}; 
  
for n = 1 : model.line.n_cnd+1 
    figure(n) 
    for i = 1 : model.num.nplot; 
        if n > model.line.n_cnd 
            data = model.stat; 
            t    = 0; 
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            pipe = model.pipe(1); 
        else 
            pipe = model.pipe(n); 
            ii   = floor(i*model.num.nsave/model.num.nplot); 
            data = model.data{n,ii}; 
            t    = sum(model.num.dt(1:ii*model.num.nstep/model.num.nsave)); 
        end 
        subplot(221) 
        hold on 
        plot(data.x,data.h+data.zb,'color',linecolor{i},'linewidth',1) 
        % plot(data.x,pipe.D-data.h+data.zb,'--
','color',linecolor{i},'linewidth',1) 
        plot(data.x,data.zb,'k','linewidth',2) 
        plot(data.x,data.zb+pipe.D,'k','linewidth',2) 
        ylim([0 pipe.D+max(data.zb)]) 
        %title('Water depth (h [m])') 
        xlim([0 pipe.L]) 
        axis('tight'); 
        set(gca,'FontSize', 17,'FontName','Courier'); 
        ylabel('h (m)','FontSize',19,'FontWeight', 'bold','FontName','Arial'); 
        xlabel('Distance (m)','FontSize',19,'FontName','Arial'); 
         
        subplot(222) 
        plot(data.x,data.Qw*1000,'color',linecolor{i},'linewidth',1) 
        hold all 
        %ylim([0 0.5]) 
        %title('Flow rate water (Q_w [L/s])') 
        xlim([0 pipe.L]) 
        axis('tight'); 
        set(gca,'FontSize', 17,'FontName','Courier'); 
        ylabel('Q_w (L/s)','FontSize',19,'FontWeight', 
'bold','FontName','Arial'); 
        xlabel('Distance (m)','FontSize',19,'FontName','Arial'); 
  
         
        subplot(224) 
        plot(data.x,data.Tw-273,'color',linecolor{i},'linewidth',1) 
        %plot(data.x,data.zb,'k','linewidth',2) 
        hold all 
        %title('Temperature water (T_w [C])') 
        xlim([0 pipe.L]) 
        axis('tight'); 
        set(gca,'FontSize', 17,'FontName','Courier'); 
        ylabel('T_w (C)','FontSize',19,'FontWeight', 
'bold','FontName','Arial'); 
        xlabel('Distance (m)','FontSize',19,'FontName','Arial'); 
        ylim([0 25]) 
         
        subplot(223) 
        plot(data.x,data.Tl-273,'color',linecolor{i},'linewidth',1) 
        hold all 
        %title('Temperature air T_l [C]') 
        xlim([0 pipe.L]) 
        axis('tight'); 
        set(gca,'FontSize', 17,'FontName','Courier'); 
        ylabel('T_l (C)','FontSize',19,'FontWeight', 
'bold','FontName','Arial'); 
        xlabel('Distance (m)','FontSize',19,'FontName','Arial'); 
 
    end 
end 

B.6 fun_plot_t 

function fun_plot_t(model,datatx) 
%close all 
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linecolor = {'b','r','k','g','m','b','r','k','g','m','b','r','k','g','m'}; 
 
for plotI = 1:length(datatx) 
     
    %figure; 
    hold on; 
     
    datat = datatx{plotI}; 
    pipe  = model.pipe(model.line.n_cnd); 
    timeMax = max(datat.t); 
     
    subplot(221) 
    hold on 
    plot(datat.t,datat.h+datat.zb,'color',linecolor{plotI},'linewidth',1) 
    plot(datat.t,datat.zb,'k','linewidth',2) 
    plot(datat.t,datat.zb+pipe.D,'k','linewidth',2) 
    ylim([0 pipe.D+max(datat.zb)]) 
    %title('Water depth (h [m])') 
    xlim([0 timeMax]) 
    axis('tight'); 
    set(gca,'FontSize', 17,'FontName','Courier'); 
    ylabel('h (m)','FontSize',19,'FontWeight', 'bold','FontName','Arial'); 
    xlabel('Time (s)','FontSize',19,'FontName','Arial'); 
      
subplot(222) 
    plot(datat.t,datat.Qw*1000,'color',linecolor{plotI},'linewidth',1) 
    hold all 
    %title('Flow rate water (Q_w [L/s])') 
    xlim([0 timeMax]) 
    ylim([0 4E-3]) 
    axis('tight'); 
    set(gca,'FontSize', 17,'FontName','Courier'); 
    ylabel('Q_w (L/s)','FontSize',19,'FontWeight', 'bold','FontName','Arial'); 
    xlabel('Time (s)','FontSize',19,'FontName','Arial'); 
     
    subplot(224) 
    plot(datat.t,datat.Tw-273,'color',linecolor{plotI},'linewidth',1) 
    %plot(data.x,data.zb,'k','linewidth',2) 
    hold all 
    %title('Temperature water (T_w [C])') 
    xlim([0 timeMax]) 
    axis('tight'); 
    set(gca,'FontSize', 17,'FontName','Courier'); 
    ylabel('T_w (C)','FontSize',19,'FontWeight', 'bold','FontName','Arial'); 
    xlabel('Time (s)','FontSize',19,'FontName','Arial'); 
    ylim([0 25]) 
     
    % ylim([0 1]) 
    subplot(223) 
    plot(datat.t,datat.Tl-273,'color',linecolor{plotI},'linewidth',1) 
    hold all 
    %title('Temperature air T_l [C]') 
    xlim([0 timeMax]) 
    axis('tight'); 
    set(gca,'FontSize', 17,'FontName','Courier'); 
    ylabel('T_l (C)','FontSize',19,'FontWeight', 'bold','FontName','Arial'); 
    xlabel('Time (s)','FontSize',19,'FontName','Arial'); 
    ylim([0 25]) 
 
end 

B.7 fun_plot_color 

function fun_plot_color(model) 
%% Calculates time array 
  
data = model.data; 
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num = model.num; 
  
t = zeros(size(data,2), 1); 
X = data{1}.x; 
  
no_times = length(t); 
no_points = length(X); 
  
Tw = zeros(no_times, no_points); 
%Qw = zeros(no_times, no_points); 
  
for i = 1:no_times 
    t(i) = sum(num.dt(1:i*num.nstep/num.nsave)); 
    Tw(i,:) = data{i}.Tw-273; 
    %Qw(i,:) = data{i}.Qw; 
end 
  
%% Plot 
figure; 
  
Twrange=0:1:25; 
  
contourf(t,X,Tw',Twrange); 
%contourf(t,X,Qw') 
  
%surf(t,X,Tw',Twrange); 
  
colbar = colorbar; 
  
set(gca,'FontSize', 17); 
set(gca,'FontName','Courier'); 
ylabel(colbar, 'Temperature (∫C)','FontSize', 19,'FontWeight', 
'bold','FontName','Arial'); 
xlabel('Time(s)','FontSize', 19, 'FontWeight', 'bold','FontName','Arial'); 
ylabel('Distance (m)', 'FontSize', 19,'FontWeight', 
'bold','FontName','Arial'); 
% xlim([0,50]); 

B.8 mcdeviations 

writeFiles = 0; 
  
%% Calculates general case 
gcModel       = fun_start(ones(1,5)); 
gcModel       = sewer_temp_model(gcModel); 
  
fun_plot_color(gcModel); 
title('GC\_Model'); 
  
%% Builds modified cases matrix 
% MC matrix 
nVar1 = 3; 
nVar2 = 2; 
mVarf = 
[fun_mat(nVar1),ones(2^nVar1,nVar2);ones(2^nVar2,nVar1),fun_mat(nVar2)]; 
% deletes general case entries 
mVarf(sum(mVarf,2) == size(mVarf,2), :) = []; 
  
%% Calculates modified cases 
% runs and saves models 
if writeFiles 
    for i = 1:size(mVarf,1) 
        row = mVarf(i,:); 
        model = fun_start(row); 
        model = sewer_temp_model(model); 
        save(['Dynamic_MC_',num2str(i)],'model'); 
    end 
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end 
  
%% Calculates mean squared deviation and std deviation for each MC 
meanDeviationTw = zeros(size(mVarf,1), 1); 
meanDeviationTl = zeros(size(mVarf,1), 1); 
stdDeviationTw = zeros(size(mVarf,1), 1); 
stdDeviationTl = zeros(size(mVarf,1), 1); 
  
for i = 1:size(mVarf,1) 
    model = load(['Dynamic_MC_',num2str(i)]); 
    model = model.model; 
    fun_plot_color(model); 
    title(['Dynamic\_MC\_',num2str(i)]); 
    data = model.data; 
     
    % only considering one conduit 
    deviationDataTw = zeros(size(data,2),size(data{1}.x,1)); 
    deviationDataTl = zeros(size(data,2),size(data{1}.x,1)); 
     
    for dataI = 1:size(data,2) 
        deviationDataTw(dataI,:) = (data{dataI}.Tw - 
gcModel.data{dataI}.Tw)./(gcModel.data{dataI}.Tw-273)*100; 
        deviationDataTl(dataI,:) = (data{dataI}.Tl - 
gcModel.data{dataI}.Tl)./(gcModel.data{dataI}.Tl-273)*100; 
    end 
     
    meanDeviationTw(i) = mean2(deviationDataTw); 
    meanDeviationTl(i) = mean2(deviationDataTl); 
    stdDeviationTw(i) = std2(deviationDataTw); 
    stdDeviationTl(i) = std2(deviationDataTl); 
     
%     plot(mean(deviationDataT)); 
     
end 
%% Plots deviation graphsm 
figure; 
  
subplot(121) 
%plot(abs(meanDeviationTw), 'rx-'); 
deviationbar([1:10], meanDeviationTw, stdDeviationTw, 'rx') 
hold on; 
bar([1:10], meanDeviationTw,0.5,'r'); 
set(gca,'FontSize', 15,'FontName','Courier'); 
set(gca,'XTick',[1:10]); 
ylabel('Deviation (Tw)','FontSize',15,'FontWeight', 
'bold','FontName','Arial'); 
xlabel('Modified Cases','FontSize',15,'FontWeight', 
'bold','FontName','Arial'); 
xlim([0.5,10.5]); 
  
subplot(122) 
%plot(abs(meanDeviationTl), 'rx-'); 
deviationbar([1:10], meanDeviationTl, stdDeviationTl, 'rx') 
hold on; 
bar([1:10], meanDeviationTl,0.5,'r'); 
set(gca,'FontSize', 15,'FontName','Courier'); 
set(gca,'XTick',[1:10]) 
ylabel('Deviation (Tl)','FontSize',15,'FontWeight', 
'bold','FontName','Arial'); 
xlabel('Modified Cases','FontSize',15,'FontWeight', 
'bold','FontName','Arial'); 
xlim([0.5,10.5]); 
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