
Paulo Jorge Abreu Duarte Ferreira

Licenciado em Engenharia Informática

Information Flow Analysis using Data-dependent
Logical Propositions

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Co-orientadores : João Costa Seco, Prof. Auxiliar,
Universidade Nova de Lisboa
Carla Ferreira, Profa. Auxiliar,
Universidade Nova de Lisboa

Júri:

Presidente: Prof. Doutor João Alexandre Carvalho Pinheiro Leite

Arguente: Prof. Doutor Simão Melo Patrício de Sousa

Vogal: Prof. Doutor João Ricardo Viegas da Costa Seco

Dezembro, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157625493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

Information Flow Analysis using Data-dependent Logical Propositions

Copyright c© Paulo Jorge Abreu Duarte Ferreira, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

Acknowledgements

I would like to thank my thesis’ advisers, professor João Seco and professor Carla Fer-
reira, for providing me with an opportunity to explore an interesting research area, and
for their guidance and thorough comments during the elaboration of this thesis.

I would like to thank the members of the PLASTIC research group for their interesting
talks and insightful comments that helped dispel some misconceptions in the earlier ver-
sions of this work.

I would like to thank my friends Carlos Correia, Diogo Serra and Sérgio Silva, for the
insightful discussions throughout the development of this thesis and for sharing their
enthusiasm in their own theses and personal projects.

A special thank you to my parents and brothers for their continuous support and inspi-
ration, as well as providing me plenty of opportunities to take a break and get a breath
of fresh air :)

v

vi

Abstract

A significant number of today’s software systems are designed around database sys-
tems that store business information, as well as data relevant to access control enforce-
ment, such as user profiles and permissions. Thus, the code implementing security mech-
anisms is scattered across the application code, often replicated at different architectural
layers, each one written in its own programming language and with its own data format.
Several approaches address this problem by integrating the development of all applica-
tion layers in a single programming language. For instance, languages like Ur/Web and
LiveWeb/λDB provide static verification of security policies related to access control, en-
suring that access control code is correctly placed. However, these approaches provide
limited support to the task of ensuring that information is not indirectly leaked because
of implementation errors.

In this thesis, we present a type-based information-flow analysis for a core language
based in λDB, whose security levels are logical propositions depending on actual data.
This approach allows for an accurate tracking of information throughout a database-
backed software system, statically detecting the information leaks that may occur, with
precision at the table-cell level. In order to validate our approach, we discuss the imple-
mentation of a proof-of-concept extension to the LiveWeb framework and the concerns
involved in the development of a medium-sized application in our language.

Keywords: programming language, static verification, security policies, information-
flow analysis, type system, data manipulation primitives

vii

viii

Resumo

Um número significativo dos sistemas de software de hoje em dia são suportados por
sistemas de base de dados que armazenam tanto informação relevante para o domínio da
aplicação, como dados relevantes para a aplicação do controlo de acessos, tais como per-
fis de utilizador e permissões. Assim, o código que implementa os mecanismos de segu-
rança está espalhado pelo código da aplicação, frequentemente replicado em diferentes
camadas arquitecturais, cada uma delas escrita na sua própria linguagem de programa-
ção e com o seu próprio formato de dados. Existem várias abordagens que resolvem este
problema através da integração do desenvolvimento de todas as camadas numa única
linguagem de programação. Por exemplo, linguagens como Ur/Web e LiveWeb/λDB fa-
zem verificação estática de políticas de segurança relacionadas com o controlo de acessos,
garantindo que o código de controlo de acessos está onde é necessário. No entanto, es-
tas abordagens fornecem um suporte limitado à tarefa de garantir que não são causadas
fugas de informação devido a errors de implementação.

Nesta tese, apresentamos uma análise de fluxo de informação baseada em tipos para
uma linguagem adaptada a partir de λDB, usando como níveis de segurança proposições
lógicas que dependem dos próprios dados. Esta abordagem permite uma monitorização
precisa da informação num sistema de software suportado por bases de dados, detec-
tando estaticamente as fugas de informação que podem ocorrer, com precisão ao nível
das células de uma tabela. De forma a validar a nossa abordagem, discutimos a imple-
mentação de uma extensão à framework LiveWeb como prova de conceito e as preocu-
pações envolvidas no desenvolvimento de uma aplicação de dimensão média na nossa
linguagem.

Palavras-chave: linguagem de programação, verificação estática, políticas de segurança,
análise de fluxo de informação, sistema de tipos, primitivas de manipulação de dados

ix

x

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Proposed Approach . 4

1.3 Contributions . 6

1.4 Document Structure . 6

2 Background 9
2.1 Information Flow . 9

2.1.1 λSEC and λREF
SEC calculi . 11

2.1.2 Dependency Core Calculus . 16

2.1.3 Secure Monadic Calculus . 18

2.2 Type-Based Access Control . 21

2.2.1 λDB and the LiveWeb framework . 22

3 Related Work 31
3.1 Ur/Web . 31

3.2 Flow Caml . 33

3.3 Information-Flow in Data-Manipulation Primitives 35

4 Language and Type System 39
4.1 Core Language . 40

4.2 Type System . 42

4.2.1 Lattice . 44

4.2.2 Typing Judgements . 44

4.2.3 Type Operators and Notation . 45

4.2.4 Typing Rules . 46

4.3 Extended LiveWeb . 55

4.3.1 Typing Judgements . 56

4.3.2 Typing Rules . 56

xi

xii CONTENTS

4.4 Approaching Non-interference . 58

5 Example 59
5.1 Scenario . 59
5.2 Application . 60

6 Implementation 69
6.1 LiveWeb . 69
6.2 LiveWeb Extension Core Module . 71
6.3 SMT Solver Module . 74

6.3.1 Encoding . 75
6.4 Type Checking Process: an example . 80

7 Conclusions and Future Work 85

A A Lattice of First-Order Logic propositions 91

B Solver Preamble 95

List of Figures

2.1 Security lattice model for anonymous paper reviews 10
2.2 λSEC grammar . 12
2.3 λSEC typing rules . 13
2.4 λREF

SEC grammar . 14
2.5 Some λREF

SEC typing rules . 15
2.6 DCC grammar . 17
2.7 DCC type rules related to dependency propagation 18
2.8 Performing program slicing in a security-typed calculus 18
2.9 Secure Monadic Calculus grammar . 19
2.10 Some typing rules for the Secure Monadic Calculus 21
2.11 λDB Grammar . 23
2.12 LiveWeb’s web-based development environment 26
2.13 LiveWeb base grammar . 27
2.14 LiveWeb type grammar . 28
2.15 A login form generated by LiveWeb . 28

4.1 λDB−Flow grammar for expressions . 41
4.2 λDB−Flow grammar for types . 43
4.3 λDB−Flow grammar for environments . 44
4.4 The t operation between types and security levels 45
4.5 The J·Kx operation applied to types and formulas 46
4.6 Definition of subrecord . 46

5.1 Possible rendering of the paper evaluation page 66

6.1 Entity editor with security levels . 73

xiii

xiv LIST OF FIGURES

Listings

1.1 Anonymous comments in LiveWeb/λDB . 3
2.1 Simple λSEC function . 12
2.2 Preventing reference aliasing in λREF

SEC . 15
2.3 Assigning a high security value in a low security context 16
2.4 Writing below the reading level . 20
2.5 SMC program that benefits from informativeness 21
2.6 Trusted function used to authenticate users 24
2.7 Obtaining a phone number requires authentication 25
2.8 Full example with knowledge propagation 25
2.9 A LiveWeb entity definition . 26
2.10 Defining a login screen in LiveWeb . 28
2.11 Defining a login action in LiveWeb . 29
3.1 A sendClient policy in Ur/Web . 32
3.2 Explicit information-flows in Ur/Web . 32
3.3 Undetected information-flow in Ur/Web 33
3.4 A user-defined list data type in Flow Caml 34
3.5 Type inference and constraints in Flow Caml 34
3.6 A login example in Flow Caml . 35
3.7 Selecting public values depending on private information 36
3.8 Assigning a public value depending on private information 36
3.9 Inserting a private value in a public field 36
5.1 The User entity . 61
5.2 The Paper entity . 61
5.3 The getTitles action . 62
5.4 The getTitlesForCommittee action . 62
5.5 The Author entity . 62
5.6 The getTitle action . 63
5.7 The ReviewIntention entity . 64
5.8 The ReviewAssignment entity . 64

xv

xvi LISTINGS

5.9 The Review entity . 65
5.10 The evaluatePaper screen . 66
5.11 The submitEvaluation action . 67
6.1 LiveWeb – SMT solver benchmark example 71
6.2 Visit method for let-expressions . 73
6.3 Example of a solver interaction . 75
6.4 Preamble for the boolean type . 76
6.5 Preamble for the string type (1) . 77
6.6 Preamble for the string type (2) . 77
6.7 A generic Term sort . 78
6.8 Declaring and using the Author predicate 78
6.9 Declaring a record (1) . 79
6.10 Declaring a record (2) . 79
B.1 Solver encoding preamble . 95

1
Introduction

1.1 Motivation

Security of data is an important concern in our everyday life since long ago. With the
democratisation of Internet access, the need for information security became even more
important, as we spend significant amounts of time online, and tend to trust private
information to a variety of different websites: social networks (e.g. Facebook, Twitter,
YouTube), shopping websites (e.g. Amazon, eBay), search engines (e.g. Google, Yahoo!,
Bing) and others. Thus, security concerns are nowadays crucial in the development of
software systems. The majority of security mechanisms used in software systems are in-
spired or have some parallel with their non-digital counterparts, like encryption, security
protocols, or access control mechanisms.

Access control in software systems is about having the right permissions to the infor-
mation we want to access. However, current implementations are still subject to security
flaws, often caused by a combination of (i) ad-hoc implementation methods, and (ii) a
lack of tool support to ensure all needed verifications are in place. Moreover, a signif-
icant number of today’s software systems are designed around database systems that
store business information as well as data relevant to access control, such as user profiles
and permissions. Thus, the code implementing security mechanisms is scattered across
the application code, often replicated at different architectural layers, each one written in
its own programming language and with its own data format. For instance, in a typical
web application there are the database layer, using SQL; the server-side code written in
PHP, Java, C#, etc.; and the client-side code written in JavaScript. This setting is even
more intricate in the task of maintaining or evolving an application.

Several approaches exist that address this problem by integrating the development

1

1. INTRODUCTION 1.1. Motivation

of all layers in a single programming language, avoiding incompatibilities between dif-
ferent data formats and allowing the compile-time detection of invalid queries and other
system-wide analyses. In particular, some approaches allow specification and static ver-
ification of security policies related to access control, such as LiveWeb/λDB [Dom10,
CPS+11] and Ur/Web [Chl10], ensuring that the access control code is correctly placed.

In Ur/Web, an abstract interpretation technique is applied to statically verify the con-
formance of the code against access control policies, based on the idea of SQL queries
as policies, where SELECT queries are used to specify an upper bound on the data ma-
nipulated by a given database operation. On the other hand, LiveWeb implements the
access control model presented in [CPS+11] for λDB, where policies are defined by arbi-
trary logical propositions and knowledge is stored in dependent refinement types [GF09],
yielding a more flexible and uniform approach.

Although access control provides guarantees about who is able to access the informa-
tion, it is unable to prevent the misuse of access permissions to leak confidential informa-
tion, because there is no control over how information is used. The problem of controlling
the use of information is addressed by a technique called information-flow analysis, which
consists in tracking the various flows of information to ensure confidential information
is not leaked or, in general, that security policies are respected.

Information-flow analysis relies on annotating values or store locations with a secu-
rity level and tracking, either statically or dynamically, if they are used by the program in
a secure way. In this setting, program security is tied to a property called non-interference,
stating that confidential inputs of a program should not interfere with the values of its
public outputs. However, direct formulations of non-interference are too restrictive to
be applied in practice: a login system would be automatically ruled out because it leaks
information about whether a password was correct or not. There is a long thread of re-
search on mechanisms to safely declassify information (i.e. lower its security level) and
their interplay with non-interference, surveyed in [SS05].

Compile-time analyses are usually encoded as type systems where types are anno-
tated with security levels as well, thus guaranteeing that non-interference holds for well-
typed programs. Type-based approaches to information security were pioneered by Vol-
pano et al. in [VSI96], and followed by many others [ABHR99, Zda02, CKP05] in the con-
text of both imperative and functional languages of increasing complexity, yielding two
pragmatic applications to mainstream programming languages: Jif [Mye99], an exten-
sion to Java, and Flow Caml [Sim03], an extension to Objective Caml. None of these ap-
proaches directly address the data-centric setting of LiveWeb/λDB and Ur/Web, whose
primitives’ information-flow only recently [LC12] got characterized.

Historically, approaches to compile-time analysis were considered to be more fine-
grained than those to run-time analysis, because they are able to statically verify all possi-
ble executions of a program, instead of only verifying the current one. Even so, run-time
analyses are able to accept a larger number of safe programs than compile-time analy-
ses, because they deal directly with the program that is running instead of performing

2

1. INTRODUCTION 1.1. Motivation

Listing 1.1: Anonymous comments in LiveWeb/λDB

1 def entity Comment {
2 author : String,
3 content : String
4 }
5 read author where Auth(author)
6 read content where true
7 write author, content where Auth(author)
8

9 def action submit(username: {x : String | Auth(x)}, comment: String): Unit =
10 let signedComment = comment + " By " + username in
11 insert [
12 author = username,
13 content = signedComment
14] into Comment

approximations. Recent run-time approaches [AF12, YYSL12], are able to be even finer-
grained than static approaches – although with increased run-time costs – by computing
with faceted values, pairs of a confidential value and a public value, during the whole com-
putation. The purpose is to not reveal the confidential values to an untrusted principal,
instead yielding the public value, computed in a parallel state.

In the next chapters we describe a necessarily non-complete list of significant works
on information-flow in software systems. A more comprehensive survey of language-
based approaches to information-flow analysis can be found in [SM03].

Problem Enforcing security policies in database-backed software systems is a challeng-
ing task, as access verification code ends up scattered and duplicated not only across the
code, but also across various architectural layers. Programming languages like Ur/Web
and LiveWeb/λDB, simplify this problem by integrating the development of the whole
system in a single language, allowing them to statically enforce access control policies.
However, limited support is given to the task of ensuring that information is not misused.

For instance, consider the well-typed LiveWeb program in Listing 1.1, a fragment of
a blog application, where we have a database entity Comment, representing anonymous
comments, and a function submit, used by authenticated users to submit new comments
to the database. Anonymity is enforced by the access control policy of the author field
that states that its value can only be read by a user authenticated as the author of the
comment, while the text of the comment is public. Notice that the access control policy is
respected, as the submit function inserts a new comment whose author is authenticated.
In spite of that guarantee, in this case the username of the author is also included in the
contents of the comment, which makes it public, breaking the intended anonymity policy.

The specification of security policies as logical propositions is a powerful approach,
more so when propositions depend on the actual protected data, allowing for policies
to work at the table-cell level. Our goal is to explore their use as security levels in type-
based information-flow analysis, in order to address problems as the one above and study

3

1. INTRODUCTION 1.2. Proposed Approach

the advantages and limitations of this approach in the context of data-centric software
systems.

1.2 Proposed Approach

Our solution consists in a proof of concept extension to the LiveWeb/λDB framework
[Dom10, CPS+11], featuring a type-based approach to information-flow analysis whose
security levels are first-order logic propositions. In the following, we illustrate the solu-
tion with a brief series of small examples based in a simple version of the paper reviewing
process, an example application that will be explored further in later chapters.

Consider a software system where registered users, represented by the database en-
tity User, are characterized by a unique id, a name and a password. The id and name

fields have security level true(), meaning they are readable by any user of the system (i.e.
public), and the password field has security level System(), modeling the policy that
it should only be read by trusted system functions.

def entity User {

id: Int at true()
name: String at true(),
password: String at System()

}

Authenticated users are able to submit papers to the system, which are then available for
any user to read. Papers are represented by the entity Paper which is characterized by
a unique id, a single paper author identified by author_id and the body of the paper
itself, all public.

def entity Paper {

id: Int at true(),
author_id: Int at true(),
body: String at true()

}

Each paper can have several reviews, but a given review is only readable by the reviewer
or the author of the paper, which is expressed in the security level of the paper_id

and content fields. Likewise, the security level of the reviewer_id field expresses
that reviewers are anonymous. Both security levels are specified in terms of a User

predicate, representing authenticated users, and a AuthorOf predicate, which represents
information readable by the author of a specific paper.

def entity Review {

id: Int at true(),
reviewer_id: Int at User(reviewer_id),

paper_id: Int at User(reviewer_id) or AuthorOf(paper_id),

content: String at User(reviewer_id) or AuthorOf(paper_id)

}

4

1. INTRODUCTION 1.2. Proposed Approach

Information-flow is tracked by associating the security level of each value to its type, just
like in the entities’ specification, with composite expressions defining their security levels
in terms of their sub-expressions’ security levels in a conservative way: while the sum of
two public values should result in a public value, summing a public value with a private
value should yield a value with the most restrictive of both security levels, i.e. private.
For instance, consider a select query that selects the ids of all papers whose reviewer is
the user with id 3:

from r in Review where r.reviewer_id == 3 select r.paper_id

From the definition of the Review entity, we know the paper ids we are selecting have
security level User(r.reviewer_id) or Author(r.paper_id). However, which rows
the query will fetch is dependent on the where condition, composed by a comparison of
the reviewer_id field, with security level User(r.reviewer_id), and a literal 3, which
we consider public. Since the reviewer_id’s level is the most restrictive of the three, both
the condition and the result of the query have security level User(r.reviewer_id), or
more specifically User(3), meaning they can be read by an authenticated user with id 3.

On the other hand, if we consider a query that involves writing values to the database,
it is important to consider that the values we read back later must correspond to the
declared fields’ security levels. Thus, the security level of values we insert cannot be
more restrictive than the security levels declared in the database. For instance, consider
the following insert query:

insert
[id = 23, author_id = 5, body = "We present a..."]

into Paper

All the values we are writing to the database are literals, which we consider public in this
context. Comparing the security levels of each field in the database, we can see the query
does not leak information, as we write public information that will later be read as public
information.

Finally, consider an example where we combine both queries, in order to illustrate the
detection of an information leak:

let paper_ids =

from r in Review where r.reviewer_id == 3 select r.paper_id

in
let first_id = head paper_ids in

insert
[id = 23, author_id = 5, body = "" + first_id]

into Paper

We take the first paper’s id from the result of the select query, and use it as the body of the
paper in the insert query. Since the results of the first query have security level User(3),
we know the first result also has security level User(3). Consequently, when we type
the second query and compare the fields’ security levels with those of the values we are

5

1. INTRODUCTION 1.3. Contributions

inserting, we are able to conclude that the value being inserted for the body field is not
public as required. In other words, we would be writing a value with level User(3) and
later reading a value with level true(), incurring in an information leak.

1.3 Contributions

The work developed in this thesis provides three main contributions within its primary
goal of developing a type-based information flow analysis whose security levels are data-
dependent logical propositions, in the setting of data-centric applications.

Type System The definition of a core language and type system featuring type-based
information flow analysis in a data-centric setting, whose security levels are logi-
cal propositions dependent on the protected data itself, allowing for a expressive
characterization of security policies with precision at the table-cell level.

Prototype A prototype implementation of our type system which extends the LiveWeb
framework, allowing us to tackle the challenges of a concrete implementation, il-
lustrate the approach in a practical setting and test its limits. Additionally, our use
of a satisfiability modulo theories (SMT) solver resulted, as a by-product, in the defi-
nition of an encoding from the terms of our language to the solver language and an
implementation of a SMT solver module that abstracts those details, which could,
in principle, be reused with minor modifications in other works.

Example The development of a medium-sized example in our prototype, a manager for
conference submissions and reviews rich in confidentiality requirements, targeted
at validating our type system and implementation, understanding best practices
and discovering common pitfalls.

1.4 Document Structure

The remaining of this document is organized as follows. In Chapter 2, we present a brief
introduction to the key concepts of information-flow analysis, followed by a descrip-
tion of a small but significant set of languages that use this technique. The works de-
scribed are necessarily non-exhaustive given the large and diverse thread of research in
the area, but were chosen in such a way that each of them provides a distinct view to
type-based information flow analysis. Then, we present type-based access control and
give an overview of the λDB calculus and the LiveWeb framework. In Chapter 3, we dis-
cuss three works that relate to ours in terms of setting or approach to information-flow
analysis. In Chapter 4, we present our core language and type system, detail the main
extensions required to apply it to our prototype and end with a brief overview of how
we could approach a proof of non-interference. In Chapter 5, we present an example de-
veloped in our prototype and discuss its main challenges and insights. In Chapter 6, we

6

1. INTRODUCTION 1.4. Document Structure

discuss the initial implementation of the LiveWeb framework and the implementation of
our own prototype on top of it. Finally, in Chapter 7, we make some final remarks and
discuss the future work that could be supported by the contributions of this thesis.

7

1. INTRODUCTION 1.4. Document Structure

8

2
Background

2.1 Information Flow

In the context of software systems, it is critical to prevent confidential information from
being released to the public or, more generally, to prevent information with a given access
policy from being accessed by someone whose permissions do not comply with the given
policy.

Most systems’ information leaks are caused by implementation errors when trying
to enforce security policies using ad-hoc methods, even though there are sophisticated
attack techniques, such as inferring information from the running time of a program
(timing attacks), or monitoring the power consumption of the hardware in which a sys-
tem is run (power analysis attacks). Several techniques exist to address and prevent these
problems, with information-flow analysis being one of the most precise in avoiding in-
formation leaks caused by implementation errors.

Information-flow analysis is a technique used to solve the problem of systematically
preventing information leaks, which works by tracking the flows of information within
a software system, enforcing there is no flow that violates its security policies. We con-
centrate in (programming) language-based approaches, as they benefit from the use of
the language’s semantics and type system, thus providing valuable security guarantees
about the implementation.

Typically, these approaches consist in annotating all values with a security level and
then guaranteeing that confidential values are not simply revealed or used to compute
public values, thus allowing the inference of their nature and value. In order to compare
different security levels in terms of confidentiality, the studied approaches have a central
concept of a lattice of security levels, used to specify their hierarchy and thus the global

9

2. BACKGROUND 2.1. Information Flow

information-flow policies of the system.

Security Lattices A lattice is defined by a set of elements L and partial order on those
elements v such that, for any two elements a and b from L, there is a least upper bound
(a join), denoted a t b, and a greatest lower bound (a meet), denoted a u b. In particular,
when the lattice is finite, there is a greatest element and a lowest element, also known as
top (>) and bottom (⊥), respectively.

commitee (>)

reviewer author

review

paper (⊥)

Figure 2.1: Security lattice model for anonymous paper reviews

In the approaches we studied, the greatest element of a security lattice corresponds to
the highest security level, and its least element corresponds to the lowest security level,
thus it is always safe to restrict information with security level a to a security level b,
provided that a v b. Unless specified otherwise, our examples assume the use of a lattice
defined by the set {⊥,>}, where > is the security level of confidential information and
⊥ is the security level of public information, meaning that ⊥ v >.

Non-interference Language-based information security defines a secure program in
terms of a property called non-interference, stating that confidential inputs of a program
should not interfere with the values of its public outputs. More formally, given a program
P and two initial states S1 and S2 whose public variables have the same values (denoted
S1 =⊥ S2), running P with S1 (resp. S2) should yield a state S′1 (resp. S′2) such that
S′1 =⊥ S′2.

For instance, consider a function that takes a confidential boolean x as an argument
and returns its logical negation as a public value:

λ x : bool>. if x then false⊥ else true⊥

If we consider the program where we apply this function to the confidential value true>,
its result will be the public value false⊥. Conversely, if we apply this function to false>,
its result will be true⊥. Thus, by changing the value of the confidential input x, we get
different public outputs, meaning that non-interference does not hold for this program.

Implicit flows The most direct way a system can leak information is through explicit
flows of information, which occur when we explicitly use a confidential value in a place

10

2. BACKGROUND 2.1. Information Flow

where a public value is expected. However, there exist also implicit flows of information
such as those resulting from conditional expressions, which leak information about their
condition through the control-flow of the system.

In general, implicit flows occur whenever we deconstruct a value to know more infor-
mation about its identity. For example, we can deconstruct booleans by using the condi-
tional expression, since we have a branch for when its condition is true and other for when
it is false; or we can deconstruct abstractions by applying them to some value, because
we can distinguish which abstraction was used by looking at its result (e.g. increment vs
decrement).

Outline The remaining of this section presents four language-based approaches to in-
formation flow analysis, chosen in such away as to highlight different techniques and
points of view. In Subsection 2.1.1 we present λSEC and λREF

SEC , two functional calculi
that follow the typical approach where all values and types have security annotations.
Subsection 2.1.2 explores the view of information-flow analysis as a dependency analysis
by presenting the Dependency Core Calculus. In Subsection 2.1.3 we present the Secure
Monadic Calculus, a functional calculus that follows an uncommon approach where only
reference types and values have security annotations.

2.1.1 λSEC and λREF
SEC calculi

The first example we illustrate here is λSEC, a core functional calculus presented by
Zdancewic in his PhD thesis [Zda02] to introduce how one defines a type system that
ensures well-typed programs do not leak high security information. We next present one
of its extensions, λREF

SEC , which extends the core calculus with references and imperative
constructs.

A core calculus

The first calculus, λSEC, is a variant of the simply-typed lambda calculus [Bar92] featuring
boolean and functional values annotated with a security label from an arbitrary lattice.
The type system ensures that well-typed programs will never break the security layers,
leaking information to undesired contexts. This approach does not require runtime tests
to be performed and is supported by the non-annotated semantics of the host language,
in this case the standard semantics of the simply-typed lambda calculus.

The type system follows a conservative approach to security, since most typing rules
ensure the security level of an expression is at least as restrictive as all its sub-expressions’
security levels (see Figure 2.3). The only exception is the typing rule for application
(λSEC-APP), since the security level of e2 is not explicit in the type of the result.

λSEC-APP
Γ ` e1 : (s2 → s)` Γ ` e2 : s2

Γ ` e1 e2 : s t `

11

2. BACKGROUND 2.1. Information Flow

` ∈ L (Security labels)

t ::= bool (Boolean type)
| s→ s (Function type)

s ::= t` (Security types)

bv ::= true | false (Boolean base values)
| λx : s.e (Functions)

v ::= x (Variables)
| bv` (Secure Values)

e ::= v (Values)
| e e (Function application)
| e⊕ e (Primitive operations)
| if e then e else e (Conditional)

⊕ ::= ∧ | ∨ | . . . (Boolean operations)

Γ ::= · | Γ, x : s (Type environment)

Figure 2.2: λSEC grammar

Notice also the typing rule for abstraction (λSEC-FUN), where we can see that if pa-
rameter x is used in expression e, the resulting security level must be at least as secure
as that of x, since it is a sub-expression (e.g. Listing 2.1). If that is not the case, no infor-
mation from the parameter will be used in e, proving that the typing rule for application
accurately describes the information that may be leaked.

λSEC-FUN
Γ, x : s1 ` e : s2 x 6∈ dom(Γ)

Γ ` (λx : s1.e)` : (s1 → s2)`

It is also worth noting, that abstractions are labelled by a security level of their own
which provides a lower bound on the security level of the result (see λSEC-APP), allowing
us to constrain the information that is leaked by knowing what function is being applied.

Listing 2.1: Simple λSEC function

1 // Has type (bool> → bool>)>
2 (λ h : bool>.
3 if h then true⊥ else false⊥
4)⊥

Non-interference is proved by showing that a user with a low security level cannot
distinguish two computations simply by changing the values of high security inputs.
Usually, this is accomplished by defining an appropriate behavioural equivalence be-
tween programs, parametrized by the security level of the user, as stated in [SM03].

12

2. BACKGROUND 2.1. Information Flow

λSEC-TRUE
Γ ` true` : bool`

λSEC-FALSE
Γ ` false` : bool`

λSEC-VAR
Γ(x) = s
Γ ` x : s

λSEC-FUN
Γ, x : s1 ` e : s2 x 6∈ dom(Γ)

Γ ` (λx : s1.e)` : (s1 → s2)`

λSEC-BINOP
Γ ` e1 : bool`1 Γ ` e2 : bool`2

Γe1 ⊕ e2 : bool`1t`2

λSEC-APP
Γ ` e1 : (s2 → s)` Γ ` e2 : s2

Γ ` e1 e2 : s t `

λSEC-COND
Γ ` e : bool` Γ ` e1 : s t ` Γ ` e2 : s t `

Γ ` if e then e1 else e2 : s t `

λSEC-SUB Γ ` e : s Γ ` s ≤ s′

Γ ` e : s′

Figure 2.3: λSEC typing rules

Although its simple nature is useful as an introduction to information-flow analysis’
techniques, it is also because of its simple nature that it is not a good representative of
the challenges faced in mainstream programming languages: as a simple variant of the
simply-typed lambda calculus, it still lacks the power of Turing-complete systems.

Coping with side-effects

As a second step to address information-flow analysis in mainstream programming lan-
guages, Zdancewic defines λREF

SEC by extending λSEC with references and recursive func-
tions, thus making it Turing-complete and able to perform side-effects. Consequently,
abstraction has a new local variable f that refers to the function itself and a pc security
label that represents the security level of the program when its body is evaluated.

Type checking in λREF
SEC takes a more fine-grained approach than in λSEC, tracking the

security level of the program at each point by using judgements of the form Γ[pc] ` e : s,
stating that e has type s under a type environment Γ at security level pc (for program
counter). Consequently, the type system is able to deal with the new implicit flows that
arise by adding side-effects to the calculus, without being too conservative in its analysis.
A complete listing of the typing rules can be found in Figure 2.5.

To understand the type system as a whole, it is important to understand the key mech-
anism through which the current pc influences the security level of an expression, which

13

2. BACKGROUND 2.1. Information Flow

`, pc ∈ L (Security labels)
x, f ∈ V (Variables)

t ::= unit (Unit type)
| bool (Boolean type)
| s ref (Reference type)
| [pc] s→ s (Function type)

s ::= t` (Security types)

bv ::= true | false (Boolean base values)
| 〈〉 (Unit value)
| λ[pc] f (x : s).e (Recursive function)
| Ls (Memory locations)

v ::= x (Variables)
| bv` (Secure Values)

e ::= v (Values)
| e e (Function application)
| e⊕ e (Primitive operations)
| ref s e (Reference creation)
| !e (Dereference)
| e := e (Assignment)
| if e then e else e (Conditional)

⊕ ::= ∧ | ∨ | . . . (Boolean operations)

Γ ::= · | Γ, x : s (Type environment)

Figure 2.4: λREF
SEC grammar

is somewhat implicit in the typing rules. The typing rule for values (λREF
SEC-VAL) requires

the security level of every value to be at least as restrictive as the current pc. Conse-
quently, for an expression to be well-typed, its security level also needs to be at least as
restrictive as pc, which often ends up requiring the use of subsumption to further restrict
the security level.

λREF
SEC-VAL

Γ ` v : s pc v label(s)
Γ[pc] ` v : s

In λSEC, the only source of implicit flows are conditional expressions, here handled
by forcing the branches to be typed in a pc at least as restrictive as the condition’s security
level (see λREF

SEC-COND). For instance, if the condition is a high security boolean (bool>),
both branches will be typed at a high security pc, Γ[>] ` ei : s, guaranteeing that the
result is also high security as a consequence of the typing rule for values. By adding
references to the calculus, λREF

SEC now has to deal both with aliasing and function calls that

14

2. BACKGROUND 2.1. Information Flow

λREF
SEC-VAL

Γ ` v : s pc v label(s)
Γ[pc] ` v : s

λREF
SEC-APP

Γ[pc] ` e : ([pc′]s′ → s)` Γ[pc] ` e′ : s′ pc t ` v pc′

Γ[pc] ` e e′ : s t `

λREF
SEC-REF

Γ[pc] ` e : s
Γ[pc] ` ref s e : s refpc

λREF
SEC-DEREF

Γ[pc] ` e : s ref`
Γ[pc] `!e : s t `

λREF
SEC-ASSN

Γ[pc] ` e1 : s ref` Γ[pc] ` e2 : s ` v label(s)
Γ[pc] ` e1 := e2 : unitpc

λREF
SEC-COND

Γ[pc] ` e : bool` Γ[pct `] ` ei : s i ∈ {1, 2}
Γ[pc] ` if e then e1 else e2 : s

Figure 2.5: Some λREF
SEC typing rules

write to low security memory locations, so that they cannot be exploited to leak secure
information.

Since references are first-class values, they too have a security label of their own. Like
the case for functions, this security label is used to avoid leaks caused by knowing what
reference we are dereferencing (see λREF

SEC-DEREF).

λREF
SEC-DEREF

Γ[pc] ` e : s ref`
Γ[pc] `!e : s t `

If we did not have this annotation, the program in Listing 2.2 would be well-typed, as
there would be no way to distinguish between both references. This notion of the identity
of a reference is exactly what is compromised by allowing aliasing.

Listing 2.2: Preventing reference aliasing in λREF
SEC

1 // Ill-typed because high cannot have type bool⊥ ref⊥
2 (λ [⊥] high : bool⊥ ref>.
3 (λ [⊥] low : bool⊥ ref⊥. !low)⊥ high

4)⊥

Possibly unsafe function calls are ruled out by the typing rule for function application
(λREF

SEC-APP), by requiring the function’s program counter to be at least as restrictive as the
current pc. Combined with the typing rule for assignments (λREF

SEC-ASSN), this guarantees
the function being called only writes to references at least as secure as pc.

λREF
SEC-APP

Γ[pc] ` e : ([pc′]s′ → s)` Γ[pc] ` e′ : s′ pc t ` v pc′

Γ[pc] ` e e′ : s t `

15

2. BACKGROUND 2.1. Information Flow

λREF
SEC-ASSN

Γ[pc] ` e1 : s ref` Γ[pc] ` e2 : s ` v label(s)
Γ[pc] ` e1 := e2 : unitpc

Listing 2.3 is an example of a well-typed function that writes high security informa-
tion and yet can be called in low security contexts, since they will not be able to get any
low security information from that reference.

Listing 2.3: Assigning a high security value in a low security context

1 // Has type ([⊥] bool> ref> → unit⊥)⊥
2 (λ [⊥] high : bool> ref>.
3 high := not !high

4)⊥

For this calculus, the proof that non-interference holds is not obtained directly. In-
stead, after defining its operational semantics and type system, Zdancewic advances to
the definition of λCPS

SEC, a variation of λSEC with first-class continuations, for which non-
interference is proven directly. The proof of non-interference for λREF

SEC is then obtained by
encoding it in λCPS

SEC.
Besides λCPS

SEC, Zdancewic defines a calculus focused on concurrent programming,
λCONCUR

SEC , and its extension, λDISTR
SEC , focused on distributed programming, all of which

are out of the scope of this thesis.

2.1.2 Dependency Core Calculus

Non-interference, the fundamental property of information-flow security [Zda04], states
that changing the values of a program’s high security inputs does not change the value
of its low security outputs. In other words, it states that low security values do not depend
on high security values, which information-flow analysis aims to guarantee by tracking
those dependencies.

This idea of tracking the dependencies of a program can be found beyond information-
flow analysis, ranging from compiler optimization techniques such as program slicing,
used to determine the parts of a program in which its output depends, to side-effect seg-
regation in the style of Haskell [JW93], in which pure values do not depend on impure
values.

To capture this broader notion of dependency, Abadi et al. introduce the Dependency
Core Calculus (DCC) [ABHR99], an extension to the computational lambda calculus that
relies in its use of a type constructor T, with the semantics of a monad, to model depen-
dency between values and computations [Mog89]. More precisely, DCC includes such a
type constructor for every label in a predefined information lattice, and further extends
the calculus with sum types, lifted types and term recursion (see Figure 2.6).

A monad can be defined by a triple (T, unit, bind) where T is a type constructor, unit
is a polymorphic function with type α → T(α), and bind is a polymorphic function with
type T(α) → (α → T(β)) → T(β). Note that there is a close mapping between the

16

2. BACKGROUND 2.1. Information Flow

s ::= unit (Unit type)
| s + s (Sum types)
| s× s (Product types)
| s→ s (Function types)
| s⊥ (Lifted types)
| T`(s) (Computational types)

v ::= () (Unit value)
| λx : s.e (Function abstraction)
| 〈e, e〉 (Pair values)
| inji e (Sum constructors)
| η` e (Unit)
| lift e (Lifted values)
| µ f : s.e (Recursive terms)

e ::= v (Values)
| e e (Function application)
| proji e (Projection)
| case e of inj1(x).e | inj2(x).e (Case)
| bind x = e in e (Bind)
| seq x = e in e (Sequence)

Figure 2.6: DCC grammar

monadic functions unit and bind, and DCC’s constructs of the same name, made clearer
by analysing the type system (Figure 2.7).

The unit function is used to wrap values in the monadic type constructor, correspond-
ing to DCC’s η` e construct, which takes an expression e with some type s and wraps it in
T` (see DCC-UnitM).

DCC-UnitM Γ ` e : s
Γ ` η` e : T`(s)

The bind function is used to perform computations with wrapped values without un-
wrapping them back, corresponding to DCC’s bind x = e1 in e2 construct, which takes an
expression e1 with a type T`(s1) and binds it to the name x, to be used by an expression
e2 with a type s2 (see DCC-BindM).

DCC-BindM
Γ ` e1 : T`(s1) Γ, x : s1 ` e2 : s2 s2 is protected at level `

Γ ` bind x = e1 in e2 : s2

There is no guarantee that s2 is a type of the form T`(β), because DCC’s type system
uses the concept of types protected at level ` to model the propagation of dependencies in
the typing rule for the bind construct, similarly to what is done in the typing rule for
conditionals in security-typed languages. Such types are defined inductively as:
• If `′ v `, then T`′(s) is protected at level `;
• If s1 and s2 are protected at level `, then s1 × s2 is protected at level `;

17

2. BACKGROUND 2.1. Information Flow

• If s2 is protected at level `, then s1 → s2 is protected at level `;
• If s is protected at level `, then T`′(s) is protected at level `.

By analogy with security-type systems, we can see the first three cases coincide with the
typing rules for security restriction, binary operators and function abstraction, respec-
tively, in terms of security labels. The last case reflects the fact that security levels are
cumulative, i.e. writing a type as (s`)`′ is the same as s`t`′ .

DCC-UnitM Γ ` e : s
Γ ` η` e : T`(s)

DCC-BindM
Γ ` e1 : T`(s1) Γ, x : s1 ` e2 : s2 s2 is protected at level `

Γ ` bind x = e1 in e2 : s2

Figure 2.7: DCC type rules related to dependency propagation

In the original article, DCC is used to successfully encode call-tracking, program slic-
ing, binding-time analysis and simple security-type systems of both functional and im-
perative calculi, evidencing that the main difference between various dependency analy-
ses is often the lattice that is used. Although Abadi et al. recognise the similarity between
dependency analyses, the article is focused on their encodings in DCC and does not ex-
plore whether it would be possible to encode them into each other.

In this thesis, we study DCC from the point of view of information-flow analysis,
leading us to observe that it may be possible to use some security-type systems to perform
other kinds of analysis directly, even if security is the primary motivation behind them.
For instance, we can model program slicing in the λSEC calculus (Subsection 2.1.1) by
following the same approach that DCC follows, giving a distinct label `i to every value
and using the lattice (℘({`1, . . . , `n}),⊆), as shown for a simple example in Figure 2.8.
As expected, since λSEC’s typing rules for functions coincide with DCC’s typing rules
when all types are protected at some level, we are able to conclude that the result of the
function does not depend on its argument.

Γ, x : bool{2} ` false{1} : bool{1} x 6∈ dom(Γ)
Γ ` (λx : bool{2}.false{1}){0} : (bool{2} → bool{1}){0} Γ ` true{2} : bool{2}

Γ ` (λx : bool{2}.false{1}){0} true{2} : bool{0,1}

Figure 2.8: Performing program slicing in a security-typed calculus

2.1.3 Secure Monadic Calculus

Information-flow analysis can be described as tracking the flows of information between
different locations, to determine if they cause a program to leak confidential information.
Typically, security-type systems focus directly on what we want to protect, information,

18

2. BACKGROUND 2.1. Information Flow

and base their analysis on annotating all values with a security label. Another approach
would be to focus on the places where information stops during a computation, memory
locations, much like having security checkpoints.

In [CKP05], Crary et al. introduce the Secure Monadic Calculus, which follows this
approach by annotating store locations with a security level, instead of values. They
designate this as a store-oriented view of security, in opposition to the traditional value-
oriented view of security, and prove it is equally expressive by encoding other languages
in their calculus (namely λREF

SEC , presented in Subsection 2.1.1). Besides including labelled
first-class references, their calculus (Figure 2.9) builds on the monadic distinction be-
tween values and computations which forms the core of the computational lambda cal-
culus [Mog89], denoting them as terms (M) and expressions (E), respectively.

r, w, a ∈ L (Security labels)
o ∈ {(r, w) ∈ L×L | r v w} (Operation levels)

A ::= (Types)
1 (Unit type)

| bool (Boolean type)
| A→ A (Function types)
| refa A | refra A | refwa A (Reference types)
| ©o A (Monadic types)

V ::= (Values)
∗ (Unit)

| true | false (Boolean values)
| λx : A.M (Abstraction)
| ` (Store location)
| val E (Suspended computation)

M ::= (Terms)
x (Variables)

| V (Values)
| if M then M else M (Conditional)
| MM (Application)

E ::= (Expressions)
[M] (Return)

| let val x = M in E (Sequencing)
| refa(M : A) (Store allocation)
| !M (Store read)
| M := M (Store write)

Γ ::= · | Γ, x : A (Contexts)
Σ ::= {} | Σ{` : A} (Store types)

Figure 2.9: Secure Monadic Calculus grammar

19

2. BACKGROUND 2.1. Information Flow

This distinction is very clear in the type system (Figure 2.10) as well. Terms are typed
with judgements of the form Σ; Γ ` M : A, which are not concerned with the security
level at all, because terms are unable to cause side-effects by definition. On the other
hand, expressions can interact with the store, so their typing rules must take the security
level into account. In this calculus, an expression is typed in a operation level o = (r, w)

using judgements of the form Σ; Γ ` E ÷o A, where r is a lower bound on the security
levels of E’s reads and w is an upper bound on its writes. Clearly, r and w must always
be such that r v w, since being able to write below what we are able to read is an open
door to information leaks (see Listing 2.4).

Listing 2.4: Writing below the reading level

1 // Ill-typed since the operation level would need to be (>,⊥)
2 let val high = val ref> (false : bool) in
3 let val low = val ref⊥ (false : bool) in
4 let val h = val !high in
5 low := h

Interactions with the store are performed through allocation, reading and writing,
and have a direct influence in the operation level. Store allocation is typed (SMC-31)
with operation level (⊥,>), reflecting the fact that allocating a fresh location from the
store is neither a read or a write, leading to no leaks of information1. Unsurprisingly,
reading from a reference with security level a is typed (SMC-32) with operation level
(a,>), reflecting the fact that no write is performed. Conversely, writing to a reference
with security level a is typed (SMC-33) with operation level (⊥, a), as expected.

The operation level is propagated through the program by the typing rule for the let val

construct (SMC-30), which corresponds to the monadic bind operation and establishes
the bridge between terms and expressions. As it requires both its sub-term and sub-
expression to be typed in the same operation level (essentially), there is often the need to
use subsumption to restrict both levels to their join, if it exists.

To approach the situation where we have high security computations inside low se-
curity ones, Crary et al. introduce the concept of informativeness of a type with respect to
a security level. Its judgements take the form ` A↗ a, stating that type A only provides
information at security level a or above. Intuitively, this means that if we cannot gain any
information from type A at our current operation level, we can safely lower it to (⊥,>).
This fine-grained analysis allows us to type programs such as the one in Listing 2.5 as
low security computations, since we know that any two values of type unit are indistin-
guishable from each other. That is not the case in other calculi such as λREF

SEC , for example,
where an equivalent program would be typed as a high security computation.

Non-interference results for this calculus guarantee that, if a program is well-typed
in an operation level (r, w), no information higher than r is leaked. Their proof is built

1At least in the scope of information-flow analysis. Monitoring the memory usage of a program could
lead to a side-channel attack.

20

2. BACKGROUND 2.2. Type-Based Access Control

SMC-27
Σ; Γ ` E÷o A

Σ; Γ ` val E :©o A

SMC-30
Σ; Γ ` M :©o A Σ; Γ, x : A ` E÷o A

Σ; Γ ` let val x = M in E÷o A

SMC-31
Σ; Γ ` M : A

Σ; Γ ` refa(M : A)÷(⊥,>) refa A

SMC-32
Σ; Γ ` M : refra A

Σ; Γ ` !M÷(a,>) A

SMC-33
Σ; Γ ` M1 : refwa A Σ; Γ ` M2 : A

Σ; Γ ` M1 := M2 ÷(⊥,a) 1

Figure 2.10: Some typing rules for the Secure Monadic Calculus

Listing 2.5: SMC program that benefits from informativeness

1 // Well-typed with operation level (⊥,>) instead of requiring (>,>)
2 let val high = val ref> false in
3 let val h = val !high in
4 [if h then * else *]

on top of two main steps: the definition of an equivalence relation between computation
states, parametrized by a security level, and the respective proof that the equivalence is
preserved at each evaluation step.

2.2 Type-Based Access Control

Even though software systems exist to process and provide information, either to human
users or to other software systems, there is often the need to protect the access to some of
their information, either because it should not be accessible to every user of the system,
or because its knowledge may directly compromise the established security policies, thus
creating the need to control the access specific users have to specific information.

Several access control systems were developed to enforce policies that specify whether
a given user of the software system has permission to access a given information, more
generally referred to as specifying whether a given subject has permission to access a
given object. Depending on the entity to which permissions are associated, subjects or
objects, access control systems can be classified in two main classes: those based in capa-
bilities associate permissions with the subjects, while those based in Access Control Lists
(ACLs) associate permissions with the objects.

Typical access control mechanisms are purely dynamic in nature and have no tool to
support their use and development, forcing the programmer to be extra cautious not to

21

2. BACKGROUND 2.2. Type-Based Access Control

forget any important verification code, which often leads to access control code being
scattered everywhere “just in case”. However, there are language-based approaches that
mitigate this problem by integrating the specification and verification of access control
policies at the language level, detecting situations where there is no guarantee that the
security policy is being respected.

Ur/Web is an embed domain-specific language for web applications that integrates
the database and application layers, allowing the detection of common errors and incon-
sistencies between the two. In [Chl10], Chlipala presents a tool to statically verify ac-
cess control policies in Ur/Web without requiring any program annotations besides the
policies themselves, based on the idea of SQL queries as policies. The intuition is that SE-
LECT queries can be used to specify an upper bound on the data manipulated by a given
database operation, so the challenge is to ensure that data manipulated by database oper-
ations is a subset of the data allowed by the policies. Given that the analysis also verifies
information flows to some extent, it is discussed as a related work in Section 3.1.

In [CPS+11], Caires et al. introduce a calculus with the same goals and setting, where
policies are specified as arbitrary logic conditions and knowledge is registered in the
types, yielding a different but more flexible approach. In the following, we describe the
language in more detail through a series of small examples, given that our language
draws on its core database model and type-based approach, and describe the core con-
cepts of LiveWeb [Dom10], a domain specific language for web applications which was
extended with the calculus’ type system.

2.2.1 λDB and the LiveWeb framework

Web-based applications alone are enough to show there is a significant number of data-
centric software systems that rely on databases to store data, leading to a proliferation of
multi-layered software architectures even though they are very challenging to build cor-
rectly. Layers are often implemented in different programming languages and interface
with each other using ad-hoc methods, difficulting every attempt to maintain coherence
between them or enforce system-wide security policies.

The λDB calculus

In [CPS+11], Caires et al. introduce a language targeting both the database and applica-
tion layers in a uniform way, in order to shift part of the challenging work from the devel-
oper to the development tools. Their language, λDB, is a functional calculus with records,
collections and core database primitives, which uses dependent refinement types to stat-
ically enforce access control policies over data. Database policies are specified as read or
write permissions, expressed in classical propositional logic extended with equality over
terms and the axiom [m = v].mi = vi to deal with records, which allows for precise access
control at the table cell level. We present the calculus’ complete syntax in Figure 2.11.

Refinement types, a core concept of this approach, were first introduced in [FP91]

22

2. BACKGROUND 2.2. Type-Based Access Control

e ::= (Expressions)
v (Value)

| e (v) (Application)
| [m = e] (Record)
| e.m (Field Selection)
| e op e (Operation)
| e ? e : e (Conditional)
| let x = e in e (Let)
| e1, . . . , ek (Collection)
| create t : βρ in e (Create)
| from x in t where e select e (Select)
| update x in t where e with e (Update)
| append e to t (Append)
| delete x in t where e (Delete)
| assume C (Assume)
| assert C (Assert)

ρ ::= (Permissions)
rd(m, R) (Read)

| wr(m, W) (Write)

C, R, W ::= (Propositions)
p(V) (Predicate)

| V = V (Equality)
| C ∧ C (Conjunction)
| C =⇒ C (Implication)

u, v ::= (Values)
() (Unit value)

| true (True)
| false (False)
| x (Variable)
| λx : τ.e (Abstraction)
| [m = e] (Record)
| v1, . . . , vk (Collection)
| ?(v) (Classified Value)

V ::= (Terms)
() (Unit value)

| true (True)
| false (False)
| x (Variable)
| λx : τ.e (Abstraction)
| [m = e] (Record)
| V1, . . . , Vk (Collection)
| ?(V) (Classified Value)
| V.m (Field Selection)

Figure 2.11: λDB Grammar

23

2. BACKGROUND 2.2. Type-Based Access Control

to enhance the type system with more precise type information, allowing compile-time
detection of a wider range of errors. In the style of [GF09], refinement types in λDB take
the form {x : τ | C}, which can be read as the type of “all values x of type τ that satisfy
proposition C”. For instance, while Int is the type of all integers, the refinement type
{x : Int | Auth(x)} is the type of all integers that satisfy predicate Auth, which can be
informally taken to mean the type of all authenticated user IDs of the system.

Note that Auth is not a special predicate, in the sense that it has no special meaning
within the language, only within a particular system. To enforce the desired semantics,
the only source of authenticated IDs would need to be a trusted authenticate function
like the one in Listing 2.6. By typing its result as {x : Bool | x = true ⇒ Auth(uid)}, we
reflect the knowledge that if the result equals true then the user ID we supplied as an
argument was successfully authenticated, illustrating the potential of refinement types
to specify the post-conditions of a function.

Listing 2.6: Trusted function used to authenticate users

1 authenticate , λ uid : Int. λ pwd : String.
2 let res = from u in Users where u.id = uid ∧ u.password = pwd select u in
3 isEmpty(res) ?

4 false
5 :

6 let _ = assume Auth(uid) in true

Database tables are defined by specifying a name and a table type βρ where β is the
type of its rows, typically a record type that defines the table’s schema, and a collection ρ

of read and write permissions of the form rd(m, C) and wr(m, C), respectively, where m is
a field name and C a logical proposition (as stated above). We are allowed to read (resp.
write) a field if, and only if, we are able to prove the disjunction of its read (resp. write)
permissions holds. For instance, the Users table referred in the example of Listing 2.6,
could be defined with table type

[id : Int, name : String, password : String, phone : Int]ρ

where ρ = { rd(id, true),

rd(name, true),

rd(password, true),

rd(phone, Auth(this.id)) }

informally meaning that we are always able to read the id, name and password of a user,
but the only way to read a user’s phone number is to be authenticated as that specific
user. The type system enforces the read and write policies in all database primitives
by taking into account which fields are read and written to, either explicitly (e.g. select

clause) or implicitly (e.g. where clause), and requiring us to prove that we are allowed to
read or write to those fields based on our current knowledge.

24

2. BACKGROUND 2.2. Type-Based Access Control

Given that the current knowledge is registered in each type, we can write judgements
of the form ∆ ` C to mean that C holds based on the knowledge of type environment ∆,
allowing us to cumulatively gather knowledge according to the usual scoping rules. For
instance, in Listing 2.7 we define a getPhone function that given a user ID selects the
corresponding phone number from the Users table, which is only well-typed because
we require the user ID to be authenticated in order to fulfil the table’s read policy. Notice
no explicit use of authenticate is required, because the type system will guarantee the
function can only be called if it has the knowledge the user is authenticated.

Listing 2.7: Obtaining a phone number requires authentication

1 getPhone , λ uid : { x : Int | Auth(x) }.
2 let res = from u in Users where u.id = uid select u.phone in
3 head(res)

Knowledge is directly increased with each new declaration, but it is also propagated
through the return types of function calls or the results of database primitives, refined
with where clause conditions. Other constructs, like the conditional or the assume, in-
crease knowledge implicitly by extending the type environment with mappings of the
form _ : {_ : unit | C}. In the example of Listing 2.8, each branch of the conditional is
typed under an extended type environment with knowledge about the condition, allow-
ing it to prove the user is authenticated when calling the getPhone function. Recall that
the return type of the authenticate function is {x : Bool | x = true ⇒ Auth(uid)},
so the first branch is typed with the additional knowledge _ : {_ : unit | true = true ⇒
Auth(user_id)}, implying that Auth(user_id) holds in that scope.

Listing 2.8: Full example with knowledge propagation

1 λ uname : String. λ pwd : String.
2 let res = from u in User where u.name = uname select u.id in
3 let user_id = head(res) in
4 authenticate(user_id, pwd) ?

5 "Phone: " + getPhone(user_id)

6 :

7 "Access denied"

The approach taken in λDB allows for fine-grained access control policies and pro-
vides valuable support to enforce them, rejecting programs for which no static guaran-
tees of access control permissions can be given, thus detecting implementation errors
that would otherwise go unnoticed and remain exploitable by ill-intentioned individ-
uals. However, this approach still suffers from the shortcomings of only verifying the
access to information, neglecting how it is used after we are granted access. For instance,
although it is acceptable for a software system to fetch our password, in order to know if
we supplied the right one, it is not acceptable for it to display our password in clear sight
afterwards.

25

2. BACKGROUND 2.2. Type-Based Access Control

The LiveWeb framework

LiveWeb [Dom10] is a statically typed domain-specific language targeted at web applica-
tions development, supported by a web-based development environment (Figure 2.12)
that allows for the management of successive versions of database entities, web pages
and business logic. The framework was designed to serve as a prototype test-bed for
various extensions regarding the use of static analysis in data-centric software systems,
the first of which was an extension with the λDB’s type-based access control model.

The language (Figure 2.13) is composed by two major sub-languages: an expression
language, whose syntax closely resembles that of λDB, and a web page block language mod-
elled after a fragment of HTML, for presentation purposes. Along with the type language
(Figure 2.14), these sub-languages are used in three distinct types of top-level definitions
inspired by the components of the Model-View-Controller architectural pattern [Ree79].

Figure 2.12: LiveWeb’s web-based development environment

Entities correspond to database tables and specify their fields and types. Each entity
must have a primary key field, indicated by the type Id, but can have several foreign keys
by defining fields with types of the form entity-name.Id. For instance, in Listing 2.9
we define an entity User, with a primary key field id, two string fields username and
password and a foreign key profile_id referring a Profile entity. Each field has a
read and write permission of true, meaning they can always be read or written.

Listing 2.9: A LiveWeb entity definition

1 def entity User {

2 id : Id, username : String, password : String, profile_id : Profile.Id
3 }

4 read id, username, password, profile_id where true
5 write id, username, password, profile_id where true

26

2. BACKGROUND 2.2. Type-Based Access Control

A ::= D (Application)

D ::= (Definition)
def entity t { m : Id, m : BT } ρ (Entity)

| def action a (x : T) : T { e } (Action)
| def screen s (x : T) { b } (Screen)

ρ ::= (Entity permissions)
read x where C (Read permission)

| write x where C (Write permission)
| invariant C (Entity invariant)

e ::= (Expression)
e Op2 e (Binary operation)

| Op1 e (Unary operation)
| v (Value)
| let x = e in e (Variable declaration)
| if e then e else e (Conditional)
| a(e) | s(e) (Action/Screen call)
| [e] (List)
| foreach x in e do e (List iterator)
| { m = e } (Structure)
| e.m (Field selection)
| insert e in t (Entity Insert)
| update x in t with e where e (Entity Update)
| from (x in t) where e select e (Entity Select)
| count(e) | max(e) | min(e) (Aggregation functions)
| assume e (Knowledge assumption)
| assert e (Knowledge assertion)

b ::= (Web Page Block)
b (Block sequence)

| br (Line break)
| label e (Label)
| div class { b } (Div)
| image e (Image)
| link { b } to e (Link)
| iterator (x in e) { b } (Iterator)
| textfield x with e (Text Field)
| button e to e (Button)

v ::= (Value)
integer (Number)

| string (String literal)
| false | true (Boolean value)
| id (Variable)

Figure 2.13: LiveWeb base grammar

27

2. BACKGROUND 2.2. Type-Based Access Control

BT ::= (Basic Type)
String (String type)

| Int (Integer type)
| Bool (Boolean type)
| t.Id (Entity Key type)

T ::= (Type)
BT (Basic type)

| WebPage (Web Page type)
| { m : T } (Structure type)
| List < T > (List type)
| { x : T | C } (Refinement type)

C ::= same as λDB (Proposition)

Figure 2.14: LiveWeb type grammar

Screens specify the web page layout by means of a sequence of web page blocks which
directly correspond to many HTML elements such as line breaks (br), divs, text fields
and buttons. As with most server-side languages and frameworks, the content of the
web page can be dynamically generated for each request either by parametrizing the
screen (like a typical function) or by embedding queries (or any other expression) in the
screen definition. In Listing 2.10, we define a simple login page with two text fields and a
submit button, which is parametrized by an error message. Figure 2.15 shows a possible
rendering of the login page, if we attempted to login previously and got redirected back.

Listing 2.10: Defining a login screen in LiveWeb

1 def screen loginPage (errorMsg: String) {

2 div error { label errorMsg };

3 div loginForm {

4 label "Username: "; textfield uname; br;
5 label "Password: "; textfield pwd; br;
6 button "Login" to performLogin(uname, pwd)

7 }

8 }

Figure 2.15: A login form generated by LiveWeb

28

2. BACKGROUND 2.2. Type-Based Access Control

Actions are executed in the server-side and encode the application’s business logic.
Like screens, they can be parametrized, but unlike them no explicit web page blocks
occur, only an expression that constitutes the action’s body. For instance, a common need
among web applications is to perform the login of a user. Besides the layout aspects,
already presented, we would need to define an action that, given an user name and a
password, tries to perform a login and renders an appropriate web page in response, as
exemplified in Listing 2.11. The assume is required in order to provide knowledge that
the integer uid is authenticated, i.e. has type { x: Int | Auth(x) }.

Listing 2.11: Defining a login action in LiveWeb

1 def action performLogin (uname: String, pwd: String): WebPage {

2 let uids =

3 from (u in User)

4 where u.username == uname and u.password == pwd

5 select { id = u.id }

6 in
7 if isNotEmpty(uids) then
8 let uid = getHead(uids).id in (

9 assume Auth(uid);

10 homePage(uid, "Login was successful.")

11)

12 else
13 loginPage("Wrong username/password combination.")

14 }

Since its original release, LiveWeb has been the target of some extensions besides the
one already mentioned, including an extension with the information flow type system
proposed in this thesis. For this reason, the top-level description presented in this section
is complemented, in Chapter 6, by a discussion of the framework’s implementation and
its relation to our work .

29

2. BACKGROUND 2.2. Type-Based Access Control

30

3
Related Work

There is a long thread of research on information-flow languages, which includes two ma-
jor pragmatic approaches that extend mainstream programming languages. Jif [Mye99]
is an extension of the Java programming language with information-flow analysis featur-
ing polymorphic labels, first-class labels, runtime principals and declassification mecha-
nisms. Flow Caml [Sim03] is an extension of the Objective Caml programming language
with information-flow analysis fully supported by polymorphism and type inference.

While they both provide a powerful support to enforce security policies, in our opin-
ion the focus of Jif is too general to fit as related work, more so as it addresses the problem
in an object-oriented setting whose challenges are distinct from ours. Flow Caml, al-
though with a general focus, overlaps with our language in its functional paradigm and
is a pragmatic example of advanced features (polymorphism, type inference) that our
approach lacks so far. Even so, our work will present an analysis where security levels
are first-order logic propositions, allowing for a fine-grained specification of information-
flow policies in the context of data-centric systems that is not addressed directly by either
of these languages. Thus, in this chapter we discuss both Flow Caml and two works that
share the same data-centric setting as ours.

3.1 Ur/Web

Ur/Web is a domain-specific programming language focused on web applications, fea-
turing a non-standard approach to information-flow analysis based in the concept of SQL
queries as policies [Chl10]. The base idea is that we can use SQL queries as a declarative
and familiar language to specify an upper bound on the data that is actually manipulated

31

3. RELATED WORK 3.1. Ur/Web

Listing 3.1: A sendClient policy in Ur/Web

1 table user : { Name : string, Password : string }
2

3 policy sendClient (SELECT user.Name FROM user WHERE true)

Listing 3.2: Explicit information-flows in Ur/Web

1 fun displayPassword(name) =
2 queryX (SELECT * FROM user WHERE user.Name = {name}) (row =>
3 write(row.Password)
4)

by database operations. Thus, the analysis must be able to verify that the data manipu-
lated by a given query is a subset of the results of one of the applicable policies.

For instance, in Listing 3.1 we define a database table user with two fields Name and
Password, and a sendClient policy specifying that only the name of a user can be
sent to the web client — that is, field Name is public and field Password is confidential.
Policies of type sendClient are used to specify which database information can be sent
to the web client (e.g. the browser), corresponding to select statements, and other types
of policies exist for insert, delete and update statements.

The language’s only loop constructs are query loops, used to iterate the results of a
query and repeatedly produce or accumulate a result. For instance, in Listing 3.2 we have
a displayPassword function that selects all the users with a given name, specified as an
argument, and for each resulting row writes the user’s password to the web client using
the write primitive. Given the policy we defined, Ur/Web is able to statically detect
that writing the password consists in an information leak, because there is no policy – in
our example – that allows for the password values of table user to be sent to the web
client.

In order to statically detect information leaks, the provenance of the values is tracked
throughout the program, as in standard information-flow approaches, but it is achieved
by maintaining an abstract state of the program specified in terms of logical propositions.
In the context of our previous example, the select query would augment the abstract state
with the knowledge that row belongs to table user, and that the value of row.Name
equals that of parameter name. Additionally, the policy in Listing 3.1 states that if there
is some row r that belongs to the user table, then we are allowed to send the value
of r.Name to the web client. Thus, the program’s state has no way to prove that we
are allowed to write the value of row.Password, resulting in a compile-time error as
expected.

The expressiveness of the approach is enhanced with the addition of a special pred-
icate known(x), that can be used in queries to assert that the current user of the soft-
ware system – the client – knows a given information x. This allows for fine-grained

32

3. RELATED WORK 3.2. Flow Caml

Listing 3.3: Undetected information-flow in Ur/Web

1 fun login(name, password) =
2 queryX (
3 SELECT *
4 FROM user
5 WHERE user.Name = {name} AND user.Password = {password}
6) (row =>
7 write("Logged in!")
8)

table permissions that depend on the current user, based on the notion that all the in-
formation coming from the client is known to the user, which is then propagated transi-
tively through equality assertions and container relationships introduced by the various
queries.

In spite of this powerful model, their analysis support for implicit flows is lacking,
as they do not address the problem at all in the case of where clauses. For instance, the
login function in Listing 3.3 sends the string "Logged in!" to the web client when
the user’s name and password match those in the database, and does not send anything
otherwise. Thus, it is leaking information about whether the password is right or not,
because the query depends on the password’s value. Although in this specific setting
it is an acceptable consequence, Ur/Web considers that function to be secure without
realizing there is a consequence, and does not prevent the developer from accidentally
leaking information about a table field.

Discussion Standard approaches to compile-time information-flow analysis are based
in the use of a type system to enforce no information leaks occur, typically requiring ex-
plicit security annotations in a program’s values and types but guaranteeing absence of
leaks caused by programming mistakes and allowing for a local analysis of each part of
the system. On the other hand, Ur/Web’s approach to information-flow analysis is based
in program verification, requiring a global analysis of the software system, and does not
prevent the developer from causing implicit leaks inadvertently. In spite of this limita-
tions on scalability and soundness, Ur/Web provides a pragmatic model for declarative
policy specification, which partially covers common use cases without requiring further
program annotations.

3.2 Flow Caml

Flow Caml [Sim03] is an extension of the Objective Caml programming language featur-
ing a type-based information-flow analysis, similar to that of λREF

SEC , which covers a large
subset of its source language including functions, records, lists, user-defined data types,
pattern matching, references, modules, functors and second-class exceptions. The type

33

3. RELATED WORK 3.2. Flow Caml

system is presented and proven correct in [PS02], including a proof that it guarantees a
non-interference property, and features the polymorphism and full type inference charac-
teristic of ML dialects, covering security labels as well.

Security labels are written as !name and correspond to regular type parameters of
every data type, with int or string being type constructors with one argument, the
label, and list being a type constructor with two arguments, a security label related to
its structure and the type of the list’s elements, for example. Every data type with more
than one constructor must have at least one security label type argument associated to its
structure, in order for the type system to be able to track which information is gained by
de-structuring it in one of its constructors. For instance, in the case of the user-defined
list data type in Listing 3.4, the polymorphic argument ’b is designated in line 4 as the
security level of the information we gain by knowing whether the list is empty or not.

Listing 3.4: A user-defined list data type in Flow Caml

1 type (’a, ’b) list =

2 Nil

3 | Cons of ’a * (’a, ’b) list

4 # ’b

5 ;;

Function types in Flow Caml are of the form ’a -{’b | ’c | ’d}-> ’e, where ’a
is the type of the parameter, ’e is the type of the result, ’b is the security label of the
context in which the function can execute (i.e. its program counter), ’d is the security
label associated to the function’s structure, and ’c is a list of the exceptions raised by
the function, paired with the security label of the information they reveal. Apart from
this last ’c parameter, related to exceptions, these function types directly correspond to
([′b] ′a→ ′e)′d in λREF

SEC . This polymorphic characterization is fully exploited by a precise
constraint-based inference algorithm with the inclusion of type (and label) constraints in
the type, as exemplified in the type of the function f in Listing 3.5. The function receives
two integers of different levels, ’a and ’b, and produces a pair consisting of the first
integer and the sum of both, which has a security label ’c that is higher or equal to the
security labels of both operands1.

Listing 3.5: Type inference and constraints in Flow Caml

1 let f x y = (x, x + y) ;;

2 val f : ’a int -> ’b int -> ’a int * ’c int

3 with ’a < ’c and ’b < ’c

Input and output are addressed uniformly in Flow Caml by using a different security
label for each different input source or output target, a detail that is not directly addressed
by the related calculi we studied. For instance, in the login example of Listing 3.6, we

1The type parameters ’b, ’c and ’d are usually omitted when irrelevant and Flow Caml actually simpli-
fies the type further to only using ’a and ’b, by taking subtyping into account.

34

3. RELATED WORK 3.3. Information-Flow in Data-Manipulation Primitives

begin by stating that the security label of the standard input (!stdin) is lower than both
the security label of the standard output (!stdout) and the !secret security label,
informally meaning that information that is read from the standard input can be written
to the standard output and used in private expressions of level !secret, respectively.

Listing 3.6: A login example in Flow Caml

1 flow !stdin < !stdout ;;

2 flow !stdin < !secret ;;

3

4 let password: !secret string = "apple" ;;

5 let login () =

6 print_string "Type your password: " ;

7 let p: !stdin string = read_line () in
8 if p = password then
9 print_string "Logged in successfully"

10 else
11 print_string "The password is wrong"

12 ;;

Next, we declare a !secret password and a simplified login function, which reads
a string p from the standard input (line 7) and writes a different message to the stan-
dard output (lines 9 and 11) depending on whether p equals the password or not (line
8). Given our policies, the security label inferred for the if-condition is !secret, raising
the program counter in both branches to !secret as well, which reveals the (expected)
information leak of the login procedure as we have no policy stating that !secret infor-
mation may be output (i.e. !secret 6< !stdout).

Discussion Flow Caml is a language which addresses a large amount of significant
features – that we cannot possibly fully cover here – bridging the gap between theory and
practice by applying information-flow analysis to a mainstream functional language. Our
language, on the other hand, only addresses a small part of those features, but does so in a
domain-specific setting that is not addressed directly by general purpose languages, and
specializes in the use of data-dependent logical propositions as security levels, instead of
using only simple labels, resulting in an increased expressiveness of the security policies.
However, the importance of polymorphism and type inference cannot be overlooked in a
pragmatic information-flow approach, more so when using precise but verbose security
levels such as ours.

3.3 Information-Flow in Data-Manipulation Primitives

In a recent work [LC12], the authors perform a characterization of the information-flow
in data manipulation primitives, providing intuitions towards the definition of a type-
based information flow analysis for a language inspired in the λDB calculus (presented

35

3. RELATED WORK 3.3. Information-Flow in Data-Manipulation Primitives

in Subsection 2.2.1). The characterization is performed by means of examples, illustrating
the information-flow in each of the query primitives (select, insert, update and delete) using
a lattice with two security levels, ⊥ and >, with ⊥ v >. In order to justify the proposed
information-flow, the examples are compared with semantically similar expressions in a
traditional imperative setting with memory locations, whose intuitions are the same as
the ones described for λREF

SEC in Subsection 2.1.1.

For instance, in Listing 3.7 we declare a relational entity User with a public (⊥) iden-
tifier id_u, a public name and a private (>) password; and proceed to perform a select

query to fetch the names of all users whose password is the string "12345".

Listing 3.7: Selecting public values depending on private information

1 entity User(id_u: int⊥, name: string⊥, password: string>) in
2 from (x in User) where x.password == "12345" select x.name

The intuition presented by the authors is that, since the values we select are depen-
dent on the where condition, the security level of the result should depend on it as
well, similarly to what occurs with conditional statements in traditional imperative ap-
proaches. Specifically, the information-flow in the referred example is similar to that
found in Listing 3.8, where the value being assigned to the public variable l has its secu-
rity level raised to > because of the if-condition’s security level.

Listing 3.8: Assigning a public value depending on private information

1 if x.password == "12345" then
2 l := x.name

In turn, insert queries are compared to simple assignments of the form t := r :: rs,
where we construct a collection by adding the new record r to the collection of records
already inserted, rs, and assign it to a variable t, representing the entity we insert into.
In terms of information flow, assignments require the security level of the value we write
to be at most as restrictive as the security level of the location we write to. Accord-
ingly, the insert query in Listing 3.9 is not secure because it is assigning a private value,
priv_value, to the public name field.

Listing 3.9: Inserting a private value in a public field

1 let priv_value = head (from (x in User) where true select x.password) in
2 insert [u_id = 1, name = priv_value, password = "12345"] in User

A similar comparison is performed for update and delete queries, which simply com-
bine the writing principles of the insert query and the where condition dependency of the
select query. The update query literally writes new values depending on a where condi-
tion, like in Listing 3.8, while the delete query does not write new values but changes the
collection by removing them, also depending on a where condition.

36

3. RELATED WORK 3.3. Information-Flow in Data-Manipulation Primitives

Discussion Most approaches to type-based information flow analysis focus on the build-
ing blocks of general purpose languages and do not address the problem of guaranteeing
information security when dealing with domain-specific abstractions such as data manip-
ulation primitives. The work discussed in this section addresses part of the problem, the
characterization of the information-flow involved and the definition of an appropriate
non-interference property, serving as a building step for type-based approaches to infor-
mation flow in the setting of data-centric software systems.

Given its recency, it seems more fitting to present these developments as related work,
even though with a different timing they would be an appropriate contribution to our
background, as our own approach overlaps with the authors’ in the base characterization
of the data manipulation primitives in the context of a λDB-inspired calculus. Despite the
overlap, the work presented in this thesis distinguishes itself by focusing on the explo-
ration of the advantages and limitations of using data-dependent logical propositions as
security levels in such a setting.

As for the concrete type system, not presented in the article, the authors’ hint at a
differentiating factor from most value-oriented approaches – such as ours or λREF

SEC – re-
garding the meaning of the security level of an expression with type unit: it represents the
level of the least confidential information that was written in the expression, while the re-
maining types’ security levels represent the level of the most confidential information that
was read in the expression, suggesting a similarity to the write and read levels used in the
SMC calculus, a store-oriented approach presented in Subsection 2.1.3.

37

3. RELATED WORK 3.3. Information-Flow in Data-Manipulation Primitives

38

4
Language and Type System

In type-based information-flow analysis, the majority of the approaches [SM03] involve
annotating every value with a security level. However, an equally expressive approach
is introduced by Crary et al. [CKP05] in which security annotations are only added to
references. They classify the common approaches as following a value-oriented view of
security, in opposition to the store-oriented view of security in which their calculus, the
Secure Monadic Calculus (SMC), is based.

During the early drafts of our type system, we tried to pursue this store-oriented view
of security since our language is also centered in a store, the database, whose tables’ fields
have security policies. Although described in detail in Subsection 2.1.3, in general terms
the approach uses two security levels r and w when typing an expression, corresponding
to the most restrictive level of the information we read and to the least restrictive level of the
information we write, respectively. The primary obstacle we found in our take to apply it
to our setting, however, was the lack of precision when dealing with the records we use
to model rows of the database tables. When we insert a record [a = x, b = y], we are
performing two independent write operations, in practice, but the analysis was unable
to distinguish this independence and determined r and w security levels for the whole
record, rejecting many programs which leaked no information.

As a consequence, we turned our attention to the value-oriented view of security
followed by λREF

SEC and Flow Caml, where we annotate our types with security levels,
in our case logical propositions. In this chapter, we begin by describing the core lan-
guage we used to model our type system (Section 4.1), followed by the type system itself
(Section 4.2) and the main extensions required to apply it to our prototype (Section 4.3).
Finally, we end up with a general description of possible approaches to prove our type
system guarantees a non-interference property (Section 4.4).

39

4. LANGUAGE AND TYPE SYSTEM 4.1. Core Language

4.1 Core Language

In order to allow the core concepts of our information-flow type system to be modelled
independently of the concrete language used in our prototype, we defined a core calculus
largely similar to the λDB calculus presented in Subsection 2.2.1. The λDB−Flow calculus
is essentially a dependently-typed lambda calculus [Bar92] extended with booleans, col-
lections, dependent records and database entities.

More concretely, each of the data types used in the λDB−Flow calculus brings its own
set of related constructs, besides the base lambda calculus’ features of identifiers (x),
lambda abstraction and function application. Although the grammar (Figure 4.1) divides
these constructs between three main syntactic categories (terms, conditions and expres-
sions), distinguishing the first two is only relevant for the type system: terms (v) represent
irreducible language values that may occur in the security levels, while conditions (c) are
simple boolean expressions that directly correspond to a fragment of the type language’s
formulas, and may appear in conditionals or where clauses.

The base boolean values (true, false) are accompanied by the conditional expression (if-
then-else), term equality (=) and boolean operators, represented by conjunction (and) and
negation (not). Other common boolean operators, such as disjunction (or) and implication
(⇒), are easily defined in terms of those two.

Record values (r) are constituted by empty records, [], and by non-empty records
recursively defined as terms of the form [f = v, r], where the meta variable f ranges over
field names. Although precise, this notation will be replaced with the equivalent notation
[f1 = v1, . . . , fn = vn] where deemed clearer. Pairing with the record values’ constructor
is the field selection (v. f) operation, used to inspect the record’s value associated with the
label f . The primary motivation for the inclusion of records in the language is their use
to model the rows of a database entity.

Collections are constructed as a list of n expressions, denoted {e1, . . . , en}, and are
paired with expressions used to destructor collections in their first (head) and remaining
values (tail). Additionally, the calculus features a mapping construct (map-in-to) to iter-
ate the collection producing a new one, similar to LiveWeb’s foreach-in-do construct. For
example, consider:

map x in { true, false, true, false } to (not x)

When the map is executed, as the elements of the collection are iterated, they are bound
to the identifier x and the body is executed, producing a collection with the same size but
negated values, { false, true, false, true }. The primary motivation for the inclusion of
collections in the language is the necessity to model the fact that database entities may
contain multiple rows or none at all.

Entities work as mutable collections of records, as already hinted, which can be cre-
ated (create-in) with a name, ranged by the meta variable ent, and a schema defined by

40

4. LANGUAGE AND TYPE SYSTEM 4.1. Core Language

Terms

v ::= (Terms)
true | false (Booleans)

| r (Records)
| x (Variables)
| v.f (Field Selection)

r ::= [] (Empty Record)
| [f = v, r] (Non-Empty Record)

Expressions

c ::= (Conditions)
v = v (Equality)

| c and c (Conjunction)
| not c (Negation)

e ::= (Expressions)
v (Term Values)

| (λ[pc] x : τ.e) (Abstraction)
| e e (Application)
| c (Boolean Conditions)
| if e then e else e (Conditional)
| {e} (Collections)
| head e (Head Projection)
| tail e (Tail Projection)
| map x in e to e (Collection Map)
| create ent : ε in e (Entity Creation)
| from x in ent where c select e (Row Selection)
| insert e into ent (Row Insertion)
| update x in ent where c with e (Row Update)
| delete x from ent where c (Row Deletion)
| assume ` in e (Knowledge Assumption)

Figure 4.1: λDB−Flow grammar for expressions

41

4. LANGUAGE AND TYPE SYSTEM 4.2. Type System

a type ε. Similarly to λDB and LiveWeb, there are data manipulation primitives to in-
sert (insert-into), select (from-in-where-select), update (update-in-with-where) and delete (delete-
from-where) rows from the entities currently in scope. With the exception of the select
query, the result of performing a query is a boolean value indicating its success.

Other basic data types, such as integers or strings, will be used in examples for illus-
trative purposes, but are not formally included because they present no additional chal-
lenges beyond the ones presented by booleans. Additionally, although let-expressions are
not formally included, they are commonly defined as syntactic sugar for the application
of a lambda abstraction to an expression:

let x = e1 in e2 , (λ[pc]x : τ.e2) e1

With pc being the current program counter and τ the type of expression e1.

4.2 Type System

Our type system follows the standard approach [SM03] to type-based information-flow
analysis – the value-oriented approach followed by λSEC and λREF

SEC – in that it is based in
annotating every type with a security level. Like Flow Caml, we do not annotate literal
values with security levels as in those calculi, but instead use the current program counter
as their security level when determining their type. However, this difference is only
apparent, as we can still force the security level of a literal at the type-level and achieve
the same expressibility. Besides our domain, a major distinction from other information-
flow analyses lies in our security levels, first-order logic propositions that may depend on
runtime values, which motivate the need for λDB−Flow to be a dependently-typed calculus
in order to correctly model the dependency.

The type language (Figure 4.2) includes a type for each of the data types mentioned
in the previous section, annotated with security levels: bool, the type of boolean values;
Π[pc] x : α.β, the type of dependent functions that take an argument of type α and pro-
duce a value of type β in a context (i.e. with program counter) pc; [f1 : τ1, . . . , fn : τn],
the type of dependent records (R) with n fields, f1 through fn, associated with types τ1

through τn, whose considerations about notation are the same as with record values; τ∗,
the type of collections whose elements have type τ; entity (R, p), the type of entities (ε)
with rows of type R and local security policies p; and t`, the type of values with type
t and security level `, ranged over by the meta variables α, β and τ. Security levels in-
clude term equality (=), predicates with arbitrary arity, conjunction (and), negation (not)
and universal quantification (∀x), ranged over by the meta variables `, pc and p. The
other typical first-order logic formulas of disjunction (or), implication (⇒) and existential
quantification (∃x) are easily encoded in the included constructs.

Additionally, although not technically part of the type language, the importance of
the assume expression lies only with the type system: the expression is used to increase

42

4. LANGUAGE AND TYPE SYSTEM 4.2. Type System

Types

t ::= (Types)
bool (Boolean Type)

| ∏[pc] x : α.β (Dependent Function Types)
| R (Dependent Record Types)
| τ∗ (Collection Types)

R ::= [] (Empty Record Type)
| [f : τ, R] (Non-Empty Record Types)

α, β, τ ::= t` (Labelled Types)

ε ::= entity (R, p) (Entity Types)

Levels

`, pc, p ::= (Security Levels)
v = v (Term Equality)

| P(v1, . . . , vn) (n-ary Predicates)
| ` and ` (Conjunction)
| not ` (Negation)
| ∀x.` (Universal Quantification)

Figure 4.2: λDB−Flow grammar for types

the knowledge currently available, allowing us to set up information flow relations that
are not native to first-order logic. For instance, if I have predicates User(id) and
System(), respectively representing the information a user identified by id can read
and the information that is confidential to the software system, I might want to say that
the security level System() is higher than the security level User(id), for any user.

assume (forall id: Int. User(id) ⇐ System()) in ...

Notice, however, that the same expression can be used like a declassification mechanism,
“lowering” a security level ` to a lower security level `′ by assuming `⇐ `′. For instance,
to declassify information with level System to be readable by the user with id 2, we could
perform the following assume locally:

assume (System() ⇐ User(2)) in ...

Thus, it is not completely clear when the assume expression is being used legitimately or
not, that is, without compromising non-interference. Even so, we could argue that policies
assumed initially for the whole program, i.e. global policies, are the exact equivalent of
admitting a fixed security lattice in the approaches we studied and, consequently, are not
enabling declassification.

43

4. LANGUAGE AND TYPE SYSTEM 4.2. Type System

In the following, we begin with a definition of our security lattice (Subsection 4.2.1),
typing judgements (Subsection 4.2.2) and type operators used (Subsection 4.2.3), and pro-
ceed to discuss the typing rules for λDB−Flow ’s constructs (Subsection 4.2.4).

4.2.1 Lattice

As already mentioned, the security levels used in λDB−Flow ’s information-flow type sys-
tem are first-order logic propositions in the style of λDB. Given a set of axioms A, they
form a lattice (L,v) where, modulo logical equivalence:

• L is the set of all logical propositions;

• `1 v `2 if, and only if, A ` `2 ⇒ `1.

From this characterization, we are able to conclude that the lattice’s:

• Minimum element (⊥) is the proposition true;

• Maximum element (>) is the proposition false;

• Greatest lower bound operation (u) is the logical disjunction (∨);

• Least upper bound operation (t) is the logical conjunction (∧).

This corresponds to the intuition that public information carries no specific knowledge, as
proposition true trivally holds. Conversely, by constraining the security level, the knowl-
edge gets more and more specific to the point where it does not hold, as is the case for
proposition false.

A proof that the described pair (L,v) defines a lattice can be found in Appendix A.

4.2.2 Typing Judgements

Γ ::= · | Γ, x : τ (Type Environment)
∆ ::= · | ∆, ` (Knowledge Environment)

Figure 4.3: λDB−Flow grammar for environments

In the typing rules we use three kinds of typing judgements, one to state the type of
expressions, one to state subtyping relations and one to state the validity of propositions.

• Γ; ∆ [pc] ` e : τ states that expression e has type τ in a context with program
counter pc under the type environment Γ, mapping names to types, and given the
knowledge environment ∆, which is composed by a set of axioms known to be true;

• Γ; ∆ ` α <: β states that the type α is a subtype of the type β, under the type
environment Γ and given the knowledge environment ∆;

44

4. LANGUAGE AND TYPE SYSTEM 4.2. Type System

• ∆ ` ` states that from the knowledge environment ∆, we may conclude that propo-
sition ` is valid.

The knowledge environment plays a similar role to the use of refined unit values in
the type environment of λDB to assert additional knowledge, that is, λDB−Flow ’s knowl-
edge environment ∆ = `1, . . . , `n roughly corresponds to a type environment consisting
only of such assertions, _ : {_ : unit | `1}, . . . , _ : {_ : unit | `n} in λDB.

The program counter plays the same role as in λSEC and λREF
SEC , serving as a reference of

the security level of the information that the current control-flow of the program depends
on. Any expression that occurs in the program is guaranteed by the type system to have
at least security level equivalent to the respective program counter, resulting both from its
use as a default security level for literals, and from the fact that the remaining expressions
determine their levels by combining their sub-expressions’ security levels in some non-
decreasing way.

4.2.3 Type Operators and Notation

The operator t between two security levels is well defined as the least upper bound
operation. However, there is often the need to increase the security level of a given type
τ = t`1 with a security level `2, resulting in t`1t`2 , which led to the shortcut notation
τ t `2, already introduced in [Zda02]. We slightly extend the notation to be applicable to
unlabelled record types, with the semantics of applying the (t `) operation to the type
of each field, as defined in Figure 4.4.

t`1 t `2 = t`1t`2

[] t ` = []

[f : τ, R] t ` = [f : τ t `, R t `]

Figure 4.4: The t operation between types and security levels

Given that our security levels can reference runtime values, when we exit the scope
in which those values were given names, there is the need to close the free occurrences of
those names in some sensible way. We close the free occurrences of a name x in a type
by universally quantifying x in all the (structurally reachable) security levels which have
free occurrences, an operation designated as J·Kx and defined in Figure 4.5. By universally
quantifying the security levels, we maintain the monotonicity of the information-flow type
system because their confidentiality is increased – the proposition P(a)⇐ ∀x.P(x) is valid
for any property P and value a.

Notice that when we apply J·Kx to dependent function or record types, there is the
need to distinguish the case when x is equal to the parameter or field name, since x is no
longer a free name in that case: the parameter of dependent functions is bound in both

45

4. LANGUAGE AND TYPE SYSTEM 4.2. Type System

J`Kx = ∀x. `
Jt`Kx = tJ`Kx

JboolKx = bool

JΠ[pc] y : α.βKx = Π[pc] y : α.β if x = y
JΠ[pc] y : α.βKx = Π[JpcKx] y : JαKx.JβKx if x 6= y

J[]Kx = []

J[f : τ, R]Kx = [f : τ, R] if x = f
J[f : τ, R]Kx = [f : JτKx, JRKx] if x 6= f

Jτ∗Kx = (JτKx)∗

Figure 4.5: The J·Kx operation applied to types and formulas

pc, α and β, and a dependent record’s field name is bound in its own type τ and the types
of all subsequent fields.

The set subr(R), defined recursively in Figure 4.6, is the set of all record types that are
considered a subrecord of the record type R. Informally, a subrecord of R is a record type
whose set of fields is a subset of R’s fields, with the same types. We use the notation LRM
to denote a record type that is a subrecord of R.

subr([]) = {[]}
subr([f : τ, R]) = {[f : τ, R′] | R′ ∈ subr(R)}

∪ {R′ | R′ ∈ subr(R) ∧ f is not free in R′}

Figure 4.6: Definition of subrecord

Finally, we use the notation τ{w/v} to represent the type that results from replac-
ing all the occurrences of value v in τ with the value w. Similarly, `{w/v} represents
the formula that results from replacing all occurrences of value v in ` with the value
w. For multiple substitutions, we adopt the notation {wi/vi}1≤i≤n to mean the same as
{w1/v1} . . . {wn/vn}.

4.2.4 Typing Rules

In this subsection we present the typing rules and intuitions behind them, using small
examples where necessary. We begin by discussing a set of base typing and subtyping
rules with no particular theme, and then proceed to group them by data type similarly to
the description of the constructs in Section 4.1.

46

4. LANGUAGE AND TYPE SYSTEM 4.2. Type System

Base typing and subtyping

The typing rule for variables works as expected, inspecting the type environment to find
the variable’s type, but also increases its security level with that of the program counter
(pc) to guarantee it is at least as restrictive.

Variable
Γ(x) = τ

Γ; ∆ [pc] ` x : τ t pc

The same occurs with variables in λREF
SEC , but not as directly given the separation of literal

values and other expressions in the type system, requiring the combination of the typing
rules for variables, values and the use of subsumption.

Assume-expressions have a type τ determined by typing the expression e in an envi-
ronment increased with knowledge `.

Assume
Γ; ∆, ` [pc] ` e : τ

Γ; ∆ [pc] ` assume ` in e : τ

The approach to subsumption is standard, stating that an expression with type α can
be said to have type β, as long as α is a subtype of β.

Subsumption
Γ; ∆ [pc] ` e : α Γ; ∆ ` α <: β

Γ; ∆ [pc] ` e : β

Identity-Subtyping
Γ; ∆ ` τ <: τ

Security levels follow the same principle, with the Level-Subtyping rule reflecting the
fact that it is safe to increase the confidentiality of a value by raising its security level.
Exceptionally, u is used as an unlabelled type distinct from t to keep the rule readable.

Level-Subtyping
Γ; ∆ ` t <: u ∆ ` `1 ⇐ `2

Γ; ∆ ` t`1 <: u`2

Booleans

Boolean values true and false are trivially typed as booleans whose security level is the
current program counter, since their creation depends on the current control-flow of the
program.

Boolean-True
Γ; ∆ [pc] ` true : boolpc

Boolean-False
Γ; ∆ [pc] ` false : boolpc

Negation (not), conjunction (and) and equality (=) are typed conservatively with a
security level obtained by performing the least upper bound (t) of their sub-expressions’
security levels. As expected, the sub-expressions of negation and conjunction must be
well-typed as booleans, while equality’s sub-expressions are well-typed with any labelled
type τ, as long as it is common to both.

47

4. LANGUAGE AND TYPE SYSTEM 4.2. Type System

Negation
Γ; ∆ [pc] ` c : bool`

Γ; ∆ [pc] ` not c : bool`

Conjunction
Γ; ∆ [pc] ` c1 : bool`1 Γ; ∆ [pc] ` c2 : bool`2

Γ; ∆ [pc] ` c1 and c2 : bool(`1t`2)

Equality
Γ; ∆ [pc] ` v1 : t`1 Γ; ∆ [pc] ` v2 : t`2

Γ; ∆ [pc] ` v1 = v2 : bool(`1t`2)

The conditional (if-then-else) requires two typing rules simply because of syntactic
flexibility. The first rule, Conditional-E, is applicable with any expression as its condition
and directly corresponds to the typing rule for conditionals in λREF

SEC , with both branches
typed in a context with a raised program counter pc t ` to model their dependency on
the information read in the condition e1.

Conditional-E
Γ; ∆ [pc] ` e1 : bool` Γ; ∆ [pct `] ` e2 : τ Γ; ∆ [pct `] ` e3 : τ

Γ; ∆ [pc] ` if e1 then e2 else e3 : τ

The second rule, Conditional-C, is only applicable to conditionals whose condition
belongs to the syntactical category c, enabling its direct use as an axiom in the knowledge
environment ∆. Consequently, we type the first branch with the increased knowledge
that c holds, and type the second branch with the increased knowledge that c does not
hold, following the example of λDB.

Conditional-C

Γ; ∆ [pc] ` c : bool`
Γ; ∆, c [pct `] ` e1 : τ Γ; ∆,¬c [pct `] ` e2 : τ

Γ; ∆ [pc] ` if c then e1 else e2 : τ

Example 1 In order to clarify the use of Conditional-C and illustrate the use of the typ-
ing rules introduced thus far, consider an example based on the following program frag-
ment:

if x = 1 then b else false

Suppose that Γ = {x : inttrue, b : boolP(x)}, pc = true and we want to prove that the con-
ditional expression above has type boolP(1). Intuitively, since the condition only depends
on public values, the security level of the branches does not rise.

Γ(x) = inttrue
Γ; · [true] ` x : inttrue Γ; · [true] ` 1 : inttrue

Γ; · [true] ` x = 1 : booltrue

Consequently, the result of the second branch is also a public value, enabling us to raise
its security level to P(1) using subsumption.

Γ; x 6= 1 [true] ` false : booltrue

Γ; x 6= 1 ` bool <: bool ∆ ` true⇐ P(1)
Γ; x 6= 1 ` booltrue <: boolP(1)

Γ; x 6= 1 [true] ` false : boolP(1)

48

4. LANGUAGE AND TYPE SYSTEM 4.2. Type System

Now, by observing that the result of the first branch, b, has security level P(x), we can
use the knowledge that x = 1 to prove b has security level P(1).

Γ(b) = boolP(x)

Γ; x = 1 [true] ` b : boolP(x)

Γ; x = 1 ` bool <: bool x = 1 ` P(x)⇐ P(1)
Γ; x = 1 ` boolP(x) <: boolP(1)

Γ; x = 1 [true] ` b : boolP(1)

Finally, if we join the intermediate deductions together we are able to apply Conditional-
C and prove the program fragment is well-typed as a boolean with security level P(1), as
intended.

Γ; · [true] ` x = 1 : booltrue
Γ; x = 1 [true] ` b : boolP(1) Γ; x 6= 1 [true] ` false : boolP(1)

Γ; · ` if x = 1 then b else false : boolP(1)

Functions

Apart from the peculiarities of dependent functions, all the typing rules concerning func-
tions follow the same logic regarding information-flow as the ones in λREF

SEC . In function
abstraction in particular, the only difference resides in the fact that we default the security
level of standalone values to be the current program counter, pc1.

Abstraction
Γ, x : α; ∆ [pc2] ` e : β

Γ; ∆ [pc1] ` (λ[pc2] x : α.e) : (∏[pc2] x : α.β)pc1

Similarly to the conditional expression, function application has two distinct rules in
order to be precisely typed: one that only allows terms (v) as arguments but has increased
precision, and other that allows any expression as argument but is more conservative.
The first rule, Application-V, closes the free occurrences of the parameter x by substi-
tuting them with the argument v, while the second rule, Application-E, closes the free
occurrences of the parameter x using the J·Kx operator presented earlier.

Application-V

Γ; ∆ [pc1] ` e1 : (∏[pc2] x : α.β)`
Γ; ∆ [pc1] ` v : α{x/v} ∆ ` pc1 ⇐ pc2{v/x}

Γ; ∆ [pc1] ` e1 v : β{v/x} t `

Application-E

Γ; ∆ [pc1] ` e1 : (∏[pc2] x : α.β)`
Γ; ∆ [pc1] ` e2 : α ∆ ` pc1 ⇐ Jpc2K

x

Γ; ∆ [pc1] ` e1 e2 : JβKx t `

Both rules determine if the argument v has the right type α and ensure the call can
only be made if the function executes with a higher (or equal) program counter (pc2) than
the current one (pc1), guaranteeing no information with security level lower than pc2 is
written in the database (as will be shown further ahead).

49

4. LANGUAGE AND TYPE SYSTEM 4.2. Type System

Example 2 To clarify the differences between both rules, consider the application of a
function f : (Π[true] x : inttrue.intQ(x))true to the value 2, in a public context. If we apply
the Application-V rule, the result of the call is proven to have security level Q(2).

Γ; · [true] ` f : (Π[true] x : inttrue.intQ(x))true Γ; · [true] ` 2 : inttrue ∆ ` true⇐ true

Γ; · [true] ` f 2 : intQ(2)

On the other hand, if we apply Application-E rule, the result of the call is proven to
have the higher security level ∀x.Q(x).

Γ; · [true] ` f : (Π[true] x : inttrue.intQ(x))true Γ; · [true] ` 2 : inttrue ∆ ` true⇐ true

Γ; · [true] ` f 2 : int∀x .Q(x)

Example 3 The loss of precision from Application-E can even invalidate its application.
Consider the application of a function with type g : (Π[true] x : intP(x).intQ(x))true to the
value 3, in a public context. In order to apply the Application-V rule, we must use sub-
sumption to raise our argument’s security level to P(3), obtaining a value with security
level Q(3) as a result of the function.

. . .

Γ; · [true] ` 3 : inttrue Γ; · ` inttrue <: intP(3)

Γ; · [true] ` 3 : intP(3) ∆ ` true⇐ true

Γ; · [true] ` g 3 : intQ(3)

Applying the Application-E rule, however, would imply using subsumption to raise our
argument’s security level to P(x), which is illegal because x is not bound in this scope.

In the rule for dependent function subtyping, the same rules apply as with normal
functions besides the need to have the parameter x bound in the current scope. The
program counter varies contravariantly, corresponding to the idea that functions with a
higher pc may be called in, at least, the same contexts as a function with a lower pc.

Function-Subtyping

∆ ` pc2 ⇐ pc1
Γ, x : α2; ∆ ` α2 <: α1 Γ, x : α2; ∆ ` β1 <: β2

Γ; ∆ ` ∏[pc1] x : α1.β1 <: ∏[pc2] x : α2.β2

Records

Since records are defined recursively, there are two distinct rules used to type them. The
rule for empty records, Record-Empty, is a trivial rule which uses the current program
counter as security level, similarly to other values.

Record-Empty
Γ; ∆ [pc] ` [] : []pc

The rule for non-empty records, Record-Fields, is defined recursively in such a way
that the value v associated to each field f is substituted in all subsequent fields’ types

50

4. LANGUAGE AND TYPE SYSTEM 4.2. Type System

(and its own) by f , since the field name is bound both in the type τ and the types of the
remaining fields.

Record-Fields
Γ; ∆ [pc] ` v : τ{v/f} Γ; ∆ [pc] ` r : (R{v/f})pc

Γ; ∆ [pc] ` [f = v, r] : [f : τ, R]pc

In turn, field selection requires all the field names to be substituted in the selected
field’s type to guarantee it has no free names. As is common with data type destructors,
the resulting type is augmented with the record’s security level.

Field-Selection
Γ; ∆ [pc] ` v : [f1 : τ1, . . . , fn : τn]` 1 ≤ i ≤ n

Γ; ∆ [pc] ` v.fi : τi{v.fj/fj}i≤j≤n t `

Record subtyping is defined recursively by two main typing rules in order to ex-
ploit the record’s structure. The first rule, Record-Subtyping-Fields, states the subtyp-
ing relation between two records starting with the same field. The second rule, Record-
Subtyping-Swap, allows the order of fields to be swapped as long as their names do not
occur in each other’s types.

Record-Subtyping-Fields
Γ, f : α; ∆ ` α <: β Γ, f : α; ∆ ` R1 <: R2

Γ; ∆ ` [f : α, R1] <: [f : β, R2]

Record-Subtyping-Swap
f1 does not occur in τ2 f2 does not occur in τ1

Γ; ∆ ` [f1 : τ1, f2 : τ2, R] <: [f2 : τ2, f1 : τ1, R]

Together they define the informal idea of record subtyping where a record R1 is a
subtype of a record R2 if, and only if, the set of R1’s fields is the equal to the set of
R2’s fields and there is a valid ordering (according to the swapping rule) that allows
the subtyping relation to be proven pairwise for their types. There is no support for
the standard width subtyping, which only requires R1’s fields to be a superset of R2’s
fields, because it overcomplicates the typing rule for update in a way that obfuscates the
important details.

Finally, one can observe that contrary to booleans, functions and collections, destruc-
turing a record does not give any new information on its structure that is not already
tracked by the type system. Consequently, the security level associated with a record
may be safely distributed by all the fields and lowered to ⊥.

Record-Subtyping-Label-In
Γ; ∆ ` R` <: (R t `)⊥

By the same reasons, if we are able to identify a common security level of every field
in the record, it is safe to augment the record’s security level with it.

Record-Subtyping-Label-Out
Γ; ∆ ` (R t `)⊥ <: R`

The only reason for record types to have a security level associated with their struc-
ture is consistency with the rest of the type system.

51

4. LANGUAGE AND TYPE SYSTEM 4.2. Type System

Collections

A collection value is well-typed as a collection τ∗pc, if τ is a common type for all its el-
ements. Similarly to other values, the program counter is used as the security level of
the collection, in order to reflect the informations revealed by the program’s control-flow
when the evaluation reaches this expression.

Collection
Γ; ∆ [pc] ` ei : τ for all i ∈ [1, n]

Γ; ∆ [pc] ` {e1, . . . , en} : τ∗pc

Since the head operation works as a typical destructor, with the absence of a run-time
error revealing that the collection is not empty, its type is that of the elements of the
collection augmented with the security level of the collection itself.

Head-Projection
Γ; ∆ [pc] ` e : τ∗`

Γ; ∆ [pc] ` head e : τ t `

The typing rule for the tail operation states that the tail of a collection e has exactly the
same type as the collection e itself.

Tail-Projection
Γ; ∆ [pc] ` e : τ∗`

Γ; ∆ [pc] ` tail e : τ∗`

Iterating a collection while executing an expression with side-effects reveals informa-
tion on whether the collection is empty or not. To account for that, the typing rule for
the map construct types the body expression e2 in a context where the program counter is
augmented with the collection’s security level. Additionally, to prevent the cursor x from
being a free name of the resulting element type, β, we need to close the free names using
the J·Kx operation.

Collection-Map
Γ; ∆ [pc] ` e1 : α∗` Γ, x : α; ∆ [pct `] ` e2 : β

Γ; ∆ [pc] ` map x in e1 to e2 : (JβKx)∗`

Since we are working with immutable collections, it is safe to state that collections of
elements with type α are a subtype of collections of elements with type β.

Collection-Subtyping
Γ; ∆ ` α <: β

Γ; ∆ ` α∗ <: β∗

Database entities

Entities are not first-class values of the language, but declarations visible in a given ex-
pression e. Accordingly, the typing rule for the creation of entities states the whole ex-
pression is well-typed with type τ, if expression e is well-typed with type τ in a type
environment which includes the entity.

Create-Entity
Γ, ent : ε; ∆ [pc] ` e : τ

Γ; ∆ [pc] ` create ent : ε in e : τ

52

4. LANGUAGE AND TYPE SYSTEM 4.2. Type System

The typing rule for insertion states that the type of the record we are inserting, R,
must be the same as the entity’s schema. In practice, since we can use subsumption, the
rule states that the record type obtained by typing expression e must be a subtype of the
entity’s schema, R, which corresponds to the requirement that the information we are
writing cannot have a higher security level than the information we are able to read later
from the database, the same logic used with reference types in λREF

SEC .

Insert
Γ(ent) = entity (R, _) Γ; ∆ [pc] ` e : R⊥

Γ; ∆ [pc] ` insert e into ent : boolpc

Although the rule seems to require that e must be a public expression, recall that
we are able to distribute the security level of a record by its fields using the Record-
Subtyping-In rule, lowering the security level of the record type itself to ⊥. Notice also
that the entity’s local policies are irrelevant because we are inserting a new row, with no
relation to the entity.

Example 4 Consider a User entity with schema RUser = [id : inttrue, name : stringfalse],
and the following expression:

insert [id = 4, name = "Delta"] into User

If we type the expression in a context with pc = true, the type of the record would be
[id : inttrue, name : stringtrue]. Since both fields’ types are subtypes of their homonyms in
the User’s schema, which means their security levels are at most as restrict, we may assert
no information is leaked by performing the insert query.

On the other hand, if we type the expression in a context with pc = false, the type
of the record would be [id : intfalse, name : stringfalse], which is not a subtype of the
User’s schema because the record’s id field has a higher security level (false) than the one
expected by the entity (true). Consequently, the insertion is rejected as ill-typed because
it leaks private information to the public field id.

Similarly to λDB, the where clause of a query plays a key role in its typing rule. In
λDB−Flow , not only does the expression c contribute to the knowledge that is available,
but also its security level affects the current program counter in the same way the condi-
tion of a if-expression does.

The typing rule for the select expression embodies this principle by typing the expres-
sion e in an environment augmented with the knowledge from the where condition, c,
and with a program counter raised by its security level, pc t `. The whole select expres-
sion is typed as a collection of the selected elements’ type, with the free occurrences of
the cursor x closed with J·Kx.

Select

Γ(ent) = entity (R, p) R = [f1 : τ1, . . . , fn : τn] P = p{x. f j/ f j}1≤j≤n
Γ, x : R⊥; ∆, P [pc] ` c : bool` Γ, x : R⊥; ∆, P, c [pct `] ` e : β

Γ; ∆ [pc] ` from x in ent where c select e : Jβ∗`K
x

53

4. LANGUAGE AND TYPE SYSTEM 4.2. Type System

Notice also that, since the cursor x represents an actual row from the entity, the en-
tity’s local policies p hold for each specific record that is retrieved. Consequently, both the
condition c and the expression e are typed in environments augmented with the knowl-
edge P that the local policies hold for x. The same is evident in the typing rules for the
update and delete expressions.

Example 5 Consider the same User entity from the last example and suppose we want
to give a type to the following expression with pc = true:

from u in User where u.name = "Epsilon" select u.id

Since we are filtering the results of the query depending on the name field, which is
private, the selected expression will be typed in a private context (i.e. pc = false). Con-
sequently, although the id field is public, the result of the query is a collection of private
integers, (intfalse)

∗
false, reflecting the fact that we know they are the ids associated with a

user named “Epsilon”, a private information.

The typing rule for the update expression works, fittingly, as a mixture of the typing
rules for the insert expression and the select expression. Since we are iterating the entity’s
rows, the typing rule looks a lot like the one for select, but since our goal is to write
updated records, the type of the record we use to express the update must be a subrecord
of the entity’s schema.

Update

Γ(ent) = entity (R, p) R = [f1 : τ1, . . . , fn : τn] P = p{x. f j/ f j}1≤j≤n
Γ, x : R⊥; ∆, P [pc] ` c : bool` Γ, x : R⊥; ∆, P, c [pct `] ` e : LRM⊥

Γ; ∆ [pc] ` update x in ent where c with e : Jbool`Kx

Example 6 Consider the same User entity from the previous examples and suppose we
want to determine if the following expression is well-typed with pc = true:

update u in User where u.name = "Zeta" with [id = 6]

Since we are filtering the entity’s rows by the name field, which is private, we should only
be able to update private fields in order to avoid leaking information about which rows
are named “Zeta”. Accordingly, the type of the updating record is [id : intfalse] which is
not a subtype of the entity schema’s subrecord [id : inttrue].

Typing the delete expression directly corresponds to performing an update query in
which all the entity’s fields are updated with themselves. Another way to look at the
typing rule is to consider that a public observer will only notice the deleted rows are
absent if they contain public information. Consequently, any private information that
the query depends on will be leaked to the public observer, just as if we performed an
update under the same conditions.

54

4. LANGUAGE AND TYPE SYSTEM 4.3. Extended LiveWeb

Delete

Γ(ent) = entity (R, p) R = [f1 : τ1, . . . , fn : τn] P = p{x. f j/ f j}1≤j≤n
Γ, x : R⊥; ∆, P [pc] ` c : bool` Γ, x : R⊥; ∆, P, c [pct `] ` x : R⊥

Γ; ∆ [pc] ` delete x from ent where c : Jbool`Kx

Example 7 Consider the same User entity from the previous examples and suppose we
want to determine if the following expression is well-typed with pc = false:

delete u from User where u.id = 7

As the lowest security level of a User’s fields is public, performing a delete operation
which depends on the entity’s public id incurs in no information leak. However, since
pc = false, the records that we want to delete are typed as [id : intfalse, name : stringfalse]⊥,
whose record type is not a subtype of RUser, reflecting the fact that the act of performing
that delete operation depends on private information.

4.3 Extended LiveWeb

The type system we developed for λDB−Flow was validated experimentally by means of an
extension to the LiveWeb framework, whose implementation is discussed in Chapter 6.
Since both expression languages are very similar, the type rules for LiveWeb’s expressions
closely resemble the ones we defined for our core calculus. Consequently, the greatest
novelty when defining the typing rules for LiveWeb’s constructs lies in its web block
language, which is the focus of this section.

Blocks are the way LiveWeb interacts with an external user, allowing the output and
input of information, a concern that is not addressed directly in any of the calculi we
studied. Ur/Web, discussed in Section 3.1, addresses the problem by using the mecha-
nism of queries-as-policies to define an upper bound on the information that is sent to the
client, and uses a special predicate to mark the information that comes from the user.
FlowCaml, discussed in Section 3.2, addresses the problem in the context of a value-
oriented information-flow type system by defining two special security levels, !stdin
and !stdout, which are used in the type of the input and output primitives, respectively.

Inspired by FlowCaml’s approach, we defined a special security level, Input(),
which is the level of all the information that is input through the web block primitives.
For the output, however, the approach of requiring every screen to have the same result
security level, Output(), seemed limiting as it forces a binary distinction between val-
ues that can always be sent to the client and values that can never be sent to the client.
Consequently, the output level ` of each screen is specified individually and the blocks in
its body cannot contain information with security level higher than `, an approach that
directly coincides with the original idea inspired in FlowCaml if every screen’s output
level is Output().

55

4. LANGUAGE AND TYPE SYSTEM 4.3. Extended LiveWeb

4.3.1 Typing Judgements

The typing judgements we use in LiveWeb’s type system are the ones used in λDB−Flow ,
plus a new typing judgement for blocks. The necessity of a new judgement stems from
the fact that blocks are composed sequentially in such a way that a name declared in a
block is bound in all the blocks that follow, i.e. it is not local.

The judgement Γ1; ∆ [pc] ` b : block` a Γ2 states that the block b is well typed with
security level ` in a context with program counter pc, under a type environment Γ1 and
a knowledge environment ∆, and produces the new typing environment Γ2. Its typical
use is apparent in the typing rule for block sequencing below, reflecting the fact that the
second block in a sequence, b2, should be typed in the type environment Γ2 produced by
typing the first block, b1.

Block-Sequence
Γ1; ∆ [pc] ` b1 : block`1 a Γ2 Γ2; ∆ [pc] ` b2 : block`2 a Γ3

Γ1; ∆ [pc] ` b1; b2 : block`1t`2 a Γ3

4.3.2 Typing Rules

The typing rule for the line break block, br, is similar to the typing rules for values in that,
in the absence of any sub-expressions that might influence its security level, we default
the block’s security level to that of the program counter pc.

Block-Br
Γ; ∆ [pc] ` br : blockpc a Γ

Alert messages, labels and images are typed conservatively, using the security level
of their sub-expression as their own. All three are simple output blocks, meaning the
typing environment Γ is not altered.

Block-Alert
Γ; ∆ [pc] ` e : string`

Γ; ∆ [pc] ` alert e : block` a Γ

Block-Label
Γ; ∆ [pc] ` e : t`

Γ; ∆ [pc] ` label e : block` a Γ

Block-Image
Γ; ∆ [pc] ` e : string`

Γ; ∆ [pc] ` image e : block` a Γ

The same applies to LiveWeb’s two types of buttons, with the only difference being
that they have more than one sub-expression and thus need to use the least upper bound
(t) of all their security levels.

Block-Button-Simple
Γ; ∆ [pc] ` e1 : string`1

Γ; ∆ [pc] ` e2 : block`2

Γ; ∆ [pc] ` button e1 to e2 : block`1t`2 a Γ

Block-Button-AJAX

Γ; ∆ [pc] ` e1 : string`1

Γ; ∆ [pc] ` e2 : string`2
Γ; ∆ [pc] ` e3 : block`3

Γ; ∆ [pc] ` button e1 update e2 with e3 : block`1t`2t`3 a Γ

56

4. LANGUAGE AND TYPE SYSTEM 4.3. Extended LiveWeb

Div blocks are simple containers of other blocks b, which feature a CSS class identifier
cl and an expression e that determines their HTML id. The class identifier is known
statically and does not constitute a source of information, as the expression e and the
block b do. Since both are independent of each other, the typing rule for the div construct
types them separately and uses their security levels’ least upper bound as its security
level. The typing rule for link blocks follows the same reasoning.

Block-Div
Γ1; ∆ [pc] ` e : string`1

Γ1; ∆ [pc] ` b : block`2 a Γ2

Γ1; ∆ [pc] ` div cl as e { b } : block`1t`2 a Γ2

Block-Link
Γ1; ∆ [pc] ` b : block`1 a Γ2 Γ1; ∆ [pc] ` e : block`2

Γ1; ∆ [pc] ` link { b } to e : block`1t`2 a Γ2

Text fields and text areas have exactly the same typing rules. The security level `
of the content e is the highest information they output, reason by which ` is also their
security level. Since both are primarily input constructs, the resulting type environment
is augmented with a string x whose security level combines the block’s security level and
the primitive Input() security level discussed earlier.

Block-TextField
Γ; ∆ [pc] ` e : string`

Γ; ∆ [pc] ` textfield x with e : block` a Γ, x : string`tInput()

Block-TextArea
Γ; ∆ [pc] ` e : string`

Γ; ∆ [pc] ` textarea x with e : block` a Γ, x : string`tInput()

The option block corresponds to the HTML select element whose options are given by
expression e3, a collection of records. The field names f1 and f2 correspond to the fields
of the record that contain the information on the id and the display value of each option,
respectively. Expression e4 corresponds to the default id of the select and, for that reason,
its type t`1 must be the same as the type of field f1.

Block-Option

Γ; ∆ [pc] ` e3 : τ∗`3
Γ; ∆ ` τ <: [f1 : t`1 , f2 : string`2

]⊥
Γ; ∆ [pc] ` e4 : t`1 `b = `1 t `2 t `3 `x = `1 t `3 t Input()

Γ; ∆ [pc] ` option x fill f1 ⇒ f2 with e3 default e4 : block`b a Γ, x : t`x

The block’s security level, `b, is obtained by performing the least upper bound of its
sub-expressions’ security levels, while the resulting type environment contains a new
identifier x – corresponding to the selected id – whose security level combines the secu-
rity levels of the collection `3 and field `1, from which the value comes, with the primitive
Input() level to reflect the choice of the user.

The typing rule for the iterator block is very similar to the typing rule for λDB−Flow ’s
map expression: when we type the body block b, the program counter is raised with the
collection’s security level `1.

Block-Iterator
Γ1; ∆ [pc] ` e : τ∗`1

Γ1, x : τ; ∆ [pct `1] ` b : block`2 a Γ2

Γ1; ∆ [pc] ` iterator (x in e) { b } : block`1tJ`2Kx a Γ1

57

4. LANGUAGE AND TYPE SYSTEM 4.4. Approaching Non-interference

In the end, the iterator’s security level combines both the security level of the collec-
tion `1 and the security level of its body `2, although there is the need to close the free
occurrences of the identifier x using J·Kx, and the typing environment is left unchanged
because all the new names are local to b.

4.4 Approaching Non-interference

Although out of the scope of this thesis, in order to prove well-typed programs in our
language do not leak confidential information, we would need to define a non-interference
property and prove it holds for well-typed programs. Essentially, such a property says
that confidential information does not interfere with public information, meaning that we
cannot infer any confidential information just by looking at public information.

The base approach used in the calculi we studied [Zda02, CKP05], which is also the
usual approach according to [SM03], is centred in the definition of an equivalence relation
≈ζ between computation states, based on the language’s labelled operational semantics.
Intuitively, two computation states are equivalent according to ≈ζ if they are indistin-
guishable to an observer with security level ζ or lower. Given the equivalence relation,
we are able to formalize the non-interference property.

If we abstract computation states as a tuple (S, e), where S represents state informa-
tion (e.g. the memory) and e is the program being executed, the non-interference property
holds if, and only if:

• for all computation states (S, e) such that Γ, x : τ; ∆ [pc] ` e : t`, and;

• for all values v1 and v2 of type τ such that v1 ≈` v2

we can prove that
(S, e{v1/x}) ≈` (S, e{v2/x})

Finally, both approaches we studied prove that if two computation states are equiv-
alent with respect to ≈ζ , then both evaluate in a finite number of steps to computation
states that are also equivalent, meaning the equivalence relation is preserved through
evaluation. If the semantics are deterministic and closed under evaluation contexts, this
implies non-interference holds.

Alternatively, we could attempt to encode our language in another for which non-
interference was already proven, an approach taken in [Zda02] to prove non-interference
for λREF

SEC , and in [ABHR99] by encoding several calculi into DCC.

58

5
Example

In order to validate our approach to information-flow analysis, detailed in Chapter 4, we
developed a prototype implementation as an extension of the LiveWeb framework and
used the prototype to validate a series of small examples. In this chapter, we discuss the
modelling of a medium-sized web application in our language, in order to illustrate its
expressivity and the major insights and problems faced during the development process.
We begin with a broad description of our scenario in Section 5.1, enunciating potential
confidentiality concerns, and proceed to discuss the concrete application and its imple-
mentation difficulties in Section 5.2.

5.1 Scenario

The most common way of disseminating and reporting progresses in scientific research
is the publication of papers in specialized scientific conferences and journals pertaining to
a specific field of study. The conferences’ organizing committees assign each submitted
paper to a number of other researchers knowledgeable in the same sub-field, so that the
paper’s validity is assessed and a decision can be made to accept or reject the submission,
based on their reviews.

Nowadays, the management of submissions and peer reviews is often performed by
specialized software systems, providing a common medium that coordinates the inter-
action between committee members, authors and reviewers during the whole process.
Each of these groups of users interacts with the system in a distinct way: from the au-
thors’ point of view, the interaction is based in submitting papers, reading the reviews
they receive and consulting the papers’ acceptance status; from the reviewers’ point of
view, the interaction is based in voting the papers they would like to review, consulting

59

5. EXAMPLE 5.2. Application

the list of assigned papers and submitting reviews; from the committee members’ point
of view, the interaction is based in managing the start and end dates for the submission
and reviewing processes, assigning reviewers to papers and deciding whether a paper
should be accepted or not, based on the reviewers’ opinions.

In such systems, there are a number of security policies and guarantees that the com-
mittee may wish to ensure:

• The reviewers of a specific paper must be anonymous;

• The authors of a specific paper should remain anonymous until the paper is ac-
cepted;

• The title and short summary (usually known as abstract) of a specific paper should
only be readable by its authors, potential reviewers and committee members, until
the paper is accepted;

• The contents of a paper should only be readable by the authors and assigned re-
viewers, until the paper is accepted;

• If a paper is rejected, the information should only be available to its authors, its
reviewers and committee members;

• A review should only be readable by its author, the authors of the paper and com-
mittee members.

The following section presents a possible modelling of such a system in our proto-
type, taking advantage of information flow analysis to ensure that these confidentiality
concerns are addressed.

5.2 Application

Consider a web application whose registered users are modelled by the User entity
in Listing 5.1, featuring a public id, a public username, a private password that should
only be readable by the system, and a public role field containing a pre-defined number
used to distinguish between the three types of users in the system: authors of papers
(0), reviewers (1) and committee members (2). At the policy level, we use the predi-
cate User(id) to label information that a specific user can read, and use the predicates
AuthorRole(id), ReviewerRole(id) and CommitteeRole(id) to refer to information
that should only be readable by a specific user with the corresponding role. Accordingly,
the entity has three local policies encoding that definition, for each specific row. For in-
stance, information readable by an author with identifier id, should be readable (i.e. is
implied) by an user with the same id and role number 0.

60

5. EXAMPLE 5.2. Application

Listing 5.1: The User entity

1 def entity User {

2 id : Id at true(),
3 username : String at true(),
4 password : String at System(),

5 role : Int at true()
6 }

7 flow AuthorRole(id) to (User(id) and (role = 0))

8 flow ReviewerRole(id) to (User(id) and (role = 1))

9 flow CommitteeRole(id) to (User(id) and (role = 2))

In turn, the predicates AuthorOf(id) and ReviewerOf(id) represent the informa-
tion that is readable, respectively, by an author or an assigned reviewer of a specific pa-
per with id id. Papers, modelled by entity Paper in Listing 5.2, feature an identifier id,
readable by any registered user; a title and an abstract, readable by the authors of
the paper, reviewers (in general) and committee members; a content, only readable by
the authors and assigned reviewers of the paper; and a status field indicating whether
the paper is pending evaluation (0), rejected (1) or accepted (2), which is only readable by
the authors, assigned reviewers and committee members, according to the confidentiality
concerns laid out in our scenario.

Listing 5.2: The Paper entity

1 def entity Paper {

2 id : Id at (exists uid: Int. User(uid)),

3 title : String at (

4 AuthorOf(id)

5 or (exists uid: Int. ReviewerRole(uid))

6 or (exists uid: Int. CommitteeRole(uid))

7),

8 abstract : String at (

9 AuthorOf(id)

10 or (exists uid: Int. ReviewerRole(uid))

11 or (exists uid: Int. CommitteeRole(uid))

12),

13 content : String at (AuthorOf(id) or ReviewerOf(id)),

14 status : Int at (

15 AuthorOf(id)

16 or ReviewerOf(id)

17 or (exists uid: Int. CommitteeRole(uid))

18)

19 }

In order to illustrate the interplay between the two entities defined above and their
policies, suppose we want to write a query that allows the committee member with id

61

5. EXAMPLE 5.2. Application

uid to fetch the titles of all submitted papers. Disregarding security policies, a first at-
tempt may be similar to the getTitles action in Listing 5.3. The base security level
will be that of the title field, allowing us to prove the information has the precise se-
curity level CommitteeRole(uid). However, if we specialize our functions in each kind
of role, we end up replicating the whole system many times in order to propagate the
appropriate security levels throughout all the actions and screens.

Listing 5.3: The getTitles action

1 def true() action getTitles(uid: Int at true()):
2 List[String at CommitteeRole(uid)] at true()
3 {

4 from (p in Paper)

5 where true
6 select p.title

7 }

Consequently, as a means of modularization, we use the security level User(id) in the
interfaces of actions and screens and prove locally that our information can be read by the
current user. In order to prove that information with level CommitteeRole(uid) can be
read by the current user, we need to prove the current user is in fact a committee member,
achieved by performing a join with the entity User, as shown in the action of Listing 5.4
which receives the current user id as a parameter and executes with program counter
User(uid).

Listing 5.4: The getTitlesForCommittee action

1 def User(uid) action getTitlesForCommittee (uid: Int at User(uid)):

2 List[String at User(uid)] at User(uid)

3 {

4 from (p in Paper, u in User)

5 where u.id == uid and u.role == 2

6 select p.title

7 }

The authorship relation between users and papers is represented by entity Author

in Listing 5.5, with the expected foreign key fields paper_id and user_id. Both fields
may only be read by authors of the paper, so that information on authorship remains
confidential as required. A local policy states that each row of the Author’s table proves
the corresponding user (user_id) is able to read information available to the authors
of the corresponding paper (paper_id). For simplicity, we did not consider the “until
the paper is accepted” condition mentioned in the scenario, but the state change could
be modelled by using an Accepted(paper_id) predicate related to the paper’s status, as
we did with user roles.

62

5. EXAMPLE 5.2. Application

Listing 5.5: The Author entity

1 def entity Author {

2 id : Id at (exists uid: Int. User(uid)),

3 paper_id : Int at AuthorOf(paper_id),

4 user_id : Int at AuthorOf(paper_id)

5 }

6 flow AuthorOf(paper_id) to User(user_id)

Getting back to our paper titles example, if an user with role author wants to fetch
all the papers’ titles, the type system would detect an information leak according to our
policies, even if we performed a join with the Users table, because an author is only able
to read the titles of his/her own papers. Considering this (intended) restriction, suppose
we decide to define a general action that fetches the title of a paper with id pid if the
current user satisfies any of the security requirements, as presented in Listing 5.6.

Listing 5.6: The getTitle action

1 def User(uid) action getTitle (

2 uid: Int at User(uid),

3 pid: Int at User(uid)

4): String at User(uid) {

5 getHead(

6 from (p in Paper, u in User, a in Author)

7 where p.id == pid and (

8 (a.paper_id == pid and a.user_id == uid) // for AuthorOf(pid)

9 or (u.id == uid and u.role == 1) // for ReviewerRole(uid)

10 or (u.id == uid and u.role == 2) // for CommitteeRole(uid)

11)

12 select p.id

13)

14 }

Although the where condition contemplates each of the required cases, the action is
not well-typed because we would be reading fields from the Author table, which are
authors-only, even if the user is a reviewer or a committee member, leading the type sys-
tem to conclude there is a possible information leak. On the other hand, a getTitle

action that worked only for reviewers and committee members would type check, be-
cause both roles can read all the fields involved.

Based on the title and abstract of submitted papers, reviewers can manifest their pref-
erences regarding which papers they would like to review, to be considered in the as-
signment process. The ReviewIntention entity (Listing 5.7) expresses the intention
of a user with id user_id to review the paper with id paper_id, with a boolean field
positive indicating whether the user would or not like to review the specified paper,
and a priority field specifying the order of the preference. While the specific reviewer

63

5. EXAMPLE 5.2. Application

that manifested the intention should be anonymous, other fields could be readable by
a committee member, thus enabling the assignment of reviews without the need for the
system to reveal the reviewer’s identity.

Listing 5.7: The ReviewIntention entity

1 def entity ReviewIntention {

2 id : Id at (exists uid: Int. User(uid)),

3 user_id : Int at ReviewerRole(user_id),

4 paper_id : Int at (

5 ReviewerRole(user_id)

6 or (exists uid: Int. CommitteeRole(uid))

7),

8 positive : Bool at (

9 ReviewerRole(user_id)

10 or (exists uid: Int. CommitteeRole(uid))

11),

12 priority : Int at (

13 ReviewerRole(user_id)

14 or (exists uid: Int. CommitteeRole(uid))

15)

16 }

The ReviewAssignment entity in Listing 5.8 models the assignment of reviews and
contains a subset of the fields of the ReviewIntention entity, maintaining the same
security levels: the id field can be read by any registered user, as it only reveals informa-
tion about the number of rows in the entity; the user_id field should only be readable
by the reviewer with the same id to preserve the anonymity; and the paper_id only
needs to be readable to the reviewer, so that he/she can know which papers to review,
and for the committee members, so that they know how many reviews to expect until
the reviewing process is finished. Similarly to the Author entity, a local policy states
that, for each row in the entity, the user that is assigned to review a paper can read any
information a reviewer of that paper can.

Listing 5.8: The ReviewAssignment entity

1 def entity ReviewAssignment {

2 id : Id at (exists uid: Int. User(uid)),

3 user_id : Int at ReviewerRole(user_id),

4 paper_id : Int at (

5 ReviewerRole(user_id)

6 or (exists uid: Int. CommitteeRole(uid))

7)

8 }

9 flow ReviewerOf(paper_id) to User(user_id)

64

5. EXAMPLE 5.2. Application

After the submission process has ended and the reviewers are assigned papers, they
can submit reviews to those papers. The Review entity (Listing 5.9) is defined by the id
of the reviewer (user_id), once again only readable by the reviewer himself/herself, the
paper_id of the paper being reviewed and the review’s content. The last two fields
can be read by the reviewer, an author of the paper or a committee member, allowing the
authors to receive feedback and the committee members to base their decision regard-
ing the validity of the paper, in line with the policies discussed earlier. Similarly to the
getTitle action, we are not able to fetch all the reviews for a paper using a single query,
if we want to be able to prove the result can be read by the current user (i.e. User(uid)):
proving the current user is an author requires reading fields from the Author’s table and
proving the current user is the author of the review requires reading the user_id field of
the Review entity itself, both unreadable by other roles. Consequently, we are not even
able to combine the queries for reviewers and committee members as with the getTitle
example, but would instead need to use three separate queries, one for each role.

Listing 5.9: The Review entity

1 def entity Review {

2 id : Id at (exists uid: Int. User(uid)),

3 user_id : Int at ReviewerRole(user_id),

4 paper_id : Int at (

5 ReviewerRole(user_id)

6 or AuthorOf(paper_id)

7 or (exists uid: Int. CommitteeRole(uid))

8),

9 content : String at (

10 ReviewerRole(user_id)

11 or AuthorOf(paper_id)

12 or (exists uid: Int. CommitteeRole(uid))

13)

14 }

As the reviewing process progresses and all the assigned reviewers for a given paper
submit their reviews, the committee members are ready to evaluate if the paper should be
accepted or not. A possible screen definition for such interaction is shown in Listing 5.10,
parametrized in the current user and the paper being judged. The first occurrence of the
User(uid) predicate in the screen’s signature is the program counter, similarly to the
actions on the previous examples, and the last occurrence specifies the screen’s output
security level, an upper bound on the information that may be included in the screen’s
blocks and, thus, sent to the client. The screen is composed by a div displaying the paper’s
title, the navigation menu available to committee members and another div holding the
reviews of the paper, generated by a call to the reviews screen, and buttons targeting
the submitEvaluation action, with the last parameter defining whether the evaluation
is positive or negative. A possible rendering of the screen is displayed in Figure 5.1.

65

5. EXAMPLE 5.2. Application

Listing 5.10: The evaluatePaper screen

1 def User(uid) screen evaluatePaper (

2 uid: Int at User(uid),

3 pid: Int at User(uid)

4) at User(uid) {

5 div title {

6 label ("Evaluating: " + getTitle(uid, pid))

7 };

8 label committeeMenu(uid);
9 div content {

10 label reviews(uid, pid);

11 button "Accept" to submitEvaluation(uid, pid, true);
12 button "Reject" to submitEvaluation(uid, pid, false)
13 }

14 }

Figure 5.1: Possible rendering of the paper evaluation page

Notice that every screen and action call features the current user id as a parameter.
Most of the time the id is required by the task at hand but, regardless, it is always neces-
sary to be able to propagate the User(uid) security levels in the definitions’ interface. If
the uid parameter is not included in the parameter list, the program counter would need
to be raised to forall uid: Int. User(uid) in order to avoid having uid as a free name,
which consequently would force the security level of the definition’s result to be raised
as well, preventing the current user from reading the resulting value.

The submitEvaluation action, mentioned earlier and included in Listing 5.11, ex-
emplifies another concern raised by the approach of using the User(uid) security level
to achieve modularity. Since the action has a program counter of User(uid) and pa-
rameters with security level User(uid), anticipating calls in contexts with that program

66

5. EXAMPLE 5.2. Application

counter, we need to perform declassification using an assume expression in order to up-
date the status of the paper, otherwise the query is rejected by the type system as poten-
tially leaking information.

Listing 5.11: The submitEvaluation action

1 def User(uid) action submitEvaluation (

2 uid: Int at User(uid),

3 pid: Int at User(uid),

4 accept: Bool at User(uid)

5): WebPage at User(uid) {

6 if (isCommitteeMember(uid)) then
7 assume User(uid) in (

8 update p in Paper with {

9 status = if (accept) then 2 else 1

10 } where (p.id == pid)

11)

12 else
13 false;
14 papers(uid)

15 }

The main reason for the ubiquitous User(uid) program counter in this application
is the use of a common menu in every screen, made of simple buttons. Since each time
we choose an item of the menu we are taken to a screen which renders a new menu, the
type system detects a dependency between the menu we draw and the source page, in
this case irrelevant. Thus, once we have a web page featuring the menu whose program
counter is User(uid), we are forced to have the menu with program counter User(uid),
which in turn forces all the screens linked by the menu to at least have that same program
counter. A clever way of dealing with the situation is to eliminate the apparent depen-
dency by using ajax buttons in the menu, consequently redesigning the target screens in
such a way that only their specific information is included, allowing the menu and other
screens to lower their program counter to true. Even so, complex applications will always
require the use of declassification in some places, although adhering to the proposed
design principle removes the necessity for some assumes.

67

5. EXAMPLE 5.2. Application

68

6
Implementation

One of the contributions of this thesis is a prototype implementation of our core language
on top of the LiveWeb framework (Subsection 2.2.1), in order to illustrate the approach
and understand its limits. The implementation was split into two core modules: a direct
extension of the LiveWeb framework with our type system, and a interface module with
a satisfiability modulo theories (SMT) solver, used by the type checking algorithm to prove
the validity of formulas.

In this chapter, we present an overview of the project’s architecture and try to give a
notion of the implementation effort when compared to what was already implemented
by the LiveWeb framework. In Section 6.1, we begin by describing the starting state of the
framework’s implementation and the extensions that were made since its release. Based
on that knowledge, in Section 6.2 we discuss how the LiveWeb framework was extended
in order to implement our type system, emphasising the main challenges of the typing
algorithm, and in Section 6.3 we discuss how the SMT solver was abstracted, taking into
account its input language and the encoding required for some of our data types. Finally,
in Section 6.4 we illustrate the type checking process with a small example, focusing on
the interaction between the solver and the type checker.

6.1 LiveWeb

Framework description

LiveWeb is a domain-specific language for web applications whose implementation con-
stitutes the base framework on top of which we developed our type system’s prototype.

69

6. IMPLEMENTATION 6.1. LiveWeb

Composed by a runtime system and a web-based development environment, both sup-
ported by SQLite databases, its code comprises near 1400 lines of JavaScript and around
36000 lines of Java, 16000 of which are generated by a compiler construction tool, BNF
Converter, used to generate the lexer, parser and base abstract syntax representation from
a labelled BNF grammar [FR05].

The remaining 20000 lines are scattered across 177 Java files consisting of: an abstract
syntax tree (AST) representation of the language; a conversion visitor from the generated
base abstract syntax representation to the AST representation; an HTTP server; typing
and execution environments; a compile-time representation for types; a run-time rep-
resentation for values; a database manager used by the runtime environment to query
the entities of an application; a database manager used by both sub-systems to fetch,
save, publish and delete definitions; and a set of 18 AST visitors with various purposes:
execution, type checking, pretty printing, collecting free names, converting boolean ex-
pressions to logical formulas and database management.

Prior extensions

Since LiveWeb’s original release [Dom10], several improvements and minor extensions
were made, which can be grouped around three main goals: increase the coverage of
database and user interface primitives; leverage the multi-layer integration provided by
the language in the verification of security-related properties; and empower the develop-
ment of increasingly customizable applications.

The first group includes the addition of a delete query primitive, important in typical
applications but originally absent, and frequently used web page elements such as text
areas, drop-down selectors and JavaScript alert messages. Support for Asynchronous
JavaScript and XML (AJAX) requests was implemented through the addition of HTML
ids to the div primitive and the creation of specialized buttons that update a div, referenced
by its id, using an AJAX request. Finally, observing the recurrent need to create a special-
ized screen to use as target for an AJAX button, the language was further extended with
anonymous screens to enable the inline definition of screens inside expressions.

Regarding the verification of security-related properties, LiveWeb was extended with
the access-control type system presented in [CPS+11], taking advantage of the similarity
between the expressions of both languages. Besides the changes made to the type checker
and typing environment, the implementation required an extension of the type language
with refinement types, and the addition of read and write policies to the definition of
entities.

As in the original type system, LiveWeb’s access-control policies are defined by means
of logical formulas. Each time the type checker needs to verify the validity of a logical
formula, an external satisfiability modulo theories (SMT) solver, CVC3, is run with a spe-
cific benchmark containing the proposition we want to prove and the information we
can assume in that context. The benchmark in Listing 6.1 is an example where the solver

70

6. IMPLEMENTATION 6.2. LiveWeb Extension Core Module

is asked to prove if a user with id uid is authenticated, knowing that an user with id
user_id is authenticated and both ids are equal. A definition of SMT solvers is given
in Section 6.3, along with further discussion on their use and input languages in the con-
text of our extension.

Listing 6.1: LiveWeb – SMT solver benchmark example

1 (benchmark example

2 :logic AUFLIRA

3 :extrasorts (Term)

4 :extrapreds ((Auth Term))

5 :extrafuns ((uid Term) (user_id Term))

6 :assumption (Auth user_id)

7 :assumption (= uid user_id)

8 :formula (not (Auth uid))

9)

Lastly, in order to provide support for the development of dynamically customizable
applications, LiveWeb was extended with functional values, allowing actions and screens
– hereafter referred as definitions – to be stored in the database and be passed as param-
eters to other definitions. Since a definition’s body may contain calls to other definitions
and queries to specific entities, the definition’s interface was extended to include an im-
port declaration of the free names in its body and their expected types, allowing the type
system to enforce that a definition may only be inserted in the database if its body’s free
names were all imported.

On top of the support for functional values, the language was enriched with a con-
struct to abstract the import of new code in runtime, similar to a type casing expression.
Given a string containing the code, which is parsed and type checked in runtime, the
inferred type is matched against the types declared in one of several branches, using sub-
typing and checking its imports, and executes the code in the first branch that does. As
with a typical case construct, the type system is able to provide compile-time guarantees
adapted to the branch that is executed, that is, the type of the code that is imported.

6.2 LiveWeb Extension Core Module

Extension description

One of the two core modules of our prototype consists in a direct extension of the LiveWeb
framework with our information-flow type system. The implementation was supported
by the latest version of the framework, described in the previous section, with the ex-
ception of the access-control type system extension, which was discarded because it re-
quired us to tackle a larger problem lying outside the scope of this thesis, the integration
of access-control and information-flow analyses.

71

6. IMPLEMENTATION 6.2. LiveWeb Extension Core Module

Concretely, we estimate about 4000 lines of Java code were discarded, starting with
the original type checking visitor using refinement types. Furthermore, although our
extension also uses an SMT solver (discussed in Section 6.3), its integration with the
LiveWeb framework was too tightly coupled with the use of refinement types, both in
the implementation of predicates and the typing environment, motivating our decision
to rewrite them from scratch modularly.

The new core LiveWeb module by itself comprises near 42000 lines of Java code, 23500
of which are non-generated and scattered across 222 files, resulting in an absolute in-
crease of 3500 non-generated lines versus the original implementation. On the other
hand, the total number of lines written to develop our prototype can be estimated to be
near the 10000 lines, considering the amount of discarded code and the size of the SMT
solver module (2700 lines).

In practice, the extension effort consisted in: changes to the grammar and correspon-
dent additions to the abstract syntax tree (AST), in order to accommodate the security
annotations and related constructs (flow declarations, formulas and terms); AST and
compile-time representations of dependent function types; an abstraction of a lattice by
means of an interface parametric in the elements’ type; a concrete lattice of formulas, us-
ing the SMT solver module to check if one element is lower or equal to another element;
a typing environment which ensures its declarations and scope are properly mirrored
by the solver; and a total of 12 new AST visitors with various purposes: type check-
ing, renaming, term substitution, subtyping, performing conversions (namely to solver
formulas and terms), injection of premises in formulas, closing free names and erasing
security labels.

The implementation of the type checker and typing environment was greatly influ-
enced by the option to keep the solver constantly running throughout the type checking
process, in order to avoid the overhead of restarting the solver dozens of times. The solver
state must be kept synchronized with the type environment’s state, a task that is ensured
by the latter, and the identifiers of the AST must be uniquely renamed prior to the start
of type checking, because the solver language does not allow name overloading and its
scoping instructions only affect assertions. Consequently, apart from the synchronization
carried by the environment, the interaction with the solver is made through the addition
(assume, if conditions, where clauses) or verification (assert) of assertions, and by querying
the lattice on the relation between two security levels. This interaction is explored further
in Section 6.4 through a small example.

As expected, despite all the server-side changes required to implement our type sys-
tem, the development environment only required small changes to fully accommodate
our extension: the addition of editable security levels to the entity editor (Figure 6.1)
and the creation of a text-based editor for global policies, similar to the one used to edit
actions and screens.

72

6. IMPLEMENTATION 6.2. LiveWeb Extension Core Module

Figure 6.1: Entity editor with security levels

A concrete example

The type checking visitor class alone spans near 2000 lines of code to cover the typing
rules of all the language’s constructs, as could probably be expected given the size of the
language and the focus of this thesis. In order to illustrate the mapping process between
typing rules and visitor methods, we will present a concrete example of how the typing
rules for the let-expression were implemented as a visit method in the type checker.

Let-Value
Γ; ∆ [pc] ` v : τ1 Γ, x : τ1; ∆ [pc] ` e : τ2

Γ; ∆ [pc] ` let x = v in e : τ2{v/x}

Let-Expression
Γ; ∆ [pc] ` e1 : τ1 Γ, x : τ1; ∆ [pc] ` e2 : τ2

Γ; ∆ [pc] ` let x = e1 in e2 : Jτ2Kx

The first rule is used to accurately type let-expressions whose first expression is a term,
taking advantage of term substitution, and the second rule is used to cover the remaining
cases, using universal quantification to close the free occurrences of the identifier in the
resulting type. In the implementation, presented in Listing 6.2, there is only one type of
AST node to represent a let-expression, so we opted for a general solution that covers
both cases uniformly.

First, in line 4, we determine the type of the first expression – v or e1 in the typing
rules, labelled as id expression in the code – by using the typecheckLabelled method,
which simply wraps a visit call on the argument node to guarantee the resulting type
is a LabelledType. Next, in lines 5–6, we use a specialized visitor – wrapped in the
transformInTerm method – to transform the expression in a term by replacing all non-
term sub-expressions with a fresh variable, which is then bound to the type of the expres-
sion it replaces. For instance, if the expression is the record { a = [1,2,3] }, the list
sub-expression would be replaced by a fresh variable y, bound to a labelled list type, and
the resulting term would be { a = y }.

73

6. IMPLEMENTATION 6.3. SMT Solver Module

Listing 6.2: Visit method for let-expressions

1 public IType visit(ASTExpressionLet node, AASTFormula pc)

2 throws VisitorException

3 {

4 LabelledType idLT = typecheckLabelled(node.getIdExpression(), pc);

5 Entry<AASTTerm, Map<String, IType>> idTerm =

6 transformInTerm(node.getIdExpression(), pc);

7

8 env.beginScope();

9 env.assoc(node.getId(), idLT);

10 LabelledType inLT = typecheckLabelled(node.getInExpression(), pc);

11 env.endScope();

12

13 return substituteIdByTerm(inLT, node.getId(), idTerm.getKey())

14 .accept(new CloseFreeNamesVisitor(idTerm.getValue()), null);
15 }

Typing the second expression – e2 in the typing rules, labelled as in expression in the
code – proceeds as expected (lines 8–11), inside a new scope with the identifier bound to
the first expression’s type. Similarly to the first typing rule, the resulting type is obtained
by taking the second expression’s type and replacing all its occurrences of the identifier
with the term obtained earlier, using the substituteIdByTerm method. Building on
our earlier example, if the type of the second expression is Int at P(x), after substitution
we obtain Int at P({ a = y }).

Finally, since transforming the first expression in a term may have generated fresh
identifiers, we use another visitor to universally quantify their occurrences in the result-
ing type. For instance, if we close the free occurrence of y in the type Int at P({ a = y }),
we obtain the type Int at forall y: List[Int]. P({ a = y }).

6.3 SMT Solver Module

Given that our information-flow type system uses logic formulas as security levels, we
need to be able to verify whether a given formula is valid or not. For that purpose, our
prototype includes a core module that abstracts the use of an external satisfiability mod-
ulo theories solver, commonly known as SMT solver, during the type checking process.
A SMT solver is an algorithm that decides the satisfiability of a logical formula F with
respect to (modulo) a given set of axioms (a theory) T , that is, it decides the satisfiabil-
ity of the formula T ∧ F . Although the algorithm focuses on satisfiability, we can also
check the validity of a logical formula by observing that, if T ∧ ¬F is not a satisfiable
proposition, then T ⇒ F is a valid proposition.

As mentioned in Section 6.1, LiveWeb already made use of a SMT solver, CVC3, in
its extension with the access-control type system proposed in [CPS+11]. To interact with

74

6. IMPLEMENTATION 6.3. SMT Solver Module

the solver, LiveWeb uses the SMT-LIB format [RT06], a standard language used in SMT
solver benchmarks and competitions, allowing the replacement of CVC3 by some other
compliant solver with minimal effort. Even so, the implementation of the interaction
with the solver was too tightly coupled with LiveWeb’s typing environment to be easily
applicable to our extension, motivating the decision to write it from scratch as a sep-
arate module. Additionally, the version of the SMT-LIB format used in LiveWeb is not
amenable for interactive use, requiring to restart the solver for each new query, a problem
that is overcome in the latest version [BST10].

The implementation comprises nearly 2700 lines of code, spanning 53 Java files, and
consists of: an abstract syntax tree (AST) representation of the necessary subset of the SMT-
LIB format; an unparser from the AST representation to the textual script representation
expected by a SMT-LIB compliant solver; and a set of classes and interfaces that abstract
the concrete solver being used and the encoding of certain data types, such as records
and strings, that are not defined in any of SMT-LIB’s built-in theories. More precisely, we
implement an ISolver interface that abstracts the concrete solver being used, exposing
methods to query, add assertions, declare new values and declare new predicates; and
two interfaces, IScriptBuilder and IScriptGenerator, that define the process of
building the script and the generation of AST terms, respectively, in the level of abstrac-
tion used by the type checker.

The remaining of this section (Subsection 6.3.1), details the encoding that was used
to bridge the gap between the data types used in our source language and the ones
built-in to the solver language. The interaction with the type checker is further explored
in Section 6.4.

6.3.1 Encoding

A SMT-LIB v2 compliant solver allows interactive use by means of commands with a syn-
tax based in S-expressions [McC60], used in the Lisp family of programming languages.
Each session begins by specifying which sub-logic will be used, among the many that are
built-in to the solver or user-defined. A sub-logic is essentially a predefined set of special-
ized theories, such as quantifier-free boolean logic, linear integer arithmetic or a theory of
arrays, and defines the initial set of definitions in the solver’s environment. Our encoding
is supported by a built-in sub-logic called AUFLIA [Cok11], which allows reasoning over
quantified logical propositions that may include both arbitrary uninterpreted functions
and linear integer arithmetic.

Listing 6.3: Example of a solver interaction

1 > (set-logic AUFLIA)

2 > (declare-sort Unit 0)

3 > (declare-fun unit () Unit)

4 > (assert (forall ((x Unit)) (= x unit)))

5 > (declare-fun a () Unit)

75

6. IMPLEMENTATION 6.3. SMT Solver Module

6 > (declare-fun b () Unit)

7 > (assert (not (= a b)))

8 > (check-sat)
9 unsat

10 ...

After specifying the sub-logic, the interaction is mainly a sequence of sort (type) and
function declarations (declare-sort, declare-fun), assertions (assert) and satisfiability queries
(check-sat) which yield one of three results: satisfiable (sat), unsatisfiable (unsat) or un-
known (unknown) when the solver is unable to ensure its answer is consistent. For in-
stance, in Listing 6.3 we have a simple example where we check if two specific values of
the Unit sort are equal, following the sort’s relevant declarations and axioms. Note that
we want to test validity, so the assertion we want to verify must be negated and the result
interpreted symmetrically: a negative result (unsat) in the satisfiability test means that the
equality is valid. Given the assertion that any value of the Unit sort is equal to the unit
value (line 4), the solver is able to conclude that both values must be equal by applying
transitivity.

AUFLIA has built-in sorts for logical propositions (Bool) and for integer terms (Int),
but lacks support for the majority of terms used in our logic, as it has no notion of records,
strings or boolean values. In the remainder of this section, we discuss the encodings
used to support the data types and predicates of our logic, evidencing the expressibility
restrictions imposed by the SMT-LIB standard as it is. A complete listing of the preamble
included at the beginning of each type checking session can be found in Appendix B.

Boolean The sort of boolean values, here named MyBool to distinguish it from the built-
in Bool sort of logical propositions, has the two base values myTrue and myFalse,
known to be distinct, and the three base boolean operations of negation (myNot), con-
junction (myAnd) and disjunction (myAnd), whose semantic is defined symbolically by
means of assertions.

Listing 6.4: Preamble for the boolean type

1 (declare-sort MyBool 0)

2 (declare-fun myTrue () MyBool)

3 (declare-fun myFalse () MyBool)

4 (assert (distinct myTrue myFalse))

5

6 (declare-fun myNot (MyBool) MyBool)

7 (assert (= (myNot myTrue) myFalse))

8 (assert (= (myNot myFalse) myTrue))

9

10 (declare-fun myAnd (MyBool MyBool) MyBool)

11 (assert (= (myAnd myTrue myTrue) myTrue))

12 (assert (= (myAnd myFalse myTrue) myFalse))

76

6. IMPLEMENTATION 6.3. SMT Solver Module

13 (assert (= (myAnd myFalse myFalse) myFalse))

14 (assert (= (myAnd myTrue myFalse) myFalse))

15

16 (declare-fun myOr (MyBool MyBool) MyBool)

17 (assert (= (myOr myTrue myTrue) myTrue))

18 (assert (= (myOr myFalse myTrue) myTrue))

19 (assert (= (myOr myFalse myFalse) myFalse))

20 (assert (= (myOr myTrue myFalse) myTrue))

Strings A possible encoding for strings is as lists of characters. Since characters are
not built-in, the simplest way to encode strings, albeit not the most readable, is as lists
of integer character codes. Thus, the String sort has one base value, the empty string
(nil), and the usual binary constructor (cons) known not to produce empty strings.
For instance, using the ASCII code of each character the string literal "SMT" would be
encoded as (cons 83 (cons 77 (cons 84 nil))).

Listing 6.5: Preamble for the string type (1)

1 (declare-sort String 0)

2 (declare-fun nil () String)

3 (declare-fun cons (Int String) String)

4 (assert (forall ((ch Int) (s String)) (distinct nil (cons ch s))))

We get equality for free, because structural equality is already defined for uninter-
preted functions, and define the concatenation function between two strings (concat)
symbolically by means of assertions.

Listing 6.6: Preamble for the string type (2)

1 (declare-fun concat (String String) String)

2 (assert (forall ((s String)) (= (concat nil s) s)))

3 (assert (forall ((s String)) (= (concat s nil) s)))

4 (assert (forall ((x Int) (xs String) (ys String))

5 (= (concat (cons x xs) ys) (cons x (concat xs ys)))

6))

Predicates In the SMT-LIB format, predicates are simply functions with result sort Bool
that must be declared before they are used, like any other function. Unlike our language,
however, the SMT-LIB standard does not support name overloading for predicates, re-
quiring us to use different names for predicates with different argument types. To work
around this mismatch without undermining the readability of the script – that is, adhere
to a naming convention that includes the argument types – we define a generic Term sort
and (purely symbolic) conversion functions to simulate untyped behaviour.

77

6. IMPLEMENTATION 6.3. SMT Solver Module

Listing 6.7: A generic Term sort

1 (declare-sort Term 0)

2

3 // For every declared sort named <SORT> add:

4 (declare-fun <SORT>ToTerm (<SORT>) Term)

5 (declare-fun termTo<SORT> (Term) <SORT>)

6 (assert (forall ((t Term) (x <SORT>)) (and
7 (=> (= t (<SORT>ToTerm x)) (= (termTo<SORT> t) x))

8 (=> (= (termTo<SORT> t) x) (= t (<SORT>ToTerm x)))

9)))

For the same reason, predicates with the same name but different arities must also
be differentiated, but we deemed it as acceptable to simply append the predicate’s name
with its arity, usually a single digit. With the Term sort in place and naming convention
defined, declaring a predicate P with arity n is the same as declaring a function named
say, P#n, with n parameters of sort Term and a result of sort Bool. Additionally, in order
to use a predicate in a logical proposition, the argument values must be wrapped in the
appropriate <SORT>ToTerm function, as we can see in Listing 6.8: the integer arguments
of the Author predicate must be wrapped using the function intToTerm. Given that
structural equality between uninterpreted function terms is already built-in, the solver
has no problem proving the validity of the implication by taking into account the equality
in line 3.

Listing 6.8: Declaring and using the Author predicate

1 > (declare-fun Author#1 (Term) Bool)

2 > (declare-fun id () Int)

3 > (assert (= id 3))

4 > (assert (not
5 (=> (Author#1 (intToTerm id)) (Author#1 (intToTerm 3)))

6))

7 > (check-sat)
8 unsat

Records When encoding record types, we are restricted not only by the lack of name
overloading as with predicates, but also because we are unable to quantify over sorts,
consequently being unable to abstract over field types when defining selectors or equal-
ity between records. Given that an encoding of typed records would require a dif-
ferent sort for each record type and correspondent accessor functions, our encoding
admits that the upper layer (i.e. the type checker) is typing records correctly. Every
record has the same Record sort and for every distinct field name we generate a func-
tion with a Record parameter and a Term result. For instance, to declare the record
[user_id = 1, paper_id = 3] with the name author in Listing 6.9, we need to ensure

78

6. IMPLEMENTATION 6.3. SMT Solver Module

that both field selectors were declared and that the equality assertions in lines 5–6 prop-
erly wrap the integer terms.

Listing 6.9: Declaring a record (1)

1 (declare-sort Record 0)

2 (declare-fun RF-user_id (Record) Term)

3 (declare-fun RF-paper_id (Record) Term)

4 (declare-fun author () Record)

5 (assert (= (RF-user_id author) (intToTerm 1)))

6 (assert (= (RF-paper_id author) (intToTerm 3)))

There is also the need to tackle the problem of record equality, taking into account the
previously stated restrictions. For every record declaration, we generate an equality as-
sertion based on the record’s type, taking into account the value of the record’s fields and
requiring the other record to have the same exact number of fields. In order to have the
information about the number of fields, we add to our preamble a fieldsNumber func-
tion and assert its value for each specific record upon declaration. Listing 6.10 illustrates
the changes that would be needed to complete the previous example.

Listing 6.10: Declaring a record (2)

1 (declare-sort Record 0)

2 (declare-fun fieldsNumber (Record) Int)

3 ...

4 (declare-fun author () Record)

5 (assert (= (fieldsNumber author) 2))

6 (assert (forall ((r Record)) (and
7 (=> (= r author) (and
8 (= (fieldsNumber r) (fieldsNumber author))

9 (= (R-user_id r) (R-user_id author))

10 (= (R-paper_id r) (R-paper_id author))

11))

12 (=> (and
13 (= (fieldsNumber r) (fieldsNumber author))

14 (= (R-user_id r) (R-user_id author))

15 (= (R-paper_id r) (R-paper_id author))

16) (= r author))

17)))

18 ...

Other types Although our logic has no term representation for functions, collections
and web pages, we can declare variables of those types and compare them for name-
based equality. Given that no extra information is required, the encoding just needs to
include a new sort for each of them (Function, Collection and Block, respectively)
and the corresponding conversion functions from and to the Term sort.

79

6. IMPLEMENTATION 6.4. Type Checking Process: an example

6.4 Type Checking Process: an example

In this section, we illustrate the interaction between the typing algorithm and the solver
by means of a small example. Consider a simplified fragment of the paper reviewing sys-
tem presented earlier (Chapter 5). A Paper is described by a public id and a confidential
content which may only be read by an author or a reviewer of the paper.

def entity Paper {

id : Id at true(),
content : String at (Author(id) or Reviewer(id))

}

The Author entity describes the authorship relation by pairing users and papers using
their ids, with a local policy stating that information reserved to authors of a paper may
also be read by an user that is an author, provided there is a row in the table proving the
authorship.

def entity Author {

id : Id at true(),
paper_id : Int at Author(paper_id),

user_id : Int at Author(paper_id)

}

flow Author(paper_id) to User(user_id)

An auxiliary action getPapersBy fetches the ids of the papers authored by the given
user with id uid, performing a select query in the Author’s table with the appropriate
condition, and requires the resulting information to be readable by the user by labelling
the return type with security level User(uid).

def User(uid) action getPapersBy (uid: Int at User(uid)):

List[Int at User(uid)] at User(uid)

{

from (a in Author) where a.user_id == uid select a.paper_id

}

Finally, we have a deletePapersBy action that attempts to delete all the papers au-
thored by the given user, obtaining the ids through a call to the getPapersBy action
described above and performing a delete query in the Paper’s table with the expected
condition for each of them.

def true() action deletePapersBy (uid: Int at true()): {} at true() {

(foreach pid in getPapersBy(uid) do
delete p from Paper where p.id == pid

);

{}

}

Recall that, since the paper ids depend on the author’s id, the information is no longer
public. Consequently, the delete query incurs in an information leak which is detected

80

6. IMPLEMENTATION 6.4. Type Checking Process: an example

by the type system, caused independently by the context it is performed in (User(uid)),
potentially revealing information on the number of papers authored by the user, and by the
information provided in its where clause (also of level User(uid)), potentially revealing
information on which papers were authored by the user. We will now explore the type
checking process of this action from the point of view of the solver.

When we begin to type check a module, the solver is started with the full script for
the preamble (included in Appendix B). Next, the type checker needs to process all the
entities and signatures of actions/screens, in order to pre-declare their type. When pro-
cessing the Paper entity to determine its type, the type checker begins a new scope and
declares its two fields in order for them to be bound when checking if the local policies
are well-typed. Although unnecessary, the solver mirrors these actions uniformly, using
the (push 1) and (pop 1) commands to begin and end the assertion scope1.

1 > ...

2 > (push 1)

3 > (declare-fun id () Int)

4 > (declare-fun content () String)

5 > (pop 1)

Afterwards, when the entity’s record type is declared by the type checker, the solver
mirrors it and declares a Paper constant with sort Record, resulting from the conversion
of its original type to the solver encoding. During the conversion, both field accessors
are declared in anticipation for their use. The remaining definitions undergo a similar
process, producing the following script, with the unnecessary commands omitted:

6 > (declare-fun R-id (Record) Term)

7 > (declare-fun R-content (Record) Term)

8 > (declare-fun Paper () Record)

9 > (declare-fun R-paper_id (Record) Term)

10 > (declare-fun R-user_id (Record) Term)

11 > (declare-fun Author () Record)

12 > (declare-fun getPapersBy () Function)

13 > (declare-fun deletePapersBy () Function)

Moving forward to the type verification of deletePapersBy, the type of the uid pa-
rameter is determined and declared inside a new scope (lines 14–15) in order to be bound
during the verification of the body, a sequence beginning with a foreach expression.

foreach pid in getPapersBy(uid) do ...

The typing rule for the foreach expression requires the first expression to be a collection,
leading us to type the call to getPapersBy:

getPapersBy(uid)

1Recall from Section 6.2 that the solver only allows the control of the scope of assertions, not names.

81

6. IMPLEMENTATION 6.4. Type Checking Process: an example

Besides confirming the identifier is bound, we need to check if the type of the argument
(i.e. uid) is a subtype of the action’s first parameter, that is, check if Int at true() is a
subtype of Int at User(uid). From the perspective of the solver, this amounts to check-
ing if the security level true() is implied by User(uid). As the User predicate was not
declared previously, this also triggers its declaration (line 16).

14 > (push 1)

15 > (declare-fun uid () Int)

16 > (declare-fun User#1 (Term) Bool)

17 > (push 1)

18 > (assert (not (=> (User#1 (intToTerm uid)) true)))

19 > (check-sat)
20 unsat
21 > (pop 1)

As expected, the solver answers that adding the negated assertion leads to an un-
satisfiable theory, proving our claim is valid and, consequently, the subtyping relation
holds. Notice that the whole query is performed inside a new assertion scope, so that the
negative assertion we perform to check validity does not affect future queries. A similar
query is performed to guarantee the call, with program counter User(uid), can be made
in the current context, true().

22 > (push 1)

23 > (assert (not (=> (User#1 (intToTerm uid)) true)))

24 > (check-sat)
25 unsat
26 > (pop 1)

Now that we are sure to be iterating a collection, the cursor pid is declared inside a
new scope (line 28) and we proceed to type the foreach’s body, the delete query, with a
higher program counter, User(uid).

delete p in Paper where p.id == pid

After ensuring Paper is indeed an entity, we declare the query’s cursor p inside a new
scope (line 30) and check whether the where clause is well-typed as a boolean.

p.id == pid

In turn, to ensure the corresponding equality expression is well-typed, both sides of the
equality must share a common supertype, leading us to verify if any of the two sides’
types is a supertype of the other. Given the current program counter, both sides end up
with security level User(uid), triggering a trivial query to the solver.

27 > (push 1)

28 > (declare-fun pid () Int)

82

6. IMPLEMENTATION 6.4. Type Checking Process: an example

29 > (push 1)

30 > (declare-fun p () Record)

31 > (push 1)

32 > (assert (not
33 (=> (User#1 (intToTerm uid)) (User#1 (intToTerm uid)))

34))

35 > (check-sat)
36 unsat
37 > (pop 1)

Finally, the typing rule for the delete expression requires the security level of each
field to be at least as high as the program counter, given that we augment the current
knowledge with the where condition (line 36).

def entity Paper { id : Int at true(), ... }

The algorithm begins by verifying if the Paper’s id field fulfils the criteria – which it
does not – and the type checking process reaches a halt, since the missing ids would
allow a public observer of the system to know which papers were deleted and conclude
they all had the same author.

38 > (assert (= (R-id p) (intToTerm pid)))

39 > (push 1)

40 > (assert (not (=> true (User#1 (intToTerm uid)))))

41 > (check-sat)
42 sat

Concretely, suppose I know from the list of papers that their ids range from 1 to 10
and that I am one of two co-authors of the paper with id 3. Right after the action is
executed, if I look at the papers list and see that papers with ids 3 and 5 are missing, I am
able to conclude that my co-author was an author of the paper with id 5, although that
information should not be available unless I was an author of that paper.

83

6. IMPLEMENTATION 6.4. Type Checking Process: an example

84

7
Conclusions and Future Work

In this thesis, we developed a type-based information-flow analysis in the setting of
database-backed software systems, using first-order logic propositions as security levels
which can depend on actual values of the program, provided a prototype implementa-
tion on top of the LiveWeb framework and developed a medium-sized example in our
language.

While information-flow analysis techniques are not new – and, in fact, we follow a
mostly standard approach – the use of logical propositions that depend on data allows
for an expressive, and precise, specification of the confidentiality policies that govern the
interaction with a database. Moreover, simple labels can easily be encoded in our lattice
by representing them as nullary predicates, whereas there is no direct correspondence for
the inverse translation since our levels depend on data. The use of data-dependent se-
curity levels also implies additional concerns in the definition of the type system, related
to the scope of the identifiers that appear in the security levels, as the free occurrences
of identifiers must be closed in a sensible way. In our particular case, we universally
quantify the identifiers in order to close their occurrences conservatively by increasing
the security level.

Without the ability to experiment and validate our ideas, there would be little mean-
ing for our exploratory approach, as we still lack formal proofs that our type system
guarantees a non-interference property. Our prototype provides a medium for direct ex-
perimentation with the development of web applications benefiting from confidentiality
guarantees given by the type system, useful in understanding the pragmatic trade-offs
involved in the secure implementation of such applications and the modelling of their
security policies.

As possible future work supported by the developments of this thesis, we envision:

85

7. CONCLUSIONS AND FUTURE WORK

Proof of Non-interference Proving a non-interference property for our type system would
be a crucial development in ensuring it fulfils its purpose. This should be facilitated
by the fact that our runtime semantics is that of λDB, as we extended the language
conservatively, and that we could try encoding our language in Flow Caml, since it
covers all our data types and has non-inference formally proven. The major chal-
lenges then, would be to correctly encode the data manipulation primitives and our
data-dependent security levels.

Label Polymorphism Pragmatic approaches to information-flow analysis like Jif and
Flow Caml feature label polymorphism in some way to avoid heavily duplicat-
ing functions because of distinct security levels. For instance, it would be useful
to write actions with generic program counters, such that the parameters’ highest
security level and the result’s lowest security level can be automatically deduced.

Label Inference A feature that is prominent in Flow Caml, given its ML heritage, is full
inference of security labels. In our setting, it appears to be even more relevant
from a pragmatic point of view, as logical propositions easily get verbose to write,
hindering the understandability of function signatures.

86

Bibliography

[ABHR99] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of de-
pendency. In Proc. of the 26th ACM Symposium on Principles of Programming
Languages, pages 147–160, January 1999.

[AF12] T. H. Austin and C. Flanagan. Multiple facets for dynamic information flow.
In Proc. of the 39th ACM Symposium on Principles of Programming Languages,
January 2012.

[Bar92] H. P. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer
Science, pages 117–309. Oxford University Press, 1992.

[BST10] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In
Proc. of the 8th International Workshop on Satisfiability Modulo Theories, Decem-
ber 2010.

[Chl10] A. Chlipala. Static checking of dynamically-varying security policies in
database-backed applications. In Proc. of the 9th USENIX Symposium on Oper-
ating Systems Design and Implementation, October 2010.

[CKP05] K. Crary, A. Kliger, and F. Pfenning. A monadic analysis of information flow
security with mutable state. Journal of Functional Programming, 15(2):249–291,
March 2005.

[Cok11] D. R. Cok. The SMT-LIBv2 Language and Tools: A Tutorial. Technical report,
GrammaTech, Inc., 2011.

[CPS+11] L. Caires, J. A. Pérez, J. C. Seco, H. T. Vieira, and L. Ferrão. Type-based access
control in data-centric systems. In Proc. of the 20th European Symposion on
Programming, pages 136–155, 2011.

[Dom10] M. Domingues. Core language for web applications. Master’s thesis, Facul-
dade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2010.

87

BIBLIOGRAPHY

[FP91] T. Freeman and F. Pfenning. Refinement types for ML. In Proc. of the SIG-
PLAN ’91 Symposium on Programming Language Design and Implementation,
pages 268–277. ACM Press, 1991.

[FR05] M. Forsberg and A. Ranta. The labelled BNF grammar formalism. Technical
report, Department of Computer Science, Chalmers University of Technology,
February 2005.

[GF09] A. D. Gordon and C. Fournet. Principles and applications of refinement types.
Technical Report MSR-TR-2009-147, Microsoft Research, 2009.

[JW93] S. L. Peyton Jones and P. Wadler. Imperative functional programming. In Proc.
of the 20th ACM Symposium on Principles of Programming Languages, pages 71–
84, January 1993.

[LC12] L. Lourenço and L. Caires. Segurança de dados em aplicações centradas em
dados por análise de fluxo de informação. In Proc. of INForum 2012 - Simpósio
de Informática, September 2012.

[McC60] J. McCarthy. Recursive functions of symbolic expressions and their computa-
tion by machine, part I. Communications of the ACM, 3(4):184–195, April 1960.

[Mog89] E. Moggi. Computational lambda-calculus and monads. 4th IEEE Symposium
on Logic in Computer Science, pages 14–23, June 1989.

[Mye99] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In
Proc. of the 26th ACM Symposium on Principles of Programming Languages, pages
228–241, January 1999.

[PS02] F. Pottier and V. Simonet. Information flow inference for ML. In Proc. of the
29th ACM Symposium on Principles of Programming Languages, pages 319–330,
January 2002.

[Ree79] T. Reenskaug. Models-views-controllers. Technical report, Xerox PARC, De-
cember 1979.

[RT06] S. Ranise and C. Tinelli. The SMT-LIB Standard: Version 1.2. Technical report,
Department of Computer Science, University of Iowa, August 2006.

[Sim03] Vincent Simonet. The Flow Caml System: documentation and user’s manual.
Technical Report 0282, Institut National de Recherche en Informatique et en
Automatique (INRIA), July 2003.

[SM03] A. Sabelfeld and A. C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, January 2003.

88

BIBLIOGRAPHY

[SS05] A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In
Proc. of the 18th IEEE Computer Security Foundations Workshop, pages 255–269,
June 2005.

[VSI96] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow
analysis. Journal of Computer Security, 4(3):167–187, 1996.

[YYSL12] J. Yang, K. Yessenov, and A. Solar-Lezama. A language for automatically
enforcing privacy policies. In Proc. of the 39th ACM Symposium on Principles of
Programming Languages, January 2012.

[Zda02] S. Zdancewic. Programming Languages for Information Security. PhD thesis,
Cornell University, August 2002.

[Zda04] S. Zdancewic. Challenges for information-flow security. In Proc. of the 1st
International Workshop on Programming Language Interference and Dependence,
August 2004.

89

BIBLIOGRAPHY

90

A
A Lattice of First-Order Logic

propositions

Notation 1. We denote the set of all first-order logic formulas as F .

Notation 2. We denote by←A the is-implied-by relation (←) over logical formulas inF , given
a set of axioms A. That is, for any two elements a and b of F :

` a←A b :⇔ A ` a← b

Definition 1. A partial order ≤ is a binary relation on the elements of a set L which is:

1. reflexive,

2. transitive,

3. and anti-symmetric.

Definition 2. A partially ordered set (poset) (L,≤) is defined by a set L and a partial order ≤
on the elements of a set L.

Definition 3. A lattice (L,≤) is a poset that satisfies the following axioms. For any two ele-
ments a and b of L:

1. There exists an x ∈ L such that:

(a) a ≤ x

(b) b ≤ x

(c) ∀y∈L.a ≤ y ∧ b ≤ y⇒ x ≤ y

91

A. A LATTICE OF FIRST-ORDER LOGIC PROPOSITIONS

2. There exists an x ∈ L such that:

(a) x ≤ a

(b) x ≤ b

(c) ∀y∈L.y ≤ a ∧ y ≤ b⇒ y ≤ x

Lemma 4. The←A relation over logical formulas in F is a partial order if we consider equality
(=) to be defined as logical equivalence (↔).

Proof. By definition 1:

1. Reflexivity follows by the definition of logical implication;

2. Transitivity follows by the definition of logical implication;

3. Anti-symmetry follows by the definition of logical equivalence.

Corollary 5. The set of logical formulasF with the←A relation is a poset if we consider equality
(=) to be defined as logical equivalence (↔).

Proof. By definition 2 and lemma 4.

Lemma 6. The poset (F ,←A) is a lattice if we consider (=) to be defined as logical equivalence
(↔).

Proof. By corollary 5, we know (F ,←A) is a poset. Thus, by definition 3 we must prove
that for any two formulas P, Q ∈ F :

1. There exists a formula R ∈ F such that:

(a) P←A R

(b) Q←A R

(c) ∀S∈F .P←A S ∧Q←A S⇒ R←A S

2. There exists a formula R ∈ F such that:

(a) R←A P

(b) R←A Q

(c) ∀S∈F .S←A P ∧ S←A Q⇒ S←A R

We can prove 1 by considering the formula P ∧Q:

1. P←A P ∧Q (conjunction elimination)

2. Q←A P ∧Q (conjunction elimination)

92

A. A LATTICE OF FIRST-ORDER LOGIC PROPOSITIONS

3. ∀S∈F .P←A S ∧Q←A S
⇒ ∀S∈F .(A ` P← S) ∧ (A ` Q← S)
⇒ ∀S∈F .(A ` P← S ∧Q← S)
⇒ ∀S∈F .(A ` (P ∨ ¬S) ∧ (Q ∨ ¬S))
⇒ ∀S∈F .(A ` (P ∧Q) ∨ ¬S)
⇒ ∀S∈F .(A ` (P ∧Q)← S)
⇒ ∀S∈F .(P ∧Q)←A S

Similarly, we can prove 2 by considering the formula P ∨Q:

1. P ∨Q←A P (disjunction introduction)

2. P ∨Q←A Q (disjunction introduction)

3. ∀S∈F .S←A P ∧ S←A Q
⇒ ∀S∈F .(A ` S← P) ∧ (A ` S← Q)

⇒ ∀S∈F .(A ` S← P ∧ S← Q)

⇒ ∀S∈F .(A ` (S ∨ ¬P) ∧ (S ∨ ¬Q))

⇒ ∀S∈F .(A ` S ∨ (¬P ∧ ¬Q))

⇒ ∀S∈F .(A ` S ∨ ¬(P ∨Q))

⇒ ∀S∈F .(A ` S← (P ∨Q))

⇒ ∀S∈F .S←A (P ∨Q)

93

A. A LATTICE OF FIRST-ORDER LOGIC PROPOSITIONS

94

B
Solver Preamble

Listing B.1: Solver encoding preamble

(set-logic AUFLIA)

(declare-sort MyBool 0)

(declare-fun myTrue () MyBool)

(declare-fun myFalse () MyBool)

(assert (distinct myTrue myFalse))

(declare-fun myNot (MyBool) MyBool)

(assert (= (myNot myTrue) myFalse))

(assert (= (myNot myFalse) myTrue))

(declare-fun myAnd (MyBool MyBool) MyBool)

(assert (= (myAnd myTrue myTrue) myTrue))

(assert (= (myAnd myTrue myFalse) myFalse))

(assert (= (myAnd myFalse myTrue) myFalse))

(assert (= (myAnd myFalse myFalse) myFalse))

(declare-fun myOr (MyBool MyBool) MyBool)

(assert (= (myOr myTrue myTrue) myTrue))

(assert (= (myOr myTrue myFalse) myTrue))

(assert (= (myOr myFalse myTrue) myTrue))

(assert (= (myOr myFalse myFalse) myFalse))

(declare-sort String 0)

(declare-fun nil () String)

(declare-fun cons (Int String) String)

(assert (forall ((s String) (ch Int)) (distinct nil (cons ch s))))

(declare-fun concat (String String) String)

(assert (forall ((s String)) (= (concat nil s) s)))

(assert (forall ((s String)) (= (concat s nil) s)))

95

B. SOLVER PREAMBLE

(assert (forall ((ys String) (xs String) (x Int))

(= (concat (cons x xs) ys) (cons x (concat xs ys)))

))

(declare-sort Record 0)

(declare-fun numFields (Record) Int)

(declare-sort Block 0)

(declare-sort Function 0)

(declare-sort Collection 0)

(declare-sort Term 0)

(declare-fun termToInt (Int) Term)

(declare-fun intToToTerm (Term) Int)

(assert (forall ((t Term) (x Int)) (and
(=> (= t (termToInt x)) (= (intToTerm t) x))

(=> (= (intToTerm t) x) (= t (termToInt x)))

)))

(declare-fun termToMyBool (MyBool) Term)

(declare-fun myBoolToTerm (Term) MyBool)

(assert (forall ((t Term) (x MyBool)) (and
(=> (= t (termToMyBool x)) (= (myBoolToTerm t) x))

(=> (= (myBoolToTerm t) x) (= t (termToMyBool x)))

)))

(declare-fun termToString (String) Term)

(declare-fun stringToTerm (Term) String)

(assert (forall ((t Term) (x String)) (and
(=> (= t (termToString x)) (= (stringToTerm t) x))

(=> (= (stringToTerm t) x) (= t (termToString x)))

)))

(declare-fun termToRecord (Record) Term)

(declare-fun recordToTerm (Term) Record)

(assert (forall ((t Term) (x Record)) (and
(=> (= t (termToRecord x)) (= (recordToTerm t) x))

(=> (= (recordToTerm t) x) (= t (termToRecord x)))

)))

(declare-fun termToBlock (Block) Term)

(declare-fun blockToTerm (Term) Block)

(assert (forall ((t Term) (x Block)) (and
(=> (= t (termToBlock x)) (= (blockToTerm t) x))

(=> (= (blockToTerm t) x) (= t (termToBlock x)))

)))

(declare-fun termToFunction (Function) Term)

(declare-fun functionToTerm (Term) Function)

(assert (forall ((t Term) (x Function)) (and
(=> (= t (termToFunction x)) (= (functionToTerm t) x))

(=> (= (functionToTerm t) x) (= t (termToFunction x)))

)))

(declare-fun termToCollection (Collection) Term)

96

B. SOLVER PREAMBLE

(declare-fun collectionToTerm (Term) Collection)

(assert (forall ((t Term) (x Collection)) (and
(=> (= t (termToCollection x)) (= (collectionToTerm t) x))

(=> (= (collectionToTerm t) x) (= t (termToCollection x)))

)))

97

	Introduction
	Motivation
	Proposed Approach
	Contributions
	Document Structure

	Background
	Information Flow
	SEC and REFSEC calculi
	Dependency Core Calculus
	Secure Monadic Calculus

	Type-Based Access Control
	DB and the LiveWeb framework

	Related Work
	Ur/Web
	Flow Caml
	Information-Flow in Data-Manipulation Primitives

	Language and Type System
	Core Language
	Type System
	Lattice
	Typing Judgements
	Type Operators and Notation
	Typing Rules

	Extended LiveWeb
	Typing Judgements
	Typing Rules

	Approaching Non-interference

	Example
	Scenario
	Application

	Implementation
	LiveWeb
	LiveWeb Extension Core Module
	SMT Solver Module
	Encoding

	Type Checking Process: an example

	Conclusions and Future Work
	A Lattice of First-Order Logic propositions
	Solver Preamble

