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Abstract

The neurodegenerative disease, Parkinson’s Disease (PD) constitutes a major health
problem in the modern world, and its impact on public health and society is expected
to increase with the ongoing ageing of the human population. This disease is character-
ized by motor and non-motor manifestations that are progressive and ultimately refrac-
tory to therapeutic interventions. The degeneration of dopaminergic neurons emanating
from the substantia nigra is largely responsible for the motor manifestations. Thus, un-
derstanding the behaviour related to this disease is an added value for the diagnosis
and treatment of PD. Also, in vivo models are essential tools for deciphering the molec-
ular mechanisms underpinning the neurodegenerative process. Zebrafish has several
features that make this species a good candidate to study PD. In particular, the occur-
rence of behavioural phenotypes of treated animals with neurotoxin drugs that mimic
the disease has been investigated. And, an electric biosensor, Marine On-line Biomoni-
tor System (MOBS) is being used for the real-time quantification of such behaviour. This
equipment allows quantifying the fish movements through signal processing algorithms.
Specifically, the algorithm is used for the evaluation of fish locomotion detected by a se-
ries of bursts in the domain of MOBS that correspond to the zebrafish tail-flip activity.
In this thesis we proceeded to the development of an algorithm affording a electrical
signal discrimination between "healthy" and "ill" zebrafish and consequently improving
the detection of parkinsonism-like phenotypes in zebrafish. The first approach was the
improvement of the existent algorithm. However, the first analysis failed to distinguish
between different behavioural phenotypes when fish were treated with the neurotoxin
6-hydroxydopamine (6-OHDA). Consequently, we generated a new algorithm based on
Machine Learning techniques. As a result, the novel algorithm provided a classification
over the health condition of the fish, if the same is "healthy" or "ill" with its respective
probability and the level of activity of the fish in number of tail-flips per minute. The
method Support Vector Machine (SVM) was useful for the classification of the fish events.
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The zero crossing rate parameter was used for the characterization of the swimming ac-
tivities. The algorithm was also integrated in the platform Open Signals, and for a faster
evaluation of the signals, the algorithm implementation included parallel programming
methods. This algorithm is a useful tool to study behaviour in zebrafish. Not only it will
allow a more realistic study over the PD research area but also test and assess new drugs
that use zebrafish as animal model.

Keywords: PD, Zebrafish, MOBS, Behaviour, Machine Learning, Zero Crossing Rate,
SVM.



Resumo

A doença neurodegenerativa, doença de Parkinson (PD) constitui um grave problema
de saúde no mundo, e o seu impacto sobre a saúde pública e sociedade irá aumentar com
o envelhecimento contínuo da população humana. Esta doença é caracterizada por ma-
nifestações motoras e não motoras, que são progressivas e em última análise refractárias
às intervenções terapêuticas. A degeneração de neurónios dopaminérgicos que emanam
da substância negra é em grande parte responsável pelas manifestações motoras. As-
sim, o estudo do comportamento relacionado com esta doença é uma mais valia para
diagnóstico e tratamento da PD. Além disso, modelos in vivo são ferramentas essenciais
para decifrar os mecanismos moleculares subjacentes ao processo neurodegenerativo. O
peixe zebra tem várias características que tornam esta espécie um bom candidato para
o estudo da PD. Em particular, tem-se investigado a ocorrência de fenótipos comporta-
mentais dos animais tratados com neurotoxinas que simulam a doença. E, um biossensor
eléctrico MOBS está sendo utilizado para a quantificação em tempo real de tais compor-
tamentos. Este equipamento permite quantificar os movimentos dos peixes através de
algoritmos de processamento de sinal. Especificamente, o algoritmo é usado para a ava-
liação da locomoção do peixe, detectado com base em variações no domínio de MOBS,
que correspondem ao número de barbatanadas por minuto do peixe zebra. Nesta tese,
procedeu-se ao desenvolvimento de um algoritmo que ofereça uma discriminação dos si-
nais eléctricos entre peixes zebra "saudáveis"ou "doentes", e consequentemente, permitir
melhorar a detecção de fenótipos parkinsonianos do peixe zebra. A primeira abordagem
consistiu em melhorar o actual algoritmo. No entanto, a primeira análise falhou numa
distinção entre fenótipos comportamentais quando os peixes foram tratados com a neu-
rotoxina 6-OHDA. Consequentemente, geramos um novo algoritmo baseado em técnicas
de Machine Learning. Como resultado, o novo algoritmo proporcionou uma classifica-
ção sobre o estado de saúde do peixe, se o mesmo está "saudável"ou "doente", com a sua
respectiva probabilidade e o nível de actividade do peixe em número de barbatanas por
minuto. O método SVM mostrou-se útil para a classificação dos peixes. O parâmetro
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zero crossing rate, foi útil para caracterizar o nível de actividade dos peixes. O algoritmo
também foi integrado na plataforma Open Signals, e para permitir uma avaliação rápida
dos sinais, a implementação do algoritmo incluiu métodos de programação em paralelo.
Este algoritmo é uma ferramenta útil para estudar comportamentos no peixe zebra. Não
só irá permitir um estudo mais realístico na área de investigação da PD mas também
testar e avaliar novas drogas que usem o peixe zebra como modelo animal.

Palavras-chave: Doença de Parkinson, Peixe Zebra, MOBS, Comportamentos, Machine
Learning, Zero Crossing Rate, SVM.
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1
Introduction

1.1 Motivation

People are living longer. Since Parkinson’s Disease (PD) most commonly affects the el-
derly, the number of sufferers will rise substantially in the years to come. The prevalence
of PD is 1% to 2% of persons older than 60 years [5]. In turn, the need for clinical and
social services to care for and support patients with PD will increase at a rapid rate, with
major implications for the resources that are allocated to healthcare [6].

There is currently no form of pharmacotherapy available that has shown to delay the
progression of PD. However, there are a range of drugs that can treat the symptoms of
the condition and consequently improve the patient’s life quality. Also, the correct diag-
nose of PD especially in the early stages of the disease, represent quite a challenge. PD
can cause a broad spectrum of symptoms and there are significant variations between
patients in the way the disease manifests itself and the speed with which symptoms de-
velop. However three symptoms are clearly fundamental: hypokinesia (reduction in
movement), rigidity and tremor [6].

Despite all the recent progress in the understanding of PD, the molecular mechanisms
underlying this disease are still obscure. The available in vivo models have failed to fully
recapitulate all features of PD. However, the teleost, Danio rerio, has emerged as a valu-
able model to study different aspects associated with neurodegeneration. In particular,
zebrafish display specialized neurons with direct relevance to human neuronal disor-
ders. It has been proved that the loss of dopaminergic neurons induces changes in the
behaviour of the fish, specifically decreases its level of swimming activity. Therefore the
assessment of behavioural phenotypes in zebrafish can be an important contribution for
studying the molecular basis of PD as well as in the drug screening analysis.

1



1. INTRODUCTION 1.2. Objectives

1.2 Objectives

The major aim of this work was the development of an algorithm that, once combined
with the MOBS biosensor, allows to differentiate electric signals between "healthy" and
"ill" zebrafish and also provide its swimming activity in number of tail-flips per minute.
Hence it will improve the detection of parkinsonism-like phenotypes in zebrafish.

1.3 Thesis Overview

The structure of this thesis is schematically represented in Figure 1.1.

 

• 1.Introduction 

 

• 2.Concepts 

Basis 

 

• 3.Current Algortithm    
Evaluation 

 

• 4.Proposed Algorithm 

Developments 
• 5.Application 

 

• 6.Conclusions 

Results 

• Publication 

Appendix 

Figure 1.1: Thesis overview.

In the first two chapters the basis that support this research is reported. The motiva-
tion and objectives are presented in Chapter 1. There was an initial effort to characterize
the behaviour of zebrafish using an algorithm that provided the number of tail-flips per
minute. Thus, the association between the zebrafish and PD, the current algorithm used
to characterize the behaviour of zebrafish, as well as the description of the biosensor
MOBS are described in Chapter 2. In this chapter it is also reported machine learning
techniques that were used in the implementation of the new algorithm.

Chapter 3 examines with more detail the current algorithm output using video, which
required the development of a functionality in the platform Open Signals that allowed
synchronism between video and signal. This detailed analysis demonstrated the need
for creating a new algorithm that could simulate zebrafish behaviour as real as possi-
ble. Chapter 4 presents the development of the new algorithm using machine learning
techniques as well as its validation.

The following chapters addresses the results. Chapter 5 demonstrates the application
of the new developed algorithm using a new case study related with PD. Chapter 6
presents the conclusions of this research work as well as its future work. The Appendix

2



1. INTRODUCTION 1.3. Thesis Overview

contains the paper published in the context of this research work.
This thesis was written using the LATEX environment [7]. The signal acquisition uses

the software MATLAB and the signal processing algorithms were developed in Python.
The Orange software was used to build the classifier [8]. The final algorithm was also
integrated in the platform Open Signals that required some knowledge in Javascript and
HTML.

This dissertation was developed at PLUX - Wireless Biosignals, S. A. and at IMM from
Lisbon University.

3
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2
Concepts

2.1 Zebrafish and Parkinson’s Disease

2.1.1 Zebrafish

Zebrafish (scientific name - Danio rerio) are tropical fresh water fish from Ganges region
of India. They can be found in Nepal, Bangladesh, Pakistan and Myanmar [9].

Figure 2.1: Zebrafish [1].

The fish seen in Figure 2.1 is named for the five horizontal blue stripes on the side
of the body. Males are torpedo shaped and have gold stripes between the blue stripes;
females have a larger, whitish belly and have silver stripes instead of gold. Fully grown
adults are around 3-5 cm long and 1 cm wide.

Zebrafish are omnivorous, meaning they will eat plants and animals, like zoo-plankton,
insects and phytoplankton. In captivity they eat conventional flaked fish food [9].

5



2. CONCEPTS 2.1. Zebrafish and Parkinson’s Disease

2.1.2 Zebrafish as a model organism

Most insights into human disease are a result of experiments that would be unethical or
unfeasible to perform on humans. Instead, biomedical research uses models to look at
the functions of the genes involved in maintaining healthy organisms in order to obtain
vital clues about the causes and progression of human diseases.

People are familiar with the use of mice and rats as model organisms (lab rats). As
mammals they are very similar to humans, therefore they can be used to study complex
processes underlying normal human development and diseases.

If we want to know something simple that is likely to occur in all living organisms
than we can use bacteria or yeast as they are easy and cheap to look after and they’re
very well understood. However, sometimes they can be too simple in terms of biological
organization.

Zebrafish are the ideal model organism to bridge the gap between "too simple" and
"too complex". They are aquatic vertebrates and have similar body plans (and similar
tissues and organs) to humans, and they are much easier and with reduced cost to breed
than mice and rats. Zebrafish has a short generation time (3 months) and breed prodi-
giously (hundreds of offspring per female per week). They develop from a single cell in
fertilized egg in about 24 hours (for a mouse it takes about 21 days). Also, the embryos are
large, robust, transparent, easy to manipulate genetically and are developed outside the
mother. Some drugs can even be administered by adding directly to the tank. Zebrafish
mutations phenocopy many human disorders and the genome sequence of zebrafish is
near completion [9].

However, besides all the advantages, zebrafish also have disadvantages when com-
pared to other models. They are not mammals, so they are not as closely related to hu-
mans as mice. Therefore, all the new discoveries must later be verified in a mammal
model [10]. It is the similarity between the genes, which scientists call conservation, or
genetic homology, the reason why fish can be used to study human diseases. Hence, ze-
brafish can be used as a model organism.

The Central Nervous System (CNS) coordinates the activity of the body. It includes
the brain and the spinal cord. Disorders in the CNS can affect control of physical move-
ment, alteration of mood, change in sociability and absence of, or decline in communica-
tion [9].

More and more groups are becoming interested in the fact that adult zebrafish pos-
sess a high capacity for regeneration. Amazingly, spinal cord tissue can regenerate after
a complete transection. In a process that takes about 6 weeks, approximately 80% of ani-
mals given a posterior injury achieve functional recovery [11]. This phenomenon is based
on the striking ability of the CNS neurons to recover, traverse the lesion, and re-establish
functional connections [12].

Some of the neurological disorders that can be studied with zebrafish are Hereditary
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2. CONCEPTS 2.2. Marine On-line Biomonitor System – MOBS

Spastic Paraplegia, Parkinson’s Disease, Huntington’s Disease, Motor Neuron Disease
and Multiple Sclerosis. These diseases cause loss of voluntary movement control in pa-
tients. Given that their health is aggravated over time, they are called neurodegenerative
disorders. At this moment there is no cure, and any treatment only slows the progression
of symptoms [9].

2.1.3 Parkinson’s Disease

PD was first described in 1817 by James Parkinson and is the second most common
neurodegenerative disorder, after Alzheimer’s disease [13]. The PD is characterized by
tremor, muscle rigidity, a slowing of physical movement, and can also cause cognitive
and mood disturbances. It results of the loss of nerve cells in part of the brain known
as the substantia nigra. These cells are called Dopaminergic (DA) neurons as they pro-
duce the neurotransmitter - dopamine, which is used to send messages to the parts of the
brain that co-ordinates movements. When around 80% of the DA neurons are lost, the
symptoms of PD start to show. The cause of PD is not absolutely clear; there are some
mutations associated with the loss of DA neurons and it is known that some toxins or
chemicals may also cause the disease [9].

2.1.4 Parkinson’s Disease in Zebrafish

The DA nervous system in zebrafish is well characterized in both embryos and adult ze-
brafish. DA neurons are first detected between 18 and 19 hours post-fertilization (hpf).
Some toxins known to induce DA cell loss in other animal models have now also been
tested in adult zebrafish, as for example, the 6-hydroxydopamine (6-OHDA) which is a neu-
rotoxin that induces death of the DA cells [14, 15, 16]. The swimming velocity and total
distance moved decreased after exposure to this neurotoxin [17, 18]. Thus the evaluation
of swimming behaviour can be related with the loss of DA cells, and consequently with
PD.

2.2 Marine On-line Biomonitor System – MOBS

A biosensor is defined as a self-contained integrated device that is capable of providing
specific quantitative analytical information using a biological recognition element. The
main advantages are the possibility of a continuous monitoring, the high specificity and
sensitivity [19].

Biosensors are an essential control and safety tool for our environmental and health
quality and are commonly used in medicine. Many of today’s biosensor applications
are similar, in that they use living organisms which respond to toxic substances or other
stressors at a much lower level than us to warn us of their presence. Under this scope,
the MOBS was developed, an automated system for recording behavioural responses of
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2. CONCEPTS 2.2. Marine On-line Biomonitor System – MOBS

marine and fresh water species. This device was firstly applied successfully in the envi-
ronmental field, and nowadays is used in the biomedical field, in particular, by sensing
behavioural changes in organisms as an indication of stress or disease. Zebrafish has
proved to be a suitable model candidate for this research since it has been used in medi-
cal research during the past years, e.g in development studies [20], drug toxicity assess-
ments [21] and neurodegenerative diseases [22]. Previous studies using this electronic
device were used to asses water quality [2] and testing analgesics [23].

2.2.1 The main device

MOBS is an automatic system for recording behavioural responses of marine and fresh
water species. Low power electrical signals are modulated by the behavioural activities
of the organisms and then monitored, processed and analysed in real time.

The device monitors changes in electric fields caused by organism movements by
means of non-invasive electrodes. It is an external automated transducer designed and
manufactured at Faculty of Engineering of the University of Porto (Portugal). The MOBS
device can record continuously specific behavioural activities of marine fish species, such
as ventilation frequency and swimming activities and can quantify electrical signatures
patterns from individual organisms as well as groups of animals.
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Figure 2.2: The operation diagram of the MOBS system adapted from [2].

The MOBS can manage up to 14 containers in parallel which consists of cylindrical
chambers with 6 cm in diameter and 10 cm long [2]. The device injects weak analogue
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2. CONCEPTS 2.2. Marine On-line Biomonitor System – MOBS

electrical signals into the water of the test chambers through a pair of non-invasive stain-
less steel electrodes. The response is measured as a change in impedance of the water col-
umn received by another pair of non-invasive stainless steel electrodes associated with
movements of the fish [23]. The electrodes are attached vertically at the aquaria walls
such that they provide a homogeneous distributed electric field across the entire aquar-
ium.

The main device is controlled via an USB port by external processing software which
produces signals in the digital domain (at 48000 samples/s or 48 kHz). These are con-
verted by the main device into analogical electrical signals, power amplified and trans-
mitted to the independent testing units at which they are conducted into the water by a
pair of non-invasive stainless steel electrodes – Figure 2.2. In response to the behavioural
signatures of the organisms, the amplitudes of the electrical signals are modulated and
then received by a second pair of electrodes. In the main device they are amplified and
converted back to the digital domain at 48000 samples/s, before filtered, demodulated
and down-sampled at 100 Hz by the external computer software. Then, they are anal-
ysed in the frequency domain (Fourier transform with proper windowing) in chunks of
about 10 s.

• Discrete Fourier Transform (DFT): The frequency domain allows a different vision
over the signal, and simplifies some operations like convolution and correlation. It
is defined as:

Ar =

N−1∑
k=0

Xkexp(−2jπrk/N) with r = 0, 1, . . . , N − 1 (2.1)

where Ar is the rth coefficient of the DFT and Xk denotes the kth sample of the time
series which consists of N samples and j =

√
−1. Also worth mentioning the Fast

Fourier Transform (FFT) which is a method for efficiently computing the DFT of
time series (discrete data samples)[24].

Upon processing, the system provides a signal in the frequency band of 0.2 Hz to 40
Hz that is correlated with the fish activity. As the harmonics are relevant to obtain signal
shapes, they defined the cut-off frequency of the filters at around 45 Hz. This allows to
obtain a clear representation of the direct time domain signal and its frequency spectrum,
which is suitable to broaden the range of pattern recognition algorithms that can be used
afterwards [2].

2.2.2 Other biosensor

Another biosensor similar to this one is the Multispecies Freshwater Biomonitor (MFB),
which is based on the detection of impedance changes in the water across a test chamber
due to movements of an organism in an alternating electrical field. The MFB is the first
multi-species aquatic biomonitor available in the European market. It has been applied to
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several kinds of freshwater organisms, mainly to test behavioural effects to the exposure
of pharmaceutical effluents and to pollution detection on aquatic invertebrates and fish.
These studies were analysed using the FFT [25, 26].

Yet one of the advantages from this biosensor related to MOBS is the fact that in order
to prevent the organisms from touching the electrodes, the chambers walls are covered
with nylon netting (50µm) [27].

2.3 Behaviour in Zebrafish

Behaviour is the final outcome of a sequence of neurophysiological events including stim-
ulation of sensory and motor neurons, muscular contractions, and release of chemical
messages [27]. On-line biomonitors frequently use behaviour as an end point, which pro-
vides a visual and, thus, measurable response at the whole-organism level. This method
generates fast and sensitive results that can be integrated in many biological functions
[28].

There is a lack of studies on complex behaviour in zebrafish; although it is recognised
as having great potential as a model for understanding the genetic basis of human be-
havioural disorders. One area of interest has been the effect of drugs on behaviour and
also the studying of social behaviour, learning and memory.

The number of behavioural studies of zebrafish looks set to increase, and many re-
searchers whose primary expertise is in genetics or development biology are using be-
havioural protocols as a paradigm for testing the reinforcing properties of drugs of abuse.
One of the problems with designing and conducting behavioural experiments is demon-
strating that the results are a valid measure of the behaviour under consideration. Thus
there is a need for adequate controls, in order to ensure that the results are not due to
unrelated artefacts, for example, outside disturbance, either visual or auditory and accli-
matisation. The behaviour may also vary according to the time of the day at which ob-
servations are recorded, especially in relation to matting behaviour and feeding regime
[15]. The next subsections describe the behaviour studied with MOBS.

2.3.1 Locomotion

A typical activity using zebrafish in the time domain of MOBS is shown in Figure 2.3(a).
The amplitude of the fish activity in the time domain is in the order of the mV.

Locomotion can be presented as a series of bursts in the time domain, and can cover
a broad frequency spectrum, at which ventilation is occasionally present. Although the
strong bursts can cover a broad frequency spectrum, still most of the energy is located in
the range between 0 Hz and 1 Hz as seen in Figure 2.3(b). In contrast, the spectrum for
locomotion looks often like a random and unstructured signal for an inexperienced user.
A clear separation between the signals for ventilation and locomotion in this fish cannot
be ensured [2].
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Figure 2.3: Locomotion of a "healthy" fish represented in time and frequency domain (as
"healthy" is meant that is neither "ill" nor transgenic).

2.3.2 Ventilation

Ventilation consists in opening and closing of mouth/operculum and causes only very
local disturbances in the water. The smaller the distance between electrodes and organ-
ism, the better the corresponding electric field can be identified and quantified. Typically
ventilation generates waves of triangular shape with a higher frequency and smaller am-
plitude than most of the energy located for locomotion. Ventilation can be detected and
quantified by frequencies and thus requires a clear peak in the frequency spectrum [2].
However, ventilation will not be studied with zebrafish given its high level of activity.

2.4 Current Algorithm

An algorithm is a sequence of instructions designed to solve a problem [29]. The current
algorithm used to characterize the behaviour of zebrafish consists in the evaluation of a
specific locomotion behaviour of zebrafish, with a series of bursts in the domain of MOBS
corresponding to the zebrafish tail-flip activity. Thus the outcome reflects the number of
tail-flips per minute per individual fish [23].

The algorithm process uses the derivative of the signal in the time domain. This will
allow the detection of the behaviour tail-flip, with representative peaks of the derivative
that characterize the strong bursts. These peaks are detected using the standard deviation
of the signal multiplied by a factor, to allow the comparison between the two parameters
standard deviation and derivative, given that, the behaviour tail-flip can be detected.
However, this algorithm detection compared with the actual fish behaviour requires con-
firmation, and this can be accomplished by using video synchronized with the signal in
the time domain.

Besides the multiplicative factor, other thresholds are used to limit the maximum and
minimum amplitude of the fish activity.
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Figure 2.4 presents an example of a "healthy" fish behaviour associated with its deriva-
tive. The fish strong bursts result in signal (blue) variations and consequently provide
defined peaks of the difference (green). Thus the algorithm output (red) will detect these
peaks using a threshold that is defined by the standard deviation multiplied by a fac-
tor (black). To refer that the difference, the standard deviation and the algorithm output
were amplified in this case to simplify visualization.
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Figure 2.4: Algorithm process. The signal is represented in blue, the difference in green,
the algorithm output in red and the standard deviation multiplied by a factor in black.

For an easy behaviour analysis, the algorithm is created with -1, 0 and 1 values as
seen in Figure 2.4 (red). The values -1 and 1 are attributed if the difference exceeds the
standard deviation, and passes to 0 when the difference is null. The 0 value is maintained
until the difference exceeds again the standard deviation. Finally the algorithm will count
the number of resulting transitions 0/1, 0/-1 and divide it by the total time of the signal
in minutes providing the number of tail-flips per minute, of an individual fish.

2.4.1 Need for improvement

The pre-defined thresholds (multiplicative factor, maximum and minimum amplitude for
the fish activity) are one of the reasons for confirmation and improvement. The algorithm
only provides one type of behaviour, the tail-flips, which is a measurement of the fish
activity (the higher the number of tail-flips, the more active the fish is). Nevertheless
the possibility to study other behaviour (e.g. swimming and ventilation) may turn this
algorithm more advantageous and complete for future works.

A more detailed analysis in the signal compared to the actual fish behaviour is nec-
essary, which requires synchronism between signal and video. Possible errors from the
main device that are visible in the signal need to be detected and filtered.

In the work performed by Correia et. al (2012) [18], a new transgenic line of zebrafish
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was developed to study the DA neurons. This transgenic line was treated with the neu-
rotoxin 6-OHDA and behavioural effects investigated with the MOBS biosensor. It was
demonstrated that the drug induces behavioural changes that were related to the death
of DA neurons. The use of an improved algorithm could contribute as a more sensitive
tool in the detection of behavioural phenotypes associated with the loss of the DA neu-
rons. Thus it is essential to confirm if the actual algorithm is in fact detecting the right
behaviour - the tail-flips. To develop a new algorithm, Machine Learning techniques are
suggested.

2.5 Machine Learning

Machine Learning enables the extraction of implicit, previous unknown, and potentially
useful information from data [30].

By Arthur Samuel (1959), machine learning is the field of study that gives computers
the ability to learn without being explicitly programmed. A more recent definition by
Tom Mitchell (1998) says: "A computer program is said to learn from experience E with
respect to some task T and some performance measure P , if its performance on T , as
measured by P , improves with experience E" [3].

Machine learning is used do extract information from the raw data in databases -
information that is expressed in a comprehensible form and can be used for a variety of
purposes. The process is one of abstraction: taking the data, warts and all, and inferring
whatever structure underlies it. With machine learning we can use tools and techniques
that are used for finding, and describing, structural patterns in data [30].

There are different types of machine learning algorithms, the main two types are:
unsupervised and supervised learning.

2.5.1 Unsupervised Learning

With unsupervised learning it is intended to let the computer learn by it self. The right
answers are not labelled in the data, there is no such supervisor and there is only input
data. Finding some structure is possible using clustering algorithms which allows groups
separations [3, 31].

2.5.2 Supervised Learning

The idea is to teach the computer how to do something. The right answers are provided
in the data set to the algorithm. In a sense, the scheme operates under supervision by
being provided with the actual outcome for each of the training examples. In this type of
machine learning the regression and classification problems are included.
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(c) Classification using two input
variables. Blue represents benign
tumor and green malignant tumor.

Figure 2.5: Supervised learning examples. Adapted from [3].

2.5.2.1 Regression Problems

Predict continuous valued output, for example predict the price of a house according
to its size using linear regression - Figure 2.5(a). In cases where the linear model is too
restrictive, one can use for example a quadratic or a higher-order polynomial, or any
other non-linear function of the input, this time optimizing its parameters for best fit.

Given a training set with m training examples we can represent x as the input vari-
able/feature, y as the output variable or target variable and hθ(x) our hypothesis which
estimates the output y. It is used to make predictions. Related to Figure 2.5(a) 17 train-
ing examples are used, with the size of the house as the input variable and the price as
output.

Linear Regression

When the output and all input variables are numeric, linear regression is a natural tech-
nique to consider. Also when using more than one variable it is important to consider
that there might be a single variable that does all the work and the others are irrelevant
or redundant.

The hypothesis using one input variable as seen in Figure 2.5(a) can be expressed as:

hθ(x) = θ0 + θ1x (2.2)

Where θ0 and θ1 are the parameters used so that hθ(x) is close to the output y when
using our training examples. Here, the machine learning program optimizes the param-
eters, θ, such that the approximation error is minimized, that is, our estimates are as
close as possible to the correct values given in the training set. In many cases, there is
no analytical solution and we need to resort to iterative optimization methods. The most
commonly used are gradient descent and normal equation [31].

The success of supervised learning can be judged by trying out the concept descrip-
tion that is learned on an independent set of test data for which the true classifications
are known but not made available to the machine [30].
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2.5.2.2 Classification problems

This technique intends to predict discrete valued outputs, for example predict if a tumour
is benign or malign according to the tumour size – Figure 2.5(b). It is also possible to use
more than one input variable to predict the output as seen in Figure 2.5(c), which uses two
input variables, the tumor size and age, to classify if the tumor is benign or malignant.

Classification problems can use two classes (e.g predict if a tumor is benign or malig-
nant), or multi-classes. From figures 2.5(b) and 2.5(c), the aim is to infer a general rule,
coding the association between the input attributes and its output. That is, the machine
learning system fits a model to the past data to be able to estimate the tumor malignancy
for a new situation [3, 31]. Using two classes it is important that our hypothesis is given
in terms of probability, so that the class that presents higher probability will be chosen.

Classification Performance

The data produced by a classification scheme during testing are counts of the correct and
incorrect classifications from each class. This information is then normally displayed in a
confusion matrix - Table 2.1.

Table 2.1: Confusion Matrix. Tp and Tn are the number of true and negative examples
respectively. Fp and Fn the number of false positives and negatives respectively.
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A confusion matrix is a form of contingency table showing the differences between
the true and predicted classes for a set of labelled examples. Considering Tp and Tn the
number of true positives and true negatives respectively, Fp and Fn the number of false
positives and negatives respectively, there are measures that can be extracted from the
confusion matrix:

Accuracy =
Tp + Tn

Tp + Fp + Tn + Fn
(2.3)

Sensitivity =
Tp

Tp + Fn
(2.4)

Specificity =
Tn

Tn + Fp
(2.5)

It is relevant to choose one classifier that maximizes its accuracy when the testing set is
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applied. The accuracy from equation 2.3 is the proportion of correctly classified examples
among all data classified. The sensitivity - equation 2.4, also called True Positive Rate
(TPR) is the number of detected positive examples among all positive examples, e.g. the
proportion of healthy people correctly diagnosed as healthy. The specificity - equation
2.5, is the proportion of detected negative examples among all negative examples, e.g. the
proportion of sick correctly recognized as sick [8]. A good way of visualising a classifier’s
performance is with the Receiver Operating Characteristic (ROC) curve – Figure 2.6.

Figure 2.6: ROC curve example, from [4].

It consists in plotting the sensitivity according to the False Positive Rate (FPR) (1-
specificity) for different cut-off points of a parameter [32]. Each point on the ROC curve
represents a sensitivity/specificity pair corresponding to a particular decision threshold.
The ROC curve shows how the number of correctly classified positive examples varies
with the number of incorrectly classified negative examples [33]. A test with perfect dis-
crimination (no overlap in the two distributions) has a ROC curve that passes through
the upper left corner (100% sensitivity, 100% specificity). Therefore the closer the ROC
curve is to the upper left corner, the higher the overall accuracy of the test [34].

A possible classifier is the Support Vector Machine (SVM), a powerful technique
for general (non-linear) classification, regression and outlier detection with an intuitive
model representation. SVM was developed by Cortes and Vapnik (1995) for binary clas-
sification. Their approach may be roughly sketched as follows:

• Class separation: basically, we are looking for the optimal separating hyper-plane
between the two classes by maximizing the margin between the classes closest points
(Figure 2.7)- the points lying on the boundaries are called support vectors, and the
middle of the margin is our optimal separating hyperplane;

• Overlapping classes: data points on the "wrong" side of the discriminant margin
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are weighted down to reduce their influence;

• Non-linearity: when we cannot find a linear separator, data points are projected
into an (usually) higher-dimensional space where the data points effectively be-
come linearly separable (this projection is accomplished via kernel techniques);

• Problem solution: the whole task can be formulated as a quadratic optimization
problem which can be solved by known techniques.

Figure 2.7: Classification for SVM(linear separable case).

An algorithm able to perform all these tasks is called a Support vector machine [35].

There are at least three reasons for the success of the SVM: its ability to learn well with
only a very small number of free parameters, its robustness against several types of model
violations and outliers, and last but not least its computational efficiency compared with
several other methods (e.g. Logistic regression) [36]. As for disadvantages, if the number
of features is much greater than the number of samples, the method is likely to give
poor performance. Also SVM do not directly provide probability estimates, these are
calculated using five-fold cross-validation, and thus performance may suffer [37].

Besides SVM another method that is very used in classification is the Naïve Bayes
classifier. Naïve Bayes classifier is a supervised learning algorithm based on applying
Bayes theorem with the "naïve" assumption of independence between every pair of fea-
tures. Bayes’ rule says that if you have a hypothesis H and evidence E that bears on that
hypothesis, then:

P [H|E] =
P [E|H]P [H]

P [E]
(2.6)

where P [A] denotes the probability of an event A and P [A|B] denotes the probability
of A conditional on another event B. The evidence E is the particular combination of
attribute values. Let’s call n pieces of evidence E1, E2, ..., En respectively. Assuming that
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these pieces of evidence are independent (given the class), their combined probability is
obtained by multiplying the probabilities:

P [H|E] =
P [E1|H]× P [E2|H]× ...× P [En|H]× P [H]

P [E]
(2.7)

This method goes by the name of Naïve Bayes because it is based on Bayes’ rule and
"naïvely" assumes independence [30]. These classifiers have worked quite well in many
real-world situations, such as document classification and spam filtering. They require a
small amount of training data to estimate the necessary parameters.

Naïve Bayes classifiers can be extremely fast compared to more sophisticated meth-
ods. The decoupling of the class conditional feature distributions means that each dis-
tribution can be independently estimated as a one dimensional distribution. In turn this
helps to alleviate problems stemming from the curse of dimensionality [38]. However,
there are many datasets for which Naïve Bayes does not do well. Because attributes are
treated as though they were independent given the class, the addition of redundant ones
skews the learning process [30].

2.5.3 Feature Extraction

There are many features/parameters that can be used as input variables in our prob-
lem. Besides the current algorithm output in section 2.4 the following features were also
computed:

• Zero Crossing Rate – It is defined as the number of time-domain zero crossings
within a defined region of signal, divided by the number of samples of that region
[39]. The zero crossing process consists in counting the number of times that the
signal changes sign, meaning, it counts when the signal passes from negative to
positive and from positive to negative.

• Standard Deviation – The standard deviation is equal to the square root of the
variance and measures how much variation exists from the signal average. A small
value of standard deviation indicates that the points tend to be very close to the
average, whereas a high value that the points are very spread out and more apart
from the average. Considering a signal defined over a finite time window with
length N , and represented as time series [x(n)], the standard deviation σ can be
represented using the average µ [40]:

σ =

√√√√ 1

N

N−1∑
n=0

[x(n)− µ]2 where µ =
1

N

N−1∑
n=0

[x(n)] (2.8)

• Histogram – Given an univariate sample S = x1, x2, ...xn, this one can be processed
to form a histogram and thereby gain insight into the distribution of the data. Let
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χ be the set of possible distinct values in S. For each x ∈ χ the relative frequency is:

f(x) =
the number of xi ∈ S for which xi = x

n
(2.9)

A discrete-data histogram is a graphical display of the relative frequency where
each distinct value in the sample appears [41]. One possible parameter to extract
from the histogram is the maximum number of occurrences which represents the
maximum value of the numerator in equation 2.9.

• Periodogram – Is based on the definition of the Power Spectral Density (PSD) as
seen in equation 2.10. One of the first uses of the PSD, has been in determining
possible "hidden periodicities" in time series, which may be seen as a motivation
for the name of this method [42, 43]. A possible parameter to extract from the PSD
is the maximum power spectral density which represents the maximum value from
equation 2.10.

Pxx(f) =
1

N
|
N−1∑
k=0

Xkexp(−2jπrk/N)|2 (2.10)

where N is the number of examples, and
N−1∑
k=0

Xkexp(−2jπrk/N) the DFT already

defined in equation 2.1.

2.5.4 Performance Measures

Performance tests are used to validate machine learning models and algorithms. A pos-
sible statistical test is leave one out; for a given dataset of m instances, only one instance
is left out as the validation set (instance) and training uses the m − 1 instances. We then
get m separate pairs by leaving out a different instance at each iteration. The results of
all m judgements, one for each member of the dataset, are averaged, and that average
represents the final error estimate.

This procedure is an attractive one for two reasons. First, the greatest possible amount
of data is used for training in each case, which presumably increases the chance that the
classifier is an accurate one. Second, the procedure is deterministic: no random sampling
is involved. There is no point in repeating it 10 times, or repeating it at all: the same
result will be obtained each time. Set against this is the high computational cost, because
the entire learning procedure must be executed m times and this is usually infeasible
for large datasets. Nevertheless, leave-one-out seems to offer a chance of squeezing the
maximum out of a small dataset and getting as accurate an estimate as possible [30, 31].

Another statistical measure is the correlation coefficient which is a numerical value
that indicates the degree and direction of relationship between two variables; the coeffi-
cients range in value from +1 (perfect positive relationship) to 0 (no relationship) to −1
(perfect negative or inverse relationship) [44].
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Often in the study of behavioural ecology, and more widely in science, we require to
statistically test whether the central tendencies (mean or median) of 2 groups are different
from each other on the basis of samples of the 2 groups [45].

A used statistical test is the Mann-Whitney U Test which is a non-parametric test that
can be used in place of an unpaired t-test. It is used to test the null hypothesis that two
samples come from the same population (i.e. have the same median) or, alternatively,
whether observations in one sample tend to be larger than observations in the other [46].
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3
Current Algorithm Evaluation

In this chapter the data improvements of MOBS before applying the current algorithm are
presented. The zebrafish behaviour are analysed using the platform Open Signals that
will enable synchronism between video and signal. The thresholds used in the current
algorithm are also tested and new suggestions are made regarding the usefulness of the
algorithm.

3.1 Preparing the Data

3.1.1 Start Peak

After starting the main device to visualize the fish locomotion, it is noticed in the time
domain, an initial peak of higher amplitude than the fish activity. This peak is charac-
teristic of the main device. Following this peak the fish activity is measured. The delay
from the main device until the fish activity is displayed is approximately 30 seconds,
and considering this, the current algorithm contained only the analysis of the signal after
30 seconds. However it was noticed that the peak was still present - Figure 3.1(a). The
presence of this peak certainly changes the algorithm output as seen in Figure 3.1(b).

This situation was solved by using the algorithm furthermore in the signal. Given
that, instead of considering 30 seconds before the analysis, the algorithm only acts in the
signal after 40 seconds. This guarantees that the initial peak is not presented, and that the
evaluation of the algorithm is not corrupted by this peak. The result is shown in Figure
3.2.

These changes will contribute with two possible variations in the current algorithm
output:
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Figure 3.1: Initial peak from the main device and its effect in the algorithm output.
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Figure 3.2: Signal without the initial peak from the main device.

• Increase of the algorithm output - tail-flips per minute. This situation happens
due to the standard deviation that decreases because of the absence of the initial
peak. Given that, more peaks from the derivative will be detected as tail-flips. It is
important then to ascertain that the threshold used to allow the behaviour detection
in the algorithm, the multiplicative factor (see section 2.4), is in fact the correct one
to detect the tail-flips.

• Decrease of the algorithm output - tail-flips per minute. This happens because the
transitions detected by the algorithm from this initial peak are no longer counted -
Figure 3.1(b). Consequently the number of tail-flips decreases.

It is noticed most often an increase in the algorithm output, meaning that there is a
higher number of transitions due to the standard deviation decrease, than the number of
transitions removed from the initial peak. One of the disadvantages of taking more time
to remove this peak is the time precision that the user wants to maintain; however is of
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greater importance the absence of this peak in the algorithm evaluation.

3.1.2 Error Peaks Detection

Another difficulty related to the main device occurs during the recording of the fish activ-
ity. It was noticed in the time domain the presence of peaks with much higher amplitude
than the fish activity - Figure 3.3.

0 100 200 300 400 500 600 700 800 900
Time (s)

0.20

0.15

0.10

0.05

0.00

0.05

A
m

p
lit

u
d
e
 (

V
)

Figure 3.3: Artefacts of the main device or software with higher amplitude than the am-
plitude of the fish activity.

Since we can record more than one chamber at the same time, it was possible to visu-
ally identify these peaks in each chamber at the same time. Given that, we can say that
the problem was not from one chamber in particular, but from the main device itself or
from the computer software. The impact of these peaks on the results is well noticed in
Figure 3.4(a).

The idea to solve this problem was by the application of a filter. The fact that this peak
is of higher amplitude than the fish activity, turns it easy to identify. Then for the filter
process, it is used 0 values when those peaks are detected and 1 values otherwise. In the
end the filter is multiplied with the signal to exclude these peaks for further analysis. The
filter result is shown in Figure 3.4(b).

Again, because these peaks are not included in the algorithms behaviour detection,
the standard deviation will decrease and the multiplicative factor needs verification.
However is not noticeable an increase in the algorithm output as in the previous section
but a decrease. This happens because there was a higher number of transitions removed
by these error peaks, than the number of transitions added from the decrease of the stan-
dard deviation.
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Figure 3.4: Artefacts of the main device, its effect in the algorithm result with and without
the filter. Signal enhanced from 3.3.

3.2 Synchronism

The signal in the time domain is delayed in relation to the instant of acquisition start.
This delay is caused by the main device. Given that, it is difficult to compare a video
where the fish movements are present, with its respective signal from MOBS.

3.2.1 Open Signals

The Open Signals is a platform designed and programmed by PLUX - Wireless Biosignals,
S. A. It is a useful tool for this research, because it will allow synchronism between signal
and video.

Using Open Signals, synchronism is possible with a visible stimulus in the signal and
video. This stimulus must be sufficient to not be confused with the fish activity as shown
in Figure 3.5. A touch in the chamber is a possible stimulus and to not corrupt the signal
from the fish activity for further analysis, this stimulus should be produced at the end of
the recording.

With this platform, the user can navigate freely through the signal and video inde-
pendently (without both being synchronized yet). The synchronism is accepted after the
user locks both signal directly in the window and video using the lock button (Figure
3.5). After the right time is selected in accordance to the stimulus made, it will be pos-
sible to analyse the signal variations in comparison to the fish movements in the video.
Navigating in one datum will automatically progress the other in the same way allowing
the study of their behaviour more precisely.

3.2.2 Time Precision

A test was made to access the main device time precision. Behavioural tests lasts 15
minutes. It was then decided, using Open Signals, to perform a precision test for 30
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Figure 3.5: Platform Open Signals for synchronism between signal and video.

minutes with the empty chamber submersed in water. In this 30 minutes several stimuli
were made in the chamber and recorded in video. After synchronism it was verified that
each stimulus in the signal corresponded at the same moment in the video (variation of
0.13± 0.05 seconds between the stimulus identified in the signal and video).

Hence, it is possible to make behavioural tests for 30 minutes efficiently since for at
least this length of time we know that the main device is precise.

3.2.3 Experimental Design

This subsection presents the experimental design performed with zebrafish. These tests
will allow the study of their behaviour using the synchronism between video and signal.
Since the drug that simulates PD leads to a decrease in the fish activity [17, 18], it is also
intended to analyse by eye the tail-flip movements when the fish are submitted to the
drug 6-OHDA.

3.2.3.1 Test Animals and 6-OHDA

The zebrafish (D. rerio Hamilton 1822) strain used for this work was the AB line (Ze-
brafish Facility, IMM, Portugal). Animals were maintained under standard conditions
and experiments were approved by the Institutional Animal Care and Use Committee.
A master stock solution of 6-hydroxydopamine hydrochloride (6-OHDA, Sigma-Aldrich,
USA) was prepared in 0.2% ascorbic acid solution (analytical grade, Sigma) and stored at
-20◦C. This stock solution was used to prepare all working solutions in experiments with
zebrafish.
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3.2.3.2 Behaviour Assay

Before the experiments, small groups of female fish (24 animals, body weight 0.5 ± 0.05
g) were acclimatized to the experimental testing conditions (temperature 22 ◦C ± 1 ◦C,
10 h:12 h light-dark cycle) in 17 litre glass aquaria under static conditions and for a min-
imum of one week. Food was not provided 24 h before or during the experiments. The
behaviour analysis was divided into two groups: non-treated (12 fish) and for that con-
sidered as "healthy" fish in which no injection was administered, and treated (12 fish)
also considered as "ill" or less active where 5µL of 6-OHDA was injected via intramus-
cular. During the injection they were in a medium-to deep-plane level of anaesthesia
(tricaine 50mg/L) and had lost their reflex responses and muscular control. Afterwards
they returned to their original test chambers and allowed 30 min to recover from the
anaesthesia.

On the day of experiments, either the treated or non-treated groups of fish were
placed individually in the test chambers supplied with oxygenated tap water (22 ◦C ± 1
◦C). Fish were acclimated to the test chambers for 30 min and then individual baseline
responses were monitored using MOBS and video recording (at 25 frames per second)
for five minutes between 10 and 12 a.m.

After behavioural recording, treated fish were sacrificed with tricaine. The behavioural
experiments were always performed by the same experimenter.

3.2.3.3 Behaviour Detection

Using video recording it is possible to distinguish tail-flip movements. This behaviour
is characterized by abrupt and fast changes of fish direction which imply strong burst in
the fish tail (Figure 3.6).

Figure 3.6: Abrupt tail-flip movement.

3.2.4 Visual Analysis

A visual and detailed analysis was made with the Open Signals platform using video
frame by frame with both signals synchronised taken in consideration the behaviour tail-
flip.

To simplify the analysis, it was created a function that received the signal and the
instant where the behaviour was detected with a time precision of 0.01 seconds. After all
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the detections, this information was saved in a file in the following order: time; signal;
behaviour detection. The result is presented in Figure 3.7.
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Figure 3.7: Visual analysis example. The signal is represented in blue and the behaviour
tail-flip detection in red.

Since the actual algorithm output returns the number of abrupt tail-flips per minute,
we can now compare it with the visual analysis. The process is as simple as count the
number of abrupt tail-flips visually detected in the created file and divide it by the total
signal time in minutes. Then compare it with the value of the algorithm output. This
may bring an idea of how far we are from reality.

3.2.5 User Test/Visual Analysis Validation

Since visual analysis depends on the user that is interpreting the data, it is important
to test other users and compare the results. Therefore, a visual test using a different user
was made, providing only the description and images explained in section 3.2.3.3. Figure
3.8 shows the detection for both users.

The test consisted in a precise analysis frame by frame using a signal of 30 seconds,
and for this time both users detected 46 abrupt tail-flips. After User 1 had detected the
abrupt tail-flip it was considered an interval of 0.25 seconds in which the User 2 had also
to detect the same abrupt tail-flip to be a valid success. Given that, in 46 detections, 44
were accepted, leading to an error of 4.35% between both users.

The agreement between both users classifying the behaviour, implies that the visual
result may be a valid information to be compared with the actual algorithm or to be used
in future works.
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Figure 3.8: User test. The signal is represented in blue, User 1 is represented in red and
User 2 in green. The time interval accepted is in black.

3.3 Thresholds

This section will allow an improvement in the thresholds already implemented in the
current algorithm, specifically in the maximum and minimum amplitude accepted for
the fish activity. The multiplicative factor is analysed in the next section. Several tests
were performed and based on the results, new considerations were made, as following:

• Minimum Amplitude – The threshold used to limit the minimum amplitude for
the fish activity and therefore the maximum amplitude for the noise is 0.5 mV. Tests
without fish and with the chambers submersed in the water were performed. Af-
terwards the maximum amplitude for each test was measured. The maximum am-
plitude encountered was 0.6 mV, leading to a variation of 0.1 mV from the previous
threshold.

• Maximum Amplitude – The threshold used to limit the maximum amplitude of
the fish activity is 0.01 V. Tests performed with fish, showed that the maximum
amplitude measured from all chambers was the same. Given that, no change was
made.

3.4 Algorithm Evaluation

This section intends to compare the visual analysis with the algorithm output. The result
is shown in Figure 3.9 where linear regression was applied for each group (treated and
non-treated).

Figure 3.9 shows that there is no direct relation between the visual analysis and the
algorithm output as it would be expected both for treated and non-treated fish. The next
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Figure 3.9: Comparison between the visual analysis and the algorithm output both in
number of tail-flips per minute. Linear regression is presented for each group and relative
error was estimated with the leave one out method.

subsections demonstrate the validation for each group and the error associated will show
the need for improvement in the current algorithm, concretely in the multiplicative factor.

3.4.1 Validation for healthy fish

For validation it the statistic method leave one out was used. This was chosen because
the number of points analysed is small (n = 12). The process was: take one point out,
obtain the linear regression with all the others points, and measure the expected tail-flips
of the point that was excluded using the calculated linear regression. The relative error
of the respective point consists in the difference of its real value (the tail-flips obtained
visually) with the expected value divided by the real value. Then it is necessary to repeat
this process to all points, meaning, there will be as much relative errors as the numbers
of points used. In the end, all relative errors are averaged. The non-treated group has
a relative error of 17.29% using a window of 180 seconds (Figure 3.9) and a correlation
coefficient of 0.015. More points can be provided with the usage of a smaller window,
and this was accomplished using windows of 60 seconds which resulted in an error of
19.34% and a correlation coefficient of 0.014. Given that the relative error is higher, the
validation will use the analysis for a window of 180 seconds.

3.4.2 Validation for ill fish

Again, for the treated group it was used the statistic method leave one out, which resulted
in an error of 25.31% for a window of 180 seconds and a correlation coefficient of 0.76.
The elevated error values and the poor correlation coefficient implies that the algorithm
should be improved. The next subsection presents a more detailed study of the multi-
plicative factor.
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3.4.3 Multiplicative factor

The multiplicative factor in the algorithm is used so that the derivative can be comparable
to the standard deviation thus allowing the behaviour tail-flip to be detected. Given that,
to improve the algorithm, the multiplicative factor should be analysed. Also, after the
studies made in the previous sections, it was said that this factor needed verification (see
section 3.1). The value used so far has been 0.1. To facilitate we vary the factor according
to the algorithm output as shown in figures 3.10 and compare it with the visual result.
The factor is analysed from 0 to 0.25 with a variation of 0.01.
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(a) Non-treated fish group.
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(b) Treated fish group.

Figure 3.10: Multiplicative factor effect over the algorithm output. Visual analysis is
applied for each case in dotted lines to understand which multiplicative factor is the
most suited.

Focusing on a particular case (red analysis in Figure 3.10(a)) it is visible that the actual
threshold used (0.1) leaded to a result that was different from the visual analysis, indicat-
ing that in this case, the factor that should be used is not 0.1 but in fact 0.08 approximately.
With the analysis of more cases, it was expected to find an approximate factor value for
all cases or a direct association. Unfortunately this did not happen either for non-treated
and treated groups, in that, there are different factors that suit the actual algorithm ac-
cording to each case. However it is visible that if there is an ideal multiplicative factor,
the one should probably be between 0 and 0.25.

To reinforce this study, table 3.1 demonstrates the specific values obtained for each
group. In these tables the visual results obtained are shown as well as the algorithm out-
put using the current multiplicative factor (0.1). These tables demonstrate that there are
substantial differences between the visual analysis and the algorithm output.

The intention of the next analysis is to be able to understand which multiplicative
factor is the most suited to be used for the detection of the behaviour tail-flip and its
respective relative error. The process was to subtract each value of the curves in figures
3.10 by its respective visual result and divide it by the visual result to provide a relative
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Table 3.1: Specific values from figures 3.9, namely the visual analysis result and the algo-
rithm output using the actual multiplicative factor (0.1).
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error. In the end all curves analysed are averaged and the result is shown in Figure 3.11
for each group. Here is presented the minimum error accepted as well as the error used
with the actual factor for each group.

The error using the actual factor is 55.26% and 68.79% for non-treated and treated
groups respectively, and even improving the factor, the minimum error accepted would
be 53.20% for non-treated group which leads to a best factor of 0.11 and 44.53% for treated
group with a best factor of 0.13. To be able to choose the best factor these obtained errors
should be as close to zero as possible which indicates that even with these improvements
the best multiplicative factor cannot be certain to characterize the behaviour as close to
reality as it is pretended.

Because the user analysis has already been tested, and thus, considering that the vi-
sual analysis is a valid measure, there are two possible reasons to explain these high
errors: the algorithm or the biosensor MOBS.

3.4.3.1 Algorithm Insight

The algorithm output consists in the peaks detection of the derivative using a given
threshold so that the behaviour tail-flip can be detected. This threshold is represented
by the standard deviation with a multiplicative factor so that the standard deviation may
be comparable with the derivative.

The main problem verified is that the abrupt tail-flips detected visually do not always
show the same characteristic in the signal, and consequently, an abrupt tail-flip detected
visually not always imply a representative peak in the derivative. Figure 3.12(a) shows
that case.

Also there are peaks from the derivative that were detected as abrupt tail-flips by the
algorithm but visually were not verified - Figure 3.12(b). This justifies more clearly the
disagreement between the algorithm behaviour detection and the visual analysis.

31



3. CURRENT ALGORITHM EVALUATION 3.4. Algorithm Evaluation

0.00 0.05 0.10 0.15 0.20
Factor

0

20

40

60

80

100

120

140

R
e
la

ti
v
e
 E

rr
o
r 

(%
)

Non-treated
Treated

Figure 3.11: Relative error in percentage of the visual analysis and the algorithm output
to understand which multiplicative factor is most suited for each group by minimizing
its relative error. The black dotted lines represent the actual multiplicative factor (0.1),
the red dotted lines the best multiplicative factor for treated fish and the blue dotted lines
the best multiplicative factor for non-treated fish.
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(a) Behaviour detection visually identified but not
from the algorithm.
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(b) Behaviour detection from the algorithm but not
visually identified.

Figure 3.12: Relation between signal, visual analysis, and algorithm effect. The signal is
represented in blue, the algorithm in cyan and the visual marks in red.

Therefore it is suggested the development of a new algorithm that can characterize
the behaviour as close to reality as possible.

3.4.3.2 Biosensor MOBS

If a new algorithm cannot be implemented to provide better results in the behaviour
characterization, then it is suggested that the problem is in the biosensor MOBS. Thus, it
is proposed an improvement in this equipment before the implementation of new studies.
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4
Proposed Algorithm

In this chapter new parameters are discussed to characterize the abrupt tail-flip move-
ments. With the visual analysis obtained from the previous chapter it will be possible
to study new parameters using supervised learning methods, more precisely, regres-
sion models. Thus our visual analysis will be considered as the output variable, and the
new parameters the input variables. It is also shown the need for classification between
"healthy" and "ill" fish. Finally, a new algorithm is proposed as well as its integration in
the Open Signals platform.

4.1 Behaviour Characterization

To be able to characterize the behaviour in number of tail-flips per minute, the param-
eter zero crossing rate proved to be useful. This parameter is defined as the number of
time-domain zero crossings within a defined region of signal, divided by the number of
samples of that region [39]. The zero crossing process consists in counting the number
of times that the signal changes sign, meaning, it counts when the signal passes from
negative to positive and from positive to negative. Each data was divided by its standard
deviation, so that, all data is at the same scale to be comparable and because the signal is
centred at zero, it was not necessary to subtract its average. Also the signal was smoothed
using a Hanning window with a length of 0.05 seconds. The comparison between the vi-
sual analysis and the zero crossing rate for each group is shown in Figure 4.1 with their
respective linear regressions.

This parameter presents a direct relation with the visual analysis both for treated and
non-treated groups. The next subsections will validate this parameter using the statistic
method leave one out.
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Figure 4.1: Comparison between the visual analysis and the zero crossing rate parameter.
Linear regression is presented for each group and relative error was estimated with the
leave one out method.

4.1.1 Validation for healthy fish

To validate this parameter the statistic analysis leave one out was used. This was chosen
because the number of points analysed is small (n = 12). For the non-treated group in
Figure 4.1, the relative error obtained was 2.55% for a window of 180 seconds and 12.08%

for a window of 60 seconds.

Again, the idea to use smaller windows is to provide more points for validation, how-
ever the relative error increases. Hence it will be considered the window of 180 seconds.
The relative error of 2.55% compared with the 17.29% from the previous algorithm can
be considered as an excellent improvement.

The user test from the previous chapter (see subsection 3.2.5) showed an error of
4.35%. Given that, the reason why this parameter shows a smaller error (2.55%) it is
because it suits the user that performed this analysis. If User 2 had also performed these
analyses, a bigger error should be expected.

The correlation coefficient obtained in this case was 0.99, indicating that there is a
very good positive relation between the zero crossing rate and the visual analysis. Finally
using all points for a window of 180 seconds, linear regression can be applied to define
our hypothesis:

hθ(x) = 15.42 + 26.43x (4.1)

where x represents the signal zero crossing rate in counts per second, and hθ(x) the
expected output of the fish activity in number of tail-flips per minute. This means that
15.42 tail-flips per minute is the minimum activity that this parameter can detect for a
"healthy" fish. If no more changes had to be done, the new algorithm would provide the
behaviour characterization of a new signal in number of tail-flips per minute by simply
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measuring its zero crossing rate and applying it on the equation 4.1.

4.1.2 Validation for ill fish

For the treated group – Figure 4.1, it is visible that using the parameter zero crossing rate
the "ill" fish do not follow the same tendency as the "healthy" fish, meaning, if we apply
the hypothesis already defined in equation 4.1, the fish that were exposed to the drug
would not show a decrease in their activity as seen visually. In fact, the ones that present
lower levels of activity visually would provide higher values of activity after using the
hypothesis 4.1. Thus, it is necessary to have a classifier that can distinguish between a
"healthy" fish from one that is "ill".

After a successful classification it is relevant to characterize the behaviour for "ill" fish
to provide the number of tail-flips per minute as made with the "healthy" fish. Figure 4.1
shows that the "ill" fish present an inverse linear tendency between the zero crossing rate
and visual analysis, which means that the higher the number of counts per second from
the zero crossing rate parameter, the less active the fish is.

Again it was used the leave one out method to validate this parameter. The relative er-
ror obtained was 5.75% which can be a good estimative even though it is higher than the
error obtained to characterize "healthy" fish (2.55%). This error compared to the 25.31%

from the previous algorithm can also be considered as an excellent improvement. The
correlation coefficient was −0.99, meaning there is a very good inverse relation between
the visual analyses and the zero crossing rate.

Using all points for a window of 180 seconds, linear regression can be applied to
define our hypothesis:

hθ(x) = 47.45− 11.65x (4.2)

where x represents the signal zero crossing rate in counts per second, and hθ(x) the
expected output of the fish activity in number of tail-flips per minute. The negative slope
represents the inverse relation between the visual analysis and the zero crossing rate. The
value of 47.45 tail-flips per minute limits the fish activity, which means that "ill" fish will
not show a higher value of activity than 47.45 tail-flips per minute. Also for a fish that
does not present any activity (0 tail-flips per minute) it should be expected a value of 4.07
counts per second.

Given this analysis it should be understood the signal physiology for different groups
of fish with the same value of the zero crossing rate, for example, considering two fish
from different groups with a zero crossing rate of 4.07 counts per second (therefore the
"ill" fish does not show any activity). The assumption for the signal interpretation is that
the zero crossing rate for a "ill" fish is only considering ventilation which presents a high
frequency and a low amplitude [2]. As for a "healthy" fish, using the hypothesis from
equation 4.1 it is expected an activity of 122.99 tail-flips per minute. This is a very active
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fish and the signal can be explained with the consecutive bursts that may bring a high
frequency and a high amplitude to the signal. To confirm this hypothesis it would be
necessary to separate in this specie, ventilation from locomotion; however that cannot be
possible due to the high activity of the zebrafish.

It is also convenient to justify the intersection between both curves. This intersection
is verified for an activity of 37.65 tail-flips per minute and a zero crossing rate of 0.84
counts per second. Given that, from 0 to 0.84 counts per second, there remains the pos-
sibility that a "ill" fish may present higher activity than a "healthy" one. The assumption
is that there might be fish that react differently to the drugs, and therefore those fish con-
tinue to present high activity, even though it is not expected. The other way around may
also be justified: a "healthy" fish may present itself as less active even though is not sub-
mitted to any drug. This is the reason why the curves are not cut at this intersection and
only when they present an activity of 0 tail-flips per minute.

Besides the zero crossing rate, other parameters were tested, however they presented
higher relative errors when submitted for validation. Still, there was the possibility to
merge other parameters with the zero crossing rate. The idea was to find a parameter that,
besides having an elevated relative error, when merged with the zero crossing rate, could
complement areas of the zero crossing that presented higher variations. Therefore the
final relative error could be minimized. This study was taken in consideration, however
not successfully achieved, because a parameter that could fit this need was not found.

4.2 Classification

The previous section showed the need to create a classifier that could distinguish between
"healthy" and "ill" fish. Now our output is defined by two classes: "healthy" and "ill"
(less active) fish. The Orange is a comprehensive, component-based software suitable for
machine learning and data mining. It is a free software and open source. It allows to use
data mining through visual programming or Python scripting [8].

Figure 4.2: Classifier scheme in the Orange Software.

Figure 4.2 shows the classifier design using the Orange software. First it is necessary
to organize the file (in a .tab format) according to the Orange specifications. In the file
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we need to provide the parameters results as well as the class that they belong (if it is
treated or non-treated). The parameters used in this analysis were the zero crossing rate,
the standard deviation, the maximum number of occurrences using the histogram, the
maximum power spectral density using the periodogram and the previous algorithm
output (see section 2.5.3). Then we give the possibility to choose the parameters with
which we want to construct the classifier (Select attributes in Figure 4.2). Afterwards we
build the classifier with the chance to use different methods. The ones used were SVM
and Naïve Bayes. The Test learner widget will then provide the accuracy, sensitivity and
specificity for each method used (SVM and Naïve Bayes). Thus, varying the number
of parameters available we choose the ones that give higher accuracy for the respective
method. The confusion matrix gives the number/proportion of examples from one class
classified in to another (or same) class. Besides, selecting elements of the matrix feeds
the corresponding examples onto the output signal. This way, one can observe which
specific examples were misclassified in a certain way [8]. It is also analysed the ROC
curve to reinforce the study in choosing the best classifier.

Since the classifier does not require the visual analysis as output, which is a long
process, instead of using the data obtained so far (24 case studies), it was used data from
a previous work to provide more points to the classifier (108 case studies with equal
number for each class). This work developed at IMM provides data with non-treated
and treated fish (submitted to the drug 6-OHDA).

4.2.1 Validation

The parameters used that leaded to a higher accuracy for the SVM were the zero cross-
ing rate, the standard deviation, the maximum power spectral density using the pe-
riodogram, the maximum number of occurrences using the histogram, and the previ-
ous algorithm output. The learning options used were the Sigmoid kernel function
(tanh(8 ∗ x.y)), a Cost of 2.0 (Model Complexity - penalty parameter) and a numeric
precision of 0.001.

For validation it was used the leave one out which holds out one example at a time,
inducing the model from all others and then classifying the held out. This method is
obviously very stable and reliable but very slow [8].

The accuracy obtained using leave one out for the SVM method was 100% (with sensi-
tivity and specificity of 100%), meaning that all cases analysed were classified correctly.
The confusion matrix is presented in table 4.1 for the SVM (table 4.1(a)) and Naïve Bayes
(table 4.1(b)) methods.

On the other hand, the Naïve Bayes method based on the relative frequency presents a
maximum accuracy of 67.59% (with sensitivity of 70.37% and specificity of 61.11% - target
class non-treated group) using the parameters standard deviation, algorithm output and
maximum power spectral density with the periodogram. As presented in the confusion
matrix, 35 fish were misclassified. 12 that are "ill" but the classifier predicted as "healthy",

37



4. PROPOSED ALGORITHM 4.2. Classification

Table 4.1: Confusion Matrix for each method used. Allows the comparison between the
predicted values and the correct class.
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and 23 that are "healthy" but were classified as "ill".

The ROC curve is presented in Figure 4.3 for each method as well its convex curves.
It emphasizes that the SVM method is a suitable classifier to choose because its curve
passes through the upper left corner (100% sensitivity, 100% specificity). The diagonal
black line represents the behaviour of a random classifier. The Naïve Bayes is not a ran-
dom classifier, but is not also as good as the SVM method. There could even be an area
where the Naïve Bayes would behave better than the SVM, however this was not verified.
Therefore, the SVM method is the most indicated classifier to choose for the construction
of the algorithm.

Figure 4.3: ROC curves and its convex curves for SVM (Green) and Naïve Bayes (Red)
methods. Predicted class – "Healthy"

Because the Orange program is open source, with the access to the functions that build
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the classifier SVM we can use them to construct the final algorithm in Python.

4.3 Final Algorithm

Now it is possible to build the final algorithm. Figure 4.4 exemplifies the process. First we
prepared the data with the removal of the initial peak from the main device, the applica-
tion of the filter, the normalization of the data and the signal smoothing using a Hanning
window of 0.05 seconds. Then, we used the classifier to predict if the fish is "healthy"
or "ill" (less active). According to the classification, it is possible to characterize the be-
haviour in terms of number of tail-flips per minute using the corresponding hypothesis.
Each hypothesis consists in the use of the parameter zero crossing rate.

 

Result 
Characterization 

Method 
Result 

Classification 

Method 

Preparing the 
Data 

Start Peak 
Removal; 

 Filter; 

Normalization; 

Smooth Signal; 

SVM 
classifier 

Ill/Less Active  

(and probability) 

Zero Crossing Rate 

ℎ 𝑥 = −11.65𝑥 + 47.45 
Number of 

tail-flips per 
minute Healthy 

(and probability) 

Zero Crossing Rate 

ℎ 𝑥 = 26.43𝑥 + 15.42 

Number of 
tail-flips per 

minute 

Figure 4.4: Final algorithm process.

The classification is made using the method SVM with the parameters zero crossing
rate, standard deviation, maximum power spectral density using the periodogram, max-
imum number of occurrences using the histogram and the previous algorithm output.
This classifier presents an accuracy of 100%. If the fish is classified as "ill" the parameter
zero crossing rate is used to characterize the behaviour with a relative error of 5.75%. If
the fish is classified as "healthy", it is also used the parameter zero crossing rate but with
a different hypothesis to characterize the behaviour. This one presents a relative error of
2.92%. The final result will present the classification, the probability for that classification
and the number of tail-flips per minute.

4.4 Open Signals integration

This section intends to integrate the final algorithm in the Open Signals platform in order
to provide a more user-friendly method for behavioural analysis. This requires Javascript
and HTML programming knowledge. Besides the algorithm, the user can also benefit
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from the synchronism already implemented in this platform, hence to understand what
is happening in the signal according to the fish behaviour in the video.

Figure 4.5: Open Signals with algorithm integration.

The complexity of this new algorithm may constitute a disadvantage in terms of the
time spending in the evaluation of a new signal. Given that, it was taken in consideration
parallel programming in the algorithm that could reduce the time from 35 seconds to 6
seconds approximately (with a Intel(R) Core(TM) i7 CPU and 8 GB RAM) for a signal of
15 minutes. The idea of parallel computing is to carry out many calculations simultane-
ously, operating on the principle that large problems can often be divided into smaller
ones, which are then solved concurrently ("in parallel") [47]. The idea in the algorithm
implementation was to programme the output for one chamber, and execute this action
in parallel for all chambers used.

The final result is presented in Figure 4.5. The signal acquisition uses the MATLAB
software, which provides a unique .txt file where the signals from all chambers are pre-
sented. The Open Signals platform was programmed to process all signals from that file.
Given that, and as shown in Figure 4.5, it is possible to identify the four signals from
each chamber. The algorithm output is shown in form of a table, where the first column
identifies the chamber, the second column provides the classification and its respective
probability and the third column the behaviour characterization in number of tail-flips
per minute. To obtain the algorithm output, the user simply has to press the respective
button.

The use of this platform does not require the individual installation of Python or the
Orange software, only a setup to access the Open Signals functionalities. This integration
allows the usage of the algorithm without requiring any knowledge in programming.
Given that, any researcher is able to use this algorithm without difficulties.
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This chapter intends to apply the new algorithm in a new case study related with PD
to verify if the results are in agreement with the biological responses. Therefore, we
can understand the improvements that the algorithm may need and its importance for
further studies.

5.1 Parkinson’s Disease

PD has no cure, but medications can help control the symptoms, often dramatically. Med-
ications can help manage problems with walking, movement and tremor by increasing
brain’s supply of dopamine. The patient may have significant improvement of symp-
toms after beginning PD treatment. Over time, however, the benefits of drugs frequently
decrease or become less consistent, although symptoms usually can continue to be fairly
well controlled [48].

There is no way to measure directly neuronal loss in vivo, and it is unclear how clinical
symptoms correlate with neuronal death [49]. Recently, Correia et. al (2012) [18] had
demonstrated that the neurotoxin - 6-OHDA, induced cell loss and behavioural deficits
in dopaminergic neurons of a zebrafish transgenic line Tg(-2.5th:EGFP). The behavioural
alterations seen in the transgenic zebrafish were detected by using the electric biosensor
(MOBS). However, the component of the MOBS that relates to the signal processing still
need to be improved for a better distinction between different phenotypes. Given that, a
new algorithm was developed and its application is shown in the next subsections.
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5.1.1 Experimental Design

The animals used and the neurotoxin 6-OHDA are equivalent to the description in sub-
section 3.2.3.1, with exception that we have used a transgenic zebrafish – Tg(-2.5th:EGFP).
Effects of 6-OHDA on the motor activity of adult zebrafish were examined by 9-day be-
havioural tests. Adult fish, Tg(-2.5th:EGFP) were treated intramuscularly with 5µL of
6-OHDA (33 mg/kg) – Figure 5.1, and the individual fish swimming responses (n = 6)
recorded at various time-points after injections using MOBS. The dose, was selected on
the bases of literature data and from our pilot experiments. We also tested a control
group (n = 6) of fish treated with saline solution (the vehicle solution). The intramus-
cularly injections were administrated into anaesthetized fish in a total volume of 4.0µL
per 0.3g fish using a gastight syringe and a 30-gauge needle (Hamilton, USA). Fish used
for the studies had an average body weight of 0.5 ± 0.05g. Before the behavioural tests,
small groups of female fish (12− 14 animals) were acclimatized to the testing conditions
(temperature 22◦C± 1◦C, 10 h: 12 h light-dark cycle) in 17 liter glass aquaria under static
conditions and for a minimum of three days. Fish were fed (Sera Vera, Germany) 1%
of body weight per day throughout the tests. On the day of experiments (day 0), either
the treated or control groups of fish were individually placed in test chambers for 30
minutes and then individual baseline responses (pre-treatment) were monitored for one
hour between 10 a.m to 15 p.m. Fish were then individually anaesthetized with tricaine
(50mg/l) and were injected with the neurotoxin or the vehicle solution. After injections,
fish were kept in extensively aerated water tank until they recovered from the anaesthe-
sia. Behaviour responses were then monitored at day 1. At the end of day 3 (after a new
monitoring), fish received a second re-injection with similar volume and dose of neuro-
toxin. Individual fish swimming responses were recorded again at day 6 and 9. In each
session of analysis the individual responses were evaluated every 15 minutes intervals
for a total period of 60 minutes.

Figure 5.1: Intramuscular injection with 6-OHDA.
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The analysis with MOBS system contained in total four independent experiments,
each including two controls and two treated fish with 6-OHDA and the data was then
polled for statistical analyses using the new developed algorithm. After behavioural
recording, fish were sacrificed with tricaine. The behavioural experiments were always
performed by the same experimenter [18].

5.1.2 Statistical Analysis

The effect of 6-OHDA on the changes of zebrafish swimming activity across the recording
sessions was analysed between both groups using the one-tailed Mann-Whitney U-Test.
The level of statistical significance was set to p < 0.05 and p < 0.02. All analysis were
performed in IBM R©SPSS R©Statistics 20.0.

5.1.3 Results and Discussion

After recording swimming activity, the new algorithm was applied in each data using
the procedure already described in Figure 4.4. The outcome provided the number of tail-
flips per minute, and considering each group (control and treated group) the average was
measured for all fish according to each day. The results are shown in Figure 5.2.
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Figure 5.2: Behaviour results over the effect of 6-OHDA. The black bars represent
mean±standard deviation.

To follow the biological responses according to [12, 17, 18], at day 0 both groups
should be similar in their level of activity which can be verified in Figure 5.2: activity
in tail-flips per minute of 59.72 ± 8.45 for control and 59.84 ± 9.72 for treated (p > 0.05).
At the end of day 0, the injection of 6-OHDA was applied, and as a consequence, at day
1 this group should show a decrease in their activity in relation to the control group:
activity of 56.74 ± 9.88 for control and 55.99 ± 8.01 for treated. This is not shown for a
significant level of 5% (p > 0.05). At day 3 it is expected an increase in the level of activity
for both groups, which justify their high capacity for regeneration: activity of 62.15±3.60
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for control and 58.08 ± 11.53 for treated .This situation is also verified (p > 0.05). At the
end of day 3 a new re-injection of 6-OHDA was administered and as shown at day 6, both
groups have significant differences between them, meaning that the re-injection caused
a higher decrease in the zebrafish level of activity (p < 0.05): activity of 58.05 ± 1.34

for control and 47.28 ± 4.45 for treated. At day 9 it is expected again a increase in the
level of activity for both groups, which is also verified in Figure 5.2 (p > 0.05): activity
of 56.67 ± 4.44 for control and 62.62 ± 4.66 for treated. The activity of control fish was
maintained constant throughout the experiment in comparison to day 0 (p > 0.05). To
refer that for a significant level of 2% day 1 (p > 0.02) and 6 (p > 0.02) do not present
differences between both groups.

To reinforce this study, and to understand where to improve in the algorithm, a con-
fusion matrix was built - table 5.1. This may tell us how the classifier is behaving. The
accuracy obtained was 80.80%, the sensitivity of 95.56% and specificity of 20.45% (target
class control group).

Table 5.1: Confusion Matrix applied in the behavioural analysis.
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There was a total of 224 analysis of 15 minutes each, where it should be expected to
have 180 analysis classified as "healthy" and 44 classified as "ill". The classifier predicted
207 cases as "healthy", and the other 17 as "ill". This means that the classifier is showing
difficulties classifying "ill" fish, which as presented in table 5.1, 35 cases were classified
as "healthy" when in fact they were "ill" (also there were 8 cases that were misclassified
as "ill"). This justifies the low value of specificity. To confirm that improvement needs
to be done in the classifier, the algorithm was applied again in all data, but providing
classification. The result is presented in Figure 5.3.

It is visible that the activity for the control groups are maintained over the days (com-
parison to day 0 p > 0.02 and p > 0.05). Activity for control groups of 59.72± 8.45 at day
0; 56.90±13.38 at day 1; 53.59±6.65 at day 3; 58.44±5.18 at day 6 and 59.93±7.33 at day
9. Also the treated groups are maintained at days 0 (p > 0.02 and p > 0.05), 3 (p > 0.02

and p > 0.05) and 9 (p > 0.02 and p > 0.05). Activity for treated groups of 62.87 ± 8.13

at day 0; 59.88 ± 13.88 at day 3 and 66.70 ± 9.16 at day 9. But most importantly, day
1 (p < 0.02) and 6 (p < 0.02) present differences between groups with a lower level of
significance (α = 2%), which shows that the behaviour characterization is well suited for
this behaviour analysis: activity for treated groups of 25.8±6.39 at day 1 and 21.36±11.29
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Figure 5.3: Behaviour results over the effect of 6-OHDA without using the SVM classifier.
The black bars represent mean±standard deviation.

at day 6. Nevertheless if there are improvements to be done, these should be done in the
SVM classifier.

There is still the possibility that the fish did not react to the drugs effect as expected
(see subsection 4.1.2). However from all classified points, there was not one case (both
with or without classifier) whose characterization had shown a zero crossing rate before
the intersection of the curves from Figure 4.1. Therefore is assumed that the problem can
be from the classifier, or from the data used.

Several tests were performed aiming to improve the classifier. For example provide
more "ill" data than "healthy" to see if the classifier is more likely to predict this class. Also
increase the parameter Cost from the SVM properties with the intuit to penalise more
"healthy" fish. A higher Cost value provides a solution with less points misclassified,
however is less tolerable to outliers [50]. These two hypothesis were analysed but since
the confusion matrix shown in table 5.1 did not improve with these changes (accuracy
44.20%, specificity 77.27% and sensitivity 36.11%), the previous classifier properties were
maintained and there still remains the need for improvement in this matter.

There is also the need to assume that the problem can be from the data that was
used for the construction of the classifier, or even that there is not sufficient data to make
a better distinction for new cases. The last assumption is that the signal for "ill" and
"healthy" fish cannot be distinguished, even though the SVM allowed a perfect separation
for this data.

5.2 Other Applications

This algorithm was built with the intuit to study the zebrafish behaviour when submitted
to drugs that decrease their level of activity. Nevertheless, this algorithm can be used in
other applications.
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5.2.1 Test and Assess new Drugs

Besides using 6-OHDA to simulate PD there are other drugs that can be tested in ze-
brafish to study other diseases including acute and chronic pain.

Pain is a major symptom in many medical conditions, and often interferes signifi-
cantly with a person’s quality of life. Although a priority topic in medical research for
many years, there are still few analgesic drugs approved for clinical use. One reason
is the lack of appropriate animal models that faithfully represent relevant hallmarks as-
sociated with human pain. The work performed by Correia et. al (2011) [23], proposes
zebrafish as a model to study nociception. Their results suggests that changes in zebrafish
behavioural responses to acetic acid measured with the biosensor MOBS is a reasonable
model to test analgesics. Thus the developed algorithm can also be a contribution to this
work. More precisely, an algorithm that can distinguish different behavioural pheno-
types of zebrafish to allow to test and assess new analgesics.

5.2.2 Water Quality/Pollution Detection

Nowadays coastal zones are confronted with intense human activities. Given the social-
economic and ecological relevance of these areas, much effort has been directed towards
new technologies that can rapidly detect the harmful presence of toxic chemicals in the
water. A quick and effective monitoring still define a high priority in environmental
research . Automated on-line biomonitor systems with living organisms reveal a promis-
ing solution. Ideally, these systems should detect environmental pollution situations as
early stress responses of sensitive test organisms by automated recording [51]. Using or-
ganisms as biological sensors has the general advantage that changes in their behaviour
(e.g., avoidance responses, swimming patterns and breathing) can be measured directly
as responses to environmental changes. Indeed, behaviour has been used as an integral
parameter of physiological activity and as a robust biological warning indicator of water
quality supplies and effluents [52]. Although many aquatic organisms can be considered
as relevant for behavioural studies, fish is the most used as a test specie [53]. The MFB
for example, has been used to detect pollution based on behavioural stress responses
[25, 26, 28, 54].

Given that, the developed algorithm in this research may also contribute favourably
to this field allowing the detection of water pollution contaminants.

5.2.3 Regeneration

Regeneration is the process by which damaged or lost structures are perfectly or near-
perfectly replaced. Mammals contain several organ systems capable of regeneration,
such as blood and liver, but the majority of organs heal by scarring [55]. Today, investiga-
tion of regeneration in lower vertebrate model systems complements the modern field of
stem cell research. That is, if we understand how regeneration occurs naturally in these
organisms, we can learn how to optimize regenerative medicine in humans. Zebrafish is
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known for its ability to regenerate multiple structures (fins, optic nerve, scales, heart, and
spinal cord [56, 57, 58, 59]). For example, zebrafish caudal fin is an organ that is easily
accessed for surgery and its injury does not compromise survival [60].

Hence, assuming that the surgery will cause variations in the behaviour without com-
promising its survival, our algorithm may be a valuable mean to characterize the be-
haviour and allow a different view over regeneration.
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6
Conclusions

A new algorithm is proposed to classify and characterize behaviour in zebrafish speci-
mens. The characterization provides the number of tail-flips per minute, and with the
injection of the neurotoxin 6-OHDA to simulate PD it was noticed that the behaviour
characterization to the less active fish operates differently from the "healthy" ones. There-
fore a classifier was needed in this development.

The first intention would be to improve the current algorithm, however a detailed
analysis using video frame by frame synchronised with the signal to detect the behaviour,
proved that the algorithm was apart from reality with significant errors. The relative er-
ror obtained was 17.29% for "healthy" fish and 25.31% for "ill" fish, and even with the
possibility to improve the algorithm, more specifically in the multiplicative factor, it was
noticed that the best factor for both groups was far from being ideal (relative error of
53.20% for "healthy" and 44.53% for "ill" fish). Given that, a new algorithm was imple-
mented.

The behaviour characterization required visual analysis. The functionality that al-
lowed synchronism between video and signal was built in the Open Signals platform.
The result from this analysis showed that the behaviour tail-flip could be characterized
using the parameter zero crossing rate both for "healthy" fish with a relative error of
2.55% and "ill" fish with a relative error of 5.75% using different hypothesis. Given that,
a classifier was needed to separate "healthy" and "ill" fish. This one was built using the
software Orange that allowed the study of different methods, the SVM and Naïve Bayes.
In the end it was chosen the classifier more accurate - the SVM with an accuracy of 100%.
The final output of the algorithm presents the classification ("healthy" or "ill") with its re-
spective probability and the behaviour characterization using the respective hypothesis
to provide the number of tail-flips per minute – equations 4.1 and 4.2 for "healthy" and
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"ill" groups respectively.

The final algorithm was integrated in the Open Signals platform to facilitate its use,
and to allow any researcher to use it without requiring any knowledge in programming.
The user can too benefit from the synchronism developed during this dissertation. This
integration took also in consideration parallel programming to allow a faster result from
the algorithm.

The final step of this thesis was to apply the algorithm in a new case study related
with PD to confirm if the responses of the algorithm were in agreement with the biology
and literature, and to understand the improvements that should be taken in the algo-
rithm. The results showed that the fish activity were in agreement to the biology and
literature for a significant level of 5% with exception at day 1. Yet the classifier needed
to be improved to allow more significant differences between both groups ("healthy" and
"ill"). More specifically, it was noticed that the classifier had difficulties in classifying
"ill" fish, therefore it was provided more "ill" data than "healthy" to see if the classifier
had a tendency to classify "ill" fish. Also, the Cost parameter from the SVM properties
was increased to decrease misclassification. These changes did not improve the classifier
output, which means that there still remains the need for improvement in this matter.

The fact that this algorithm uses classification can be an advantage as it may bring an
efficient separation between a "healthy" fish from one that has been genetically modified
to have PD. Also with the visual analysis it is known that the new algorithm is closer to
reality which will allow the study and test of new drugs that uses zebrafish behaviour.
This algorithm may be useful for further studies not only related with PD, but any other
that uses zebrafish behaviour as an end point to study human diseases.

The MOBS device also proved to be an important system to characterize the be-
haviour, since it is non-invasive and provides fast and sensitive results that allowed the
development of the new algorithm.

This research also led to a publication available in appendix A that presents the de-
velopment of the new algorithm.

To conclude, in this dissertation, a new algorithm was developed to characterize mo-
tor behaviour of zebrafish. This algorithm is more realistic to simulate zebrafish be-
haviour, even though still requires a better distinction between "healthy" and "ill" groups.
However, is a valuable contribution to the PD research area, in particular, to test and as-
sess new drugs.

6.1 Future Work

In this dissertation there are still improvements to be done. In the following list those
needs are presented.

50



6. CONCLUSIONS

• Improve the classifier: Besides having an accuracy of 100% the classifier proved to
have difficulties at separating efficiently "healthy" and "ill" fish to new cases. It is
proposed for future work an improvement in this classifier to allow the separation
between groups for a significant level of α = 2%. Furthermore, analyse different
methods that may possibly provide better results for classification, as for example
Logistic Regression, K Nearest Neighbours, Majority etc. Also understand if there
are other features that provide better results than the ones used in this research.

• Visual analysis: If possible increase the number of visual analysis to strengthen the
zero crossing rate parameter as a valuable mean to characterize the behaviour of
zebrafish.

• Study new behaviour: In this research it was only studied the abrupt tail-flip, how-
ever it would also be important to include other types of behaviour, for example
swimming and ventilation. To analyse ventilation the suggestion would be to con-
fine the fish in smaller chambers. Hence, if ventilation could be studied separately
from locomotion it would be possible to confirm the signal physiology with the
zero crossing rate parameter.

• Fish position in the chamber: According to Cunha et. al (2008) [2], the smaller the
distance between the electrodes and the organism is, the better the corresponding
electric field can be identified and quantified. Therefore it would also be relevant to
evaluate the position of the fish in the chamber and understand if the new algorithm
is influenced by this situation.

• Apply algorithm in other works: Use this algorithm in other areas, namely to test
the influence of new drugs on the behaviour of zebrafish, understand if this al-
gorithm is a valuable mean for water pollution detection using MOBS and assess
regeneration. Also judge if this algorithm can be used in other species besides ze-
brafish. If this is proven then we can assume that this algorithm is an general one
to be used in future works.
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in a Zebrafish model of Parkinson’s Disease which demonstrates the algorithm that was de-
veloped during this dissertation. This article was accepted for short paper presentation
to BIOSIGNALS 2013, which is a conference – 6th International Joint Conference on Biomed-
ical Engineering Systems and Technologies (BIOSTEC 2013), held in Barcelona in February
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Abstract: Parkinson’s disease (PD) is one of the neurodegenerative diseases with an increased prevalence widely studied
by the scientific community. Understanding the behaviour related to the disease is an added value for diag-
nosis and treatment. Thus the use of an animal model for PD that develops similar symptoms to the human
being allows to the clinic a larger vision over the health of a patient. Zebrafish can be used to study some
human diseases including PD. This work describes the development of an algorithm for the characterization
of behaviour in this specie. The biosensor called Marine On-line Biomonitor System (MOBS) is connected
electrically to chambers where the specimen of zebrafish moves freely providing a signal that is related with
the fish activity. Using the developed algorithm based on signal processing, statistic analysis and machine
learning techniques we present classification of a fish as normal or ill and characterize its behaviour.

1 INTRODUCTION

Biosensors are an essential control and safety tool
for our environmental and health quality and com-
monly used in medicine. Many of today’s biosensor
applications use living organisms which respond to
toxic substances or other stressors at a much lower
level than us to warn us of their presence. Under
this scope, the MOBS was developed, an automated
system for recording behavioural responses of marine
and fresh water species. This device has been applied
successfully in the environmental field, and the next
challenging step is to bring this technology into other
research areas. In particular, by sensing behavioural
changes in organisms as an indication of stress or dis-
ease. A suitable model candidate is the zebrafish, a
freshwater specie which has been used in medical re-
search during the past years, e.g in development stud-
ies (Lepage and Bruce, 2008), drug toxicity assess-
ments (Usenko et al., 2008) and neurodegenerative
diseases (Bretaud et al., 2004).

1.1 PD and Zebrafish

The PD is characterized by tremor, muscle rigidity,
a slowing of physical movement, and can also cause

cognitive and mood disturbances. It results of the loss
of nerve cells in part of the brain known as the sub-
stancia nigra. These cells are called dopaminergic
(DA) neurons as they produce the neurotransmitter,
dopamine, which is used to send messages to the parts
of the brain that co-ordinate movement (Fis, 2012).
Most insights into human disease are a result of exper-
iments that would be unethical or unfeasible to per-
form on humans. Instead biomedical research uses
models to look at the functions of the genes involved
in maintaining healthy organisms in order to obtain
vital clues about the causes and progression of hu-
man diseases. Zebrafish are an ideal model organism
to bridge the gap between too simple (yeast) and too
complex (mice or rats). They are vertebrates and have
similar body plans (and similar tissues and organs) to
humans, and they’re much easier and with reduced
cost to breed than mice and rats. Zebrafish mutations
phenocopy many human disorders and the genome se-
quence of zebrafish is near completion. The DA ner-
vous system in zebrafish is well characterized in both
embryos and adult zebrafish. Some toxins known to
induce DA cell loss in other animal models have now
also been tested in adult zebrafish, as for example, the
6-hydroxydopamine (6-OHDA) which is a neurotoxin



that induces death of the DA cells. After injecting the
neurotoxin via intramuscular, locomotor activity and
dopamine levels of the brain decreases (Kalueff and
Cachat, 2010; McGrath, 2012; Breese et al., 2005;
Flinn et al., 2008). Thus the evaluation of swim-
ming behaviour can be related with the loss of DA
cells, and consequently with the PD. In the work per-
formed by (Correia et al., 2012) a new transgenic line
of zebrafish was developed to study the DA neurons,
which were validated with the use of the neurotoxin
6-OHDA and with the behaviour analysis using the
biosensor MOBS. They verified behavioural changes
that were related with the death of the DA neurons.
The algorithm to be developed can be a contribution
for this work: an algorithm that is sensible in the be-
haviour characterizations to allow the responses to be
comparable with the loss of the DA neurons.

1.2 Current Approach

The current algorithm used to characterize the be-
haviour of zebrafish consists in the evaluation of a
specific locomotion behaviour, with a series of bursts
in the domain of MOBS corresponding to the tail-
flip activity of zebrafish. Thus the outcome reflects
the number of tail-flips per minute per individual fish
(Correia et al., 2011). The behaviour detection is
based on the derivative peaks resulted from the strong
bursts in the signal. However, these peaks require a
threshold for the behaviour detection, and this is ac-
complished using the standard deviation multiplied by
a factor so that these two parameter, standard devia-
tion and derivative, may be comparable. It’s essential
to confirm if the current algorithm is in fact detecting
the right behaviour, the tail-flips. The first intention
of this research would be to understand and improve
the current algorithm, however it will be proved the
need to create a new one using supervised learning.

1.3 Supervised Learning

By Arthur Samuel (1959), machine learning is the
field of study that gives computers the ability to learn
without being explicitly programmed. There are dif-
ferent types of machine learning algorithms, the main
two types are: unsupervised and supervised learning.

With supervised learning, the scheme operates un-
der supervision by being provided with the actual out-
come for each of the training examples. In this type
of machine learning is included regression problems
that predicts continuous valued outputs and classifica-
tion problems which intends to predict discrete valued
outputs (mac, 2012). For classification problems, a
known method is the Support Vector Machine (SVM)

which looks for the optimal hiper-plane between two
classes by maximizing the margin. A non-linear sep-
arator is possible by projection the data points to
higher-dimension space to become linearly separable
(projection with kernel techniques) (mac, 2012). Also
the method Naı̈ve Bayes which applies Bayes theo-
rem to estimate the probability with the ”naı̈ve” as-
sumption of independence between each feature. For
validation, a possible statistic test is leave one out,
which given a dataset of m instances, only one in-
stance is left out as the validation set (instance) and
training uses the m−1 instances (Witten et al., 2011).

2 METHODS

2.1 MOBS

The main device is controlled via an USB port by ex-
ternal processing software which produces signals in
the digital domain (at 48000 samples/s or 48 kHz).
These are converted by the main device into analogi-
cal electrical signals, power amplified and transmitted
to the independent testing units at which they are con-
ducted into the water by a pair of non-invasive stain-
less steel electrodes. In response to the behavioural
signatures of the organisms as a change in impedance
of the water, the amplitudes of the electrical signals
are modulated and then received by a second pair
of electrodes. In the main device they are amplified
and converted back to the digital domain at 48000
samples/s, before filtered, demodulated and down-
sampled at 100 Hz by the external computer soft-
ware. Upon processing, the system provides a signal
in the frequency band of 0.2 Hz to 40 Hz that is corre-
lated with the fish activity (Cunha et al., 2008). With
MOBS, locomotion can be presented with a series of
bursts in the time domain, and can cover a broad fre-
quency spectrum, at which ventilation is occasionally
present. Typically ventilation generates waves of tri-
angular shape with a higher frequency and smaller
amplitude than the most of the energy located for lo-
comotion. However ventilation will not be studied
with zebrafish given its high level of activity.

2.2 Experimental Design

2.2.1 Test Animals and 6-OHDA

The zebrafish (D. rerio Hamilton 1822) strain used for
this work was the AB line (Zebrafish Facility, IMM,
Portugal). Animals were maintained under standard
conditions and experiments were approved by the In-
stitutional Animal Care and Use Committee. A mas-



ter stock solution of 6-hydroxydopamine hydrochlo-
ride (6-OHDA, Sigma-Aldrich, USA) was prepared in
0.2% ascorbic acid solution (analytical grade, Sigma)
and stored at -20◦C.

2.2.2 Behaviour Assay

Before the experiments, small groups of female fish
(24 animals, body weight 0.5 ± 1 g) were acclima-
tized to the experimental testing conditions (temper-
ature 22 ◦C ± 1 ◦C, 10 h:12 h light-dark cycle) in
17 litre glass aquaria under static conditions and for
a minimum of one week. Food was not provided 24
h before or during the experiments. The behaviour
analysis was divided in two groups: non-treated (12
fish) and for that considered as normal fish in which
no injection was administered, and treated (12 fish)
also considered as ill or less active where 5µL of 6-
OHDA (33 mg/kg) was injected via intramuscular.
During the injection they were in a medium-to deep-
plane level of anaesthesia (tricaine 50 mg/L) and had
lost their reflex responses and muscular control. Af-
terwards they returned to their original test chambers
and allowed 30 min to recover from the anaesthesia.
On the day of experiments, either the treated or non-
treated groups of fish were placed individually in the
test chambers (22 ◦C ± 1 ◦C) and acclimated for 30
min. Then individual baseline responses were mon-
itored using MOBS and recorded using video (prop-
erty of 25 frames per second) for five minutes between
10 and 12 a.m. After behavioural recording, treated
fish were sacrificed with tricaine.

2.3 Synchronism

The signal in the time domain is delayed in relation
to the instant of acquisition start. This delay is caused
by the main device, which makes it difficult to com-
pare a video where the fish movements are present,
with its respective signal from MOBS. The Open Sig-
nals is a platform designed and programmed by PLUX
- Wireless Biosignals. Using this platform, synchro-
nism is possible with a visible stimulus in the signal
and video. This stimulus must be sufficient to not be
confused with the fish activity in the signal. A touch
in the chamber is a possible stimulus and to not cor-
rupt the signal from the fish activity for further analy-
sis the stimulus should be produced at the end of the
recording.

2.3.1 Visual Analysis

To verify what the algorithm is detecting a detailed
analysis using Open Signals was necessary after syn-
chronism. This analysis using the video frame by

frame consisted in the detection of the behaviour tail-
flip. The tail-flip is characterized as an abrupt and
fast change of direction implying a strong burst in the
tail. The visual analysis will consist in counting the
number of tail-flips detected and divide it by the total
time in minutes. Since the visual analysis is a long
process, 24 study cases were made, 12 of them were
non-treated and the rest were submitted to the drug
6-OHDA. Each visual analysis consisted in 3 minutes
of the video. Since the visual analysis depends of the
user that is interpreting the data, it’s important to test
other user and compare the results. A visual test us-
ing a different user was made. The test consisted in
a precise analysis frame by frame using a signal with
30 seconds, and for this time both users detected 46
abrupt tail-flips. After the User 1 detect the abrupt
tail-flip it was considered an interval of 0.25 seconds
in which the User 2 had also to detect the same abrupt
tail-flip to be a valid success.

2.4 Current Algorithm Evaluation

In this subsection is intended to compare the visual
analysis with the algorithm result using linear regres-
sion for each group (treated and non-treated) and esti-
mate the relative error with the leave one out method.
This was chosen because the number of points anal-
ysed is small. Also in consideration is the correlation
coefficient which is a numerical value that indicates
the degree and direction of relationship between two
variables (O’TOOLE, 2006). The relative error ob-
tained will show the need to improve the algorithm.

The multiplicative factor in the current algorithm
is used so that the derivative can be comparable to
the standard deviation thus allowing to detect the be-
haviour abrupt tail-flips. Given that, to improve the al-
gorithm the multiplicative factor should be analysed.
The value used so far has been 0.1. To understand
which is the best factor value, it was decided to vary
the factor according to the outcome of the algorithm,
and with the visual analysis choose the factor that was
closer to reality. A unique study case isn’t sufficient
to choose the ideal factor, thus with all data analysed
for each group it’s estimated the average relative error
from the current algorithm result with the visual anal-
ysis. In the end we chose the factor that minimizes
the relative error.

2.5 New Algorithm

2.5.1 Behaviour Characterization

To characterize the behaviour in number of tail-flips
per minutes it was necessary to use the parameter zero



crossing rate. The zero crossing rate it is defined as
the number of time-domain zero crossings within a
defined region of signal, divided by the number of
samples of that region (Gouyon et al., 2000). Each
data was divided by its standard deviation, so that all
data is at the same scale to be comparable and be-
cause the signal is centred at zero, it wasn’t necessary
to subtract the average. Also the signal was smoothed
using a Hanning window of 0.05 seconds. To vali-
date this parameter it was used the statistic analysis
leave one out. This was chosen because the number
of points analysed is small. This study also consid-
ered the correlation coefficient.

2.5.2 Classification

The Orange is a software suitable for machine learn-
ing. It is a free software and open source. It allows
to use data mining through visual programming and
Python scripting (Curk et al., 2005). The classifier
was studied with the methods SVM and Naı̈ve Bayes.
The validation used the statistic analysis leave one out
to provide the accuracy for each method used (SVM
or Naive Bayes) which is the proportion of correctly
classified examples (Curk et al., 2005). Thus varying
the number of parameters obtained from the data we
choose the ones that give higher accuracy for the re-
spective method. The parameters extracted from each
data were the zero crossing rate, the standard devia-
tion, the maximum power using the periodogram, the
maximum number of occurrences using the histogram
and the current algorithm output. Also the optimal
values for the SVM, namely the Cost parameter and
the gamma value for the kernel function were chosen
by the Orange software which uses the LIBVSM li-
brary. Since the classifier doesn’t require the visual
analysis as output, which is a long process, instead
of using the data obtained so far (24 study cases), it
was used data from a previous work to provide more
points to the classifier (108 study cases with equal
number for each class). This work developed at the
Instituto de Medicina Molecular provides data with
non-treated and treated fish (submitted to the drug 6-
OHDA).

3 RESULTS AND DISCUSSION

3.1 Synchronism

3.1.1 Visual Analysis

In 46 detections between both users, 44 were ac-
cepted, leading to an error of 4.35%. The agreement

between the users characterizing the behaviour, leads
that the visual result can be a valid information to be
compared with the current algorithm or with future
works.

3.2 Current Algorithm Evaluation

We can now compare the algorithm output with the
visual analysis. The results are shown in figure 1. It
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Figure 1: Comparison between the visual analysis and the
algorithm result.

is visible that there is no direct relation between the
visual analysis and the algorithm output as it would
be expected both for treated and non-treated fish. Af-
ter applying linear regression in each group it was es-
timated the relative error with the method leave one
out which resulted in an error of 17.29% for the non-
treated and 25.31% for treated. Also the correlation
coefficient obtained was 0.20 and 0.76 for the non-
treated and treated respectively which can be con-
sidered as a poor relation between the visual anal-
ysis with the algorithm output. These errors imply
an improvement in the algorithm, more specifically
in the multiplicative factor. To choose the best fac-
tor it was decided to study the error associated with
the visual analyse. Figure 2 indicates the minimum
error accepted as well as the error used with the ac-
tual factor for the treated and non-treated fish. The
error using the actual factor is 55.26% and 68.79%
for non-treated and treated respectively, and even im-
proving the factor, the minimal error accepted would
be 53.20% for non-treated which leads to a best fac-
tor of 0.11 and 44.53% for treated with a best factor of
0.13. To be able to choose the best factor these errors
obtained should be as close to zero as possible which
indicates that even with these improvements the best
multiplicative factor cannot be certain. Therefore, and
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considering that the visual analysis is a valid measure,
it is suggested the development of a new algorithm.

3.3 New Algorithm

With the visual analysis it will be possible to study
new parameters using supervised learning, more pre-
cisely, regression models.

3.3.1 Behaviour Characterization

Figure 3 shows visually that there is a linear ten-
dency between the zero crossing rate results with the
visual analysis both for treated and non-treated fish.
Considering first the normal fish for validation, it was
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Figure 3: Comparison between the zero crossing rate with
the visual analysis for normal and ill fish with a window of
180 seconds.

used the statistic analysis leave one out. The result
leaded to a error of 2.55%. The relative error of
2.55% compared with the 17.29% from the previous
algorithm can be considered as an excellent improve-
ment. The user test from the previous section showed
an error of 4.35%. Given that, the reason why this
parameter shows a smaller error (2.55%) it’s because
it suits the user that performed this analysis. If User
2 had also performed this analysis, it should be ex-
pected a bigger error. The correlation coefficient ob-
tained in this case was 0.99, indicating that there is a
very good positive relation between the zero crossing
rate and the visual analysis. Finally using all points
for a window of 180 seconds, linear regression can be
applied to define our hypothesis:

hθ(x) = 15.42+26.43x (1)

To characterize the behaviour for ill fish, Figure 3
shows that this group presents an inverse linear ten-
dency between the zero crossing rate and visual analy-
sis, which means that the higher the number of counts
per second the less active the fish is. Again it was used
the leave one out method to validate this parameter.
The relative error obtained was 5.75% which can be
a good estimative even thought it’s higher than the er-
ror obtained to characterize normal fish (2.55%). This
error in comparative to the 25.31% from the previ-
ous algorithm can also be considered as an excellent
improvement. The correlation coefficient was −0.99,
meaning there is a very good inverse relation between
the visual analysis and zero crossing rate.

Using all points for a window of 180 seconds lin-
ear regression can be applied to define our hypothesis:

hθ(x) = 47.45−11.65x (2)

The value of 47.45 tail-flips per minute limits the fish
activity, which means that ill fish won’t show a higher
value of activity than 47.45 tail-flips per minute. Also
for a fish that doesn’t present any activity (0 tail-
flips per minute) it should be expected a value of
4.07 counts per second. Since both groups use differ-
ent equations to characterize the behaviour, to know
which equation to use for the development of this al-
gorithm a classifier is needed to distinguish between
normal or ill fish.

3.3.2 Classification

Now our output is defined by two classes: normal and
ill fish. The parameters used that leaded to a higher
accuracy for the SVM were the zero crossing rate, the
standard deviation, the maximum power using the pe-
riodogram, the maximum number of occurrences us-
ing the histogram, and the previous algorithm output.



The learning options used were for the kernel func-
tion the Sigmoid function (tanh(8 ∗ x.y)), a Cost of
2.0 (Model Complexity - penalty parameter) and a
numeric precision of 0.001. The accuracy obtained
using leave one out for the SVM method was 100%,
meaning that all cases analysed were correctly clas-
sified. On the other hand, the Naive Bayes method
based on the relative frequency presented a maximum
accuracy of 67.59% using the parameters standard de-
viation, the maximum power using the periodogram
and the previous algorithm output.

As we want to choose the classifier that predicts
the classes with a higher accuracy value we choose
the method SVM to build our final classifier. Because
the Orange program is open source, with the access to
the functions that build the classifier SVM we can use
them to construct the final algorithm in python.

3.3.3 Final Algorithm

Now it’s possible to built the final algorithm. First we
prepare the data with the removal of the initial peak
from the main device, the application of a filter to ex-
clude possible noise, the normalization of the data and
the smooth of the signal using a Hanning window of
0.05 seconds. Then we use the classifier to predict if
the fish is normal or ill. Consequently, according to
the classification it’s possible to characterize the be-
haviour in number of tail-flips per minute using the
corresponding hypothesis that consists in the use of
the parameter zero crossing rate. The final result will
present the classification, the probability for that clas-
sification, and the number of tail-flips per minute.

4 CONCLUSIONS

A new algorithm was developed to classify and
characterize the behaviour of zebrafish. To facilitate
its use, the algorithm should be integrated in the plat-
form Open Signals. The fact that this algorithm uses
classification can be an advantage as it may bring an
efficient separation between a healthy fish from one
that has been genetically modified to have PD. Also,
the algorithm should be applied in a case study as ex-
ecuted by (Correia et al., 2012), to verify that the re-
sponses are in agreement with the fish behaviour and
literature. This algorithm may be useful for further
studies not only related with PD, but any other that
uses zebrafish behaviour as an end point to study hu-
man diseases.
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