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Abstract

Most of the investigation in microbiology relies on microscope imaging and needs to be
complemented with reliable methods of computer assisted image processing, in order to
avoid manual analysis.

In this work, a method to assist the study of the in vivo kinetics of protein expression
from Escherichia coli cells was developed. Confocal fluorescence microscopy (CFM) and
Differential Interference Contrast (DIC) microscopy images were acquired and processed
using the developed method. This method comprises two steps: the first one is focused
on the cells detection using DIC images. The latter aligns both DIC and CFM images and
computes the fluorescence level emitted by each cell.

For the first step, the Gradient Path Labelling (GPL) algorithm was used which pro-
duces a moderate over-segmented DIC image. The proposed algorithm, based on deci-
sion trees generated by the Classification and Regression Trees (CART) algorithm, dis-
cards the backgrounds regions and merges the regions belonging to the same cell.

To align DIC/fluorescence images an exhaustive search of the relative position and
scale parameters that maximizes the fluorescence inside the cells is made. After the cells
have been located on the CFM images, the fluorescence emitted by each cell is evaluated.

The discard classifier performed with an error rate of 1.81% ± 0.98% and the merge
classifier with 3.25% ± 1.37%. The segmentation algorithm detected 93.71% ± 2.06% of
the cells in the tested images. The tracking algorithm correctly followed 64.52%±16.02%

of cells and the alignment method successfully aligned all the tested images.

Keywords: Segmentation, Alignment, GPL, Classifier, CART.
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Resumo

A investigação na área da microbiologia assenta em imagens de microscopia e, de modo
a evitar análises manuais, necessita de ser complementada com métodos fiáveis de pro-
cessamento de imagem assistida por computador.

Neste trabalho foi desenvolvido um método para assistir o estudo da cinética da ex-
pressão proteica in vivo de células de Escherichia coli, a partir de imagens de microscopia
confocal de fluorescência (MCF), complementadas com imagens de microscopia de con-
traste de interferência diferencial (CID). Este método é composto por dois passos prin-
cipais, o primeiro dos quais consiste na segmentação das imagens de CID de forma a
detetar as células e o segundo no alinhamento das imagens CID/MCF e posterior quan-
tificação da fluorescência emitida por cada célula.

Na primeira etapa foi usado o algoritmo Gradient Path Labelling (GPL) que produz
uma moderada sobre-segmentação da imagem CID. O algoritmo proposto, baseado em
árvores de decisão geradas pelo algoritmo Classification and Regression Trees (CART),
descarta as regiões do fundo da imagem e une as regiões pertencentes a cada célula.

Para alinhar as imagens CID/fluorescência é feita uma pesquisa exaustiva pelos pa-
râmetros de posição e escala relativas que maximizam a fluorescência dentro das células.
Uma vez localizadas as células na imagem de fluorescência é possível avaliar a fluores-
cência emitida por cada uma.

O classificador de descarte mostrou atuar com uma taxa de erro de 1.81% ± 0.98%

e o classificador de união com 3.25% ± 1.37%. O algoritmo de segmentação detetou
93.71% ± 2.06% das células presentes nas imagens testadas. O algoritmo de tracking se-
guiu correctamente 64.52% ± 16.02% das células e o método usado para o alinhamento
alinhou corretamente todas as imagens testadas.

Palavras-chave: Segmentação, Alinhamento, GPL, Classificador, CART.
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1
Introduction

Most of the recent studies using microbes as model organisms rely on microscope imag-
ing. To improve and accelerate those studies, they need to be complemented with reliable
and fast methods of computer assisted image processing. These methods aim at facilitat-
ing the extraction of information from images of bacterial populations with single cell
resolution, by avoiding manual analysis, which is fastidious, time consuming and sub-
ject to observer variances[1, 2].

In this work it was developed a method to assist the study of the in vivo kinetics of
protein expression, one protein at a time, from confocal fluorescence microscopy (CFM)
images of Escherichia coli (E. coli) cells (for growth and induction conditions see [3]).

In confocal fluorescence microscopy, the specimen is generally illuminated by a laser.
The term excitation rather than illumination is more appropriated in what follows, since
it more explicitly refers to the contrast-generating process: the excitation of fluorophores
(small molecules with fluorescence properties[4]), through absorption, causing detectable
fluorescence. After the absorption, the fluorophores start to fluoresce, emitting a light
with a longer wavelength than the one emitted from the excitation process. A fraction
of the emitted fluorescence is collected by the microscope objective and imaged onto the
detector[5].

This work was strongly motivated by the fact that CFM images only show the emitted
fluorescence, while cells boundaries are not visible, which hinders the evaluation of the
fluorescence emitted by each cell. Hence, cell biologists usually combine fluorescence
microscopy with functional images and other types of microscopy to acquire anatomical
information allowing to track the fluorescence signals position[6].

This way, a Differential Interference Contrast (DIC) image is simultaneously acquired
along with the CFM image, in which cells are well visible. The main of this approach is to

1



1. INTRODUCTION

superimpose and adjust both images to allow the evaluation of the emitted fluorescence
by each cell.

DIC microscopy renders good contrast for optically transparent biological samples
without the need of introducing any exogenous contrast agents. Due to this non-invasive
nature, DIC microscopes are widely used in biology laboratories [7, 8]. DIC microscopy
makes use of differences in the refractive index and uses two beams of light recombined
into one. Because of slight differences in refractive index of the substances each beam
passed through, the combined beams are not totally in phase but instead create an inter-
ference effect. This effect intensifies even little differences in cell structure[9]. To identify
the cells on DIC image, image analysis techniques are essential.

Biomedical cell image analysis is one of the main application fields of computerized
image analysis. Visual interpretation is, however, tedious and in many cases, error-prone.
Therefore, ever since the first appearance of computers, significant development efforts
have been aiming at supplementing or replacing human visual inspection with computer
analysis[10].

In order to extract information from microscopy images, those images are segmented.
Image segmentation is the process of dividing an image into its constituents objects, or
parts, and a background. It is one of the most important and most difficult steps in an
image analysis task [11, 10].

Due to the difficulty of image segmentation, many segmentation techniques have
been developed by researchers worldwide. Many of those techniques require an inter-
action with the user and don’t produce a satisfactory result on the more difficult types
of cell and tissue images. The problems arise when the cells are clustered, the image
background varies or when there are intensity variations within the cells[10].

In this work, a two steps segmentation method is proposed. The first step consists on
applying the Gradient Path Labelling (GPL) algorithm which produces a slightly over-
segmented image. In the second step, machine learning techniques are used in order to
overcome that over-segmentation. Two different classifiers were constructed, one that de-
cides which regions of the over-segmented image are to be discarded (as background or
air bubbles regions) and the other classifier that decides which regions are to be merged
(regions belonging to a same cell).

Once the cells present on the DIC images are correctly identified, it is necessary to
align those images with the correspondents CFM images. This alignment is not trivial
because images differ not only in position but also in scale, as shown in Figure 1.1. In
this work a simple alignment technique based on an exhaustive-search of position and
scale that maximize the fluorescence within cells contours is proposed. For a better vi-
sualization of the fluorescence on CFM images an Otsu threshold was applied. Thus, all
fluorescence images shown in this dissertation are not literal reproductions of the original
ones.

A block diagram of the proposed method is shown on Figure 1.2.

Repeating this process for a set of images acquired over time, it is possible to follow

2



1. INTRODUCTION

(a) DIC image.

DIC relative position

(b) CFM image with correspondent DIC position marked in red.

Figure 1.1: DIC and CFM images and the respective relative position.

3



1. INTRODUCTION

Figure 1.2: Developed algorithm schematics.
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1. INTRODUCTION

the evolution of the cells as well as evaluate the distribution of fluorescence within each
cell over time.

Brief state of the art

There are many references in literature to cell segmentation techniques. Most of those
techniques use seeded region growing techniques, usually seeded watershed, as de-
scribed in [12, 13, 14, 10, 2]. Usually seeds are obtained by thresholding. There are a vast
literature referring to this technique, and some more examples can be found in [15, 16, 17].

Snakes or active contour models introduced by Kass et al.[18] are often used to seg-
ment cells, as in [19] or [20], but have the initialization and minimization drawbacks.

In order to overcome the over-segmentation of images, some techniques as the ones
described in [12] can be applied. These techniques merge regions by combining a seg-
ment with a smaller size bigger than S, then it is merged with its smaller neighbour just
if the shape factor together are smaller than its alone. A. Duarte et al.[21] developed a
region merging technique based on the similarity of regions intensities, spacial locations
and original sizes . J. Ning et al.[22] described a method to merge similar objects but the
intervention of the user is needed.

Machine learning techniques are broadly used in cell segmentation methods. How-
ever, most of the times they are used to classify cells types [23] or to identify cells cycles
phases, as in [24].

M. Tscherepanow et al [25] described a method to classify regions in "cells" and "non-
cells". However, their method require an image with the background identified, distin-
guishing only cells from dirt or from cells clusters. Moreover, 107 features were extracted
from the data for the classification, leading to a high computational cost process.

The segmentation techniques here mentioned will be described in Section 3.3.

This work was developed with the collaboration of the Laboratory of Biosystems Dy-
namics from Tampere University of Technology, Finland, which proposed this theme and
gently provided all the used images.

This dissertation is organized into five more chapters. The next chapter introduces
some of the most important aspects of machine learning, as well as the comparison be-
tween two of the most popular machine learning algorithms. The third chapter covers
some of the image processing concepts used in this work, including the GPL algorithm.
In the fourth chapter all the steps of the developed methodology to construct the pro-
posed algorithm, the segmentation and the alignment phases are presented. Finally,
chapters 5 and 6 describe the results and the conclusions of this work, respectively.

This research work also led to an article which was accepted for presentation at
the Medical Signal & Information Processing (MEDSIP) conference in Liverpool, United
Kingdom. This article can be found in Appendix 1.

5



1. INTRODUCTION
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2
Machine Learning

The ability of learning is one of the main demonstrations of animal intelligence and since
the emergence of computers researchers wonder if they are also able to learn[26, 27].
Meanwhile, computers have been used mainly as tools for data processing, but as the
processing speed and the amount of data that can be processed by a computer have in-
creased, researchers have discovered that computers can, in fact, be used as more intelli-
gent information processing tools[28].

Machine learning is a term used for algorithms and techniques that "teach" a computer.
It is a growing field of artificial intelligence and has been used in fields as diverse as
business, agriculture, medicine or politics. This technology is based essentially in finding
patterns/tendencies in data.

People have been seeking patterns in data ever since human life began. Hunters seek
patterns in animal migration behaviour, farmers seek patterns in crop growth and politi-
cians seek patterns in voter opinion with the main goal of predict future situations[29].
We do it almost all the time, and without conscious effort. In fact, most of our day-to-day
activities are based on our success in performing various pattern recognition (PR) tasks,
as when we read a book, we recognize the letters and words[30].

As the world grows in complexity, overwhelming us with the data it generates, an
intelligent analysis of that data is a valuable resource that can lead to new insights, and,
in commercial settings, to competitive advantages[29].

In a human sense, learn can be defined as "to get knowledge of something by study,
experience or being taught"; "to become aware by information or from observation"; "to
commit to memory"; "to be informed of or to ascertain" or "to receive instruction".

In informatics, learning or the acquisition of knowledge takes a slightly different mean-
ing. In this context, it can be said that a computer program learns from experience E with
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respect to some class of tasks T and performance measure P, if its performance at tasks T,
as measured by P, improves with training experience E.

An example is handwriting recognition learning problem:

Task Recognition and classifying handwritten words within images;

Performance Percent of words correctly classified;

Training Experience A database of handwritten words with given classifications.

Some other examples of machine learning are the recognition of spoken words, the
drive of an autonomous vehicle, the classification of new astronomical structures, or
learning to play backgammon [26].

Before discussing machine learning algorithms, is important to understand the mean-
ing of concepts, instances and attributes.

2.1 Concepts, Instances and Attributes

Basically, the concept is the "thing" to be learned[29]. For example, people learn general
concepts such as "bird" or "car". Each concept can be viewed as describing some subset
of objects or events defined over a larger set. The "bird" concept can be seen as describing
the subset of animal with beak, winds and small proportions that flies. Alternatively, each
concept can be defined as a boolean-valued function defined over this larger set. Back to
the "bird" concept, this can be seen as a boolean function defined over all animals, whose
value is true for birds and false for other animals[26].

Examples, or instances, are the data to be evaluated. Normally, each instance is an
individual, independent example of the concept to be learned and is characterized by
the values of a set of predetermined features or attributes. Instances are the input data
of machine learning algorithms and belong, preferentially, to one single class. When this
doesn’t happen, they receive the nomination of multilabeled instances[29].

The value of an attribute for a particular instance is a measurement of the quantity to
which the attribute refers. It can be numeric (or continuous) or nominal (or categorical). Note
that the term continuous here is not the mathematical one, once integer-valued attributes
are certainly not continuous in the mathematical sense. Nominal attributes can assume
values in a pre-specified, finite set of possibilities.

The iris classification problem, a classic example for machine learning algorithms, is
shown in Table 2.1. In this example, the concept to be learned is the type of iris, the
attributes are Sepal length and width and Petal length and width. Instances are the lines
of the table, each line representing an instance.

Other classic example is the weather problem present in Table 2.2. It is fictitious and
concerns the conditions that are suitable for playing some unspecified game.
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Table 2.1: Iris Data.

Sepal Length Sepal Width Petal Length Petal Width Type
(cm) (cm) (cm) (cm)

5.1 3.5 1.4 0.2 Iris setosa
4.9 3.0 1.4 0.2 Iris setosa
4.7 3.2 1.3 0.2 Iris setosa
4.6 3.1 1.5 0.2 Iris setosa
5.0 3.6 1.4 0.2 Iris setosa
7.0 3.2 4.7 1.4 Iris versicolor
6.4 3.2 4.5 1.5 Iris versicolor
6.9 3.1 4.9 1.5 Iris versicolor
5.5 2.3 4.0 1.3 Iris versicolor
6.5 2.8 4.6 1.5 Iris versicolor
6.3 3.3 6.0 2.5 Iris virtinica
5.8 2.7 5.1 1.9 Iris virtinica
7.1 3.0 5.9 2.1 Iris virtinica
6.3 2.9 5.6 1.8 Iris virtinica
6.5 3.0 5.8 2.2 Iris virtinica

2.2 Types of Machine Learning

As said before, we can say that a machine is learning if it is improving its performance at
some task through practice. If we consider the question of knowing whether or not the
machine is learning (how it gets experience), the two possible answers to that question
produce different types of machine learning: supervised learning and unsupervised learning.

Supervised Learning In this type of learning it is provided to the machine a set of exam-
ples with the correct classifications (concepts or targets) and, based on this training
set, the algorithm learns to respond correctly to all possible inputs. The set of exam-
ples given to the machine is called training set[31]. This is the most common type of
learning and is going to be detailed below.

Unsupervised Learning In this type of learning the correct classifications are not pro-
vided. Instead, the algorithm tries to identify resemblances between the inputs so
that inputs that have something in common are categorised together[31]. Hence
a concise description of the data can be a set of clusters or a probability density
stating how likely it is to observe a certain object in the future[32].

The iris problem previously mentioned can be seen as a clustering problem if the
iris type was omitted. In that case, the output would be as presented in Table 2.3.
It is likely that all instances fall into natural clusters corresponding to the three iris
types.
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Table 2.2: Weather Data.

Outlook Temperature (K) Humidity (%) Windy Play

Sunny 85 85 false no
Sunny 80 90 true no
Overcast 83 86 false yes
Rainy 70 96 false yes
Rainy 68 80 false yes
Rainy 65 70 true no
Overcast 64 65 true yes
Sunny 72 95 false no
Sunny 69 70 false yes
Rainy 75 80 false yes
Sunny 75 70 true yes
Overcast 72 90 true yes
Overcast 81 75 false yes
Rainy 71 91 true no

2.2.1 Supervised Learning

In supervised learning the task is to find a deterministic function that maps any input to
an output that can predict future input-output observations, minimizing errors as much
as possible. Whenever asked for the target value of an object present in the training set, it
can return the value that appeared the highest number of times together with this object
in the training set. According to the types of the outputs, supervised learning can be
distinguished in classification and regression learning[32].

Classification learning is a machine learning method that is presented with a set of clas-
sified examples from which it is expected to learn a way of classifying unseen ex-
amples. In this case the output is a class and the learning algorithm that solves the
classification problem is called the classifier[32, 29].

Regression learning is a type of learning where there is no specified classes[29]. The out-
put space is formed by the values of continuous variables (e.g. estimate a physical
measure)[32].

2.3 Output Representations

An understanding of how knowledge is represented and interpreted is an useful insight
into how data mining works. To exemplify the different output representations, the data
from Table 2.4is used as input.
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Table 2.3: Iris Problem as a Clustering Problem.

Sepal Length Sepal Width Petal Length Petal Width
(cm) (cm) (cm) (cm)

5.1 3.5 1.4 0.2
4.9 3.0 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5.0 3.6 1.4 0.2

7.0 3.2 4.7 1.4
6.4 3.2 4.5 1.5
6.9 3.1 4.9 1.5
5.5 2.3 4.0 1.3
6.5 2.8 4.6 1.5

6.3 3.3 6.0 2.5
5.8 2.7 5.1 1.9
7.1 3.0 5.9 2.1
6.3 2.9 5.6 1.8
6.5 3.0 5.8 2.2

Table 2.4: Mushroom quality problem data.

Weight Stalk damage Dirt Firmness Quality

heavy hight mild hard poor
heavy hight mild soft poor

normal hight mild hard good
light medium mild hard good
light clear clean hard good

heavy clear clean soft poor
normal clear clean soft good
heavy medium mild hard poor
heavy clear clean hard good
light medium clean hard good

heavy medium clean soft good
normal medium mild soft good
normal hight clean hard good

light medium mild soft poor
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Figure 2.1: Decision tree for the mushroom data.

2.3.1 Decision Trees

One method of machine learning is to determine a test on an attribute that will discrimi-
nate between the instances in a data set. This test has the effect of splitting the data into
two (or more) smaller data sets. By repeatedly splitting these smaller data sets, a series
of attribute tests that represent the original data as a tree are obtained. An illustration of
a decision tree is presented in Figure 2.1[33].

New instances are classified by starting at the root node of the tree, testing the ad-
dressed attribute for this node, then moving down the tree branch corresponding to the
value of the attribute in the given example. This process is then repeated for the sub-tree
rooted at the new node[29, 26].

In Section 2.5, decision trees induction algorithms will be discussed.

2.3.2 Classification rules

An alternative to a decision tree is to represent knowledge as a set of rules. Rule sets
can be either induced directly or produced from a decision tree. For example, the tree in
Figure 2.1 can be readily transformed, generating a rule for each one of the leaves of the
tree, into the following rules:

If weight=heavy AND dirt=mild then quality=poor.

If weight=heavy AND dirt=clean then quality=good.

If light=heavy AND firmness=hard then quality=good.

If light=heavy AND firmness=soft then quality=poor.

If normal=heavy AND dirt=mild then quality=good.

The conditions of the rule are the tests encountered from the leaf to the root of the tree
(combined as conjunctions) and the classification given by the rule is the class label of the
leaf[33].
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2.4 Training and Testing

In the final phase of the data-mining process, when the model is obtained, it is important
to validate it. Model validation is performed by verifying if models behave with satis-
factory accuracy consisten with the objectives defined by the users, within its domain of
applicability[34].

The data-mining results are validated by the testing process. Model testing relies on
acertaining if inaccuracies exist or revealing the existence of errors on the model[34].

2.4.1 Error rate and performance

For classification problems, the measurement of a classifier performance in terms of error
rate is a common practice. The classifier predicts the class of each instance: if it is correct,
it is counted as a success; otherwise, it is an error. The error rate is the proportion of
errors made over a whole set of instances, and it measures the overall performance of the
classifier.

The error rate on the training set is not likely to be a good indicator of future per-
formance because the classifier has been learned from the very same training data, and
therefore any performance estimate based on that will be optimistic, even hopelessly op-
timistic. This measurement is called the resubstitution error because it is calculated by
resubstituting the training instances into a classifier that was built from them. Although
it is not a reliable predictor of the true error rate on new data, it is nevertheless often
useful to know.

To predict the performance of a classifier on new data, we need to assess its error
rate on a dataset that played no part in the formation of the classifier. This indepen-
dent dataset is called the testing set. It is assumed that both training and testing data are
representative samples of the underlying problem[29].

There are no good guidelines available on how to divide the samples into subsets. No
matter how the data is split, it should be clear that different random splits even with the
specified size of training and testing sets, would result in different error estimates.

There are different techniques, usually called resampling methods, for splitting data sets
into training and testing samples[34].

Resubstitution Method is the simplest method. All the available data is used for train-
ing as well as for testing. In other words, the training and testing sets are the same.
Estimation of the error rate for this "data distribution" is optimistically biased (es-
timated error is often smaller than could be expected in real applications of the
model), and therefore the method is rarely used in real-world data-mining applica-
tions. This is especially the case when the ratio of sample size to dimensionality is
small.

Holdout Method is a method in which half the data, or sometimes two-thirds of the
data, is used for training and the remaining data is used for testing. Training and
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Figure 2.2: Cross-Validation method ilustration from [36].

testing sets are independent and error estimation is pessimistic. Different partition-
ing will give different estimates. A repetition of the process, with different training
and testing sets randomly selected and integration of the error results into one stan-
dard parameter will improve the estimate of the model.

Leave-one-out Method is a method where the learning algorithm is applied once for
each instance, using all other instances as a training set and using the selected in-
stance as a single item test set[35].

Rotation Method or n-fold Cross-Validation is an approach compromised between hold-
out and leave-one-out methods. It divides the available samples into P disjoint
subsets, where P ≤ P ≤ n. (P − 1) subsets are used for training and the remaining
subset for testing. This is the most popular method in practice, especially for prob-
lems where the number of samples is relatively small[34]. This method schematics
is shown in Figure 2.2.

Bootstrap method resamples the available data with replacements to generate a number
of "fake" data sets of the same size as the given data set. The number of these new
sets is typically several hundreds. These new training sets can be used to define
bootstrap estimates of the error rate. Experimental results have shown that the
bootstrap estimates can outperform the cross-validation estimates. This method is
especially useful in small data set situations[34].

Generally, the larger the training sample, the better the classifier, although the outputs
begin to diminish once a certain volume of training data is exceeded and the larger the
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test sample, the more accurate is the error estimate[29].

2.4.2 Cost

The evaluations that have been discussed so far do not take into account the cost of mak-
ing wrong decisions/classifications.

Let’s take an example in which not considerating the cost can lead to the construction
of an useless classifier. The problem was to determine the exact day that each cow in a
daily herd was in estrus, or "heat". Cows were identified by electronic ear tags, and vari-
ous attributes were used such as milk volume and milk chemical composition (automatically
recorded by a high-tech machine), and milking order, because cows herds are regular and
generally cows arrive in the milking shed in the same order, except in unusual circum-
stances such as estrus. It is important to know when a cow is in estrus because they are
fertilized by artificial insemination and missing a cycle will delay calving unnecessarily,
causing complications down the line. In early experiments, machine learning schemes
stubbornly predicted that each cow was never in estrus. Like humans, cows have a men-
strual cycle of approximately 30 days. So, this "null" rule is correct about 97% of the
time, a very good degree of accuracy. However, the main goal was to establish rules
that predicted the "in estrus" situation more accurately than the "not in estrus" one. The
costs of the two kinds of error were different. Evaluation by classification accuracy tacitly
assumes equal error costs[29].

Cost-Sensitive learning is a type of learning that takes the misclassification costs into
consideration. The goal of this type of learning is to minimize the total cost. The key
difference between cost-sensitive learning and cost-insensitive learning is that the first
one treats different misclassifications differently. In other words, the cost for labelling
a positive example as negative can be different from the cost for labelling a negative
example as positive[35].

Considering a binary classification (i.e., positive and negative class), the cost of false
positive (actual negative but predicted as positive; denoted as FP), false negative (FN),
true positive (TP), and true negative (TN) can be given in a cost matrix, as shown in
Table 2.5.

In Table 2.5 , the notation C(i, j) is also used to represent the misclassification cost
of classifying an instance from its actual class j into the predicted class i (1 is used for
positive and 0 to negative). For multiple classes, the cost matrix can be easily extended
by adding more rows and more columns, resulting in a confusion matrix.

Given the cost matrix, an example should be classified into the class that has the
minimum expected cost. This is the minimum expected cost principle. The expected cost
R(i|x) of classifying an instance x into class i can be expressed as

R(i|x) =
∑
j

P (j|x)C(j, i),
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where P (j|x) is the probability estimation of classifying an instance into class j[35, 29].

Table 2.5: An example of the cost matrix for binary classification by cost-sensitive learning.

Actual Negative Actual Positive

Predict negative C(0, 0) or TP C(0, 1) or FN
Predict positive C(1, 0) or FP C(1, 1) or TP

2.5 Decision Trees Induction

The two most commonly used systems for induction of decision trees classification are
C4.5 and CART[37].

2.5.1 C4.5

2.5.1.1 Construct Decision Trees

C4.5 algorithm is the Quilan’s extension of his own ID3 algorithm for generating decision
trees[38]. This algorithm uses a technique called divide and conquer. It starts with all the
training samples at the root node of the tree. An attribute is selected to partition these
samples. For each value of the attribute a branch is created, and the corresponding subset
of samples that have the attribute value specified by the branch is moved to the newly
created child node. The algorithm is applied recursively to each child node until all
samples at a node are of one class. Every path to the leaf in the decision tree represents
a classification rule. Note that the critical decision in such a top-down decision tree-
generation algorithm is the choice of the attribute at a node.

So, according to this algorithm, suppose that we have the task of selecting a possible
test with n outcomes (n values for a given feature) that partitions the set T of training
samples into subsets {T1, T2..., Tn} . Let the classes be denoted as {C1, C2..., Ck}, S is a
set of samples and freq(Ci, S) stands for the number of samples in S that belong to class
Ci (out of k possibilities), and let |S| denote the number of samples in the set S.

This algorithm uses a criterion called gain to select the attribute to be tested which is
based on the information theory concept, the entropy. The following relation gives the
computation of the entropy of the set S:

Info(S) = −
k∑
i=1

freq(Ci, S)
|S|

log2

(
freq(Ci, S)
|S|

)
bits (2.1)

Now considering a similar measurement after T has been partitioned in accordance
with n outcomes of one attribute test X. The expected information requirement can be
found as the weighted sum of entropies over the subsets:
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InfoX(T ) = −
n∑
i=1

|Ti|
|T |

Info(Ti) bits (2.2)

The quantity

gain(X) = Info(T )− InfoX(T ) bits (2.3)

measures the information that is gained by partitioning T in accordance with the test
X. The gain criterion selects a test X to maximize the gain.

To a better understanding of how to construct a decision tree with this algorithm we
will consider again the weather problem, presented in Table 2.2. [39, 34]

The first problem is to select an attribute to place at the root node. Considering the
weather problem, there are four different possibilities for the root node: outlook, tempera-
ture, humidity or windy. Trees that will result from selecting each attribute to the root node
are shown in Figure 2.3.

(a) Outlook test as root node. (b) Temperature test as root node.

(c) Humidity test as
root node.

(d) Windy test as root
node.

Figure 2.3: Possibilities to the root node test, for the weather data tree.

So , starting with the outlook test which has n = 3 possible outcomes. We have a set S
that reaches that node with 14 samples, so |S| = 14. We have two different classes, play
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and don’t play. This way, Equation 2.1 becomes

Info(S) = −
(

9

14
log2

9

14

)
−
(

5

14
log2

5

14

)
= 0.940 bits

Supposing now that T has been partitioned according to the 3 outcomes of outlook
attribute, we have

Info(sunny) = −
(
2

5
log2

2

5

)
−
(
3

5
log2

3

5

)
= 0.971 bits

Info(overcast) = −
(
0

4
log2

0

4

)
−
(
4

4
log2

4

4

)
= 0.0 bits

Info(rainy) = −
(
3

5
log2

3

5

)
−
(
2

5
log2

2

5

)
= 0.971 bits

So,

Infooutlook(T ) = −
(

5

14
0.971 +

4

14
0 +

5

14
0.971

)
= 0.693 bits

This way,

gain(outlook) = 0.971− 0.693 = 0.247 bits

Calculating the gain for all the other attributes, we obtain

gain(temperature) = 0.029 bits

gain(humidity) = 0.152 bits

gain(windy) = 0.048 bits

Then we continue, recursively for all the other nodes and in the final of the process
we would have the decision tree shown in Figure 2.4[34].

2.5.1.2 Pruning

A fully decision tree often contains unnecessary structure, and it is generally advisable
to simplify it before it is deployed[29].

After a decision tree is produced by the divide and conquer algorithm, C4.5 prunes it
in a single bottom-up pass[37].
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Figure 2.4: Decision tree for the weather data.

Figure 2.5: Hypothetical decision trees.

To decide where to prune, it is necessary to estimate the error rate expected at a par-
ticular node given an independently chosen test set. We need to estimate the error at
internal nodes as well as at leaf nodes[29].

Considering that an event occurs M times in N trials, the ratio M/N is an estimate
of the probability p of the event. Deriving the confidence limits for p (for example, by a
Bernoulli process[29]) CF , the upper limit UCF (M,N) is used as a conservative estimate
of the error rate on unseen cases[37].

Let T be a non-leaf decision tree, produced from a training set S, as shown in the
hypothetical tree from Figure 2.5, where each T ∗

i has already been pruned. Further, let
T ∗
f be the subtree corresponding to the most frequent outcome of B, and let L be a leaf

labelled with the most frequent class in S. Let the number of cases in S misclassified by T,
T ∗
f , and L be ET ,ETf∗ , and EL respectively. The C4.5’s tree pruning algorithm considers

the three corresponding estimated error rates[37]:

• UCF (ET , |S|),

• UCF (EL, |S|) and

• UCF (ETf∗ , |S|).

Depending on whichever is lower, C4.5 either:

• leaves T unchanged,

• replaces T by the leaf L or
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• replaces T by the subtree T ∗
f .

2.5.2 CART

Classification and Regression Trees (CART) methodology was developed in the 80’s by
Leo Breiman, Jerome Friedman, R.A. Olshen and Charles Stone and was first presented
in their paper from 1984[40]. It is a method to construct binary decision trees or, in other
words, CART only asks yes/no questions[41]. The CART authors argue that binary splits
are to be preferred to multiway splits because they fragment the data more slowly than
multiway splits and repeated splits on the same attribute are allowed and, if selected,
will eventually generate as many partitions for an attribute as required. Any loss of ease
in reading the tree is expected to be offset by the improved predictive performance[42].

It is important to define some CART components. The first one is the categorical out-
come or dependent variable. This variable is the same as the concept described in Sec-
tion 2.1. The second component are the predictors or independent variables and they corre-
spond to the attributes that were previously mentioned. However, the CART algorithm
will decided if whether or not those attributes will be related to the outcome variable of
interest[36].

An important practical property of CART is that the structure of its classification or
regression trees is invariant with respect to monotone transformations of independent
variables. One can replace any variable with its logarithm or square root value and the
structure of the tree will not change[41].

CART methodology consists of tree parts:

1. Construction of the maximum tree

2. Pruning

3. Choice of the right tree size

The CART mechanism is intended to produce not one tree, but a sequence of nested
pruned trees, each of which is a candidate to be the optimal tree.

Lets consider only the classification trees.

2.5.2.1 Construct the maximum tree

CART splitting rules are always couched in the form: "An instance goes left if CON-
DITION and goes right otherwise", where the CONDITION is expressed as "attribute
Xi ≤ C" for continuous attributes. For categorical or nominal attributes the CONDI-
TION is expressed as membership in a list values. For examples as "An instance goes left
if CITY is Chicago, Detroit, Nashville" and goes right otherwise[42].

To each node, CART software finds the best possible variable to split the node into two
child nodes. In order to find the best variable, the software checks all possible splitting
variables (or splitters), as well as all possible values of the variable to be used to split the
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node. In chosing the best splitter, the program seeks to maximize the "purity" weighted
average of the two child nodes. A number of different purity measures can be selected,
loosely called splitting criteria , splitting functions or splitting rules[36].

The CART authors discuss examples using four splitting rules for classification trees
(Gini, Twoing, Ordered Twoing and Symmetric Gini), but the monograph focuses most
of its discussion on the Gini, which is similar to the better known entropy (information-
gain) criterion, used by C4.5[42].

Let RF (Cj , S) denote the relative frequency of cases in S that belong to class Cj . The
Gini index is defined as

Igini(S) = 1−
x∑
j=1

RF (Cj , S)
2

and the information gain due to a split is computed as

G(S,B) = I(S)−
t∑
i=1

Si
S
I(Si)

where Si are subsets partitioned of S by a test B[37].
By convention, splits on continuous variables send instances with larger values of

the splitter to the right, and splits on nominal variables are defined by the lists of values
going left or right.

In the diagram the terminal nodes are color coded to reflect the relative probability of
response. A red node is above average in response probability and a blue node is below
average[42].

CART also have ways to handle missing values, which is a feature that won’t be
specified due to its non-interest for this work.

2.5.2.2 Pruning

As mentioned above, the tree building process goes on until one of the following condi-
tions is achieved:

1. There is only one observation in each of the child nodes;

2. All observations within each child node have the identical distribution of predictor
variables, making splitting impossible;

3. An external limit on the number of levels in the maximal tree has been set by the
user (depth option).

After achieving the maximal tree, an iterative pruning process is applied, resulting in
a sequence of successively smaller pruned trees.

CART uses a cost-complexity pruning process. In this process, a nested sequence of
subtrees of the initial large tree is created by "weakest-link cutting"[36].
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This technique assumes that the bias in the resubstitution error of a tree increases
linearly with the number of leaf nodes. The cost assigned to a subtree is the sum of two
terms: the resubstitution error and the number of leaves times a complexity parameter α.
Formally,

Rα = R(T ) + α.numberOfLeaves

It can be shown that, for every value of α, there is an unique smallest tree minimizingRα.
Although α runs continuously through a set of values, there is at most a finite number of
possible subtrees. Thus, there is a sequence of trees minimizing Rα, created by varying α
from 0 to infinity.

Pruning involves removing the split generating two terminal nodes and absorbing the
two children into their parent, thereby replacing the two terminal nodes with one[42].

2.5.2.3 Select the best tree

At this point, we have to decide the tree to use. The goal in selecting the optimal tree,
defined based on the expected performance on an independent set of data, is to find a
correct complexity parameter α so that the information in the learning dataset is fit but
not overfit. Generally, finding this value for α would require an independent set of data,
but this requirement can be avoided by using the technique of cross validation[36] as
described in Section 2.4.1.
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3
Image Processing

In this chapter some image processing aspects and techniques important to the develop-
ment of this work, as histograms, interpolation techniques and segmentation methods
are presented.

3.1 Digital Image Histogram

Intensity transformation functions based on information extracted from image intensity
histograms play a basic role in image processing, in areas such as enhancement, compres-
sion and segmentation[11].

The histogram of a digital image with L intensity levels in the range [0,G] is defined
as the discrete function

h(rk) = nk (3.1)

where rk is the k-th intensity level in the interval [0,G] and nk is the number of pixels
in the image whose intensity level is rk[11].

The histogram provides a convenient summary of the intensities in an image, but it
is unable to convey any information regarding spatial relationships between pixels. The
histogram provides more insight about image contrast and brightness[43]:

• The histogram of a dark image will be clustered towards the lower gray level.

• The histogram of a bright image will be clustered towards the higher gray level.

• For a low-contrast image, the histogram will not be spread equally, that is, the his-
togram will be narrow.
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3. IMAGE PROCESSING 3.2. Image interpolation

• For a high-contrast image, the histogram will have an equal spread in the gray level.

This last two aspects are illustrated in Figure 3.1.

Figure 3.1: Histogram interpretation. From [44].

The equalisation of an image histogram is a process that attempts to spread out the
gray levels of the image so that they are evenly distributed across their range[43]. This
can be useful when the transformation of an image into a high-contrast one is desired.
The equalisation process in also commonly used when a comparison between images
with different intensity distributions is intended[45].

The histogram equalisation applies a point operation such that the histogram of the
modified image is approximately an uniform distribution[45]. In general, the histogram
of the processed image will not be uniform due to the discrete nature of the variables.
Figure 3.2 shows an example of an histogram equalization.

3.2 Image interpolation

Interpolation techniques are essential to compute geometric operations on digital images,
as translation, rotation and scaling[46]. The goal of these techniques is to obtain an op-
timal estimate for the value of the two-dimensional image function at any continuous
position[47].

The general definition of a geometric operation is

g(x, y) = f [a(x, y), b(x, y)] (3.2)
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3. IMAGE PROCESSING 3.2. Image interpolation

(a) Original image (b) Equalized image

(c) Original image Histogram (d) Equalized image histogram

(e) Original image cumulative histogram (f) Equalized image cumulative histogram

Figure 3.2: Histogram equalization results. Example from [44].
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Figure 3.3: Interpolation illustration. From [46].

where f(x, y) is the input image and g(x, y) is the output image. The spacial transfor-
mation functions a(x, y) and b(x, y) specify the physical relationship between points in
the input image and the corresponding points in the output image. This determines the
effect that the operation will have on the image[46].

The output image is generated pixel by pixel. For each output pixel g(x, y), the spa-
cial transformation functions a(x, y) and b(x, y) point to a corresponding location in the
input image. In general, this location falls between four adjacent pixels, as can be seen in
Figure 3.3. The gray level that maps into the output pixel at (x, y) is uniquely determined
by interpolation among these four input pixels[46].

In practice, the interpolation function should preserve as much detail as possible
without causing visible artefacts[47].

Some of the most common interpolation methods for digital images are the 2D nearest-
neighbor, bilinear and bicubic interpolations.

3.2.1 Nearest-neighbor

Nearest-neighbour is the simplest interpolation method to compute. Each interpolated
point is simply the value of its nearest neighbor[48].

In this method, the closest pixel to a given continuous point (x0,y0) is found by round-
ing the x and y coordinates to integer values[45].

Nearest-neighbor produces strong blocking effects and , consequently, is rarely used
for geometric image operations. However, in some situations, this effect may be in-
tended; for example, if an image is to be enlarged by replicating each pixel without any
smoothing[45].

3.2.2 Bilinear interpolation

Bilinear interpolation replaces every point with a weighted sum of the four points from
the nearest 2 × 2 set of pixels of the original image. The used weights for the sum are
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(0,1) (1,1)

(0,0) (1,0)

desired point
(x,y)

Figure 3.4: Bilinear interpolation example. Adapted from [49].

determined by the distance from the location of the interpolated point to the location of
the four points, where a closer distance corresponds to a larger weight[48].

In practice, bilinear interpolation approximates the continuous image by fitting a hy-
perbolic paraboloid through the four points. The hyperbolic paraboloid surface is given
by

f(x, y) = ax+ by + cxy + d

where a = [f(1, 0)− f(0, 0)], b = [f(0, 1)− f(0, 0)], c = [f(1, 1)− f(0, 0)− f(0, 1)− f(1, 0)]
and d = f(0, 0).

Figure 3.4 shows an example of this interpolation technique.

3.2.3 Bicubic interpolation

Bicubic interpolation works similarly to bilinear interpolation, except that bicubic inter-
polation replaces every point with a weighted sum of the 16 points from the nearest 4× 4

set of pixels of the original image[48].

With bicubic interpolation, the interpolated surface is given by

p(x, y) =
3∑
i=0

3∑
j=0

aijx
iyj

The 16 coefficients aij are chosen to build the function and its derivatives continuous
at the corners of the four-pixels square that contains the point (x, y). This is done by
solving 16 equations in the 16 unknown coefficients at each point. The equations are
derived by setting the function and its three derivatives to their known values at the four
corners[46].
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(a) Original Image (b) Nearest-neighbor interpolation

(c) Bilinear interpolation (d) Bicubic interpolation

Figure 3.5: Interpolation methods example. From [47].

Figure 3.5 shows the comparison between the three interpolation methods described
above.

Despite the block effect of the nearest-neighbor interpolation, this method can be the
most appropriate one in some situations, because no new pixel values are added, while
in bilinear or bicubic interpolations intermediate pixel values are produced.

3.3 Image Segmentation

As it was stated before, image segmentation is the process of dividing an image into its
constituents objects, or parts, isolating them from the image background.

There are many image segmentation techniques, being the most popular described
next.

3.3.1 Thresholding

Thresholding is based on the histogram of pixel intensities, implying that objects of in-
terest are brighter or darker than other parts of the image[10]. It consists in convert
an intensity image into a bi-dimensional one, "dividing" the image at a defined point,
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named threshold. In order to get a satisfactory segmentation by thresholding, it is neces-
sary to have a sufficiently uniform background. There are many background correction
techniques but they may not always result in an image suitable for further analysis by
thresolding. The transition between object and background may be diffuse, making an
optimal threshold level difficult to find[10].

The most used thresholding method is the one proposed by Otsu [50] and an example
is shown in Figure 3.6.

(a) Original Image (b) Resulting Image

Figure 3.6: Otsu thresolding appliance example.

The algorithm assumes that the gray image has two classes of pixels, a foreground
and a background, and the optimal threshold is selected by maximizing the separability
of those classes [50].

3.3.2 Region Growing

Region Growing or region-based segmentation is a method that models the objects by
connecting regions with similar pixels. One of the most common approaches of this
method is to let regions grow from pre-defined small regions, known as seeds. Each re-
gion in the resulting segmented image will contain exactly one of the starting seeds. The
problem with this approach to cell segmentation is that it is very difficult to construct a
seeding method that puts exactly one seed in each cell[10].

One of the most popular region-method is the watershed algorithm[51]. The main dif-
ference between the watershed algorithm and any other ordinary region growing method
is that the watershed algorithm works per intensity layer instead of per neighbour layer.
If the intensity of the image is interpreted as an elevation in a landscape, the watershed al-
gorithm will split the image into regions similar to the drained regions of that landscape.
The watershed borders will be built at the crests in the image. In a gradient magnitude
image, water will start to rise from minima representing areas of low gradient, i.e., the
interior of the objects and the interior of the background, and the watershed borders
will be build at the maxima of the gradient magnitude. However, if watershed segmen-
tation is applied directly to the gradient magnitude image, it will almost result in over-
segmentation, due to the intensity variations within both the objects and background[10].

Instead of letting "water" rise from every minimum in the image, water can be allowed
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(a) Original Image (b) Resulting Image

Figure 3.7: Watershed appliance example.

to rise only from places marked as seeds. Fully automatic foreground seeding is tricky,
and when using morphological filtering, one often ends up with more than one seed per
object or objects containing no seed at all. More than one seed per foreground object
in many methods results in background seeds passing through foreground components,
leading to incorrect segmentation results. Many seeded watershed segmentation meth-
ods are, therefore, based on manual seeding, requiring extensive user interaction[10]. In
Figure 3.8 it can be seen an example of watershed appliance.

3.3.3 Point, line and edge-Based Segmentation

These techniques detect the three basic types of intensity discontinuities in a digital im-
age: points, lines and edges. The most common way to look for discontinuities is to run
a mask through the image. There are different masks and operators as Sobel, Roberts
and Prewitt[52]. Other method for edge detection is the so-called snakes or active con-
tour models, first described by Kass et al. in [18]. From a rough marking of the border
or a seed inside the object of interest, a curve expands until it finds a string edge. The
function describing the expansion consists of different energy terms attracting the curve
to edges. Problems with those models consist in defining suitable energy terms and,
again, constructing automatic seeding methods that are restricted to one unique seed per
cell[10, 11].

3.3.4 Gradient Path Labelling (GPL)

Gradient Path Labelling(GPL) was developed by Mora et al. as part of a proposed method-
ology for Automatic Drusen Deposits Detection and quantification in retinal images by
using digital image processing techniques[53].

Drusen are retinal abnormalities. They are visible in retinal images and their quanti-
tative analysis is important in the follow up of the Age Regated Macular Degeneration.
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(a) Original Image (b) Resulting Image (c) Resulting Threshold Image

Figure 3.8: Edge-based segmentation (Sobel) appliance example[52].

However, their evaluation is fastidious and difficult to reproduce when performed man-
ually.

Considering that drusen are regional intensity maxima on retinal images and, in a
gradient image, these regions have several ascending paths pointing towards them, the
proposed algorithm for drusen detection is a novel segmentation method based on the
labelling of these gradient path.

The first stage of this labelling procedure is a pixel level analysis, followed by a top-
left to bottom-right direction. It starts assigning a new label to each pixel and determining
its gradient azimuth using a 3× 3 Sobel operator, which is the direction to the ascending
intensity.

The following step, label propagation, propagates this label following the gradient path
until an already marked or outside image boundaries pixel is found. When the propaga-
tion process finishes on a different label, the two labels are tagged as equivalents,i.e., they
are considered to belong to the same maximum.

The second stage of the labelling procedure is to apply the equivalences. Equivalent
labels are grouped and replaced on the image by the smaller of each group, producing a
segmented image with as many labels as detected objects.

Figure 3.9 shows an example of the algorithm described above.

When flat valleys or flat hills are encountered, not all gradient paths end on the same
maximum pixel, resulting in an over-segmentation of the image. To solve this problem, a
merging algorithm was introduced as the last stage of the labelling procedure.

The merging algorithm starts by creating a connectivity graph where nodes corre-
spond to labels and links represent the adjacencies between them. Each node is char-
acterized by the maximum intensity level of the pixel in its region and each link is set
with the maximum intensity value of the border pixels between the two adjacent regions.
If the difference between the link and the nodes is below a predefined threshold (4a), the
two corresponding regions are merged.

Figure 3.10 shows an example of the merging algorithm appliance. Figure 3.10(b)
shows the segmentation of a small region of the image shown in Figure 3.10(a) and Fig-
ure 3.10(c) shows its corresponding connectivity graph. The connectivity graph repre-
sents the connections between segmentation areas and is labelled with the minimum
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(a) Two objects to detect. (b) Gradient vectors. (c) Pixels search directions.

(d) Initial label propagation
paths

(e) Label equivalences (f) Resultant segmented image
with maximum points high-
lighted

Figure 3.9: An example showing the procedures of the objects detection algorithm.

(a) Original Image with two ob-
jects to be identified

(b) Segmentation by the detection
algorithm

(c) Connectivity graph

Figure 3.10: GPL Merging algorithm.
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intensity border value on each link. Each node contains the label and the intensity maxi-
mum of the segmentation area that it represents.

The step-by-step GPL algorithm is shown in Figure 3.11, where TL means top-left
coordinates and BR means bottom-right coordinates.

The implemented GPL algorithm allows the adjustment of a set of parameters, in such
a way that the segmentation process could be adopted to other type of images.

33



3. IMAGE PROCESSING 3.3. Image Segmentation

Figure 3.11: The GPL algorithm step-by-step.

34



4
Methodology

In this chapter the main steps of the cells segmentation process of DIC images and the
main steps of the alignment of those images with the correspondent fluorescence ones
are presented.

The proposed algorithm was developed in MATLAB R2012a, with Windows VistaTM

Home Premium, Inter(R) Core(TM)2 Duo CPU T7250 @ 2.00 GHz 2.00 GB RAM. NVIDIA
GeForce 8400M GS.

Images from 5 different time series were used, with 13 Differential Interference Con-
traste (DIC) images and 13 Confocal Fluorescence Microscopy (CFM) images each.

4.1 Cell Segmentation

4.1.1 GPL

The first step of the cell segmentation process was to run images in Gradient Path La-
belling algorithm. Its parameters were adjusted to produce a segmentation as accurate as
possible, but once a perfect segmentation was not possible, it was opted by a moderate
over-segmentation.

First of all it was necessary to choose the color channel that the GPL would use. The
options were the red, the green and the blue channel or the intensity (gray) channel. The
criteria used was choosing the channel with more contrast.

As discussed in Section 3.1, one way to compare images contrast is to compare their
histogram width. Considering two bi-dimensional images, the one with more contrast
would have a larger histogram. Thus, by computing the histogram of each channel it
was possible to infer which had more contrast .
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Figure 4.1: Different image channel and respective histograms.

As it can be seen in Figure 4.1, which refers to one of the used images on this study,
the different channels had different histograms widths. For the image to which the his-
tograms of this figure refers, the red channel would be the chosen one to use in GPL.
Once the channel was chosen, the GPL algorithm could be applied.

The GPL process described in Section 3.3.4, when applied to a DIC image, is shown
in Figure 4.2.

(a) Original image (b) Detection algorithm output (c) GPL output after the em-
ployment of the GPL merging
algorithm to the Figure 4.2(b)
image

Figure 4.2: Example of the GPL algorithm processing a DIC image.

The output returned by the GPL is a three-dimensional labelled image as shown in
Figure 4.3. Those images were converted in MATLAB to a bi-dimensional labelled image,
as the one shown in Figure 4.4, where different regions were limited by a white line.
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Figure 4.3: An example of the GPL output.

Figure 4.4: GPL resulting in a over-segmented image.
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4.1.2 Classifiers Building

To build the discard and the merge classifiers it was used the CART for Windows soft-
ware, version 4.0. The chosen options were the standard ones: Gini as the splitting
method, the same probability for both classes, 10-fold cross validation as method for
testing tree, the best suggested tree is the minimum cost one, regardless the tree size. The
minimum node size was changed, so the parent nodes must have at least 2 cases and the
terminal nodes must have at least one case.

4.1.2.1 Discard Classifier

To build the discard classifier training set, 6 different over-segmented images were used
and 50 "to discard" instances and 50 "to keep" instances from each image were selected,
making a total of 600 instances. To each instance the following features were saved:

• Area (A);

• Perimeter (P);

• Shape factor given by Perimeter2/(4 ∗ π ∗Area) (S);

• Histogram width (HW);

• Variance (V);

• Ratio of the contour intensity over the inside intensity (R)

The choice of these attributes can be justified by closely observing the regions of the
over-segmented image. As we can see from Figure 4.4, the area, for example, should be
an important attribute once the background regions are significantly bigger than the cell
regions. This aspect is reflected also in regions perimeter and that is why this feature is
also considered. The shape factor is a measure of the circularity of the regions, being 1 to
circles. This is an important feature for two reasons: first, the background regions have a
shape factor much bigger than cell regions. The other reason is that by using this feature,
air bubbles (which are approximately circles having a shape factor close to one) on images
can be discarded since most of the cell regions are not circle shaped. Like it was stated
in Section 3.1, histogram width is a measure of the region contrast. Typically, cell regions
have more contrast than background regions, which are much uniform. Other measure
of this uniformity is the regions variance. This attribute reflects the fact that region cells
are much less uniform than background regions. This feature has shown to be the most
important one. For a given training set, CART shows a graph of the variables importance,
as shown in Figure 4.5. The ratio of contour intensity over the inside intensity of regions
was used because the cell regions have a brighter contour comparing to their inside zone
while background regions don’t.
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Figure 4.5: Variables from discard classifier importance values, given by CART.

Figure 4.6: Discard trees set suggested by CART to the discard classifier.

All instance attributes were saved in .txt file and then converted to Exel 2003-2007 in
order to be read by the CART software.

The proposed set of trees by CART are shown in Figure 4.6, where the smaller cost
tree is marked with a vertical green line and the chosen tree is marked with a vertical red
line. The suggested tree was not chosen because, after the classifier construction, this last
tree showed to perform better than the best cost tree.

The chosen tree structure is shown in Figure 4.7(a), in which, as mentioned in Sec-
tion 2.5.2.1, terminal nodes are color coded to reflect the relative probability of response:
a red node is above average and a blue node is below average in response probability.
In Figure 4.7(b), it can be seen the splitters of the decision tree used to build the discard
classifier.

4.1.2.2 Merge Classifier

At this point the over-segmented image only had the segments of interest (see Figure 4.8).
This way, is was necessary to merge them to form cells instead of cell segments. For that,
a second classifier to decide which segments were to be merged and which were to be
kept apart was built.

Like for the discard classifier, to build the merge classifier 6 different over-segmented
images were used (after a discard action by the discard classifier) and 50 "to merge" in-
stances and 50 "do not merge" instances were selected.
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(a) Discard classifier tree structure, where the decision nodes are shown in green, the blue terminal nodes
represent the class not discard and in red is the class discard.

(b) Discard classifier tree splitters.

Figure 4.7: Discard tree used to build the discard classifier.
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Figure 4.8: Over-segmented image without background segments.

Similarly to the building process of the discard classifier, a training set with the fol-
lowing attributes was created:

• Shape factor of the two segments analysed together (S).

• Variance of the image in the contact area between the two segments (V).

• Length of the contact zone between the two segments (CL).

• Ratio between intensity of the image in the contact zone and the intensity of the
image in the contour of the segments (R).

The shape factor was used again because, as it can be easily seen from Figures 1.1(a)
and 4.8, cells have a relatively regular elliptical shape. This way, computing the shape
factor of the two segments to merge (or not) is an important attribute. As it was stated
before, the regions belonging to a cell have a bigger variance. This way, evaluating the
variance of the contact zone between two segments can be a good indicator if those seg-
ments are to be merged or not. So, two segments which barely touch each other, probably
are not to be merged, and thus, the length of the contact zone between segments is also
taken into account. It was also mentioned before that cells have a brighter contour, com-
paring to the inside zones. This way, the ratio between the two segments contact zone
and its contour when aggregated, can be a decisive attribute. In fact, this last attribute
is the most important one, as can be seen in Figure 4.9. Once more, all this instances
attributes values were saved in a .txt file and then converted to Exel 2003-2007.

After these steps, the data was loaded into CART which suggested the set of trees
shown in Figure 4.10.
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Figure 4.9: The given importance values by CART to the variables from the merge classifier.

Figure 4.10: Trees set suggested by CART to build the merge classifier.

The chosen tree was the last one of the set of trees suggested by CART, for the same
reasons mentioned when the discard classifier was previously discussed. Its structure
and splitters are shown in Figure 4.11.

4.2 Errors Correction

With the employment of the constructed classifiers, some errors might arise which can be
solved comparing each image with the previous and the next ones.

4.2.1 Discard Errors

It were considered two different types of discard errors: a cell segment that was incor-
rectly discarded (error type 1) or a background segment that was accepted as a cell seg-
ment (error type 2).

An example of type 1 discard error is shown in Figure 4.12. This type of error can
usually be solved by analysing each discarded segment.

It was considered that a cell segment has correspondence in the previous or the next
image if, by overlapping both images (current and next or previous images), that segment
intersects in more than 50% of its area on any cell of the other image. It is important that
this percentage of interception is not too large because sometimes little misalignments
occur between consecutive images.

This way, if one segment that was discarded has correspondence in the previous and
in the next image, it was probably misclassified and by recovering that segment, the
problem is solved.
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(a) Merge classifier tree structure, where the decision nodes are represented in green. The blue terminal nodes
represent the class not merge and in red is the class merge.

(b) Merge classifier tree splitters.

Figure 4.11: Merge tree used to build the discard classifier.

(a) Image 1 (b) Image 2 (c) Image 3

Figure 4.12: A discard type 1 error.
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The result after this correction is shown in Figure 4.13.

(a) Image 1 (b) Image 2 (c) Image 3

Figure 4.13: A discard type 1 error solved.

(a) Image 1 (b) Image 2 (c) Image 3

Figure 4.14: A discard type 2 error.

The other type of discard error is shown on Figure 4.14. This type of error can be
solved similarly to the error previously described but instead of searching for segments
which were wrongly discarded, the the algorithm searches for segments that were ac-
cepted but do not have correspondence in the previous and in the next image.

The first image of each time series is compared with the next two images and the last
image is compared with the two previous ones.

4.2.2 Merge Errors

Merge errors can also be separated into two types of error. The first type occurs when two
segments that do not belong to the same cell are merged. The other type of error occurs
when two segments of one cell are not merged. Some of those errors can be solved by
comparing the current image with the previous one.

In order to find these errors, each image is compared with the previous one (except
for the first image). If one cell of the current image has more than one correspondent
in the previous image, then, probably is a merge error. That situation occur in scenarios
similar to the ones illustrated in Figures 4.16(b) and 4.18(c).

Those scenarios might correspond to two different situations: the current cell was
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(a) Image 1 (b) Image 2 (c) Image 3

Figure 4.15: A discard type 2 error solved.

(a) Image 1 (b) Image 2 (c) Image 3

Figure 4.16: A merge type 1 error.

incorrectly merged (error type 1), as show in Figure 4.16(b), or the correspondences were
incorrectly left separated (error type 2), as shown in Figure 4.18(c).

There are two ways to correct the first type of errors. The first one is to join the
segments of the previous image and the other is to split the cell of the current image into
two segments.

Consider that ap is the mean cell areas of the previous image and ac is the mean cell
areas of the current image. aps1, aps2, ..., apsn represent the areas of the n cell segments of
the previous image that intersect the cell under analysis of the current image , which has
an area of ac1.

(a) Image 1 (b) Image 2 (c) Image 3

Figure 4.17: A merge type 1 error solved.
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(a) Image 1 (b) Image 2 (c) Image 3

Figure 4.18: A merge type 2 error.

(a) Image 1 (b) Image 2 (c) Image 3

Figure 4.19: A merge type 2 error solved.

Considering the two previously mentioned hypotheses, the first one is applied if:

|ap −
∑

aps1, aps2, ..., apsn| < |ac −
ac1
2
|

Otherwise, the second hypothesis is applied. In this case, the cell is divided by the contact
region whose mean distance of the pixel to the centroid of the cell is lower, as shown in
Figure 4.20, which represents the situation of Figure 4.16.

(a) Merge error and cell centroid
in yellow.

(b) The two possible cell division
zones in red and blue.

(c) The chosen of the division by
the closer zone to the centroid.

Figure 4.20: Illustration of the used cell division criteria.
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4.2.3 Inverted Images

In some of the time series, there were images that were inverted relating to the other im-
ages, as shown in the example of Figure 4.21. These inversions were due to the focusing
problems related to the image acquisition process. When this takes place, the GPL de-
tects objects that do not correspond to cells, which are darker in a brighter background
in images used to built the classifier . The GPL result obtained with the example in Fig-
ure 4.21(b) is shown in Figure 4.22(a).

To ascertain if an image is inverted, it is calculated the mode of the pixels belonging to
cells, in an image with equalized histogram (see Figure 4.22(b)). If it is 255 (white), an in-
verted image is observed, with cells brighter in a darker background, as in Figure 4.22(a).

(a) Image 6 (b) Image 7 (c) Image 8

Figure 4.21: Inverted time series image.

This way, the image is inverted and the analysis is done again. The example shown
in Figure 4.22(a) results in Figure 4.22(c) after the image is inverted and analysed again.

(a) First segmentation result
with the inverted image.

(b) Cell contours from (a) in the
equalized histogram image.

(c) Segmentation results after
inverting the image.

Figure 4.22: GPL results of an inverted time series image.

4.3 Cells Tracking

Once the cells are detected, it is important to track them over time. This is important in
order to know when a cell divides and how it evolves over time.

The first step of the cell tracking algorithm was, was to identify the corresponding
cells of each image on the previous one.
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As it was mentioned before, a cell in an image i corresponds to a cell in the next
image i+1 if the area of their intersection is bigger then 50% in one of the two cells. Each
corresponding cell on a previous image will be called from now on as parent or ascendant.

Once identified each parent cell, if two different cells have the same parent it means
that a division occurred.

Thus, a label is attributed to each cell in the first image. Then, beginning in the second
image, each cell will receive the label of its parent if a division has not occurred. Other-
wise, each "sister-cell" receives a new different label. Repeating this process to all images
of the time series, one have each life of one cell labelled with an specific label.

Assigning a color to each label, we can visualize the evolution of the cells of a time
series, like in Figure 4.23.

When a cell divides, its descendants are coloured with a slightly different tone in
order to better follow the daughters of a cell. After this step, the DIC image should be
correctly segmented.

4.4 Images Alignment

The previously described algorithm allows us to know where each cell is in a certain im-
age. After that, it is necessary to align the DIC image with its correspondent fluorescence
image.

To accomplish that a method that looks for the relative position between DIC and
fluorescence images that maximizes the "fluorescence dots" within cells contours was
developed. In order to accomplish this, an exhaustive search of the parameters angle, scale
and relative position of the images and counting, to each position, the fluorescence dots
within cells contours was performed.

To enable fluorescence visualization on confocal images, it was necessary to apply a
threshold since fluorescence confocal images are usually very dark. In order to obtain a
better distinction between the fluorescence and the background, the fluorescence image
was thresholded using the Otsu method. Once the image was converted into a binary
one, the fluorescence dots previously mentioned correspond to the black pixels. An ex-
ample of a resulting confocal fluorescence image is shown in Figure 4.26(c). Furthermore,
it was applied a 5× 5 median filter to better distinguish cell zones from background. An
example is shown in Figure 4.26(d).

This procedure is only for visualization and position searching proposes, once the
fluorescence quantification (explained in Section 4.5) will be done in the original confocal
image.

As it can be seen in Figure 4.25, the DIC image only covers a part of the fluorescence
image. The relative position, scale and angle between the two types of images is not
fixed. Therefore, each time series must be analysed individually.

In order to align the DIC and the CFM images, two methods were developed: the
automatic alignment and the semi-automatic alignment.
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4. METHODOLOGY 4.4. Images Alignment

(a) Image 1 (b) Image 2

(c) Image 3 (d) Image 4

(e) Image 5 (f) Image 6

(g) Image 7 (h) Image 8

Figure 4.23: Cell tracking example.
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4. METHODOLOGY 4.4. Images Alignment

(a) (b)

Figure 4.24: Otsu threshold (a) and median filter (b) appliance to the fluorescence image.

Figure 4.25: Example of the alignment between the DIC (the one bounded by the red square) and
the correspondent CFM images.
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4. METHODOLOGY 4.4. Images Alignment

4.4.1 Automatic Alignment

The automatic alignment doesn’t require any intervention from the user.

In order to maximize the performance of this method, a two phase method was devel-
oped: first, the search for an approximate position by bigger steps and once that position
is found, the search in its surroundings for the best position that maximizes the fluores-
cence within cells contours.

Images can vary in relative scale and position. In a small number of images the rota-
tion also changed and therefore the search was done for both angle 0 and 180 degrees.

Let fly be the fluorescence image height and dicy the DIC image height.

For the first phase of this method, the scale ranging is built as

min

(
2.5

dicy
fly

,
dicy
fly

)
≤ biggerScale ≤ max

(
2.5

dicy
fly

,
dicy
fly

)

in 0.1 steps.

Considering that the position (x, y) relates to the upper-left corner of the DIC image
and that flx and dicx are the widths from the CFM and DIC images, respectively, we
obtain:

1 ≤ x ≤ max(1,flx − dicx)

and

1 ≤ y ≤ max(1,fly − dicy).

The steps in the x and y directions depend on the scale already applyed to the CFM
image and they divide it into a maximum of 150 columns and 150 lines, respectively. The
steps are therefore given by stepx = flxdflx/150e and stepy = dfly/150e.

These limits are illustrated in Figure 4.26.

After finding the best set of values that maximize the fluorescence within cells con-
tours, the best fit in the surroundings of the previously found position is searched. On
this second phase of the process, considering scale0, x0 and y0 the parameters already
found, the ranges of the new search was done by

scale0 − 0.1 ≤ scale0 ≤ scale0 + 0.1

in 0.01 steps and

x0 − stepx ≤ x0 ≤ x0 + stepx

and

y0 − stepy ≤ y0 ≤ y0 + stepy
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4. METHODOLOGY 4.4. Images Alignment

(a) Bottom limit of the CFM image scale. (b) Upper limit of the CFM image scale.

(c) Bottom limit of the x and y DIC image position. (d) Upper limit of the x and y DIC image position.

Figure 4.26: Limits of exhaustive-search parameters.

in unitary steps.

4.4.2 Semi-Automatic Alignment

This method differs from the one mentioned above because the first position is given by
the user. Only the second phase is computed, using smaller steps to find the best position
around the one that was given by the user.

The user has at his disposal two different sliders that allows him to range the scale
and angle between the two images. Clicking in the image, he can change the y and x
positions.

In the final stage of the process an image like the one in Figure 4.27 is obtained.
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4. METHODOLOGY 4.5. Fluorescence Quantification

Figure 4.27: An example of the DIC image aligned with the correspondent fluoresce image.

Figure 4.28: Cell positive and negative pole location.

4.5 Fluorescence Quantification

Fluorescence quantification is done over cells major axis, in the direction of their younger
pole. The younger pole (or positive pole) of a cell is the pole created after the division
that originated it, as shown on both "sister" cells of Figure 4.28.

The fluorescence, for each pixel of the major axis, is the sum of the gray intensity of
the confocal image in its vertical direction until the cell contours are reached as shown in
Figure 4.29.

4.5.1 Poles Determination

To compute cells poles it is necessary to distinguish between both cell poles: the pole
which is closer to the division point and the one which is further.

Consider the example of the cell just divided in two "sister" cells, as shown in Fig-
ure 4.30(a). Observing just the upper cell, shown in Figure 4.30(b), the new pole of the
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4. METHODOLOGY 4.6. Interface

Figure 4.29: Fluorescence quantification along the major axis of cells, in negative-positive pole
direction.

cell will be the lower one. The cell is then rotated to orientate that pole to the right and to
align its major axis with the horizontal axis. Furthermore, to allow comparisons of rela-
tive fluorescence distribution between cells, their size is normalized to 50 pixels, as in the
cell represented on Figure 4.30. For both rotation and resizing the bi-cubic interpolation
was used.

For each cell fluorescence quantification it was saved an entry in a .txt file with the for-
mat 0,0,0,1,2,3,4,4,6,7,9,8,7,7,5,4,2,0,0,..., corresponding each num-
ber to the vertical gray intensity of one of the 50 pixels from the cell major axis. This
allows the data to be analysed externally, e.g., in Excel.

The scheme of the fluorescence quantification algorithm is shown in Figure 4.31.

4.6 Interface

In Figure 4.32 the developed interface is shown, where the marked buttons and sliders
have the following functions:

1 Load images (single shots or time series) from the disc;

2 Run the cells detection algorithm;

3 Choose one of the following view modes: Original Images, Cells Contours, Colored
Cells or, after the fluorescence quantification, Fluorescence.

4 Align the images using the semi-automatic mode;

5 Align the images using the automatic mode;

6 Manually adjust the CFM image scale;

7 Manually adjust the CFM image angle;

54



4. METHODOLOGY 4.6. Interface

(a) Two "sisters "cells. (b) The upper cell from (a).

Fluorescence distribution of original image:

Fluorescence distribution of  threshold image:

(c) Cell from (b) rotated, resized to 50 pixels of major axis, with
the positive pole in green and correspondent fluorescence quan-
tification distribution.

Figure 4.30: Fluorescence quantification process.
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Figure 4.31: Fluorescence quantification algorithm scheme.
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Figure 4.32: Developed interface.

8 Accept the current scale and angle values and start small adjustments around it;

9 Save current image;

10 If the alignment and fluorescence quantification are already done, the resulting flu-
orescence distribution data is exported;

11 Detach the current image to allow the use of tools such as zooming;

12 Navigate through the previous time series image.

13 Navigate through the next time series image.

Figure 4.33 shows an image of the developed interface during the cells detection
phase.
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Figure 4.33: Developed interface showing a waiting bar while cells detection is running.
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5
Results and Discussion

5.1 Results

As it was mentioned in Section 2.4.1, machine learning algorithms can calculate the error
rate by different methods. Using n-fold cross-validation (with n = 10 in this case), CART
predicted a success rate of 90,14% and 90,87% for the discard classifier and the merge
classifier, respectively.

The classifiers were built from 6 different images, using 600 examples each. Those 6
images were chosen from 5 time series, with 13 images each. In this chapter the results of
the classifiers on all the 65 available images are shown.

The classifiers, segmentation and tracking processes error rate at each one of the time
series are shown in Tables 5.1 to 5.5. The columns in gray refer to images which were
inverted and DD, DWD and DER refers to the number of decisions, wrong decisions and
error rate of the discard classifier, respectively. Likewise, MD, MWD and MER refers to
the number of the decisions, wrong classifications and error rate of the merge classifier,
respectively.

The classifier error rates were calculated by the ratio of wrong decisions over the total
number of decisions. The segmentation error rate (SER) was computed by the number of
cells that the segmentation algorithm detected (SNC) over the real number of cells (RNC)
in the image.

The tracking algorithm error rate (TER) was calculated by the ratio of the number of
cells in the first image that were correctly segmented and followed (and all its descen-
dants) until the last time series image over the total number of cells in the first image.

Summarizing and averaging the classifiers error rates, the discard classifier performed
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5. RESULTS AND DISCUSSION 5.1. Results

Table 5.1: Time series n.1 error rates

Image n. 1 2 3 4 5 6 7 8 9 10 11 12 13
DD 293 298 313 310 322 344 329 362 415 426 433 415 495

DWD 2 1 2 3 6 8 3 2 3 8 4 7 5
DER (%) 0.68 0.34 0.64 0.97 1.86 2.33 0.91 0.55 0.72 1.88 0.92 1.69 1.01

MD 273 285 307 299 318 349 345 392 494 484 528 528 686
MWD 0 3 1 2 3 4 6 5 8 10 9 20 9

MER (%) 0.00 1.05 0.33 0.67 0.94 1.15 1.74 1.28 1.62 2.07 1.70 3.79 1.31
RNC 141 145 150 154 162 174 182 193 221 228 237 257 288
SNC 142 147 154 160 167 181 188 200 225 235 249 267 297

SER (%) 0.71 1.38 2.67 3.90 2.09 4.02 3.30 3.63 1.81 3.07 5.06 3.89 3.13
DER mean = 1.12 %± 0.61%
MER mean = 1.36%± 0.92%
SER mean = 3.05%± 1.18%

TER=29/142=20,42%

Table 5.2: Timeseries n.2 error rates

Image n. 1 2 3 4 5 6 7 8 9 10 11 12 13
DD 700 786 837 837 847 847 868 916 797 829 860 983 836

DWD 16 21 28 29 28 20 22 27 24 24 30 31 40
DER (%) 2.29 2.67 3.35 3.46 3.31 2.36 2.53 2.95 3.01 2.90 3.49 3.15 4.78

MD 78 92 95 112 147 171 176 206 214 231 334 402 297
MWD 3 5 3 3 4 6 6 3 12 6 8 15 5

MER (%) 63.85 5.43 3.16 2.68 2.72 3.51 3.41 1.46 5.61 2.60 2.40 3.73 1.68
RNC 61 65 72 78 79 88 95 105 108 129 148 144 141
SNC 63 69 76 81 84 91 100 113 120 135 159 158 155

SER (%) 3.28 6.15 5.56 3.85 6.33 3.41 5.26 7.62 11.11 4.65 7.43 9.72 9.93
DER mean = 3.10%± 0.65%
MER mean = 3.25%± 1.24%
SER mean = 6.48%± 2.56%

TER=25/63=39,68%

Table 5.3: Time series n.3 error rates

Image n. 1 2 3 4 5 6 7 8 9 10 11 12 13
DD 851 782 813 695 807 802 818 809 840 888 781 834 964

DWD 11 18 18 19 23 13 26 29 16 25 17 21 49
DER (%) 1.29 2.30 2.21 2.73 2.85 1.62 3.18 3.58 1.90 2.82 2.18 2.52 5.08

MD 59 78 111 91 135 140 137 187 278 325 339 428 364
MWD 3 5 3 3 4 6 6 3 12 6 8 15 5

MER (%) 5.08 6.41 2.70 3.30 2.96 4.38 3.21 1.08 3.69 1.85 2.36 3.50 1.37
RNC 39 57 59 65 68 66 76 91 105 105 122 154 158
SNC 46 61 64 68 74 72 84 94 112 118 129 158 167

SER (%) 17.95 7.02 8.47 4.62 8.82 9.09 10.53 3.30 6.67 12.38 5.47 2.60 5.70
DER mean = 2.64%± 0.96%
MER mean = 3.22%± 1.48%
SER mean = 7.91%± 4.11%

TER=28/46=60,87%
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5. RESULTS AND DISCUSSION 5.1. Results

Table 5.4: Time series n.4 error rates

Image n. 1 2 3 4 5 6 7 8 9 10 11 12 13
DD 1917 1286 439 665 557 1131 849 553 1535 435 589 605 444

DWD 6 4 2 5 2 60 21 5 24 7 8 9 5
DER (%) 0.31 0.31 0.46 0.75 0.36 0.53 2.47 0.90 1.56 1.61 1.36 1.13 0

MD 39 42 41 25 59 92 158 136 154 145 222 260 133
MWD 3 3 4 3 4 3 6 4 5 1 10 12 10

MER (%) 7.69 7.14 9.76 6.00 6.78 3.26 3.80 2.94 3.25 0.69 4.50 4.62 7.52
RNC 28 31 29 31 36 51 66 68 77 75 88 105 114
SNC 31 33 34 35 39 53 71 72 82 82 94 107 123

SER (%) 10.71 6.45 17.24 12.90 8.33 3.92 7.58 5.88 6.49 9.33 6.82 2.86 7.89
DER mean = 1.02%± 0.66%
MER mean = 5.23%± 2.50%
SER mean = 8.19%± 3.79%

TER=10/31=32,26%

Table 5.5: Time series n.5 error rates

Image n. 1 2 3 4 5 6 7 8 9 10 11 12 13
DD 2286 641 1231 611 655 635 702 1479 743 645 659 712 862

DWD 31 3 15 14 2 4 6 24 16 11 2 3 18
DER (%) 1.36 0.47 1.22 2.29 0.31 0.63 0.85 1.62 2.15 1.71 0.30 0.42 2.09

MD 117 127 141 139 154 218 256 488 297 445 577 606 724
MWD 4 4 2 4 3 7 10 31 7 9 15 29 26

MER (%) 3.42 3.15 1.42 2.88 1.95 3.21 3.91 6.35 2.36 2.02 2.60 4.79 3.59
RNC 87 86 87 97 97 103 123 192 168 174 191 225 241
SNC 91 92 96 101 105 112 128 196 175 184 204 239 250

SER (%) 4.60 6.98 10.34 4.12 8.25 8.74 4.07 2.08 4.17 5.75 6.81 6.22 3.73
DER mean = 1.19%± 0.74%
MER mean = 3.20%± 1.31%
SER mean = 5.83%± 2.34%

TER=22/91=24,18%
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5. RESULTS AND DISCUSSION 5.2. Results Discussion

with an error rate of 1.81%±0.98% and the merge classifier with 3.25%±1.37%. The pro-
posed segmentation method detected 93.71%±2.06% of the cells. The tracking algorithm
detected 64.52%± 16.02% of cells in the tested images.

The presented alignment algorithm, in both semi-automatic and automatic methods,
shown to align correctly all the images tested. However, the process is very slow, spe-
cially if the automatic mode is chosen..

5.2 Results Discussion

The results shown that the presented segmentation algorithm has a mean success rate of
93.71% ± 2.06% of cells correctly segmented in each image and that 64.52% ± 16.02% of
the cells on first image are correctly followed. As it can be seen, the standard deviation of
this last value is elevated which indicates that the performance significantly varies from
time series to time series. In fact, the available images were very different from each
other, being the time series 1 the one with a better resolution and less noise, allowing a
tracking success rate of 79,58% cells correctly segmented and followed.

Despite the noise, other time series also had some inverted images which hindered
the segmentation and the tracking process, resulting in a decrease of the success rate.
Moreover, cells location and size also varied significantly between consecutive images,
which detracted the tracking process. Besides, those 4 time series had also "dark bub-
bles" regions which sometimes were confused with cells. All these factors decreased the
success rate of the presented tracking and segmentation algorithms.

The tracking algorithm followed 64.52%±16.02% of bacteria present in the first image.
This value is lower than the desired and is mainly due to the fact that there were small
misalignments between consecutive images.

The alignment method, as said before, shown good results although being computa-
tionally heavy and consecutively, very slow. This issue is lightly softened in the semi-
automatic method. As it was mentioned before in Section 4.4, the alignment process has
two phases: the search for an approximate position using larger steps (or given by the
user, in the semi-automatic mode) and once found that position, search in its surround-
ings, the position that maximizes the fluorescence within cells contours.
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6
Conclusion

This work consisted on the development of an image processing tool to assist the study
of in vivo proteins expression in E.coli cells.

A novel cell segmentation method for Differential Interference Contrast microscopy
was developed. This method was based on a previous segmentation by the Gradient
Path Labelling algorithm which produces an over-segmented image. That over segmen-
tation was solved by machine learning techniques. In order to decide which of the over-
segmented image regions were to discard and which were to merge, two classifiers were
built, based on morphological and intensity attributes.

A method to align a segmented DIC image with a Confocal Fluorescence Microscopy
image acquired simultaneously (in which the fluorescence emitted by cells was visible)
was developed. An exhaustive-search of the relative position, scale and angle between
both images in order to maximize the fluorescence within cells contours was undertaken.

The obtained results showed that the proposed algorithm had accomplished the goals
that were previously set. It showed a good performance in the automatic detection of bac-
teria in DIC images, since 93.71%± 2.06% of the cells were correctly detected. Moreover,
the developed algorithm overcame the inverted images issue.

The tracking algorithm followed 64.52% ± 16.02% of bacteria. As it was previously
mentioned, this result is lower than the desired and it is mainly due to the fact that there
are small misalignments between consecutive images.

Finally, the alignment algorithm correctly aligned all the tested images. However, it
is a very slow method.

In order to solve these last two issues, some additional work is needed.
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6. CONCLUSION

6.1 Future Work

The low number of cells correctly followed from the first image until the last one of the
time series, could be improved by, for example, correcting the small misalignments be-
tween consecutive images before performing the tracking algorithm through the employ-
ment of image registration techniques. Moreover, if the DIC images could be acquired
with shorter intervals, the differences between consecutive images would be lower and
consequently the tracking would have better results.

Although it returned good results, the alignment algorithm, is computationally heavy
and slow. In order to overcome this problem, a new technique is being developed using
the correlation of Fourier transforms. Because DIC and CFM images are not acquired ex-
actly at the same time, cells locations change a little in that time fraction causing misalign-
ments between both images. To overcome that situation, an algorithm is being developed
which aligns both images by blocks, minimizing those misalignments.

The obtained fluorescence distributions over time can be used to calculate some bias
in those distributions. Those bias can be, for example, between the old and the new pole
of the cell or between two sister-cells in the moment of division. Those calculations could
be, in a future work, included in the algorithm here described.
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Introduction 
Recent studies using microbes as model organisms 
complemented with reliable and fast
aim at facilitating the extraction of information from images
resolution, by avoiding manual analysis
variances. To isolate single cells in microscopy images, image segmentation techniques are essential. 
However, segmentation of nontrivial images is one of the most difficult tasks in image processing
Here, we propose a method to assist the study of the
at a time, from confocal fluorescence microscopy images
contrast microscopy images (DIC)

Methodology 
E. coli K-12 strain SX4 expressing 
induction conditions see [1]. Following induction, i
fluorescence confocal microscope
In order to calculate the amount of fluorescence on each cell, we need to first segment the cells on the 
DIC image and then compute the level of fluorescence inside each c
When we apply any segmentation technique
cells is a challenge. On our work,
(Figure 1.a). Before reducing over
do not correspond to cells, such as background and undesired objects
artefacts). The decisions of what
morphological algorithm that uses decision trees generated by the Classification and Regression 
Trees (CART) algorithm. To build 
that identifies whether a segment
merged with other cell segments.
area, perimeter and pixels intensity and the correspondent expert decision
statistical analysis of the data and produces two automatic classifiers (
to merge”) that are then used to produce the final 
After the proper cell segmentation
fluorescence image (Figure 1
simultaneously, they do not match in orientation and in area covere
DIC image with the fluorescence image is do
time series.  

  
 (a) 

Figure 1: Example of image processing steps: (a)
moderate over-segmentation ; (c) Detail of the desired
segment selection and merge step; (

After the segmentation of the DIC image the amount of fluo
each possible position of the DIC over the fluorescence image. The position 
maximizes the fluorescence inside the cells is chosen as the initial projection. For each of the 
subsequent images on the same time series a limited search around the last projection is done to 
maximize the fluorescence inside the cells and accommodate possible variations during the 
experiment. With the cell contours identified in fluorescence images, the area within each 
correspondent fluorescence area and its distribution over the 
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Recent studies using microbes as model organisms rely on microscope imaging 
and fast methods of computer assisted image processing. 

extraction of information from images of bacterial populations 
manual analysis, which is fastidious, time consuming and subject t

cells in microscopy images, image segmentation techniques are essential. 
However, segmentation of nontrivial images is one of the most difficult tasks in image processing

propose a method to assist the study of the in vivo kinetics of protein expression, one protein 
fluorescence microscopy images, complemented with differential i

(DIC), of Escherichia coli cells expressing tsr-venus proteins.

12 strain SX4 expressing tsr-venus was generously provided by S. 
Following induction, images were collected every 5 min 

fluorescence confocal microscope and, in parallel, every 10 min by DIC. 
In order to calculate the amount of fluorescence on each cell, we need to first segment the cells on the 

compute the level of fluorescence inside each cell on the fluorescence image.
segmentation technique, the balance between under and over segmentation
On our work, we apply Gradient Path Labelling (GPL) [2] for cell 

over-segmentation by merging, it is essential to discard segments that 
to cells, such as background and undesired objects (air bubbles and other 

what segments to discard or merge are based on an intelligent 
morphological algorithm that uses decision trees generated by the Classification and Regression 
Trees (CART) algorithm. To build the CART training set, images are manually analyzed by an expert 

segment belongs or not to a cell and identifies which of them need to be 
merged with other cell segments. Based on the training set including images measurements such as 
area, perimeter and pixels intensity and the correspondent expert decision, 

the data and produces two automatic classifiers (for “cells to discard
used to produce the final result. 

cell segmentation and merging, the resulting image (Figure 1.b) 
Figure 1.c). Despite that the two types of images are 

, they do not match in orientation and in area covered. The alignment 
DIC image with the fluorescence image is done by exhaustive searching over the first image of the 

  
(b) (c) 

: Example of image processing steps: (a) Original DIC image (b) DIC image segmented by GPL showing 
) Detail of the desired segmentation of DIC image after applied the intelligent cell 

segment selection and merge step; (d) Detail of a fluorescence image superimposed with the contours of the cells 
detected from the DIC. 

After the segmentation of the DIC image the amount of fluorescence inside the cells is calculated for 
each possible position of the DIC over the fluorescence image. The position 
maximizes the fluorescence inside the cells is chosen as the initial projection. For each of the 

he same time series a limited search around the last projection is done to 
maximize the fluorescence inside the cells and accommodate possible variations during the 

With the cell contours identified in fluorescence images, the area within each 
correspondent fluorescence area and its distribution over the major cell axis are 

venus proteins from combined 

, J.M. Fonseca
1
 

microscope imaging which needs to be 
methods of computer assisted image processing. These methods 

of bacterial populations with single cell 
is fastidious, time consuming and subject to observer 

cells in microscopy images, image segmentation techniques are essential. 
However, segmentation of nontrivial images is one of the most difficult tasks in image processing. 

of protein expression, one protein 
differential interference 

proteins. 

S. Xie. For growth and 
mages were collected every 5 min for 1 h under the 

In order to calculate the amount of fluorescence on each cell, we need to first segment the cells on the 
ell on the fluorescence image.  
under and over segmentation of 

for cell segmentation 
segmentation by merging, it is essential to discard segments that 

air bubbles and other 
are based on an intelligent 

morphological algorithm that uses decision trees generated by the Classification and Regression 
training set, images are manually analyzed by an expert 

which of them need to be 
including images measurements such as 

, CART executes a 
s to discard” and “cells 

 is projected onto the 
Despite that the two types of images are taken almost 

The alignment and scaling of the 
ne by exhaustive searching over the first image of the 

 
(d) 

segmented by GPL showing 
segmentation of DIC image after applied the intelligent cell 

) Detail of a fluorescence image superimposed with the contours of the cells 

rescence inside the cells is calculated for 
each possible position of the DIC over the fluorescence image. The position and scaling that 
maximizes the fluorescence inside the cells is chosen as the initial projection. For each of the 

he same time series a limited search around the last projection is done to 
maximize the fluorescence inside the cells and accommodate possible variations during the 

With the cell contours identified in fluorescence images, the area within each contour, the 
are calculated, allowing 



the evaluation of the fluorescence emitted by each cell, from which one can extract protein numbers 
based on the known intensity from an individual tsr-venus protein.  

Results 
The methodology proposed for cell segmentation and tracking was evaluated by quantifying the 
number of misclassifications of the classifiers and evaluation of the fraction of cells detected over time. 
Table 1 shows the results achieved by the selection classifier over the 13 images of the time series 
used for testing the algorithm. As it can be seen, the error on the selection decisions is always below 
1,5% with an average error of 0,78±0.26%. Table 2 presents the error of the merge classifier over the 
same time series. The merge classifier achieves an error below 2% on all images with an average 
error of 0,91±0.48%. The resulting segmentation was evaluated by comparing the number of cells 
detected by the user with the number of cells detected by the proposed methodology (see Table 3). 
The error achieved by the cell segmentation algorithm is below 6% on all images with an average 
error of 3.19±1.93%. The error percentage achieved by both classifiers and the final error of the cells 
segmentation meets the requirements of the project. Nevertheless, comparison with other 
segmentation algorithms will be done in the near future. 

 
Table 1 – Selection classifier results 

 
Table 2 – Merge classifier results 

 
Table 3 – Final cell segmentation results 

Conclusions 
The automatic analysis of sequences of images taken at regular intervals will allow characterizing the 
kinetics of protein production in live E. coli cells, one event at a time, as well as aid the inference with 
statistical methods of the duration of the underlying steps of transcription and translation, such as the 
open complex formation and translation elongation. For this, DIC images will be automatically 
segmented and aligned with fluorescence images allowing tracking and fluorescence evaluation on 
individual cells. The proposed method was shown to be able to extract the information necessary for 
this aim, in a timely fashion, and thus can be used to support studies of gene expression dynamics 
using tsr-venus proteins to assess the kinetics of expression of the gene of interest. 
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1 2 3 4 5 6 7 8 9 10 11 12 13

Total number of decisions 453 426 444 452 463 500 521 539 581 634 583 637 696

Positive decisions 306 312 331 340 351 378 370 419 462 476 479 482 573

Negative decisions 147 114 113 112 112 122 151 120 119 158 104 155 123

False positive decisions 4 3 2 3 4 5 3 3 4 4 4 5 4

False negative decisions 0 3 0 0 0 0 0 0 2 0 0 0 0

Misclassification rate 0,88% 1,41% 0,45% 0,66% 0,86% 1,00% 0,58% 0,56% 1,03% 0,63% 0,69% 0,78% 0,57%

Image

1 2 3 4 5 6 7 8 9 10 11 12 13

Total number of decisions 660 668 754 774 818 916 920 1078 1260 1314 1334 1416 1756

Positive decisions 342 326 376 380 386 410 378 458 492 502 490 448 560

Negative decisions 318 342 378 394 432 506 542 620 768 812 844 968 1196

False positive decisions 4 3 5 7 12 6 11 10 2 3 9 16 4

False negative decisions 0 1 1 2 2 4 3 1 0 1 2 5 5

Misclassification rate 0,61% 0,60% 0,80% 1,16% 1,71% 1,09% 1,52% 1,02% 0,16% 0,30% 0,82% 1,48% 0,51%

Image

1 2 3 4 5 6 7 8 9 10 11 12 13

Cells manually detected 145 151 159 164 174 172 183 198 212 223 242 259 301

Cells automatically detected 143 154 155 161 177 183 186 205 224 233 241 270 318

Misclassification rate 1,38% 1,99% 2,52% 1,83% 1,72% 6,40% 1,64% 3,54% 5,66% 4,48% 0,41% 4,25% 5,65%

Image
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