
~ 1 ~

DESIGN AND IMPLEMENTATION OF

3D BUILDINGS INTEGRATION FOR A

WEBGL-BASED VIRTUAL GLOBE

A Case Study of Valencian Cadastre and FIDE Building Model

Daniel Gastón Iglesias

~ i ~

~ ii ~

DESIGN AND IMPLEMENTATION OF 3D

BUILDINGS INTEGRATION FOR A WEBGL-

BASED VIRTUAL GLOBE

A Case Study of Valencian Cadastre and FIDE Building Model

Dissertation supervised by:

PhD Óscar Belmonte Fernández

PhD Joaquín Huerta Guijarro

PhD Pedro Cabral

March 2012

~ iii ~

~ iv ~

ACKNOWLEDGMENTS

I wish to express my deep gratitude to my supervisor PhD Joaquín Huerta for the time

and effort he dedicated supporting me. I am also grateful to PhD Óscar Belmonte and

PhD Pedro Cabral for their support and for accepting the responsibility of reviewing and

commenting this document. I am grateful as well to Prodevelop workmates because of

their general expertise working with JavaScript and GIS technologies.

My appreciation also goes to my Erasmus Mundus colleagues, for making this

experience such a valuable and pleasant one.

Finally my appreciation and thanks go to my dearest parents and brothers, uncles Luis

and J. Antonio, friends and girlfriend for their support, comprehension and help, which

make this thesis possible.

Additionally I would like to thank Jaime I University and Prodevelop SL for their

financial support to this research.

~ v ~

~ vi ~

DESIGN AND IMPLEMENTATION OF 3D

BUILDINGS INTEGRATION FOR A WEBGL-

BASED VIRTUAL GLOBE

A Case Study of Valencian Cadastre and FIDE Building Model

ABSTRACT

Since nowadays Web applications are increasingly providing plenty of creative and

interesting services relying on new standards and more powerful computers, it becomes

important to create similar applications, to process and visualize geographic data taking

advantage of such groundings. In this context, it results interesting to develop new Web-

based geo-processing based on a 3D data representation, exploiting the recent WebGL

graphic specification from a client-side point of view. This research explains the novel

way in which whole Valencian cadastre was analyzed, processed and finally represented

into a WebGL-based virtual globe. These improvements provide end-users firstly, an

optimization of computer graphics performance, by natively accessing to graphics

instructions; and secondly a functional data management and representation for the

present and forthcoming geo-processing Web-based platform.

~ vii ~

~ viii ~

KEYWORDS

3D

Building Information Model

Building representation

Cadastre

Constrained Delaunay Triangulation

Extrusion

FIDE

Geo-process

Geographical Information System

Geospatial

GIS

HTML5

JavaScript

OpenGL ES

OpenSceneGraph

OSG

OSGEarth

OSGJS

ReadyMap

Scene Graph

Tile Map Service

Virtual Globe

WebGL

Web Map Service

~ ix ~

ACRONYMS

3D Three dimensional

AJAX Asynchronous JavaScript And XML

BOE Official State Gazette (Spanish)

CAD Computer-Aided Design

CDT Constrained Delaunay Triangulation

COLLADA COLLAborative Design Activity

CSS Cascading Style Sheets

DEM Digital Elevation Model

DOM Document Object Model

EPSG European Petroleum Survey Group

FIDE Edification Exchange Data Format (Spanish)

fps frames per second

GDAL Geospatial Data Abstraction Library

GIS Geographic Information System

GPL General Public License

GPS Global Positioning System

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IGN National Geographic Institute

JS JavaScript

~ x ~

JSON JavaScript Object Notation

LGPL Lesser General Public License

LOD Level Of Detail

MIT Massachusetts Institute of Technology (License)

OGC Open Geospatial Consortium

OOL Object Oriented Language

OpenGL Open Graphics Library

OSG OpenSceneGraph

OSGJS OpenSceneGraph JavaScript

PHP Hypertext Preprocessor

SDK Software Development Kit

TMS Tile Map Service

UTM Universal Transverse Mercator

VBO Vertex Buffer Object

WebGL Web-based Graphics Library

WGS World Geodetic System

WMS Web Map Service

XML Extensible Markup Language

~ xi ~

INDEX

CHAPTER 1 - INTRODUCTION .. 1

1.1 Background .. 1

1.2 Hypothesis .. 5

1.3 Objectives and Limitations ... 5

1.4 Dissertation Organization ... 7

1.5 Chapter Review ... 8

CHAPTER 2 - STATE OF THE ART .. 9

2.1 Introduction ... 9

2.2 3D Map Toolkits .. 10

2.2.1 ReadyMap ... 10

2.2.2 WebGL Earth .. 12

2.2.3 OpenWebGlobe .. 13

2.3 3D on the Web ... 14

2.3.1 Google WebGLGlobe ... 14

2.3.2 PhiloGL ... 15

2.4 WebGL Globes Comparison .. 16

2.5 JavaScript 3D Render Engine Frameworks ... 18

2.5.1 OSGJS ... 19

2.5.2 PhiloGL ... 19

2.5.3 SceneJS ... 19

2.5.4 Three.js ... 19

2.5.5 SpiderGL ... 20

2.5.6 C3DL .. 20

2.5.7 CopperLicht .. 20

2.5.8 CubicVR ... 20

2.5.9 GammaJS .. 20

2.5.10 GLGE ... 21

2.5.11 Jax ... 21

2.5.12 O3D .. 21

2.5.13 Oak3D .. 21

2.5.14 X3DOM .. 21

2.5.15 Inka3D .. 22

2.5.16 KickJS .. 22

2.6 Reasons for ReadyMap Choice .. 22

2.7 Chapter Review ... 23

CHAPTER 3 - ANALYSIS .. 25

~ xii ~

3.1 Introduction ... 25

3.2 Requirements ... 25

3.2.1 Introduction ... 25

3.2.2 Data acquisition .. 25

3.2.3 Data requirements ... 26

3.2.4 Software and hardware requirements .. 27

3.2.4.1 Tested unit’s hardware ... 27

3.2.4.2 Tested unit’s software .. 28

3.3 Use Case Model .. 28

3.4 High Level Architecture ... 30

3.5 Planning (Gantt diagram) ... 32

3.6 Budget... 34

3.7 Chapter Review ... 35

CHAPTER 4 - DESIGN AND IMPLEMENTATION .. 37

4.1 Introduction ... 37

4.2 Pre-processing (Data preparation) .. 37

4.2.1 Introduction ... 37

4.2.2 Data and Software ... 38

4.2.3 Data Preparation (gvSIG & QGIS) ... 41

4.2.3.1 Reprojection and exportation ... 43

4.2.4 Data Preparation (JavaScript) ... 46

4.2.4.1 Server communication.. 46

4.2.4.2 Constru.csv processing ... 48

4.2.4.3 Masa.json processing ... 50

4.2.4.4 Building’s JSON creation ... 52

4.3 Processing (Data visualization) .. 55

4.3.1 Introduction ... 55

4.3.2 Application Structure .. 55

4.3.3 Application Behaviour .. 57

4.3.4 File Organization .. 60

4.3.5 Data Management ... 60

4.3.6 Data Preparation (ReadyMap) .. 62

4.3.6.1 Server data loading and parsing ... 62

4.3.6.2 Buildings extrusion .. 63

4.3.6.3 VBO management .. 63

4.3.7 Data Visualization (ReadyMap) .. 65

4.3.7.1 Preliminary Concepts ... 65

4.3.7.2 Drawable Geometry ... 67

4.3.7.2.1 Primitive Arrays .. 69

Polygons rendering mode (GL_TRIANGLES) ... 69

Building’s side faces wrapping ... 69

Building roof wrapping .. 70

Lines rendering mode (GL_LINES) ... 71

~ xiii ~

Building vertices connection .. 72

Points Sprites rendering mode (GL_POINTS).. 73

Simple vertices representation .. 73

4.3.7.2.2 Attribute Arrays ... 73

Colour gradient ... 74

Scene normals ... 75

4.3.7.3 Referenced Geometry ... 75

4.3.7.3.1 Matrix Transformation ... 75

Anchor point processing ... 76

Ordinary point processing ... 77

4.3.7.4 Drawable and Referenced Geometry Insertion .. 78

4.4 Chapter Review ... 79

CHAPTER 5 - RESULTS ... 81

5.1 Results Review ... 81

CHAPTER 6 - CONCLUSIONS ... 87

6.1 Research Summary ... 87

6.2 Research Contributions .. 89

6.3 Future Work .. 90

BIBLIOGRAPHY .. 93

APPENDIX A ... 99

A1 Introduction ... 99

A2 Captures ... 100

A2.1 R1 Amax Test .. 101

A2.2 R1 Amed Test .. 101

A2.3 R1 Amin Test ... 102

A2.4 R5 Amax Test .. 103

A2.5 R5 Amed Test .. 103

A2.6 R5 Amin Test ... 104

A2.7 R01 Amax Test .. 105

A2.8 R01 Amed Test .. 105

A2.9 R01 Amin Test ... 106

A2.10 Summary table .. 107

APPENDIX B ... 109

B1 Introduction ... 109

B2 Pre-processing (Data Preparation) ... 109

B2.1 Data Preparation (Java) ... 110

B2.2 Application Structure .. 111

~ xiv ~

B2.3 Application Behaviour .. 112

B3 Processing (Data Visualization) .. 116

B3.1 File Organization .. 116

B3.2 Data Visualization (ReadyMap) .. 117

B3.2.1 Preliminary Concepts ... 117

B3.2.2 Drawable Geometry ... 118

B3.2.2.1 Primitive Arrays... 120

Polygons rendering mode (GL_TRIANGLES) ... 120

Building faces wrapping ... 120

Lines rendering mode (GL_LINE_STRIP) ... 122

Building vertices connection .. 122

Points Sprites rendering mode (GL_POINTS).. 122

Simple vertices representation .. 122

B3.2.2.2 Attribute Arrays ... 122

Face Colouring .. 122

B3.2.3 Referenced Geometry ... 125

B3.2.4 Drawable and Referenced Geometry Insertion .. 125

B4 Results ... 125

~ xv ~

INDEX OF TABLES

Table 1. WebGL globes’ comparison table ... 17

Table 2. Gantt diagram ... 33

Table 3. Budget table .. 35

Table 4. Shapefiles geometry comparison ... 43

Table 5. Data preparation’s script execution time .. 47

Table 6. Heights attribute codification II .. 49

Table 7. Rendering performance ... 84

Table 8. Summary Table of implemented tests .. 107

~ xvi ~

INDEX OF FIGURES

Figure 1. ReadyMap WebGL globe’s appearance .. 10

Figure 2. ReadyMap’s architecture .. 11

Figure 3. WebGL Earth globe’s appearance .. 12

Figure 4. OpenWebGlobe globe's appearance ... 13

Figure 5. Google WebGL globe's appearance .. 14

Figure 6. PhiloGL globe's appearance ... 15

Figure 7. Web application's use case diagram ... 28

Figure 8. Web application's high level architecture diagram ... 30

Figure 9. Constru.shp details .. 39

Figure 10. Masa.shp details .. 40

Figure 11. Constru.shp composition (closer detail) .. 42

Figure 12. Reprojection's work flow ... 44

Figure 13. Masa.json code sample .. 45

Figure 14. Constru.csv sample code ... 45

Figure 15. Data preparation's AJAX requests .. 47

Figure 16. Data preparation heights attribute values .. 48

Figure 17. Height attribute codification I ... 49

Figure 18. Heights attribute codification III ... 49

Figure 19. Heights definition algorithm code extraction .. 50

Figure 20. Area of triangle processing ... 52

Figure 21. Data preparation’s final output... 53

Figure 22. Prepared JSON sample ... 53

Figure 23. Data preparation process diagram ... 54

Figure 24. Application's structure diagram .. 56

Figure 25. Application's process flow diagram .. 58

Figure 26. Application's process flow diagram detail .. 59

Figure 27. Buildings extrusion diagram ... 63

Figure 28. Array of structures graphical example .. 64

Figure 29. Structure of arrays graphical example .. 65

Figure 30. osg.BuildingNode object ... 66

Figure 31. osg.Geometry object .. 67

Figure 32. osg.DrawElements geometry insertion .. 68

Figure 33. osg.BufferArray binding .. 68

Figure 34. Triangle creation processing ... 69

Figure 35. Complex roof shape triangulation ... 71

Figure 36. Lines creation processing .. 72

Figure 37. Building's colour gradient general perspective .. 74

Figure 38. osg.MatrixTransform object .. 76

Figure 39. Anchor vertex geometric transformations ... 77

Figure 40. Ordinary vertex geometric transformations .. 78

Figure 41. Geometry and Matrix Transformation merging .. 78

Figure 42. Dialogue boxes details .. 81

Figure 43. Polygon rendering mode representation ... 82

file:///D:\PRODEVELOP\WebGL2REVISIONES_2_FORMATO.docx%23_Toc317890662

~ xvii ~

Figure 44. Line rendering mode representation ... 82

Figure 45. Points rendering mode representation .. 83

Figure 46. Cadastre area membership colour theme .. 83

Figure 47. Height colour theme .. 84

Figure 48. Graphic statistics panel ... 85

Figure 49. R1 Amax test .. 101

Figure 50. R1 Amed test .. 101

Figure 51. R1 Amin test... 102

Figure 52. R5 Amax test .. 103

Figure 53. R5 Amed test .. 103

Figure 54. R5 Amin test... 104

Figure 55. R01 Amax test .. 105

Figure 56. R01 Amed test .. 105

Figure 57. R01 Amin test... 106

Figure 58. FIDE model representation ... 110

Figure 59. Java application's structure .. 111

Figure 60. Java application's behaviour ... 113

Figure 61. Java application's behaviour detail ... 114

Figure 62. FIDE geometrical structure .. 115

Figure 63. osg.Geometry object .. 118

Figure 64. osg.DrawElements geometry insertion .. 119

Figure 65. osg.BufferArray binding .. 119

Figure 66. Vertical plane projections ... 121

Figure 67. Height colour theme .. 123

Figure 68. Solar incidence greyscale colour theme .. 124

Figure 69. Solar incidence varied colour theme ... 124

file:///D:\PRODEVELOP\WebGL2REVISIONES_2_FORMATO.docx%23_Toc317890722

~ 1 ~

Chapter 1

Introduction

1.1 Background

The widespread adoption of the World Wide Web has greatly changed the way that the

current software is being developed, to the point that a big amount of new desktop-

based software applications, are written for the Web instead of conventional computing

architectures. Perhaps, the most common case where this trend is clearly noticed is

Google Docs, which is a perfect example of how a traditional desktop application has

successfully migrated to a Web-based environment.

In general terms, the software industry is shifting towards Web-based architectures

(Taivalsaari, Mikkonen, Anttonen, & Salminen, 2011). In this type of Web-based

software, applications rest on the Web as services; consisting of data, from a general

point of view, that might be located anywhere in the world and not particularly in each

of the computers as a conventional desktop approach.

Web-based software has some advantages over a desktop-based one. It requires no

installation or even manual upgrades and it also, leverages what the Web means in

terms of interaction and user sharing. This therefore combines the best of both worlds:

the excellent usability of conventional desktop applications and the enormous potential

of the World Wide Web (Taivalsaari, Mikkonen, Anttonen, & Salminen, 2011). Web-

based software arrives with a new range of unexplored possibilities intrinsically related

with new appearing market demands, which predicts an optimistic future on the field for

forthcoming years. Additionally, end-user software security is improved since all

information accesses follow the same traced routes for all the variety of users, therefore

leveraging both data oneness and backups. Furthermore, Web applications can be

deployed and shared instantly worldwide, with no middlemen or distributors, inciting to

a increasing and already present, open source software development.

~ 2 ~

The trend for applications to shift to web-based software is gaining plausibility as new

Web application features are introduced, that enrich the web browser with additional

programming functionalities and interfaces.

An especially important step in this direction, along with the arrival of the HTML5

standard (W3C, 2011), is the introduction of WebGL (Khronos Group, 2012) as a

standardized part of HTML5 (Lubbers, Albers, & Salim, 2010). WebGL is a graphic

standard that enables the creation of three dimensional (3D) content that can natively

run efficiently in a standard Web browser without any plug-in components or

extensions (Taivalsaari, Mikkonen, Anttonen, & Salminen, 2011).

The possibility to natively add and graphically display 3D objects into existing Web

applications is probably, the most outstanding change the Web is going to adopt for

quite a while (Bochicchio, Longo, & Vaira, 2011). Displaying 3D graphics content on

the Web has been possible in the past with APIs such as Flash, O3D, VRML and X3D

(Ortiz, 2010), but only with certain browsers or if the necessary browser plugin was

installed.

Nonetheless, considering the adoption of WebGL by most major browser developers,

3D capabilities are integrated directly into the web browser from now on. This means

that 3D content can run smoothly in any standard compliant browser without the

installation of applications or additional components. WebGL support has already been

implemented and included in some of the forthcoming new versions of the most well-

known browsers. However, most browsers demonstrate a lack of full functionality, with

just Google Chrome and Mozilla Firefox providing the best support to date.

In the long term, the most important impact of WebGL may be its capabilities as a

gaming environment. Even if most of people have began migrating to web-based

content, up to the present it has been very difficult to convince hard-core game

developers and players to take web-based software seriously. This is partly owing to

suitable development APIs were not available, and partly because, up to this time, the

execution speed of web-based software was completely inadequate for CPU-hungry

gaming applications.

Considering the enormous income that the computer games sector generates, with a

retail sales of 10.5$ billion dollars in 2009 (The Entertainment Software Association,

~ 3 ~

2011), expecting 70$ billion dollars by 2015 (DFC Intelligence, 2010)), and the

widespread user immersion it entails, a fast and productive development of WebGL-

based Web applications is expected.

Nevertheless, the use of WebGL is not explicitly limited to game applications.

Concerning the area this project deals with, Geographic Information Systems (GIS), yet

again WebGL is present. Web GIS has become a cheap and easy way to promote the

wide-spread use of geospatial data, thus many software developers have paid attention

and interest, to the distribution of both maps and tools that the general public can use

without restrictions.

One of the most impressive and clarifying examples is the case of the outstanding Nokia

Maps (Nokia, 2012). Nokia Maps —also known as Ovi Maps— is a free mapping

service developed by Nokia for its mobile phones and Smartphone multimedia devices,

which is also available on a website for all major browsers. In the earlier stages of

development, it was released with a direct end-user obligation to download and install a

proprietary plug-in —provided that such a plug-in was browser-compatible— in order

for the user to properly visualize 3D content in the browser. However, due to the

extensive work of both browser software developers and graphic cards driver updates,

Nokia Maps —although still in beta version to date— has already migrated to WebGL,

so as to show the same 3D content in a more optimized way.

It should be noted that the use of WebGL is not only limited to the development of 3D

applications. WebGL will serve as an important feature in the development of more

conventional desktop-style 2D applications as well. In fact, it is quite possible that

WebGL will effectively replace the use of the earlier 2D canvas drawing API that has

been supported by many Web browsers. Yet again, and similar to previous Nokia Maps

example, Google Maps has migrated —within a 2D context this time— to WebGL

(Google, 2012) Considering the calibre of high profile companies that have directly bet

for WebGL-compliant applications’ development, this once again demonstrates the

importance of this graphic standard.

Most of the time, accessing to very low-level instructions as the ones that WebGL

provides, is an arduous work, so that middleware software is often used to ease graphic

software development tasks. As it has been depicted, graphical applications are in quite

~ 4 ~

demand in computer science today, and OpenSceneGraph (OSG), as a 3D graphics

toolkit, is being widely used in fields such as virtual reality, scientific visualization,

visual simulation, modelling games, mobile applications and GIS, which is the case in

this present research.

OSG is, in fact, a rendering middleware application. It is a solution that raises the level

of abstraction and eases the complexity of using a low-level WebGL 1.0 API, at the cost

of flexibility. The concepts of modularity and object oriented programming are often

applied to manage graph primitives, materials, and different data sets in visual user

applications as the one concerning in this project. The application of these concepts

saves much development time and makes it possible to combine new functionalities,

such as modules and plug-ins.

Furthermore, OSG is actually a deferring rendering system based on the theory of scene

graph, which records rendering commands and data in buffers, for a posterior rendering

(Policarpo & Fonseca, 2005). This fact permits the system to perform several

optimizations before rendering, as well as implementing a multithreading strategy for

handling complex scenes (Wang & Quian, OpenSceneGraph, 2010).

A scene graph is a tree data structure that defines both a spatial and logical relationship

of a graphical scene, for efficient management and rendering of graphic data (Guangwei

& Zhitao, 2009). It is typically represented as a hierarchical graph, which contains a

collection of graphic nodes including a top-level root node. A typical scene graph does

not allow a directed cycle —where some nodes are connected in a closed chain— or an

isolated element —a node that has no child or parent— inside itself.

Consequently, the use of scene graphs, and particularly the use of OSG, fits completely

in the accomplishment of this project, not only for the current project development, but

also for forthcoming releases. Expressly for the aim of this project, OSG perfectly fits in

rendering big amount of buildings in real-time, which is actually a crucial part of this

research.

This research focuses on an innovative way of building’s attribute representation based

on client-side architecture. Relying on this context, it is implemented the representation

stage of a bigger project focused on the processing of precise building energetic

demands. This processing relies not only on modelling and designing technologies, but

~ 5 ~

also on the analysis of 3D buildings locations in which this research has given solution.

Consequently, the estimated building’s energy consumption and corresponding

emissions to the atmosphere are obtained, helping to minimize energetic consumption

from a passive point of view.

Both commercial and residential edifications represent nearly a 40% of the world’s

energy consumption and in a similar level of CO2 emissions (Rodriguez, 2010).

Nevertheless, regarding ―Contribution of Working Group III to the Fourth Assessment

Report of The Intergovernmental Panel on Climate Change‖; the mentioned buildings

sector represents the energetic sector with the highest potential in terms of energy

reduction —estimation of 29% for 2020—(Barker T., 2007). Additionally, it is cited

that is possible to achieve a 75% of energy savings, in individual new buildings

compared with recent current practice, and generally at little or no extra cost (Barker T.,

2007).

Such achievement requires the adoption of additional methodologies and technologies.

The cited report enumerates the main ones, pointing out that the most energy saving

occurs in new edifications. Among the cited technologies, it is stated in the first place

the importance of a passive solar energy production as a technology with a highest

applicability nowadays. According to that, this research will notably help on the

analysis of solar incidence, implementing the representation stage of a building

energetic demand processing.

1.2 Hypothesis

The development of a WebGL-based building’s visualization application will provide a

new Web-based geo-processing platform publicly accessible; creating a new GIS

processing architecture based on a Web browser interactivity, interoperability and

improved graphical performance.

1.3 Objectives and Limitations

Considering the mentioned background, and based on the hypothesis, this research is

going to focus on the way to integrate and visualize 3D buildings coming from cadastre

and FIDE data, into a WebGL-based globe.

Following, it is listed the objectives of the thesis research.

~ 6 ~

 To study in-depth the adopted Earth globe solution based on the WebGL

standard.

 To use public cadastre data of the city of Valencia (Spain) provided by Spanish

Authorities.

 To study, understand and use WebGL standard, based on OpenGL ES 2.0, for

low-level instructions accessing.

 To study, understand and use GLSL as graphical language.

 To study, understand and use JavaScript language.

 To study, understand and use OSG and OSG Earth framework based on scene

graph representations.

 To study, understand and use HTML and CSS as supporting languages for the

suitable Web content visualization.

 To study, understand and use WMS and TMS protocols for request tiles to the

correspondent servers.

 To propose a model to prepare, analyze and filter the data coming from the

Spanish cadastre.

 To propose a model to represent 3D buildings derived from 2D geo-data, on the

surface of a WebGL-based virtual globe.

 To represent not only the buildings’ geometry but any interesting parameter

present or not present on the treated data.

 To develop a fully functional Web application prototype for both testing and

representing the buildings present in obtained cadastre data.

 To develop a complete solution for representing the FIDE buildings’ models in

the same way as done for cadastre data (See Appendix B).

GIS data representation and the consequent end-user interaction, is a large topic itself

that has many issues to be considered. However, mainly due to the time reasons, many

of these issues are not included into this research scope. Following, it is presented some

of the limitations considered towards this research:

 This research does not intend to develop a complete GIS system, but an

implementation of geo-data representation in a WebGL-compliant way.

 This research does not intend to develop any geo-process or analysis itself

moreover than representing geo-data in an innovative way. Nevertheless it

~ 7 ~

establishes the way to represent any kind of results originated in third geo-

processing, in a WebGL environment.

 This research focuses on using already implemented scene navigation

functionalities, instead of developing new ones besides the firstly mentioned.

1.4 Dissertation Organization

The structure of this research consists of six major chapters which are distributed as

Introduction, State Of The Art, Analysis, Design and Implementation, Results and

finally Conclusions. Additionally, it has been included Appendix A and Appendix B to

this research.

Introduction chapter reviews current and forthcoming technologies intrinsically related

with foreseeable use trends, in addition to the reasons and objectives of this research.

Straight after, State Of The Art chapter introduces current WebGL-based globes and a

group of available JavaScript-based libraries that may give support to WebGL-based

GIS developments.

Analysis chapter provides the technical reasoning about the application’s requirements

and processing the system needs to accomplish, as well as the temporal-economical

planning. Design and Implementation chapter explains in-depth, the implemented

solution making extensive use of graphical contents in order for the reader to clear

understand it. Additionally, it is further divided in Data Preparation and Data

Visualization sections, in consequence of relying on different used and implemented

applications.

Results chapter describes in detail the obtained application’s outputs, giving solutions to

the hypothesis and research’s objectives posed in this Introduction chapter. Finally

Conclusions chapter presents the general achievements of the research. It summaries the

contributions in knowledge provided by the research and suggests future directions and

recommendations for the developed system.

Additionally, Appendix A describes the resulting outputs coming from different tested

configurations. And finally, Appendix B describes the entire FIDE approach which

provides roughly same functionalities as the implemented for the cadastre case.

~ 8 ~

1.5 Chapter Review

This chapter begins with a brief background strengthening the importance of WebGL

graphic standard and Web-based applications, followed by the importance of Web-

based geo-processes. Finally, explains that the background behind this research is the

processing of precise buildings energetic demand, relying on the buildings geo-location.

Additionally it describes a set of research’s objectives, concluding with a section on the

research’s structure.

~ 9 ~

Chapter 2

State Of The Art

2.1 Introduction

General purpose Web applications, and more specifically GIS Web applications, have

become more important around the world due to the existence of an interesting and

useful geographical component. This is attached in some way to most of the data that an

end-user either directly or indirectly deals with.

The recent appearance of HTML5 and WebGL standards, provide a wide range of new

possibilities and market researches in mainly all sectors and areas, including GIS as this

research does (Taivalsaari & Mikkonen, The Web as an Application Platform: The Saga

Continues, 2011).

There are several applications where the ability to capture, display, and visualize 3D

images comfortably would confer real benefits. Examples from the professional domain

include CAD design, medical diagnostics, scientific-purpose visualization, and GIS

visualization methods.

In the long term, the third dimension provides a better comprehension and modelling of

the world around us, adding both an extra modern looking and an ability to represent

specific parameters such as building or terrain elevations, which cannot be visualized

from a conventional top-down view.

As GIS concepts are getting accepted and assimilated by the society, more Web

applications are released, describing in many cases fully operational 3D globes. Until

now, the only way to achieve such 3D representation, was implementing a Web

application relying on the private-source Google Earth API, which as usual, required a

plugin installation as a browser extension.

However, due to operating system security issues, administrator permissions, or even

license concerns, many end-users have found it not suitable as a software development

~ 10 ~

framework. That is one of the reasons why some other solutions are increasingly

appearing. The principal aim of most of the appearing Software Development Kits

(SDK), is simply to provide an alternative solution, implemented mostly in JavaScript

to be available in all WebGL-compliant browsers within open source environments.

Nevertheless, since WebGL is a rather recent standard specification, there is a little

research found, encountering no fully complete solution done so far. However, due to

market needs, trends, and technologies progressing, some WebGL globes are timidly

appearing to date.

Each of selected and following presented WebGL globes adopts different structure and

design, letting either an end-user or software developer to choose the one which fits the

most his requirements, likings or purposes.

The encountered solutions are further divided into two separated groups in order to

clarify the State Of The Art of this research. The first part, 3D Map Toolkits, concerns

Map Toolkits and their particular characteristics, detailing as well some other 3D related

tools available on the Web, 3D on the Web. The second part, JavaScript 3D Render

Engine Frameworks, mentions and details the main 3D JavaScript libraries existent on

the market, regarding special attention on the library selected in this research.

2.2 3D Map Toolkits

2.2.1 ReadyMap

(Pelican Mapping, 2011)

Figure 1. ReadyMap WebGL globe’s appearance

~ 11 ~

ReadyMap globe has been developed under GNU LGPL license, by Pelican Mapping, a

company settled in Fairfax, (USA). ReadyMap is a complete suite of tools for

publishing and viewing maps in 2D and 3D, designed for desktop, mobile and Web

environments. This last one is where WebGL SDK takes place.

ReadyMap WebGL SDK is a free JavaScript library that can be used to embed maps in

a web page. It supports both 2D and 3D global maps, letting the user to geo-locate any

kind of event on the map —GeoRSS or Flickr i.e.—, as well as manipulate the data and

the on-screen camera perspective. Additionally it works well with open Web-mapping

standards like TMS (Tile Map Service) and WMS (OGC Web Map Service),

leveraging WebGL technology in order to render high-performance 3D maps.

The toolkit is built over OpenSceneGraph (OSG) library (OSG, 2012) (see Figure 2).

OSG is an open source high performance 3D graphics toolkit, used by several

applications’ developers in fields so varied as visual simulation, games, virtual reality,

scientific visualization, modelling and GIS.

Detailed next, it is presented a general schema of the ReadyMap structure.

OSG relies on the scene graph groundings. A scene graph is a tree data structure that

defines the spatial and logical relationship of a graphical scene, for efficient

management and rendering of graphic data. It is typically represented as a hierarchical

graph, which contains a collection of graphic nodes; including a top-level root node, and

a number of group nodes that serve together as the bottom layer of the tree.

Additionally, each group node may have any number of children. Thus, these children

nodes gather the information of their parent and can treated therefore as one

independent unit.

OSGEarth

OSGJS + jQuery

WebGL

 Figure 2. ReadyMap’s architecture

~ 12 ~

OSG is written entirely in Standard C++ and OpenGL, running on a wide range of

operating systems including Windows, OSX, GNU/Linux and Solaris

Due to OSG widespread, and also to both market research and trends, OSG has been

gradually migrated to JavaScript being renamed ―OSGJS‖. OSGJS is a WebGL

framework based on OSG groundings, which makes possible firstly, to use an

―OpenSceneGraph-like‖ toolbox which interacts with OpenGL via JavaScript calls, and

secondly to export data models to the OSGJS format (OSGJS, 2012). Additionally, on

top of OSGJS, ReadyMap makes extensive use of OSGEarth.

OSGEarth is a C++ terrain rendering toolkit that supports several kinds of data

providing visualization and manipulation functionalities in many different ways.

Concurrently as OSG, OSGEarth has been gradually ported to JavaScript as well,

getting fully integrated into ReadyMap solution (OSGEarth, 2012).

Both, library and toolkit are fully merged with jQuery, the third component that

ReadyMap relies on. jQuery is a JavaScript library that provides to ReadyMap a full-

HTML-element processing binding ReadyMap objects to HTML5 tag elements.

2.2.2 WebGL Earth

(Klokan Technologies, 2011)

Figure 3. WebGL Earth globe’s appearance

WebGL Earth is open source software available under standard GNU GPLv3 license,

developed by Klokan technologies settled in Baar, Switzerland. It is designed for the

~ 13 ~

visualization of maps, satellite imagery and aerial photography on top of a virtual terrain

using WebGL standard specification similarly as ReadyMap.

WebGL Earth provides some camera-dependent functionalities like rotation, zooming,

or tilting which notably increases the user interactivity. Additionally it provides map

visualization capabilities making the display of existing map solutions —

OpenStreetMap and Bing i.e. — possible. Additionally, it is implemented a full support

to custom Earth’s map tiles loading. It also includes marker addition capabilities and

viewpoint animation likewise the rest of solutions.

WebGL Earth is prepared to be used on third party websites in a very easy way, since

developers have two options on how to use the source code for custom Web

applications. On the one hand, it is possible to use the API so as to obtain a full

customized application, alternatively on the other hand, it can be used the codebase with

an aim of inserting a simple default map into a desired Web page.

In order to get ready to use WebGL Earth’s SDK it is compulsory a prior setup of a

Python Interpreter and Java Virtual Machine in order to successfully compile WebGL

Earth source code, as well as the latest Closure Library.

2.2.3 OpenWebGlobe

(Geomatics Engineering departement at the University of Applied Sciences Northwestern

Switzerland, 2011)

Figure 4. OpenWebGlobe globe's appearance

~ 14 ~

OpenWebGlobe has been created under MIT license by the Geomatics Engineering

department at the University of Applied Sciences North-western Switzerland, settled in

Basel, Switzerland.

OpenWebGlobe SDK is designed in an object oriented manner. The SDK is written

entirely in C++ and has bindings to other languages like Python, C# and Visual Basic or

JavaScript.

The solution the Geomatics Engineering department offers consists of, a WebGL globe

that encompasses the software for processing very large volumes of geospatial data, in

highly parallel and scalable computing environments. Additionally, it provides support

for several data categories such as image data, elevation data, point of interest, vector

data, and 3D objects.

Before streaming over the Internet, this data must be pre-processed, usually by

comprising a transformation from a local to a global reference system, creating a set of

pyramid layers, setting up levels of detail or tiling the data.

The latest released version to date is essentially a beta version with some of the

functionalities spread out over the code not considered as a full complete solution.

2.3 3D on the Web

2.3.1 Google WebGLGlobe

Figure 5. Google WebGL globe's appearance

~ 15 ~

In this section, the principal globe for data representation purposes based on WebGL is

Google WebGL globe, within Chrome experiments framework.

WebGL Globe is an open platform for strictly geographic data visualization, created by

the Google Data Arts Team, having as main features Latitude / longitude data spikes,

colour gradients based on data value or type, and mouse panning and zooming

functionalities.

In terms of technological dependence, WebGL Globe is based on both Three.js

JavaScript 3D render engine, and ―requestAnimationFrame.js‖ JavaScript file.

On top of the mention dependence, both JSON-described data and JavaScript-based

shader files are loaded by the application, providing the globe the necessary data and the

way the graphic card behaves to finally represent the processed data (Google, 2011).

Unlike previous mentioned Web applications, Chrome experiments, and WebGL globe

involves a controversial terms of use, where by uploading code, the developer

acknowledges and agrees that Google, or Google’s licensors, own all legal right,

including any intellectual property rights which subsist in the services (Google, 2012).

2.3.2 PhiloGL

Figure 6. PhiloGL globe's appearance

PhiloGL is open source software, licensed under the MIT license and owned by the

Sencha Labs foundation, that provides a WebGL framework for data visualization,

~ 16 ~

creative coding and game development. PhiloGL code is highly abbreviated compared

to low level WebGL specification. This helps the users to build simple applications in a

very little time only for data representation purposes (Sencha Labs, 2011).

2.4 WebGL Globes Comparison

Next, it is detailed a comparison’s table between the main functionalities present in the

variety of explained WebGL globes’ solutions, followed by an explanation of each of

introduced terms.

 ReadyMap
WebGL

Earth
OpenWebGlobe

Google

WebGLGlobe
PhiloGL

Viewer

Functionality

WebGL

compatibility
Yes Yes Yes Yes Yes

Navigation

Zoom In / Out Yes Yes Yes Yes yes

Zoom Area No No No No No

Zoom Full

Extent
Yes No No No no

Zoom

Predefined
Yes No No No no

Zoom Layer

Extent, Next,

Previous,

Selected, X/Y

No No No No No

Bookmarks Yes Yes No No no

Tilt Yes Yes Yes No No

Pan Yes Yes Yes Yes Yes

Data

Add Local

Layer
No No No No No

Add WMS Yes Yes N/A No No

Add TMS Yes Yes Yes No No

JSON Yes Yes Yes Yes Yes

Other Data

Formats

Yes

(OSGJS)
No No

Yes

(COLLADA)
No

Selection

Picking No (labs) No No No No

~ 17 ~

Measuring

Distance No No No No No

Area No No No No No

Angle No No No No No

Coordinate

display
Yes Yes No No No

Display Units yes Yes No No No

Querying

View Attributes Yes Yes Yes Yes Yes

Find Address Yes Yes No No No

Find Feature No No No No No

Locate Feature

by Query
No No No No Yes

Create Custom

Query
No No No No No

Terms of Use

License
GNU

LGPL

GNU

GPLv3
MIT

Owns all legal

rights
MIT

Table 1. WebGL globes’ comparison table

Navigation

 Zoom In / Out: zooms in and out to a specified centre point by a predefined

magnification factor.

 Zoom Area: zooms in to a specified rectangular area extent.

 Zoom Full Extent: redraws so that the full extents of the map are displayed in the

current window.

 Zoom Predefined: redraws so that a particular preselected zoom is applied.

 Zoom Layer Extent, Next, Previous, Selected, X/Y: additional zoom operations.

 Bookmarks: adds a bookmark to save the place with its particular coordinates.

 Tilt: moves the map so that the normal to user’s view perspective is changed.

 Pan: moves the map around the map window in order to display areas that are

outside of the current view extent, without changing magnification, just by

dragging or by specifying a new view’s centre point.

Data

 Add Local Layer: adds a new layer to the map from the local machine or

network.

 Add WMS: Web Map Service support.

 Add TMS: Tile Map Service support.

 JSON: JSON data exchange format support.

~ 18 ~

 Other Formats: availability of other data exchange formats.

Selection

 Picking: selects a feature on-map based on geographic coordinates, relying upon

screen coordinates selection.

Measuring

 Distance: measures a polyline (segments and total distance) drew by the user.

 Area: measures a polygon drawn by the user.

 Angle: measures an angle drawn by the user.

 Coordinate Display: displays X - Y coordinates of a specified point or points.

 Display Units: specifies units for displaying screen cursor position (e.g.

Lat/Long or Projected).

Querying

 View Attributes: displays attribute data (from database) for a selected feature.

 Find Address: zooms to a location based on street address matching.

 Find Feature: zooms to a feature with a database attribute value matching a

user-specified value.

 Locate Feature by Query: zooms to a feature with a database attributes matching

a predefined query.

 Create Custom Query: builds database query to find features matching user-

specified criteria.

Terms of Use

 License: concerns the terms for each of the Web applications.

2.5 JavaScript 3D Render Engine Frameworks

In this section it is explained the State Of The Art regarding to WebGL-based

JavaScript libraries. Considering that many of the following JavaScript libraries are

very recent releases, and the majority are still under early development, in many cases

the information they have provided has been sparse or even inexistent.

Nonetheless, most of them are well documented with live examples which help for the

user to get an overall idea about the graphic performance and the principal functionality

that may be obtained from them.

~ 19 ~

2.5.1 OSGJS

OpenSceneGraph-JavaScript (OSGJS) is a library for modelling scenes as graphs. It

attempts to transport the C++ based OpenSceneGraph functionality to JavaScript.

Nevertheless, the support is incomplete. This can lead to difficulties in implementation

when developers port code utilizing this library from C++ to JavaScript (OSGJS, 2012).

2.5.2 PhiloGL

PhiloGL is a JavaScript WebGL-based framework which tries to be as close to low

level OpenGL instructions as possible, providing a yet tight abstraction to WebGL,

focusing particularly on performance. PhiloGL also provides a module system covering

Program and Shader management, JSON support, Web Worker management, Effects

and Tweening (Garcia Belmonte, 2011).

2.5.3 SceneJS

SceneJS is a WebGL-based 3D engine geared towards the rendering of large numbers of

individually pickable and articulated objects as required for engineering and data

visualization applications.

On the inside, SceneJS is a fast draw list that is optimized for things like fast redraw and

picking, while on the outside it is a convenient JSON-based scene graph API, that is

easy to hook into the rest of the application stack (Kay, 2009).

SceneJS is a lean rendering kernel which omits functionality such as physics and

visibility culling. However, its leanness makes it very efficient to update the scene state,

making it practical to bolt on your choice of third-party toolkits such as TweenJS,

JSBullet and jsBVH.

2.5.4 Three.js

Three.js is a lightweight 3D engine with a very low level of abstraction. Currently the

engine can render using HTML 5’s canvas, WebGL or SVG (Mrdoob, 2012). It is being

actively developed in Github repository, leading a promising set of interesting

forthcoming functionalities.

https://github.com/gskinner/TweenJS
https://github.com/CasperPas/JSBullet
https://github.com/imbcmdth/jsBVH

~ 20 ~

2.5.5 SpiderGL

SpiderGL is a JavaScript 3D graphics library which relies on WebGL for real-time

rendering. The philosophy behind SpiderGL use, is to provide typical structures and

algorithms for real-time 3D graphics rendering to Web developers, neither forcing them

to comply with some specific paradigm —i.e. scene graphs— nor preventing low level

access to WebGL (Visual Computing Laboratory at CNR Research Area of Pisa, 2012).

2.5.6 C3DL

The Canvas 3D JS Library (C3DL) is a JavaScript library that makes possible for

software developers to write 3D applications relying on WebGL specification. It

provides a set of math, scene, and 3D object classes, that makes WebGL more

accessible, implementing the access to low level WebGL instructions (CATGames

Research network at Seneca College, 2010).

2.5.7 CopperLicht

CopperLicht is a JavaScript 3D engine for game’s design purposes ultimately focused to

Web browser environments. CopperLicht includes a 3D world editor supporting the

major 3D file formats as 3ds, obj or lwo for instance. Considering license terms,

CopperLicht is free to use excepting for commercial purposes (Ambiera, 2010).

2.5.8 CubicVR

CubicVR is a lightweight, high-performance and implicit WebGL engine with a

versatile collection of built-in features for quick implementations, providing

functionality from a low-level use to full managed scenes and events with physics. It

includes support for COLLADA format in both XML and JSON format; additionally it

imports a variety of 3D models, animations and asset libraries (Cliffe, 2011).

2.5.9 GammaJS

GammaJS is a JavaScript library which can be used to develop 2.5D platform games for

Web using WebGL graphic standard (Moore, Townsend, & Campbell, 2011).

~ 21 ~

2.5.10 GLGE

GLGE is a JavaScript library which wraps low level instructions into predefined

instruction, easing the designing and developing of 3D content (Brunt, 2010).

2.5.11 Jax

Jax is a JavaScript development toolkit, which provides a wide range of functionalities,

from code’s generators to test suites designed specifically for WebGL applications

development. It also provides support for both low-level WebGL instructions and

JavaScript user interface interactivity, such as keyboard input or mouse handling (Jax,

2012).

2.5.12 O3D

O3D is a JavaScript API for creating Web applications in the browser. Originally built

by Google as a browser plug-in (deprecated nowadays), this new implementation of

O3D has been converted into a JavaScript library implemented on top of WebGL.

Additionally, O3D provides a sample COLLADA converter, which can be used to both

import files in the COLLADA format and write converters for other formats (Google,

2011).

2.5.13 Oak3D

Oak3D is a JavaScript framework for 3D graphics development based on

WebGL standard. It is focused on optimizing the graphic 3D Web application’s

performance with GPU acceleration as the rest of mentioned libraries. Oak3D provides

a set of simple and easy-to-use API interface which makes possible to software

developers to implement 3D Web-based applications without considering the details

that any low-level 3D graphics implementation entails (Oak3D, 2012).

2.5.14 X3DOM

X3DOM is a framework for integrating and manipulating X3D scenes as HTML5-DOM

elements, which are ultimately rendered via WebGL, letting the software developer to

manipulate existent 3D content by only removing, adding or changing DOM elements

(Fraunhofer IGD, 2012).

~ 22 ~

2.5.15 Inka3D

Inka3D is an export plugin for Autodesk Maya. A wide range of features is supported

including driven keys, shading networks, lighting and skinning, adding extra

functionality to the scene’s geometry. Moreover, all exported Maya parameters such as

positions, rotations, scales, colours or even user defined extra attributes can be

controlled using JavaScript (Inka3D, 2012).

2.5.16 KickJS

KickJS is an open source WebGL-based game engine built for modern web browsers

such as the most recent version of Chrome and Firefox. KickJS provides a game

oriented abstraction of WebGL, and makes game programming simpler and more

accessible (KickJS, 2012).

2.6 Reasons for ReadyMap Choice

At this point, it is important to clarify that all the introduced solutions have been under

early development by the time of this research, so that it has not been an easy task to

choose one solution among many, also considering the amount and kind of similarities.

Nevertheless, relying on scene graphs concept has finally carried more weight since it

has been considered a turning point for future releases, based on an increasing scene

complexity (Wang & Quian, Why OSG?, 2010). Consequently, ReadyMap solution has

been finally chosen mainly relying on:

 Improved performance: A set of scene graph techniques are already

implemented in OSGJS, including view-frustum or occlusion culling besides a

complete encapsulation of WebGL extensions and Graphics Library Shading

Language (GLSL). Being able to treat the whole scene as a tree turns out into a

great advantage since both parent and children hierarchical management is

possible, optimizing costly graphical operations and WebGL changes of state.

 DOM access: Considering the jQuery community is a lot bigger than Closure

Library; and more third-party plugins have been developed for jQuery than for

others, it has been opted to use jQuery instead of the Closure Library present in

some of the introduced solutions. Additionally, the developer of this research

~ 23 ~

has had previous experience with jQuery, carrying more weight this option

among many.

 Active community: An active ReadyMap developer community makes possible

to use the latest released functionalities as well as resolving eventual difficulties

that may appear while implementing customized applications.

 License: Since it is an open source application, users and companies do not have

to worry about software patent violations when using ReadyMap. This particular

feature is also present in the majority of introduced solutions.

 GIS capabilities: It is expected a gradually migration of all the well-known

OSGEarth functionalities to ReadyMap SDK. So far, GIS functions and

transformations have been extensively implemented, nevertheless, a full

migration would let ReadyMap gain more GIS support, defining a wide range of

new geo-processing for client-side and server-side.

2.7 Chapter Review

This chapter has explained in-depth the State of The Art on WebGL-based globes, and

the corresponding comparison between them. Additionally, it has been described a

complete list of available JavaScript-based 3D libraries that may provide graphical

solution to both data management and representation. Finally, it has been explained why

ReadyMap has been chosen among the meagre variety of implemented solutions.

~ 24 ~

~ 25 ~

Chapter 3

Analysis

3.1 Introduction

In this chapter it is presented the analysis process accomplished at the beginning of this

research, in order to establish which are the competences, features and functionalities

that ReadyMap-based buildings’ application has to provide to end-users. This section

firstly describes application’s requirements with regards to hardware, software and used

data; straight after, it presents the corresponding use case model, followed by the high

level architecture diagram where overall applications’ dependences are featured.

Additionally, it is presented the Gantt diagram and the research’s budget diagrams,

describing major and minor terms with regard to both time development and cost

parameters.

3.2 Requirements

3.2.1 Introduction

For the correct development of this research, it has been necessary to satisfy the series

of requirements following explained in this chapter. These requirements have mainly

involved data and hardware-software user’s configuration.

Additionally, it has been described in-depth the configuration set on the tested unit, in

order to for the reader to help reproducing the testing environment, just in case it might

be interesting.

3.2.2 Data acquisition

Considering that the case study has been located in the Valencian community, it has

been necessary to obtain from the Spanish cadastre, the corresponding dataset with the

area extent that fitted research’s purposes. This data have been described as the cadastre

data corresponding to Valencia city bounding area.

~ 26 ~

Considering that it was expected a huge amount of information present in the obtained

dataset, it has been required to pre-process the data before represent it on-screen. Pre-

processing has implicated the retrieving of necessary attributes for forthcoming

processing.

Post-processed data must be stored in the server-side, and defined in an easy-well

understood file format that a browser could recognize and later process. Thus, it has

been expected that the browser once had retrieved the corresponding data from the

server, it had internally converted it into JavaScript-based objects that the Web

application could understand.

Application’s user interface must provide the following set of functionalities:

 Render of ReadyMap WebGL globe within a 3D context view, embedded into a

Canvas HTML5 element.

 User’s interface must display several instances of buildings on the globe’s

surface in sync.

 Data retrieved from the server-side must be loaded in an asynchronous way in

the client-side, aiming to provide real-time dynamism to the Web application.

 The data necessarily must be loaded and processed in a reasonable time

considering the volume of data that Web application has to manage.

 ReadyMap WebGL globe’s interface must provide pan, zoom, rotation and tilt

as minimum movements’ requirements for a correct scene exploration.

Additionally, it has been expected some kind of helper —HTML element i.e. —,

which would have let the end-user to move the camera-based perspective

towards any present area or point of interest.

 Concerning source code, it has been highly important to reuse as much source

code as possible, avoiding reimplementation and redesigning, therefore making

the Web application as light and clear as possible.

3.2.3 Data requirements

With respect to cadastre data volume, likely to be recorded in Shapefile (SHP) format, it

has been necessary to adopt a lightweight data exchange format conversion where to

store the attributes and values coming from both topologic and semantic buildings’

features.

~ 27 ~

Considering that this research has taken place in a Web environment, JavaScript Object

Notation (JSON) has been the most suitable data exchange format for previously

mentioned purpose, being much easier to load, read, parse and manipulate than

Extensive Markup Language (XML) for instance. In view of JSON format is faster

(Wang G. , 2011) and more convenient than XML (Azad, 2007), it has been adopted as

exchange data format.

3.2.4 Software and hardware requirements

WebGL has not been designed to work on equipments based on antiquated graphic

cards, so that ultimately both user’s hardware and software configuration will determine

whether the Web application will properly run or not.

Lately, graphic cards builders have realized about the importance of WebGL, and the

new forthcoming range of market possibilities, so that graphic card drivers have begun

to be updated in order to handle, if possible, the new graphic standard. For that reason,

at last instance is user’s responsibility to keep graphic card’s drivers updated in order to

properly visualize WebGL-based content.

Additionally, browser’s choice will directly determine the way the Web application will

render graphics on-screen. In order to provide the best user experience, some particular

browsers —Google Chrome or Mozilla Firefox i.e.— are able to selectively enable or

disable customized WebGL implementation support within its internal configuration.

This has a clear aim to make new WebGL-based prototypical applications as compatible

and trustworthy to developer’s designs as possible. Furthermore, Khronos Group

provides a real WebGL State of The Art with regard to browser graphic support

(Khronos Group, 2011).

Next, it is detailed in the following Test unit’s hardware and Test unit’s software

sections, the tested unit’s configuration used along the development of this research.

3.2.4.1 Tested unit’s hardware

Regarding the hardware’s configuration present in tested unit, it is described as

following.

Dell Vostro 1510

Intel Core 2 Duo T8100 2.10GHz

3 GB RAM

~ 28 ~

NVIDIA GeForce 8400M GS

Driver version 6.14.12.6658

3.2.4.2 Tested unit’s software

Regarding the software’s configuration present in tested unit, it is described as

following.

Windows XP Professional SP3

Notepad++ v9.5.4

Apache HTTP Server 2.2

PHP 5.3.8.0

Quantum GIS 1.7.2

gvSIG 1.11

Google Chrome v16.0.912.63 m (WebGL: Hardware accelerated)

Mozilla Firefox v9.0.1 (WebGL: Hardware accelerated)

Opera v11.60 (not compatible with WebGL)

Safari v5.1.2 (7534.52.7) (not compatible with WebGL)

Internet Explorer v7.0.5730.13 (not compatible with WebGL)

3.3 Use Case Model

The Use Case model is a collection of diagrams and text that together document how

users expect to interact with the system. Based on (A. Pender, 2002) , next figure

depicts system’s behaviour, highlighting who have been the actors within the system

and which have been their goals, also showing the dependencies between elements.

Figure 7. Web application's use case diagram

As seen, the purposed solution has concerned a simple use case model where only four

use cases and four actors have been involved.

~ 29 ~

Regarding actors, they have been depicted as next:

 Web Client: Web Client has been defined as the end-user of the Web application

designed along this research. All processes have started due to the triggering

action of this actor. It has been the responsible of accessing to the Web

application, specifying input parameters and modifying visual parameters by

exploring the scene.

 HTTP Server: This actor has been characterized along this project as an Apache

HTTP local server mainly used for testing purposes. It is expected, in a close

future, to further develop the Web application relying on remote server

architecture. Additionally, HTTP server actor has been the responsible of

providing, straight after a Web client request, the corresponding HTML file in

addition to the associated files —such as CSS and JavaScript ones— which has

provided full functionality and embellishment to the Web application.

Furthermore, HTTP server is in charge of sending to Web client the JSON file

with the building’s geometries.

 Web Map Service (WMS): Web Map Service actor has been the responsible of

serving to the Web client, georeferenced map images over the Internet. Such

images have been previously generated by a map server, and ultimately gathered

from the corresponding geospatial database. Along this present research this

actor will be shaped as PNOA WMS.

 Tile Map Service (TMS): Tile Map Service actor has been the responsible of

serving to the Web client, georeferenced map tiles over the Internet. Those tiles

have been previously generated by a map server which ultimately gathered data

from the corresponding geospatial database. Along this present research this

actor will be defined as ReadyMap TMS, serving both Landsat 7 ETM and

OpenStreetMaps imagery.

Regarding use cases, there have been depicted the following:

 Web page accessing: The end-user would request to HTTP server, a single

HTML file and by default all its dependencies; and the HTTP server would

bring the requested files back to the user. Once all the data have been loaded and

pre-processed into the end-user computer, it would be thereafter possible to

~ 30 ~

specify the set of input parameters that would determine the Web application’s

behaviour.

 Input parameters specification: This particular use case has been exclusive for

the end-user. Depending on the input, the application would behave in some

different ways. The end-user would specify the desired WebGL rendering mode,

a thematic colour visualization, and the desired number of children to add to the

scene graph for testing purposes.

 Web page loading: At this point, the servers would provide to the Web

application the requested data accordingly to the visual map extents. HTTP

server would provide a pre-processed JSON file where the buildings topology

and semantics would be defined. WMS server would provide the corresponding

PNOA imagery, rather the same as TMS server which would provide the

corresponding tiles of both Landsat and OSM sources.

 Visual scene modification: Finally, the end-user, once all the input data would

have been loaded, processed and represented on-screen, would be able to

explore and visualize the scene.

3.4 High Level Architecture

In this section it is described the high-level application’s architecture diagram, so as to

have a better understanding of the necessary components used on the development of

this research. Next, it is presented the general schema:

Figure 8. Web application's high level architecture diagram

~ 31 ~

As seen, the communication schema has been divided in two principal parts: client-side

and server-side. It should be noted that, even if it has been depicted that HTTP server is

located on the server side (see Figure 8), client’s side software and HTTP Server have

been actually located and executed on the same local machine for testing purposes,

while rest of server types —TMS and WMS— have been located in a remote location.

Additionally it has been planned a migration of HTTP server, from local to remote a

location when this research’s work would have completely finished, being therefore

accessible to general public.

Client-side has been responsible of the user’s interface presentation which has been

expected to be a simple and clear interface, where it was going to be required that the

end-user would fulfil a set of application parameters to manage Web application

behaviour.

The main tool that the end-user would need to have installed in advance on his machine

would be a Web browser. Unfortunately, not all range of browsers on market have been

WebGL standard compliant to date; nevertheless, it is expected that browser’s

architecture will provide sooner or later a complete WebGL standardization, no matter

which operating system the end-user would use.

Once the end-user had accessed the Web application, a series of compiled JavaScript

files would be downloaded into de Web browser, which is actually the middleware’s

implementation. Middleware is computer software that connects software components

trying to increase interoperability between systems with different architectures,

simplifying therefore complex distributed applications (Verissimo & Rodrigues, 2001).

In the context of this research, using middleware has been a crucial step to integrate and

manage information coming from both graphical (OSG) and geographical (OSGEarth)

sources.

In addition to the use of OSG and OSGEarth, it has been necessary to include jQuery

JavaScript library in order to simplify HTML document traversing, event handling and

AJAX requests. On top of this structure the buildings’ Web application —that is

proposed in this research— has taken place.

~ 32 ~

Server-side is something out of the boundaries of this research, yet it has been be

explained along this document due to the existing interrelation between the server-side

and the client-side.

As mentioned, HTML server has run on a local machine during implementation and

testing time, which is expected to be ported to a remote location once the Web

application had finished. When referring to HTML server, it is referred in fact to a

combination of Apache HTTP server and PHP, which is in fact the responsible of

resolving the requests for corresponding set of tiles.

Thus, HTTP server has provided HTML, JSON, CSS and JavaScript files to the Web

application requested via the corresponding AJAX requests from the client-side. Due to

browser security restrictions, most AJAX requests are subject to the same origin policy,

so that the request cannot successfully retrieve data from a different domain, sub

domain, or protocol. For this reason, it has been used a local HTTP server which has

solved such issues, besides to provide access to the Web application to external

computers connected to the same network. Alternatively, it is possible to solve the

mentioned origin policy issue by halting full browser’s security processing —accessing

to the deep internal configuration—, yet this is a discouraged solution due to both

security and back-door reasons.

WMS and TMS servers have been neither designed nor implemented at all, nevertheless

both would be accessed when the Web application would request the corresponding set

of tiles and map imagery so as to place them on top of the globe’s surface.

3.5 Planning (Gantt diagram)

With regard to project time-management matter, this research has been mainly divided

into five groups, concerning from project planning to thesis writing stage. Following, it

is presented a Gantt diagram depicting the working packages and their relative and

absolute assigned time.

~ 33 ~

Table 2. Gantt diagram

 Project management: it has concerned all generalized assignments derived from

the project’s planning.

 Documentation and Testing: it has concerned documentation’s labours such as

reference books and thematic articles readings so as to define solid groundings

for the rest of project’s stages. Within this Documentation and Testing stage, it

has been settled the basics of later used programming languages, being expected

general improvements on programming skills at this point. A special effort has

been given at learning JavaScript programming language considering that most

of this research’s functionalities are based on such language. Additionally both

WebGL specification and pipeline has been studied in-depth considering they

~ 34 ~

represent a crucial step on the clear understand of WebGL-based OSG

behaviour. Similarly, it has been necessary to assimilate OSG groundings in

view of they play a connection role between low-level graphic card’s

instructions and the provided buildings’ implementation.

 Analysis: it has gathered related application’s analysis interpretations, which

have provided a better description of the project’s scope. Within this package,

there have been detailed application’s requirements, structure, architecture, in

addition to the economic proposal in order to better define what this research has

entailed.

 Design and implementation: this work package has been the research’s core

group since its structure concerns the most important processes in terms of time-

consuming and expressed difficulty. In this Design and implementation stage it

has taken place the vast majority of software implementations which have been

divided in turn into two main stages. The first one has concerned the required set

of planned implementations to analyze, filter and prepare the original cadastre

data for the second group. The second group has implemented the buildings’

integration functionality itself by using the data prepared in previous stage. Both

stages have been consequently followed by a constant testing to check the

success of the performed improvements.

 Writing: it has basically concerned thesis writing and reviewing tasks.

3.6 Budget

Both assimilating and estimating the costs and benefits of a GIS project is a crucial role

of the strategic project planning and decision making process. Determining the

economics of a GIS project is not an easy task and it should be clearly depicted.

The present research has taken, to one single programmer, roughly two months of full-

time work in order to implement the solution, and one prior extra month of

documentation and testing.

Thus, based on (Bonfatti, 1998) GIS cost approach it has been included the following

budget description.

~ 35 ~

AMOUNT DESCRIPTION Unit cost TOTAL

Hardware

0 Not included

Software

1 Notepad ++ 0€ 0€

>1 Browser (any) 0€ 0€

1 Apache HTTP Server + PHP 0€ 0€

1 gvSIG 0€ 0€

1 Quantum GIS 0€ 0€

Data

1 Cadastre data 0€ 0€

Services

352 hours
Software Developer work

(not including documentation stage)
50.84€/h 17895,68 €

512 hours
Software Developer work

(including documentation stage)
50.84€/h 26030,08€

Maintenance

0 Not included

 SUBTOTAL 26030,08 €

VAT (18%) 3123,3 €

TOTAL 30715,49€

Table 3. Budget table

3.7 Chapter Review
In this section the application’s analysis has been described. Firstly, a group of system’s

requirements have been explained in-depth. Secondly, the application’s use case model

and the application’s high level architecture diagram have been depicted; by regarding

both diagrams it is possible to recognize the general activities the system has

implemented as well as the overall activities’ workflow. Finally there has been

described both project’s timing and estimated budget.

~ 36 ~

~ 37 ~

Chapter 4

Design and Implementation

4.1 Introduction

In this chapter it is described in detail the necessary steps to build up a building’s

representation on top of ReadyMap WebGL globe’s surface, following the presented

requirements (see 3.2 Requirements section). The chapter is further divided into two

main sections: Pre-processing and Processing.

Pre-processing section has detailed a series of required steps to prepare and adapt the

original cadastre dataset, up to be finally transformed into a JSON structure (Butler,

Daly, Doyle, Gillies, Schaub, & Schmidt, 2008). This stage has been contextualized

firstly, in a GIS-based software environment so as to geo-process it; and secondly, on a

JavaScript-based application which has processed and filtered the data. The consequent

output is has been finally loaded by the Web application.

Processing section has described the transformations applied to the processed data

coming from Pre-processing section. This processing has entirely taken place within the

ReadyMap’s architecture, and it has been further divided into two main groups. Firstly,

it has described how data have been loaded and prepared, in addition to an extrusion

processing which has shaped building’s geometry. Secondly, it has described how data

has been visualized and the background processing it entailed.

4.2 Pre-processing (Data preparation)

4.2.1 Introduction

In this section it is described the entire processing required to provide the Web

application with a filtered and adapted dataset coming originally from the cadastre. This

~ 38 ~

section is additionally divided in three parts: Data and Software, Data Preparation

(gvSIG & QGIS) and Data Preparation (JavaScript).

In Data and Software it is firstly presented the original cadastre data’s details as well as

the software used in converting and transforming such data into another format that the

Web application could manage.

Secondly, in Data preparation section —with regard to gvSIG and QGIS software—, it

is described in-depth reprojection and exporting processes applied to the original data.

The corresponding output of such geo-processes is depicted as a perfectly georeferenced

data ready to be geometrically processed.

Finally, in Data preparation section —with regard to JavaScript environment— it is

firstly described how the data were loaded by explaining the corresponding server

communication. Secondly, it is exhaustively explained the geometrical filtering applied

to the reprojected data and the consequent resulting output.

4.2.2 Data and Software

For the implementation of the building visualization’s functionality, external data have

been required. It has been described as a set of two vectorial layers extracted from

Valencian cadastre dataset. These layers have been supplied by the Directorate General

for Spanish Cadastre in the form of Electronic site (Treasury, 2012) at no cost.

Thus, the two vectorial layers used in this research are Constru.shp and Masa.shp. The

general details for Constru.shp vectorial layer are the followings — it should be noted

in boldface the attributes which have been used— (see also Figure 9 for complete

information):

~ 39 ~

Figure 9. Constru.shp details

 Type: ESRI Shapefile

 Projection: Universal Transverse Mercator (UTM)

 Zone: 30 Northern Hemisphere

 Datum: European Datum 1950 (ED50)

 Spheroid: International 1909 (Hayford Intl 1924)

 Units: meters

 EPSG Code: 23030

 Area items: 235.968

 Vertex items: 2.596.327

 Covered Area: 422,64 km
2

 Attributes: Mapa Map number to which an item belongs

 Delegacio Hacienda delegation id number

 Municipio Municipality

 Masa Block id

 Hoja Cadastre reference

 Tipo Type of parcels

 CoordX Block centroid X coordinate

 CoordY Block centroid Y coordinate

 NumSymbol Internal number

 Area Area in m
2

 FechaAlta Date of construction/registration

 FechaBaja Date of demolition/unregistration

 Ninterno Sequential Number assigned by the system

 Parcela Parcel code

 Constru Constructed heights string

 RefCat Parcel Cadastre reference

~ 40 ~

Concurrently, the general details for Masa.shp vectorial layer are the following — it

should be noted the difference in building’s geometry definition—(See also Figure 10

for complete information):

Figure 10. Masa.shp details

 Type: ESRI Shapefile

 Projection: Universal Transverse Mercator (UTM)

 Zone: 30 Northern Hemisphere

 Datum: European Datum 1950 (ED50)

 Spheroid: International 1909 (Hayford Intl 1924)

 Units: meters

 EPSG Code: 23030

 Area items: 4906

 Vertex items: 255.599

 Covered Area: 422,64 km2

 Attributes: Mapa Map number to which an item belongs

 Delegacio Hacienda delegation id number

 Municipio Municipality

 Masa Block id

 Hoja Cadastre reference

 Tipo Type of parcels

 CoordX Block centroid X coordinate

 CoordY Block centroid Y coordinate

 NumSymbol Internal number

 Area Area in m2

 FechaAlta Date of construction/registration

 FechaBaja Date of demolition/unregistration

~ 41 ~

 Ninterno Sequential Number assigned by the system

With respect to software and data workflow, following it is briefly summarized the

general data pre-processing. Nevertheless 4.2.3 Data preparation (gvSIG & QGIS) and

4.2.4 Data Preparation (JavaScript) have explained it in-depth.

Given that the Web application requires geographical-based data coordinates to be

processed and the original data are described in UTM coordinates, it has been necessary

a map reprojection. In order to accomplish such task, gvSIG open source software has

been used due to the robustness of the implemented geo-processing library (Cropper,

2010).

Additionally, Quantum GIS (QGIS) (OSGeo project, 2012) has been used for data

visualization and exportation. It has been very helpful since it natively exports

geographical data to JSON file format. Alternatively it is possible to execute the same

assignment with GDAL library, particularly with OGR extension which is designed for

vectorial data handling.

Thus, when data have been reprojected, exported and later on imported in QGIS, it has

been ran a series of generalization processes in order to mitigate the amount of unuseful

data to be exported, lightening therefore the resulting output files for the following

JavaScript processing.

Once data have been processed in QGIS and further exported, it has been consequently

loaded, parsed, and processed in a browser, for testing purposes, in order to obtain the

final data output that Web Application can manage. This work has been done by

creating a script, natively written in JavaScript, which is the responsible of yet again

lightening and depurating prior data so as to obtain a final validated file.

4.2.3 Data Preparation (gvSIG & QGIS)

The main idea behind the use of both vectorial layers —masa.shp and constru.shp— has

been to extract the interesting features of each of them to be merged in an ultimate

output data. Each of the layers have provided some interesting and indispensable

attributes separately, however due to the nature of this data, there have been a great

amount of useless attributes, hence data filtering has been a must at this point.

~ 42 ~

On the one hand, it is needed to export building’s geometry; on the other hand it is

crucial to isolate and extract building’s height information in the lightest possible way.

Due to the amount of information to manage, it has been extremely necessary to

minimize and optimize each data processing in order to improve both time and memory

consumption.

Regarding building’s geometry, both constru.shp and masa.shp provide a perfect

geometrical outline of the several existing blocks of buildings —4906 blocks in fact—.

Nevertheless constru.shp not only describes the blocks outline but also the internal area

subdivisions —such as roofs, yards or balconies— (see Figure 11). It should be noted

the main purpose has been to represent the contour of the building’s ground floor and

not the internal area subdivisions.

Figure 11. Constru.shp composition (closer detail)

Considering building’s heights, they are only depicted in constru.shp —in constru

attribute— (see constru.shp attributes). Despite building’s heights have been essential

for the final Web application, managing the complex geometry that constru.shp

provides would have been firstly time-consuming processing; and secondly, it would

have considerably decreased the probabilities of success in representing the Valencian

cadastre, mainly due to the exaggerated amount of points required for representing the

same building’s outline.

Next table depicts the statistics related with the corresponding geometry of both layers

which helps to understand the differences of complexity between them.

~ 43 ~

 Masa.shp Constru.shp Difference (%)

Vertex Items 255.599 2.596.327 + 1015,78

Area Items 4096 235.968 + 5760,93

Covered Area 422,64 422,64 + 0,00

Table 4. Shapefiles geometry comparison

As a consequence of this preliminary data approach, it has been decided to extract

height values from Constru.shp, and building’s geometry from Masa.shp.

The main purpose behind this approach is to take advantage of masa attribute —do not

confuse it with masa.shp layer— present in constru.shp (See constru.shp attributes).

Masa attribute describes to which particular building belongs each small area

subdivision, therefore it is possible, once gathered all the small areas that belong to a

particular building, to geo-process each of them in order to obtain the building’s ground

floor outline. In this way it would be only necessary to use constru.shp file.

Nonetheless, considering such geo-process would have worked fine, it is not interesting

in terms of time-consuming and complexity, because masa.shp already provides such

building’s ground floor outline (see Figure 10 for complete data).

As a result, from this point onwards, masa.shp has been used to describe the building’s

geometry, and concurrently constru.shp has been used to describe the building’s height.

The masa attribute, present in both layers, has played therefore a linking role between

the buildings’ geometries and the buildings’ heights.

4.2.3.1 Reprojection and exportation

By examining the OSGEarth map functionalities present in ReadyMap, it has been

decided to manage building’s data in the form of geographical coordinates. Nonetheless,

the data the Spanish cadastre had provided, had come in UTM coordinates, so that it has

been required a data reprojection in order to adapt it into a new easy-to-use format for

the Web application.

An apparently idle reprojection is the one which original data described in ED50 datum

—EPSG:23030— (See masa.shp attributes) are reprojected to the widespread WGS84

~ 44 ~

datum —EPSG:4326—which is used by GPS devices and it describes geographical

coordinates. Nonetheless for the case of Spain it is not the most suitable.

Considering ED50 datum was designed for fitting whole Europe, in the case of a

reprojection to WGS84, it would work fine for central Europe, but not for the case of

Spain. For the case of Spain, there would be point’s displacements bigger than 200m,

therefore it has been compulsory (BOE, 2007) to change the transformation to ETRS89.

Thus, data are reprojected from UTM coordinates to Geographical Coordinates using

the following details:

Projection: Geographic

Latitude of the origin: 0°

Longitude of the origin (central meridian): 0°

Scaling factor: 1

False easting: 0

False northing: 0

Datum: ETRS89

Units: degrees

EPSG Code: 4258

For this assignment the National Geographical Institute (IGN) provides a particular grid

in NTV2 format (National Geographic Institute, 2012), to transform from ED50 datum

into ETRS89 datum (see Figure 12), minimizing therefore the errors to minimum

values. gvSIG has been used for reprojecting the data relying on the grid, resulting

therefore in a new projected Shapefile layer defined as EPSG:4258.

Figure 12. Reprojection's work flow

At this point data would be ready to be loaded in QGIS and later on exported to JSON.

Next, it is depicted a piece of code representing the structure of a single building in

UTM coordinates

EPSG:23030
Datum: ED50

Geographical
coordinates

EPSG: 4230
Datum: ED50

NTV2 Grid

Geographical
coordinates

EPSG: 4258
Datum: ETRS89

~ 45 ~

JSON format, extracted from the exportation of masa.shp into JSON —from now on

called ―masa.json‖— (see Figure 13).

Figure 13. Masa.json code sample

Contrarily, for the case of constru.shp —where building’s height have been described—

it has been necessary a different approach mainly due to both the huge output file size

—nearly 200MB—, and the unnecessary information it carries. Consequently, it has

been required an attribute’s table processing in order to lighten data by deleting useless

and redundant data.

Considering that QGIS does not supply any table attribute’s operations, it has been

necessary to install an additional QGIS plugin in order to adapt, modify and export the

associated constru.shp attribute’s table, not to JSON but to CSV —from now on called

constru.csv—.

In order to illustrate the data structure contained in constru.csv, a sample of the data

contained in the file is shown below (see Figure 14).

Figure 14. Constru.csv sample code

Masa attribute has been a connection between masa.json and constru.csv since it has

been present and replicated in both layers with regard to the same geometry. It describes

as explained (see 4.2.3 Data Preparation gvSIG & QGIS), to which particular building

belongs each small area subdivision.

MASA, CONSTRU, AREA

36048, -II+I, 10.92

36048, VII, 4.59

36048, VII, 2.20

{ "type": "Feature", "id": 0, "properties": { "MAPA": 242, "DELEGACIO": 46,

"MUNICIPIO": 900, "MASA": "64514", "HOJA": "YJ2765A", "TIPO": "U",

"COORX": 726457.220000, "COORY": 4375194.490000, "NUMSYMBOL": 2,

"AREA": 7, "FECHAALTA": 20050331, "FECHABAJA": 99999999,

"NINTERNO": 1211371 }, "geometry": { "type": "Polygon", "coordinates": [[[

-0.366552, 39.495920], [-0.366594, 39.495884], [-0.366606, 39.495891], [-

0.366564, 39.495927], [-0.366552, 39.495920]]] } }

~ 46 ~

Constru attribute depicts in a coded way defined by the Spanish Cadastre (Treasury,

2011) the ―constructed heights‖ of each particular building’s area subdivision.

Finally, area attribute has been neither used nor implemented in this particular research;

nevertheless it has been also exported and loaded (see 4.2.4 Data Preparation

JavaScript) considering it for future releases to obtain more accurate buildings’ heights.

4.2.4 Data Preparation (JavaScript)

In addition to gvSIG and QGIS, a JavaScript-based application has been implemented to

load and process masa.json and constru.csv files. It has been proposed in order to obtain

the corresponding extracted attributes from each of the files, merged together in a final

JSON String. By using jQuery library —more specifically AJAX requests— it has been

possible to easily load and parse both files so as to manage their attributes as JavaScript

objects.

Furthermore, the way the data have been loaded is exactly the same as implemented on

ReadyMap Web application so that; firstly, the JavaScript-based application has been

set in the same framework as ReadyMap; and secondly, this piece of code has been

reused minimizing therefore code redundancy.

In next Server Communication section it is described firstly, how the data have been

loaded, and secondly the exhaustive processing of constru.csv —to get building’s

heights— and masa.json —to obtain a filtered building’s outline— to be finally saved

into a JSON exchange data file.

4.2.4.1 Server communication

At this point it is relevant to mention that, even if the current application has been

implemented in JavaScript on the client-side mainly for testing purposes, it is expected

a future release designed for the server-side, and further described as a Web Service.

With regard to time-consuming statistics when running the application, it has been

concluded that Mozilla Firefox 8.0.1 has been the most-reliable browser for this

particular data processing.

~ 47 ~

Browser Time

Mozilla Firefox Nearly 40min

Google Chrome ∞

Opera ∞

Table 5. Data preparation’s script execution time

As illustrated (See Table 5), both Chrome and Opera were not able to finish the data

processing for some reason. Apparently, Firebug developer plugin for Mozilla Firefox

has worked much better managing and processing big amount of data, than similar

solutions on compared competitors. Nonetheless, this research has no intention to

establish any groundings or conclusions about browsers performance based on the

obtained results.

Following, it is exemplified (see Figure 15) how data files have been loaded, by

highlighting both AJAX requests, in order to make them ready to be processed. It

should be noted that getJSON is an extension of the AJAX functionality within jQuery

(The jQuery project, 2010) even if the name can be confusing.

Figure 15. Data preparation's AJAX requests

<html>

<head>

<script type="text/javascript" src="jquery/jquery-1.4.2.js"></script>

<script type="text/javascript">

$(document).ready(function(){

 $.ajax({

 url: "../tests/data/CSV/constru.csv",

 datatype: "txt",

 success : function (data) { ... }

 $.getJSON("../tests/data/masa.json", function(json) { ...

}

);

 });

 })

</script>

</head>

<body>

</body>

</html>

~ 48 ~

4.2.4.2 Constru.csv processing

As illustrated (see Figure 14), constru.csv has three attributes: masa, constru and area.

masa and constru have been loaded and processed, whereas area has been just loaded

but not processed as said (see 4.2.3.1 Reprojection and exportation).

Height attribute’s value —constru— has not come defined as any numerical format but

as a String format, describing not the real height but the constructed height. In this way

it has been assumed that a constructed height is equivalent to three meters for future

conversions.

After constru.csv processing it is expected a resulting output consisting of a new array

of tuples of masa —unique for each building— and a calculated building’s height for

each masa value.

In order to accomplish the mentioned assignment, firstly, it has been essential to find

out how many and how different height string characters were present in constru

attribute. Following, it is demonstrated (see Figure 16) a sequence of extracted height

string characters —out of 640 different ones— that were present in ―constru.csv‖ table.

Figure 16. Data preparation heights attribute values

Secondly, it is has been necessary to divide those height’s attributes into two main

groups: underground values and on surface values. Undergrounds values, have been

depicted as a dash followed by a value in Roman number format, whereas on surface

~ 49 ~

values have been described as non-dashed Roman numbers. Detailed next, it is

exemplify such cases in order for the reader to clearly understand it (see Figure 17).

Figure 17. Height attribute codification I

Consequently, all underground —negative— heights have been ignored. This

assignment has been accomplished by applying to each height string character a series

of Regular Expression’s filtering (Mozilla Developer Network, 2012) in order to delete

the corresponding part of the string that does not match the application’s requirements.

Thirdly, it has been necessary to delete concurrently, —using Regular Expression’s

filtering— redundant height information, such as balconies or terraces, described as a

set of code values defined by the Spanish Treasury (Treasury, 2011). In this way

undesired values are then wrapped into a set of well-known and desired height values.

Next, it is detailed a small set of code values (See Table 6) and subsequently, a practical

example to strengthen the concept (see Figure 18).

Code Description

B Balcony

T Terrace

POR Porch

ESC Stairs

JD Garden

Table 6. Heights attribute codification II

Figure 18. Heights attribute codification III

var alt_planta = 3;

for(var i = 0; i<altura.length; i++){

 if(altura[i] == 'I') { altura[i] = 1 * alt_planta; continue;}

 if(altura[i] == 'II') { altura[i] = 2 * alt_planta; continue;}

 if(altura[i] == 'III') { altura[i] = 3 * alt_planta; continue;}

-II+III → -(2*3m) + (3*3m) =6m (underground) + 9m (on surface)

-I+V → -(1*3m) + (5*3m) = 3m (underground) + 15m (on surface)

-I+X → -(1*3m) + (10*3m) = 3m (underground) + 30m (on surface)

~ 50 ~

Additionally, it has been further required to convert String-formatted height values into

numerical-formatted values —such as Integer of Double. At this point, it has been used

the assumed three-meter’s height per constructed floor as next detail (see Figure 19).

Figure 19. Heights definition algorithm code extraction

Regarding Figure 14, it can be noticed how constru.csv presents more than one height

—constru— per masa attribute value —therefore per building—. Given that the desired

output is to have a single array with unique masa values, it has been necessary to define

how is achieved a single height value per building. Thus the definition of final height

value is defined as the maximum of all the heights associated to each masa value.

As a result, it has been obtained a single array formed by unequivocal values of masa

and building’s height. In addition to this result, it is expected —in future releases— an

improvement on height’s calculations by considering area attribute into processing as

mentioned.

4.2.4.3 Masa.json processing

Contrarily to constru.csv —focused on height’s processing— related masa.json

processing has focused on geographical and positional transformations. After

processing, it is expected a remarkable simplification on the ground floors’ outlines by

deleting redundant points, without notably affecting to building’s geometry.

At this point, it is relevant to mention that QGIS exports both latitude and longitude

coordinates with six decimal numbers, contrarily to original data —masa.shp and

constru.shp— which are described with up to fifteen decimal numbers. This exportation

―handicap‖ produces in this particular research, due to Valencia location, a reasonable

error displacement of 0.9m at most in both latitude and longitude coordinates.

Nevertheless, considering the last version of ogr2ogr utility (GDAL, 2012) within OGR

library —not stable by the time of realization of this thesis though— it has been tested

-II+III+ESC becomes III

-I +III+JD becomes III

-I +III+POR+T+B becomes III

~ 51 ~

that it is possible to export from SHP to JSON with even more than fifteen decimal

numbers.

Such numerical facts are extremely important because there is a relative likelihood that

those two different vertices —being represented as two different vertices on QGIS—

might be exported as two different vertices storing exactly the same coordinates. This is

an important issue it has been needed to face; because the Web application and more

precisely, the forthcoming triangulation functionality cannot handle such data.

Therefore, it has been crucial to check firstly, if any of the vertices defining a ground

floor outline were replicated; in such case the corresponding vertex was deleted. This

iterative process has swept the existing 4906 buildings present in masa.json (see Figure

23).

Secondly, it has been verified that no building was formed by less than three vertices

after the prior processing, basically due to the impossibility to be represented as a

polygon (see Figure 23).

Thirdly, it has been checked that no point was located on the virtual circumference

centred on a secondary point. Thus in the case of a —redundant— point had fallen in

such neighbourhood, it would be immediately deleted, monitoring at any moment the

introduced geometrical error (see Appendix A and Figure 23 for complete information).

Fourthly, it has been necessary to delete collinear vertices due basically to two reasons.

On the one hand, it is logical to affirm —concerning this research— that if three

vertices in a row are collinear, at least one of them is redundant so it must be deleted.

On the other hand it is necessary to delete such vertices because roof triangulation’s

algorithm requires not having collinear vertices on the dataflow that receives as input.

Mathematically it is not possible to define a triangle, with positive area bigger than

zero, relying on any three vertices located in a same line.

Thus, collinear vertices processing has been implemented by picking three vertices in a

row and computing the area of the triangle —according to Heron’s formula (Heath,

1921)— they form. Therefore, if that area had been lower than a predefined area

threshold or even zero, the middle vertex would have been considered collinear, and

hence deleted. Seeing that, a new triangle would have been formed by picking a first

~ 52 ~

vertex —previously first as well—, a second vertex —previously third— and a newly

third vertex, therefore computing again the area for this new triangle (see Figure 20).

Figure 20. Area of triangle processing

In the case that any collinear vertex had been deleted, the algorithm would sweep again

the totality of buildings’ vertices to assure that the newly created geometry definition

would have not defined any new collinear points. Additionally, it has been checked after

deleting a vertex, that the building such point belonged to, had not been formed by less

than three nodes (see Appendix A and Figure 23 for complete information).

This step-based processing has helped to reduce redundancy and also small geometrical

features that have not been exceptionally interesting to be represented on the final Web

application.

4.2.4.4 Building’s JSON creation

Once constru.csv and masa.json processing have finished and therefore the resulting

data have been filtered, it has been subsequently wrapped into a JSON format structure,

creating a verified JSON string that it is displayed in the end on the browser’s console.

While wrapping processing, the buildings’ heights values (see 4.2.3.2 Constru.csv

processing), and the corresponding buildings’ vertices coordinates (see 4.2.3.3

Masa.json processing) have been entirely merged.

In order to explain the obtained result, an output of the JavaScript-based application is

presented below. It illustrates in up down direction:

 Internal output messages (in black).

~ 53 ~

 Sample of masa attribute values (in red).

 Sample of corresponding masa heights (in blue).

 Two lines of internal output messages (in black)

 JSON output String (in black)

Figure 21. Data preparation’s final output

As a result, JSON output has described the geometry associated to each ground floor’s

outline and its relative height (see Figure 22 for complete information). Additionally,

the JSON output has been copied and pasted into a new JSON file which in the end is

going to be loaded by the Web application.

Figure 22. Prepared JSON sample

Following, it is presented a process diagram, where it is described the application’s data

flow and all the processes explained along this chapter so as to obtain a final JSON

exchange data file.

[{

 "height": 27,

 "vertices": [{ "lon": -0.367753,

 "lat": 39.494736},

 { "lon": -0.367794,

"lat": 39.4947},

 { "lon": -0.367806,

"lat": 39.494707}]

}, {…},{…},{…},{…}]

~ 54 ~

Figure 23. Data preparation process diagram

~ 55 ~

4.3 Processing (Data visualization)

4.3.1 Introduction

In this section it is described the entire processing required for the representation of

buildings on top of the ReadyMap globe´s surface.

In Application’s Structure and Application’s Behaviour sections it is firstly explained

the implementation’s organization and the data workflow, taking special care in

describing in-depth the implemented methods.

Secondly, in File Organization it is depicted the research’s folders and files distribution;

and similarly in Data management, the way the buildings’ data have been treated and

distributed, emphasizing the use of a LOD approach in this research.

Finally, in Data Preparation and Data Visualization it is explained the sequential

processing firstly to load and transform the data coming from the Pre-processing stage;

and secondly to graphically process such data in order to be finally represented on-

screen.

4.3.2 Application Structure

Along this research, several programming languages —CSS, GLSL, JSON or HTML

i.e.— have been used; nevertheless, JavaScript has been the main one, serving

consequently as grounding for the rest of contributions. As a result, the application

structure has been described strengthening JavaScript-based processing to clear

understand the general application.

JavaScript is an object-oriented language (OOL). Mostly all that it is seen in a piece of

JavaScript code has a good chance of being an object. In JavaScript, an object could be

defined as a collection of named properties, a list of key-value pairs almost identical to

an associative array in other languages (Stoyan, 2010).

In spite of JavaScript is an object-oriented language, there are no classes as other well

known languages —Java or C# i.e.— so that there is not any kind of conventional

inheritance in the way it is usually done on the mentioned OOL. Contrarily, JavaScript

does inheritance via prototypes, which are objects as well.

~ 56 ~

According to these definitions, firstly, it is presented the application’s distribution

diagram (see Figure 24), which —to simplify— illustrates the placement of the

implemented building.js file, where the core processing takes place. Secondly, it is

briefly described each of the research-dependent folders in order to clear understand

their general functionality within the Web application’s context.

Figure 24. Application's structure diagram

Thus, the present packages are:

 Build: includes a single compiled JavaScript file made as an aggregation of all

necessary JavaScript files located in js folder.

 Tests: includes both data and HTML files.

 CSS: includes applications’ style sheet files.

 Utils: includes a Python compiler used to create a compiled JavaScript file.

 Images: includes a set of necessary images for the applications’ user interface.

 Js :

o jquery: includes jQuery JavaScript library compiled as a single file.

o osgjs: includes OSGJS graphic library compiled as a single JavaScript

file.

~ 57 ~

o osgearth: includes sixteen JavaScript files which provide GIS

functionalities to OSGJS. OSGEarth provides geo-processes based on

graphical OSGJS functionalities. Tile, HeightField, EllipsoidModel or

MercatorProfile are just little examples.

o Readymap:

 Controls: includes eight JavaScript files that provide globe’s

manipulation implementations as well as user-interaction

functionalities.

 Ui: includes six internal JavaScript files which provide items

manipulation and position support.

 Data: includes a series of JavaScript files that provides particular

data functionality. WMS, TMS and building JavaScript files are

located in this folder.

Additionally, Array.js, Math.js and Readymap.js files are placed in the js folder

providing a necessary mathematical support.

4.3.3 Application Behaviour

Next, it is detailed the application Process Flow Diagram (see Figure 25) which

represents the general data workflow along the Web application. Special care has been

taken in depicting the processes, and the application’s architecture components to which

they belong to.

~ 58 ~

Figure 25. Application's process flow diagram

As observed most of processing takes place on the client’s side, accessing to the server

just for gathering the required set of files. Following data flow, the application firstly

starts when end-user accesses through the browser to ―buildings.html‖ located on server

side.

Secondly, server provides in the same way all the application-dependent files such as

JavaScript or CSS files and consequently Map initialization process starts, initializing a

map object which establishes the grounding for following properties addition.

Thirdly, WMS and TMS server’s requests are defined in addition to a mapView object,

which is then created and ultimately linked to canvas HTML5 element. Additionally a

series of geographical information —such as latitude or longitude coordinates— is

represented on-screen.

At this point Web applications yields the control to the user, who is expected to input

some data parameters which are going to define the ongoing application behaviour.

End-user can choose the desired WebGL rendering mode, thematic colour

representation and VBO management, which is going to determine the behaviour of the

next processing AJAX stage.

~ 59 ~

AJAX stage relies on jQuery library functionality in contrast to previous processing

based on implemented ReadyMap functionalities. AJAX processing is itself the core

stage of this research and therefore it is going to be explained in more detail (see Figure

26).

Figure 26. Application's process flow diagram detail

As seen, AJAX request gathers from the server the building’s definition JSON which is

loaded and parsed afterwards. Additionally, a series of buildings extrusion, children

scene graph distribution and graphical buildings’ reconstruction are implemented, being

the core functionality of this buildings’ representation solution.

Once AJAX request and buildings’ processing are finished, both WebGL fragment

shader and vertex shader are defined and initialized (see Figure 25), starting therefore a

series of graphical operations —such as culling, updating or drawing— which optimizes

in the end applications’ graphical performance.

At this point graphic card contains the corresponding processed graphical data and

consequently, from this point onwards, the end-user has full control of the application.

By exploring the scene, the graphical information need to be updated, creating a closed

loop and a direct dependency between on-screen camera movements and updating,

culling and drawing methods.

~ 60 ~

4.3.4 File Organization

Four main files were either developed or used in order to provide as whole, the essential

graphical application’s results. a) Buildings.html, b) jQuery.js, c) ReadyMap.js and d)

Buildings.json.

a. Buildings.html: It is an HTML file which loads, gathers and executes tasks

relying on the following JavaScript and JSON files. It is the main grounding for

a final graphical representation, especially based on canvas HTML5 element

presence.

b. jQuery.js: It is a JavaScript Library file that simplifies HTML document

traversing, event handling, animating, and AJAX interactions for web

development.

c. ReadyMap.js: It is a JavaScript file which gathers and stores all implemented

functionalities relative to OSG.js, OSGEarth.js and the ones particularly

implemented for this research.

d. Buildings.json: It describes the geometry and semantic of the data set.

Alternatively, it has been slightly modified two CSS files which help to distribute and

graphically embellish HTML elements visualization and consequently final building’s

representation.

4.3.5 Data Management

In this section it is presented the adopted methodology with regard to two new concepts

present on the data management of this Processing stage: Level of Detail (LOD) and

VBO.

For the object-based data models of GIS, LOD is embedded in rules of generalization. It

results difficult to find well-defined metrics for the LOD definition. As a result, any

ordinal scale would be appropriated to define LOD concept as far as it relies on such

rules of generalization (Goodchild & Proctor, 1997).

Taking into consideration that it is expected a forthcoming LOD object inclusion on

OSGJS; this research has focuses on rendering the building’s dataset without

considering any dynamic LOD building’s representation.

~ 61 ~

Considering existing 3D urban data exchange formats, CityGML is one of the most

used and widespread building exchange data format on market. CityGML is a common

information model for the representation of 3D urban objects. It defines the classes and

relations for the most relevant topographic objects in cities and regional models making

consequently an extensive use of LOD concept (Open Geospatial Consortium, 2008).

The importance of LOD concept in both a map visualization and data definition is

therefore plausible and something to be considered when developing visualization

solutions as this research does (Goodchild & Proctor, 1997).

At this point, it is relevant to mention with regard to buildings’ representation that, an

optimized approach would have been to iteratively adapt and bind building’s data

representation to each particular LOD, optimizing in consequence the amount of

buildings per area extension. In order to exemplify such approach, high altitude top-

down views would represent a sparse and generalized group of buildings attached to a

particular area’s extent on-screen; whereas very low altitude top-down views would

represent the totality of buildings attached to such area extent.

OSG has implemented an LOD object in its C++ version which mainly provides the

LOD functionalities previously exemplified (OSG, 2009). Nevertheless OSGJS has not

implemented yet any LOD object so that, it is still not possible to properly bind any

building to a LOD object in order to define to what extent and detail it should be

represented, so that it has been included as an improvement to come.

Focusing on graphical performance, two different approaches with regard to data

management have been defined. They have been implemented to prove how the Web

application would behave in view of different data management configurations. The

major difference between them has been determined by the number of children to add to

the scene graph’s root in which this research relies on.

Each child on the scene graph represents a Vertex Buffer Object (VBO) virtual concept.

WebGL uses primitives to draw 3D objects (further explained in 4.3.7 Data

Visualization) which are consequently defined as a series of attributes —such as colour

or coordinates— which can be also stored in various arrays. The vertex data stored in

such arrays are stored in client memory which needs in turn to be copied from the client

memory to graphics memory. These data transferring should be done on every draw call

~ 62 ~

notably slowing down rendering performance which can be improved relying on the

VBO concept. VBO mechanism allows these arrays data to be stored in high-

performance memory, and consequently, to significantly improve the rendering

performance and reduce the memory bandwidth (Munshi, Ginsburg, & Shreiner, Vertex

Buffer Objects, 2009).

Regarding the likelihood of extreme cases as a result of adding VBO, it can be

described mainly two: array of structures and structure of arrays.

 Array of structures defines a virtual array structure in which each particular

building is added to the same VBO, which in the end is added to the root scene,

so that such buffer contains the whole buildings’ geometries.

 Structure of arrays defines a virtual arrays structure in which each particular

building is added to the root scene as a single VBO, forcing the graphics card to

execute expensive WebGL internal state changes.

The above cases have been defined as extreme situations likely to happen directly

depending on user input. Every one of the weighted solution defined between those two

illustrated cases has been also considered.

4.3.6 Data Preparation (ReadyMap)

This research has looked for giving solution to building’s representation relying on a

combination of the source code present on the simplest ReadyMap application, and the

implementations done by the author of this research.

The Web application itself has depended on several sub-processes detailed in the

following sections: Server data loading and parsing, Buildings extrusion and VBO

management.

4.3.6.1 Server data loading and parsing

The data have been loaded into the browser in this Processing stage through a series of

AJAX request —$.ajax()— provided by jQuery library (The jQuery project, 2010).

Afterwards it has been used a JSON parsing method —$.parseJSON—, present in

jQuery as well, in order to convert building´s JSON data into JavaScript objects fully

comprehensible to any browser (The jQuery project, 2010).

~ 63 ~

4.3.6.2 Buildings extrusion

Considering that the input data has just provide the geometrical outline of each building,

in addition to the corresponding height attribute; it has been necessary to define not only

the building’s ground floor, but also their roofs. Such assumption has been implemented

by creating and alternatively inserting new points into building’s geometry data

definition. In this way, the height of each original point has been set to zero; and

similarly, the height of the replicated point has been set as the building’s height value

—depicted in the JSON file— belonging to such point. Following Figure 27 details the

processing.

Figure 27. Buildings extrusion diagram

It is relevant to mention that QGIS has exported, the set of vertices in a clockwise order,

being essential for the primitives drawing, detailed later on (see 4.3.7.3 Drawable

Geometry).

4.3.6.3 VBO management

The main idea behind using OSGJS is to manage the group of buildings as a group of

children that are suspended from a root node. VBO management has determined the

number of children that have been added to the root scene. Subsequently it has been

assigned a similar number of buildings to be processed, to each of the children —

VBO— (see 4.3.5 Data Management for complete information). Such methodology has

~ 64 ~

been implemented, mainly for testing purposes, by calculating the total number of

buildings and further dividing them into the number of user-defined VBO.

Each group of buildings, characterised by a first and last building numerical index, have

been assigned to the corresponding instance of BuildingNode, and later on sent to Data

Visualization stage (see 4.3.7 Data Visualization).

BuildingNode is defined as a JavaScript object, additionally described as the complete

set of attributes and methods implemented in this research, which give support to any

ReadyMap-based building’s representation.

In order to illustrate the process, the two extreme cases of building’s representations —

array of structures and structure of arrays— are detailed below (see Figure 28, Figure

29 and also 4.3.5 Data Management for complete information).

 mapView: ReadyMap.MapView

o root: osg.Node

 children: Array[3]

 0: osgearth.MapNode

 1: ReadyMap.BuildingNode

 2: ReadyMap.BuildingNode

Figure 28. Array of structures graphical example

 mapView: ReadyMap.MapView

o root: osg.Node

 children: Array[4897]

Root

Earth
buildings

first: 0
last: 2448

buildings

first: 2449
last: 4896

~ 65 ~

 0: osgearth.MapNode

 1: ReadyMap.BuildingNode

 2: ReadyMap.BuildingNode

…

 4896: ReadyMap.BuildingNode

Figure 29. Structure of arrays graphical example

It should be noted the difference between ―buildings‖ in Figure 28, and ―building‖ in

Figure 29.

4.3.7 Data Visualization (ReadyMap)

In this section it is described the core processing related to building’s rendering process.

It is further divided in four main parts: Preliminary Concepts, Drawable Geometry,

Reference Geometry and finally Drawable and Referenced Insertion.

4.3.7.1 Preliminary Concepts

After the Data Preparation processing, it has resulted necessary to define a set of

graphical and geographical processing to correctly visualize the data on the globe’s

surface. This complex assignment has been entirely done within OSGJS and OSGEarth

frameworks, compiled as ReadyMap.js JavaScript file (see Figure 24).

On the one hand, OSGJS provides the development of high-performance 3D graphics

applications relying on the concept of a scene graph, providing an object-oriented

framework on top of WebGL. On the other hand, OSGEarth provides a 3D terrain

rendering functionality following open standards. The consequence of making use of

both has resulted in a synergic fusion of graphical and geographical fields shaped as a

BuildingNode.

Root

Earth building 0 building 1 ... building 4897

~ 66 ~

Each BuildingNode has been described by two principal attributes: Geometry and

MatrixTransform (see Figure 30).

Figure 30. osg.BuildingNode object

It should be noted that osg.BuildingNode and BuildingNode refers to exactly the same

JavaScript object, distinguished by a prior notation —―osg.‖— which has been used to

call it from the source code.

As soon as an instance of a BuildingNode is made, it is defined and fulfilled the next

three attributes: origin, heightField and heightWeighting:

 origin vertex has been created with the first tuple of coordinates —latitude and

longitude— defined in the first vertex of the first building. This has been used in

turn as a geometric anchor point for the rest of buildings associated to this

particular BuildingNode (see Figure 28 and further explained in 4.3.7.3

Referenced Geometry).

 heightField has been defined to store the heights of the vertices associated to

each building:

 var heightField = [building0_height0, 0, building0_height0, 0,…

 building1_height0, 0, building1_height0, 0,…

 building2_height0, 0, building2_height0, 0,…]

 heightWeighting —also known as vertical exaggeration— has been defined to

magnify the height of the buildings on the globe.

From this point onwards, the main core processing has taken place.

osg.BuildingNode

osg.
Geometry

osg.

MatrixTransform

~ 67 ~

4.3.7.2 Drawable Geometry

The geometry for each particular BuildingNode has been described as a set of primitives

and attributes, stored in a group of arrays.

Figure 31. osg.Geometry object

Primitives have been defined as five one-dimensional element arrays where the indices

of vertex’s geometry have been stored in:

 elements: has stored the vertices’ indices of the external building’s faces.

 roof: has stored the vertices’ indices of the face or faces that a building’s roof

consists of.

 line1: has stored the vertices indices connections of the building’s edges.

 line2: has stored the vertices indices connections of the building’s edges.

 points: has stored the vertices indices.

Primitive values have been stored into each BuildingNode subsequently binding them to

an osg.DrawElements object. osg.DrawElements has managed the render of the indexed

primitives by firstly defining the WebGL rendering mode —GL_TRIANGLES,

GL_LINES or GL_POINTS i.e.— (Khronos Group, 2010); and secondly by assigning

the corresponding set of primitives.

In order to illustrate how osg.DrawElements has been called, a code sample is presented

below.

osg.BuildingNode

osg.
Geometry

- Primitives

- Attributes

osg.

Matrix
Transform

~ 68 ~

Figure 32. osg.DrawElements geometry insertion

WebGL GL_TRIANGLES rendering mode has been used to represent elements and

roof arrays data. WebGL GL_LINES rendering mode has been used to represent line1

and line2 arrays data. And finally WebGL GL_POINTS rendering mode has been used

to represent points array data.

On the other hand, three main variable-dimensional arrays related to Attributes have

been defined:

 verts (3dim): has stored vertices coordinates attribute.

 normals (3dim): has stored vertices normal attribute.

 colours (4dim): has stored vertices colour attribute.

Attribute values have been stored into each building’s vertex in a similar way as before

(see Figure 33), excepting the type of buffer that has been used.

Figure 33. osg.BufferArray binding

In order to get the best performance it has been used ARRAY_BUFFER to store the

vertex data, and ELEMENT_ARRAY_BUFFER to store the indices of the primitives to

be rendered (Munshi, Ginsburg, & Shreiner, Vertex Buffer Objects, 2009).

In the following sections Primitive and Attribute arrays processing are described in-

depth.

this.geometry.getAttributes().Color = new osg.BufferArray(gl.ARRAY_BUFFER,

colors, 3);

Var tris = new osg.DrawElements(gl.TRIANGLES, new

osg.BufferArray(gl.ELEMENT_ARRAY_BUFFER, elements, 1));

this.geometry.getPrimitives().push(tris);

~ 69 ~

4.3.7.2.1 Primitive Arrays

In this section it is described the way in which each particular rendering mode-

dependent array has been filled. Primitive arrays have been filled at once, unlike

Attribute arrays which have been filled iteratively per building’s vertex.

The set of indices that have been stored in no matter which of the next rendering mode-

dependent arrays, have been further referred to the matching index of coordinates —

longitude, latitude, height— stored in verts array (see 4.3.7.3 Referenced Geometry for

further details).

Polygons rendering mode (GL_TRIANGLES)

In this section it is described the way elements and roof arrays have been filled with the

consequent vertices indices, corresponding to the polygons rendering mode.

Relying on GL_TRIANGLES for polygons rendering, it is drawn a series of separated

triangles, treating each triplet of indices gathered from either elements or roof arrays, as

an independent triangle (Munshi, Ginsburg, & Shreiner, Triangles, 2009).

Building’s side faces wrapping

Building’s side faces wrapping has been accomplished sequentially storing in elements

array, the corresponding triplet of indices. In this way a sequence of triangles got

defined resulting in rectangular coplanar faces defined each two triangles (see Figure

34).

Figure 34. Triangle creation processing

elements = [0,1,2,1,2,3,2,3,4,3,4,5…];

~ 70 ~

It should be noted the order of vertices, the face creation flow, and the way each face

has shared their triple of vertex with adjacent faces.

Building roof wrapping

Building’s roof wrapping has been accomplished adapting a JavaScript-based

Constrained Delaunay Triangulation library (CDT). Seeing that, roofs vertices have

been triangulated to create a sequence of triangles which have ended up covering the

entire roof surface.

Considering the inexistence of any wide range of Constrained Delaunay triangulation

libraries written in JavaScript, it has been decided to adapt and modify poly2tri

JavaScript library (Google, 2011) —based on (Zalik & Domiter, 2008)— as the most

suitable alternative. In this way no additional triangulation Web Service has been

required, implementing an innovative client-side processing for WebGL-based

geometry.

Given that, explaining in-depth the way that poly2tri has worked is completely out of

scope of this research due to extension reasons, it is following explained the way the

input data has been transferred to the library and also the obtained output.

As a result of managing 3D data models, it has been firstly necessary to extract the

vertex indices belonging to a same roof outline. Regarding Figure 34 it can be noticed

that roof elements are odd-value restricted.

Secondly, it has been required to gather the corresponding latitude and longitude

coordinates with regard each of the previously extracted vertex indices. Such

coordinates have spatially described each of the vertices on the same two-dimensional

plane to be following transferred to the CDT.

Thirdly, the CDT has processed the sent data. The resulting output has been described

as an ordered array of triangles which have defined the roof coplanar polygons. Each of

those triangles has been consequently depicted as a triplet of coordinates.

Fourthly, inversely to the second step, it has been required to transform the obtained

coordinates present in each of the ordered array of triangles into an ordered flow of

vertex indices.

~ 71 ~

Finally, those vertex indices have been stored in roof array and additionally bound to

GL_TRIANGLES rendering mode to be further rendered. Following this methodology

it has been possible to represent any roof shape, with an optimized and graphically

perfect set of coplanar polygons.

Relying on the results obtained from running several internal tests (see Appendix A), it

has been finally achieved a successful accuracy percent of 99,37% in building roof

creation, obtaining only a 0,63% of error, due to an indirect weighting between the data

preparation processing (see 4.2.4 Data Preparation) and the CDT data processing.

Furthermore, it has been noticed that the more the closer the points have been either the

original or prepared data, the higher has been the probability of failure.

Figure 35 illustrates a successfully triangulated complex shape.

Figure 35. Complex roof shape triangulation

Lines rendering mode (GL_LINES)

In this section it is described the way line1 and line2 arrays have been filled with the

consequent vertices indices connections, corresponding to the lines rendering mode.

~ 72 ~

Relying on GL_LINES for lines rendering, it is drawn a series of separated lines,

treating each tuple of indices gathered from either line1 or line2 arrays, as an

independent line (Munshi, Ginsburg, & Shreiner, Lines, 2009).

Building vertices connection

Relying on the same building’s structure (see Figure 27), the vertices connections have

been depicted as following.

Considering that any building’s geometry can be generalized as two parallel horizontal

planes —ground floor and roof— being externally connected by a set of vertical planes

—side faces—; it has been proposed a combination of two dataflow in order to cover

the vertices alternatively in the next presented way.

The algorithm has been initialized on the vertex 0, defined on a positive and above zero

value since it belonged to the building’s roof, so that:

line1 has started in vertex 0 and has continues connecting vertices following the next

pattern: 0, 1, 3, 2, 4, 5, 7….

line2 has started in vertex 0 and has continued connecting vertices following the next

pattern: 0, 2, 3, 5, 4, 6, 7….

Figure 36. Lines creation processing

Consequently, line1 and line2 have swept and connected the total amount of vertices,

defining side faces and roof contours with no extra roof treatment needed. This

approach has entailed a cost of having as many numbers of repeated edges as numbers

~ 73 ~

of vertices the building’s ground floor consists of minus one —three in case of a cube

for instance—.

Finally, the application’s rendering mode has been set to GL_LINES in order line1 and

line2 to be treated as line representation data (see Figure 36), obtaining a 100% of

successful vertices connections.

Points Sprites rendering mode (GL_POINTS)

In this section it is described the way that points array has been filled with the

consequent vertices indices, corresponding to the point sprites rendering mode.

Relying on GL_POINTS for points rendering, it is drawn a series of isolated points,

treating each vertex index gathered from points arrays, as a single point (Munshi,

Ginsburg, & Shreiner, Point Sprites, 2009).

Simple vertices representation

Relying on building’s structure (see Figure 27), the building’s vertices representation

has been accomplished sweeping the total amount of building’s vertices, storing the

corresponding index into points array and finally setting WebGL rendering mode to

GL_POINTS.

4.3.7.2.2 Attribute Arrays

In this section it is described the way that colour and normal arrays are filled for each

particular building. Unlike the primitive arrays; attribute arrays have been in sync and

sequentially filled relying on per-vertex operations.

The particular case of verts array has been further described in the next section (see

4.3.7.3 Referenced Geometry) considering that it has been intrinsically related with the

matrix transformations.

Contrary to primitive arrays, attribute arrays processing do not depend on the rendering

mode, so the following descriptions have been common and to all the rendering modes

representations depicted in this research.

~ 74 ~

Colour gradient

Concerning data colour representation, it has been implemented two different colour

representation for two different attributes sources: height colour theme and cadastre area

colour theme. In each of these representations, a colour array has been fulfilled with as

many four-dimensional vectors —red, green, blue, alpha—, as number of vertices the

buildings consist of.

heightField data has been indirectly used for vertex colour assignment in the height

colour theme representation. In this building’s representation a set of colours have been

predefined, so that each particular vertex colour has been depicted with regard to its

height attribute value.

Furthermore, the previously defined vertical exaggeration (see 4.3.7.1 Preliminary

Concepts), has been used once more in colour transformations so that direct relation

between height and colour, has not been distorted.

Additionally, ground floor vertices heights have been set to black considering that it is a

common value for the totality of buildings. Consequently, it has been only changed the

colour applied to the roof vertices. Following this methodology, the obtained result is

depicted as a scaled colour gradient (see Figure 37) formed in Fragment Shader stage of

the OpenGL ES 2.0 pipeline (Shreiner, OpenGL Programming Guide, 2010).

Figure 37. Building's colour gradient general perspective

The same processing has been applied to cadastre area colour theme, taking into account

that the represented data have come from a different attribute, and consequently a

different representation has been created.

~ 75 ~

Scene normals

A normal vector (or normal, for short) is a vector that points in a direction that is

perpendicular to a surface. This vector is used by WebGL to determine how much light

a plane receives at its vertices (Shreiner, OpenGL Programming Guide, 2010).

Due to research topic and background (see 1.1 Background), normal processing has not

been considered this time, being therefore postponed for future releases in case it is

interesting.

Normals within the context of this research, would only embellish —consequently

dirt— the colour representation, contrary to what it has been implemented, a solid face

colouring for resulting incident solar radiation’s output i.e. Nevertheless, normal data

have been taking into account inserting unprocessed normal data into normal array in

order to fulfil the required number of elements for validation purposes.

4.3.7.3 Referenced Geometry

In this section it is described the verts array processing and the sequence of Matrix

transformations which have been applied to the original coordinates. These

transformations have provided the new generated coordinates necessary to visualize the

building’s geometry on top of WebGL globe’s surface.

As defined (see 4.3.7.3.1 Primitive Arrays), verts has belonged intrinsically to primitive

array group: nevertheless considering its associated Matrix Transformation processing,

it is explained in this section.

4.3.7.3.1 Matrix Transformation

Matrix Transformations have consisted on a series of sequential steps (see Figure 30

and Figure 40) which have been implemented to transform the original vertex

coordinates into new generated ones.

These new coordinates have been further stored in verts array and have served to both

place and locate each building’s vertex on the globe’s surface. This has been achieved

by attaching to the corresponding osg.Node object, the data present in verts.

~ 76 ~

Figure 38. osg.MatrixTransform object

Considering such approach, two different processing have been implemented at this

point: Anchor point processing and ordinary point processing.

Anchor point processing

Firstly, it has been necessary to define an anchor point for each VBO to be treated. Such

point has been defined as the corresponding triplet of coordinates described in the first

vertex of the first building that has been processed at that time.

Secondly, the latitude and longitude coordinates from such anchor point have been

transformed from geographical coordinates degrees, to radians; while height value has

rested unaltered described in meters.

Thirdly the new coordinates described in radians have been transformed to Earth-

centred Earth-fixed coordinates (Iliffe & Lott, 2008).

Finally, it has been required to define a world2local transformation matrix in order to

obtain the coordinates that have being used as an anchor point, all the rest of building’s

vertices belonging to the same VBO. Figure 39 exemplifies the complete processing.

osg.Node

osg.
Geometry

osg.

Matrix
Transform

- local2word

~ 77 ~

Figure 39. Anchor vertex geometric transformations

Ordinary point processing

Similarly to Anchor Point processing, for ordinary point processing it has been also

necessary to load the original vertex data, convert it into radians and transform it to

world coordinates.

Additionally, it has been required a new world2local transformation matrix described as

the inverse of the world2local transformation matrix defined in previous Anchor Point

processing stage.

This whole matrix processing has provided a complete methodology to transform each

building’s vertex, described as longitude, latitude and height, in a set of numerical

values corresponding to WebGL Globe surface’s coordinates. Following Figure 40

describes the processing.

Anchor point (Center World)

lat: 39.494736
lon: -0.367753
alt: 150 (height=15 · weighting= 10)

Degrees to Radians conversion

lat: 0.68931317961828
lon: -0.006418500676752499
alt: 150

lla2world_ECEF tranformation (Anchor Point in World Coordinates)

lat: 4928476.100964477
lon: -31633.86159891579
alt: 4034852.533726748

world2local Matrix Definition

~ 78 ~

Figure 40. Ordinary vertex geometric transformations

4.3.7.4 Drawable and Referenced Geometry Insertion

In a final step, it has been attached to the same child:

 The Drawable Geometry, which have defined the topology of the buildings.

 The Referenced Geometry, which have accurately placed such topology on top

of the globe’s surface.

Next, it is illustrated this processing.

Figure 41. Geometry and Matrix Transformation merging

Original data

lat: 39.544771
lon: -0.333933
alt: 12

Degrees to Radians conversion

lat: 0.6901864551085174
lon: -0.005828230324402499
alt: 120 (height=12 · weighting= 10)

lla2world tranformation

lat: 4925051.516898066
lon: -28704.6596166295866
alt: 4039214.212375104

world2local transformation (using world2local
transformation matrix defined in Anchor Point
processing stage)

lat: 5555.806581537243
lon: 2907.1611008807595
alt: 116.91225147340447

... to verts array

var xform = new osg.MatrixTransform();

xform.setMatrix(local2world);

xform.addChild(this.geometry);

this.addChild(xform);

~ 79 ~

4.4 Chapter Review

In a first part, it is explained in-depth the major processing of pre-processing stage with

regard to data preparation. It is described how the data coming from the Valencian

cadastre has been reprojected and further divided to process heights and ground floors’

outlines separately. Furthermore, it is depicted a series of filtering applied to each

particular building’s geometry, in order to reduce the amount of redundant points

without notably affecting to the building’s geometries. Finally, it is shown how data’s

output is stored as a JSON data structure.

In a second part, it is explained the corresponding processes with regard to polygons,

lines and points representations. It is described how each particular WebGL rendering

mode has required a different data management. Additionally, it is depicted the

coordinates transformations in order to place accurately each of the buildings on top of

the globe’s surface. And finally, it is presented how geometries and transformation

matrix have been attached to the child.

~ 80 ~

~ 81 ~

Chapter 5

Results

5.1 Results Review

As soon as the Web application is accessed via the browser, end-user firstly receives a

series of confirmation windows where it is required for him to choose the desired option

(see Figure 42). It determines therefore the application’s behaviour, and consequently

the graphical appearance of the city of Valencia and the WMS/TMS layers to be

visualized.

Figure 42. Dialogue boxes details

Secondly, it is required that end-user selects the desired WebGL rendering mode for the

corresponding building’s representation. As explained along this narrative, it has been

implemented three different rendering modes which are subsequently represented on-

screen as points, lines and polygons (see Figure 43, Figure 44 and Figure 45).

~ 82 ~

Figure 43. Polygon rendering mode representation

Figure 44. Line rendering mode representation

~ 83 ~

Figure 45. Points rendering mode representation

Thirdly, it is required for end-user to select the desired data representation. Thus, it has

been implemented two different thematic colour-based data representations: cadastre’s

areas representation (see Figure 46) and heights representation (see Figure 47).

Figure 46. Cadastre area membership colour theme

~ 84 ~

Figure 47. Height colour theme

Finally, it is required for the end-user to select the desired number of children to add to

the scene. As a result it is concluded that the lower the number of children is defined,

the more fluent the Web application has run.

The obtained frames per second (fps) with regard to the different number of children for

a predefined static camera view are the ones described in next table.

Children Frames per second (fps)

2 31.7

200 25.2

2000 7.8

4896 3.9

Table 7. Rendering performance

On the tested unit, there has been noticed a problem when attaching geometry to a

single child. Therefore even considering there was not any confirmed memory

overflow, for security reasons the minimum number of children to add has been set to

two.

At this point, the application starts automatically loading, parsing and processing JSON

file, thus it might be possible to have a black screen for a few seconds. As a result,

ReadyMap globe, buildings’ geometry and map’s tiles are represented. Consequently,

from this point onwards, end-user will have total control of the Web application, being

~ 85 ~

possible to explore the scene —panning, zooming, rotating or tilting the globe— and to

change graphical parameters such as map layers’ transparency.

For testing purposes, OSGJS provides a useful graphic statistics tool which makes

possible to check in real time the application’s performance, by simply adding

―?stats=1‖ at the end of the Web address (see Figure 48).

Figure 48. Graphic statistics panel

Application’s source code and examples can be found at Github (Gastón Iglesias, 2012)

in addition to the Documentation’ Secretariat of the Erasmus Mundus Joint Master of

Science Degree in Geospatial Technologies.

http://localhost/readymap/tests/buildings.html?stats=1

~ 86 ~

~ 87 ~

Chapter 6

Conclusions

6.1 Research Summary

The present research has analyzed, designed, implemented and tested each of the

required stages to build an integrated solution to the generation of three-dimensional

buildings. This was achieved on a WebGL standard-compliant framework relying on

ReadyMap’s globe.

The first chapter reviewed the impact of WebGL on Web-based graphical frameworks,

mainly due to a notable improvement in performance of recent graphics cards. Web-

based applications are becoming increasingly important up to the extent of being widely

accepted that it is likely to be the new forthcoming processing platform. Many vendors

and software developers have realized the potential of WebGL and the efforts on

developing WebGL standard-compliant applications are increasing. GIS technologies

are utilizing this progressive Web technology to discover new geo-processing

possibilities. This research also solves the major part of WebGL-based visualization

difficulties for current and forthcoming Web-based 3D geo-processing. To develop such

a solution five main objectives, among some others, were defined:

 To propose a model for preparing, analyzing and filtering data from the Spanish

cadastre.

 To propose a model to represent 3D buildings derived from 2D geo-data, on the

surface of a WebGL-based virtual globe.

 To represent not only the buildings’ geometry but any interesting parameter

present or not present on the treated data.

 To develop a fully functional Web application prototype for both testing and

representing the buildings present in obtained cadastre data.

 To develop a complete solution for representing the FIDE buildings’ models in

the same way as done for cadastre data (see Appendix B).

~ 88 ~

The second chapter reviewed the state of the art in WebGL-based virtual globes in

addition to the existing JavaScript-based graphic libraries. Furthermore it was depicted

the reasons of choosing ReadyMap framework, and the benefits of working on an

architecture based on scene graphs.

Chapter three described an in-depth analysis about the data and application’s

requirements as well as the corresponding modelling of end-user use cases. Additionally

it detailed the overall application’s architecture and the corresponding time and

economic planning.

Chapter four is the research’s core chapter. It described in detail the required processing

in order to finally render an on-screen visualization of the buildings recorded in the

obtained cadastre data. Chapter four was divided into two main parts:

 The first part described the necessary steps in order to make the data ready to be

loaded by the Web application. Thus it was discussed how data were first

reprojected, and then divided into two files, named constru.shp and masa.shp.

This was done in order to process separately the ground floor outlines, and

heights of the buildings. Consequently, customized processing for each of the

files was implemented. Thus, constru.shp was processed in order to obtain a

single height value for each particular building, while masa.shp was filtered for

redundant and collinear ground floor vertices of buildings, to both reduce

unnecessary data and make the forthcoming triangulation process easier. Finally,

both processing paths were merged by combining the buildings’ geometry and

height into a single JSON structure.

 The second part described the necessary steps in order to represent the processed

data coming from the first part in the Web application. This second part detailed

how data were processed so as to get an extruded building’s three-dimensional

geometry to pass like parameter to the main building’s processing function. It

also detailed the implementation done, firstly on each of the available rendering

modes, which required different data management and additional adaptation of a

Constrained Delaunay Triangulation library; secondly, on the management of

Vertex Buffer Objects and what it entailed in terms of graphic performance; and

finally, on the thematic-coloured data’s representation. Additionally, this part

~ 89 ~

described the required geo-processing in order to accurately place each building

on top of the ReadyMap globe’s surface.

Finally, chapter five described the resulting Web application’s outputs with regards to

end-user choices. The descriptions were accompanied by a complete set of output

images obtained from the application in order for the reader to get clearly understand

the Web application’s functionalities.

6.2 Research Contributions

This research proposed and implemented a complete methodology of three-dimensional

thematic buildings’ representation for the surface of a WebGL-based virtual globe,

relying on an obtained dataset from Valencia’s cadastre. In this methodology there was

given full support for the Shapefile-based geo-data format, nevertheless the full

processing can be applicable as well to any kind of geo-data as long as it can be

exported into JSON format.

The implemented methodology demonstrated, from a graphical and geographical point

of view, the possibility of importing, parsing, processing and finally representing any

topological attribute —such as vertex coordinates— present in a dataset. Concurrently,

the implemented methodology provides the functionality of representing semantic data

as well, such as cadastre’s area, a building’s type definition or in general any kind of

semantic attribute present in a cadastre dataset.

Additionally this research defined the groundings, within a WebGL standard-compliant

framework, for the thematic representation of current and forthcoming urban-based geo-

processing outputs, such as: incidents of solar radiation, noise impact, environmental

impact of constructions, area population, disaster management and evacuation planning.

Furthermore, the existing JavaScript Constrained Delaunay Triangulation (CDT) library

was adapted for this research. The adaptation allowed for the triangulation of vertices

for GL_TRIANGLES rendering mode to be processed on the client’s side instead of the

conventional server side solution. Consequently, this improved the efficiency of time-

consuming processing and reduced data traffic. This adaptation made possible to obtain

any particular triangulation from any kind of complex face representation, as used in the

FIDE methodology (See Appendix B).

~ 90 ~

Moreover by relying on OSGJS or scene graphs in general, the spatial organization was

improved. In the case where there were just a small amount of buildings within a small

area, the benefit is not clearly perceptible. However, in the cases where there were a

very large number of buildings spread over an entire city, it was required to split them

up into a grid to optimize the number of buildings per VBO having additional negative

effects on efficiency for both too many and too few buildings per VBO. Consequently,

scene graphs can help specifically on the breaking up of data spatially allows for faster

culling since a large amount of geometry data can be processed and rejected quickly

based on the viewing frustum.

Finally, the versatility and performance of WebGL in a browser was indirectly proved.

In graphical terms, WebGL allows the web application to translate and update an entire

city’s geometry at a rate higher than 25 frames per second, in most tested units for a

default application’s configuration. Considering that it is a recent technology, still in the

early stages of development, greater frame rate improvements are expected with future

releases of both the WebGL framework and graphics hardware.

6.3 Future Work

The methodology discussed in this research, can be further improved in future works

by:

 Implementing Level of Detail (LOD) functionality: OSG has migrated many of

its functionalities to OSGJS version, nevertheless the LOD object structure has

not been ported yet, so that this research has implemented the buildings’

visualization without considering any graphical filtering with regard to the

scene’s extent. Consequently it is proposed to define a building’s representation

in sync with a map tile’s creation, so that a top-down view with the view point

farther away would represent fewer buildings than a closer and more detailed

top-down view, therefore culling the geometry that is not in range.

 Considering digital terrain elevation data: This research has not considered, due

to time constraints, buildings’ heights above sea level. Nonetheless, it can be

easily implemented following either of the following two approaches:

~ 91 ~

o Dynamic height creation: the TMS server provides elevation tiles which

are acquired in turn from SRTM elevation data. Consequently, it would

be possible to define the building’s zero level as the elevation value

corresponding to the elevation tile where the building is projected. In this

way terrain elevation and ground floor heights would match.

o Static height creation: Considering it is possible to obtain either TMS

data —SRTM elevation data is free and publicly accessible— or cadastre

elevation data, it would be possible to add to the cadastre’s data, an extra

attribute depicting the height above sea level in order to be used while

building’s height definitions stage.

 Implementing standard exchange data models: Implementation for support on

standard building’s exchange data models, such as CityGML or IFC, will allow

for greater versatility and portability.

 Condensing JSON structure: For this research, the JSON structure was proposed

in terms of clarity for the reader. However, considering it is a server-stored file

which ultimately will be sent over a network, it is highly recommendable to

change JSON structure design into a more condensed set of values in order to

reduce its file size and reduce data traffic.

 Obtaining pre-processing parameters: In order to obtain an accurate weighted

vertex filtering, (See Appendix A) it must be considered to create a new script in

order to obtain better optimized pre-processing parameters.

~ 92 ~

~ 93 ~

Bibliography

A. Pender, T. (2002). Use Case Model. In T. A. Pender, UML Weekend Crash Course (pp. 49-

92). Wiley Publishing.

Ambiera. (2010). copperLicht. Retrieved February 12, 2012, from

http://www.ambiera.com/copperlicht/index.html

Azad, K. (2007). Better Explained. Retrieved February 12, 2012, from

http://betterexplained.com/articles/using-json-to-exchange-data/

Barker T., I. B. (2007). Technical Summary in: Climate Change 2007: Mitigation. Contribution

of Working Group III to the Fourth Assessment. Cambridge, United Kingdom and New York,

NY, USA: Cambridge University Press.

Belmonte, O., Carlos, G., & Maria, E. IT Java-based projets development.

Bochicchio, M., Longo, A., & Vaira, L. (2011). Extending Web Applications with 3D Features.

13th IEEE International Symposium on Web Systems Evolution (WSE), (pp. 93-96).

BOE. (2007, July 27). Official Bulletin of the State. Retrieved February 12, 2012, from Spanish

National Geodetic Reference System:

http://www.boe.es/aeboe/consultas/bases_datos/doc.php?id=BOE-A-2007-15822

Bonfatti, F. e. (1998). Guidelines for Best Practice in User Interface for GIS. ESPRIT/ESSI

project no. 21580, (p. 96).

Brunt, P. (2010). GLGE. Retrieved February 12, 2012, from http://www.glge.org/

Butler, H., Daly, M., Doyle, A., Gillies, S., Schaub, T., & Schmidt, C. (2008, June 16). The

GeoJSON Format Specification. Retrieved February 12, 2012, from http://geojson.org/geojson-

spec.html

CATGames Research network at Seneca College. (2010). C3DL. Retrieved February 12, 2012,

from http://www.c3dl.org/

Cliffe, C. (2011). CubicVR. Retrieved February 12, 2012, from http://www.cubicvr.org/

Cropper, S. (2010). gvSIG is a viable robust alternative to commercially available GIS

packages. OSGeo Journal , 6, 23-25.

de Smith, M. J., Goodchild, M., & Longley, P. (2009). Neighbourhood. In M. J. de Smith, M.

Goodchild, & P. Longley, Geospatial Analysis. A Comprehensive Guide to Principles,

Techniques and Software Tools (p. 70). Splint.

DFC Intelligence. (2010, May 25). DFC Intelligence. Retrieved February 12, 2012, from

http://www.dfcint.com/wp/?p=277

FIDE Organization. (2009). FIDE Conceptual Models. Retrieved February 12, 2012, from

http://www.fide.org.es/index.php/descargas/cat_view/24-modelos-conceptuales

~ 94 ~

Fraunhofer IGD. (2012). X3DOM. Retrieved February 12, 2012, from http://www.x3dom.org/

Garcia Belmonte, N. (2011). PhiloGL. Retrieved February 12, 2012, from

http://senchalabs.github.com/philogl/

Garrido, S. (2011, July). FIDE. Retrieved February 12, 2012, from FIDE Geomertry's

Descriptors: http://www.fide.org.es/index.php/descargas/doc_download/91-geometria

Gastón Iglesias, D. (2012, February 1). Github ReadyMap building's repository. Retrieved

February 12, 2012, from https://github.com/RealFlow/godzi-webgl/tree/buildings

GDAL. (2012). ogr2ogr. Retrieved February 12, 2012, from http://www.gdal.org/ogr2ogr.html

Geomatics Engineering departement at the University of Applied Sciences Northwestern

Switzerland. (2011). OpenWebGlobe. Retrieved February 12, 2012, from

http://wiki.openwebglobe.org/doku.php?id=overview

Google. (2011). Chrome Experiments. Retrieved February 12, 2012, from

http://www.chromeexperiments.com/globe

Google. (2012). Chrome Expirements Terms of Service. Retrieved February 12, 2012, from

http://www.chromeexperiments.com/submit/

Google. (2012). Google Maps. Retrieved February 12, 2012, from http://maps.google.com/

Google. (2011). O3D. Retrieved February 12, 2012, from http://code.google.com/p/o3d/

Google. (2011). Poli2tri. Retrieved February 12, 2012, from

http://code.google.com/p/poly2tri/source/checkout?repo=javascript

Guangwei, Y., & Zhitao, G. (2009). Scene Graph Organization and Rendering in 3D Substation

Simulation System. Power and Energy Engineering Conference (APPEEC), (pp. 1-4).

Heath, T. (1921). Heron's Triangle. In T. Heath, A History of Greek Mathematics (pp. 321–323

). Oxford University Press.

Iliffe, J., & Lott, R. (2008). Conversion between ellipsoidal and geocentric cartesian

coordinates. In J. Iliffe, & R. Lott, Datums and Map Projections: For Remote Sensing, GIS and

Surveying (pp. 15-16). Whittles Publishing.

Illiffe, J., & Lott, R. (2008). Cartesian coordinates for engineering applications. In J. Illiffe, &

R. Lott, Datums and Map Projections: For Remote Sensing, GIS and Surveying (p. 7). Whittles

Publishing.

Inka3D. (2012). Inka3D. Retrieved February 12, 2012, from http://www.inka3d.com/

Jax. (2012). Jax. Retrieved February 12, 2012, from http://blog.jaxgl.com/

Kay, L. (2009). SceneJS. Retrieved February 12, 2012, from http://www.scenejs.com/

Khronos Group. (2011, December). Blacklists And Whitelists. Retrieved February 12, 2012,

from http://www.khronos.org/webgl/wiki/BlacklistsAndWhitelists

~ 95 ~

Khronos Group. (2010). OpenGL ES2.0 Specification. Retrieved February 12, 2012, from

http://www.khronos.org/opengles/sdk/docs/reference_cards/OpenGL-ES-2_0-Reference-

card.pdf

Khronos Group. (2012). WebGL - OpenGL ES 2.0 for the Web. Retrieved February 12, 2012,

from WebGL - OpenGL ES 2.0 for the Web

KickJS. (2012). KickJS. Retrieved February 12, 2012, from http://www.kickjs.org/

Klokan Technologies. (2011). WebGL Earth. Retrieved February 12, 2012, from

http://www.webglearth.org/about

Koordinaten. (2012). Koordinaten. Retrieved February 12, 2012, from

http://www.koordinaten.de/informationen/formel.shtml

Lubbers, P., Albers, B., & Salim, F. (2010). The future of HTML5. In P. Lubbers, B. Albers, &

F. Salim, Pro HTML5 Programming (pp. 259-267).

Milne, E. A. (1948). Vector Product. In E. A. Milne, Vectorial Mechanics (pp. 11-31). Methuen

Publishing.

Moore, S., Townsend, R., & Campbell, J. (2011). GammaJS. Retrieved February 12, 2012, from

http://gammajs.org/

Mozilla Developer Network. (2012). Mozilla Developer Network. Retrieved February 12, 2012,

from https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/String/replace

Mrdoob. (2012). Three.js. Retrieved February 12, 2012, from

https://github.com/mrdoob/three.js

Munshi, A., Ginsburg, D., & Shreiner, D. (2009). Lines. In A. Munshi, D. Ginsburg, & D.

Shreiner, OpenGL ES 2.0 Programming Guide (p. 129). Addison-Wesley.

Munshi, A., Ginsburg, D., & Shreiner, D. (2009). Point Sprites. In A. Munshi, D. Ginsburg, &

D. Shreiner, OpenGL ES 2.0 Programming Guide (p. 130). Addison-Wesley.

Munshi, A., Ginsburg, D., & Shreiner, D. (2009). Triangles. In A. Munshi, D. Ginsburg, & D.

Shreiner, OpenGL ES 2.0 Programming Guide (p. 128). Addison-Wesley.

Munshi, A., Ginsburg, D., & Shreiner, D. (2009). Vertex Buffer Objects. In A. Munshi, D.

Ginsburg, & D. Shreiner, OpenGL ES 2.0 Programming Guide (pp. 115-116). Addison-Wesley.

National Geographic Institute. (2012). National Geographic Institute. Retrieved Febuary 12,

2012, from Datum Grid: http://www.ign.es/ign/layoutIn/herramientas.do#DATUM

Nokia. (2012). Nokia Maps 3D WebGL. Retrieved February 12, 2012, from

http://maps3d.svc.nokia.com/webgl

Oak3D. (2012). Oak3D. Retrieved February 12, 2012, from http://www.oak3d.com/

Open Geospatial Consortium. (2008). Multi-scale modelling (5 levels of detail, LOD). In G.

Gröger, T. Kolbe, A. Czerwinski, & C. Nagel (Eds.), OpenGIS® City Geography Markup

Language (CityGML) (1.0 ed., pp. 25-26).

~ 96 ~

Ortiz, S. (2010). Is 3D Finally Ready for the Web? Computer , 43, 14-16.

OSG. (2009). OpenSceneGraph. Retrieved February 12, 2012, from LOD class:

http://www.openscenegraph.org/documentation/OpenSceneGraphReferenceDocs/a00395.html

OSG. (2012, February 12). OpenSceneGraph Website. Retrieved February 12, 2012, from

http://www.openscenegraph.org/projects/osg

OSGEarth. (2012). OSGEarth. Retrieved February 12, 2012, from http://osgearth.org/

OSGeo project. (2012). Quantum GIS. Retrieved February 12, 2012, from http://www.qgis.org/

OSGJS. (2012). OpenSceneGraph JavaScript. Retrieved February 12, 2012, from

http://osgjs.org/

Pelican Mapping. (2011). Github.ReadyMap SDK. Retrieved February 12, 2012, from

https://github.com/gwaldron/godzi-webgl/wiki/ReadyMap-SDK

Policarpo, F., & Fonseca, F. (2005). Deferred Shading Tutorial. Pontifical Catholic University

of Rio de Janeiro , 1-27.

Rodriguez, J. (2010, Febrero 21). Energetic efficiency: business and ethics. El País , p. 27.

Sencha Labs. (2011). PhiloGL. Retrieved February 12, 2012, from

http://www.senchalabs.org/philogl/

Shreiner, D. (2010). OpenGL Programming Guide. In D. Shreiner, OpenGL Programming

Guide (p. 69). Addison - Wesley.

Shreiner, D. (2010). OpenGL Programming Guide. In D. Shreiner, OpenGL Programming

Guide (pp. 1-29). Addison - Wesley.

Shreiner, D. (2010). OpenGL Programming Guide. In D. Shreiner, OpenGL Programming

Guide (p. 50). Addison-Wesley.

Stoyan, S. (2010). In S. Stoyan, JavaScript Patterns (p. 3). Yahoo! Press.

Taivalsaari, A., & Mikkonen, T. (2011). The Web as an Application Platform: The Saga

Continues. 37th EUROMICRO Conference on Software Engineering and Advanced

Applications .

Taivalsaari, A., Mikkonen, T., Anttonen, M., & Salminen, A. (2011). The Death of Binary

Software:. Ninth International Conference on Creating, Connecting and Collaborating through

Computing .

The Entertainment Software Association. (2011). The Entertainment Software Association.

Retrieved February 12, 2012, from Essential Facts about the Computer and Video Game

Industry: http://www.theesa.com/facts/pdfs/ESA_Essential_Facts_2010.PDF

The jQuery project. (2010). jQuery. Retrieved February 12, 2012, from

http://api.jquery.com/category/ajax/

~ 97 ~

The jQuery project. (2010). jQuery. Retrieved February 12, 2012, from

http://api.jquery.com/jQuery.ajax/

The jQuery project. (2010). jQuery. parseJSON. Retrieved February 12, 2012, from

http://api.jquery.com/jQuery.parseJSON/

Treasury. (2012). Electronic Cadastre Website. Retrieved February 12, 2012, from

http://www.sedecatastro.gob.es/OVCInicio.aspx

Treasury. (2011, March 03). Treasury (Cadastre Website). Retrieved February 12, 2012, from

http://www.catastro.meh.es/ayuda/manual_descriptivo_shapefile.pdf

Verissimo, P., & Rodrigues, L. (2001). Distributed Systems for System Architects. Kluwer

Academic Press.

Visual Computing Laboratory at CNR Research Area of Pisa. (2012). SpiderGL. Retrieved

February 12, 2012, from http://spidergl.org/

W3C. (2011, May 25). HTML5. Retrieved February 12, 2012, from

http://www.w3.org/TR/html5/

Wang, G. (2011). Improving Data Transmission in Web Applications via the Translation

between XML and JSON. Third International Conference on Communications and Mobile

Computing, (pp. 1-4).

Wang, R., & Quian, X. (2010). OpenSceneGraph. In R. Wang, & X. Quian, OpenSceneGraph

3.0: Beginner's Guide (p. 8). PACKT.

Wang, R., & Quian, x. (2010). Why OSG? In R. Wang, & x. Quian, OpenSceneGraph 3.0 (pp.

12-13). PACKT Publishing.

Zalik, B., & Domiter, V. (2008). Sweep-line algorithm for constrained Delaunay triangulation.

International Journal of Geographical Information Science , 22 (4), 449-462.

~ 98 ~

~ 99 ~

Appendix A

In this appendix it is described the preliminary ran tests to obtain an optimized set of

parameters. These parameters are further used on the cadastre’s data preparation stage

(see 4.2.4 Data Preparation) in order to obtain a filtered buildings’ geometries.

This appendix is further divided in two main parts: Introduction and Captures. The first

part describes the basic concepts in which the cadastre’s data preparation stage relies on.

The second section depicts a series of output images obtained from the application,

which provide graphical and numerical results to the concepts introduced in the first

part.

A1 Introduction

Mainly two parameters have been defined for the buildings’ geometry filtering: Area

Trigger and Radius Threshold.

Area Trigger has been defined as the numerical area value of the triangle that any three

consecutive points have defined. It has been implemented due to the necessity of

deleting collinear points, considering they made impossible to define valid triangles

since they all lain on the same line.

On the following Captures section it has been depicted how different Area Trigger

values have affected to ground floor’s geometry up to a point where it has been

impossible —for adapted Constrained Delaunay Triangulation library— to triangulate

any the vertices that conformed such geometry.

Radius Threshold has been defined as the numerical value that describes the radius of a

virtual circumference or neighbourhood, centred in each of the points that conforms

each ground floor’s geometry (de Smith, Goodchild, & Longley, 2009). Since

measurements are relatively small, Earth’s curvature does not have any notable

influence on distances and it is correct to assume therefore, a 2D plain un-projected

environment when processing neighbourhoods (Illiffe & Lott, 2008).

Subsequently, it has been implemented a simple Java application in order to obtain

distance in meters —coming from geographical coordinates— relying on a spherical

~ 100 ~

Earth distance calculation’s formula (Koordinaten, 2012). In this way, if any point was

located within the virtual circumference area centred in a secondary point, it was

therefore deleted. Consequently, the resulting ground floor’s geometry would be lighter

than the original one.

Area Trigger Code

Min 0.0000000282

Med 0.000000000282

Max 0.00000000000282

Radius Threshold Code Distance in meters from a point centred in Valencia

 latitude: 39.470356 and longitude: -0.376781

R1 0.00001 (0.881 meters on terrain)

R5 0.000005 (0.425 meters on terrain)

R01 0.0000001 (nearly 0 meters on terrain)

In the following figures it is depicted firstly, the total amount of buildings that were

present in the processed JSON file for each particular filtering configuration. Secondly,

it is defined the number of buildings, with regard the total amount of buildings that were

present in the JSON file, that have had any kind of triangulation problem and could not

be represented.

A2 Captures

Detailed next, it has been depicted some captures, showing the results coming from the

Area Trigger and Radius Threshold weighting, corresponding to data preparation stage.

For testing purposes, all the buildings have been represented with same height by

default, in order the geometry not to be influenced by the viewer perspective.

~ 101 ~

A2.1 R1 Amax Test

Figure 49. R1 Amax test

Number of represented buildings: 4902 Error: 103

In the figure above, on the one hand it is depicted an accurate number of buildings —

4902 out of 4906— with a very good definition at a cost of not filtering too many

vertices, obtaining therefore a very high rate of redundancy. One the other hand, the

triangulation algorithm is not able to handle such amount of unfiltered points, and that is

the reason for the high number of Error buildings. It should be noted how the port of

Valencia —on the right side—has not appeared comparing with following captures.

A2.2 R1 Amed Test

Figure 50. R1 Amed test

~ 102 ~

Number of represented buildings: 4897 Error: 41

In the figure above, it is depicted a better weighted solution considering the total

number of represented buildings and the number of problematic ones. The filtering

stage has run fine; consequently the vertex redundancy in building’s outlines has been

reduced. Additionally, the geometry did not seem to be extremely affected since

buildings still preserved roughly the original shape. In general terms it is an overall

solution to be considered, yet number of erratic buildings might be decreased, as it is

described in following captures. It should be noted however, how the port of Valencia

has appeared comparing to previous weighting result.

A2.3 R1 Amin Test

Figure 51. R1 Amin test

Number of represented buildings: 3259 Error: 6

In the figure above, it is depicted an extremely filtered geometry. Redundancy is so

decreased and radius threshold is so big, that many buildings have entirely disappeared;

resulting in a very low rate of 3529 represented buildings out of a total of 4906. As

expected, the unrepresented buildings have decreased due firstly to a plausible decrease

in the total number of buildings —since many of them have been completely filtered

and deleted—. Secondly, unrepresented buildings also decreased due to both a decrease

on the amount of vertices belonging to such buildings, and an increment of the distance

between those vertices.

~ 103 ~

A2.4 R5 Amax Test

Figure 52. R5 Amax test

Number of represented buildings: 4906 Error: 100

In the figure above, it is depicted an accurate number of buildings with a very good

definition, however the triangulation algorithm has still not been able to handle such

amount of unfiltered points, and yet again that is the reason for the high number of

inconsistent buildings. It should be noted that Valencia port is once more failing besides

other smaller constructions.

A2.5 R5 Amed Test

Figure 53. R5 Amed test

~ 104 ~

Number of represented buildings: 4897 Error: 31

In the figure above, it is depicted a correct weighted solution. It is presented a high

number of represented buildings while error rate on them has been the smallest

achieved. Geometry definition has been both accurate and optimized since most

redundant points have been deleted, not affecting to the triangulation processing, and

consequently representing all major and singular buildings in Valencia. This overall

weighting has been considered as the reference one along this research’s development.

A2.6 R5 Amin Test

Figure 54. R5 Amin test

Number of represented buildings: 3260 Error: 7

In the figure above as expected, it is depicted a very poor geometry definition. Most

buildings have become bitten and extremely distorted. Even if the error rate has been

very low, the total amount of buildings has been extremely low as well. Considering

data loss with regard this solution, it is concluded that it is not a suitable weighted

solution.

~ 105 ~

A2.7 R01 Amax Test

Figure 55. R01 Amax test

Number of represented buildings: 4906 Error: 145

In the figure above, it is depicted an exact number of buildings in scene with a very

good definition; however the triangulation algorithm has still not been able to handle

such amount of unfiltered points. Curiously the number of problematic buildings has

increased comparing to similar solutions, so that the perfect weighted solution might be

the one that has been considered as reference, or some other between R1 and R01 cases.

A2.8 R01 Amed Test

Figure 56. R01 Amed test

~ 106 ~

Number of represented buildings: 4898 Error: 41

In the figure above, it is depicted a fine weighted solution similar to the reference one. It

is represented a large number of total represented buildings whereas error rate has been

relatively small, but higher than the reference. The number of problematic buildings has

increased comparing to reference solution, so that the perfect weighted solution might

be the one it has been considered as reference, or some other between R1 and R01

cases.

A2.9 R01 Amin Test

Figure 57. R01 Amin test

Number of represented buildings: 3260 Error: 6

Finally, in the figure above as expected, it is depicted a very poor geometry definition.

Most buildings have been bitten again. Even if the error rate has been very low, the total

amount of buildings has been extremely low as well. Apparently, errors in buildings

have not decreased with regard to comparable solutions, so that it looks like radius

threshold is set to its limits, not affecting to algorithm triangulation anymore.

Considering data loss with regard this solution, it is concluded that it is not a suitable

weighted solution.

~ 107 ~

A2.10 Summary table

R1 R5 R01

Obtained Error OK Obtained Error OK Obtained Error OK

Amax 4902 103 4799 4906 100 4806 4906 145 4761

Amed 4897 41 4856 4897 31 4866 4898 41 4857

Amin 3259 6 3253 3260 7 3253 3260 6 3254

Total number of buildings in cadastre : 4906

Table 8. Summary Table of implemented tests

~ 108 ~

~ 109 ~

Appendix B

B1 Introduction

Concurrently to cadastre data loading, it has been implemented a complete FIDE

building’s model support. FIDE is a building data exchange format widely used in

Valencian community that is common to the distinct edification’s areas agents,

facilitating data exchange between them independently of the informatics applications

they rely on.

FIDE format is based on the particularities, regulations and construction systems

corresponding to the Spanish authorities; nevertheless, it inherits a major part or its

format’s structure from the international IFC building data exchange format, aiming

therefore to facilitate formats interaction and systems interoperability.

FIDE format models are written in XML, depicting and extensive group of tags which

altogether fully defines both building’s topology and semantic.

Concerning FIDE Appendix B description, this work tries not to repeat common

processing between cadastre data and FIDE data solutions, strengthening specially the

adopted differences in developing approaches, in addition to application’s analysis,

processing and behaviour. Thus, this Appendix B is divided in three main sections: Pre-

processing, Processing and Results.

In Pre-processing section it is described a series of Java-based data processing to

further analyze, prepare and save the data, in order to be subsequently loaded by the

Web application. In Processing section it is described in-depth the related data

processing for an ultimate data representation. Finally, in Results section it is described

the obtained results.

B2 Pre-processing (Data Preparation)

In this section it is depicted the processes and sub-processes related with data

preparation, embracing the necessary steps to be done before the Web application has

loaded the building’s output file so as to be processed and represented. Additionally, it

is described in detail the implemented Java-based application for FIDE data

~ 110 ~

management, further divided in three main parts: Data Preparation, Application

Structure and Application Behaviour.

B2.1 Data Preparation (Java)

Explaining in-depth FIDE data exchange format is completely out of bounds due to both

complexity and extension; nonetheless a set of basic concepts and explanations have

been introduced along next sections in order for the reader to better understand the

implemented pre-processing done in this research. For complete information, do refer to

the official Web documentation (FIDE Organization, 2009).

Firstly, aiming to provide a complete FIDE support, it has been necessary to obtain a

valid FIDE dataset, which have been kindly supplied by the Valencian Edification

Institute.

Following, it is presented a virtual representation of the sample data (see Figure58).

Figure 58. FIDE model representation

Contrary to cadastre’s data case, FIDE data preparation methodology has been entirely

implemented in Java (Belmonte, Carlos, & Maria), mainly due to a provided set of

libraries which have helped to extract and gather information from the FIDE models.

Thus, the main objectives of pre-processing stage have been loading, parsing,

processing and gathering the necessary information so as to create a valid JSON with

the corresponding building’s geometry to be finally loaded by the Web application.

~ 111 ~

B2.2 Application Structure

Next detailed, it is presented the structure of the Java-based FIDE processing program.

Figure 59. Java application's structure

As seen, it has been implemented five classes that provides solution to FIDE-JSON

conversion, described as following:

 Main class: It has been used as grounding, being the executable class for the

whole data preparation processing, being therefore the linking connection with

the rest of classes. Within its main method, it has been done an instance of

Utilities class, which has been in charge of the major part of the data processing.

~ 112 ~

 Utilities class: It has essentially consisted of a methods’ aggregation, which have

mainly defined the totality of processing considered in this part of the research.

It has provided a set of methods and operations which has given complete

solution to the project’s methodology issues. Utilities class has been in charge of

loading each FIDE model, parsing its content, extracting the useful data, storing

data on secondary exchange objects and finally providing a set of mathematical

methods for both graphical data management and coordinate systems

transformations.

 Find class: It has given full support to Utilities class on finding particular set of

elements along each FIDE data file.

Additionally, two exchange data classes —objects— have been created in order to store

and transfer data along processing.

 Exchange class: It is a complex and detailed exchange data class which has

served as a preliminary data storing layer, for extracted FIDE data model’s

attributes. Consequently, each Exchange object has carried the information of

each particular geometric entity —such as ellipse, circle, polygon or box i.e.—

corresponding to an unprocessed building’s geometry. It should be noted

therefore that a geometric entity may not be a single building’s face but many —

as in case of box entity, defining six faces—.

 preJSON class: It is a light-exchange data class, which has provided the

minimum and essential processed data to createJSON() method (see Figure59).

Additionally each preJSON object has carried not only the geometric vertices

data, but also the information about the number of faces describing such data, in

order to finally obtain a single JSON output depicting the corresponding

geometry per face.

B2.3 Application Behaviour

Following detailed, it is presented the Java applications behaviour (see Figure 60).

~ 113 ~

Figure 60. Java application's behaviour

Next, it is described the process flow diagram:

Firstly, the application accesses main() method in Main class, which immediately

creates an instance of Utilities class.

At this point, the main target is to call to loadFIDE(), in order to extract all useful FIDE

model’s attributes, and save them into an array of Exchange objects. In this way it is

obtained therefore as many objects as extracted geometric entities. Additionally,

loadFIDE() takes advantage of Find class which provides a specific functionality on

searching defined parameters along a collection of vertical and horizontal entities.

As observed, loadFIDE() returns an array of Exchange objects, which defines in turn

the input for coordinatesProcessing(). Despite useful information is extracted and

stored, it is required that coordinatesProcessing() accurately geo-locate each point on

the ReadyMap globe’s surface.

~ 114 ~

Therefore —and secondly— coordinatesProcessing() stores the newly processed

geometrical information into an array of preJSON objects. Detailed next, it is presented

a description of principal coordinatesProcessing() sub-processes.

Figure 61. Java application's behaviour detail

As seen, this sub-processing involves firstly, an iterative extraction of each geometric

point present in each geometric entity, its local coordinate reference system, the global

coordinate reference system, a global azimuth and the corresponding height above sea

level.

Once data extraction processing finishes, a set of coordinates’ transformations begin. At

this point it is necessary to mention that, having no purpose to go in-depth, a local

coordinate reference system may depend on either a global or a local coordinate

reference system (Garrido, 2011). Therefore it turns out necessary to adapt vertices’

coordinates in order to define all the points of any local system reference with regard to

~ 115 ~

not the global, but to the reference system — it should be noted that a global reference

system may be translated and rotated as well—.

The general geometric structure of a FIDE file concerns mainly three elements; place,

building and enclosure. An enclosure may describe more enclosures within its geometry

(see Figure 62) which in turn each of them may describe additional enclosures etcetera;

that is why a local reference system may depend on another one as mentioned before.

Following the same example, a local reference system would define the reference

context for an enclosure’s geometry; a global reference system would define the

reference context for a whole building’s geometry; and finally the reference system

would define the reference for the whole place, which can host alternatively one or

more buildings’ geometry.

Therefore, it turns out necessary to firstly transform any local coordinate into a new one

with regard to the reference system. Consequently, it is firstly necessary to apply a

sequence of change of basis and translations, from local to a global reference system,

and straight after following the same procedure, from a global to a reference system.

Secondly, it is necessary to define a set of sequential corrections. On the one hand it is

required to correct each point’s height by summing the extracted height above sea level.

This is especially important in cases such as this one, where the data are going to be

finally represented on top of a Digital Elevation Model (DEM) surface. On the other

hand it is necessary to adapt building’s orientation by correcting Azimuth angle with

regard to North direction. Additionally, it has been implemented a weighting in order to

magnify building’s size, applied not only as vertical exaggeration but also horizontal.

Figure 62. FIDE geometrical structure

place

building

enclosure enclosure

enclosure

building enclosure

~ 116 ~

Finally, the information is stored in an array of preJSON objects, which is consequently

sent to createJSON() in order to saved as a valid JSON file.

B3 Processing (Data Visualization)

In this section it is depicted the Web application’s processes and sub-processes relying

on the prepared data (see B2 Pre-processing section), in order to be finally represented

on a WebGL standard-compliant Web browser. This section is additionally divided into

two parts: File Organization and Data Visualization —the core data processing part—.

B3.1 File Organization

FIDE representation functionality relies on a similar file structure as buildings cadastre

solution. Four main kinds of files were either developed or used in order to provide as

whole, the essential graphical application’s results. a) FIDEbuildings.html, b) jQuery.js,

c) ReadyMap.js and d) FIDE_x.json.

a. FIDEbuildings.html: It is an HTML file which loads, gathers and executes tasks

relying on the following JavaScript and JSON files. It is the main grounding for

a final graphical representation, especially based on canvas HTML5 element

presence.

b. jQuery.js: It is a JavaScript Library file that simplifies HTML document

traversing, event handling, animating, and AJAX interactions for web

development.

c. ReadyMap.js: It is a JavaScript file which gathers and stores all implemented

functionalities relative to OSG.js, OSGEarth.js and the ones particularly

implemented for this research.

d. FIDE_x.json: It describes the geometry and semantic of a particular FIDE

model.

Alternatively it has been slightly modified two CSS files which help to distribute and

graphically embellish HTML elements visualization and consequently final building’s

representation.

Additionally it has been included cadastreBuildingsAndFIDE.html file in which it is

presented a merged representation of both cadastre and FIDE research’s development.

~ 117 ~

B3.2 Data Visualization (ReadyMap)

In this section it is described the core processing related to FIDE building’s rendering

process. It is further divided in four main parts: Preliminary Concepts, Drawable

Geometry, Reference Geometry and finally Drawable and Referenced Insertion.

Contrary to cadastre data processing, FIDE processing has not extruded any geometry

since, as mentioned in this Appendix A, Data Preparation stage has described the

building’s geometry by a sequence of definitions per-face. Thus, comparing with

cadastre data approach, FIDE prepared data have not needed any extra treatment before

transferring to FIDEbuildingNode.

B3.2.1 Preliminary Concepts

FIDEBuildingNode has been defined as a JavaScript object, additionally described as

the complete set of attributes and methods implemented in this research, which have

given support to any ReadyMap-based FIDE building’s representation.

As soon as an instance of a FIDEBuildingNode is made, it is defined and fulfilled the

next two attributes: origin and heightField:

 origin vertex has been created with the first tuple of coordinates —latitude and

longitude— defined in the first vertex present on the first face. This has been

used in turn as a geometric anchor point for the rest of faces associated to this

particular FIDEBuildingNode .

 heightField has been defined to store the heights of the vertices associated to

each face:

 var heightField = [face0_height0, face0_height1, face0_height2,…

 face1_height0, face1_height1, face1_height2,…

face2_height0, face2_height1, face2_height2,…]

Finally, concerning the volume exaggeration variable has been set to one, contrary to

cadastre approach. There has not been any on-globe faces magnifying; nonetheless such

weighting has taken place in data pre-processing as mentioned (see B2.3 Application

Behaviour).

~ 118 ~

B3.2.2 Drawable Geometry

The geometry for each particular FIDEBuildingNode has been described as a set of

primitives and attributes, stored in a group of arrays.

Figure 63. osg.Geometry object

Primitives have been defined as three one-dimensional element arrays where the indices

of vertex’s geometry have been stored in:

 faces: has stored the vertices indices of each face

 lines: has stored the vertices indices connections for each face.

 points: has stored the vertices indices.

Primitive values have been stored into each FIDEBuildingNode subsequently binding

them to an osg.DrawElements object. osg.DrawElements has managed the render of the

indexed primitives by firstly defining the WebGL rendering mode —GL_TRIANGLES,

GL_LINES or GL_POINTS i.e.— (Khronos Group, 2010); and secondly by assigning

the corresponding set of primitives.

In order to illustrate how osg.DrawElements has been called, a code sample is presented

below.

osg.FIDEbuildingNode

osg.
Geometry

- Primitives

- Attributes

osg.

Matrix
Transform

~ 119 ~

Figure 64. osg.DrawElements geometry insertion

WebGL GL_TRIANGLES rendering mode has been used to represent faces array data.

WebGL GL_LINES rendering mode has been used to represent lines array data. And

finally, WebGL GL_POINTS rendering mode has been used to represent points array

data.

On the other hand, three main variable-dimensional arrays related to Attributes have

been defined:

 verts (3dim): has stored vertices coordinates attribute.

 normals (3dim): has stored vertices normal attribute.

 colours (4dim): has stored vertices colour attribute.

Attribute values have been stored into each face vertex in a similar way as before (see

Figure 65), excepting the type of buffer that has been used. In the following sections

Primitive Arrays and Attribute Arrays are described.

Figure 65. osg.BufferArray binding

In order to get the best performance it has been used ARRAY_BUFFER to store the

vertex data, and ELEMENT_ARRAY_BUFFER to store the indices of the primitives to

be rendered (Munshi, Ginsburg, & Shreiner, Vertex Buffer Objects, 2009).

In the following sections, Primitive and Attribute arrays processing are described in-

depth.

this.geometry.getAttributes().Vertex = new osg.BufferArray(gl.ARRAY_BUFFER,

verts, 3);

Var tris = new osg.DrawElements(gl.TRIANGLES, new

osg.BufferArray(gl.ELEMENT_ARRAY_BUFFER, faces, 1));

this.geometry.getPrimitives().push(tris);

~ 120 ~

B3.2.2.1 Primitive Arrays

In this section it is described how primitive arrays are filled. Primitive arrays are filled

at once, unlike attribute arrays which are filled iteratively per building’s vertex.

Polygons rendering mode (GL_TRIANGLES)

In this section it described how faces array is filled, corresponding to polygons

rendering mode, in which each vertices’ indices are stored.

Building faces wrapping

Building faces wrapping has been accomplished adapting a JavaScript-based

Constrained Delaunay Triangulation library (CDT) similarly to cadastre approach.

Seeing that, face vertices have been triangulated to create a sequence of triangles which

have ended up covering the entire face surface.

Unlike cadastre approach where only roofs’ geometries were triangulated, FIDE

processing has triangulated the complete sequence of faces that each FIDE building has

been formed by. Thus, each face has been treated as a separated geometry resulting

finally in an aggregation of faces that has defined either a building or a block of

buildings.

As a result of managing an aggregation of faces, it has resulted necessary to determine

the orientation of each of them. This has been crucial due to CDT triangulate the

vertices corresponding to each of the faces on a two dimensional plane. According to

that the orientation of each face may result in an inconsistent projected shape. For

instance, if there is a vertical face whose vertices are described as (X,Y,Z), and it is

further projected either on the XY or YZ plane, the result would be a single line (see

Figure 66). Therefore, it has been implemented the following processing in order to

solve such issue.

~ 121 ~

Figure 66. Vertical plane projections

At this point, relying on the original coordinates; it has been calculated firstly the two

directional unit vectors corresponding to the face to be treated. Those directional unit

vectors have been defined by picking the first three non collinear vertices in a row that

each building’s face defines.

Secondly, the normal of the plane defined by the two calculated unit vectors has been

computed by doing the cross product of both vectors (Milne, 1948). This normal vector

has been therefore described as (x,y,z) vector. Thus, depending on which direction it

was pointing, it has been applied the consequent change of coordinates.

This methodology has been implemented by switching the coordinates to the projected

plane that better described the face geometry (for instance in Figure 66, the upper right

plane).

Thirdly, the processed coordinates have been triangulated. The resulting output has been

defined as an array of triangles that formed the treated building’s face. Each of resulting

triangles has been described in turn as an array of three vertices.

Fourthly, and identically as cadastre data’s approach, it has been necessary to

sequentially extract the corresponding index associated to each triangulated coordinate’s

vertex in order to push it into faces array. It should be noted that any switch of

coordinates previously applied must be considered at this point in order to find the right

vertex coordinate’s element.

~ 122 ~

Finally, each of the triples of vertices indices have been then bound to

GL_TRIANGLES rendering mode. In this way it has been possible to represent no

matter what face shape in an optimized way.

Lines rendering mode (GL_LINE_STRIP)

In this section it is described how lines array has been fulfilled, corresponding to line

rendering mode, in which each vertices indices connections are stored.

Building vertices connection

FIDE model line representation has been accomplished storing the faces indices into

lines array taking into consideration a special care on data endings due to

GL_LINE_STRIP mode definition (Shreiner, OpenGL Programming Guide, 2010).

Points Sprites rendering mode (GL_POINTS)

In this section it is described how points array is fulfilled, corresponding to point sprites

rendering mode, in which face vertex indices are stored.

Simple vertices representation

The faces vertices representation has been accomplished sweeping the total amount of

faces vertices, storing the corresponding index into points array and finally setting

WebGL rendering mode to GL_POINTS.

B3.2.2.2 Attribute Arrays

In this section it is depicted how colours array is filled for each face. Considering that

normals and verts array processing has not changed comparing to cadastre buildings

processing, it is not described in this Appendix A.

Face Colouring

As explained in the project’s context of this research (see 1.1 Introduction), the

background behind this project has been the processing of precise buildings’ energetic

demand, relying on 3D buildings’ geo-locations. The proposed technical approach to

such issue has been defined as a Web service which would receive both FIDE and

cadastre’s geometry in JSON format as input, subsequently obtaining an output defined

as an array of as many elements as FIDE building’s faces. At each array position it

~ 123 ~

would have been stored the incident solar radiation for each face present in FIDE

model. Additionally, those values would be limited to a zero-to-one scale.

Since the Web service is out of the bounds of this appendix and research, it has been

implemented the incident solar radiation’s face representation relying on a predefined

array. The length of this array has been set to the number of faces present in the FIDE

model.

Additionally, each of its elements has been defined with a random value constrained to

same zero-to-one scale. In this way, each output value has been transformed into red-

green-blue colour coordinates.

It has been implemented three different colour themes’ representations:

 Height colour theme (see Figure 67).

 Solar radiation greyscale colour theme (see Figure 68).

 Solar radiation varied colour theme (see Figure 69).

Figure 67. Height colour theme

~ 124 ~

Figure 68. Solar incidence greyscale colour theme

Figure 69. Solar incidence varied colour theme

~ 125 ~

B3.2.3 Referenced Geometry

Considering that Matrix Transformation processing has not been changed comparing to

cadastre buildings processing, it is not described in this appendix.

B3.2.4 Drawable and Referenced Geometry Insertion

In a final step, it has been attached to the same child:

 The Drawable Geometry, which have defined the topology of the faces that by

aggregation have defined consequently a building.

 The Referenced Geometry, which have accurately placed such topologies on top

of the globe’s surface.

B4 Results

FIDE buildings implementation has defined a new generalized way to treat and finally

represent geo-data on top of a WebGL-based globe’s surface. Comparing to cadastre

buildings’ approach, FIDE approach has been based on a per-face data processing

taking advantage of the innovations implemented on this research. By adapting a CDT

library, it has been provided an innovative way of data representation for WebGL-based

applications; additionally based on a client-side data processing contrary to

conventional server-side-based approaches.

Indirectly, FIDE buildings implementation gives support to data representation coming

from present and forthcoming Web-based geo-processing. Such implementation

provides support for a new range of emerging Web-based market solutions.

~ i ~

A Case Study of Valencian Cadastre and FIDE Building Model

DESIGN AND IMPLEMENTATION OF 3D BUILDINGS

INTEGRATION FOR A WEBGL-BASED VIRTUAL GLOBE

2
0
1
2
 Daniel Gastón Iglesias

~ i ~

