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EVALUATION OF SPATIAL INTERPOLATION TECHNIQUES
FOR MAPPING CLIMATE VARIABLES WITH LOW SAMPLE
DENSITY

A case study using a new gridded dataset of Banglesh

ABSTRACT

This study explores and analyses the impact of Eadgnsity on the performances
of the spatial interpolation techniques. It evadgatthe performances of two
alternative deterministic techniques — Thin Plagdir®@ and Inverse Distance
Weighting, and two alternative stochastic techngjue Ordinary Kriging and
Universal Kriging; to interpolate two climate ind& - Annual Total Precipitation in
Wet Days and the Yearly Maximum Value of the Dalgximum Temperature, in
a low sample density region - Bangladesh, for 68rye- 1948 to 2007. It implies
the approach of Spatially Shifted Years to creagamvariograms with respect to
the low sample density. Seven different performameeasurements - Mean
Absolute Error, Root Mean Square Errors, Systenfatot Mean Square Errors,
Unsystematic Root Mean Square Errors, Index of éwgrent, Coefficient of
Variation of Prediction and Confidence of Predictibave been applied to evaluate
the performance of the spatial interpolation teghes. The resulted performance
measurements indicate that for most of the yeaeslhiversal Kriging method
performs better to interpolate total precipitatiand the Ordinary Kriging method
performs better to interpolate the maximum tempeeatThough the difference
surfaces indicate a very little difference in trstireating ability of the four spatial
interpolation techniques, the residual plots refer the differences in the
interpolated surfaces by different techniques irms of their over and under
estimation. The results also indicate that the feweDistance Weighting method
performs better for both indices, when the sammasdy is too low, but the

performance is questioned by the inclusion of mesasant errors in the



interpolated surfaces. All the error measurememtsvsa decreasing trend with the
increasing sample density, and the index of agreeamed confidence of prediction
show an increasing trend over years. Finally, tlheng correlation between the
Sample Coefficient of Variation and the performameeasurements, implies that
the more representative the samples are of theawirphenomenon, the more
improved are the performances of the spatial iofatfppn techniques. The
correlation between the sample coefficient of weoraand the number of samples
implies that the high representativity of the saamigl attainable with an increased

sample density.
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1. INTRODUCTION

“The choice of the appropriate methodology of ind&fion of climatic data is
crucial in order to obtain a correct representatiohclimatic field$

- Criscl, et al. 2006

The choice of appropriate spatial interpolatiorhtégue is a crucial research question
since there is no single preferred technique; ratieechoice depends on the interpolation
performance in regards to the characteristics ®efstndy area and data set. The question
becomes more critical since sample density of thegilarly distributed space-time
climate data has a significant effect on the spatiterpolation techniques in their
performance. The chapter outlines the rationalth@fsample density impact research in
spatial interpolation performance analysis for ithegularly distributed space-time data
in light of existing researches. It describes andssout the research objectives and
propositions to carry out the entire research.Idb atructures the research manuscript

from this starting chapter to the concluding chapte

1.1 Background and rationale

Spatial interpolation techniques have been usednfapping the spatial patterns of
climatic fields in several regions of the worldcbkuas Franceweisse, and Bois, 2001),
Germany faserLanpT, 2007), Great Britain I(Lovp, 2005), Italy (Diobato, 2005), Mexico
(Bokr, et al., 2001; CARRERA-HERNANDEZ, and GaskIN, 2007), Portugal PurAo, et al., 2009; and
GoovAERTs, 2000), and the United States of Amerigevfiakipis et al., 2001). There have
been a few studies conducted on the Bangladeshateljmbased on the data from
meteorological stations; but so far no study hanlmnducted in Bangladesh to analyze
the spatial patterns of climate indices. This kafdstudy is very important since many
climate indices representing a wide variety of As@imate aspects are already in the
phase of implementation. For examp$eHaiLa and Jemain (2011) analyzed the spatial
patterns of rainfall intensity and concentrationices over the Peninsular Malaysia.
Moreover, global continuous surface models of clamm@sponse are no longer useful for
practical reasons; international agencies, espgcfahding agencies are nowadays
asking for regional datasets of climate change ftbe developing countries for the
purpose of their recently taken funding scheowr€c, 2012).



Spatial interpolation techniques have been profyunded to quantify region-specific
climate change based on historical dai&xé et al. 1998). But since there is no single
preferred technique for spatial interpolation, énisrno local accurate interpolated surface
for mapping climate indices. Additionally, data wa#ability and low sample density for
spatial interpolation have made the problem moreptwated for the developing
countries. Recently it has been explored thatderdiensity datasets, complicated spatial
interpolation techniques do not show a significagileater predictive skill than simpler
techniques HRicH, et al., 2002; GoovAerTs, 1998; and Isaaks, and SRIVASTAVA, 1988). On the
other hand, a high density climate dataset is ttain@ble for developing countries due to

techno-economic reasons.

Therefore, selecting the locally appropriate intdgpon technique is very important for
mapping climate indices of Bangladesh in respeetty low density of sample. Yet the
problem of low sample density has not been propedgressed by the scientific
community. Though some of the authors have addiesseproblem, the contribution is
insignificant @noerson, 1987; and CHowbHURY, and DessHARMA, 1992). Consequently, these
issues motivated the research on an evaluatioheofvailable interpolation techniques
based on the spatio-temporal characteristics dinsate dataset to analyze the climate
variability phenomenon for a low sample densityioag- Bangladesh. Two climate
indices have been selected, which are recommengétehloint Project Commission for
Climatology/Climate Variability and PredictabilitfCLIVAR) and Joint WMO/IOC
Technical Commission for Oceanography and Marindebt®logy Expert Team on
Climate Change Detection and Indice®T€rson et al. 2001; ZHane, 2009), namely
PRCPTOT and TXx. The PRCPTOT characterizes theartotal precipitation in wet
days, and the TXx corresponds to the yearly maxinvatoe of the daily maximum
temperature.

1.2 Research objectives

The following research objectives have been estiadi:
Exploration and Indices’ Pattern Analysis:
¢ To compile a rainfall and temperature dataset famgtadesh.

* To compute annually defined climate indices, ablprovide information on the

climatic variability, from the dataset.



« Investigate the spatial and temporal variabilityhed climate indices.
Uncertainty reduction in modelling and Interpolatio

e Prepare continuous surfaces with two alternativeterdenistic spatial

interpolation techniques - Thin Plate Spline & IrseeDistance Weighting.

* Improve and model the experimental variograms foclsstic interpolation by
providing them with enough pairs of points to motted spatial dependence in

response to low sample density.

* Prepare continuous surfaces with two alternatieergistic methods - Ordinary

Kriging & Universal Kriging applying improved vargpams.
Performance Evaluation and Sample-density Impaetysis:

« Evaluate the interpolation cross-validation resuiiys using suitable statistical

performance measurements.

* Analyse the impact of low sample density on thefggarance measurements

over time.

1.3 Research scopes and propositions

This research is aimed to evaluate the performaficgpatial interpolation techniques
applied two most suitable and applicable indicest tfhescribe climate variability in
Bangladesh. The indices are calculated for eacth@favailable years in dataset and
interpolated surfaces are then created. Additigndike research is aspired to improve the
performance quality of the stochastic interpolatiechniques. Most importantly, the
research is aimed to analyze changes in the peafuren of spatial interpolation

techniques with changing sample or spatial poinsig.
The following propositions are considered in tiyhtiof the described research scopes.

1. Sample or spatial point density does have a sigmifi effect on the performance
of spatial interpolation methods; the performarmoproves with the increase in

sample density.



2. As a consequence of the dissimilar inherent metloggo different spatial
interpolation techniques result in significantlyffelient climate surfaces even
though they utilize the same climate dataset; lheidifference decreases with the

increase in sample density.

1.4 Structure of the manuscript

The manuscript consists of six chapters — Intradogtliterature Review, Study Area,
Dataset and Climate Change Indices, MethodologysuRe and Discussion and
Conclusion and Further Scopes (Figure 1.1). Tts¢ @ihapter, introduction, outlines and
describes the research background, rationale, tbl@scand propositions. The second
chapter summarizes the literature that has beelestand describes them in the light of
spatial interpolation of climate variables and leample density. The third chapter
introduces the study area and describes its impoféatures. Furthermore, it describes
the dataset and climate change indices. It algstitites the spatial and temporal trend of
the calculated climate change indices over theystwda and study period. The fourth
chapter, methodology, explain see above the useithoae for spatial interpolation
techniques and their performance evaluation. Tiie ¢éhapter describes the results that
have been obtained from the analysis implying tle¢hodology, and shows the created
interpolated surfaces, their differences and esiimanbility. It also explains the trend of
performance measurements over time with the intrgasample density. The final
chapter summarizes the findings from the study @uttines the limitations and further

scopes of the study.

1.INTRODUCTION

* Rationale

* Objectives

* Propositions

» Manuscript structure

6.CONCLUSION AND
FURTHER SCOPES

« Limitation
« Further scopes

2.LITERATURE REVIEW

« Spatial interpolation of
climate variables

«Low sampledensity

5.RESULTS AND
DISCUSSIONS

« Spatial interpolation results
« Performance evaluation

« Impact of low sample densi

3.STUDY AREA, DATASET
AND CLIMATE CHANGE
INDICES

« Study area
« Dataset

« Climate change indices —
PRCPTOT and TXx

4. METHODOLOGY

* Deterministic spatial
interpolation

* Spatially shifted years
« Stochastic spatial
interpolation

Figure 1.1: Structure of the manuscript.



The manuscript also contains the bibliographicrezfee and thirty annexes at the end.
The bibliographic references list the literaturatthas been studied for the study and
which the information has been extracted from. @heexes contain created interpolated
surfaces by the four methods for the two climai@ngfe indices, their difference surfaces,

the residual plots and the performance measureialeles.

1.5 Chapter conclusion

This chapter has discussed in detail the reseaachgbound and rationale followed by
the objectives and propositions. In a nutshell, shaly is going to explore and analyze
the impact of sample density on the performancespatial interpolation techniques.
Additionally, it is going to evaluate the perforncas of the four mentioned spatial
interpolation techniques to interpolate the twanelie change indices. The main goal of
this study is to prove the propositions. The foilogvchapter, literature review, is going
describe the concepts of spatial interpolation lodhate variables with low sample
density; which will elaborate the concepts thatehbgen mentioned in the objectives and

propositions.



2. LITERATURE REVIEW

The inherent responsibility of the professional®owleal with climate and climate change
is to provide insights regarding climate variakdesany place at any time. The crucial part
of this responsibility is to predict those variablat those places and times where
observations of the climate elements do not &xigiro, 2007). The problem has become
even more critical when it was proved by the cliohagists that the global metric is for
climate change is no longer useful because clireffeets are felt locally and they are
region-specifioqCHowbHury, and DessHARMA, 1992). From this point of view, special skills
and knowledge are required to predict and resutiénmost reliable value for the desired
climate information. AsTverro (2007) presents, “traditionally this is done by using
observed values at neighboring stations which hem tadjusted for representativity,
terrain and other effects affecting the local cliohagy. Such estimates have usually been
carried out as single point calculations, ofteruding subjective considerations based on
local knowledge and experience. Most of these esdmwill not be consistently derived
and they are thereby not reproducible and cannoefarded as homogenous. They are

therefore of limited value, for example, for advadclimate analysis.”

This chapter conceptualizes the application ofigpaterpolation techniques to estimate
the climate variables at not-sampled locationsldb describes what could be an ideal
sample size for these spatial interpolations amd éxisting research has dealt with small
sample size and low sample density in this respect.

2.1 Interpolating in space-time with climate varialdes

Spatial interpolation techniques, as geostatistiestimation techniques, with their
inherent properties and applications, have succkgdieen implemented to combine
different georeferenced climate variables and patam in such a way that it is now

possible to give consistently derived estimatesrat place at any timecHou, 1997;
GOOVAERTS, 1998; IsaAks, and SRIVASTAVA, 1989; JOuRNEL, and HUIJBREGTS, 1978; PHILLIPS, et al.,

1992; and Tasios, and SaLas, 1985). This is also because of the fact the interpafatio
techniques deal with the most important propertyclirhate variables — they have a
temporal extent along with a spatial ext@mitcHinson, 1995). CARuso, and QUARTA (1998)

have classified the techniques according to theindémental hypotheses and
mathematical properties, which are entitled aséidsinistic method, statistical method,

geostatistical method, stochastic simulation methdgsical model simulation method



and combined method”. The application and perfoaarf the classified techniques are
solely dependent on their research areas and thgwmriand parameters used. Thus,
obtaining a universally appropriate spatial intéaion technique for a particular
application is impossible; rather locally an apalion oriented interpolation technique is
obtainable(xiy, et al., 2003). Additionally, this locally appropriate spatialt@énpolation
technique selection is subject to the qualitatime guantitative analysis of the local
spatial data, their exploratory analysis and déiférstages of trial and errors with the
techniques which is commonly recognized as crofdateon. More precisely, the result
of the appropriate technique needs to be furtham@xed for their accuracybovaerrs,
1997; and TvEITO, 2007).

Cressie (1991), Szentimrey (2002) and Szentimrey, et al. (2005) have suggested a range of
mathematical statistical and geostatistical (stettbamodels of spatial interpolation in
light of meteorological prediction. Among them, eetinistic and stochastic methods
have turned out to be the most simplistic and bédianethods for climate variability

analysis. Recently it has been explored that foalssampled datasets, complicated
kriging methods (stochastic) do not show signiftbargreater predictive skill than

simpler techniques, such as the inverse squarandistmethod (deterministi@Howwmik,

and CABRAL, 2011; and IsLAm, 2006).

2.2 Sample density and estimation uncertainty

Statisticians have been utilizing the concept obéfficient of Variation k) as a
determinant of the sample size for statisticalnestion with respect to the expected
confidence leve{BeLLe, 2008) for a long time. A®eLLe (2008) indicated, the coefficient of
variation (<) is a dimensionless number that quantifies theeegf variability in respect
to the mean. The sample coefficient of variationc@culated using the following
formula:

Where, s is the sample standard deviation, which is theutated square root of the
unbiased estimate of the variance, #ids the sample mean. THevalue is sometimes
multiplied by 100 so that the ratio of the standdediation to the mean is expressed in
terms of a percentage. Therefore, it is commonbeptad, if the coefficient of variation
is high, the mean is not representative of thealdai behavior. The threshold value has



been set as 50%ronso, and Nunes, 2011) which means if the coefficient of variation of a
sample set is more than 50% then the statisti¢ethason using these samples will end

up with high uncertainty in general which meansdbkgmation is less accurate.

LyncH, and Kim (2010) explain a way to prevent the curse of uncertathtg to the high
coefficient of variation, which is to adjust thergale size. They describe the relationship
among coefficient of variation, sample size andeutainty with a mathematical function
which illustrates that when the coefficient of aion is higher, the sample size should
be high enough as well to reduce the uncertainly abtain the accepted level of
confidence. They, in conclusion, have providedidet{Table 2.1) showing the required
number of samples for a certain level of coeffitien variation with corresponding
expected uncertainty. The table clearly showsithiis objected to estimate with 95% of
confidence (which denotes that mean error of esibmahould not be more than 5% of
sample mean), for a coefficient of variation of 2088 samples are required but on the

other hand if the coefficient of variation is 80683 samples are required for estimation.

KeLLey (2007) describes @imilar concept likeLynch, and Kim (2010), but in an elaborated
and functional way. He introduces some importantupeters — expected confidence
interval width (E[w]), desired full confidence im&l width () and desired degree of
assuranceyf, to identify the level of confidence more pretysand then figures out the
required number of samples for estimation with ekpeé uncertainty through a
mathematical function. As Table 2.2 illustratesegtimate with 95% confidence where
the desired full confidence interval width is 10%=0.10) and desired degree of
assurance is 99%y=£0.99); if the coefficient of variation is 20%, 62 the required
sample size and if the coefficient of variationr58% then 401 samples are required to

estimate with expected confidence level.

Thus the sample size plays a significant role atigtics and so in geostatistics, since
estimating with reduced uncertainty is the expla@iin of any geostatistical analysis
(Israks, and SRivAsTAVA, 1989). This is even more critical in interpolation sirite required

to take into account the relative distances ofsémaples along with their values; for there
is a serious consequence of the property — “thédajlonformation carried by the
stationary mean becomes preponderant in prediettoremote neighboring data bring
less information about the unknown value at a diskacation” Goovaerts, 1997). This
property along with the properties fromnch, and Kim (2010) and KerLey (2007) clearly
indicates the concept and problem of low samplesithein spatial interpolation. Thus, if
the sample size is smaller than the minimum requérd for a desired confidence with an
appointed coefficient of variation and the aremisontrast too large to interpolate with



inadequate samples, the interpolation results gndith a huge amount of unexpected

uncertainty and thus hamper the interpolation ¢ali

Even without coefficient of variation, sample siaéways determines the risk of
prediction ¢ value) for a constant variation in the samples,ctwvhis stated by

Chebyshev's Rul@srLe, and Macong, 1990). Sample size and value are always inversely
proportional, so a decrease in the sample sizeyalimareases the risk of prediction. And

whenever the area of prediction increases thamigieases proportionally.

Table 2.1: Sample sizes and margin at different coefficientafation described biynch, and Kim
(2010); N = sample size, z= score of divergence of thEedarmental result and cv = coefficient of
variation.
N=(z'2)"(evev )/ fomean hmean)

Coefficient of Variation = .20 | |Coefficient of Variation = 40 | |Coefficient of Variation = 60 Coefficient of Variation = .80 Coefficient of Variation = 1.00
3% of Mean 120271 12027 12027 | | 48107 | 481.07) 481.07| | 108241 1,08241 | 1,08241| | 192428 | 1,924.28| 1,92428 | | 3.006.69 | 3,008.69 | 3,008.69
4% of Mean 6765| 67.65| 6765) | 27060| 27060| 27060| | 60886| 608.66| 60886 [ 1,08241| 106241 | 1,08241| | 1,691.27] 109127 | 169127
5% of Mean 4330 4330) 4330) | 17348| 173.9( 17319( | 36067| 38967 38967( | 6o274| 69274| 68274 |1,08241) 108241 108241

Table 2.2:Necessary sample size for 95% confidence intefealthe coefficient of variation in
selected situations describeddyiey (2007), with desired degree of assurance of achieving a
confidence interval no wider than desired.

K
© 005 010 015 0.20 0.25 0.30 0.35 0.40 0.45 0.50

E[w]
010 199 790 1.812 3325 5408 8166 11,724 16,233 21,866 28819
025 37 131 295 537 871 1,312 1,882 2,603 3,505 4,618
.050 13 37 78 139 222 333 475 656 882 1.160
075 8 18 36 63 100 149 213 296 396 520
100 6 12 22 38 59 87 123 168 225 294
125 5 9 16 26 40 58 81 110 146 191
150 5 8 13 20 29 42 58 78 104 135
175 - 7 10 16 23 32 44 59 78 101
200 - 6 9 13 18 26 35 47 61 79
y= .80

010 215 823  1.866 3401 5511 8300 11,896 16450 22,136 29,150
025 42 144 316 567 911 1.366 1.950 2,690 3,613 4,751

050 16 43 88 153 242 360 510 700 936 1,227
075 °o 2 43 73113 167 238 325 433 565
100 714 27 45 69 100 140 190 253 328
125 6 11 19 31 47 68 94 127 169 219
150 5 9 15 24 35 50 69 93 122 158
175 - 8 12 19 28 39 54 72 94 121
200 - 7 1 16 23 32 43 57 75 97
y=.99
010 246 886 1964 3540 5698 8544 12207 16841 22,621 29745
025 55170 357 625 989 1466 2079 2852 3814 4996
050 22 57 110 184 283 413 578 785 1042 1357
075 13 31 58 94 142 205 286 385 507 656
100 9 2 39 62 02 131 179 239 311 401
125 8 17 30 46 67 93 127 168 219 281
150 7 14 23 36 52 72 98 129 167 212
175 12 20 30 43 59 79 104 134 170
200 10 17 26 37 50 67 87 112 142

GouLARrD, and VoLTz (1993) applied geostatistical interpolation methods tedgt functions
at non-sample sites assuming that the functions wely known at a small set of points.
The idea has been extended &yaioo, et al. (2011) through overcoming the explicit

assumptions on parametric modelling and a smallbauraf observed points per function



for penetration resistance of the soil. They appdienon-parametric fitting pre-process to
the observed functions where the smoothing parametehosen by functional cross-
validation. As such, smoothness improvement isre@m due to the existence of the low
sample density problem and in the case where thsitgleof samples is significantly low
(even half or one third than the required sampie $br expected confidence) the
interpolation and smoothness improvement need Wamaglysis and determination of the
variability function. The problem becomes even mmigcal when there is no possibility
to get enough points or a superimposing layer gifi nesolution remotely sensed dataset,
or other secondary data spatially correlated wligh variable of interest which would
allow using an alternative multivariate techniquer festimation and smoothness

improvement.

2.3 Interpolation in space-time with low sample desity

In case of low sample density, spatial interpotaibighly smooth the predictions, which
is especially undesirable for climate variablescsirtlimate variability is not smooth
neither perpetual. The smoothing basically depamdthe local sample configuration, it
is minimal close to the sample locations and ireesaas the location of estimation gets
further away from the sample locations. Extensim@athness of the interpolated surface

justifies the problem of low sample density.

The problem of interpolation with low sample depshias been realized by the
geostatisticians in many cageskks, et al., 1998; HABERLANDT, 2007; PHILLIPS, et al., 1992; and
TaBlos, and SALAs, 1985), but no one has actually dealt with it. All of thénave adopted the
classical approach of using auxiliary informationestimation, such as high resolution
datasets. HaserLaNDT (2007) superimposed 21 measurements stations for extreme
precipitation with a high resolution RADAR datasmtd overcame the problem of

interpolation with small sample size.

The problem was actually addressed for the firsietiby DumoLarp (2007) and Tverro
(2007), though their focus was basically on the irregudtribution of the samples that
resulted in low sample density in some parts off thiedy areasrTverro (2007) eventually
figured out that uncertainty of interpolation is fanction of sample density and
uncertainty increases with the decrease in sangneity. In the spatial interpolation of
temperature data, this author used well known esidual kriging’ (detrended kriging)
which consists of two components — a deterministizdel and a stochastic residual
model. Taking into account the variability in timmeans of monthly, seasonal or annual
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temperatures were interpolated with different deteistic models for every month or
season. Finally the deterministic model was rediped by predicting the model
parameters within a moving window and the remaimggidual field was interpolated by
applying stochastic kriging method. Interpolatingegpitation was more complicated

than temperature “since precipitation is non-camgirs in space and timeéfverro, 2007).

DALy, et al. (1994) proposed the Precipitation-elevation Regressioindependent Slopes
Model (PRISM), which is based on local climate-aléen regression functions. Long-
term mean precipitation has been interpolated basethe principles of the PRISM-
method whichScrwars, 2001) incorporates different terrain characteristickops, aspect,
etc. with a linear regression approach enablingube of topographic information at
several spatial scaleDalv, et al. 2002; and 2006). ScHware (2001) combined radar

information and in-situ observations to carry autlier analysis.

On the other handyumoLarp (2007) dealt with a typical problem of sparsely distrioit
samples. He figured out that a simple linear regioesbetween latitudes and longitudes
of the station locations for the 168 points give’2af 0.05 for an area of approximately
150,000 sq.km. And thus he found out that the ibiba o of a false rejection of
independence between X and Y is 0.044. What he edbokit was giving a weak= 0.01
risk, independence between latitude and longituetebeen rejected but giving a larger
but reasonable = 0.05 risk, it has been accepted. Finally, afteloducing altitude and
creating the samples’ their ‘influence buffer’, tieided the entire study area into some
clusters with homogenous distribution of samplesitgnand interpolated each cluster
separately and aggregating them to get the intatipal result of whole study area
(Figure 2.1). Thus he achieved a global improvenigacy by combining the uncertainty
of the local interpolation results since the clustéh higher sample density provided far
lower uncertainty than the low density clusterse Tombined result also gave reduced

uncertainty than considering all samples of the\starea as a whole.

HasLETT, and RAFTERY (1989) compensated the fact of few spatial points in yaislwith

high density of temporal points. They use long t&wurly records of wind speeds at the
12 synoptic meteorological stations on a simple paigimonious approximating model
which accounts for the main features of wind spaedeeland, namely seasonal effects,
spatial correlation, short-memory temporal autcglation and long-memory temporal
dependence. Based on the temporal autocorrelatfoihe station wind speed values and
distance correlation analysis of the seasonal eHealysis, they decided to take one
station (Rosslare) out of the variogram analysi€esithis station was acting as outlier
(Figure 2.2). Resulted long-memory temporal depeoeeof the data was used in

11



synthesizing deseasonalization, kriging, ARMA mdidgland fractional differencing in

a natural way.

(b)

Figure 2.1: (a) Distribution of the samples and (b) clusteriighe study area according to
homogeneity of sample densitybomvoLarp (2007). The hierarchical legend means the sub-regions
1-with a low density of points and a concentratatigsn 2-with a low density of points 3-with a

concentrated pattern 4-with correct density antepaf points and 5-with a good sample

(density + pattern).

For their case, simple kriging estimator performdlvas a point estimator and ARMA

modeling as good interval estimator after fittingttb estimators in space and time. The

cross-validation with the fitted models also resdlin significantly reduced errors which

encouraged considering temporal variability andedelgence in interpolating with low

spatial density of samples. This means the lowitleimsthe spatial extent of the data and

resulted uncertainty due to that can be minimizgdubing the high density in the

temporal extent in creative ways.
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Figure 2.2: (a) Distance-correlation plot and (b) correlationctions of the velocity
measurements for the first six stationsiiaerT, and RarTery (1989). Each cross at (a) corresponds
to a pair of synoptic stations and the dots cowmadgo pairs which include Rosslare and show
lower correlation than others. Rosslare also shidesstical pattern in terms of autocorrelation at
different time lags at (b).

RAuDYs, et. al (1991) analyzed typically the influence of both trainiagd testing sample
size on the design and performance of pattern retog system. They clearly proved
the existence of “curse of dimensionality” whichpiies that the classification accuracy
obviously increases with the increase in the nundjesample; thus a large training
sample size is required for applications with largember of features and a complex
classification rule, and a large test sample sige@equired to accurately evaluate a
classifier with a lower error rate in cross-validat It is true that classification and
interpolation are two different concepts apart frima fact that they both need to train
samples and evaluate their performance throughsckadidation. In interpolating
continuous variables, leave-one-out cross validagdypically used.

But still the following approaches they suggestdntrease the classification accuracy
and to minimize estimation error from cross-valiolat seem even very useful for
interpolation.

1. Increasing the features and thus artificially pregaa sample size sufficient to

improve learning accuracy and estimation error.
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2. From the finite number of training samples cargfudhoosing those samples
which support to improve the design of spatio-terapoariability and discard

outliers.

The second approach implies to take out samplesgaets outliers during model
preparation. In case of interpolating in space-timere care is needed in this regard

since full stations along with their complete tisgies might be needed to be taken out.

Finally, DosescH, et al. (2001) indicated some important properties of interpolatiesults
using the sparsely distributed and low density samhey claim that the map of local
interpolated values of the variable will be smodtifehe variable is spatially continuous;
but the representativeness of the sample locally lba smoothed and mapped if
superimposed to the interpolated values and theaglguality of the interpolation can be
assessed through an analysis of variance. The rausiiggested “test several methods,
choose the right method, and correct use of th@edeand validation” as the sequence of
approaches to carry out the interpolation in spame-with low sample density and

reduced uncertainty.

2.4 Chapter conclusion

This chapter has presented a detailed overviewhefpreferred spatial interpolation
techniques by the scientific community for mappidgnate variables. It has also
discussed the ideal size of sample for statististimation with acceptable accuracy.
Furthermore, various approaches by the geost#iss to deal with the sample density
problem have been outlined. The next chapter, sardg, dataset and climate change
indices, will describe the study area and datasdtulate the two climate change indices
and analyse their behavior over space and time.ifitiees will be used as input of

spatial interpolation in light of the experienceanfi the literature review.
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3. STUDY AREA, DATASET AND CLIMATE CHANGE
INDICES

The characteristics and important features of thdysarea and dataset are key issues to
be considered in the choice of spatial interpofatechniques. There are specific spatial
interpolation techniques, which are developed tecsjgally apply in case of certain
features of the study area and dataset. This ahapiines the important decision
making features to choose appropriate spatial potation techniques to evaluate. In
addition, it calculates and characterizes the tiimate change indices that are used as

input for the spatial interpolation of the climatgenomenon.

3.1 Study area - Bangladesh

Bangladesh, situated in south-east Asia, is onth@fmost vulnerable countries of the
world regarding the adverse impacts of anthropagelitnate changesgaun, 2010; Cal, et

al., 2010; CHOwWDHURY, and DEBSHARMA, 1992; KLEIN, et al., 2006; and SHaHID, 2009) (Figure 3.1).
The total area of the country is 147,570 squarenkéiter BBS, 2009), approximately one
fifth of which consists of low-lying coastal zonasthin one meter of the high water

mark (PCcC, 2007).
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Figure 3.1: Study area — Bangladesh with world location andngdeorological stations to
measure daily precipitation and temperai{@r@wwmik and CasraL, 2011).
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Threats of sea level rise, droughts, floods, aidaeal shifts due to global warming have
been presented in many recent studies on the godrite rainfall regime of the country
is highly variable in both time and space. The ahinoean rainfall varies from 1400 mm
in the west to more than 4300 mm in the east ofcthentry Granip, 2010). The mean
annual temperature has increased during the pedbd1895-1980 by 0.3C
(PARTHASARATHY, et al., 1987) and the annual maximum temperature is predicieddarease
by 0.4C and 0.7%C by the year of 2050 and 2100 respectiv&hriakar, and SHRESTHA,
2000; and Mia, 2003). The Bangladesh Meteorological Department (BMDB) the
authorized government organization for all metemglal activities in the country. It
maintains a network of surface and upper air olageries, radar and satellite stations,
agro-meteorological observatories, geomagnetic seidmological observatories and
meteorological telecommunication systems. The depant has its headquarter in the
capital Dhaka, with two regional centers — the Bt&Warning Centre (SWC) in Dhaka
and Meteorological & Geo-Physical Centre (M & G@) Chittagong. It measures the
daily precipitation and daily temperature with tifour meteorological stations situated

in different locations all over the countiyMiCCDMP, 2012) (Figure 3.1).

3.2 Dataset and materials

The dataset used in this study includes daily pition and temperature measurements
from the meteorological stations of BMD for 60 y®ae. 1948-2007. The dataset is not
available from the beginning of the study perioddth stations; precipitation data from 8
stations and temperature data from 10 stationgaiadle for 1948 and there is a gradual
increase of precipitation data from 32 stations tamdperature data from 34 stations by
2007 eventually. ‘Spacetime’, ‘intamap’, ‘fieldshé ‘gstat’ packages of the open source
statistical software ‘R’16Mwuww), 2012) and ArcGIS version 10.CE4ri, 2012) by Esri

are utilized in order to analyze and compute tha.da

3.3 Climate change indices

Two climate change indices — PRCPTOT and TXxrgrson et al. 2001; PLUMMER, et al.,
1999; Santos et al., 2011 and You et al. 2011) have been calculated from the available
precipitation and temperature data for each yed9d8-2007 and for each station. These
climate change indices are internationally recogmiand have been used in different
climate change studies of different regions ofwleeld (iPcc, 2007).
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PRCPTOT refers to the annual total precipitationwit days Feterson et al. 2001; and
You et al. 2011). Since Bangladesh has clearly defined wet daykdnyear, the weather
phenomenon is known as ‘Monsoon’ and is preseniuime-September of every year
(ALEXANDER, 1999; BRrRAUN, 2010; MEF, 2008; IPCC, 2007; and WB, 2012), PRCPTOT is the

most representative of change in precipitation. foimeula for calculating PRCPTOT is:
if RRy s the daily precipitation amount on dayin period / and if{ represents the

number of days irf , then @eterson et al. 2001)

I
PRCPTOT; = ) RRy
E=1 eeeee e (3.0)

TXx refers to the yearly maximum value of the daitgximum temperatureréterson et
al. 2001; and PLUMMER, et al., 1999). Previous studies have proven that the change in
temperature of Bangladesh due to climate changeoig recognizable from the change

in maximum temperatureBgaun, 2010; and Cal, et al., 2010). The formula for calculating

TXx is: if TXx is the daily maximum temperaturesperiods , then the maximum daily

maximum temperature each yearAsrtérson et al. 2001):

TXx; =max(TXX;) ..o (3.ii)

The calculated climate indices — PRCPTOT and TXowsbpatial trends over the study
area (Figures 3.2 and 3.3). The PRCPTOT valuegaser with an increase in longitude
and decrease with an increase in latitude (Figu2¢. Ihis indicates that PRCPTOT
shows a spatial trend from the northwest to theheast direction i.e. higher monsoon
precipitation is experienced in the southeast regib the country. The correlation of
PRCPTOT with longitudeQ(55 is higher than the correlation of PRCPTOT wittitlale
(-0.42, which indicates that the spatial trend is masmohant in west-east direction than
north-south direction. On the other hand, the TX&ues increase with an increase in
latitude and decrease with an increase in longitirdgure 3.3). This indicates that TXx
shows a spatial trend from the southeast to théhwest direction, i.e. a higher yearly
maximum of the daily maximum temperature is experéel in the northwest region of
the country. The correlation of TXx with longitude0.52 is again higher than the
correlation of TXx with latitude Q.34), which indicates that the spatial trend is more
dominant in the west-east direction than the nediith direction. It is important, since
Bangladesh is a flat countrigei, et al., 2006), that the correlation of both PRCPTOT and
TXx is insignificant with altitude and thereforeigiet does not affect the spatial trend of

the indices.
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Figure 3.2: Spatial trend PRCPTOT to southeast direction lioyesars, (a) decreasing trend with
increasing latitude and (b) increasing trend wittréasing longitude.

@) (b)
Figure 3.3: Spatial trend TXx to northwest direction - (a)re&sing trend with increasing latitude
and (b) decreasing trend with increasing longitude.

The results of the analysis of the general tempoeald of the calculated climate change
indices are presented in Figure 3.4. For PRCPTOfBnge of -18 to 36 for the trend
value has been obtained. Most of the stations stroimcreasing trend of PRCPTOT over
time. Especially the stations in the southeastoregif the country experience the highest
increasing trend, where the highest values of PRTIP@re also experienced. On the
other hand, for TXx a range of -0.09 to 0.33 foe tinend value has been obtained.
Though most of the stations show an increasingdtnTXx, almost all the stations in
the mid-region, including capital Dhaka, show ardasing trend. The station at Rangpur
district, which represents the warmest region & tountry BBS, 2009), shows a
decreasing trend of TXx. This fact indicates chg#nht the climate is shifting, which will

result in the climate change consequences forrthieoamment.
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Figure 3.4: Temporal trend of (a) PRCPTOT and (b) TXx in evetigtion location.

Detailed temporal variability of PRCPTOT and TXx @very station is presented in
Figures 3.5 and 3.6 respectively. It is difficudtredict any detailed temporal trend for
the indices, but the variability at some statiogalions show a trend in the index

behavior. It is obvious that the variability in tRRCPTOT index is more dominant than

in the TXx index.
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Figure 3.5: Temporal variability of PRCPTOT in every statiattion.
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Figure 3.6: Temporal variability of TXx in every station lodat.

The sudden increase and decrease in the variabiktycaused by the inconvenient data
quality, which could not be evaluated within thésearch scope. Figure 3.5 and 3.6 also
represent a lot of missing indices in the timeeserivhich are occurred by the missing
data in the original dataset. The missing dataldess considered as no data value in
calculation of the indices and thus the producessimg indices in the time series do not

take part in the spatial interpolation.

3.4 Low sample density problem to interpolate climge change indices

As described in chapter 2, like any statisticainestion, spatial interpolation requires a
sufficient number and density of samples to obtaiceptable accuracy. In light of this
discussion, interpolation of both PRCPTOT and TXdices for Bangladesh experiences
the low sample density problem. Considering 34 nrelegical stations which are
available in maximum in 2007 to interpolate TXxcleastation is used to estimate the
continuous surface for 4340 square kilometer anddach is very big for a station to
estimate. Figure 3.7 represents the fact cleahy; dize of the Voronoi polygons to
estimate is very big. TheRvalue of simple linear regression between latitaael
longitude of the stations is 0.339 which is goodnirthe perspective described in

DumMoLARD (2007), because it means that the stations are moressreeenly distributed.
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But the risk of estimation for TXx is 0.008 when the sample size is 34, dbdecreases
to 0.000006 if the sample size is increased to wd@n other parameters remain constant
according toTverro (2007). This indicates that the number of stations is litite to

interpolate with acceptable accuracy.

A station Locations

[ vomnei polygons

»‘.S\? Country Boundary
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Figure 3.7: Vornoi polygons for prediction of continuous suéaof TXx by each meteorological

station

Furthermore, interpolation methods will highly srttothe predictions in the presence of
low sample density, which is undesirable for cliendata. The global information carried
by the stationary mean becomes preponderant irigbiced as remote neighboring data
bring less information about the unknown value alishant locationGoovaerTs, 1997).
Consequently, the smoothing effect is minimal clsthe data locations and increases as
the location being estimated gets farther away fdata locations. On the other hand,
according toaronso, and Nunes (2011), if the coefficient of variation is high, the meaiil

not be representative of the attribute behavioe @tefficient of variationk) of samples
for PRCPTOT is 41% in average and ranges from 25%9%, while for TXx it is 6.2 %
and ranges from 3.2% to 24%. Therefore, the medihnet be representative of the
PRCPTOT behavior in many years; for TXx the attiési variability is not so
pronounced, but it might have the same problemRGHTOT in a few years. Moreover,
according to thesde values, to interpolate and produce continuousased with 95%

confidence (where, mean error is not more than 5% sample mean), the required
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sample size for PRCPTOT is 173 on average which vaay from 43 to 390, and it is
equal to 4 on average for TXx which may vary betwgeo 43 as described linncH, and

Kim (2010). As explained inKecLey, (2007), to estimate with 95% confidence where the
desired full confidence interval width is 10%=0.10) and desired degree of assurance is
99% (=0.99), the required sample size to interpolate PRQT is 16,233 and to
interpolate TXx is 199. For both cases, the nunobesamples or spatial points is too low

to obtain acceptable accuracy.

3.5 Chapter conclusion

As presented in this chapter, the sample densitiie&tudy region is too low to provide
acceptable accuracy in the spatial interpolaticults. The calculated indices behavior
over space and time and the features of the stuedylead to the decision of evaluating
possible deterministic and stochastic spatial paition techniques. A&TkiNsoN, and
TATE, 2000; and IsAAKkS, and SRIVASTAVA, 1988 discovered, that in case of uncertain
sample distribution and size, deterministic methsliguld be the preferable options for
spatial interpolation, two deterministic methodd hin Plate Spline (TPS) and Inverse
Distance Weighting (IDW) can be applied for intdgtion of the indices. The two
deterministic methods fit the interpolation modelactly through the measured points,
but TPS performs some degree of smoothing and IR¥ibpms with no smoothing. On
the other hand, two stochastic methods can beeappfier improving the variograms to
fit the models — Ordinary Kriging (OK) and Univers&iging (UK). The OK model can
be applied taking the anisotropic behavior of thdides into account, while UK can be
applied by taking the spatial trend of the indig®® account. The following chapter,
methodology, will describe the spatial interpolatimodels in detail, derived from the
literature review and fitting to the dataset. Itllvalso outline the methods for the

performance evaluation of the methods.
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4. METHODOLOGY

This chapter describes the detailed methodologythef four spatial interpolation
techniques and their rationale of application fug study area and dataset. It elaborates
the spatial interpolation models with mathematemgations fitting to the study area and
climate change indices. It also outlines sevenethfit performance measurements to

evaluate the performances of these spatial intatipol techniques and their importance.

4.1 Spatial interpolation of climate change indicewith low sample
density

Spatial interpolation of climate change indices dsespecial spatialization since the
indices contain both spatial and temporal infororatinherently tvero, 2007). In

practice, the spatial interpolation techniques thabrporate temporal information with
spatial information in the modeling function are shappropriate for interpolating
climate variablesHasLeTT et al., 1989; and TReNBERTH et al., 2000). The structure of a basic

spatial interpolation problem denotes that dentitas the dependent variable of interest
Z{sp. L} js predicted as an output of the mathematical tfancof known predictors

(st} (i=0,... ..M} where the location vecto#s are the elements of the given space
domain D and t is time. The vector form of the predictors is

ZI'T (t) = [Z(s,1,8), e ., Z(S,M, ) (Szenmrev et al, 2007). The probability
distribution of the climate variables sets up tphprapriate interpolation formulae, which
include some unknown interpolation parameters. @hgarameters can be obtained
through known functions of certain statistical paeters. Modeling of climate variables
with these statistical parameters assume that xpected values of the variables are
changing in space and in time in a similar wayr(stakos, 2001; Tveito, 2007). The
spatial change in the variables indicates that divate is different in the regions
whereas temporal change is considered as the @scdlimate variability or of possible
global climate changeH(mans et. al, 2005). As a result, expected values of climate
variables can be obtained by the following lineardel CrrisTenseN, 1990; PAPRITz and
STEIN, 1999):

E{E(S's-ﬂ}= )+ Eds;}i=0,.....M)
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Where, #(t} is the temporal trend or the climate change sigfts} is the spatial trend.

Typically, there is only a single realization im# for the modeling of the statistical

parameters in spatial interpolation. Therefore ahéypredictor&{s:.t} (i = 0,...... M)
constitute the usable information or the sampleliermodeling of variability over space

(SzenTivrEY et. al., 2007).

At the linear model (4.i), the basic statisticalrgraeters can be allocated into two
categories - deterministic and stochastic paramet€hus the spatial interpolation
techniques can be divided into two groups — det@stic and stochastic spatial

interpolation techniqueg{ristakos, 2001; and SzeNTIMREY et. al., 2007).

4.1.1 Deterministic spatial interpolation techniqus

Deterministic interpolation techniques create ste$a from the predictors by a
mathematical function of the extent of similarity the degree of smoothnessegster

and OLIVER, 2001; BHowmik and CaBrAL, 2011). In linear equation (4.i), the deterministic or

local parameters are the expected valdég:- )} (i — 0,...... M}, |f E(Z{t))denotes the
vector of expected values of predictors, then tlmear model for deterministic

interpolation will be §zentivrey et. al., 2007):

E(Z(£))" = [E(Z(54,t))s e o s E(Z(Spp )i, (4.ii)

The two climate change indices of the study canmmoeleled deterministically in the

manner adopted bpancock and HutcHinson (2005). The indices are considered as data
observations{Z:: X1z X2:, ... ... X4;) measuring a dependent varial#ie and predictor
variablesX1.Xz, ....... Xp which are included i set of space domafi . These climate

change indices are often well predicted usingudgt longitude and altitude. & has
both continuous long range variation as well agatiinuous and random short range

variation, then the data model can be expressed as:
z; = (%1, X2, nXp)t € (E=10,m) (40

Where, 1t is the number of data observatio&fs,is a slowly varying continuous function

ande: is the realization of a random varialsie The functiong represents the spatially
continuous long range variation in the process oreasby Z:. The errors ofe; are

assumed to be independent with mean zero and cai®in This assumption is rooted in
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the measurement error and short range microscalatiea that occurs over a range
smaller than the resolution of the data set. Therastale variation may be spatially
continuous, but the low spatial density of datgastdiscussed in literature review and
study area, dataset and climate change indicedarisiis unable to represent it. That is

why it is assumed as discontinuous noise of the (tatnserTH et al., 2000).

Therefore two deterministic approaches based @atirquation (4.ii) can be fitted to the
data model of (4.iii). The Inverse Distance Weighti(IDW) approach predicts the

dependent variable based on the extent of sinyilasibereas the Thin Plate Spline (TPS)
approach predicts it based on the degree of sm@p{liurneL and HuerecTs, 1978).

4.1.1.1 Inverse Distance Weighting

The inverse distance weighting method predictsptioeessg in (4.iii) by giving more
weight to nearby measurements than to distant memsuts. The analytical expression

of the surfacef{x. ¥} can be expressed as§uso and QuarTa, 1998):

Ei:l_. n W{dlwl
E'=1 _mn W{di}

foe.y) =

where, 1 is the number of measurement; is the measuremerit value, di is the
Euclidean distance with poirit, and wid} is the weighting function. The weighting

functionw{d} can be adjusted by the following formula:

! ifd=d
] I 1 - 1
d;]in mMin
widl =11
= if dpin = d < diyax
ﬂ: ifd = dnmw ......................... (4V)

Where min is minimum distancefmax is the maximum distance from the location

being predicted. Indeflmin prevents infinite weight values fék= 0 . If no point falls
into the circle of radiuflmax , average measurement value is takerefre-Serrano et
al., 2003).

Taking (4.iv) and (4.v) into account, the lineardab4(ii) can be written as following

formula Gzentivrey et. al., 2007) for inverse distance weighting interpolation:
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4.1.1.2 Thin Plate Spline

The thin plate spline (TPS) method predicts thecgged in 4(iii)) by a suitably

continuous functionf that is able to separate the continuous sigfalfrom the
discontinuous nois€&: (Hancock and HutcHinson, 2005). This function can be estimated by

minimizing
1< 2
= (@i fi) + M)
i=1

over functionsf € X | whereX is a space of functions whose partial derivatoeotal
orderm are inL*(E®) (wavsa, 1990; Hancock and Hutcrinson, 2005). The f: are values

of the fitted function at thd th measurement is a fixed smoothing parameter, and
Im(f} is a measure of the roughness of the fundfioin terms of? th order partial
derivatives. The form cfm (f} depends offt and the number of independent variables
D . For the typical valugn =2 D =2 | then/»{} can be modeled asHristakos,

2001):

=00

2= ] Ta ¥ 2o dxed, (4.vii)

Equation (4.viii) represents an exchange betwetindithe data as closely as possible

whilst maintaining a degree of smoothnes$swfock and HuTcHinson, 2005). The
smoothing parametet controls the separation of long range and shageaariation. If
A =10 | the functionf accurately interpolates the data, implying zeris@and wher

is very large, the function approaches a hyperpl@he 4 corresponding to the spline

function f that best represents the underlying pro#izssan be predicted by minimizing
the generalized cross validation (GC\fHgistakos, 2001; and HANCock and HUTCHINSON,

2005) which is:
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=)=

z-AN)z) (z-A()2)
; 2

A(}L) is the matrix that transforms the vector of measwents into the vector of model

predicted values. Therefore, the linear model)(fbii thin plate spline is:
Zres(Sa ) = AWZSLY o (4.%)

Here, irpsfsu-f} is the vector of model predictedands aifl) is thus termed as

‘influence matrix’ Hancock and HuTcHINSON, 2005).

4.1.2 Variography of climate change indices

Covariance and correlation are two important messwaf the similarity between two
different spatio-temporal variablesHgistakos, 2001; Houtbing, 2000). Variography and
the resulted variogram represent the measuremergpalial similarity in a similar
fashion. They represent the correlation of measant¢mpairs of the same variable that are
located in a certain distance from each otBen(p et al., 2008). The separation distance
is known as ‘lag’, as used in temporal analysisusTthe mathematical function of the
semivariogram can be expressedJasseL and HUIJBREGTS, 1978):

y(260.2(5,)) = e [fzts - 2(s, )Y |

WhereZ(s:} andZ(s;) are the dependent variables of interedt tit and/ th locations,

E is the statistical expectation operator. The irtgu note is that the semivariogram,
¥() is a function of the separation between point aeof (s:) andz{sj}, and not a

function of the specific location vectof(s:} or Z(s;)} (Crmistakos, 2001). This
mathematical definition is a useful abstraction apglied to the measured dependent

variable by the formula for the experimental semogram:

r(zGs).2(s)))= ! Z (s — 5}.}3

M (Z'[S:']'- Z[S_I }] G hsiZicl)
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For the sake of simplicity, the expression variogravill be used instead of
semivariogram. The variogram, as defined by geistitdans, averages the squared
differences of the variable and tends to filter thiguence of a spatially varying mean

(Bivanp et al., 2008). V(Z'[Si]" (s; }] is defined as the semivariance and this
semivariogram can be applied whenever the firdeihces of the variable are second-

order stationary and can be expressegas{mrey et al., 2007):

vz z(s)) =v(si=s;) o (4.xiii)

The form of stationarity in (4.xiii) is referred @s the intrinsic hypothesis, which is a
weaker requirement than the second-order stattynafi the variable itself. Intrinsic

stationarity means that the variogram varies onlyuinction of distance, regardless of
location. Eventually, the semivariogram can be rg=fi in some cases where the
covariance function cannot be defined, which is tiydbe case for low sample density.
In particular, the semivariance may keep increasiity increasing lag, rather than
leveling off, corresponding to an infinite globahriance. And, in such case, the

covariance function is undefinede{tscH, 2002).

A typical variogram has several components as pteden Figure 4.1.
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Figure 4.1: Components of a typical variograme(xar and Perez, 2002).

The ‘Sill’ is the semivariance value at which theiegram levels off. The ‘Range’ is the
lag distance at which the semivariogram reaches dHe value. Presumably,

autocorrelation is essentially zero beyond the eagnd, in theory, the semivariogram
value at the origin (0 lag) should be zero. IEisignificantly different from zero for lags

very close to zero, then this semivariogram vakieeferred to as the ‘Nugget’. The
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nugget represents variability at distances smdikem the typical sample spacing that may
be caused by measurement error, which is the oasew sample density. ‘Cutoff’ is the
maximum distance up to which pairs of points aresatered to build the experimental
variogram, and the width of the distance intervatrowhich point pairs are averaged.
This is a useful component for irregularly disttéad measurements with low sample
density, because in such case it is not expectefintb many pairs of data values
separated exactly by the lag distance for the whktldy area. It is possible to set the
extent of variography analysis to a certain linfiirdgerest through the cutoff parameter
and then analyze the semivariogram with properdiatances KeLkar and Perez, 2002;

BIVAND et al., 2008).

4.1.2.1 Variography with spatially shifted temponaleasurement

As discussed before, in case of low spatial densftymeasurement, the covariance
function may not be defined and the number of pafrmeasurements separated by the
lag distance may not be enough to find in ordeamalyze the semivariogram. The
temporal measurements in that case can be usedctease the number of pairs of
measurements within the lag distance for semiveasioganalysis. This approach is
adopted from the pooled variogram analysis disaclisgeBivano et al. (2008) and also
supported by the idea of ‘increasing features’'nalgsis by Raubys and Jain 1991). It is
named as ‘variography with spatially shifted tengboneasurement’. In this analysis, the
temporal measurements are distributed spatiallydifferent sets of co-ordinates to
prepare the sufficient sample size for variogramalysis (Figure 4.2). The sets are close
enough to be considered as a whole study areah#orcteation of a variogram and
simultaneously horizontal and vertical distancetsvben every two sets are bigger than
the maximum distance of measurements in the indatido-ordinates set. Given that the
artificially created sets were too close to eadtetone will get an uncontrolled temporal
influence in the variogram. In pooled variogramlgsia the temporal domain is included
in a similar fashion by stacking the temporal measents on top of each other. The
vertical (temporal) distance from pooled measurdmdias to be rescaled in order to
match the spatial distance in spatially shifted geral measurement, which is the
conversion from ‘temporal unit’ to ‘spatial unitEventually, the limiting distance is
given by the ‘cutoff parameter. The semivariogrdunction in such case can be

expressed as:
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14 (Z[Z(Sijrz[sj)r ti),z[z(sij,z(sj), tj))

- 2 (2(2(s).2(s;). t.), 2(2(s). 2(s;). 1))
Zinezemt((si— s)% ), ((5; — 5% e (4.xiv)

2(2G), 2(s;), ). 2(Z(s ). Z(5;).t;) is the vector of dependent variables in the

temporal measurements &f and i, which are considered as spatial measurements in

different co-ordinates sets.
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Figure 4.2: Spatially shifted temporal measurements (1956-188@ifferent sets of co-ordinates

of the index PRCPTOT.

The variography from spatially shifted temporal si@@ments improves the outcome in

the variogram with reduced residuals. In such dhseexperimental variogram is far

more structured to perform the variography analyfigure 4.3). The experimental
variogram in Figure 4.3 (a) corresponds to the $esnpf the index PRCPTOT in 1956
over the study region, whereas the experimentabgeam in Fig. 4.3(b) corresponds to

the spatially shifted temporal measurements ofsame index from 1956 to 1980 as

shown in Figure 4.2. Thus the problem of low sang®aesity can be diminished in the

design of variography.
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Figure 4.3: Fitted variogram of the index PRCPTOT with (a)gbintemporal measurement at
spatial points in 1956; and (b) spatially shiftethporal measurements (1956-1980).

4.1.3 Stochastic or geostatistical spatial interpation

Stochastic or geostatistical spatial interpolatiGgchniques exploit the statistical
properties of the measured points and quantify $patial autocorrelation among
measured points. Furthermore, they account forspgatial configuration of the sample
points around the prediction locatiogngistakos, 2001; PapriTz and STeIN, 1999; and

Seaman, 1983). Stochastic or geostatistical spatial interpolatis based on the covariance,
or the variogram, between the dependent variables the predictors. Important

parametersyzenTiMREY et. al., 2007) are:

. Dependent-predictors covariance vector expressed as
. Predictors-predictors covariance matrix expressdd a
. Dependent-predictors variogram vector expresséd asd
. Predictors-predictors variogram matrix expresseﬁ as

Thus the linear model of (4.i) betwed#Sa. £} and predictor£{t} can be written for

stochastic interpolation as:
Z(5,0,t) = (u(t) + E(s,0 )) + ¢'T C'(— 1) (Z(H) — (u(t) + E)

Here, ET = [E(s1),....... .E(55] and " =[1,....1] are identical. Obviously, the

main problem lies in the estimation of the unknaslimate change signa#t} in case
the optimal linear interpolation model was appli@dentimrey et. al., 2007). Equation

(4.xv) can be simplified as follows:
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Z(so.t) = E(Z(so. 0)) + cTC™* (Z(6) - E(Z(1)))

Z(so. 1) is the best linear estimation that minimizes theamsquared prediction error.
Consequently, the linear model would be the optiwaar interpolation formula
concerning the mean-squared prediction ereri§TenseN, 1990; PAPRITZ and STEIN, 1999).

However, with respect to the application, probleanise from the unknown statistical
parametersE{Z'[in-ﬂ]' {i=0,.....M} and ¢ C The covariance parameters can be

replaced by variogram or semivariogram parame»{erﬁ (Caruso and QuUARTA, 1998).

Two stochastic approaches based on linear equétiam) and (4.xvi) have been fitted.

The first approach is Ordinary Kriging, which acotifor any spatial trend present in
the attribute through the local kriging system, atgb considers anisotropy. The final
approach is Universal Kriging which explicitly mdsliéhe trend component as a linear

combination of functions of the spatial coordingt@esente-Serrano et al., 2003).

4.1.3.1 Ordinary Kriging

Ordinary kriging (OK) relies on the spatial corteda structure of the measurements to
determine the weighting values. This is a morernge approach to modeling, as the
correlation between measurement points determimegdtimated value at an unsampled
point (Houtbing, 2000). The assumed model for the expected values is
E(Z(s;, 1)) = (6} (i = 0,......, M) thus there is no spatial trend. The generalizestlea
squares estimation fc#{t} by using only the predictoré{t} may be expressed in the
form H.gis (£] = (1" C')7HTCZ(t) (Szentivrey et al, 2007). By substituting the
estimateil-ats €} into the stochastic formula (4.xv), the ordinkriging formula can be

expressed asVgssTer and OLIVER, 2001):

M
E-ﬂk’ ':Sm t:' = ﬁ-{,u.l-: ':t:' + c.TE‘-i{z’{t} - ﬁ-g.‘c {t}'i-l} = E ‘i,-ZI:S',-, t:'
i=1

M

where Z‘;‘f =1
P21 eeeeeeeeie (4.xvii)

The vector of weighting factod = [41,...... 2x] can be expressed as covariance form

(SzenTiMREY et. al., 2007):
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ar = (I’.‘T +1T{1 — lrc_ic})c—i

ITCL e (4.xviii)
Or, equivalently as variogram form:
11T )\
‘ir:(vrﬁ'lr—( ry })r *
ITT L ) e, (4.xiX)

4.1.3.2 Universal Kriging

Universal Kriging (UK) is defined as kriging witthanging mean where the trend is
modeled as a function of coordinates. Thus theemiexisting spatial trend in the model
and therefore the universal kriging formula is iemeralized case of the ordinary kriging
formula KasteLec and KosmeLs, 2002). According to the model assumption, the universal

kriging formula can be expressed as(mvrey et. al., 2007):
K
E(ZG.0)= ) Brl®xp(s) (=0, M)
k:i

Which can be expressed in the vector form:

E(Z(s,.0)) = xT B(B), AVALI D ;163 T (4.xxi)

Here, * , X are given supplementary deterministic model vaeisbThe generalized

least-squares estimation for the coefficient vef? by using only the predicto&(t )

- _ -1 —
can be expressed in the forfhais = (XTCTIX) "XTCTZ(t) (KasTELEC and KOSMELY,

2002; and SzENTIMREY et. al., 2007).

The spatial trendE(s) can also be modeled by using only the prediciff®. By

substituting the estimate¥ Bats (€} XB51:(®) into the linear regressiorcyristensen,

1990) formula (4.xvi), the universal kriging formularche expressed as:

Zoy (50,0 = X7 B () + TC (20— XB g1 (1)
M

= Z AZ(s.. Ohwhere ATX =T
i=1 e (4.xxii)
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The vector of weighting factor‘ﬂ1r =4 1 ------AM] can be expressed as covariance

form:

AT = o+ X(XTC1X) 7 (x —er'i‘}}j € ) (4 xxiii)

Or, equivalently as variogram form:
| PR L
ﬂT={1r+X[XTr X) (x—xTr y]}r

The unknown variogram valués, I' are modeled in the variograpsiano et al., 2008).

4.2 Evaluation of spatial interpolation techniques

The performance and effectiveness of each of tagagpnterpolation techniques can be
evaluated using the ‘Fictitious-point method’, whits popularly known as ‘Cross-

validation’. It was first proposed byeavan (1983) and subsequently applied by
geostatisticians in a whole range of studies falweating the performances of the spatial

interpolation techniquesfowmik and CABRAL, 2011, CARUSO and QUARTA, 1998; CHRISTAKOS,
2001; CHRISTENSEN, 1990; HANcock and HUTCHINSON, 2005; HASLETT et.al., 1989; HiumaNs et. al,

2005; PapriTz and STEIN, 1999; TRENBERTH et. al., 2000; and WesSTER and OLIVER, 2001).
Validation is a statistical method of evaluatingdasomparing learning algorithms by
dividing data into two segments: one segment isl usdearn or train a model and the
other one is used to validate the model. In typrralss-validation, the training and
validation sets must cross-over in successive rsodthat each data point has a chance
of being validated against. The basic form of creal&gation is k-fold cross-validation
(Konavi, 1995). In geostatistics, generally, the training sethie measured values of all
sample points, which are validated using the appdispatial interpolation technique. It
is typically known as ‘leave-one-out’ cross-validat since each sampled point is taken
out successively and then estimated using the rengaimeasured points of the same
sample setBvanp et al., 2008). An ideal cross-validation plot should give theints
plotted along the 4#3ine with the axes defined by the measured andigted values. In
practice, the predicted values differ from the obsd values and several errors of
prediction can be calculated from the residualsesEherrors indicate the quality of
prediction by a spatial interpolation techniqueri(es and DeLriner, 1999). Most
importantly, the cross-validation results are uggdthe geostatisticians to show the
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‘smoothness improvement’ in the ‘ratio of the vada of estimated values to the

variance of observed valugsiaserLanpT, 2007).

4.2.1 Willmott statistics

Willmott statistics use five ‘difference-measures$’errors from cross-validation that are
useful for evaluating the performance of the inbdpon methods. The statistics are
proposed bywimott (1984) based on the principle that the statistical messsidior a
particular spatial interpolation approach shoultl m® over analysed. The five measures
are: 1) Mean Absolute ErrorMAE ) 2) Root Mean Square ErrorsRMSE )

3) Systematic Root Mean Square Errd®MEE:), 4) Unsystematic Root Mean Square
Errors BMSE,) and 5) the Index of Agreemerd §. Equations from Willmott statistics

are given below:

N
MAE = N1 )P — 0

BZ1 (4.xxv)

N 1

RMSE = N1 ) (P, - 0)212
i=1 e (4.xxvi)
P=a+b0; ......mnnrnnnn. (4.xxvii)

W L1

RMSE, = N1 ) [(B..-0:) | *
T (4.xxviii)

i=1 T e, (4.xxix)
N
PE= ) (P; - 0l +10; — 0D
i=1 e (4.xxx)
4oy NeRMSE?
T UPE e, (4.xxxi)

Here,@: andP: are observed and predicted variable valudstatlocation, respectively.

The ordinary least-squares (OLS) simple linearasgjon coefficients ot and? are
used to compute the difference measures - systernadi unsystematic root mean square

errors RMSE. RMSE,) MAE s sometimes preferred over tEMSE as an
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evaluator for it is less sensitive to extreme vaju®wever RMSE s the error measure
commonly computed in geographic applications. Tlystesnatic RMSE. assesses

whether the model errors are predictable, whereasuhsystematidMSE,, identifies
those errors that are not predictable mathematicahe final error measurd, , varies
between 0.0 and 1.0. Therefore, the clékeis to 1.0 the better is the agreement between

0 and P with 1.0 conveying perfect agreement and 0.0 cetapdisagreements

(BHowMIK and CABRAL, 2011).

4.2.2 Confidence of prediction

The idea of confidence of prediction was introdubgaHiLes and DeLriner (1999). This is
the subtraction of the coefficient of variation grediction from 100 firks et al., 1998).

The coefficient of variation of predictic? can be expressed as:

RMSE

Pr is expressed in percentage. It is the measuneatifa uncertainty of predictiorciiLes
and DELFINER, 1999) and is also used to compare the performancetefpiolation schemes
for different integration times. Thus the formular fconfidence of prediction can be
expressed as:

CP = 100 - p;

4.3 Chapter conclusion

This chapter has described the applicability, iBhemethods and importance of the four
spatial interpolation techniques and seven perfoo@ameasurements in respect to the
study. It has also illustrated the procedure ofiaja shifted years approach to minimize
the low sample density impact in designing the ogmaphy for the stochastic spatial
interpolation. The next chapter, results and disioms will discuss and present the results
that will be obtained applying the methods desdrilnethe methodology chapter.
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5. RESULTS AND DISCUSSION

This chapter discusses and presents the resultsnedt applying the methodology
described in the methodology chapter. It explores analyzes the behavior and trend of
performances of the spatial interpolation techrsguéh the change in sample density. It

also validates the result with discussion in lighéxisting theories and reasoning.

5.1 Search Neighborhood

Search neighborhood basically refers to the shapfemeighborhood and the constraints
of the measured points within the neighborhood thatised in the prediction of an
unmeasured location. It is generally assumed i cdsspatial interpolation that the
farther the measured point gets from the predigpioimt, the less spatial autocorrelation
the measured values will have to the predictiom{goilt is also possible that distant
points may bring a detrimental effect to the presticvalue if they are located in a region
that has different characteristics of the phenomehan those of the prediction location.
Consequently, it is always important to define arcle neighborhood formed with the
nearest feasible points for interpolation. It iscaimportant that the search neighborhood
should be defined in designing variography andstirae neighborhood should be used in
interpolation applying this variogramudcrincLoss, et al. 2007; and Weisz, et al., 1995). For
this study, the search neighborhood has been defirsing the classical method of
limiting the number of neighbors utilized for theegdiction by defining the maximum

neighbor points (nMax) and minimum neighbor pofntslin) parameters.

Due to the low sample density of the study regibis, difficult to model the variogram in
short range, rather a long ranged variation is iptesso be modeled (as described in
chapter 4) — typically the phenomenon behavioroatr the study area is known. In
addition, it is difficult to find enough points touild the experimental variogram and
model it, and to interpolate the attribute data gEmall search neighborhood is defined.
Considering these facts, the whole study area hesn bdefined as the search
neighborhood for prediction of values at unknowaoalions. It has also been explored
from the analysis of the indices behavior thatititkces vary smoothly all over the study
area and there is a spatial trend in the index\ehdn addition, maintaining the degree
of smoothing is also the basic purpose of defirmrggarch neighborhood and this can be

maintained for the whole study region. Thereforee thMax and nMin for the
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interpolation of the index PRCPTOT have been s82tand for the interpolation of TXXx,
they have been set to 34. Thus all the measuredsploiive been used in the variography
stage and for predicting the indices at unmeadoetions (Figure 5.1).

Search Neighborhood

Figure 5.1: Search Neighborhood for PRCPTOT estimation (nM&x#3/lin= 32) and for TXx
estimation (nMax=34, nMin=34).

5.2 Deterministic spatial interpolation results

As described in chapter 4, two deterministic meghioalve been used in this study — IDW,
which predicts spatially continuous long range ai@on by giving more weight to nearby
measurements than to distant measurements andwiit®y predicts the variation by a
suitably continuous smoothing spline function. Ehare distinguishing features of these
two methods, which characterize their performarinesstimating continuous surfaces.
TPS considers the spatial dependence of the phewomes a spline smoothed from the
GCV function (Figure 5.2 (a)), whereas IDW considigre spatial dependence as straight
lines connecting the measured points without angathing (Figure 5.2(b))daruso and
QuARrTA, 1998). The non-smoothing property of IDW sometimes dgmlbit to result in
better cross-validation results, since it takesattteal measurement as variability factors.
Yet, it is also necessary to consider that it ideki the measurement errors into the
estimated values, which are unknown in most casesax and DeutscH, 2009). Smoothing
property and taking the long range and short raagiability into consideration, enables
TPS to perform better for the small sampled region.
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Based on these fundamental features of each mbadgiré 5.2), the two deterministic
methods have been applied to create the contingorfaces of PRCPTOT and TXx

indices.

5.2.1 Thin plate spline surfaces

TPS surfaces have been created for PRCPTOT andridices applying the the search
neighborhood described in section 5.1 and the odleliogy described in chapter 4. As a
result of the inherent smoothing properties, thsulted surfaces are smoothed and
present the long range variability of the phenoméie TPS surfaces of PRCPTOT and
TXx are presented in the Annex A.1 and Annex Apeetively. A range of 0-4500mm
of PRCPTOT has been calculated over the time peréodl presented in the legends of
created surfaces to maintain conformity. From tRECPTOT surfaces, the spatial trend
of the index is apparent, in all years the high)RCPTOT has been experienced in the
southeastern part of the country. Though, the sesfaof 1965, 1974, 1987, 1985 and
2002 present higher PRCPTOT in the northwesterhgfdhe country, which is contrary
to the general spatial trend. In 1984 and 2004oraparatively higher PRCPTOT has
been experienced almost all over the country thahe other years, although it is hard to
predict any temporal trend in the surfaces for PROP. From the residual plots of
PRCPTOT, presented in Annex A.5, it is clear tha spline method typically over
estimated the values in prediction. The methodoperénce in terms of prediction has
been improved over time with the increase in tht@t availability, which can be proven
by the decreased size of the residual circles.h@rother hand, as described in chapter 2,
the spatial trend of TXx is the opposite of PRCPT@fich has also been represented by
the spline surfaces in the Annex A.9. The surfaegsesent a spatial pattern of higher
TXx in the northwestern part of the country, whishdominant in almost all the years.
But in 1952 and 2004, a higher TXx has been caledlan the northeastern part of the
country; especially in 2004 it is significantly higr than the temporal average. The
relative higher TXx has been experienced all over ¢ountry in 1960, though it is
difficult to derive any temporal trend from the faaes of TXx. Over the years, a range of
20-65'C of TXx has been calculated and maintained inlehend of the surfaces. Like
PRCPTOT, the residual plots of TPS surfaces of BRaw that the TPS method has
typically over estimated the values and the prémichas been improved with time in

terms of residuals.
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5.2.2 Inverse distance weighting surfaces

The effect of the property of the global informaticarried by the stationary mean in case
of low density of sampleGpovaerts 1997), which has been described in chapter 2, has
been represented by the IDW surfaces for both PROPAnd TXx indices. They are
presented in Annex A.2 and A.10 respectively. Rathan presenting the long range
variability of the indices, IDW represents moreighility close to the sample location in
a circular manner and shows almost no variatiodigtance. This is identified by the
‘Bull's eyes’ that appeared in the surfaces in gw&ation location, which are expected
from the modelling features of IDW described intgmst 5.2. Consequently, no clear
spatial trend has been recognized from the surféedsather some higher values have
been recognized close to the areas of the repegsenstations. PRCPTOT surfaces of
1951,1958, 1968,1969,1975 and 1981 show very lolwegaof PRCPTOT in some
station regions located in the northern and wegtarhof the country. On the other hand,
PRCPTOT surfaces of 1959-2007 in most cases hawerska very high value of
PRCPTOT in the station regions at northeastern smudheastern parts of the country.
PRCPTOT surfaces of 1984 and 1987 have shown hagles of PRCPTOT almost all
over the country. Residual plots of PRCPTOT sudacging IDW presented in Annex
A.6 have proven that the IDW method has typicaliger estimated PRCPTOT values in
prediction. The TXx surfaces presented in AnnexOAHave followed the similar fashion
as for PRCPTOT surfaces, the spatial trend is fe#rly represented, rather the short
range variation of the phenomenon is predictablough the surfaces of 1954, 1956,
1958 and 1960 have dominantly represented highervBXues in the northeastern region
of the country, this is not visible in the surfadesn other years. Again the TXx surface
of 1960 has represented the higher TXx value af d¢lre country and surfaces of 2003
and 2004 have represented a very high TXx valubdrstation regions located south and
southeastern parts of the country respectivelyo Alge residual plots of TXx surfaces
using IDW presented in Annex A.14 show that the IDMéthod has typically under
estimated the TXx values in prediction.

5.3 Stochastic spatial interpolation results

The principle of stochastic methods for which theye distinguished from the

deterministic methods is that they do not design Yhriography exactly through the
measured points. Rather they describe a smooth&agraphy over the area of interest
and thus try to fit a smoothed line, which desitiee continuous variable behavior over

the region of interest{ristakos, 2001).
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5.3.1 Variography

As described in chapter 4, the variography for rjpdéation using stochastic spatial
interpolation techniques has been designed baseitheomprinciple of spatially shifted
temporal points. For this purpose, the temporahisonave been distributed in temporal
periods so that the variography has more or les& saimber of spatial points to describe
the mean variogram. Obviously, the number of statior spatial points has shown an
increasing trend over the years for both PRCPTQI &tk indices (Figure 5.3).
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Figure 5.3: Increasing trend of number of stations availabteriterpolating (a) PRCPTOT and
(b) TXx.
Therefore, the total number of years has beenildiséd into three temporal periods and
thus the number of spatial points that have beenmulated from such distribution is
441, 465 and 475 for PRCPTOT variography and 483,ahd 503 for TXx variography

(Figure 5.4).
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Figure 5.4: Number of accumulated spatial points from spatisifiifted years to design
variography for (a) PRCPTOT and (b) TXx.

The accumulated spatial points have been distiibtde?8, 17 and 15 different spatial
coordinate sets for both PRCPTOT and TXx (FiguE &nd thus three mean variograms
have been produced for the temporal periods of I®¥%, 1976-1992, 1993-2007
respectively for PRCPTOT and three for TXx using #ame temporal periods but a
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different number of spatial points as describedrigure 5.5. It has been ensured, while
distributing the temporal points that the distanbesveen the coordinate sets are more
than 550km, which is the maximum distance betwe&em ¢oordinates in a particular

coordinate set. This has prevented the particdardinate set to have a temporal effect

on the other set in designing the mean variogram.
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Figure 5.5: Spatially shifted temporal points set of PRCPT®OiTthe temporal periods of (a)
1948-1975 (b) 1976-1992 and (c) 1992-2007 and of foX the temporal periods of (d) 1948-
1975 (e) 1976-1992 and (f) 1992-2007.
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Thus six mean variograms have been designed ferpiofating PRCPTOT and TXx
using the ordinary kriging method. The variogrammapzeters have been presented in
Table 5.1. The anisotropy has been analyzed usiadintamap’ statistical package of
‘R’ and has been modeled in the variogram of irsier&he anisotropy for the study
region is not very dominant for both indices sitisey have resulted in higher ratios of
major and minor axes of the anisotropy ellipse (#ab.1). The variograms for
interpolating PRCPTOT have resulted in high nugemtes, which represent abrupt
changes in the PRCPTOT values in short distanceodfams for TXx resulted in no
nugget for the temporal periods of 1948-1975 and61P992, whereas for 1993-2007
there is a nugget value of 1, which is high fosttéemporal period. The variogram for
TXx of the temporal period of 1993-2007 also représ a lower sill value, while the
variogram for PRCPTOT of the 1976-1992 period repnés a higher sill value. These
values show that the TXx values did not vary taeagextent during 1993-2007, while
the PRCPTOT values varied to a high extent duriag6i1992 over the study region.

Their ranges are similar to the extent of the wiuolentry.

Table 5.1:Variogram parameters estimated from the spatilifted temporal points set of the
experimental variograms of PRCPTOT and of TXx foee temporal periods for ordinary kriging

interpolation.
Index Temporal Total Variography
period Spatial -~ Model Sill Range Nugge Anisotropy
Points Parameters
Angle Ratio
of
major
and
minor
axis
PRCPTOT | 1946197t 441 Spherica  70000( 40C 45000 2.9¢€ 0.8¢
1976-1992 465 Spherical 630000 550 205000 47.28 7 0.9
1993-2007 475 Spherical 780000 550 70000 83.94 0.87
TXX 194¢-1975  48¢ Spherica 15 43C 0 2.9¢€ 0.71
1976-1992 494 Spherical 10 530 0 096 0.71
199:-2007 50¢ Spherica 5.8 41C 1 176.7: 0.7:

The resulting variograms based on Table 5.1 paemhate presented in Figure 5.6.
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Figure 5.6: Mean variograms based on the parameters desdritieable 5.1 using spatially
shifted temporal points set of PRCPTOT for the terapperiods of (a) 1948-1975 (b) 1976-1992
and (c) 1992-2007 and of TXx for the temporal pasiof (d) 1948-1975 (e) 1976-1992 and (f)
1992-2007 for ordinary kriging interpolation.

Another six mean variograms have been designethferpolating PRCPTOT and TXx

using the universal kriging method. The fundameptahciple behind designing these
variograms is that both PRCPTOT and TXx indicesalp@hr over the study region are
functions of longitude and latitude, which indicatidat there is a spatial trend in the

indices behavior. Variogram parameters considespatial trend are presented in Table

5.2. The variograms for interpolating both PRCPT@W TXx have resulted in high
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nugget values for all time periods that represémntiat changes in the indices values in
short distance considering spatial trend. The gagim for TXx of the temporal periods
of 1976-1992 and 1993-2007 both represent lowewailes, which indicate that TXx
values did not vary to a great extent during thetineed temporal periods. On the other
hand the sill values of PRCPTOT variograms arelamaver time (Table 5.2). Their

ranges are again similar to the extent of the whuldy region.

Table 5.2: Variogram parameters estimated from the spatslifted temporal points set of the
experimental variograms of PRCPTOT and of TXx foee temporal periods for universal
kriging interpolation.

Index Temporal Total Dependent Variography
period Spatial Parameters model Sill Range Nugcet
Points

PRCPTOT | 1948-1975 441 Longitude Spherical 300000 400 115000
and Latitude

1976-1992 465 Longitude  Spherical 200000 550 260000
and Latitude

1993-2007 475 Longitude Spherical 270000 500 136000

and Latitude

TXx 194¢-197¢ 48:% Longitude Splerica 10 42C 1
and Latitude
1976-1992 494 Longitude Spherical 2.1 480 1
and Latitude
199:-2007 503 Longitude Spherica  3.¢ 45(C 14

and Latitude

The fitted variograms based on the parameters sliowable 5.2 are presented in Figure
5.7.

(@) (b)
Continued to page 46
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Continued from page -

(©) (d)

(e) (®
Figure 5.7: Mean variograms based on the parameters descérib&ble 5.2 using spatially
shifted temporal points set of PRCPTOT for the terapperiods of (a) 1948-1975 (b) 1976-1992
and (c) 1993-2007 and of TXx for the temporal pasiof (d) 1948-1975 (e) 1976-1992 and (f)
1993-2007 for universal kriging interpolation.
The similar ranges of the variograms equal to tkierg of the whole study region
indicate that both the size and density of the danmp insufficient to describe the
variability of the indices in short range, espdgiah between the station locations. The
problem is addressed in the discussion sectionetaild It is obvious that designing
experimental variograms provided with enough spaiddrs of points from the temporal
points to model the spatial continuity in long ranbas reduced the uncertainty of
modelling to a great extent. Spherical models seswst suitable for all variograms,

which also represent a spherical change of theasdover the study region.

5.3.2 Ordinary kriging surfaces
The ordinary kriging method has been applied udgimg methodology described in

chapter 4 and variography described in section15.3he produced surfaces of
PRCPTOT and TXx are presented in Annex A.3 and Aekbectively. The surfaces
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described well the indices behavior — both in teohspatial trend and anisotropy. The
PRCPTOT values range from 0 to 4500mm and TXx wataage from 2Dto 65C, and
similar legends have been maintained for compariagain it is difficult to predict any
temporal trend from the surfaces. PRCPTOT surfafe950, 1954, 1961, 1965, 1998
and 1999 represent very high PRCPTOT values irstli¢heastern part of the country,
and PRCPTOT surfaces of 1964, 1968, 1970, 1974,19988 and 1989 represent very
high PRCPTOT values in the northeastern cornehefcountry. PRCPTOT surfaces of
1956 and 1993 represent higher PRCPTOT valuesiedbtern part of the country while
PRCPTOT surfaces of 1984, 1987, 2004 and 2007 septr&igher PRCPTOT values i.e.
higher monsoon rainfall all over the country. Rasidplots for PRCPTOT surfaces using
ordinary kriging, represented in Annex A.7, desettbat the ordinary kriging method has
typically under estimated the PRCPTOT values indigten. Yet, the prediction
performance is better than the deterministic methaihce the size of the circle of
difference between measured and predicted valussaler. Like PRCPTOT surfaces,
TXx surfaces produced by ordinary kriging do nosa#e any temporal trend in
particular, but the spatial trend to the northwastpart of the country is clearly
represented by them, especially by the surfacd954-2007. Though the TXx surfaces
of 1956, 1958, 1961, 1972, 1976, 1979 and 198%semt the higher TXx values in the
whole western part of the country, the spatialdrenvisible along with anisotropy. TXx
surface of 2003 represents very high TXx valueghi@ southwestern corner of the
country, the surface of 2004 shows very high TXluga in the northeastern part of the
country. Furthermore, the surface of 1960 repraséigher TXx values all over the
country. The residual plots for TXx surfaces usimdinary kriging, presented in Annex
A.15, show that the ordinary kriging method hasdgjty over estimated the TXx values
in prediction but the prediction performance isoabetter than the performance of the
deterministic methods since the size of the cidflaifference between measured and
predicted values is smaller. Ordinary kriging scefa of both PRCPTOT and TXx

characterize the long range variability in the ktehavior.

5.3.3 Universal kriging surfaces

The tilted surfaces of universal kriging have bempated using the methodology
described in chapter 4 and the variograms designsdction 5.3.1 and are presented in
Annex A.4 and A.12. The basic principle, which Hamen applied to create these
surfaces, is the fact that there is a spatial tieriddices behavior, which is also clearly
visible in the created surfaces. The spatial trenanore dominant in the east-west
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direction than the north-south as expected fronttneslation with longitude and latitude
described in chapter 3. PRCPTOT surfaces of 19949,11950, 1953, 1954, 1961, 1965,
1968, 1974, 1982, 1988, 1991, 1998 and 1999 haadiqted very high PRCPTOT values
in the southeastern part of the country while PROPBurfaces of 1956, 1964, 1965,
1966, 1968, 1970, 1976, 1982, 1983, 1988, 19913,12997, 1998 and 2000 show
higher PRCPTOT values in the whole eastern patti@ttountry. PRCPTOT surfaces of
1984, 1987, 2002, 2004 and 2007 predicted highkregaof PRCPTOT all over the
country. Residual plots of PRCPTOT surfaces usingyausal kriging, presented in
Annex A.8, indicate that the universal kriging neath like ordinary kriging, has in
general under estimated the PRCPTOT values in giredi The performance of the
prediction is similar to the ordinary kriging meth@and better than the deterministic
methods as presented by the size of the circleiftérence between measured and
predicted values. Though the spatial trend for Ti¥Xxo the north-western part of the
country, this has typically been represented oglyhe TXx surfaces of 1954 and 1957.
Rather TXx surfaces of 1956, 1958, 1961, 1970, 19925, 1976, 1979, 1980, 1989 and
1995 represent tilted surfaces of TXx to the wesgction. Like all TXx surfaces from
other methods, universal kriging TXx surface of Q98presents the higher TXx values
all over the country. TXx surfaces of 2003 and 2@&dresent very high TXx values in
the southwestern and northeastern corners of thergo respectively, similar to ordinary
kriging surfaces. Unlike the residual plots for TXurfaces using ordinary kriging, the
residual plots of TXx using universal kriging (Ann@.16) indicate that the universal
kriging method has mainly under estimated the TXlugs in prediction and again the
prediction performance is better than the detemstimimethods like ordinary kriging,
since the size of the circle of difference betweerasured and predicted value is smaller.
To conclude, universal kriging surfaces of both PROT and TXx describe the long

range variability in the index behavior and itstsgarend.

5.3.4 Differences among the surfaces created usidifferent spatial interpolation
techniques

Surfaces resulting from the differences between sindaces of PRCPTOT and TXx
generated through the different spatial interpofattechniques have been created to
compare them (Annex A.23 to A.28). The differencefaces for both PRCPTOT and
TXx show significant differences in the surfaceenir different spatial interpolation
techniques: the maximum difference has been detdmbveen the surfaces created by
the two deterministic methods (TPS and IDW) forlb®RCPTOT and TXx; and the
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minimum difference has been revealed between tliacas created by the two stochastic
methods (OK and UK) for both PRCPTOT and TXx. Tkeason of the maximum
difference between the deterministic surfaces é&arcfrom their variography concept
described in 5.2 and the methodology of interpofatiescribed in chapter 4. On the other
hand, the stochastic surfaces have minimum diftererbecause the interpolators are
identical and characterize the spatial variabilityough the variogram in similar ways.
The stochastic methods are similar in their intEfon principle but model the variables
based on the variable behavior over space. Anatigortant fact is that the differences
among the surfaces have been decreasing overwitarthe increasing number of spatial
points, which indicates that the performance ofedéint spatial interpolation techniques

becomes similar if there is an adequate densisaoiples.

5.4 Performance evaluation of the spatial interpokion methods based
on cross-validation

As described in chapter 4, five willmottvi{Lmotr, 1984) statistical measureMAE,
RMSE, RMSEs RMSEu, d, and two other measurgs, CP have been calculated from
the prediction errors derived through cross-vaiagt which allow comparing the
measured and predicted values of the indices ligrdift methods, for each year (Annex
A.29 and A.30). The linear trend of all the crosdidation measurements has been
analyzed and the results are presented in Fig@elbis clearly showed that all the
willmott error measurementsMAE, RMSE, RMSEs RMSEu) and the coefficient of
variation of errors 4) show a decreasing trend over years as the nuofbstations
increases. And the index of agreemeftffom willmott measures and the confidence of
prediction CP) show an increasing trend over years. This uncmilptresults in better
performance of the spatial interpolation methodsrotime with the increase in the
number of spatial points, which means that thesiased number of samples improves the

performance of spatial interpolation as expected.

From the linear trends ®iAE measurements for PRCPTOT (Figure 5.8(a)), it isais
that the IDW method works better until the mid 195®m 1948 and is then replaced by
the better performance of UK until the mid 1970K @erforms better for the rest of the
years. The linear trend ®RMSE for PRCPTOT (Figure 5.8(b)), which is the most
important error measurement for the spatial intlepmn performance evaluation,
describes that IDW performed better only until theginning of the 1950s, afterwards
UK performed better until the beginning of 1990d &inally OK performed better for the
rest of the years. The linear trendR¥ISE for PRCPTOT (Figure 5.8(c)) describes the
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better performance of UK from the very beginninghe study period until the beginning
of the 1980s, however OK performs better afterwalde linear trend oRMSEu for
PRCPTOT (Figure 5.8(d)) represents better perfocmaf IDW all through the years
with an increasing trend. This is due to the egromhich cannot be modeled
mathematically and which are influenced by the propof fitting straight lines through
measured points by IDW variography, which includesasurement errors as discussed in
section 5.2. This measure supports non-smoothirigads, but the indices are smoothed
in behavior which leads to the increasing trendhitreased spatial points. Yet, UK and
OK show good performance with their full-smoothipgpperties. The linear trend @f
for PRCPTOT (Figure 5.8(e)) indicates that IDW oplgrforms better for two starting
years followed by UK. OK performs equally good aK Ht the very end of the study
period. The linear trend af for PRCPTOT (Figure 5.8(f)) shows that the UK noeth
performs better from the beginning until the begignof the1990s and gets then lost in
hard competition with OK and TPS; OK performs slighbetter then. Finally, the linear
trend of CP for PRCPTOT (Figure 5.8(g)) describes that IDW perfs better from 1948
to the beginning of the 1950s and then UK perfobmiser until the mid 1990s, whereas

OK performed better afterwards.

From the linear trends of tHdAE measurements for TXx (Figure 5.8(h)), it is obwou
that the IDW method works better from 1948 untié tinid 1950s but is then being
replaced by the better performance of OK until ¢inel; UK seems performing equally
good as OK during 1960s. The linear trendRMSE for TXx (Figure 5.8(i)) indicates
that IDW performed better from 1948 until the mid1®60s, then OK performed better
until the end. The linear trend &MSEs for TXx (Figure 5.8(j)) shows very different
results of spatial interpolation performance. b8k the better performance of TPS from
the beginning until the mid 1980s, which is repthéxy the better performance of UK
until the beginning of the1990s and later by OKe Thason for this result can be the fact
that when the density of sample is high enough,stieothing of stochastic methods
performs as good as the smoothing through the medguwints of the deterministic
methods, which is also apparent by the improvedopmance of UK and OK with
increased points. As described in the previousgopapd, the linear trend &MSEu for
TXx (Figure 5.8(k)) shows better performance of IRMWthrough the years followed by
TPS and then by the stochastic methods, but thésuamne is not a true representative of
the performance. The linear trend pf for TXx (Figure 5.8(l)) indicates that IDW
performs better from the beginning until the miQ@9 and then OK performs better until
the end. The linear trend dffor TXx (Figure 5.8(m)) shows that UK and TPS pent
equally good from 1948 until the beginning of tH#8Qs and then OK performs better.
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Finally, the linear trend oEP for TXx (Figure 5.8(n)) implies that IDW performstter
from the 1948 to the late 1960s and finally OK perfs better for the rest.

()
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Figure 5.8: Linear trends of the performance evaluation measants of the spatial interpolation
methods: (ajMAE (p) RMSE (c) RMSE;
(d) RMSE,, (e}d (f)ps () CP of the PRCPTOT index; and (WAE () RMSE j)
RMSE. (k) RMSE, ) d . Pf (n)CP of the TXx index from 1948-2007.

The analysis of the linear trends in the perforreameasurements depicts that the UK

method performs better in most of the years foerpalating PRCPTOT and the OK

method for interpolating TXx. It is also true that terms of performance the spatial

interpolation techniques are quite similar and edd#hces between their performance

measurement trends are minimal. But they are @iffiein performance as described in

section 5.3.4, which is obvious from the resultogfaces despite some similarities.
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5.5 Discussion of the results

The decreasing trend in the error measures arfgtindefficient of variation of the errors,

as well as the increasing trend in the index ofeagrent and in the confidence of
prediction over time of the spatial interpolati@chiniques, depict clearly that the number
and density of spatial points play a major roleéha performance of interpolation, since
the number of spatial points shows an increasieggdtiover time for both PRCPTOT and
TXx (Figure 5.9). Considering this correlation, kg 5.9 also shows that the coefficient
of variation of the sampled indices also experisreegecreasing trend over time, though
the slope of their trend lines is not as steemeslope of the trends of spatial points. It is
apparent that the behavior of the indices is spauaas through the years and it is merely
subject to the location of the meteorological stadi whether the samples are well
representative or not. But it is rational that tigher the number of sample points the
higher the chance of the sample points to be reptave, which is exactly what is

represented by the decreasing trends of CV witlinitreasing trends of over the years.

[ ———————— - k =k*
40 35 -~ Rescaled 100
30 // 25 /
g == | inear (n)
10 5 T TS E S
t3ZB2LRB 83 rrgERages
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(a) (b)
Figure 5.9: Linear trend of number of spatial points (n) apdfticient of variation (CV) of the
sampled indices for (a) PRCPTOT and (b) TXx overrgeCV has been rescaled to maintain
conformity with the number of spatial points to quare.

Table 5.3 concretely corroborates the fact of lamgle density effect on interpolation
performance. As described before, the correlatetweenn and CV does not seem very
strong from Figure 5.9. Also the correlation cogéfnts between them are not very
significant (Table 5.3), but there is an obviougatéve correlation between them, which
perhaps cannot be expressed in a number becauke cdndom indices behavior over
years. But it is a fact that the higher the samplenber and density, the more

representative are the sampled indices.

The influence of low sample density on spatial iptdation performance can be finally

established by the significant strong correlatietwzen the coefficient of variation of the

samples k) and the measurements of the performance evatuafite measurements of
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TXx represent this fact better, since PRCPTOT isantypical continuous phenomenon
over time and can be measured as 0 for severalitattand meteorological reasons. But
for the correlation between the similar measuremdiie coefficient of variation of

errors @) and coefficient of variation of the sampled irefic the correlation is very

significant for both PRCPTOT and TXx. This confirti&t the more representative the
samples are for the study region, the better tiatiagdgnterpolation techniques perform.
The representation of the sampled indices can Isered by the increased sample

density. And thus the first proposition of the @®d can be proven.

Table 5.3: Correlation coefficient between different performe evaluation measures of the
spatial interpolation techniques and coefficienvarfiation of samples for interpolating PRCPTOT

and TXx.
Coefficient of correlation
Method Elements PRCPTOT TXx
n&k -0.19 -0.14
k & MAE 0.52 0.9C
k & RMSE 0.59 0.92
k & RMSEs 0.4C 0.8¢
TPS k & RMSEu 0.51 0.92
k & pf -0.7¢ 0.92
ke&d -0.24 -0.49
k&cp -0.7C -0.92
k & MAE 0.5¢ 0.91
k & RMSE 0.70 0.96
k & RMSEs 0.51 0.91
IDW F & RMSEu 0.44 0.96
k & pf 0.81 0.9€
k&d -0.16 -0.45
kscp -0.81 -0.9¢
k & MAE 0.54 0.89
k & RMSE 0.6¢ 0.94
I & RMSEs 0.42 0.85
OK k & RMSEu 0.35 0.91
k & pf 0.73 0.94
k&d -0.2¢ -0.51
kscp -0.73 -0.94
k & MAE 0.54 0.88
k & RMSE 0.64 0.89
k & RMSEs 0.36 0.85
UK k & RMSEu 0.36 0.78
k &pf 0.75 0.89
ks&d -0.19 -0.54
k&cP -0.75 -0.89
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Figure 5.10: Problems in variography design when the lag sized big, different possible

variograms (red, green, blue and yellow curves)kagglable for same experimental variogram.
The reason for low sample density affecting theiapterpolation performance is better
explained by the eventual increased lag szevdan et al. 2002) in variography. In
variography design, the lag size and number arecir@sentation of the available sample
number density, and the first lag distance is terage distance between the measured
points (saacs, and SrivasTava, 1989). When the sample density is too low, the firg la
distance is too high with around 50km for the caisBangladesh as described in Figure
5.10. So, the first point for which the semivariaman be measured is at 50km distance,
and it cannot explain the index variability withi®km. This leads to the fact, that all
possible variograms (red, green, blue and yellaw)ich are very different from each
other, can be fitted and result in similar ranged sills, but the values before the first lag
remain uncertain. Thus it is merely impossible ¢satibe an accurate spatial dependency
for the first increased lag in low sample densitgl aherefore the spatial interpolation

results end up highly uncertain.
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Figure 5.11: Variography designed with 32 available spatiahpoin 2007 to interpolate
PRCPTOT using ordinary kriging with first lag atks0.

The concept of designing mean variograms with afatshifted years, which has been
applied in this study, solves this low sample dgnproblem to some extent, but not
entirely. The concept provides enough measureds gHipoint to describe the spatial
dependence at a certain distance where measunet$ @oe missing for the earlier years
at some locations. Yet, it cannot solve the probtérmcreased lag because the average
distance cannot be decreased when only 32 and &dalspoints are available for
interpolation of PRCPTOT and TXx respectively. A®wn in Figure 5.11, the designed
variogram with 32 spatial points available for Wwar 2007 to interpolate PRCPTOT
with ordinary kriging also has the first lag at 5kso the variability of PRCPTOT within
50km is still not describable. The variogram withlyo spatial points from 2007 is
different from the mean variogram with the accurtedaspatial points of 1993-2007
(Figure 5.7(c)), it results in no anisotropy in lysa and is described by a ‘Power’ model
with power of 1.35 (Figure 5.11). And the resulgdface created by applying it with
ordinary kriging results in worse precision in prformance evaluation measurements
than the surface created with the mean variograpressented in Table 5.4. This explains
why the mean variogram designed with 475 spatiahtpoperforms better than the
individual variogram designed with 32 spatial psin€onsequently, the mean variogram

is more accurate to use. This is true for all casesleads to an increase of precision.
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Table 5.4: Comparison of the performance evaluation measurenetween the ordinary kriging

methods applied to create PRCPTOT surface of 2ppFiag the individual variogram designed

by available 32 spatial points and mean variograsighed by shifted 475 spatial points of the
temporal period of 1993-2007.

Variogram used
in spatial n
interpolation

MAE RMSE RMSEs RMSEu d CP

pf

Variogram
designed only by
t . 32
available spatial
points in 2007
Mean variogram of
1993-2007

342.8 456.7 312.7 400.1 0.80 22.9 77.0

475 318.6  413.9 265.0 331.1 0.82 20.7 79.2

Finally, a relative performance overview of the lggb methods is summarized in Table
5.5. The dissimilar performance attitudes of thehmés result in different interpolated

surfaces which prove the second research propuositio

Table 5.5: Summary of the comparative performance analysikebpplied spatial interpolation

techniques.
Performance | Thin Plate Inverse Ordinary Universal
Parameters Spline Distance Kriging Kriging
Weighting
Variography Smoothed splin:  Straight line Smoothed line Smoothed lin¢
Design exactly through  exactly through that best fits that best fits
the measured the measured through the through the
points. points. measured measured
semivariance. semivariance
considering the
spatial trend.
Performance Performs Performs Performs Performs

with the number
of spatial points
and their

density

comparatively
worse than the
stochastic
methods and
shows better
performance in
cross validation
with increased
number of spatial
points and

comparatively
better than other
methods when

the number of

spatial points and

density are too
little but in
general shows
better

performance in
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comparatively
better than the
deterministic
methods and
shows better
performance in
cross validation
with increased
number of spatial
points and

comparatively
better than the
deterministic
methods and
shows better
performance in
cross validation
with increased
number of

spatial points
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density.
Measurement Includes
Errors measurement

errors in result to
some extent with
minimal

smoothing

cross validatior  density
with increased

number of spatial

points and

density.

Includes Excludes

measurement measurement

errors in result  errors in result
by smoothing

and density

Excludes
measurement
errors in result

by smoothing

5.6 Chapter conclusion

This chapter has proved the research propositidiis tive obtained results and their
discussion in the light of existing theories. Tlogrelation between sample density and
sample coefficient of variation and the strong elation between sample coefficient of
variation and spatial interpolation performance soeaments clearly depict the role of
sample density in spatial interpolation performantiee decreasing trends in the error
measures and in the coefficient of variation of éneors together with the increasing
trend in the index of agreement and in the confidenf prediction over time with

increasing sample density, justify the fact everrenevidently. And this fact shows

conformity with the discussion of the lag problemspatiotemporal estimation. The final
chapter, conclusion and further scopes, will ostlihe final outcome briefly and lead to

the further research scopes of the study.
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6. CONCLUSION AND FURTHER SCOPES

The spatial interpolation methods used in thisysfueiformed irrespective of the sample
size and density in terms of their methodology;enohthem shows better performance,
solely in case of low sample density. Though IDVéws better performance when the
sample density is very small, it cannot be claipezfoundly; since this method includes
measurement errors in result. As experienced ftbm study, the four spatial

interpolation methods have their advantages aratldentages because of their relative
features, and eventually they result in significdifferent surfaces. But the difference
between the resulted surfaces decreases over tithethe increase in sample density;

which proves the second proposition of this redearention in introduction chapter.

In designing variography for the stochastic methdluks spherical model has been chosen
for all variograms of all indices. This is mainklated to the semivariances of the indices
over space, which shows spherical spatial depeedeviariogram models were fitted
interactively to the experimental variograms aonemended bysoovaerTs (1997), thus
the variogram parameters were estimated subjegtivelgiving more relevance to the
first lags. Furthermore, other suitable variograwdels have also been applied, but the
spherical model also proved to be appropriate énctioss validation. The applied method
to select the parameters of the variogram provdsetgood as we have considered the
weighted regression method and cross-validations fiethod is indeed similar to the
weighted least squares method (WLS). However therecopes to try more probabilistic

procedures such as Maximum Likelihood or Restridfeckimum Likelihood.

Importantly, the nugget effect under OK is smallilehunder UK it is very high. This
clearly indicates that the spatial trend is affggtithe short-range variability of the
indices. The reason for this effect can be se¢harspatial trend for the indices occurring
in long range (across the whole country). Additipnathere is not enough sample
density to model the short-range variability anddescribe the gradual change in the
indices’ values in the trend direction. Given tlthe smallest accessible lag of the
empirical variogram is large, the nugget effedtkisly to be overestimated. Additionally,
the nugget value and the semivariogram behavitlieabrigin cannot be cross-validated
because variogram model values for lags smaller tha shortest sampling interval do

not intervene in interpolation algorithms.

Last, but not least, proving the first propositiointhe study, the sample or spatial point
density has a profound effect on the performancepafial interpolation techniques. It is
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very important to analyze the spatial point denaityl resulted coefficient of variation of
the samples before applying any spatial interpmtatiFor example, if a study area
provides only five spatial points for over 200,08uare kilometers of area, the spatial
interpolation results for the continuous variabkad end up with less accuracy. The
produced surfaces in such case might not be edidiblbe used in further research.
Superimposing with the high-resolution auxiliaryatset (RADAR) might be useful but
in case of absence of such dataset, the accuraaiet) in the estimates should be taken

into account in further analysis.

6.1 Limitations and further scopes

The performance improvement of the spatial intexfpoh techniques can be subject to
further analysis in future studies. Other spatigklipolation methods might perform
better in response to low sample density, sucticahastic simulation algorithms, which
might help researchers in the areas suffering flmm sample density due to techno-
economic reasons. Further research can be carnigdino modeling appropriate
variography for the first increased lag size. Logkiat different spatial resolution may
provide interesting results in this case. Furtheenonodeling with increased temporal
resolution, i.e. monthly indices rather than yearglices, may improve the results as
well. Modeling the time series with the AutoregiresgAR), the Moving Average (MA)
or the Autoregressive-Moving Average (ARMA) mod@&rdckweLL, and Davis, 1991;
CHAFIELD, 1989; and DiceLe, 1990) for the yearly indices may also improve the spati
interpolation performance. In a nutshell, theséher steps would eventually increase the
legitimacy of the research and the proclaimed faat sample number and density do

affect the spatial interpolation result.

The research has broader perspective in appliedtajestics. Evaluating the spatial
interpolation techniques and eventually determiniimg locally appropriate technique,
will contribute to preparing appropriate climatetadeet and understanding their spatial
variability. Interpolation performance improvemaémtrespect to low sample density will
provide with accurate continuous surfaces of clamatlices for future climate change
studies. Moreover, local continuous surfaces ahate indices can be input in several
climate models to forecast climate change phenomand related consequences on the
developing countries like Bangladesh, where climatadies are suffering from
unavailability of climate data recording and moriiig. To conclude, choosing
appropriate methodology of spatial interpolationll wesult in appropriate climate

forecast and climate resilience activities.
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A.2 IDW Surfaces of PRCPTOT
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A.3 OK Surfaces of PRCPTOT
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A.4 UK Surfaces of PRCPTOT
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A.5 Residual Plots of TPS Surfaces of PRCPTOT
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A.6 Residual Plots of IDW Surfaces of PRCPTOT
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A.7 Residual Plots of OK Surfaces of PRCPTOT
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A.8 Residual Plots of UK Surfaces of PRCPTOT
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A.9 TPS Surfaces of TXx
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A.10 IDW Surfaces of TXx
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A.11 OK Surfaces of TXx
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A.12 UK Surfaces of TXx

—T 65

1957 " 71958 "7 1959

Station Locations + Interpolated Values are in 0C

123



1971

Station Locations + Interpolated Values are in 0C

124



1983

1981 . 1982

Station Locations + Interpolated Values are in 0C

125



—T 65

1995

.(1953 T

Station Locations + Interpolated Values are in 0C

126



T 856

2005 © 2006 ———

Station Locations + Interpolated Values are in 0C

127



A.13 Residual Plots of TPS Surfaces of TXx
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19‘56 | 1957 1958 '.

: .1960 l. .1961 1962..

Over Estimated Values
Under Estimated Values i

1963

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the
minimum the size of the circle the minimum the difference between measured and predicted

values



: 1964' | '. .1965 .. | 1966.. 1967
) 196‘8” ‘. 1969 a .1;370 .. ;9.71'
| 1972 " 197;, | : 19;74' . 1975

19;76 | .19.77 .' | 1;378 | h .1:97;

Over Estimated Values @@
Under Estimated Values i
*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the

minimum the size of the circle the minimum the difference between measured and predicted
values
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1980 1981 19§2 1983
1984 1985 1986 1987
1988 1989 199_0 1991
1992 1993 1994 1995
Over Estimated Values
Under Estimated Values

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the
minimum the size of the circle the minimum the difference between measured and predicted

values
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1996 1997 1998 1999
2000 2001 2002 2003
2004 2005 2006 2007

Over Estimated Values @@

Under Estimated Values

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the
minimum the size of the circle the minimum the difference between measured and predicted
values
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A.14 Residual Plots of IDW Surfaces of TXx

1048 | 1949 . | .. 1950 19;31 |

1952 | 19;3 o .195[; | . 1955

1.956 - 1957; . | 19.5'8 - 19:59
| . 196;) . | ' 1961. . 19652 . | 19l63

Over Estimated Values @@
Under Estimated Values i
*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the

minimum the size of the circle the minimum the difference between measured and predicted
values
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Over Estimated Values @@
Under Estimated Values i
*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the

minimum the size of the circle the minimum the difference between measured and predicted

values

11968 1969
11972 | 1973
1976 1977
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1992

Over Estimated Values
Under Estimated Values

.1981? | | 19%;. | : 1%53
1;;5j. . .‘;;;;. | ;;;7:
;989 | T 1;?0' ;;91:'
1;9; | ;9;4 . '1;;5

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the
minimum the size of the circle the minimum the difference between measured and predicted

values
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2004

Over Estimated Values
Under Estimated Values

2006

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the
minimum the size of the circle the minimum the difference between measured and predicted

values
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A.15 Residual Plots of OK Surfaces of TXx

: .. .1948 1949 . 1950'. | 19;1
| ‘1.952 19.:33 : | 1954... 1955
,“ 1.956.5 - 1957 . 7.' 195.;3. ‘ 1959
| " 196;) .. . " 1961:' " . '196; -.. © 1963

Over Estimated Values
Under Estimated Values i
*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the

minimum the size of the circle the minimum the difference between measured and predicted
values
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1964 . | - 1965 | | 196}. - 567

1968. | 1969 .‘ -. | ;970 - 1971
: o7 197'3 | '. | 1974 .‘ | 1975

.1976 - 1977 - .1978 .' - 1979

Over Estimated Values @@
Under Estimated Values
*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the

minimum the size of the circle the minimum the difference between measured and predicted
values
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. .;:gsc.) . . .1981 .. ':19%.2: ﬁ....jls;so.
. ‘;9'84. . .. Y' .19;;:5 1;9;6. ; .1<.;z;7 .
| 1988 | , 1.9;;9.. '.1;-;0 ;9.9.1::
19.9.2 ." R ".19‘;9;, ..‘“ . 1994 ". 19.9':5

Over Estimated Values

Under Estimated Values i

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the
minimum the size of the circle the minimum the difference between measured and predicted

values
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1996 1997 1998 1999
2000 2001 2002 2003
2004 2005 2006 2007

Over Estimated Values @@

Under Estimated Values i

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the
minimum the size of the circle the minimum the difference between measured and predicted
values
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A.16 Residual Plots of UK Surfaces of TXx

. .. . 1948 | . T949 :‘ 1950. ' | 195:1
| 11952 19;33  . | 1954 | 1955.
| 196.0 '.. .. .1961'. T e ;.. 1068

Over Estimated Values
Under Estimated Values @
*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the

minimum the size of the circle the minimum the difference between measured and predicted
values
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| 1964. | .. - .1965.. | | 196:6' 1967.
; '196.8 | 1969 .. .197'0‘ . ;9-71.
| 1972 '. | 197.3 . 1974.‘ 1975

..1:976 o '. 19;77.. - 1078 | | . .;9;9

Over Estimated Values @
Under Estimated Values
*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the

minimum the size of the circle the minimum the difference between measured and predicted
values
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1980 1981 1982 1983
1984 1985 1986 1987
1988 1989 1990 1991
1992 1993 1994 1995
Over Estimated Values
Under Estimated Values i

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the
minimum the size of the circle the minimum the difference between measured and predicted

values
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1996 1997 1998 1999
2000 2001 2002 2003
2004 2005 2006 2007

Over Estimated Values

Under Estimated Values

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the
minimum the size of the circle the minimum the difference between measured and predicted
values
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A.17 Difference Surfaces between TPS and IDW (TP®W) of PRCPTOT
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A.18 Difference Surfaces between TPS and OK (TPS-Qkf PRCPTOT
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A.19 Difference Surfaces between TPS and UK (TPS-UkKf PRCPTOT
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A.20 Difference Surfaces between IDW and OK (IDWOK) of PRCPTOT
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A.21 Difference Surfaces between IDW and UK (IDWUK) of PRCPTOT
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A.22 Difference Surfaces between OK and UK (OK-UKpf PRCPTOT
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A.23 Difference Surfaces between TPS and IDW (TP®W) of TXx
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A.24 Difference Surfaces between TPS and OK (TPS-QKf TXx
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A.25 Difference Surfaces between TPS and UK (TPS-UkKof TXx
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A.26 Difference Surfaces between IDW and OK (IDWOK) of TXx
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A.27 Difference Surfaces between IDW and UK (IDWUK) of TXx
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A.28 Difference Surfaces between OK and UK (OK-UKpf TXx
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A.29 Performance measurements of the four methodsdm cross-validation for interpolating PRCPTOT (pp. 203-205)

MAE RMSE RMSEs RMSEu pf d CP
Sample|

Yeargn| Mean | k | TPS | IDW | OK | UK TPS IDW OK UK TPS | IDW OK UK TPS IDW OK UK TPS | IDW | OK | UK |TPS|IDW |[OK|UK|TPS|IDW | OK | UK

1948| 8 (1532.250.54851.89685.47732.19693.70 1006.14 817.73| 851.75| 798.92 | 650.0¢789.37| 778.84| 575.74 767.9p 213.70 344[78 55385 6p%F.37(55.5952.14/0.47/0.21|0.230.5§34.33 46.63|44.4147.86
1949| 9 (1772.330.471802.09605.95749.61729.7§ 907.61| 731.38 835.79| 820.77 | 506.171632.84| 623.33| 479.91 753.38 350.20 545[18 66472 514£127[47.1646.31/0.56(0.50|0.460.6148.79 58.73|52.8453.69
1950(10| 1708.400.59541.17463.50 461.90437.7( 610.46| 577.11 532.98| 553.68 | 133.19542.99| 455.95| 336.09 595.7p 187.37 314,95 41413 353878|31.2( 32.41|0.890.79(0.860.8664.27) 66.22|68.8067.59
1951(11| 1446.91/0.54625.77/587.73616.42577.84 862.52| 801.7( 828.39| 773.73 | 710.42674.97| 617.29| 501.23 489.06 285.95 46034 56860 59HE41|57.2553.47|0.36(0.30(0.400.5440.39 44.59|42.7546.53
195210/ 1778.400.3§761.22491.39538.53577.33 916.33| 590.04 695.81| 681.62 | 701.97526.05| 561.35| 484.21 589.01 261.64 41043 46427 5[13818(39.1338.33|0.25(0.47|0.430.4748.4766.82(60.8161.67
1953|12/1818.330.33412.71{418.511472.98445.7]] 481.98| 493.46 543.51| 517.19 | 256.51416.73| 353.72| 243.45 408.0p 219.62 384[/5 42834 2p5114|29.8928.44/0.78/0.59|0.640.7373.49 72.86/70.1171.56
1954(13|1876.150.37361.401394.11346.86 365.49 453.24| 509.75 442.18| 459.82 | 233.28463.50| 337.22| 286.27 388.61 162.05 2780 31269 24#2AK17|23.5724.51/0.86/0.66(0.820.8475.84 72.83|76.4375.49
1955(12|1744.250.311323.11368.50 293.60 310.42 424.15| 421.46 355.56| 371.62 | 220.04309.95( 203.96| 195.2§ 362.6] 200.46 278,84 29025 24#3216|20.3¢21.31/0.800.65(0.820.8075.68 75.84(79.6278.69
1956|14] 2016.000.29262.32342.02315.79318.83 334.54| 417.86 376.66| 346.14 | 215.571355.34| 250.90| 170.8q0 255.88 163.37 237,69 276.05 1pZBD73(18.6917.17|0.82/0.52|0.710.8183.41) 79.27|81.3282.83
1957|15|1334.470.33344.18316.46273.89283.99 513.46| 441.46 427.93| 455.26 | 417.7§426.29| 391.52| 370.7q 298.56 123.70 177,69 22841 3B3B08[32.0734.12/0.42/0.30|0.440.4461.52 66.92|67.9365.88
195815/ 1263.070.47664.80471.99476.11485.83 784.19| 555.09 572.89| 587.77 | 599.09467.47| 411.33| 379.1§ 506.02 233.58 3515 406.80 6R4®95|45.3646.53/0.21]0.34(0.460.4937.91) 56.05|54.6453.47
195915/ 1753.530.34351.16475.30 420.68422.00 474.43| 584.62 535.48| 551.92 | 367.70496.96| 376.61| 367.3] 299.82 211.94 27303 33042 2]3®34|30.5431.47|0.730.36(0.540.5772.94 66.66(69.4668.53
1960|15| 1645.530.44651.67/525.211549.359523.09 975.90| 776.17 833.74| 791.23 | 812.45527.75| 365.38| 400.049 540.66 335.53 54843 47305 5Pp8B117|50.6748.08/0.23]0.23|0.340.3440.69 52.83|49.3351.92
1961|16| 1654.250.60578.42531.30503.00417.07 965.93| 754.02 789.16| 701.54 | 517.69488.09| 289.29| 243.7 815.58 439.84 634,85 590.70 584958(47.7042.41|0.72/0.73|0.770.8241.61) 54.42|52.3057.59
1962|16| 1446.880.37369.48 337.14 329.65322.43 449.03| 445.13 426.59| 383.74 | 294.87364.55( 289.96| 213.4 338.62 193.39 27811 29439 3] 3B77(29.4426.52|0.72/0.58(0.700.8068.97 69.23|70.5773.48
1963|15| 1570.800.36 343.08 358.49350.20 280.31f 519.04| 496.61 488.11| 409.07 | 361.55386.18| 299.68| 224.7§ 372.3f 227.81 31614 31649 3BAM62(31.0726.04/0.67/0.56(0.660.8066.96 68.38|68.9373.96
1964(18/1690.390.41586.12508.17504.05484.23 844.32| 683.471 719.88| 679.29 | 657.48579.45| 493.55| 415.74 529.72 262.52 42809 46118 4p45H43[42.5940.19|0.39 0.34/0.440.5450.05 59.57|57.4159.81
1965|17|1859.530.43824.22594.09642.19608.98 1038.02 769.13| 826.53| 789.17 | 822.31711.30| 669.40| 640.92 633.38 275.78 45408 476.36 5p48P36|44.4542.44/0.30/0.39|0.460.5244.18 58.64/55.5857.56
1966(21| 1648.380.46486.43442.17428.99499.71f 701.57| 617.99 608.10| 644.76 | 489.84638.41| 591.87| 580.56 502.22 279.60 39447 45436 4p3B49(36.8940.28/0.63/0.60(0.700.7157.44 62.51|63.1159.72
1967|19/1601.160.46423.20439.89437.7§405.5 767.77| 652.12 676.02| 614.70 | 603.41674.68| 652.26| 578.07 474.7Dp 265.41 401,88 45236 4y4H73|42.2238.39|0.54]0.49(0.550.6952.05 59.27|57.7§61.61
1968|19|1792.260.43724.06465.83532.00517.69 882.92| 645.79 665.45| 628.33 | 569.29620.91| 555.25| 422.64 674.88 331.96 48944 52010 4Pp3H03|37.1335.06/0.54{0.61|0.640.7550.74 63.97|62.8164.94
1969|20| 1833.050.44500.35477.67435.95469.1 688.63| 656.86 630.65| 640.08 | 422.99612.66| 509.32| 477.4Q0 543.48 280.36 42295 44261 3}3H.83(34.4(034.92/0.75/0.63|0.740.7462.43 64.17|65.6065.08
1970|20{ 1761.350.35489.55394.77418.14404.3§ 652.71| 564.84 559.36| 520.92 | 539.03510.31| 403.15| 355.49 368.04 197.20 31085 342,50 3y3I®07|31.7629.57|0.44]0.41|0.540.6662.94 67.93|68.2470.43
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1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
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1993
1994
1995
1996
1997
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1959.94
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0.54
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0.3

0.33
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652.18
425.23
564.28
585.86
460.78
717.14
491.51
513.34
595.08
577.02
564.34
469.71
256.13
380.74
417.15
331.91
404.13
258.00
277.64
362.88
302.49
368.80

292.02

313.88

586.09
362.13
418.24
574.5]
415.37
535.91
492.8(
425.47
703.29
442.28
456.17
657.56
567.57
537.77
472.59
287.53
439.05
413.95
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403.67
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336.56
407.57
356.41
365.29

344.14

307.37

584.24
362.51
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421.23
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517.21
414.92
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525.95
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463.83
269.72
392.73
362.64
305.03
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305.56
286.39
381.02
304.30
339.34

281.13
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603.77
390.20
439.00
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401.10
495.35
509.70
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488.89
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540.38
510.97
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249.61
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401.15
329.23
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298.89
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350.08
309.60
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305.87

749.92
545.49
546.63
1005.63
637.13
729.10
702.34
621.85
899.74
648.28
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768.52
702.40
740.09
646.16
337.96
595.23
574.86
590.58
533.82
423.66
389.38
575.76
484.22
468.03

375.09

423.71

698.16
553.91
534.36
803.85
558.37
665.86
620.67
608.00
895.80
655.73
613.20
755.16
716.94
678.02
591.06
366.33
602.01
548.03
616.42
511.06
513.47
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619.84
560.99
494.5(
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697.21
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631.87
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582.26
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392.99
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538.30
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629.52
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624.90
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710.09
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585.83
338.77
601.55
502.46
546.47
489.52
456.68
390.38
526.55
505.15
447.64
345.44

387.62

405.14
412.3

493.64
724.17
435.95
593.44
589.2

502.07
891.97
644.57
477.81
522.47
556.0¢
637.01
460.72
206.24
241.34
217.54
405.99
386.04
189.73
234.61
446.63
321.7

333.17

182.84

209.64

612.83
161.94]
469.77
603.89
448.36
683.54
560.47
257.09
906.52
450.92
324.32
698.90]
506.87|
624.23
408.63
293.77
508.67|
489.59
386.86
366.25
377.90
290.39
276.00]
337.33
361.67

316.47

359.40

497.13
1072.63
435.51
388.51
228.03
654.02
434.18
65.35
946.15
459.46
212.60
510.95
413.63
554.35
283.51
209.65
371.21
343.44
163.55
239.99
189.44
176.87
187.15
182.46
90.60

205.44

297.91

487.29
1244.63
439.13
331.45
234.13
687.9¢
471.44
161.58
899.79
547.0Q
266.84
493.7¢
427.13
610.26
304.64
229.58
433.27
392.5¢
144.87
279.33
210.23
212.57
190.64
164.87
120.13

216.54

297.2]

631.0p

357.13
234.7
697.7
464.6
423.5
382.1
366.9
118.1

69.73
523.3
563.6
429.1
376.7
453.0
267.7
544.11
532.1
428.9
368.7
378.8
310.7
363.3
361.8
328.7

327.5

D

v

v

8

B
L
B
i
0
D
i
L
L
i
4

368.2

411.3
566.02
195.
366.
215.5
2475
296.4
402.3
187.4
274.9
3914
395.7
377.

241.1

257.9

5

272.09

240.5

335.3
196.4

251.1

266.3

N

528,
1314.6
323,
652
422,
317,
393,
526.
198,
241.

398.

67

519

1469.97

B1
86
66
82
70
A2
95
8

25
82
2
a7
02
86
04
05
00
09
80
55
07
69

65

B33

384,

7

252
628
387.
413
382
451

95,

133
562
510.
443,
334,
4217,
288
408,
381
484,
345
394,
320.
617
542
368,
343

.94

4

43.33

93
64
81
89
34
38

53
62
79
09
91
72
02
23
73
26
61
51
85
04
48
53
77

383

44

w

W W W w N~ b

N

W W NN W W N

NN

54201

44.00
8BB.23
PAB.61
vV AB.26
DB219
P3i7.53
b 85.84
f 5B.69
B88.43
B3D.64
83812
8. 35.35
B2P08
8 3545
B8 2250
Vo031
D 3698
DAJ.88
P 3087
12220
V336
D35 10
b41.06
b2p.A7

B25.90

BRR.77

41.94
45.21
38.75
44.95
42.94
35.45
37.84
34.09
59.17
47.63
38.74
35.77
38.62
30.30
36.09
19.67
26.27
25.95
38.62
29.8(
23.73
27.72
30.74
36.2(
25.04

21.45

21.35

42.41]
45.63]
37.51
42.90
40.11]
36.95
38.06
33.76
57.18
47.10]
37.82
35.84]
37.38
31.32
35.14]
18.96
27.29
25.66
36.25
29.57,
23.30]
27.98
28.12
36.97,
24.86
21.41

21.06

0.58
0.40|
0.52
0.60
0.56]
0.51
0.57|
0.02
0.01
0.65|
0.76|
0.61]
0.46)
0.64|
0.82
0.84
0.83
0.72
0.74
0.90
0.84
0.68|
0.84|
0.75

0.89

0.84]

0.70
0.45
0.38
0.49
0.44
0.52
0.60
0.54
0.08
0.25
0.56
0.68
0.56
0.43
0.56
0.67
0.72
0.73
0.53
0.68
0.76
0.69
0.46
0.68
0.55
0.78

0.77

0.75
0.53
0.44
0.57
0.54
0.60
0.64
0.63
0.07
0.24
0.61
0.7¢
0.63
0.51
0.61
0.7¢
0.79
0.81
0.64
0.7¢
0.85
0.80
0.67
0.82
0.73

0.90

0.89

0.74
0.52
0.45
0.61
0.62
0.6(
0.62
0.63
0.02
0.12
0.65
0.77
0.65
0.49
0.63
0.79
0.74
0.82
0.74
0.7¢
0.84
0.79
0.79
0.81
0.72

0.89

0.85

54.87|
56.67|
61.91)
47.95
52.92
60.37|
57.53
63.35
42.05
51.14
56.50
61.21)
61.44
66.08
61.25
81.08
73.00
70.65
60.83
67.76
78.38
72.09
69.25
64.56
74.01)

76.75

76.98

57.99
56.00|
62.77
58.39
58.74]
63.81]
62.47
64.16
42.31
50.57|
62.36
61.88
60.65|
68.92]
64.55
79.50
72.69|
72.02]
59.12
69.13
73.80]
69.64]
66.90
58.94
72.53]
74.10]

77.23

58.04
54.79
61.24
55.04
57.04
64.55
62.14
65.91
40.83
52.37
61.24
64.23
61.3§
69.70
63.91
80.33
73.73
74.05
61.34
70.20
76.27
72.28
69.24
63.8(
74.96

78.55

78.64

57.59
54.37
62.49
57.10
59.89
63.05
61.94
66.24
42.82
52.90
62.18
64.16
62.62
68.68
64.86
81.04
72.71
74.34
63.75
70.43
76.70
72.02
71.88
63.03
75.14
78.59

78.94
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1998
1999
2000
2001
2002
2003
2004
2005
2006
2007

31
32
32
32
32
31
32
32
32

32

1948.00
2014.69
1636.59
1764.91
1939.81
1621.42
2117.47
1701.94

1603.88

1992.89

0.42
0.34
0.49
0.51
0.30
0.49
0.24
0.39

0.4Q

0.29

427.87
298.17
338.35
450.87
317.90
376.83
354.98
289.73

263.33

351.89

438.24
355.45
387.72
518.85
344.09
408.62
368.07
351.64

362.37

335.69

380.20
293.42
330.56
406.37
303.79
355.49
319.90
292.61

293.49

318.62

359.4Q
312.59
380.30
447.24
331.58
361.43
323.13
320.36

321.48

316.49

603.36
360.51
525.58
666.21
411.20
491.37
467.27
410.04
351.83

446.05

538.27
430.67
571.81
715.12
412.11
551.65
456.17
476.99

484.19

408.91

525.37
345.20
502.73
615.85
380.02
475.85
431.03
411.68
387.63

413.94

497.91
375.11
513.93
664.11
420.09
465.19
437.18
428.12
409.60

388.64

271.03
167.24
233.21
484.84
285.74
295.54
329.11
245.1

145.24

278.3§

298.85
378.51
513.72
578.97
365.74
458.41
213.24]
386.49

429.42

360.70

157.29
206.84
290.42
335.34
223.73
260.16
76.80
23291
237.36

265.03

168.87
220.12
320.35
360.47
234.03
254.53
105.28
264.92

297.62

240.65

539.0
319.3
470.9
456.8
295.7
3925
3317
328.6
324.7

348.5

4
8
¢]
f
4
B
¢]
D

283.4
320.9
239.9

213.1

244 4

556,
299
390
493,
277
417,
459,
377
300,
331,

P8
68
81
@7
52
13
16
7
61

07

492,
312,
400.
536
312,
412
461
386
294.

322.

75
47
24
32
35
30
68
58
03
12

N W N W W

D B7.63
vV BB.38
3494
V 45.52
12D.25
D34.02

22U.54

ft 28.03

13219

p3B52

26.97
17.13
30.72
34.89
19.59
29.35
20.34
24.19

24.17

20.77

25.56
18.62
31.40
37.63
21.66
28.69
20.65,
25.15
25.54]

19.50

0.84
0.92
0.87|
0.78|
0.80
0.86|
0.76|
0.86|

0.91]

0.81
0.82
0.75
0.66
0.75
0.75
0.73
0.70
0.70

0.77

0.87
0.92
0.84
0.81
0.83
0.87
0.8(
0.84

0.87

0.82

0.89
0.89
0.89
0.7¢
0.77
0.87
0.79
0.87

0.84

0.84

69.03
82.11)
67.89
62.25
78.80)
69.69
77.93
75.91

78.06

77.62

72.37|
78.62]
65.06
59.48
78.75]
65.98|
78.46
71.97
69.81]

79.48]

73.03
82.87
69.24
65.11
80.41
70.65
79.64
75.81

75.83

79.23

74.44
81.38
68.60
62.37
78.34
71.31
79.35
74.85
74.46

80.50
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A.30 Performance measurements of the four methodsdim cross-validation for interpolating TXx (pp. 204-206)

Years

Sample
Mean

MAE

RMSE

RMSEs

RMSEu

pf

CcP

TPS

IDW

OK

UK

TPS

IDW

OK

UK

TPS

IDW

OK

UK

TPS

IDW

OK

UK

TPS

IDW | OK

UK

TPS

IDW

OK

UK

TPS

IDW

OK

UK

1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970

37.36
35.30
37.45
36.96
38.10
36.65
38.17
37.62
39.39
38.13
39.02
38.53
40.85
39.38
38.44
38.07
37.54
38.67
38.48
35.65
37.42
37.70
37.67

0.04
0.08
0.03
0.04
0.06
0.03
0.07
0.06
0.07
0.10
0.08
0.07
0.06
0.06
0.06
0.07
0.05
0.07
0.08
0.24
0.06
0.08
0.08

1.24
2.59
1.27
1.54
2.79
0.65
1.09
1.82
1.49
2.28
2.09
1.68
1.71
1.48
1.03
1.55
1.16
1.80
2.04
7.42
1.62
2.42
1.40

1.05
2.10
0.94
1.02
2.00
0.66
1.52
1.93
2.05
2.43
211
1.94
2.04
1.69
1.38
1.56
1.08
2.08
2.24
4.71
1.57
1.79
1.47

0.92
2.21
1.10
0.95
2.23
0.64
1.18
1.99
2.05
2.68
1.74
1.81
2.14
1.56
1.26
1.32
0.99
1.92
2.69
5.91
1.64
1.86
1.48

1.07
2.41
1.15
1.17
2.29
0.61
0.92
1.73
1.85
2.43
1.74
1.69
211
1.34
1.21
1.44
1.04
1.95
2.55
5.49
1.49
1.95
1.39

1.50
4.62
1.61
1.71
3.74
0.86
1.37
217
1.89
3.97
2.39
2.36
2.11
1.77
1.35
1.95
1.38
2.09
2.94
13.73
1.95
3.23
1.65

1.26
3.29
1.29
1.36
2.45
0.87
1.80
2.39
2.40
3.93
2.35
2.34
2.41
1.97
1.62
2.18
1.44
2.30
2.90
9.96
2.02
2.40
2.01

1.12
3.69
1.38
1.22
2.81
0.76
1.41
2.38
2.47
4.31
2.06
2.48
2.70
1.97
1.62
1.75
1.21
2.35
3.36
11.46
2.00
2.57
1.71

1.22
3.89
1.47
1.40
2.85
0.69
1.18
2.18
2.27
4.17
2.07
2.24
2.63
1.72
1.51
1.82
1.29
2.41
3.25
10.86
1.84
2.73
1.69

0.59
3.24
1.34
1.05
2.66
0.24
0.42
1.56
1.20
3.31
1.08
1.47
1.62
1.08
0.69
1.21
0.72
1.30
2.47
10.73
131
1.67
0.82

1.24
3.23
0.83
0.55
2.06
0.72
1.69
2.23
2.39
4.11
1.95
2.06
2.09
1.99
1.59
1.76
1.20
1.92
3.00
13.74
1.67
2.75
1.80

0.85
3.43
0.81
0.19
2.22
0.39
0.96
1.98
2.16
4.46
1.22
1.73
2.04
1.94
1.41
0.85
0.90
1.57
3.32
24.42
1.33
2.80
1.06

0.61
3.54
0.69
0.17
2.18
0.15
0.33
1.45
1.51
4.32
0.97
1.25
2.01
1.54
1.19
0.88
0.95
1.33
311
15.00
0.75
2.84
1.18

1.37
3.29
0.90
1.35
2.63
0.82
1.30
1.51
1.47
2.19
2.13
1.84
1.35
1.40
1.16
1.53
1.17
1.65
1.59
8.57
1.44
2.77
1.43

0.39

0.72
0.93
0.90
0.30
0.56
0.96
0.83
1.23
1.12
1.18
0.90
0.92
0.83
1.03
0.62
1.25
131
4.94
0.86
1.41

0.76
2.08
0.85
1.23
1.59
0.60
0.98
1.37
1.58
1.88
1.52
1.76
1.47
1.49
1.27
1.36
0.90
1.82
2.18
15.67
1.23
2.33
1.45

1.08
2.17
1.34
1.51
1.51
0.63
1.09
1.68
1.89
1.87
1.74
1.73
1.36
1.42
1.29
1.46
1.04
2.00
2.14
7.05
1.40
2.27
1.51

4.00
13.09
431
4.63
9.81
2.34
3.59
5.77
481
10.40
6.12
6.11
5.16
4.49
3.50
5.12
3.67
5.41
7.64
38.52
521
8.57
438

3.39 | 3.01
9.31 |10.44
3.44 | 3.69
3.67 | 3.30
6.43 | 7.36
2.36 | 2.07
4.73 | 3.70
6.37 | 6.34
6.09 | 6.26
10.30|11.29
6.01 | 5.29
6.08 | 6.42
5.91 | 6.60
5.00 | 5.00
4.22 | 4.22
5.72 | 4.60
3.84 | 3.22
5.95 | 6.07
7.54 | 8.72
27.94|32.14
5.40 | 5.35
6.36 | 6.82
5.34 | 4.55

3.27
11.02
3.91
3.79
7.49
1.89
3.09
5.80
5.77
10.94
5.29
5.81
6.44
436
3.94
4.78
3.43
6.23
8.46
30.47
493
7.25
4.49

0.65
0.17
0.15
0.57
0.29
0.86
0.92
0.60
0.81
0.49
0.80
0.72
0.63
0.79
0.87
0.78
0.82
0.81
0.56
0.01
0.67
0.70
0.89

0.40
0.14
0.20
0.59
0.33
0.68
0.73
0.17
0.48
0.27
0.65
0.56
0.33
0.57
0.70
0.56
0.67
0.69
0.47
0.01
0.44
0.71
0.75

0.71
0.18
0.22
0.76
0.37
0.84
0.89
0.36
0.63
0.29
0.81
0.64
0.40
0.70
0.78
0.82
0.84
0.76
0.47
0.07
0.56
0.76
0.87

0.74
0.14
0.31
0.71
0.34
0.88
0.94
0.63
0.75
0.34
0.83
0.74
0.39
0.80
0.83
0.81
0.83
0.76
0.51
0.05
0.69
0.72
0.88

96.00
86.91
95.69
95.37
90.19
97.66
96.41
94.23
95.19
89.60
93.88
93.89
94.84
95.51
96.50
94.88
96.33
94.59
92.36
61.48
94.79
91.43
95.62

96.61
90.69
96.56
96.33
93.57
97.64
95.27
93.63
93.91
89.70
93.99
93.92
94.09
95.00
95.78
94.28
96.16
94.05
92.46
72.06
94.60
93.64
94.66

96.99
89.56
96.31
96.70
92.64
97.93
96.30
93.66
93.74
88.71
94.71
93.58
93.40
95.00
95.78
95.40
96.78
93.93
91.28
67.86
94.65
93.18
95.45

96.73
88.98
96.09
96.21
92.51
98.11
96.91
94.20
94.23
89.06
94.71
94.19
93.56
95.64
96.06
95.22
96.57
93.77
91.54
69.53
95.07
92.75
95.51
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1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

35.66
38.18
37.33
36.72
37.97
38.21
35.84
36.88
38.62
38.06
36.05
37.81
37.02
37.84
37.20
37.78
37.86
37.10
38.22
36.06
37.14
38.26
36.39
38.09
38.72
37.90
37.09

0.04
0.08
0.07
0.05
0.08
0.08
0.05
0.05
0.07
0.07
0.04
0.04
0.05
0.05
0.07
0.06
0.06
0.06
0.07
0.05
0.04
0.06
0.04
0.06
0.06
0.05
0.04

1.04
1.51
1.36
0.89
1.71
1.87
0.90
1.29
1.39
0.96
0.70
1.25
1.01
0.73
0.88
0.81
1.00
1.26
0.89
1.08
0.82
0.82
0.65
0.79
0.76
0.63
0.62

1.03
1.62
1.64
0.97
1.59
1.99
1.03
0.95
1.48
1.08
0.73
0.99
0.96
0.94
1.29
1.10
1.15
1.15
1.22
1.05
0.76
1.08
0.75
1.04
1.15
0.83
0.79

1.01
1.35
1.64
0.90
1.61
1.97
0.85
1.10
1.23
0.91
0.73
1.11
0.96
0.80
0.90
0.81
0.87
1.04
0.94
1.00
0.64
0.81
0.62
0.82
0.81
0.65
0.64

1.01
1.42
2.94
0.81
1.72
1.91
0.89
1.12
1.25
1.09
0.73
1.01
0.98
0.82
1.06
0.87
0.94
1.06
0.97
0.98
0.71
0.79
0.62
0.81
0.84
0.61
0.64

1.34
1.99
1.68
1.04
2.21
2.29
1.08
1.79
1.69
1.20
0.86
1.56
1.25
0.94
1.30
1.00
1.33
2.06
1.23
1.45
1.02
1.07
0.81
0.97
1.08
0.77
0.76

1.31
2.03
1.92

2.07
2.38

1.41
1.72
1.43
0.94
1.23
1.20
1.24
1.68
1.28
1.40
1.64
1.52
1.49
1.05
1.39
0.95
1.30
1.43

1.01

1.29
1.74
1.86
0.98
2.04
2.57
1.04
1.52
1.54
1.16
0.91
1.39
1.20
0.98
1.27
1.01
111
1.79
1.28
1.43
0.82
1.04
0.79
0.99
1.06
0.82
0.78

1.30
1.84
6.73
0.95
2.12
231
1.09
1.56
1.56
1.42
0.97
1.27
1.22
1.04
1.48
1.07
1.23
1.58
1.24
1.35
0.94
1.06
0.79
1.01
1.16
0.81
0.80

1.17
0.96
0.87
0.29
1.03
1.39
0.45
0.77
0.63
0.43
0.31
0.94
0.71
0.42
0.58
0.40
0.60
1.12
0.45
1.23
0.42
0.47
0.32
0.41
0.43
0.29
0.39

1.24
1.09
1.72
1.00
1.21
2.30
0.78
1.49
1.81
1.05
0.89
1.02
0.59
0.79
1.03
0.89
1.23
1.17
1.58
1.36
1.01
1.04
0.96
1.20
1.22
0.85
0.76

0.98
0.37
1.34
0.55
0.59
2.12
0.85
1.26
1.50
0.53
0.61
0.92
0.32
0.16
0.59
0.38
0.78
0.92
0.92
1.09
0.61
0.36
0.61
0.64
0.67
0.22
0.32

0.94
0.38
4.22
0.33
0.73
1.72
1.11
1.32
1.38
0.56
0.69
0.88
0.30
0.27
0.66
0.44
0.85
0.88
0.99
1.15
0.72
0.38
0.66
0.65
0.67
0.22
0.37

0.65
1.74
1.43
1.00
1.96
1.82
0.98
1.61
1.57
1.12
0.80
1.24
1.03
0.84
1.17
0.92
1.19
1.73
1.15
0.88
0.93
0.95
0.74
0.87
0.99
0.71
0.66

0.44
1.27
1.03
0.59

1.23
0.96
0.80
0.96
0.74
0.51
0.66
0.81
0.70
1.00
0.73
0.70
0.89
0.84
0.64
0.53
0.78
0.49
0.70
0.78
0.56
0.52

0.73
1.61
1.68
0.84
2.18
2.27
1.35
1.40
1.55
1.02
0.80
1.10
1.14
0.92
1.11
0.97
1.02
1.44
1.26
1.06
0.75
1.06
0.63
0.81
0.97
0.73
0.64

0.76
1.95
7.19
0.90
2.39
2.00
1.67
1.40
1.56
1.26
0.84
0.96
1.14
0.95
1.30
0.99

1.25
1.25
0.92
0.75
0.96
0.61
0.87
1.08
0.74
0.66

3.75
5.20
4.50
2.83
5.83
5.99
3.02
4.84
4.38
3.15
2.38
413
3.38
2.49
3.49
2.66
3.53
5.55
3.23
4.03
2.74
2.79
2.24
2.55
2.78
2.03
2.06

3.68
5.32
5.14
3.16
5.46
6.22
3.32
3.83
4.45
3.76
2.62
3.27
3.25
3.28
451
3.39
3.69
4.42
3.97
4.14
2.83
3.62
2.60
3.41
3.69
2.95
2.73

3.60
4.56
4.99
2.68
5.38
6.73
2.90
4.13
3.99
3.06
2.53
3.69
3.25
2.59
3.42
2.66
2.94
4.82
3.35
3.96
2.19
2.72
2.17
2.59
2.75
2.16
2.11

3.64
4.82
18.02
2.58
5.60
6.05
3.04
424
4.04
3.73
2.69
3.35
3.31
2.74
3.97
2.85
3.25
425
3.23
3.74
2.54
2.77
2.17
2.64
2.99
2.13
2.15

0.49
0.86
0.88
0.92
0.82
0.82
0.88
0.69
0.89
0.93
0.88
0.59
0.82
0.94
0.92
0.94
0.89
0.71
0.94
0.64
0.86
0.93
0.91
0.94
0.94
0.95
0.92

0.34
0.78
0.77
0.83
0.74
0.73
0.76
0.66
0.82
0.85
0.75
0.64
0.77
0.84
0.80
0.85
0.82
0.70
0.87
0.54
0.76
0.84
0.80
0.84
0.83
0.85
0.79

0.54
0.89
0.85
0.91
0.82
0.79
0.88
0.73
0.90
0.93
0.84
0.67
0.84
0.93
0.92
0.94
0.92
0.74
0.94
0.72
0.91
0.94
0.90
0.93
0.93
0.94
0.91

0.53
0.88
0.37
0.92
0.82
0.82
0.87
0.72
0.90
0.90
0.82
0.72
0.83
0.92
0.89
0.93
0.91
0.80
0.94
0.72
0.86
0.93
0.89
0.93
0.92
0.95
0.91

96.25
94.80
95.50
97.17
94.17
94.01
96.98
95.16
95.62
96.85
97.62
95.87
96.62
97.51
96.51
97.34
96.47
94.45
96.77
95.97
97.26
97.21
97.76
97.45
97.22
97.97
97.94

96.32
94.68
94.86
96.84
94.54
93.78
96.68
96.17
95.55
96.24
97.38
96.73
96.75
96.72
95.49
96.61
96.31
95.58
96.03
95.86
97.17
96.38
97.40
96.59
96.31
97.05
97.27

96.40
95.44
95.01
97.32
94.62
93.27
97.10
95.87
96.01
96.94
97.47
96.31
96.75
97.41
96.58
97.34
97.06
95.18
96.65
96.04
97.81
97.28
97.83
97.41
97.25
97.84
97.89

96.36
95.18
81.98
97.42
94.40
93.95
96.96
95.76
95.96
96.27
97.31
96.65
96.69
97.26
96.03
97.15
96.75
95.75
96.77
96.26
97.46
97.23
97.83
97.36
97.01
97.87
97.85
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1998
1999
2000
2001
2002
2003
2004
2005
2006
2007

37.79
37.75
37.15
37.81
37.11
38.22
38.79
37.96
37.97
37.92

0.04
0.05
0.03
0.03
0.05
0.13
0.11
0.05
0.04
0.04

0.65
1.13
0.73
0.97
0.62
2.70
3.10
0.58
0.80
0.80

0.83
1.25
0.71
0.85
0.93
2.14
211
0.97
0.83
0.86

0.64
1.12
0.68
0.85
0.63
2.37
2.40
0.65
0.71
0.72

0.63
1.15
0.72
0.89
0.76
2.35
2.35
0.75
0.75
0.73

0.90
1.38
0.96

0.81
5.71
6.46
0.81

0.96

1.19
1.48
0.92
1.09
1.28
4.95
4.42
1.29
1.07
1.04

0.90
1.36
0.88
1.04
0.88
5.34
5.00
0.80
0.95
0.90

0.86
1.39
0.95
1.08
1.05
5.27
5.06
0.95
0.98
0.88

0.45
1.07
0.63
0.90
0.38
4.76
4.47
0.28
0.71
0.45

1.07
1.12
0.48
1.02
1.05
2.94
2.52
1.14
0.89
0.82

0.65
0.62
0.49
0.78
0.13
1.85
1.74
0.41
0.47
0.46

0.68
0.71
0.46
0.86
0.24
1.76
1.90
0.50
0.58
0.47

0.76
0.91
0.69
0.72
0.72
3.17
4.71
0.76
0.85
0.86

0.59
0.67
0.65
0.42
0.48
2.26
2.28
0.58
0.45
0.58

0.74
0.99
1.02
0.61
0.83
3.79
3.66
0.63
0.72
0.72

0.75
0.98
1.04
0.66
0.90
3.80
3.61
0.79
0.68
0.77

2.37
3.65
2.58
3.02
2.20
14.93
16.66
2.12
2.90
2.54

3.14
3.93
2.49
2.87
3.45
12.95
11.40
3.39
2.82
2.74

2.38
3.60
2.37
2.76
2.38
13.97
12.88
2.10
2.51

2.28
3.68
2.56
2.86
2.83
13.78
13.03
2.50
2.59
2.32

0.90
0.75
0.73
0.57
0.95
0.19
0.20
0.95
0.75
0.88

0.73
0.61
0.68
0.47
0.79
0.15
0.25
0.79
0.63
0.80

0.89
0.75
0.78
0.62
0.93
0.20
0.27
0.95
0.79
0.88

0.91
0.74
0.75
0.60
0.90
0.22
0.26
0.92
0.77
0.90

97.63
96.35
97.42
96.98
97.80
85.07
83.34
97.88
97.10
97.46

96.86
96.07
97.51
97.13
96.55
87.05
88.60
96.61
97.18
97.26

97.62
96.40
97.63
97.24
97.62
86.03
87.12
97.90
97.49
97.63

97.72
96.32
97.44
97.14
97.17
86.22
86.97
97.50
97.41
97.68
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