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EVALUATION OF SPATIAL INTERPOLATION TECHNIQUES 

FOR MAPPING CLIMATE VARIABLES WITH LOW SAMPLE 

DENSITY 

A case study using a new gridded dataset of Bangladesh 

 

ABSTRACT 

 

This study explores and analyses the impact of sample density on the performances 

of the spatial interpolation techniques. It evaluates the performances of two 

alternative deterministic techniques – Thin Plate Spline and Inverse Distance 

Weighting, and two alternative stochastic techniques – Ordinary Kriging and 

Universal Kriging; to interpolate two climate indices - Annual Total Precipitation in 

Wet Days and the Yearly Maximum Value of the Daily Maximum Temperature, in 

a low sample density region - Bangladesh, for 60 years – 1948 to 2007. It implies 

the approach of Spatially Shifted Years to create mean variograms with respect to 

the low sample density. Seven different performance measurements - Mean 

Absolute Error, Root Mean Square Errors, Systematic Root Mean Square Errors, 

Unsystematic Root Mean Square Errors, Index of Agreement, Coefficient of 

Variation of Prediction and Confidence of Prediction, have been applied to evaluate 

the performance of the spatial interpolation techniques. The resulted performance 

measurements indicate that for most of the years the Universal Kriging method 

performs better to interpolate total precipitation, and the Ordinary Kriging method 

performs better to interpolate the maximum temperature. Though the difference 

surfaces indicate a very little difference in the estimating ability of the four spatial 

interpolation techniques, the residual plots  refer to the differences in the 

interpolated surfaces by different techniques in terms of their over and under 

estimation. The results also indicate that the Inverse Distance Weighting method 

performs better for both indices, when the sample density is too low, but the 

performance is questioned by the inclusion of measurement errors in the 
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interpolated surfaces. All the error measurements show a decreasing trend with the 

increasing sample density, and the index of agreement and confidence of prediction 

show an increasing trend over years. Finally, the strong correlation between the 

Sample Coefficient of Variation and the performance measurements, implies that 

the more representative the samples are of the climate phenomenon, the more 

improved are the performances of the spatial interpolation techniques. The 

correlation between the sample coefficient of variation and the number of samples 

implies that the high representativity of the sample is attainable with an increased 

sample density. 
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1. INTRODUCTION 

 

“The choice of the appropriate methodology of interpolation of climatic data is 

crucial in order to obtain a correct representation of climatic fields”  

- CRISCI, et al. 2006  

The choice of appropriate spatial interpolation technique is a crucial research question 

since there is no single preferred technique; rather the choice depends on the interpolation 

performance in regards to the characteristics of the study area and data set. The question 

becomes more critical since sample density of the irregularly distributed space-time 

climate data has a significant effect on the spatial interpolation techniques in their 

performance. The chapter outlines the rationale of the sample density impact research in 

spatial interpolation performance analysis for the irregularly distributed space-time data 

in light of existing researches. It describes and sorts out the research objectives and 

propositions to carry out the entire research. It also structures the research manuscript 

from this starting chapter to the concluding chapter. 

 

1.1 Background and rationale 

 

Spatial interpolation techniques have been used for mapping the spatial patterns of 

climatic fields in several regions of the world, such as France (WEISSE, and BOIS, 2001), 

Germany (HABERLANDT, 2007), Great Britain (LLOYD, 2005), Italy (DIODATO, 2005), Mexico 

(BOER, et al., 2001; CARRERA-HERNÁNDEZ, and GASKIN, 2007), Portugal (DURÃO, et al., 2009; and 

GOOVAERTS, 2000), and the United States of America (KYRIAKIDIS et al., 2001). There have 

been a few studies conducted on the Bangladesh climate, based on the data from 

meteorological stations; but so far no study has been conducted in Bangladesh to analyze 

the spatial patterns of climate indices. This kind of study is very important since many 

climate indices representing a wide variety of Asian climate aspects are already in the 

phase of implementation. For example, SUHAILA and JEMAIN (2011) analyzed the spatial 

patterns of rainfall intensity and concentration indices over the Peninsular Malaysia. 

Moreover, global continuous surface models of climate response are no longer useful for 

practical reasons; international agencies, especially funding agencies are nowadays 

asking for regional datasets of climate change from the developing countries for the 

purpose of their recently taken funding scheme (UNFCC, 2012).  



2 
 

Spatial interpolation techniques have been profoundly used to quantify region-specific 

climate change based on historical data (DIRKS et al. 1998). But since there is no single 

preferred technique for spatial interpolation, there is no local accurate interpolated surface 

for mapping climate indices. Additionally, data unavailability and low sample density for 

spatial interpolation have made the problem more complicated for the developing 

countries. Recently it has been explored that for low-density datasets, complicated spatial 

interpolation techniques do not show a significantly greater predictive skill than simpler 

techniques (FRICH, et al., 2002; GOOVAERTS, 1998; and ISAAKS, and SRIVASTAVA, 1988). On the 

other hand, a high density climate dataset is not attainable for developing countries due to 

techno-economic reasons. 

Therefore, selecting the locally appropriate interpolation technique is very important for 

mapping climate indices of Bangladesh in respect to very low density of sample.  Yet the 

problem of low sample density has not been properly addressed by the scientific 

community. Though some of the authors have addressed the problem, the contribution is 

insignificant (ANDERSON, 1987; and CHOWDHURY, and DEBSHARMA, 1992). Consequently, these 

issues motivated the research on an evaluation of the available interpolation techniques 

based on the spatio-temporal characteristics of a climate dataset to analyze the climate 

variability phenomenon for a low sample density region - Bangladesh. Two climate 

indices have been selected, which are recommended by the Joint Project Commission for 

Climatology/Climate Variability and Predictability (CLIVAR) and Joint WMO/IOC 

Technical Commission for Oceanography and Marine Meteorology Expert Team on 

Climate Change Detection and Indices (PETERSON et al. 2001; ZHANG, 2009), namely 

PRCPTOT and TXx. The PRCPTOT characterizes the annual total precipitation in wet 

days, and the TXx corresponds to the yearly maximum value of the daily maximum 

temperature. 

 

1.2 Research objectives 

 

The following research objectives have been established: 

Exploration and Indices’ Pattern Analysis: 

• To compile a rainfall and temperature dataset for Bangladesh. 

• To compute annually defined climate indices, able to provide information on the 

climatic variability, from the dataset. 
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• Investigate the spatial and temporal variability of the climate indices. 

Uncertainty reduction in modelling and Interpolation:  

• Prepare continuous surfaces with two alternative deterministic spatial 

interpolation techniques - Thin Plate Spline & Inverse Distance Weighting.  

• Improve and model the experimental variograms for stochastic interpolation by 

providing them with enough pairs of points to model the spatial dependence in 

response to low sample density.  

• Prepare continuous surfaces with two alternative stochastic methods - Ordinary 

Kriging & Universal Kriging applying improved variograms. 

Performance Evaluation and Sample-density Impact Analysis:  

• Evaluate the interpolation cross-validation results by using suitable statistical 

performance measurements. 

• Analyse the impact of low sample density on the performance measurements 

over time.  

     

1.3 Research scopes and propositions 

 

This research is aimed to evaluate the performance of spatial interpolation techniques 

applied two most suitable and applicable indices that describe climate variability in 

Bangladesh. The indices are calculated for each of the available years in dataset and 

interpolated surfaces are then created. Additionally, the research is aspired to improve the 

performance quality of the stochastic interpolation techniques. Most importantly, the 

research is aimed to analyze changes in the performance of spatial interpolation 

techniques with changing sample or spatial point density. 

The following propositions are considered in the light of the described research scopes. 

1. Sample or spatial point density does have a significant effect on the performance 

of spatial interpolation methods; the performance improves with the increase in 

sample density. 

 



4 
 

2. As a consequence of the dissimilar inherent methodology, different spatial 

interpolation techniques result in significantly different climate surfaces even 

though they utilize the same climate dataset; but the difference decreases with the 

increase in sample density. 

 

1.4 Structure of the manuscript 

 

The manuscript consists of six chapters – Introduction, Literature Review, Study Area, 

Dataset and Climate Change Indices, Methodology, Results and Discussion and 

Conclusion and Further Scopes (Figure 1.1). The first chapter, introduction, outlines and 

describes the research background, rationale, objectives and propositions. The second 

chapter summarizes the literature that has been studied and describes them in the light of 

spatial interpolation of climate variables and low sample density. The third chapter 

introduces the study area and describes its important features. Furthermore, it describes 

the dataset and climate change indices. It also illustrates the spatial and temporal trend of 

the calculated climate change indices over the study area and study period. The fourth 

chapter, methodology, explain see above the used methods for spatial interpolation 

techniques and their performance evaluation. The fifth chapter describes the results that 

have been obtained from the analysis implying the methodology, and shows the created 

interpolated surfaces, their differences and estimation ability. It also explains the trend of 

performance measurements over time with the increasing sample density. The final 

chapter summarizes the findings from the study and outlines the limitations and further 

scopes of the study.  

1. INTRODUCTION

• Rationale
• Objectives
• Propositions
• Manuscript structure

2. LITERATURE REVIEW

• Spatial interpolation of 
climate variables

• Low sample density

3. STUDY AREA, DATASET 
AND CLIMATE CHANGE  
INDICES
• Study area
• Dataset
• Climate change indices –

PRCPTOT and TXx

4. METHODOLOGY

• Deterministic spatial 
interpolation

• Spatially shifted years
• Stochastic spatial 
interpolation

5. RESULTS AND 
DISCUSSIONS

• Spatial interpolation results
• Performance evaluation 
• Impact of low sample density

6. CONCLUSION AND 
FURTHER SCOPES

• Limitation
• Further scopes

 

Figure 1.1: Structure of the manuscript. 
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The manuscript also contains the bibliographic reference and thirty annexes at the end. 

The bibliographic references list the literature that has been studied for the study and 

which the information has been extracted from. The annexes contain created interpolated 

surfaces by the four methods for the two climate change indices, their difference surfaces, 

the residual plots and the performance measurement tables. 

 

1.5 Chapter conclusion 

 

This chapter has discussed in detail the research background and rationale followed by 

the objectives and propositions. In a nutshell, the study is going to explore and analyze 

the impact of sample density on the performances of spatial interpolation techniques. 

Additionally, it is going to evaluate the performances of the four mentioned spatial 

interpolation techniques to interpolate the two climate change indices. The main goal of 

this study is to prove the propositions. The following chapter, literature review, is going 

describe the concepts of spatial interpolation of climate variables with low sample 

density; which will elaborate the concepts that have been mentioned in the objectives and 

propositions.  
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2. LITERATURE REVIEW 

 

The inherent responsibility of the professionals who deal with climate and climate change 

is to provide insights regarding climate variables at any place at any time. The crucial part 

of this responsibility is to predict those variables at those places and times where 

observations of the climate elements do not exist (TVEITO, 2007). The problem has become 

even more critical when it was proved by the climatologists that the global metric is for 

climate change is no longer useful because climate effects are felt locally and they are 

region-specific (CHOWDHURY, and DEBSHARMA, 1992). From this point of view, special skills 

and knowledge are required to predict and result in the most reliable value for the desired 

climate information. As TVEITO (2007) presents, “traditionally this is done by using 

observed values at neighboring stations which are then adjusted for representativity, 

terrain and other effects affecting the local climatology. Such estimates have usually been 

carried out as single point calculations, often including subjective considerations based on 

local knowledge and experience. Most of these estimates will not be consistently derived 

and they are thereby not reproducible and cannot be regarded as homogenous. They are 

therefore of limited value, for example, for advanced climate analysis.” 

This chapter conceptualizes the application of spatial interpolation techniques to estimate 

the climate variables at not-sampled locations. It also describes what could be an ideal 

sample size for these spatial interpolations and how existing research has dealt with small 

sample size and low sample density in this respect. 

  

2.1 Interpolating in space-time with climate variables 

 

Spatial interpolation techniques, as geostatistical estimation techniques, with their 

inherent properties and applications, have successfully been implemented to combine 

different georeferenced climate variables and parameters in such a way that it is now 

possible to give consistently derived estimates at any place at any time (CHOU, 1997; 

GOOVAERTS, 1998; ISAAKS, and SRIVASTAVA, 1989; JOURNEL, and HUIJBREGTS, 1978; PHILLIPS, et al., 

1992; and TABIOS, and SALAS, 1985). This is also because of the fact the interpolations 

techniques deal with the most important property of climate variables – they have a 

temporal extent along with a spatial extent (HUTCHINSON, 1995). CARUSO, and QUARTA (1998) 

have classified the techniques according to their fundamental hypotheses and 

mathematical properties, which are entitled as “deterministic method, statistical method, 

geostatistical method, stochastic simulation method, physical model simulation method 
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and combined method”. The application and performance of the classified techniques are 

solely dependent on their research areas and algorithms and parameters used. Thus, 

obtaining a universally appropriate spatial interpolation technique for a particular 

application is impossible; rather locally an application oriented interpolation technique is 

obtainable (XIN, et al., 2003). Additionally, this locally appropriate spatial interpolation 

technique selection is subject to the qualitative and quantitative analysis of the local 

spatial data, their exploratory analysis and different stages of trial and errors with the 

techniques which is commonly recognized as cross-validation. More precisely, the result 

of the appropriate technique needs to be further examined for their accuracy (GOOVAERTS, 

1997; and TVEITO, 2007).  

Cressie (1991), Szentimrey (2002) and Szentimrey, et al. (2005) have suggested a range of 

mathematical statistical and geostatistical (stochastic) models of spatial interpolation in 

light of meteorological prediction. Among them, deterministic and stochastic methods 

have turned out to be the most simplistic and reliable methods for climate variability 

analysis. Recently it has been explored that for small sampled datasets, complicated 

kriging methods (stochastic) do not show significantly greater predictive skill than 

simpler techniques, such as the inverse square distance method (deterministic) (BHOWMIK, 

and CABRAL, 2011; and ISLAM, 2006).   

 

2.2 Sample density and estimation uncertainty 

 

Statisticians have been utilizing the concept of ‘Coefficient of Variation ( )’ as a 

determinant of the sample size for statistical estimation with respect to the expected 

confidence level (BELLE, 2008) for a long time. As BELLE (2008) indicated, the coefficient of 

variation ( ) is a dimensionless number that quantifies the degree of variability in respect 

to the mean. The sample coefficient of variation is calculated using the following 

formula: 

……………………..........…….(4.i) 

Where,  is the sample standard deviation, which is the calculated square root of the 

unbiased estimate of the variance, and  is the sample mean. The  value is sometimes 

multiplied by 100 so that the ratio of the standard deviation to the mean is expressed in 

terms of a percentage. Therefore, it is commonly accepted, if the coefficient of variation 

is high, the mean is not representative of the variable behavior. The threshold value has 
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been set as 50% (AFONSO, and NUNES, 2011) which means if the coefficient of variation of a 

sample set is more than 50% then the statistical estimation using these samples will end 

up with high uncertainty in general which means the estimation is less accurate. 

LYNCH, and KIM (2010) explain a way to prevent the curse of uncertainty due to the high 

coefficient of variation, which is to adjust the sample size. They describe the relationship 

among coefficient of variation, sample size and uncertainty with a mathematical function 

which illustrates that when the coefficient of variation is higher, the sample size should 

be high enough as well to reduce the uncertainly and obtain the accepted level of 

confidence. They, in conclusion, have provided a table (Table 2.1) showing the required 

number of samples for a certain level of coefficient of variation with corresponding 

expected uncertainty. The table clearly shows that if it is objected to estimate with 95% of 

confidence (which denotes that mean error of estimation should not be more than 5% of 

sample mean), for a coefficient of variation of 20%, 43 samples are required but on the 

other hand if the coefficient of variation is 80%, 693 samples are required for estimation. 

KELLEY (2007) describes a similar concept like LYNCH, and KIM (2010), but in an elaborated 

and functional way. He introduces some important parameters – expected confidence 

interval width (E[w]), desired full confidence interval width (ω) and desired degree of 

assurance (γ), to identify the level of confidence more precisely and then figures out the 

required number of samples for estimation with expected uncertainty through a 

mathematical function. As Table 2.2 illustrates, to estimate with 95% confidence where 

the desired full confidence interval width is 10% (ω=0.10) and desired degree of 

assurance is 99% (γ=0.99); if the coefficient of variation is 20%, 62 is the required 

sample size and if the coefficient of variation is 50% then 401 samples are required to 

estimate with expected confidence level.     

Thus the sample size plays a significant role in statistics and so in geostatistics, since 

estimating with reduced uncertainty is the explicit aim of any geostatistical analysis 

(ISAAKS, and SRIVASTAVA, 1989). This is even more critical in interpolation since it’s required 

to take into account the relative distances of the samples along with their values; for there 

is a serious consequence of the property – “the global information carried by the 

stationary mean becomes preponderant in prediction as remote neighboring data bring 

less information about the unknown value at a distant location” (GOOVAERTS, 1997). This 

property along with the properties from LYNCH, and KIM (2010) and KELLEY (2007) clearly 

indicates the concept and problem of low sample density in spatial interpolation. Thus, if 

the sample size is smaller than the minimum requirement for a desired confidence with an 

appointed coefficient of variation and the area is in contrast too large to interpolate with 
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inadequate samples, the interpolation results end up with a huge amount of unexpected 

uncertainty and thus hamper the interpolation quality.  

Even without coefficient of variation, sample size always determines the risk of 

prediction (α value) for a constant variation in the samples, which is stated by 

Chebyshev's Rule (OSTLE, and MALONE, 1990). Sample size and α value are always inversely 

proportional, so a decrease in the sample size always increases the risk of prediction. And 

whenever the area of prediction increases the risk increases proportionally. 

Table 2.1: Sample sizes and margin at different coefficient of variation described by LYNCH, and KIM 

(2010); N = sample size, z= score of divergence of the experimental result and cv = coefficient of 
variation. 

 

Table 2.2: Necessary sample size for 95% confidence intervals for the coefficient of variation in 
selected situations described by KELLEY (2007), with desired degree of assurance of achieving a 

confidence interval no wider than desired. 

 

GOULARD, and VOLTZ (1993) applied geostatistical interpolation methods to predict functions 

at non-sample sites assuming that the functions were only known at a small set of points. 

The idea has been extended by GIRALDO, et al. (2011) through overcoming the explicit 

assumptions on parametric modelling and a small number of observed points per function 
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for penetration resistance of the soil. They applied a non-parametric fitting pre-process to 

the observed functions where the smoothing parameter is chosen by functional cross-

validation. As such, smoothness improvement is a concern due to the existence of the low 

sample density problem and in the case where the density of samples is significantly low 

(even half or one third than the required sample size for expected confidence) the 

interpolation and smoothness improvement need careful analysis and determination of the 

variability function. The problem becomes even more critical when there is no possibility 

to get enough points or a superimposing layer of high resolution remotely sensed dataset, 

or other secondary data spatially correlated with the variable of interest which would 

allow using an alternative multivariate technique for estimation and smoothness 

improvement. 

 

2.3 Interpolation in space-time with low sample density 

In case of low sample density, spatial interpolations highly smooth the predictions, which 

is especially undesirable for climate variables since climate variability is not smooth 

neither perpetual. The smoothing basically depends on the local sample configuration, it 

is minimal close to the sample locations and increases as the location of estimation gets 

further away from the sample locations. Extensive smoothness of the interpolated surface 

justifies the problem of low sample density. 

The problem of interpolation with low sample density has been realized by the 

geostatisticians in many cases (DIRKS, et al., 1998; HABERLANDT, 2007; PHILLIPS, et al., 1992; and 

TABIOS, and SALAS, 1985), but no one has actually dealt with it. All of them have adopted the 

classical approach of using auxiliary information in estimation, such as high resolution 

datasets. HABERLANDT (2007) superimposed 21 measurements stations for extreme 

precipitation with a high resolution RADAR dataset and overcame the problem of 

interpolation with small sample size. 

The problem was actually addressed for the first time by DUMOLARD (2007) and TVEITO 

(2007), though their focus was basically on the irregular distribution of the samples that 

resulted in low sample density in some parts of their study areas. TVEITO (2007) eventually 

figured out that uncertainty of interpolation is a function of sample density and 

uncertainty increases with the decrease in sample density. In the spatial interpolation of 

temperature data, this author used well known as ‘residual kriging’ (detrended kriging) 

which consists of two components – a deterministic model and a stochastic residual 

model. Taking into account the variability in time, means of monthly, seasonal or annual 
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temperatures were interpolated with different deterministic models for every month or 

season. Finally the deterministic model was regionalized by predicting the model 

parameters within a moving window and the remaining residual field was interpolated by 

applying stochastic kriging method. Interpolating precipitation was more complicated 

than temperature “since precipitation is non-continuous in space and time” (TVEITO, 2007).  

DALY, et al. (1994) proposed the Precipitation-elevation Regression on Independent Slopes 

Model (PRISM), which is based on local climate-elevation regression functions. Long-

term mean precipitation has been interpolated based on the principles of the PRISM-

method which (SCHWARB, 2001) incorporates different terrain characteristics - slope, aspect, 

etc. with a linear regression approach enabling the use of topographic information at 

several spatial scales (DALY, et al. 2002; and 2006). SCHWARB (2001) combined radar 

information and in-situ observations to carry out further analysis.  

On the other hand, DUMOLARD (2007) dealt with a typical problem of sparsely distributed 

samples. He figured out that a simple linear regression between latitudes and longitudes 

of the station locations for the 168 points gives a R² of 0.05 for an area of approximately 

150,000 sq.km. And thus he found out that the probability α of a false rejection of 

independence between X and Y is 0.044. What he worked out was giving a weak α = 0.01 

risk, independence between latitude and longitude has been rejected but giving a larger 

but reasonable α = 0.05 risk, it has been accepted. Finally, after introducing altitude and 

creating the samples’ their ‘influence buffer’, he divided the entire study area into some 

clusters with homogenous distribution of sample density and interpolated each cluster 

separately and aggregating them to get the interpolation result of whole study area 

(Figure 2.1). Thus he achieved a global improved accuracy by combining the uncertainty 

of the local interpolation results since the cluster with higher sample density provided far 

lower uncertainty than the low density clusters. The combined result also gave reduced 

uncertainty than considering all samples of the study area as a whole. 

HASLETT, and RAFTERY (1989) compensated the fact of few spatial points in analysis with 

high density of temporal points. They use long term hourly records of wind speeds at the 

12 synoptic meteorological stations on a simple and parsimonious approximating model 

which accounts for the main features of wind speeds in Ireland, namely seasonal effects, 

spatial correlation, short-memory temporal autocorrelation and long-memory temporal 

dependence. Based on the temporal autocorrelations of the station wind speed values and 

distance correlation analysis of the seasonal effect analysis, they decided to take one 

station (Rosslare) out of the variogram analysis since this station was acting as outlier 

(Figure 2.2). Resulted long-memory temporal dependence of the data was used in 
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synthesizing deseasonalization, kriging, ARMA modelling and fractional differencing in 

a natural way. 

 

    (a)         (b) 

Figure 2.1: (a) Distribution of the samples and (b) clustering of the study area according to 
homogeneity of sample density in DUMOLARD (2007). The hierarchical legend means the sub-regions 
1-with a low density of points and a concentrated pattern 2-with a low density of points 3-with a 

concentrated pattern 4-with correct density and pattern of points and 5-with a good sample 
(density + pattern). 

For their case, simple kriging estimator performs well as a point estimator and ARMA 

modeling as good interval estimator after fitting both estimators in space and time. The 

cross-validation with the fitted models also resulted in significantly reduced errors which 

encouraged considering temporal variability and dependence in interpolating with low 

spatial density of samples. This means the low density in the spatial extent of the data and 

resulted uncertainty due to that can be minimized by using the high density in the 

temporal extent in creative ways. 

 

(a) 

Continued to page 13 
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          (b) 

Figure 2.2: (a) Distance-correlation plot and (b) correlation functions of the velocity 
measurements for the first six stations in HASLETT, and RAFTERY (1989). Each cross at (a) corresponds 
to a pair of synoptic stations and the dots correspond to pairs which include Rosslare and show 

lower correlation than others. Rosslare also shows identical pattern in terms of autocorrelation at 
different time lags at (b). 

RAUDYS, et. al (1991) analyzed typically the influence of both training and testing sample 

size on the design and performance of pattern recognition system. They clearly proved 

the existence of “curse of dimensionality” which implies that the classification accuracy 

obviously increases with the increase in the number of sample; thus a large training 

sample size is required for applications with large number of features and a complex 

classification rule, and a large test sample size is required to accurately evaluate a 

classifier with a lower error rate in cross-validation. It is true that classification and 

interpolation are two different concepts apart from the fact that they both need to train 

samples and evaluate their performance through cross validation. In interpolating 

continuous variables, leave-one-out cross validation is typically used. 

But still the following approaches they suggested to increase the classification accuracy 

and to minimize estimation error from cross-validation seem even very useful for 

interpolation. 

1. Increasing the features and thus artificially preparing a sample size sufficient to 

improve learning accuracy and estimation error. 

Continued from page 12 
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2. From the finite number of training samples carefully choosing those samples 

which support to improve the design of spatio-temporal variability and discard 

outliers. 

The second approach implies to take out samples acting as outliers during model 

preparation. In case of interpolating in space-time, more care is needed in this regard 

since full stations along with their complete time series might be needed to be taken out. 

Finally, DOBESCH, et al. (2001) indicated some important properties of interpolation results 

using the sparsely distributed and low density samples. They claim that the map of local 

interpolated values of the variable will be smoothed if the variable is spatially continuous; 

but the representativeness of the sample locally can be smoothed and mapped if 

superimposed to the interpolated values and the global quality of the interpolation can be 

assessed through an analysis of variance. The authors suggested “test several methods, 

choose the right method, and correct use of the method and validation” as the sequence of 

approaches to carry out the interpolation in space-time with low sample density and 

reduced uncertainty. 

 

2.4 Chapter conclusion 

This chapter has presented a detailed overview of the preferred spatial interpolation 

techniques by the scientific community for mapping climate variables. It has also 

discussed the ideal size of sample for statistical estimation with acceptable accuracy. 

Furthermore,   various approaches by the geostatisticians to deal with the sample density 

problem have been outlined. The next chapter, study area, dataset and climate change 

indices, will describe the study area and dataset; calculate the two climate change indices 

and analyse their behavior over space and time. The indices will be used as input of 

spatial interpolation in light of the experiences from the literature review. 
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3. STUDY AREA, DATASET AND CLIMATE CHANGE 

INDICES 

 

The characteristics and important features of the study area and dataset are key issues to 

be considered in the choice of spatial interpolation techniques. There are specific spatial 

interpolation techniques, which are developed to specifically apply in case of certain 

features of the study area and dataset. This chapter outlines the important decision 

making features to choose appropriate spatial interpolation techniques to evaluate. In 

addition, it calculates and characterizes the two climate change indices that are used as 

input for the spatial interpolation of the climate phenomenon. 

   

3.1 Study area - Bangladesh 

 

Bangladesh, situated in south-east Asia, is one of the most vulnerable countries of the 

world regarding the adverse impacts of anthropogenic climate change (BRAUN, 2010; CAI, et 

al., 2010; CHOWDHURY, and DEBSHARMA, 1992; KLEIN, et al., 2006; and SHAHID, 2009) (Figure 3.1). 

The total area of the country is 147,570 square kilometer (BBS, 2009), approximately one 

fifth of which consists of low-lying coastal zones within one meter of the high water 

mark (IPCC, 2007).   

 
Figure 3.1: Study area – Bangladesh with world location and 34 meteorological stations to 

measure daily precipitation and temperature (BHOWMIK and CABRAL, 2011).  
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Threats of sea level rise, droughts, floods, and seasonal shifts due to global warming have 

been presented in many recent studies on the country. The rainfall regime of the country 

is highly variable in both time and space. The annual mean rainfall varies from 1400 mm 

in the west to more than 4300 mm in the east of the country (SHAHID, 2010). The mean 

annual temperature has increased during the period of 1895-1980 by 0.310C 

(PARTHASARATHY, et al., 1987) and the annual maximum temperature is predicted to increase 

by 0.40C and 0.730C by the year of 2050 and 2100 respectively (KARMAKAR, and SHRESTHA, 

2000; and MIA, 2003). The Bangladesh Meteorological Department (BMD) is the 

authorized government organization for all meteorological activities in the country. It 

maintains a network of surface and upper air observatories, radar and satellite stations, 

agro-meteorological observatories, geomagnetic and seismological observatories and 

meteorological telecommunication systems. The department has its headquarter in the 

capital Dhaka, with two regional centers – the Storm Warning Centre (SWC) in Dhaka 

and Meteorological & Geo-Physical Centre (M & GC) in Chittagong. It measures the 

daily precipitation and daily temperature with thirty-four meteorological stations situated 

in different locations all over the country (DMICCDMP, 2012) (Figure 3.1). 

 

3.2 Dataset and materials 

 

The dataset used in this study includes daily precipitation and temperature measurements 

from the meteorological stations of BMD for 60 years i.e. 1948-2007. The dataset is not 

available from the beginning of the study period for all stations; precipitation data from 8 

stations and temperature data from 10 stations is available for 1948 and there is a gradual 

increase of precipitation data from 32 stations and temperature data from 34 stations by 

2007 eventually. ‘Spacetime’, ‘intamap’, ‘fields’ and ‘gstat’ packages of the open source 

statistical software ‘R’ (ISMWUWW), 2012) and ArcGIS version 10.0 (Esri, 2012) by Esri 

are utilized in order to analyze and compute the data. 

 

3.3 Climate change indices 

 

Two climate change indices – PRCPTOT and TXx (PETERSON et al. 2001; PLUMMER, et al., 

1999; Santos et al., 2011 and You et al. 2011) have been calculated from the available 

precipitation and temperature data for each year of 1948-2007 and for each station. These 

climate change indices are internationally recognized and have been used in different 

climate change studies of different regions of the world (IPCC, 2007).  
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PRCPTOT refers to the annual total precipitation in wet days (PETERSON et al. 2001; and 

You et al. 2011). Since Bangladesh has clearly defined wet days in the year, the weather 

phenomenon is known as ‘Monsoon’ and is present in June-September of every year 

(ALEXANDER, 1999; BRAUN, 2010; MEF, 2008; IPCC, 2007; and WB, 2012), PRCPTOT is the 

most representative of change in precipitation. The formula for calculating PRCPTOT is: 

if  is the daily precipitation amount on day  in period   and if   represents the 

number of days in   , then (PETERSON et al. 2001)  

………….……..………(3.i) 

TXx refers to the yearly maximum value of the daily maximum temperature (Peterson et 

al. 2001; and PLUMMER, et al., 1999). Previous studies have proven that the change in 

temperature of Bangladesh due to climate change is more recognizable from the change 

in maximum temperature (BRAUN, 2010; and CAI, et al., 2010). The formula for calculating 

TXx is: if TXx is the daily maximum temperatures in period , then the maximum daily 

maximum temperature each year is (PETERSON et al. 2001): 

…………………………(3.ii) 

The calculated climate indices – PRCPTOT and TXx show spatial trends over the study 

area (Figures 3.2 and 3.3). The PRCPTOT values increase with an increase in longitude 

and decrease with an increase in latitude (Figure 3.2). This indicates that PRCPTOT 

shows a spatial trend from the northwest to the southeast direction i.e. higher monsoon 

precipitation is experienced in the southeast region of the country. The correlation of 

PRCPTOT with longitude (0.55) is higher than the correlation of PRCPTOT with latitude 

(-0.42), which indicates that the spatial trend is more dominant in west-east direction than 

north-south direction. On the other hand, the TXx values increase with an increase in 

latitude and decrease with an increase in longitude (Figure 3.3). This indicates that TXx 

shows a spatial trend from the southeast to the northwest direction, i.e. a higher yearly 

maximum of the daily maximum temperature is experienced in the northwest region of 

the country. The correlation of TXx with longitude (-0.52) is again higher than the 

correlation of TXx with latitude (0.34), which indicates that the spatial trend is more 

dominant in the west-east direction than the north-south direction. It is important, since 

Bangladesh is a flat country (KLEIN, et al., 2006), that the correlation of both PRCPTOT and 

TXx is insignificant with altitude and therefore height does not affect the spatial trend of 

the indices.     
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   (a)              (b) 

Figure 3.2: Spatial trend PRCPTOT to southeast direction for all years, (a) decreasing trend with 
increasing latitude and (b) increasing trend with increasing longitude. 

 

            (a)             (b) 

Figure 3.3: Spatial trend TXx to northwest direction - (a) increasing trend with increasing latitude 
and (b) decreasing trend with increasing longitude. 

The results of the analysis of the general temporal trend of the calculated climate change 

indices are presented in Figure 3.4. For PRCPTOT, a range of -18 to 36 for the trend 

value has been obtained. Most of the stations show an increasing trend of PRCPTOT over 

time. Especially the stations in the southeast region of the country experience the highest 

increasing trend, where the highest values of PRCPTOT are also experienced.  On the 

other hand, for TXx a range of -0.09 to 0.33 for the trend value has been obtained. 

Though most of the stations show an increasing trend of TXx, almost all the stations in 

the mid-region, including capital Dhaka, show a decreasing trend. The station at Rangpur 

district, which represents the warmest region of the country (BBS, 2009), shows a 

decreasing trend of TXx. This fact indicates clearly that the climate is shifting, which will 

result in the climate change consequences for the environment.  
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          (a)            (b) 

Figure 3.4: Temporal trend of (a) PRCPTOT and (b) TXx in every station location. 

Detailed temporal variability of PRCPTOT and TXx in every station is presented in 

Figures 3.5 and 3.6 respectively. It is difficult to predict any detailed temporal trend for 

the indices, but the variability at some station locations show a trend in the index 

behavior. It is obvious that the variability in the PRCPTOT index is more dominant than 

in the TXx index.  

 
Figure 3.5: Temporal variability of PRCPTOT in every station location. 
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Figure 3.6: Temporal variability of TXx in every station location. 

The sudden increase and decrease in the variability are caused by the inconvenient data 

quality, which could not be evaluated within this research scope. Figure 3.5 and 3.6 also 

represent a lot of missing indices in the time series, which are occurred by the missing 

data in the original dataset. The missing data has been considered as no data value in 

calculation of the indices and thus the produced missing indices in the time series do not 

take part in the spatial interpolation. 

 

3.4 Low sample density problem to interpolate climate change indices 

 

As described in chapter 2, like any statistical estimation, spatial interpolation requires a 

sufficient number and density of samples to obtain acceptable accuracy. In light of this 

discussion, interpolation of both PRCPTOT and TXx indices for Bangladesh experiences 

the low sample density problem. Considering 34 meteorological stations which are 

available in maximum in 2007 to interpolate TXx, each station is used to estimate the 

continuous surface for 4340 square kilometer area, which is very big for a station to 

estimate. Figure 3.7 represents the fact clearly; the size of the Voronoi polygons to 

estimate is very big. The R2 value of simple linear regression between latitude and 

longitude of the stations is 0.339 which is good from the perspective described in 

DUMOLARD (2007), because it means that the stations are more or less evenly distributed. 
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But the risk of estimation α for TXx is 0.008 when the sample size is 34, but α decreases 

to 0.000006 if the sample size is increased to 100, when other parameters remain constant 

according to TVEITO (2007). This indicates that the number of stations is too little to 

interpolate with acceptable accuracy.   

 
Figure 3.7: Vornoi polygons for prediction of continuous surface of TXx by each meteorological 

station. 

Furthermore, interpolation methods will highly smooth the predictions in the presence of 

low sample density, which is undesirable for climate data. The global information carried 

by the stationary mean becomes preponderant in prediction as remote neighboring data 

bring less information about the unknown value at a distant location (GOOVAERTS, 1997). 

Consequently, the smoothing effect is minimal close to the data locations and increases as 

the location being estimated gets farther away from data locations. On the other hand, 

according to AFONSO, and NUNES (2011), if the coefficient of variation is high, the mean will 

not be representative of the attribute behavior. The coefficient of variation () of samples 

for PRCPTOT is 41% in average and ranges from 25% to 59%, while for TXx it is 6.2 % 

and ranges from 3.2% to 24%. Therefore, the mean will not be representative of the 

PRCPTOT behavior in many years; for TXx the attribute's variability is not so 

pronounced, but it might have the same problem as PRCPTOT in a few years. Moreover, 

according to these  values, to interpolate and produce continuous surfaces with 95% 

confidence (where, mean error is not more than 5% of the sample mean), the required 
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sample size for PRCPTOT is 173 on average which may vary from 43 to 390, and it is 

equal to 4 on average for TXx which may vary between 1 to 43 as described in LYNCH, and 

KIM (2010). As explained in KELLEY, (2007), to estimate with 95% confidence where the 

desired full confidence interval width is 10% (ω=0.10) and desired degree of assurance is 

99% (γ=0.99), the required sample size to interpolate PRCPTOT is 16,233 and to 

interpolate TXx is 199. For both cases, the number of samples or spatial points is too low 

to obtain acceptable accuracy. 

 

3.5 Chapter conclusion 

 

As presented in this chapter, the sample density of the study region is too low to provide 

acceptable accuracy in the spatial interpolation results. The calculated indices behavior 

over space and time and the features of the study area lead to the decision of evaluating 

possible deterministic and stochastic spatial interpolation techniques. As ATKINSON, and 

TATE, 2000; and ISAAKS, and SRIVASTAVA, 1988 discovered, that in case of uncertain 

sample distribution and size, deterministic methods should be the preferable options for 

spatial interpolation, two deterministic methods – Thin Plate Spline (TPS) and Inverse 

Distance Weighting (IDW) can be applied for interpolation of the indices. The two 

deterministic methods fit the interpolation models exactly through the measured points, 

but TPS performs some degree of smoothing and IDW performs with no smoothing. On 

the other hand, two stochastic methods can be applied after improving the variograms to 

fit the models – Ordinary Kriging (OK) and Universal Kriging (UK). The OK model can 

be applied taking the anisotropic behavior of the indices into account, while UK can be 

applied by taking the spatial trend of the indices into account. The following chapter, 

methodology, will describe the spatial interpolation models in detail, derived from the 

literature review and fitting to the dataset. It will also outline the methods for the 

performance evaluation of the methods. 
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4. METHODOLOGY 

 

This chapter describes the detailed methodology of the four spatial interpolation 

techniques and their rationale of application for the study area and dataset. It elaborates 

the spatial interpolation models with mathematical equations fitting to the study area and 

climate change indices. It also outlines seven different performance measurements to 

evaluate the performances of these spatial interpolation techniques and their importance. 

 

4.1 Spatial interpolation of climate change indices with low sample 
density 

 

Spatial interpolation of climate change indices needs special spatialization since the 

indices contain both spatial and temporal information inherently (TVEITO, 2007). In 

practice, the spatial interpolation techniques that incorporate temporal information with 

spatial information in the modeling function are most appropriate for interpolating 

climate variables (HASLETT et al., 1989; and TRENBERTH et al., 2000). The structure of a basic 

spatial interpolation problem denotes that denotes that the dependent variable of interest 

 is predicted as an output of the mathematical function of known predictors 

 , where the location vectors  are the elements of the given space 

domain  and  is time. The vector form of the predictors is 

 (SZENTIMREY et. al., 2007). The probability 

distribution of the climate variables sets up the appropriate interpolation formulae, which 

include some unknown interpolation parameters. These parameters can be obtained 

through known functions of certain statistical parameters. Modeling of climate variables 

with these statistical parameters assume that the expected values of the variables are 

changing in space and in time in a similar way (CHRISTAKOS, 2001; TVEITO, 2007). The 

spatial change in the variables indicates that the climate is different in the regions 

whereas temporal change is considered as the result of climate variability or of possible 

global climate change (HIJMANS et. al, 2005). As a result, expected values of climate 

variables can be obtained by the following linear model (CHRISTENSEN, 1990; PAPRITZ and 

STEIN, 1999): 

……..........…….(4.i) 
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Where,  is the temporal trend or the climate change signal,  is the spatial trend. 

Typically, there is only a single realization in time for the modeling of the statistical 

parameters in spatial interpolation. Therefore only the predictors         

constitute the usable information or the sample for the modeling of variability over space 

(SZENTIMREY et. al., 2007).  

At the linear model (4.i), the basic statistical parameters can be allocated into two 

categories - deterministic and stochastic parameters. Thus the spatial interpolation 

techniques can be divided into two groups – deterministic and stochastic spatial 

interpolation techniques (CHRISTAKOS, 2001; and SZENTIMREY et. al., 2007). 

 

4.1.1 Deterministic spatial interpolation techniques 

 

Deterministic interpolation techniques create surfaces from the predictors by a 

mathematical function of the extent of similarity or the degree of smoothness (WEBSTER 

and OLIVER, 2001; BHOWMIK and CABRAL, 2011). In linear equation (4.i), the deterministic or 

local parameters are the expected values  . If denotes the 

vector of expected values of predictors, then the linear model for deterministic 

interpolation will be (SZENTIMREY et. al., 2007): 

………………(4.ii) 

The two climate change indices of the study can be modeled deterministically in the 

manner adopted by HANCOCK and HUTCHINSON (2005). The indices are considered as data 

observations  measuring a dependent variable  and predictor 

variables  which are included in a set of space domain . These climate 

change indices are often well predicted using latitude, longitude and altitude. If  has 

both continuous long range variation as well as discontinuous and random short range 

variation, then the data model can be expressed as: 

……………(4.iii) 

Where,  is the number of data observations,  is a slowly varying continuous function 

and  is the realization of a random variable . The function  represents the spatially 

continuous long range variation in the process measured by . The errors of  are 

assumed to be independent with mean zero and variance . This assumption is rooted in 
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the measurement error and short range microscale variation that occurs over a range 

smaller than the resolution of the data set. The microscale variation may be spatially 

continuous, but the low spatial density of dataset (as discussed in literature review and 

study area, dataset and climate change indices chapters) is unable to represent it. That is 

why it is assumed as discontinuous noise of the data (TRENBERTH et al., 2000). 

Therefore two deterministic approaches based on linear equation (4.ii) can be fitted to the 

data model of (4.iii). The Inverse Distance Weighting (IDW) approach predicts the 

dependent variable based on the extent of similarity, whereas the Thin Plate Spline (TPS) 

approach predicts it based on the degree of smoothing (JOURNEL and HUIJBREGTS, 1978). 

 

4.1.1.1 Inverse Distance Weighting 

 

The inverse distance weighting method predicts the process  in (4.iii) by giving more 

weight to nearby measurements than to distant measurements. The analytical expression 

of the surface  can be expressed as (CARUSO and QUARTA, 1998):  

………………….………(4.iv) 

where,  is the number of measurements,  is the measurement  value,  is the 

Euclidean distance with point , and  is the weighting function. The weighting 

function  can be adjusted by the following formula: 

………………….…(4.v) 

Where  is minimum distance,  is the maximum distance from the location 

being predicted. Index  prevents infinite weight values for . If no point falls 

into the circle of radius  , average measurement value is taken (VICENTE-SERRANO et 

al., 2003). 

Taking (4.iv) and (4.v) into account, the linear model 4(ii) can be written as following 

formula (SZENTIMREY et. al., 2007) for inverse distance weighting interpolation: 
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, ..(4.vi) 
 

4.1.1.2 Thin Plate Spline 

 

The thin plate spline (TPS) method predicts the process  in 4(iii) by a suitably 

continuous function  that is able to separate the continuous signal  from the 

discontinuous noise  (HANCOCK and HUTCHINSON, 2005). This function can be estimated by 

minimizing 

………….......……….…(4.vii) 

over functions , where  is a space of functions whose partial derivatives of total 

order  are in  (WAHBA, 1990; HANCOCK and HUTCHINSON, 2005). The  are values 

of the fitted function at the th measurement,  is a fixed smoothing parameter, and 

 is a measure of the roughness of the function in terms of th order partial 

derivatives. The form of  depends on  and the number of independent variables 

. For the typical value , , then  can be modeled as (CHRISTAKOS, 

2001):  

………….......…(4.viii) 

Equation (4.viii) represents an exchange between fitting the data as closely as possible 

whilst maintaining a degree of smoothness (HANCOCK and HUTCHINSON, 2005). The 

smoothing parameter  controls the separation of long range and short range variation. If 

, the function  accurately interpolates the data, implying zero noise and when  

is very large, the function approaches a hyperplane. The  corresponding to the spline 

function  that best represents the underlying process  can be predicted by minimizing 

the generalized cross validation (GCV) (CHRISTAKOS, 2001; and HANCOCK and HUTCHINSON, 

2005) which is: 
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………...…........….......…(4.ix) 

  is the matrix that transforms the vector of measurements into the vector of model 

predicted values. Therefore, the linear model (4.ii) for thin plate spline is: 

…….…......….......…(4.x) 

Here,  is the vector of model predictedands and  is thus termed as 

‘influence matrix’ (HANCOCK and HUTCHINSON, 2005). 

 

4.1.2 Variography of climate change indices 

 

Covariance and correlation are two important measures of the similarity between two 

different spatio-temporal variables (CHRISTAKOS, 2001; HOULDING, 2000). Variography and 

the resulted variogram represent the measurement of spatial similarity in a similar 

fashion. They represent the correlation of measurement pairs of the same variable that are 

located in a certain distance from each other (BIVAND et al., 2008). The separation distance 

is known as ‘lag’, as used in temporal analysis. Thus the mathematical function of the 

semivariogram can be expressed as (JOURNEL and HUIJBREGTS, 1978):  

 .............….......…(4.xi) 

Where  and  are the dependent variables of interest at th and th locations, 

E is the statistical expectation operator. The important note is that the semivariogram, 

 is a function of the separation between point vectors  and , and not a 

function of the specific location vector  or  (CHRISTAKOS, 2001). This 

mathematical definition is a useful abstraction and applied to the measured dependent 

variable by the formula for the experimental semivariogram: 

............(4.xii) 
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Cutoff 

For the sake of simplicity, the expression variogram will be used instead of 

semivariogram. The variogram, as defined by geostatisticians, averages the squared 

differences of the variable and tends to filter the influence of a spatially varying mean 

(BIVAND et al., 2008).  is defined as the semivariance and this 

semivariogram can be applied whenever the first differences of the variable are second-

order stationary and can be expressed as (SZENTIMREY et al., 2007): 

= = = = ...................................(4.xiii) 

The form of stationarity in (4.xiii) is referred to as the intrinsic hypothesis, which is a 

weaker requirement than the second-order stationarity of the variable itself. Intrinsic 

stationarity means that the variogram varies only in function of distance, regardless of 

location. Eventually, the semivariogram can be defined in some cases where the 

covariance function cannot be defined, which is mostly the case for low sample density. 

In particular, the semivariance may keep increasing with increasing lag, rather than 

leveling off, corresponding to an infinite global variance.  And, in such case, the 

covariance function is undefined (DEUTSCH, 2002). 

A typical variogram has several components as presented in Figure 4.1.  

 

 

Figure 4.1: Components of a typical variogram (KELKAR and PEREZ, 2002).  

The ‘Sill’ is the semivariance value at which the variogram levels off. The ‘Range’ is the 

lag distance at which the semivariogram reaches the sill value. Presumably, 

autocorrelation is essentially zero beyond the range. And, in theory, the semivariogram 

value at the origin (0 lag) should be zero.  If it is significantly different from zero for lags 

very close to zero, then this semivariogram value is referred to as the ‘Nugget’. The 

=  
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nugget represents variability at distances smaller than the typical sample spacing that may 

be caused by measurement error, which is the case for low sample density. ‘Cutoff’ is the 

maximum distance up to which pairs of points are considered to build the experimental 

variogram, and the width of the distance interval over which point pairs are averaged. 

This is a useful component for irregularly distributed measurements with low sample 

density, because in such case it is not expected to find many pairs of data values 

separated exactly by the lag distance for the whole study area. It is possible to set the 

extent of variography analysis to a certain limit of interest through the cutoff parameter 

and then analyze the semivariogram with proper lag distances (KELKAR and PEREZ, 2002; 

BIVAND et al., 2008). 

  

4.1.2.1 Variography with spatially shifted temporal measurement 

 

As discussed before, in case of low spatial density of measurement, the covariance 

function may not be defined and the number of pairs of measurements separated by the 

lag distance may not be enough to find in order to analyze the semivariogram. The 

temporal measurements in that case can be used to increase the number of pairs of 

measurements within the lag distance for semivariogram analysis. This approach is 

adopted from the pooled variogram analysis discussed by BIVAND et al. (2008) and also 

supported by the idea of ‘increasing features’ in analysis by (RAUDYS and JAIN 1991). It is 

named as ‘variography with spatially shifted temporal measurement’. In this analysis, the 

temporal measurements are distributed spatially to different sets of co-ordinates to 

prepare the sufficient sample size for variogram analysis (Figure 4.2). The sets are close 

enough to be considered as a whole study area for the creation of a variogram and 

simultaneously horizontal and vertical distances between every two sets are bigger than 

the maximum distance of measurements in the individual co-ordinates set. Given that the 

artificially created sets were too close to each other, one will get an uncontrolled temporal 

influence in the variogram. In pooled variogram analysis the temporal domain is included 

in a similar fashion by stacking the temporal measurements on top of each other. The 

vertical (temporal) distance from pooled measurements has to be rescaled in order to 

match the spatial distance in spatially shifted temporal measurement, which is the 

conversion from ‘temporal unit’ to ‘spatial unit’. Eventually, the limiting distance is 

given by the ‘cutoff’ parameter. The semivariogram function in such case can be 

expressed as:  
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...........(4.xiv) 

 is the vector of dependent variables in the 

temporal measurements of  and , which are considered as spatial measurements in 

different co-ordinates sets. 

 
Figure 4.2: Spatially shifted temporal measurements (1956-1980) to different sets of co-ordinates 

of the index PRCPTOT. 

The variography from spatially shifted temporal measurements improves the outcome in 

the variogram with reduced residuals. In such case the experimental variogram is far 

more structured to perform the variography analysis (Figure 4.3). The experimental 

variogram in Figure 4.3 (a) corresponds to the samples of the index PRCPTOT in 1956 

over the study region, whereas the experimental variogram in Fig. 4.3(b) corresponds to 

the spatially shifted temporal measurements of the same index from 1956 to 1980 as 

shown in Figure 4.2. Thus the problem of low sample density can be diminished in the 

design of variography. 
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   (a)                     (b) 

Figure 4.3: Fitted variogram of the index PRCPTOT with (a) single temporal measurement at 
spatial points in 1956; and (b) spatially shifted temporal measurements (1956-1980). 

 

4.1.3 Stochastic or geostatistical spatial interpolation 

 

Stochastic or geostatistical spatial interpolation techniques exploit the statistical 

properties of the measured points and quantify the spatial autocorrelation among 

measured points. Furthermore, they account for the spatial configuration of the sample 

points around the prediction location (CHRISTAKOS, 2001; PAPRITZ and STEIN, 1999; and 

SEAMAN, 1983). Stochastic or geostatistical spatial interpolation is based on the covariance, 

or the variogram, between the dependent variables and the predictors. Important 

parameters (SZENTIMREY et. al., 2007) are: 

• Dependent-predictors covariance vector expressed as c c c c  

• Predictors-predictors covariance matrix expressed as CCCC 

• Dependent-predictors variogram vector expressed as  and  

• Predictors-predictors variogram matrix expressed as   

Thus the linear model of (4.i) between  and predictors  can be written for 

stochastic interpolation as: 

..............(4.xv) 

Here,  and  are identical. Obviously, the 

main problem lies in the estimation of the unknown climate change signal  in case 

the optimal linear interpolation model was applied (SZENTIMREY et. al., 2007). Equation 

(4.xv) can be simplified as follows:  
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.................(4.xvi) 

 is the best linear estimation that minimizes the mean-squared prediction error. 

Consequently, the linear model would be the optimal linear interpolation formula 

concerning the mean-squared prediction error (CHRISTENSEN, 1990; PAPRITZ and STEIN, 1999). 

However, with respect to the application, problems arise from the unknown statistical 

parameters  and cccc, CCCC. The covariance parameters can be 

replaced by variogram or semivariogram parameters ,  (CARUSO and QUARTA, 1998). 

Two stochastic approaches based on linear equation (4.xv) and (4.xvi) have been fitted. 

The first approach is Ordinary Kriging, which accounts for any spatial trend present in 

the attribute through the local kriging system, and also considers anisotropy. The final 

approach is Universal Kriging which explicitly models the trend component as a linear 

combination of functions of the spatial coordinates (VICENTE-SERRANO et al., 2003).  

 

4.1.3.1 Ordinary Kriging 

 

Ordinary kriging (OK) relies on the spatial correlation structure of the measurements to 

determine the weighting values. This is a more rigorous approach to modeling, as the 

correlation between measurement points determines the estimated value at an unsampled 

point (HOULDING, 2000). The assumed model for the expected values is 

, thus there is no spatial trend. The generalized least-

squares estimation for  by using only the predictors  may be expressed in the 

form  (lT C−1l)−1lTC−1Z(t) (SZENTIMREY et. al., 2007). By substituting the 

estimate   into the stochastic formula (4.xv), the ordinary kriging formula can be 

expressed as (WEBSTER and OLIVER, 2001): 

        

..................(4.xvii) 

The vector of weighting factors  can be expressed as covariance form 

(SZENTIMREY et. al., 2007): 
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.................................(4.xviii) 

Or, equivalently as variogram form: 

.................................(4.xix) 

 

4.1.3.2 Universal Kriging 

 

Universal Kriging (UK) is defined as kriging with changing mean where the trend is 

modeled as a function of coordinates. Thus there is an existing spatial trend in the model 

and therefore the universal kriging formula is the generalized case of the ordinary kriging 

formula (KASTELEC and KOŠMELJ, 2002). According to the model assumption, the universal 

kriging formula can be expressed as (SZENTIMREY et. al., 2007): 

 ................(4.xx) 

Which can be expressed in the vector form: 

.......................(4.xxi) 

Here, ,     are given supplementary deterministic model variables. The generalized 

least-squares estimation for the coefficient vector  by using only the predictors Z(t )Z(t )Z(t )Z(t ) 

can be expressed in the form  (KASTELEC and KOŠMELJ, 

2002; and SZENTIMREY et. al., 2007). 

The spatial trend E(s)E(s)E(s)E(s) can also be modeled by using only the predictors Z(t)Z(t)Z(t)Z(t). By 

substituting the estimates ,  into the linear regression (CHRISTENSEN, 

1990) formula (4.xvi), the universal kriging formula can be expressed as: 

 

........................(4.xxii) 
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The vector of weighting factors   can be expressed as covariance 

form: 

....................(4.xxiii) 

Or, equivalently as variogram form: 

.....................(4.xxiv) 

The unknown variogram values ,  are modeled in the variography (BIVAND et al., 2008). 

 

4.2 Evaluation of spatial interpolation techniques 

 

The performance and effectiveness of each of the spatial interpolation techniques can be 

evaluated using the ‘Fictitious-point method’, which is popularly known as ‘Cross-

validation’. It was first proposed by SEAMAN (1983) and subsequently applied by 

geostatisticians in a whole range of studies for evaluating the performances of the spatial 

interpolation techniques (BHOWMIK and CABRAL, 2011, CARUSO and QUARTA, 1998; CHRISTAKOS, 

2001; CHRISTENSEN, 1990; HANCOCK and HUTCHINSON, 2005; HASLETT et.al., 1989; HIJMANS et. al, 

2005; PAPRITZ and STEIN, 1999; TRENBERTH et. al., 2000; and WEBSTER and OLIVER, 2001). 

Validation is a statistical method of evaluating and comparing learning algorithms by 

dividing data into two segments: one segment is used to learn or train a model and the 

other one is used to validate the model. In typical cross-validation, the training and 

validation sets must cross-over in successive rounds so that each data point has a chance 

of being validated against. The basic form of cross-validation is k-fold cross-validation 

(KOHAVI, 1995). In geostatistics, generally, the training set is the measured values of all 

sample points, which are validated using the appointed spatial interpolation technique. It 

is typically known as ‘leave-one-out’ cross-validation, since each sampled point is taken 

out successively and then estimated using the remaining measured points of the same 

sample set (BIVAND et al., 2008). An ideal cross-validation plot should give the points 

plotted along the 450 line with the axes defined by the measured and predicted values. In 

practice, the predicted values differ from the observed values and several errors of 

prediction can be calculated from the residuals. These errors indicate the quality of 

prediction by a spatial interpolation technique (CHILES and DELFINER, 1999). Most 

importantly, the cross-validation results are used by the geostatisticians to show the 
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‘smoothness improvement’ in the ‘ratio of the variance of estimated values to the 

variance of observed values’ (HABERLANDT, 2007). 

   

4.2.1 Willmott statistics 

 

Willmott statistics use five ‘difference-measures’ of errors from cross-validation that are 

useful for evaluating the performance of the interpolation methods. The statistics are 

proposed by WILLMOTT (1984) based on the principle that the statistical measures for a 

particular spatial interpolation approach should not be over analysed. The five measures 

are: 1) Mean Absolute Error ( ), 2) Root Mean Square Errors ( ),                             

3) Systematic Root Mean Square Errors ( ), 4) Unsystematic Root Mean Square 

Errors ( ), and 5) the Index of Agreement (). Equations from Willmott statistics 

are given below:  

...................................(4.xxv) 

..........................(4.xxvi) 

.........................................(4.xxvii) 

........................(4.xxviii) 

.....................(4.xxix) 

........................(4.xxx) 

.......................................(4.xxxi) 

Here,  and  are observed and predicted variable values at th location, respectively. 

The ordinary least-squares (OLS) simple linear regression coefficients of  and  are 

used to compute the difference measures - systematic and unsystematic root mean square 

errors ( , ).  is sometimes preferred over the  as an 
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evaluator for it is less sensitive to extreme values; however,  is the error measure 

commonly computed in geographic applications. The systematic  assesses 

whether the model errors are predictable, whereas the unsystematic  identifies 

those errors that are not predictable mathematically. The final error measure, , varies 

between 0.0 and 1.0. Therefore, the closer  is to 1.0 the better is the agreement between 

 and  with 1.0 conveying perfect agreement and 0.0 complete disagreements 

(BHOWMIK and CABRAL, 2011). 

 

4.2.2 Confidence of prediction 

 
The idea of confidence of prediction was introduced by CHILES and DELFINER (1999). This is 

the subtraction of the coefficient of variation of prediction from 100 (DIRKS et al., 1998). 

The coefficient of variation of prediction  can be expressed as: 

................................................(4.xxxi) 

 is expressed in percentage. It is the measure of spatial uncertainty of prediction (CHILES 

and DELFINER, 1999) and is also used to compare the performance of interpolation schemes 

for different integration times. Thus the formula for confidence of prediction can be 

expressed as: 

..............................................(4.xxxii) 

 

 4.3 Chapter conclusion 

 

This chapter has described the applicability, inherent methods and importance of the four 

spatial interpolation techniques and seven performance measurements in respect to the 

study. It has also illustrated the procedure of spatially shifted years approach to minimize 

the low sample density impact in designing the variography for the stochastic spatial 

interpolation. The next chapter, results and discussion, will discuss and present the results 

that will be obtained applying the methods described in the methodology chapter. 
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5. RESULTS AND DISCUSSION 

 

This chapter discusses and presents the results obtained applying the methodology 

described in the methodology chapter. It explores and analyzes the behavior and trend of 

performances of the spatial interpolation techniques with the change in sample density. It 

also validates the result with discussion in light of existing theories and reasoning. 

   

5.1 Search Neighborhood 

 

Search neighborhood basically refers to the shape of the neighborhood and the constraints 

of the measured points within the neighborhood that is used in the prediction of an 

unmeasured location. It is generally assumed in case of spatial interpolation that the 

farther the measured point gets from the prediction point, the less spatial autocorrelation 

the measured values will have to the prediction points. It is also possible that distant 

points may bring a detrimental effect to the predicted value if they are located in a region 

that has different characteristics of the phenomenon than those of the prediction location. 

Consequently, it is always important to define a search neighborhood formed with the 

nearest feasible points for interpolation. It is also important that the search neighborhood 

should be defined in designing variography and the same neighborhood should be used in 

interpolation applying this variogram (AUCHINCLOSS, et al. 2007; and WEISZ, et al., 1995).  For 

this study, the search neighborhood has been defined using the classical method of 

limiting the number of neighbors utilized for the prediction by defining the maximum 

neighbor points (nMax) and minimum neighbor points (nMin) parameters. 

Due to the low sample density of the study region, it is difficult to model the variogram in 

short range, rather a long ranged variation is possible to be modeled (as described in 

chapter 4) – typically the phenomenon behavior all over the study area is known. In 

addition, it is difficult to find enough points to build the experimental variogram and 

model it, and to interpolate the attribute data if a small search neighborhood is defined. 

Considering these facts, the whole study area has been defined as the search 

neighborhood for prediction of values at unknown locations. It has also been explored 

from the analysis of the indices behavior that the indices vary smoothly all over the study 

area and there is a spatial trend in the index behavior. In addition, maintaining the degree 

of smoothing is also the basic purpose of defining a search neighborhood and this can be 

maintained for the whole study region. Therefore, the nMax and nMin for the 
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interpolation of the index PRCPTOT have been set to 32 and for the interpolation of TXx, 

they have been set to 34. Thus all the measured points have been used in the variography 

stage and for predicting the indices at unmeasured locations (Figure 5.1). 

 
Figure 5.1: Search Neighborhood for PRCPTOT estimation (nMax=32, nMin= 32) and for TXx 

estimation (nMax=34, nMin=34). 

 
5.2 Deterministic spatial interpolation results 

 

As described in chapter 4, two deterministic methods have been used in this study – IDW, 

which predicts spatially continuous long range variation by giving more weight to nearby 

measurements than to distant measurements and TPS, which predicts the variation by a 

suitably continuous smoothing spline function. There are distinguishing features of these 

two methods, which characterize their performances in estimating continuous surfaces. 

TPS considers the spatial dependence of the phenomenon as a spline smoothed from the 

GCV function (Figure 5.2 (a)), whereas IDW considers the spatial dependence as straight 

lines connecting the measured points without any smoothing (Figure 5.2(b)) (CARUSO and 

QUARTA, 1998). The non-smoothing property of IDW sometimes enables it to result in 

better cross-validation results, since it takes the actual measurement as variability factors. 

Yet, it is also necessary to consider that it includes the measurement errors into the 

estimated values, which are unknown in most cases (BABAK and DEUTSCH, 2009). Smoothing 

property and taking the long range and short range variability into consideration, enables 

TPS to perform better for the small sampled region.  

 

             (a)           (b) 

Figure 5.2: Inherent interpolation model by (a) thin plate spline method (b) inverse distance 
weighting method.  
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Based on these fundamental features of each model (Figure 5.2), the two deterministic 

methods have been applied to create the continuous surfaces of PRCPTOT and TXx 

indices. 

 

5.2.1 Thin plate spline surfaces 

 

TPS surfaces have been created for PRCPTOT and TXx indices applying the the search 

neighborhood described in section  5.1 and the methodology described in chapter 4. As a 

result of the inherent smoothing properties, the resulted surfaces are smoothed and 

present the long range variability of the phenomena. The TPS surfaces of PRCPTOT and 

TXx are presented in the Annex A.1 and Annex A.9 respectively. A range of 0-4500mm 

of PRCPTOT has been calculated over the time periods and presented in the legends of 

created surfaces to maintain conformity. From the PRCPTOT surfaces, the spatial trend 

of the index is apparent, in all years the highest PRCPTOT has been experienced in the 

southeastern part of the country. Though, the surfaces of 1965, 1974, 1987, 1985 and 

2002 present higher PRCPTOT in the northwestern part of the country, which is contrary 

to the general spatial trend. In 1984 and 2004, a comparatively higher PRCPTOT has 

been experienced almost all over the country than in the other years, although it is hard to 

predict any temporal trend in the surfaces for PRCPTOT. From the residual plots of 

PRCPTOT, presented in Annex A.5, it is clear that the spline method typically over 

estimated the values in prediction. The method performance in terms of prediction has 

been improved over time with the increase in the station availability, which can be proven 

by the decreased size of the residual circles. On the other hand, as described in chapter 2, 

the spatial trend of TXx is the opposite of PRCPTOT, which has also been represented by 

the spline surfaces in the Annex A.9. The surfaces represent a spatial pattern of higher 

TXx in the northwestern part of the country, which is dominant in almost all the years. 

But in 1952 and 2004, a higher TXx has been calculated in the northeastern part of the 

country; especially in 2004 it is significantly higher than the temporal average. The 

relative higher TXx has been experienced all over the country in 1960, though it is 

difficult to derive any temporal trend from the surfaces of TXx. Over the years, a range of 

20-650C of TXx has been calculated and maintained in the legend of the surfaces. Like 

PRCPTOT, the residual plots of TPS surfaces of TXx show that the TPS method has 

typically over estimated the values and the prediction has been improved with time in 

terms of residuals.  
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5.2.2 Inverse distance weighting surfaces 

 

The effect of the property of the global information carried by the stationary mean in case 

of low density of sample (GOOVAERTS 1997), which has been described in chapter 2, has 

been represented by the IDW surfaces for both PRCPTOT and TXx indices. They are 

presented in Annex A.2 and A.10 respectively. Rather than presenting the long range 

variability of the indices, IDW represents more variability close to the sample location in 

a circular manner and shows almost no variation in distance. This is identified by the 

‘Bull’s eyes’ that appeared in the surfaces in every station location, which are expected 

from the modelling features of IDW described in section 5.2. Consequently, no clear 

spatial trend has been recognized from the surfaces; but rather some higher values have 

been recognized close to the areas of the representative stations. PRCPTOT surfaces of 

1951,1958, 1968,1969,1975 and 1981 show very low values of PRCPTOT in some 

station regions located in the northern and western part of the country. On the other hand, 

PRCPTOT surfaces of 1959-2007 in most cases have shown a very high value of 

PRCPTOT in the station regions at northeastern and southeastern parts of the country. 

PRCPTOT surfaces of 1984 and 1987 have shown high values of PRCPTOT almost all 

over the country. Residual plots of PRCPTOT surfaces using IDW presented in Annex 

A.6 have proven that the IDW method has typically under estimated PRCPTOT values in 

prediction. The TXx surfaces presented in Annex A.10, have followed the similar fashion 

as for PRCPTOT surfaces, the spatial trend is not clearly represented, rather the short 

range variation of the phenomenon is predictable. Though the surfaces of 1954, 1956, 

1958 and 1960 have dominantly represented higher TXx values in the northeastern region 

of the country, this is not visible in the surfaces from other years. Again the TXx surface 

of 1960 has represented the higher TXx value all over the country and surfaces of 2003 

and 2004 have represented a very high TXx value in the station regions located south and 

southeastern parts of the country respectively. Also the residual plots of TXx surfaces 

using IDW presented in Annex A.14 show that the IDW method has typically under 

estimated the TXx values in prediction. 

          

5.3 Stochastic spatial interpolation results 
 
The principle of stochastic methods for which they are distinguished from the 

deterministic methods is that they do not design the variography exactly through the 

measured points. Rather they describe a smoothed variography over the area of interest 

and thus try to fit a smoothed line, which describes the continuous variable behavior over 

the region of interest (CHRISTAKOS, 2001).  
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5.3.1 Variography 

 

As described in chapter 4, the variography for interpolation using stochastic spatial 

interpolation techniques has been designed based on the principle of spatially shifted 

temporal points. For this purpose, the temporal points have been distributed in temporal 

periods so that the variography has more or less same number of spatial points to describe 

the mean variogram. Obviously, the number of stations or spatial points has shown an 

increasing trend over the years for both PRCPTOT and TXx indices (Figure 5.3).  

 

  (a)            (b) 

Figure 5.3: Increasing trend of number of stations available for interpolating (a) PRCPTOT and 
(b) TXx. 

Therefore, the total number of years has been distributed into three temporal periods and 

thus the number of spatial points that have been accumulated from such distribution is 

441, 465 and 475 for PRCPTOT variography and 483, 494 and 503 for TXx variography 

(Figure 5.4).      

  

        (a)          (b) 

Figure 5.4: Number of accumulated spatial points from spatially shifted years to design 
variography for (a) PRCPTOT and (b) TXx. 

 

The accumulated spatial points have been distributed to 28, 17 and 15 different spatial 

coordinate sets for both PRCPTOT and TXx (Figure 5.5) and thus three mean variograms 

have been produced for the temporal periods of 1948-1975, 1976-1992, 1993-2007 

respectively for PRCPTOT and three for TXx using the same temporal periods but a 
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different number of spatial points as described in Figure 5.5. It has been ensured, while 

distributing the temporal points that the distances between the coordinate sets are more 

than 550km, which is the maximum distance between two coordinates in a particular 

coordinate set. This has prevented the particular coordinate set to have a temporal effect 

on the other set in designing the mean variogram. 

 

              (a)                (b)             (c) 

 

        (d)                 (e)            (f) 

Figure 5.5: Spatially shifted temporal points set of PRCPTOT for the temporal periods of (a) 

1948-1975 (b) 1976-1992 and (c) 1992-2007 and of TXx for the temporal periods of (d) 1948-

1975 (e) 1976-1992 and (f) 1992-2007. 
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Thus six mean variograms have been designed for interpolating PRCPTOT and TXx 

using the ordinary kriging method. The variogram parameters have been presented in 

Table 5.1. The anisotropy has been analyzed using the ‘intamap’ statistical package of 

‘R’ and has been modeled in the variogram of interest. The anisotropy for the study 

region is not very dominant for both indices since they have resulted in higher ratios of 

major and minor axes of the anisotropy ellipse (Table 5.1). The variograms for 

interpolating PRCPTOT have resulted in high nugget values, which represent abrupt 

changes in the PRCPTOT values in short distance. Variograms for TXx resulted in no 

nugget for the temporal periods of 1948-1975 and 1976-1992, whereas for 1993-2007 

there is a nugget value of 1, which is high for this temporal period. The variogram for 

TXx of the temporal period of 1993-2007 also represents a lower sill value, while the 

variogram for PRCPTOT of the 1976-1992 period represents a higher sill value. These 

values show that the TXx values did not vary to a great extent during 1993-2007, while 

the PRCPTOT values varied to a high extent during 1976-1992 over the study region. 

Their ranges are similar to the extent of the whole country. 

Table 5.1: Variogram parameters estimated from the spatially shifted temporal points set of the 
experimental variograms of PRCPTOT and of TXx for three temporal periods for ordinary kriging 

interpolation. 

Index Temporal 

period 

Total 

Spatial 

Points 

Variography 

Model Sill Range Nugget Anisotropy 

Parameters 

Angle Ratio 

of 

major 

and 

minor 

axis 

PRCPTOT 1948-1975 441 Spherical 700000 400 45000 2.96 0.83 

 1976-1992 465 Spherical 630000 550 205000 47.28 0.97 

 1993-2007 475 Spherical 780000 550 70000 83.94 0.87 

TXx 1948-1975 483 Spherical 15 430 0 2.96 0.71 

 1976-1992 494 Spherical 10 530 0 0.96 0.71 

 1993-2007 503 Spherical 5.8 410 1 176.72 0.73 

              

 The resulting variograms based on Table 5.1 parameters are presented in Figure 5.6. 
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            (a)            (b) 

 

           (c)           (d) 

 

           (e)           (f) 

Figure 5.6: Mean variograms based on the parameters described in Table 5.1 using spatially 
shifted temporal points set of PRCPTOT for the temporal periods of (a) 1948-1975 (b) 1976-1992 
and (c) 1992-2007 and of TXx for the temporal periods of (d) 1948-1975 (e) 1976-1992 and (f) 

1992-2007 for ordinary kriging interpolation. 

Another six mean variograms have been designed for interpolating PRCPTOT and TXx 

using the universal kriging method. The fundamental principle behind designing these 

variograms is that both PRCPTOT and TXx indices behavior over the study region are 

functions of longitude and latitude, which indicates that there is a spatial trend in the 

indices behavior. Variogram parameters considering spatial trend are presented in Table 

5.2. The variograms for interpolating both PRCPTOT and TXx have resulted in high 
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nugget values for all time periods that represent abrupt changes in the indices values in 

short distance considering spatial trend. The variogram for TXx of the temporal periods 

of 1976-1992 and 1993-2007 both represent lower sill values, which indicate that TXx 

values did not vary to a great extent during the mentioned temporal periods. On the other 

hand the sill values of PRCPTOT variograms are similar over time (Table 5.2).  Their 

ranges are again similar to the extent of the whole study region. 

Table 5.2: Variogram parameters estimated from the spatially shifted temporal points set of the 
experimental variograms of PRCPTOT and of TXx for three temporal periods for universal 

kriging interpolation. 

Index Temporal 

period 

Total 

Spatial 

Points 

Dependent 

Parameters 

Variography 

Model Sill Range Nugget 

PRCPTOT 1948-1975 441 Longitude 

and Latitude 

Spherical 300000 400 115000 

1976-1992 465 Longitude 

and Latitude 

Spherical 200000 550 260000 

1993-2007 475 Longitude 

and Latitude 

Spherical 270000 500 136000 

TXx 1948-1975 483 Longitude 

and Latitude 

Spherical 10 420 1 

1976-1992 494 Longitude 

and Latitude 

Spherical 2.1 480 1 

1993-2007 503 Longitude 

and Latitude 

Spherical 3.9 450 1.4 

 

The fitted variograms based on the parameters shown in Table 5.2 are presented in Figure 

5.7. 

 

              (a)           (b) 

Continued to page 46 
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           (c)           (d) 

 

          (e)            (f) 

Figure 5.7: Mean variograms based on the parameters described in Table 5.2 using spatially 
shifted temporal points set of PRCPTOT for the temporal periods of (a) 1948-1975 (b) 1976-1992 
and (c) 1993-2007 and of TXx for the temporal periods of (d) 1948-1975 (e) 1976-1992 and (f) 

1993-2007 for universal kriging interpolation. 

The similar ranges of the variograms equal to the extent of the whole study region 

indicate that both the size and density of the sample is insufficient to describe the 

variability of the indices in short range, especially in between the station locations. The 

problem is addressed in the discussion section in detail. It is obvious that designing 

experimental variograms provided with enough spatial pairs of points from the temporal 

points to model the spatial continuity in long range has reduced the uncertainty of 

modelling to a great extent. Spherical models seem most suitable for all variograms, 

which also represent a spherical change of the indices over the study region. 

 

5.3.2 Ordinary kriging surfaces 

 

The ordinary kriging method has been applied using the methodology described in 

chapter 4 and variography described in section 5.3.1. The produced surfaces of 

PRCPTOT and TXx are presented in Annex A.3 and A.11 respectively. The surfaces 

Continued from page 45 
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described well the indices behavior – both in terms of spatial trend and anisotropy. The 

PRCPTOT values range from 0 to 4500mm and TXx values range from 200 to 650C, and 

similar legends have been maintained for comparison. Again it is difficult to predict any 

temporal trend from the surfaces. PRCPTOT surfaces of 1950, 1954, 1961, 1965, 1998 

and 1999 represent very high PRCPTOT values in the southeastern part of the country, 

and PRCPTOT surfaces of 1964, 1968, 1970, 1974, 1976, 1988 and 1989 represent very 

high PRCPTOT values in the northeastern corner of the country. PRCPTOT surfaces of 

1956 and 1993 represent higher PRCPTOT values in the eastern part of the country while 

PRCPTOT surfaces of 1984, 1987, 2004 and 2007 represent higher PRCPTOT values i.e. 

higher monsoon rainfall all over the country. Residual plots for PRCPTOT surfaces using 

ordinary kriging, represented in Annex A.7, describe that the ordinary kriging method has 

typically under estimated the PRCPTOT values in prediction. Yet, the prediction 

performance is better than the deterministic methods, since the size of the circle of 

difference between measured and predicted values is smaller. Like PRCPTOT surfaces, 

TXx surfaces produced by ordinary kriging do not describe any temporal trend in 

particular, but the spatial trend to the northwestern part of the country is clearly 

represented by them, especially by the surfaces of 1954-2007. Though the TXx surfaces 

of 1956, 1958, 1961, 1972, 1976, 1979 and 1989 represent the higher TXx values in the 

whole western part of the country, the spatial trend is visible along with anisotropy. TXx 

surface of 2003 represents very high TXx values in the southwestern corner of the 

country, the surface of 2004 shows very high TXx values in the northeastern part of the 

country. Furthermore, the surface of 1960 represents higher TXx values all over the 

country. The residual plots for TXx surfaces using ordinary kriging, presented in Annex 

A.15, show that the ordinary kriging method has typically over estimated the TXx values 

in prediction but the prediction performance is also better than the performance of the 

deterministic methods since the size of the circle of difference between measured and 

predicted values is smaller. Ordinary kriging surfaces of both PRCPTOT and TXx 

characterize the long range variability in the index behavior. 

 

 5.3.3 Universal kriging surfaces 

 
The tilted surfaces of universal kriging have been created using the methodology 

described in chapter 4 and the variograms designed in section 5.3.1 and are presented in 

Annex A.4 and A.12. The basic principle, which has been applied to create these 

surfaces, is the fact that there is a spatial trend in indices behavior, which is also clearly 

visible in the created surfaces. The spatial trend is more dominant in the east-west 
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direction than the north-south as expected from the correlation with longitude and latitude 

described in chapter 3. PRCPTOT surfaces of 1948, 1949, 1950, 1953, 1954, 1961, 1965, 

1968, 1974, 1982, 1988, 1991, 1998 and 1999 have predicted very high PRCPTOT values 

in the southeastern part of the country while PRCPTOT surfaces of 1956, 1964, 1965, 

1966, 1968, 1970, 1976, 1982, 1983, 1988, 1991, 1993, 1997, 1998 and 2000 show 

higher PRCPTOT values in the whole eastern part of the country. PRCPTOT surfaces of 

1984, 1987, 2002, 2004 and 2007 predicted higher values of PRCPTOT all over the 

country. Residual plots of PRCPTOT surfaces using universal kriging, presented in 

Annex A.8, indicate that the universal kriging method, like ordinary kriging, has in 

general under estimated the PRCPTOT values in prediction. The performance of the 

prediction is similar to the ordinary kriging method and better than the deterministic 

methods as presented by the size of the circle of difference between measured and 

predicted values. Though the spatial trend for TXx is to the north-western part of the 

country, this has typically been represented only by the TXx surfaces of 1954 and 1957. 

Rather TXx surfaces of 1956, 1958, 1961, 1970, 1972, 1975, 1976, 1979, 1980, 1989 and 

1995 represent tilted surfaces of TXx to the west direction. Like all TXx surfaces from 

other methods, universal kriging TXx surface of 1960 represents the higher TXx values 

all over the country. TXx surfaces of 2003 and 2004 represent very high TXx values in 

the southwestern and northeastern corners of the country, respectively, similar to ordinary 

kriging surfaces. Unlike the residual plots for TXx surfaces using ordinary kriging, the 

residual plots of TXx using universal kriging (Annex A.16) indicate that the universal 

kriging method has mainly under estimated the TXx values in prediction and again the 

prediction performance is better than the deterministic methods like ordinary kriging, 

since the size of the circle of difference between measured and predicted value is smaller. 

To conclude, universal kriging surfaces of both PRCPTOT and TXx describe the long 

range variability in the index behavior and its spatial trend. 

 

5.3.4 Differences among the surfaces created using different spatial interpolation 

techniques 

 
Surfaces resulting from the differences between the surfaces of PRCPTOT and TXx 

generated through the different spatial interpolation techniques have been created to 

compare them (Annex A.23 to A.28). The difference surfaces for both PRCPTOT and 

TXx show significant differences in the surfaces from different spatial interpolation 

techniques: the maximum difference has been detected between the surfaces created by 

the two deterministic methods (TPS and IDW) for both PRCPTOT and TXx; and the 
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minimum difference has been revealed between the surfaces created by the two stochastic 

methods (OK and UK) for both PRCPTOT and TXx. The reason of the maximum 

difference between the deterministic surfaces is clear from their variography concept 

described in 5.2 and the methodology of interpolation described in chapter 4. On the other 

hand, the stochastic surfaces have minimum differences because the interpolators are 

identical and characterize the spatial variability through the variogram in similar ways. 

The stochastic methods are similar in their interpolation principle but model the variables 

based on the variable behavior over space. Another important fact is that the differences 

among the surfaces have been decreasing over years with the increasing number of spatial 

points, which indicates that the performance of different spatial interpolation techniques 

becomes similar if there is an adequate density of samples. 

     

5.4 Performance evaluation of the spatial interpolation methods based 
on cross-validation 
 
As described in chapter 4, five willmott (WILLMOTT, 1984) statistical measures MAE, 

RMSE, RMSEs, RMSEu, d, and two other measures ρρρρf, CP have been calculated from 

the prediction errors derived through cross-validation, which allow comparing the 

measured and predicted values of the indices by different methods, for each year (Annex 

A.29 and A.30). The linear trend of all the cross-validation measurements has been 

analyzed and the results are presented in Figure 5.8. It is clearly showed that all the 

willmott error measurements (MAE, RMSE, RMSEs, RMSEu) and the coefficient of 

variation of errors (ρρρρf) show a decreasing trend over years as the number of stations 

increases. And the index of agreement (d) from willmott measures and the confidence of 

prediction (CP) show an increasing trend over years. This undoubtedly results in better 

performance of the spatial interpolation methods over time with the increase in the 

number of spatial points, which means that the increased number of samples improves the 

performance of spatial interpolation as expected. 

From the linear trends of MAE measurements for PRCPTOT (Figure 5.8(a)), it is obvious 

that the IDW method works better until the mid 1950s from 1948 and is then replaced by 

the better performance of UK until the mid 1970s. OK performs better for the rest of the 

years. The linear trend of RMSE for PRCPTOT (Figure 5.8(b)), which is the most 

important error measurement for the spatial interpolation performance evaluation, 

describes that IDW performed better only until the beginning of the 1950s, afterwards 

UK performed better until the beginning of 1990s and finally OK performed better for the 

rest of the years. The linear trend of RMSE for PRCPTOT (Figure 5.8(c)) describes the 
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better performance of UK from the very beginning of the study period until the beginning 

of the 1980s, however OK performs better afterwards. The linear trend of RMSEu for 

PRCPTOT (Figure 5.8(d)) represents better performance of IDW all through the years 

with an increasing trend. This is due to the errors, which cannot be modeled 

mathematically and which are influenced by the property of fitting straight lines through 

measured points by IDW variography, which includes measurement errors as discussed in 

section 5.2. This measure supports non-smoothing methods, but the indices are smoothed 

in behavior which leads to the increasing trend with increased spatial points. Yet, UK and 

OK show good performance with their full-smoothing properties. The linear trend of ρρρρf 

for PRCPTOT (Figure 5.8(e)) indicates that IDW only performs better for two starting 

years followed by UK. OK performs equally good as UK at the very end of the study 

period. The linear trend of d for PRCPTOT (Figure 5.8(f)) shows that the UK method 

performs better from the beginning until the beginning of the1990s and gets then lost in 

hard competition with OK and TPS; OK performs slightly better then. Finally, the linear 

trend of CP for PRCPTOT (Figure 5.8(g)) describes that IDW performs better from 1948 

to the beginning of the 1950s and then UK performs better until the mid 1990s, whereas 

OK performed better afterwards. 

From the linear trends of the MAE measurements for TXx (Figure 5.8(h)), it is obvious 

that the IDW method works better from 1948 until the mid 1950s but is then being 

replaced by the better performance of OK until the end; UK seems performing equally 

good as OK during 1960s. The linear trend of RMSE for TXx (Figure 5.8(i)) indicates 

that IDW performed better from 1948 until the mid of 1960s, then OK performed better 

until the end. The linear trend of RMSEs for TXx (Figure 5.8(j)) shows very different 

results of spatial interpolation performance. It shows the better performance of TPS from 

the beginning until the mid 1980s, which is replaced by the better performance of UK 

until the beginning of the1990s and later by OK. The reason for this result can be the fact 

that when the density of sample is high enough, the smoothing of stochastic methods 

performs as good as the smoothing through the measured points of the deterministic 

methods, which is also apparent by the improved performance of UK and OK with 

increased points. As described in the previous paragraph, the linear trend of RMSEu for 

TXx (Figure 5.8(k)) shows better performance of IDW all through the years followed by 

TPS and then by the stochastic methods, but this measure is not a true representative of 

the performance. The linear trend of ρρρρf for TXx (Figure 5.8(l)) indicates that IDW 

performs better from the beginning until the mid 1960s and then OK performs better until 

the end. The linear trend of d for TXx (Figure 5.8(m)) shows that UK and TPS perform 

equally good from 1948 until the beginning of the 1980s and then OK performs better. 
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Finally, the linear trend of CP for TXx (Figure 5.8(n)) implies that IDW performs better 

from the 1948 to the late 1960s and finally OK performs better for the rest. 

 

            (a)          (b) 

 

            (c)          (d) 

 

         (e)      (f) 

 

            (g)           (h) 
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             (i)           (j) 

 

               (k)          (l) 

 

            (m)       (n) 

Figure 5.8: Linear trends of the performance evaluation measurements of the spatial interpolation 

methods: (a)  (b)  (c)   

(d)  (g)  of the PRCPTOT index; and (h)  (i)  (j) 

 (k)  (n)  of  the TXx index from 1948-2007. 

The analysis of the linear trends in the performance measurements depicts that the UK 

method performs better in most of the years for interpolating PRCPTOT and the OK 

method for interpolating TXx. It is also true that in terms of performance the spatial 

interpolation techniques are quite similar and differences between their performance 

measurement trends are minimal. But they are different in performance as described in 

section 5.3.4, which is obvious from the resulting surfaces despite some similarities. 

 

 

 

 (l)  (m) 

Continued from page 51 
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5.5 Discussion of the results 

 

The decreasing trend in the error measures and in the coefficient of variation of the errors, 

as well as the increasing trend in the index of agreement and in the confidence of 

prediction over time of the spatial interpolation techniques, depict clearly that the number 

and density of spatial points play a major role in the performance of interpolation, since 

the number of spatial points shows an increasing trend over time for both PRCPTOT and 

TXx (Figure 5.9). Considering this correlation, Figure 5.9 also shows that the coefficient 

of variation of the sampled indices also experiences a decreasing trend over time, though 

the slope of their trend lines is not as steep as the slope of the trends of spatial points. It is 

apparent that the behavior of the indices is spontaneous through the years and it is merely 

subject to the location of the meteorological stations whether the samples are well 

representative or not. But it is rational that the higher the number of sample points the 

higher the chance of the sample points to be representative, which is exactly what is 

represented by the decreasing trends of CV with the increasing trends of n over the years.     

 

 (a)           (b) 

Figure 5.9: Linear trend of number of spatial points (n) and coefficient of variation (CV) of the 
sampled indices for (a) PRCPTOT and (b) TXx over years. CV has been rescaled to maintain 

conformity with the number of spatial points to compare. 

Table 5.3 concretely corroborates the fact of low sample density effect on interpolation 

performance. As described before, the correlation between n and CV does not seem very 

strong from Figure 5.9. Also the correlation coefficients between them are not very 

significant (Table 5.3), but there is an obvious negative correlation between them, which 

perhaps cannot be expressed in a number because of the random indices behavior over 

years. But it is a fact that the higher the sample number and density, the more 

representative are the sampled indices. 

The influence of low sample density on spatial interpolation performance can be finally 

established by the significant strong correlation between the coefficient of variation of the 

samples ( ) and the measurements of the performance evaluation. The measurements of 

 Rescaled  = *100 

(  Rescaled ) 
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TXx represent this fact better, since PRCPTOT is not a typical continuous phenomenon 

over time and can be measured as 0 for several technical and meteorological reasons. But 

for the correlation between the similar measurements like coefficient of variation of 

errors (ρρρρf) and coefficient of variation of the sampled indices, the correlation is very 

significant for both PRCPTOT and TXx. This confirms that the more representative the 

samples are for the study region, the better the spatial interpolation techniques perform. 

The representation of the sampled indices can be ensured by the increased sample 

density. And thus the first proposition of the research can be proven. 

Table 5.3: Correlation coefficient between different performance evaluation measures of the 
spatial interpolation techniques and coefficient of variation of samples for interpolating PRCPTOT 

and TXx. 

  Coefficient of correlation 

Method Elements PRCPTOT TXx 

 n &  -0.19 -0.14 

  & MAE 0.52 0.90 

  & RMSE 0.59 0.92 

  & RMSEs 0.40 0.89 

TPS  & RMSEu 0.51 0.92 

  & pf -0.78 0.92 

  & d -0.24 -0.49 

  & CP -0.70 -0.92 

  & MAE 0.59 0.91 

  & RMSE 0.70 0.96 

  & RMSEs 0.51 0.91 

IDW   & RMSEu 0.44 0.96 

  & pf 0.81 0.96 

  & d -0.16 -0.45 

  & CP -0.81 -0.96 

  & MAE 0.54 0.89 

  & RMSE 0.63 0.94 

  & RMSEs 0.42 0.85 

OK  & RMSEu 0.35 0.91 

  & pf 0.73 0.94 

  & d -0.23 -0.51 

  & CP -0.73 -0.94 

  & MAE 0.54 0.88 

  & RMSE 0.64 0.89 

  & RMSEs 0.36 0.85 

UK  & RMSEu 0.36 0.78 

   & pf 0.75 0.89 

  & d -0.19 -0.54 

  & CP -0.75 -0.89 
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Figure 5.10: Problems in variography design when the lag size is too big, different possible 

variograms (red, green, blue and yellow curves) are available for same experimental variogram. 

The reason for low sample density affecting the spatial interpolation performance is better 

explained by the eventual increased lag size (DUNGAN et al. 2002) in variography. In 

variography design, the lag size and number are the representation of the available sample 

number density, and the first lag distance is the average distance between the measured 

points (ISAACS, and SRIVASTAVA, 1989). When the sample density is too low, the first lag 

distance is too high with around 50km for the case of Bangladesh as described in Figure 

5.10. So, the first point for which the semivariance can be measured is at 50km distance, 

and it cannot explain the index variability within 50km. This leads to the fact, that all 

possible variograms (red, green, blue and yellow), which are very different from each 

other, can be fitted and result in similar ranges and sills, but the values before the first lag 

remain uncertain. Thus it is merely impossible to describe an accurate spatial dependency 

for the first increased lag in low sample density and therefore the spatial interpolation 

results end up highly uncertain. 

   

Different possible variograms in same variography 

First point or lag position where variography is describable 
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Figure 5.11: Variography designed with 32 available spatial points in 2007 to interpolate 

PRCPTOT using ordinary kriging with first lag at 50km. 

The concept of designing mean variograms with spatially shifted years, which has been 

applied in this study, solves this low sample density problem to some extent, but not 

entirely. The concept provides enough measured pairs of point to describe the spatial 

dependence at a certain distance where measured points are missing for the earlier years 

at some locations. Yet, it cannot solve the problem of increased lag because the average 

distance cannot be decreased when only 32 and 34 spatial points are available for 

interpolation of PRCPTOT and TXx respectively. As shown in Figure 5.11, the designed 

variogram with 32 spatial points available for the year 2007 to interpolate PRCPTOT 

with ordinary kriging also has the first lag at 50km, so the variability of PRCPTOT within 

50km is still not describable. The variogram with only spatial points from 2007 is 

different from the mean variogram with the accumulated spatial points of 1993-2007 

(Figure 5.7(c)), it results in no anisotropy in analysis and is described by a ‘Power’ model 

with power of 1.35 (Figure 5.11). And the resulted surface created by applying it with 

ordinary kriging results in worse precision in all performance evaluation measurements 

than the surface created with the mean variogram as presented in Table 5.4. This explains 

why the mean variogram designed with 475 spatial points performs better than the 

individual variogram designed with 32 spatial points. Consequently, the mean variogram 

is more accurate to use. This is true for all cases and leads to an increase of precision. 
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Table 5.4: Comparison of the performance evaluation measurements between the ordinary kriging 
methods applied to create PRCPTOT surface of 2007 applying the individual variogram designed 
by available 32 spatial points and mean variogram designed by shifted 475 spatial points of the 

temporal period of 1993-2007. 

Variogram used 
in spatial 

interpolation 
n MAE RMSE RMSEs RMSEu d pf CP 

Variogram 
designed only by 
available spatial 
points in 2007 

32 342.8 456.7 312.7 400.1 0.80 22.9 77.0 

Mean variogram of 
1993-2007 

475 318.6 413.9 265.0 331.1 0.82 20.7 79.2 

 

Finally, a relative performance overview of the applied methods is summarized in Table 

5.5. The dissimilar performance attitudes of the methods result in different interpolated 

surfaces which prove the second research proposition.  

Table 5.5: Summary of the comparative performance analysis of the applied spatial interpolation 
techniques.    

Performance 

Parameters 

Thin Plate 

Spline 

Inverse 

Distance 

Weighting 

Ordinary 

Kriging 

Universal 

Kriging 

Variography 

Design 

Smoothed spline 

exactly through 

the measured 

points.  

Straight line 

exactly through 

the measured 

points. 

Smoothed line 

that best fits 

through the 

measured 

semivariance. 

Smoothed line 

that best fits 

through the 

measured 

semivariance 

considering the 

spatial trend. 

Performance 

with the number 

of spatial points 

and their 

density 

Performs 

comparatively 

worse than the 

stochastic 

methods and 

shows better 

performance in 

cross validation 

with increased 

number of spatial 

points and 

Performs 

comparatively 

better than other 

methods when 

the number of 

spatial points and 

density are too 

little but in 

general shows 

better 

performance in 

Performs 

comparatively 

better than the 

deterministic 

methods and 

shows better 

performance in 

cross validation 

with increased 

number of spatial 

points and 

Performs 

comparatively 

better than the 

deterministic 

methods and 

shows better 

performance in 

cross validation 

with increased 

number of 

spatial points 

Continued to page 58 
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density.  cross validation 

with increased 

number of spatial 

points and 

density. 

density. and density. 

Measurement 

Errors  

Includes 

measurement 

errors in result to 

some extent with 

minimal 

smoothing 

Includes 

measurement 

errors in result 

Excludes 

measurement 

errors in result 

by smoothing 

Excludes 

measurement 

errors in result 

by smoothing 

 

5.6 Chapter conclusion 

 

This chapter has proved the research propositions with the obtained results and their 

discussion in the light of existing theories. The correlation between sample density and 

sample coefficient of variation and the strong correlation between sample coefficient of 

variation and spatial interpolation performance measurements clearly depict the role of 

sample density in spatial interpolation performance. The decreasing trends in the error 

measures and in the coefficient of variation of the errors together with the increasing 

trend in the index of agreement and in the confidence of prediction over time with 

increasing sample density, justify the fact even more evidently. And this fact shows 

conformity with the discussion of the lag problem in spatiotemporal estimation. The final 

chapter, conclusion and further scopes, will outline the final outcome briefly and lead to 

the further research scopes of the study. 
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6. CONCLUSION AND FURTHER SCOPES 

 

The spatial interpolation methods used in this study performed irrespective of the sample 

size and density in terms of their methodology; none of them shows better performance, 

solely in case of low sample density. Though IDW shows better performance when the 

sample density is very small, it cannot be claimed profoundly; since this method includes 

measurement errors in result.  As experienced from this study, the four spatial 

interpolation methods have their advantages and disadvantages because of their relative 

features, and eventually they result in significant different surfaces. But the difference 

between the resulted surfaces decreases over time with the increase in sample density; 

which proves the second proposition of this research mention in introduction chapter.  

In designing variography for the stochastic methods, the spherical model has been chosen 

for all variograms of all indices. This is mainly related to the semivariances of the indices 

over space, which shows spherical spatial dependence. Variogram models were fitted 

interactively to the experimental variograms as recommended by GOOVAERTS (1997), thus 

the variogram parameters were estimated subjectively by giving more relevance to the 

first lags. Furthermore, other suitable variogram models have also been applied, but the 

spherical model also proved to be appropriate in the cross validation. The applied method 

to select the parameters of the variogram proves to be good as we have considered the 

weighted regression method and cross-validation. This method is indeed similar to the 

weighted least squares method (WLS). However there are scopes to try more probabilistic 

procedures such as Maximum Likelihood or Restricted Maximum Likelihood. 

Importantly, the nugget effect under OK is small while under UK it is very high. This 

clearly indicates that the spatial trend is affecting the short-range variability of the 

indices. The reason for this effect can be seen in the spatial trend for the indices occurring 

in long range (across the whole country). Additionally, there is not enough sample 

density to model the short-range variability and to describe the gradual change in the 

indices’ values in the trend direction. Given that the smallest accessible lag of the 

empirical variogram is large, the nugget effect is likely to be overestimated. Additionally, 

the nugget value and the semivariogram behavior at the origin cannot be cross-validated 

because variogram model values for lags smaller than the shortest sampling interval do 

not intervene in interpolation algorithms. 

Last, but not least, proving the first proposition of the study, the sample or spatial point 

density has a profound effect on the performance of spatial interpolation techniques. It is 
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very important to analyze the spatial point density and resulted coefficient of variation of 

the samples before applying any spatial interpolation. For example, if a study area 

provides only five spatial points for over 200,000 square kilometers of area, the spatial 

interpolation results for the continuous variables will end up with less accuracy. The 

produced surfaces in such case might not be eligible to be used in further research. 

Superimposing with the high-resolution auxiliary dataset (RADAR) might be useful but 

in case of absence of such dataset, the accuracy obtained in the estimates should be taken 

into account in further analysis. 

 

6.1 Limitations and further scopes 
 

The performance improvement of the spatial interpolation techniques can be subject to 

further analysis in future studies. Other spatial interpolation methods might perform 

better in response to low sample density, such as stochastic simulation algorithms, which 

might help researchers in the areas suffering from low sample density due to techno-

economic reasons. Further research can be carried out in modeling appropriate 

variography for the first increased lag size. Looking at different spatial resolution may 

provide interesting results in this case. Furthermore, modeling with increased temporal 

resolution, i.e. monthly indices rather than yearly indices, may improve the results as 

well. Modeling the time series with the Autoregressive (AR), the Moving Average (MA) 

or the Autoregressive-Moving Average (ARMA) model (BROCKWELL, and DAVIS, 1991; 

CHAFIELD, 1989; and DIGGLE, 1990) for the yearly indices may also improve the spatial 

interpolation performance. In a nutshell, these further steps would eventually increase the 

legitimacy of the research and the proclaimed fact that sample number and density do 

affect the spatial interpolation result. 

The research has broader perspective in applied geostatistics. Evaluating the spatial 

interpolation techniques and eventually determining the locally appropriate technique, 

will contribute to preparing appropriate climate dataset and understanding their spatial 

variability. Interpolation performance improvement in respect to low sample density will 

provide with accurate continuous surfaces of climate indices for future climate change 

studies. Moreover, local continuous surfaces of climate indices can be input in several 

climate models to forecast climate change phenomenon and related consequences on the 

developing countries like Bangladesh, where climate studies are suffering from 

unavailability of climate data recording and monitoring. To conclude, choosing 

appropriate methodology of spatial interpolation will result in appropriate climate 

forecast and climate resilience activities. 
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ANNEXES 
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A.2 IDW Surfaces of PRCPTOT 
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A.3 OK Surfaces of PRCPTOT 
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A.4 UK Surfaces of PRCPTOT 
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A.5 Residual Plots of TPS Surfaces of PRCPTOT 
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 1972    1973           1974      1975          

 
 1976    1977           1978          1979 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values   
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 1980    1981           1982      1983          

 
 1984    1985           1986      1987          

 
 1988    1989           1990          1991 

 
 1992    1993           1994          1995 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 



95 
 

 
 1996    1997           1998                 1999          

 
 2000    2001           2002          2003 

 
 2004    2005           2006          2007 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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A.6 Residual Plots of IDW Surfaces of PRCPTOT 
 

 
 1948   1949           1950      1951         

 
 1952   1953           1954     1955         

 
 1956   1957           1958     1959         

 
 1960   1961           1962         1963 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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 1964   1965           1966                1967         

 
 1968   1969           1970     1971         

 
 1972   1973           1974     1975         

 
 1976   1977           1978         1979 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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 1980   1981           1982     1983         

 
 1984   1985           1986     1987         

 
 1988   1989           1990     1991         

 
 1992   1993           1994         1995 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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 1996   1997           1998     1999         

 
 2000   2001           2002         2003 

 
 2004   2005           2006         2007 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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A.7 Residual Plots of OK Surfaces of PRCPTOT 
 

 
 1948   1949            1950     1951          

 
 1952   1953            1954     1955          

 
 1956   1957            1958     1959          

 
 1960   1961            1962          1963 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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 1964   1965            1966     1967          

 
 1968   1969            1970     1971          

 
 1972   1973            1974     1975          

 
 1976   1977            1978          1979 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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 1980   1981            1982          1983 

 
 1984   1985            1986     1987          

 
 1988   1989            1990     1991          

 
 1992   1993            1994          1995 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
 



103 
 

 
 1996   1997            1998     1999          

 
 2000   2001            2002     2003          

 
 2004   2005            2006          2007 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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A.8 Residual Plots of UK Surfaces of PRCPTOT 
 

 
    1948    1949              1950            1951 

 
       1952    1953              1954     1955            

 
    1956    1957             1958     1959           

 
    1960    1961             1962           1963 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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    1964    1965             1966     1967           

 
    1968    1969             1970     1971           

 
    1972    1973             1974     1975           

 
   1976    1977             1978           1979 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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   1980    1981             1982     1983           

 
   1984    1985             1986     1987           

 
   1988    1989             1990     1991           

 
   1992    1993             1994           1995 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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   1996    1997             1998     1999           

 
   2000   2001             2002     2003           

 
    2004   2005             2006           2007 
 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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A.9 TPS Surfaces of TXx 
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A.10 IDW Surfaces of TXx 
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A.11 OK Surfaces of TXx 
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A.12 UK Surfaces of TXx 
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A.13 Residual Plots of TPS Surfaces of TXx 
 

 
 1948   1949           1950     1951         

 
 1952   1953           1954     1955         

 
 1956   1957           1958         1959 

 
 1960   1961           1962         1963 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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 1964   1965           1966     1967         

 
 1968   1969           1970     1971         

 
 1972   1973           1974         1975 

 
 1976   1977           1978         1979 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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 1980   1981           1982     1983         

 
 1984   1985           1986     1987         

 
 1988   1989           1990         1991 

 
 1992   1993           1994         1995 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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 1996   1997           1998     1999         

 
 2000   2001           2002         2003 

 
 2004   2005           2006         2007 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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A.14 Residual Plots of IDW Surfaces of TXx 
 

 
    1948    1949              1950     1951           

 
    1952    1953              1954     1955           

 
    1956    1957              1958           1959 

 
    1960    1961              1962           1963 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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   1964    1965             1966      1967           

 
    1968    1969             1970     1971           

 
    1972    1973             1974           1975 

 
 
    1976    1977             1978           1979 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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   1980    1981             1982           1983 

 
   1984    1985             1986     1987           

 
   1988    1989             1990     1991           

 
   1992    1993             1994           1995 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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   1996    1997             1998     1999           

 
   2000    2001             2002     2003           

 
   2004    2005             2006           2007 
 

 

Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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A.15 Residual Plots of OK Surfaces of TXx 
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    1952    1953             1954     1955            

 
    1956    1957             1958     1959            

 
    1960    1961             1962            1963 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 



137 
 

 
    1964    1965             1966            1967 

 
    1968    1969             1970     1971            

 
    1972    1973             1974     1975            

 
    1976    1977             1978            1979 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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   1980   1981             1982     1983          

 
   1984   1985             1986     1987          

 
   1988   1989             1990     1991          

 
 1992   1993             1994          1995 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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    1996   1997             1998     1999          

 
    2000   2001             2002     2003          

 
    2004   2005             2006           2007 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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A.16 Residual Plots of UK Surfaces of TXx 
 

 
    1948   1949   1950     1951            

 
      1952    1953   1954     1955            

 
    1956    1957             1958     1959            

 
    1960    1961             1962           1963 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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    1968    1969             1970     1971           

 
    1972    1973             1974     1975           

 
    1976    1977             1978           1979 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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   1980    1981             1982     1983           

 
   1984    1985             1986     1987           

 
    1988    1989             1990     1991           

 
   1992    1993             1994           1995 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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    1996    1997             1998           1999 

 
   2000    2001             2002     2003           

 
    2004    2005             2006           2007 
 
Over Estimated Values  

Under Estimated Values  

*Note: The relative sizes of the circles depict the degree of over or under estimation i.e the 

minimum the size of the circle the minimum the difference between measured and predicted 

values 
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A.17 Difference Surfaces between TPS and IDW (TPS-IDW) of PRCPTOT 
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A.18 Difference Surfaces between TPS and OK (TPS-OK) of PRCPTOT 
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A.19 Difference Surfaces between TPS and UK (TPS-UK) of PRCPTOT 
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A.20 Difference Surfaces between IDW and OK (IDW-OK) of PRCPTOT 
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A.21 Difference Surfaces between IDW and UK (IDW-UK) of PRCPTOT 
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A.22 Difference Surfaces between OK and UK (OK-UK) of PRCPTOT 
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A.23 Difference Surfaces between TPS and IDW (TPS-IDW) of TXx 
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A.24 Difference Surfaces between TPS and OK (TPS-OK) of TXx 
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A.25 Difference Surfaces between TPS and UK (TPS-UK) of TXx 
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A.26 Difference Surfaces between IDW and OK (IDW-OK) of TXx 
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A.27 Difference Surfaces between IDW and UK (IDW-UK) of TXx  
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A.28 Difference Surfaces between OK and UK (OK-UK) of TXx 
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A.29 Performance measurements of the four methods from cross-validation for interpolating PRCPTOT (pp. 203-205) 
 

Years n 
Sample 
Mean k 

MAE RMSE RMSEs RMSEu pf d CP 

TPS IDW OK UK TPS IDW  OK UK TPS IDW  OK UK TPS IDW  OK UK TPS IDW  OK UK TPS IDW  OK UK TPS IDW  OK UK 

1948 8 1532.25 0.54 851.89 685.47 732.19 693.70 1006.16 817.73 851.75 798.92 650.06 789.37 778.84 575.74 767.95 213.70 344.78 553.85 65.67 53.37 55.59 52.14 0.47 0.21 0.23 0.56 34.33 46.63 44.41 47.86 

1949 9 1772.33 0.47 802.09 605.95 749.61 729.75 907.61 731.38 835.79 820.77 506.17 632.84 623.33 479.91 753.38 350.20 545.18 664.72 51.21 41.27 47.16 46.31 0.56 0.50 0.46 0.61 48.79 58.73 52.84 53.69 

1950 10 1708.40 0.55 541.17 463.50 461.90 437.70 610.46 577.11 532.98 553.68 133.19 542.99 455.95 336.09 595.75 187.37 314.95 414.13 35.73 33.78 31.20 32.41 0.89 0.79 0.86 0.86 64.27 66.22 68.80 67.59 

1951 11 1446.91 0.54 625.77 587.73 616.42 577.84 862.52 801.70 828.39 773.73 710.42 674.97 617.29 501.23 489.06 285.95 460.34 568.60 59.61 55.41 57.25 53.47 0.36 0.30 0.40 0.54 40.39 44.59 42.75 46.53 

1952 10 1778.40 0.38 761.22 491.39 538.53 577.33 916.33 590.04 695.81 681.62 701.97 526.05 561.35 484.21 589.01 261.64 410.43 464.27 51.53 33.18 39.13 38.33 0.25 0.47 0.43 0.47 48.47 66.82 60.87 61.67 

1953 12 1818.33 0.33 412.71 418.51 472.98 445.71 481.98 493.46 543.51 517.19 256.51 416.73 353.72 243.45 408.05 219.62 384.75 428.34 26.51 27.14 29.89 28.44 0.78 0.59 0.64 0.73 73.49 72.86 70.11 71.56 

1954 13 1876.15 0.37 361.40 394.11 346.86 365.49 453.24 509.75 442.18 459.82 233.28 463.50 337.22 286.27 388.61 162.05 278.20 312.69 24.16 27.17 23.57 24.51 0.86 0.66 0.82 0.82 75.84 72.83 76.43 75.49 

1955 12 1744.25 0.31 323.11 368.50 293.60 310.42 424.15 421.46 355.56 371.62 220.04 309.95 203.96 195.26 362.61 200.46 278.84 290.25 24.32 24.16 20.38 21.31 0.80 0.65 0.82 0.80 75.68 75.84 79.62 78.69 

1956 14 2016.00 0.25 262.32 342.02 315.79 318.83 334.54 417.86 376.66 346.14 215.57 355.34 250.90 170.80 255.83 163.37 237.69 276.05 16.59 20.73 18.68 17.17 0.82 0.52 0.71 0.81 83.41 79.27 81.32 82.83 

1957 15 1334.47 0.33 344.18 316.46 273.89 283.98 513.46 441.46 427.93 455.26 417.76 426.29 391.52 370.70 298.56 123.70 177.69 228.41 38.48 33.08 32.07 34.12 0.42 0.30 0.44 0.44 61.52 66.92 67.93 65.88 

1958 15 1263.07 0.47 664.80 471.98 476.11 485.83 784.19 555.09 572.89 587.77 599.09 467.47 411.33 379.15 506.02 233.58 351.25 406.80 62.09 43.95 45.36 46.53 0.21 0.34 0.46 0.49 37.91 56.05 54.64 53.47 

1959 15 1753.53 0.34 351.16 475.30 420.68 422.00 474.43 584.62 535.48 551.92 367.70 496.96 376.61 367.31 299.82 211.94 273.03 330.42 27.06 33.34 30.54 31.47 0.73 0.36 0.54 0.57 72.94 66.66 69.46 68.53 

1960 15 1645.53 0.42 651.67 525.21 549.35 523.09 975.90 776.17 833.74 791.23 812.45 527.75 365.38 400.08 540.66 335.53 548.43 473.05 59.31 47.17 50.67 48.08 0.23 0.23 0.34 0.34 40.69 52.83 49.33 51.92 

1961 16 1654.25 0.60 578.42 531.30 503.00 417.07 965.93 754.02 789.16 701.54 517.69 488.09 289.29 243.76 815.53 439.84 634.85 590.70 58.39 45.58 47.70 42.41 0.72 0.73 0.77 0.82 41.61 54.42 52.30 57.59 

1962 16 1446.88 0.37 369.48 337.14 329.65 322.43 449.03 445.13 426.59 383.74 294.87 364.55 289.96 213.46 338.62 193.39 278.11 294.39 31.03 30.77 29.48 26.52 0.72 0.58 0.70 0.80 68.97 69.23 70.52 73.48 

1963 15 1570.80 0.36 343.08 358.49 350.20 280.31 519.04 496.61 488.11 409.07 361.55 386.18 299.68 224.78 372.37 227.81 316.14 316.49 33.04 31.62 31.07 26.04 0.67 0.56 0.66 0.80 66.96 68.38 68.93 73.96 

1964 18 1690.39 0.41 586.12 508.17 504.05 484.23 844.32 683.47 719.88 679.29 657.48 579.45 493.55 415.74 529.72 262.52 428.09 461.18 49.95 40.43 42.59 40.19 0.39 0.34 0.44 0.54 50.05 59.57 57.41 59.81 

1965 17 1859.53 0.43 824.22 594.09 642.19 608.98 1038.02 769.13 826.53 789.17 822.37 711.30 669.40 640.92 633.38 275.78 454.08 476.36 55.82 41.36 44.45 42.44 0.30 0.39 0.46 0.52 44.18 58.64 55.55 57.56 

1966 21 1648.38 0.46 486.43 442.17 428.99 499.71 701.57 617.99 608.10 644.76 489.84 638.41 591.87 580.56 502.22 279.60 394.47 454.36 42.56 37.49 36.89 40.28 0.63 0.60 0.70 0.71 57.44 62.51 63.11 59.72 

1967 19 1601.16 0.46 423.20 439.89 437.78 405.52 767.77 652.12 676.02 614.70 603.41 674.68 652.26 578.07 474.70 265.41 401.88 452.36 47.95 40.73 42.22 38.39 0.54 0.49 0.55 0.69 52.05 59.27 57.78 61.61 

1968 19 1792.26 0.43 724.06 465.83 532.00 517.69 882.92 645.79 665.45 628.33 569.29 620.91 555.25 422.64 674.88 331.96 489.44 520.10 49.26 36.03 37.13 35.06 0.54 0.61 0.68 0.75 50.74 63.97 62.87 64.94 

1969 20 1833.05 0.44 500.35 477.67 435.95 469.16 688.63 656.86 630.65 640.08 422.99 612.66 509.32 477.40 543.43 280.36 422.95 442.61 37.57 35.83 34.40 34.92 0.75 0.63 0.74 0.74 62.43 64.17 65.60 65.08 

1970 20 1761.35 0.35 489.55 394.77 418.14 404.38 652.71 564.82 559.36 520.92 539.03 510.31 403.15 355.49 368.04 197.20 310.35 342.50 37.06 32.07 31.76 29.57 0.44 0.41 0.54 0.66 62.94 67.93 68.24 70.43 
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1971 20 1661.80 0.53 617.76 586.09 584.24 603.77 749.92 698.16 697.21 704.69 405.14 612.83 497.13 487.26 631.05 411.35 528.67 519.94 45.13 42.01 41.96 42.41 0.76 0.70 0.75 0.74 54.87 57.99 58.04 57.59 

1972 19 1258.95 0.46 379.36 362.13 362.51 390.20 545.49 553.91 569.14 574.44 412.30 161.94 1072.63 1244.63 357.13 566.02 1314.61 1469.97 43.33 44.00 45.21 45.63 0.58 0.45 0.53 0.52 56.67 56.00 54.79 54.37 

1973 20 1435.25 0.40 452.75 418.24 464.20 439.00 546.63 534.36 556.15 538.30 493.64 469.77 435.51 439.13 234.75 195.95 323.31 252.54 38.09 37.23 38.75 37.51 0.40 0.38 0.48 0.45 61.91 62.77 61.25 62.49 

1974 20 1931.95 0.43 652.18 574.51 572.58 556.84 1005.63 803.85 868.49 828.74 724.17 603.89 388.51 331.45 697.77 366.90 652.86 628.93 52.05 41.61 44.95 42.90 0.52 0.49 0.57 0.61 47.95 58.39 55.05 57.10 

1975 22 1353.32 0.44 425.23 415.37 421.23 401.10 637.13 558.37 581.38 542.81 435.95 448.36 228.03 234.13 464.62 215.54 422.66 387.64 47.08 41.26 42.96 40.11 0.60 0.44 0.56 0.62 52.92 58.74 57.04 59.89 

1976 21 1839.71 0.42 564.28 535.91 501.36 495.35 729.10 665.86 652.12 679.74 593.44 683.54 654.02 687.90 423.56 247.59 317.82 413.81 39.63 36.19 35.45 36.95 0.56 0.52 0.60 0.60 60.37 63.81 64.55 63.05 

1977 26 1653.85 0.44 585.86 492.80 517.21 509.70 702.34 620.67 626.13 629.52 589.26 560.47 434.18 471.46 382.17 296.44 393.70 382.89 42.47 37.53 37.86 38.06 0.51 0.60 0.64 0.62 57.53 62.47 62.14 61.94 

1978 23 1696.57 0.39 460.78 425.47 414.92 417.66 621.85 608.00 578.36 572.77 502.07 257.09 65.35 161.58 366.95 402.39 526.42 451.34 36.65 35.84 34.09 33.76 0.57 0.54 0.63 0.63 63.35 64.16 65.91 66.24 

1979 26 1552.69 0.51 717.14 703.29 716.53 704.76 899.74 895.80 918.74 887.86 891.92 906.52 946.15 899.78 118.18 187.65 198.95 95.88 57.95 57.69 59.17 57.18 0.02 0.08 0.07 0.02 42.05 42.31 40.83 42.82 

1980 25 1326.68 0.45 491.51 442.28 446.14 450.76 648.28 655.73 631.87 624.90 644.52 450.92 459.46 547.00 69.73 274.96 241.18 133.53 48.86 49.43 47.63 47.10 0.01 0.25 0.24 0.12 51.14 50.57 52.37 52.90 

1981 25 1628.92 0.45 513.34 456.12 480.13 488.89 708.65 613.20 630.97 615.99 477.81 324.32 212.60 266.86 523.33 391.44 628.25 562.62 43.50 37.64 38.74 37.82 0.65 0.56 0.61 0.65 56.50 62.36 61.26 62.18 

1982 27 1981.07 0.47 595.08 657.56 580.91 572.70 768.52 755.16 708.59 710.09 522.42 698.90 510.95 493.70 563.61 395.28 495.82 510.79 38.79 38.12 35.77 35.84 0.76 0.68 0.76 0.77 61.21 61.88 64.23 64.16 

1983 27 1821.74 0.42 577.02 567.57 525.95 540.38 702.40 716.94 703.60 681.02 556.08 506.87 413.63 427.13 429.13 377.95 449.72 443.09 38.56 39.35 38.62 37.38 0.61 0.56 0.63 0.65 61.44 60.65 61.38 62.62 

1984 27 2181.81 0.33 564.34 537.77 505.17 510.97 740.09 678.02 661.06 683.28 637.01 624.23 554.35 610.26 376.71 241.72 305.17 334.91 33.92 31.08 30.30 31.32 0.46 0.43 0.51 0.48 66.08 68.92 69.70 68.68 

1985 28 1667.29 0.40 469.71 472.59 463.83 474.07 646.16 591.06 601.77 585.83 460.72 408.63 283.51 304.64 453.06 301.08 441.02 427.72 38.75 35.45 36.09 35.14 0.64 0.56 0.61 0.63 61.25 64.55 63.91 64.86 

1986 28 1786.54 0.26 256.13 287.53 269.72 249.61 337.96 366.33 351.36 338.77 206.25 293.77 209.65 229.58 267.70 204.31 304.86 288.02 18.92 20.50 19.67 18.96 0.82 0.67 0.76 0.79 81.08 79.50 80.33 81.04 

1987 29 2204.45 0.36 380.74 439.05 392.73 435.99 595.23 602.01 579.09 601.55 241.36 508.67 371.21 433.27 544.10 293.36 404.04 408.23 27.00 27.31 26.27 27.29 0.84 0.72 0.79 0.76 73.00 72.69 73.73 72.71 

1988 29 1958.52 0.38 417.15 413.95 362.64 401.15 574.86 548.03 508.16 502.46 217.54 489.59 343.44 392.50 532.11 266.80 353.95 381.73 29.35 27.98 25.95 25.66 0.83 0.73 0.81 0.82 70.65 72.02 74.05 74.34 

1989 30 1507.70 0.47 331.91 351.94 305.03 329.23 590.58 616.42 582.26 546.47 405.99 386.86 163.55 144.82 428.91 291.34 479.00 485.26 39.17 40.88 38.62 36.25 0.72 0.53 0.66 0.74 60.83 59.12 61.38 63.75 

1990 30 1655.67 0.39 404.13 403.62 375.54 388.21 533.82 511.06 493.46 489.52 386.04 366.25 239.99 279.33 368.71 257.54 364.99 345.61 32.24 30.87 29.80 29.57 0.74 0.68 0.76 0.76 67.76 69.13 70.20 70.43 

1991 32 1959.94 0.38 258.00 342.24 305.56 298.89 423.66 513.47 465.03 456.68 189.73 377.90 189.44 210.23 378.81 272.09 416.80 394.51 21.62 26.20 23.73 23.30 0.90 0.76 0.85 0.86 78.38 73.80 76.27 76.70 

1992 32 1395.31 0.40 277.64 336.56 286.39 319.01 389.38 423.65 386.80 390.38 234.62 290.39 176.87 212.57 310.77 240.55 355.55 320.85 27.91 30.36 27.72 27.98 0.84 0.69 0.80 0.79 72.09 69.64 72.28 72.02 

1993 32 1872.59 0.37 362.88 407.57 381.02 350.08 575.76 619.84 575.59 526.55 446.63 276.00 187.15 190.68 363.36 391.91 670.07 617.04 30.75 33.10 30.74 28.12 0.68 0.46 0.67 0.75 69.25 66.90 69.26 71.88 

1994 32 1366.25 0.54 302.49 356.41 304.30 309.60 484.22 560.99 494.61 505.15 321.78 337.33 182.46 164.87 361.86 335.33 579.69 542.48 35.44 41.06 36.20 36.97 0.84 0.68 0.82 0.81 64.56 58.94 63.80 63.03 

1995 31 1800.45 0.32 368.80 365.29 339.34 351.84 468.03 494.50 450.83 447.64 333.17 361.67 90.60 120.11 328.70 196.44 398.65 368.53 25.99 27.47 25.04 24.86 0.75 0.55 0.73 0.72 74.01 72.53 74.96 75.14 

1996 31 1613.19 0.38 292.02 344.14 281.13 280.58 375.09 417.87 346.09 345.44 182.85 316.47 205.44 216.54 327.52 251.72 369.33 343.77 23.25 25.90 21.45 21.41 0.89 0.78 0.90 0.89 76.75 74.10 78.55 78.59 

1997 31 1840.39 0.33 313.88 307.37 296.91 305.87 423.71 419.07 392.99 387.62 209.64 359.40 297.91 297.21 368.22 266.32 384.17 383.44 23.02 22.77 21.35 21.06 0.84 0.77 0.85 0.85 76.98 77.23 78.65 78.94 
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1998 31 1948.00 0.42 427.87 438.24 380.20 359.40 603.36 538.27 525.37 497.91 271.03 298.85 157.29 168.82 539.07 371.19 556.28 492.75 30.97 27.63 26.97 25.56 0.84 0.81 0.87 0.88 69.03 72.37 73.03 74.44 

1999 32 2014.69 0.34 298.17 355.45 293.42 312.59 360.51 430.67 345.20 375.11 167.24 378.51 206.84 220.12 319.38 221.54 299.68 312.47 17.89 21.38 17.13 18.62 0.92 0.82 0.92 0.89 82.11 78.62 82.87 81.38 

2000 32 1636.59 0.49 338.35 387.72 330.56 380.30 525.58 571.81 502.73 513.93 233.27 513.72 290.42 320.35 470.99 283.69 390.81 400.24 32.11 34.94 30.72 31.40 0.87 0.75 0.86 0.85 67.89 65.06 69.28 68.60 

2001 32 1764.91 0.51 450.87 518.85 406.37 447.26 666.21 715.12 615.85 664.11 484.89 578.97 335.34 360.47 456.84 375.08 493.47 536.32 37.75 40.52 34.89 37.63 0.78 0.66 0.81 0.76 62.25 59.48 65.11 62.37 

2002 32 1939.81 0.30 317.90 344.08 303.79 331.58 411.20 412.11 380.02 420.09 285.75 365.74 223.73 234.03 295.72 205.80 277.52 312.35 21.20 21.25 19.59 21.66 0.80 0.75 0.83 0.77 78.80 78.75 80.41 78.34 

2003 31 1621.42 0.48 376.83 408.62 355.49 361.43 491.37 551.65 475.85 465.19 295.55 458.41 260.16 254.53 392.57 283.62 417.13 412.30 30.31 34.02 29.35 28.69 0.86 0.75 0.87 0.87 69.69 65.98 70.65 71.31 

2004 32 2117.47 0.28 354.98 368.07 319.90 323.13 467.27 456.12 431.03 437.18 329.11 213.24 76.80 105.28 331.73 320.87 459.16 461.68 22.07 21.54 20.36 20.65 0.76 0.73 0.80 0.79 77.93 78.46 79.64 79.35 

2005 32 1701.94 0.38 289.73 351.66 292.61 320.36 410.04 476.99 411.68 428.12 245.18 386.49 232.91 264.92 328.69 239.53 377.17 386.58 24.09 28.03 24.19 25.15 0.86 0.70 0.84 0.82 75.91 71.97 75.81 74.85 

2006 32 1603.88 0.40 263.33 362.37 293.49 321.48 351.83 484.19 387.63 409.60 145.29 429.42 237.36 297.62 324.70 213.16 300.61 296.03 21.94 30.19 24.17 25.54 0.91 0.70 0.87 0.84 78.06 69.81 75.83 74.46 

2007 32 1992.88 0.29 351.89 335.69 318.62 316.49 446.05 408.91 413.94 388.64 278.38 360.70 265.03 240.65 348.52 244.45 331.07 322.12 22.38 20.52 20.77 19.50 0.78 0.77 0.82 0.84 77.62 79.48 79.23 80.50 
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A.30 Performance measurements of the four methods from cross-validation for interpolating TXx (pp. 204-206) 
   

Years n 

Sample 

Mean k 

MAE RMSE RMSEs RMSEu pf d CP 

TPS IDW OK UK TPS IDW OK UK TPS IDW OK UK TPS IDW OK UK TPS IDW OK UK TPS IDW OK UK TPS IDW OK UK 

1948 10 37.36 0.04 1.24 1.05 0.92 1.07 1.50 1.26 1.12 1.22 0.59 1.24 0.85 0.61 1.37 0.39 0.76 1.08 4.00 3.39 3.01 3.27 0.65 0.40 0.71 0.74 96.00 96.61 96.99 96.73 

1949 11 35.30 0.08 2.59 2.10 2.21 2.41 4.62 3.29 3.69 3.89 3.24 3.23 3.43 3.54 3.29 1.18 2.08 2.17 13.09 9.31 10.44 11.02 0.17 0.14 0.18 0.14 86.91 90.69 89.56 88.98 

1950 11 37.45 0.03 1.27 0.94 1.10 1.15 1.61 1.29 1.38 1.47 1.34 0.83 0.81 0.69 0.90 0.72 0.85 1.34 4.31 3.44 3.69 3.91 0.15 0.20 0.22 0.31 95.69 96.56 96.31 96.09 

1951 12 36.96 0.04 1.54 1.02 0.95 1.17 1.71 1.36 1.22 1.40 1.05 0.55 0.19 0.17 1.35 0.93 1.23 1.51 4.63 3.67 3.30 3.79 0.57 0.59 0.76 0.71 95.37 96.33 96.70 96.21 

1952 12 38.10 0.06 2.79 2.00 2.23 2.29 3.74 2.45 2.81 2.85 2.66 2.06 2.22 2.18 2.63 0.90 1.59 1.51 9.81 6.43 7.36 7.49 0.29 0.33 0.37 0.34 90.19 93.57 92.64 92.51 

1953 13 36.65 0.03 0.65 0.66 0.64 0.61 0.86 0.87 0.76 0.69 0.24 0.72 0.39 0.15 0.82 0.30 0.60 0.63 2.34 2.36 2.07 1.89 0.86 0.68 0.84 0.88 97.66 97.64 97.93 98.11 

1954 14 38.17 0.07 1.09 1.52 1.18 0.92 1.37 1.80 1.41 1.18 0.42 1.69 0.96 0.33 1.30 0.56 0.98 1.09 3.59 4.73 3.70 3.09 0.92 0.73 0.89 0.94 96.41 95.27 96.30 96.91 

1955 11 37.62 0.06 1.82 1.93 1.99 1.73 2.17 2.39 2.38 2.18 1.56 2.23 1.98 1.45 1.51 0.96 1.37 1.68 5.77 6.37 6.34 5.80 0.60 0.17 0.36 0.63 94.23 93.63 93.66 94.20 

1956 14 39.39 0.07 1.49 2.05 2.05 1.85 1.89 2.40 2.47 2.27 1.20 2.39 2.16 1.51 1.47 0.83 1.58 1.89 4.81 6.09 6.26 5.77 0.81 0.48 0.63 0.75 95.19 93.91 93.74 94.23 

1957 16 38.13 0.10 2.28 2.43 2.68 2.43 3.97 3.93 4.31 4.17 3.31 4.11 4.46 4.32 2.19 1.23 1.88 1.87 10.40 10.30 11.29 10.94 0.49 0.27 0.29 0.34 89.60 89.70 88.71 89.06 

1958 17 39.02 0.08 2.09 2.11 1.74 1.74 2.39 2.35 2.06 2.07 1.08 1.95 1.22 0.97 2.13 1.12 1.52 1.74 6.12 6.01 5.29 5.29 0.80 0.65 0.81 0.83 93.88 93.99 94.71 94.71 

1959 17 38.53 0.07 1.68 1.94 1.81 1.69 2.36 2.34 2.48 2.24 1.47 2.06 1.73 1.25 1.84 1.18 1.76 1.73 6.11 6.08 6.42 5.81 0.72 0.56 0.64 0.74 93.89 93.92 93.58 94.19 

1960 17 40.85 0.06 1.71 2.04 2.14 2.11 2.11 2.41 2.70 2.63 1.62 2.09 2.04 2.01 1.35 0.90 1.47 1.36 5.16 5.91 6.60 6.44 0.63 0.33 0.40 0.39 94.84 94.09 93.40 93.56 

1961 18 39.38 0.06 1.48 1.69 1.56 1.34 1.77 1.97 1.97 1.72 1.08 1.99 1.94 1.54 1.40 0.92 1.49 1.42 4.49 5.00 5.00 4.36 0.79 0.57 0.70 0.80 95.51 95.00 95.00 95.64 

1962 18 38.44 0.06 1.03 1.38 1.26 1.21 1.35 1.62 1.62 1.51 0.69 1.59 1.41 1.19 1.16 0.83 1.27 1.29 3.50 4.22 4.22 3.94 0.87 0.70 0.78 0.83 96.50 95.78 95.78 96.06 

1963 17 38.07 0.07 1.55 1.56 1.32 1.44 1.95 2.18 1.75 1.82 1.21 1.76 0.85 0.88 1.53 1.03 1.36 1.46 5.12 5.72 4.60 4.78 0.78 0.56 0.82 0.81 94.88 94.28 95.40 95.22 

1964 19 37.54 0.05 1.16 1.08 0.99 1.04 1.38 1.44 1.21 1.29 0.72 1.20 0.90 0.95 1.17 0.62 0.90 1.04 3.67 3.84 3.22 3.43 0.82 0.67 0.84 0.83 96.33 96.16 96.78 96.57 

1965 18 38.67 0.07 1.80 2.08 1.92 1.95 2.09 2.30 2.35 2.41 1.30 1.92 1.57 1.33 1.65 1.25 1.82 2.00 5.41 5.95 6.07 6.23 0.81 0.69 0.76 0.76 94.59 94.05 93.93 93.77 

1966 23 38.48 0.08 2.04 2.24 2.69 2.55 2.94 2.90 3.36 3.25 2.47 3.00 3.32 3.11 1.59 1.31 2.18 2.14 7.64 7.54 8.72 8.46 0.56 0.47 0.47 0.51 92.36 92.46 91.28 91.54 

1967 21 35.65 0.24 7.42 4.71 5.91 5.49 13.73 9.96 11.46 10.86 10.73 13.74 24.42 15.00 8.57 4.94 15.67 7.05 38.52 27.94 32.14 30.47 0.01 0.01 0.07 0.05 61.48 72.06 67.86 69.53 

1968 20 37.42 0.06 1.62 1.57 1.64 1.49 1.95 2.02 2.00 1.84 1.31 1.67 1.33 0.75 1.44 0.86 1.23 1.40 5.21 5.40 5.35 4.93 0.67 0.44 0.56 0.69 94.79 94.60 94.65 95.07 

1969 23 37.70 0.08 2.42 1.79 1.86 1.95 3.23 2.40 2.57 2.73 1.67 2.75 2.80 2.84 2.77 1.41 2.33 2.27 8.57 6.36 6.82 7.25 0.70 0.71 0.76 0.72 91.43 93.64 93.18 92.75 

1970 22 37.67 0.08 1.40 1.47 1.48 1.39 1.65 2.01 1.71 1.69 0.82 1.80 1.06 1.18 1.43 1.11 1.45 1.51 4.38 5.34 4.55 4.49 0.89 0.75 0.87 0.88 95.62 94.66 95.45 95.51 
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1971 23 35.66 0.04 1.04 1.03 1.01 1.01 1.34 1.31 1.29 1.30 1.17 1.24 0.98 0.94 0.65 0.44 0.73 0.76 3.75 3.68 3.60 3.64 0.49 0.34 0.54 0.53 96.25 96.32 96.40 96.36 

1972 21 38.18 0.08 1.51 1.62 1.35 1.42 1.99 2.03 1.74 1.84 0.96 1.09 0.37 0.38 1.74 1.27 1.61 1.95 5.20 5.32 4.56 4.82 0.86 0.78 0.89 0.88 94.80 94.68 95.44 95.18 

1973 22 37.33 0.07 1.36 1.64 1.64 2.94 1.68 1.92 1.86 6.73 0.87 1.72 1.34 4.22 1.43 1.03 1.68 7.19 4.50 5.14 4.99 18.02 0.88 0.77 0.85 0.37 95.50 94.86 95.01 81.98 

1974 21 36.72 0.05 0.89 0.97 0.90 0.81 1.04 1.16 0.98 0.95 0.29 1.00 0.55 0.33 1.00 0.59 0.84 0.90 2.83 3.16 2.68 2.58 0.92 0.83 0.91 0.92 97.17 96.84 97.32 97.42 

1975 22 37.97 0.08 1.71 1.59 1.61 1.72 2.21 2.07 2.04 2.12 1.03 1.21 0.59 0.73 1.96 1.17 2.18 2.39 5.83 5.46 5.38 5.60 0.82 0.74 0.82 0.82 94.17 94.54 94.62 94.40 

1976 23 38.21 0.08 1.87 1.99 1.97 1.91 2.29 2.38 2.57 2.31 1.39 2.30 2.12 1.72 1.82 1.23 2.27 2.00 5.99 6.22 6.73 6.05 0.82 0.73 0.79 0.82 94.01 93.78 93.27 93.95 

1977 25 35.84 0.05 0.90 1.03 0.85 0.89 1.08 1.19 1.04 1.09 0.45 0.78 0.85 1.11 0.98 0.96 1.35 1.67 3.02 3.32 2.90 3.04 0.88 0.76 0.88 0.87 96.98 96.68 97.10 96.96 

1978 25 36.88 0.05 1.29 0.95 1.10 1.12 1.79 1.41 1.52 1.56 0.77 1.49 1.26 1.32 1.61 0.80 1.40 1.40 4.84 3.83 4.13 4.24 0.69 0.66 0.73 0.72 95.16 96.17 95.87 95.76 

1979 26 38.62 0.07 1.39 1.48 1.23 1.25 1.69 1.72 1.54 1.56 0.63 1.81 1.50 1.38 1.57 0.96 1.55 1.56 4.38 4.45 3.99 4.04 0.89 0.82 0.90 0.90 95.62 95.55 96.01 95.96 

1980 25 38.06 0.07 0.96 1.08 0.91 1.09 1.20 1.43 1.16 1.42 0.43 1.05 0.53 0.56 1.12 0.74 1.02 1.26 3.15 3.76 3.06 3.73 0.93 0.85 0.93 0.90 96.85 96.24 96.94 96.27 

1981 27 36.05 0.04 0.70 0.73 0.73 0.73 0.86 0.94 0.91 0.97 0.31 0.89 0.61 0.69 0.80 0.51 0.80 0.84 2.38 2.62 2.53 2.69 0.88 0.75 0.84 0.82 97.62 97.38 97.47 97.31 

1982 29 37.81 0.04 1.25 0.99 1.11 1.01 1.56 1.23 1.39 1.27 0.94 1.02 0.92 0.88 1.24 0.66 1.10 0.96 4.13 3.27 3.69 3.35 0.59 0.64 0.67 0.72 95.87 96.73 96.31 96.65 

1983 29 37.02 0.05 1.01 0.96 0.96 0.98 1.25 1.20 1.20 1.22 0.71 0.59 0.32 0.30 1.03 0.81 1.14 1.14 3.38 3.25 3.25 3.31 0.82 0.77 0.84 0.83 96.62 96.75 96.75 96.69 

1984 29 37.84 0.05 0.73 0.94 0.80 0.82 0.94 1.24 0.98 1.04 0.42 0.79 0.16 0.27 0.84 0.70 0.92 0.95 2.49 3.28 2.59 2.74 0.94 0.84 0.93 0.92 97.51 96.72 97.41 97.26 

1985 30 37.20 0.07 0.88 1.29 0.90 1.06 1.30 1.68 1.27 1.48 0.58 1.03 0.59 0.66 1.17 1.00 1.11 1.30 3.49 4.51 3.42 3.97 0.92 0.80 0.92 0.89 96.51 95.49 96.58 96.03 

1986 30 37.78 0.06 0.81 1.10 0.81 0.87 1.00 1.28 1.01 1.07 0.40 0.89 0.38 0.44 0.92 0.73 0.97 0.99 2.66 3.39 2.66 2.85 0.94 0.85 0.94 0.93 97.34 96.61 97.34 97.15 

1987 31 37.86 0.06 1.00 1.15 0.87 0.94 1.33 1.40 1.11 1.23 0.60 1.23 0.78 0.85 1.19 0.70 1.02 1.15 3.53 3.69 2.94 3.25 0.89 0.82 0.92 0.91 96.47 96.31 97.06 96.75 

1988 31 37.10 0.06 1.26 1.15 1.04 1.06 2.06 1.64 1.79 1.58 1.12 1.17 0.92 0.88 1.73 0.89 1.44 1.25 5.55 4.42 4.82 4.25 0.71 0.70 0.74 0.80 94.45 95.58 95.18 95.75 

1989 33 38.22 0.07 0.89 1.22 0.94 0.97 1.23 1.52 1.28 1.24 0.45 1.58 0.92 0.99 1.15 0.84 1.26 1.25 3.23 3.97 3.35 3.23 0.94 0.87 0.94 0.94 96.77 96.03 96.65 96.77 

1990 33 36.06 0.05 1.08 1.05 1.00 0.98 1.45 1.49 1.43 1.35 1.23 1.36 1.09 1.15 0.88 0.64 1.06 0.92 4.03 4.14 3.96 3.74 0.64 0.54 0.72 0.72 95.97 95.86 96.04 96.26 

1991 34 37.14 0.04 0.82 0.76 0.64 0.71 1.02 1.05 0.82 0.94 0.42 1.01 0.61 0.72 0.93 0.53 0.75 0.75 2.74 2.83 2.19 2.54 0.86 0.76 0.91 0.86 97.26 97.17 97.81 97.46 

1992 34 38.26 0.06 0.82 1.08 0.81 0.79 1.07 1.39 1.04 1.06 0.47 1.04 0.36 0.38 0.95 0.78 1.06 0.96 2.79 3.62 2.72 2.77 0.93 0.84 0.94 0.93 97.21 96.38 97.28 97.23 

1993 34 36.39 0.04 0.65 0.75 0.62 0.62 0.81 0.95 0.79 0.79 0.32 0.96 0.61 0.66 0.74 0.49 0.63 0.61 2.24 2.60 2.17 2.17 0.91 0.80 0.90 0.89 97.76 97.40 97.83 97.83 

1994 34 38.09 0.06 0.79 1.04 0.82 0.81 0.97 1.30 0.99 1.01 0.41 1.20 0.64 0.65 0.87 0.70 0.81 0.87 2.55 3.41 2.59 2.64 0.94 0.84 0.93 0.93 97.45 96.59 97.41 97.36 

1995 33 38.72 0.06 0.76 1.15 0.81 0.84 1.08 1.43 1.06 1.16 0.43 1.22 0.67 0.67 0.99 0.78 0.97 1.08 2.78 3.69 2.75 2.99 0.94 0.83 0.93 0.92 97.22 96.31 97.25 97.01 

1996 33 37.90 0.05 0.63 0.83 0.65 0.61 0.77 1.12 0.82 0.81 0.29 0.85 0.22 0.22 0.71 0.56 0.73 0.74 2.03 2.95 2.16 2.13 0.95 0.85 0.94 0.95 97.97 97.05 97.84 97.87 

1997 33 37.09 0.04 0.62 0.79 0.64 0.64 0.76 1.01 0.78 0.80 0.39 0.76 0.32 0.37 0.66 0.52 0.64 0.66 2.06 2.73 2.11 2.15 0.92 0.79 0.91 0.91 97.94 97.27 97.89 97.85 
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1998 33 37.79 0.04 0.65 0.83 0.64 0.63 0.90 1.19 0.90 0.86 0.45 1.07 0.65 0.68 0.76 0.59 0.74 0.75 2.37 3.14 2.38 2.28 0.90 0.73 0.89 0.91 97.63 96.86 97.62 97.72 

1999 33 37.75 0.05 1.13 1.25 1.12 1.15 1.38 1.48 1.36 1.39 1.07 1.12 0.62 0.71 0.91 0.67 0.99 0.98 3.65 3.93 3.60 3.68 0.75 0.61 0.75 0.74 96.35 96.07 96.40 96.32 

2000 34 37.15 0.03 0.73 0.71 0.68 0.72 0.96 0.92 0.88 0.95 0.63 0.48 0.49 0.46 0.69 0.65 1.02 1.04 2.58 2.49 2.37 2.56 0.73 0.68 0.78 0.75 97.42 97.51 97.63 97.44 

2001 34 37.81 0.03 0.97 0.85 0.85 0.89 1.14 1.09 1.04 1.08 0.90 1.02 0.78 0.86 0.72 0.42 0.61 0.66 3.02 2.87 2.76 2.86 0.57 0.47 0.62 0.60 96.98 97.13 97.24 97.14 

2002 33 37.11 0.05 0.62 0.93 0.63 0.76 0.81 1.28 0.88 1.05 0.38 1.05 0.13 0.24 0.72 0.48 0.83 0.90 2.20 3.45 2.38 2.83 0.95 0.79 0.93 0.90 97.80 96.55 97.62 97.17 

2003 33 38.22 0.13 2.70 2.14 2.37 2.35 5.71 4.95 5.34 5.27 4.76 2.94 1.85 1.76 3.17 2.26 3.79 3.80 14.93 12.95 13.97 13.78 0.19 0.15 0.20 0.22 85.07 87.05 86.03 86.22 

2004 34 38.79 0.11 3.10 2.11 2.40 2.35 6.46 4.42 5.00 5.06 4.47 2.52 1.74 1.90 4.71 2.28 3.66 3.61 16.66 11.40 12.88 13.03 0.20 0.25 0.27 0.26 83.34 88.60 87.12 86.97 

2005 34 37.96 0.05 0.58 0.97 0.65 0.75 0.81 1.29 0.80 0.95 0.28 1.14 0.41 0.50 0.76 0.58 0.63 0.79 2.12 3.39 2.10 2.50 0.95 0.79 0.95 0.92 97.88 96.61 97.90 97.50 

2006 34 37.97 0.04 0.80 0.83 0.71 0.75 1.10 1.07 0.95 0.98 0.71 0.89 0.47 0.58 0.85 0.45 0.72 0.68 2.90 2.82 2.51 2.59 0.75 0.63 0.79 0.77 97.10 97.18 97.49 97.41 

2007 34 37.92 0.04 0.80 0.86 0.72 0.73 0.96 1.04 0.90 0.88 0.45 0.82 0.46 0.47 0.86 0.58 0.72 0.77 2.54 2.74 2.37 2.32 0.88 0.80 0.88 0.90 97.46 97.26 97.63 97.68 
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