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ABSTRACT 

This project studies employment containment in Melbourne, Australia. 

Employment containment is a measure of the proportion of people that work in a 

location close to their home. Recent urban planning policies in Melbourne have aimed 

to improve employment containment in the city’s suburbs. While there has been 

analysis of the rates at which people both live and work within broadly defined ‘local 

areas’, little work has been done to investigate employment containment using smaller 

and more uniform catchment areas as the unit of analysis. This research attempts such a 

finer scale analysis using dasymetric downscaling techniques. A regression modelling 

approach supported by land use data, alongside a binary dasymetric method, is used to 

develop fine scale estimates of employment distribution, while binary and population-

density weighted methods are used to develop a fine scale estimate of working 

population distribution. For the employment distribution estimate, the Poisson model 

that distributed employment to employment-related land use classes produced the 

smallest error. However, the error produced by this model is still high. For the working 

population distribution estimate, the population-density weighted estimate is the more 

accurate of the approaches, and overall produced low error. For the employment 

containment analysis, a number of employment centres were randomly selected and an 

employment containment catchment has been derived from a 5 km2 commuting 

distance catchment. Commuting flows from an origin-destination matrix were area-

weighted to estimate flows into the employment centre from the 5 km2 catchment. The 

method is found to be potentially useful; however inspecting the results of this 

employment containment calculation highlighted flaws in the current estimates that 

should be addressed before the measures can be used to further analyse employment 

containment in Melbourne. Improvements to this method would support urban strategic 

and transport planning analyses at a metropolitan-wide scale. 



 iv 

4 

AUTHOUR’S DECLARATION 

I declare that the work in this dissertation was carried out in accordance with the 

Regulations of Westfälische Wilhelms-Universität, Münster. The work is original 

except where indicated by special reference in the text and no part of the dissertation 

has been submitted for any other degree. Any views expressed in the dissertation are 

those of the author and in no way represent those of the Westfälische Wilhelms-

Universität, Münster. The dissertation has not been presented to any other University 

for examination either in Germany or overseas. 

 

 

SIGNED: ............................................................. 

 

 

DATE:.......................... 



 v 

5 

TERMS AND ACRONYMS 

 

ABS  Australian Bureau of Statistics 

CBD  Central Business District 

COSP  Change of Support Problem 

GWR  Geographically Weighted Regression 

LGA  Local Government Area 

MAUP  Modifiable Areal Unit Problem 

OLS  Ordinary Least Squares 

RMSE  Root Mean Square Error 

SLA  Statistical Local Area 

 



 vi 

6 

CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................... II	
  

ABSTRACT ...................................................................................................................... III	
  

AUTHOUR’S DECLARATION ......................................................................................IV	
  

TERMS AND ACRONYMS ............................................................................................. V	
  

CONTENTS ......................................................................................................................VI	
  

LIST OF FIGURES........................................................................................................ VIII	
  

LIST OF TABLES ............................................................................................................IX	
  

1.	
   INTRODUCTION ....................................................................................................... 1	
  
1.1	
   Rationale ............................................................................................ 1	
  
1.2	
   Related Work ..................................................................................... 4	
  

1.2.1	
   Journey to Work and Employment Containment ....................... 4	
  
1.2.2	
   Areal interpolation...................................................................... 6	
  
1.2.3	
   Kriging and Geostatistics............................................................ 7	
  
1.2.4	
   Dasymetric methods ................................................................... 8	
  
1.2.5	
   Areal interpolation and journey to work................................... 12	
  

1.3	
   Formulation of this study................................................................. 13	
  

2.	
   DATA AND METHODS.......................................................................................... 15	
  
2.1	
   Study Area ....................................................................................... 15	
  
2.2	
   Data.................................................................................................. 15	
  

2.2.1	
   Source zones ............................................................................. 16	
  
2.2.2	
   Target zones.............................................................................. 17	
  
2.2.3	
   Ancillary data ........................................................................... 17	
  
2.2.4	
   Validation zones ....................................................................... 21	
  
2.2.5	
   Transport Network.................................................................... 21	
  
2.2.6	
   Commuting Data....................................................................... 21	
  

2.3	
   Downscaling employment data........................................................ 22	
  
2.3.1	
   Regression-based approach to deriving employment densities 22	
  
2.3.2	
   Generating employment estimates............................................ 26	
  

2.4	
   Downscaling working population data ............................................ 28	
  
2.5	
   Employment containment assessment ............................................. 29	
  

3.	
   RESULTS ................................................................................................................. 32	
  
3.1	
   Deriving employment density from regressions.............................. 32	
  
3.2	
   Producing employment estimates .................................................... 33	
  
3.3	
   Downscaling residential data ........................................................... 47	
  
3.4	
   Employment Containment ............................................................... 52	
  

4.	
   DISCUSSION........................................................................................................... 60	
  

5.	
   CONCLUSION......................................................................................................... 65	
  
5.1	
   Further work .................................................................................... 66	
  

6. 	
   REFERENCES ....................................................................................................... 67	
  



 vii 

7 

APPENDIX A: R SCRIPTS FOR REGRESSION MODELLING................................... 71	
  

APPENDIX B: ARCPY SCRIPT FOR EMPLOYMENT DISTRIBUTION ESTIMATES FROM 
REGRESSION COEFFICIENTS .................................................................. 76	
  

APPENDIX C: ARCPY SCRIPT FOR BINARY EMPLOYMENT OR WORKING 
POPULATION DISTRIBUTION ESTIMATES........................................... 78	
  

APPENDIX D: ARCPY SCRIPT FOR WORKING POPULATION DISTRIBUTION 
ESTIMATES FROM TOTAL POPULATION DENSITY ........................... 80	
  



 viii 

8 

LIST OF FIGURES 

Figure 1: Map of the study area, showing Source zones (the SLAs) and the ancilliary data (land 
use classification) used in the study. ........................................................................ 16	
  

Figure 2: Schematic diagram of relevant nested Australian Bureau of Statistics data aggregations.
.................................................................................................................................. 17	
  

Figure 3: Graph showing the area occupied by the different land use classes within the study area, 
and the count of parcels of each land use type within the study area. ..................... 20	
  

Figure 4: Division of study area based on the proportion of Urban or non-Urban (Agricultural and 
Parkland) covers. ...................................................................................................... 25	
  

Figure 5: Best estimate of employment distribution, based on Poisson model with employment 
attributed to employment-related land uses. ............................................................ 35	
  

Figure 6: Residual plots comparing the predicted values and residuals from the regression 
modeling stage to the predicted values and residuals from the employment estimate stage.
.................................................................................................................................. 38	
  

Figure 7: Residual count in Validation Zones from the employment estimate based on the Poisson 
employment land uses model. .................................................................................. 43	
  

Figure 8: Percentage error in Validation Zones from the employment estimate based on the 
Poisson employment land uses model...................................................................... 44	
  

Figure 9: Residual count in Validation Zones from the employment estimate based on the OLS all 
land uses model that was split by region.................................................................. 45	
  

Figure 10: Percentage error in Validation Zones from the employment estimate based on the OLS 
all land uses model that was split by region............................................................. 46	
  

Figure 11: Residual plots comparing the predicted values and residuals from two working 
population estimates ................................................................................................. 48	
  

Figure 12: Best estimate of working population distribution, using the density-weighted 
distribution method. ................................................................................................. 49	
  

Figure 13: Residual count in Validation Zones from the working population estimate using the 
density-weighted distribution method. ..................................................................... 50	
  

Figure 14: Percentage error in Validation Zones from the working population estimate using the 
density-weighted distribution method.. .................................................................... 51	
  

Figure 15: The 40 sites randomly selected for the employment containment study. They are 
overlaid on the best final employment estimate surface (based on the Poisson employment 
land uses model)....................................................................................................... 52	
  

Figure 16: Relationship between the estimated number of employees in the selected employment 
centres, the estimated percentage of employment containment for the centre, and the 
percentage of workers in the employment centre that live in the catchment. .......... 58



 ix 

9 

LIST OF TABLES 

Table 1: Land use classification derived from Australian Bureau of Statistics Mesh 
Block data, with notes about features....................................................................... 19	
  

Table 2: Results of Ordinary Least Squares regression models to determine relative 
employment densities of land use classes. ............................................................... 34	
  

Table 3: Results of Poisson regression models to determine relative employment 
densities of land use classes. .................................................................................... 34	
  

Table 4: Comparison of error in the employment estimates ............................................. 36	
  

Table 5: Comparison of mean square error, etc. for the population estimates 
produced by different models................................................................................... 47	
  

Table 6: Summary of employment and employment containment in selected 
employment centres.................................................................................................. 55	
  



 1 

 

1. INTRODUCTION 

1.1 Rationale 

This project studies employment containment in Melbourne, Australia. 

Employment containment is a component of journey to work analysis, a rich field of 

study relevant to contemporary transport planning, land use planning and labour market 

analysis. Employment containment, in particular, is a measure of the proportion of people 

that work in a location close to their home (studied by the likes of Burke, Li, & Dodson, 

2010; Debenham, Stillwell, & Clarke, 2003; Yigitcanlar, Dodson, Gleeson, & Sipe, 

2007). This measure is of interest because most urban planning academics and 

practitioners have long advocated for land use planning strategies that emphasise a 

mixture of housing and employment land uses. This approach, summarised by the term 

‘Compact Development’ (Frank & Devine 2006) is thought to minimise a number of 

economic externalities including commuting time and costs (Flood & Barbarto, 2005), 

traffic congestion, and more recently, greenhouse gas emissions associated with climate 

change (Burgess, 2000). When combined with other complementary strategies, a healthy 

level of employment containment is thought to make a city a better place to live. 

During at least the past decade, urban planning policies in Melbourne have been 

driven by this Compact Development philosophy, and have aimed to improve local 

employment opportunities and therefore employment containment in the city’s suburbs. 

For example in 2009 the State Government of Victoria released their Melbourne@5 

million planning strategy that was aimed at improving the environmental and social 

sustainability of the city’s population growth trajectory over twenty years (Department of 

Planning and Community Development, 2009). This policy explicitly outlined an aim to 

change employment distribution in the city so that its resident population will have 

greater access to employment closer to home, with the designation of targeted activity 

centres where new employment growth would be concentrated and supported by public 
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transport and other infrastructure. The strategy was a reaffirmation of the Government’s 

long term desire to move Melbourne from a ‘Monocentric’ to ‘Polycentric’ city so that 

people have more opportunities to work and use necessary services closer to their homes. 

With a political change of government at the end of 2010, this policy has since been 

shelved in favour of a new Metropolitan strategy, still in development, which is almost 

certain to be concerned with the same overarching urban planning issues. Therefore there 

is still a clear need for ongoing empirical work in this area to underpin the development 

of good public policy.  

To assess the effectiveness and relevance of such urban planning policies now and 

into the future, it is useful to understand the current journey to work and employment 

containment patterns in Melbourne. While policies such as Melbourne@5 Million have 

been developed with the assumption of a problem of inadequate employment 

containment and an overconcentration of jobs in Melbourne’s Central Business District 

(CBD), analyses of commuting patterns and employment containment in Melbourne's 

suburbs are somewhat incomplete (Davies, 2010). Indeed, Davies points to the fact that 

while there is a high concentration of professional jobs in the city’s CBD, around 90% of 

the Melbourne metropolitan region’s jobs are located in the suburbs, suggesting that there 

are already many jobs located close to people’s homes. Knowledge about who travels 

where, however, is still underdeveloped. 

Work commuting studies are made possible in Australia by Australian Bureau of 

Statistics (ABS) data that records both the residential and work locations (where 

applicable) of all people in Australia on the five-yearly census day. An Origin-

Destination matrix provides a summary of the number of people travelling from 

residential locations to employment locations. Due to privacy restrictions, the matrix is 

only made available in aggregated form, and most commuting and containment analysis 

is conducted at the Statistical Local Area (SLA) level, an ABS designation (see for 

example Johnson, (2010), and more recently the Bureau of Infrastructure Transport and 
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Regional Economics, 2011), the larger municipal Local Government Area (LGA) level 

(e.g Moriarty & Mees, 2006), or even at larger aggregations of these. Traditionally, 

measures of containment are derived by counting the proportion of people who both live 

and work within the same administrative or statistical boundary (Yigitcanlar, Dodson, 

Gleeson, & Sipe, 2007). SLAs in the greater Metropolitan Melbourne area range in size 

from 1.9 km2 in the CBD to 1137 km2 on the fringe of the metropolitan region, thus 

comparisons of containment rates in SLAs are complicated by the varying size of the 

areal unit. And while data detailing worker’s origin and destinations is available at 

smaller ABS defined aggregations (namely Census Districts and Destination Zones), 

analysts have appeared to shy away from using the data at this smaller scale because the 

boundaries of these two data sources are not concurrent- thus the traditional containment 

analysis method is not possible. At any rate, these smaller geographies are also not 

uniform in size and shape and hence they still face the same problem of varying size as 

do the SLAs. 

While there has been some analysis of the rates at which people both live and 

work within these broadly defined ‘local areas’, little work has been done to investigate 

employment containment using smaller and more uniform catchment areas as the unit of 

analysis. A finer scale analysis assisted by land use classification may provide the 

opportunity for more meaningful employment containment comparisons, and provide a 

greater understanding of which features of the urban landscape contribute to local 

employment. 

This thesis supposes that assessments of employment containment could be 

assisted by interpolation or downscaling methods that have been widely used in the 

general geographic literature. This could help to overcome the constraints of area-

aggregated data issued at the level of administrative or statistical boundaries. The rest of 

this chapter reviews some relevant background and previous research in downscaling or 

interpolating from areal data, as well as reviewing some relevant journey to work and 
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employment containment analysis, in order to formulate the thesis aims that appear at the 

end of the chapter. 

1.2 Related Work 

1.2.1 Journey to Work and Employment Containment 

Employment containment is one of a number of related employment metrics that 

aims to describe the relationship between the working population’s place of residence and 

place of work. Other related measures include job/housing balance, minimum commuting 

distance or excess commuting (Boussauw, Derudder, & Witlox, 2011; Boussauw, 

Neutens, & Witlox, 2010), and the number of accessible jobs. I consider employment 

containment to be of particular interest because it is the metric that can tell us the most 

about the current situation of employment localisation in Melbourne. 

The traditional approach to employment containment is to calculate the proportion 

of people living in an administrative or statistical boundary that also work within that 

same administrative designation. This is a simple and quick indicator of the degree of 

containment in a given area, but from a geographic analysis perspective it has some 

limitations. The Modifiable Areal Unit Problem (MAUP) is often discussed when 

analysing areal data (Páez & Scott, 2004), which is a generalisation of the Change of 

Support Problem (COSP) (see the review of these topics by Gotway & Young, 2002). 

These problems recognise that the changing size and shape of administrative boundaries 

impacts on the rates at which a given phenomenon will be measured in those areas, and 

hypothetically shifting those boundaries could lead to significantly different counts and 

even an apparently different trend in the phenomena. It seems that this problem is 

especially significant when dealing with the question of employment containment- after 

all, the measure is traditionally based around the proportion of movement either within or 

across administrative boundaries and so the position of the boundary or relative size of 

any administrative unit will greatly impact on the measure given. Larger administrative 
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boundaries would, by geography, seem more likely to contain workers within it compared 

to another administrative boundary of a smaller size. Furthermore, one can imagine a 

situation where people living close to the administrative boundary might travel a very 

short distance across the administrative boundary for work, or a person living in the 

extreme north of the administrative region travels to the southern extreme of the area 

without passing the boundary. Within the traditional analysis of containment, the former 

would be considered not to be contained while the latter would be, even though the 

former had travelled a shorter distance. 

When analysing commuting and employment containment some authors have 

acknowledged this shortcoming in employing the traditional containment analysis 

methods (Horner & Murray, 2002; Boussauw et al., 2011). Therefore such studies are 

often taken to be only indicative and descriptive for a given area, rather allowing 

meaningful comparison between different cities, or even different zones within a city. 

Some authors have gone partway to overcoming the problem by aggregating up the 

administrative regions until uniform rates of containment are reached within the 

aggregations, thus creating ‘commuting regions’ that are controlled for containment rate 

if not for physical size (eg Bill, Mitchell, & Watts, 2007; Watts, 2009; Johnson, 2010). 

However, little work has yet been done in the opposite direction of disaggregating rather 

than aggregating to overcome this problem (LeSage & Fischer, 2010). 

At these broader scales, studies of 2006 ABS data have found that self-

containment rates in Melbourne are highest in the CBD (with a self-containment rate over 

50%) and the larger SLAs in the outer reaches of Melbourne, which had containment 

rates of 30-40% in most cases (Bureau of Infrastructure Transport and Regional 

Economics, 2011). Some authors have looked at employment containment alongside 

other socio-economic variables, for example a study of employment containment by 

occupation that found that self-containment rates don’t vary greatly by occupation in 

Melbourne, but in general people in management, professional and knowledge-industry 



 6 

 

jobs are more likely to travel further for work, compared to people in low skilled 

occupations (Bill et al., 2007). 

Elsewhere in Australia, Yigitcanlar, Dodson, Gleeson, & Sipe (2007) used a road 

network analysis between census collection districts to examine origin-destination work 

flows in master-planned estates in Australia. This was a rare use of smaller areal units to 

study employment containment, but the scope of the study was limited to a small number 

of recently-developed suburbs that all exhibited low containment rates. 

1.2.2 Areal interpolation 

Areal interpolation is the process of inferring the data value of some phenomenon 

in space where it has not been directly measured. The principles of areal interpolation are 

useful where data has been collected and aggregated at one geographic resolution, but are 

desired at a different resolution or aggregation. There are two related but distinct areal 

interpolation problems- that of downscaling to sub-areal units, and spatial misalignment 

of similarly sized by mismatched sets of administrative boundaries or other polygons (see 

for example Lin, Cromley, & Zhang, 2011). Early attempts at areal interpolation were 

later characterised as simple areal interpolation, using a uniform areal weighting to 

assume that the target area for which some variable of interest is to be calculated will take 

a proportion of that variable measured at the source area, proportionate to the fraction of 

the source area that the target area occupies in space (Flowerdew & Green, 1992). A 

variation on this areal weighting principle is Tobler’s pycnophylatic constraint method 

(W. R. Tobler, 1979, and more recently employed by Kim & Yao, 2010 and Yoo, 

Kyriakidis, & Tobler, 2010) which replaces the uniform distribution assumption of areal 

weighting, with a smooth density function extending to adjacent source zones, while 

retaining the original count of the source zones. Another, though less sophisticated 

variation is the Kernel Smoothing technique (Bracken & Martin, 1989; Martin, 1996) 
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which collapses all the population data into a point and employs inverse distance 

weighting. 

1.2.3 Kriging and Geostatistics 

Related to these smoothing techniques is the field of geostatistics, including area-

to-point kriging which smooths known rates of the phenomenon across space via 

correlation of a variable with itself through space (e.g Kyriakidis, 2004). Geostatistical 

methods produce error estimates that can indicate the accuracy of the interpolated surface 

(Yoo et al., 2010). Smoothing may not be appropriate to the phenomenon under 

investigation in this current study, since population and employment density are products 

of their human-built urban environment, which can often have sharp edges and jumps in 

values rather than smooth continuous surfaces. Intuitively this seems especially true for 

measures of employment distribution as opposed to (residential) population distribution, 

as nodes at which employment occurs tend to be much more clustered in the urban space, 

compared to places at which residential population occurs, which tend to be more spread 

out throughout the urban space. Therefore, kernel smoothing and area-to-point kriging, 

with its focus on smoothing, do not seem to lend themselves to interpolating employment 

density at a small scale.  Further the underlying smoothness of the process must be 

known or assumed. Nagle (2010) produced an employment surface via area-to-point 

factorial kriging in order to study employment agglomerations in the Denver 

metropolitan area. However, the scale of the interpolation was large and general, and no 

ancillary data such as land use information was used to inform the kriging. Instead, a 

standard covariance function was used. The main advantage of this method is the smooth 

surface it produces, though in the case of the current study a smooth statistical surface is 

not a high priority as employment density is not assumed to be a smoothly varying 

process at the scale that this project investigates. 
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1.2.4 Dasymetric methods 

Following from the simple areal interpolation methods, intelligent methods were 

developed that incorporate ancillary information about the likely distribution of a given 

variable. These methods are often termed dasymetric and work in this field has tended to 

focus on residential population as the variable to be interpolated (see for example 

Mennis, 2003). 

Dasymetric methods are characterised by their use of knowledge about the likely 

distribution of some phenomena within a source zone. This additional knowledge is used 

to distribute the known quantities of a given phenomenon at the source zones over the 

study area, in order to infer quantities in target zones of a different scale or areal 

aggregation. Dasymetric methods can be classed in a number of ways, with one of the 

key distinctions being between binary and 3-class methods. In binary methods, the 

variable in question is distributed evenly across areas that are thought to be occupied by 

the phenomena, and not attributed at all to areas that are deemed to be unoccupied. In 

three-class methods, the variable is allowed to have different densities or rates across the 

occupied area, given knowledge or assumptions about the rates of that phenomenon in 

different land classes. Many more recent studies have used this principle to downscale 

population data based on land use or land cover, with population distributed at different 

densities depending on known or assumed populations densities in different land use 

classes (Langford, 2006; Mennis, 2003; Reibel & Agrawal, 2007). Mennis & Hultgren 

(2006) termed these methods ‘intelligent’ and derived their own procedure where 

analysts could use both sampling of population in various land cover classes, and their 

own professional judgement to assign population density to various land cover classes. 

This method, like most others variations of dasymetric methods, employed a mass-

preserving method in attributing population density, where the downscaled population 

must sum to the known population from the source data (Gregory, 2002). 
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Various techniques have been used to derive the downscaled population 

estimates. Ordinary Least Squares (OLS) (Langford, 2006; Yuan, Smith, & Limp, 1997), 

Poisson (Flowerdew & Green, 1989), Bayesian (Mugglin, Carlin, & Gelfand, 2000) and 

other regression methods have been used, where the coefficients derived in the regression 

are treated as the relative population density of the various land cover classes. The 

technique developed by Mennis and Hultgren (2006) relies on sampling population 

densities from source zones that are entirely covered (or in some cases, mostly covered, 

say by a threshold of 80% or more) by one of the land cover or land use classes of 

interest. It can be noted here that while some authors distinguish between ‘dasymetric’ 

(binary or three-class sampling based methods) and statistical methods, Langford (2006) 

writes that the various methods employed can be seen as variations along a continuum of 

these two techniques. Indeed, density coefficients may be derived by global or regional 

regressions, then re-scaled for each source zone to recreate the known population of that 

zone (employing the mass-preservation constraint). In this way, the regression-derived 

density coefficients act as ratios of the relative density that each land class should take. 

Langford tested the binary dasymetric method against the various formulations of a three-

class dasymetric method. He found that combining regression with dasymetric re-scaling 

of the density coefficients produced the most accurate results of the three-class methods; 

however, within his case study a binary method actually performed better than all the 

three-class methods, probably because it is less sensitive to fluctuations in different land 

class densities. 

Re-scaling is only one of the ways to ensure mass-preservation of the known 

counts. Liu, Kyriakidis, & Goodchild (2008) provide a variation on the regression-based 

dasymetric approach, by deriving population densities for each land use class via linear 

regression, but then using area-to-point kriging to smoothly distribute the residual source 

zone population counts to the target zones. Paralleling the sampling approach to 

dasymetric downscaling, the kriging process relied on sampling population density in 
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districts of entirely one land use zone in order to create the kriging semivariogram. The 

advantage of using kriging for this process is that spatial information is incorporated to 

attribute the population- e.g. if there is a high density population area in the vicinity then 

this information is used to attribute the population, rather than attributing the population 

uniformly. The authors of this study found that incorporating area-to-point kriging 

reduced Root Mean Square Error (RMSE) compared to the regression alone. Similarly, 

Kim & Yao (2010) combined dasymetric methods with pycnophylactic smoothing, 

created a smoothed population surface that was superior to either a standard dasymetric 

or standard pycnophylatic interpolation. 

Whichever method is used, the effectiveness of intelligent dasymetric methods 

relies most heavily on the usefulness of the ancillary data for modelling the particular 

phenomenon in question. Gallego (2010) compared a number of dasymetric variations: 

the Expectation-Maximisation Algorithm, based on Dempster, Laird, & and Rubin 

(1977); logit regression; and the Limiting Variable method (based on Eicher and Brewer, 

2001), which attributes a minimum population density to all classes in the study area, 

then distributes the remainder across other classes, assigning particular density thresholds 

along the way. Gallego found that the choice of algorithm did not have a great impact on 

the accuracy of the downscaling. Langford (2006) also emphasised the point that the 

ancillary data are of greatest importance. A variety of ancillary supports can potentially 

be employed, such as land cover or land use classes (Gallego, 2010), remotely sensed 

images (Deng, Wu, & Wang, 2010; Harvey, 2002; Silván-Cárdenas et al., 2010), road 

network data (Li et al. 2010) attributing population to areas where road network is 

present, cadastral boundaries (Maantay & Maroko, 2009) and address point data 

(Zandbergen, 2011). 

In either the sampling or regression based methods, the classical approach 

assumes that relative population densities are stationary across the study area. However, 

it is possible that differences in population and urban form across a study area can result 



 11 

 

in different relative population densities across the different land classes present. Some 

analysts have attempted to account for geographic non-stationarity of population density 

across the study area. Mennis (2003) sampled population densities from sub-units within 

each county to derive local densities, in order to account for differences in the 

urbanisation of different counties. Langford (2006) found that using regional (at UK 

District level) rather than global regressions produced a more accurate prediction, as long 

as enough units were available within regions to perform a reliable regression. However, 

Langford rightly pointed out that using District or any other such boundary as a basis for 

forming regions is quite arbitrary, and therefore may not be representative of density 

variations across space. Lin et al. (2011) approached this problem by using 

geographically weighted regression (GWR) to derive population densities. While noting 

that the GWR was more successful in spatial misalignment problems than downscaling 

problems, overall they concluded that for their study area GWR did a better job of 

interpolating than OLS regression did. Another form of weighted regression, Quantile 

Regression, was recently used to perform areal interpolation of population (Cromley, 

Hanink & Bentley, 2011). Although it is not specifically a form of spatial regression, 

quantile regression can be used to derive a regression line and therefore unique regression 

coefficients for each observation (i.e., source zone) in a study area. The authors of this 

study also found that this method outperformed OLS regressions and binary dasymetric 

methods. 

Brinegar & Popick (2010) recently compared a number of different population 

estimation methods, including land-use based 3-class dasymetric methods, road network-

based dasymetric methods and statistical regression. Their comparison and discussion 

points out that different methods have differing strengths and weaknesses in estimating a 

population based on different conditions, such as heterogeneous land use and unusually 

high or unusually low population density. This highlights the lesson that a particular 

technique that works for one case study and for a specific purpose, may not necessarily 
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produce the best result under other conditions. This raises an important distinction for the 

current study. This review of the dasymetric literature has mainly focused on 

downscaling population data. The bulk of the dasymetric literature focuses on this 

problem, rather than downscaling other socio-economic variables (such as employment 

distribution as in this study). Since employment has a different spatial distribution to 

residential population, findings from this literature may not translate easily to the 

downscaling of employment data. 

One related problem that has attained some attention, however, is inferring 

daytime as opposed to nighttime population distribution. In general, population data 

record a person’s residential address. Most people spend evenings and nights at their 

residential address, but much fewer are there during the day- they are either at work, 

school, or involved in other activities. Researchers interested in emergency management 

and traffic planning, for example, are more interested in daytime than nighttime 

populations. For example Sleeter and Wood (2006) used dasymetric techniques based on 

a detailed business database, and Kobayashi, Medina, & Cova (2011) used the 

pycnophylactic method to produce a smooth population surfaces that was appealing and 

easy for policy makers to look at and understand, and displayed expected population 

distribution at different times of the day. This work is similar to the interests of the 

current study, though the purpose for looking at the daytime population may be different. 

1.2.5 Areal interpolation and journey to work 

Use of areal interpolation methods alongside commuting analysis is so far limited. 

Li, Corcoran, & Burke (2010) used areal interpolation to paint a more detailed picture of 

the origin-destination work flows at a sub-areal scale, using the road network to perform 

binary dasymetric downscaling of commuting flows in South East Queensland. In another 

example, Boussauw, Neutens, & Witlox (2010) produced a 4 km grid interpolated surface 

of distance travelled to work in Flanders, Belgium. 
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Jang & Yao (2011) produced an interpolation using ‘flow lines’ of an origin-

destination matrix of traffic flow data, focusing on aligning mismatched traffic zone and 

census zone data sources, rather than downscaling the origin-destination flows. In this 

case, no ancillary data was employed to support the interpolation. Kaiser & Kanevski 

(2010) produced a dasymetric population mapping method explicitly to assist with traffic 

modelling, focusing on residential population. 

1.3 Formulation of this study 

The aim of this study is to explore a process for estimating employment 

containment in uniform catchment zones around a given employment centre. In 

particular, the key questions posed by this study are: 

1. Can dasymetric processes (binary, sampling and regression approaches) assist in 

producing a useful employment containment measure that overcomes some of the 

spatial irregularity problems associated with traditional employment containment 

measures? 

2. What do these derived measures say about employment containment in the study 

area of Melbourne, Australia? 

In order to achieve this, a downscaled estimate of both employment and working 

population distribution is required. In particular, binary dasymetric and 3-class methods 

are explored for deriving these distribution estimates. A workflow is developed that 

includes a validation step to give an indication of the accuracy of the derived employment 

and population surfaces. 

From the final employment surface, a number of employment centres are 

randomly selected and an employment containment catchment is derived from a 5 km2 

commuting distance catchment. Commuting flows from an origin-destination matrix are 

areally weighted to estimate flows into the employment centres from the 5 km2 

catchment. 
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A brief analysis of the employment containment of these centres is presented, as 

well as an assessment of the performance of the downscaling process for enabling a 

useful measure of employment containment. 
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2. DATA AND METHODS 

There are three parts to the analysis: Estimating employment distribution, 

estimating working population (residential) distribution, and then combining these for the 

employment containment estimate in fixed catchments around selected employment 

centres. A description of this process follows the details of the study area and the data 

used. The R statistical program was used to perform the regressions, ArcGIS analysis 

tools are primarily used to perform GIS tasks and Excel 2010 was used for data 

manipulation. 

2.1 Study Area 

The focus of this study is the greater metropolitan region of Melbourne, Australia 

(see Figure 1). At the time of the 2006 Census (from which all data for this study is 

sourced), the total population of the greater Metropolitan region was 3 599 644 people. 

There were 1 741 193 people living in Melbourne and adjacent regions (the population of 

focus in this study) who were employed (termed ‘working population’ from hereon). 

Furthermore, 1 507 060 people identified their workplace as within one of Melbourne’s 

Destination Zones (as described further below). 

2.2 Data 

Following the formulation of Gregory (2002), Langford (2006) and Li and 

Corcoran (2010), the data used to perform the employment and working population 

downscaling in this study is designated at four nested levels, shown in Figure 2 and 

outlined in the text below. All data is derived from the Australian Bureau of Statistics 

(ABS) Census of Population and Housing, 2006. 
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Figure 1: Map of the study area, showing source zones (the SLAs) and the ancillary data 
(land use classification) used in the study. 

2.2.1 Source zones 

Source zones are administrative boundaries with counts of either the number of 

people working in that zone (for the employment surface downscaling) or the number of 

employed people that live in that zone (for the working population downscaling). These 

are the known counts from which the downscaled estimates will be derived. In this study, 

the ABS SLA designation is used as the source zone in both the employment and 

working population downscaling. In the Melbourne study area there are 80 SLAs, which 

are displayed in Figure 1. 
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Figure 2: Schematic diagram of relevant nested Australian Bureau of Statistics data 
aggregations. 

2.2.2 Target zones 

Target zones are the unit at which the downscaled data is estimated. The zone 

may be another administrative designation for which the count data of interest is not 

available, some other user-defined designation, or a uniform raster surface. In this study 

the latter is chosen, at a 10m resolution, as this can more easily be integrated with the 

employment catchment study in which it will be deployed. 

2.2.3 Ancillary data 

Ancillary data supports the downscaling by providing information about how the 

variable of interest is distributed in the source zones (and therefore how it should be 

attributed to the target zones). Where dasymetric downscaling has been performed on 

population counts (by far the most common variable studied in the dasymetric literature), 

the ancillary data is usually in the form of land cover categories or remotely sensed 

imagery that may be used to categorise urban areas into residential density classes. 

However, little work has been done to perform downscaled employment estimates via 

these methods, and intuitively one suspects that estimating employment either by land 

cover or remotely sensed urban form may be a more difficult task. However, a land use 
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(as opposed to land cover) classification is available from the ABS, in the form of Mesh 

Blocks. 

Mesh Blocks are the smallest designation at which ABS population data are 

available at, and includes a population count and a land use classification for each area. 

The land classes are relevant for determining employment and non-employment land 

uses. The land use classification is described in detail in Table 1, and their distribution 

with the study area is displayed in Figure 1. This classification is used as the basis for 

redistributing the employment and working population counts, and the population count 

is also used in the working population estimate. Note that in the original ABS 

classification the classes ‘Transport Depots’ and ‘Transport Corridors’ are a single class 

called ‘Transport’. They are split for the purposes of this study because they clearly 

represent different land uses. There are 47 725 Mesh Blocks in the study area. The 

distribution of the Mesh Block classes amongst the different classes, and the total area 

covered by each class, is summarised in Figure 3.  
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Table 1: Land use classification derived from Australian Bureau of Statistics Mesh Block 
data, with notes about features 

Land class Description Number 
of parcels 

Total area 
(km2) 

Commercial Business and shopping zones, office blocks, strip shopping 
zones, shopping malls 

1800 92.4 

Education Schools (primary and secondary), university campuses 1262 56.4 

Industrial Manufacturing, warehousing 814 251.4 

Hospital/Medical Hospitals or other large medical centres 78 3.9 

Shipping Mostly offshore regions designated as shipping zones 2 0.7 

Residential Areas primarily occupied by housing 37259 1676.2 

Agricultural Farming land 836 5190.3 

Parkland Regional and local parks of varying size 5082 5220.3 

Other Miscellaneous land uses such as water treatment plants 
and military accommodation 

23 16.7 

Transport Corridors Land along railway lines 438 14.6 

Transport Depots Minor suburban airfields, public transport depots 5 8.2 

Water Lakes, dams and other bodies of water 126 49.6 
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Figure 3: Graph showing the area occupied by the different land use classes within the 
study area (top), and the count of parcels of each land use type within the 
study area (bottom). 
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2.2.4 Validation zones 

Validation zones are used to re-aggregate the downscaled data to test how 

accurately the downscaling process distributed the variable in question. Since ABS data 

aggregations are for the most part nested as smaller and smaller aggregations that can be 

aggregated up to a larger designation (e.g, Mesh Blocks can be combined until they are 

coincident with the SLA boundary), the known employment or working population 

counts at a designation smaller than the source zone must be used to validate the 

employment and working population estimates. The SLAs are further subdivided into 

Destination Zones associated with employment counts, and Origin Zones associated with 

residential counts. Origin Zones and Destination Zones are of similar size but generally 

have misaligned boundaries. In this study I use an aggregation that the Victorian 

Department of Planning and Community Development specifically developed for 

studying work and home locations of commuters- therefore the geography is different and 

slightly more coarse than that normally available from the ABS. There are 1301 Origin 

Zones and 652 Destination Zones in the geography used in this study. 

2.2.5 Transport Network 

To produce the commuting catchments around employment centres as part of the 

employment containment estimate, I use a vector layer of the Major Roads and Railway 

lines of Melbourne. 

2.2.6 Commuting Data 

To produce the employment containment estimate, information about the 

employment distribution must be linked to information about the working population 

distribution. An Origin-Destination matrix tallies the number of people residing in an 

Origin Zone travelling to a work in an SLA. 
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2.3 Downscaling employment data 

The literature on areal interpolation provides a number of variations on the 

process of downscaling. Dasymetric approaches can roughly be divided into sampling-

based approaches and regression-based approaches (Langford, 2006). The sampling-

based method was discussed by Mennis (2003). The method relies on sampling the 

population (or in this case, employment) density of the various land classes from zones 

that are entirely covered or close to entirely covered (80% or more) by one land class. 

This is in order to derive an average employment density for that land class. Where the 

study area size allows it, Mennis recommends dividing the study area into sub-regions, 

such as municipalities, to better account for spatial differences in the variable of interest. 

Early data analysis for this study indicated that the SLAs are too large to provide sample 

zones that are covered or even 80% covered by each land class. Li & Corcoran (2010) 

had a similar finding when using dasymetric methods to perform downscaling based on 

SLAs in a South East Queensland study area. The authors instead use a regression 

method. 

2.3.1 Regression-based approach to deriving employment 

densities 

A number of authors use linear regression to produce relative population densities 

of classes within their study area. OLS regression, which minimises the sum of squares of 

the residuals, is commonly used in this context including by Harvey (2002), Langford 

(2006), Reibel & Agrawal (2007), Yuan et al., (1997), and Li & Corcoran (2010). Under 

this model, the variable of interest E (employment distribution) at the source zone is 

equal to the sum of the variable’s density of each class C multiplied by the area A of that 

land class within the source zone. 
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𝐸𝐸 = 𝛼𝛼 + 𝛽𝛽 𝐴𝐴 +  𝜀𝜀 	
  

 

Therefore, given that E and A are known, the density in the land class equates to 

the regression coefficient and can be derived from the OLS regression. The coefficient 

corresponds to a global relative population density of each land class. In this case, the 

employment count for each SLA is regressed against the amount of each land use class in 

that SLA. A number of different configurations are tested in order to find a best fitting 

model. 

An alternative to the OLS regression is Poisson regression. A Poisson distribution 

is often considered to be the best model for population counts (Flowerdew & Green, 

1989, 1992), and a Poisson regression helps to avoid producing negative population totals 

in the final estimate (Langford, 2006). However a Poisson model has the assumption that 

the conditional variance of the outcome variable equals the conditional mean. 

Regardless of whether OLS or Poisson regression is used, a regression without an 

intercept is recommended, since a theoretical source zone with zero area should have a 

zero employment count (Langford, 2006; Yuan et al., 1997; Harvey, 2002). In this study I 

test both OLS and Poisson regression models to compare their accuracy in describing 

relative employment densities in the study area. 

A number of variations on the models are tested, altering the variables in the 

model to find the most fitting descriptors of employment distribution. These variations 

seek to distribute employment amongst the land classes in a way that best mimics the 

known distribution of employment in the source and validation zones. Should the model 

include information about all the land classes present in the source zone, or should it only 

incorporate those land classes that are presumed to be most closely associated with 

employment (Agricultural, Commercial, Industrial, Education, Hospital/Medical land 
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classes; from here on referred to as ‘Employment land uses’)? Or perhaps something 

between the two, excluding only land classes that are clearly not associated with 

employment (Parkland, Water, Shipping, and Transport corridors), while including some 

that might support some employment (Residential, Transport depots, ‘Other’, these along 

with the Employment land uses are from here on referred to as ‘Urban land uses’). These 

variations are run in different versions of the model. 

Local regressions that break the study area into some smaller regions for analysis 

have been used successfully in some cases (Langford, 2006; Yuan et al., 1997). As 

discussed by Langford (2006), using local regression raises the question of precisely how 

to break up the study area into ‘local’ areas and demands that the local areas have enough 

sub-areas for a robust statistical sample. Using a larger administrative designation is a 

commonly suggested solution, but is quite an arbitrary way to divide the study area, and 

at any rate in the context of this study there is no obvious administrative designation that 

could break the study area into smaller regions. An alternative is to break the study area 

into regions based on the relative representation of land use classes in the source zones. 

The Melbourne study area has a concentric form where the inner urban/suburban core, 

covered by relatively small SLAs dominated by urban covers, is surrounded by a ring of 

larger SLAs characterized by lower overall urban cover and a high proportion of 

agricultural land or parkland (Figure 4). Since the global density estimates derived by the 

regressions in fact represent the relative employment densities that each land use class 

should take, it is possible that globally derived employment densities may not adequately 

describe these differing forms. Therefore the study area is split into two regions, one 

where the Agricultural and Parkland classes represent 50% or more of the land in the 

source zone, and the other where all the other classes represent 50% or more of the 

source zone. 

A final variation is introduced in an attempt to control for the difference in the 

size of the source zones. The dataset is altered so that the employment density of the 
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source zone is regressed against the fraction of the source zone that each land class 

represents. In this case the coefficient derived is a density fraction. 

To assess the suitability of the resulting regression model, a number of statistics 

are used. The R2 value is a measure between 0 and 1 of how well the model describes the 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Division of study area based on the proportion of Urban or non-Urban 
(Agricultural and Parkland) covers. 

regressed data, with values closer to 1 indicating better fitting models. While there is 

some controversy around best way to measure model fit for OLS regressions with no 

intercept, Eisenhauer (2003) notes that the R2 value is valid as long as it is used to 

compare no-intercept models to each other. 

Aikake’s Information Criterion (AIC) can also be used to compare model fit. 

Models with a smaller AIC score are considered to be better models because the score 

penalizes models that have a large number of explanatory variables (Rosenhein, Scott, & 

Pratt, 2011). The statistical significance of the model coefficients is also seen as an 
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indicator of the model fit (Rosenhein, Scott, & Pratt, 2011). These three measures are 

used as a general indicator of model fit to select the best fitting models that are then 

tested by generating employment estimates based on the regression coefficients. 

The detailed R script of the regression modelling is shown in Appendix A. 

2.3.2 Generating employment estimates 

There are two possible approaches for producing the downscaled employment 

surface: assigning the downscaled population to the areas that were used as classified 

ancillary data, or creating a raster surface. Liu et al. (2008) argue that a surface is the 

preferred output, as this is easier to integrate with other data sources. Therefore in order 

to generate the population estimates, I first produce a 10m-resolution raster with the 

values in the raster being the regression-derived density coefficients for the relevant land 

use class at that location (multiplied by a factor of 100 to equal the density of a 10m2 

raster cell). 

Applying the regression derived density coefficients to the study area results in 

over and underestimation of counts at the source zone level (literally the residuals of the 

regression performed to derive the density coefficients). There are at least three ways that 

these residuals are dealt with in the literature: 1) not at all; 2) by using area-to-point 

kriging to smooth the residual across the source zone (Liu et al., 2008); and 3) re-scaling 

the global density estimates within each source zone so that they reproduce the known 

count within the zone, a condition known as mass preservation or the pycnophylactic 

constraint (W. R. Tobler, 1979). Option 1) is disregarded as unsuitable for the current 

study; Option 2) is investigated but requires sampling of employment density in source 

zones of entirely one land use zone in order to create the kriging semivariogram. As was 

discussed in the introduction to this section in relation to employing the sampling-based 

dasymetric methods, the source zones are too large and heterogenous in land cover to 
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allow such sampling. Option 3) is therefore adopted as it is both possible and easy to 

apply in the context of this study. 

To apply the re-scaling, the initial estimate in each source zone is summed using 

the Zonal Statistics tool in ArcGIS, and a re-scaling factor for each land class within each 

source zone is derived by the following equation (Gregory, 2002; Langford, 2006): 

𝑑𝑑 =
𝐸𝐸
𝐸𝐸    ∙ 𝑑𝑑  

Where dcs is the density estimate for land class c in source zone s, Es is the actual 

employment count in the source zone, Eis is the estimated employment count in the 

source zone produced by the initial global density estimate, and dc is the initial global 

density estimate in class c. The new locally-scaled densities are then applied to the study 

area using a Raster Calculator operation, multiplying the rescaling factor by the original 

global densities as in the above equation. This derives a final fine-scaled employment 

estimate for each 10m2 cell in the target raster.  

In addition to the regression-based estimates, a binary estimate of employment 

distribution is produced, following the method discussed in Langford (2006) and Mennis 

(2003). This is a simplified version of the above process, where employment land uses 

are given a raster value of ‘1’, and non-employment land uses a value of ‘0’. Zonal 

statistics are summed to find the area of employment-occupied land in the source zone. 

The employment count is divided by the employment-occupied area to derive an 

employment density for the source zone. The employment density for each source zone is 

then applied to the employment-occupied area via the Raster Calculator, producing a 

final binary estimate of employment distribution with an equal employment density for 

all employment land covers in each source zone. 

To assess the accuracy of the downscaling, the final estimate is again summed, 

this time to produce an estimated employment count for the validation zones (the 
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Destination Zones).  I compare a number of measures of the residuals of the estimate. 

The RMSE as is calculated, and the Adjusted RMSE which follows Gregory, (2002) and 

Lin et al. (2011), adjusting the RMSE to take account of the original observed population. 

These are measures of the average variance of the estimate compared to the known 

employment counts in each validation zone, and thus the accuracy of the downscaled 

estimate. A similar measure is the coefficient of variation following Fisher & Langford 

(1995), which divides the RMSE by the mean of the source zone populations. The Mean 

Error is the average of the difference between the estimated and observed employment 

count values. Note that given the mass-preserving constraint applied during the 

downscaling process, where the initial estimate was re-scaled to match the known 

employment counts in the source zone, the Mean Error should theoretically always be 

zero. However, some error is added when translating values between the areal-based 

employment counts or estimates, and the density values stored in raster form. Therefore 

the Mean Error can be seen as a measure of the error arising from reaggregating raster 

values to an areal-based count at the validation zones. 

The abovementioned metrics are compared for each of the five employment 

distribution estimates to identify the most accurate estimate. A detailed script of the 

regression-based employment estimate procedure is given in Appendix B; the script for 

the binary estimate is given in Appendix C. 

2.4 Downscaling working population data 

For the working population estimate, the study area is expanded to include Source 

zones adjacent to Melbourne, in order to include any working population that may be 

within a 5 km commuting distance of employment centres in the Melbourne study area. 

Two estimates of the residential working population are produced. The first is a binary 

estimate, following a similar procedure as discussed in Section 2.3.2 for the binary 
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employment estimate. However, for the working population estimate, the residential land 

class takes the value ‘1’ and all other classes take ‘0’. 

The second estimate is weighted by the known total population density of each 

Mesh Block zone. A raster surface is produced of the known total population density of 

the study area, again at 10m resolution. Zonal Statistics in ArcGIS is used to calculate the 

total population of the source zone. Then, the known working population of the source 

zone is divided by the total population of the source zone, to derive a working population 

weighting for each source zone. The total population raster is multiplied by the working 

population weighting in the Raster Calculator, to derive the final working population 

estimate. 

Once again the RMSE, Adjusted-RMSE, Coefficient of Variation and Mean Error 

are used to assess the accuracy of the estimates once re-aggregated to the validation 

zones. A detailed script of the working population estimate procedures are given in 

Appendices C and D. 

2.5 Employment containment assessment 

In order to make an estimate of employment containment, the employment and 

working population distribution estimates need to be linked to the known flows of people 

from the Origin Zones to a destination SLA; and then, these flows must be downscaled 

accordingly. The flows are stored as an origin-destination matrix. The matrix is imported 

to ArcGIS with the destinations represented by individual records and the origins 

represented by database fields. 

From the best estimate of employment distribution, the final employment raster 

dataset is converted to a polygon feature class. A subset of 40 ‘employment centres’ (any 

parcels that are estimated to have some employment associated with them) is selected to 

perform the containment assessment. The subset is randomly selected from those 

occurring in an employment validation zone that had been estimated to within ±10% 
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accuracy. The random selection was performed using the ‘Sampler’ toolbox in ArcGIS 

(Harold, 2011). The centres were visually inspected on Google Maps to identify their 

location within the local urban landscape, and the classification of the land use was 

identified from the Mesh Block data. 

To generate the 5km2 commuting distance catchment around each employment 

centre, the centroids of each of these parcels was first derived. The centroid point is used 

to represent the employment centre as part of a Service Area Analysis, a feature of the 

Network Analyst extension in ArcGIS.  Line coverage of the major road and railway for 

Melbourne is included in the analysis to create the 5km2 commuting catchments around 

each of the centres. While theoretically a number of different distances could be chosen 

for the study, 5km is chosen in order to investigate rates of highly localised employment. 

Travel surveys from the Victorian government suggest that about 35% workers travel less 

than 10 km to work each day, while around 15% travel 5 kms or less (Bureau of 

Infrastructure Transport and Regional Economics, 2011). 

A number of spatial intersections and table joins were performed to derive the 

employment containment estimate. The aim is to calculate the number of workers in this 

catchment that work in the employment centre, as well as the total working population of 

the catchment in order to calculate a percentage of containment. 

Each catchment polygon was associated with the employment centre point so that 

information about the location of the employment centre and the employment estimate 

was retained. The catchment polygons were intersected with Origin Zones (the working 

population validation zones) to identify the part of these zones that fall inside the 

employment catchment. Running Zonal Statistics calculates the estimated working 

population in each of the Origin-catchment intersection zones. This is related to the 

estimated working population in the entire Origin Zone (calculated during the validation 

step of the working population estimate). The proportion of the working population of the 

Origin Zone that falls inside the employment catchment is calculated. 
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The data is spatially joined with the employment source zones (the SLAs) so that 

the proportion of the source zone’s employment that occurs in the employment centre, 

can be calculated. 

To estimate the number of workers from the catchment that work in the 

employment centre, the following equation is used: 

𝐸𝐸 =
𝐸𝐸
𝐸𝐸   ×𝐸𝐸 ×

𝑃𝑃
𝑃𝑃  

Where El is the number of people from the local catchment area working in the 

employment centre, Et is the employment estimate for the employment centre, Es is the 

known employment count from the source zone, and Eso is the count of people working in 

the source zone that travelled from origin o. Poc is the estimated working population 

living in the part of the Origin Zone covered by the employment catchment, and Po is the 

estimated total working population of the Origin Zone. The contribution of each Origin 

Zone in the catchment area is summed to reach El. The calculations were performed in 

Excel. The Employment containment of the employment centre is calculated as the 

proportion of the working population in the catchment, that works in the employment 

centre. Additionally, the percentage of people working in the employment centre that 

came from the local catchment area, is calculated. 
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3. RESULTS 

3.1 Deriving employment density from regressions 

During the analysis it became apparent that the one SLA covering the CBD of 

Melbourne could be considered an outlier as it has the highest employment count but the 

smallest overall area. Therefore models were run excluding this outlier from the analysis. 

It is difficult to compare the Poisson and OLS models as an R2 score is not 

produced for the Poisson models. Therefore, the Poisson and OLS models are considered 

separately. The results of the various OLS models are shown in Table 2. A simple 

ranking for the OLS models was produced by ranking all the models by their R2 score, 

with the highest R2  ranked as 1, second highest as 2, and so on. The models were then 

ranked again by AIC score, with the lowest AIC ranked as 1, and so on. The two ranks 

were then summed and the models ordered lowest to highest based on this score, to find 

the best fitting model. 

The model that covered the agriculture-and-parkland dominated region only was 

the best fitting model. This does not necessarily tell us anything special as the high R2 

and low AIC may be a direct result of the small sample size of this regression compared 

to the other regressions (Langford, 2006): There were 26 source zones for the 

agricultural-parkland-dominated region and 53 source zones for the urban-dominated 

region, compared to 79 source zones for the whole study area. 

Of the models covering the whole study area, the model with all land uses and 

using density fractions appears to have the best fit, followed by the employment model 

that used density fractions. 

The OLS models of the whole study area that used the raw data were the lowest 

ranking of the OLS models. In general, however, these produce a significant estimate of 

the density coefficients of the various land covers, where other better-ranking models did 

not. 
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The results of the Poisson models is shown in Table 3. For the Poisson models, no 

R2  score is generated for the models, so the Poisson models are compared and ranked 

based on their AIC score only. Additionally, as density fractions cannot be used in the 

Poisson model (as the Poisson model is designed specifically for count data), there is a 

smaller number of Poisson models than OLS models. 

Of the Poisson models, the model with the full land covers was the best fitting, 

followed by the urban model and the employment model. All the Poisson models tested 

were found to produce significant estimates for all the land use classes included in that 

model. 

It is difficult to select which are clearly the best fitting regression models, as there 

is inconclusive information provided by the two or three tests applied. In any case, these 

regression models only produce a preliminary density estimate that will be scaled during 

process of producing the employment estimates. Therefore I decided to generate 

employment estimates from all of the models, rather than eliminate possible best fitting 

models at this stage. 

3.2 Producing employment estimates 

A summary of the accuracy of the employment estimates produced by the various 

models is shown in Table 4. Comparing the various fit metrics produces the unexpected 

finding that the Poisson model with employment land classes and covering the entire 

study area produced the employment estimate with the lowest overall error, despite being 

one of the poorest fitting models based on the initial regression. Conversely, the estimate 

that incorporated different densities for the urban-dominated and agricultural-and-

parkland-dominated regions produced more error than the estimate based on a universal 

model, even though the results of the initial regression models suggest that these were the 

best fitting models for the data. The Poisson models uniformly produced more accurate 
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Table 2: Results of Ordinary Least Squares regression models to determine relative employment densities of land use classes. 
Co=Commercial, Ed=Education, In=Industrial, Ot=Other, Sh=Shipping, HM=Hospital/Medical, Re=Residential, 
TD=Transport Depot 

Model R2 AIC Significant estimates R2 

ranking 
AIC 
ranking 

Overall 
score 

All land covers, Agriculture/park dominated region, raw data 0.971 495.3 Co, In, Ot, Sh 1 1 2 

All land covers, All study area, density fraction 0.915 982.5 Co 2 4 6 

Employment land covers, All study area, density fraction 0.878 720.2 Co, Ed 4 3 7 

All land covers, Urban dominated region, raw data 0.900 1135.0 Co, HM 3 5 8 

Urban land covers, All study area, raw data 0.876 1667.9 Co, HM, In, TD 6 2 8 

All land covers, All study area, raw data 0.877 1672.7 Co, HM, TD 5 8 13 

Urban land covers, All study area, density fraction 0.721 576.1 Co, In, Re 8 6 14 

Employment land covers, All study areas, raw data 0.862 1669.9 Co, Ed, HM, In 7 7 14 

Table 3: Results of Poisson regression models to determine relative employment densities of land use classes. 

Model AIC Significant estimates Ranking 

All land covers, All study area, raw data 7650406 All 1 

Urban land covers, All study area, raw data 8465964 All 2 

Employment land covers, All study area, raw data 11411011 All 3 
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employment estimates than the OLS models. The best employment estimate is displayed 

on a map in Figure 5. 

 

 

Figure 5: Best estimate of employment distribution, based on Poisson model with 
employment attributed to employment-related land uses. 
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Table 4: Comparison of error in the employment estimates 

Model name RMSE Adjusted 
RMSE 

Coefficient 
of 

Variation 

Mean 
Error 

Poisson, employment land uses, all study area, 
raw data 

2060.6 1.55 0.90 -0.00009 

Poisson, urban land uses, all study area, raw data 2164.6 2.04 0.94 -0.00002 

Poisson, all land uses, all study area, raw data 2332.8 2.41 1.02 -0.012 

OLS, all land uses, all study area, raw data 2489.0 1.93 1.08 -0.001 

Binary estimate, employment land uses 2531.4 3.42 1.10 -0.000004 

OLS, employment land uses, all study area, raw 
data 

2625.9 3.68 1.14 -0.00003 

OLS, all land uses, regions split, raw data 2633.7 3.41 1.15 58.1 

OLS, urban land uses, all study area, raw data 2694.5 2.36 1.17 -0.00007 

OLS, all land uses, all study area, density 
fraction 

10193.5 8.04 4.44 -0.09 
 

OLS, urban land uses, all study area, density 
fraction 

11062.6 8.15 4.82 -0.0001 

OLS employment land uses, all study area, 
density fraction 

15596.7 10.09 6.79 0.0002 

 

 

 

Figure 6 shows residual plots for each model tested, comparing the predicted 

values and residuals from the regression modelling stage (left) to the predicted values and 

residuals from the employment estimate stage (right). Note that that since the predictions 

at the modelling stage are based on source zones while the predictions at the employment 

estimate stage are based on validation zones, the number of predictions and their scale are 

different between each pair of plots. Examining these plots helps to understand the 

models and how the error (residual) in the estimates changes between the model stage 

and the employment estimate stage (where the estimated densities are rescaled to fit the 

know number of workers in the source zones). 
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For the Poisson employment model, the values fitted by the original model were 

biased, with many small predictions with positive residuals, but a number of much larger 

predictions with negative residuals balancing this out. The values fitted by the 

employment estimate, once re-scaling is taken into account, take the distribution more 

classically expected from such predictions, with residuals increasing away from zero in 

both a positive and negative direction and in a parabolic shape as the estimate value 

becomes larger. However the distribution shows that the estimate is somewhat biased, 

with the larger values tending to be over rather than under predicted. The other Poisson 

models follow a similar distribution at both the model fitting and employment estimate 

stage, with larger values tending to be overestimated. Additionally, these other Poisson-

based estimates occasionally produce negative estimates. This may seem counter intuitive 

as the models are set to have no intercept and the estimates at the model stage are all 

positive. However, in fitting the model to the variables in the first stage, some negative 

coefficients are produced in many of the models, most commonly for the Agricultural 

land. In the model stage these negative coefficients are balanced by positive ones to 

produce overall positive prediction values, but when these coefficients are applied as 

global density estimates in the source zones where not all the different land covers are 

present, and are then re-scaled, some overall negative employment estimates result.  



 38 

 

Figure 6: Residual plots comparing the predicted values and residuals from the regression 
modelling stage (left) to the predicted values and residuals from the employment estimate 
stage (right). 
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OLS model with all land uses 

 

 

OLS model with employment land uses 

 

 

OLS model with urban land uses 
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OLS model with all land uses, split by regions 

  

OLS model with all land uses and density 

 

 

OLS model with urban land uses and density 
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OLS model with employment land uses and density 

 

 

Binary estimate with employment land uses 
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The OLS models that used a density fraction rather than the raw data have 

uniformly negative prediction values for any underestimates, with all positive values 

being overestimated. 

Overall, the plots appear to support the conclusions found when comparing the 

metrics in Table 4. Closer inspection of the geographic distribution of the residuals 

produced by the best employment estimate (Figure 7 and Figure 8) indicates that most 

estimates are within a count of ±2000 or ±20% of the known population of the 

Destination Zone. The relatively small number of large over or underestimates inflates 

the adjusted RMSE. The larger validation zones at the outer edge of the study area tend to 

have large overestimates, although there are some similarly large overestimates in the 

inner urban portion of the study area. Employment underestimates tend to be in the 

smaller zones and are distributed throughout the study area. 

The observation that employment in Agricultural areas is generally overestimated 

in Poisson employment land uses estimate, raises the question of whether this situation is 

the same in the models where agriculture-and-parkland-dominated source zones were 

regressed separately from urban-dominated source zones. Indeed Figure 9 demonstrates 

that, in fact, under this regionally split model employment in Agricultural areas is 

underestimated. Figure 10 shows that these Agricultural areas have the greatest 

underestimates in terms of percentage error, whereas in the Poisson employment model 

these areas had the greatest overestimates in terms of percentage error. Evidently, 

comparing these models based on the measures described above does obscure some of 

the geographic variability associated with these different estimates. 
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Figure 7: Residual count in validation zones from the employment estimate based on the 
Poisson employment land uses model. The values represent counts, i.e., 
workers. Positive values represent overestimates, negative values are 
underestimates. 
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Figure 8: Percentage error in validation zones from the employment estimate based on 
the Poisson employment land uses model. The percentage error is calculated 
as the residual (difference between the estimated employment count and the 
known count) as a percentage of the known count. Positive values represent 
overestimates, negative estimates represent underestimates. 
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Figure 9: Residual count in validation zones from the employment estimate based on the 
OLS all land uses model that was split by region, i.e., agricultural-and-
parkland dominated source zones were regressed separately to urban-
dominated source zones. The values represent counts, i.e., workers. Positive 
values represent overestimates, negative values are underestimates. 
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Figure 10: Percentage error in validation zones from the employment estimate based on 
the OLS all land uses model that was split by region, i.e, agricultural-and-
parkland dominated source zones were regressed separately to urban-
dominated source zones. The percentage error is calculated as the residual 
(difference between the estimated employment count and the known count) as 
a percentage of the known count. Positive values represent overestimates, 
negative estimates represent underestimates 
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3.3 Downscaling residential data 

A summary of the accuracy of the working population estimates produced by the 

two different methods is shown in Table 5. 

Table 5: Comparison of mean square error, etc. for the population estimates produced by 
different models 

Model name Root Mean 

Square Error 

Adjusted Root 

Mean Square Error 

Coefficient of 

Variation 

Mean Error 

Binary residential 1039.742 2.581 0.565 -29.779 

Using total population 
density weight 

262.637 0.355 0.143 -46.826 

 

As can be seen from the results, the estimate of working residents is greatly 

improved by incorporating data about overall population density at the Mesh Block level, 

compared to a binary dasymetric estimate. It should be noted here that even the coarser 

binary estimate for residential working population scored better in terms of RMSE and 

Coefficient of Variation, than any of the regression-based estimates for employment. 

Figure 11 plots these residuals on a similar scale as the employment estimate residual 

plots in Figure 6. The smaller magnitude of the working population residuals is a 

reminder that employment distribution is a rather more difficult phenomenon to model, 

when compared with residential population, given the ancillary data available. The best 

estimate of the working population is displayed on a map in Figure 12. The residual map 

in Figure 13 shows that residuals were small in general compared to the employment 

estimate, and the largest residuals were not in the largest validation zones, indeed they 

tended to be in smaller zones. The map of percentage errors (Figure 14) follows this trend 

of larger errors occurring in relatively smaller zones. These smaller zones are likely 

associated with the high population counts, being inner urban areas where population is 
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most densely concentrated. Therefore it appears reasonable that the residuals and percent 

error are high in those zones. 

 

 

 

 

 

Total population with density weight estimate Binary residential estimate 

  

Figure 11: Residual plots comparing the predicted values and residuals from two working 
population estimates 
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Figure 12: Best estimate of working population distribution, using the density-weighted 
distribution method. 
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Figure 13: Residual count in validation zones from the working population estimate using 
the density-weighted distribution method. The values represent counts, i.e., 
workers. Positive values represent overestimates, negative values are 
underestimates. 
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Figure 14: Percentage error in validation zones from the working population estimate 
using the density-weighted distribution method. The percentage error is 
calculated as the residual (difference between the estimated working 
population count and the known count) as a percentage of the known count. 
Positive values represent overestimates, negative estimates represent 
underestimates. 
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3.4 Employment Containment 

The final employment raster dataset was converted to a polygon feature class of 

parcels with uniform employment density. This yielded a total of 8 187 parcels. Of these, 

330 were within Destination Zones that had been estimated to within ±10% accuracy. 

The location of the 40 parcels randomly selected for employment containment analysis 

are displayed in Figure 15. 

 

Figure 15: The 40 sites randomly selected for the employment containment study. They 
are overlaid on the best final employment estimate surface (based on the 
Poisson employment land uses model). 
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The full results of the containment analysis are shown in Table 6. The lowest 

containment rate was effectively zero in some agricultural parcels and one small section 

of an industrial estate where employment was estimated to be less than one person. The 

highest containment rate was 7.6% in a large industrial estate that had a large 

employment estimate and a relatively sparsely populated catchment. In general, the 

employment containment estimates are small, less than 1%, as could be expected for 

small employment centres that have a small number of people working there, compared 

to the working population of the catchment as a whole. The estimate of the percentage of 

workers in the employment centre that live in the catchment is lowest again in the 

industrial estate where employment was estimated to be less than one person, with only 

0.1% local employment; it was highest at a car salesroom in Frankston (outer south-

eastern suburbs) where local employment was estimated to be 84.3%. The average 

percentage of workers from the catchment was 20.5%.  

 

Figure 16 shows the relationship between the estimated number of workers in the 

employment centre and 1) employment containment in the centre, and 2) number of 

employees in the centre from the catchment (rather than the percentage of employees 

from the catchment that was discussed above). In general, the results suggest that the rate 

of containment increases as the number of people employed in the centre increases. This 

is to be expected, both intuitively and because the estimate incorporates information 

about the estimated employment as a fraction of the total employment in the source zone 

(SLA). However, there is still not a perfect linear relationship between the estimated 

employment and the estimated containment, and this captures the information about the 

origins that workers travelled from to work in the SLA (and, by extension, the 

employment centre). With regard to the number of workers (rather than the percentage) 

that came from the catchment, the scatterplot shows that this also rises with employment, 
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with a strong relationship that is nonetheless not perfect for having taken account of the 

origin that workers travelled from. 
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Table 6: Summary of employment and employment containment in selected employment centres. EmEc= Employment estimate for 
the centre, WP= Working population estimate for the employment centre catchment, WpEc= the estimated number of 
workers in the centre originating from the catchment, %Co= Estimated percentage of employment containment for the 
centre, %LEm= Estimated percentage of people working in the centre that also live in the catchment. 

ID Type Description EmEc Wp WpEc %Co %LEm 

1 Commercial Diamond Creek Shopping centre, between Main Hurstbridge Rd and the Hurstbridge 
railway line, Diamond Creek 

249 12024 86 0.71 34.4 

2 Industrial Warehousing area or business park, Bridge St Eltham. 221 23292 83 0.36 37.6 

3 Education Pascoe Vale Girls College, near Boundary Rd and Cumberland Rds, Pascoe Vale 705 25529 31 0.12 4.4 

4 Education Pascoe Vale North Primary School, Derby St, Pascoe Vale 237 32221 64 0.2 27 

5 Education Eltham High School, Wither Way, Eltham 646 22416 248 1.11 38.4 

6 Education Unidentified school, Wonga Park 145 3926 14 0.36 9.8 

7 Commercial Small shopping strip, Main Rd, Eltham 245 21420 81 0.38 33 

8 Commercial Shopping centre (part), East Esplanade and Main Rd, Keilor 180 10240 11 0.1 5.9 

9 Commercial Shopping strip, Main St, Lilydale. 683 16342 167 1.02 24.4 

10 Commercial Commercial area at the corner of Albion St and Melville Rd, Brunswick West 138 69333 44 0.06 31.8 

11 Education Wandin North Primary School, Wandin 190 1955 4 0.22 2.3 

12 Education Unidentified school, School Rd, Seville 84 2350 10 0.4 11.3 

13 Education Westgarth Primary School (part), Northcote 170 32448 37 0.11 21.9 

14 Commercial Commercial area, corner Cummingham St and High Sts, Northcote. 59 37543 14 0.04 24.6 

15 Commercial Shopping strip, Macaulay Rd, Kensington 60 57528 6 0.01 9.7 
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ID Type Description EmEc Wp WpEc %Co %LEm 

16 Agricultural Agricultural land, corner of Swansea Rds and Cambridge Rd, Lilydale 86 14316 14 0.1 16.7 

17 Education Gladeville Primay School, Gladesville Drive, Kilsyth 157 14641 21 0.15 13.6 

18 Education Camberwell High School, near Riversdale Road, Camberwell 993 47139 314 0.67 31.6 

19 Commercial Shopping strip, Milton Parade, Toorak 41 40325 6 0.02 15.3 

20 Education Forest Hill College, corner of Hawthorn Rd and Mahoneys Rd, Burwood East 2174 43354 416 0.96 19.1 

21 Education Burwood East Special Development School, Mudgee St, Burwood East 218 44408 35 0.08 15.9 

22 Education Unidentified School, Eva St, Malvern 206 33579 31 0.09 15 

23 Education Mount Waverley North Primary School, Josephine Ave, Mount Waverley 389 44405 66 0.15 17 

24 Industrial Business park near the corner of Dorset Rd and Burwood Hwy, Ferntree Gully 100 30655 28 0.09 27.6 

25 Commercial Commercial shopping strip on Hawthorn Rd, near the corner of Glen Eira Rd. 91 31972 26 0.08 28 

26 Industrial Industrial area near the corner of Fitzgerald Rd and Doherty's Rd, Laverton North 15503 2689 204 7.6 1.3 

27 Education Caulfield Grammar School, Jells Park Primary School, near Jells Rd, Waverley East 2544 21203 494 2.33 19.4 

28 Education Upwey South Primary School, Morris Rd, Upwey 162 6915 31 0.45 19.1 

29 Commercial Rowville Shopping Centre, Stud Rd, Rowville 466 25343 97 0.38 20.8 

30 Education Rowville Secondary College, Turramurra Drive, Rowville 1003 24703 198 0.8 19.8 

31 Education Unidentified school, Gladeswood Drive, Mulgrave 476 30859 94 0.31 19.8 

32 Commercial Hampton Park Shopping Square, Corner Hallam Rd and Pound Rd,  Hampton Park 234 20649 35 0.17 15.1 

33 Industrial Small part of a large industrial estate, corner Frankston Dandenong Rd and 
Bangholme Rd, Dandenong South 

<1 288 0 0 0.1 

34 Education Flinders Christian Community College, Ballarto Rd, Carrum Downs 1092 15839 146 0.92 13.3 

35 Education Monterey Secondary College, Silvertop St, Frankston 715 20623 154 0.75 21.6 

36 Commercial Car salesroom, Wells Rd, Frankston 83 19130 70 0.36 84.3 
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ID Type Description EmEc Wp WpEc %Co %LEm 

37 Agricultural Agricultural land, corner Craig Rd and South Gippsland Highway, Junction Village <1 2812 0 0 11 

38 Agricultural Agricultural land near the corner of Craigs Rd and Browns Rd, Junction Village <1 2381 0 0 10.6 

39 Education Elizabeth Murdoch College, Frankston- Warrandyte Rd, Frankston 715 12584 173 1.38 24.3 

40 Industrial Part of business park near Mornington-Tyabb Rd and Nepean Hwy, Mornington 
Peninsula 

651 10327 171 1.65 26.2 
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Figure 16: Relationship between the estimated number of employees in the selected 
employment centres, and 1) the estimated percentage of employment 
containment for the centre, and 2) The percentage of workers in the 
employment centre that live in the catchment. Note that for the second plot 
one outlying value with very high employment has been eliminated to display 
the overall trend 
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analysis that could be performed using this containment calculation method. However, I 

refrained from performing detailed analysis on this data here, partly for reasons of scope 

but also because the data shows some flaws that indicate that the employment estimate 

figures, and therefore the containment estimates, cannot be relied on. Although the 

employment centres were selected from the validation zones where the employment 
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estimate was found to be most accurate (at the validation zone scale), closer inspection of 

the estimated employment in the selected employment centres suggests that the estimates 

are not reliable at a sub-validation zone scale. In particular, the estimates for Education 

land uses (mostly primary or secondary schools) appear to be inflated. Comparing the 

estimates for the Educational employment centres to the known number of jobs in the 

Education and Training sector for the relevant validation zones (ABS, 2006) suggests that 

the estimated employment is at least twice that observed by the ABS data, and in some 

cases much greater. Given that, the other land classes are evidently under-estimated. It is 

also interesting that 50% of the selected employment centres have Education land use, 

when Education land uses represent around 26% of the employment-related parcels in the 

original Mesh Block data set. A possible explanation for this is that the Agricultural and 

Industrial land use parcels tended to be located in the larger source zones, and this is 

where percentage error tended to be higher, whereas Educational land uses are quite well 

distributed throughout the entire study area. Therefore the Educational land uses are 

overrepresented in the most accurately predicted validation zones. 
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4. DISCUSSION 

In general, the Poisson models produced more accurate employment estimates 

than the other OLS-based models. At the estimate stage, size of these residuals was 

generally smaller and these models produced no or fewer negative count estimates. Of the 

Poisson models, the one that attributed employment counts to employment land use 

classes produced the best estimates. This may be because with employment counts being 

attributed to a smaller number of land classes and distributed over a smaller number of 

parcels overall, there is less opportunity for employment counts to be erroneously 

distributed. 

While successive refinements to the employment surface model improved the 

overall prediction, the final ‘best’ model still produced RMSE, Adjusted RMSE, 

Coefficients of Variation and Mean Error that users of the resulting data might consider 

to be unacceptably high. Reaggregating the data from the best estimate of employment 

distribution showed that the downscaling incorrectly distributed the employment data to a 

large degree. The source of this error was hinted at when performing the employment 

containment analysis on selected employment centres. Comparison of some of the 

estimates in Education employment centres to known counts of Education and Training 

industry workers in the validation zones suggests that Education employment centre 

estimates were routinely over-estimated, and that therefore the employment density 

attributed to this land class was too high. 

The large overestimates in the larger validation zones on the edge of the study 

area, where Agriculture is concentrated, suggests that in the best fitting model 

Agricultural land was attributed with too high an employment density in many cases. It 

should be noted that this is in contrast to the estimate where the urban-dominated and 

agriculture-and-parkland dominated regions were regressed separately. In that case, 

employment counts in Agricultural land tended to be under-estimated. This highlights the 
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sensitivity of the downscaling process to changes in the model and the data used, but also 

gives encouragement that with further refinements a useful downscaled employment 

estimate could be developed. 

The working population surface was found to be more accurate, and information 

about overall population density in the ancillary data zones greatly improved the 

estimates. Even so, the working population estimate produced has room for improvement. 

The finding that Education-related employment centres appear to have highly 

overestimated employment counts highlights a more general limitation for using these 

downscaled estimates. While the formulation of this study relies on detecting the 

residuals produced when we consider the estimates at validation zone scale, the 

misattribution of employment or working population to different locations and land uses 

within the validation zone is not detected. Using the derived data from the 

downscaled/small areas in isolation therefore has both known and unknown error 

associated with it. 

There are certainly achievable options that could be explored to improve the 

employment surface model. In the current study, the total number of all workers in the 

source zone was downscaled via linear regression, using information about the amount of 

land in different use classes. Additional data is available from the ABS that provides the 

number of people employed in different industry sectors and occupations at both the 

source zone and validation zone level. Where a given industry of employment can be 

sensibly associated with a particular land use class (for example, education and training 

workers can be associated with Education land use, manufacturing and warehousing 

workers can be associated with Industrial land use), this additional information could be 

used to control how much employment is attributed to some land use classes. Another 

point for improvement is the negative density coefficients that many of the models 

produced for some land use classes. Future refinements to the model could constrain the 
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model to produce positive coefficients, for example using the non-negative least squares 

function in R (e.g. Mullen & van Stokkum, 2010) 

The employment containment method developed in this project is a positive step 

towards the development of new technique for comparing employment containment 

across different areas and employment centres within Melbourne. By producing uniform 

catchment areas at which to assess employment containment, the method does control for 

spatial factors that traditional employment containment methods cannot. Thus the finding 

that some employment centres appear to contribute more to employment containment and 

local employment, than others. Of course, the method would be greatly improved if the 

input datasets (the employment and working population estimates) were able to be made 

more accurate. The employment containment estimate downscales flows from an origin-

destination matrix, areally weighting the flows based on the employment and working 

population estimates- the proportion of the total workers in the source zone (SLA) that 

the employment centre is estimated to represent, and the proportion of workers living in 

the Origin Zones that are included in the employment centre’s catchment. However, aside 

from this areal weighting, flows between different sub-areas of each origin and 

destination are assumed to be the same. An improved employment containment estimate 

could take account of the finding that people working in higher skilled occupations are 

more likely to travel long distances to work, than those in lower skilled occupations (Bill 

et al., 2007), and attribute flows based on the likely propensity of workers to travel longer 

distances to a given employment centre. Conceptualising this heterogeneous propensity 

to travel by using a Gravity model (such as in Trendle & Siu, 2005) may be possible. 

When the employment centres for the employment containment analysis were 

selected, the land use classification or the type of activity at the centre was not controlled 

for, so it was not possible to look at the way that employment containment and the 

percentage of workers from the catchment varied in different types of employment 
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centres. However this could be an interesting piece of analysis for any further work, 

particularly once an improved estimate could be implemented. 

While the caveats on the results of this method are many, the method can be 

viewed as being useful in producing a more refined picture of how employment is 

distributed throughout Melbourne, incorporating urban land use and therefore a picture of 

urban form. There are options available for improving the estimate of employment 

distribution, in particular. However, given the demonstrated difficulty in accurately 

modelling employment distribution at a very small scale, alternative formulations of this 

problem could be investigated, particularly those within the field of geostatistics.  The 

regression-based interpolation method could be replaced with Poisson area-to-point or 

area-to-area kriging, which has been used widely in health statistics to map rates of 

disease incidence (and more recently, crime rates) over aggregated areas in a way that 

eliminates the visual bias associated with chloropleth maps (Goovaerts, 2008; Goovaerts 

2006; Kerry, Goovaerts, Haining et al., 2010). This effectively produces a downscaled 

estimate of rates and numerically quantifies the uncertainty associated with the estimated 

spatial distribution of the variable in question. This process is used to identify likely 

clusters of the phenomena in space, so could be applied to identifying concentrations of 

employment or employment containment. Indeed, analogous approaches using area-to-

point factorial kriging and pycnophylactic smoothing were recently undertaken by Nagle 

(2010) to identify employment clusters and by Kobayashi et al. (2011) to map daytime 

populations in a city, respectively. These studies produced distribution maps at a much 

coarser scale than that attempted in this study, which aimed to associate employment 

counts with individual blocks of a given land type, rather than producing a smoothed 

surface based on count rates across the whole study area. Such a geostatistical approach 

may have its merits for the current research topic: while removing the downscaling 

component of the process would change the spatial scale of the containment analysis, a 

more coarsely (but more accurately) described employment and population surface could 
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allow generic assessments of employment in a fixed area that is not constrained by 

administrative boundaries, but not necessarily around an identified ‘employment centre’. 
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5. CONCLUSION 

This research began with the supposition that assessments of employment 

containment could be assisted by interpolation or downscaling methods in order to 

overcome the constraints of area-aggregated data issued at the level of administrative or 

statistical boundaries. I pursued an implementation of dasymetric downscaling methods 

that could describe employment and working population distributions at a fine scale, in 

order to provide a method to assess employment containment over uniform catchment 

zones in Melbourne. Supported by ABS Mesh Block land use classification data at a fine 

scale, a number of regression model variations as well as a binary dasymetric estimate 

were trialled to produce employment density estimates for different land use classes in 

the study area. The model that produced the smallest error was a Poisson model that 

distributed employment to employment-related land use classes. Unfortunately the error 

produced by this model was still high. Two approaches were compared when producing 

the working population estimate: a binary dasymetric method and a dasymetric method 

weighted by total population density data. The population-density weighted estimate was 

the more accurate of these two, and overall produced low error. 

The employment and working population estimates were combined with areally-

weighted commuting flows taken from an origin-destination matrix to calculate 

employment containment estimates in a small sample of employment centres. The 

method was found to be potentially useful; inspecting the results of this employment 

containment calculation highlighted flaws in the current estimates that should be 

addressed before the measures can be used to further analyse employment containment in 

Melbourne. Improvements to this method would support urban strategic and transport 

planning analyses at a metropolitan-wide scale. 
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5.1 Further work 

Further work on this topic should focus on the following: 

 Refining and improving the employment distribution estimate by incorporating 

additional ancillary information, such as the number of people in the source zones 

employed in different industries. 

 Constraining the regression models so that they only produce positive density 

coefficients, for example using the non-negative least squares function in R (e.g. 

Mullen & van Stokkum, 2010) 

 Incorporating some additional information into the containment calculation, 

taking account of the propensity of different people to travel less or more for work 

based on their occupation, industry of employment or other socio-economic 

characteristics. 

 Investigating the effectiveness of a broader-scale estimate of employment and 

working population distribution using various geostatistical techniques such as 

area-to-point Poisson kriging (Goovaerts, 2006; Kerry et al., 2010) area-to-area 

Poisson kriging (Goovaerts, 2008) area-to-point factorial kriging (Nagle, 2010) or 

pycnophylactic smoothing (Kobayashi et al., 2011), for contributing to more 

accurate employment containment estimates. 
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APPENDIX A: R SCRIPTS FOR REGRESSION 

MODELLING 

-------------------------------------------------------------------- 
#author    Christabel McCarthy 

#purpose   Modelling employment density of land use 
classes in Melbourne, Australia 

#date      1 February 2012 
-------------------------------------------------------------------- 
#required libraries 
 
#set working directory 
setwd("/Users/christabelmccarthy/Documents/Study/Semester 3/Data 
analysis") 
 
#read data for whole study area (total employment and amount of land in 
each land use class in source zones)from csv file  
SLAland<-read.csv("SLAland.csv") 
 
#read data for agriculture-and-parkland dominated portion of study area 
(total employment and amount of land in each land use class in source 
zones)from csv file  
SLAland<-read.csv("SLAParkAg.csv") 
 
#read data for urban-dominated portion of study area (total employment 
and amount of land in each land use class in source zones)from csv file  
SLAland<-read.csv("SLAUrban.csv") 
 
 
 
#set up Ordinary Least Squares models with raw data inputs 
 
olsfull<-lm(Tot_work ~ Agricultural + Commercial + Education + 
Hospital.Medical + Industrial + Residential + Other + Parkland + 
Transport + Transport_a + Water + Shipping + 0, SLAland) 
 
olsurban<-lm(Tot_work ~ Agricultural + Commercial + Education + 
Hospital.Medical + Industrial + Residential + Other + Transport_a + 0, 
SLAland) 
 
olsemp<-lm(Tot_work ~ Agricultural + Commercial + Education + 
Hospital.Medical + Industrial + 0, SLAland) 
 
#set up Ordinary Least Squares models with the study area split into 
agriculture-and-parkland dominated and urban dominated areas for 
separate regression 
 
pafull<-lm(Tot_work ~ Agricultural + Commercial + Education + 
Hospital.Medical + Industrial + Residential + Other + Parkland + 
Transport + Transport_a + Water + Shipping + 0, SLAParkAg) 
 
urbanfull<-lm(Tot_work ~ Agricultural + Commercial + Education + 
Hospital.Medical + Industrial + Residential + Other + Parkland + 
Transport + Transport_a + Water + Shipping + 0, SLAUrban) 
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#set up Poisson models with raw data inputs 
 
poissfull<-glm(formula = Tot_work ~ Agricultural + Commercial + 
Education + Hospital.Medical + Industrial + Other + Parkland + 
Residential + Transport + Transport_a + Water + Shipping + 0, family = 
"poisson", data = SLAland) 
 
poissurban<-glm(formula = Tot_work ~ Agricultural + Commercial + 
Education + Hospital.Medical + Industrial + Other + Residential + 
Transport_a + 0, family = "poisson", data = SLAland) 
 
poissemp<-glm(formula = Tot_work ~ Agricultural + Commercial + 
Education + Hospital.Medical + Industrial + 0, family = "poisson", data 
= SLAland) 
 
#set up land cover fraction and employment density calculations for 
density-based full OLS model 
 
attach(SLAland) 
Agricultural.f<-Agricultural/Grand.Total 
Commercial.f<-Commercial/Grand.Total 
Education.f<-Education/Grand.Total 
Hospital.Medical.f<-Hospital.Medical/Grand.Total 
Industrial.f<-Industrial/Grand.Total 
Other.f<-Other/Grand.Total 
Parkland.f<-Parkland/Grand.Total 
Residential.f<-Residential/Grand.Total 
Transport.f<-Transport/Grand.Total 
Transport_a.f<-Transport_a/Grand.Total 
Water.f<-Water/Grand.Total 
Shipping.f<_Shipping/Grand.Total 
density<-Tot_work/Grand.Total 
 
#set data frame for density-based full OLS model 
 
density.df<-data.frame(density, Agricultural.f, Commercial.f, 
Education.f, Hospital.Medical.f, Industrial.f, Other.f, Parkland.f, 
Residential.f, Transport.f, Transport_a.f, Water.f) 
 
attach(density.df) 
 
#set up density-based full OLS model 
olsfulldf<-lm(density ~ Agricultural.f + Commercial.f + Education.f + 
Hospital.Medical.f + Industrial.f + Other.f + Parkland.f + 
Residential.f + Transport.f + Transport_a.f + Water.f + Shipping.f + 0, 
density.df) 
 
 
 
#set up land cover fraction and employment density calculations for 
density-based urban OLS model 
 
Agricultural.f.u <- Agricultural / (Agricultural + Commercial + 
Education + Hospital.Medical + Industrial + Residential + Transport_a + 
Other) 
 
Commercial.f.u <- Commercial / (Agricultural + Commercial + Education + 
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Hospital.Medical + Industrial + Residential + Transport_a + Other) 
 
Education.f.u <- Education / (Agricultural + Commercial + Education + 
Hospital.Medical + Industrial+ Residential + Transport_a + Other) 
 
Hospital.Medical.f.u <- Hospital.Medical / (Agricultural + Commercial + 
Education + Hospital.Medical + Industrial + Residential + Transport_a + 
Other) 
 
Industrial.f.u <- Industrial / (Agricultural + Commercial + Education + 
Hospital.Medical + Industrial + Residential + Transport_a + Other) 
 
Residential.f.u <- Residential / (Agricultural + Commercial + Education 
+ Hospital.Medical + Industrial + Residential + Transport_a + Other) 
 
Transport_a.f.u <- Transport_a / (Agricultural + Commercial + Education 
+ Hospital.Medical + Industrial + Residential + Transport_a + Other) 
 
Other.f.u <- Other / (Agricultural + Commercial + Education + 
Hospital.Medical + Industrial + Residential + Transport_a + Other) 
 
density.u <- Tot_work / (Agricultural + Commercial + Education + 
Hospital.Medical + Industrial + Residential + Transport_a + Other) 
 
 
#set data frame for density-based urban OLS model 
density.u.df <- data.frame(density.u, Agricultural.f.u, Commercial.f.u, 
Education.f.u, Hospital.Medical.f.u, Industrial.f.u, Residential.f.u, 
Transport_a.f.u, Other.f.u) 
 
#set up density-based urban OLS model 
 
olsurbandf <-lm(density.u~Agricultural.f.u + Commercial.f.u + 
Education.f.u + Hospital.Medical.f.u + Industrial.f.u + Residential.f.u 
+ Other.f.u + Transport_a.f.u + 0, density.u.df) 
 
 
 
#set up land cover fraction and employment density calculations for 
density-based employment OLS model 
 
Agricultural.f.e <- Agricultural / (Agricultural + Commercial + 
Education + Hospital.Medical + Industrial) 
 
Commercial.f.e <- Commercial / (Agricultural + Commercial + Education + 
Hospital.Medical + Industrial) 
 
Education.f.e <- Education / (Agricultural + Commercial + Education + 
Hospital.Medical + Industrial) 
 
Hospital.Medical.f.e <- Hospital.Medical / (Agricultural + Commercial + 
Education + Hospital.Medical + Industrial) 
 
Industrial.f.e <- Industrial / (Agricultural + Commercial + Education + 
Hospital.Medical + Industrial) 
 
density.e<-Tot_work / (Agricultural + Commercial + Education + 
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Hospital.Medical + Industrial) 
 
#set data frame for density-based employment OLS model 
 
density.e.df <- data.frame(density.e, Agricultural.f.e, Commercial.f.e, 
Education.f.e, Hospital.Medical.f.e, Industrial.f.e) 
 
attach(density.e.df) 
 
#set up density-based employment OLS model 
 
olsempdf <- lm(density.e~Agricultural.f.e + Commercial.f.e + 
Education.f.e + Hospital.Medical.f.e + Industrial.f.e + 0, 
density.e.df) 
 
#inspect model results 
 
summary(olsfull) 
summary(olsurban) 
summary(olsemp) 
summary(pafull) 
summary(urbanfull) 
summary(poissfull) 
summary(poissurban) 
summary(poissemp) 
summary(olsfulldf) 
summary(olsurbandf) 
summary(olsempdf) 
 
#generate AIC models for values 
AIC(olsfull) 
AIC(olsurban) 
AIC(olsemp) 
AIC(pafull) 
AIC(urbanfull) 
AIC(poissfull) 
AIC(poissurban) 
AIC(poissemp) 
AIC(olsfulldf) 
AIC(olsurbandf) 
AIC(olsempdf) 
 
#export residuals for comparison to employment estimate residuals 
 
resolsfull <- residuals(olsfull) 
write.table(resolsfull, file= “resolsfull.csv", sep=",",row.names=F) 
 
resolsurban <- residuals(olsurban) 
write.table(resolsurban, file= “resolsurban.csv", sep=",”, row.names=F) 
 
resolsemp <- residuals(olsemp) 
write.table(resolsemp, file= “resolsemp.csv", sep=",”, row.names=F) 
 
respafull <- residuals(pafull) 
write.table(respafull, file= “respafull.csv", sep=",”, row.names=F) 
 
resurbanfull <- residuals(urbanfull) 
write.table(resurbanfull, file= “resurbanfull.csv", sep=",”, 
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row.names=F) 
 
respoissfull <- residuals(poissfull) 
write.table(respoissfull, file= “respoissfull.csv", sep=",”, 
row.names=F) 
 
respoissurban <- residuals(poissurban) 
write.table(respoissurban, file= “respoissurban.csv", sep=",”, 
row.names=F) 
 
respoissemp <- residuals(poissemp) 
write.table(respoissemp, file= “respoissemp.csv", sep=",”, row.names=F) 
 
resolsfulldf <- residuals(olsfulldf) 
write.table(resolsfulldf, file= “resolsfulldf.csv", sep=",”, 
row.names=F) 
 
resolsurbandf <- residuals(olsurbandf) 
write.table(resolsurbandf, file= “resolsurbandf.csv", sep=",”, 
row.names=F) 
 
resolsempdf <- residuals(olsempdf) 
write.table(resolsempdf, file= “resolsempdf.csv", sep=",”, row.names=F) 
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APPENDIX B: ARCPY SCRIPT FOR EMPLOYMENT 

DISTRIBUTION ESTIMATES FROM REGRESSION 

COEFFICIENTS 

# --------------------------------------------------------------------------- 
# employment estimate from regression.py 
# By Christabel McCarthy 
# Created on: 2011-12-23 15:45:30.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Usage: employment estimate from regression <Land_use_classifcation> 
<Density_coefficient> <Source_zone_raster> <Source_zone_table> 
<Validation_zone_raster> <Validation_zone_table>  
# Description:  
# Generates employment estimates that use the global density estimates (from 
Poisson and OLS models) as the intial inputs 
# --------------------------------------------------------------------------- 
 
# Import arcpy module 
import arcpy 
 
# Check out any necessary licenses 
arcpy.CheckOutExtension("spatial") 
 
# Set Geoprocessing environments 
arcpy.env.scratchWorkspace = "C:\\Thesis\\Employment_estimate.gdb" 
arcpy.env.outputCoordinateSystem = "" 
arcpy.env.snapRaster = "C:\\Thesis\\Data.gdb\\SLA_raster" 
arcpy.env.extent = "MINOF" 
arcpy.env.geographicTransformations = "" 
arcpy.env.workspace = "C:\\Thesis\\Employment_estimate.gdb" 
 
 
# Local variables: 
Land_use_classification = "C:\\Thesis\\Data.gdb\\Mesh_blocks_Melbourne" 
Density_coefficient = 
"C:\\Thesis\\Employment_estimate.gdb\\Density_coefficient" 
Initial_density_raster = 
"C:\\Thesis\\Employment_estimate.gdb\\Initial_density_raster" 
Source_zone_raster = "C:\\Thesis\\Data.gdb\\SLA_raster" 
Inital_employment_estimate_table = 
"C:\\Thesis\\Employment_estimate.gdb\\Inital_employment_estimate_table" 
Source_zone_table = "C:\\Thesis\\Data.gdb\\SLAs" 
Rescaling_factor_raster = 
"C:\\Thesis\\Employment_estimate.gdb\\Rescaling_factor_raster" 
Final_density_estimate = 
"C:\\Thesis\\Employment_estimate.gdb\\Final_density_estimate" 
Validation_zone_raster = "C:\\Thesis\\Data.gdb\\Destination_zone_raster" 
Validation_zone_final_estimate = 
"C:\\Thesis\\Employment_estimate.gdb\\Validation_zone_final_estimate" 
Validation_zone_table = "C:\\Thesis\\Data.gdb\\Destination_zones" 
 
 
# Join the land use classification table to the table with density 
coefficients for each land use category (derived from regression) 
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arcpy.JoinField_management(Land_use_classifcation, "CATEGORY", 
Density_coefficient, "CATEGORY", "") 
 
# Create a raster layer with the density coefficient values at each cell 
arcpy.PolygonToRaster_conversion(Land_use_classification, 
"Density_coefficient", Initial_density_raster, "MAXIMUM_AREA", "NONE", "10") 
 
# Sum the value of the raster within each source zone for comparison to the 
true employment counts in each source zone 
arcpy.gp.ZonalStatisticsAsTable_sa(Source_zone_raster, "Value", 
Initial_density_raster, Inital_employment_estimate_table, "DATA", "SUM") 
 
# Join the summary table to sourc zone table containing the source zone 
employment counts 
arcpy.JoinField_management(Source_zone_table, "SLA_Code", 
Inital_employment_estimate_table, "SUM", "") 
 
# Add a field in which to calculate the ratio of the true count to the 
estimated count (rescaling factor) 
arcpy.AddField_management(Source_zone_table, "Ratio true est", "FLOAT", "", 
"", "", "", "NULLABLE", "NON_REQUIRED", "") 
 
# Calculate the rescaling factor 
arcpy.CalculateField_management(Source_zone_table, "Ratio true est", 
"!Tot_work!/!Initial employment estimate.SUM!", "PYTHON 9.3", "") 
 
# Produce a raster of the rescaling factor values 
arcpy.PolygonToRaster_conversion(Source_zone_table, "Ratio true est", 
Rescaling_factor_raster, "MAXIMUM_AREA", "NONE", "10") 
 
# Produce a raster of the original density coefficient multiplied by the 
rescaling factor 
arcpy.gp.RasterCalculator_sa("\"%Initial density raster%\" * \"%Rescaling 
factor raster%\"", Final_density_estimate) 
 
# Sum the value of the rasters within each validation zone for comparison to 
the true employment counts in each validation zone 
arcpy.gp.ZonalStatisticsAsTable_sa(Validation_zone_raster, "Value", 
Final_density_estimate, Validation_zone_final_estimate, "DATA", "SUM") 
 
# Join the summary table to source zone table containing the source zone 
employment count 
arcpy.JoinField_management(Validation_zone_table, "Destinat_1", 
Validation_zone_final_estimate, "VALUE", "") 
 
# Add a field in which to calculate the residual (difference) between the 
estimated and the true employment counts in the validation zones 
arcpy.AddField_management(Validation_zone_table, "Difference", "FLOAT", "", 
"", "", "", "NULLABLE", "NON_REQUIRED", "") 
 
# Calculate the residual 
arcpy.CalculateField_management(Validation_zone_table, "Difference", 
"!Validation_zone_final_estimate.SUM!-!Tot_work!", "PYTHON 9.3", "") 
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APPENDIX C: ARCPY SCRIPT FOR BINARY 

EMPLOYMENT OR WORKING POPULATION 

DISTRIBUTION ESTIMATES 

# --------------------------------------------------------------------------- 
# binary estimate.py 
# By Christabel McCarthy 
# Created on: 2011-12-23 23:16:25.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Usage: binary estimate<Validation_zone_raster> <Validation_zone_table>  
# Description: Binary estimate of working population distribution. Can be 
adapted to produce the binary estimate of employment 
# --------------------------------------------------------------------------- 
 
# Import arcpy module 
import arcpy 
 
# Check out any necessary licenses 
arcpy.CheckOutExtension("spatial") 
 
arcpy.env.scratchWorkspace = "C:\\Thesis\\Working_pop_estimate.gdb" 
arcpy.env.outputCoordinateSystem = "" 
arcpy.env.snapRaster = "C:\\Thesis\\Data.gdb\\SLA_raster" 
arcpy.env.extent = "MINOF" 
arcpy.env.geographicTransformations = "" 
arcpy.env.workspace = "C:\\Thesis\\Working_pop_estimate.gdb" 
 
# Local variables: 
Land_use_classification = "C:\\Thesis\\Data.gdb\\Mesh_blocks_Melbourne" 
Binary_classification = "C:\\Thesis\\Data.gdb\\Mesh_blocks_Melbourne" 
Binary_classification_raster = 
"C:\\Thesis\\Working_pop_estimate.gdb\\Binary_classification_raster" 
Source_zone_raster = "C:\\Thesis\\Data.gdb\\SLA_raster" 
Populated_area_table = 
"C:\\Thesis\\Working_pop_estimate.gdb\\Total_populated_area" 
Source_zone_table = "C:\\Thesis\\Data.gdb\\SLAs" 
Source_zone_working_pop_density = 
"C:\\Thesis\\Working_pop_estimate.gdb\\Source_zone_working_pop_density" 
Final_binary_estimate = 
"C:\\Thesis\\Working_pop_estimate.gdb\\final_binary_estimate" 
Validation_zone_raster = "C:\\Thesis\\Data.gdb\\Destination_zone_raster" 
Validation_zone_table = "C:\\Thesis\\Data.gdb\\Destination_zones" 
Validation_zone_estimate_summary = 
"C:\\Thesis\\Working_pop_estimate.gdb\\Validation_zone_estimate_summary" 
 
# Add a field to the land use classification table,  in which to assign the 
binary class (1=has working population, 0=doesn't have working population) 
arcpy.AddField_management(Land_use_classification, "Binary_class", "SHORT", 
"", "", "", "", "NULLABLE", "NON_REQUIRED", "") 
 
# Assign the value '1' to the land class that has counts 
#(in this case, Residential is assigned the counts, for the working 
population estimate, Agricultural, Commercial, Education, Industrial and 
Hospital/Medical land classes take the counts 
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arcpy.CalculateField_management(Land_use_classification, "Binary_class", 
"Lc", "VB", "dim Lc\\nif [CATEGORY]=\"Residential\" then\\nLc=1\\n\\nElse 
\\nLc=0\\n\\n\\nEnd if") 
 
# Convert the binary classification to a raster 
arcpy.PolygonToRaster_conversion(Binary_classification, "Binary_class", 
Binary_classification_raster, "MAXIMUM_AREA", "NONE", "10") 
 
# Sum the value of the raster within each source zone to find the populated 
area within the source zone 
arcpy.gp.ZonalStatisticsAsTable_sa(Source_zone_raster, "Value", 
Binary_classification_raster, Populated_area_table, "DATA", "SUM") 
 
# Join the summary populated area table to the source zone table containing 
the source zone working population counts 
arcpy.JoinField_management(Source_zone_table, "SLA_Code", 
Populated_area_table, "SUM", "") 
 
# Add a field in which to calculate the working population density of the 
populated area of the source zones 
arcpy.AddField_management(Source_zone_table, "Working pop density", "FLOAT", 
"", "", "", "", "NULLABLE", "NON_REQUIRED", "") 
 
# Calculate the working population density of the populated area of the 
source zones 
arcpy.CalculateField_management(Source_zone_table, "Working pop density", 
"!Res_workers!/!Populated area table.SUM!", "PYTHON_9.3", "") 
 
# Create a raster of the working population density of the populated area of 
the source zones 
arcpy.PolygonToRaster_conversion(Source_zone_table, "Working pop density", 
Source_zone_working_pop_density, "MAXIMUM_AREA", "NONE", "10") 
 
# Calculate the downscaled working population estimate by multiplying the 
working population density raster by the binary classification raster 
# Population density will be assigned to the populated area only (those with 
a value of '1') 
arcpy.gp.RasterCalculator_sa("\"%Binary_classification_raster%\" * \"%Source 
zone working pop density%\"", Final_binary_estimate) 
 
#Process: Sum the value of the rasters within each validation zone for 
comparison to the true working population counts in each validation zone 
arcpy.gp.ZonalStatisticsAsTable_sa(Validation_zone_raster, "Value", 
Final_binary_estimate, Validation_zone_estimate_summary, "DATA", "SUM") 
 
# Join the summary table to the validation zone table containing the 
validation zone working population count 
arcpy.JoinField_management(Validation_zone_table, "Origin_Cod", 
Validation_zone_estimate_summary, "VALUE", "") 
 
# Add a field in which to calculate the residual (difference) between the 
estimated and the true working population counts in the validation zones 
arcpy.AddField_management(Validation_zone_table, "Difference", "FLOAT", "", 
"", "", "", "NULLABLE", "NON_REQUIRED", "") 
 
# Calculate the residual 
arcpy.CalculateField_management(Validation_zone_table, "Difference", 
"!Validation_zone_estimate_summary.SUM!-!Res_workers!", "PYTHON_9.3", "" 
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APPENDIX D: ARCPY SCRIPT FOR WORKING 

POPULATION DISTRIBUTION ESTIMATES FROM 

TOTAL POPULATION DENSITY 

# --------------------------------------------------------------------------- 
# Working population from total population density.py 
# Created on: 2011-12-23 17:30:58.00000 
#   (generated by ArcGIS/ModelBuilder) 
# Usage: Working population from total population density 
<Land_use_classifcation> <Source_Zone_Raster> <Source_zone_table> 
<Validation_zone_raster> <Validation_zone_table>  
# Description: 
# Generates working population estimates from the total population count at 
mesh block level  
# --------------------------------------------------------------------------- 
 
# Import arcpy module 
import arcpy 
 
# Check out any necessary licenses 
arcpy.CheckOutExtension("spatial") 
 
# Set Geoprocessing environments 
arcpy.env.scratchWorkspace = "C:\\Thesis\\Working_pop_estimate.gdb" 
arcpy.env.outputCoordinateSystem = "" 
arcpy.env.snapRaster = "C:\\Thesis\\Data.gdb\\SLA_raster" 
arcpy.env.extent = "MINOF" 
arcpy.env.geographicTransformations = "" 
arcpy.env.workspace = "C:\\Thesis\\Working_pop_estimate.gdb" 
 
 
# Local variables: 
Land_use_classification = "C:\\Thesis\\Data.gdb\\Mesh_blocks_Melbourne" 
Total_pop_density_raster = 
"C:\\Thesis\\Working_pop_estimate.gdb\\Total_pop_density_raster" 
Source_zone_raster = "C:\\Thesis\\Data.gdb\\SLA_raster" 
Total_pop_count = "C:\\Thesis\\Working_pop_estimate.gdb\\Total_pop_count" 
Source_zone_table = "C:\\Thesis\\Data.gdb\\SLAs" 
Scaling_factor_raster = 
"C:\\Thesis\\Working_pop_estimate.gdb\\Scaling_factor_raster" 
Final_density_estimate = 
"C:\\Thesis\\Working_pop_estimate.gdb\\Final_density_estimate" 
Validation_zone_raster = "C:\\Thesis\\Data.gdb\\Destination_zone_raster" 
Validation_zone_final_estimate = 
"C:\\Thesis\\Working_pop_estimate.gdb\\Validation_zone_final_estimate" 
Validation_zone_table = "C:\\Thesis\\Data.gdb\\Destination_zones" 
 
# Add a field to the land use classification table, in which to calculate 
total population density at mesh block level 
arcpy.AddField_management(Land_use_classifcation, "Popdensity", "FLOAT", "", 
"", "", "", "NULLABLE", "NON_REQUIRED", "") 
 
# Calculate the total population density 
arcpy.CalculateField_management(Land_use_classifcation, "Popdensity", 
"!TURPOP2006!/ !Shape_Area!", "PYTHON_9.3", "") 
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# Create a raster layer with the total population density values at each cell 
arcpy.PolygonToRaster_conversion(Land_use_classification, "Popdensity", 
Total_pop_density_raster, "MAXIMUM_AREA", "NONE", "10") 
 
# Sum the value of the raster within each source zone for comparison to the 
working population counts in each source zone 
arcpy.gp.ZonalStatisticsAsTable_sa(Source_zone_raster, "Value", 
Total_pop_density_raster, Total_pop_count, "DATA", "SUM") 
 
# Join the summary table to the source zone table containing the source zone 
working population counts 
arcpy.JoinField_management(Source_zone_table, "SLA_Code", Total_pop_count, 
"SUM", "") 
 
# Add a field in which to calculate the ratio of the working population count 
to the total population count (rescaling factor) 
arcpy.AddField_management(Source_zone_table, "Ratio working total", "FLOAT", 
"", "", "", "", "NULLABLE", "NON_REQUIRED", "") 
 
# Calculate the rescaling factor 
arcpy.CalculateField_management(Source_zone_table, "Ratio working total", 
"!Res_workers!/!Total_pop_count.SUM!", "PYTHON_9.3", "") 
 
# Produce a raster of the rescaling factor values 
arcpy.PolygonToRaster_conversion(Source_zone_table, "Ratio working total", 
Scaling_factor_raster, "MAXIMUM_AREA", "NONE", "10") 
 
# Produce a raster of the total population density multiplied by the 
rescaling factor 
arcpy.gp.RasterCalculator_sa("\"%Total pop density raster%\" * \"%Density 
ratio raster%\"", Final_density_estimate) 
 
# Sum the value of the rasters within each validation zone for comparison to 
the true working population counts in each validation zone 
arcpy.gp.ZonalStatisticsAsTable_sa(Validation_zone_raster, "Value", 
Final_density_estimate, Validation_zone_final_estimate, "DATA", "ALL") 
 
# Join the summary table to the validation zone table containing the 
validation zone working population count 
arcpy.JoinField_management(Validation_zone_table, "Obj_ID", 
Validation_zone_final_estimate, "VALUE", "") 
 
# Add a field in which to calculate the residual (difference) between the 
estimated and the true working population counts in the validation zones 
arcpy.AddField_management(Validation_zone_table, "Difference", "FLOAT", "", 
"", "", "", "NULLABLE", "NON_REQUIRED", "") 
 
# Calculate the residual 
arcpy.CalculateField_management(Validation_zone_table, "Difference", 
"!Validation_zone_final_estimate.SUM!-!Res_workers!", "PYTHON_9.3", "") 
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