
 i

Framework development for providing accessibility
to Qualitative spatial calculi

Sahib Jan

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157625337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dissertation Supervised

By

PhD Professor Angela Schwering
PhD Professor Marco Painho

PhD Student Malumbo Chaka Chipofya

 Date of Submission: 28th February 2011

 ii

ACKNOWLEDGEMENT

I would like to thanks the North-Rhine-Westphalian Ministry for Innovation,
Science, Research and Technology (MIWFT), Germany for making it possible for
me to pursue my higher education in dynamic learning environments through their
prestigious grants. I would like to thank all the professors and other staff working on
the Master of Science in Geospatial Technologies for their time and knowledge.
Thanks to my three supervisors for their positive comments and support. Special
thanks go to Mr. Malumbo Chipofya for his interesting idea and support that I
perused in this thesis and thanks to my friend Mr. Amjad Saleem for his support and
guidance. Thanks to all my colleagues in the master program for their friendship and
support. I acknowledge the moral support of my fiancé during these studies.

 i

Framework Development for Providing Accessibility to
Qualitative Spatial Calculi

ABSTRACT
Qualitative spatial reasoning deals with knowledge about an infinite spatial domain
using a finite set of qualitative relations without using numerical computation.
Qualitative knowledge is relative knowledge where we obtain the knowledge on the
basis of comparison of features with in the object domain rather then using some
external scales. Reasoning is an intellectual facility by which, conclusions are drawn
from premises and is present in our everyday interaction with the geographical
world. The kind of reasoning that human being relies on is based on commonsense
knowledge in everyday situations. During the last decades a multitude of formal
calculi over spatial relations have been proposed by focusing on different aspects of
space like topology, orientation and distance.
Qualitative spatial reasoning engines like SparQ and GQR represents space and
reasoning about the space based on qualitative spatial relations and bring qualitative
reasoning closer to the geographic applications. Their relations and certain operations
defined in qualitative calculi use to infer new knowledge on different aspects of
space.
Today GIS does not support common-sense reasoning due to limitation for how to
formalize spatial inferences. It is important to focus on common sense geographic
reasoning, reasoning as it is performed by human. Human perceive and represents
geographic information qualitatively, the integration of reasoner with spatial
application enables GIS users to represent and extract geographic information
qualitatively using human understandable query language.
In this thesis, I designed and developed common API framework using platform
independent software like XML and JAVA that used to integrate qualitative spatial
reasoning engines (SparQ) with GIS application. SparQ is set of modules that
structured to provides different reasoning services. SparQ supports command line
instructions and it has a specific syntax as set of commands. The developed API
provides interface between GIS application and reasoning engine. It establishes
connection with reasoner over TCP/IP, takes XML format queries as input from GIS
application and converts into SparQ module specific syntax. Similarly it extracts
given result, converts it into defined XML format and passes it to GIS application
over the same TCP/IP connection.
The most challenging part of thesis was SparQ syntax analysis for inputs and their
outputs. Each module in Sparq takes module specific query syntax and generates
results in multiple syntaxes like; error, simple result and result with comments.
Reasoner supports both binary and ternary calculi. The input query syntax for binary-
calculi is different for ternary-calculi in the terms of constraint-networks. Based on
analysis I, identified commonalities between input query syntaxes for both binary
and ternary calculi and designed XML structures for them. Similarly I generalized
SparQ results into five major categories and designed XML structures. For ternary-
calculi, I considered constraint-reasoning module and their specific operations and
designed XML structure for both of their inputs and outputs.

 ii

KEYWORDS

QSR - Qualitative Spatial Reasoning
SparQ - Spatial Reasoning Done Qualitatively
API - Application Programming Interface
GQR - Generic Qualitative Reasoner
JEPD - Jointly Exhaustive and Pair wise Disjoint
GIS - Geographic Information Systems
ALLEN - Allen’s Time Interval Calculus.
DRA-24 - Dipole Relation Algebra
CARDIR - Cardinal Direction Calculus
RCC-8 - Region Connected Calculus-8
DCC - Double Cross Calculus
CASL- Algebraic Specification Language
RDBMS- Relational Database Management System
CAMA- Computer Assisted Mass Appraisal

 iii

NOMENCLATURES
1. Calculi’s Variables and relations/inverse relations

Calculi Variable
s

Relations /Inverse Relations

1
Allen’s Time Interval
Calculus

X, Y Before(<),overlap(o), meet(m),
during(d), start(s), finish(f),
equal(=),After(>), meet inv(mi),
during inv(di), start(s), finish inv(fi)

2 Dipole Relation
Algebra

A, B, C rrrr, rrrl, rrlr, rrll, rlrr, rllr, rlll, lrrr,
lrrl, lrll, llrr, llrl, lllr, llll, ells, errs,
lere, rele, slsr, srsl, lsel, rser, sese,
eses

3 Cardinal Direction
Calculus

A, B, C north(N), north-east(NE), east(E),
south-east(SE), South(S) ,south-
west(SW), west(W) ,north-west(NW)

4 Region Connection
Calculus

A, B, C disconnected(DC), externally-
connected(EC), part-of(P), proper-
part(PP), proper-part inv(PPi),
identical(EQ), overlap(O), partially-
overlay (PO), tangential proper-
part(TPP), tangential proper-part
inv(TPPi), non-tangential proper-
part(NTPP), non-tangential proper-
part inv(NTPPi).

5 Double Cross Calculus A,B, C 7-3, 6-3, 5-3, 5-2, 5-1, 0-4, b-4, 4-4,
4-a, 4-0, 1-5, 2-5, 3-5, 3-6, 3-7, dou
tri

2. Calculi Operations

Operations Description
1 union

2 intersection

3 complement

4 composition }),(),(:|,{(: SCBrBADBDCAsr ∈∧∈∈∃∈=o

5 converse }),(2),|,{(rABDBABAr ∈∧∈=(

6 inverse CrAinvBBrCA)(,, →

}|{ SxRxxSR ∈∨∈=∪

}|{ SxRxxSR ∈∧∈=∩

}|{\ RxUxxRUR ∉∧∈==

 iv

TABLE OF CONTENTS

ACKNOWLEDGEMENT.. i
ABSTRACT... ii
KEYWORDS.. iii
NOMENCLATURES ... iv
Allen’s Time Interval Calculus... iv
1. Introduction:... 1
1.1 Qualitative Reasoning Background and Reasoning Engines........................... 1
1.1.1 Motivation.. 2
1.1.2 Research Objectives... 3
1.1.3 Outline of the Thesis.. 3
2. Literature Review .. 4
2.1 Understanding of QSR Calculi .. 4
2.1.1 Allen’s Time Interval Algebra... 4
2.1.2 Dipole Relation Algebra .. 5
2.1.3 Cardinal Direction Calculus... 5
2.1.4 Region Connection Calculus ... 7
2.1.5 Double Cross Calculus... 9
2.2 Application Areas of Qualitative Spatial Reasoning 11
2.2.1 Reasoning Application in GIS ... 12
2.2.2 Reasoning Application in Navigation.. 13
2.2.3 Reasoning application in Artificial Intelligence .. 14
3. Qualitative Spatial Reasoner.. 15
3.1 SparQ ... 15
3.1.1 Compute-relation Module.. 15
3.1.2 Qualify Module.. 16
3.1.3 Constraint-reasoning Module .. 16
3.1.3.1 Algebraic-closure... 16
3.1.3.2 Scenario-consistency ... 16
3.1.3.3 Refine Operation.. 16
3.1.3.4 Extend Operation ... 16
3.1.4 Algebraic Reasoning Module .. 17
3.1.4.1 Consistency-checking .. 17
3.1.4.2 Qualification .. 17
3.2 GQR... 17
3.3 Calculi Analysis Using SparQ Reasoner ... 18
3.3.1 Allen’s Time Interval Algebra (AI) Analysis .. 18
3.3.1.1 Qualify Module.. 18
3.3.1.2 Compute-relation Module.. 19
3.3.1.3 Constraint-reasoning Module .. 20
3.3.1.4 Algebraic-reasoning Module ... 21
3.3.2 Dipole Relation Algebra (DRA-24) Analysis.. 21
3.3.2.1 Qualify Module.. 21
3.3.2.2 Compute-Relation Module .. 22

 v

3.3.2.3 Constraint-reasoning Module .. 23
3.3.2.4 Algebraic-reasoning Module ... 23
3.3.3 Cardinal Direction Calculus Analysis.. 24
3.3.3.1 Qualify Module.. 24
3.3.3.2 Compute-relation Module.. 24
3.3.3.3 Constraint-reasoning Module .. 24
3.3.3.4 Algebraic-reasoning Module ... 25
3.3.4 Region Connection Calculus (RCC) Analysis... 25
3.3.4.1 Compute-relation Module.. 25
3.3.4.2 Constraint-reasoning Module .. 25
3.4 Overview of Proposed Architecture .. 26
3.4.1 OpenJUMP Plug-In.. 26
3.4.2 Application Programming Interface (API) .. 27
4. Application program Interface (API) design ... 28
4.1 Usecase Diagram ... 28
4.1.1 Plug-in Usecase Diagram... 28
4.1.2 API Usecase Diagram.. 29
4.2 Process Diagram .. 30
4.3 SparQ Query Analysis ... 31
4.4 XML Design for SparQ Modules .. 31
4.4.1 Qualify Module.. 31
4.4.2 Compute-relation Module.. 32
4.4.3 Constraint-reasoning Module .. 32
4.4.3.1 Algebraic-Closure and Scenario-consistency Operation 32
4.4.3.2 Refine and Extend Operation... 32
4.4.4 Algebraic-reasoning Module ... 34
4.4.4.1 Consistency Operation... 34
4.4.4.2 Qualify Operation .. 34
4.4.5 Constraint-reasoning for Ternary Calculi .. 35
4.4.5.1 Algebraic-closure... 35
4.4.5.2 Scenario-consistency ... 35
4.4.5.3 Refine and Extend.. 35
4.5 XML Conversion to SparQ Syntax.. 37
4.5.1 Qualify Query (XML) to SparQ Syntax .. 37
4.5.2 Constraint-reasoning Query (XML) to SparQ Syntax............................... 38
4.5.3 Compute-relation Query (XML) to SparQ Syntax 40
4.5.4 Algebraic-reasoning Query (XML) to SparQ Syntax................................ 41
4.6 XML Parsing.. 43
4.7 SparQ Result Analysis ... 43
4.7.1 Simple Text.. 44
4.7.2 Simple-text and Constraint-network.. 44
4.7.3 Constraint-network .. 45
4.7.4 Simple-relations ... 46
4.7.5 Syntax-errors.. 46
4.8 SparQ Result Conversion into XML ... 46
4.8.1 Syntax-errors.. 47
4.8.2 Simple-relations ... 47
4.8.3 Simple-text and Constraint-network.. 48

 vi

4.8.4 Simple Text.. 49
4.8.5 Constraint-network .. 49
5. API Implementation... 51
5.1 API Class Diagram .. 51
5.1.1 Plug-In Class Diagram... 51
5.1.1.1 Extension Class.. 51
5.1.1.2 MyExtension Class .. 51
5.1.1.3 PlugInUI Class... 52
5.1.1.4 userResult Class... 53
5.1.1.5 AbstractPlugIn Class.. 54
5.1.2 API Class Diagram .. 54
5.1.2.1 EngineConnector Class.. 56
5.1.2.2 IQueryGenerator Interface... 57
5.1.2.3 QueryGenerator Class.. 58
5.1.2.4 QueryReceiver Class.. 61
5.1.2.5 QuerySender Class... 67
6. Case Study and Demonstration.. 70
6.1 Case-Study ... 70
6.1.1 Integration of Reasoner with GIS .. 70
6.2 Demonstration on Spatial Data .. 73
7. Conclusion, Shortcomings and Future Work... 80
7.1 Conclusion ... 80
7.2 Shortcomings ... 81
7.3 Future Work... 82
8. Bibliographic Reference .. 84
Student Declaration.. 86

 vii

INDEX OF FIGURES

Figure 1: Cardinal directions defined by projection and Cardinal Directions as cones .6
Figure 2: RCC relations defined by Randell, Cui and Cohn, 1992 with interpretation..8
Figure 3: Lattice of the subsumption hierarchy of the basic binary RCC relations

(reproduced from Randell, Cui, Cohn, 1994 ... 8
Figure 4: (a) Orientation line (ab) and (bc). (b) : qualitative orientation relations

define by Freksa, 1992... 9
Figure 5: (a): Single Cross Calculus. (b): Double Cross Calculus defined by Freksa,

1992. (c): possible qualitative orientation relations by combining (14-a) and (14-
b). ... 10

Figure 6: (a): Qualitative orientations of given object “d” with respect to orientation
line ab and cb. (b): position of object “d” is right-back (3) wrt. orientation line
cd.. 10

Figure 7: Compute Qualify operation on Allen’s Time Interval Calculus relations and
possible outcomes as relation between object A, B, C .. 19

Figure 8: Composition operation on Time Interval relations (m d) using SparQ......... 19
Figure 9: Possible time interval relation between (A and C) using Composition

operation .. 20
Figure 10: Representation of qualify operation results (A rllr B), (A rllr C) and (B lrrl

C) ... 22
Figure 11: Relationship between first two objects (A rllr B) (A rllr C) defined by

qualify operation.. 22
Figure 12: Result of Converse operation on relation (A rlll B), which is (llrl) 22
Figure 13: Composition operation between objects (A llrl B) (B rrll C) and possible

relations between A and C... 22
Figure 14: Composition Operation on RCC-8 relations (EC (A, B), EQ (B,C) and

TPP (C,D)) and resultant relation between A and C (EC).................................... 25
Figure 15: Composition operation of RCC-8 relations TPP (A, B) and PO (B, C) and

possible relations as result between A and C are (DC, EC, NTPP, PO, TPP)....... 25
Figure 16: Framework Architecture with required components................................... 27
Figure 17: Usecase diagram for Plug-in represents set of activates at application

(JUMP) side. .. 28
Figure 18: Use-Case diagram for Application Programming Interface (API).............. 29
Figure 19: API process diagram, major components and processes with flow

directions.. 30
Figure 20: XML document and there integration with JAVA application H.

Maruyama, 2002 .. 43
Figure 21: Plug-in UML Class Diagram... 52
Figure 22: API UML Class Diagram.. 55
Figure 23: Projection Based Model and Cone-based Model of Cardinal Direction

introduced by Frank 1991.. 71
Figure 24: Orientation representation of objects P1, P2 and P3 using projection-based

model Frank 1991in Open Street Map... 72
Figure 25: OpenJUMP plug-in to send and receive data .. 73
Figure 26: Munster Street data with road-intersections as points (A, B and C) 74
Figure 27: Reasoning result in XML format on given road-intersections as points (A,

B and C). .. 75
Figure 28: Line segment (A, B and C) representing Munster road, used for reasoning77

 viii

INDEX OF TABLES

Table 1: Symbolic representation of relations defined in Allen Time interval

calculus, 1983... 5
Table 2: Cardinal directions composition table introduced by Frank, 1991................ 7
Table 3: Composition table based on possible elations between R1 (a, b) and R2 (b,

c) of the basic binary RCC relations (reproduced from Randell, Cui, Cohn,
1994). ... 9

Table 4: Classification of modules specific results for both binary and ternary calculi
.. 44

 ix

1. Introduction:

1.1 Qualitative Reasoning Background and Reasoning Engines
Qualitative spatial reasoning (Cohn and Hazarika, 2001) is the subfield of knowledge
representation and symbolic reasoning that deals with then knowledge about an
infinite spatial domains using a finite set of qualitative relations. For human, spatial
reasoning is particularly powerful and accessible mode of cognition as human can
perceive the space directly through various channels conveying distinct modalities.

Reasoning is an approach for dealing with commonsense knowledge without using
numerical computation. Qualitatively models are used to model commonsense
reasoning in the spatial domain and leads to a better interpretation of the final result.
Spatial reasoning is presented in our everyday’s interaction with the geographical
world. In particular, we use orientation information or approximated distance to
locate places in space. Spatial reasoning is the most common and basic form of
intelligence. Qualitative knowledge is relative knowledge, where we obtain this
knowledge on the basis of comparison of the features within the object domain rather
then using some artificial external scales. It is considered to be closer to how human
represents and reason about commonsense and incomplete knowledge of real world
entities. Reasoning is an intellectual capacity, by which conclusions are drawn from
premises. The kind of reasoning that human being rely on, is based on commonsense
knowledge in everyday situations, as well as in very specialized domains is called
commonsense reasoning (Stepankova, 1992).

Spatial reasoning is required for a comprehensive GIS and several research efforts
have been underway to address this need (Abler 1987; NCGIA, 1989) and it is
important that a GIS can carry out spatial tasks, including specific inferences based
on spatial properties in a manner similar to a human expert and that there are
capabilities that explain the conclusion to users in terms they can follow (Try and
Bento, 1988). Today GIS does not support common-sense reasoning due to the
limitation of how to formalize spatial inferences and the gap between GIS user’s
interests and GIS itself.

Reasoner like SparQ and GQR are open source applications that are used for
representing space and reasoning about the space based on qualitative spatial
relations and bring qualitative reasoning closer to application. These relations and
certain operations like (composition, union, intersection and converse, etc) on them
constitute a qualitative calculus. Using these operations, GIS users can be able to
infer new knowledge (Renz and Nebel, 2007). During the last two decades, a
multitude of formal calculi over sets of spatial relations like (Overlaps, left-of, north-
of) have been proposed , focusing on different aspect of space (topology, orientation
and distance, etc.) by introducing different kind of spatial objects (point, line and
region). Integration of these reasoning engines with Geographic applications will
enable users for common sensing geographic reasoning and reasoning as it is
performed by human particularly in GIS, where user can use defined set of calculi to
infer knowledge qualitatively based on given spatial data.
As a case study, I took three different areas of Munster city as points like (A, B and

 1

C) to apply qualitative reasoning calculi like cardinal direction with the help of
developed API. An API supports GIS users to integrate reasoning engine (SparQ)
with spatial application like OpenJUMP. Based on coordinate values of given points,
I generated XML query to extract its qualitative description with the help of the
connected reasoner.

1.1.1 Motivation
Qualitative spatial reasoning engines like SparQ and GQR are toolboxes for
representing space and reasoning about the space based on qualitative spatial
relations. During last two decades, a multitude of formal calculi over sets of spatial
relations have been proposed, focusing on different aspects of space and dealing with
different kinds of objects by QSR community. SparQ aims at making these
qualitative spatial calculi and developed reasoning techniques available in a single
homogenous framework. It is designed for researcher’s working on qualitative spatial
reasoning, making experimental analysis and inferring knowledge qualitatively based
on defined operations introduced in the calculi.

The main motivation behind this framework development is to provide accessibility
to spatial calculi. A huge list of such spatial calculi has been discussed in literatures,
examples include the Point Algebra (Vilain and Kautz, 1986) and Allen’s Time
Interval Algebra (Allen, 1983), the various Region Connection Calculi (Randell, Cui,
and Cohn, 1992; Duntsch, Wang and McCloskey, 1999), the Intersection Calculi
(Egenhofer, 1991; Egenhofer and Franzosa 1991), Cardinal Direction Calculi (Frank
1991; Skiadopoulos and Koubarakis, 2004), the Double Cross Calculus (Freksa,
1992), the OPRA calculi (Moratz, Dylla and Frommberger, 2005) and many more.
Research in QSR is motivated by a wide variety of possible application areas
including GIS, robotic navigation, high level vision, common-sense reasoning about
physical system and specifying visual.

Integration of reasoning engines particularly SparQ that support both binary and
ternary calculi mentioned above, with spatial applications like, (ArcGIS) provides
basis for the design of intelligent GIS that supports spatial and temporal reasoning,
modeling natural languages for representing spatial or temporal aspects in human
machine interaction, query writing, data integration and inferring new qualitative
knowledge. The data in GIS is generally represented quantitatively either in vector or
raster formats and users often want to abstract away from this mass of numerical data
and obtain a high level symbolic description of the data or want to specify a query in
natural language like “Is Munster in Germany?”, or qualitative approach in
representation of spatial knowledge in navigational task where the problem is to find
a route between the given starting and ending points. In everyday communication,
orientation of spatial entities with respect to other spatial entities is usually given in
the terms of a qualitative category like “to the left of” or “north-east” rather then
numerical expression like 53 degree.

Although integration of spatial calculi with GIS provides imprecise data but provides
verbal descriptions that support natural language queries like “find all the university
departments north of Town Munster”, or “A is close to B then to C”. By developing

 2

the framework that provides common platform to access the reasoning engines from
spatial applications provides solution to interact spatial data qualitatively.

1.1.2 Research Objectives
The main object of this study is to develop platform independent framework using
XML and JAVA, which provides solution to integrate the qualitative spatial
reasoning engines particularly SparQ. The framework will act as middleware
application between spatial application and reasoner using TCP/IP connection. The
input queries from GIS application will be in simple plain-text (XML) format, and
response from reasoner will be converted into XML with the help of API. XML data
structure for inputs and output data enables users to interact with other application to
automate queries. Similarly conversion of result in XML format is to make result
meaningful, and enable to apply further processes based on defined XML tags. The
main objective will be achieved by pursuing the following sub-objectives.

i. Study reasoning engines to understand the facilities that are provided for
reasoning on spatial data.

ii. Analyze the reasoner specific calculi, their relations and operations like
(composition, union, intersection, etc.) to identify the commonalities.

iii. Based on analysis, both reasoner and defined calculi in it, I need to develop
XML structure that is used for writing queries that reasoner can easily
understand.

iv. Development of Java based API that supports XML format inputs and
outputs. The qualitative queries will be extracting from spatial application
(GIS) and pass it to reasoner via API for reasoning and extract result from
reasoner.

1.1.3 Outline of the Thesis

The research topic Framework development for Providing Accessibility to
Qualitative Spatial Calculi consists of seven chapters. Chapter-1 contains
introduction of thesis in general, including motivation and objectives of the research
work. Chapter-2 discusses about the knowledge used in this thesis including brief
introduction of Qualitative Spatial reasoning, reasoning calculi and application areas
of Reasoning and Case Study.Chapter-3 includes brief introduction of reasoning
engines (SparQ and GQR), analysis of calculi their relations and operations using
reasoner and API architecture overview. In Chapter-4, I have tried describe API
design includes XML structure based on SparQ modules syntax analysis. Usecase
diagrams to represent activates supported by plug-in and API. API and plug-in
Processes and their representations using process diagram.Chapter-5 contain API
implementation included with java codes for defined classes and their functionalities.
Chapter-6 describes case-study, calculus used for case-study explanation,
demonstration of developed API using GIS application (OpenJUMP). Last chapter
describes overall conclusion of the research work, shortcomings and future work,
related with API improvements.

 3

2. Literature Review

2.1 Understanding of QSR Calculi
Qualitative representation of the space abstracts from physical world and enables
computers to make predictions about spatial relations between existing objects in
specified domain, even when precise quantitative information is not available.
Different aspects of the space and temporal information can be represented by using
qualitative descriptions. The two important concepts of commonsense knowledge are
time and space. Time, being a scalar entity, is very well suited for a qualitative
approach as temporal reasoning (J. Renz, 2002; B. Nebel, 2001). Space is much
complex then time due to its inherent multi-dimensionality like topological
information, orientation information that describes entities and relationships between
entities. These relations are based on a set of jointly exhaustive and pair wise
disjoints (JEPD) basic relations, which are closed under several operations. It is
possible to apply constraint based methods for reasoning over these relations.

The most popular reasoning method used in qualitative spatial reasoning are
constraint based techniques that contain different constraints based calculi like Point
Algebra (Vilain and Kautz, 1986) and Allen’s Time Interval Algebra (Allen, 1983),
the various Region Connection Calculi (Randell, Cui, and Cohn, 1992; Duntsch,
Wang, and McCloskey, 1999), the Intersection Calculi (Egenhofer, 1991; Egenhofer
and Franzosa, 1991), Cardinal Direction Calculi (Frank, 1991; Skiadopoulos and
Koubarakis, 2004), the Double Cross Calculus (Freksa, 1992), the OPRA Calculi
(Moratz, Dylla, and Frommberger, 2005), and many more (Cohn, A. G. and
Hazarika, S. M., 2001). Constraint defined in qualitative reasoning is knowledge
about entities or about the relationships between entities in the given domain. A
constraint satisfaction problem (CSP) consists of a set of variables (V) over a domain
(D) and a set of constraints (Φ).

2.1.1 Allen’s Time Interval Algebra
The problem of representing temporal knowledge and temporal reasoning arises in a
wide range of disciplines including computer science, artificial intelligence
philosophy and linguistic. Allen, 1983 introduced a calculus based on intervals
representing events, qualitative relationships in hierarchical manners between these
intervals and algebra for reasoning about these relations. It gives a temporal
representation that takes the notion of a temporal interval as primitive. The reference
intervals are defined intervals that are equipped with a special property that affects
the amount of computation involved. It is used to group clusters of intervals for
which temporal constraints between each pair of intervals in the cluster are fully
computed. Allen introduced 13 base JEDP relations for temporal reasoning and
union operation on these base relations can produced 213 relations which are given
below (J. Allen, 1983)

The composition operation is used for reasoning with these relationships. Given
qualitative relationships between (X) and (Y) and (Y) and (Z) entities, such a
composition is defined as possible relations between (X) and (Z) entity. Since

 4

composition of base relations provide 169 possible compositions for reasoning.

Names from Allen 1983 Symbol Symbol for inverse
X before Y < >
X equal Y = =
X meets Y m mi
X overlays Y O oi
X during Y d di
X starts Y s s
X finishes Y f fi

Table 1: Symbolic representation of relations defined in Allen Time interval calculus, 1983

2.1.2 Dipole Relation Algebra
Most approaches in qualitative representation and reasoning about orientation
information deals with point as basic entities. A DRA-24 is oriented line segment
calculi by (R. Moratz, J. Renz and D. Wolter, 2001) based on determining start and
an end points as the basic entities. Dipoles are denoted by A, B, C etc. The starting
point of line segment is denoted by sA and ending point as eA. By defining set of
dipoles, it is possible to specify many different relations among given entities based
on the length of dipole. These relations are JEPD, means any two dipoles hold
exactly one relation. The DRA-24 is based on two dimensional continuous space to
identify locations and orientations of the different diploes based on point lies on the
left (l),to the right(r) or on the straight line through the reference dipole. The possible
relations between dipoles and point can be R {l o r}.

eARBsARBeBRAsBRA)()()()(∧∧∧

There are 14 relations that holds between defined point {sB, eB, sA, eB}, if these
points are distinct. In order to obtain a relational algebra they also consider those
relations where two diploes share common points at starting and ending on one
dipole which is denoted as {s, e} e.g. (sA sB) and (eA eB). By using these additional
dipole-point relations, they obtain 10 more relations. Altogether obtain 24 atomic
relations which refer D-24 (set of 24 atomic relations), which are given below.
{rrrr, rrrl, rrlr, rrll, rlrr, rllr, rlll, lrrr, lrrl, lrll, llrr, llrl, lllr, llll, ells, errs, lere,
rele, slsr, srsl, lsel, rser, sese, eses}.

Applying qualitative reasoning, using dipole relations they introduce constraint-
based reasoning techniques which handles defined set of relations, these must be
from a relation algebra, covered under defined operations like composition (o),
intersection, complement (-) and converse (˘).

2.1.3 Cardinal Direction Calculus
Qualitative reasoning is widely used by humans to understand, analyze and draw
conclusions about spatial environment available in qualitative form, as in the case of
test documents (Tobler and Wineberg, 1971), commonly in navigational tasks like
route finding between given starting point and ending point with certain route
properties.

As it is clear that qualitative approach loses some information but that may simplify

 5

reasoning. It uses less precise data and therefore yields less precise result then the
quantitative one. Which is highly desirable (Kuipers, 1983; NCGIA, 1989) because

1 Precision is not always desirable.
2 Precise quantitative data is not always available

Frank, 1991 introduced the cardinal direction calculi using general algebra oriented
style; consist of following properties and operations.
1. Directional symbol D, which describes directions as set of {N, S, E, W} or

more extensive { N, NE, E, SE, S , SW, W , N, NW }
2. Direction as function between two points P1 and P2 in the plane that maps to a

symbolical direction
 Dppdir →×:

3. Direction between two close points can determine identity element.
 0: →× ppdir
4. Cardinal direction is order dependent, if direction is given between two points

p1 and p2 then we can deduce direction between p2 and p1 by introducing
inverse function (inv), known as inverse direction

)1,2())2,1((ppdirppdirinv →

5. Direction between two contiguous line segments can combine by introducing

combination operation (∞)
)3,1()3,2()2,1(ppdirppdirppdir =∞

6. Combination of more then two directions must be independent of the order in
which they combine known as associative law

 cbacbacba ∞∞=∞∞=∞∞)()(
7. Direction from a point to itself d(p1, p1) does not effect other direction known

as identity
 ddd =∞=∞ 00

Frank introduced two prototypical concept of cardinal direction, first one is cardinal
direction as cones (related to angular direction between the observation’s position
and destination point) and second is cardinal direct defined by projections, based on
(pair-wise opposition and each pair divided the plane in to two half-planes).

Figure 1: Cardinal directions defined by projection and Cardinal Directions as cones

According to cardinal direction as cones for every line segment, exactly one direction
from the set of {N, NE, E, SE, SW, W, NW } and identity element (0).

 6

The operation quarter-turn anti-clockwise is defined as
NWqWSqSEqENq ====)(,)(,)(,)(

Inverse operation in both 4 and 8 directions symbolically given as

)(4)(
)(8

dedinv
dde

=
=

In directions with natural zone plane is divided in 9 regions, central natural, 4
regions, the combination operation for each projection can be represent as

Table 2: Cardinal directions composition table introduced by Frank, 1991

2.1.4 Region Connection Calculus
The RCC calculus which has been developed at the University of Leeds over last few
years, although the acronym “RCC” was originally derived from the last name
initials of the authors of (Randell, Cui and Cohn, 1992). The fundamental approach
of RCC is that extended entities i.e. regions in the space are taken as primary rather
then the dimensionless points of traditional geometry and primitive relations between
regions (Cohn, Brandon, J. Gooday and N. Mark, 1997). RCC theory is based on a
single assumption of a primitive dyadic relation C(x, y) where (x) connects with (y),
in terms of points incident in regions, C(x, y) holds when regions (x) and (y) share a
common point. Using the relation C(x, y) a basic set of dyadic relations are defined,
which is reflective and symmetric.

)],(),([
),(

xyCyxCxy
xxxC

→∀
∀

There are different degrees of connection between regions, from disconnected, equal,
externally connected, partial overlapping, and one region being tangential part of the
other or non-tangential part and so on. The defined theory by (Randell and Cohn,
1992) also supports a set of functions that define the Boolean composition of regions
and a set of topological functions that allow for the explicit representation of interior,
the closure and the exterior of particular regions (Randell, Cui and Cohn, 1992).

RCC-8 defines eight topological relations based on primitive relation C(x, y), a basic
set of dyadic relations which are JEPD, means that exactly one of these relations

 7

holds between any two regions are defined {DC, EC, PO, TPP, NTPP, TPPi, NTPPi
}.

Figure 2: RCC relations defined by Randell, Cui and Cohn, 1992 with interpretation

The relations {P, PP, TPP and NTPP} are non-symmetrical and support inverses
denoted by (Φ-1), where
 Φ {P, PP, TPP, NTPP}

⊥
The defined JEPD relations can be embedded in relational lattice, where symbol (T)
interpreted as tautology and symbol () as contradiction. Ordering of these
relations is on consumption that the weakest relations will connect directly to top and
strongest will connect at the bottom.

∈

Figure 3: Lattice of the subsumption hierarchy of the basic binary RCC relations (reproduced from
Randell, Cui, Cohn, 1994

Below given compositional table is developed by (Cohn et al, 1993) for RCC-8. The
composition table was developed from the initial idea of (Allen, 1983) is one of the
decidable representations to support special decision procedures. Composition table
for RCC-8 is developed by removing the relation (NTPI) from the original
transitivity table and also replace relation (TPI) with equal relation (=), which is

 8

represented as 8 by 8 matrix.

Table 3: Composition table based on possible elations between R1 (a, b) and R2 (b, c) of the basic
binary RCC relations (reproduced from Randell, Cui, Cohn, 1994).

2.1.5 Double Cross Calculus
Spatial orientation information, specifically directional information about the
environment is directly available to animals and human beings through perception
and is critical for establishing their spatial location and way finding, which is
imprecise, partial and subjective (Freksa, 1992). Double Cross Calculus (DCC) can
be seen as an extension of the Single Cross Calculus adding another perpendicular, is
developed by Freksa, 1992, a new approach for qualitative temporal reasoning. It can
be extended in order to presents and reason of orientation information of greater
complexity and exploitation of conceptual neighborhood between related qualitative
relations. The conceptual neighborhood information can bring computational
advantages like incomplete knowledge handling and uncertainty control in case of
fuzzy base knowledge.

In qualitative reasoning we relate entities of different dimensionality within a domain
of a certain dimensionality (Freksa, 1992), e.g. one-dimensional domain length,
which is spanned by two 0-dimentional entities (points with in the 1-dimenssional
domain). We can relate with two 0-dimensional entities on the basis of “less”,
“equal” and “greater”. Directional orientation in 2-D space is a 1-D feature, which is
determined by an oriented line, it is based on the order set of two points. Thus it
describes the orientation of line (bc) with respect to the orientation of line (ab) and
orientation can be describe as four distinct orientation relations like same, opposite,
left and right.

Figure 4: (a) Orientation line (ab) and (bc). (b) : qualitative orientation relations define by Freksa,
1992

 9

By sub-segmenting the 2-D space into two semi-planes perpendicular to the
orientation line, we can get eight augmenting qualitative orientation relations namely
straight-front (0), right-front (1), right-natural(2), right-back (3), straight-back (4),
left-back (5), left-natural (6) and left-front (7).

Figure 5: (a): Single Cross Calculus. (b): Double Cross Calculus defined by Freksa, 1992. (c):
possible qualitative orientation relations by combining (14-a) and (14-b).

By combining both orientation labels from figures (a) and (b), we can produce 15
qualitative orientations and locations given in figure (c), each region corresponding
to an orientation wrt. (B), is represented in the upper left of the corresponding matrix
field and orientation wrt.(A), is represented as lower right of the corresponding
matrix field, used to structure conceptual neighborhood schema. The neighborhood
relation can be {5/3, 5/2, 5/1} not relations like {3/5, 3/7}.

An introduced orientation-based representation framework is used for qualitative
spatial reasoning, illustrated as an example. The task is based on knowing the
qualitative spatial relations of vector (bc) to vector (ab) and the relations of vector
(cd) to vector (bc), and inferring relations of vector (bd) to original reference vector
(ab).

Figure 6: (a): Qualitative orientations of given object “d” with respect to orientation line ab and cb.
(b): position of object “d” is right-back (3) wrt. orientation line cd.

By combining above mentioned two figures, we can infer location of (d) using the
following notations: “c is right-front (1) wrt. Vector (ab)”, “d is right-back (3) wrt.
Vector (cd)” and finally “d is left-front (7) wrt. Vector (ab)” or “d is straight-front
(0) wrt. Vector (ab)” or “d is right-front (1) wrt. Vector (ab)”.Composition table of
given 8*8 orientation relations is use to infer position of (d) with respect to vector
(ab).

 10

2.2 Application Areas of Qualitative Spatial Reasoning
The principle of qualitative reasoning is to represent not only our everyday
commonsense knowledge about the physical world, but also the underlying
abstractions used by engineers and scientists, when they create quantitative models.
Using such knowledge and appropriate reasoning methods, a computer could make
predication, diagnose and explain the behavior of physical system in qualitative
manners, even a precise quantitative description is not available (A. G. Cohn, 1997).
Most of the knowledge about time and space is qualitative in nature; specifically
visual knowledge about space and the knowledge which we retrieved from memory.
Qualitative descriptions are very powerful in this situation, when there are many
items to be distinguished, there are many relations that can be established for
distinguishing them, when there are few, only few are needed for their distinction (C.
Freksa, 1991).

Representation and analysis of spatial information is an essential problem and the
space has multidimensional aspects, which we can not represent by single scalar
quantity. Spatial information about the space is available as qualitative information
or as a large amount of quantitative data, which required efficient analysis in
qualitative form. Qualitative spatial reasoning has wide variety of application areas
including geographical information systems (GIS), robotic navigation , high level
vision, the semantic of spatial preposition in natural language, engineering design,
reasoning about physical situation and specifying visual language syntax and
semantics (Cohn,1997).

QSR has concentrated on representation and extraction aspects of spatial
information. Various computational Para-diagrams are investigated including
constrain-reasoning, compute-relations based on composition table defined for
specific calculus. Most of the qualitative spatial calculi are developed with respect to
different aspects of the space like Allen’s Time Interval Algebra based temporal
reasoning, the Region Connection Calculi, used for representation and reasoning on
topological relationship between given entities, Cardinal Direction calculi used for
reasoning on position and orientation of entities and many more.

Most of the reasoning calculi have defined composition tables that represents
possible relationships between entities, Relations are given as a set of JEPD relations
which represents as R1 (a, b) and R2 (b, c). The composition table provides a useful
and efficient way of reasoning and have certainly been the most commonly used
form of qualitative spatial inference but they do not necessarily subsumes all forms
of desired reasoning, therefore other more general form of reasoning known as
constraint-based reasoning like algebraic-closure, scenario-consistency for network
consistency verification and algebraic-reasoning has been introduced. Qualitative
spatial reasoning can used in many application areas from everyday life in which
spatial knowledge plays a role, particularly the areas in which uncertain and
incomplete knowledge exists such as.

1. Geographic information system.
2. Cognitive maps and path finding, which might serve to control robots.
3. Computer aided systems for architectural design.
4. Design and user interfaces.

 11

5. Natural language information to give directions.
6. Determination of the 3-D structure of molecules.

2.2.1 Reasoning Application in GIS
Geographic Information System (GIS) is a common platform that is used to represent
and analyze geospatial information stored in both raster and vector data formats.
Naïve Geography is the field of study that is concerned with formal modeling of
common-sense geographic world. GIS users are interested to abstract away bulk of
spatial data from the mass of numerical data, and obtain a high level symbolic
description of the data or want to specify a query in a way which is essentially or at
least qualitative. It comprises a set of theories upon which next generation GISs can
be built based on qualitative spatial reasoning.

The concept of Naïve Geography is basis for the design of intelligent GISs that will
act and response as a person would. Central to Naive Geography is the area of spatial
and temporal reasoning. Many concepts of spatial and temporal reasoning have
become important research areas in a wide range of application domains such as
physics, medicine, biology and geography and more specific on the reasoning about
geographic space and time, subsequently called geographic reasoning (Egenhofer, D.
Mark, 1995). There are different aspects of the space and it is very important for
reasoning and representations to decide what kinds of spatial entities we will admit
(commit to a particular ontology of space), and also need to consider different ways
of describing the relationships between these entities like consideration of their
topology, size, distance or their shape.

Naïve geography which is the basic form of human intelligence, people use
spatiotemporal reasoning in daily common life and employ methods to infer
information about their environment and about the consequences of changing over
location in the space. It is very important to understand, how people handle their
environment to incorporate naïve geographic knowledge and reasoning into GIS. The
concepts and methods that people use to infer information about the space and time
are important for interaction between human and computerized GISs (Egenhofer,
David Mark, 1995). Today GIS does not support common-sense reasoning due to the
limitations for how to formalize spatial inferences. In order to make GIS useful for
wide range of people, it is important to focus on common-sensing geographic
reasoning, reasoning as it is performed by people. Integration of named distance and
qualitative orientation approach in GIS is appropriate example, where qualitative
reasoning calculi like cardinal direction calculi and named distance approach is used
to identify location of the entity in the terms of (N, S,W,W) and distance between
entities in the terms of (Near, Medium, Far and very Far).

The scope of GIS applications can illustrated with respect to

1. Government and public service
2. Business and service planning
3. Logistics and transportation
4. Environment

Tex mapping and assessment is classical example of value of GIS in the local
government level. A GIS is used to collect and manage the geographic boundaries

 12

and associated information about properties with the help of computer Assisted Mass
Appraisal (CAMA) system which is RDBMS and is responsible for sale analysis,
evaluation, data management and administration and generating notice to owner.
Both GIS and CAMA system are based on RDBMS technology and use a common
identifier to effect linkage between a map features and a property records.

The tax assessment task involve a geographic database query to locate all scales of
similar properties within the predetermined distance of a given property and to
compare the values of all comparable properties with in the predetermined search
radius. Integration of reasoner and geo-statistical features in GIS is useful for the
assessment and comparison of the characteristic of these properties qualitatively and
quantitatively, their properties, like plot size, scales price, neighborhood status can
elevate on the basis of conceptual neighborhood and clustered properties. By
integrating QSR with Geographical information system (GIS) user can infer new
spatial knowledge using qualitative spatial query language i.e. by applying cardinal
direction calculus on defined spatial data of plot; we can infer possible cardinal
relations between given plots instead of defining all possible cardinal relation in the
RDBMS.

2.2.2 Reasoning Application in Navigation
Application of orientation-based qualitative spatial reasoning is the process of
determining a location in the space on the basis of our own location and the location
which we know. Orientation information particularly directional information about
environment is directly available to animals and human being through perception and
is crucial for establishing their spatial location and way-finding (Freksa, 1992). In
order to deal with such imprecise and partial information needs appropriate methods
like exploration of conceptual neighborhood relations for presentation and
processing. Two relations in the representation are conceptual neighbors, when an
operation in the represented domain can result in a direct transition from one relation
to the other.

The conceptual neighborhood structures are important since they intrinsically reflect
the structure of the represented world with their operations (Furbach, 1985). Such
presentations allow us to implement reasoning strategies. The Directional orientation
in 2-dimensional space is 1-dinensional feature represented by an orientated line,
which is specified by ordered set of two defined points. The specification of
orientation can be described through qualitatively like same, opposite, left and right.
On the other hand orientation-based inferences on the basis of ordered oriented line
(vector) between defined set of points used to infer the directional relation of location
from original reference line. Such inferences can be relevant for way-finding
processes, like route description from a known location to unknown place in the
terms of orientation information and also direct route to particular place.

Kuipers and his research group proposed several navigation and mapping systems for
large scale space, based on four level semantic hierarchy of description for
representation, namely sensorimotor interaction, procedural behavior, topological
mapping and metric mapping (M. Escrig, F. Toledo, 1998). The sensorimotor and
procedural levels are capable to solve navigation problem while topological and

 13

metric levels provides the most powerful problem-solving capabilities (to drive the
paths).Their proposed computational models are TOUR model (for structure outdoor
environments), NX model (for structured indoor environments) and QUALNAV
model (for open structured environments like mountainous terrain).

2.2.3 Reasoning application in Artificial Intelligence
Qualitative spatial reasoning is popular in Artificial Intelligence (AI) cause of
following factors that influence.

1. Some time high-precision quantitative measurements are not useful for
analysis of complex systems.

2. AI gains experience and confidence for representation and processing non-
numerical knowledge.

3. Qualitative spatial knowledge requires less storage as compare to
quantitative knowledge and easy to understand because qualitative
knowledge is near to natural language.

In quantitative representation of space, the reference system is specified by a ruler
which measures spatial objects and their locations. In a three-dimensional Cartesian
reference system, for example, three rulers are arranged orthogonally, objects and
their locations are specified by a measurement on each of these rulers (Christian
Freksa, Ralf Rohrig, 2000). In contrast qualitative representations we do not required
scales on the rulers, since they do not employ metrics, and comparisons are carried
out among entities using same reference system.

Incomplete spatial information is one of the major problems in spatial reasoning,
especially for robot navigation, where the location of objects and shape is not
sufficiently determined. Qualitative approach to navigation can distinguish different
kinds of partial information according to the degree of determination and can design
specialized representation for them; metric information, for instance, is more
determined then topological in the sense those matrix invariants put strong
constraints on location and shape of objects then topological invariants. Most of
formalisms devised for the qualitative representation of spatial information have
some means for describing the linear ordering of points, like as ordering information
is strictly stronger then topological information but strictly weaker then metrical
information(Christoph Schlieder,1991) as the isometric transformation of the plane
either preserve the orientation of all point triples (e.g. rotation) and topological
transformation generally do not preserve order information about given set of points.

The concept of landmark models particularly panorama is introduced as a solution to
the qualitative spatial representation problem and specifically to the navigation
problems, where a location is defined with reference to the landmarks around it and
changes in panorama due to the transformation between regions. The navigation
strategy in panorama, based exclusively on ordering information to fine optimal
solution as well as used as a guideline for efficient search in maps.

 14

3. Qualitative Spatial Reasoner
Qualitative spatial reasoning (QSR) is an established filed of research pursued by
investigators from many discipline including geography, philosophy, computer
science and AI. Qualitative spatial representation techniques are especially suited for
applications that involve interaction with human as they provide an interface based
on human spatial concepts. A multitude of spatial calculi has been proposed during
last two decades focusing on different aspects of the space but the amount of
applications employing QSR techniques are comparatively small due to the
following factors.

1. Choosing the right calculus for particular application is a challenging task,
especially for the people not familiar with QSR.

2. Calculi are specified partially and no implementation is made available and
investigated theoretically.

3. Integration of calculi with applications required serious efforts to identify
appropriate calculus for application; this is time-consuming and error-prone
process particularly writing down large composition table.

Qualitative spatial reasoner is toolbox that provides a platform for making the calculi
and reasoning techniques developed in the QSR community available. Some of these
reasoning engines provide both binary and ternary spatial calculi and capabilities to
infer knowledge based on composition table.

3.1 SparQ
SparQ is a toolbox developed at university of Bremen (Dylla et al., 2006; Wallgrun
et al, 2006) it supports both binary and ternary calculi, released under the GPL
license for representing the space and reasoning about the space based on qualitative
spatial relations. It is developed with in the R3-(Q-Shape) project of the SFB/TR8
Spatial Cognition.

SparQ provides a platform for making binary and ternary calculi and reasoning
techniques available. It is an application program that can be used directly, provides
a broader range of services including capabilities of integration with the spatial
applications like ArcGIS and OpenJUMP (over TCP/IP socket connectivity). It
contains composition table and operations based on JEPD relations and supports the
most common tasks including qualification, computing with relations, and constraint-
based reasoning for an extensible set of spatial calculi. The calculi are defined in the
algebraic specification language (CASL). The current version SparQ mainly focuses
on calculi from the area of reasoning about orientation of point objects or line
segments and designed as open framework of single program component with text-
base communication, that support accessibility to integrate new calculi. SparQ
introduced four modules like qualify, compute-relation, constraint-reasoning and
algebraic-closure.

3.1.1 Compute-relation Module
Compute-relation in SparQ allows computation of operations defined in the specific
calculus; it takes parameters as operations like (union, intersection, complement,
composition and converse/inverse) and set of relations that holds between given
entities.

 15

Composition (N, N)
Example shows the composition operation on given relation north (N)

3.1.2 Qualify Module
Qualify module in SparQ takes quantitative scene descriptions as argument and
returns qualitative descriptions of scene between the given entities. Each object
description is a tuple consisting of the object identifier (A, B and C) and object
parameters, which is depend upon type of object used for reasoning. Quantitative
description of line segments (dipole) is represented as (Id, xs, ys, xe, ye). Here
(xs)(ys) are starting point of X and Y and (xe)(ye) are ending points of entity X and
Y.
Example:
 ((A -2 0 8 0) (B 7 -2 2 5) (C 1 -1 4.5 4.5)
Similarly 2-D Point can be represented as
 (A X-axis Y-axis)(B X-axis Y-axis)
 (A 25.344 0.9955)(B 25.6544 0.9933)

3.1.3 Constraint-reasoning Module
Constraint represents knowledge about entities or about the relationships between
entities, it is used to restrict the defined domain of 2, 3, 4………., n variables.
The constraint-reasoning module reads a description of a constraint network defined
qualitatively that may includes disjunctions and may be inconsistence. It performs
operation to identity network consistence on the basis of implemented operations like

3.1.3.1 Algebraic-closure
Algebraic-closure operation is used to enforce path-consistence on the constraint
network. A constraint-networks and constraint satisfaction problem (CSP) is said to
be path consistency if and only, for any partial instantiation of any two variables
satisfying the constraints between the two variables. It is possible for any third
variable to extend the partial instantiation to this third variable satisfying the
constraints between the three variables
Example:
 Algeibraic-closure((A N B)(B E C))

3.1.3.2 Scenario-consistency
Operation scenario-consistence is provided as argument, the constraint-reasoning
module check if the algebraically closed scenario exists for given networks. It use
backtracking algorithm to generate all possible scenarios that are algebraic closed.
Example:
 Scenario-consistency all ((A po B)(B tpp C))

3.1.3.3 Refine Operation
Refine operation in constraint-reasoning returns conjunction of two given constraint-
networks. Basically it applies intersection operations on corresponding constraints.

3.1.3.4 Extend Operation
Extend operation in constraint reasoning module returns disjunction. It merges two
constraint networks by uniting corresponding constraints.

 16

3.1.4 Algebraic Reasoning Module
Algebraic reasoning module is used for reasoning about real-valued domain using
techniques of algebraic geometry. The main service offer by this module is to
providing a consistency checking mechanism for constraint network that is based on
the relation semantics only. It provides possible results like

3.1.4.1 Consistency-checking
a. Satisfiable

 The network is proved to be satisfiable
b. Not Satisfiable

 The network is proven to be unsatisfiable
c. Cannot Decide

 Neither one of the above proofs succeeded
b. Operation analysis
The algebraic-reasoning module commend is used to verify the defined operations
by iterating over all basic operations to analyze the given operation (e.g.
composition, inverse) and summarize the result in the form of “OK” if operation
verified, “CANNOT INCLUDE” if operation not agreeable with the calculus
semantic, “MAY ALSO INCLUDE” if operation is not listed in table, may possible
missing and “MUST ALSO INCLUDE” bases relation is not listed in the operation
table.

3.1.4.2 Qualification
Qualification function is part of algebraic-reasoning used to identifying the scenario
that qualifies with out supplying a designated qualification function. Each object
description is a tuple consisting of the object identifier (A, B and C) and object
parameters, which is depend upon type of object used for reasoning. Quantitative
description of line segments (dipole) is represented as (Id, xs, ys, xe, ye). Here
(xs)(ys) are starting point of X and Y , (xe)(ye) are ending points of entity X and Y.
Example:
 a-reasoning dra-24 qualify all (A 25.344 0.9955)(B 25.6544 0.9933)

3.2 GQR
Generic Qualitative reasoner (GQR) is free software distribute under the terms of the
GNU license. It was developed at the University of Freiburg as a solver for binary
qualitative constraint-networks; it takes calculi descriptions and one or more
constraint-networks as input to solve the path consistency method (basically returns a
network that is (semantically) equivalent to the original one) and heuristic
backtracking. The concept of path consistency method is not sufficient to decide
consistency of constraint-networks, therefore GQR uses chronological backtracking
with 2-way or n-way branching that trying out different instantiations of the
constraints containing disjunctions of the base relations (cf. Ladkin and Reinefeid,
1997, Nebel 1997). By identifying tractable subclass of calculus (set of relations
closed under intersection and composition, for which the path consistency method
decides consistency) one can speed up the reasoning time.

The concept of consistency method and backtracking search may benefit from
heuristics about which part of the constraint-network is to be processed next. GQR

 17

supports arbitrary binary constraint calculi, new calculi can be added in it, by
specifications in a simple text format or XML file format. Currently GQR supports
arbitrary binary constraint calculi developed for spatial and temporal reasoning, such
as calculi from the RCC family, the Intersection Calculi, Allen’s Time Interval
Algebra, Cardinal Direction Calculi and Calculi from the OPRA family.

Reasoning in GQR is based on purely syntactical definition of qualitative calculi. A
calculus is defined by a non-empty finite set “B” of symbols and element of “B” are
referred to the set of base relations. A unary function of “B” can be represent as
Converse operation on each base relation can be represented as

BB →
(

:
Binary function is function based on the pair of basic relations their composition and
a distinguished element (id) of (B) known as identity relations

BBxB 2: →o
aidaaaidaa === oo

((,,)(
GQR is written in object oriented programming language C++, there for user can add
new heuristics quite easily. New qualitative calculi can define by writing in simple
text or XML file to integrate in the reasoner.

3.3 Calculi Analysis Using SparQ Reasoner

3.3.1 Allen’s Time Interval Algebra (AI) Analysis
Using SparQ reasoner, I analyzed operations on base relations defined by Allen in
Time Interval Calculus. The purpose of analyzing Time Interval Algebra is to
identify SparQ query syntax and their possible outcomes as result based on defined
modules in reasoner like (qualify constraint-reasoning, compute-relation and
algebraic-reasoning and their sub-operations). As Allen’s Time Interval Algebra is a
binary calculus therefore it supports only binary operations like (union, intersection,
converse, complement and composition).

3.3.1.1 Qualify Module
Qualify module in SparQ is used to turn a given quantitative geometric scene
descriptions into qualitative scene descriptions composed of base relations from a
particular calculus. Each object description is a tuple, consists of objects (entities)
identifiers like (A, B, C, D…. etc.) and its modules specific parameters, which is
dependent upon entity type support by the reasoner. SparQ supports five basic
entities including 1d-point, interval, 2d-point, 2d-oriented-point and dipole. The
coordinate values of given entity are taken as entity type. These values can be
specified as integer, float or rational numbers.

$. /sparq qualify allen all “((A 4 8) (B 8 10) (C 3 10))”
Result: ((A m B) (A d C) (B f C))

 18

Figure 7: Compute Qualify operation on Allen’s Time Interval Calculus relations and possible
outcomes as relation between object A, B, C

In the above mentioned example, i analyzed qualify operation. Qualify module takes
entity identifiers (A, B, C) and parameters of entity type, which is based on selection
of entity-type. Here each entity takes two parameters as interval (start, end) values.
Qualify module converts given quantitative description in qualitative description that
represents possible relations ((A meet (m) B) (A during (d) C) (B finish (f) C))
between set of entities defined in Allen’s Time Interval Algebra.

3.3.1.2 Compute-relation Module
The compute-relation module allows computing with the operations defined in the
calculi. The operations are categorized as binary and ternary operations. The
selection of operations depends upon calculus that supports. Compute-relation takes
basic relations as input parameters, the number of input relations depend upon arity
of operation like converse operation which takes single base relation as input
parameter.

In the below mentioned example, I compute different operations like (UNION,
INTERSECTION, COMPOSITION) on the set of base relations.
 &. /sparq compute-relation allen union b m o
 Result: (b m)
By applying compute-relation module, I computed union operation on given relations
between entities like (A before (b) B), (B meet (m) C) and (C overlap (o) D). From
the given result, i came to know the union of the given relations can be (meet (m),
before (b)).
 &. /sparq compute-relation allen intersection b b
 Result: (b)
The result of intersection operation between two same base relations is same base
relation, like intersection of two relation before (b) and before (b) itself relation
before (b).
 &. /sparq compute-relation allen composition m d
 Result: (d o s)

}),(),(:|,{(: SCBrBADBDCAsr ∈∧∈∈∃∈=o

Figure 8: Composition operation on Time Interval relations (m d) using SparQ

 The possible relationship between A and C is given as (d o s)

 19

Figure 9: Possible time interval relation between (A and C) using Composition operation

The result of Composition operation on given base relations between entities like (A
meet (m) B) and (B during (d) C) is (d, o, s), it means that the possible relations
between entities “A” and “C” can be during (d), overlay (o) and start(s), which is
represented as
(A during (d) C) or (A overlay (o) C) or (A start(s) C).

3.3.1.3 Constraint-reasoning Module
Constraint-reasoning module reads constraint-networks descriptions defined as
qualitative scene. The module contains particular kind of operations like algebraic-
closure and scenario-consistency and actions like refine and extend, that determines
what kind of consistency check is performed.

a. Algebraic-closure:
Algebraic-closure operation is used in constraint-reasoning to enforce path-
consistency on constraint-networks and detect consistency, algebraic closure and
inconsistency of a given constraint-network.
$. /sparq constraint-reasoning allen algebraic-closure “((A s B) (B d C) (C m D))”

 Result: Modified Network.
 ((C m D) (B b D) (B d C) (A b D) (A d C) (A s B))

In this example I applied constraint-reasoning module and algebraic-closure
operation on the constraint-networks (A start(s) B) (B during (d) C) (C meet (m) D)
to identify the path-consistency. As a result, reasoner modified given networks to
make it algebraic-closed by adding extra base relations between entities like (A
before (b) D), (B before (b) D) and (A during (d)

b. Scenario-Consistency:
Scenario-consistency is an operation of constraint-reasoning module. It use back-
tracking and forward-tracking algorithms to check algebraically closed scenarios for
the given constraint-networks. Scenario consistency operation takes additional
parameters to identify and returns path-consistency scenario that found. The value
“First” returns the first path-consistency scenario of given network and “ALL”
returns possible path-consistency scenarios as set of disjunction of base relations. In
case of inconsistency constraint network, reasoner will respond comments as “NOT
CONSISTENT”

 $. /sparq constraint-reasoning allen scenario-consistency first “((A s B) (B d
 C))”

 Result: ((B s C) (A s C) (A s B))
In above SparQ query using scenario-consistency operation with return value “first”
on constraint-networks (A start(s) B) (B during (d) C) to identify path-consistency.
As result the reasoner returns path-consistency network by introducing additional
base relation between entity A and C like, (A start(s) C), which is consistent
scenario.

 20

c. Refine:
Refine is action that returns the conjunction of two constraint-networks in constraint-
reasoning.
 $. /sparq constraint-reasoning allen refine“((A (d f) B))” “((A d B))”

 Result: ((A (d) B))
The conjunction of two constraint-networks (A (during (d), finishes (f) B (A during
(d) B) is (A during (d) B).

d. Extend:
Extend action returns disjunction of two constraint-networks in the constraint-
reasoning.
 $. /sparq constraint-reasoning allen extend“((A (d f) B))” “((A d B))”

 Result: ((A (d f) B))
Extend operation on constraint-networks (A during (d), finishes (f) B) (A during (d)
B) returns disjunction relations as constraint on given networks, which is (A during
(d), finishes (f) B).

3.3.1.4 Algebraic-reasoning Module
Algebraic-reasoning module in SparQ provides facilities of reasoning about real-
valued domain using techniques of algebraic geometry. It provides two basic
operations consistency and qualification. Consistency operation is used for
consistency checking based on operation tables and algebraic relations specification.
The reasoner returns result as string like, “SATISFIABLE, CAN NOT DECIDE or
Not SATISFIABLE”
Operation in algebraic-reasoning provides functionality to qualify scenario without
supplied a designated qualification function

a. Qualification:
 $. /sparq a-reasoning allen qualify “((A 4 8) (B 4 10))”

 Result: ((A (S) B))
The above mentioned qualify operation query using algebraic-reasoning module
returns qualitative description (A start(s) B) of given quantitative description (A 4 8)
(B 4 10), which are interval values (starting and ending) of entity “A” and “B”.

3.3.2 Dipole Relation Algebra (DRA-24) Analysis

3.3.2.1 Qualify Module
 $./sparq qualify dra-24 all“((A -2 0 8 0) (B 7 -2 2 5) (C 1 -1 4.5 4.5))“
 Result: ((A rllr B)(A rllr C) (B lrrl C))

In above SparQ query, I applied qualify operation to get qualitative descriptions on
given quantitative descriptions. It take two control modes represented as “ALL” and
“FIRST2ALL” that returns all possible qualitative descriptions or first-two
qualitative description on given 2-dimension dipole entities A, B and C. It takes four
parameter values as (sx, sy, ex and ey). Here sx (starting value of x), sy (starting
value of y), ex (ending value of x) and ey (ending value of y). The qualitative
description represents basic relations between given entities.

 21

Figure 10: Representation of qualify operation results (A rllr B), (A rllr C) and (B lrrl C)

 $./sparq qualify dra-24 first2all “((A -2 0 8 0) (B 7 -2 2 5) (C 1 -1 4.5 4.5))“

Here in above query first2all control mode with qualify operation returns possible
qualitative descriptions as relations between give dipole entities (A, B and C) which
are given below

 Result: (A rllr B) (A rllr C)

Figure 11: Relationship between first two objects (A rllr B) (A rllr C) defined by qualify operation

3.3.2.2 Compute-Relation Module
 $./sparq compute-relation dra-24 converse rlll

 Result: (llrl)
The converse operation on base relation (rlll) defined in Dipole Relation Algebra
(dra-24) Calculus is relation (llrl). This is represented as graphical notation below.

Figure 12: Result of Converse operation on relation (A rlll B), which is (llrl)

 $./ sparq compute-relation dra-24 composition llrl rrll
 Result: (llll, lllr,llrl,lrll,lrrl,lsel,rllr,rlrr,rrll,rrlr,rrrl,rrrr,rser,slsr,srsl)

Figure 13: Composition operation between objects (A llrl B) (B rrll C) and possible relations between
A and C

The composition operation on base relation (llrl and rrll) means, the relationship
between entities (A llrl B)(B rrll C). As result reasoner extracts possible set of base
relations like (llll, lllr, llrl, lrll, lrrl, lsel, rllr, rlrr, rrll, rrlr,rrrl,rrrr,rser,slsr,srsl)
between entity “A” and “C” with the help of composition table defined for given
calculus.

 22

3.3.2.3 Constraint-reasoning Module
a. Algebraic- Courser:
 $. /sparq constraint-reasoning dra-24 algebraic-closure “((A rrlr B) (A (rele
 rrll) C) (B rrll C))”

 Result: Unmodified network
 ((B (rrll) C) (A (rele rrll) C) (A (rrlr) B))

The algebraic-closure operation using constraint-reasoning module that returns
unmodified network as result on given constraint-networks “((A rrlr B)(A (rele rrll)
C) (B rrll C)), means that the given network has path-consistency.

b. Scenario-consistency
 $./ sparq constraint-reasoning dra-24 scenario-consistency all “((A rele
 C) (A ells B) (C errs B))”

 Result: ((C (errs) B) (A (ells) B) (A (rele) C))
 1 scenario found, no further scenarios exist

The scenario-consistency operation on constraint-network “((A rele C) (A ells B) (C
errs B))” returns path-consistency as single scenario, which is ((C (errs) B) (A
(ells) B) (A (rele) C)).

c. Refine:
 $./sparq constraint-reasoning dra-24 refine “ ((A (rele rllr) B))”“((A rllr
 B))”

 Result: ((A (rllr) B))
Refine operation on constraint-networks “((A (rele rllr) B))” “((A rllr B))” returns
conjunction of two given networks which is represented as relation between given
entities ((A (rllr) B)).

d. Extend:
 $./sparq constraint-reasoning dra-24 extend“ ((A (rele rllr) B))”“((A rllr
 B))”

 Result: ((A (rele rlle) B))
Extend operation returns disjunction of two given constraint-networks as possible
relations between entities ((A (rele rlle) B)).

3.3.2.4 Algebraic-reasoning Module
a. Consistency Checking:
 $. /sparq a-reasoning dra-24 consistency “((A rllr B) (A ells C)(B lrrl C))”

 Result: Not Satisfiable
Consistency operation using algebraic-reasoning module on given constraint-
networks “((A rllr B)(A ells C)(B lrrl C))” used to analysis path-consistency and it
returns result as Not Satisfiable, which means given network is not consistent.

b. Qualification:

$. /sparq a-reasoning allen qualify all “((A -3 0 8 0) (B 8 0 4 8))”
 Result: ((A (ells) B))

Qualify operation using algebraic-reasoning module returns qualitative description as
a possible base relation (A (ells) B) between given entities.

 23

3.3.3 Cardinal Direction Calculus Analysis

3.3.3.1 Qualify Module
 $. /sparq qualify cardir all “((A 4 0) (B 4 8))”
 Result: ((A (s) B))

Qualify operation on given entity “((A 4 0) (B 4 8))”.Entities are represented as 2d-
point, that takes two parameters (ax, ay, bx, by) as quantitative description. The
reasoner returns qualitative description as base relation between given entities (A
south(s) B) defined in cardinal direction calculus.

3.3.3.2 Compute-relation Module
 $./ sparq compute-relation CARDIR intersection N,N
 Result : (n)

Intersection operation on base relation (North(N), North(N) defined in cardinal
direction calculus returns North(N) as result, which means intersection of relation
(N,N) itself equal to relation North (N).

 $./ sparq compute-relation CARDIR union N,NE
 Result: ()

Similarly union of two base relations North (N) and North-east (NE) is empty
relation.

 $./ sparq compute-relation CARDIR composition S E
 Result: (se)

Composition of two cardinal relations (South (S) and East (E) is South-East (se).

3.3.3.3 Constraint-reasoning Module
a. Algebraic- Closure:

 $./ sparq constraint-reasoning cardir algebraic-closure “((A N B) (B W
C))“
 Result: Modified Network
 ((B (w) C) (A (nw) C) (A (n) B))

Algebraic-closure operation on constraint-networks “((A north(N) B) (B west(W)
C))” returns modified network by adding additional cardinal direction relation
between entities (A north-west(nw) C) to make given network algebraic-closed, The
modified constraint-network as result given by reasoner is ((B west(w) C) (A north-
west(nw) C) (A north(n) B))

b. Scenario-consistency:

 $. / sparq constraint-reasoning cardir scenario-consistency all “((A N B) (B
 E C) (A NE C))“
 Result: ((B (e) C) (A (ne) C) (A (n) B)) 1 scenario found.

Scenario-consistency operation using return parameter “ALL” on constraint
network“((A north(N) B) (B east(E) C) (A north-east(NE) C))” that returns one
path-consistent scenario ((B east(e) C) (A north-east(ne) C) (A north(n) B)).

c. Refine:

 $. / sparq constraint-reasoning cardir refine “((A N NE B)” “((A NE B))“
Result: ((A (ne) B))

Refine operation returns disjunction relation between two given constraint network,

 24

which is ((A north-east(ne) B))
d. Extend:

 $. / sparq constraint-reasoning cardir extend “((A N NE B)”“((A NE B))“
Result: ((A (n ne) B))

Extend returns conjunction relation between given constraint-network “((A north
(N), north-east (NE) B)” “((A north-east (NE) B))”, which is ((A (north (n), north-
east (ne) B))

3.3.3.4 Algebraic-reasoning Module
a. Qualification:
Cardinal direction calculus does not provide algebraic speciation.
b. Qualify
Return same result as defined in Qualify Module.

3.3.4 Region Connection Calculus (RCC) Analysis

3.3.4.1 Compute-relation Module
 $./sparq compute-relation rcc-8 composition ec eq tpp
 Result: (ec)

The composition operation using compute-relation module on base relations between
entities (A externally-connected (ec) B) (B equal (eq) C) (C tangential-proper-part
(tpp) D) defined in RCC, returns relationship between given entities “A” and “D”.
Which is (A externally-connected (ec) D).

Figure 14: Composition Operation on RCC-8 relations (EC (A, B), EQ (B,C) and TPP (C,D)) and
resultant relation between A and C (EC)

 $./sparq compute-relation rcc-8 composition tpp po

 Result: (dc ec ntpp po tpp)
Similarly composition operation on relations (A tangential-proper-part(tpp) B)(B
partially-overlap(po) C) returns possible set of base relations (dc, ec, ntpp, tpp)
between given entities “A” and “C”. The possible set of relations between entity A
and C are given below.

Figure 15: Composition operation of RCC-8 relations TPP (A, B) and PO (B, C) and possible
relations as result between A and C are (DC, EC, NTPP, PO, TPP)

3.3.4.2 Constraint-reasoning Module
a. Algebraic- Closure:

 $./ sparq constraint-reasoning rcc8 algebraic-closure „((A ec B)(B TPP
C))”

 25

 Result: Modified network
 ((B (tpp) C) (A (ec ntpp po tpp) C) (A (ec) B))

Algebraic-closure operation on given two constraint-networks ((A (n ne) B)), returns
modified network by adding additional possible set of relations between entities (A
(ec ntpp po tpp) C), that satisfied path-consistency.

b. Scenario-Consistency:
 $./ sparq constraint-reasoning rcc8 scenario-consistency first “((A ec B)(B
 TPP C))”
 Result: ((B (tpp) C) (A (tpp) C) (A (ec) B))

Scenario-consistency operation check path-consistency on given constraint-networks
“((A ec B)(B TPP C))” and returns networks that is algebraically closed. Here
reasoner added additional relation between entities (A (tpp) C) to make given
network path-consistent and algebraically closed.

c. Refine:
 $./ sparq constraint-reasoning rcc8 refine “((A (ec po) B))” “((A po B))”

 Result: ((A (po) B))
Refine operation returns conjunction of given constraint-network “((A (ec po) B))”
“((A po B))” which is ((A partially-overlap(po) B))

d. Extend:
 $./ sparq constraint-reasoning rcc8 extend “((A (ec po) B))” “((A PO B))”

 Result: ((A (ec po) B))
Extend returns disjunction by uniting corresponding constraints in given constraint-
networks like ((A externally-connected (ec), Partially-overlay (po) B)), that is
obtained from two constraint-networks “((A (ec po) B))” “((A po B))”.

3.4 Overview of Proposed Architecture
Framework (API) architecture is based on three major components including.

1. OpenJUMP (Plug-in)
2. Application programming interface (API)
3. Reasoner (SparQ)

3.4.1 OpenJUMP Plug-In
OpenJUMP is an open source GIS application, developed by Canadian Companies
Vivid Solutions and Refractions Research. The name JUMP is an abbreviation for
Java Based Unified Mapping Platform. The application supports reading and writing
shape files and simple GML file format as other GIS applications. It supports
different data format including GML, SHP, DXF, JML, MIF, TIFF and postGIS etc.
JUMP provides functionality to extend application by writing their own plug-ins,
cursor tools, renderer etc. with the help of built-in extension class.

Java based Plug-in is used as extension, consists of different functionalities like
Input_Text_Field (to insert XML format reasoning query), Output_text_area (display
results in XML format received from reasoner), send buttons (send query to
reasoner) connection button (establish connection with reasoning engine via TCP/IP)
and disconnect button (break established connection). OpenJUMP provides facilities
to convert spatial data in GML format that can easily converted in to SparQ specific

 26

XML query for reasoning through developed plug-in. Plug-in application contains set
of Java classes that are used to access API via http or can directly integrate within
developed Plug-in application. Here in this thesis for demonstration, I integrated API
with in Plug-in application, later with minor modification, it is possible to use it as
web-based API to access over HTTP for reasoning.

Figure 16: Framework Architecture with required components

3.4.2 Application Programming Interface (API)
API is middleware application, based on set of Java classes and XML files. XML is
extremely portable language to the extent that it can be on large network with
multiple platforms like internet and can be use on handhelds or palmtops. API
facilitate GIS users to define own tags with respect to application needs.
Development of web based applications using XML and Java is emerging
technologies that facilitates the design and implementation of business-to-business
(B2B) applications such as web application server, simple object access protocol
(SOAP), web services and data binding

API contains particular set of rules and specifications that a software program can
follow to access services and resources provided by another application that
implements designed API. The purpose to design API in this study is to integrate
qualitative spatial reasoning engines with GIS applications, particularly integration
of reasoning engine (SparQ) with GIS application (openJUMP). It will serve as an
interface between these two applications, similar to the way, that user interface
provides facility to interaction between human and computers. The defined API used
XML file as a common understandable language for both applications, where user
can send query in XML format via application plug-in and retrieve results in XML
format from reasoner. API process given XML file, validate query with defined
XML schema, establishing connection with GIS application and reasoning engine
through TCP/IP connection.

 27

4. Application program Interface (API) design

4.1 Usecase Diagram
Usecase diagram is a description of a system’s (API) behavior as it request, that
originates from out that system. It is collection of diagram and text that together
document how users expect to interact with the system. The given below usecase
diagram represents overall structure of the API and plug-in as a simple usecase that
representing system, actors, associations and dependencies of the API. The purpose
of usecase diagram is to provide a high-level explanation of the relationship between
the system (API) and the outside world.

4.1.1 Plug-in Usecase Diagram
Plug-in is small java based application that provides interface for OpenJUMP users
to access reasoning engine. The usecase diagram represents general activates that
performed by GIS users at application side by using plug-in includes.
Open application is general activity that performed by user to open and close
application (openJUMP).
Load plug-in activity needs some events and functions that activates and load plug-in
within application, plug-in provide interface, contains set of facilities including
textbox (to write/generate query for reasoning), connection button (use to open
connection with reasoning engine) and close button (use to close established
connection with reasoner).
Report Error activity is used to display error messages related with the loading and
reading activities.
Send Query activity forwards generated XML query based on spatial data to reasoner
through API. API process XML data and convert it in to SparQ specific syntax.

Figure 17: Usecase diagram for Plug-in represents set of activates at application (JUMP) side.

 28

4.1.2 API Usecase Diagram
Open_Connection_With_Reasone: activity establishing connection with reasoning
engine (SparQ) through TCP/IP connection.
Process_XML_Query: converts given query in XML format with the help of defined
XML tags. DOM parser is used to parse XML file and generate document tree that is
used to access elements and their attributes.
Report Error: Activities used to generate reports related with define query syntax
and socket connection.
Validate_XML_Query: It contains set of functions that are used to validate incoming
parsed XML file with define schema.
XML_Schema: is a schema file contains set of rules with respect to reasoner’s
understandable syntax. During validation process API is requesting XML schema file
syntax for validation of incoming queries.
Convert_Query_In_ReasoingSyntax: activity converts XML query in reasoner
specific syntax and pass it over TCP/IP connect to the reasoner.
Send_Query_To_Reasoner: passes generated final query to specific reasoner through
TCP/IP connection.
Extract_Result_And_Forward_to_Plugin: activity contains functions that extract
results from reasoner and convert into the XML format. It passes XML format result
to the end user.

Figure 18: Use-Case diagram for Application Programming Interface (API)

 29

4.2 Process Diagram
The process diagram, is diagram commonly used in software engineering to indicate
the general flow of processes used in the system. The defined process diagram
consists of four major components like (application, Plug-in, API and reasoning
engine. The arrow line with defined labels indicates process-type, process direction
and the process sequence.

Figure 19: API process diagram, major components and processes with flow directions

 30

4.3 SparQ Query Analysis
API is Java application, contains set of methods that provides functionalities to
interact with the GIS application and reasoning engine without human interactions.
API design requires analysis of reasoner to understand reasoner specific query
syntaxes and result structures. In API, XML files are defined based on the analysis of
reasoner’s syntaxes. Reasoning calculi are analyzed using all modules and their
specific operation introduced in SparQ, to identify their syntax commonalities. Each
module in SparQ takes particular syntax, as a sequence of commands and module
specific parameters. The general syntax of SparQ query is given below.

 $./sparq <module-name><calculus-name><module specifies parameters>

Module-Name: presently SparQ is supporting four types of modules that can be used
to perform different type of reasoning including Qualify, Compute-Relation,
Constraint-Reasoning and Algebraic-Reasoning.

Calculus-Name: parameter represents type of qualitative spatial calculus used for
reasoning on given data. SparQ supports both binary and ternary calculi which are
already defined as simple text format in it.

Module specific parameter: contains set of operations, relations and constraint-
networks use for reasoning. Each defined operation takes module specific
parameters.

The purpose of SparQ analysis is to understand each module and its specific syntax
used for writing input queries. Based on the analysis, I categorized possible input
queries and designed XML files for each module and module specific operation.
XML data structure contains set of tags like module-name, calculi-name, operations,
relations and modules specific parameters including control-modes, returns, entity
types and constraint-networks etc. The standard tags in XML are used to generate
reasoner specific queries and to validate it with defined XML schema.

4.4 XML Design for SparQ Modules
Based on analysis, I categorized all possible input queries for both binary and ternary
calculi used for reasoning using SparQ and design standard XML structure for
module specific queries.

4.4.1 Qualify Module
XML design for Qualify module contains sequence of tags including (module_name,
calculus_name and type, control-Mode, entity and entity type) based on the qualify
module specific syntax and required parameters for reasoning. Qualify Module takes
quantitative descriptions of scene as input parameters and generates qualitative
description, which is defined as entity tag. The entity type is forwarded as attribute
and entity id as entity value.

 31

<?xml version="1.0" encoding="UTF-8"?>
<module name="qualify">
 <calculus type= “binary” name="dra-24">
 <controlMode>all</controlMode>
 <entity type="-3 0 8 0">A</entity>
 <entity type="8 0 4 8">B</entity>
 </calculus>
</module>

4.4.2 Compute-relation Module
XML design for compute-relation module consists of standard tags including
(module_name, calculus_name, operations and relations). It is designed as standard
structure that reasoner accept to compute-relations by applying both binary and
ternary operations. In compute-relation module, the defined operations take calculi
specific relations as input parameter and infer possible relations between entities as
output.

<?xml version="1.0" encoding="UTF-8"?>
<module name="compute-relation">
 <calculus type= “binary” name="rcc-8">
 <operation type = “binary”>composition</operation>
 <relation>dc</relation>
 <relation>ec</relation>
 <relation>tpp</relation>
 </calculus>
</module>

4.4.3 Constraint-reasoning Module
Module is used for constraint reasoning based on given constraint-networks. It
contains four constraint reasoning specific operations like (Algebraic-reasoning,
scenario- consistency, refine and extend). Each operation has specific syntax and
takes certain type of parameters as input. Based on analysis I design XML for each
operation that generates module and operation specific syntax.

4.4.3.1 Algebraic-Closure and Scenario-consistency Operation
Both Operations takes same syntaxes as sequence of tags like module_name,
calclus_name, operations and constraint-network specific parameters (entity_name
and relations) except return parameter. Return parameter (ALL/FIRST) is required
by scenario-consistency operation to identify and extract result as scenario-
consistency based on given constraint-networks or on first-two constraint-networks.

4.4.3.2 Refine and Extend Operation
Both operations takes same syntax as a sequence of tags like (module_name,
calculus_name, constraint-reasoning specific operation and constraint-networks as
parameters) to get conjunction or disjunction relation as result on given networks.

 32

<?xml version="1.0" encoding="UTF-8"?>
<module name="constraint-reasoning">
 <calculus type= “binary” name="cardir">
 <operation type=“constraint-reasoning”>refine </operation>
 <entity>A</entity>
 <relation>N</relation>
 <entity>B</entity>
 <entity>A</entity>
 <relation>S</relation>
 <entity>B</entity>
 </calculus>
</module>

<?xml version="1.0" encoding="UTF-8"?>
<module name="constraint-reasoning">
 <calculus type= “binary” name="cardir">
 <operation type=“constraint-reasoning”>scenario-
consistency</operation>
 <return>all</return>
 <entity>A</entity>
 <relation>N</relation>
 <entity>C</entity>
 <entity>A</entity>
 <relation>S</relation>
 <entity>B</entity>
 </calculus>
</module>

<?xml version="1.0" encoding="UTF-8"?>
<module name="constraint-reasoning">
 <calculus type= “binary” name="cardir">
 <operation type= “constraint-reasoning”>algebraic-closure</operation>
 <entity>A</entity>
 <relation>N</relation>
 <entity>B</entity>
 <entity>B</entity>
 <relation>N</relation>
 <entity>C</entity>
 </calculus>
</module>

 33

4.4.4 Algebraic-reasoning Module
An algebraic reasoning module contains two operations like consistency and qualify.
Each operation needs specific type of syntax that contains module-name, calculus-
name, operation, entities and relations.

4.4.4.1 Consistency Operation

<?xml version="1.0" encoding="UTF-8"?>
<module name="a-reasoning">
 <calculus type= “binary” name="dra-24">
 <operation type= “a-reasoning”> consistency</operation>
 <entity>A</entity>
 <relation>rllr</relation>
 <entity>B</entity>
 <entity>A</entity>
 <relation>ells</relation>
 <entity>C</entity>
 </calculus>
 </module>

<?xml version="1.0" encoding="UTF-8"?>
<module name="constraint-reasoning">
 <calculus type= “binary” name="cardir">
 <operation type= “constraint-reasoning”>extend</operation>
 <entity>A</entity>
 <relation>N</relation>
 <entity>B</entity>
 <entity>A</entity>
 <relation>S</relation>
 <entity>B</entity>
 </calculus>
</module>

Consistency operation takes same constraint-network’s specific parameters as
constraint reasoning do.

4.4.4.2 Qualify Operation
Qualify operation in algebraic-reasoning module takes input parameters as
quantitative description of the scene and generate quantitative description. The
syntax of query required tags as a sequence of commands like module_name,
calclus_name, operation, controlMode, network parameter. Network parameter
contains set of entities with defined identifier and entity-type use for reasoning like

 34

entity_Id and entity_type.

Similarly for ternary calculi I design XML query structure. XML structure for
queries using ternary calculi and constraint-reasoning module in SparQ is given
below. Each module specific operations in constraint-reasoning module take specific
set of command as argument.
For ternary calculi, I considered FlipFlop Calculus (FFC) proposed by Ligozat
(1993) to describe a position of Point “C” with respect to two points “A” (the origin)
and “B” (the relatum) in the terms of basic nine relations. The defined base relation
are left (l), right (r), front (f), back (b), inside (i), start (s), end (e), dou and tri.

4.4.5 Constraint-reasoning for Ternary Calculi

4.4.5.1 Algebraic-closure

<?xml version="1.0" encoding="UTF-8"?>
<module name="constraint-reasoning">
 <calculus type= “ternary” name="ffc">
 <operation type= “constraint-reasoning”>algebraic-closure</operation>
 <entity>A</entity>
 <entity>B</entity>
 <relation>l</relation>
 <entity>C</entity>
 <entity>B</entity>
 <entity>C</entity>
 <relation>r</relation>
 <entity>D</entity>
 </calculus>
</module>

<?xml version="1.0" encoding="UTF-8"?>
<module name="a-reasoning">
 <calculus type= “binary” name="dra-24">
 <operation type = “a-reasoning”>qualify</operation>
 <controlMode>all</controlMode>
 <entity type="-3 0 8 0">A</entity>
 <entity type="8 0 4 8">B</entity>
 </calculus>
</module>

4.4.5.2 Scenario-consistency
For ternary calculi scenario-consistency operation of constraint-reasoning module
takes parameters like module-name, calculus-name and its type, operation-name and
its type, return-type, entities and their relations.

4.4.5.3 Refine and Extend
Both operations are used to identify conjunction and disjunction relations in the

 35

given constraint-networks. It takes similar query structure as I mentioned above in
scenario-consistency and algebraic-closure operation for ternary calculi.

<?xml version="1.0" encoding="UTF-8"?>
<module name="constraint-reasoning">
 <calculus type= “ternary” name="ffc">
 <operation type=“constraint-reasoning”>refine </operation>
 <entity>A</entity>
 <entity>B</entity>
 <relation>l</relation>
 <relation>r</relation>
 <entity>B</entity>
 <entity>C</entity>
 <relation>l</relation>
 <entity>D</entity>
 </calculus>
</module>

<?xml version="1.0" encoding="UTF-8"?>
<module name="constraint-reasoning">
 <calculus type= “ternary” name="ffc">
 <operation type= “constraint-reasoning”>scenario-consistency</operation>
 <entity>A</entity>
 <entity>B</entity>
 <relation>l</relation>
 <entity>C</entity>
 <entity>B</entity>
 <entity>C</entity>
 <relation>r</relation>
 <entity>D</entity>
 </calculus>
</module>

 36

<?xml version="1.0" encoding="UTF-8"?>
<module name="constraint-reasoning">
 <calculus type= “ternary” name="ffc">
 <operation type=“constraint-reasoning”>extend </operation>
 <entity>A</entity>
 <entity>B</entity>
 <relation>l</relation>
 <relation>r</relation>
 <entity>B</entity>
 <entity>C</entity>
 <relation>l</relation>
 <entity>D</entity>
 </calculus>
</module>

4.5 XML Conversion to SparQ Syntax
As we know that SparQ accept input queries in SparQ specific syntax and provides
results in particular syntax based on used module for reasoning. Each SparQ modules
takes specific syntax as set of parameters like module-name and calculus-name are
common in all modules but network specify parameters are dependent upon module
specific queries.
The developed API takes these XML queries as input and converts in to SparQ
specific syntax by adding additional parameters like (parentheses, blank-spaces etc.).
It forwards generated SparQ specific syntax in a string format over TCP/IP
connection for reasoning.

4.5.1 Qualify Query (XML) to SparQ Syntax
Qualify module queries in XML format contains tags like module-name, calculus-
name entity-type and entity-id. After parsing XML file, i accessed defined tags as
tree nodes and their attributes by comparing tag names. We needed to set blank-
spaces [“ ”] at the end of each tag value and parentheses[“(“] before starting of
entity and ending of entity-type in the given network. By using below given logic, I
generated qualify module specific syntax like.
<Module-name> “ ” <calculus-name> “ ” <controlMode> “ ” (<entity> “ ”
<entityType>) (<entity> “ ” <entityType>).
General sudo-code to generate above SparQ syntax is given below.

 37

Step1. If (calculus-Type matches (“binary”)
Then
 1. Access elementByTagName equal to “module” and add [“”]
 2. Access elementByTagName equal to ”calculus” and add [“ ”]
 3. Access attribute define in elementByTagName equal to “controlMode”
 and add [“ ”]
 4. Create array List for entities.
 5. for-loop (set integer i=0; i<array-length(); i++)
 1. Add “(“

 2. Get Entity at position (i) by comparing tag-name “entity”
 3. Get attribute of entity by comparing “type” to access entity-type

4. add “(“ before entity-name , add [“ ”] , add entity-type, and add “)”
 Repeat step (4)
Close if condition
Step 2: Pass all values as string in sparqString.

4.5.2 Constraint-reasoning Query (XML) to SparQ Syntax
Constraint-reasoning module contains two operations algebraic-closure and scenario-
consistency is used to identify scenario-consistency of given constraint-networks.
Both operation takes same structure of constraint-networks like
<Module-name> “ “ <calculus-name> “ “ <operation> “ “ <return-name> “ “ (
<entity-name> “ “ <relation> “ “<entity-name> “ “) (<entity> “ “ <relation> “ “
<entity-name>)
The major difference between algebraic-closure and scenario-consistency operation
is return-types, scenario-consistency take extra command as return-type. Given XML
query is converted in constraint-networks by add SparQ specific parameters with the
sequence of entities and relations like (A N B) (B E C)
In XML Query we are just providing entities (A, B, C) and relations (N, E). To
generate above mentioned SparQ syntax for constraint-networks, I added parentheses
and spaces with the help of Java coding. Sudo-code for XML queries conversion is
given below

 38

Step1. If calculus-Type matches (“binary”)
Then
 Step1. If module-name matches” constraint-reasoning”
 Then
 Step1. Access elementByTagName equal to”calculus” and add [“ ”]
 Step2. If operation-name matches “algebraic-closure”
 Then
 1. Set string =sparqString;
 2. sparqString=module-name; add [“ ”].+Caulus-name; add [“ ”]+
 operation-name, add[“ ”]+ add Nodes
 3. Close if
 Step3. If calculus-name matches “calculus”
 1. Set calculus Nodes as array List;
 2. Create nodeList of calculus Nodes
 Step5. For-loop (int i=0; i<calculusNode.length (); i++)

1. get childNode at position (i);
2. get nodeValue and save as value in constrant-networkString
3. If (node-name matches “entity”) and

 If (node-name is first entity)
 Then

1. add [“((”]
2. add value
3. add character “R”

 5. Close if
 6. If (node-name is second entity)
 Then

1. add nodeValue
2. add [“))”]
3. replace “R” with relations

 7. Close if
 8. Else if (node-name matches “relation”
 Then

1. add value of relation
2. add [“ ”];

 9. Close else if
 Step6. Repeat Step-5
Step2. Close if
Step3. Return constraintNetworkString

Same logic is used to convert and generate constraint-networks from the given XML
query in both operation of constraint-reasoning module. Queries using refine and
extend operation in constraint-reasoning takes same syntax like ((A (N S) B))((B (N)
C)). The sequence and number relations defined as constraint-networks are different
from other constraint-reasoning operations. In refine and extend operation there is
possibility of more then one relation between given entities and each network is
covered with double closing and opening parentheses [“((”], [“))”] and blank-spaces
[“ ”] between entities and relations. The SparQ syntax for refine and extend is given
below.

<module-name> “ ” <calculus-name> “ ” < operation> “(” <entity> “ ”
<relation> “ ” <relation> “ ”<entity> “)” “(” <entity> “ ”<relation> “ ” <entity>

 39

“)”
We can develop such a syntax form given XML query by converting it with the help
of Java coding. Sudo code for conversion is given below.

Step1. If calculus-type matches (“binary”)
Then
 Step1. Set String sparqString
 Step2. Get module-name [“ ”] get calculus-name[“ ”] + get operation-
 name + [“ ”] + refineExtendString
 Step3. Access elementByTagName equal to “calculus”
 Step4. Create Array NodeList

1. Pass all calculus_ChildNodes in array
2. Set String refineExtendString;

 Step5. For-loop (int i=0; i<calculusNode.length (); i++)
1. get childNode at position (i);
2. get nodeValue and save as value in refineExtendString

 3. If (node-name matches “entity”) and
 4. If (node-name is first entity)
 Then

4. add [“((”]
5. add value
6. add character “R”

 5. Close if
 6. If (node-name is second entity)
 Then

4. add nodeValue
5. add [“))”]
6. replace “R” with relations

 7. Close if
 8. Else if (node-name matches “relation”
 Then

3. add value of relation
4. add [“ ”];

 9. Close else if
 Step6. Repeat Step-5
Step2. Close if
Step3. Return refineExtendString

The initial syntax like module-name, calculus-name and operation-name are same as
other constraint-reasoning operations takes.

4.5.3 Compute-relation Query (XML) to SparQ Syntax
Like other SparQ modules, queries using compute-relation takes following sequence
of parameters as input.
<module-name> “ ” <calculus-name > “ ” <operations-name> “ ” <relations>

Operation-name may contains nested operation-names with defined relations,
relations are depends upon operations type, as binary-operation takes two relations as
input parameters and ternary-operation takes three relations as input parameters.
<Operation-name> “(” <operation-name> “ ” <relation> “ ”<relations> “)”

 40

Sudo-code to generate SparQ specific syntax for compute-relation module specific
query is given below.

Step1. If calculus-type matches (“binary”)
Then
 Step1. Get module-name [“ ”] get calculus-name[“ ”] +
 Step2. Create nodeList of operation by access with tag-name “operation”
 Set string operations
 Step3. For-loop (int i=0; i< nodeList.getLength (); i++)

1. operation= add [“ ”]
2. add operation-name value at position(i) is defined string and
3. add [“ ”]
4. add character R

 Step4. Close for-loop
 Step5. Save operations
 Step6. Get relation-name by TagName
 Step7. Replace R with relation-name
Step2. Close if
Step3. Return sparqString

4.5.4 Algebraic-reasoning Query (XML) to SparQ Syntax
In SparQ algebraic-reasoning module is represented as a-reasoning. In a-reasoning
consistency operation used to identify network consistency and qualify operation is
used to get qualitative description from given quantitative description of the scene.
In a-reasoning, consistency operation takes same syntax as constraint-reasoning do.
Therefore XML conversion in a-reasoning use same logic a mentioned in constraint-
reasoning module by adding parentheses [(], [)] and blank-spaces [“ ”] after each
command and between defined entities and relations .
<Module-name> “ ” <calculus-name> “ ” <operation> “ ” <return-name> “ ” (
<entity-name> “ ” <relation> “ ”<entity-name> “ ”) (<entity> “ ” <relation> “ ”
<entity-name>)…..
Similarly queries using a-reasoning module and qualify operation takes same syntax
as qualify module except operation-name. Qualify operation takes extra command as
operation-name in a-reasoning specific queries.
<Module-name> “ ” <calculus-name> “ ”<operation> “ ” <controlMode> “ ”
(<entity> “ ” <entityType>) (<entity> “ ” <entityType>).

To generate SparQ specific syntax for ternary-calculi, I set a condition to validate
either query contains calculus-type “binary” or “ternary”. Ternary-calculi are used to
reason on entities with respect to two given other entities. General syntax for queries
using ternary-calculi is given below.
<Module-name> “ ” <calculus-name> “ ” <operation> “ ” <return-name> “ ” (
<entity-name> “ ”<entity-name> “ ” (<relation>)“ ”<entity-name> “ ”)
(<entity> “ ”<entity-name> “ ” (<relation>) “ ”<entity-name>)
The major differences in queries using binary and ternary calculi are extra entity-
names with in given constraint-network. As we know that ternary-calculi are used to
reason on entity (A) with respect to entity (B) and entity (C) Constraint-networks for

 41

algebraic-closure and scenario-consistency operations takes the following structure
as constraint-network in ternary-calculi ((A B North (n) C) (B C South(s) D). Sudo-
code for generating constraint-network is given below.

Step1. If calculus-type matches (“ternary”)
Then
 Step1. If module-name matches” constraint-reasoning”
 Then
 Step1. Access elementByTagName equal to”calculus” and add [“ ”]
 Step2. If operation-name matches “algebraic-closure”
 Then
 Step1. Set String sparqString
 Step2. Get module-name [“ ”] get calculus-name[“ ”] + get operation-
 name + [“ ”] + constraintNetworkString
 Step3. Access elementByTagName equal to “calculus”
 Step4. Create Array NodeList

3. Pass all calculus_ChildNodes in array
4. Set String refineExtendString;

 Step5. For-loop (int i=0; i<calculusNode.length (); i++)
3. get childNode at position (i);
4. get nodeValue and save as value in refineExtendString

 3. If (node-name matches “entity”) and
 4. If (node-name is first entity)
 Then

1. add [“(”]
2. add value
3. ent++

 5. Close if
 6. If (node-name is second entity)
 Then

1. add nodeValue
2. add character “R”
3. ent++

7. If (node-name is third entity)
Then
 1. add [“)”]
 2. replace “R” with relations

 7. Close if
 8. Else if (node-name matches “relation”
 Then

5. add value of relation
6. add [“ ”];

 9. Close else if
 Step6. Repeat Step-5
Step2. Close if
Step3. Return ConstraintNetworkString

Similarly for refine and extend operation using ternary-calculi takes same constraint-
networks defined above. It takes extra parenthesis at the starting of constraint-
network entity [“((”] and at the ending of constraint-network [“))”]. General structure
for refine and extend operation using ternary calculi is given below.
<module-name> “ ” <calculus-name> “ ” <operation> “ ”((<entity-name> “

 42

”<entity-name> “ ” (<relation>)“ ”<entity-name> “ ”)) “ ” ((<entity> “
”<entity-name> “ ” (<relation>) “ ”<entity-name>)).

4.6 XML Parsing
In computing, a parser is a program (or a piece of code that you can reference inside
your own programs) which is used to analyze file to identify the components. All
application that read input has a parser of some kind to identify the meaning of the
information. XML applications are just same, they contains a parser which reads
XML file and identifies the function of each the pieces of the document, and it makes
that information available in memory to the rest of the program. There are two most
popular APIs known by SAX (Simple API for XML) and DOM (Document Object
Model) for processing XML document in JAVA.

Generally in DOM parser all elements and attributes in structure can be referenced
by walking through the DOM tree. Their contents can be modified or delete and new
elements can be created from subsequent insertion into the DOM tree.
In this API, I used DOM parser that contains set of methods to parse given XML file
and generate Document Tree. The DOM parser is useful, when you need to know a
lot about the structure of the document, to sort certain elements and when you need
information in the document more then once.

Figure 20: XML document and there integration with JAVA application H. Maruyama, 2002

In API parse () method takes generated XML file as argument and creates Document
tree. All defined tags contains set of values as attributes, these attributes are
accessible through method called getAttributeByTagName() and structured it into the
SparQ specific syntax as string. SparQ syntax takes extra characters like quotations,
parenthesis etc.

4.7 SparQ Result Analysis
SparQ results are analyzed to identify the possible output patterns as result for given
input queries .I used all possible modules specific queries to find out commonalities
between the results given by reasoner and type of errors that generates. I considered
both binary and ternary calculi during my analysis. The purpose of result analysis is
to design common standard XML data structure for given results. Based on result
analysis, I generalized possible SparQ outputs in the following categories.

1. Simple-text

 43

2. Simple-text and constraint-network
3. constraint-network
4. Simple relations
5. Errors

Module/resultTypes

Qualify

Compute-
relation

Constraint-
reasoning

Algebraic-
reasoning

Simple-text No No Yes Yes
Simple-text and
constraint-network

No No Yes No

constraint-network Yes No Yes Yes
Simple-relations No Yes No No
Syntax errors Yes Yes Yes Yes

Table 4: Classification of modules specific results for both binary and ternary calculi

4.7.1 Simple Text
SparQ generates simple text result for some queries using constraint-reasoning
module specific operation like (algebraic-closure, scenario-consistency) and
Algebraic–reasoning module specific operation like (consistency). The given simple-
text result has four categories. These types of results are usually occurred in
constraint-reasoning module and remaining other results is given by consistency
check operation in algebraic-reasoning module.

1. Not Consistent.
2. NOT SATISFIABLE
3 CANNOT DECIDE
4 SATISFIABLE

During conversion with the help of API the given Simple text result is passed in tag-
name <comments></comments> that is already defined in XML structure for SparQ
outputs.

<result type = “constraint-reasoning”>
 <operation name= “algebraic-closure” type= “constraint-reasoning”>
 <comments> Not Consistent</comments>
 </operation>
</result>

4.7.2 Simple-text and Constraint-network
Queries using Constraint-reasoning module, algebraic-closure and scenario-
consistency operation with return parameters (all) generates results as composition of
simple-text and constraint-networks. During conversion these results are split in to
two set of arrays with the help of numerical value [0-9] and [.]. The array that
contains simple text, is forwarded as comments in comments-tag. The second array
that contains constraint-network is further processed and split it into substring based
on common characters like [) (]. The given substring is passed as attributes in defined
tags like entities and relations with the help of API.

Similarly algebraic-closure and scenario-consistency with return parameter (first)
generates results either in simple-text format as syntax error like (NOT

 44

CONSISTENT) or returns constraint-network like ((A (N) B)(B (E) C)). The
constraint-network represents specific pattern like (object1, relation, object2)
(object2, relation, object3) based on the analysis, the given constraint-network is
further processed to set these values as attributes of relations and entities with in
defined entities tags and relation-tags.

<result type = “constraint-reasoning”>
 <operation name = “scenario-consistency” type= “constraint-reasoning”>
 <comments> 1 Scenario found: no further Scenarios exist</comments>
 <entity>A</entity>
 <relation>N</relation>
 <entity>B</entity>
 <entity>A</entity>
 <relation>ne</relation>
 <entity>C</entity>
 <entity>B</entity>
 <relation>e</relation>
 <entity>C</entity>
 </operation>
</result>

<result type = “constraint-reasoning”>
 <operation name= “algebraic-closure” type= “constraint-reasoning”>
 <comments> Modified Network</comments>
 <entity>A</entity>
 <relation>rllr</relation>
 <entity>B</entity>
 <entity>A</entity>
 <relation>ells</relation>
 <entity>C</entity>
 </operation>
</result>

4.7.3 Constraint-network
Most of queries using defined modules and their specific operations like qualify,
algebraic-reasoning, constraint-reasoning (algebraic-closure, refine and extend
operations) gives results in the form of constraint-network like ((A (N) B) (B (E) C).
The given networks is split based on common characters like [“) (”] in to possible
sub-networks with the help of API and generate XML structure by passing these
element as attributes in defined tags like entity and relation. The operation-tag
contains operation-name and its type. Qualify module doesn’t contains any specific
operations. Therefore in resultant XML for qualify module does not contains
operation-name and its type represents module name used for reasoning.

 45

.

4.7.4 Simple-relations
Queries using compute-relation module gives simple-relation as result. In compute-
relation both binary and ternary operations takes relations as parameters and inferring
possible relations between given entities, based on the defined operation in query.
e.g.
(Composition (DC, EC and TPP) generates result as set of relations
(dc, ec, ntpp, po, tpp)
These relations are converted in to XML by passing relation as attributes in defined
relation-tag in XML.

4.7.5 Syntax-errors
Error generated by SparQ as result on given reasoning query is extracted with the
help of API. In SparQ error is specified as string “An error occurred” Based on given
string API converts error in to XML format, by passing it as value in the defined
comments-tag

<result type = “constraint-reasoning”>
 <operation type = “algebraic-closure”>
 <comments> An error occurred: Error in module specification,.
 Object missing……………. ,
 </comments>
 </operation>
</result>

<result type = “compute-relation”>
 <operation name= “composition”, type = “binary” >
 <relation0>dc</relation0>
 <relation1>ec</relation1>
 <relation2>ntpp</relation2>
 <relation3>po</relation3>
 <relation3>tpp</relation3>
 </operation>
</result>

<result type = “a-reasoning”>
 <operation name=“qualify” type= “a-reasoning”>
 <entity>A</entity>
 <relation>rllr</relation>
 <entity>B</entity>
 <entity>A</entity>
 <relation>ells</relation>
 <entity>C</entity>
 </operation>
</result>

4.8 SparQ Result Conversion into XML
The response received from SparQ as query result is starting with tag-name sparq>.
Using sub-string method, I extracted required result and store as string. The final

 46

result is further processed to convert into defined standard XML structure. Most of
the SparQ modules and their operations provides module and operation specific
result syntax. Therefore we need to use module specific conditions to convert given
results in defined XML format.

4.8.1 Syntax-errors
All syntax errors related information is extracted based on condition that matches
“An error occurred:” usually, all error messages in the SparQ are forwarded with
above mentioned string e.g.
 sparq> An error occurred: Error in module specification,. Objects are
 missing…………………….
The generated error message is extracted and passed between tag-name <comments>
</comment> as value.

Step1. Set string resp;
Step2. Extract and trim final result, and store as string in resp
Step3. If (resp matches “An error occurred”
Then

1. extract error and save as result
2. close if

Step4. pass result between tag-name <comments></comments

4.8.2 Simple-relations
Reasoning Queries using Compute-relation takes binary/ternary operations and
relations as parameters. The result generated by SparQ contains simple set of
possible relations like
Sparq> (ne, n s se)
I set a condition to match module-name with given string like “compute-relation”.
Based on this condition, I extracted relations with the help of java sub-string method
and remove all parentheses “(” “)”and forwarded these relations in string array. I
accessed all relations one by one with the help of loop and passed it between tag-
name <relation></relation>. If there is no relation as result, API will forward blank
space with in parentheses like [()].

Step1. Set string resp;
Step2. Extract and trim final result, and store as string in resp
Step3. If (resp contain “sparq> and “(“
 If (match module-name with (“compute-relation”))
Then

1. remove [(] and trim result
2. pass result in array called relations[]
3. for-look(int i=0; i<relation. length (); i++)

1. get relation at position (i)
2. Pass relation between tag-name <relation></relation>

Close loop
Close if
Close if

 47

4.8.3 Simple-text and Constraint-network
For both binary and ternary calculi queries using Constraint-reasoning operations
like algebraic-closure and scenario-consistency with return-type (all) generate results
as combination of text and constraint-networks like

i. sparq>Modified Network. ((B (e) C)(A (ne) C)(A (n) B)) or
ii. sparq> ((B (e) C)(A (ne) C)(A (n) B))1 scenario found, no further

scenarios exist.
Such a type of result is extracted based on conditions, that if given response contains
both tag-name [sparq>] and string parentheses [(] then extract response from
reasoner and store as string named “result”. The given result is further split using
java regular expression in to two string arrays based on common characters in
module specific result. In algebraic-closure operation, i split result based on character
[.] and store in two arrays. Similarly in scenario-consistency, i used [0-9] expression
to spilt result in to simple text and constraint-networks for further process like
conversion in to XML structure. Sudo-code to convert engine result in XML format
for both binary and ternary calculi is given below.

Step1. Set string resp;
Step2. Extract and trim final result, and store as string in resp
Step3. If (resp contain “sparq> and “(“

If module-name matches (“scenario-consistency”)
If (returnType matches” all)
Then
 1. Set array split-network
 2. Split resp based on [0-9] and save in split-network at position (0)
 3. Pass text at split-network position (1) to <comments>
 4. Split sub-network based on “[)][(]”
 5. Save as array list
Close if
Close if
Close if

Step4. Remove all parentheses [(] [)] with blank-space [“”]
Step5. if (calculuType matches (“binary”)
Then
 1. Get relation using substring (1, result. Length ()-1 and pass relation in tag-
name <relation>.
 2. Gets first entity using substring (0, 1) and pass entity in tag-name <entity>
 3. Get second entity using substring (result. Length ()-1, result. Length ()) and
pass it in <entity>.
Step6. else if(calculusType matches “ternary”)
Then
 1. Get relation using substring (3, result. Length ()-1 and pass relation in tag-
name <relation>.
 2. Gets first entity using substring (0, 2) and pass entity in tag-name <entity>
 3. Gets first entity using substring (2,3) and pass entity in tag-name <entity>
 4. Get second entity using substring (result. Length ()-1, result. Length ()) and
pass it in <entity>.
Step 7. pass all tags between tag-name <result></result>
Step8. pass XML result in plug-in text-Area

 48

.

4.8.4 Simple Text
Most of the cases using constraint-reasoning module, if the given constraint-network
is inconsistent, queries using constraint-reasoning modules and their specific
operations like a-reasoning module (consistency), constraint-reasoning module
(algebraic-reasoning, scenario-consistency) generates results as simple text like.
sparq> Not Consistent.
These results can be “NOT Consistent”, “Cannot decide”, “not satisfiable”,
“satisfiable”. Such a result are simple extracted based on starting tag sparq> and
passed it as a string in defined tag-name <comments>. Sudo code to extract and
convert simple text result is give below.

Step1. Set string resp;
Step2. Extract and trim final result, and store as string in resp
Step3. If (resp contain “sparq>”

If (resp contains “NOT CONSISTENT.” or “NOT SATISFIABLE” or
“SATISFIABLE”or “CANNOT DECIDE”)
Then

1. extract sub-string
2. Save string as result

Close loop
Step4. Pass result between tag-name <comments></comments>

4.8.5 Constraint-network
Queries using module specific operations like scenario-consistency with returnType
(first), refine extend and qualify are generating result as a constraint-networks
(object1 relation object2) (object2 relation object3) like
Spaq> ((A (N) B)(B (E) C)).
Such a result contains sequence entities and relations as constraint between the given
entities. There is a possibility of empty relation between two given entities or more
then one relation between them. I extracted SparQ response based on conditions like,
if sparq response contains [sparq>] and starting parentheses “(”, then extract the
result and split it into sub-networks using java regular express [)] [(]. General logic to
convert sub-networks in XML tags are given below.

 49

Step1. Set string resp;
Step2. Extract and trim final result, and store as string in resp
Step3. If (resp contain “sparq> and “(“

If module-name matches (“constraint-reasoning”)
If operation matches (“refine”)
Then
 1. Set array split-network
 2. Split result based on “[)][(]” and save in list
 Close if
 Close if

Step5. For-loop (int i=0; i< list. length ();i++
1. Replace All “(” with [“ ”]
2. Close Loop

Step6. Get relation using substring (1, result. Length ()-1 and pass relation in tag-
 name <relation.
Step7. Gets first entity using substring (0, 1) and pass entity in tag-name <entity>
Step8. Gets second entity using substring (result. Length ()-1, result. Length ()) and
pass it in <entity.
Step9. Pass all tags between tag-name <result></result>

 50

5. API Implementation

5.1 API Class Diagram
Class diagram in the Unified Modeling Language (UML) is type of static structure
diagram that describes the structure of a system by showing the system’s classes,
their attributes, behavior and the relationships between classes. A relationship is a
general terms covering the specific type of logical connection between classes and
instance of the classes, which can be inheritance, aggregation/association interface
etc.

5.1.1 Plug-In Class Diagram
There are two main packages in openJUMP source code. Com.vividsoluations.jump
and org.openjump.core, contains the original sources. All classes from these
packages can be fixed or improved. To create OpenJUMP plug-in, i used four
classes.

5.1.1.1 Extension Class
An extension is a collection of classes and supporting resources that provides
additional functionality to JUMP application. Extensions are packaged as JAR file. It
is used to add plug-ins and cursor tools to the workbench.

5.1.1.2 MyExtension Class
MyExtension class extends Extension class. It contains two main methods
configuration () and initialize(). Configuration method configures an extension that
used to add plug-in. in the JUMP workbench. Configuration method call on each
Extension class it finds.

 51

Figure 21: Plug-in UML Class Diagram

5.1.1.3 PlugInUI Class
Class extends AbstractPlugIn class. It has three methods including initnialize(),
excute() and createEnableCheck(). PlugInUI Class override these method defined in
AbstructPlugIn class. PlugInUI class also implements ActionListner interface, it
define methods to add ActionListener on designed buttons like
sendButton.addActionListner(this);

Initialize() method is used to initialize plug-in that loads developed plug-in as menu
item with given name.

public boolean excute(PlugInContext context) throws Exception{
 textArea =new JTextField (20);
 outputArea= new JTextArea(50);
 context.getworkbenchFram().getOutputFrame().setLayout(new
 GridLayout(4,4));
 context.getworkbenchFram().getOutputFrame().addText(“Sparq
 Reasoner”);
 context.getworkbenchFram().getOutputFrame().add(textArea);}

public void initialize(PlugInContext context) throws Exception{
 FeatureInstaller fi=new
 FeatureInstaller((context.getWorkbenchContext()));
 If.addmainMenuItem(this,new
 string[]{“View”},this.getName().false,null,creatEnableCkech(context.g
 etWorkbenchContext()));
}

 52

actionPerformed() method contains methods like startConnection() and
sendXMLQueryToReasoner() based on the action performed by Plug-in user. Method
provides interface between API and plug-in program.

public void actionPerformed(ActionEvent arg0) {
 JButton clickedButton = (JButton)arg0.getSource();
 if(clickedButton.getName().matches("send")){
 queryXMLFile = inputToSparqTextField.getText();
 System.out.println("input xml path : " + queryXMLFile);
 if(!queryXMLFile.isEmpty()){
 api.sendXMLQueryToReasoner(queryXMLFile);
 }else {
 resultFromSparqTextField.setText("Please input a proper
 XML file path ");
 }else if(clickedButton.getName().matches("connect")){
 System.out.println("Connecting to the engine");
 api.startConnectionAt("localhost", 4444);
 } else if(clickedButton.getName().matches("disconnect")){
 api.closeTheConnection();
 api = null;
 listner = null; }}

excute () method takes argument plugInContext type of context and initialize
outputframe() method to register result received from reasoner with the help of
rgisterForResult(), set plug-in layout, plug-in title, and other fields related with user
interface.

public boolean execute(PlugInContext context)throws Exception{
 resultFromSparqTextField = new JTextArea(10, 50);
 inputToSparqTextField = new JTextField(50);
 sendButton = new JButton("Send QUERY");
 connectButton = new JButton("Connect REASONER");
 disconnectButton =new JButton("Disconnect REASONER");
 Dimension size=new Dimension(600,400);
 api =new QuerySender();
 listner = new UserResult(resultFromSparqTextField);
 api.registerForResults(listner);
 return true;}

5.1.1.4 userResult Class
userResult class implements IUserResult interface. userResult class overrides defined
method queryResult(String xml). It is used to pass the generated result in textArea
defined to display final result in the designed plug-in

 53

54

5.1.1.5 AbstractPlugIn Class .1.1.5 AbstractPlugIn Class
It is a built-in class contains set of methods that are used in PlugInUI class, provided
by vividsoluation. It is used to generate plug-in name from the class name.
It is a built-in class contains set of methods that are used in PlugInUI class, provided
by vividsoluation. It is used to generate plug-in name from the class name.

5.1.2 API Class Diagram 5.1.2 API Class Diagram
API class diagram contains set of classes with two implemented interfaces, used to
perform different processes related with the XML processing, validation with SparQ
syntax, conversion of XML query in SparQ syntax and establishing connection with
reasoner. API contain following classes

API class diagram contains set of classes with two implemented interfaces, used to
perform different processes related with the XML processing, validation with SparQ
syntax, conversion of XML query in SparQ syntax and establishing connection with
reasoner. API contain following classes

1. EngineConnector 1. EngineConnector
2. IQueryGenerator 2. IQueryGenerator
3. IUserResult 3. IUserResult
4. QueryGenerator 4. QueryGenerator
5. QueryReceiver 5. QueryReceiver
6. QuerySender 6. QuerySender

Here in this thesis, I used OpenJUMP application to demonstrate API functionality
by integrate API application with developed plug-in. OpenJUMP Application
activates both plug-in application and API at the same time, when extension is
loaded for reasoning on spatial data. In future the developed API can access over
network or can modify to access over http as web-based API.

Here in this thesis, I used OpenJUMP application to demonstrate API functionality
by integrate API application with developed plug-in. OpenJUMP Application
activates both plug-in application and API at the same time, when extension is
loaded for reasoning on spatial data. In future the developed API can access over
network or can modify to access over http as web-based API.

public class UserResult implements IUserResult{
 private JTextArea areaToDisaplayResults = null;
 public UserResult(JTextArea tArea) {
 this.areaToDisaplayResults = tArea;}
 public void queryResult(String xml) {
 System.out.println("Result in XML format......" +"\n"+ xml);
 if(this.areaToDisaplayResults!=null){
 this.areaToDisaplayResults.setText("");
 this.areaToDisaplayResults.setText(xml);
 }}}

55

 Figure 22: API UML Class Diagram

5.1.2.1 EngineConnector Class
A class EngineConnector contains set of methods that provides main functionalities
including sending queries to reasoner, receiving results from reasoner, establishing
connection with reasoner via TCP/IP and controlling connection with reasoner.
createConnection() method takes two arguments as hostname and port_number to
establish connection with reasoner via TCP/IP. It creates Buffer reader and writer to
read and write queries and result over TCP/IP after establishing connection with
reasoner.

isResultRecieved() method is used for verification, that result is received from
reasoner. Result from reasoner contains Sparq-tag like sparq>. If the result contains
tag-name, method will return true value otherwise it will returns false.

closeTheConnection() method is used to control connection with reasoner as well as
to control the buffers reader and writer.

public void closeTheConnection(){
try{ out.close();
 in.close();
 }
 }catch(()Exception e){
 }}}

public boolean isResultRecieved()){
 return isSparqTagRecieved;
}

public void createConnection(String url, int port){
try{
 Socket skt=new Socket(url,port);
 Skt.setkeepAlive(tru);
 In.new BufferReader(new InputStreamReader(skt.getInputStream()));
 Out=new BufferWriter(new OutputStreamWriter(skt.getOutputStream()));
} catch(()Exception e){
 System.out.println(“problem in connection”+e.getMessage();
}}

sendLastReceivedQueryFromUser() method is used to listen socket and forward
query to the reasoner using established connection. Out.flush() method is used to
forward the reasoning query.

 56

public void sendLastReceivedQueryFromUser(String sparQquery){
try{
 Out,write(sparQquery);
 Out.newLine();
 Out.flush();
} catch(()Exception e){
 e.printStackTrace();
 }}

isEngineConnected() method is used to activate BufferRead that listen input stream
and return Boolean value as true, if BufferRead is not ready it through IO exception
as error.

 public Boolean isEngineConnected(){
 try{
 return in.ready();
 }catch(IOException err){
 err.printStackTrace();
 return false;
 }
 }

5.1.2.2 IQueryGenerator Interface
IQueryGenerator is an interface implemented by QueryGenerator class. It defines all
possible methods required by specific reasoner. These methods are implemented in
QueryGenerator class to access attributes and values defined with in tags of given
XML file.

public interface IReasoningQueryGenerator {
 public String getAlgebraicQualifyNetwork(Document doc);
 public String getRefineExtendConstraintNetwork(String conNetworkStr);
 public NodeList getCalculasNode(Document doc);
 public String getModuleName(Document doc);
 public String getCalculesName(Document doc);
 public String getBinaryTernaryOperationNames(Document doc);
 public String getRelationNames(Document doc);
 public String getOperationName(Document doc);
 public String getControlModeNames(Document doc);
 public String getReturnNames(Document doc);
 public String makeTernaryConstraintNetworkString(NodeList
calculasNodes);
 public String getTernaryRefineExtendConstraintNetwork(NodeList
 calculasNodes);
}

 57

5.1.2.3 QueryGenerator Class
QueryGenerator class implements all defined method in IQueryGenerator
(interface). It contains set of methods that are used to access nodes and their values
defined in Document tree like module-name, calculus-name and constraint-networks.
Each module in SparQ has it own syntax to define network specific parameters.
getModuleName(),getCalculusName(),getBinaryTernaryOperationNames(),
getOperationNames(),getReturnName() and getContolModeNames(), these methods
are used to access elements attributes and their values, Method
getElementByTagName() returns element attribute using define tag-name in XML
file and returns its attribute as string.

Public String getModulName(Document doc){
 Element
 module=(Element)doc.getElementByTagName(“module”).item(0);
 Return (module.getAttribute(“name”);
}

createXMLDoumentTree() method takes defined XML file as argument and creates
document in tree structure using parse() method. Tree structure developed during
parsing and used to access elements defined as tags and their attributes.

Public String getOperationName(Document doc){
 Element module=(Element)doc.getElementByTagName(“operation”)
 .item(0).getTextContent;
 Return (module.getAttribute(“name”);
}

Private Document createXMLDocumentTree(File file){
 Document doc=null;
 try{Doc=DoucmentBuilderFactor.newInstance().newDocumentBuilder().p
arse(file);
 }catch(SaxExecption e){
 e.printStackTrace();
 }catch(SaxExecption e){
 e.printStackTrace();
 } catch(SaxExecption e){
 e.printStackTrace();
 }return doc;}
}}}}

makeConstranitNetworkString() method is used to create constraint-network string
for binary calculi using parameters like (entity-name, relations, entity-name). In
constraint-reasoning module operations named (algebraic-closure) and (Scenario-
consistency) takes arguments as constraint-networks for reasoning in the following
structure“((A (N S) B)(B (S) C))”. makeConstraintNetworkString() creates string in
above mentioned syntax for binary calculi and returns their value as set of string.

 58

public String makeConstraintNetworkString(NodeList calculasNodes){
 String sparqString = "" ;sparqString += " "+ "(";
 int ent = 1;String relation = "";
 String entityRelation = "";
 for(int i=0; i < calculasNodes.getLength(); i ++){
 Node node = calculasNodes.item(i);
 String value =node.getTextContent();
 if(node.getNodeName().matches("entity")){
 if(ent==1){
 entityRelation += "(" + value + " (R) ";
 ent++;
 }else if(ent==2){
 entityRelation += value + ")" ;
 sparqString += entityRelation.replace("R", relation);
 ent = 1;relation = "";entityRelation = "";
 }}else if(node.getNodeName().matches("relation")){
 relation += value + " " ;
 }}return sparqString + ")" ; }}
}}

makeComputeRelationSparqString() method takes document as argument and creates
string that contains modue-name, calculus name, operation and relations . In
compute-relation module SparQ accept string in the following sequence.
“(Operation (relation, relation))”
makeComputeRelationSparqString() method creates above mentioned syntax by
accessing operations and relations defined in XML tags and returns values as string.

public String makeComputeRelationSparqString(Document doc){
 String sparQquery = getModuleName(doc) + " " +
 getCalculesName(doc) + " " +
 getBinaryTernaryOperationsNames(doc).replace("R",
 getRelationsNames(doc));
 System.out.println("[a comput-relation query:]" + sparQquery);
 return sparQquery;
 }}}

Similarly makeTernaryConstraintNetworkString() method is used to create
constraint-network for ternary calculi in ternary calculi constraint-network contains
three entities with given constraint like ((A B N C))((B C S D)).

 59

public String makeTernaryConstraintNetworkString(NodeList calculasNodes){
 String sparqString = "" ;
 //char quot = '"';
 try{
 sparqString +="(";
 int ent = 1;
 String relation = "";
 String entityRelation = "";
 for(int i=0; i < calculasNodes.getLength(); i ++){
 Node node = calculasNodes.item(i);
 String value =node.getTextContent();
 if(node.getNodeName().matches("entity")){
 if(ent==1){
 entityRelation += "("+ value ;
 ent++;
 }else if(ent==2){
 entityRelation+=" "+value +"(R)";
 ent++; }
 else if (ent==3){
 entityRelation += " "+value +")" ;
 sparqString +=
 entityRelation.replace("R", relation);
 ent = 1;
 relation = "";
 entityRelation = "";
 }
 }else if(node.getNodeName().matches("relation")){
 relation +=value;
 }
 }
 }catch(Exception e){
 System.out.println("[problem to get constraint-network String...]
"+e.getMessage());
 }
 return sparqString +")";
 }

getRelationsNames() method creates list of all relations used in query. It is useing
document as argument in getElementByTagName(). Value defined in tag name
“relation” is retrieve through getTextContent() and return as string relations.

 60

getAlgebraicQualifyNetwork() method is used to create reasoner specific syntax used
in algebraic-reasoning using qualify operation, it takes entity name and quantitative
description as entity type and generates possible relations between entities of given
network.

public String getRelationsNames(Document doc){
 String relations = "";
 NodeList operationsInQuery =
 doc.getElementsByTagName("relation");
 for(int

5.1.2.4 QueryReceiver Class
QueyReceiver class extends TimerTask used to schedule receiver that listen input
steam up to 500 mile second. It contains method run () to read incoming string as
result. While-loop is used to keep program listen input stream until received all result
strings, after receiving all data from input stream program, it store it in as string
named result and terminate while-loop to process result. In next step run() call
processEngineResult() that process generated result. Most of queries using SparQ
forward results within tag-name<sparq> and send result with ending-tag like empty
space with length (0) but some of the modules like algebraic-reasoning queries,
SparQ generates result with out any end flag or with out any result ending
information. Based on analysis, i set program that extract results from given tag-
name <Sparq>, or by comparing module-name using ending flag information. Incase
of error in input stream program through IOException as error.

SparQ provides different format of results. Based on analysis, I generalized all
possible results, like query result base on compute-relation module contains set of
relations within parentheses and “sparq>” tag. To convert these relations in XML
structure, I set a program that replace all parentheses with empty space and extract
substring based on tag “sparq>”. Simple-text as result contains string like Not
Consistent, Satisfiable, not satisfiable and cannot decide, such a result are extracted
using contains method that compare results with these define strings and forward

public String getAlgebriacQualifyNetwork(Document doc){
 NodeList entity = doc.getElementsByTagName("entity");
 String networkString = "(";
 for(int i = 0 ; i < entity.getLength() ; i++){
 Element ele = (Element)entity.item(i);
 String entityName = ele.getTextContent() ;
 String entityType = ele.getAttribute("type");
 networkString += "(" + entityName + " " + entityType + ")";
 }
 return networkString + ")" ; }

 i=0; i < operationsInQuery.getLength(); i++){
 String relation =
operationsInQuery.item(i).getTextContent();
 relations += " " +relation ;
 }return relations;
 }

 61

results in tag-name <comments>.

public void processEngineResults(String resp, String queryType, String
operationName, String returns,String binaryTernaryOperationType,String
binaryTernaryOperationName,String calculusType){
 String moduleOperationStart="\t"+"<operation" + " "+"name ="+
 ""+"'"+operationName+"'"+ " type ="+ "
"+"'"+queryType+"'"+">"+"\n";
 String moduleOperationEnd="\t"+"</operation>";
 try{
 if(resp.contains("sparq>")) {
 if(resp.contains("An error occured:")){
 int firstBraceIndex = resp.indexOf("sparq>") + 6;
 queryResult = resp.substring(firstBraceIndex);
 xml = "\n" + "\t"+"\t"+"<comments>" + resp +
 "</comments>"+"\n" processResult.result.queryResult("\n"+"<result"+"
 "+"type = "+""+ "'"+queryType+"'"+ ">"+ "\n"
 +moduleOperationStart+ xml
 +moduleOperationEnd+ "\n" +"</result>");
}else if(resp.contains("Not consistent.")|| resp.contains("SATISFIABLE.")||
 resp.contains("NOT SATISFIABLE.")|| resp.contains("CANNOT
 DECIDE.")){
 int firstBraceIndex = resp.indexOf("sparq>") + 6;
 queryResult = resp.substring(firstBraceIndex);
 xml = "<comments>" + queryResult + "</comments>"+"\n";
 processResult.result.queryResult("\n"+"<result"+" "+"type = "+""+
 "'"+queryType+"'"+ ">"+ "\n"
 +moduleOperationStart+xml+moduleOperationEnd
 + "\n" +"</result>");
}else if(resp.contains("(")){
 int firstBraceIndex = resp.indexOf("sparq>") + 6;
 queryResult = resp.substring(firstBraceIndex);
 processResult.result.queryResult("\n"+"<result"+" "+"type = "+""+
 "'"+queryType+"'"+ ">"+ "\n"
 + convertResultIntoXML(queryResult, queryType, operationName,
 returns,binaryTernaryOperationType,binaryTernaryOperationName,calcu
 lusT ype)
 + "\n" +"</result>");
 processResult.sendQuery = false;
 }}
 }catch(Exception e){
 System.out.println("[problem in engine data processing]" +
 e.getMessage());
 }
 }

 62

Similarly general error report is as also extracted based on String “An error
occurred” and represented as error with in comments tag. PocessEngineResult() is
used to call other methods like ConvertResultIntoXML(), getCompleteNetworkXML()
and getResultNetworkXML() that are used to remove black-spaces, quotations and
split result in to sub-networks based on different java regular expressions. It is used
to extract relations and entities. QueyReceiver class override Run() method defined
in TimerTask class.

 63

processEngineResults() takes arguments like resp, queryType. The operation-name
and returns etc., basically these arguments are used to compare and process module
specific result conversion. It extracts substring result from original required result by
removing unwanted string like <sparq> and blank spaces. The method is used to call

public void run() {
 String line = "smthing";
 String result = "";
 Boolean shouldStop = false;
 Boolean sparqTagReceived = false;
 try {
 while(!shouldStop){
 line = EngineConnector.in.readLine();
 System.out.println("lines read from sparq..."+line);
 if(line.contains("sparq>")){
 sparqTagReceived = true;
 }
 if(sparqTagReceived){
 String module = processResult.currentQueryType;
 result += line;
 if(module.matches("constraint-reasoning")||module.matches("qualify")){
 if(line.length()==0){
 shouldStop=true;
 }
 }else if (module.matches("compute-relation")){
 if(line!="null"){
 shouldStop=true;
 }
 }else if(module.matches("a-reasoning")){
 shouldStop=true;
 }
 }
}catch (IOException e1) {
System.out.println(" Problem in RUN method... ");
 e1.printStackTrace();
}
System.out.println(" orginal result: " + result);
int indexOfSparqTag = result.indexOf("sparq>");
String requiredResult = result.substring(indexOfSparqTag, result.length());
System.out.println("complete result : " + requiredResult);
try{
 processEngineResults(requiredResult, processResult.currentQueryType,
 processResult.subQueryType, processResult.returnsType ,processResult
 .binaryTernaryOperationType,
 processResult.binaryTernaryOperationName,processResult.calculusType);
 }catch(Exception e){
 System.out.println("[error in reading data from SparQ");
 e.printStackTrace();
 }}}

 64

set of other methods like convertResultIntoXML(), getcompleteNetworkXML() and
getResultNetworkXML() that extracts final result by removing blank spaces and
parentheses and converts in to XML structure. The final given XML result is passed
as argument in queryResult() to display as query result at user interface.

private String getResultNetworkXML(String subResult){
 xml ="";
 String relationXML ="";
 try{
 String relation = subResult.substring(1, subResult.length()-1).trim();
 if(relation.contains(" ")){
 String[] allRelations = relation.split("[]");
 for(int

convertResultIntoXML() method contains arguments like result, module-name,
operation-name, operation type, calculus-name, calculus-type,
binaryTernayoperationName, binaryTernaryOperationType and returns (first/all). It
contains module based set of programming codes to convert given result in XML
format.

Each module specific queries generates specific type of result based on analysis these
results are categorized and programmed to display in XML format
getCompetleNetworkXML() takes argument as list, that contains all characters
defined in result. Method removes all parentheses from result by replacing with
blank spaces and forwards as subResult to getResultNetwrokXML() method. It is
calling other two defined method like getTernaryResultNetworkXML() and
getResultNetworkXML() with the help of conduction if calculuType matches with
binary or ternary as both binary and ternary calculi returns different constraint-
networks.

 r = 0; r < allRelations.length; r++){
 System.out.println(allRelations[r]);
 relationXML += "<relation>" +
 allRelations[r] + "</relation>"+"\n" ;
 }}else {
 relationXML = "<relation>" + relation + "</relation>"+"\n" ;
 } xml =
 "<entity>" + subResult.substring(0, 1) + "</entity>" +"\n"+
 relationXML + "\n"+ "<entity>" +
 subResult.substring(subResult.length()-1, subResult.length()) +
 "</entity>"+"\n";
 }catch(Exception e){
 System.out.println("Problem in getResultNetworkXML() " +
 e.getCause());
 }return xml; }

 65

private String getCompleteNetworkXML(String[] list){
 xml = "";try{ for(int r=0; r < list.length; r++){
 if(list[r].length() > 1){
 String subResult = list[r].trim().replaceAll("[(]",
 "").trim();
 subResult = subResult.replaceAll("[)]", "").trim();
 if(processResult.calculusType.matches("binary")){
 xml += getResultNetworkXML(subResult);
 }else if(processResult.calculusType.matches("ternary")){
 xml+=getTernaryResultNetworkXML(subResult);
 }
 xml += getResultNetworkXML(subResult);
 }}}catch(Exception e){
 System.out.println(" [problem in getCompleteNetworkXML
 method...]"+e.getMessage());
} return xml

private String getResultNetworkXML(String subResult){
 xml ="";
 String relationXML ="";
 try{
 String relation = subResult.substring(1, subResult.length()-1).trim();
 if(relation.contains(" ")){
 String[] allRelations = relation.split("[]");
 for(int r = 0; r < allRelations.length; r++){
 System.out.println(allRelations[r]);
 relationXML += "\t"+"\t"+"<relation>" + allRelations[r] +
 "</relation>"+"\n" ;
 }
 }else {
 relationXML = "\t"+"\t"+"<relation>" + relation +
 "</relation>"+"\n" ;
 }
 xml =
 "\t"+"\t"+"<entity>" + subResult.substring(0, 1) + "</entity>"
 +"\n"+ relationXML +"\t"+"\t"+"<entity>" +
 subResult.substring(subResult.length()-1, subResult.length()) +
 "</entity>"+"\n";
 }catch(Exception e){
 System.out.println("Problem in getResultNetworkXML() " + e.getCause());
 }return xml;
 }

 66

private String convertResultIntoXML(String result, String queryType, String
subQueryType, String returns){
 xml = "";
 if(queryType.matches("compute-relation")){
 String afterRemovingBraces = result.trim().substring(1, result.length()-2);
 String[] relations = afterRemovingBraces.split(" ");
 = for(int r=0; r < relations.length ; r++){
 xml += "<relation>" + relations[r] + "</relation>"+"\n";
 }
 }else if(queryType.matches("qualify")){
 String[] list = result.split("[)(]");
 xml += getCompleteNetworkXML(list);
 }else if(queryType.matches("constraint-reasoning")){
 String[] splitNetwork = null;
 String subNetWork = "";
 String[] list = null;
 String subSubType = returns;
 if(subQueryType.matches("scenario-consistency")){
 if(subSubType.matches("all")){
 splitNetwork = result.split("[0-9]");
 int whereIsLastBraces = result.indexOf("))");
 subNetWork = splitNetwork[0].trim();
 list = subNetWork.split("[)][(]");
 xml += "\n" + "<comments>" +
 result.substring(whereIsLastBraces+2, result.length()) +
 "</comments>"+"\n";
 xml += getCompleteNetworkXML(list);
 }else if(subSubType.matches("first")){
 result = result.replace(" ", "");
 list = result.split("[)][(]");
 xml += getCompleteNetworkXML(list);
 }

5.1.2.5 QuerySender Class
A class QuerySender contains set of methods that provides functionalities like
connection over TCP/IP, register generated result, close connection and sending
query to reasoner.
isConnectionEstiblished() method is used to verify the established connection, that
returns true value on the successful connection with the reasoning engine, it calls
method isEngineConnected() of class EngineConnector.
closeTheConnection() method is used to close connection with reasoner and close all
opened socket like Input stream and output stream. It calls closeTheConnection()
method define in EngineConnector class through connector object of
EngineConnector type.

 67

public void startConnectionAt(String url, int port){
 connector.createConnection(url, port);
 }public void closeTheConnection(){
 connector.closeTheConnection();
}public Boolean isConnectionEstablished(){
 return connector.isEngineConnected();
 }

sendXMLQueryToReasoner() method takes given XML file as argument and passes
file to createXMLDocumentTree() method that used for generating Document tree.
Method sendXMLQueryToReasoning() is accessing all XML tags and there values to
generate sequence of string based on the module specific syntax. Method access all
getters defined in IReasonQueryGenerator interface using object named
“stringGenerator”

 68

public void sendXMLQueryToReasoner(String xmlFile) {
 File query = new File(xmlFile);
 Document doc =
stringGenerator.createXMLDocumentTree(query);
 String module = stringGenerator.getModuleName(doc);
 String calculasName = stringGenerator.getCalculesName(doc);
 String calculusType=stringGenerator.getCalculusType(doc);
 String sparqQuery = "";
 NodeList calculasNodes =
stringGenerator.getCalculasNodes(doc);
 If(calculusType.matches(“binary”){
 if(module.matches("compute-relation")){
 sparqQuery =
 stringGenerator.makeComputeRelationSpaqString(doc);
 }else if(module.matches("constraint-reasoning")){
 String operationName =
 stringGenerator.getOperationName(doc).toLowerCase();
 if(operationName.matches("algebraic-closure")){
 sparqQuery = module + " " + calculasName +" " +
 operationName + " " +
 …………………….
if (calculusType.matches (“ternary”){
if(module.matches("constraint-reasoning")){
 String operationName =
 stringGenerator.getOperationName(doc).toLowerCase();
 if(operationName.matches("algebraic-closure")){
 sparqQuery = module + " " + calculasName +" " +
 operationName + " " + ……………….
 System.out.println("[Sending to sparq:]" + sparqQuery.trim());
 connector.sendQueryToReasoner(sparqQuery.trim());
 timer=new timer();
 reveiver=new QueryReceiver(connector,this);.
 timer.schedule(receiver,500);
 }

 69

6. Case Study and Demonstration

6.1 Case-Study

6.1.1 Integration of Reasoner with GIS
GIS is fundamentally about solving real-world problems, it is used to improve many
of our day-to-day working and living arrangements. Today wider availability of GIS
through the internet, as well as through organization-wide local area networks, more
and more individuals and organizations find themselves using GIS to answer the
fundamental question, where? And to solve complex problems that are of real-world
concern. There are huge range of applications of GIS, integrated with corporate
information system (IS) including topographic base mapping, socio-economic and
environmental modeling, global(interplanetary) modeling and education (Longley,
M. F. Goodchild, 2009).

Reasoner like SparQ contains qualitative reasoning calculi with defined vocabulary
in the form of composition table, the transitivity table introduced by Allen in
temporal calculus. It is a fixed vocabulary of relations defined in qualitative spatial
reasoning calculi normally, this will constitute a JEPD set, such a table enables one
to answer the following question like R1(x, y) and R2(y, z), what are the possible
relations from the set (Ri) that can hold between (x) and (z) ?. The integration of
reasoner with spatial application is possible through implementation of platform
independent middleware framework (API) and plug-in as user interface. Java based
plug-in as application interface will facilitate GIS users to write queries for reasoning
on real data by selecting features directly. These spatial queries in XML format will
pass to reasoner via TCP/IP connection and extract result from reasoner in XML
format.

In case study, I considered integration of Cardinal Direction Calculus proposed by
Frank, 1991. The purpose of study is to explore functionality of qualitative spatial
reasoning calculi in GIS particularly orientation information using spatial data.
Orientation information about the urban environment is directly available to human
being through perception. People perceive the arrangement of entities in space,
categorize them as spatial relationships and describe them as spatial expression in
language. These Spatial representations need frame of reference, Franks,1991
introduced methods to partition the orientation information, which are known as
projection-based model, cone-based model and directions with natural zone, he
introduce natural zone to solve the problem of how to determine direction when two
point are too close together. Cardinal direction is a binary calculus that describes
binary function between two objects in the space (P1, P2) that map in to a symbolic
direction. The set of symbol depends upon the granularity, usually human deals with
two level of granularity for directions like {N, S, E, W}. Freksa, 1992, introduced the
double cross model, which is based on the projection-based model of directions.
These models are represented below.

 70

Figure 23: Projection Based Model and Cone-based Model of Cardinal Direction introduced by Frank,
1991

Cardinal Direction as Cone:
The angular direction between the observer’s position and destination point is most
often used prototypical concept of cardinal direction. This model of cardinal
direction has a property that the area of acceptance for any given direction increases
with respect to distance (Frank, 1991).
The quarter turn of the given direction can be defined as

0)0(),(,)(,)(,)(==== qWqWSqSEqENq
The composition table for the given calculi is defined in chepter-2.

Cardinal Directions Defined by Projections:
A projection based cardinal direction defined by par-wise oppositions and each pair
divides the plan onto two half-plans. By dividing space in four half-planes provides
nine regions including natural zone, provides reliable solution to identify relative
position of points on earth. For the (N-S) direction there are three values for direction
are dns= {N, P, S} and similarly for {E-W} direction, they are dew = {E, Q, W}. The
intuitive properties of cardinal directions are describe in the form of algebra with two
operations named inverse and composition operation.

In GIS direction of traveling and road data is representing as line segment between
given point’s source (P1) and destination (P2). By applying operations, defined in
cardinal direction calculus, we can deduce the inverse direction from P2 to P1.

)1,2())2,1((PPdirPPdirinv =

)3,1()3,2()2,1(PPdirPPdirPPdir =⊗
Composition operation merges two contiguous paths, from (P1 to P2) and (P2 to P3),
into a single path from (P1 to P3). The operation of composition is a basic step of the
inference process. In case study, I consider Munster City data, assume that we have
three 2D-point objects A (lake), B (small settlement) and C (small settlement). By
integrating reasoner like SparQ with GIS application using API provides easy
accessibility to reasoning calculi for reasoning on given data, The given data is
processed by API to convert into SparQ specific syntax and extract result as
qualitative description (possible cardinal directions between given entities). Java
based plug-in at GIS application will support user to write a query in XML format
like

 71

<module name="qualify">
 <calculus name="cardir">
 <controlMode>all</controlMode>
 <entity type="51.956501 7.614026">A</entity>
 <entity type="51.97041 7.60673">B</entity>
 <entity type="51.968348 7.638659”>C</entity>
 </calculus>
</module>

Finding the direction between (A and C), (A and B) and (B and C) based on given
real coordinate value is possible through using qualify module in SparQ. Qualify
convert quantitative descriptions of scenes in qualitative scenes and display possible
relation between 2-D points.

Figure 24: Orientation representation of objects P1, P2 and P3 using projection-based model Frank
1991in Open Street Map

A middleware API will receive this XML query and parse it to generate SparQ
specific query syntax, API is used to establish connection with reasoner and passes
the query for reasoning. It extracts result in XML format that facilitate users to apply
further processes to display in GIS application. The given result represents possible
directions between objects (A, B) (B, C) and (A, C), which is represented as XML
format

<result>
 <entity>A</entity><relation> s </relation><entity>B</entity>
 <entity>A</entity><relation> sw </relation><entity>C</entity>
 <entity>B</entity><relation> w.</relation><entity>C</entity>
</result>

As we know that qualitative approach to spatial reasoning does not relay on a
coordinate plan and does not attempt to map all information in this framework. It can

 72

deal with imprecise data and therefore, yields less precise result then quantitative
approach (Freska, 1991).
The integration of reasoning calculi like cardinal direction calculus with GIS,
although provides imprecise data but it uses verbal descriptions, such imprecise
descriptions are necessary in query language like “ find all restaurants about 2 miles
North of town A and East of Town B”, such queries are easy to understand by normal
GIS user.

6.2 Demonstration on Spatial Data
For reasoning demonstration using spatial data, I used OpenJUMP GIS application. It
is open source JAVA based software, where we can easily extend application by
developing required plug-ins and tools. I developed plug-in that contains text-area,
text-field and buttons to control activates like send-button, connect-button (establish
connection with reasoner) and disconnect-button (disconnect established
connection). The developed API can used as public API and access via http: or can
integrate with any java based application. To demonstrate API activities on spatial
data, I integrate API with plug-in as *.jar file format and placed in openJUMP
/bin/txt/ plugin.jar, from where, it can easily load as extension.

Figure 25: OpenJUMP plug-in to send and receive data

Text-field: is used to provide query path which must be written in XML format.
Text-Area: text-area is used to display query result in XML format received from
reasoner.
ConnectReasoner: button is used to establish connection with reasoner over TCP/IP
(localhost, 4444) and authenticate connection, it also activates input/output streams
to read and write data over TCP/IP.
DisconnectReasoner: button is used to close all established connections during
communication like to close both Input/output streams.
SendQuery: SendQuery button confirms given query (XML format) file path and
sends query to reasoner.

For experiment, I considered Munster street data (Muenster-street.shp and

 73

roadIntersections.shp) and draw three 2-D points (A, B and C) by considering road
intersections within Munster City. Both shape files are geo-referenced and projected
Geographic coordinate system GCS_European_1950
Datum D_European_1950
Linear Unit: Meter
Projection: Albers
X Y coordinate of intersections are given below:
i. PointId (A) = (3404258.7402544618 5758202.000064869)
ii. PointId (B) = (3405184.9683120195 5758842.075137064)
iii.PointId (C) = (3405056.2571234703 5759567.499447379)

Figure 26: Munster Street data with road-intersections as points (A, B and C)

After extracting X Y coordinates, I defined query in XML format to forward to
reasoner over TCP/IP. Query contains module-name, calculus-name and other
required parameters like controlMode, entity with defined type and entity-value as
identifier. As we know that qualify module in SparQ takes quantitative descriptions
in the terms of coordinate values of given points and return qualitative descriptions
of points in the terms of entities and relationship between entities. The API will take
query in XML format and convert it into SparQ syntax for reasoning. I apply
cardinal-direction (CARDIR) calculus on defined road-intersections (A, B and C) to
identify possible cardinal-direction relations like [n, ne, e, se, s, sw, w, nw]. As
control-mode value, I selected “all”, that returns the relations between every object
and every other object will be included. In XML query, I defined given coordinate
values [X, Y] as entity-type and PointId as entity-Id, it is given below.

 74

<?xml version="1.0" encoding="UTF-8"?>
<module name="qualify">
 <calculus name="cardir">
 <controlMode>all</controlMode>
 <entity type="3404258.7402544618
 5758202.000064869">A</entity>
 <entity type="3405184.9683120195
 5758842.075137064">B</entity>
 <entity type="3405056.2571234703
 5759567.499447379">C</entity>
 </calculus>
</module>

API converts given XML format query into SparQ specific syntax and forwarded to
reasoner over TCP/IP. SparQ processes the query and generates result in SparQ
module specific syntax. The generated result is further processed with the help of
API to convert into defined standard XML structure for particular module.

Figure 27: Reasoning result in XML format on given road-intersections as points (A, B and C).

The given XML as a result constrains tags like result-type, operation-name and type,
entity-name and relation-name. Result-type is used to identify type of module used
for reasoning on given data, operation-name and type defines modules specific
operation name and its type. Here in this case, qualify module doesn’t contain any
specific operation therefore; it will forward empty space as operation-name and
operation-type, will be module-name used for reasoning. Entity-tag represents used
entities in query and relations-tag represents possible cardinal-direction relations
between given entities like,
[A south-west (sw) B][A south-west (sw) C] [B south-east (se) C]

 75

<result type = 'qualify'>
 <operation name = “”,type= “qualify”>
 <entity>A</entity>
 <relation>sw</relation>
 <entity>B</entity>
 <entity>A</entity>
 <relation>sw</relation>
 <entity>C</entity>
 <entity>B</entity>
 <relation>se</relation>
 <entity>C</entity>
 </operation>
</result>

One of the major advantage of result in XML format is reusability, as result contains
possible relationship between given entities as constraint-network, We can generate
sub-queries from given result with little modification and can reuse it for further
reasoning like by applying constraint-reasoning specific operation (algebraic-closure
and scenario-consistency) to verify network consistency . The sub-query from
resultant query is given below.

<?xml version="1.0" encoding="UTF-8"?>
<module name="constraint-reasoning">
 <calculus type="binary" name="cardir">
 <operation type="constraint-reasoning">algebraic-closure</operation>
 <entity>A</entity>
 <relation>sw</relation>
 <entity>B</entity>
 <entity>A</entity>
 <relation>sw</relation>
 <entity>C</entity>
 <entity>B</entity>
 <relation>se</relation>
 <entity>C</entity>
 </calculus>
</module>

I applied algebraic-closure operation of constraint-reasoning module by modifying
given result to check network consistency of generated constraint-network. As result
SparQ returns constraint-network with comments like “unmodified network”. Given
comments indicate that the constraint-network generated from coordinate values of
road intersections are algebraically closed. Result of sub-query is given below.

 76

<result type = 'constraint-reasoning'>
 <operation name ='algebraic-closure', type = 'constraint-reasoning'>
 <comments>Unmodified network</comments>
 <entity>B</entity>
 <relation>se</relation>
 <entity>C</entity>
 <entity>A</entity>
 <relation>sw</relation>
 <entity>C</entity>
 <entity>A</entity>
 <relation>sw</relation>
 <entity>B</entity>
 </operation>
</result>

Similarly I applied dipole relation algebra (DRA-24) on line segments (A, B and C)
representing streets in Munster, Germany. Queries using DRA-24 calculus contains
parameters like, module-name, calculus, controlMode and entity-type. DRA-24 takes
dipoles as base entities, which are oriented line segments. The object description of a
dipole is in the form (name, Xs Ys Xe Ye), each dipole contains entity-Id, starting
points (Xs Ys) and ending points (Xe Ye) of dipole.

Figure 28: Line segment (A, B and C) representing Munster road, used for reasoning

 77

Query using XML format:

<?xml version="1.0" encoding="UTF-8"?>
<module name="qualify">
 <calculus name="dra-24">
 <controlMode>all</controlMode>
 <entity type="3405410.3201312614 5757710.502361109
 3405618.164074955 5759248.54754444">A</entity>
 <entity type="3405616.7541148234 5758197.3177945595
 3404197.3360080197 5758261.044056213">B</entity>
 <entity type="3405690.9158829013 5758867.441955996
 3406996.0213157325 5759225.303069583">C</entity>
 </calculus>
</module>

Generated result from reasoner (SparQ) contains set of possible relations between
defined lines segment like:
 [A (rllr) B] [A (rllr) C] [B (rrrr) C]
A line segment “A” has relation (rllr) with “B” means starting point of “B” is on
right-side and ending-point is on left-side of “A” and “starting-point of “A” is on
left-side and ending-point is on right-side of “B”.
Line segment “A” has relation (rllr) with “C” means, starting point of “C” is on
right-side and ending point is on left-side of “A” and starting point of “A” is on left-
side and ending point is on right side of line “C”.

Similarly line segment “B” has a relation (rrrr) with line segment “C” means both
starting and ending points of “C” are on right-side of “B”, and starting and ending
points of “B” are also right-side of line segment “C”. Reasoner inferred possible
relation between “A” and “C” which is [A (rllr) C] based on given relations between
“A” and “B”, “B” and “C”.

<result type = 'qualify'>
 <operation type = ''>
 <entity>A</entity>
 <relation>rllr</relation>
 <entity>B</entity>
 <entity>A</entity>
 <relation>lrrl</relation>
 <entity>C</entity>
 <entity>B</entity>
 <relation>rrrr</relation>
 <entity>C</entity>
 </operation>
</result>

The above mentioned result contains constraint-network provided against the given
quantitative description of dipoles. The result is further used as sub-query by
applying constraint-reasoning module operation (scenario-consistency) to validate
that, the given constraint-network has any scenario that is algebraically closed. It

 78

returns possible scenarios. Modified sub-query used constraint-reasoning module to
check algebraically closed scenario in the given network.

<?xml version="1.0" encoding="UTF-8"?>
 <module name="constraint-reasoning">
 <calculus type="binary" name="dra-24">
 <operation type="constraint-reasoning">scenario-
 consistency</operation>
 <return>all</return>
 <entity>A</entity>
 <relation>rllr</relation>
 <entity>B</entity>
 <entity>A</entity>
 <relation>lrrl</relation>
 <entity>C</entity>
 <entity>B</entity>
 <relation>rrrr</relation>
 <entity>C</entity>
 </calculus>
 </module>

The result generated from above mention sub-query contains constraint-network with
comments like “1 scenario found, no further scenarios exist”. It indicates that the
given network is algebraically closed and it contains single relation between the
given dipoles.

<result type = 'constraint-reasoning'>
 <operation name ='scenario-consistency', type = 'constraint-reasoning'>
 <comments>1 scenario found, no further scenarios exist</comments>
 <entity>B</entity>
 <relation>rrrr</relation>
 <entity>C</entity>
 <entity>A</entity>
 <relation>lrrl</relation>
 <entity>C</entity>
 <entity>A</entity>
 <relation>rllr</relation>
 <entity>B</entity>
 </operation>
</result>

 79

7. Conclusion, Shortcomings and Future Work

7.1 Conclusion
Qualitative reasoning deals with commonsense knowledge without using numerical
computation. Spatial reasoning is present in our everyday’s interaction with the
geographical world, particularly in orientation and distance in the space, but GIS
application that is used to carry out spatial tasks, does not support commonsense
reasoning. Qualitative spatial reasoning enables computer to make predictions about
spatial constraints (relations) between existing objects in specific domain. During last
two decades a multitude of spatial constraint based calculi have been proposed and
discussed in literature to represent different aspects of the space and temporal
information qualitatively. The implantations of these spatial calculi are
comparatively small due to different factors like selection of appropriate calculi and
complication in calculus specific composition table development to integrate with in
the spatial application. Reasoning engines like SparQ contains spatial calculi used to
represent and reason about different aspects of the space based on defined calculi
specific relations and operations; it provides broader range of service including
integration capabilities with other applications.

In this thesis, there are two major components on which, I concentrate, first one is
analysis of reasoning engine (SparQ) and second is API development that facilitate
GIS users to reason on spatial data. SparQ is analyzed to identify commonalities
between reasoning technique it supports and type of query syntax in each module
used for reasoning. Based on analysis, I generalized all possible input query syntax
like queries with constraint-networks, and queries with nested operations and their
parameters (relations). Similarly SparQ output results are analyzed based on given
modules and operation specific queries. These given results are generalized in main
five categories like simple text, text and constraint-network, error etc.

Based on SparQ input and output syntax analysis, I developed a platform
independent API that allows developers to integrate the reasoning engine with spatial
applications like GIS. API provides a set of functionalities like establishing a
connection with the reasoner through a GIS application, and sending and receiving
queries over TCP/IP. It contains two major activities that handle sending and
receiving queries and their results over TCP/IP. Sending involves taking queries in a
predefined XML structure from GIS application, converts it into SparQ specific
syntax and forwards the formatted query to SparQ over TCP/IP for reasoning.
Receiving activity extract results from reasoner, converts these results into defined
XML structure and forward to the GIS application over same connection.

The main advantage of API is that it supports machine and human understandable
language (XML), which can be enhanced and improved in terms of automating
queries and reusability of received results. In general automating query means
directly generating queries by selecting spatial features from a visual representation
of their data and a task that will use the selected features as input. An automated
query in this context works more or less like an automated workflow in which the
next reasoning task and its data input are defined by the user selected task and the

 80

output of one of its preceding tasks. The developed API can easily integrate with any
Java based application or can be accessed over a network or can be converted into a
web-based API, to easily access and reason on spatial data from multiple platforms.
As we know that, GIS application deals with spatial data including point, line and
polygon features. To bring qualitative spatial reasoning close to GIS application
needs mechanism that supports these spatial objects qualitatively. In reasoning
engine SparQ qualify module takes quantitative descriptions of the scene to generate
qualitative descriptions as a possible set of relations between given entities like
points and line segments. Most of GIS data contains geometry type polygon to
represent to objects in the space like regions. To bring reasoner (SparQ) close to GIS
application needs improvements in qualify module, where we can able to apply
qualitative reasoning on geometry type polygons entities. Such facilities will enable
GIS users to use RCC and Cardinal Direction Calculi for reasoning on polygon type
entities.

7.2 Shortcomings
The shortcomings that, I found during this research work are mostly related with
reasoning engine (SparQ). SparQ is organized into four modules and each module
has its own input syntax. The initial commands like module-name, calculus-name are
common in all modules but the remaining commands and syntaxes are dependent
upon module specific operations.

Constraint-reasoning operations takes constraint-networks as argument, the structure
of constraint-networks vary with respect to module specific operation like for
algebraic-closure and scenario-consistency takes same constraint-network structure
as input. In contrast other operation of the same module such as refine and extend,
for example, takes constraint-networks as argument with extra parentheses.
Compute-relation module’s defined operations take nested arguments as
compositions of operations and relations. In some cases it takes single operation and
relations as arguments enclosed with in quotes. This was very challenging task to
define and structure in Java code. If each modules and their specific operation take
same type of parameters as argument it will be easy to understand by users and
developer.

There are different types of results and that these results are structure very
differently. Most of the results are forwarded between the starting tag sparq> and an
ending flag which can be a string of length zero, an end line (\n) character, a carriage
return (\r) or some combination of these. Based on these tags we can easily extract
required result. In contrast some modules like compute-relation and algebraic-
reasoning, results are forwarded with starting tag sparq> without forwarding end
flag, that provides difficulties to extract required result and to stop input stream. It
will be better if SparQ provide result with in defined tags like sparq> and with
ending flag with any special character or number like [-1 or -2] to indication ending
of result. SparQ support limited set of command like quite, interactive (-i), port (-
p).that are used to start SparQ in interactive mode and to provides allocate port for
communication over TCP/IP There must be some command like clean sparq-buffer,
stop-interactive mode with out leaving shell. In some case SparQ provides result in
composition of text and constraint-networks, the syntax and sequence of such a result

 81

is different with respect to module specific operations, there must be some common
standard structure for such a type of results. Major shortcoming in SparQ is basis-
entity support. SparQ doesn’t support polygon type basis-entity; it deals with 1d-
point, interval, 2d-points, dipoles etc. To use SparQ with spatial application as
reasoning tool, it is very important that reasoner must support polygon type geometry
especially for applying qualify module, as spatial data contain points, lines as well as
polygons.

Another major shortcoming of the research work is related with integration of
multiple reasoning engines with GIS application under the same framework. At the
moment developed framework support only single reasoner (SparQ) as it provides
services to integrate with our own application, in contrast reasoning engine (GQR)
doesn’t support integration services.

7.3 Future Work
The framework (API) developed in this thesis is limited in several respects like
selection of qualitative reasoning engines, automating spatial queries and
representing results visually on the client side.

In this thesis, I consider reasoning engines SparQ and GQR, after analysis both
reasoner engines, I came to know that GQR supports only binary queries and it
doesn’t provides functionalities to integrate with our own applications. In contrast
SparQ support both binary and ternary calculi and can easily integrate into own
application with the help of TCP/IP connection. Therefore I considered only SparQ
engine to integrate with spatial application and developed API based on particular
reasoner. It is possible to upgrade developed API to interact with other reasoning
engines and define their modules specific syntax in API. Integration of multiple
reasoning engines with the help of API can provides opportunity to reason on spatial
data by selecting specific reasoner.

Algebraic-reasoning module in SparQ is used to provide consistency checking
mechanism for given constraint-reasoning. It deals with reasoning about real-valued
domain using algebraic geometry techniques. It contains under development
operations like consistency checking, compute calculus operations, operation
analysis and qualification. During my further studies I would like to upgrade
developed API, to interact with above defined algebraic-reasoning module specific
operations through XML queries. Compute-relation module in SparQ allows to
compute with the operations defined in the calculus specification. Module takes
operations (binary, ternary) and basic relations a parameter depend upon arity of used
operation. The developed API deals with basic type of queries using compute-
relation module, in my future studies I like to implement all type of structure that
compute-relation module supports.

Due to shortage of time I implemented binary calculi specific query syntaxes and
only constraint-reasoning specific query syntaxes for ternary calculi in this API. I
would like to upgrade API to integrate all module specific queries syntaxes for
ternary calculi as well. At the moment, the developed framework supports single
reasoner (SparQ). I would like to continue my research to find out possibilities to

 82

integrate multiple reasoning engines under the same framework, where user will be
able to use multiple engines for reasoning on spatial data. As I mentioned above
SparQ doesn’t support geometry type polygon, in my future studies, I would like to
work on, how to integrate geometry type polygon in SparQ to provide facilities for
reasoning on polygon type entities like other geometry type entities.

 83

8. Bibliographic Reference

1) Articles of periodicals

1. C. Feska, 1990. Representation und Verarbeitung raumlichen Wissens.
Springer-Verlag, Barlin.

2. Christian Freksa, Qualitative spatial reasoning institute for Informatik
Technische Universitat Munchen.

3. Anthony G., Cohn, Brandon B., John G., Nicholas M.G., 1997, Qualitative
Spatial Representation and reasoning with region connection calculus.

4. A. G Cohn, 1997, qualitative spatial representation and reasoning techniques.
5. C. Freksa, Springer, Berlin, 1992a. Using orientation information for

qualitative spatial reasoning. In A. U. Frank, I. Campari, and U. Formentini,
editors, Theories and methods of spatiotemporal reasoning in geographic
space, pages 162–178.

6. O. Stepankova, V. Marik, R. Trapple (eds), 1992, An introduction to
qualitative reasoning, Advanced Topic in Artificial intelligence.

7. F. Dylla, L. Frommberger, J. O. Wallgrun and D. Wolter, 2006. SparQ: A
toolbox for qualitative spatial representation and reasoning. In Qualitative
Constraint Calculi: Application and Integration, Workshop at KI 2006, 79–
90.

8. A. David, Randell, Z. Cui, A.G. Cohn, 1992, A Spatial logic based on
regions and connection.

9. Christian Freksa, R. Rohrig, 2000, Dimensions of Qualitative spatial
reasoning.

10. M. Westphal, S. Woflf, Z. Gentner, GQR: A first solver for Binary
Qualitative Constraint Networks.

11. A. Frank, 1992, Qualitative spatial reasoning about Distances and direction in
Geographic Space.

12. Z. Jing, D.M. Mark, Z.Z. Rong, The new Reference frame about the spatial
orientation expression for Way-Finding.

13. Jan Oliver Wallgrun, Lutz Frommberger, Frank Dylla, Diedrich Wolter,
Frank, Christian, Qualitative Spatial Representation and Reasoning in the
SparQ-Toolbox.

14. Nebel B., 1997. Solving hard qualitative temporal reasoning problems:
Evaluating the efficiency of using the ORD-Horn class.

2) Articles / book chapters

1. R. Jochen, N. Bernhard. Qualitative spatial reasoning using constraint
calculi, Australian National University and Albert Ludwigs Universitat
Freiburg.

2. Jan Oliver Wallgrun, Lutz Frommberger , Frank Dylla, Diedrich Wolter,
January 13, 2009, SparQ User Manual V0.7.

3. A. G. Cohn, 1997. Qualitative spatial representation and reasoning
techniques.

4. Egenhofer, David Mark, 1995. Naïve Geography, National center for
geographic information and analysis report 95-8.

 84

5. U. Furbach, G. Dirlich, C. Freksa, 1985. Towards a theory of knowledge
representation Systems, in W. Bibel & B. Pethoff (eds.) artificial intelligence
Methodology, System, Applications.

6. J. F. Allen, November, 1983. Maintaining knowledge about temporal
intervals. Communications of the ACM, pages 832–843.

7. A. G. Cohn, and S. M. Hazarika, 2001. Qualitative spatial representation and
reasoning: an overview. Fundamental Informatics 46:1–29.

8. Tobler, R. Waldo and S. Wineberg, 1971. A Cappadocian Speculation,
Nature 231 (May 7) 39-42.

9. Kuipers, Benjamin, 1983. The cognitive Map: could it have been another
way in spatial orientation. Edited by H.L. Pick and L.P. Acredolo. 345-359.

10. Christoph Schlieder, 1991, representing visible locations for qualitative
Navigation.

11. P.A. Lonley, M.E Goodchild, D.J. Mauire, D.W. Rhind, 2005. Geographic
information System and Science.

12. Reinefeld and P. B. Ladkin, 1997. Fast algebraic methods for interval
constraint problems. Annals of Mathematics and Artificial Intelligence.
Valume 19, 383–411.

13. H. Maruyama, K. Tamura, N. Uramoto., 2002. XML and Java Developing
web Application, second edition.

14. Dalluege, 2006. OpenJUMP tutorial, department of Geomatik, Hafencity
University Hamburg.

15. B. Bennett, D. R. Magee, A. G. Cohn, and D. C. Hogg, 2004. Using spatio-
temporal continuity constraints to enhance visual tracking of moving
objects. In Proceedings of the 16th Eureopean Conference on Artificial
Intelligence, ECAI’2004, 922–926. IOS Press.

16. Duntsch, H. Wang and S. McCloskey, 1999. Relation algebras in qualitative
spatial reasoning. Fundamental Informaticae 39(3):229–249.

17. R. Moratz, F. Dylla and L. Frommberger, 2005. A relative orientation
algebra with adjustable granularity. In Proceedings of the Workshop on
Agents in Real-Time and Dynamic Environments (IJCAI 05).

3) electronic resources

1. Doug Tidwell, 2002, introduction to XML.
2. http://www.ibm.com/developerworks/xml/tutorials/xmlintro/section5.html.
3. http://en.wikipedia.org/wiki/Use_case
4. http://en.wikipedia.org/wiki/Class_diagram
5. http://download.oracle.com/javase/tutorial/java/index.html
6. http://www.w3schools.com/w3c/default.asp
7. http://www.quirksmode.org/dom/intro.html
8. http://en.wikipedia.org/wiki/Parsing
9. http://download.oracle.com/javase/1.4.2/docs/api/index.html

 85

http://www.ibm.com/developerworks/xml/tutorials/xmlintro/section5.html
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Class_diagram
http://download.oracle.com/javase/tutorial/java/index.html
http://www.w3schools.com/w3c/default.asp
http://www.quirksmode.org/dom/intro.html
http://en.wikipedia.org/wiki/Parsing
http://download.oracle.com/javase/1.4.2/docs/api/index.html

86

Student Declaration
I declare that the submitted work has been completed by me the undersigned and that
I have not used any other than permitted reference courses or materials nor engaged
in any plagiarism. All references and other sources used by me have been
appropriately acknowledged in the work. I further declare that the work has not been
submitted for the purpose of academic examination, either in its original or similar
form, anywhere else.

Munster, 28th February 2011

……………………. (Matrikelnummer 368660)
 (Signature)

…………………….
 (Name)

87

2011

Sahib JanFramework development for providing
accessibility to Qualitative spatial

 1

	ACKNOWLEDGEMENT
	
	ABSTRACT
	KEYWORDS
	 NOMENCLATURES
	Allen’s Time Interval Calculus
	1. Introduction:
	1.1 Qualitative Reasoning Background and Reasoning Engines
	1.1.1 Motivation
	1.1.2 Research Objectives
	1.1.3 Outline of the Thesis
	2. Literature Review
	2.1 Understanding of QSR Calculi
	2.1.1 Allen’s Time Interval Algebra
	2.1.2 Dipole Relation Algebra
	2.1.3 Cardinal Direction Calculus
	2.1.4 Region Connection Calculus
	2.1.5 Double Cross Calculus
	2.2 Application Areas of Qualitative Spatial Reasoning
	2.2.1 Reasoning Application in GIS
	2.2.2 Reasoning Application in Navigation
	2.2.3 Reasoning application in Artificial Intelligence
	3. Qualitative Spatial Reasoner
	3.1 SparQ
	3.1.1 Compute-relation Module
	3.1.2 Qualify Module
	3.1.3 Constraint-reasoning Module
	3.1.3.1 Algebraic-closure
	3.1.3.2 Scenario-consistency
	3.1.3.3 Refine Operation
	3.1.3.4 Extend Operation
	3.1.4 Algebraic Reasoning Module
	3.1.4.1 Consistency-checking
	3.1.4.2 Qualification
	3.2 GQR
	3.3 Calculi Analysis Using SparQ Reasoner
	3.3.1 Allen’s Time Interval Algebra (AI) Analysis
	3.3.1.1 Qualify Module
	3.3.1.2 Compute-relation Module
	3.3.1.3 Constraint-reasoning Module
	3.3.1.4 Algebraic-reasoning Module
	3.3.2 Dipole Relation Algebra (DRA-24) Analysis
	3.3.2.1 Qualify Module
	3.3.2.2 Compute-Relation Module
	3.3.2.3 Constraint-reasoning Module
	3.3.2.4 Algebraic-reasoning Module
	3.3.3 Cardinal Direction Calculus Analysis
	3.3.3.1 Qualify Module
	3.3.3.2 Compute-relation Module
	3.3.3.3 Constraint-reasoning Module
	3.3.3.4 Algebraic-reasoning Module
	3.3.4 Region Connection Calculus (RCC) Analysis
	3.3.4.1 Compute-relation Module
	3.3.4.2 Constraint-reasoning Module
	3.4 Overview of Proposed Architecture
	3.4.1 OpenJUMP Plug-In
	3.4.2 Application Programming Interface (API)
	4. Application program Interface (API) design
	4.1 Usecase Diagram
	4.1.1 Plug-in Usecase Diagram
	4.1.2 API Usecase Diagram
	4.2 Process Diagram
	4.3 SparQ Query Analysis
	4.4 XML Design for SparQ Modules
	4.4.1 Qualify Module
	4.4.2 Compute-relation Module
	4.4.3 Constraint-reasoning Module
	4.4.3.1 Algebraic-Closure and Scenario-consistency Operation
	4.4.3.2 Refine and Extend Operation
	4.4.4 Algebraic-reasoning Module
	4.4.4.1 Consistency Operation
	4.4.4.2 Qualify Operation
	4.4.5 Constraint-reasoning for Ternary Calculi
	4.4.5.1 Algebraic-closure
	4.4.5.2 Scenario-consistency
	4.4.5.3 Refine and Extend
	4.5 XML Conversion to SparQ Syntax
	4.5.1 Qualify Query (XML) to SparQ Syntax
	4.5.2 Constraint-reasoning Query (XML) to SparQ Syntax
	4.5.3 Compute-relation Query (XML) to SparQ Syntax
	4.5.4 Algebraic-reasoning Query (XML) to SparQ Syntax
	4.6 XML Parsing
	4.7 SparQ Result Analysis
	4.7.1 Simple Text
	4.7.2 Simple-text and Constraint-network
	4.7.3 Constraint-network
	4.7.4 Simple-relations
	4.7.5 Syntax-errors
	4.8 SparQ Result Conversion into XML
	4.8.1 Syntax-errors
	4.8.2 Simple-relations
	4.8.3 Simple-text and Constraint-network
	4.8.4 Simple Text
	4.8.5 Constraint-network
	5. API Implementation
	5.1 API Class Diagram
	5.1.1 Plug-In Class Diagram
	5.1.1.1 Extension Class
	5.1.1.2 MyExtension Class
	5.1.1.3 PlugInUI Class
	5.1.1.4 userResult Class
	5.1.1.5 AbstractPlugIn Class
	5.1.2 API Class Diagram
	5.1.2.1 EngineConnector Class
	5.1.2.2 IQueryGenerator Interface
	5.1.2.3 QueryGenerator Class
	5.1.2.4 QueryReceiver Class
	
	5.1.2.5 QuerySender Class
	6. Case Study and Demonstration
	6.1 Case-Study
	6.1.1 Integration of Reasoner with GIS
	6.2 Demonstration on Spatial Data
	7. Conclusion, Shortcomings and Future Work
	7.1 Conclusion
	7.2 Shortcomings
	7.3 Future Work
	8. Bibliographic Reference
	Student Declaration

