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ABSTRACT 

Geospatial data harmonization is becoming more and more important to increase 

interoperability of heterogeneous data derived from various sources in spatial data 

infrastructures.  To address this harmonization issue we present the current status 

of data availability among different communities, languages, and administrative 

scales from regional to national and European levels.  With a use case in forest data 

models in Europe, interoperability of burned area data derived from Europe and 

Valencia Community in Spain were tested and analyzed on the syntactic, schematic 

and semantic level.  We suggest approaches for achieving a higher chance of data 

interoperability to guide forest domain experts in forest fire analysis.  For testing 

syntactic interoperability, a common platform in the context of formats and web 

services was examined.  We found that establishing OGC standard web services in a 

combination with GIS software applications that support various formats and web 

services can increase the chance of achieving syntactic interoperability between 

multiple geospatial data derived from different sources.  For testing schematic and 

semantic interoperability, the ontology-based schema mapping approach was 

taken to transform a regional data model to a European data model on the 

conceptual level.  The Feature Manipulation Engine enabled various types of data 

transformation from source to target attributes to achieve schematic 

interoperability.  Ontological modelling in Protégé helped identify a common 

concept between the source and target data models, especially in cases where 

matching attributes were not found at the schematic level.  Establishment of the 

domain ontology was explored to reach common ground between application 

ontologies and achieve a higher level of semantic interoperability. 

 

Keywords: Geospatial Data Harmonization, Interoperability, Schema Mapping, 

Ontology, Forest Fire Model  
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1. INTRODUCTION 

Over the past two decades the distribution of geospatial data has significantly 

increased as information technologies advanced [Masser 2005].  As the data often 

derive from different sources, it is necessary to establish a common framework for 

sharing and exchanging data [INSPIRE 2004].  The common framework can be 

designed in a spatial data infrastructure (SDI)  [Nebert 2004] where geospatial data 

can be readily accessible in cooperation with various stakeholders including 

governments, organizations and private sectors through agreed policies and 

common standards [Phillips et al. 1998].  Today, SDI plays a key role to support 

users and providers for decision making where they can discover, visualize, and 

evaluate geospatial data at regional, national and global levels [Nebert 2004; 

Masser 2005].  Geospatial data in an SDI include various products and services 

ranging from security, census, environment, health, emergency response, 

transportation, agriculture to forestry [Masser 2005].  In this context data 

harmonization is becoming more and more important to increase interoperability 

of heterogeneous data in a SDI [INSPIRE 2007].      

In case of forestry, geospatial data are essential for monitoring and 

managing forests to be sustainable.  At the European level, European Forest Data 

Centre1 (EFDAC) is under development to improve a Forest Information System 

(FIS).  EFDAC is being implemented in compliance with the guidelines of the 

Infrastructure for Spatial Information in Europe2 (INSPIRE), which attempts to 

establish common standards in an SDI to make different SDI nodes interoperable 

with each other in Europe [INSPIRE 2003].  Upon implementation, the European FIS 

will enhance data harmonization and improve the efficiency of data collection.  At 

national level, Spain is a Member State of European Union which is nowadays 

adopting the INSPIRE Directive to be compliant with it at different administrative 

                                                      
1
 European Forest Data Centre. European Commission Joint Research Centre. URL: 

http://efdac.jrc.ec.europa.eu (last accessed on December 1
st

 2009). 
2
 Infrastructure for Spatial Information in Europe. European Commissions. URL: http://www.inspire-

geoportal.eu (last accessed on December 1
st

  2009). 
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level, being the Spanish national SDI (IDEE3) as the main node connected to the 

Directive. While IDEE contains basic forest cover data, the Ministry of the 

Environment and Rural and Marine4 (MMA) are currently attempting to allow other 

forest data managed by the national forestry program accessible in the IDEE [MMA 

2009a].  At regional level, forest data collected from autonomous regions in Spain 

are accessible through the national forestry program [MMA 2009a].   

The INSPIRE Directive aims to regulate various spatial data themes needed 

for environmental applications [INSPIRE 2003]. To date guidelines for INSPIRE Data 

Specifications on some data themes have been established such as protected sites 

[INSPIRE 2009a] and transport networks [INSPIRE 2009b].  To interoperate FISs in 

Europe, data specifications on forestry need to be defined in the same manner, 

which is addressed as one of ongoing projects by INSPIRE [INSPIRE 2003].  Thus, we 

intent to investigate the status quo of forest data at different administrative levels 

and how they can be harmonized within Europe for forest domain experts to 

enhance analysis.   

1.1 Motivation 

Increasing interoperability can help create a seamless global FIS where regional, 

national, and global systems are better interconnected.  For example, under the 

initiative of Food and Agriculture Organization of the United Nations5(FAO), Global 

Forest Resource Assessment requires reports from each country on forest health 

and productivity [FAO 2009].  The global FIS is expected to enhance the efficiency 

of data collection and contribute to monitoring and managing forests efficiently 

from regional to global scales.   

Using the common thematic forest data, our research aims to test data 

harmonization on different levels of interoperability in different scales within 

Europe.  As the most fundamental forest data in a FIS, forest cover is available in 

                                                      
3
 Infraestructura de Datos Espaciales de España.  Gobierno de España. URL: http://www.idee.es (last accessed 

on November 17
th

 2009). 
4
 Banco de Datos de la Biodiversidad. Ministerio de Medio Ambiente, y Medio Rural y Marino.  URL: 

http://www.mma.es/portal/secciones/biodiversidad/banco_datos (last accessed on November 17
th

 2009). 
5
 Food and Agriculture Organization of the United Nations. URL: http://www.fao.org (last accessed on 

November 18
th

 2009). 
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different information systems from regional, national and European levels.  Forest 

cover information can be used as input for the further analysis in forest fire 

monitoring, wildlife habitat protection, and watershed management [European 

Commission 2003].   

One of EFDAC components, European Forest Fire Information System6 

(EFFIS), mainly provides the information about fire danger forecast, hotspots and 

burned areas across Europe.  For example, burned areas are delineated by overlay 

of satellite images and land cover map, which include forest cover affected by fires 

[JRC 2009]. At national level in Spain, a member state of EFFIS, the MMA provides 

an access point to regional forest fire data where each autonomous region is in 

charge with data collection [MMA 2009c].  Using a forest fire scenario, our intent is 

to guide how regional forest domain experts can perform analysis by utilizing 

geospatial data and applications from regional to European level.  This scenario 

illustrates where geospatial data can be obtained and how interoperability of such 

data can be achieved.       

1.2 Research Problems and Questions 

When we refer to interoperability, there are many aspects to consider.  

Interoperability does not only address one type of integration but can be 

categorized into mainly four types: system, syntactic, schematic and semantic 

[Bishr 1998; Goodchild et al. 1999].  In our research, we use a concept of geospatial 

data harmonization as a factor to increase interoperability in the context of 

syntaxes, schemas and semantics [Lehto 2007; Schade 2009].  Syntactic 

interoperability refers to integrating the elements in various systems such as data 

formats and standards.  Schematic interoperability is explained by the common 

classification and hierarchical structure [Bishr 1998].  Semantic interoperability 

harmonizes meanings of terms and expression according to how the terms are 

named and described [Bishr 1998].  

                                                      
6
 European Forest Fire Information System (EFFIS). European Commission. URL: http://effis.jrc.ec.europa.eu 

(last accessed on December 1
st

 2009). 
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A. Syntactic Interoperability 

Finding common means to access heterogeneous data can increase syntactic 

interoperability.  At service level, SDI web services are implemented by using 

standard interfaces defined by Open Geospatial Consortium (OGC) [Percival 2003].  

The most common OGC interfaces include mapping images (OGC Web Map Service 

[OGC 2009], WMS), manipulating geographic features (OGC Web Feature Service 

[OGC 2009], WFS), and manipulating grid coverages (OGC Web Coverage Service 

[OGC 2009], WCS).  When multiple data layers are not accessible together via web 

services, Geographic Information System (GIS) software applications at client level, 

which support different formats, are other tools to achieve syntactic 

interoperability. 

As the central point at European level, EFFIS is playing an important role to 

provide web services to the public with the updated forest fire information across 

Europe.  EFFIS manages extensive datasets produced by the JRC7 and individual 

national forestry programs of member states [EuroGEOSS 2009].  In theory, the 

geospatial data mapped by JRC and national forest fire programs should be 

consistent for describing the same area.  In reality, when the data come from 

different sources in different standards and formats, they do not always match 

[EuroGEOSS 2009; HUMBOLDT 2009].  To examine the status of current syntactic 

interoperability between these geospatial data in different administrative scales, 

we aim to answer the following questions: 

 Are forest fire data from EFFIS and member states syntactically 

interoperable at service level and/or client level?   

 Are there any scale issues of forest fire data from different sources?  Are 

there any discrepancies in the total burned areas between EFFIS and 

member states?  

Approaching these questions, we define the following hypothesis: 

                                                      
7
 Joint Research Centre, IES, European Commission. URL: http://www.jrc.ec.europa.eu/ (last accessed on 

December 1
st

 2009). 
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Hypothesis A 

By establishing standard web services and common tools, we can increase the 

chance of achieving syntactic interoperability between multiple geospatial data 

derived from different sources.   

B. Schematic and Semantic Interoperability 

EFFIS applies burned areas as one of input data in its forest fire model to estimate 

CO2 emission [JRC 2009].  In case a regional forest domain expert attempts to apply 

their regional data in the CO2 emission model developed by EFFIS, they cannot 

simply apply the burned areas derived from their region as input data.  This is due 

to the difference in semantics and schemas used in burned area data between 

different communities, languages, and administrative scales.   Thus, the regional 

data need to be harmonized into common semantics with the EFFIS data first to 

reclassify schemas used in regional data for establishing common schemas with 

EFFIS [Bishr 1998].  In cases where different languages are harmonized into one 

common language, the semantics and schemas used in original languages may get 

lost in translation as well.  In terms of semantic and schematic interoperability, our 

research aims to answer following question: 

 How can forest fire data be transformed and mapped into common schemas 

and semantics across different administrative scales, where the forest fire 

data are heterogeneous among different communities and languages? 

This question is examined against the following hypothesis: 

Hypothesis B  

By identifying common schemas and concepts, we can transform the regional 

data model to the European data model on the semantic level.   

1.3 Testing Approach and Expected Results 

To test interoperability of forest fire data between EFFIS and Spain, burned areas 

are collected from both sources.  In our case study, burned areas in Valencia 

Community (one of autonomous regions) are selected to represent Spanish data 

and further compared with European data which include burned areas in Valencia 
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Community.  Figure 1 shows the workflow of interoperability testing on the 

syntactic, schematic and semantic level. 

 

Figure 1. Testing approach to syntactic interoperability, and schematic and semantic  interoperability. 

A. Testing Syntactic Interoperability 

We test syntactic interoperability in the context of data access and format.  Firstly, 

availability of tools that allow both data from EFFIS and Spain to be interoperable is 

identified in Step A1. These tools include OGC standard web services (WMS, WFS 

and WCS) and GIS software applications.   In Step A2, the two data layers are 

visualized and overlaid using interoperable tools to detect any qualitative 

discrepancy.  Step A3 then presents the quantitative difference between burned 

areas mapped by EFFIS and Valencia Community by area calculations.  Expected 

outputs include a summary table of syntactic interoperability, screen shots of 

overlay visualization, and burned area calculations.  

B. Testing Schematic and Semantic Interoperability 

The research question on schematic and semantic interoperability can be answered 

by identifying common schemas and concepts between the regional data to EFFIS 

data.  Firstly, Spanish terms used in data attributes and values are translated into 

English in Step B1.  For reasoning the semantics translated from Spanish terms, 
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ontologies are established in Step B2 to identify matching attributes with a shared 

concept between the two data models.  Finally, in ontology-based schema mapping 

Step B3, source data attributes from Valencia Community are transformed to the 

target attributes of EFFIS data according to the type of mapping operations 

required.  Expected outputs include a table of data attributes translated from 

Spanish to English; ontology-based schema mapping tables from source to target 

data attributes; a summary of mapping operations corresponding to matching 

attributes; and an example of mapping rules saved as output file.         

1.4 Thesis Structure 

This chapter introduces key issues of interoperability of geospatial data within 

Europe, followed by the background of standard web services in SDIs, geospatial 

data harmonization, data transformation tools, ontology languages, and ontology-

based schema mapping in Chapter 2.  Chapter 3 describes the current status of 

forest data in study areas on different scales from Europe to Spain and Valencia 

Community. In Chapter 4, testing methods on interoperability are described using 

syntactic, schematic, and semantic approaches.  Then the testing results are 

presented with a comparison of data availability and interoperability, burned area 

calculations, and schema mapping tables and rules in Chapter 5.  In Chapter 6 we 

analyze the results and discuss with recommendations on syntactic, schematic and 

semantic interoperability. The final chapter (Chapter 7) concludes our research on 

geospatial data harmonization from regional level to European level and suggests 

future work to be done.           
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2. BACKGROUND  

In this chapter, the background information is introduced in relation to methods for 

testing interoperability.  First, we describe how standard web services are 

implemented in SDIs.  Second, we emphasize the importance of geospatial data 

harmonization for web transformation services.  Then, as tools for data 

transformation, schema mapping software and ontology languages are introduced.  

Finally, we present recent researches related to ontology-based schema mapping.   

2.1 Standard Web Services in Spatial Data Infrastructures 

The shift in technological terms from national SDIs to multinational SDIs has been 

emphasized over the last decade along with the development of the World Wide 

Web (WWW) [Masser 2005].  Current trends in SDI development include a shift 

from a product to a process model where the WWW enables end users to share 

spatial data in decentralized structures [Masser 2005].  Another trend emphasizes 

implementation of multilevel SDIs in the context of hierarchy. Hierarchy can be a 

bottom-up as well as a top-down structure in SDI implementation. The top-down 

structure aims to achieve harmonization while the bottom-up structure aims to 

preserve heterogeneity.  The challenge for implementing multilevel SDIs is to agree 

with a common standard in consideration with heterogeneity of various 

stakeholders [Masser 2005].  

In Europe, the European Commission took an initiative to study the 

development of multinational SDIs, INSPIRE.  INSPIRE Directive addresses the need 

for web services to discover, view, transform, invoke, and download geospatial 

data, which enable various stakeholders to share data in the multilevel hierarchy 

on the multinational scale [INSPIRE 2007].  Such web services require technical 

specifications commonly agreed by the Member States for the interoperability and 

harmonization of their SDIs [INSPIRE 2007].  Currently INSPIRE adopts the OGC 

specifications, existing OGC Web Services (OWS) standards, as a technical guidance 

for implementing those web services [INSPIRE 2008].   

OGC specifications refer to standard web services such as Catalogue Service 

(CSW) for discovering, Web Mapping Service (WMS) for viewing, Web Coordinates 
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Transforming Services (WCTS) for transforming, Web Processing Service (WPS) for 

invoking, and Web Coverage Service (WCS) and Web Feature Service (WFS) for 

downloading [INSPIRE 2008]: 

 CSW supports discovery, evaluation and use of spatial data and services 

through their metadata properties. 

 WMS allows requests over geo-referenced data belonging to the themes 

and provides a visual representation of these data, rendered in an image 

format such as PNG, GIF or JPEG.   

 WCTS performs schema transformation and coordinate transformation. 

 WPS provides client access across a network to pre-programmed 

calculations and/or computation models.   

 WCS provides client access to potentially detailed and rich sets of 

geospatial information and returns coverages. 

 WFS allows clients to retrieve and update geospatial data encoded in 

Geography Mark-up Language (GML) [OGC 2007] from multiple WFSs. 

GML represents geographical features expressed in Extensible Mark-up Language 

(XML) that enables geospatial data to be stored, transferred, exchanged, processed 

and transformed though web services such as WFS and WPS in a standard format 

[Percival 2003; Diaz et al. 2009].  As illustrated in Figure 2, WFS plays a role of 

wrapper in SDIs for accessing and editing heterogeneous geospatial data in a 

standard way while WPS acts as a mediator for processing such data by linking WFS 

and data sources [Diaz et al. 2009]. 

 Beside OGC web services, ArcIMS8 (Arc Internet Map Server) developed by 

ESRI offers map service and feature service using ArcXML, which follows ESRI's XML 

specification [ESRI 2009].  ArcIMS also provides web links of map service and 

feature service in the same manner as OGC WMS and WFS, however, it does not 

follow OGC standards. 

                                                      
8
 ArcIMS. ESRI. URL: http://www.esri.com/software/arcgis/arcims/index.html (last accessed on December 12

th
 

2009). 

javascript:void(0);
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Figure 2. Components for spatial data integration over the Web [Diaz et al. 2009].  

2.2 Geospatial Data Harmonization 

Geospatial data harmonization plays an important role for on-the-fly data 

transformations [Lehto 2007; Schade 2009]. To achieve interoperability via web 

transformation services, geospatial data need to be harmonized between different 

sources [INSPIRE 2007; HUMBOLDT 2008].  In Europe, HUMBOLDT projects have 

focused on the improvement of harmonization issues such as data format, type of 

web service, spatial reference system, data model, classification schemes, terms 

and concepts, and metadata profile, which can be harmonized on different levels of 

interoperability [HUMBOLDT 2008].  In our research, data harmonization refers to 

harmonizing heterogeneous data to achieve interoperability on the syntactic, 

schematic and semantic levels [Visser 2001; Stuckenschmidt 2003; Friis-Christensen 

et al. 2005; Lehto 2007; Vaccari et al. 2009].   

Syntactic interoperability can be achieved by transforming data format, 

type of web service, and spatial reference system [Visser 2001; Vaccari et al. 2009].  

Currently syntactic harmonization issues in the context of geospatial web service 

are considered as minor [Lehto 2007].  As an example of forest fire models, 
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retrieving burned areas and land cover via OGC WFS and transforming one of their 

coordinate systems via OGC WTCS (if necessary) can render the overlay image and 

provide statistics such as area calculations via OGC WPS for the selected area [Friis-

Christensen et al. 2007].     

On the schematic level, data heterogeneity is due to differences in data 

models and classification schemas [Friis-Christensen et al. 2005].  Geographical 

features such as polygons, lines, and points are often represented by different 

geometrical and data schemas [Vaccari et al. 2009]. Schematic interoperability can 

be achieved by transforming the structure of the source data model to the target 

source model, where the schemas refer to the respective XML Schema documents 

[Schade 2009].  To perform schema transformation, INSPIRE follows the 

ORCHESTRA Schema Mapping Service (SMS) to provide functionalities that are 

related to the mapping of features from a source into a target schema [INSPIRE 

2008].  Specifically, schematic transformation involves filtering, renaming, 

reclassifying, merging/splitting, reordering, converting, morphing, and augmenting 

geographic features and their properties used in the schema [Lehto 2007].  This 

transformation is called schema mapping.  In forest fire data models between 

source and target schemas, we may find heterogeneity in structures and attributes 

based on individual forest fire data standards and land cover classifications.   

Semantic transformation is required in cases where the exact match from 

source to target schema cannot be found [Lehto 2007].  Semantic heterogeneity 

arises from the use of different terms in specific contexts established by different 

communities [Friis-Christensen et al. 2005].  For example, entities with the same 

term can have different semantics while entities termed differently can be 

semantically the same [Friis-Christensen et al. 2005; Vaccari et al. 2009; Abadie 

2009].  In many cases the exact match does not exist, therefore, semantic 

transformation can be supported by exploiting ontologies and metadata [Goodchild 

1999; Lehto 2007; Schade 2009].  Ontology in the context of computer science 

refers to “an explicit specification of a conceptualization” to express a common 

understanding of entities [Guarino 1998].  Metadata summarizes the information 
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about data and it can contain the semantic content as well as syntactic and 

schematic details [Goodchild 1999].  Currently, many projects related to web 

services focus on semantic interoperability issues due to the complexity of 

semantic matching [Diaz et al. 2009].  In case of forest fire models, it is possible 

that the terms such as ‘forests’ and ‘burned areas’ may be defined differently 

between source and target data models.     

2.3 Data Transformation Tools for Schema Mapping 

Today spatial ETL (Extract, Transform, Load) platform is widely deployed for 

schema transformation in SDIs.  The spatial ETL efficiently enables us to extract 

spatial data from source suppliers to SDI, transform the source data model to a 

new output in any format or application to be loaded as the target data model 

requested by end users [Safe Software 2009].  Data transformation for schema 

mapping restructures geometry and attributes, such as manipulating geometry, 

feature type, attribute name, attribute value, and attribute type [Safe Software 

2009].   

 Feature Manipulation Engine (FME9) established by Safe Software is leading 

spatial ETL software that now is implemented in the ArcGIS Data Interoperability 

extension [ESRI 2009].  FME provides various data transformation functionalities 

including schema mapper within the geoprocessing environment.  While FME is a 

most widely used tool, other tools such as GoPublisher10 (Snowflake Software), 

Spatial Data Integrator11  (Camp to Camp), and GeoXSLT12  [Klausen 2006) are 

currently available for schema mapping.  These four tools were compared and 

analyzed previously [Beckman et al. 2009; Schade 2009; Chunyuan et al. 2010, 

forthcoming].  Key criteria include GML support, web service, GUI for mapping rule 

generation, support for mapping rules, and type of software [Chunyuan et al. 2010, 

forthcoming].  While all of them support GML as output format, only commercial 

                                                      
9
 Feature Manipulation Engine.  Safe Software.  URL: www.safesoftware.com (last accessed on January 13

th
 

2010). 
10

 GoPublisher. Snowflake Software. URL: http://www.snowflakesoftware.co.uk (last accessed on January 13
th

 
2010). 
11

 Spatial Data Integrator.  Camp to Camp. URL: http://www.spatialdataintegrator.com (last accessed on 
January 13

th
 2010). 

12
 GeoXSLT. http://www.svisj.no/fredrik/geoxslt (last accessed on January 13

th
 2010). 

http://www.svisj.no/fredrik/geoxslt
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tools FME and GoPublisher provide a functionality of standard web service 

interface for OGC WFS.  SDI is open source software and offers a graphical user 

interface (GUI) with many built-in transformation operators as offered by FME.     

2.4 Ontology Languages and Reasoning 

The Semantic Web evolved from the existing WWW with the advance of knowledge 

representation, using machine-understandable Web content that can be processed 

by computer [Berners-Lee et al. 2006].  In the context of the Semantic Web, 

ontology plays a key role of providing a shared understanding of a domain model to 

harmonize the heterogeneity in terminology [Berners-Lee et al. 2006].  Domain 

ontology refers a shared conceptualization between different application-specific 

models while application ontology is only based on a local knowledge model 

established by the application service provider [Klien and Probst 2005; Duchesne 

2008].  At the top level of ontology architecture, a foundational ontology is 

formalized by philosophers and cognitive engineers to link different domain 

ontologies [Klien and Probst 2005; Gruber et al. 2006; Duchesne 2008; Schade 

2009].    

Currently, commonly used ontology languages are Resource Description 

Framework (RDF), RDF Schema, and Web Ontology Language (OWL) [W3C 2006].  

Ontology languages mainly require a well-defined syntax for machine processing of 

information, reasoning support for checking consistency of the ontological 

knowledge, and a formal semantics for describing the meaning of knowledge in a 

domain [Antoniou and van Harmelen 2008].  While the expressivity of RDF and RDF 

Schema is limited to representing information at the structural level, OWL expands 

the expressivity to reasoning based on description logic [Breitman et al. 2007].  In 

the context of the Semantic Web, reasoning refers to machine-supported inference 

expressed in a language that can be processed by the algorithm [Duchesne 2008].  

Description logic is a formalization of knowledge representation that defines the 

domain concepts using classes, relations, attributes, and properties in the domain 

[Breitman et al. 2007].  Description logic can be modeled by reasoning algorithms 

such as FaCT, RACER, and Pellet [Breitman et al. 2007; Antoniou and van Harmelen 
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2008;].  Such reasoners may be known as classifiers that compute the inferred class 

hierarchy [Horridge 2009].  These reasoners can be installed as a plug-in to a 

software application such as Protégé13, which is a platform for ontology modeling 

and knowledge acquisition [Knublauch et al. 2004].     

In case of defining forests, Figure 3 illustrates a simple example of 

conceptualizing of the class hierachy of forests.  ‘Land’ is a generic class of ‘Forests’ 

while ‘Coniferous’, ‘Mixed’, and ‘Broad-leaved’ are more specific classes of ‘Forests’, 

where a taxonomic structure is indicated in the direction from left to right 

[Horridge 2009].   

 

Figure 3. Conceptualization of forests in a taxonomic structure.  

These concepts can be formalized as entities in Protégé.  As shown in Figure 4, the 

entity ‘Forests’ has a class hierarchy, a description, object properties, and data 

properties.  A class hierarchy may be known as taxonomy and properties may be 

known as roles in description logics [Horridge 2009].  Object properties describe 

property characteristics and allow relationships between classes while data 

properties describe relationships between a class and data values [Horridge 2009].   

‘Forests’ is defined in Equivalent classes that have associated properties.  To be 

classified as equivalent to ‘Forests’, all the conditions specified by object and data 

properties must be sufficient. ‘Land’ is a superclass of ‘Forests’, which meets 

necessary conditions to become ‘Land’.  In this example, provided that the 

necessary condition is to have surface that is some ‘LandSurface’, ‘Forests’ has 

surface that are some ‘Trees’ (sub-class of ‘LandSurface’).  In addition, ‘Forests’ is 

                                                      
13

 Protégé.  Stanford Center for Biomedical Informatics Research.  URL: http://protege.stanford.edu (last 
accessed on November 13

th
 2009). 
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disjointed with other sub-classes of ‘Land’ so that a sample of land cannot belong 

to ‘Forests’ and the other sub-classes at the same time in the process of land 

classification [Horridge 2009].  The automated reasoner infers the class hierarchy 

based on these descriptions of classes. 

 

Figure 4. Protégé user interface with a description of the concept of ‘Forests’.  

2.5 Related Research on Ontology-Based Schema Mapping  

This section focuses on recent research related to geospatial data harmonization 

through ontology-based schema mapping in order to achieve schematic and 

semantic interoperability.   

Lehto and Sarjakoski (2004) presented the EU-funded project GiMoDig that 

performs schema transformation by using Extensive Stylesheet Language 

Transformations (XSLT) to encode GML geospatial data.   Translation was processed 

from the local national schema to the jointly agreed global schema in the 

heterogeneous WFS environment. As a result, a prototype cross-border GML data 

service was developed in the common data model.  In the context of a standards-
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based web service environment, Lehto (2007) further categorizes schema 

transformations into operation components which can be applied to different 

levels of the GML feature model.  Some of those schema operations are applied in 

our methods for testing schematic interoperability (Chapter 4.2) 

Donaubauer et al. (2006) recognized that previous projects such as GiMoDig 

were only executed on the schematic level, lacking transformation between 

different conceptual schemas.  To address this issue, they proposed the project 

mdWFS based on Model Driven Architecture (MDA), which supports automated 

schema transformations on the semantic level.  Donaubauer et al. (2007) presented 

a use case of mdWFS in the context of a cross-border SDI between Germany and 

Switzerland.  They aim at implementing the prototype service in the contexts of 

cross-border SDI and INSPIRE, which will enable transformations guided by user-

defined schema mapping.  Our testing approach also addresses the issue of schema 

transformations on the semantic level in the context of cross-border SDI in Europe.    

Using existing software applications, Friis-Christensen et al. (2005) 

investigated possible methods of achieving schematic and semantic interoperability 

of geographic data at European level.  The FME was used to support 

transformations on the schematic level from source attributes to target attributes.  

This method required comprehensive knowledge of source and target schemas for 

all the corresponding attributes to be mapped manually. They also explored 

ontology-based approaches to automated schema mapping, which incorporate 

semantics to provide generic concepts between source and target applications.  

The ontology editor Protégé and the reasoner RACER were used to reclassify source 

and target schemas by concepts established in the domain.  They found that the 

ontology-based classification approach by Protégé could support maximizing 

automation in schema mapping.  In our methods for testing schematic and 

semantic interoperability, these existing software applications (FME and Protégé) 

are also used for schematic transformations and ontology-based classification.   

Abadie (2009) also took an ontology approach using Protégé to test schema 

mapping between two national geographic databases in France.  Their approach 
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was mainly based on attribute values at the class instance level and background 

ontology at the domain level.  They analyzed attribute values to represent semantic 

details described in both schemas, which are often hidden at the schematic level.  

They further used comprehensive domain ontology as background ontology to 

match two application ontologies.  The domain ontology was established by 

discovering relationships between source and target concepts.  They are currently 

implementing a tool to automatically compare formal specifications and detect 

heterogeneities.  We also take class attribute values and the domain ontology into 

account for testing semantic interoperability.          

Most recently, Schade (2009) extended one of foundational ontologies, 

Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) [Masolo et al. 

2003], as a semantic reference frame to define geospatial data models, mapped 

from a national road data model in Germany to INSPIRE Transport Networks model.  

They also took a logic-based approach where ontologies were implemented using 

the Web Service Modeling Language (WSML)-Flight reasoner IRIS (Integrated Rule 

Inference System), which is a variant based on logic programming that allows for 

inferring relations between source and target attributes.  This approach supported 

in selecting appropriate translation rules on the attribute level.  Our testing 

approach is based on description logic on the attribute level, however, they 

demonstrated that WSML based on logic programming provides an alternative to 

other ontology languages such as OWL based on description logic.    
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3. CURRENT STATUS OF FOREST DATA AVAILABILITY  

In this chapter, we describe how forest data are currently managed at the 

European, national and regional levels.  The availability of forest data via web 

services is also indicated.  In relation to our use case, we focus on forest cover and 

forest fire data from Europe, Spain, and Valencia Community respectively. 

3.1 Current Situation in Europe 

At European level, forest cover is identified by CORINE Land Cover Classification 

2000, owned by European Environmental Agency (EEA).  Land cover is classified 

into 44 categories where forest cover includes 3 categories: coniferous, 

broadleaved, and mixed [Nunes de Lima 2005].     

Joint Research Centre (JRC) of the European Commission is in charge of 

establishing EFDAC as the central point for forest information at European level 

[EuroGEOSS 2009].  As a bridge of forest data flow between the world and Member 

States, EFDAC functions as part of a nested system for harmonized assessment to 

link FAO Global Forest Resources Assessment (FRA) and National Forest Inventories 

of Member States (Figure 5) [JRC 2009].  This way assessment can be harmonized 

from regional/local Forest Services to National Forest Inventories, EFDAC, and FAO 

Forestry.   

 

 

 

 

 

 

 

 

 

 

Figure 5. Harmonized assessment in a nested forest information system [JRC 2007]. 

FAO Global Forestry 

EFDAC 

National Forest Inventories 

Inventories 

Regional Forest Services 

http://efdac.jrc.ec.europa.eu/
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The EFDAC is advancing as a European FIS, built on three existing systems, 

European Forest Information and Communication Platform (EFICP) for forest 

resources, Forest Focus Database for forest conditions, and EFFIS for forest fires 

[EuroGEOSS 2009].  EFICP manages forest resources data including forest area, 

ownership, forest type, age class distribution, and growing stock, derived from 

National Forest Inventories and international data sources such as FAO Forestry 

[EuroGEOSS 2009].  Forest Focus Database holds data related to forest conditions 

such as forest map, forest patterns, forest health, and air pollution at different 

administrative levels [JRC 2008].  Forest fires data are maintained by EFFIS as a 

complementary system to national and regional systems in Member States in cases 

where the harmonized forest fire information is required for trans-boundary 

collaboration [JRC 2009].  Fire related modules are accessible on the EFFIS website 

such as forest danger forecast, damage assessment, rapid damage assessment, EU 

fire database, atmospheric emissions, and potential soil erosion.  The current 

situation of fire danger forecast, hot spots and burned area are updated everyday 

while fire history is maintained in a separate viewer.  Table 1 summarizes 

availability of spatial data related to forest cover and fires in Europe.  The data 

description includes a web address to view or download spatial data.  A Map 

Viewer displays images directly on the addressed web page while a WMS link can 

be used to add the map server onto a different web portal or a software 

application.      

  



20 
 

Data Description Source View Download 

CORINE 

2000 

CORINE Land Cover in 2000 at 1:100 000 

scale 

http://www.eea.europa.eu/themes/land

use/clc-download 

EEA Map 

Viewer  

Shape 

Forest Map 

of Europe  

Pan-European forest/non-forest map 

with 25 m spatial resolution derived from 

Landsat ETM in 2000 

http://forest.jrc.ec.europa.eu/download/

data/forest-map-2000-download 

JRC  GeoTIFF 

Forest Map 

of Europe  

Pan-European forest/non-forest with 1 

km spatial resolution derived from 

AVHRR and forest statistics 

http://efdac.jrc.ec.europa.eu/viewer/ 

http://efdac.jrc.ec.europa.eu/mapserv/m

apserv 

EFDAC Map 

Viewer, 

WMS 

 

European 

Forest 

Resources   

Images  and graphs related to forest 

resources in Europe 

http://efdac.jrc.ec.europa.eu/index.php/

efris 

JRC Map 

Viewer 

 

EFFIS 

Advanced 

Viewer  

Modules include fire danger forecast, 

damage assessment, rapid damage 

assessment, EU fire database, 

atmospheric emissions, and potential soil 

erosion. 

http://effis-

viewer.jrc.ec.europa.eu/wmi/viewer.html 

JRC Map 

Viewer 

 

EFFIS 

Current 

Situation 

Modules include recent fire danger 

forecast, daily MODIS, hot spot, and 

burned areas 

http://effis.jrc.ec.europa.eu/current-

situation 

JRC Map 

Viewer 

 

EFFIS Fire 

History  

Annual maps of forest burned area with 

minimum size of 50 ha 

http://effis.jrc.ec.europa.eu/fire-history 

JRC Map 

Viewer 

 

Table 1. Spatial data available for forest cover and fires in Europe [EuroGEOSS 2009]. 

3.2 Current Situation in Spain 

Forest cover at national level is identified by Land Cover Information System known 

as SIOSE, the latest version of national land cover classification in Spain, under 

development for web services by National Geographic Institute (IGN14) [SIOSE 

                                                      
14

 Instituto Geográfico Nacional. Ministerio de Fomento. URL: http://www.ign.es/ign/es/IGN/home.jsp (last 
accessed on December 7

th
 2009). 

http://www.eea.europa.eu/themes/landuse/clc-download
http://www.eea.europa.eu/themes/landuse/clc-download
http://forest.jrc.ec.europa.eu/download/data/forest-map-2000-download
http://forest.jrc.ec.europa.eu/download/data/forest-map-2000-download
http://efdac.jrc.ec.europa.eu/viewer/
http://efdac.jrc.ec.europa.eu/mapserv/mapserv
http://efdac.jrc.ec.europa.eu/mapserv/mapserv
http://efdac.jrc.ec.europa.eu/index.php/efris
http://efdac.jrc.ec.europa.eu/index.php/efris
http://effis-viewer.jrc.ec.europa.eu/wmi/viewer.html
http://effis-viewer.jrc.ec.europa.eu/wmi/viewer.html
http://effis.jrc.ec.europa.eu/current-situation
http://effis.jrc.ec.europa.eu/current-situation
http://effis.jrc.ec.europa.eu/fire-history
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2007].  IGN also provides CORINE Land Cover map via WMS.  Forest map of Spain is 

available based on the 3rd National Forest Inventory with 37 land cover 

classifications [MMA 2009b].  Table 2 shows a list of forest cover data of Spain by 

different sources.   

Data Description Source View Download 

SIOSE  National Land Cover in 2005 at 1:25 000 

scale  

IGN   

CORINE 

Land Cover 

2000  

CORINE Land Cover in 2000 at 1:100 000 

scale 

http://www.idee.es/wms/IGN-

Corine/IGN-Corine? 

IGN WMS  

Forest Map 

of Spain 

(1:50 000) 

Detailed forest inventory map of Spain at 

1:50 000 scale 

http://servicios2.mma.es/wmsconnector

/com.esri.wms.Esrimap/BIODIV_MFE? 

Biodiversity 

Data Bank 

Map 

Viewer, 

WMS 

 

Forest Map 

of Spain 

(1:200 000) 

Less detailed forest inventory map of 

Spain at 1:200 000 scale 

http://www.mma.es/portal/secciones/bi

odiversidad/banco_datos/info_disponibl

e/mfe200.htm 

Biodiversity 

Data Bank 

 Shape 

Table 2. Spatial data available for forest cover and fires in Spain [EuroGEOSS 2009]. 

While the national FIS is not currently established in Spain, the Biodiversity Data 

Bank from the MMA provides geospatial data including forest inventory and 

management via Map Viewer and WMS [EuroGEOSS 2009].  This WMS is planned 

to be implemented into the National SDI, IDEE [MMA 2009a].  IDEE provides access 

to the main node of distribution connected to the nodes of other web services that 

are established by autonomous regions. Via this main node it is possible to access 

national, regional, and local web services (WMS, WFS, WCS, and CSW). 

Forest fire data are managed by the MMA.  The Coordination Center of the 

National Wildland Fire Information (CCINIF) was created in 2005 by MMA, which 

provides the daily updated information about forest fire risks through the CIRCA 

computer tool [MMA 2009c].  This information is also linked to the EFFIS.  As spatial 

data of burned areas as well as fire risks are not currently accessible on the Web, 

they need to be requested to the MMA for a specified autonomous region by a 

request form.   

http://www.idee.es/wms/IGN-Corine/IGN-Corine
http://www.idee.es/wms/IGN-Corine/IGN-Corine
http://servicios2.mma.es/wmsconnector/com.esri.wms.Esrimap/BIODIV_MFE
http://servicios2.mma.es/wmsconnector/com.esri.wms.Esrimap/BIODIV_MFE
http://www.mma.es/portal/secciones/biodiversidad/banco_datos/info_disponible/mfe200.htm
http://www.mma.es/portal/secciones/biodiversidad/banco_datos/info_disponible/mfe200.htm
http://www.mma.es/portal/secciones/biodiversidad/banco_datos/info_disponible/mfe200.htm
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3.3 Current Situation in Valencia Community 

Forest cover at regional level is identified by SIOSE as the latest version, 

coordinated by IGN and CMA (Conselleria de Medio Ambiente, Agua, Urbanismo y 

Vivienda15), and the information is expected to be available in 2010 [SIOSE 2009].  

Forest maps at the level of Valencia Community are accessible via Map Viewer and 

WMS (Table 3).  These spatial data are organized in a regional SDI provided by CMA 

in cooperation with Valencia Cartography Institute16.  The regional SDI contains a 

metadata catalogue system following ISO 19115 where the data models are 

described in a standardized format.  While the WMS and CSW are well established, 

the datasets are not freely downloadable.  

 Forest fire data such as burned areas are only viewable via internal ArcIMS, 

which is not accessible to the public.  Burned areas in Valencia Community are 

mapped annually, covering three provinces Valencia, Castellon and Alicante.  

Although spatial data of burned areas is not accessible, metadata is available via 

the web catalogue with a description of data attributes. 

Data Description Source View Download 

SIOSE  National Land Cover in 2005 at 1:25 000 

scale 

IGN, CMA   

Forest Map 

of Valencia 

( 1:10 000) 

Detailed forest inventory map in Valencia 

Community at 1:10 000 scale 

http://orto.cth.gva.es/wmsconnector/co

m.esri.wms.Esrimap/wms_invfor? 

CMA Map 

Viewer, 

WMS 

 

Forest Map 

of Valencia 

( 1:20 000) 

Less detailed forest inventory m ap in 

Valencia Community at 1:20 000 scale 

http://orto.cth.gva.es/wmsconnector/co

m.esri.wms.Esrimap/wms_invfor? 

CMA Map 

Viewer, 

WMS 

 

Burned Area 

Map 

Burned areas in Valencia Community at 

1:10 000 scale 

http://intranet.cma.gva.es 

CMA ArcIMS 

(internal) 

 

Table 3. Spatial data available for forest cover and fires in Valencia Community [EuroGEOSS 2009]. 

 

  

                                                      
15

 Conselleria de Medio Ambiente, Agua, Urbanismo y Vivienda, Generalitat Valenciana. URL: 
http://www.cma.gva.es/intro.htm (last accessed on December 13

th
 2009). 

16
 Instituto Cartográfico Valenciano. URL: http://www.icv.gva.es/ICV (last accessed on December 13

th
 2009). 

http://orto.cth.gva.es/wmsconnector/com.esri.wms.Esrimap/wms_invfor
http://orto.cth.gva.es/wmsconnector/com.esri.wms.Esrimap/wms_invfor
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4. METHODS FOR TESTING INTEROPERABILITY 

Our approach to achieving geospatial data harmonization is to test interoperability 

on the syntactic, schematic and semantic levels.  In this chapter, we introduce the 

methods for testing interoperability of heterogeneous geospatial data, and relate 

them to the example use case on forest fire data between EFFIS and CMA.  Figure 6 

illustrates the workflow of testing interoperability by syntactic approach, and a 

combination of schematic and semantic approach.  National forest fire data in 

Spain are collected from autonomous regions, therefore, regional data from CMA 

are directly tested for interoperability with the EFFIS data.  Specifically, we apply 

burned areas for 2007 in Valencia Community mapped by CMA as source data and 

burned areas for 2007 in Valencia Community mapped by EFFIS as target data.  

After we set the scene in this chapter, results are presented in Chapter 5. 

 

Figure 6. The workflow of interoperability testing for forest data models. 

4.1 Syntactic Interoperability Testing 

In this section, differences in data access and format are tested for syntactic 

interoperability.  First, tools to interoperate the two datasets of EFFIS and CMA are 

identified.  Then, those data layers are visualized and analyzed qualitatively in GIS 
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overlay.  Burned area calculations are also provided to analyze the datasets 

quantitatively.        

4.1.1 Tools Available for Testing 

There are various tools that enable multiple data stored in different formats (e.g., 

shape, Mapinfo, Oracle geo-DB, and PostGIS geoDB) to interoperate syntactically 

[Vaccari et al. 2009].  In our methods we categorize those tools into standard web 

services and software applications.  Using one of those tools or a combination of 

them, data in different formats can be displayed in a single client view. Web 

services implementing standard interfaces such as OGC WMS, OGC WFS and OGC 

WCS are often available in SDIs, providing web links for viewing and downloading 

geospatial data in a standardized way.  Such data can be accessible via the Web or 

desktop software, regardless of source formats.  Currently there is a number of GIS 

software applications, ranging from licensed applications such as ArcGIS17 spread 

globally, to open source applications such as gvSIG 18  established by the 

government of Valencia Community.  These up-to-date software applications 

enable geospatial data available in original formats or available from web services 

to be visualized on the fly. 

Thus, we will consider that two datasets can be displayed in the same client view in 

the following options:   

 Option A - Both datasets are viewable via standard web services. 

 Option B - Both datasets exist locally as created or downloaded files, which 

can be added onto a single software application. 

 Option C - One dataset is added to a software interface from 

existing/downloaded files while another dataset from spatial standard web 

services is added to the same software interface.   

In our use case, EFFIS provides a web entry point with Map Viewer to display 

burned area data.  To view the same data outside Map Viewer on the EFFIS website, 

                                                      
17

 ArcGIS. ESRI. URL: http://www.esri.com/software/arcgis/index.html (last accessed on November 7
th

 2009). 
18

 gvSIG. Conselleria de Infraestructuras y Transporte, Generalitat Valenciana. URL: http://www.gvsig.gva.es 
(last accessed on November 7

th
 2009). 

http://www.cit.gva.es/index.php?id=informacion-general&L=0
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it is not readily accessible in a standard way via web services, but available in Shape 

format upon request.  On the other hand, burned area data from CMA is accessible 

via ArcIMS, which is only connected to an internal network19.  Since ESRI’s map and 

feature services are not standard web services as OGC, accessibility is limited via 

ArcGIS and other software applications (e.g. gvSIG) that support in displaying 

ArcIMS.  Assuming that we are forest domain experts who work at CMA, we would 

be able to add CMA data via ArcIMS and EFFIS data in Shape format, using ArcGIS 

(Option C).  If we do not have access to the internal network, we would need to 

request the data from CMA, for example in Shape format, to display it in ArcGIS 

with EFFIS data in Shape format as well (Option B).   

4.1.2 Visualization Analysis 

When two data layers are visualized to locate the common area in the same client 

view, whether via the Web or desktop software, spatial reference systems (datum, 

projection) need to be interoperable so that they can be overlaid.  In case of 

rendering images via web services, WCTS transforms the coordinates of geometric 

elements among different spatial reference systems [INSPIRE 2008].  In case of 

visualization through software applications, users are responsible for transforming 

spatial reference systems if they are different. This overlay visualization may show 

some distortion of the transformed data in terms of direction, area, and shape 

[Iliffe and Lott 2008].  Depending on the levels of detail contained in each data, 

overlay analysis can also address scale issues.  For example, alignment of two data 

layers may not be consistent along the polygon boundaries.   

We use ArcGIS to do overlay analysis between two data layers from CMA 

and EFFIS.  As the spatial reference system (GCS_European_1950) in the source 

data by CMA is different from the target data, it needs to be transformed to the 

same as the target data, GCS_ETRS_1989.  This overlay analysis demonstrates 

visual quality and consistency of two data layers.   
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 Visor Cartográfico Interno - Incendios y Forestal. Conselleria de Medio Ambiente, Agua, Urbanismo y 
Vivienda., Generalitat Valenciana. URL: http://intranet.cma.gva.es 



26 
 

4.1.3 Quantitative Analysis 

Due to the different scales used for source data and target data, the discrepancy in 

area calculation may easily arise.  For example, CMA may use a higher resolution to 

reflect more details of burned areas at the regional level while EFFIS may use a 

lower resolution to reflect a larger extent of burned areas across Europe.  To 

address this scale issue, we compare the two datasets quantitatively in terms of the 

number of burned areas, and the minimum and maximum size of burned areas 

respectively.  Overlay analysis further enables common burned areas mapped by 

CMA and EFFIS to be calculated by GIS intersection operation.  As illustrated in 

Figure 7, the two datasets are compared for total area mapped by CMA (A), total 

area mapped by EFFIS (B), common area mapped by both (C), and the difference 

area mapped by one another (A subtracted by C and B subtracted by C) [Boschetti 

et al 2008].  

 

Figure 7. Venn diagram illustrating differences in burned areas mapped by CMA and EFFIS. 

4.2 Schematic and Semantic Interoperability Testing 

In order to apply schema mapping, interoperability of schemas and semantics 

between target and source data models have to be taken into account (Chapter 

2.4). We explore schema mapping from direct attribute matching simply based on 

names, to more sophisticated semantic matching based on ontology.  Our intent is 

to combine schematic-level and semantic-level approaches to achieve more or 

better matching candidates [Rahm and Bernstein 2001].  Examples of data models 

from CMA and EFFIS are shown in Table 4 and Table 5, respectively.  The source 
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data model represents burned areas due to forest fires in Valencia Community.  

CMA holds this information in its regional SDI to keep track of geographical 

locations of land cover affected by forest fires every year [CMA 2007].  As shown in 

Table 4, burned areas are categorized into non-wooded forest surface and wooded 

forest surface.  

Attribute Name Description in Spanish Description translated in English 

NUMPARTE  Código del parte Code of the report 

MUNICIPIO Municipio  Municipality 

PROVINCIA  Provincia  Province 

COMARCA  Nombre de la comarca donde se 
ubica el recinto 

Name of the region where the 
compound is located 

HOJA Hoja 1:50 000 Mapsheet 1:50 000 

FECHA  Fecha del incendio  Date of the fire 

TIPO_CAUSA Causa del incendio  Cause of the fire 

SUP_NARBOL  Superficie no arbolada quemada en 
hectáreas  

Non-wooded forest surface burned in 
hectare 

SUP_ARBOLA Superfice arbolada quemada en 
hectáreas 

Wooded forest surface burned in 
hectares 

SUP_TOTAL Superficie quemada total en 
hectáreas 

Total forest surface burned in hectares 

Table 4. Source data model for burned areas mapped by CMA [Metadata: Incendios 2007
20

]. 

The target data model by EFFIS represents burned areas damaged by fires in 

Europe.  This information is publicly accessible via Map Viewer on the EFFIS website 

and is further used for post-fire assessments of atmospheric emissions and erosion 

risks [JRC 2009].  As shown in Table 5, burned areas are categorized based on land 

cover classification including non-forest cover types such as agricultural areas and 

artificial surfaces.   
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 ISO19115 Metadata: Incendios 2007. Conselleria de Medio Ambiente, Agua, Urbanismo y Vivienda, 
Generalitat Valenciana. URL: http://geocatalogo.cma.gva.es/geonetwork/srv/es/main.home (last accessed on 
November 7

th
 2009). 
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Attribute Name Description 

ID Unique identification code 

Country Country acronyms 

CountryFul Full name of the country 

Province Province of the commune 

Commune Commune which include the largest burned area relative to the mapped fire 

FireDate Starting date of the fire 

Area_HA Total area (forest and non-forest) burned in hectares 

BroadLea % of broad leaved forest burned 

Conifer % of coniferous forest burned 

Mixed % of mixed forest burned 

Scleroph % of sclerophyllous vegetation burned 

Transit % of transitional vegetation burned 

OtherNatLC % of other natural areas burned and not related to the above mentioned 
classes 

AgriAreas % of agricultural areas burned 

ArtifSurf % of artificial surfaces burned 

OtherLC % of other land cover burned (not related to the above mentioned classes) 

LastUpdate Acquisition date of the most recent Modis image used to map the burned area 

Table 5. Target data model for burned areas mapped by EFFIS [JRC 2009]. 

Based on the source and target data models presented in Tables 4 and 5, the 

following sections focus on the data attributes to perform schema mapping on the 

schematic and semantic levels.  We first examine schematic matching based on 

names of attributes and then analyze semantic matching based on concepts of the 

attributes.  Finally, semantically matching attributes are transformed by schema 

mapping operations.         

4.2.1 Linguistic Matching Approach on the Schematic Level  

Firstly, attribute names presented in Table 4 need to be translated from Spanish to 

English.  When the translated source attribute can be directly matched to the 

target attribute, schema mapping is simple.  Difference terms used in different 

languages can be translated by referring to a multi-language dictionaries or 

thesauri [Madhavan et al. 2001; Rahm and Bernstein 2001].   

At the initial phase of schema mapping, we apply name matching to achieve 

schematic interoperability, one of linguistic matching approaches which maps 
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attributes with equal or similar names (Figure 8) [Rahm and Bernstein 2001].  

Name-based matching can be defined in exploiting short-forms (Qty for Quantity), 

acronyms (UoM for UnitOfMeasure), synonyms (Car and Automobile), and 

hypernyms (Tree and Oak) [Madhavan et al. 2001; Rahm and Bernstein 2001].  

With a good knowledge of source and target schemas, name matching can be 

mapped and illustrated by the Spatial ETL, FME.     

 

 

 

 

 

 

Figure 8. Linguistic matching approach to schematic interoperability (Step 1). 

4.2.2 Ontology-Based Matching Approach on the Semantic Level 

When the term of a source attribute is translated to match with the target attribute, 

accuracy of linguistic matching can be assessed by defining entities of each 

attribute.  Ontologies (Chapter 2.2) aid to ensure whether the direct language 

translation is sufficient for schema mapping.  

Ontology-based mapping is one possibility to determine a shared concept 

between source and target attributes to achieve semantic interoperability.  For this 

purpose, we first aim to establish application ontologies from source and target 

data models and then examine if establishment of the domain ontology can refine 

the shared concept between application ontologies [Klien and Probst 2005] to 

increase the level of semantic interoperability.      

Conceptualization of entities can be visualized and described using software 

applications such as Protégé.  Protégé represents ontologies that define classes, 

properties, property facets and constraints, instances, and the relationships 

between them [Knublauch et al. 2004].  We take a classification mapping approach 

with Protégé by establishing ontologies from schemas used in source and target 

Name matching 

Source 

Attribute 

Target 

Attribute 

Linguistically equal/similar 

names 
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data [Friis-Christensen et al. 2005].  We propose to establish two application 

ontologies based on data specifications defined by CMA and EFFIS.  Currently, there 

are no official data specifications defined by CMA or EFFIS for burned areas.  Since 

the majority of attributes contained in both data models are related to forest cover, 

data schemas for Forest Inventory in Valencia Community by CMA and CORINE 

Land Cover Classification by EFFIS are used as a guide to classification in Protégé.  

Studying how data attributes are specified in source and target schemas can 

describe classes, properties, and relationships.  As shown in Figure 9, using a 

reasoner function (FaCT++) we reclassify source and target attributes to identify 

equivalent classes and similar classes [Friis-Christensen et al. 2005].  The reasoner 

based on description logic uses the descriptions of the classes to test if an 

equivalent or similar class relationship exists between them [Horridge 2009].  The 

reasoner can also help build the domain ontology shared by application ontologies 

by detecting inconsistencies, hidden dependencies, redundancies, and wrong 

classifications [Knublauch et al. 2004].   

 

 

 

 

 

 

Figure 9. Ontology-based matching approach to semantic interoperability (Step 2). 

4.2.3 Ontology-Based Schema Mapping 

Following ontology-based attribute matching in Protégé, data transformations are 

performed by various schema mapping operations from source to target attribute 

(Figure 10).  We apply the following schema mapping operations in the GML 

feature model suggested by Lehto [2007], in order to generate schema mapping 

rules at the levels of attributes and attribute values [HUMBOLDT 2009; Schade 

2009]: 

Source 

Attribute 

Target 

Attribute 

Semantically equal/similar 

classes 

Ontology reasoning 
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1. Filtering attributes, 

2. Renaming attributes or their values, 

3. Reclassification of attribute values by converging or diverging,  

4. Merging / splitting attributes values, 

5. Changing the order of attributes, 

6. Value conversions: spatial generalization and unit conversion of attribute 

values, 

7. Morphing spatial types and data types, and 

8. Augmentation of attribute values by interpolation and default. 

 

 

 

 

 

 

 
Figure 10. Ontology-based schema mapping rules for schema transformation (Step 3). 
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5. RESULTS 

This chapter presents the results of interoperability testing for geospatial data 

across regional, national and European administrative levels.  Availability of forest 

cover data and burned area data is compared respectively to indicate the level of 

syntactic interoperability.  For testing schematic and semantic interoperability, 

matching attributes of burned area data models between CMA and EFFIS and the 

associated mapping operations are presented.  Discussions and recommendations 

follow in the next chapter. 

5.1 Data Availability and Syntactic Interoperability 

In this section we compared the current status of data availability for forest cover 

and burned areas among Valencia Community, Spain, and Europe.  By testing 

syntactic interoperability, we achieved GIS overlay of commonly mapped burned 

areas between CMA and EFFIS and analyzed the consistency of such geospatial data 

qualitatively and quantitatively. 

5.1.1 Forest Cover Data 

Table 6 summarizes syntactic interoperability of forest cover data in the context of 

format and accessibility via web services between Valencia Community, Spain, and 

Europe.  At European level, EFDAC provides forest cover map at 1:5 000 000 scale 

[Nunes de Lima 2005] via Map Viewer and WMS in English as a common language 

across Europe. This information is based on the land cover classification from 

CORINE 2000 [Nunes de Lima 2005] and downloadable in Shape format via the 

webpage provided by EEA.  Most updated land cover data mapped in 2006 are 

currently under processing.  At national level, in Spain, IDEE provides the forest 

cover map at 1:50 000 scale via WMS in Spanish as a national standard language.  

This is based on the Third National Forest Inventory conducted from 1997 to 2006 

by MMA. At regional level, Valencia Community in Spain, CMA  has its regional SDI 

which shows forest cover map at 1:10 000, available via WMS in both Spanish and 

its regional language Valencian. 
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SDI Level Regional National European 

Area Valencia Community Spain Europe 

Layer 

Forest 
(Inventario Forestal de 

la Comunidad 
Valenciana) 

Forest 
(Mapa Forestal de 

España) 

Pan-European 
Forest/Non-Forest Map 

Access OGC WMS OGC WMS OGC WMS 

Format PNG, JPEG PNG, GIF, JPEG  PNG, GIF, JPEG, TIFF 

Metadata ISO 19115 ISO 19115 ISO19115 

Year 2005 1997-2006 2000 

Scale 1:10 000 1:50 000 1:5 000 000 

Temporal 
resolution 

Not regulated Every 10 years 1990, 2000, 2006 

Spatial reference 
system 

ED50 / UTM Zone 30N ED50 / UTM Zone 30N 
ETRS89 

/ETRS-LAEA 

Projection 
EPSG:4326 

EPSG:23030 
EPSG:4326 

EPSG:23030 
EPSG:3035  
EPSG:4326 

Language Spanish or Valencia Spanish English 

Owner  CMA MMA JRC 

Table 6. Comparison of forest cover data between regional, national and European levels. 

Advanced standard web services at regional, national, and European levels enable 

the data access to be interoperable within Europe.  We can use a GIS software 

application as a common platform for adding forest cover data from CMA, IDEE, 

and EFDAC via OGC WMS.  Forest cover data from these three sources can be 

added as layers in the software GUI and the GIS overlay of images from CMA and 

EFDAC is illustrated in Annex I.  Legends of forest cover data are not shown via 

WMS, however, they can be viewed in Map Viewer on each web portal of CMA, 

IDEE, and EFDAC.  CMA displays forest and non-forest areas in polygon while EFDAC 

displays forest and non-forest areas in raster.  The GIS overlay made it apparent 

that scales and languages are significantly different even for the most fundamental 

forest data.   

5.1.2 Forest Fire Data 

As forest fire data in Spain at national level derives from autonomous regions, a 

comparison is made in Table 7 directly from regional to European level.  At 

European level, EFFIS at JRC provides burned area data in English via Map Viewer 

for the fire history of member states.  Although the fire history is well updated, the 



34 
 

spatial resolution is low when one attempts to focus on a region such as Valencia 

Community.  The minimum fire size mapped is coarse due to the low spatial 

resolution.  In the regional SDI provided by CMA, the forest fire theme in general is 

not freely accessible to the public.  Moreover, the up-to-date information is not 

available on the Intranet since burned areas from the last summer 2009 are not 

inputted into the SDI yet.  However, it must be noted that the quality of spatial 

resolution is much higher than the burned area data provided by EFFIS, which is 

why fires as small as 0.05 hectare can be detected.   

SDI Level Regional National European 

Area Valencia Community Spain Europe 

Layer Forest Fires (incendios)  Burned Area 

Access ArcIMS (internal)  Map Viewer 

Format 
PNG, (Shape upon 

request) 
 

OWS, (Shape upon 
request) 

Metadata ISO 19115  ISO 19115 

Year 1993-2007  1987-2009 

Spatial resolution 20 m  250 m 

Minimum fire size 0.05 ha  50 ha 

Temporal 
resolution 

annually  annually 

Spatial reference 
system 

ED50 / UTM Zone 30N  
ETRS89 

/ETRS-LAEA 

Projection EPSG:23030  EPSG:3035 

Language Spanish or Valencia  English 

Owner  CMA  JRC 

Table 7. Comparison of forest fire data between regional and European levels. 

5.1.3 Burned Area Calculations  

This section presents the results of quantitative analysis for burned areas 

mapped by CMA and EFFIS.  Figure 11 shows an example of the overlay image areas 

between CMA data and EFFIS data.  It is apparent that CMA data shows more 

detailed mapping along the boundary of polygon A.  Another scale issue illustrates 

that some small burned areas (polygons B, C, and D) mapped by CMA are missing in 

the EFFIS data layer.  As indicated in Table 7, this is due to the high spatial 

resolution and the minimum fire size adopted by CMA at regional level.   
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Figure 11. GIS overlay image of burned areas in Valencia Community mapped by CMA (solid polygons) and 
EFFIS (solid lines) at scale 1:20 000. 

To quantitatively compare the discrepancy caused by map scales between the two 

data models, burned area calculations are summarized and compared in Table 8.  

While EFFIS only mapped three fires in Valencia Community in 2007, CMA mapped 

a number of small fires, resulting in mapping a larger total area.  The largest fire 

they both recorded refers to the same fire (polygon A in Figure 11), however, there 

is a difference of 2266 hectares in burned area between them. We found that CMA 

and EFFIS use different mapping schemas for representing burned areas, where 

CMA only maps forest cover burned (excluding non-forest land cover) while EFFIS 

maps land cover burned (including non-forest land cover).   

 



36 
 

 CMA EFFIS 

Number of Fires 372 3 

Minimum Size (ha) 0.05 89.01 

Maximum Size (ha) 5860.00 8125.56 

Total Area (ha) 8524.88 8315.20 

Table 8. A summary of burned areas in Valencia Community mapped by CMA and EFFIS. 

In addition, GIS overlay analysis of the two data layers enabled us to calculate the 

intersected area as a common burned area mapped by both CMA and EFFIS (Table 

9).  The commonly mapped burned area was 5565 hectares, which accounts for 

67% of the total area mapped by CMA and 65% of the total area mapped by EFFIS.  

In other words, 33% of the total area mapped by CMA was not detected as burned 

by EFFIS, and 35% of the area total area mapped by EFFIS was not considered as 

burned by CMA.  These discrepancies were caused by scales, spatial resolutions, 

and mapping schemas.   

Total area 

mapped by 

CMA 

Total area 

mapped by EFFIS 

Common area 

mapped by CMA 

and EFFIS 

Area mapped as 

burned by CMA 

but not by EFFIS 

Area mapped as 

burned by EFFIS 

but not by CMA 

8525 8315 5565 2960 2750 

67% 65%  33% 35% 

Table 9. Quantitative overlay analysis of burned areas in hectares mapped by CMA and EFFIS. 

5.2 Ontology-Based Schema Mapping  

This section shows outcomes of testing interoperability on the schematic and 

semantic level.  Matching attributes are presented following name-matching 

approach and ontology-based matching approach.  In addition, schema mapping 

operations are identified corresponding to matching attributes. 

5.2.1 Name Matching Attributes 

Firstly, source data attributes expressed in Spanish are manually translated into 

English using a multi-language dictionary (Table 4).  Based on the names of source 

attributes translated into English, they are manually matched to the names of 
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target attributes in the FME, as illustrated in Figure 12.  There are four matching 

attributes from to target data models: 

 NUMPARTE → ID 

 PROVINCIA → Province 

 MUNICIPIO → Commune 

 FECHA → FireDate 

 SUP_TOTAL → Shape_HA  

 

 

Figure 12.  Name matching attributes from source to target data using the FME. 

5.2.2 Ontology-Based Matching Attributes 

Ontology reasoning aided to assess consistency between definitions used for name-

matching attributes in the previous section.  The five name-matching attributes are 

further tested on the semantic level using the reasoner in Protégé, which infers 

equivalent classes and the class hierarchy based on the definitions of classes 

described in application ontologies.  Figure 13 illustrates the result of ontology-

based matching attributes between the two application ontologies from source to 

target.  Four matching attributes were identified: 
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 NUMPARTE = ID  

 PROVINCIA = Province  

 MUNICIPIO = Commune  

 FECHA = FireDate  

 SUP_TOTAL ≠ Shape_HA → SUP_TOTAL ≈ superclassOf(Shape_HA) 

 

 

Figure 13. Equivalent and similar classes inferred by reasoner in Protégé for name-matching attributes. 

‘NUMPARTE’ and ‘ID’ were inferred as equivalent classes as they both have an 

object identifier in number.  ‘PROVINCIA’ and ‘Province were also interfered as 

equivalent according to the administrative level specified by European Union (i.e. 

NUTS21 Level Code 3).  In the same manner, ‘MUNICIPIO’ and ‘Commune’ that 

belong to NUTS Level Code 5 were inferred as equivalent.  ‘FECHA’ and ‘FireDate’ 

were confirmed as equivalent classes as they both have the date of a fire event.  On 

the other hand, the reasoner did not infer ‘SUP_TOTAL’ and ‘Shape_HA’ as 

equivalent classes.  This is because ‘SUP_TOTAL’ is defined by the total forest area 

burned while ‘Shape_HA’ is identified by the total land area (forest and non-forest) 
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 Nomenclature of Territorial Units for Statistics. Eurostat.  URL: http://simap.europa.eu/codes-and-
nomenclatures/codes-nuts/index_en.htm (last accessed on December 7

th
 2009). 
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burned.  Nevertheless, both attributes share the common class description of 

having the forest area burned, which resulted in that ‘SUP_TOTAL’ is superclass of 

‘Shape_HA’.        

 Some source attributes are not matched to the target attributes on the 

schematic level for two reasons.  One is that the matching attributes simply do not 

exist.  In such case, those source attributes may be lost after schema mapping 

[HUMBOLDT 2009].  For example, ‘TIPO_CAUSA’ in source data does not have any 

matching candidates related to the type of cause in target data.  Another reason is 

that some source attributes have matching candidates but the definitions of 

attributes used in source and target data models are not known.  Examples of 

those source attributes in our use case are related to forest cover types. 

 The application ontology based on the source data model is based on forest 

cover classification in Valencia Community defined by CMA while the application 

ontology based on the target data model follows CORINE land cover classification 

defined by EEA.  Criteria to define forest classes include tree type, tree height, and 

canopy cover closure.  Using the reasoner in Protégé, equivalent and similar classes 

can be reclassified.  There are no equivalent classes found by ontology reasoning 

due to the complexity of forest type definitions in both source and target 

classifications.  However, the following similar classes are inferred in the same 

manner as shown in Figure 14: 

 SUP_NARBOL ≈ subclassOf (Transit)  

 SUP_ARBOLA  ≈ superclassOf (Forests: Conifer/BroadLea/Mixed)  
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Figure 14. Similar classes inferred by reasoner in Protégé for attributes based on forest types. 

CORINE defines forests as land with a canopy cover of greater than 30% [Nunes de 

Lima 2005] while Spanish Forest Inventory defines forests (‘forestal’ in Spanish) as 

land with a canopy cover of greater than 5% [MMA 2009b].  Spanish forests are 

further categorized into sub types by canopy cover where Valencia Community 

defines wooded (‘arbolado’ in Spanish) forests with a canopy cover of greater than 

20%.  Therefore, the reasoner in Protégé inferred that the source attribute 

‘SUP_ARBOLA’ is superclass of the target attribute ‘Conifer22’ (or ‘BroadLea’ or 

‘Mixed’).   

As demonstrated above, it is often the case that source and target attribute 

are not equivalent between application ontologies.  Establishing the domain 

ontology can be a solution to identify an equivalent class defined by a common 

concept between application ontologies.  One possibility is to establish the domain 

ontology based on forest cover classification in a larger scale than Europe.  For 

example, FAO Forestry defines forest as land with a canopy cover of greater than 
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 In Valencia Community, the majority of forest cover is occupied by sub type ‘Conifer’ *SIOSE 2009+.     
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10% in the Global FRA 2005 [FAO 2004].  When such forest cover classification at 

global level is introduced as the domain ontology, the reasoner in Protégé 

reclassifies source and target attributes again shown in Figure 15.  With the domain 

ontology, the source ‘SUP_ARBOLA’ and the target ‘Conifer’ both belong to their 

superclass ‘G_Forest’ based on the shared concept of having a canopy cover of 

greater than 10%. 

 

Figure 15.  Establishment of the new shared concept between application ontologies based on the domain 
ontology. 

The name matching approach on the schematic level was not sufficient, thus we 

revised the Spatial ETL to add new matching attributes identified by the ontology-

based matching approach.  As shown in Figure 16, ‘SUP_ARBOLA’ was mapped to 

‘Conifer’ and ‘SUP_NARBOL’ was mapped to ‘Transit’.     
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Figure 16. Ontology-based matching attributes mapped in the FME. 

5.2.3 Schema Mapping Operations 

To map matching attributes from source data to target data, various types of 

mapping operations are often required for transforming source to target attributes 

(Chapter 4.2.3).  Some mapping operations such as augmentation can be applied 

for manipulating target attributes in cases where matching attributes are not found.   

Table 10 summarizes the types of schema mapping operations that we applied for 

transformation of matching attributes and manipulation of target attributes [Lehto 

2007; Schade 2009; Chunyuan et al. 2010, forthcoming].   
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Source 

Attribute 

Target 

Attribute 
Rename 

Change 

Order 

Convert 

Value 
Morph Augment 

NUMPARTE: 
decimal 

ID:  
integer 

x x  x  

  Country:  
character 

    x 

  CountryFul: 
character 

    x 

PROVINCIA: 
character 

Province:  
character 

x x    

MUNICIPIO: 
character 

Commune: 
character 

x x    

FECHA:  
character 

FireDate:  
character 

x x    

SUB_TOTAL: 
character 

Area_HA: 
integer 

x x x x  

  BroadLea: 
decimal 

     

  Conifer:  
decimal 

     

SUB_ARBOL: 
character 

Mixed:  
decimal 

x x x x  

  Scleroph: 
decimal 

     

SUP_NARBOL: 
character 

Transit:  
decimal 

x x x x  

  OtherNatLC: 
decimal 

     

  AgriAreas: 
decimal 

     

  ArtifSurf: 
decimal 

     

  OtherLC: 
decimal 

     

  LastUpdate: 
character 

    x 

Table 10. Schema mapping operations to transform source data attributes to target data attributes. 

Based on the type of mapping operations identified for each attribute in Table 10, 

we added more transformations in the FME (Figure 17).  Renaming and changing 

order of attributes are automatically operated once source and target attributes 

are mapped.  As the workflow of mapping operations is illustrated in Figure 17, 

morphing was applied to ‘SUP_ARBOLA’, ‘SUP_NARBOL’, and ‘SUP_TOTAL’ to 

change their data type from character to decimal.  This transformation was 

necessary for the following mapping operations of converting their values from 
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hectares to percentages.  Finally, augmentation was applied for target attributes 

‘Country’, ‘CountryFul’, and ‘LastUpdate’ by adding known values from source data 

and metadata.  Mapping rules to perform this transformation are saved in the FME 

mapping file and the example of ‘Convert Value’ operation is shown in Annex II.     

 

 

Figure 17. Mapping operations added in the FME to perform transformations from source to target attributes. 
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6. DISCUSSIONS AND RECOMMENDATIONS  

In this chapter, we discuss issues found in the results and suggest solutions to 

increase interoperability on syntactic, schematic and semantic levels.   

6.1 Issues of Syntactic Interoperability 

In our use case, the overview of available geospatial data related to forestry 

showed how heterogeneous they are from regional, national to European level in 

the context of data standards and accessibility.  At service level, forest data from 

Europe and member states (Spain in this case) are syntactically interoperable at 

least for the most fundamental theme, forest cover maps via OGC WMS.  EFDAC is 

attempting to be in compliance with INSPIRE where implementation of OGC web 

services is required.  Therefore, EFDAC including EFFIS is expected to accelerate the 

process of implementation for such standard web services.  Syntactic 

interoperability of forest fire data is more difficult to achieve than forest cover data.  

Burned area data provided by EFFIS is easily accessible via Map Viewer although 

the WMS link is not available yet.  Burned area data provided by CMA is only 

available via ArcIMS in Spanish or Valencia (regional language) for the internal use, 

thus it is not accessible to the public.  To increase syntactic interoperability, the link 

of ArcIMS should be publicly available as the WMS link for forest cover data is 

publicly available in the same SDI.  Not only allowing the link of ArcIMS to be public, 

it also can be standardized to OGC web services since only few software 

applications support ArcIMS. 

 At client level, commercial software applications such as ArcGIS allow layers 

to be added via web services such as ArcIMS and OGC WMS, WFS and WCS, which 

increase the chance of achieving syntactic interoperability among heterogeneous 

data.  However, it may not be affordable for some users to buy commercial tools.  

As an alternative, a number of open source GIS software applications are currently 

available in various languages and communities.  Some of them support various 

vector and raster formats as well as standard web services.  Examples of such 
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applications include uDig23 and OpenJUMP24.  Another open source software 

application, gvSIG, developed by the Valencia government supports ArcIMS 

additionally.  

 As more geospatial data are standardized to OGC web services, the level of 

syntactic interoperability can be increased at service level.  At client level, more 

formats and web services should be supported by software applications.     

6.2 Issues of Schematic Interoperability 

On the schematic level, we address the issue of harmonizing source and target data 

models.  Data structure at attribute level was easily manipulated by FME to 

harmonize the two data models.   

 To identify matching attributes, name matching approach was quick and 

simple when source and target attributes matched linguistically.  Some attributes 

such as ‘Country’ may be an easy example for name matching since it is well 

defined at the administrative level.  ‘Date’ can be another easy name matching 

example within Europe where the international standard is applied (i.e. Gregorian 

calendar) [Sumrada 2003].  However, some countries like China use their own 

traditional calendar systems [Sumrada 2003].   

 The drawback of using name matching is that we can easily misinterpret the 

meanings of attributes.   For example, schemas used to map burned areas are 

fundamentally different between CMA and EFFIS.  The total burned area 

(‘SUP_TOTAL’) mapped by CMA only includes forest cover while the total burned 

area (‘Area_HA’) mapped by EFFIS includes forest and non-forest cover.  The total 

burned area by CMA may have been underestimated due to excluding non-forest 

cover burned.  If there were some source attributes that indicate non-forest 

burned area in the data model, we could have transformed the data by 

recalculating the attribute value of the total burned area.    

 Name matching approach may not assure if the definition of each attribute 

is the same among different communities and languages.  When we studied 
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 uDig. Refractions Research. URL: http://udig.refractions.net (last accessed on January 23
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classification of forest types used by EFFIS and CMA, we found that ‘Forests’ by 

EFFIS refers to land with a canopy cover of greater than 30% while ‘Forestal’ 

(linguistically equivalent to ‘Forests’) by CMA refers to land with a canopy cover of 

greater than 5%. Therefore, there are cases where names (‘Forests’ and ‘Forestal’) 

match, but the definitions are inconsistent. 

 As discussed above, heterogeneous data models were structurally 

harmonized by FME.  Linguistic approach did not always provide sufficient 

information to identify some matching attributes, which led us to apply ontologies 

to schema mapping as a solution to this issue.   

6.3 Issues of Semantic Interoperability 

In comparison with the name matching approach, the ontology-based matching 

approach enabled us to identify more matching attributes from source to target 

data.  However, establishment of application ontologies was time-consuming for 

defining each class with associated properties.  Even with the aid of application 

ontologies based on source and target data specifications, identifying a common 

concept between them remained difficult for some attributes such as forest types.  

In our use case, we tested the concept of forest defined by FAO Forestry to 

establish the domain ontology based on the nested forest information system 

described in Figure 3.  This is one way to establish the domain ontology derived 

from existing forest type specifications at global scale.  As a more sophisticated 

approach to establishing the domain ontology, we could create the new domain 

ontology derived from various application ontologies.  This approach may involve 

investigating application ontologies from other member states than Spain to reach 

common ground which they all can commit to [Klien and Probst 2005].     

 Heterogeneous geospatial data can be harmonized between application 

ontologies where semantics of terms used in source and target applications match 

easily.  In cases where semantic common ground cannot be reached at application 

level, the domain ontology may enable semantic matching.  Establishment of the 

domain ontology only by domain experts, who are knowledgeable about forestry, 

may not be sufficient.  The domain ontology can be improved by collaboration with 
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various participants, including philosophers who can guide domain experts with a 

foundational ontology, ontology engineers who are experienced with knowledge 

software applications (e.g. Protégé), and service providers who develop forestry 

data models from different communities [Klien and Probst 2005; Gruber et al. 

2006; Schade 2009].    
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7. CONCLUSIONS AND FUTURE WORK 

Geospatial data harmonization from regional level to European level was 

investigated, with a use case in forest fire data derived from Valencia Community in 

Spain and Europe.  To harmonize heterogeneous data among different 

communities, languages, and administrative scales, we tested interoperability on 

the syntactic, schematic and semantic levels.   

 For testing syntactic interoperability, we studied a common platform in the 

context of data formats and accessibility via web services.  To answer our research 

question whether forest fire data from EFFIS and member states (CMA in our use 

case) are syntactically interoperable, we found that standard web services need to 

be implemented in all administrative scales to achieve interoperability at service 

level.    At client level, we found that GIS software applications that support various 

formats and standard web services can increase the chance of achieving 

interoperability.  Thus, our findings supported the hypothesis A that establishing 

standard web services and common tools can increase the chance of achieving 

syntactic interoperability between multiple geospatial data derived from different 

sources.  In addition, we achieved syntactic interoperability at client level and 

analyzed the GIS overlay to answer another research question whether there are 

any scale issues of forest fire data from different sources.  We conclude that there 

are significant discrepancies in the total burned areas mapped by EFFIS and CMA 

due to the difference in scales.        

 For testing schematic and semantic interoperability, we took the ontology-

based schema mapping approach to transforming a regional data model to a 

European data model on the conceptual level, with combined techniques of a 

Spatial ETL tool and an ontology modelling software application.  The FME enabled 

various types of data transformation from source to target attributes to achieve 

schematic interoperability.  Ontological modelling in Protégé helped identify a 

common concept between the source and target data models, especially in cases 

where matching attributes were not found at the schematic level.  More specifically, 

application ontologies were established by studying forest cover classifications and 



50 
 

definitions of each application, combined with the domain ontology, to reach 

common ground between applications and achieve a higher level of semantic 

interoperability. These findings are answers to our research question of how forest 

fires data can be transformed and mapped into common schemas and semantics 

across administrative scales.   Finally, we support the hypothesis B that the regional 

data model can be transformed to the European data model on the semantic level 

when common schemas and concepts are identified.  

 Our methodology for testing interoperability suggested available tools such 

as ArcGIS software application on the syntactic level, FME on the schematic level, 

and Protégé on the semantic level.  These existing tools were appropriate to 

explore our research questions and support the hypotheses, however, our 

approach could be improved by testing other available tools.  On the syntactic level, 

an open source GIS application gvSIG would perform as well as ArcGIS to deal with 

various data formats and web services (including ArcIMS).  Another open source 

Spatial ETL application Spatial Data Integrator would replace FME for most of 

transformations on the schematic level.  On the semantic level, WSML based on 

logic programming would be implemented as an alternative to OWL based on 

description logic in Protégé. 

 There are opportunities for future work related to our use case.  Those 

include schema transformations of feature components by FME to represent 

geographic elements in the GML model.  We transformed source and target 

attributes and their values, however, they are only part of the components which 

construct the GML model.  The OGC WFS specification requires GML as a standard 

format to exchange geospatial data.  Thus, transformation of the GML model from 

CMA schema to EFFIS schema by the FME server can be tested for publishing and 

downloading via OGC WFS.   

 On the semantic level, the new domain ontology can be created to redefine 

‘forest’ as common ground according to the level of abstraction.  This may involve 

the introduction of a foundational ontology such as DOLCE to improve quality and 

efficiency of the methodology.  We can also survey applications that include all the 
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member states of EU and compare them with EFDAC and FAO Forestry in the 

context of forest cover.  To find optimal common ground it may require top-down 

and bottom-up approaches in the ontology architecture between foundational and 

domain ontology levels as well as domain and application ontology levels.  The level 

of abstraction can be explored for semantic matching by adjusting the range of a 

shared concept ‘forest’ to be more flexible or restrictive.  We may introduce more 

applications outside EU to explore the level of abstraction for redefining ‘forest’ to 

a global scale.     

 Additionally, we may investigate how schema mapping rules are executed in 

the complete process of schema translation from source to target data so that the 

regional data can be inputted into the forest fire model developed by EFFIS.  It 

would be practical further research to test the mapping rules generated by FME.  

The FME is one means of generating mapping rules programmed by the software 

specification, which is not standardized. Thus, it may require another rule language 

to reuse and exchange those mapping rules that can be processed by other 

execution tools.  We may also investigate how ontologies saved as RDF or OWL 

format in Protégé can be used as mapping rule language.   
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ANNEXES 

 

Annex I. GIS overlay of images in regional and European scales via OGC WMS in ArcMap.  CMA displays forest 
and non-forest areas in polygon while EFDAC displays forest and non-forest areas in raster.   
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#! <TRANSFORMERS> 

#! <TRANSFORMER 

#! IDENTIFIER="13" 

#! TYPE="ExpressionEvaluator" 

#! VERSION="1" 

#! POSITION="1121 -252" 

#! ORDER="23" 

#! PARMS_EDITED="true" 

#! ENABLED="true" 

#! > 

#! <OUTPUT_FEAT NAME="OUTPUT"/> 

#! <XFORM_ATTR ATTR_NAME="Conifer" IS_USER_CREATED="false" 

FEAT_INDEX="0"/> 

#! <XFORM_PARM PARM_NAME="EXPRESSION" PARM_VALUE="(@Value 

(SUP_ARBOLA)/@Value(SUP_TOTAL))*100"/> 

#! <XFORM_PARM PARM_NAME="XFORMER_NAME" PARM_VALUE="ConvertValue"/> 

#! <XFORM_PARM PARM_NAME="VAL_ATTR" PARM_VALUE="Conifer"/> 

#! </TRANSFORMER> 

#! <TRANSFORMER 

#! IDENTIFIER="34" 

#! TYPE="ExpressionEvaluator" 

#! VERSION="1" 

#! POSITION="1138 -615" 

#! ORDER="24" 

#! PARMS_EDITED="true" 

#! ENABLED="true" 

#! > 

#! <OUTPUT_FEAT NAME="OUTPUT"/> 

#! <XFORM_ATTR ATTR_NAME="Transit" IS_USER_CREATED="false" 

FEAT_INDEX="0"/> 

#! <XFORM_PARM PARM_NAME="EXPRESSION" PARM_VALUE="(@Value 

(SUP_NARBOL)/@Value (SUP_TOTAL))*100"/> 

#! <XFORM_PARM PARM_NAME="XFORMER_NAME" PARM_VALUE="ConvertValue_2"/> 

#! <XFORM_PARM PARM_NAME="VAL_ATTR" PARM_VALUE="Transit"/> 

#! </TRANSFORMER> 

#! <TRANSFORMER 

#! IDENTIFIER="37" 

#! TYPE="ExpressionEvaluator" 

#! VERSION="1" 

#! POSITION="1150 -907" 

#! ORDER="27" 

#! PARMS_EDITED="true" 

#! ENABLED="true" 

#! > 

#! <OUTPUT_FEAT NAME="OUTPUT"/> 

#! <XFORM_ATTR ATTR_NAME="Area_HA" IS_USER_CREATED="false" 

FEAT_INDEX="0"/> 

#! <XFORM_PARM PARM_NAME="EXPRESSION" PARM_VALUE="(@Value (Conifer) 

+@Value (Transit))"/> 

#! <XFORM_PARM PARM_NAME="XFORMER_NAME" PARM_VALUE=" ConvertValue_3"/> 

#! <XFORM_PARM PARM_NAME="VAL_ATTR" PARM_VALUE="Area_HA"/> 

#! </TRANSFORMER> 

#! </TRANSFORMERS> 

 

Annex II. Example of schema mapping rules for converting attribute values from source data model to target 
data model using FME transformers. 

 

 


