
Nuno Miguel Cerqueira da Costa

Licenciatura em Ciências de Engenharia Biomédica

User Friendly Knowledge Acquisition System

For Medical Devices Actuation

Dissertação para obtenção do Grau de Mestre em
Engenharia Biomédica

Orientador: Prof. Doutor Hugo Gamboa

Júri:

Presidente: Prof. Doutor Mário António Basto Forjaz Secca

Arguentes: Prof. Doutor Nuno Manuel Garcia dos Santos

Vogais: Prof. Doutor Hugo Filipe Silveira Gamboa

Outubro, 2012

ii

iii

User Friendly Knowledge Acquisition System For Medical Devices Actuation

Copyright c© Nuno Miguel Cerqueira da Costa, Faculdade de Ciências e Tecnologia, Uni-
versidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

To the ones that love me,
the ones that tried to help.

To life, the greatest adventure.

vi

Acknowledgements

Great was the effort to breed a solution, because the objective was not always well de-
fined, and to narrow the possibilities and create a good path many questions needed
answers. As a small token of my appreciation, below, I acknowledge the helpers, the
doers and the goods that entered in my life living their mark.

First, I need to thank professor Hugo Gamboa for providing this opportunity, and
when he was challenged by me to create a non specific software with the most potential
possible he helped me with ideas that bare fruits in the end, for that I’m grateful. I’m
also grateful for the chance to work in Plux - Wireless Biosignals, S.A., which gave me
different tools regarding the business environment.

Without maturation through the Biomedical Engineering course held in the Faculdade
de Ciencias e Tecnologias from Universidade Nova de Lisboa it would be impossible to achieve
the objectives proposed in this dissertation. Therefore, I must thank the institution and
all the professors, friends and persons that aid me through this journey.

Furthermore, a special thanks to Neuza Nunes for the fast response to all my ques-
tions and the undoubtedly help to perform a better work. A great thanks to Tiago Araujo
due to its availability in helping me in this project, Joana Sousa for caring and the other
staff from Plux for conveying a pleasant environment. Additionally, I must make a per-
sonal thanks to Daniel Rodrigues for being a good friend and providing me a hand when-
ever I needed, and Suse Vasconselos for giving me motivation and sunny days. To my
parents, it’s my duty to thank them for given me the pleasure of enjoy life, the greatest
adventure.

Finally, I state that in order to achieve a better understanding of this beautiful world,
full with countless of amazing and mysterious things, the course of Biomedical Engi-
neering was perfect to construct some fundamental foundations that will open profitable
paths to attain my goal. This being said, I’m pleased to present this final work, that gather
knowledge acquired in these six months of work and throughout the course. On top of
that, I deeply hope that this work will have a wider contribution in Biomedical and other
research areas, because like Carl Sagan referred the history of science teach us that the max-
imum that we hope for are consecutive improvements in our understanding, thus the maximum

vii

viii

that each generation hope to achieve is to slightly reduce the error-bars and enlarge the number of
data related to the fields where this error-bars are applied.

Abstract

Internet provides a new environment to develop a variety of applications. Hence,
large amounts of data, increasing every day, are stored and transferred through the in-
ternet. These data are normally weakly structured making information disperse, uncor-
related, non-transparent and difficult to access and share. Semantic Web, proposed by
the World Wide Web Consortium (W3C), addresses this problem by promoting semantic
structured data, like ontologies, enabling machines to perform more work involved in
finding, combining, and acting upon information on the Web.

Pursuing this vision, a Knowledge Acquisition System (KAS) was created, written
in JavaScript using JavaScript Object Notation (JSON) as the data structure and JSON
Schema to define that structure. It grants new ways to acquire and store knowledge
semantically structured and human readable. Plus, structuring data with a Schema gen-
erates a software robust and error – free.

A novel Human Computer Interaction (HCI) framework was constructed employing
this KAS, allowing the end user to configure and control medical devices. To demonstrate
the potential of this tool, we present the configuration and control of an electrostimulator.

Nowadays, most of the software for Electrostimulation is made with specific pur-
poses, and in some cases they have complicated user interfaces and large, bulky designs
that deter usability and acceptability. The HCI concedes the opportunity to configure
and control an electrostimulator that surpasses the specific use of several electrostimula-
tor software. In the configuration the user is able to compile different types of electrical
impulses (modes) in a temporal session, automating the control, making it simple and
user-friendly.

Keywords: Human Computer Interaction, Knowledge Acquisition System, Ontology,
Schema Language, JSON, Electrostimulation.

ix

x

Resumo

A Internet faculta um novo ambiente para a concepção de aplicações com várias fi-
nalidades. Desta forma, grandes quantidades de dados são armazenados e transmitidos
através da internet, aumentando dia após dia. Usualmente, estes dados são mal estru-
turados tornando a informação dispersa, sem correlação, pouco transparente, de difícil
acesso e difícil de partilhar. A Semantic Web, proposta pelo World Wide Web Consor-
tium (W3C), resolve este problema promovendo dados semanticamente estruturados, tal
como as ontologias, possibilitando que as máquinas realizem um maior volume de tra-
balho no contexto da pesquisa, combinação, e atuação sobre informação na Web.

Prosseguindo esta visão, um Sistema de Aquisição de Conhecimento (KAS) foi criado,
desenvolvido em JavaScript usando JavaScript Object Notation (JSON) como a estrutura
de dados e JSON Schema para definir essa estrutura. Este, proporciona novas formas
de adquirir e armazenar conhecimento semanticamente estruturado, legível aos seres
humanos. Adicionalmente, com os dados estruturados por um Schema o software torna-
se robusto e menos susceptivel a erros.

Uma nova Interação Humano Computador (HCI) foi desenvolvida baseada neste
KAS, permitindo ao utilizador final configurar dispositivos médicos e controlá-los, como
por exemplo um electroestimulador.

Atualmente, a maior parte dos softwares para Electroestimulação são produzidos
com fins específicos. Em alguns casos, estes têm interfaces complicadas, designs largos
e com muita informação afetando a usabilidade e aceitabilidade. A HCI desenvolvida
permite a configuração e controlo de um electroestimulador, superando o uso específico
de vários softwares de Electroestimulação. Na configuração, o usuário tem a possibili-
dade de compilar diferentes tipos de impulsos elétricos (modos) numa sessão temporal,
automatizando o controlo e tornando-o simples e intuitivo.

Palavras-chave: Interacção Humano Computador, Sistema de Aquisição de Conheci-
metno, Ontologia, Schema Language, JSON, Elecroestimulação.

xi

xii

Contents

List of Abbreviations xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Dissertation Overview . 4

2 Concepts 7

2.1 WEB Based Software . 7

2.2 HCI and KAS . 9

2.3 Symbolic Regression Programming . 9

2.4 Ontologies . 10

2.5 Schema, JSON and JSON Schema . 10

2.6 JavaScript and Python . 13

2.7 Biosignals . 13

2.7.1 Bioelectricity . 13

2.7.2 Biosignals Acquisition . 18

2.7.3 Biosignals Processing . 18

3 Human Computer Interaction 21

3.1 Configuration . 22

3.1.1 How to Configure . 22

3.1.2 Knowledge Acquisition System . 32

3.2 Control . 32

3.2.1 How to Actuate . 33

3.2.2 API . 33

4 Knowledge Acquisition System 35

4.1 Data Structure . 36

xiii

xiv CONTENTS

4.2 GUIs . 39
4.3 Editors . 43

5 Performance Evaluation 47
5.1 Application . 47

6 Conclusions 51
6.1 Contributions . 51
6.2 Future Work . 54

A Publications 61
A.1 WINSYS 2012 . 62
A.2 Biodevices 2013 . 71

B Configuration Environment 79

List of Figures

1.1 Thesis schematic . 4

2.1 The contraction response of a fiber . 16
2.2 Biosignal process engine . 18

3.1 Configuration Diagram . 23
3.2 Device Configuration of an electrostimulator 24
3.3 The default impulses: square, sine and triangle. 27
3.4 Mode Configuration for an electrostimulator 28
3.5 Session Configuration for an electrostimulator 30
3.6 Hierarchy and configuration sequence . 31
3.7 Control . 32

4.1 KAS within the HCI . 36
4.2 KAS Generic Diagram . 37
4.3 Example of Schema special properties . 39
4.4 Example of a Mode Configuration in Basic Editor 43
4.5 Example of a Mode Configuration in Advanced Editor 44
4.6 Example of Source editor and Pretty Print tool 45

5.1 API diagram . 49

B.1 Configuration Environment . 80

xv

xvi LIST OF FIGURES

List of Tables

3.1 Information required in Device Configuration. 25
3.2 Information required in Mode Configuration. 26
3.3 Information required in Session Configuration. 29

4.1 Special properties needed within the configuration Schemas 38

5.1 Tests and results. 48

xvii

xviii LIST OF TABLES

Listings

2.1 Example of a JSON . 11
2.2 Example of a JSON Schema . 12
4.1 Impulse Generator Object . 40
4.2 Resume of "Mode.json" Schema with emphasis on "GUI" property 41

xix

xx LISTINGS

List of Abbreviations

EEG Electroencephalography

EMG Electromyography

ECG Electrocardiography

ES Electrical Stimulation or Electrostimulation

EMS Electrical Muscle Stimulation or Electromyostimulation

NMES Neuromuscular Electrical Stimulation

FES Functional Electrical Stimulation

TES Transcranial Electrical Stimulation

V m Transmenbrane Voltage

WWW World Wide Web

HCI Human-Computer Interaction

IR Information Retrieval

KDD Knowledge Discovery in Databases and Data Mining

XML Xtensible Markup Language

JSON JavaScript Object Notation

API Application Programming Interface

GUI Graphical User Interfaces

KAS Knowledge Acquisition System

SR Symbolic Regression

xxi

xxii LIST OF ABBREVIATIONS

GP Genetic Programming

GE Grammatical Evolution

1
Introduction

1.1 Motivation

Internet advent has strongly influenced modern electric devices. Web based conven-
tional, expert [1] and intelligent systems [2] with knowledge and database connectiv-
ity provide novel architectures and solutions for on-line and off-line applications. Also,
it allows multi-access communications between different users and mobile or nomadic
computing (the use of portable computing devices in conjunction with mobile commu-
nications technologies to enable users to access Internet and data on their home or work
computers from anywhere in the world) [3, 4]. Another favourable possibility is the im-
plement of feedback control systems, also named closed loop systems [5], very important
for biofeedback control [6]. For these reasons, Biomedical Web-based solutions, in par-
ticular biosignals solutions, start to make their début in health management striving to
achieve preventive medicine [7, 8, 9].

The easiness of access, storage, transmission of data and the exponential prolifera-
tion of Internet users enclose new complexities: authentication; scalable configuration
management; security; huge masses of high dimensional and often weakly structured
data. Structuring data pursued by Semantic Web opens new opportunities, because there
is always room for improving and to develop more adequate languages. Methods and
approaches to solve the problem emerged from research in Human-Computer Interac-
tion (HCI) [10], Information Retrieval (IR), Knowledge Discovery in Databases and Data
Mining (KDD) [11]. These methods assist end users to identify, extract, visualize and
understand useful information from data. One of the methods to solve the problem is
the establishment of ontologies. It is possible thanks to Semantic Web and holds great
promise in manipulating information in ways that are useful and meaningful to humans.

1

1. INTRODUCTION 1.1. Motivation

Mechanisms to specify ontologies expanded in the last years, the Schema Language is
one of them [12, 13].

Electric flow systems have a vital role in the organism. In order to preserve the in-
tegrity of this system, and the organism, most of the health diagnosis have progressed in
this path: Electromyography (EMG), Electroencephalography (EEG), Electrocardiography
(ECG), between others. In favour of infuse and receive information from the bioelectric
system for treatment, control, tests/analysis, it was developed the notion of Electrical
Stimulation or Electrostimulation (ES) in parallel with acquisition and signal processing.
Therefore, ES is affiliated to Biosignals and it’s theoretically supported by Bioelectromag-
netism [14].

In 1791, scientist Luigi Galvani showed that electricity, when applied to a frog’s leg,
could cause muscle twitches [15]. In the intervening centuries, scientists have learned
much about how ES affects muscle tissue and tried to apply it to muscles paralysed
by neuromuscular disease to create both therapeutic and functional effect. This field
of medicine is known variously as Electrical Muscle Stimulation or Electromyostimu-
lation (EMS), Neuromuscular Electrical Stimulation (NMES) and Functional Electrical
Stimulation (FES) electromyostimulation, consisting in nerve manipulation through elec-
trical pulses aiming muscular contraction or sensory response on distinct applications
[16, 17]. Nowadays, the applications can be divided in two areas:

• Electrotherapy: Rehabilitation [18]; Spinal cord injury, stroke, sensory deficits, and
neurological disorders (with Neural prostheses) [19]; Urinary incontinence [20];
Transcranial Electrical Stimulation (TES) as a method to elicit electronarcosis, elec-
trosleep and electroanalgesia (for pain relief) [21, 22]; Treatment of lower limbs ve-
nous insufficiency related symptoms in pregnant women [23]; electrostimulation of
the acoustic nerve for profoundly deaf patients can, in the best cases, reach almost
complete speech understanding without lip reading [24].

• Physical conditioning: fitness; active recovery; optimizing physical performance
by improvement of maximum strength of a muscle (muscular tonus) in less time
[25, 17, 26] .

Although ES may hold much promise there are technical challenges still unsurpassed.
Commercial software solutions for electrostimulators grow every day, but these are of-
ten limited by a variety of factors including cost, source code inaccessibility, hardware
compatibility, and more. Consequently, a strong tradition in scientific research is to write
custom software routines. While superb for the specific tasks at hand, these custom so-
lutions rarely offer the flexibility and extensibility needed for them to be transferable
across platforms, hardware configurations, and experimental paradigms without signifi-
cant modifications. Therefore, in present times software/hardware solutions are required
to provide a device with a multi-purpose platform (sport, therapy or investigation) and a
dynamic WEB based software enabling the user to create their own protocols [27, 28, 29].

2

1. INTRODUCTION 1.2. Objectives

In order to achieve this goal a Knowledge Acquisition System (KAS) and HCI were cre-
ated, supplying the tools to configure and control biomedical and other electrical devices,
for example an electrostimulator.

The Human Computer Interaction framework was constructed using the KAS. The
last was written in JavaScript using JavaScript Object Notation (JSON) as the data struc-
ture and JSON Schema to define that structure, implementing a mechanism to define
ontologies and use them to acquire knowledge from the user then store it semantically
structured.

It was with great motivation that this overarching tool was developed at PLUX - Wire-
less Biosignals, S.A.. The dissertation development at Plux also permitted the first contact
with a business environment and the access to the needed material and knowledge re-
sources, making possible to conclude the objectives purposed by myself and the members
of Plux.

1.2 Objectives

The prime purpose of this work was to develop a Web-based Human Computer Interac-
tion framework for precise, dynamic and user-friendly control of medical devices manip-
ulated trough electric impulses, like an electrostimulator. With this intention, through the
development of this work was clear that a higher level of abstraction would be required
to construct a multi-purpose software, assuring a wider contribution on Biomedical re-
search field. From this level was envisioned a Knowledge Acquisition System based
on JSON and JSON Schema enabling the creation of any type of forms with specialized
Graphical User Interfaces (GUI) to acquire information from the end user and store it
semantically structured. With the help of this mechanism was feasible the configuration
of electrical impulses and sequentially compile them, supporting the construction of a
Human Computer Interaction framework that automates the control of medical devices.
It can also support the control of other electrical devices, like for example LEDs.

These central objectives aimed to collect the best in the fields of Human-Computer In-
teraction (HCI), Information Retrieval (IR), Knowledge Discovery in Databases and Data
Mining (KDD), Knowledge Acquisition System (KAS), Electrical Stimulation or Electros-
timulation (ES), and other areas, to transform it in something new. As a result, exceed
the concept of specific software referred in Section 1.1 and create an application with a
simple, human readable data structure supplying the user with easy tools to design all
type of protocols, where the only limitation for creativity is the hardware.

For validation, different types of tests were performed with the help of an electros-
timulator. As a consequence, was possible to detect bugs and optimize parts of the appli-
cation. This tool is incorporated in a software for acquisition and processing of Biosignals
by PLUX and it can be used for both stand-alone (off-line, Opensignals server from Plux)
and Web-based (on-line) applications.

3

1. INTRODUCTION 1.3. Dissertation Overview

1.3 Dissertation Overview

Basis Software ResultsDescription

Appendix

1

2

A

Introduction

Theoretical

Publications

Concepts

5

6

Performance

Conclusions

Evaluation

B
Configuration Environment

3

4

HCI

KAS

Figure 1.1: Dissertation schematic.

This section provides an overview of the aspects delineated in the context of this
dissertation. The dissertation is divided into four parts composed with five chapters and
two appendix, as the schematic in Figure 1.1.

In the present chapter, the thesis subjects are exposed, providing some insight on the
state of the art, depicted within the section Motivation, and the Objectives which led to
the development of this work.

The second chapter describes the concepts required throughout the thesis: the im-
portance and issues related to Web based software; HCI and KAS definitions; Symbolic
Regression Programming, a process where data are fitted by suitable mathematical for-
mula; Ontologies, classes and subclasses of information with relations and inference rules
between them; Schemas, JSON and JSON Schema to construct data semantically struc-
tured; resume of the languages used in the software, JavaScript and Python and finally
the theoretical basis, bioelectricity, concerning ES and the link with biosignals. These first
two chapters form the basis for the development of the thesis.

A novel Human Computer Interaction was developed with the intention of control-
ling the actuation of electrical devices, like Biosignals Acquisition Systems, LEDs, motors,
between others. The components from this HCI are depicted in the third chapter.

The Knowledge Acquisition System is described in the fourth chapter. A versatile
system to architect simple and intuitive interfaces with specialized GUI to acquire knowl-
edge from the end user, and store it semantically structured.

4

1. INTRODUCTION 1.3. Dissertation Overview

To show the potential of this software and test its performance, the fifth chapter com-
piles a series of evaluations and examinations with the intention of control an electros-
timulator.

Some final remarks and future work are presented in Chapter 6. Appendix A contains
the papers published in the context of this research work, and Appendix B contains the
image of the configuration environment.

5

1. INTRODUCTION 1.3. Dissertation Overview

6

2
Concepts

This chapter encloses the theoretical base for this dissertation, familiarizing the concepts
required throughout the project to achieve the purposes introduced in Section 1.2.

Web-based control systems and its connection with Human-Computer Interaction
(HCI) will be introduced to understand the motivation in design a Web-based frame-
work. The terms HCI and Knowledge Acquisition System (KAS) are specified because
they play an important role in this dissertation. Ontology, Schema language, JavaScript
Object Notation (JSON) and Symbolic Regression Programming are also described and
their interlock allowed the software development. Plus, the language platforms used to
built the software, JavaScript and Python, are both resumed.

In addition, an overview in bioelectricity, especially in Electrical Stimulation or Elec-
trostimulation (ES), introduces the concepts required for software validation. ES is af-
filiated with biosignals, in particular bioelectricity, as a method employed by humans
to interfere with the bioelectrical system in profitable ways. Without biofeedback, one
of the main branch of biosignals and the scientific method for analysis [30], this project
wouldn’t be whole, so an overview in biosignals acquisition and processing will be car-
ried.

2.1 WEB Based Software

During a short period of time occurred an explosion of technology and information, pro-
viding effective means to achieve higher standards of medical education, patient treat-
ment and biomedical research. As a consequence, in the present, these technologies are
used for: collaborative medicine, nationally and globally oriented electronic health care

7

2. CONCEPTS 2.1. WEB Based Software

between patients and health professionals around the world, and collaborative biomed-
ical research and education possibilities using distributed system capabilities over high
speed networks and new multimedia video conferencing technologies. Through these
means, create "Centers without Walls" enabling Biomedical researchers to do their work
without being bound by geographic location.

As the most powerful multimedia form of communication, Internet has already proved
significant economic and scientific potential with unmatched educational and social ben-
efits. The packet-switched digital transmission services embodied in the Internet are in-
dependent of content and they evolved to support voice, conventional television, video
imaging, formatted text, the World Wide Web (WWW) and other forms of communi-
cation and control [8]. In a definitive article on the subject, Conklin [31] suggests the
following four broad applications for computer based hypertext systems, and potentially
the WWW, which have great relevance to medical practice and medical informatics [7]:

• macro literary systems: systems and technology that support large on-line libraries
with computer mediated inter-document links (for example, network oriented pub-
lishing, reading, criticism, and collaboration in document creation).

• problem exploration systems: tools to support early unstructured thinking on a
given problem (for example, early authoring, outlining, problem solving, program-
ming, and design).

• structured browsing systems: small-scale teaching, reference, and public informa-
tion systems similar in design and function to macro literary systems. In these
systems, ease of use is a critical design component.

• general hypertext systems: general-purpose systems for reading, writing, collabo-
ration, etc., designed to allow experimentation with a range of hypertext applica-
tions.

In the next chapters the reader will notice that the software developed in this work makes
part of these applications.

To solve biomedicine problems, generated by using the Internet, we need to focus in
the central Internet problems. The easiness of access, storage, share of data and the expo-
nential proliferation of Internet users enclose new complexities: authentication; scalable
configuration management; security; huge masses of high dimensional and often weakly
structured data between others. Weakly structured data is the main problem addressed
in this project. Structuring data pursued by Semantic Web (promotes common formats
for data) creates opportunities to develop new languages and adapt, improve old ones.
Methods and approaches to solve the structuring problem emerged from research in HCI
[10], IR, KDD [11]. These methods assist end users to identify, extract, visualize and
understand useful information from data.

Other issues addressed are usability and acceptability of applications. Ease of use
affects the users performance and their satisfaction, while acceptability affects whether

8

2. CONCEPTS 2.2. HCI and KAS

the product is used or not [32, 33]. Therefore every application should pursue these
objectives.

Resuming, Internet applications, like WEB-Based control systems, have significant
impact on biomedicine by dramatically improving the ease with which the distribution
and access to information is provided. WWW is a unparalleled resource due to its ease of
use, its platform independent client-server software, the wide availability of inexpensive
WWW browser applications, and its support of distributed hypertext and multimedia.
Another important part is security, use of WWW for financial transactions has resulted
in the development of a number of technologies designed to make Internet-based com-
munication secure. These encryption-based technologies facilitate the creation of secure
wide-area access to clinical information systems and remote control of devices via the
Internet [34].

2.2 HCI and KAS

Human-Computer Interaction (HCI) enclosures the study, planning, and design of inter-
actions between people (users) and computers. It’s often described as the intersection of
computer science, behavioural sciences, design and several other fields of study [35].

Knowledge Acquisition System (KAS) attempts to acquire fundamental knowledge
from humans (users) and store it in memory to reuse in different engineered applications,
like artificial intelligence, between others [36].

2.3 Symbolic Regression Programming

The term Symbolic Regression (SR) represents a process where data are fitted by suitable
mathematical formula (Symbols). This process is known amongst mathematician and
used when some data of unknown processes are obtained. It’s also used in programming.

Today there are two well known methods, which can be used for SR in programming.
The first one is called Genetic Programming (GP) and the second one is Grammatical
Evolution (GE). Genetic Programming is a symbolic regression performed with evolu-
tionary algorithms instead of human beings. The ability to solve very difficult problems
was demonstrated several times, now it can even be applied, e.g. to synthesize highly so-
phisticated electronic circuits. Grammatical Evolution can be described as an unfolding
of GP because of some common principles, which are the same for both algorithms. One
important characteristic of GE is that it can be implemented in any arbitrary computer
language. In contrast to other evolutionary algorithms, GE was only used with a few
search strategies and a binary representation of the populations [37].

One of the tools emerging in this area with great importance is "Eureqa", a highly
praised symbolic regression program defined by Schmidt and Lipson that aid to describe
the underlying mechanisms producing the data with simple functions [38].

9

2. CONCEPTS 2.4. Ontologies

2.4 Ontologies

Semantic Web, proposed by the World Wide Web Consortium (W3C), promotes seman-
tic structured data, like ontologies, enabling machines to perform more work involved
in finding, combining, and acting upon information on the web. Ontologies hold much
promise in manipulating information in ways that are useful and meaningful to the hu-
man user.

Ontologies are collections of information with specific taxonomies and inference rules
to define relations between terms. The taxonomy defines classes of objects and relations
among them, and inference rules provide advanced ways of relate information by deduc-
tion. Classes, subclasses and relations amidst entities are a very powerful tool for Web
use. We can express a large number of relations between entities by assigning properties
to classes and allowing subclasses to inherit such properties.

The structure and semantics provided by ontologies make it easier for an entrepreneur
to provide a service and can make its use completely transparent. Ontologies can en-
hance the functioning of the Web in many ways, like relate the information on a page to
the associated knowledge structures and inference rules, thus creating robust and clean
applications [12].

2.5 Schema, JSON and JSON Schema

Tools to create ontologies have spring in the late years, the Schema Language is one of
them. Schema was first developed for Xtensible Markup Language (XML) as a notation
for defining a set of XML trees. The cause was that XML only allows users to add arbi-
trary structure to their documents but says nothing about what the structures mean [39].
A useful schema notation must: allow efficient parsing; be readable to the user; allow
limited transformations corresponding to the insertion of defaults; identify most of the
syntactic requirements that the documents in the user domain follow; be modular and
extensible to support evolving classes [40].

This language makes possible the creation of structured data and automated tools to
present the data in a human readable form making easier the extraction and visualiza-
tion of useful information. Therefore, in this field of structuring data, Schema largely
supersede Document type Definitions (DTDs) for markup language.

One example of this procedure is Protégé, an open source Ontology Editor and Knowl-
edge Acquisition System. Protégé is a framework written in Java and uses Swing (Java
GUI widget toolkit) to develop complex user interfaces. These interfaces provide the user
with tools to construct domain models and knowledge-based applications with ontolo-
gies. As a graphical tool for ontology editing and knowledge acquisition, it can adapt
to enable conceptual modelling with new and evolving Semantic Web languages [13].
Protégé let us, like the Schema, create domains in a conceptual level without knowing
the syntax of the language ultimately used on the Web, to construct interfaces, passing

10

2. CONCEPTS 2.5. Schema, JSON and JSON Schema

and storing information, between others. In this way, we can concentrate on the concept
types (integers, arrays,...), the relationships in the domain and the facts about them that
we need to describe.

JSON is a simple, lightweight and human readable text-data structure for informa-
tion exchange. The approach for information exchange is simpler than XML, by the less
verbose structure of the notation. Interpreting JSON is native in some languages with
the existence of several support libraries that make JSON a platform independent lan-
guage [41]. JSON structure is composed of name/value pairs separated by comma, curly
brackets holds objects and square brackets holds arrays. Values can be numbers, strings,
booleans, arrays, objects and null. In the example below is an object containing informa-
tion of an address and phone number:

Listing 2.1: Example of a JSON

1 {"address":{

2 "streetAddress": "21 2nd Street",

3 "city":"New York"

4 },

5 "phoneNumber":

6 [{

7 "type":"home",

8 "number":"212 555-1234"

9 }]

10 }

Considering these features, JSON was selected as the data structure of this work, and
is defined by JSON Schema.

From the XML Schema concept, a set of specifications were established to create a
Schema for JSON. A JSON Schema is a Media Type (standard draft of options) that speci-
fies a JSON-based format to define the structure of JSON data, providing a contract (set of
rules) required in a given application and how to interact with the contract. Accordingly,
JSON Schema specifies requirements for JSON properties with the following intentions:

• Validation (data integrity);

• Documentation;

• Interaction (UI generation - forms and code);

• Hyperlink Navigation.

JSON Schema is also a JSON with a compact implementation and can be used on the
client and server. Specifications are organized in two parts [42]:

• Core Schema Specification: primary concerned with describing a JSON structure
and specifying valid elements in the structure.

11

2. CONCEPTS 2.5. Schema, JSON and JSON Schema

• Hyper Schema Specification: define elements in a structure that can be interpreted
as hyperlinks, in others JSON documents and elements of interaction (This allows
user agents to be able to successfully navigate JSON documents based on their
Schemas).

Below is an example of a JSON Schema defining the structure for the JSON example
showed before:

Listing 2.2: Example of a JSON Schema

1 {"type":"object",

2 "required":false,

3 "properties":{

4 "address": {

5 "type":"object",

6 "required":true,

7 "properties":{

8 "city": {

9 "type":"string",

10 "required":true

11 },

12 "streetAddress": {

13 "type":"string",

14 "required":true

15 }

16 }

17 },

18 "phoneNumber": {

19 "type":"array",

20 "required":false,

21 "items":{

22 "type":"object",

23 "required":false,

24 "properties":{

25 "number": {

26 "type":"string",

27 "required":false

28 },

29 "type": {

30 "type":"string",

31 "required":false

32 }

33 }

34 }}}}

12

2. CONCEPTS 2.6. JavaScript and Python

2.6 JavaScript and Python

JavaScript is a prototype-based scripting language that is dynamic, weakly typed and
has first-class functions. It is a multi-paradigm language, supporting object-oriented, im-
perative, and functional programming styles. It’s most commonly used in web browsers,
and, in that context, the general-purpose core is extended with objects that allow scripts
to interact with the user, control the web browser, and alter the document content that
appears within the web browser window. It is commonly called client-side JavaScript to
emphasize that scripts are run by the client computer rather than the web server [43].

Python is an interpreted, interactive, object-oriented programming language. It pro-
vides high-level data structures such as lists and associative arrays (called dictionaries),
dynamic typing and dynamic binding, modules, classes, exceptions, automatic memory
management, etc.. It has a remarkably simple and elegant syntax and yet is a power-
ful and general purpose programming language. It was designed in 1990 by Guido van
Rossum. Python is modular by nature. The kernel is very small and can be extended
by importing extension modules. The Python distribution includes a diverse library of
standard extensions (some written in Python, others in C or C++) for operations rang-
ing from string manipulations and Perl-like regular expressions, to Graphical User In-
terfaces (GUI) generators and including web-related utilities, operating system services,
debugging and profiling tools, etc [44].

JavaScript and Python can be linked trough websockets, full-duplex communications
channels over a single TCP connection. This way, Python aids JavaScript in high-level
programming, like storing and retrieving information from servers.

2.7 Biosignals

Signal is any action (physical, economical or social) that encodes a message or some kind
of information [45]. Therefore the term biosignal encloses all kind of signals from bio-
logical beings that can be monitored and measured for extracting and understanding the
underlying physiological mechanisms of a specific biological event or system [46, 47].
Biosignals can be classified based on their physiological origins, when there is an interest
in distinguish the fundamental physical characteristics of a process that originated a spe-
cific signal, in order to model and analyse it correspondingly [48, 49]. In this thesis the
required class of biosignals is connected to bioelectricity, presented next.

2.7.1 Bioelectricity

Bioelectricity is one of the essential human sciences, depicted as changes in electrical cur-
rents generated by the sum of electrical potential differences across a specialized tissue,
organ or cell system. Since the electric field propagates through the biologic medium,
most of the times this potential may be acquired at specific anatomic regions on the sur-
face, eliminating the need to perform invasive measurements.

13

2. CONCEPTS 2.7. Biosignals

Neurons are cells specialized for the integration and propagation of electrical events.
It is through such electrical activity that neurons communicate with each other as well as
with muscles and other end organs. Therefore, an understanding of basic electrophysi-
ology is fundamental to acknowledge the function and dysfunctions of neurons, neural
systems and the brain [50]. This knowledge is wisely used to stimulate neurons and
muscles with electrical impulses, producing favourable interferences in the organism.

The following section emphasizes the birth and contributions of Electrical Stimulation
or Electrostimulation (ES).

2.7.1.1 Electrical Stimulation (ES)

And still we could never suppose that fortune were to be so friend to us, such as to allow us to be
perhaps the first in handling, as it were, the electricity concealed in nerves, in extracting it from
nerves, and, in some way, in putting it under everyone’s eyes. With these statement in 1791
Luigi Galvani, Professor of the University of Bologna and member of the Accademia
delle Scienze, divulged the importance of his scientific achievement. He was the first
to provide evidence for the electrical nature of the enigmatic fluid involved in nerve
conduction and muscle contraction [51].

With the evolving progress in the understanding of electrical phenomena in excitable
membranes, particularly after the Hodgkin-Huxley fundamental studies on squid giant
axon and, more recently, after the development of patch-clamp technology, scientists
have tried to apply this knowledge to muscles paralysed by neuromuscular disease to
create both therapeutic and functional effect.Now we have better understanding in the
difficulties that this science has to offer. One of the difficulties is that electricity is only
involved in the excitation of the membrane of muscle and nervous cells, while the energy
used by the contraction machinery is the chemical energy accumulated in molecules con-
taining high-energy phosphate bonds as final products of metabolic processes, making
harder to perform a stimulus with a precise contraction. Other difficulty is that physio-
logical effects of nerve stimulation essentially depend on the type of nerve stimulated and
not on the type of stimulus used [15]. Furthermore, the effects from electrical forces can
be beneficial, as with medical diagnostic devices or biomedical implants, or can be detri-
mental, as with chance exposures that we typically call electric shock (Tasers). Whether
a biological effect is judged beneficial or detrimental often depends on the context. In-
dependent in the interest, it is crucial to understand the range of probable biological
reactions to electrical stimulation [52].

This subdivision of bioelectromagnetism applied to medicine is known variously as
Electrical Muscle Stimulation or Electromyostimulation (EMS), Neuromuscular Electri-
cal Stimulation (NMES), Functional Electrical Stimulation (FES), Electrical Stimulation or
Electrostimulation (ES), consisting in nerve manipulation through electrical pulses aim-
ing muscular contraction or sensory response in distinct applications. Electric energy is

14

2. CONCEPTS 2.7. Biosignals

generated with an electronic device outside biological tissues, designated electrostimula-
tor. The use of electrical devices is pervasive in modern society. Nevertheless, they face
some technical problems due to the fact commercial software solutions to control devices
grow every day, but these are often limited by a variety of factors including cost, source
code inaccessibility, hardware compatibility, and more.

Electrical stimulation can be administered to the affected muscles one of two ways:
electricity can be sent across the skin via surface electrodes, or it can be applied directly
to the muscle or the "motor nerve" that services that muscle via implanted electrodes.
Surface electrodes offer the advantage of not requiring surgery to use but they are only
able to target muscles close to the surface of the skin, and the electrodes must often be
placed very precisely in order to achieve maximum effect. Implanted electrodes can be
placed directly next to the affected muscle or motor nerve, allowing for much more pre-
cise and repeatable stimulation to the muscle, although they are invasive and need to be
placed surgically. Since the electric stimulation of biological tissues requires the use of
electrodes, any practical study should include consideration of electrodes and electrode-
tissue interaction. The mechanical properties of electrodes are important, particularly
with respect to implants whose lifetime is measured in years. Additionally, since the
flow of electricity from the electrode (where electrons carry the charges) into the tissue
(where ions carry the charges) may involve an electrochemical reaction, this area must be
carefully studied as well [19].

Electric energy is applied to excitable tissue in order to activate it or even interfere
with the electrical signal, and the threshold necessary for eliciting a nerve fiber action po-
tential is 100 to 1,000 times less than the threshold for muscle fiber stimulation [53]. The
term "threshold" defines the lowest level of electrical charge that generates an action po-
tential. The nonlinear membrane properties of excitable tissue interfere with the stimulus
and it can be defined as transthreshold or subthreshold stimulus. The subthreshold stim-
ulus is insufficient to cause the transmembrane potential to reach the threshold, while the
transthreshold stimuli reaches the threshold and activate the excitable tissue. However,
subthreshold electric energy may also be applied for other therapeutic purposes [14].

If a muscle fiber is electrically stimulated it responds with a twitch (spasm, sudden
contraction of the muscle) generated by the fiber tension (twitch force), as shown in
Figure 2.1. On the other hand, if a train of stimuli is supplied whose time interval is
shorter than the twitch duration, then temporal summation will occur and a larger ten-
sile force will be developed. For a high enough stimulus frequency a smooth (rather than
bumpy) tension response is observed (this is the fusion frequency), leading to a maxi-
mum (tetanus) contraction. Thus, ideal stimulation frequencies range from 12-16 Hz for
upper-limb applications and 18-25 Hz for lower-limb applications. Greater muscle force
generation is accomplished by either increasing the pulse duration (typically 200 µs) or
stimulus amplitude to activate neurons at a greater distance from the activating electrode
[54].

The magnitude and duration of the twitch response differ depending on the muscle

15

2. CONCEPTS 2.7. Biosignals

Figure 2.1: The contraction response (tension vs. time) for a single muscle fiber. The stimulus is
described in the figure as "Action potential", generating a twitch. However, if the frequency of a
train of stimuli is higher then the twitch frequency a smooth tension will occur, and instead of a
twitch force we will have a tetanus force (maximum contraction for a longer time). [14].

fiber type. Each fiber in a bundle is innervated by a single motor neuron, but each motor
neuron activates several fibers. The group of fibers activated by a single motor neuron
is called a motor unit. All fibers in a motor unit are of a similar type and large diame-
ter muscle fibers are innervated by large diameter neurons. Consequently, motor units
producing the largest forces are those innervated by axons of large diameter. Conversely,
small forces are produced by small diameter axons. Skeletal muscle fibers can be sepa-
rated into three general groups according to their physiological and metabolic properties
[54]:

• Fast twitch, glycolytic (FG): These fibers depend mainly on glycolytic metabolism
and less in the oxidative metabolism. When stimulated, the twitch contraction is of
short duration and the response to repeated stimulation shows a rapid fatigue and
slow recovery. In a mixed muscle this fiber tends to be found near the periphery.

• Fast twitch, oxidative (FO): Distinct from the FG group are the fast twitch oxida-
tive, which utilize both oxidative as well as glycolytic metabolism. The response
to repeated stimulation is slower to fatigue and quicker to recover than for the FG
fiber type.

• Slow twitch, oxidative (SO): These fibers have the smallest cross-sectional area of
the three groups. They have a low capacity for glycolytic metabolism. Their twitch
response is longest in duration and lowest in magnitude (the fusion frequency is the
lowest) of the three groups. Repeated stimulation causes less fatigue, and recovery
is rapid. These fibers tend to lie in the central region of a muscle bundle.

16

2. CONCEPTS 2.7. Biosignals

The natural order of recruitment is the development of small forces from SO fibers
followed, ultimately, by the largest forces due to recruitment of the FG motor units. The
FO fibers contribute in the midrange. Thus the forces needed to maintain posture for a
long period are derived from the SO type fiber. In other hand, nerve fiber recruitment
properties elicited by ES differ from those elicited by normal physiologic means, it fol-
lows the principle of "reverse recruitment order" wherein the nerve stimulus threshold is
inversely proportional to the diameter of the neuron. Thus, large-diameter nerve fibers,
which innervate larger motor units, are recruited preferentially [55].

The output surface of ES devices can be constant-voltage, constant-current or a hy-
brid form of output. The advantage of the constant-voltage setup is that current density
determines the potential for tissue damage. As the impedance of the skin increases, cur-
rent decreases. However, constant-voltage stimulators have a variable motor response.
Constant-current stimulators have better contraction consistency and repeatability with
less variability in resistance [56]. The strength of the resultant muscular contraction, as
said before, can be determined by varying the stimulus amplitude, pulse width or pulse
frequency. In most applications a fused muscle contraction is desirable. To achieve this,
stimulation frequencies of up to 50 Hz are recommended [57].

Several models of nerve stimulation based on principles of electrophysiology have
been developed, like the model for excitation of myelinated nerve studied by McNeal
(1976) [58] or simulations for a unmyelinated axon studied by Rattay (1987) [59], pro-
viding a starting point toward the elucidation of more realistic models, and some of the
insights gained have wider applicability. Presently, the applications can be subdivided
in:

• Electrotherapy: Rehabilitation; Spinal cord injury, stroke, sensory deficits, and neu-
rological disorders(with Neural prostheses) [19]; Urinary incontinence [20]; Tran-
scranial electrostimulation (TES) as a method to elicit electronarcosis, electrosleep
and electroanalgesia or pain relief [21, 22]; Treatment of lower limbs venous insuf-
ficiency in pregnant women [23]; By means of electrostimulation of the acoustic
nerve profoundly deaf patients can, in the best cases, reach almost complete speech
understanding without lip reading [24].

• Physical conditioning: fitness; active recovery; optimizing physical performance
by improvement of maximum strength of a muscle (muscular tonus) in less time
[25, 17, 26].

In conclusion, despite ES may hold much promise supporting several medical fields,
there are many scientific and technical challenges that need to be surpassed. Validation
section presents tests of an electrostimulator being controlled by our software, and in the
future stimuli protocols should be designed to perform tests in real applications.

17

2. CONCEPTS 2.7. Biosignals

2.7.2 Biosignals Acquisition

Biosignals acquired through specific sensors placed on the body, which convert a phys-
ical measurement into an electrical output, need to be: processed, passed from analog
to digital data (through the sampling process), so then, they can be manipulated in a
computer. This conversion process is called analogue-to-digital conversion (ADC). ADC
comprises sampling and the quantization of continuous value at fixed intervals, round-
ing the continuous value to the nearest discrete unit [60]:

• Sampling: is the conversion of a continuous signal into a discrete time series. This
process raises problems like aliasing (data distortion), and to secure a accurate dis-
crete reconstruction the sampling must be applied (theorem mathematically ex-
pressed by Nyquist). This theorem affirm that a continuous time signal can be
entirely reverted from its samples if, and only if, the sample rate is greater than
twice its highest frequency component, F (the original signal bandwidth) [46, 45],
i.e. f s > 2F .

• Quantization: is the assignment for each discrete value with a discrete amplitude.
The number of bits available for data storage are connected with different ADC
resolutions. A quantizer with n bits is capable of representing a total of possible 2n

amplitude values. Normally the ADC converters use 8, 12 or 16 bits [47].

Biomedical devices to acquire biosignals have exclusive safety requirements, results
from the interaction with the human body [61]. These devices are usually connected to
data storage devices, using one of the several available data transmission protocols [61].

2.7.3 Biosignals Processing

After acquisition, in order to extract meaningful information and understand a particular
physiologic system or event the raw, discrete biosignals should pass through four steps
to produce classifier-ready data, as shown in Figure 2.2.

Raw, discrete Biosignals

1
Pre-processing

2
Feature

3
Feature

4
Feature space

Classifier-ready data

extraction selection reduction

Figure 2.2: Biosignal process engine.

The pre-processing is a hand-selection of the signals that should be analysed. Then,
extract the common statistical features from each type of the noise-filtered biosignals.

18

2. CONCEPTS 2.7. Biosignals

Followed by automatic feature selection using classification algorithms. Finally, feature
space reduction for maximizing between-class scatter and minimize within-class scatter,
resulting in a low-dimension representation of optimally clustered class features [62].

In short, the evolving technology provide tools for digital signal processing of mass
data, making it human readable and easier to extract relevant information, with the goal
of improving the discernment of physiological meaning from the original parameters
[63, 47].

19

2. CONCEPTS 2.7. Biosignals

20

3
Human Computer Interaction

This HCI provides the liberty to create and sequentially compile electrical impulses in a
temporal session, and with this information control via WEB the actuation of electrical
devices, like Biomedical devices, Biosignals Acquisition Systems, LEDs, electrical mo-
tors, between others. To demonstrate the potential of the tool, in the validation area
(Section 5.1) the software was tested with an electrostimulator showing its capabilities in
controlling it and the contribution for ES.

In Biomedicine, the configuration of a device should only be performed by clinical
experts, where they can adapt sessions to each patient. Overly complicated user inter-
faces and large, bulky designs can deter users from operate the device on a day to day
basis. For example, home health care devices should have sessions programmed and,
ultimately, the patient will only start or stop a session prepared for him. Thus, to econ-
omize time, simplify interfaces and separate this tool for experts and non-experts the
software was divided in Configuration and Control. Configuration, where clinical ex-
perts can configure a Device with sessions for each channel. Control, where the user just
need to choose the device and session previously configured, then start the session. If for
some reason the session should not stop automatically (before the stop time is reached),
the user can stop the session manually.

Commercial software are often limited by a variety of factors including cost, source
code inaccessibility, hardware compatibility, and more. Consequently, researchers write
custom software routines that are specific and most of the times can’t be transferable
across platforms. Also, these software usually have complicated, confuse and large inter-
faces that deter usability and acceptability [27, 28, 29]. The problems in question are also
verified in ES. To surpass them, a dynamic, flexible way was idealized to automate the
actuation of stimuli. A tool emerged from this idea, providing a user-friendly software

21

3. HUMAN COMPUTER INTERACTION 3.1. Configuration

solution with a multi-purpose platform - different devices can be controlled automati-
cally within a period of time, and, for example, allows the user to employ the software in
different types of ES applications (sport, therapy and research).

Manufacture such tool lead to the development of a novel and innovative Knowledge
Acquisition System (KAS) for the configuration part. This KAS by itself is a powerful
mechanism (the most important part of the HCI) for creating ways to store information
semantically structured. With the data semantically structured and with a human read-
able programming language, JSON (see Section 2.5), problems like data weakly struc-
tured making information disperse, uncorrelated, non-transparent, and difficult to access
or share, are easily solved.

The HCI is integrated in a software for biosignals acquisition and processing from
PLUX - Wireless Biosignals, S.A., enabling the control of a generic device. In this way,
actuation, acquisition and processing is possible in a closed-loop cycle [64].

In this chapter all HCI pieces are described in detail and how they fit together. The
next sections are divided in configuration and control.

3.1 Configuration

Configuration, the division where experts on different areas are able to design and store
sessions needed for the devices they use. These sessions are sequences of electrical im-
pulses. The fact that professionals can configure the actuation of a device, then in a dif-
ferent part of the software apply that configuration, establishes a frontier between con-
figuration and control. It allows a separation between expert and non-expert, important
in health care devices (home care devices, for example). Additionally, Configuration ex-
pands software usability because different devices can be configured. Its structure was
designed to be simple, intuitive and user-friendly, in this manner users easily learn how
to manipulate it and wont spend a lot of time configuring, enlarging the probability of
software acceptance.

This division will be explained from a high-level of abstraction (interface with the
user - how to configure a device) to a low-level (the Knowledge Acquisition System) in
the next sections. Note that, the KAS further rises the usability because it can be used
to easily construct any knowledge configuration, and by consequence, design new HCI,
different from the one described in this project. This notion will be explained in more
detail in Chapter 4.

In addition, to aid on the understanding of the interface within Appendix B a figure
presents the configuration environment.

3.1.1 How to Configure

As shown in Figure 3.1, to control we first need to configure the device and create tempo-
ral sessions, i.e. sequences of electrical impulses (modes), for each channel of the device.

22

3. HUMAN COMPUTER INTERACTION 3.1. Configuration

Device

Device

Mode

Control

Session

Configuration

(Device requisites)

(Impulse generator)

(Mode compiler)

Experts

Non-experts

Figure 3.1: Configuration Diagram.

Thus, the configuration is hierarchically structured in Device, Mode and Session. This
structure was strategically designed to meet the next requirements:

• Generic configuration, allowing the configuration of different devices;

• Configuration in sequence guiding the user;

• Simple, intuitive and user-friendly;

• Allow the user to generate any kind of impulse dependent on the device require-
ments and compile the impulses in a temporal session.

The user has the possibility to store information through three different editors: Basic,
a simple and user-friendly interface with the minimum required fields to fill, intended for
the basic and fast users; Source, an editor to upload or create JSONs, intended for users
with more knowledge of the data structure, or for the ones that just want to copy and
paste information; Advanced, a form generated automatically from Schema specifica-
tions (more information about JSON Schema in Section 2.5), which shows directly how
the information will be saved in the JSON. These editors are explained in more detail in
Section 4.3.

The following subsections describe each part of the configuration and how they are
connected.

23

3. HUMAN COMPUTER INTERACTION 3.1. Configuration

3.1.1.1 Device

The user can compose a new device by first setting some fundamental requisites for the
impulses in the Device Configuration (limiting some properties in the impulse generator
in the Mode Configuration).

The information required by the user is specified in Table 3.1. Through these specifica-
tions a Schema, named "Device.json", was implemented, and the three editors in Device
Configuration are based on it (this mechanism is discussed in more detail in Chapter 4).
The properties "Device Name" and "MAC Address" are required, the others become de-
fault, so in the Basic Editor the only fields are "Device Name" and "MAC Address". If the
user wants to fill the other properties he needs to use the Source or Advanced editor.

Figure 3.2: Device Configuration of an electrostimulator in Advanced Editor. The italic grey
letters are the description of each property.

To illustrate the result of a Device Configuration an electrostimulator was configured.
In the case of an electrostimulator specific options need to be satisfied. The specifications
for the potentials and limits of ES are dependent of the application and the electrostimu-
lator. The requirements of the electrostimulator we used for this project are:

• Pulse amplitude:
0-100 mA (1 mA step). So the y axis data limits are: max = 100 mA; min = -100 mA

24

3. HUMAN COMPUTER INTERACTION 3.1. Configuration

Table 3.1: Information required in Device Configuration.

Property Definition Default Restrictions

Device Name The name of the device. This property is

required, so it has

no default value.

The name should be a

string without spaces.

Instead of spaces use

"_".

MAC Address Short for Media Access Control Address, a

hardware address that uniquely identifies

each device.

This property is

required, so it has

no default value.

The MAC Ad-

dress should have

this structure:

"xx:xx:xx:xx:xx:xx".

Type Options Property that specifies the impulse generator

types active in the Mode Configuration. The

types are square, sin, triangle and draw (de-

fined in Section 3.1.1.2).

square, sine, tri-

angle and draw

are active.

Axis Units They are the units for the impulse data, in the

x axis and the y axis. This property is im-

portant, because by defining the units, when

parsing the information to the hardware, it

permits to convert the numbers with the right

units. Also, it enables a tool in the graph

from Mode Configuration to show that units

(see Figure 3.4). The format has to be "value-

unit", examples: "time-s" specifies time in sec-

onds; "time-us" specifies time in microsec-

onds; "current-mA" specifies current in mil-

iamperes; "potential-KV" specifies potential

in kilovolts

"x-" specifies

x axis without

units, and "y-"

specifies the y

axis without

units.

The format is restricted

to "value-unit", value

can be anything

but the unit needs

to be in the correct

format, for example

volts: GV(GigaVolts);

MV(MegaVolts);

KV(KiloVolts); V(Volts);

mV(miliVolts);

uV(microVolts);

nV(nanoVolts).

Data Limits Limits for the impulse in Mode Configuration

(see Figure 3.4). It’s important for the graph

axis size and for the user to insert some re-

strictions in the data.

x axis: max limit

= 10000; min limit

= 0. y axis: max

limit = 1000; min

limit = -1000

It should be a integer

number.

Offset It’s an option to activate or disable the off-

set in the graph. If the offset is disabled the

user can’t change it in the Mode Configura-

tion, thus it stays at zero.

False

• Pulse Width:
0-500 µs (5 µs step). So the x axis data limits are: max = 500 µs; min = 0 µs

• Pulse frequency:
1-200 Hz (1 Hz step)

• Number of channels:
2

25

3. HUMAN COMPUTER INTERACTION 3.1. Configuration

• Number of modes:
4

• Waveform type:
Rectangular, triangular, sinusoidal, customized waveform (constant potential with
no offset). So the four types of impulse generation need to be active and the offset
should be disable.

Considering the requirements, Figure 3.2 presents the configuration of an electrostimu-
lator. After this information is saved the user can project modes and sessions for this
device.

3.1.1.2 Mode

In the Mode Configuration, after defining the device requirements, the user may project
new impulses. Attention, Mode and Session Configuration are only enabled if Device
Configurations were saved previously.

Table 3.2: Information required in Mode Configuration.

Property Definition Restrictions

Parent Name The name of the parent configuration. In this case the

name of the Device. The name is inserted automatically.

The name should be a string without

spaces. Instead of spaces use "_".

Mode Name The name of the mode. The name should be a string without

spaces. Instead of spaces use "_".

Offset The data offset. The default value is zero. Offset value has to be within data

limits.

Graph Points The array with the necessary points. These correspond

to the interactive points from the graph in Basic Editor.

The points can’t surpass the data

limits defined in the Device Config-

uration.

Draw It belongs to the information retrieved from draw

method. Divided in an array with 100 points, and a

string with an equation. These two fields are only re-

quired when the user projects the impulse in Basic Editor

with the Draw type.

Frequency Frequency representing impulse per second. The default

value is zero, meaning that the next impulse begins right

after the first, like a periodic wave.

Ranges from 0 to 200 Hz.

The information required by the user is specified in Table 3.2. Through this specifi-
cations a Schema, named "Mode.json", was implemented, and the three editors in Mode
Configuration are based on it (this mechanism is discussed in more detail in Chapter 4).

In this case all fields are required, thus the simple, intuitive and fastest way to fill them
is the Basic Editor. In it, Mode provides four types of impulse configuration: square,
rectangular pulse that can be changed within the data limits; sine, sinusoidal pulse that

26

3. HUMAN COMPUTER INTERACTION 3.1. Configuration

a)

b)

c)

Figure 3.3: Example of the default impulses with the restrictions specified in the Device Config-
uration for the Electrostimulator: a)square with offset active, b)sine and c)triangle. The arrows
mark the direction in which the interactive points can be moved. In each row are presented ex-
amples of the respective impulse after moving the interactive points.

can be changed within the data limits; triangle, triangular pulse that can be changed
within the data limits; draw, a novel and innovative impulse generator. The user is also
able to choose the offset (if active in Device Configuration) in the graph and the frequency
(impulse per second) by moving a slider.

In the three default types square, sine and triangle, the end user just has to click and
pull the interactive points (as you can see in each row of Figure 3.3): square has two
interactive points that can be moved along x an y axis within the data limits, if offset is
active a third interactive point materialize to move the data along y axis; sine also has
two, one for the amplitude and other for the period, if offset is active a third interactive
point materialize to move the data along y axis; triangle has four with two points that
just move along the x axis, if offset is active a fifth interactive point materialize to move
the data along y axis. Additionally, to help the user the value of a interactive point is pre-
sented when the mouse hovers that point(with the information defined in the property
"axisunit" in Device Configuration), see Figure 3.4. The types described allow the end
user to conceive a lot of different impulses, but to be able to design any type we had to
devise a new form of impulse generation, the draw method.

The draw method enables the user to draw an impulse within the data limits. From

27

3. HUMAN COMPUTER INTERACTION 3.1. Configuration

the draw 100 points are retrieved and will be processed by an algorithm. The idea behind
this algorithm it’s to search the points that seem connected to each other, then propose a
series of simple equations to describe the links. The best are selected, tweaked, and again
tested against the data. Next, the algorithm repeats the cycle over and over, until it finds
equations that have a good probability of modulating the data. Then, by choosing one
of the equations, the user is presented with a 100 points graph based in the equation and
can compare it to the 100 points from the drawing. If it fits the user objectives he can
save the equation, if not, the user can tweak the equation manually and see the effects,
or just save the 100 points from the draw. This algorithm will have large benefits when
finished, because it provides a mechanism of storing the draw data mathematically struc-
tured. In this way, the user will have the possibility of re-editing the data by changing
some parameters in the stored equations. So, instead of just providing a draw method to
construct impulses, an equation method is also available to the user for creating impulses
(important to simplify the generation of impulses when the impulse can be described by
an equation and only few parameters need to be changed).

This algorithm is still in development stage, it’s based in the work of Schmidt and
Lipson, the Eureqa, a highly praised symbolic regression program (see Section 2.3 for
information regarding symbolic regression) [38].

Figure 3.4: Mode Configuration for an electrostimulator in Basic Editor. In one of the interactive
points a tool to show the value of the point is presented ("Time-us" and "Current-mA" was the
information defined in Device Configuration). Data limits are: for x axis, max = 500 µs and min
= 0 µs; for y axis, max = 100 mA and min = -100 mA. The mode configured is "On": rectangular
pulse with 500 µs, amplitude 100 mA, and 20 Hz of pulse frequency (i.e. 20 pulses per second).

28

3. HUMAN COMPUTER INTERACTION 3.1. Configuration

Figure 3.4 shows an example of how a mode can be configured in Basic Editor for
the electrostimulator defined previously at Device section. Therefore, the impulse can be
manipulated within the data limits for x axis, 0 - 500 µs, and for y axis, -100 - 100 mA. The
mode configured is "On", a rectangular pulse with 500 µs, amplitude 100 mA, and 20 Hz
of pulse frequency, i.e. 20 pulses per second.

Advanced and Source editor can also be used. The user can interchange between the
three editors and manipulate the information in each one of them. Nevertheless, using
Advanced and Source in Mode Configuration is not the fastest option.

With modes stored, the user can define temporal sessions by compiling the modes. In
the next section this process is explained in more detail.

3.1.1.3 Session

The user can create a new session for a specific device if modes were previously saved for
that device. A session is a sequence of modes, and each channel of a device can have one
session programmed. A device has a maximum number of programmable modes, but
they can be repeated infinitely. This mechanism is very important to program stimulation
protocols, automating the control.

Table 3.3: Information required in Session Configuration.

Property Definition Restrictions

Parent Name The name of the parent configuration. In this case

the Device. The name is inserted automatically.

The name should be a string without

spaces. Instead of spaces use "_".

Session Name The name of the session. The name should be a string without

spaces. Instead of spaces use "_".

Modes to Use This property is an array where the user has the pos-

sibility to add the modes that will be programmed in

the hardware and will be used to compose a session.

The user can only define modes

saved previously. The number of

modes added can’t be superior to

the maximum capacity of the hard-

ware.

Channel Session Array where an item is a session for one channel. To

create the session, the user needs to define "Loop Ses-

sion" and the "Temporal Lines" for the session. "Loop

Session", enables the user to choose if a session will

be repeated until the stop defined by the user. "Tem-

poral Lines", is an array where one item represents

one temporal line, here the user compiles the modes:

first by choosing a mode from "Modes to Use", then

specify the duration for that mode.

The stop in "Loop Session" is in

hours. The duration of the mode in

"Temporal lines" is in seconds.

The information required by the user is specified in Table 3.3. Through this specifi-
cations a Schema, named "Session.json", was implemented, and Source and Advanced

29

3. HUMAN COMPUTER INTERACTION 3.1. Configuration

Figure 3.5: Session Configuration for an electrostimulator in Advanced Editor. One channel is
programmed with two modes designed previously in Mode Configuration (they are selected
through a special GUI, a pull down menu with the modes from Mode Configuration): "On",
300 seconds activated and, "Off", during 100 seconds. This sequence is repeated during half an
hour by activating the loop for that specific session. The grey letters are the description of each
property.

editor in Session Configuration are based on it (this mechanism is discussed in more de-
tail in Chapter 4). The Basic editor has no interface defined because the Advanced editor
can’t be simplified.

To illustrate the configuration a session will be programmed for the electrostimulator
defined in the Device section. The electrostimulator used in this project has two channels
that can be programmed with four modes: first we define the modes that will be used,
then we add channel sessions. In each channel session we have to define if the session has
a loop, then we need to sequentially compile the modes. Figure 3.5 shows an example of
a Session Configuration. Primarily, the modes that will be used need to be defined, four
is the maximum that the hardware can memorize. After that, creation of a session for the
channels required, in this case, only one channel is programmed with two modes (de-
signed in Mode Configuration): "On.json", 300 seconds activated and, "Off.json", during
100 seconds (Off is a pulse with 500 µs and amplitude 0 mA). This sequence is repeated
during half an hour by activating the loop for that specific session.

As a resume example in how to configure, Figure 3.6 shows a configuration sequence

30

3. HUMAN COMPUTER INTERACTION 3.1. Configuration

example. First configure a Device, if Device Configurations are stored upload by click-
ing in symbol "+", now Mode Configuration and Session configuration are enabled for
the Device chosen, in this case an "Electrostimulator". Next, the user clicks in button
"conf_Mode" to configure Modes for the "Electrostimulator", after that the user config-
ures sessions with the modes programmed. Finally, after the user store sessions for the
device he can go to the control area by clicking in the "Actuation" button.

Figure 3.6: Hierarchy and configuration sequence from HCI.

31

3. HUMAN COMPUTER INTERACTION 3.2. Control

3.1.2 Knowledge Acquisition System

The KAS developed in this project is the mechanism behind the configuration in the HCI.
It provide methods to acquire knowledge from the end user and save this knowledge se-
mantically structured. Despite the fact this tool aids in the architecture of the HCI, it still
is independent of the later and is the fundamental tool devised for this work. Therefore,
to highlight the KAS its description can be read in Chapter 4.

3.2 Control

Figure 3.7: Actuation of the session "protocol1" in the electrostimulator. The connection and the
set up were correctly performed. The green start button means the session is running. Clicking in
CH1 button opens a division with information about the session.

The HCI provides means to control different devices. One of the ascending examples
is health care devices for monitoring and actuation, propelled by projects like Ambient
Assisted Living (AAL) [65]. These devices need to satisfy certain norms, for example,
patients could need to start and stop the device but they can’t manually alter the sessions
prepared for them, because they don’t have the necessary expertise. Other norm, clinical
professionals can actuate the devices via Internet, nevertheless, the process needs to be
precise, secure, simple and fast.

32

3. HUMAN COMPUTER INTERACTION 3.2. Control

The examples from the last paragraph served to delineate the control requirements.
Conveniently, the HCI benefits from the division in configuration and control, assisting
clinical professionals to automate different sessions of actuation for each patient. When
needed the sessions can be easily started/stoped in Control by the patient (alter the ses-
sion in Control is impossible), or by a clinical expert via net. As a result, the Control
respects the norms depicted previously.

In the next sections the control is described in more detail.

3.2.1 How to Actuate

Control, division for actuation and acquisition of biosignals. Within Control the user first
needs to choose the device, then connect to the hardware by using the MAC Address
previously configured in Device Configuration or update it, if the connection is correctly
established the user can select the session to program and finally set up the device with
the information needed. When the device is ready, start/stop of the session is feasible.
The user can also select channel information by clicking in the appropriate buttons, as it
can be seen in Figure 3.7.

Figure 3.7 illustrates the actuation of the session "protocol1.json" in the electrostim-
ulator: one channel is programmed with two modes, "On.json", 300 seconds active and,
"Off.json", during 100 seconds. To start the session, first the connection was establish with
the electrostimulator, second, the device was programmed with the session "protocol1".
The information provided by clicking in "CH1" refers to the temporal lines for this par-
ticular channel (we hope in the future to have a real time graphic representation of the
channel session instead).

In addition, during the session it is possible to acquire real time biosignals and syn-
chronize them with the session, due to the fact Control is incorporated in a Biosignals
Acquisition System from PLUX - Wireless Biosignals, S.A..

3.2.2 API

Different hardware have distinct commands, for each device to be controlled it’s vital
to insert specific commands into an Application Programming Interface (API), devised
to translate the information saved in the Session Configuration to hardware language.
Therefore, in the background an Application Programming Interface (API) makes the
bridge between the software and the hardware, parsing the high level programming lan-
guage to machine language enabling the control of the hardware.

Through this API the hardware sets up with the necessary requirements for the pro-
tocols of stimulation, and the start/stop of the session. It was designed with a degree of
abstraction to enable quick location and implementation of the hardware commands in
the right place.

Section 5.1 describes in more detail the API with the implementation of specific com-
mands for an electrostimulator.

33

3. HUMAN COMPUTER INTERACTION 3.2. Control

34

4
Knowledge Acquisition System

Internet is a Media type where countless data, growing every day, are shared and stored.
This exponential growing entails serious problems, since data are typically weakly struc-
tured leading to a arduous management of information. The World Wide Web Consor-
tium (W3C) devoted effort to solve this problem by promoting semantic structured data,
like ontologies (see Section 2.4), enabling machines to perform more work involved in
finding, combining, and acting upon information on the web. Pursuing the same path,
a Knowledge Acquisition System (KAS) was developed. Written in JavaScript using
JavaScript Object Notation (JSON) as the data structure and JSON Schema to define that
structure, enabling new ways of acquiring and storing knowledge semantically struc-
tured (see Section 2.5). Taking this in account, its final objectives are: to provide program-
mers an easy mechanism to define ontologies, and through them automatically generate
simple and intuitive forms with GUI to acquire knowledge from the end user, assisting
in the fast re-edition (just by tweaking with the schemas) or construction of new configu-
rations; enable the data to be stored semantically structured and human readable.

The objectives were attained, leading to the construction of a dynamic acquisition sys-
tem. The forms to acquire information are not static and are easy to re-edit manipulating
the schemas, instead of re-configure the whole software. For example, including new
fields, delete or re-edit it’s basic, the only thing that will be changed is the JSON Schema
(versatile and simple to re-define).

KAS is the mechanism behind the Configuration in the HCI. As shown in Figure 4.1
an ontology is defined with the help of JSON Schemas, then these Schemas are inter-
preted in JavaScript enabling the conception of three editors. These editors provide dif-
ferent means to acquire the information from the user. Afterwards, this information is
saved as JSONs in the server. In the Control, the JSONs are retrieved through websockets

35

4. KNOWLEDGE ACQUISITION SYSTEM 4.1. Data Structure

from the server and, finally, the necessary information is sent to the device via an API.

KAS{#}
Source Basic Advanced

User

Information

JSON

Schema

JavaScript

Ontology

Configuration Editors

Control the Actuation of a Device

(Raw Code) (Specialized
 GUI)

(Forms)

JSONs

Python

+

JavaScript

Python

+

Figure 4.1: Illustration of how the KAS fits in the HCI.

KAS structure was design as a response to the HCI Configuration requisites:

• Generic configuration;

• Configuration in sequence guiding the user;

• Simple, intuitive and user-friendly.

However, it excels the response. The data structure combined with specialized GUI equip
the fields of HCI, IR, KDD with an easy way to define data semantically structured and
self describing (human readable), the JSON Schemas. Then, from the data definitions
(JSON Schemas) automatically generate simple editors of information to acquire knowl-
edge from the end user.

In the next sections the structure presented in Figure 4.2 is thoroughly depicted.

4.1 Data Structure

The easiness of access, storage, transmission of data and the exponential proliferation
of Internet users enclose new complexities: authentication; scalable configuration man-
agement; security; huge masses of high dimensional and often weakly structured data
(the main problem addressed in this project). Structuring data pursued by Semantic Web
creates opportunities to improve and develop more adequate languages.

Methods and approaches to solve the data structure problems emerged from research
in Human-Computer Interaction (HCI), Information Retrieval (IR), Knowledge Discov-
ery in Databases and Data Mining (KDD). These methods assist end users to identify,
extract, visualize and understand useful information from data. The establishment of

36

4. KNOWLEDGE ACQUISITION SYSTEM 4.1. Data Structure

Data Structure Editors GUIs

JSON / Schema Basic GUI Repositoryº º º

Special Propreties Sourceº º
Hierarchy

Advancedº
º

KAS

Config. Sequenceº
GUI propertyº

Option Selectorº
Graphº
Sliderº

Impulse Generatorº

Figure 4.2: KAS Generic Diagram.

ontologies is one of the methods to solve the problem, possible with Semantic Web, hold-
ing much promise in manipulating information in ways that are useful and meaningful
to the human user (see Section 2.4). Mechanisms to specify ontologies have spring in the
late years, the Schema Language is one of them. Other great mechanism, developed by
Crockford, is JavaScript Object Notation (JSON): a simple, lightweight and human read-
able text-data structure for information exchange (see Section 2.5). Together with JSON
Schema, a Media Type (standard draft of options) that specifies a JSON-based format to
define the structure of JSON data, they become an excellent way to define data seman-
tically structured and human readable. But, the rewards in using this combination has
other advantages discussed in this section.

JSON Schema specifies requirements for JSON properties and other property attributes
with the following intentions:

• Validation (data integrity);

• Documentation;

• Interaction (UI generation - forms and code);

• Hyperlink Navigation.

JSON can be easily interpreted in any programming language and parsed to literal
objects, thus manipulating the data is simple. JSON Schema is also in JSON format, there-
fore the programmer can easily define new properties, and use them to create taxonomies
and inference rules.

In this project, as explained in Section 3.1.1, the Schemas "Device.json", "Mode.json"
and "Session.json" were implemented according to the HCI specifications (defined in the
respective tables in Section 3.1.1). Also, special properties were defined to meet some of

37

4. KNOWLEDGE ACQUISITION SYSTEM 4.1. Data Structure

Table 4.1: Special properties needed within the configuration Schemas

Property Values Purpose

"hierarchy_type" Three types: "Parent", "Child" and

"None". Property required in the

Schema. It only exists one "Par-

ent" per hierarchy, the others are first

Childs, second Childs, ... (like a

tree). "None" means there’s no hier-

archy.

The purpose is to create an Hierarchy: relations

of parenthood between Schemas, i.e. classes and

subclasses of configuration. The class specifies

some restrictions to the subclass. Because of this

hierarchy the subclass can only be configured if

the above class in the hierarchy is already config-

ured. This formulation automatically generates

in the HCI a Hierarchy Configuration (see Fig-

ure 3.6).

"parent_title" Two types: "name of the parent"

and "None". Property required in

the Schema. Enables the relation

between parent and child, like in

Search Query Languages (Primary

Keys and Foreign Keys). "None" is

for the "Parent" of the hierarchy, or if

there’s no hierarchy.

"config_sequence" Two types: number in the sequence -

1,2,... and "None". Property required

in the Schema. "None" means that

the Schema does not belong to the

sequence.

To guide the user through the configuration a

sequence needs to be established between the

Schemas (see Figure 3.6).

"GUI" The value is represented by "key-

GUI type", key corresponds to the

property being specified and "GUI

type" the GUI related to the prop-

erty. Property not required in the

Schema, It should only be used to

specify that a certain property is re-

lated to a specific GUI.

Specialized GUI are stored in a JavaScript file

named GUI repository. The purpose is to related

Specialized GUI to properties in the Schema.

the requisites established for the Configuration. To establish classes, subclasses of config-
uration, i.e. an hierarchy, provide a configuration sequence, and allow the application to
automatically perceive where to generate specific GUI, the properties defined in Table 4.1
were implemented in the Schemas. To demonstrate it, Figure 4.3 shows a resume of how
the hierarchy and configuration sequence was specified, and Figure 3.6 the results in the
HCI. Primarily the user configures a device, after storing the information the user can
configure the modes and sessions for the device, first the modes then the sessions, and
finally the user can actuate the sessions. Detailed information about the relation between
GUI and Schemas is described in the next section.

Recapitulating, as shown in Figure 4.1, JSON Schema allows the definition of on-
tologies and will be in the core of the KAS, enabling: interaction, Schema serves as

38

4. KNOWLEDGE ACQUISITION SYSTEM 4.2. GUIs

Device.json

Mode.json Session.json

{"hierarchy_type":"Parent",
 "parent_title":"None",
 "conf_sequence:"1",
 ...}

{"hierarchy_type":"Child",
 "parent_title":"Device",
 "conf_sequence:"2",
 ...}

{"hierarchy_type":"Child",
 "parent_title":"Device",
 "conf_sequence:"3",
 ...}

Figure 4.3: Example of the HCI Schemas concerning the special properties.

blueprint to architect the necessary forms, with or without GUIs, to define the editors
for the Knowledge Acquisition System; documentation, APIs and low-level software in-
frastructures in JavaScript enable the transformation of the information acquired from
the user in a JSON data structure defined by the Schemas (semantically structured and
human readable), then the data (JSONs and Schemas) is stored in the server (Python)
and retrieved to the client (JavaScript) through websockets (full-duplex communications
channels over a single TCP connection); validation, the data is only stored if the structure
and information agrees with the Schema and with the relations between Schemas.

With these mechanisms the software becomes a overarching system: robust; error -
free; with human readable data structures (visualization and extraction of information is
easier).

4.2 GUIs

One important part of the KAS is the automatic generation of simple forms derived from
the data types defined in the Schema (see Figure 3.2). They provide a simple way of
acquiring information. Although, sometimes, this method can be confusing and take a
large amount of time in configuring. Thus, to answer the problem, specialized Graphic
User Interfaces can be programmed and easily connected with data types, enabling: the
construction of Basic Editor interfaces; Advanced Editor to have the possibility of default
edition or in GUIs (see Figure 4.5).

For the HCI in question, special GUIs were developed to grant the user a straightfor-
ward, obvious and accessible configuration.

39

4. KNOWLEDGE ACQUISITION SYSTEM 4.2. GUIs

Impulse Generator is one of them, playing an important role by solving the problem
of generate different impulses. It’s a combination of three GUIs: Option Selector, Graph
and Slider. The options to choose between are square, sine, triangle and draw, each
one of them change the environment of the graph as described in Section 3.1.1.2. The
change occurs due to the manipulation of different parameters, like graph data and graph
structure. Default types square, sine and triangle have a special data structure generated
by distinct functions for each type. These functions receive parameters correspondent
to the interactive points, then, through its manipulation they help to construct the data
resulting in the graphs depicted in Figure 3.3. Graph data limits and units are retrieved
from the information saved in Device Configuration and they also form the parameters
to built the graphs. draw method is distinct from the three default types described, it will
change the entire canvas (place holding the graph) dividing it in a tool to draw and an
equation editor. As described before, an algorithm will retrieve 100 points from the draw,
compare them and propose a series of simple equations with more or less probability in
describing the data. After that, the user has the possibility to tweak the equation and
save the data mathematically structured in a function. The functions stored will provide
means to architect the graph data, like in the default types. The slider, also analysed in
Section 3.1.1.2, is used to simplify and restrict the frequency chose by the user.

Restrictions can be applied to Impulse Generator and its configuration state changes
when information is uploaded. To restrict and define some of the impulse generator
parameters, the next object was specified in the Schema "Device.json":

Listing 4.1: Impulse Generator Object

1 "impulse_generator": {

2 "type": "object",

3 "properties": {

4 "type_options": {

5 "type": "object",

6 "properties": {

7 "draw": {

8 "type": "boolean",

9 "default": true,

10 },

11 "sine": {

12 "type": "boolean",

13 "default": true,

14 },

15 "square": {

16 "type": "boolean",

17 "default": true,

18 },

19 "triangle": {

20 "type": "boolean",

21 "default": true,

22 }}},

23 "graph_features": {

40

4. KNOWLEDGE ACQUISITION SYSTEM 4.2. GUIs

24 "type": "object",

25 "properties": {

26 "options": {

27 "type": "object",

28 "properties": {

29 "xaxis": {

30 "type": "object",

31 "properties": {

32 "axisunit": {

33 "type": "string",

34 },

35 "max": {

36 "type": "number",

37 }}},

38 "yaxis": {

39 "type": "object",

40 "properties": {

41 "offset": {

42 "type": "boolean",

43 },

44 "axisunit": {

45 "type": "string",

46 },

47 "min": {

48 "type": "number",

49 },

50 "max": {

51 "type": "number",

52 }}}}}}}}}

This object is specific and can’t be altered, because all pieces play its part as discussed
in Table 3.1.

Activation of GUIs is another relevant mechanism, concerning the relation between
the GUIs and the Schemas. To activate GUIs the "GUI" property, described in Table 4.1,
needs to be specified. "GUI" property format is "key-GUI type". When specified, this
properties are interpreted and the various combinations "key" - GUI are displayed se-
quentially in Basic Editor. In Advanced Editor the GUIs are connected with the spe-
cific "key" in the form (to open the GUIs the user has to click in the appropriate but-
ton). The "GUI types" available are: "string" and "number", related to a simple text GUI;
"impulse_generator", related to the Impulse Generator GUI; "options", related to the Op-
tions Selector GUI; "Offset-graph" and "Graph_points-graph" are specific properties of
the graph, they can’t be altered; "mode_selection", is a specific pull down list of the modes
configured used with the property(key) "modes_to_use" in Session Configuration on the
Advanced Editor (see Chapter 3, Figure 3.5).

The next code resumes the Schema "Mode.json", demonstrating how to use "GUI"
property:

41

4. KNOWLEDGE ACQUISITION SYSTEM 4.2. GUIs

Listing 4.2: Resume of "Mode.json" Schema with emphasis on "GUI" property

1 "Mode": {

2 "type": "object",

3 "properties": {

4 "Parent_name": {

5 "type": "string",

6 },

7 "Mode_name": {

8 "type": "string",

9 "GUI": "Mode_name-string",

10 },

11 "Impulse": {

12 "type": "object",

13 "GUI": "Impulse-impulse_generator",

14 "properties": {

15 "Type": {

16 "type": "string",

17 "GUI": "Type-options",

18 },

19 "Offset": {

20 "type": "number",

21 "GUI": "Offset-graph",

22 },

23 "Graph_points": {

24 "type": "array",

25 "GUI": "Graph_points-graph",

26 "items": {

27 "type": "object",

28 "properties": {

29 "x": {

30 "type": "number",

31 },

32 "y": {

33 "type": "number",

34 }}}},

35 "frequency": {

36 "type": "number",

37 "GUI": "frequency-slider",

38 }}}}}

The result of these specifications can be seen in Figure 4.4 and Figure 4.5. Figure 4.4
illustrates a Mode Configuration, "Bifasic", in Basic Editor. In Advanced editor, by click-
ing in the respective button the Impulse Generator interface aids the user in inserting the
information in the "Impulse", increasing the speed of the configuration as it can be seen
in Figure 4.5.

Resuming, the relation between the Schemas and the GUIs, allowed by the infras-
tructures developed amid KAS and GUI repository, supply the HCI with a mechanism to
automatically spawn forms with GUIs out of Schemas.

42

4. KNOWLEDGE ACQUISITION SYSTEM 4.3. Editors

Figure 4.4: Example of a Mode Configuration in Basic Editor. The figure presents the options to
choose, the tool for the interactive point, and after click in the validate button the appearance of
the save an delete button if the information is valid.

4.3 Editors

The core for each configuration is a Schema, it assists not only in the specification of data
semantically structured, but also in the fabric of three editors. Within the KAS, this three
editors correspond to three functions receiving a Schema as parameter, then according
to the requirements of each editor the function manipulates the Schema information to
architect the forms and necessary interfaces. These three editors are entitled:

• Basic Editor (Specialized GUI): simple and user-friendly interface with the mini-
mum required fields to fill. The information is saved in a JSON format defined
by the Schema. An editor intended for basic users. It was already presented in
Figure 4.4.

• Advanced Editor: a form generated automatically from the Schema specifications,
with the possibility of edition in GUI. Information is also saved in JSON format
defined by the Schema. The most profitable editor because it shows directly how
the information will be saved in the JSON. This way, users understand the architec-
ture of the data. Figure 4.5 presents the configuration of the mode "Bifasic", with

43

4. KNOWLEDGE ACQUISITION SYSTEM 4.3. Editors

a)

b)

Figure 4.5: Example of a Mode Configuration in Advanced Editor. a)Presents a default configura-
tion. b)By clicking in the button the user can configure the information in the Impulse Generator
interface, then when the information is validated the "Impulse" fields are filled with the informa-
tion from the Impulse Generator interface.

or without special GUI. Clicking on the specific button opens a graphic tool (can-
vas) for edition of points by moving them with the mouse, identical to the canvas
from Basic Editor, as depicted before. Other example is Figure 3.5, illustrated in

44

4. KNOWLEDGE ACQUISITION SYSTEM 4.3. Editors

Chapter 3, remarking the configuration of a session in Advanced editor.

• Source Editor: an editor to upload or create JSONs, where the user writes the JSON
or copy and paste the JSON in the editor. Due to the fact JSON is compactly stored
in a string, a format tool named "Pretty Print" is available. This Editor is intended
for users with more knowledge of the data structure, or for the ones that just want
to copy and paste information or upload. Figure 4.6 shows the Source Editor and
the differences among JSON compacted and pretty JSON.

Figure 4.6: Example of Source editor and Pretty Print tool using the file "Electrostimulator.json"
design in Device Configuration.

In the end, when all the information is set, in each editor is implemented a validation
method. If the info agrees with the specifications from the Schemas save and delete is
enabled, like in Figure 4.4, if not, reports with errors are generated. Note that it’s possible
to switch between the three editors (see Figure B.1 within Appendix B).

Three different editors aid the user to store knowledge semantically structured. This
division was idealized to improve the acceptance and usability of the software, in the
interest of supporting the different user necessities and to improve the software dynamic,
design and performance.

45

4. KNOWLEDGE ACQUISITION SYSTEM 4.3. Editors

46

5
Performance Evaluation

Several tests were conduced according to the requirements to evaluate the performance
of the software and validate it. In the Table 5.1 the tests and results are discriminated
elucidating the potential of the software and the necessity to optimize some parts.

The next section resumes an application of the HCI, used to test the configuration and
control of an electrostimulator.

definition

5.1 Application

Electrostimulation is used in many areas (clinical, sports and research) to improve health
lifestyle. Hardware and software solutions need to be orchestrated for administering
electrical stimulus. Most of these solutions have specific purposes, only allowing limited
stimuli protocols to be actuated. The tool manufactured in this project permits the con-
figuration of electrical devices by sequentially compile electrical impulses in a temporal
session. Applying this tool to control an electrostimulator concedes a solution to architect
different stimuli protocols and actuate them.

An API makes the bridge between the software and the hardware, as referred before.
The structure of this API, programmed in Python, was architect taking into account the
session data structure and the easiness to locate and implement the hardware commands
for each device in the right place. Primarily, the connection between the software and
hardware is established using a function that receives the MAC address of a specific de-
vice as a parameter. Information regarding the connection is sent back to the software,
if the connection was successfully completed, the user has the possibility to program

47

5. PERFORMANCE EVALUATION 5.1. Application

Table 5.1: Tests and results.

Requirements Test Results

Data semantically struc-

tured and human readable.

Evaluation of the data

stored.

JSON data proved to be semantically structured and hu-

man readable.

Validation and documenta-

tion of the data acquired

from the end user.

Verification of the pro-

cess of validation.

The validation method provides a robust process to ver-

ify if the info acquired agrees with the schema specifica-

tions, if it does not, reports with errors appear. Never-

theless, the validation needs an upgraded to eval limits

that subclasses inherited from classes.

Verify if the information

is documented properly.

Due to the fact the systems to acquire information are

built directly from JSON Schemas, the information were

always correctly documented.

Hierarchy and Configura-

tion in sequence guiding the

user.

Ask several users what

they felt using the KAS.

All users documented the easiness in configuring, and

because it is in sequence, they intuitively understand the

structure of the configuration.

Generic configuration,

allowing the configuration

and control of different

devices.

Test the control of differ-

ent devices.

An electrostimulator and a LED were successfully con-

trolled with distinct sessions. Although, to prove this re-

quirement many more devices need to be tested.

Allow the user to generate

any kind of impulse depen-

dent on the device require-

ments and compile the im-

pulses in a temporal session.

Test the generation of

different types of im-

pulse.

The three default types of impulse generator "square",

"sine", and "triangle" were tested enabling the design

of different types of rectangular, sin and triangular im-

pulses, respectively. Regardless, without the "draw"

method implemented, combining a draw and an equa-

tion editor, the user is not able to produce any kind of

impulse.

Simple, intuitive and user-

friendly software.

Ask different users to

test the Configuration

division .

They all documented how easy was to perform the

configuration of a device without any external help.

Nonetheless, they also referred the design need to be im-

proved to make some parts more clear.

Ask different users to

test the Control divi-

sion.

To control, the user just needs to set up a device by choos-

ing one device and session to actuate, then start/stop the

session is feasible. Due to this simple tasks the users

remarked how fast and simple was to control a device

when sessions are previously prepared.

sessions for this particular device. Thus, the second stage of the API is to use the infor-
mation stored in a file session.json to program modes and sessions for each channel. In
this stage, specific low-level commands to set the required information in the hardware
for each device should be compiled, in this case the commands of the electrostimulator.
Again, information is sent back to the software contemplating the set up, if the set up
was successfully achieved, the user can start and stop the session and access to certain
information concerning each channel session. This is the third stage where specific com-
mands to start and stop the hardware are implemented. Finally, the last stage is to close

48

5. PERFORMANCE EVALUATION 5.1. Application

the connection between the software and the hardware each time a new device is selected
to control, or when we terminate the Control application.

Resuming, the API constructed for the Control area is constituted by four sections: es-
tablish the connection, set up, start and stop the session and close the connection. These
divisions can be visualized in Figure 5.1, in each sections specific commands need to be
programmed to control the hardware. In regard of the electostimulator actuation, hard-
ware commands were implemented and the tests results were positive: the user is, at
the moment, able to design three distinct types of impulses (rectangular, sin and trian-
gular) compile them in temporal sessions, and actuate them in the control. Nevertheless,
improvements need to be made and they are discussed on Future Work within the next
chapter.

1
Establish

2
Set up

3
Start

4
Close

Stop

connection

Sofware API

connection
MAC address.

Session.

Start/Stop.

Select other
devices, or
close the
application.

Hardware

Information
regarding
each stage of
hardware
manipulation
is sent back
to the software
interface to
alert the user.

The Hardware

Figure 5.1: Diagram for the API, remarking the four sections developed, and the interchange of
information.

49

5. PERFORMANCE EVALUATION 5.1. Application

50

6
Conclusions

Within this last chapter the work performed and its contributions are summarized, ad-
ditionally future prospects are discussed. In other words, it outlines and evaluates the
accomplishments and favourable implications (on the study areas) of the results attained.
Due to the fact this is the prototype, software revisions, add ons and updates need to be
performed in the future.

6.1 Contributions

This work was inspired, first hand, by the necessity to construct a Web-based software
supporting the actuation of an electrostimulator, that would: be applied in different Elec-
trostimulation applications; profit from Internet environments concerning exchange and
store of information, for example, allow the configuration and control of a device at dis-
tance. However, its idealization surfaced from a higher level of abstraction, in behalf of
the desire to develop a overarching software (without centralize it in Electrostimulation
and be transferable across platforms). From this point of view, primarily the focus shifted
towards the conception of a Web-based data structure (JSON and JSON Schema), the core
of the software. Secondly, develop, in symbioses with the data structure, the foundations
required to assemble the HCI.

The data structure was praised throughout the dissertation showing the pivotal place
assumed in the software. It was envisioned to surpass Web-based data and biomedical
problems.

Internet users growth and Internet flow of information encloses many problems when
the data is weakly structured: entropy rises and information becomes disperse, uncorre-
lated, non-transparent and difficult to access and share. Nonetheless, research in HCI,

51

6. CONCLUSIONS 6.1. Contributions

IR, KDD revealed methods to address these problems, assisting end users to identify,
extract, visualize and understand useful information from data. For example, W3C pro-
posed Semantic Web, which promotes semantic structured data, like ontologies, assisting
machines in finding, combining, and acting upon information on the Web.

Using this knowledge, the data structure was built with a Schema language, JSON
Schema, to specify JSON data semantically structured. Because JSON is a simple, human
readable, lightweight and platform independent language key issues are elementary, like
exchange, visualization, extraction or storage of information (JSON has no relevant se-
mantic or syntax commands, it’s an object notation with the format "key":"value"). The
fact that it’s easy to understand useful information from the data and different program-
ming languages can access it, also plays an important role in solving biomedical prob-
lems. Transparent and correlated data turns its decoding and analyses manageable with
any software, thus the data can be considered universal. For this reason, hospitals, clin-
ics, and others will be able to transfer and manipulate information in a simplistic manner
and saving money in the process.

As pointed before JSON Schema is effortless to employ, results from its simple syntax
and the liberty the programmer has to produce all kinds of taxonomies and inference
rules (applications can be developed directly from the Schema).

In this project a Knowledge Acquisition System was devised applying the Schema
to: construct simple, intuitive forms and specialized GUI with configuration hierarchies
and sequences, for acquiring information and guide the user through the configuration;
validate the information acquired, and finally, if the information agrees with the Schema
specifications store it semantically structured. Taking in account these purposes, three
editors were designed to meet the expectations and necessities of different users: Basic,
a simple and user-friendly interface with the minimum required fields to fill, intended
for the basic and fast users; Source, an editor to upload or create JSONs, intended for
users with more knowledge of the data structure, or for the ones that just want to copy
and paste information; Advanced, a form with specialized GUIs generated automatically
from Schema specifications, which shows directly how the information will be saved in
the JSON. For these reasons, KAS is a multi-purpose mechanism promoting a fast, simple,
intuitive re-edition and creation of new configurations, due to the automated generation
of forms and GUIs from the Schemas(with hierarchies and sequences of configuration to
guide the user, specialized GUIs to simplify the acquisition of knowledge). Besides, KAS
is independent of the HCI constructed in this project, it can be used to create other robust
HCIs without loosing large amounts of time, since creating editors to acquire knowledge
is easy and fast.

Data structure and the KAS are the foundations of the HCI, conveying the mecha-
nisms to fulfill the requirements established for the project.

Our HCI aims to automate the control of biomedical devices (and other electrical de-
vices) by sequentially compile electrical impulses, allowing the design of actuation ses-
sions that later can be applied. In order to achieve this objective, a frontier was conceived

52

6. CONCLUSIONS 6.1. Contributions

dividing the HCI in Configuration and Control. The goal was to simplify the control of
a device by automating the actuation sessions and separate the software to experts and
non-experts, needed in some biomedical devices. Accordingly, in Configuration, experts
on different areas are able to program and store sessions needed for the devices they use,
then experts and non-experts can actuate the sessions in Control division.

Configuration was built using the KAS, for that, three Schemas were implemented
to construct the needed interfaces: "Device" - the first configuration - for acquiring the
device requisites in order to restrict the impulse generation; "Mode" - the second con-
figuration - a section to design different impulses with ease, there are three default GUI
types helping the user in the creation of rectangular, sin and triangular impulses, plus,
it will be available a draw editor combined with an equation editor; "Session", the third
configuration, where the user chooses and compiles the modes for the channels of the de-
vices. With this configuration sequence the user is able to intuitively automate sessions
for different devices, and save/delete or modify sessions previously stored. Moreover,
the three default GUI types are graphs that inherit the restrictions provided in the "De-
vice", within the user just has to move interactive points to design rectangular, sin and
triangular pulses, a feature befit to the new technologies of mobile touch screens. The
draw combined with the equation editor it’s an indispensable tool to accomplish the con-
trol of practically all electrical devices, although it’s still in development stage.

Changing division, Control allows non-experts users to actuate the sessions stored
for the different devices. Control is a simple and intuitive interface developed to set up
the device and start/stop the session. In addition, because the Control is incorporated in
a Biosignals Acquisition System from PLUX - Wireless Biosignals, S.A., real time acquisi-
tion and signal analysis is feasible and can help to devise a tool with a closed-loop cycle
(biofeedback control).

Another important feature is the Web-based platform: Configuration and Control can
be carried at distance between users of the same software; exchange and storage of infor-
mation are far more dynamic then a software built with non Web programming language;
evolution and adaptation to new technologies (wireless biosignals, mobile solutions).

Evaluation and validation were performed through several accurate and objective
tests. These tests had the intention to easily design and save different types of stimuli
protocols, and actuate them in an electrostimulator, surpassing the specific use of many
Electrostimulation software. The results obtained were able to validate this first version
of the software and confirm its potential. Nevertheless, some goals stay unfinished and
new ones arise, these are outlined in the next section.

In the context of this research work two papers were published, one regarding the
structures of the HCI, and the other the aforementioned application of the software on
Electrostimulation and it’s benefits. The first paper was accepted for oral presentation in
WINSYS 2012 conference and published in the conference proceedings. The second was
submitted to BIOSTEC 2013 conference. These publications are presented in Appendix
A.

53

6. CONCLUSIONS

In general, this project equips several areas (KAS, HCI, IR, KDD, Electrostimula-
tion, generic device control,...) with simple but powerful and robust tools for the emerg-
ing technologies linked to the Internet. KAS aids in the simple, intuitive and fast con-
struction and re-construction of forms and specialized interfaces to acquire any type of
knowledge, by specifying JSON Schemas with taxonomies and inference rules. Conse-
quently, the KAS in symbiosis with the data structure assists in the conception of new
Web-based HCIs with correlated and transparent data semantically structured. The HCI
assembled in this project aims to configure and control all electrical devices, the foun-
dations to achieve it are already set in motion, from now on further work needs to be
performed. Therefore, is important to state, this is a software to surpass boundaries, envi-
sioned for researchers, clinics, sports, and other stakeholders. Moreover, this dissertation
was compiled envision simplicity, fast understanding of the most important structures
developed and its potentials. To achieve this level a lot of work was spent in simplifying
what seemed difficult, reducing the content to the essential. That being said, although
the software looks simple, behind it a large quantity of distinct gears were assembled,
carrying innovation in different areas.

6.2 Future Work

The software presented is still in its pristine form. Therefore, in order to mature it a
plethora of tasks need to be carried out:

• Further validation: A more exhaustive performance evaluation study is still needed
with real time implementations and different case studies in Electrostimulation,
and in other areas. Thus, acquiring requisites from the end user to optimize the
HCI. Likewise, to improve the KAS more tests involving the use of different Schemas
to create new HCIs are required.

• Updates/Upgrades: Constant improvement and optimizations are essential to grow
the software. Design, code cleaning, implementation of other specialized GUI, are
some of the updates to be executed. Furthermore, the API developed for the HCI
will also need updates for the devices that need to be controlled. In the control area
for each channel show the graphic session running in real time.

• Draw editor combined with Equation editor: The development of this fundamen-
tal mechanism, to create any kind of impulse and store it mathematically struc-
tured, is crucial to complete the HCI.

• Real Time integration/ Biofeedback Control: In biosignals acquisition devices, like
an electrostimulator, the implementation of real time biofeedback control can assist
in some applications to create a closed loop cycle where the program can learn
automatically and actuate without human revision, also, it can analyse the response
signals caused by the stimuli.

54

Bibliography

[1] F. Hayes-Roth, D. Waterman, and D. Lenat. Building expert systems. 1984.

[2] M. Negnevitsky. Artificial intelligence: a guide to intelligent systems. Addison-Wesley
Longman, 2005.

[3] L. Kleinrock. On some principles of nomadic computing and multi-access commu-
nications. Communications Magazine, IEEE, 38(7):46–50, 2000.

[4] K. Lyytinen and Y. Yoo. The next wave of nomadic computing: a research agenda
for information systems research. 2001.

[5] J. Hellerstein, Y. Diao, S. Parekh, and D.M. Tilbury. Feedback control of computing
systems. Wiley Online Library, 2004.

[6] M.S. Schwartz. Biofeedback: A practitioner’s guide. The Guilford Press, 2003.

[7] H.J. Lowe, E.C. Lomax, and S.E. Polonkey. The world wide web: a review of an
emerging internet-based technology for the distribution of biomedical information.
Journal of the American Medical Informatics Association, 3(1):1–14, 1996.

[8] S. Laxminarayan and P. Yadav. Biomedical information technology: Internet and
beyond. In Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for
Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE, vol-
ume 3, pages 1242–1243. IEEE, 1996.

[9] J.F. Jekel, D.L. Katz, and J.G. Elmore. Epidemiologia, bioestatística e medicina preventiva;
Epidemiology, biostatistics and preventive medicine. Artmed, 2006.

[10] P.V. Prabhu. Handbook of human-computer interaction. North Holland, 1997.

[11] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The kdd process for extracting useful
knowledge from volumes of data. Communications of the ACM, 39(11):27–34, 1996.

[12] Hendler J. Berners-Lee, T. and O. Lassila. The semantic web. Scientific American
Magazine, 2001.

55

BIBLIOGRAPHY

[13] N.F. Noy, M. Sintek, S. Decker, M. Crubézy, R.W. Fergerson, and M.A. Musen. Creat-
ing semantic web contents with protege-2000. Intelligent Systems, IEEE, 16(2):60–71,
2001.

[14] J. Malmivuo and R. Plonsey. Bioelectromagnetism, volume 34. PETER PEREGRINUS
LTD, 1996.

[15] M. Piccolino. Animal electricity and the birth of electrophysiology: the legacy of
luigi galvani. Brain research bulletin, 46(5):381–407, 1998.

[16] T.A. Thrasher and M.R. Popovic. Functional electrical stimulation of walking: func-
tion, exercise and rehabilitation. In Annales de readaptation et de medecine physique,
volume 51, pages 452–460. Elsevier, 2008.

[17] T. Marqueste, F. Messan, F. Hug, J. Laurin, E. Dousset, L. Grelot, and P. Decher-
chi. Effect of repetitive biphasic muscle electrostimulation training on vertical jump
performances in female volleyball players. International Journal of Sport and Health
Science, (0):1003310051, 2010.

[18] F. von Lewinski, S. Hofer, J. Kaus, K.D. Merboldt, H. Rothkegel, R. Schweizer,
D. Liebetanz, J. Frahm, and W. Paulus. Efficacy of emg-triggered electrical arm stim-
ulation in chronic hemiparetic stroke patients. Restorative Neurology and Neuroscience,
27(3):189–197, 2009.

[19] S.F. Cogan. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng.,
10:275–309, 2008.

[20] M. Perrigot, B. Pichon, A. Peskine, and K. Vassilev. Électrostimulation et rééducation
périnéale de l’incontinence urinaire et des troubles mictionnels non neurologiques.
In Annales de réadaptation et de médecine physique, volume 51, pages 479–490. Elsevier,
2008.

[21] V.P. Lebedev, AV Malygin, AV Kovalevski, SV Rychkova, VN Sisoev, SP Kropotov,
EM Krupitski, LI Gerasimova, DV Glukhov, and GP Kozlowski. Devices for non-
invasive transcranial electrostimulation of the brain endorphinergic system: Ap-
plication for improvement of human psycho-physiological status. Artificial organs,
26(3):248–251, 2002.

[22] D.F. MAYOR and M.S. MICOZZI. Energy medicine east and west: a natural history
of qi (paperback). Recherche, 67:02, 2011.

[23] A. Le Tohic, H. Bastian, M. Pujo, P. Beslot, R. Mollard, and P. Madelenat. Effets
de l’électrostimulation par veinoplus R© sur les troubles circulatoires des membres
inférieurs chez la femme enceinte. étude préliminaire. Gynécologie Obstétrique & Fer-
tilité, 37(1):18–24, 2009.

56

BIBLIOGRAPHY

[24] H. Motz and F. Rattay. A study of the application of the hodgkin-huxley and the
frankenhaeuser-huxley model for electrostimulation of the acoustic nerve. Neuro-
science, 18(3):699–712, 1986.

[25] M. Siff. Applications of electrostimulation in physical conditioning: a review. The
Journal of Strength & Conditioning Research, 4(1):20, 1990.

[26] F. Brocherie, N. Babault, G. Cometti, N. Maffiuletti, and J.C. Chatard. Electrostimu-
lation training effects on the physical performance of ice hockey players. Medicine &
Science in Sports & Exercise, 37(3):455, 2005.

[27] Benjamin A. Suter, Timothy O’Connor, Vijay Iyer, Leopoldo T. Petreanu, Bryan M.
Hooks, Taro Kiritani, Karel Svoboda, and Gordon M. G. Shepherd. Ephus: multi-
purpose data acquisition software for neuroscience experiments. Frontiers in Neural
Circuits, 4:100, 2010.

[28] T. Keller, M.R. Popovic, I.P.I. Pappas, and P.Y. Müller. Transcutaneous functional
electrical stimulator “compex motion”. Artificial organs, 26(3):219–223, 2002.

[29] P.P. Breen, G.J. Corley, D.T. O’Keeffe, R. Conway, and G. ÓLaighin. A programmable
and portable nmes device for drop foot correction and blood flow assist applications.
Medical engineering & physics, 31(3):400–408, 2009.

[30] M.R. Cohen and E. Nagel. An Introduction to Logic and Scientific Methods. Routledge
and Paul, 1963.

[31] J. Conklin. Hypertext: An introduction and survey. Computer supported cooperative
work: A book of readings, pages 423–476, 1988.

[32] N. Bevan. Measuring usability as quality of use. Software Quality Journal, 4(2):115–
130, 1995.

[33] A. Holzinger. Usability engineering methods for software developers. Communica-
tions of the ACM, 48(1):71–74, 2005.

[34] E.H. Shortliffe. Health care and the next generation internet. Annals of internal
medicine, 129(2):138–140, 1998.

[35] A. Dix. Human-computer interaction. Prentice hall, 2004.

[36] P. Compton and R. Jansen. A philosophical basis for knowledge acquisition*. Knowl-
edge acquisition, 2(3):241–258, 1990.

[37] I. Zelinka, Z. Oplatkova, and L. Nolle. Analytic programming–symbolic regression
by means of arbitrary evolutionary algorithms. Int. J. of Simulation, Systems, Science
and Technology, 6(9):44–56, 2005.

57

BIBLIOGRAPHY

[38] D.R. Stoutemyer. Can the eureqa symbolic regression program, computer algebra
and numerical analysis help each other? Arxiv preprint arXiv:1203.1023, 2012.

[39] H. Thompson et al. Xml schema. w3c working draft, may 2001, 2000.

[40] N. Klarlund, A. Møller, and M.I. Schwartzbach. Dsd: A schema language for xml. In
Proceedings of the third workshop on Formal methods in software practice, pages 101–111.
ACM, 2000.

[41] D. Crockford. The application/json media type for javascript object notation (json).
2006.

[42] K. Zyp. A json media type for describing the structure and meaning of json docu-
ments. 2011.

[43] D. Flanagan. JavaScript: the definitive guide. O’Reilly Media, 2006.

[44] M.F. Sanner et al. Python: a programming language for software integration and
development. J Mol Graph Model, 17(1):57–61, 1999.

[45] F. Coito R. S. H. Ramos and M. Ortigueira. Análise de sinais em engenharia
biomédica. FCT-UNL, 2009.

[46] J.D. Bronzino. The biomedical engineering handbook, volume 2. CRC Pr I Llc, 2000.

[47] J.D. Enderle and J.D. Bronzino. Introduction to biomedical engineering. Academic Pr,
2011.

[48] EJ Ciaccio, SM Dunn, and M. Akay. Biosignal pattern recognition and interpretation
systems. Engineering in Medicine and Biology Magazine, IEEE, 12(3):89–95, 1993.

[49] F. Theis and A. Meyer-Base. Biomedical Signal Analysis: Contemporary Methods and
Applications. The MIT Press, 2010.

[50] Gary S. Aston-Jones and George R. Siggins. Electrophysiology. American College of
Neuropsychopharmacology, 2000.

[51] L. Galvani. De viribus electricitatis in motu musculari commentarius, volume 7. Ex
Typographia Instituti Scientiarum Bologna, 1791.

[52] H. Sun and J.G. Webster. Estimating neuromuscular stimulation within the human
torso with taser R© stimulus. Physics in medicine and biology, 52:6401, 2007.

[53] J.T. Mortimer. Motor prostheses. Comprehensive Physiology, 1981.

[54] J. Malmivuo and R. Plonsey. Motor prostheses. In Handbook of Physiology, Section 1:
The Nervous System. Motor Control Part I, volume 2. American Physiological Society,
Bethesda, Md., 1981.

58

BIBLIOGRAPHY

[55] E.R. Arbuthnott, IA Boyd, and KU Kalu. Ultrastructural dimensions of myelinated
peripheral nerve fibres in the cat and their relation to conduction velocity. The Journal
of physiology, 308(1):125–157, 1980.

[56] L.R. Sheffler and J. Chae. Neuromuscular electrical stimulation in neurorehabilita-
tion. Muscle & nerve, 35(5):562–590, 2007.

[57] LL Baker, DR McNeal, LA Benton, BR Bowman, and RL Waters. Neuromuscular
electrical stimulation: A practical guide. downey, ca: Los amigos research and edu-
cation institute, 1993.

[58] D.R. McNeal. Analysis of a model for excitation of myelinated nerve. Biomedical
Engineering, IEEE Transactions on, (4):329–337, 1976.

[59] F. Rattay. Ways to approximate current-distance relations for electrically stimulated
fibers. Journal of theoretical biology, 125(3):339–349, 1987.

[60] A. Sedra and K.C. Smith. Microelectronic circuits, 2004.

[61] M. Akay. Wiley encyclopedia of biomedical engineering. Wiley-Interscience, 2006.

[62] M. Benovoy, J.R. Cooperstock, and J. Deitcher. Biosignals analysis and its application
in a performance setting. In Proceedings of the International Conference on Bio-Inspired
Systems and Signal Processing, pages 253–258. Citeseer, 2008.

[63] S.M. Kuo, B.H. Lee, and W. Tian. Real-Time Digital Signal Processing. Wiley Online
Library, 2006.

[64] B.J. Broderick, P.P. Breen, and G. ÓLaighin. Electronic stimulators for surface neural
prosthesis. Journal of Automatic Control, 18(2):25–33, 2008.

[65] T. Kleinberger, M. Becker, E. Ras, A. Holzinger, and P. Müller. Ambient intelligence
in assisted living: enable elderly people to handle future interfaces. Universal Access
in Human-Computer Interaction. Ambient Interaction, pages 103–112, 2007.

59

BIBLIOGRAPHY

60

A
Publications

Over the course of this project, two articles were submitted. The first publication, entitled
’Knowledge Acquisition System Based on JSON Schema. Implementation of a HCI for Actuation
of Biosignals Acquisition Systems.’, was presented in the ’9th International Conference in Wire-
less Information Networks and Systems’(WINSYS 2012), held in Rome, July 2012. WINSYS
is part of ICETE, the ’International Joint Conference on e-Business and Telecommunications’.
This paper was also accepted as a full paper, published in the conference proceedings,
under an ISBN reference, on paper and on CD-ROM support, and will be available at
the SciTePress Digital Library. The second paper, entitled ’Multi-purpose Electrostimulator
Software’, was submitted to BIODEVICES 2013 which is a co-located conference of the ’6th

International Joint Conference on Biomedical Engineering Systems and Technologies’ (BIOSTEC
2013), that will be held in Barcelona in February 2013. This paper is not accepted yet, the
result will be known mid November 2012.

61

A. PUBLICATIONS

A.1 WINSYS 2012

Knowledge Acquisition System Based on JSON Schema. Implementation of a
HCI for Actuation of Biosignals Acquisition Systems.

62

Knowledge Acquisition System Based on JSON Schema
Implementation of a HCI for Actuation of Biosignals Acquisition Systems

Nuno Costa1, Tiago Araujo1,2, Neuza Nunes2, Hugo Gamboa1,2

1 CEFITEC, Departamento de Física, FCT, Universidade Nova de Lisboa, Lisbon, Portugal
2 PLUX - Wireless Biosignals, S.A., Lisbon, Portugal

f_nm.costa@campus.fct.unl.pt, s_taraujo87@gmail.com

Keywords: Knowledge Acquisition System : Human Computer Interaction : Ontology : Schema Language .

Abstract: Large amounts of data, increasing every day, are stored and transferred through the internet. These data are
normally weakly structured making information disperse, uncorrelated, non-transparent and difficult to access
and share. Semantic Web, proposed by the World Wide Web Consortium (W3C), addresses this problem by
promoting semantic structured data, like ontologies, enabling machines to perform more work involved in
finding, combining, and acting upon information on the web. Pursuing this vision, a Knowledge Acquisition
System was created, written in JavaScript using JavaScript Object Notation (JSON) as the data structure and
JSON Schema to define that structure, enabling new ways of acquiring and storing knowledge semantically
structured. A novel Human Computer Interaction framework was developed with this knowledge system,
enabling the end user to, practically, configure all kinds of electrical devices and control them. With the
data structured by a Schema, the software becomes robust, error – free and human readable. To show the
potential of this tool, the end user can configure an electrostimulator, surpassing the specific use of many
Electrophysiology software. Therefore, we provide a tool for clinical, sports and investigation where the user
has the liberty to produce their own protocols by sequentially compile electrical impulses.

1 INTRODUCTION

The easiness of access, storage, transmission of data
and the exponential proliferation of internet users en-
close new complexities: authentication; scalable con-
figuration management; security; huge masses of high
dimensional and often weakly structured data (the
main problem addressed in this project). Structuring
data pursued by Semantic Web leaves many opportu-
nities open because there is always room for improv-
ing and to develop more adequate languages. Meth-
ods and approaches to solve the problem emerged
from research in Human-Computer Interaction (HCI)
(Prabhu, 1997), Information Retrieval (IR), Knowl-
edge Discovery in Databases and Data Mining (KDD)
(Fayyad et al., 1996). These methods assist end users
to identify, extract, visualize and understand useful in-
formation from data.

The establishment of ontologies is one of the
methods to solve the problem, possible with Seman-
tic Web, holding much promise in manipulating in-
formation in ways that are useful and meaningful to
the human user. Ontologies are collections of infor-
mation with specific taxonomies and inference rules

to define relations between terms. A taxonomy de-
fines classes of objects and relations among them, and
inference rules provide advanced ways of relating in-
formation by deduction. Classes, subclasses and re-
lations among entities are a very powerful tool for
Web use. We can express a large number of relations
among entities by assigning properties to classes and
allowing subclasses to inherit such properties. The
structure and semantics provided by ontologies make
it easier for an entrepreneur to provide a service, mak-
ing its use completely transparent. Ontologies can
enhance the functioning of the Web in many ways,
like relating information on a Web page to the asso-
ciated knowledge structures and inference rules, thus
creating robust and clean applications (Berners-Lee
and Lassila, 2001).

Mechanisms to specify ontologies have spring
in the late years, the Schema Language is one of
them. Given the fact that Xtensible Markup Lan-
guage (XML) allows users to add arbitrary structure
to their documents, but lacks in describing the struc-
tures, Schema was developed as a notation for defin-
ing a set of XML trees (Thompson et al., 2000). From
this concept, a set of specifications were established

to create a Schema for JavaScript Object Notation
(JSON), a self descriptive language for data storage
and transmission, enabling the description of the data
structure. A useful Schema notation must have some
specific properties: identify most of the syntactic re-
quirements that the documents in the user domain fol-
low; allow efficient parsing; be readable to the user;
concede limited transformations corresponding to the
insertion of defaults; be modular and extensible to
support evolving classes (Klarlund et al., 2000). This
language aids in the creation of structured data and
automated tools to present the data in a human read-
able form, making easier the extraction and visualiza-
tion of useful information from data. Therefore, in
this field of structuring data, Schema largely super-
sedes Document type Definitions (DTDs) for markup
language.

One example of this procedure is Protégé, an
open source Ontology Editor and Knowledge Acqui-
sition System. Protégé is a framework written in Java
and uses Swing (Java GUI widget toolkit) to create
complex user interfaces. These interfaces provide
the user with tools to construct domain models and
knowledge-based applications with ontologies. As a
graphical tool for ontology editing and knowledge ac-
quisition, it can adapt to enable conceptual modelling
with new and evolving Semantic Web languages (Noy
et al., 2001). Protégé lets us, like the Schema, cre-
ate domains in a conceptual level without having to
know the syntax of the language ultimately used on
the Web to create interfaces, passing information, be-
tween other features. We can concentrate on the con-
cept types (integers, arrays, strings, ...) and relation-
ships in the domain and the facts about them that we
need to describe.

Using this mechanism in the project for structur-
ing the data, a Human Computer Interaction was cre-
ated with an innovative Knowledge Acquisition sys-
tem for controlling the actuation of a Biosignals Ac-
quisition System. One of the purposes, and as a prac-
tical example, is to control an electrostimulator en-
abling the user to create their own protocols, pursuing
a non-specific software for Electrostimulation. There-
fore, it allows the user to employ the software in dif-
ferent types of Electrostimulation applications:

• Electrotherapy: Rehabilitation (von Lewinski
et al., 2009); Spinal cord injury, stroke, sen-
sory deficits, and neurological disorders (Co-
gan, 2008); elicit electronarcosis, electrosleep and
electroanalgesia (Lebedev et al., 2002);

• Physical conditioning: fitness; active recovery;
optimizing physical performance by improvement
of maximum strength of a muscle (muscular
tonus) in less time (Siff, 1990).

This work presents a novel Knowledge Acquisi-
tion System based on JSON Schema with the specific
focus on creating user interfaces to configure biosig-
nals acquisition devices, and with this information
control the actuation of that device. Ultimately, the
software will pursue usability and acceptability, be-
cause ease of use affects the users performance and
their satisfaction, while acceptably affects whether
the product is used or not (Holzinger and Leitner,
2005). Our proposal defines Application Program-
ming Interfaces (APIs) and low-level infrastructures
to create a system for controlling a biosignals acqui-
sition device, where the acquisition and actuation pa-
rameters are acquired from the user. At the core of
this system is a JSON Schema enabling validation
(data integrity), interaction (UI generation - forms and
code) and documentation.

2 DATA STRUCTURE

2.1 JSON

JSON is a simple, lightweight and human readable
text-data structure for information exchange. The
approach for information exchange is simpler than
XML, by the less verbose structure of the notation.
Interpreting JSON is native in some languages with
the existence of several support libraries that make
JSON a platform independent language (Crockford,
2006). JSON structure is composed of name/value
pairs separated by comma, curly brackets holds ob-
jects and square brackets holds arrays. Values can be
numbers, strings, booleans, arrays, objects and null.
In the example below is an object containing infor-
mation of an address and phone number:

{"address":{
"streetAddress": "21 2nd Street",
"city":"New York"

},
"phoneNumber":
[{

"type":"home",
"number":"212 555-1234"

}]
}

Considering these features, JSON was selected as
the data structure of this work, and is defined by JSON
Schema.

{#}
Source Basic Advanced

User

Information

JSON

Schema

JavaScript

JavaScript

Ontology

Configuration Editors

Control the Actuation of a Device

(Raw Code) (Specialized
 GUI)

(Forms)

JSONs

Figure 1: Generic diagram showing the flow of information.

2.2 JSON Schema

A JSON Schema is a Media Type (standard draft of
options) that specifies a JSON-based format to de-
fine the structure of JSON data, providing a con-
tract (set of rules) required in a given application, and
how to interact with the contract. Accordingly, JSON
Schema specifies requirements for JSON properties
and other property attributes with the following inten-
tions:

• Validation (data integrity);

• Documentation;

• Interaction (UI generation - forms and code);

• Hyperlink Navigation.

JSON Schema is also a JSON with a compact im-
plementation and can be used on the client and server.
Specifications are organized in two parts (Zyp, 2011):

• Core Schema Specification: primary concerned
with describing a JSON structure and specifying
valid elements in the structure.

• Hyper Schema Specification: define elements in
a structure that can be interpreted as hyperlinks,
in others JSON documents and elements of in-
teraction (This allows user agents to be able to
successfully navigate JSON documents based on
their Schemas).

Below is an example of a JSON Schema defining
the structure for the JSON example showed before:

{"type":"object",
"required":false,
"properties":{

"address": {
"type":"object",
"required":true,
"properties":{

"city": {
"type":"string",
"required":true

},
"streetAddress": {

"type":"string",
"required":true

}
}

},
"phoneNumber": {

"type":"array",
"required":false,
"items":{

"type":"object",
"required":false,
"properties":{

"number": {
"type":"string",
"required":false

},
"type": {

"type":"string",
"required":false

}
}

}}}}

As shown in the diagram, Figure 1, JSON Schema
allows the definition of ontologies and will be in
the core of the program, enabling: interaction,
Schema serves as blueprint to architect the neces-
sary forms, with or without Graphical User Interfaces
(GUI), and define the other editors for the Knowl-
edge Acquisition System; documentation, APIs and
low-level software infrastructures in JavaScript en-
able the transformation of the information acquired
from the user in a JSON data structure defined by
the Schemas, then the data (JSONs and Schemas)
is stored in the server and retrieved to the client
(JavaScript) through websockets (full-duplex com-
munications channels over a single TCP connection);
validation, JSON data can be imputed directly in a
raw editor (a knowledge acquisition system) by the
end user. Nevertheless, the data is only stored if the
structure agrees with the Schema.

With these mechanisms the software becomes a
powerful HCI system: robust; error - free; with hu-
man readable data structures, therefore, visualization
and extraction of information is easier.

Output

Figure 2: Configuration in Advanced Editor the mode options for an electrostimulator. Initial version of the software.

3 HUMAN COMPUTER
INTERACTION

Based on the method for data structure, described in
the last section, a Human Computer Interaction was
developed with a novel Knowledge Acquisition sys-
tem for controlling the actuation of Biosignals Ac-
quisition Systems. As shown in Figure 1, an ontol-
ogy is defined with the help of JSON Schemas, then
these Schemas are interpreted in JavaScript enabling
the conception of three editors. These editors pro-
vide different means to acquire the information from
the user. Afterwards, this information is saved as
JSONs in the server. In the control, the JSONs are
retrieved from the server, through websockets, and
parsed in JavaScript. Finally, the necessary infor-
mation is sent to the device via APIs. As a practi-
cal example, the HCI provides mechanisms to control
an electrostimulator by enabling the user to configure
protocols/sessions for actuation of the device.

The HCI is integrated in a software for biosig-
nals acquisition and processing from PLUX - Wire-
less Biosignals, S.A., enabling the control of a generic
device. In this way, actuation, acquisition and pro-
cessing is possible in a closed-loop cycle (Broderick
et al., 2008).

The main purpose of this project is to provide the
end user the liberty to create and sequentially compile
electrical impulses. This enables the user to create ac-
tuation sessions for electrical devices. In a particular

 Device Mode Session Control

Figure 3: Diagram representing the direction to configure
then control. First, configure a new device, then modes and
finally the sessions using the modes created.

example, enables the user to configure an electrostim-
ulator and design sessions to test different types of
Electrostimulation protocols.

The software is divided in configuration (the
knowledge acquisition system based on JSON
Schemas), and control for the actuation of a device.
Basically, as shown in Figure 3, to control we need to
configure a device, and create temporal sessions, i.e
sequence of impulse modes, for each channel of that
device. Consequently, the configuration is divided in
device, mode and session, each one with the respec-
tive JSON Schema to structure the data, and directly
or indirectly create the editors. In the next sections,

Click

Save

Click

Figure 4: Configuration of the mode in Basic Editor and Advanced Editor. Initial versions of the software.

these ideas are explained in more detail accompanied
with images for the specific case of an electrostimula-
tor.

3.1 Configuration

3.1.1 Device

The user can compose a new device by setting the
mode options for that device. There are two types of
options, generic and special. Special stands for spe-
cial modes, in this case the special mode enables the
creation of pulses instead of only periodic waves, un-
like a generic wave generator. For example, the spe-
cial mode is necessary to configure an electrostimula-
tor. We can see in Figure 2 the configuration with the
special parameters for Electrostimulation: maximum
current, 100 mA, and maximum time on, 500 µs. Af-
ter fill in the form, created directly from the Schema,
a JSON is exported and stored in the server.

3.1.2 Mode

The user can project a new mode for a specific device.
The mode permits the configuration of pulses (special
mode options activated), and waves (special mode op-
tions deactivated) depending on the mode options. In
Figure 4 is possible to view how a mode can be con-
figured in two different editors (described in the edi-
tors section). The figure shows the creation of bifasic
mode for the electrostimulator, a pulse with positive
and negative time on of 250 µs, amplitude up 100 mA
and amplitude down -100 mA, and 10 Hz of pulse fre-
quency.

3.1.3 Session

The user can create a new session for a specific
device. A session is a sequence of modes, and
each channel of a device can have one session pro-
grammed. A device has a maximum number of pro-
grammable modes, but they can be repeated infinitely.
Figure 5 shows the configuration of a session. Primar-
ily, the definition of the modes that will be used, four

"

"

Output

Figure 5: Configuration of a session in Advanced Editor. Loop during half an hour with bifasic mode, 300 seconds activated,
and no_impulse 100 seconds activated. Initial version of the software.

is the maximum that the hardware can memorize. Af-
terwards, the creation of a session for the channels re-
quired, in this case, only one channel is programmed
with two modes, bifasic, 300 seconds activated and,
no_impulse, during 100 seconds. This sequence is re-
peated during half an hour by activating the loop for
that specific session. The session is named protocol1.

3.1.4 Editors

The core for each configuration stated before is a
Schema, and the end user has the possibility to choose
between three editors (like in Figure 1):

• Basic Editor (Specialized GUI): simple and user-
friendly interface with the minimum required
fields to fill. The information is saved in a JSON
format defined by the Schema. This editor is in-
tended for the basic users. It can be seen in Fig-
ure 4.

• Advanced Editor: a form generated automatically
from the Schema specifications, with the possibil-
ity of edition in GUI. Information is also saved
in JSON format defined by the Schema. The most
profitable editor because it shows directly how the

information will be saved in the JSON. This way,
users understand the architecture of the data. Fig-
ures 2, 4 and 5 have the configuration of a de-
vice, a mode and a session, respectively, in the
Advanced Editor.

• Source Editor: an editor to upload or create
JSONs, where the user writes the JSON (like the
JSONs exported in figures 2 and 5) or copy and
paste the JSON in the editor. JSONs are valid and
can be saved if they agree with JSON Schema, if
not, reports with errors are generated. This Edi-
tor is intended for users with more knowledge of
the data structure, or for the ones that just want to
copy and paste information or upload.

Note that it’s possible to travel between the three
editors, and the information is inherited between
them. Also, in Advanced Editor, GUIs are directly
related with special types from the JSON Schema,
and can be used to fill the necessary fields. Like
in the example Figure 4, clicking on the specific
button opens a graphic tool (canvas) for edition of
points by moving them with the mouse, identical
to the canvas from Basic Editor.

Setup Actuation

CH1

CH2

protocol_rehab

Figure 6: Actuation of an electrostimulator with the session protocol_rehab. This session has two channels with different
sessions configured.

3.2 Control

The control is the area for actuation and acquisition
of biosignals. In here, the user first needs to set up
the device, for that he must choose the device and
the session to program. When the device is ready,
start/stop of the session is feasible. In the course of
the session is possible to acquire real time biosignals
and synchronize them with the session. This part is in
development stage: Figure 6 presents a moke-up what
could be in the final stage. The control area will have
many device sessions templates. Therefore, a quick
approach by the user will enable the simple selection
of a pre-defined session and start the actuation imme-
diately.

4 CONCLUSIONS

This project envisions a software with powerful capa-
bilities. The most important parts are the infrastruc-
tures that conduct the flow of information between the
Schema, the editors, the GUIs and finally the pro-
cess of saving in JSON data. After the APIs and
low-level infrastructures are programmed is easy and
fast to create information editors with other Schemas,
develop configuration interfaces for that editors and
allow the engineering of new human computer in-
teractions. This explains the impressive usability of

this knowledge acquisition system. For this reason,
is important to refute that the main mechanisms be-
hind this software are JSON, the human-readable data
structure, and JSON Schema that defines the struc-
ture of JSON, allowing interaction (creation of forms
with specialized GUIs), documentation and valida-
tion, producing an error-free, semantically structured
and human-readable knowledge acquisition system,
contributing to the HCI system robustness.

In Biomedicine, the configuration part should only
be manipulated by clinical professionals, where they
can adapt sessions to each patient. Overly compli-
cated user interfaces and large, bulky designs can de-
ter patients from using the device on a day to day ba-
sis, so, ultimately, the patient will only start or stop
a session prepared for him. Following this idea the
software was separated in configuration, where clini-
cal professionals can configure a device with sessions
for each channel, and control, where the user just need
to choose the device and session (set up the device)
then start the session. If for some reason, the session
should not stop automatically (before the stop time is
reached), the user can stop the session. This HCI is
being tested in the Electrostimulation area to support
clinical professionals, sportsman and investigators to
control electrostimulators by enabling the creation of
different kind of protocols, empowering the software
usability.

This software, above all, pursues usability, for this

reason, in future stages of the project, the following
tasks will be conducted: user studies, extended unit
tests, usability tests, and usability expert evaluation.

REFERENCES

Berners-Lee, T., H. J. and Lassila, O. (2001). The semantic
web. Scientific American Magazine.

Broderick, B., Breen, P., and ÓLaighin, G. (2008). Elec-
tronic stimulators for surface neural prosthesis. Jour-
nal of Automatic Control, 18(2):25–33.

Cogan, S. (2008). Neural stimulation and recording elec-
trodes. Annu. Rev. Biomed. Eng., 10:275–309.

Crockford, D. (2006). The application/json media type for
javascript object notation (json).

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996).
The kdd process for extracting useful knowledge from
volumes of data. Communications of the ACM,
39(11):27–34.

Holzinger, A. and Leitner, H. (2005). Lessons from real-life
usability engineering in hospital: from software us-
ability to total workplace usability. Empowering Soft-
ware Quality: How can Usability Engineering reach
these goals, pages 153–160.

Klarlund, N., Møller, A., and Schwartzbach, M. (2000).
Dsd: A schema language for xml. In Proceedings
of the third workshop on Formal methods in software
practice, pages 101–111. ACM.

Lebedev, V., Malygin, A., Kovalevski, A., Rychkova, S.,
Sisoev, V., Kropotov, S., Krupitski, E., Gerasimova,
L., Glukhov, D., and Kozlowski, G. (2002). De-
vices for noninvasive transcranial electrostimulation
of the brain endorphinergic system: Application for
improvement of human psycho-physiological status.
Artificial organs, 26(3):248–251.

Noy, N., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.,
and Musen, M. (2001). Creating semantic web con-
tents with protege-2000. Intelligent Systems, IEEE,
16(2):60–71.

Prabhu, P. (1997). Handbook of human-computer interac-
tion. North Holland.

Siff, M. (1990). Applications of electrostimulation in phys-
ical conditioning: a review. The Journal of Strength &
Conditioning Research, 4(1):20.

Thompson, H. et al. (2000). Xml schema. w3c working
draft, may 2001.

von Lewinski, F., Hofer, S., Kaus, J., Merboldt, K.,
Rothkegel, H., Schweizer, R., Liebetanz, D., Frahm,
J., and Paulus, W. (2009). Efficacy of emg-triggered
electrical arm stimulation in chronic hemiparetic
stroke patients. Restorative Neurology and Neuro-
science, 27(3):189–197.

Zyp, K. (2011). A json media type for describing the struc-
ture and meaning of json documents.

A. PUBLICATIONS

A.2 Biodevices 2013

Multi-purpose Electrostimulator Software.

71

Multi-purpose Electrostimulator Software

Nuno Costa1, Tiago Araujo1,2, Neuza Nunes2, Hugo Gamboa1,2

1 CEFITEC, Departamento de Física, FCT, Universidade Nova de Lisboa, Lisbon, Portugal
2 PLUX - Wireless Biosignals, S.A., Lisbon, Portugal

f_nm.costa@campus.fct.unl.pt, s_taraujo87@gmail.com

Keywords: Human Computer Interaction : Electrostimulation : Multi-purpose Software.

Abstract: Nowadays, most of the software for electrostimulation is made with specific purposes, and in some cases
they have complicated user interfaces and large, bulky designs that deter usability and acceptability. A novel
Human Computer Interaction framework was developed enabling the end user to configure and control an
electrostimulator, surpassing the specific use of several electrostimulator software. In the configuration the
user is able to compile different types of electrical impulses (modes) in a temporal session, and this session
can be actuated in the control. To help the user in creating any type of protocol (session) we devised three
standard impulse generator (rectangular, sin and triangular) and a new way of creating electrical impulses by
drawing, then fitting this data and process it with a mathematical algorithm for finding simple equations to
describe the data. With it, the user has the possibility to choose the best equation that fits the draw and store
it mathematically structured, thus adding not only a draw editor, but also an equation editor. Therefore, we
provide a tool for clinical, sports and investigation where the user is free to produce their own protocols by
sequentially compile electrical impulses.

1 INTRODUCTION

In 1791, scientist Luigi Galvani first showed that elec-
tricity, when applied to a frog’s leg, could cause mus-
cle twitches (Piccolino, 1998). In the intervening cen-
turies, scientists learned much about how Electrical
Stimulation or Electrostimulation (ES) affects mus-
cle tissue and have tried to apply that knowledge to
muscles paralysed by neuromuscular disease to cre-
ate both therapeutic and functional effect. This field
of medicine is known variously as Electrical Muscle
Stimulation or Electromyostimulation (EMS), Neuro-
muscular Electrical Stimulation (NMES) and Func-
tional Electrical Stimulation (FES) electromyostimu-
lation, consisting in nerve manipulation through elec-
trical pulses aiming muscular contraction or sen-
sory response for various applications (Malmivuo and
Plonsey, 1996). Nowadays, the applications can be
divided in two main areas:

• Electrotherapy: Rehabilitation (von Lewinski
et al., 2009); Spinal cord injury, stroke, sensory
deficits, and neurological disorders (with Neu-
ral prostheses) (Cogan, 2008); Urinary inconti-
nence (Perrigot et al., 2008); Transcranial Electri-
cal Stimulation (TES) as a method to elicit elec-
tronarcosis, electrosleep and electroanalgesia (for

pain relief) (Lebedev et al., 2002)(MAYOR and
MICOZZI, 2011); Treatment of lower limbs ve-
nous insufficiency related symptoms in pregnant
women (Le Tohic et al., 2009); electrostimulation
of the acoustic nerve profoundly deaf patients can,
in the best cases, reach almost complete speech
understanding without lip reading (Motz and Rat-
tay, 1986); and many others.

• Physical conditioning: fitness; active recovery;
optimizing physical performance by improvement
of maximum strength of a muscle (muscular
tonus) in less time (Siff, 1990)(Marqueste et al.,
2010) (Brocherie et al., 2005) .

Although ES may hold much promise there are
many technical challenges that need to be surpassed.
Commercial software solutions for electrostimulators
grow every day, but these are often limited by a va-
riety of factors including cost, source code inaccessi-
bility, hardware compatibility, and more (Breen et al.,
2009)(Keller et al., 2002). Consequently, a strong tra-
dition in neurophysiology research is to write custom
software routines. While superb for the specific tasks
at hand, these custom solutions rarely offer the flexi-
bility and extensibility needed for them to be transfer-
able across platforms, hardware configurations, and
experimental paradigms without significant modifica-

tions. Therefore, in present time, software/hardware
solutions to provide a device with a multi-purpose
platform (sport, therapy or investigation), a dynamic
software, which enables the user to create their own
protocols, is needed (Suter et al., 2010)(Prochazka
et al., 1997). To contribute in solving this necessity,
we created a WEB based Human Computer Interac-
tion (HCI) that allows the user to employ the software
in different types of ES applications, pursuing a non-
specific software.

This work further depicts a novel HCI based on
a Knowledge Acquisition System developed previ-
ously (Costa et al., 2012). The specific focus of this
tool is to compile electrical impulses in different ses-
sions for actuation of an electrostimulator, enabling
the user to design different types of protocols. To sur-
pass this challenge, innovative ways of compile and
create electrical impulses were implemented.

Ultimately, the software will pursue usability and
acceptability because ease of use affects the users per-
formance and their satisfaction, while acceptably af-
fects whether the product is used or not (Holzinger
and Leitner, 2005).

The next sections are divided in: Human Com-
puter Interaction, a resume of the structure developed
in a previous study; Configuration, a description of
the methods provided to the user to compile electrical
impulses; Control, a brief description of the simplic-
ity in actuate a session.

2 HUMAN COMPUTER
INTERACTION

A novel Human Computer Interaction was developed
with the intention of controlling the actuation of elec-
trical devices, like Biosignals Acquisition Systems,
LEDs, motors, between others. Nevertheless, to show
the potential of the tool, the biggest and the first chal-
lenge that led us to idealize it, was to control an elec-
trostimulator for different types of applications. To
demonstrate it, this article shows the capabilities of
the software in controlling an electrostimulator and
the contribution for Electrostimulation.

The HCI is integrated in a WEB based software
for biosignals acquisition and processing from PLUX
- Wireless Biosignals, S.A., enabling the control of a
generic device. In this way, actuation, acquisition and
processing is possible in a closed-loop cycle (Broder-
ick et al., 2008).

The main purpose of this project is to provide the
end user the liberty to create and sequentially compile
electrical impulses. This enables the user to create
actuation sessions for electrical devices. In this case,

Device

Mode

Actuation
Control

Session

Configuration

(Electrostimulator)

(Impulse generator)

(Mode compiler)

Specialized
Professionals

Patients
Basic users

Figure 1: Generic diagram of the HCI.

enables the user to configure an electrostimulator and
design sessions to test different types of Electrostim-
ulation protocols.

In Biomedicine, the configuration of a device
should only be performed by clinical professionals,
where they can adapt sessions to each patient. Overly
complicated user interfaces and large, bulky designs
can deter patients from using the device on a day to
day basis, so, ultimately, the patient will only start or
stop a session prepared for him. Following this idea
the software was divided in configuration, where clin-
ical professionals can configure an electrostimulator
with sessions for each channel, and control, where the
user just needs to choose the device and session pre-
viously configured, then start the session. If for some
reason, the session should not stop automatically (be-
fore the stop time is reached), the user can stop the
session. Basically, as shown in Figure 1, to control
we need to configure the electrostimulator, and create
temporal sessions, i.e. sequence of impulse modes,
for each channel of that device. Consequently, the
configuration is hierarchically structured in device,
mode and session. In the control we only need to
choose the device, then the session for that device that
will be actuated, and next start the session. The stop
can be manual or automatic (end of the session). This
mechanism makes the control very simple.

a)

b)

c)

Figure 2: The default impulses: a)square, b)sine and c)triangle. The arrows mark the direction in which the interactive points
can be moved.

3 CONFIGURATION

3.1 Device Requisites

In the case of an electrostimulator, some specific op-
tions need to be satisfied. The specifications for the
potentials and limits of ES is dependent of the appli-
cation and the electrostimulator. The requisites of the
electrostimulator we used for this project, are:

• Pulse amplitude:
0-100 mA (1 mA step)

• Pulse Width:
0-500 µs (5 µs step)

• Pulse frequency:
1-200 Hz (1 Hz step)

• Number of channels:
2

• Number of modes:
4

• Waveform type:
Rectangular, triangular, sin, customized wave-
form (constant potential with no offset)

3.2 Mode

After the specification of the device requisites the user
can project a new mode for a specific device. The
mode permits four types of impulse configuration:
square, rectangular pulse that can be changed within
the data limits; sine, sin pulse that can be changed
within the data limits; triangle, triangular pulse that
can be changed within the data limits; draw, a novel
and innovative impulse generator. The user is also
able to choose the frequency (impulse per second) by
moving a slider. In the three default types square, sine
and triangle, the end user have to click and pull the in-
teractive points (as it can be seen in Figure 2): square
have two interactive points that can be moved along
x an y axis within the data limits; sine also have two,
one for the amplitude and other for the period; tri-
angle have four with two points that just move along

Figure 3: Configuration of the mode "On" for the Electrostimulator. Initial version of the software.

the x axis. These types allow the end user to create
a lot of different impulses, but to be able of creat-
ing any type we had to devise a new form of impulse
generation, the draw method. In this new type, the
user has the possibility to draw an impulse within the
data limits, from this draw we retrieve 100 points that
will be processed by an algorithm. The idea behind
this algorithm it is to search within the 100 points that
seem connected to each other, then propose a series
of simple equations to describe the links. The best are
selected, tweaked, and again tested against the data.
Next, the algorithm repeats the cycle over and over,
until it finds equations that have a good probability
of modulate the data. Then, by choosing one of the
equations, the user can see a graph with 100 points
based in the equation and compare it to the draw-
ing. If it fits the user objectives, save the equation,
if not, the user can tweak the equation manually, and
see the effects, or just save the 100 points from the
draw. This algorithm will have large benefits when
finished, because it provides a mechanism of storing
the draw data mathematically structured, in this way,
the user will have the possibility of re-editing the data
by changing some parameters in the stored equations.
So, instead of just providing a draw method to create
impulses, an equation method is also available to the
user for creating impulses, very important to simplify
the impulse generation when the impulse can be de-
scribed by an equation and only few parameters need
to be changed.

This algorithm is still in the initial stage and is
based in the work of Schmidt and Lipson, the Eu-
reqa, a highly praised symbolic regression program
(Stoutemyer, 2012).

In Figure 3 is possible to view an example of how
a mode can be configured within the data limits for x
axis 0 - 500 µs and for y axis -100 - 100 mA . The fig-
ure shows the creation of "On" mode for the electros-
timulator, a rectangular pulse with 500 µs, amplitude
100 mA, and 20 Hz of pulse frequency, i.e. 20 pulses
per second.

3.3 Session

The user can create a new session for a specific
device. A session is a sequence of modes, and
each channel of a device can have one session pro-
grammed. A device has a maximum number of pro-
grammable modes, but they can be repeated infinitely.
This mechanism is very important to program stimu-
lation protocols, automating the control. In our elec-
trostimulator two channels can be programmed with
four modes: first we define the modes that will be
used, then we add channel sessions. In each channel
session we have to define if the session has loop, then
we need to sequentially compile the modes. Figure 4
shows an example of session configuration. Primar-
ily, the definition of the modes that will be used, four
is the maximum that the hardware can memorize. Af-
terwards, the creation of a session for the channels re-

Figure 4: Configuration of one channel session with the modes "On" and "Off". Initial version of the software.

quired, in this case, only one channel is programmed
with two modes: On, 300 seconds activated and, Off,
during 100 seconds (Off is a pulse with 500 µs and
amplitude 0 mA). This sequence is repeated during
half an hour by activating the loop for that specific
session.

4 CONTROL

The control is the area for actuation and acquisition of
biosignals. In here, the user first needs to choose the
device, in our case the electrostimulator, and the ses-
sion to program. When the device is ready, start/stop
of the session is feasible. In the course of the session
is possible to acquire real time biosignals and syn-
chronize them with the session. Also, note that in the
background, an API (Application Programming Inter-
face) makes the bridge between the software and the
hardware, parsing the high level programming lan-
guage to machine language enabling the control of the
hardware. Trough this API we set up the hardware
with the necessary for the protocols of stimulation,
and start/stop the session.

Figure 5 presents the control diagram. The con-
trol area will have many device sessions templates.
Therefore, a quick approach by the user will enable
the simple selection of a pre-defined session and start
the actuation immediately.

5 CONCLUSIONS

A strong tradition in neurophysiology research is to
write custom software routines. These software are
specific and rarely offer the flexibility and exten-
sibility needed for them to be transferable across
platforms, hardware configurations, and experimen-
tal paradigms without significant modifications. Also,
most of the times these software have confuse, large
and bulky interfaces that can deter users from using
the software. Electrostimulation is one of the areas
that suffers from these problems. For these reasons,
and pursuing usability and acceptability, we are de-
veloping a HCI that has a great potential to be trans-
ferable across different types of electrical device con-
trol, and to demonstrate it, we are able to produce dif-
ferent types of sessions to control the actuation of an
electrostimulator. For this purpose we provide mech-

choose
device

choose
session

actuation

start/stop
session

CH1

setup

CH2

Figure 5: Diagram for control

anisms to configure and control a device. The most
important mechanisms are: the separation in config-
uration and control, where clinical professionals can
configure a device with sessions for each channel, and
control, where the user just needs to choose the de-
vice and session (set up the device) then start the ses-
sion; the sequence of configuration (Device, Mode,
Sessions), that supplies the user with a structured con-
figuration; the tools in Mode, enabling the end user to
shape the impulses at is own desire, and with the draw,
plus equation algorithm, implemented the user will be
able to produce any kind of impulse and store infor-
mation mathematically structured; the compilation of
modes in Session allowing the creation of temporal
sessions for the actuation of an electrostimulator, i.e.
permits to program stimulation protocols. Thus, cre-
ating a dynamic, flexible way of automate the actua-
tion of stimuli.

This software, above all, pursues usability, for this
reason, in future stages of the project, the following
tasks will be conducted: user studies, extended unit
tests, usability tests, and usability expert evaluation.
Also, the draw algorithm needs to be further devel-
oped to make the software even more dynamic and
extensible.

With this powerful tool we provide a user-friendly
software solution with a multi-purpose platform for
sport, therapy and research.

REFERENCES

Breen, P., Corley, G., O’Keeffe, D., Conway, R., and
ÓLaighin, G. (2009). A programmable and portable

nmes device for drop foot correction and blood flow
assist applications. Medical engineering & physics,
31(3):400–408.

Brocherie, F., Babault, N., Cometti, G., Maffiuletti, N., and
Chatard, J. (2005). Electrostimulation training effects
on the physical performance of ice hockey players.
Medicine & Science in Sports & Exercise, 37(3):455.

Broderick, B., Breen, P., and ÓLaighin, G. (2008). Elec-
tronic stimulators for surface neural prosthesis. Jour-
nal of Automatic Control, 18(2):25–33.

Cogan, S. (2008). Neural stimulation and recording elec-
trodes. Annu. Rev. Biomed. Eng., 10:275–309.

Costa, N., Araujo, T., Nunnes, N., and Gamboa, H. (2012).
Knowledge acquisition system based on json schema.
implementation of a hci for actuation of biosignals ac-
quisition systems.

Holzinger, A. and Leitner, H. (2005). Lessons from real-life
usability engineering in hospital: from software us-
ability to total workplace usability. Empowering Soft-
ware Quality: How can Usability Engineering reach
these goals, pages 153–160.

Keller, T., Popovic, M., Pappas, I., and Müller, P. (2002).
Transcutaneous functional electrical stimulator “com-
pex motion”. Artificial organs, 26(3):219–223.

Le Tohic, A., Bastian, H., Pujo, M., Beslot, P., Mol-
lard, R., and Madelenat, P. (2009). Effets de
l’électrostimulation par veinoplus R© sur les troubles
circulatoires des membres inférieurs chez la femme
enceinte. étude préliminaire. Gynécologie Obstétrique
& Fertilité, 37(1):18–24.

Lebedev, V., Malygin, A., Kovalevski, A., Rychkova, S.,
Sisoev, V., Kropotov, S., Krupitski, E., Gerasimova,
L., Glukhov, D., and Kozlowski, G. (2002). De-
vices for noninvasive transcranial electrostimulation
of the brain endorphinergic system: Application for
improvement of human psycho-physiological status.
Artificial organs, 26(3):248–251.

Malmivuo, J. and Plonsey, R. (1996). Bioelectromagnetism,
volume 34. PETER PEREGRINUS LTD.

Marqueste, T., Messan, F., Hug, F., Laurin, J., Dousset,
E., Grelot, L., and Decherchi, P. (2010). Effect of
repetitive biphasic muscle electrostimulation training
on vertical jump performances in female volleyball
players. International Journal of Sport and Health
Science, (0):1003310051.

MAYOR, D. and MICOZZI, M. (2011). Energy medicine
east and west: a natural history of qi (paperback).
Recherche, 67:02.

Motz, H. and Rattay, F. (1986). A study of the applica-
tion of the hodgkin-huxley and the frankenhaeuser-
huxley model for electrostimulation of the acoustic
nerve. Neuroscience, 18(3):699–712.

Perrigot, M., Pichon, B., Peskine, A., and Vassilev, K.
(2008). Électrostimulation et rééducation périnéale
de l’incontinence urinaire et des troubles mictionnels
non neurologiques. In Annales de réadaptation et de
médecine physique, volume 51, pages 479–490. Else-
vier.

Piccolino, M. (1998). Animal electricity and the birth of
electrophysiology: the legacy of luigi galvani. Brain
research bulletin, 46(5):381–407.

Prochazka, A., Gauthier, M., Wieler, M., and Kenwell, Z.
(1997). The bionic glove: an electrical stimulator gar-
ment that provides controlled grasp and hand opening
in quadriplegia. Archives of physical medicine and re-
habilitation, 78(6):608–614.

Siff, M. (1990). Applications of electrostimulation in phys-
ical conditioning: a review. The Journal of Strength &
Conditioning Research, 4(1):20.

Stoutemyer, D. (2012). Can the eureqa symbolic regres-
sion program, computer algebra and numerical analy-
sis help each other? Arxiv preprint arXiv:1203.1023.

Suter, B. A., O’Connor, T., Iyer, V., Petreanu, L. T., Hooks,
B. M., Kiritani, T., Svoboda, K., and Shepherd, G.
M. G. (2010). Ephus: multipurpose data acquisition
software for neuroscience experiments. Frontiers in
Neural Circuits, 4:100.

von Lewinski, F., Hofer, S., Kaus, J., Merboldt, K.,
Rothkegel, H., Schweizer, R., Liebetanz, D., Frahm,
J., and Paulus, W. (2009). Efficacy of emg-triggered
electrical arm stimulation in chronic hemiparetic
stroke patients. Restorative Neurology and Neuro-
science, 27(3):189–197.

B
Configuration Environment

79

B. CONFIGURATION ENVIRONMENT

Figure B.1: Configuration Environment.

80

	List of Abbreviations
	Introduction
	Motivation
	Objectives
	Dissertation Overview

	Concepts
	WEB Based Software
	HCI and KAS
	Symbolic Regression Programming
	Ontologies
	Schema, JSON and JSON Schema
	JavaScript and Python
	Biosignals
	Bioelectricity
	Biosignals Acquisition
	Biosignals Processing

	Human Computer Interaction
	Configuration
	How to Configure
	Knowledge Acquisition System

	Control
	How to Actuate
	API

	Knowledge Acquisition System
	Data Structure
	GUIs
	Editors

	Performance Evaluation
	Application

	Conclusions
	Contributions
	Future Work

	Publications
	WINSYS 2012
	Biodevices 2013

	Configuration Environment

