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A QUALITATIVE REASONING APPROACH FOR IMPROVING QUERY RESULTS 

FOR SKETCH-BASED QUERIES BY TOPOLOGICAL ANALYSIS OF SPATIAL 

AGGREGATION 

 

ABSTRACT 

Sketch-based spatial query systems provide an intuitive method of user interaction for 

spatial databases. These systems must be capable of interpreting user sketches in a way 

that matches the information that the user intended to provide. One challenge that must be 

overcome is that humans always simplify the environments they have experienced and this 

is reflected in the sketches they draw. One such simplification is manifested as aggregation 

or combination of spatial objects into conceptually or spatially related groups. 

In this thesis I develop a system that uses reasoning tools of the RCC-8 to evaluate sketch-

based queries and provide a method for minimizing the effects of aggregation by 

determining whether a solution to a query can be expanded if some groups of regions are 

assumed to be parts of a larger aggregate region. If such a group of regions is found, then 

this group must be included in the solution. The solution is approximate because the 

approach taken only verifies that assumed parts of an aggregate are not inconsistent with 

the configuration of the whole solution. Only cases where the size of the solution equals the 

size of the query minus one are analysed. 

It is observed that correctly identifying aggregated regions leads to solutions that are more 

similar to the original query sketch when the size of every other solution is smaller than the 

size of the query or when a lower limit is placed on the acceptable size of a solution because 

the new, expanded or refined solution becomes more complete with respect to the sketch 

of the query.  
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1. Introduction 

1.1. Background and Motivation 

1.1.1. Qualitative Spatial Reasoning and Sketch Mapping Applications 

On going research efforts in Qualitative Spatial Knowledge Representation (QSKR) and Reasoning 

(QSR) since the mid 20th century have led to many innovations in Geographic Information Science 

(GI Science), e.g. spatial query evaluation techniques (e.g. Egenhofer 1997, and Bennett, Isli, and 

Cohn 1998). Interesting applications such as nuSketch BattleSpace (Forbus 2003) have been built to 

use combinations of quantitative and qualitative data applying spatial reasoning for some tasks. 

Such applications provide a basis for research into more general purely qualitative GI applications in 

areas such as Volunteered Geographic Information and Environmental Modelling.  

Many users of geospatial applications may find it easier to work with spatial configurations of 

entities in the area of interest, using relative metrics as opposed to quantitative details about, for 

example absolute size, orientation, and location (Egenhofer and Mark, 1995). Tools to support users 

in this way have been researched as indicated above. These tools are designed primarily for querying 

spatial datasets in a spatial database with formal expressions of spatial relations specified in a query. 

The spatial relations in this case have to be computed from the geometric data of the spatial objects 

stored in the database. 

An alternative approach would be to store qualitative representations of spatial datasets in the 

database, and retrieve the appropriate spatial objects and their relations when required. This would 

be similar to the approach is presented by Bennett, Isli, and Cohn (1998) where topological relations 

are pre-computed and stored in the database, and then they are used to evaluate queries. A 

qualitative model of this kind can allow the storage of spatial data supplied by users in the form of 

spatial descriptions. Qualitative analyses on this data could include process modelling/simulations 

(e.g. where people describe a physical process) as in (Forbus 2003), modelling of small spaces (e.g. a 

small scale farmer’s partitioning of his/her field), way finding, etc. 

One application of such a spatial data model could be collaborative map creation based on sketches 

and spatial descriptions of places on Earth. With the advent of Geographic Information Systems, 

their subsequent increased popularity, and the rapid proliferation of the Internet and its associated 

technologies, the ability to capture, document, and publish geospatial data has been made available 

to individual citizens at reasonable cost. Evidence of available opportunities for small players to 

participate in the Geographic Information market includes web-based services such as Google Maps, 

Google Earth, Yahoo! Maps, and similar services. ‘Sites such as Wikimapia and OpenStreetMaps are 

empowering citizens to create a global patchwork of geographic information, while Google Earth and 

other virtual globes are encouraging volunteers to develop interesting applications using their own 

data’ (Goodchild 2007 p. 212). The significance of these Volunteered Geographic Information (VGI) 

services cannot be overemphasised. According to Goodchild, by 2007 Wikimapia had 4.8 million 

entries compared to Wikipedia’s 7 million while roughly 2.8 million photographs were being 

contributed each month to the Flickr website. An intuitive method for contributing and finding 

spatial information that is close to the way perceive space, such as sketching, may increase the 

amount of collaboration and data shared through VGI services.  
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1.1.2. Motivation and Problem Overview 

The above motivations for sketch-based map creation and sharing services not with standing, there 

are some challenges that have to be resolved even within current models that apply QSR on sketch 

maps for processing database queries. One major challenge is that most formal theories and models 

focus only on one aspect of space and their combination is not always easy (Liu, Li, and Renz 2009). 

Another main problem is that sketch maps are always more abstract than the reality they represent 

and may contain errors in any of several aspects of the spatial representation (e.g. topology, angle, 

or shape). Tversky (2002) specifically notes that “it is not trivial to say that people can extract from 

sketches what sketchers intended”. In some cases, however, systematic errors can be dealt with in 

systematic ways as proposed by Wang (2009) for angles, curvature and direction, and by Egenhofer 

and Shariff (1998) for topological relations. Systematic errors in sketch maps may be manifested in 

several ways including, but not limited to, regularization of angles to right angels, straightening of 

road curves, exaggeration of size due to the relative significance of depicted features, and 

hierarchical organization of geographic features (Tversky 2002). Most of these are partly aimed at 

simplifying the representation in order to minimize the amount of memory and processing required 

for interpreting the information (Tversky 2003).   

A particular form of simplification that may arise during the drawing of a sketch is generalization of 

information that leads to grouping of features that are conceptually similar or more spatially related. 

This type of generalization is called aggregation. When a query to a spatial database contains objects 

(aggregates) that represent aggregated groups of objects, valid solutions to the query may be 

excluded from the query results because the aggregate object does not match any objects in the 

database. In such a case, there needs to be a way of recognising and testing when aggregation may 

cause some results to be rejected, and then to find the objects in the database that correspond to 

the parts of the aggregate object of the query. 

In this thesis, a formal model for topology, namely the RCC-8, is used as the basis for a database 

model for storing topological information. We use this model to develop a method for refining the 

solutions of a sketch-based query based on the assumption that some solutions to the query have 

been excluded as a result of aggregation. The queries in this work are performed against a database 

containing topological information extracted from other sketches.  

1.2. Research Problem and Objectives 

The main objective of this study is to develop a method for refining the solutions of a sketch-based 

query by searching for groups of objects in the database that together approximately match an 

object in the query for which no matches were found. The database model will not store any 

geometric information for the sketches to be analysed. The main objective is achieved by pursuing 

the following sub-objectives: 

i. Develop a database model for topological relations between region objects in a sketch map. 

The implementation must have query processing algorithms based on the spatial query by 

sketch (SQBS) paradigm (Egenhofer 1997).  

ii. Extend the initial model with a method for discovering a group of regions in the database 

that have been combined into a single whole in the query. The method sought must be as 

simple as possible but consistent. 
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1.3. Outline of the Thesis 

Chapter 2 presents a review of the literature of the main background concepts used in the study. A 

brief background to qualitative spatial reasoning is given, details of the RCC model and spatial query 

by sketch methods are discussed, and a brief review of related work on spatial aggregation is given. 

The test model for the study is presented in Chapter 3 and the extension in Chapter 4. Chapter 5 

discusses the results of the development of the model and experiments with selected sketch maps, 

and outlines some of the challenges met in the process. Finally, the overall results of the work are 

concluded in Chapter 6. 
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2. Literature Review 

2.1. Formalisation of Space 

There are many ways to model spatial data qualitatively. The specific elements of any model depend 

on the desired (or available) level of detail and the properties of the space being modelled, among 

other things. Surveys in QSKR and QSR have described formal approaches in terms of their 

theoretical foundations, the spatial aspects being formalised, and the complexity of reasoning over 

the representations of each approach (Cohn and Renz 2007; Renz and Nebel 2007). For example, 

logic based approaches such as RCC are distinguished from algebraically motivated ones such as the 

9-intersection model, while different models can also be distinguished by the dimension of the 

entities that are considered as primitive spatial entities of their domains.  

Aspects of space can be distinguished in terms of the mathematical theories used to model them. 

Papadias and Sellis (1993) note that (according to Buisson (1989)):  

“… the spaces of interest in spatial reasoning are topological spaces which include only concepts of 

connectedness and continuity, vector spaces which deal with vectorial dimensions and directions, 

metric spaces which deal with the concept of distance and Euclidean spaces which admit notions of 

scalar products, orthogonality, angle and norm.” (Papadias and Sellis 1993, p.2) 

In particular, topology, direction and orientation, distance, size, and shape have been investigated to 

some depth in QSR research and a brief discussion of approaches that have been studied for each of 

these aspects is give by Cohn and Renz (2008), Renz and Nebel (2007), as well as Bennett (2008).  

On topology, the two most popular models are the RCC-8 and the 9-intersection. RCC-8 is a model of 

the Region Connection Calculus originally presented in (Randell, Cui and Cohn, 1994). The 9-

intersection model is conceptually similar to the RCC-8 in terms of the topological distinctions made 

between different configurations of regions in space, but is based on the algebra of closed and open 

point-set topologies (Egenhofer and Franzosa, 1991). Therefore, a point is a primitive spatial entity in 

the 9-intersection model which also allows both, lines, and regions as spatial entities in its domain. 

Direction and orientation calculi are more difficult to deal with in 2-dimensional space because they 

require a frame of reference and an order (clockwise, left-right) in which relations between objects 

are referred to. The double cross calculus provides a mechanism for computing relative position 

based on an extrinsic frame of reference. This calculus is more suited to points than extended spatial 

objects such as lines and regions. Star calculi are too numerical that it is possible to define a 

coordinate reference system on them (Cohn and Renz 2007). This is not well suited to sketch map 

aggregation (combination) because sketch data is defined at different levels of granularity and 

abstraction. Calculi with an extrinsic frame of reference such as ones that use cardinal directions (N, 

S, E, W) are also well suited to reasoning with points. A final category for consideration, are 

approaches designed to work mainly for 2-dimensional regions. The first uses Allen’s interval 

algebra, treating the whole frame of reference as a combination of two orthogonal 1-dimensional 

reference frames. Each relation then becomes a pair of two interval relations. The other one is the 

direction-relation matrix (also referred to as the Cardinal Direction Calculus - CDC) in which 

directions are decided based on 9 sectors formed by the minimal bounding axes of a region (Goyal 

and Egenhofer 2001). Because the shape of a region determines its minimum bounding rectangle 
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this affects the direction relations that can be derived between any two regions and sometimes 

makes it difficult to derive definite direction information using a calculus such as CDC (Egenhofer 

1997). While this is the case, direction relations are an important component of qualitative spatial 

representations used in spatial query evaluation. Section 2.3 below describes how direction relations 

are used in SQBS and in section 5.4 direction relations are discussed with respect to the number 

results returned in a query.  

Reasoning in QSR is achieved using a variety of approaches of which the most popular are constraint 

based techniques (Renz and Nebel 2007). These approaches are based on the fact that the 

relationships between objects can be given in the form of constraints. A constraint over a set of 

variables � consists of a relation � and an n-tuple of variables from �. The constraint is said to be 

satisfiable if there exists an instantiation of the variables that is also a member of the relation �. 

Such an instantiation is said to satisfy the constraint �. A spatial reasoning problem can then be 

formalised as a constraint satisfaction problem (CSP) which consists of the set �, and a set of 

constraints over �. The desired solution is an instantiation of the variables such that all constraints 

are satisfied. CSPs are used for verifying the consistency of sets of relations and for comparing 

different constraint sets as graphs. A formal discussion on formulating and solving constraint 

satisfaction problems with unary and binary constraints is given in Kumar (1992). A note worthy 

point is that while binary constraints form edges between variables in the graph of a CSP, unary 

constraints are viewed as edges from variables to themselves (a loop on the same graph node). 

However, for simple applications such as the one presented in section 2.3, unary constraints may be 

excluded from the graph of the CSP because they would first be used to identify possible instances 

of the variables. This way the process is broken into two parts, the first being elimination of those 

instantiations of the variables that are not consistent with the unary constraints and then the 

evaluation of binary constraints. 

2.2. RCC -8 

The RCC theory is built on the concept of connectedness defined using one primitive dyadic relation, 

�, that determines for any two regions � and � whether the regions are connected. The theoretical 

foundations of the broader theory are rooted in earlier work by Clarke (1981, 1985) – see Randell 

Cui, and Cohn (1994). In broad terms �(�, �), read ‘� connects with �’, is true if and only if the 

topological closures of � and � share a common point. In the original publication of the theory, no 

distinction is made between whether a set is considered as closed, open, or both. The theory 

provides two additional axioms which make it possible to define a basic set of binary relations. The 

axioms state that � is reflexive and symmetric: 

 ∀��(�, �) …. � is connected with itself (reflexivity) 

∀��[�(�, �)  → �(�, �) ] …. If � connects with � then � connects with � (symmetry) 

The whole set of basic relations derived from � can be embedded in a relational lattice with 

elements ordered in such a way that every higher relation subsumes all lower relations with which it 

is connected (Figure 1). This means that every relation higher in the lattice implies a disjunction of all 

lower relations connected to it while a lower relation implies a conjunction of all higher relations 

connected to it. The following basic relations were defined and presented in the original RCC paper 

of 1994: 

� ∀��[��(�, �) ↔  ¬�(�, �)] …. ‘� is disconnected from �’, 



  7 

 

� ∀����(�, �) ↔ ∀�[�(�, �) → �(�, �)]� … ‘� is a part of �’, 

� ∀�����(�, �) ↔ [�(�, �) ∧ ¬�(�, �)]� … ‘� is a proper part of �’, 

� ∀�����(�, �) ↔ [�(�, �) ∧ �(�, �)]� … ‘� is identical with �’, 

� ∀����(�, �) ↔ ∃�[�(�, �) ∧ �(�, �)]� … ‘� overlaps �’, 

� ∀�����(�, �) ↔ [�(�, �) ∧ ¬�(�, �) ∧ ¬�(�, �)]� … ‘� partially overlaps �’, 

� ∀�����(�, �) ↔ [¬�(�, �)]� … ‘� is discreet from �’,  

� ∀�����(�, �) ↔ [�(�, �) ∧ ¬�(�, �)]� … ‘� is externally connected with �’, 

� ∀�� ����(�, �) ↔ ���(�, �) ∧ ∃�[��(�, �) ∧ ��(�, �)]�� … ‘� is a tangential proper part 

of �’, 

� ∀�� �����(�, �) ↔ ���(�, �) ∧ ¬∃�[��(�, �) ∧ ��(�, �)]�� … ‘� is a non-tangential proper 

part of �’. 

The relations P, PP, TPP, NTPP have inverse relations denoted PI, PPI, TPPI, and NTPPI respectively 

which means that these relations are non-symmetrical, while the remainder are symmetrical. The 

inverse of a relation is defined as the converse truth of the relation, so ∀��[���(�, �) ↔ ��(�, �)]. 
RCC-8 consists of subset of eight of these basic relations that are JEPD. In Figure 1 these are the ones 

closest to the lower bound of the lattice. Beyond the original interpretation of the primitive 

relation �, Bennett (2000) has given alternative interpretations with respect to different 

mathematical theories, notably the interpretations in point set topology that distinguish between 

open and closed sets. In the closed interpretation a region is identified with a regular closed set of 

points. Two regions are connected if they share at least one point and they overlap if their interiors 

share at least one point. In the open set interpretation regions are connected if their closures share 

at least one point, and they overlap if they share at least one point (Bennett, 2000). Both 

interpretations are consistent with propositions defining the relationships between interiors, 

boundaries, and closures of spatial regions given by Egenhofer and Franzosa (1991). This relationship 

between the two formalisms makes it possible to apply either model on the same definition of 2-

dimensional spatial regions so that reasoning differs only in the operations employed and not in the 

formal specification of the input.  

Some reasoning tasks with RCC-8 can be achieved using the RCC-8 composition table and the 

conceptual neighbourhood graph among other more complex approaches. Using the RCC-8 

composition table inferences of the following nature can be made; given two relations ��(�, �) 

and � (�, �), what is the set of relations that can possibly hold between � and � (Cohn, Bennett, 

Gooday, and Gotts 1997). Using the RCC-8 composition table, a set of RCC-8 relations among a set of 

objects can be tested for consistency by ensuring that relations among every 3 objects in the set are 

consistent (this is known as path-consistency which is contrasted from consistency per se, which 

requires all relations to be consistent with each other simultaneously). This is done by formalising 

the spatial scene as a CSP where the binary relations are the RCC-8 relations among objects in the 

scene.  
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Figure 1: Lattice of the subsumption hierarchy of the basic binary RCC relations (reproduced from Randell, Cui, Cohn 

1994). 

2.3. Spatial Query by Sketch and Spatial Scene Queries 

SQBS is a method for performing query operations in spatial databases based on a sketched 

representation of the desired spatial configuration. According to Egenhofer (1997), traditional query 

languages are tedious to use and their strict syntax and grammars together with the inherent nature 

of geographic information (that it is often vague, imprecise, or not standardized) impose a limitation 

on their usability. He argues that the fact that verbal spatial descriptions are usually ambiguous is a 

fundamental problem that may lead to misinterpretations. 

In SQBS a sketch map drawn by a user is decomposed into individual objects represented in the 

sketch. The spatial and non-spatial properties of the individual objects, and the spatial relations 

among the objects form part of the formal representation of the spatial query. Five types of spatial 

information are used in SQBS: coarse topological relations, detailed topological relations, metrical 

refinements, coarse cardinal directions, and detailed cardinal directions. Coarse topological relations 

are relations of the 9-intersection model (Egenhofer and Herring 1990). Detailed topological 

relations consider details of the interaction between the boundaries of two non-disjoint spatial 

entities. Metrical refinements are measures used to quantify topological relations at the level of 
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interior and boundary interactions of spatial entities. Cardinal directions are exploited using CDC at 

two levels. The coarse cardinal directions provide a means for determining the relative direction of 

one object to another broadly. For example object ! could be north (N) and north-west (NW) of 

object ". Detailed cardinal directions, on the other hand, say how much north or north-west the 

object is by calculating the proportion of the objects area (or length for lines) falls into each sector 

formed by the minimal bounding axes of the referent object. 

In contrast with other visual query systems, which require the user to draw close approximations of 

the desired spatial configurations, SQBS primarily retrieves data based on coarse topological 

relations and eliminates undesirable results using the four other types of information described 

above. If no results remain at the end of the query processing, the query may be relaxed by 

substituting a relation from the query with the union of the relation with its conceptual neighbours 

(Egenhofer 1997).  

A SQBS query is a form of spatial scene query where the query processor attempts to find a spatial 

configuration that is similar to that expressed in the query. The central question in spatial scene 

queries is how to establish the associations between the elements of one scene and the elements of 

another scene (Nedas and Egenhofer, 2008). A spatial scene query comprises a set of spatial objects 

and relations between the objects. A query is formulated as a spatial CSP. For each spatial object, 

the properties of the object such as its feature class, shape or size become unary constraints for the 

query, and the binary relations between the objects become binary constraints of the query. 

The evaluation of the query then involves finding configurations in the database that satisfy all the 

constraints of the query. This is achieved by constructing an association graph which consists of a set 

pairs of variables (objects in the query) and database objects. The set of pairs are the nodes of the 

association graph, while the set of combined constraints become the edges of the graph. The 

construction of the association graph of the CSP involves first resolving the unary constraints by 

matching query variables to regions. For each variable "#  in the query, add a node $"# , !%&  to the 

association graph if object !% in the database satisfies all the unary constraint of "#. An edge is added 

between every pair of nodes $"# , !%& and ("' , !() of the association graph if the binary constraints 

between objects !% and !( satisfy the binary constraints between variables "#  and "' of the query. 

The final solutions to the query comprise all maximal complete subgraphs (maximal cliques) of the 

association graphs. Several algorithms for extracting maximal and maximum cliques of a graph have 

been developed (e.g. Bron and Kerbosch 1973, Tomita et al 2006, Koch 2001). 

Solutions obtained from this type query evaluation are not always exact. Three types of solutions are 

distinguished, namely, complete solutions that are realised from maximum cliques of the association 

graph when all variables are part of the association graph, incomplete solutions that correspond to 

maximal cliques with only a subset of the query variables included, and the empty solution when no 

clique was found in the association graph. 

Because there are many possible solutions (many possible association graphs and cliques per graph), 

to prioritise the results of a query, measures of similarity between the query scene and the database 

scene have been proposed that take into account three components: 

i. An object similarity component measures the similarity between objects in the query scene 

and those in the database scene. 
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ii. A relation similarity component measures the similarity between the binary relations among 

objects in the query scene and those in the database scene. 

iii. A scene completeness component that measures the similarity of two spatial scenes with 

respect to completeness (i.e. based on number of objects in the query scene, number of 

objects in the database scene, number of objects matched – or not matched).  

The development of the proposed methods for scene similarity assessment was motivated by three 

psychological insights. First, that people start scene comparisons by locating possible object-

matches, that they associate objects so that relations also correspond, and that with a gradual 

decrease in similarity, very different scenes become irrelevant (Nedas and Egenhofer 2008). A 

minimum value is imposed on each similarity component which restricts solutions included in the 

final results that are returned from the query. In this case we want to ensure that all spatial 

configurations in the database that are potential solutions to the query can be found. If there is an 

aggregated region in the query sketch then it will reduce the similarity measures of all three 

components. The present study attempts to reduce this effect by finding database regions that may 

correspond to an aggregated region in the query sketch. 

2.4. Generalisation and Spatial Aggregation 

One problem that has not been tackled by the SQBS and spatial scene query models discussed above 

is the tendency for people to generalise and schematise perceived environments (Tversky 1993, 

2002) and how these generalisations and schematizations are manifested in the sketch maps that 

people draw. Wang (2009) has made proposals towards alleviating the effects of human 

schematization and systematic errors in sketch map formalisation. The methods proposed 

complement the detailed cardinal directions used in SQBS by considering among other things angles 

and curvature of objects in route maps. 

Generalisation is a basic human activity in which unimportant specific aspects of reality are 

discarded and focus is given to the important ones. The concrete reality can be conversely viewed as 

a combination of the general and specific aspects that were separated during the generalisation. As 

a mental process, generalisation involves, among other functions, distinction, combination, and 

abstraction (Brassel and Weibel 1988) of details from the reality. For sketch maps, the structure 

captured by the sketches is the structure of the information being conveyed as opposed to the 

structure of the represented environment. Also, when sketching regions, people impose a 

hierarchical structure on the features depicted in the sketches emphasizing those with a larger 

environmental scale (Tversky 2002). From this it may be construed that the process of spatial 

generalisation as human activity is also impacted by the hierarchical organisation of information 

internalised by an individual or by at least by the process that generates this hierarchical 

representation.   

It is therefore necessary that a model for sketch-based query should support the generalisation of 

spatial features. One method of spatial generalisation is spatial aggregation, in which process similar 

regions of space are combined to make one region based on certain attributes common to all 

regions affected. In a GIS application aggregation can be done on regions of the same feature type 

based on a real valued function (e.g. in Indulska and Orlowska, 2002). For sketch maps, however, 

where feature attributes may not be homogeneous and the accuracy of their values generally poor, 
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there is need for a non-numerical model for deciding how regions should be aggregated as spatial 

entities based on non-homogeneous but possibly related criteria.  

From a topological perspective, the aggregation of spatial regions in a spatial scene presents some 

problems with respect to the consistency of the configuration obtained. This problem has been 

investigated by Tryfona and Egenhofer (1997) but no complete solution for the purely qualitative 

case has been found in the literature. Based on the 4-intersection model, a variation of the earlier 

cited 9-intersection model, this result is derived from an analysis of the interaction of the interiors 

and boundaries of the aggregate region and a third region on the one hand, and between the parts 

and the third region on the other. 

The results reported by Tryfona and Egenhofer show that for an aggregate region with two parts, 

there are three groups of possible spatial configurations that require increasingly more information 

in order to determine their consistency. Their study distinguishes aggregate regions with connected 

parts (contiguous regions) and aggregate regions with disconnected parts. Aggregate regions with 

connected parts were analysed and of the 64 possible relations between an aggregate with two 

parts and another region, only 27 were found to be consistent. The second case was analysed based 

on the first case and a total of 31 relations were found to be consistent.  In this study we assume 

that aggregate regions are one piece (with connected parts) so the result will be comparable only to 

the first case. 
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3. Test Model Design 

The model was implemented in the Postgresql Database Management System. All functionality is 

written in the built-in procedural language PL/PGSQL which presented a few challenges as it is 

limited in terms of data structures as well as being a purely procedural language without support for 

session (global) variables. However, the implementation was sufficient for testing the query system 

with a variety of input queries on different topological configurations extracted from sketch maps. 

Objects in the sketches, which are interpreted as 2-dimensional regions in the plane, are 

represented by identifier labels or ‘region names’. Region names are stored as text fields of variable 

size no more than 48 characters in length. All operations on data in the model are thus performed 

using references to the region names.  

3.1. Database Design 

Internally, each region name is associated with a unique region id (reg_id ). User tables can be 

created and then associated with the internal structure by declaring one of their columns as a 

column of region names. This is achieved by invoking the function, set_rcc_table(table_name, 

column_name) , which alters the column to a 48-character variable length text field with unique 

values and sets a trigger to execute before each one of the three row-level operations insert, 

update, and delete. set_rcc_table  also changes the name of the column to the_rcc_region . 

Once the link has been established, a user can manipulate his/her user tables using Postgresql’s 

standard SQL statements and other functions. All changes to values in the column of region names 

will be reflected in the internal tables of the model. Other functionality of the model is accessible 

through several user interface functions discussed in the following sections. Figure 2 shows an 

overview of the overall system design for the implementation. 

 

Figure 2: Overview of the system design showing the main elements of the system and their interactions 

The database model has three basic tables (Figure 3). The first table called rcc_spatial_regions  

relates the unique region ids with user given region names and tables. From a user’s perspective, 

this allows the design of the database to be independent of the how binary topological constraints 

are represented internally since the database design is decoupled from internal model design. 

Decoupling of the two components is also important for easy maintenance of the software because 
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later changes made to the internal program code did not require changing the user interaction 

methods or the functions that implement them. 

The table c_clust  keeps track of all regions that are altogether contiguous. Each record of 

c_clust  consists of a cluster identifier number and the number of region names in the cluster. 

Upon insertion into the database, a region is assigned to the default cluster (cluster_id  is 1). The 

default cluster is associated with all isolated regions. A region is subsequently removed from a 

cluster and added to another cluster when a constraint has been imposed on it with other regions in 

the database such that the region is no longer connected to any member of the original cluster. Two 

clusters are combined into one if any two regions, one from each cluster, become connected. 

Finally, the table rcc_constraint_network  stores records of basic RCC-8 constraints over the set 

of regions corresponding to the region names. Each constraint is stored as an ordered pair of region 

identifiers and a RCC 8 relation name. 

 

Figure 3: Model diagram for main relations 

There are several other tables that support data processing functionality. The most important of 

these are rcc_rel_comp , rcc_rel_compb8 , rcc_u_constraints , rcc_b_constraints , 

rcc_qryreg_assoc , qry_soln_graphs , and qry_usr_soln . 

rcc_rel_comp , rcc_rel_compb8  are the RCC-8 composition table for the eight basic relations 

and the composition table for all possible unions of RCC-8 relations respectively. The latter is 

computed from the former using the algorithm implemented by Fehling, Nebel, and Renz (1998). 

rcc_u_constraints  and rcc_b_constraints  are used to store unary and binary constraints, 

respectively, for each query. rcc_qryreg_assoc  and qry_soln_graphs  are used for storage of 

intermediate results during query processing, while qry_usr_soln  is used as a template for 

presenting the final results.  

3.2. Data Input Methods 

All region names added to the database are associated with a particular sketch map (identified by 

the sketch’s name). Data are inserted, updated, or deleted using normal relational DML operations 

and two functions: one used to indicate the name of a sketch map to which any subsequently 

inserted regions belong (use_sketch(sketch_name) ), and the other to indicate that any 
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subsequently inserted regions should not be added to the currently selected sketch map. An 

insertion without a prior selection of a sketch map using use_sketch(sketch_name)  will fail. 

Three functions that take as arguments a binary constraint over two region names in the database 

enable the input and manipulation of constraints imposed on regions in a sketch. The function 

related_regions(primary_region, secondary_region, r elation)  adds the following 

constraint to the database: primary_region { relation} secondary_region . For example, 

if region X is a tangential proper part of region Y, then related_regions(X, Y, TPP)  inserts X 

{TPP} Y  into the table rcc_constraint_network . 

 

Figure 4: Exctract from a sketch map added to the database model 

The function unrelated_regions(primary_region, secondary_region)  removes the 

constraint imposed by related_regions  on the given pair of regions. Since the database does not 

explicitly store constraints for which the corresponding relation is DC, calls to the function 

related_regions  with the relation DC simply trigger a call to unrelated_regions . Specifically, 

these two functions are responsible for maintaining the cluster index by updating it whenever 

regions move between clusters.  

SELECT use_sketch('KiwiFarm 1'); 
 
INSERT INTO farms(name, description, the_rcc_region )  
VALUES ('Block 3', 'Farm division block 3', 'S1Bloc k3'); 
INSERT INTO farm_properties(feature, name, value)  
VALUES ('S1Block3', 'Category', 'spatial organisati on'); 
INSERT INTO farm_properties(feature, name, value)  
VALUES ('S1Block3', 'Feature', 'blocks'); 
 
INSERT INTO farms(name, description, the_rcc_region )  
VALUES ('Block 4', 'Farm division block 4', 'S1Bloc k4'); 
INSERT INTO farm_properties(feature, name, value)  
VALUES ('S1Block4', 'Category', 'spatial organisati on'); 
INSERT INTO farm_properties(feature, name, value)  
VALUES ('S1Block4', 'Feature', 'blocks'); 
 
SELECT end_sketch(); 
 

SELECT related_regions(get_region_id('S1Block3', 'f arms'), 
get_region_id('S1Block4', 'farms'), 'EC');  

Listing 1: Script for data input corresponding highlighted regions in Figure 4 
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Listing 1 above shows the SQL script that adds data about the highlighted regions in Figure 4 to the 

database. The first line instructs the database to associate all data about regions inserted from that 

point with the sketch named ‘Kiwi Farm 1’. The reference to the sketch does not have to exist prior 

to the call, but if the name was already added to the database, then the existing reference is used. 

The last but one call indicates to the system that the input has finished. Any data added after this 

will not be associated the current sketch and if no other sketch is specified, input will fail for any 

value of the column the_rcc_region . The final line instructs the system to add a constraint (EC) 

between the two recently added regions. The table farm_properties  here illustrates that other 

tables can be linked to a table with region names and data in those tables may be used during a 

query as seen in the coming sections.  

The last function update_region_constraint(primary_region, secondary_ region, 

relation)  allows constraints to be edited in a consistent way by ensuring that no constraint is 

previously imposed on the given pair of regions prior to an update. Basically, an update is a 

sequence of two function calls, first to unrelated_regions  and then related_regions .  

3.3. Consistency and Path-consistency 

Consistency checking is used to maintain the database in a consistent state every time a constraint is 

added or removed. Because path-consistency implies consistency in a basic RCC constraint network, 

we only apply a path-consistency algorithm when testing for consistency. Path-consistency also plays 

the role of ensuring that a set of constraints is complete by adding to the set the inverses of all 

constraints in the set and for every constrained object the constraint that the object equals itself. 

In the implementation of the model, path-consistency is checked using a variation of Van Beek’s 

path-consistency algorithm for CSPs (van Beek 1992). The algorithm used was proposed by (Stocker 

and Sirin 2009) and uses the recursive procedure )��$�#%, �& to verify the path-consistency at the 

node (*, +) of the CSP but allows for the empty and the universal relations to be ignored.  

The path consistency algorithm takes a set of RCC-8 constraints over a set of variable say, � and for 

every pair of variables * and  + in � it ensures that the relation �#%  is a subset of the composition of 

relations �#' and �'% for all , in �. Each time a constraint is checked, the converse constraint is also 

checked ensuring that the composition is also consistent with the inverse relation. Initially a 

constraint is placed in a queue. For each composition �#' o �'% the constraint for �#%  is compared 

with composition and if need be it is revised taking the intersection of the sets of relations of the 

two constraints. �#%  is placed back in the queue and reprocessed later until a fixed point at which it 

does not need to be refined to be consistent with any of the constraints derived from composition 

has been reached. The result is a set of binary constraints equivalent to the original set or the empty 

set which is indicated by a NULL value in the implementation. The result is an equivalent of the 

original in the sense that every triple of constraints that are consistent in the original set are also 

consistent in the returned set.  
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Function: PATHCONSISTENCY(Θ) 

Input: Set Θ of binary RCC-8 constraints over a set of variables V. 

Local: Set G of binary RCC-8 constraints over V. 

Output: Path-consistent set equivalent to Θ, or NULL if inconsistency is detected. 

1.  if Θ = Ø then 

2.   return Θ 

3. end if 

4.  G ← complete(Θ) 

5.   if G ≠ Ø then 

6.    Q ← {Rij | i, j ϵ V and Ø ≠ Rij ϵ G} 

7.    while Q ≠ Ø do 

8.     G ← ISCONSISTENT(G, Q, POP(Q)) 

9.     if G = Ø then 

10.      Q ← Ø 

11.     end if 

12.    end while 

13.  end if 

14.   return G 
 
  

Function: ISCONSISTENCT(G, Q, Rab) 

Input: Set G of binary RCC-8 constraints over a set of variables V, 

FIFO set Q of binary RCC-8 constraints over V, 

Binary constraint Rab on variables a, b ϵ V. 

Output: Set equivalent to G that is path-consistent at Rab, or NULL if inconsistency 

is detected. 

1. for each Rbc ϵ G, c ≠ Ø, a, b do 

2.   G ← RELADD(G, Q, Rab o Rbc) 

3.    if G = Ø then 

4.     return G 

5.    end if 

6.  end for 

7.   return G 
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Function: RELADD (G, Q, Tac) 
Input: A set G of binary RCC-8 constraints over a set of variables V, 

FIFO set Q of binary RCC-8 constraints over V, 

Binary constraint Tac on variables a, c ϵ V derived from the composition 

over (a, b) and (b, c). 

Local: Uac ,Vac  orginal and refined constraint on pair (a, c). 

Output: Path-consistent set equivalent to G, or NULL if inconsistency is detected. 

1.  if T = Ø then 

2.   Return G 

3. end if 

4.  Uac ← {Rij | i = a, j = c, Rij ϵ G} 

5.   if Uac = Ø then 

6.    Vac ← Tac 
7. Else 
8.   Vac ← Tac ∩ Uac 
9.   if Vac = Ø then 
10.    G ← Ø 
11.    return G 
12.   end if 
13.   if Uac = Vac then 
14.    return G 
15.   end if 
16.   G ← G - {Uac} 
17.  end if 
18.  G ← G U {Vac} 
19.  Q ← Q U {Vac} 

20.  RELADD (G, Q, inverse(Vac)) 

21.   return G 
Algorithm 1: PATH-CONSISTENCY algorithm (from Stocker and Sirin, 2009) 

3.4. Database Query 

Queries on the data are formulated in two ways. A simple query may be an SQL select query to 

retrieve the set of region pairs that are constrained by a certain relation or to view the relation that 

is constraining a pair of regions. In addition, a simple query may be combined with other SQL queries 

to produce more complex but perhaps more useful results. 

The second type of query is based on the query by sketch paradigm. As in Nedas and Egenhofer 

(2008), a sketch-based query is composed of two parts: A set of unary constraints on each variable 

from a set of variables �, and a set of binary constraints on members of the Cartesian product V×V. 

Such a query may have several solutions and a solution to the query may be complete, incomplete, 

or empty. 

3.4.1. Relational Queries 

Relational database queries can be used to answer to basic questions with respect to the sketch 

maps topology: Which regions are constrained by a given relation? And, which relation constrains 

the given pair of regions? In addition, any other queries maybe performed on both the internal and 

user defined database tables. 
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3.4.2. Sketch-based Queries 

The sketch-based query is modelled after Nedas and Egenhofer’s spatial query with a few 

differences. According to their paper a spatial-scene query “has two major components: objects and 

relations among the objects” (Nedas and Egenhofer 2008). The analysis and evaluation of the query 

involves matching properties of objects expressed in the query and their binary constraints with 

those of objects in the database. These correspond to unary and binary constraints for the query 

respectively. 

Each sketch that will be used to query the database must first be formally analysed to extract the 

topological relations among the objects depicted in the sketch. A manual process for achieving this is 

used in this study. 

3.4.2.1. Sketch-based Query Presentation 

Queries to the database are constructed by a series of calls to two functions, one for setting unary 

constraints and another for setting binary constraints for the query. Unary constraints are given as 

any SQL statement returning sets of region names.  

The function unary_qry_constraint()  must be called once for each object  (variable) in the 

query sketch. Any variable not passed explicitly to the query system will not be processed. The 

function unary_qry_constraint()  takes three arguments, namely, a variable name, the table 

from which regions must be fetched, an SQL statement as indicated above. As each variable is 

added, it is assigned a position in natural order starting from 1 for the first variable. Apart from the 

requirement that the SQL query must return a set of region names, the manner in which it is 

constructed and/or processed by the database backend is not influenced by the design of the query 

processing procedures. Consequently, there is no straight forward way to isolate the individual 

components or attributes of the unary constraints.  

The function binary_qry_constraint(string_of_binary_constraints)  must be called 

exactly once before executing the query. This sets the binary constraints placed upon the query 

variables. Binary constraints are given as a string of the following format: 

primary_region secondary_region relation [AND prima ry_region 
secondary_region relation […] …]  

3.4.2.2. Sketch-based Query Processing 

Once the query variables and constraints have been set, the query is executed by calling the function 

rcc_eval_qry() . This function takes a Boolean argument specifying whether constraint relaxation 

for binary constraints should be attempted. The main processes that occur include query validation, 

variable to region name matching, creation of the association graph from each set of matches, 

generation and storage of viable solutions from the association graph. 

3.4.2.2.1. Query Validation 

The process of query validation involves creating a matrix structure from the binary constraints and 

ensuring that the set of constraints is inverse complete, equals complete, and path-consistent. This 

ensures that all implicit constraints are made explicit during validation. 
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The function returns a matrix representing a set of path-consistent constraints, or NULL if the 

constraints specified are inconsistent. But as a result of the way the path-consistency function 

processes the CSP, if the constraint between a pair of regions could not be discovered, this particular 

constraint is simply made NULL as opposed to removing the concerned regions from further analysis 

or failing the validation. This may contrast however with the Egenhofer approach because in that 

case constraints are not atomic but elements of Cartesian products several constraint sets. 

3.4.2.2.2. Variable Region Matching 

For each variable execute the associated SQL statement to retrieve the region names that belong to 

tuples returned from executing the SQL statement. This results in the creation of a list of matches 

between variables and region names. This match-list is then used to create a set of possible solutions 

to the query. Each potential solution set is a subset of the Cartesian product � × � in which each 

variable appears at most once, and each region appears at most once. This removes unnecessary 

steps when checking binary constraints. The condition set by Nedas and Egenhofer, however, only 

stipulates that each variable must appear at most once in any given association graph since in their 

approach only a single association graph is created for all possible matches. 

As shown in Algorithm 1 the procedure for constructing solution match sets is iterative. Starting with 

one variable, each variable-region match is placed in its own solution match set. Then for each set, 

new sets are created by including every match of the subsequently selected variable into a new 

solution set. This process is repeated while ensuring that a match is not added to a solution set if 

another match with the same region was previously added. Additionally, the algorithm used restricts 

the regions that can be added to be from the same sketch. This introduces a bias in the content of 

results that can be obtained since only sketches for regions that matched the first variable will be 

included in any solution set. For purposes of our experiment this wasn’t a problem because the 

number of sketch maps was small and the types of features used was limited so that every sketch 

map had at least one feature of the popular feature types.  

Algorithm: MAKE-SOLUTION-SETS 

Input: Set L of variable-region pairs (v, u) s.t. v ϵ V and u ϵ D the set of region 

names in the database. 

Local: newLSS lists of members of L. 

Output: Set S of lists of members of L. 

1.  S ← {Ø}  

2.  for each v ϵ V do 

3.   for each LSS ϵ S do 

4.    for each (v, u) ϵ L do 

5.     if (u is not already in LSS and LSS does NOT contain a  

     region from DIFFERENT sketch as u) 

6.      newLSS ← LSS U {(v, u)} 

7.      S ← S U {newLSS} 

8.     end if 

9.    end for 

10.    if newLSS ≠ Ø then 

11.     S ← S - {LSS} 

12.    end if 

13.   end for 

14.  end for    
Algorithm 2: Construction of solution sets 
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The order in which variables are processed in the procedure determines the number and content of 

the output solution match sets and therefore of the final solution. This is because of the restrictions 

on inclusion stated above, and the possible variations in the number of regions matched to each 

variable and vice-versa. The algorithm mitigates this effect slightly by processing variables with the 

highest number of matches first. This ensures that for each variable, there is a higher possibility to 

find at least one solution set to which it can be included. A bad case is when all variables match 

exactly one region and some regions are repeated, in which case only the first encountered variable 

matching the repeated region is included in the solution.  

3.4.2.2.3. Construction of the Association Graph 

The association graph is constructed in a similar manner as Nedas and Egenhofer’s although our 

approach is based on building smaller sets of potential solutions. Whenever a constraint is NULL, it is 

excluded from the final solution. So, for any pair of variable-region matches, if the corresponding 

constraints are NULL, then they cannot be in the same solution. The resulting association graph is 

represented as a matrix of the same dimension as the query constraint graph. Whenever the 

constraint between regions in the database did not satisfy constraint between variables matched to 

those regions, the association graph entry corresponding to the joint constraint between the 

matches is set to NULL. 

3.4.2.2.4. Generating Solutions 

The final query solutions are created from the solution sets using a clique enumeration procedure. 

The maximal clique algorithm version 2 of Bron and Kerbosch (1973) is applied on each association 

graph extracting cliques that are either maximal or maximum (Algorithm 3). Each clique is a solution 

to the original database query. The solutions are stored in the table qry_soln_graphs, each with a 

reference to the solution set that generated it and a unique integer to identify the solution. 

The solutions of the query are however not unique because of several obvious reasons. Firstly, the 

construction of solution sets allows for redundancies since two solution sets may have exactly the 

same variable-region matchings for a proper subset of the total number of variables. This is certainly 

the case where there are no unary constraints on any of the variables and each variable is matched 

with every other region in the database. Secondly, because we enumerate all maximal cliques of 

every solution graph, even those solution sets that do not have exactly the same set of regions, may 

end up giving the same solution. The alternative approach to find only the maximum clique is not 

anymore effective since it may instead reject valid (incomplete) solutions with regions that more 

closely match the regions given in the query in favour of a poorly matching complete solution. 

3.4.2.2.5. Presentation of Results 

Results are obtained solution by solution by calling rcc_return_next()  which returns subsequent 

solutions in lexicographic order of the id of the solution itself and the id of the solution match set. 

Each solution is a database relation instance of the type qry_usr_soln . The table qry_usr_soln  

lists pairs of region names with the corresponding relation between the pair of regions.  
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Algorithm: MAXIMAL-CLIQUES 

Input: Graph G=(V, E). 

Local: FIFO set Q of binary RCC-8 constraints over V. 

Output: Path-consistent set equivalent to Θ, or NULL if inconsistency is detected. 

 
Function: extract_maximal_cliques(C, P, X) 

Input: clique to be extended C, set P of candidates vertices that are all 

connected to vertices in C, set X of vertices already processed and now 

excluded from the current extension. 

Local: Pivot point up used by the branch and bound method to truncate the 

search tree. 

Output: Set S of maximal complete subgraphs of G. 

1. if P = Ø then 

2.   Report C as maximal clique 

3. end if 

4. for each v ϵ P U X do 

5.   if |NEIGHBOURS(v)| < MIN({|NEIGHBOURS(w)|; w ϵ P U X }) then 

6.    up ←  v 

7.   end if 

8. end for 

9. for each u ϵ P do 

10.   if NOT u ϵ NEIGHBOURS(up) then 

11.    P ←  P-{u} 

12.    Cnew ← C U {u} 

13.    Pnew ←  P ∩ NEIGHBOURS (u) 

14.    Xnew ←  X ∩ NEIGHBOURS (u) 

15.    extract_maximal_cliques(Cnew,Pnew,Xnew) 

16.     X ←  X U {u} 

17.   end if    

18.  end for    

19. Return 
Algorithm 3: Bron-Kerbosch maximal clique algorithm version 2 (from a note on clique enumeration algorithms, Cazals  

and Karande 2008) 

Because redundant solutions always come up, there is another function rcc_return_unique() , 

which returns only unique solutions by grouping all equivalent solutions together and presenting 

them only once. Both functions return solutions in the same format including a solution number, and 

sketch id. After all solutions have been returned, a subsequent call to either of the functions loops 

back to the first solution and so on. 

3.4.2.3. Illustration of Sketch-based Querying with an Example 

Listing 2 shows the script for a query corresponding to the sketch shown in Figure 4. The query 

assumes that regions for the ‘House Site’ and ‘Drive In’ are already in the database. The first line 

calls a function that clears all variables and tables used during query evaluation. This is necessary to 

have a clean result because otherwise the solutions may contain unwanted information. This 

function applies only to the current session. A global version of it clears the data structures for all 

sessions, whether finished or active. Next is a series of calls to unary_qry_constraint ()  passing a 

different SQL statement for each variable. After this binary constraints are added to the query and 

then finally the query is executed by calling rcc_eval_qry(false) . The value false  tells the 
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model not to apply constraint relaxation during execution.   The statement SELECT * FROM 

rcc_return_unique(2) fetches next available unique solution of size greater than or equal to two 

from the query results. The output for the query is shown in Table 1. 

 

Session 

ID 

Sketch 

ID 

Solution 

Number 

Solution 

Match 

set 

Primary 

Variable 

Primary 

Region 

Secondary 

Variable 

Secondary 

Region 
Relation 

7616 2 1 284 A S1Block3 B S1Block4 EC 

7616 2 1 284 B S1Block4 A S1Block3 EC 

7616 2 1 284 A S1Block3 C S1DriveIn DC 

7616 2 1 284 C S1DriveIn A S1Block3 DC 

7616 2 1 284 A S1Block3 D S1HouseSite EC 

7616 2 1 284 D S1HouseSite A S1Block3 EC 

7616 2 1 284 B S1Block4 C S1DriveIn EC 

7616 2 1 284 C S1DriveIn B S1Block4 EC 

7616 2 1 284 B S1Block4 D S1HouseSite EC 

7616 2 1 284 D S1HouseSite B S1Block4 EC 

7616 2 1 284 C S1DriveIn D S1HouseSite EC 

7616 2 1 284 D S1HouseSite C S1DriveIn EC 

Table 1: Unique solution returned from query executed by script in Listing 2 

Listing 2: Script for a sketch-based query corresponding to Figure 4 

 

SELECT rcc_clear_qry(); 
 
SELECT unary_qry_constraint('A', 'farms ', 'select distinct a.the_rcc_region as 
the_rcc_region from farms a, farm_properties b  
  where a.the_rcc_region = b.feature and (b.name = ''Feature'' and 
b.value = ''blocks'')  
'); 
 
SELECT unary_qry_constraint('B', 'farms ', 'select distinct a.the_rcc_region as 
the_rcc_region from farms a, farm_properties b  
  where a.the_rcc_region = b.feature and (b.name = ''Feature'' and 
b.value = ''blocks'')  
'); 
 
 
SELECT unary_qry_constraint('C', 'farms ', 'select distinct a.the_rcc_region as 
the_rcc_region from farms a, farm_properties b  
  where a.the_rcc_region = b.feature and (b.name = ''Feature'' and 
b.value = ''driveways'') 
'); 
 
SELECT unary_qry_constraint('D', 'farms ', 'select distinct a.the_rcc_region as 
the_rcc_region from farms a, farm_properties b  
  where a.the_rcc_region = b.feature and ((b.name =  ''Feature'' and 
b.value = ''houses'') and (a.description ~* ''farm house'')) 
'); 
 
SELECT binary_qry_constraints('A B EC AND A C DC AN D A D EC AND B C EC AND B D 
EC AND C D EC'); 
 
SELECT rcc_eval_qry(false); 
 
SELECT * FROM rcc_return_unique(2);  
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3.5. Summary 

The design of the model presented here is simple in comparison with the original SQBS model of 

Egenhofer on which it is based. It does not take into account direction information and assumes that 

topological relations are simple and known exactly. This simplicity results in a larger set of results 

being returned for any given query. The inclusion of direction relations and detailed topological 

relations would narrow down the results because the constraints would be stricter.  

Our model also differs from the SQBS in the way topological relations are treated by using a different 

formalism, namely the RCC-8. The formalism employed allows us to directly import some algorithms 

like the one for path-consistency, and to also use some paradigms such as the hierarchy of relations 

expressed in the RCC subsumption lattice to make inferences about different combinations of 

relations under different functions such as composition, inverse, etc. The latter point is used in the 

next chapter to develop our model for refining solutions by analysing the database further to find 

out if a group of regions in the database may constitute parts of a single region in a query. 
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4. Refining Solutions  

As observed in some sketch maps obtained from an experiment done in this study and with the 

insights from psychology and GI Science, it is evident that spatial aggregation is a process that may 

be performed by people drawing sketch maps. The aggregation may be intentional, motivated by the 

application of the map, or it may be a consequence of an attempt to abstract from the reality only 

those aspects that are of interest, thereby simplifying the representation. Although it was not 

possible, in this study, to establish the extent to which aggregation may be used in the map 

sketching process, its occurrence presents challenges during query processing with sketch maps, 

since it is not possible to know, beforehand, whether constraints on a sketched region in a query can 

be satisfied by the combined constraints of a group of regions in the database.  

In this chapter, an extension to the test model described in chapter 3 is presented. The purpose of 

the model is to identify possible situations where a query variable may represent an aggregation of 

several regions in the database and then discovering a set of spatial regions in the database that 

satisfy the topological constraints of the aggregate with other regions in the query result. The 

regions so found become the parts of the aggregate and can be included in the solution in its place. 

As observed by Tryfona and Egenhofer (1997), the task of determining the consistency between the 

relations of an aggregate region and a third region, and the relations between its part and the third 

region is not trivial, especially for regions with disconnected parts. In fact, for some configurations it 

is impossible to determine consistency based only on course topological relations. As such, the 

solution proposed does not provide a definitive answer to the question, whether a group of regions 

in the database maybe aggregated to satisfy a query, but rather an approximate answer. The result 

is approximate in the sense that, while all regions identified may not introduce inconsistency in the 

overall configuration, there are relations for which we cannot determine, based on topology alone, 

whether the given combination of regions contains regions that facilitate the satisfaction of a 

particular query constraint. For example, if the aggregate contains another region, then if all parts of 

the aggregate partially overlap this region it is not possible to know whether the parts together 

cover this region completely or only partially (Figure 5).  

 

Figure 5: Two different relations realised between an aggregate (X U Y) and a third region (B) but with the same relations 

between the parts and B - PO(B, X) and PO(B, Y). 

The model assumes that there is only one aggregate region in the query, if any, and that the parts 

aggregated to the region form a contiguous group of regions (no isolated, disconnected parts). 
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Because of these assumptions, we only attempt to find such aggregates if the number of matches in 

the solution’s match set equals the size of the query or the size of the query minus 1. The first two 

assumptions are imposed to reduce the number of conditions that must be tested to determine 

whether the binary constraints of an aggregate’s parts are consistent with the binary constraints of 

the aggregate (section 4.2.2 below). Additionally, if we assume that there is more than one 

aggregate region then there must be appropriate heuristics for discovering them, deciding how to 

combine database regions, and testing the consistency of the binary constraints between the groups 

of database regions with constraints of the aggregated query regions. These problems are beyond 

the scope of this study. 

4.1. Analysis of the Problem 

To determine whether a variable in the sketch query may be referring to a group of contiguous 

regions, we analyse the solutions generated during the initial query processing. The building of 

solution sets provides a pattern in which the results can be studied further. Consider a query with / 

variables. For each set of solutions with 0 common variable-region matches, the 0 common 

variable-region match subset will be called a basis for that set of solutions. Every basis in the set of 

solutions is itself an incomplete solution. The question is, given a set of incomplete solutions, 

whether we can generate a complete solution from the basis and a certain combination of variable-

region matches or by introducing new variables to the query that correspond to parts of an 

aggregate region. 

If there are / − 0 variable-region matches that, if included in the basis, would lead to a complete 

solution, then we should already have the complete solution. So, in this case, there aren’t any such 

matches and of the / − 0 matches in each of the incomplete solutions there are some that fail to 

satisfy one or more binary constraints of the query.  

For the case 0 = / − 1, we want a query variable ) that satisfies the following conditions: 

i. For each solution match set under consideration, ) is matched with a different region or it is 

not matched at all; 

ii. For each solution, the exclusion of ) leads to the largest possible solution for the 

corresponding solution match set (a solution of size / − 1 for this case or 0 in general); 

iii. For each solution, the inclusion of ) in the solution leads to the exclusion of at least one 

other variable in the corresponding solution match set. 

Condition (i) is a consequence of the choice of a basis. Since all solution match sets have the same 

basis of size / − 1, the only different match is the one for variable ). The second condition (ii) 

ensures that we do not have a complete solution using this basis and makes a point that any 

matching of ) does not lead to a complete solution. Similar to condition (ii), condition (iii) provides a 

stronger test of the constraints of the variable ) with respect to the basis – that is, every match for ) 

is inconsistent with the constraints of at least one region in a consistent solution. 

The process is based on the assumption that if the binary constraints on ) can be satisfied by an 

instantiation of ) to an aggregated region then there must be regions 4�, … , 4' in the database, 

with , ≥ 2, such that the union 4� ∪ … ∪ 4' is consistent with the constraints of ) as specified in 

the query. The task thus becomes that of finding the regions 4% and testing the consistency of the 

configuration realised by replacing ) with the 4%s. 
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In the RCC theory, the 9!0 function can be used to define the aggregate � of two regions � and �. 

The function is defined as (Bennett 2000, Randell, Cui, and Cohn 1992): 

∀����9!0(�, �) = � ↔ ∀:[�(�, :) ↔ �(�, :) ∨ �(�, :)]�   

To which is added the constraint that the parts making the aggregate must be contiguous proper 

parts of it:  

∀���[9!0(�, �) = � → ��(�, �) ∧ ��(�, �) ∧ �(�, �) ]    (i) 

And finally the aggregate with more than two parts is constructed by summing a two part aggregate 

with another aggregate or other region making sure that condition (i) above holds. The constraint 

above is consistent with the definitions of the basic RCC relations and the 9!0 function as given in 

the original paper on RCC since ��(�, �) → ∀:[�(�, :) → �(�, :) ].  

4.2. Model Components for Processing Database Region Names 

The first condition set on the regions to consider is that they come from the same sketch map as the 

regions in the original solutions. The second condition is that they must be contiguous. This is 

necessary because dealing with disconnected regions in spatial aggregation is more complex and 

beyond the scope of this thesis. The cluster structure of the current model is used as a first 

elimination strategy by retrieving only regions in the same cluster. Regions that are already in the 

basis are excluded, while regions which were previously matched to ) and were included in at least 

one solution are given priority since they satisfy at least one constraint of ). 

4.2.1. Region Name Sets 

The model makes use of two groups of sets of region names, namely, constraint-local sets and global 

sets. There are two constraint-local sets for each binary constraint * of the variable ):  ��#, which is 

a set of regions that together or individually satisfy the constraint *, and �<=, the set of regions 

necessary for constraint * to be satisfiable by the regions in ��# so that �<= is a subset of ��#. Since 

the set �> is processed all at once, regions are never removed from �<= but can be removed 

from ��# if they have been identified as regions that cause inconsistency elsewhere. 

Global sets facilitate the decision of success or failure for the process. The set PG contains all regions 

selected for inclusion in the solution which must be a contiguous (connected) set; the set �>  

contains members of every �<=  in the model; and the set IG is the set of inadmissible regions – which 

have been determined to be inconsistent with some constraint of ). The sets PG and IG are disjoint 

while �> is a subset of PG. Additionally, there is a variable *B  that is only instantiated when a 

constraint is found to be inconsistent, so that if *B is not empty, then the process has failed. 

Formally, for C constraints we have the following restrictions on the sets: 

��#  ⊆  �> , 1 ≤ * ≤ C  (i) 

�<= ⊆  ��#, 1 ≤ * ≤ C  (ii) 

�> ⊆  �>    (iii) 

�> = F �<=
(
#G�    (iv) 

�> ∩  �> = ∅   (v) 
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As indicated above, regions are selected from the same cluster and added to the set PG. For each 

constraint of ), each region in PG is then processed against a set of rules and the information in the 

constraint-local and global sets. The result is that a region is either consistent or inconsistent with 

the constraint. An inconsistent region will be added to �> and a consistent region to ��#. The process 

fails when either a region in �>  is chosen to be added to �> or when ��# fails to satisfy the 

corresponding constraint *.  

4.2.2. Rule Sets 

The processing of the regions in the sets is done by evaluating a set of rules on a constraint level and 

on a global level. Constraint-local rules apply to each constraint differently depending on the relation 

implied by the constraint and determine the consistency of ��# with respect to corresponding 

constraint *. The approximate nature of the result is inherent in the local rule sets because it is here 

that local consistency is determined. Global rules are applied the same for every constraint and are 

used to determine the consistency of the whole configuration.  

Rules are grouped into rule sets which must all be executed whenever the rule set is invoked. Rule 

sets are a combination of rules and actions, and some contain only actions but they are all treated 

the same way during execution. The actions are operations on some given data structure of the 

model, like the constraint-local sets described in the previous section, with a specific data input such 

as a query constraint and database constraint. In contrast, rules are conditional statements that 

cause a specific action or group of actions to be invoked based on the evaluation of the condition. 

4.2.2.1. Constraint-local Rules 

There are eight constraint-local rule sets which correspond to the eight basic relations of the RCC-8 

model. These rules are used to evaluate whether a region in �> is necessary for constraint *, or it is 

consistent, inconsistent, or irrelevant to the constraint. In the following, B is a variable in the query 

with constraint �KL with variable ) which we want to verify for a group of database regions 

and 4' ∈ �> is any region in the database that is a potential part of ).  

4.2.2.1.1. Rule Set 1: NO = PQR  

i. If �STL = �� then add 4' to  ��#, 
ii. If �STL ∈ � then add 4' to �>, 

iii. If | ��#| < 2 then label constraint �KL as inconsistent and instantiate *B to �KL.  

4.2.2.1.2. Rule Set 2: WO = PQR 

i. If �STL ∈ �� then add 4' to ��#, 
ii. If �STL ∈ � then add 4' to �>, 

iii. If ∀4( ∈ �> , �SXL ≠ �� then label constraint �KL as inconsistent and instantiate *B to �KL, 

iv. If ∀4( ∈ ��# − {4'}, �STL = �� ∧ �SXL = ��  then add 4' to �<= and update �> .  

4.2.2.1.3. Rule Set 3: \] = PQR 

i. If �STL ∈ {��, ��, ��, ���, ����} then add 4' to ��#, 
ii. If �STL ∈ {��, ����, �����} then add 4' to �>, 
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iii. If ∀4( ∈ ��#, �SXL ∉ {��, ���, ����} then label constraint �KL as inconsistent and 

instantiate *B to �KL, 

iv. If ∀4( ∈ ��#, �SXL ∈ �� then label constraint �KL as inconsistent and instantiate *B to �KL, 

v. If ∀4( ∈ ��# − {4'}, �STL = �� ∧ �SXL ∉ {��, ���}  then add 4' to �<= and update �>, 

vi. If ∀4( ∈ ��# − {4'},  �STL = ��� ∧ �SXL ∉ {��, ���} then add 4' to �<=  and update �> .  

4.2.2.1.4. Rule Set 4: W_ = PQR 

i. If �STL ∈ {���, ����} then add 4' to ��#, 
ii. If �STL ∈ {��, ��, ��, ��, ����, �����} then add 4' to �>, 

iii. If ∀4( ∈ �> , �SXL ≠ ��� then label constraint �KL as inconsistent and instantiate *B to �KL, 

iv. If ��# ⊊ F ��%
#a�
%G�  then label constraint �KL as inconsistent and instantiate *B to �KL. This 

rule is not implemented, but serves as guiding rule during implementation.  

4.2.2.1.5. Rule Set 5: b\\ = PQR 

i. If �STL ∈ {���, ����} then add 4' to ��#, 
ii. If �STL ∈ {��, ��, ��, ��, ����, �����} then add 4' to �>, 

iii. If ∀4( ∈ �> , �SXL ≠ ��� then label constraint �KL as inconsistent and instantiate *B to �KL, 

iv. If ∀4( ∈ ��# − {4'},  �STL = ��� ∧ �SXL = ���� then add 4' to �<= and update �> .  

4.2.2.1.6. Rule Set 6: cb\\ = PQR 

i. If �STL = ���� then add 4' to ��#, 
ii. If �STL ∈ {��, ��, ��, ��, ���, ����, �����} then add 4' to �>, 

iii. If| ��#| < 2  (i.e. ��# = {4'}) then label constraint �KL as inconsistent and instantiate *B 

to �KL.  

4.2.2.1.7. Rule Set 7: b\\d = PQR 

i. If �STL ∈ {��, ��, ��, ��, ���, ����, ����} then add 4' to ��#, 
ii. If �STL = ����� then add 4' to �>, 

iii. If ∀4( ∈ ��#, �SXL ∈ {��, ��, �����} then label constraint �KL as inconsistent and 

instantiate *B to �KL 

iv. If ∀4( ∈ ��# − {4'},  �STL ∈ {��, ����} ∧ �SXL ∈ {��, ��} then add 4' to �<=  and 

update �> .  

4.2.2.1.8. Rule Set 8: cb\\d = PQR 

i. ∀4' ∈ �> add 4' to ��#.  
ii. If ∀4( ∈ �> , �SXL ∈ {��, ��} then label constraint �KL as inconsistent and instantiate *B 

to �KL. 

4.2.2.1.9. Derivation of Constraint-Local Rules 

The derivation of these rules is made using the RCC8 composition table as well as the relational 

lattice of the RCC and its corresponding theorems. Members of the sets ��# are taken from the set 

of regions such that for any 4' and every possible e, (�KL ∘ �LST) ∩ {����, �����} ≠ ∅, from 

which follows directly that �STK ∈ {���, ����}. Members of the set �> are selected in such a way 
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that $�KL ∘ �LST& ∩ {����, �����} = ∅ which ensures that they cannot be proper-parts of ). The 

sets  �<= contain all such regions from ��# that if removed from the spatial configuration in which 

constraint * is realised, the whole set would become inconsistent with the constraint.  

The rational for using each of the conditions for adding a region to �<=  and determining the local 

inconsistency at �KL are given in the following paragraphs. 

Rule 1-iii: We take | ��#| < 2  to ensure that we have at least two regions that satisfy the given 

constraints. Otherwise then only one or no region satisfies the given constraint which implies 

inconsistency of the selected set with the constraint or a violation of the condition that there must 

be two or more parts of an aggregate region. 

Rule 2-iii: If the aggregate is externally connected with the third region e, then at least one of its 

parts must be externally connected with e.  

Rule 2-iv: If  among the potential parts of the aggregate region ) there is only one region that is 

externally connected to e then this region is necessary for the constraint to hold and removal of the 

region from the set will lead to the whole being inconsistent with the constraint between ) and e. 

Rules 3-iii, 3-iv: If the aggregate partially overlaps with the third region e, then at least one of its 

parts must overlap with e. Since e is not part (�) of ), the parts of ) overlaping with e must either 

partially overlap or be properly contained by e. Similarly, there must part be parts of ) that are not 

properly contained in e. Otherwise, the set is inconsistent with the constraint. 

Rules 3-v, 3-vi: If no other part overlaps with e then the only partially overlaping region is necessary 

for the constraint to hold. Similarly if no other region is contained in e and no region overlaps e 

then the region that is properly contained by e is necessary for the satisfaction of the constraint. In 

this latter case, rule 3-iv guarantees that there is a region that is not properly contained by e and the 

contiguity requirement guarantees that the two parts (regions) are connected.  

Rule 4-iii: There must be a tangential proper part of ) that is also a tangential proper part of e. 

Otherwise ) is a proper part of e. 

Rule 4-iv: All regions that satisfied other constraints must also satisfy this one and they must be 

proper parts of the region e of this constraint. This observation is sufficient but not necessary for the 

model to determine the inconsistency of the constraint since all regions that individually give rise to 

inconsistency are removed from  �>  and the corresponding  ��#  anyway. 

Rule 5-iii: As a tangential proper part of e, ) has to have a tangential proper part that is also a 

tangential proper part of e. Otherwise if all tangential proper parts of ) are non-tangential with e 

then ) is non-tangentially connected with e since ) is a sum of discreet proper parts as restricted by 

conditions set in section 4.1 above. 

Rule 5-iv: If there is only one tangential proper part, then it must be necessary and its exclusion 

would lead to the set being inconsistent with the constraint. 

Rule 6-iii: Since ) is a non-tangential proper part of e then all its parts must also be non-tangential 

proper parts of e. 

Rule 7-iii: If no individual part of ) is equal to or properly contains e then either e is not properly 

contained in ) or the containment is achieved by different parts of ) together exhaustively covering 

every part of e. With the information available from the topological relations among the regions and 
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the method employed in the proposed model, it is not possible to determine whether the constraint 

is satisfied or not but we only eliminate obvious inconsistent cases. 

Rule 7-iv: Here the assumption is that if there is only one region of which e is equal to or is a 

tangential proper-part of, then e and that region have a shared tangential boundary section or point 

that is not connected with any other parts of ). This is of course not sufficient to determine the 

consistency but it facilitates the determination of inconsistency when an attempt is made to move 

the region to the set �>. 

Rule 8-ii: If e is a non-tangential proper part of ) then there is a region that is part of ) and overlaps 

with e. Otherwise e cannot be a proper part of ) and not overlap with any of )'s parts. 

 

Figure 6: General procedure for evaluating constraint local rules. 

The execution of constraint-local rules is uniform but differs only in the number of decisions to be 

made (Figure 6). A group of regions will be determined to be inconsistent with a given constraint 

when all regions in the group have failed to meet the minimum requirement for the constraint to be 

satisfied. This position is reached when the global variable *B is instantiated. Otherwise, an individual 

region will cause the set to become inconsistent when it is determined to be in �> and �>  at the 

same time. 
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4.2.2.2. Global Rules 

Global rules enforce global constraints that we put on both constraint-local and global sets. Each 

constraint is enforced by one or more rules in one or more rule sets. The rule sets are grouped by 

the action that triggers them. 

4.2.2.2.1. Rule Set 9: Remove a Region from \g 

i. If |�> − {4'} | < 2 then FAIL, 

ii. If ¬IS-CONNECTED-SET(F (��#)# − {4'}) then FAIL,  

iii. If |F (��#)# − {4'}| < 2 then FAIL, 

iv. If ¬IS-CONNECTED-SET(�> − {4'}) then select a region-name say 4(  from any ��# and 

remove  �> −CONNECTED-SET-OF(�> − {4'}, 4() from �> and ��# 
v. Remove 4' from ��#, 

vi. Remove 4' from �> . 

4.2.2.2.2. Rule Set 10: Add a Region to dg 

i. Add 4' to �>, 

ii. Remove 4' from �> . 

4.2.2.2.3. Rule Set 11: Remove a Region from \Oh 

i. If 4' ∈ �<= then FAIL, 

ii. Remove 4' from ��#. 

4.2.2.2.4. Rule Set 12: Add constraint to hi 

i. FAIL. 

 

Figure 7: Call sequence of main global rule sets and actions 
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4.2.2.2.5. Executing Global Rules 

Within each rule set, the rules are executed in order so that rules at the top of the list are executed 

first and those at the bottom last. Global rules are intended to be triggered automatically when the 

corresponding action (e.g. add a region-name to a set) is initiated by another rule or function that is 

external to the triggered rule (Figure 7). However due to limitations of the environment in which the 

experimental implementation was programmed, the rules are implemented inside functions that are 

called to execute the corresponding actions. The action remove attempts to remove a region name 

from a set but has no consequence if the region name is not found. The function IS-CONNECTED-

SET(j) performs a depth first search on a graph whose set of vertices is j and whose set of edges is 

assumed to be the set of binary (RCC-8) relations {�#}�
k on members of j; l ≤ m(ma�)

  if the set j 

has / vertices; and �# ≠ ��, 1 ≤ * ≤ l. In the implementation j are region names. The function 

returns true if all members of j were reachable in the depth first search.  The function CONNECTED-

SET-OF(j, region-name) returns the subset of contiguous regions in j containing region-name. FAIL 

is a function that flags failure of the selected configuration to satisfy the constraints of ), and causes 

the process to exit. 

4.3. Overall Model Design and Implementation 

The overall design of the model is made so that the execution of rules on the defined sets leads to 

inconsistency whenever possible. First, the original solutions are evaluated and from all incomplete 

solutions of size / − 1, the process tries to find groups of solutions that have a common basis and a 

variable satisfying the three conditions of section 4.1 (Figure 8). In the following, references to ), e, 

and 4' have the same meaning as the previous section.  

Once the solutions are identified, they are processed one after the other in no specific order. For 

each set of solutions identified, region names are selected from the corresponding sketch map and 

put into a set � from which groups of contiguous variables are selected in order of the size of the 

largest solution in which they were included as matches for variable ). Regions in � cannot already 

be in the basis of the set of solutions being processed. The selected regions are added to the set �> 

but they are not immediately deleted from �. Finally, for each binary constraint of ), �>  is 

processed against the corresponding rules (e.g. if �KL = �� evaluate rule set 2) as shown in Figure 6 

above. If the selected set of regions fails, they are deleted from � and new regions are added to �>  

from � and the process is repeated. The process keeps track of the contents of the global sets �> 

and �> because all regions removed from  �>  must be left in � for reprocessing just as long as they 

are not in �> and the exit function FAIL has not been called. 

The main function that implements the discovery of regions that are regarded as parts of an 

aggregate region that is in the query sketch loops through all groups of contiguous regions in � 

until � is empty (Figure 9). Although the set � does not function as a queue per se, the name is used 

to highlight the fact that groups of regions that have been added to the set are processed in some 

predetermined order. The process exits when every basis identified in the first step has been 

processed. The solutions derived during the process, if any, are added to the original solutions as 

part of the final query results. The variable ) is removed from the original association graph and a 

new variable is added for every additional region. The new variables are named by appending a 

number to the name of the original variable separated by an underscore. For example, if we find 

three regions to replace ), then they will be named )_1, )_2, and )_3. 
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Figure 8: Flowchart of the main process for refining solutions 

4.4. Summary 

The procedure for refining the solutions for a query described in this section uses a dual approach 

for eliminating inconsistent candidates from being part of the final solution. On one hand, a group of 

regions can fail to satisfy the connectedness and part-hood requirements of the relation between 

the aggregate and a third region. On the other hand, a region may be deemed as being necessary for 

one constraint and inadmissible for another constraint simultaneously. The process of evaluating 

constraints of the chosen variable against a set of candidates is executed twice because some 

constraints that were evaluated earlier may not be satisfied by the regions remaining at the end of 

the process. This is because some regions will have been moved to �> at a later time. The second 

time that the constraints are evaluated, no regions will be moved to �> because all regions that are 

in  �>  at this time already passed the test the first time around. 

The procedure is approximate because there are scenarios that require more information to decide 

whether the given combination of regions satisfies the constraints of the aggregate (Rule sets 4, 7, 

8). Rule set 8 is particularly weak since all regions are admissible regardless of their relation with the 

third region. A region is determined to be necessary for a specific constraint to be satisfied if it plays 

the role of a region bound by the existential quantifier in the definition of relation (in the RCC theory 

– see Randell, Cui, Cohn 1992). Such a region is selected by ensuring that no other region plays the 
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same role. While the results are approximate, they are always consistent with the configuration in 

the database since all constraints are tested and candidate regions are forced to be contiguous.  

 

 

Figure 9: Procedure for finding potential parts of a region in the query sketch whose constraints are not satisfiable by 

the any individual region in the database. 
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5. Experimental Results and Discussion 

Both the original model of Chapter 3 and the extension described in Chapter 4 were tested using 

sketch queries on a database populated with topological information of objects from other Sketch 

maps. Six sketch maps were employed in the evaluation of the model and the testing of the 

assumptions of the study. The experiment involved a collection of an initial six sketch maps with the 

same or similar themes. These were then shown to a group of subjects who identified certain 

features in a sketch and were then asked to draw a query sketch that represented some objects of 

interest from the original sketches. 

5.1. Sketch Map Selection 

Sketch maps for the experiment had to be chosen with consideration of the processing capabilities 

of the experimental database model. Within the limitations imposed by the database model, themes 

that would be easy for respondents to work with should be selected so that each query sketch 

should contain adequate information to pass on to the database. Lessons from research on spatial 

cognition also informed the search and selection of sketch maps.  

5.1.1. Application of Sketch Map and Data 

The sketch map has to have a meaningful application or purpose. Specifically, the sketch must 

express some phenomenon of which the information can be used to make a decision. Additional 

information about geographic features must also be present in the sketch either as annotations in 

the sketch or as symbols described outside the sketch. Sketch maps of agricultural farm lands will be 

used in this study. Sketch maps of agricultural farms may be simple but rich in information because a 

wide variety of physical features, phenomena and their relationships may be mapped.  

5.1.2. Sketched Area and Mapped Features 

Psychologists have also argued that recollection of spatial information is, in part, dependent on its 

purpose and the importance of the task being applied. Two main types of sketches are distinguished 

in this regard: survey maps and route maps. According to Tversky (2002), survey maps have to do 

with regions viewed from a bird’s eye perspective while route maps are more linear and based on a 

ground exploration view. Survey maps contain spatial relations between several features while route 

maps concentrate on spatial relations between pairs of features. In particular, because of their 

nature, it would seem that survey maps tend to have a high level of connectedness in the sense that 

more objects in the sketch maps would be non-disjoint or contiguous. 

A main limitation of the model employed in this study is that it deals only with topological 

information thereby requiring a significantly high number of non-disjoint regions to be present in 

any given spatial scene that is processed. As such, contiguity of spatial features was a critical aspect 

when selecting the maps to use for the study. Consequently, sketch map types that are used for 

tasks in which topological interaction is generally not emphatic were avoided. These for example 

include route descriptions.  
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5.1.3. Selected Sketch Maps 

Six sketches were selected from a corpus of more than 30 sketches. Four of the sketches were drawn 

by farmers in New Zealand who participated in a study on farm management practices conducted by 

the Agricultural Research Group on Sustainability (ARGOS) at University of Lincoln, New Zealand 

(Read, Hunt, and Fairweather 2005). One sketch was taken from a study on small-scale intensive 

farming by Aragó and Molin (2009). The last sketch is a map of a farming area in the city of Blantyre, 

Malawi and was provided by one respondent from the city who was asked to draw a sketch of his 

farm and a few features around it such as other farms, roads, and houses. Two of the ARGOS 

sketches are sketches of the same farm drawn by different members of the same family (see 

sketches 3 and 6 in Annex A: Input Sketches) 

5.2. Graphical Analysis of Sketch Maps 

The approach used for extracting topological relations from sketch maps is to identify all regions in 

the sketch-based on labelling. Labels include all names of specific objects in the sketch that have 

been directly written into the sketch. Labels can also provide feature type information such as ‘shed’ 

or ‘shed 1’ because people don’t usually assign specific names to certain things such as residential 

houses or private parking lots. Annotations refer to all other text and symbols that provide context 

for the objects in the sketch. For example, items in a legend or descriptive text within the sketch are 

annotations. The next step is to decide which of the remaining unlabeled objects can be interpreted 

as regions and of those that have been identified as regions either a feature class or a unique name 

is assigned. However, all of the sketches used had at least eight out of ten features labelled with 

descriptive names (e.g. block 1 is an area of farm land with a specific crop or purpose). Elements 

(lines and other objects) in the maps for which their purpose was difficult to make out and lines that 

should be represented as regions (e.g. rivers) were analysed on a case by case basis. Special cases 

were identified in almost all the sketches (e.g. Figure 10) and some of them are discussed below.  

(a) House and r1 externally 

connected to area of 

farm 

(b) House and r1 partially 

overlap area of farm 

(c) House and r1 are 

tangential proper parts 

of area of farm 

Figure 10: Three possible choices for the relation between a house and a farm, and between an attachment to the house 

and the farm. Option (b) is not acceptable since it entails the house overlapping the road (quite unusual). Consequently 

option (c) is chosen. 

A region was taken to be the area enclosed by a closed loop that is not self intersecting including the 

loop itself (Figure 11 (a)). This reflects the closed interpretation of the RCC in point set topology. 

And, because we do not know the sequence in which the lines in the sketch map were drawn, we 

only look for loops that are closed or, almost closed and have been labelled appropriately. Adjacent 

regions both contain their shared boundary points (Figure 11 (b)). Where regions cannot be directly 

identified from the particular shapes and patterns drawn the label or annotations associated with 
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the drawn shapes or patterns are used to infer the type of feature that is being represented and 

then a decision is made on whether to consider the shapes/pattern as a region or to ignore them 

(e.g. patterns on upper-right boundary in the sketches of Figure 10). This approach is acceptable 

because in fact among all object features or properties, the class of an object has the highest 

diagnostic effect during object categorisation (Tversky 1977, Nedas and Egenhofer 2008).  

  

(a) Identifying regions in a sketch map. The original sketch is shown in the left and on the right 

are some identified regions (marked with red borders). Drawing errors have been corrected. 

  

 

(b) Shared boundaries mean that in grid 

configuration regions are externally connected 

to both the regions adjacent  (Blk 5, Blk 8) and 

opposite them (Blk 5, Blk 7). The following 

relations hold: 

 

EC(Blk 5, Blk 8), EC(Blk 5, Blk 7), EC(Blk 7, Blk 

8), EC(Blk 8, Blk 9), EC(Blk 8, Blk 10), EC(Blk 9, 

Blk 10), EC(Blk 7, Blk 10). 

  

  

(c) Analysis of the boundary-boundary interactions between several regions help to decide the 

coverage of a region and relations between different regions. 

Figure 11: Extracting regions and their relations from sketch maps 
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Regions divided by features such as roads or rivers are recognized as individual wholes as opposed to 

being two separate regions (Figure 11 (c)). Also, the interactions between the borders of the regions 

help to determine the relation between pairs of regions (Figure 11 (c)).  

As regions are identified, they are classified into feature types. The feature classification used is 

directly adopted from the ARGOS study (Read, Hunt, and Fairweather 2005) and are later used to 

specify unary constraints when querying the database. The ARGOS study identified two sets of 

categorisations, one for kiwi fruit orchards and the other for sheep and cattle farms. While the two 

differ in the number of categories and number of features in each category, features common to 

both types of farms were categorised the same way for both cases. Because we do not use all the 

sketch maps and details of the ARGOS study, only some of the features and categories were used in 

this study as shown in (Table 2). 

Categories  Features 

Spatial organisation Blocks, boundaries, farms
*
 

Wind  Shelter, shelter trees, prevailing wind, wind damage 

Buildings  Houses, sheds, hay barns , pack-houses 

Transport  Roads, driveways, loading areas, airstrips, bridges 

Social context  Neighbours, private businesses
*
 

Other biota based activities  Other crops, pine trees, other trees, compost 

Landscape morphology  Slope, aspect, gullies 

Climate  Frost protection, frost areas, altitude, climate 

Water  

 

Water sources, streams and rivers, irrigation, 

Lakes, and ponds, water tanks, drainage 

Biotic context for management  Soils, bush 

Stock management Animals, laneways, sheep, cattle and stock yards, silage pits 

Table 2: Geographic features and their categorisations  

To illustrate the procedure, Figure 12 shows the sketch map of a kiwi farm that was used as one of 

the input data sources. The regions marked by a red outline include two of those shown in Figure 11. 

The full list of regions extracted from the sketch including their assigned feature classes are shown in 

Table 4. Where it is not clear what categorisation to use, some regions are assigned more than one 

feature type or category. For example, in the sketch map in Figure 12, the house site can be a 

proposed site for a new house or it can be a part of the farm where the farmhouse is located. The 

list of binary topological relations identified for each pair of regions is shown in Table 3. The 

information in the two tables is used either for data input or for creating sketch-based queries to the 

database. The scripts for creating the tables used in this experiment and adding the information 

extracted from the sketch in Figure 12 to the database is given in Annex B: Sample scripts. The same 

procedure was used to analyse and input all the sketches in the study as well as to create the queries 

(Listing 3 of Annex B: Sample scripts). 

                                                           
*
 These were included as a feature only in this study but were not present with given names or meanings in the 

ARGOS study. 
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Figure 12: Example sketch map with a group of regions identified in the sketch (red borders). 

Primary Region Secondary Region Relation 

S1Road  S1OldPines  EC 

S1Road  S1Pines  EC 

S1Road  S1Block1  EC 

S1Road  S1FrostArea  EC 

S1Road  S1Shelter  EC 

S1Road  S1Block3  EC 

S1Road  S1DriveIn  EC 

S1OldPines  S1FrostArea  EC 

S1OldPines  S1Block4  EC 

S1OldPines  S1DriveIn  EC 

S1FrostArea  S1Block4  EC 

S1FrostArea  S1Block3  EC 

S1Block3  S1Block4  EC 

S1Block3  S1HouseSite  EC 

S1Block3  S1Shelter  EC 

S1Block4  S1Shelter  DC 

S1Block4  S1DriveIn  EC 

S1HouseSite  S1Shelter  EC 

S1HouseSite  S1DriveIn  EC 

S1HouseSite  S1Shed  NTPPI 

S1DriveIn  S1Block2  EC 

S1Block2  S1Block21Boundary  EC 

S1Block1  S1Block21Boundary  EC 

Table 3: Topological relations between pairs of regions from the sketch in Figure 12. Inverse relations and relations 

where regions are disjoint are not included. 
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Name Description 
Region name 

(the_rcc_region) 
Level Value 

Road  Main road passing near farm  S1Road  Category  transport 

Road  Main road passing near farm  S1Road  Feature  roads 

Old Pines  Old pine tree lot  S1OldPines  Category  other biota based activities 

Old Pines  Old pine tree lot  S1OldPines  Feature  pine trees 

Pines  Pine tree lot  S1Pines  Category  other biota based activities 

Pines  Pine tree lot  S1Pines  Feature  pine trees 

Frost Area  Frost Area  S1FrostArea  Category  climate 

Frost Area  Frost Area  S1FrostArea  Feature  frost area 

Block 1  Farm division block 1  S1Block1  Category  spatial organisation 

Block 1  Farm division block 1  S1Block1  Feature  blocks 

Block 2  Farm division block 2  S1Block2  Category  spatial organisation 

Block 2  Farm division block 2  S1Block2  Feature  blocks 

Block 3  Farm division block 3  S1Block3  Category  spatial organisation 

Block 3  Farm division block 3  S1Block3  Feature  blocks 

Block 4  Farm division block 4  S1Block4  Category  spatial organisation 

Block 4  Farm division block 4  S1Block4  Feature  blocks 

House Site  Farm house yard or lot  S1HouseSite  Category  spatial organisation 

House Site  Farm house yard or lot  S1HouseSite  Category  buildings 

House Site  Farm house yard or lot  S1HouseSite  Feature  blocks 

House Site  Farm house yard or lot  S1HouseSite  Feature  houses 

Shed  Farm storage and work shed  S1Shed  Category  buildings 

Shed  Farm storage and work shed  S1Shed  Feature  sheds 

Shelter  shelter  S1Shelter  Category  wind 

Shelter  shelter  S1Shelter  Feature  shelters 

Block 2-1 

Boundary 

 Farm division boundary 

between block 2 and block 1 

 

S1Block21Boundary  Category  spatial organisation 

Block 2-1 

Boundary 

 Farm division boundary 

between block 2 and block 1 

 

S1Block21Boundary  Feature  blocks 

Block 2-1 

Boundary 

 Farm division boundary 

between block 2 and block 1 

 

S1Block21Boundary  Feature  boundaries 

Table 4: Data about spatial regions extracted from sketch map in Figure 12 

5.3. Query Analysis 

As discussed in section 3.4.2 above, querying the database is a three step process. First, the unary 

and binary constraint are specified, and then a command is given to evaluate the query. Finally, the 

results are retrieved using one of two functions (for all solutions or for unique solutions only). 

Optionally, the refinement procedure can be called to check if some incomplete solutions can be 

made complete by searching for groups of regions that satisfy the constraints of a query variable 

missing from a unique solution (Chapter 4). 

Queries were performed on the database in three categories. The purpose of the exercise was to 

determine whether the implementation would search and retrieve the desired results given input 

queries for which the target sketch maps are known a priori. The first category (1) comprised queries 

taken from the original sketch maps as is. The second category (2) comprised queries created 
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Target 

Sketch 

Query 

No. 

Total 

Number 

of 

Solutions 

Number 

of 

Unique 

Solutions  

Unique 

Solutions 

With Correct 

Matching 

(Y/N) 

Number 

of 

Complete 

Solutions 

Complete 

Solutions 

With Correct 

Matching 

(Y/N) 

Number of 

Regions in 

the Query 

Number of 

Regions in 

Target 

Sketch 

Number of 

Refined 

Solutions 

Refined 

Solutions With 

Correct 

Matching 

(Y/N) 

Max. no. of 

Database Regions 

that Matched 

Aggregated Region 

Number of 

sketches in 

results 

1 1_1_1 185 101 Y 1 Y 13 13 0 N 0 2 

5 1_1_2 42 35 Y 1 Y 9 9 0 N 0 1 

3 and 6 1_1_3 322 178 Y 1 Y 18 18 0 N 0 4 

1 2_1_1 18 12 Y 0 N 7 13 1 Y 2 1 

1 2_2_2 40 11 Y 1 Y 9 13 0 N 0 1 

2 2_1_3 22 20 Y 2 Y 7 8 0 N 0 1 

2 2_2_4 16 8 Y 2 Y 5 8 0 N 0 1 

4 2_1_5 40 30 Y 2 Y 7 12 0 N 0 1 

5 2_1_6 4 3 Y 1 Y 5 9 0 N 0 1 

5 2_2_7 33 27 Y 1 Y 7 9 0 N 0 1 

3 and 6 2_1_8 61 38 Y 1 Y 10 18 0 N 0 2 

3 and 6 2_2_9 5 4 Y 1 Y 6 18 0 N 0 1 

1 3_1_1 63 49 Y 0 N 10 13 1 Y 4 3 

1 3_2_2 70 51 Y 0 N 11 13 1 Y 3 1 

4 3_1_3 1644 350 Y 0 N 8 12 2 Y 5 1 

4 3_2_4 328 126 Y 0 N 8 12 2 Y 5 1 

5 3_1_5 12 9 Y 0 N 7 9 1 Y 3 1 

5 3_2_6 38 32 Y 1 N 8 9 0 N 0 1 

3 and 6 3_1_7 541 393 Y 0 N 16 18 1 Y 3 2 

3 and 6 3_2_8 373 168 Y 0 N 17 18 1 Y 2 3 

Table 5: A summary of query results. Query numbers 1_1_1 - 1_1_3 correspond to the first category of queries, 2_X_X to the second category and so on. 
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from sketches provided by subjects of the experiment. In the final category (3) were queries created 

from the original sketches by combining groups of connected regions into a single query variable. 

These were used to test the extended model. For all three categories, the results of the queries were 

tabulated as shown in Table 5. For the first category of queries, only three of the sketches were 

used. The second category includes queries aimed at all sketches while the third category does not 

include any queries targeted at sketch 2. The data in Table 5 have been arranged into the three 

categories with category 1 at the top and category 3 at the bottom.  

5.4. Discussion of Results 

In this section, along with a general discussion of the results in Table 5, we discuss the factors 

influencing the output of a query in the two models and give some suggestions for improving the 

quality of query results. A total of 20 queries were performed against the database. Each query was 

unique in the combination of features represented or the set of binary topological relations between 

them.  

In Table 5, the column Total Number of Solutions lists the total number of cliques extracted from all 

the association graphs of the corresponding query while Number of Unique Solutions are those 

solutions that are unique in the whole query. Unique Solutions With Correct Matching, Complete 

Solutions With Correct Matching, and Refined Solutions With Correct Matching indicate whether 

there was a solution in which the regions of the query were matched with the intended database 

regions.  Number of Refined Solutions is the total number of new solutions included in the results 

after applying the refinement procedure. Refined solutions are always unique since the basis from 

which each refined solution is generated is itself a unique incomplete solution. Max. no. of Database 

Regions that Matched Aggregated Region represents the number of database regions that were 

determined to be parts that together equal the aggregated region of the query. 

5.4.1. Solutions to a Query 

The solutions to a query vary widely depending on both the unary and binary constraints imposed on 

the regions in the query and the data in the database. As seen in Table 5, the total number of 

solutions returned from the queries is in most cases are so high that it may not be possible to 

determine whether a desired result has been given or not, let alone to find it. The high number is a 

result of the way in which solutions are created. As discussed in section 3.4.2 regions are matched 

with variables first on the basis of unary constraint satisfaction and then packaged into solution 

match sets that are evaluated later on in the process. The procedure used for creating solution 

match sets leads a very large number of those sets being created since all possible combinations of 

matches are used as long as every variable and every database region appear in each set at most 

once. So, there will be an equally high number of association graphs and therefore, an even higher 

number of solutions, since each graph has the potential to yield more than one solution. This effect 

may be reduced by considering only solutions with a high number of matches. An effective way to do 

this is by incorporating the scene completeness component of the similarity model developed by 

Nedas and Egenhofer (2008). A lower bound or lower threshold for acceptable values of component 

similarity can be imposed on the query results to limit the number of results returned to the user. 

This is an effective method because from the results obtained during testing, for all queries with 

more than 20 solutions, solutions with lower numbers of matches were more numerous than those 

with higher numbers of matches. For example, Figure 13 shows a plot of number of regions per 
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solution against the number of solutions for query 3_1_3 of Table 5, with a line of best fit generated 

by an exponential decay function. Lower bounds of 5, 6, and 7 regions per solution will reduce the 

total number of solutions returned for the query to 404, 80, and 10 respectively. 

 

Figure 13: Plot of number of regions per solution against number of solutions returned for query 3_1_3 

For all queries, unique solutions are much less than the total number of solutions but are equally 

high. This is partly because in the analysis subsets of larger solutions were considered as being 

different from the larger solution. While the desirable result is the largest solution containing all 

smaller solutions whose matches are subsets of its matches, identifying such a solution and 

eliminating the corresponding smaller solutions was difficult due to limitations of the 

implementation language (pl/pgsql) which are outlined in section 5.5. Figure 14 below shows a 

scatter plot of the total number of solutions against number of unique solutions from all results. The 

plot indicates a possible direct relationship between the two variables as expected but in this case 

with two possible outliers. This suggests that reducing the total number of solutions may also reduce 

the number of unique solutions in predictable way. However, further investigation may be required 

to ascertain this fact.  

The number solutions may also have been affected by the query size (i.e. number regions in a 

query). The size of the query in part determines the number solution match sets created during 

query evaluation and so it affects the number of potential solutions that may be returned by the 

query. Figure 15 shows a plot of the number of unique solutions returned by the query against 

number of regions in the query. Two lines were fitted as shown in the plot. The exponential fit 

models the points more closely suggesting that the number of solutions may increase exponentially 

with query size. If this is the case then it may be appropriate to vary the query evaluation methods 

or parameters over different ranges of query sizes. Again, more data and further statistical analyses 

are required to verify this observation. 
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Figure 14: Plot of total number of solutions against the number of unique solutions 

 

 

Figure 15: Plot of the number of unique solutions returned by the query against number of regions in the query. 

Complete solutions are fewer for each query since they correspond to stricter levels of constraints. 

This corresponds to the problems of unacceptably large numbers of solutions discussed in the first 

paragraph. In particular, a scene completeness measure favours complete solutions most since the 

highest score is attained when all variables are included in the solution. Queries 2_1_3, 2_2_4, and 

2_1_5 all returned with two complete solutions each. Each solution is unique because the matching 

of regions has changed.  
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(a) (b) 

Figure 16: Sketch 2 with two equivalent labelling of regions that lead to ambiguity. Ambiguity of some topological 

relations is due to symmetry. A and B can both be satisfied by either of the regions Block 1 and Block 2.  

In the three cases from the results above multiple complete solutions were a result of swapping of 

region variable matches due to the ambiguity in the available information. Figure 16 shows two 

matchings of the pair of regions that led to having two complete solutions in both query 2_1_3 and 

2_2_4. By including direction information it is possible to decide with more confidence the intended 

region. Additional information about other regions in the sketch may also be needed to provide 

context. For example, in Figure 16, to recover a relation such as B {SouthOf} A from the database, 

you may need to establish other relations such as House {SouthOf} A since for qualitative direction 

information there will not be a fixed north and any frame of reference is either local to the referent 

region or it is local to a specific scenario or task. 

Finally, the results show that there were always solutions where the matches included were exactly 

those intended in the query. Similarly for complete solutions, at least one of the solutions returned 

corresponded exactly to the configuration intended in the query.  

5.4.2. Aggregated Regions 

Deciding when a refinement of the solutions should be attempted was particularly difficult because 

there is no way of knowing from the topological information alone whether the refinement process 

will yield a better solution. This is one of the rationales for restricting the scope of the solution to 

one aggregated region per query. For the single aggregate region case, the heuristic employed to 

determine when to perform a refinement for any group of solutions is simple (section 4.1) and the 

procedure used find and test potential parts of the aggregate is short with multiple exit conditions 

that facilitate early detection of failure. Another advantage of the model used is that candidates for 

the aggregation are contiguous regions from the same sketch as the aggregate which significantly 

cuts down the search space and already removes inadmissible solutions. Only one region must be 

located first and all other regions connected to it will be retrieved and processed when this region is 

retrieved.  

The results from the tests show that in all but one case, if no complete solution was found, then 

refinement led to at least one new solution. This is true for all cases where regions from the original 

sketch map were actually aggregated in the query sketch. As in the case in Figure 16 above multiple 

solutions were a result of ambiguity in the available spatial. Figure 17 below shows two versions of 

Sketch 4 each marked to represent one of the two refined solutions of queries 3_1_3. For this case 

too, ambiguity leads to the inability to choose the best solution among two equivalent solutions 
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from a topological stand point. However, as observed in section 5.4.1 above, direction information 

was easily used to eliminate the less desirable match. 

  

(a) Intended matching (b)Unintended matching 

Figure 17: Ambiguity in original sketches carried on to refined solutions 

In Figure 18 the region Blk 10 of the original sketch map is included as part of the aggregate region. 

Its exclusion from this solution will not change the set of topological relations satisfied by the group 

as a whole. This signifies the importance of detailed topological relations and detailed direction 

relations. For example, knowing whether the aggregate touches Blk 8 on one, two, or three side can 

help to determine in more detail which regions to include as parts of the aggregate. If for instance 

the aggregate touches Blk 8 only on the same side as it touches Blk 9, then we could eliminate Blk 10 

from the aggregate. However, the present model includes every region that does not lead to an 

inconsistent configuration with respect to the aggregate region. 

  

(a) Original Sketch map 
(b) Map corresponding to refined solution 

with aggregate query variable F 

Figure 18: Original sketch map of sketch 4 (a) and example of a solution with an aggregate region (b). 
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One notable drawback of using a simplistic model as the one employed is that there are subtle cases 

that it may not be able to deal with. An example is query 3_2_6 in which the river and lake are 

drawn as one feature and only the river is retrieved and the query yields a complete solution (Figure 

19). Again, the problem here is context because there is no way of expressing the extents of the 

sketched regions or their relative positions in terms of distance or direction.  

  

(a) Query sketch (b) Given solution 
Figure 19: Situations requiring more information to retrieve better a solution 

5.4.3. Returning Results 

The purpose of the query system is not to retrieve a single exact match but to find all similar 

configurations for a given query. But, for sketch maps, each sketch represents specific information 

about selected objects in a specific environment from a particular perspective (Tversky 2003) and 

therefore different solutions to the same query should represent a different result for the user. One 

way of dealing with situations where a large number of solutions are generated from a single sketch 

is to use similarity measures described by Nedas and Egenhofer (2008) first to rank solutions within 

the same sketch and include the highest ranking solution only from each sketch in the final results 

presented to the user. 

5.5. Challenges 

The biggest challenge faced during this study was implementing the model. Implementation was 

hampered mostly by a failure to incorporate available tools for reasoning with the RCC model. As 

indicated at the beginning of Chapter 3, the selected DBMS was PostgreSQL because of its 

extensibility features (Douglas and Douglas 2003). Two tools that were tested with PostgreSQL are 

Renz and Nebel’s consistency algorithms for the RCC-8 model, which were implemented in the C 

programming language (Renz and Nebel 2007), and SparQ which is a toolbox of programs (C-

Libraries) that implement functions for qualitative spatial representation and reasoning (Wallgrün et 

al. 2006). For the first tool, one problem was that passing multiple values to a C function is not 

possible from PostgreSQL. The other problem was that PostgreSQL uses its own memory 

management functions which continually yielded errors whenever the C functions attempted to 

access an array on any call subsequent to the first call. In the end this option was dropped. The 

SparQ reasoner had only been tested on POSIX systems and on the Microsoft Windows Vista system 

used in this study compilation failed to complete. 
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The entire implementation has been written in pl/pgsql. A very big challenge that arose from this 

fact was finding an appropriate structure for organising the software code. Pl/pgsql is poor in data 

structures and implementing complex algorithms such as the clique enumeration algorithm was very 

difficult. The lack of data constructs such as structs and pointers in the C language or classes in 

object-oriented programming languages meant that values associated in any way have to always be 

accessed directly from a database table. This has led to a great number of SQL queries being written 

for the internal functions of the model. Because of the dynamic nature of the system, the database 

server has to make frequent disk input/output operations since the query planner cannot easily 

predict the data required for any subsequent queries even if they are in the same transaction 

(Douglas and Douglas 2003, pp. 167-208). Global variables are not supported so that all data 

required across several functions have to be passed explicitly. As a result, in the implementation, 

most global data is dumped into tables where other functions can find it. In a multiuser environment 

this is dangerous since one user may place data in a table and another user may alter that 

information in between transaction. However all data passed through tables are within transaction 

data and therefore protected by the DBMS transaction management system. 

The way unary constraints are modelled and specified in a query was one of the most difficult design 

decisions to be made because there was a need to maintain flexibility in terms of what type of 

information can be modelled alongside the topological information in the database. As seen in 

Chapter 3, unary constraints of the query are normal relational attributes and the model does not 

impose any specific structure on how they should be modelled in the database. This leads to non-

uniform treatment of unary constraints during query evaluation since each unary constraint is a user 

specified SQL statement. For binary constraints, only the basic RCC-8 relations are stored so that a 

relation to be stored in the database cannot be derived from composition since usually the result of 

composition is a disjunction of relations rather than a single basic relation. This reduces the flexibility 

of using the system as incomplete information cannot be used as input. 

Finding test data, generating test cases, and executing the tests was also a challenge because data 

were not readily available and there was clear way to involve real users since no graphical user 

interface was available for sketching and presentation. In addition, manual extraction of topological 

information in the sketch and encoding of the information into a query was tedious and error-prone. 

This made the testing slow and difficult as every information had to be checked at least twice. 
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6. Conclusions and Future Work 

6.1. Conclusions 

It is well known that topology alone is not sufficient as a query evaluation criterion for spatial 

queries (Egenhofer and Mark 1995, Egenhofer 1997) but it is, nonetheless, essential. The model 

presented in this work is able to compare the topological relations among regions in one sketch map 

with those in a database and retrieve the all configurations from the database that match the sketch 

map completely or partially. 

Symmetric topological relations (DC, EC, PO, and EQ) can introduce ambiguity if no other 

information about the spatial relations among the regions concerned is available. Considering the 

results from the tests described above, in all cases there were many solutions per query but 

whenever more than one complete solution was encountered it was possible to choose from them 

the exact match for the query by considering the direction relations among the regions. From this it 

is evident that the inclusion of more binary constraints on the pairs of regions (e.g. direction, 

distance, and shape constraints) in the query would reduce the number of admissible results with a 

positive effect. Limiting the size of the solutions by some threshold will also help to reduce the size 

of the set of solutions and remove some redundancies as subsets of larger solutions will be 

excluded. For databases with a large number of sketches, this must be done on a per sketch basis 

since sketches with fewer regions will always suffer from high thresholds. 

Refining solutions by aggregating database regions and comparing them to an unmatched query 

variable may improve the results returned by the query if thresholds are imposed for acceptable 

sizes of a solution. In fact refinement has a small counter effect to the effects of a threshold because 

previously unacceptable solutions may be moved into the acceptable range by incorporating more 

regions. But the aggregation model will not work in cases where the query is larger than every 

sketch in the database. For this, new ways of deciding when and how to apply the aggregation 

procedure will be needed. The procedure is nevertheless an appropriate tool for processing queries 

to databases of sketch maps because in such cases solutions that match the query sketch completely 

are preferred to those that are not complete. 

 While the model was developed with sketch maps in mind, it can easily be extended for use with 

geospatial databases since most of them would be expected to support topological and directional 

relation operators (Güting 1994). The refinement model can also be employed independently of the 

entire system developed in this study because it only requires as input a set of regions each with 

some specified topological constraints with a fixed region and another distinct set of regions that 

may satisfy the constraints between the fixed region and regions of the first set. 

6.2. Future Work 

The refinement model developed in this thesis is limited in several respects, as presented in 

Chapters 4 and 5. These limitations were a result of the complexity associated with developing a 

general solution to the problem. The generalisation of the present solution to include any number 

aggregate regions and allowing disconnected regions to form parts of an aggregate presents an 

opportunity for future work at two levels. First, the analysis of the query needs to be such that the 

aggregation procedure is entered only if a certain level of certainty about the presence of an 
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aggregate region in the query is reached. Otherwise, the procedure may be executed unnecessarily 

many times without a positive result. The second level involves developing heuristics to select and 

compare database regions for inclusion in an aggregate region. A hierarchical process could be 

useful in this scenario since it allows comparisons to be made locally first and then expand to 

neighbouring regions. The inclusion of direction information in the decision model of the procedure 

may also become advantageous to at this level. 

Much work has already been done about incorporating different aspects of spatial representation 

into query by sketch systems (Egenhofer 1997, Egenhofer and Shariff 1998, Forbus et al. 2003, Nedas 

and Egenhofer 2008). Although most of this work is aimed at query systems for spatial databases, it 

can be equally applicable to databases of sketch maps but this assertion needs to be tested. An 

implementation of a database model that allows the combination of different sketches at the 

abstract level of qualitative spatial representations still remain an open question as far as sketch-

based query systems are concerned. In the context of the present model, this means that a complete 

solution to a single query could be created from partial solutions from two different sketches in the 

database. Present work in this direction includes that of Li et al. (2009) in which they apply 

consistency checking for a combined CSP of the Interval Algebra. 
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Annex A: Input Sketches 

 

Figure A1: Sketch 1 

 

 

Figure A2: Sketch 2 
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Figure A3: Sketch 3 

 

Figure A4: Sketch 4 
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Figure A5: Sketch 5 

 Figure A6: Sketch 6 
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Annex B: Sample scripts 

 

 

 

 

 

 

 

 

 

 

 

 

Listing A1: Script for creating tables that were used to test the database model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Listing A2: Script for inserting data from sketch 3 into database tables 

DROP TABLE IF EXISTS farms CASCADE; 
 
CREATE TABLE farms( 
 feature_id serial, 
 name text, 
 description text, 
 the_rcc_region varchar(48) UNIQUE 
); 
 
 
DROP TABLE IF EXISTS farm_properties CASCADE; 
 
CREATE TABLE farm_properties ( 
 property_id serial, 
 feature varchar, 
 name text, 
 value text, 
 CONSTRAINT fk_feat FOREIGN KEY (feature) REFERENCE S farms 
(the_rcc_region) ON UPDATE CASCADE ON DELETE CASCAD E 
); 
 
SELECT set_rcc_table('farms', 'the_rcc_region'); 

SELECT use_sketch('KiwiFarm 1'); 
 
INSERT INTO farms(name, description, the_rcc_region ) VALUES ('Road', 'Main road 
passing near farm', 'S1Road'); 
 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Road', 'Category', 
'transport'); 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Road', 'Feature', 
'roads'); 
 
INSERT INTO farms(name, description, the_rcc_region ) VALUES ('Old Pines', 'Old pine 
tree lot', 'S1OldPines'); 
 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1OldPines', 'Category', 
'other biota based activities'); 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1OldPines', 'Feature', 
'pine trees'); 
 
INSERT INTO farms(name, description, the_rcc_region ) VALUES ('Pines', 'Pine tree 
lot', 'S1Pines'); 
 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Pines', 'Category', 
'other biota based activities'); 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Pines', 'Feature', 'pine 
trees'); 
 
INSERT INTO farms(name, description, the_rcc_region ) VALUES ('Frost Area', 'Frost 
Area', 'S1FrostArea'); 
 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1FrostArea', 'Category', 
'climate'); 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1FrostArea', 'Feature', 
'frost area'); 
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Listing A2: Continued… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSERT INTO farms(name, description, the_rcc_region ) VALUES ('Block 1', 'Farm division 
block 1', 'S1Block1'); 
 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Block1', 'Category', 
'spatial organisation'); 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Block1', 'Feature', 
'blocks'); 
 
INSERT INTO farms(name, description, the_rcc_region ) VALUES ('Block 2', 'Farm division 
block 2', 'S1Block2'); 
 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Block2', 'Category', 
'spatial organisation'); 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Block2', 'Feature', 
'blocks'); 
 
INSERT INTO farms(name, description, the_rcc_region ) VALUES ('Block 3', 'Farm division 
block 3', 'S1Block3'); 
 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Block3', 'Category', 
'spatial organisation'); 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Block3', 'Feature', 
'blocks'); 
 
INSERT INTO farms(name, description, the_rcc_region ) VALUES ('Block 4', 'Farm division 
block 4', 'S1Block4'); 
 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Block4', 'Category', 
'spatial organisation'); 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Block4', 'Feature', 
'blocks'); 
 
INSERT INTO farms(name, description, the_rcc_region ) VALUES ('House Site', 'Farm house 
yard or lot', 'S1HouseSite'); 
 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1HouseSite', 'Category', 
'spatial organisation'); 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1HouseSite', 'Category', 
'buildings'); 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1HouseSite', 'Feature', 
'blocks'); 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1HouseSite', 'Feature', 
'houses'); 
 
INSERT INTO farms(name, description, the_rcc_region ) VALUES ('Shed', 'Farm storage and 
work shed', 'S1Shed'); 
 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Shed', 'Category', 
'buildings'); 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Shed', 'Feature', 'sheds'); 
 
INSERT INTO farms(name, description, the_rcc_region ) VALUES ('Shelter', 'shelter', 
'S1Shelter'); 
 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Shelter', 'Category', 
'wind'); 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Shelter', 'Feature', 
'shelters'); 
 
INSERT INTO farms(name, description, the_rcc_region ) VALUES ('Block 2-1 Boundary', 'Farm 
division boundary between block 2 and block 1', 'S1 Block21Boundary'); 
 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Block21Boundary', 
'Category', 'spatial organisation'); 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Block21Boundary', 
'Feature', 'blocks'); 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1Block21Boundary', 
'Feature', 'boundaries'); 
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Listing A2: Continued… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INSERT INTO farms(name, description, the_rcc_region ) VALUES ('Drive In', 'Drive way from 
the main road to the farm', 'S1DriveIn'); 
 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1DriveIn', 'Category', 
'transport'); 
INSERT INTO farm_properties(feature, name, value) V ALUES ('S1DriveIn', 'Feature', 
'driveways'); 
 
SELECT end_sketch(); 
 
SELECT related_regions('S1Road', 'S1OldPines',  'EC '); 
 
SELECT related_regions('S1Road', 'S1Pines', 'EC'); 
 
SELECT related_regions('S1Road', 'S1Block1', 'EC');  
 
SELECT related_regions('S1Road', 'S1FrostArea', 'EC '); 
 
SELECT related_regions('S1Road', 'S1Shelter', 'EC') ; 
 
SELECT related_regions('S1Road', 'S1Block3', 'EC');  
 
SELECT related_regions('S1Road', 'S1DriveIn', 'EC') ; 
 
SELECT related_regions('S1Road', 'S1Block21Boundary ', 'EC'); 
 
SELECT related_regions('S1Pines', 'S1Shelter', 'EC' ); 
 
SELECT related_regions('S1OldPines', 'S1FrostArea',  'EC'); 
 
SELECT related_regions('S1OldPines', 'S1Block4', 'E C'); 
 
SELECT related_regions('S1OldPines', 'S1DriveIn', ' EC'); 
 
SELECT related_regions('S1FrostArea', 'S1Block4', ' EC'); 
 
SELECT related_regions('S1FrostArea', 'S1Block3', ' EC'); 
 
SELECT related_regions('S1Block3', 'S1Block4', 'EC' ); 
 
SELECT related_regions('S1Block3', 'S1HouseSite', ' EC'); 
 
SELECT related_regions('S1Block3', 'S1Shelter', 'EC '); 
 
SELECT related_regions('S1Block4', 'S1HouseSite', ' EC'); 
 
SELECT related_regions('S1Block4', 'S1DriveIn', 'EC '); 
 
SELECT related_regions('S1HouseSite', 'S1Shelter', 'EC'); 
 
SELECT related_regions('S1HouseSite', 'S1DriveIn', 'EC'); 
 
SELECT related_regions('S1HouseSite', 'S1Shed', 'NT PPI'); 
 
SELECT related_regions('S1DriveIn', 'S1Block2', 'EC '); 
 
SELECT related_regions('S1Block2', 'S1Block21Bounda ry', 'EC'); 
 
SELECT related_regions(' S1Block1' , 'S1Block21Boundary', 'EC'); 
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Listing A3: Script for query 2_1_1 whose sketch was based on sketch 3 of the original sketches in Annex A. 

SELECT rcc_clear_qry(); 
 
SELECT unary_qry_constraint('A', 'farms ', 'select a.the_rcc_region as the_rcc_region from farms a, fa rm_properties b  
  where a.the_rcc_region = b.feature and (((b.name = ''Feature'' and b.value = ''roads'')  
   and (a.description ~* ''main road'' or a.name ~*  ''road''))) 
'); 
 
SELECT unary_qry_constraint('B', 'farms ', 'select a.the_rcc_region as the_rcc_region from farms a, fa rm_properties b  
  where a.the_rcc_region = b.feature and (((b.name = ''Feature'' and b.value = ''pine trees'')  
   and (a.description ~* ''pine trees'' or a.name ~ * ''old pine trees'' or a.name ~* ''old pines''))) 
'); 
 
SELECT unary_qry_constraint('C', 'farms ', 'select a.the_rcc_region as the_rcc_region from farms a, fa rm_properties b  
  where a.the_rcc_region = b.feature and (((b.name = ''Feature'' and b.value = ''driveways'')  
   and (a.description ~* ''drive way'' or a.name ~*  ''drive way'' or a.name ~* ''driveway''  
    or a.name ~* ''drive in'' or a.name ~* ''drivei n''))) 
'); 
 
SELECT unary_qry_constraint('D', 'farms ', 'select a.the_rcc_region as the_rcc_region from farms a, fa rm_properties b  
  where a.the_rcc_region = b.feature and (((b.name = ''Feature'' and b.value = ''houses'')  
   and (a.description ~* ''farm house'' or a.name ~ * ''house'' or a.name ~* ''farm house''))) 
'); 
 
SELECT unary_qry_constraint('E', 'farms ', 'select a.the_rcc_region as the_rcc_region from farms a, fa rm_properties b  
  where a.the_rcc_region = b.feature and ( 
       ((b.name = ''Feature'' and b.value = ''shelt ers'') and (a.description ~* ''shelter'' or a.name ~* ''shelter''))) 
'); 
 
SELECT unary_qry_constraint('F', 'farms ', 'select distinct a.the_rcc_region as the_rcc_region from fa rms a, farm_properties b  
  where a.the_rcc_region = b.feature 
'); 
 
SELECT unary_qry_constraint('G', 'farms ', 'select a.the_rcc_region as the_rcc_region from farms a, fa rm_properties b  
  where a.the_rcc_region = b.feature and (((b.name = ''Feature'' and b.value = ''frost area'')  
   and (a.description ~* ''frost area'' or a.name ~ * ''frost area'')) ) 
'); 
 
SELECT binary_qry_constraints('A B EC AND A C EC AN D A D DC AND A E EC AND A F EC AND A G EC AND B C E C AND B D DC AND B E DC AND B F EC 
AND B G EC AND C D EC AND C E DC AND C F EC AND C G  DC AND D E EC AND D F EC AND D G DC AND E F EC AND  E G DC AND F G EC'); 
 
SELECT rcc_eval_qry(false); SELECT refine_solutions (); 
 
SELECT * FROM rcc_return_next(5);  SELECT * FROM rc c_return_unique(7); 
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