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Abstract

Long-term biosignals acquisitions are an important source of information about the patients’

state and its evolution. However, long-term biosignals monitoring involves managing ex-

tremely large datasets, which makes signal visualization and processing a complex task.

To overcome these problems, a new data structure to manage long-term biosignals was

developed. Based on this new data structure, dedicated tools for long-term biosignals visu-

alization and processing were implemented.

A multilevel visualization tool for any type of biosignals, based on subsampling is pre-

sented, focused on four representative signal parameters (mean, maximum, minimum and

standard deviation error).

The visualization tool enables an overview of the entire signal and a more detailed visu-

alization in specific parts which we want to highlight, allowing an user friendly interaction

that leads to an easier signal exploring.

The ”map” and ”reduce” concept is also exposed for long-term biosignal processing. A

processing tool (ECG peak detection) was adapted for long-term biosignals. In order to test

the developed algorithm, long-term biosignals acquisitions (approximately 8 hours each) were

carried out.

The visualization tool has proven to be faster than the standard methods, allowing a fast

navigation over the different visualization levels of biosignals. Regarding the developed pro-

cessing algorithm, it detected the peaks of long-term ECG signals with fewer time consuming

than the nonparalell processing algorithm.

The non-specific characteristics of the new data structure, visualization tool and the speed

improvement in signal processing introduced by these algorithms makes them powerful tools

for long-term biosignals visualization and processing.
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Resumo

Aquisições de biosinais de longa duração são uma importante fonte de informação acerca do

estado e evolução dos pacientes. No entanto, a monitorização de longa duração de biosinais

envolve a manipulação de bases de dados extremamente longas, o que torna a visualização e

o processamento de sinais uma tarefa complexa.

De modo a superar estes problemas, uma nova estrutura de dados para manipulação

de biosinais de longa duração foi desenvolvida. Baseado nesta nova estrutura de dados,

ferramentas dedicadas à visualização e processamento de biosinais de longa duração foram

implementadas.

Uma ferramenta de visualização multi-ńıvel para qualquer tipo de biosinais, baseada em

sub-amostragem é apresentada, focando-se em quatro parâmetros representativos do sinal

(média, máximo, mı́nimo e desvio padrão).

A ferramenta de visualização permite uma visão geral da totalidade do sinal e uma visu-

alização mais detalhada em trechos especificos em que se queira realçar, possibilitando uma

interacção user friendly que leva a uma mais fácil inspecção do sinal.

O conceito de ”map” e ”reduce” é também apresentado para o processamento de biosinais

de longa duração. Uma ferramenta de processamento (detecção de picos de ECG) foi adap-

tada para biosinais de longa duração. De modo a testar o algoritmo desenvolvido, aquisições

de longa duração (aproximadamente 8 horas) de biosinais foram efectuadas.

A ferramenta de visualização provou ser mais rápida do que os métodos padrão, per-

mitindo uma navegação rápida sobre os diferentes ńıveis de visualização dos biosinais. Em

relação ao algoritmo de processamento desenvolvido, este detectou os picos de sinais de ECG

de longa duração com menor consumo de tempo que os algoritmos de processamento não

paralelo.

O carácter não-espećıfico da nova estrutura de dados e da ferramenta de visualização e o
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aumento de velocidade do processamento de sinais introduzido por estes algoritmos torna-os

ferramentas potentes para a visualização e processamento de biosinais de longa duração.

Palavras-chave: Biosinais, processamento de sinal, monitorização de longa duração, estru-

tura de dados.
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Chapter 1

Introduction

1.1 Motivation

The growing demand for medical systems and applications for human welfare and quality of

life is increasingly supported by the body signals monitoring of a subject.

There are several types of body signals, also called biosignals, including bioelectric (gener-

ated by nerve and muscle cells), bioimpedance (containing information about tissue composi-

tion, blood volume and distribution, endocrine activity, automatic nervous system and more),

biomagnetic, bioacustic, biomechanical and biochemical signals [6]. These biosignals give the

researcher or the clinician a perspective over the patient’s state since they carry useful infor-

mation for the comprehension of complex physiologic mechanisms underlying the behavior

of living systems. The process of monitoring biosignals may be as simple as a physician esti-

mating the patient’s mean heart rate by feeling, with the fingertips, the blood pressure pulse.

Biomedical signal analysis is nowadays a method of the greatest importance for data inter-

pretation in medicine and research, since the manipulation and processing of data provide

vital information about the condition of the subject or the status of the experiment.

Data visualization and inspection are an increasingly important part of understanding and

explaining phenomena of everyday life. Besides acquiring biosignals it is desirable to visualize

and extract information, either at real time, or by graphically displaying and analyzing them

offline.

Signal visualization and processing techniques have been developed to help the examina-

tion of many different biosignals and to find important information embedded in them [22].

The advantage of visual data exploration consists in involving the researcher or clinician di-

rectly in the data mining process, since he can select visually the interesting parts of the
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CHAPTER 1. INTRODUCTION

signal being analysed.

In clinical cases such as sleep disorders and neuromuscular diseases, a constant monitoring

of the patient’s condition is necessary. This requirement is due to the possible occurrence of

sudden alterations in the patient’s state. The demand for a correct and prompt diagnosis leads

to a mandatory identification of insufficiency signs in the clinical context. With this intention,

long-term biosignal acquisitions are one of the possible methods that allow a continuous

monitoring of the patient [21]. However, long-term acquisitions generate large amounts of

data. In order to analyze and follow up the patient’s condition it is very important to acquire,

visualize and extract relevant information from the signals. In patients with neuromuscular

diseases, the heart rate variability, respiration, muscular and electrodermal activity signals are

extremely important, since they indicate when a muscular crisis is occurring [46]. In a future

perspective, the continuous monitoring of these signals will allow the health care providers to

know beforehand when the patient needs assistance, assuring the patients’ comfort and safety

while they are continuously and remotely monitored in ambient assisted living conditions [41].

The long duration datasets obtained by these acquisitions exceed the capabilities for which

standard analysis and processing software were designed. Besides processing problems related

to the difficulty to manipulate large amounts of data, long-term biosignals are not easy to

display using standard visualization software. The difficulties to visualize signals obtained in

long acquisitions (e.g. recording for several hours) rise up from the lack of capability in the

currently available tools to correctly visualize the entire signal [22].

Considering the described problems with the long-term biosignals visualization and pro-

cessing, and the importance of this kind of signals in health and research areas, this work

presents new solutions that aim at the development of tools that enable a simple visualization

of very large biosignals and an effective processing of this kind of signals.

This dissertation was developed at PLUX - Wireless Biosignals, S.A. [37], which considers

the main goals of its Research and Development (R&D) department to be the creation of

new solutions for more comfortable and ergonomic biosignals monitoring.

1.2 State of the Art

The design of tools to visualize and analyze biosignals have been an active research area in the

last years, due to the importance of monitoring a subjects’ condition. Nowadays, it is possible

to acquire a variety of these biosignals, either on a clinical context or during research studies,

that can provide very useful information about the patients’ or subjects’ state. Biosignal
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1.2. STATE OF THE ART

monitoring techniques aim at the perception and identification of important variables that

can be extracted from biological data.

In order to save and exchange the acquired signals, it is primarily necessary to choose a

correct data structure to store information. Thus, signals must be recorded in a format that

allows a posteriori data accessing. There are several standard formats for biological data

storage and exchange and one of the most common examples is the EDF (European Data

Format) [12, 23]. This format allows to save multiple channels data, as well as information

about the recording and the subject, being widely used for biomedical signal databases.

At the Harvard-MIT division of Health Science and Technology, an interesting web based

research resource for complex physiologic signals was developed to help new investigations

in studies of biological signals. This resource, exposed by Moody et al. [31], is a framework

composed of three interdependent components: database of physiologic signals (PhysioBank),

tools for biosignal analysis (PhysioToolkit) and a web based discussion forum (PhysioNet)

[36]. The already mentioned biosignal database - PhysioBank - allows internet access to

long-term biosignals that can be downloaded, but the necessary tools to provide a fast and

easy visualization and processing of long-term biosignals are not user friendly.

Multilevel visualization of very large datasets has been developed over the last years by

web mapping services that enable internet users to see images of the Earth in different levels

of detail [47]. However, to our knowledge, this type of approach was not implemented in the

biosignal analysis area.

Long-term biosignal visualization has been an area in constant development, as well as

data mining algorithms [27]. Time series data mining approaches has led to the introduction

of similarity measures, representations and algorithms [2, 24, 25]. Despite the advances in

such techniques, those who deal with time series are confronted with difficulties in learning,

implementating and manipulating the mentioned tools [27].

An open source tool to visualize and perform processing operations such as filtering,

powerspectrum, or heart rate detection in Electrocardiography (ECG) data saved in the EDF

format is the EDFbrowser. In spite of allowing to open very large data sets, the visualization

tool is not fast, and does not enable the visualization of the entire long-term biosignals.

Processing very large datasets is another field where important results have been achieved.

Parallel processing techniques (using several processors that process a part of a dataset each

one) allow the division of one big, complex task, in several smaller and faster operations.

MapReduce is a programming model introduced by Google for processing large data sets

with two simple concepts: the map (the ”split” step, on which the big input problem is parti-

3



CHAPTER 1. INTRODUCTION

tioned to be processed in smaller parts) and reduce (the ”merge” step, when the results of the

processing partitions are combined to generate the output) [9]. This programming paradigm

has been applied in some investigation areas, such as data intensive scientific analysis [13].

The visualization and processing solutions described in this thesis contribute for the de-

velopment of new tools for biosignal analysis and processing specifically for long-term signals.

1.3 Objectives

The primordial objective of this thesis is to develop tools for the visualization and processing

of long-term biosignals. To accomplish these objectives, biosignals obtained in long-term

acquisitions are necessary, as well as tools capable to store and visualize the large amounts

of acquired data and algorithms for large datasets processing.

Considering the main goals of this research, a new data structure which provides a novel

way to store long-term biosignals and easily access them with dedicated visualization and

processing tools needed to be designed and implemented. The visualization tool must offer

the possibility to inspect biosignals with huge sizes in a fast and user friendly way. The

proposed tools must have future perspectives to become powerful for biosignals inspection

and analysis, accessible remotely in a web based environment. Regarding signal processing,

algorithms for an efficient processing of very large datasets, that do not exceed start alone

computer’s capabilities are an objective.

The presented tools need to be tested on different time varying biosignals obtained from

the human being, such as as electromyography (EMG) , electrocardiography, blood volume

pressure (BVP), accelerometry (ACC) or respiration (Resp) signals. However, the goal of

this thesis was not to develop tools to be applied in a specific type of signal but to be as

general as possible.

1.4 Thesis overview

The main structure of this thesis is represented in Figure 1.1.

Figure 1.1: Scheme of the thesis structure.
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1.4. THESIS OVERVIEW

The present chapter has an introductory role on the thesis context. The motivations and

objectives that encouraged the development of this work are exposed, and an overview on the

state of the art is provided. The ”Basis” (Figure 1.1) of the thesis is completed with Chapter

2 (theoretical concepts), on which the fundamentals of our work and important concepts are

explained.

Chapter 3 focuses on the new data structure implemented, while chapter 4 provides infor-

mation on the developed tool to visualize long-term biosignals. In Chapter 5, the developed

algorithms for long-term biosignals processing are exposed and explained. Chapters 3, 4 and

5 together form the second part of the thesis, the ”Developed tools” (Figure 1.1). This is the

part on which the developed tools are scrutinized and all the details about the implemented

innovating algorithms are reported.

Finally, the ”Results” (Figure 1.1) part of the thesis is composed by the performance

evaluation (presented in Chapter 6) and the conclusions (exposed in Chapter 7).

The thesis has two additional appendixes. Appendix A presents the article that was

submitted during this work and accepted for publication. Appendix B presents a work route,

giving an insight on the different steps taken through this work until the final result.

5
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Chapter 2

Concepts

In this chapter, contextual information about biosignals, data mining, data visualization

and parallel processing mechanisms will be provided. The objective is to introduce relevant

concepts that will help to understand the fundamental basis of the present work.

2.1 Biosignals

Biosignal is a term used for all kinds of signals which can be continuously measured from

biological beings. Biosignals are space, time, or space-time records of biological events such

as heart beats or the contraction of a muscle. The electrical, chemical or mechanical activity

ocurring during these biological events often generates signals that are measurable and can

be analyzed. For that reason, biosignals contain useful information that can be important for

medical diagnosis, since they allow the comprehension of underlying physiological mechanisms

of a specific biological event or system [14].

Biological signals can be acquired in a variety of ways and following signal acquisition,

the recorded data is analyzed in order to extract signal’s characteristics. The next section

presents several biosignal types, focusing on a specific type: the ECG signals.

2.1.1 Biosignals Types

In the daily life, the acquisition of a specific biosignal may be of the utmost importance in

order to understand the origin of a specific problem.

The physiological origins of biosignals can be various. Figure 2.1 presents possible phys-

iological sources of these signals. Examples of this variety of biological signals are Blood

Volume Pressure, which derives from the force exerted by blood on the walls of blood vessels,

Electromyography, that is measured due to the electrical activity generated by nervous system

7



CHAPTER 2. CONCEPTS

control of the muscle cells, Accelerometry, which tracks movement’s acceleration, Electroder-

mal Activity (EDA) , that reflects changes in the electrical properties of the skin, Respiration

signals (Resp), which arises from variations in the chest volume due to respiratory activity

and Electroencephalography (EEG), which monitors the electrical activity of the scalp.

biosignals
bioelectric

biomagnetic

biochemical

bioimpedance

bioacousticbiomechanical

biooptical

Figure 2.1: Different types of biological signals.

In spite of the existence of several types of biosignals and the general purpose of the

developed work (to developed tools which are signal-independent) a study was made involving

a specific type of biosignals, the bioelectric signals (application of an ECG peak detection

algorithm to long-term biosignals).

Bioelectric signals are generated by nerve and muscle cells, due to electrochemical changes

that occur between cells. Stimulating a cell with a strong enough stimulus causes an action

potential (ions flowing through the cell membrane) that can be measured. The excited cell

can transmit the action potential to the neighboring cells, inducing the propagation of this

potential. The activation of a large number of cells generates an electrical field, measurable

on the surface of the tissue. Examples of this type of signals are ECG, EEG and EMG.

In the next section a detailed view of Electrocardiography and ECG signals is provided.

The focus on these specific biosignals is justified by the applications concentrated specially

in problems involving them (see Chapter 5.2).

Electrocardiography

One of the most familiar biosignals to be measured is the electrocardiogram, which is the

recording of the electrical activity of the heart, associated with its mechanical activity (re-

8



2.1. BIOSIGNALS

polarization and depolarization of the atrial and ventricular chambers of the heart).

In that way, diagnostic analysis of the mechanical function of the heart is achieved through

the assessment of the ECG. Electrocardiography takes care of the detection and amplification

of electrical changes on the skin, with surface electrodes, that are caused by heart muscle

depolarization which occurs on each heart beat. In general, ECG’s important parts consist

of P, QRS and T waves, shown in Figure 2.2.

Figure 2.2: Normal shape of an ECG signal. The P, QRS and T waves are highlighted.

The P-R interval is a measure of the time from the beginning of atrial activation to the

beginning of ventricular activation, ranging from 0.12 to 0.20 seconds [20].

The QRS complex’ duration lies between 0.06 and 0.10 seconds [20] and its abnormal

prolongation maybe a signal of blocking in the normal conduction pathways through the

ventricles. The S-T interval reflects the depolarization of the ventricular myocardium, while

the T wave indicates its repolarization.

ECG processing techiques and parameters extraction play an important role in the moni-

toring of patients. Several measures and analysis proceedings can be done with ECG signals.

One of the most important examples is the QRS peaks detection. This waveform is the most

easily identifiable within the electrocardiogram. Since it reflects the electrical activity within

the heart during the ventricular contraction, the time of its occurrence and its shape provide

much information about the current state of the heart [26]. Other important parameter is

the heart rate variability (HRV) [29]. This physiological phenomenon is characterized by the

variation in the time interval between heart beats.

In order to study and analyze biological signals, it is necessary to have access to these data.

The biological information can be used for instantaneous analysis with real-time processing

9



CHAPTER 2. CONCEPTS

(heart rate calculation) or for a posterior inspection in search for useful information.

In the present work our focus resides on the analysis, visualization, and processing of

biosignals a posteriori, i.e. not simultaneously with signal acquisition. Therefore, in the next

section, an introduction to biosignals acquisition is presented.

2.1.2 Biosignals Acquisition

Biosignals are often analog and with small amplitudes when compared to the surronding

noise. To enable the extraction of meaningful information from biosignals (which are crucial

to understand biological systems), powerful data acquisition techniques and equipment are

commonly used.

Normally, these signals contain unwanted interference or noise that mask relevant infor-

mation [6]. Thus, high-precision low-noise equipment is necessary to minimize the effects of

noise. The basic components in a bioinstrumentation system are shown in Figure 2.3.

Figure 2.3: Scheme of the acquisition of biosignals. Biosignals are ”read” by a specific sensor; the
sensor converts physical information into an electric output, allowing the conversion from biological
data to electrical records. From [14].

A sensor converts physical phenomena into an electric output. There are several types of

sensors; its objective is normally to transduce the observed biosignal into an electrical analog

signal that is measurable using a data acquisition system.

The data acquisition system converts the analog signal into a digital signal that can be

stored. Digital signal processing techniques are applied to the saved signals in order to reduce

noise and extract additional information which can be useful for the comprehension of the

physiological meaning the acquired signals.

10
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Any stage of the biosignal acquistion chain (amplification, analog filtering, and Analog-to-

digital conversion (ADC)) shall generate misleading or untraceable distortions. Distortions

in a signal measurement may lead to an improper diagnosis, which represents an high risk,

since these signals carry biological information which might be used for medical interpretion.

Since data is stored in computers in the form of discrete values, the analog signals need

to be converted into discrete units in an analog-to-digital conversion. This conversion is

composed by two steps: sampling and quantization. The continuous values are observed

(sampled) at fixed intervals and rounded (quantized) to the nearest discrete values, as it is

shown in Figure 2.4. The generated time values of this proccess are called ”samples”.

Figure 2.4: Sampling and quantization of an analog signal. From [14].

ADC has two important parameters that influence how the digital data represents the

original signal: the precision (accuracy level of a sample observation) and the frequency

(defines the observation rate) with which the signal is recorded and sampled [30].

The present work has as main objective the creation of tools for the storage, display and

processing (the last two steps in Figure 2.3) of long-term biosignals. Biosignal processing is
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focused in the extraction of important information from the signals, by manipulating them

so that relevant data can be can be extracted. The next section presents the biosignals

processing concept.

2.1.3 Biosignals Processing

The representation, transformation and manipulation of biosignals and extraction of signifi-

cant information are subjects of biomedical signal processing. Biosignal processing tools have

supported the development of medical monitoring systems that provide an overview over the

human body’s functioning.

The processing of biomedical signals is usually composed of three stages [40]:

• Signal transformation;

• Signal parameters extraction;

• Signal interpretation and/or classification.

After the acquisition of biosignals, described in section 2.1.2, one of the main goals is to

obtain abstract information from the acquired signals.

The parameters extraction step might provide medical care professionals with important

information, which was not visible by looking to the recorded biosignals. This process allows

the interpretation and classification of biosignals, providing a perception of the patients’

state. A variety of parameters extraction techniques can be used and several parameters can

be extracted from biosignals, such as the heart rate and HRV analysis from ECG signals.

Since there are several health conditions which require a long-term monitoring of patients’

biosignals, large data sets are obtained. Issues related with the signal sizes problem are

presented in the next section.

2.2 Long-term datasets

In the last years, our capability to collect and store data has overtaken our ability to process,

analyze and explore it. Scientists and engineers from a broad range of working areas have been

capturing increasingly complex experimental data sets, such as high spatial, temporal and

spectral-resolution remote sensing systems, and other environmental monitoring devices [8].

The medicine and biomedical engineering areas are not an exception, since nowadays an

increasing amount of biological data is saved. One of the examples is the acquisition of

biosignals in a long-term perpective, for a close monitoring of the subjects’ biological signals.
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This rise in the quantity of saved data has led to the necessity of finding data mining

techniques which allow the analysis, processing and visualization of the recorded data. The

next chapter covers the data mining concept and gives an insight on data mining techniques

that have been developed.

2.2.1 Data mining

During the last years databases have been growing in size, as well as in the varieties of

data and its applications. This upgrowth causes the development of tools to extract useful

information (knowledge) from the huge volumes of data to be of the highest importance.

The most relevant process in these required tools is the application of specific data-mining

methods for pattern discovery and extraction. [15]

Several data mining techniques have been developed in order to allow data analysis and

display, since they are fundamental for decision support in many application contexts.

One of the possible fields where data mining is necessary is the exploring of spatio-

temporal data sets, which are often very large and difficult to analyze. An example is given

in [8] with algorithms for spatio-temporal data sets data mining and visualization.

In the health care area, a data mining approach to policy analysis in a health insurance

domain [7] was addressed in 2001 in order to demonstrate how these algorithms can be used

to predict health outcomes and provide policy information for hypertension management.

Data mining techniques have also been developed in the biosignals area. An example of

application of this technique is the signal clustering, which consists of assigning a group of

objects into groups (called clusters) so that the objects in the same cluster are more similar

to each other than to those in other clusters [32].

Specifically in health care data field (particularly for biosignals), data mining algorithms

are very useful tools to analyze current trends and changes in the data.

2.2.2 Multilevel visualization techniques

Web mapping services and spatial visualization features are a growing area nowadays. Ser-

vices like Bing Maps [1] and Google Earth [11], that provide multi-resolution visualization

tools to explore our planet are widely used by the internet general public. The concept as-

sociated to this services is to allow the user to explore the Earth by ”overflying” and being

able to have a closer or farther view of the planet’s surface.

These tools provide the possibility to visualize images of the Earth with multiple resolution

levels, according to the area that is being selected. The bigger that area is, the less detail is
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contained in the images being shown.

Besides web mapping and geo-spatial exploring tools, other multilevel visualization meth-

ods have been created. One example is the application of this idea for accessing Electronic

Health Records (EHR) in phases [3, 42], according to the level of detail that is necessary.

Figure 2.5: Schematic representation of an Electronic Health Record exploring tool. From [3].

This particular application was explored and a representative scheme is shown in Figure

2.5 which introduces an exploring tool that enables organizing an EHR according to Levels

Of Detail (LOD). The different levels of detail are organized as it is described below:

• LOD1: the top (less detailed) level is the problem set. All the data in EHR is catego-

rized into several problem sets (each set has all the problems related to a specific organ

sytem);

• LOD2: this is the problem level. Specific health problems of each problem set are

gathered in this level;

• LOD3: in this level, all the visits that the patient did in order to solve the health

problem of the subsequent level are organized chronologically;
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• LOD4: the fourth level is related with summary data (exam results, patient condition

and treatment procedures) of each visit.

• LOD5: is the most detailed level and allows assessing all the specific data of each visit.

As an application example for the LOD EHR exploring tool described above, the first

level of detail may contain a circulatory system set. Consequently, the heart is one of the

possible organs to be affected, and Coronary artery disease is one of the possible problems

to affect this organ; this is the second level of detail. In the third detail level, the description

of the patient’s visits related to the problem mentioned in the second level is given. The

fourth level of detail provides information about a specific visit that the patient did in the

Coronary artery disease context; Access to specific exams (e.g. ECG), medical reports on

the patient condition or clinical procedures is possible in this level of detail. The fifth detail

level is where all the data regarding the specific visit related to the Coronary artery disease.

As it was presented, some applications of the multilevel visualization concept have been

developed. However, this concept could also be applied to biosignals, since the acquisitions of

this type of signals are increasingly growing, making signal analysis and visualization difficult

tasks.

2.3 Parallel computing

Parallel computing relies on the division of a complex problem in several smaller problems

which can be solved in parallel; these smaller problems can be solved using multiple Central

Processing Units (CPU’s). The parallel processing concept has started to become widely

known since the beginning era of the multiprocessor computers [4].

The traditional developed software was written for serial computations. By other words,

the standard software architectures are developed to run on a single computer, using one

central processing unit. The problems were splitted in series of instructions executed in

sequence so that the instructions run in separate moments in time. However, with the

parallel computing concepts, the problems are splitted in different parts that can be solved

separately [5]. This problem simplification allows to divide a complex task in multiple sub-

tasks which can be undertaken separately, using multiple processors. All the processors run a

sequence of instructions at the same time, producing a result faster than serial computations.

The computer resources that enable parallel processing may arise from the use of a com-

puter with more than one processor, a network of computers, or even both sources together.
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An example of a parallel processing architecture is given in Figure 2.6.

Figure 2.6: Schematic representation of a parallel computing architecture. From [10].

Figure 2.6 represents the parallel computing concept; a master computer may have three

independent tasks to be performed. These tasks are distributed by a network of computers,

so that each one only has to process one simple task.

One well known parallel computing approach (the MapReduce) is described below.

2.3.1 MapReduce algorithms

MapReduce is a programming model and its associated implementation for processing and

generating large data sets [9] developed by the Google team.

The programs developed using this model are parallelizable and thus can make use of a

cluster of computers.
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The programming model presented by Dean and Ghemawat is based on the following,

simple concepts: a ”map” function is specified by the user; this function processes a key/value

pair to generate a set of intermediate key/value pairs. All the intermediate key/value pairs

with the same key are merged by a ”reduce” function.

As an example, consider the problem of counting the number of occurrences of each

word in a set of files (for example, in a directory with several different files). A MapReduce

approach to solve this problem could be described by the following:

1. The map function iterates over the files in the specified directory;

2. For each file, the key/value pairs are computed. Each time a word occurs a new pair

<word, 1 >is computed;

3. All the intermediate values are grouped by key;

4. Iteration over the resulting groups;

5. Each group is reduced by adding the number of occurrences of each specific word.

Besides the simplicity, this programming model enables a serial algorithm to become

parallel operations (”map” and ”reduce”).
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Chapter 3

Data structure

The visualization, analysis and processing of long-term biosignals are mandatory tasks to

continuously monitor and understand electrophysiological data from patients.

As the present work deals with long-term biosignals, a tool to store and display large

amounts of data is of great importance in order to enable a prompt, easy and correct signal

analysis.

This chapter exposes the proposed data architecture, aiming at a dedicated tool for long-

term biosignals visualization, analysis and processing. This chapter also gives an insight on

the work already done in this area, in order to combine the already designed concepts and

achieve the established objectives.

3.1 Overview

One of the main goals of this work was to create tools that could answer the problem of long-

term biosignals analysis. To do so, this work presents a new architecture for biosignal data

and, supported by this new data structure, a new software to access, visualize and process

long-term biosignals. For that, some requirements were defined such as:

• rapid access to the files on which data is recorded;

• a fast and user-friendly multi level visualization tool to view entire biosignals with large

sizes, featuring advanced navigation options to access specific parts of the biosignals;

• an intuitive and fast biosignals processing tool, applying the concept of parallel pro-

cessing to biosignals.
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However, one of the main problems in long-term biosignals resides on the file format on

which the acquired biosignals are stored to be accessed, visualized and processed posteriorly.

The chosen file format must not compromise the access to the acquired data. Thus, it is

very important to study and understand the advantages and limits of each file format to save

the recorded signals so that an easy and fast data access is guaranteed.

Since several types of standard formats for biomedical data were already created with

this objective, a survey of those file formats was carried out in order to understand which

one represents the best solution to meet the needs of the proposed work.

3.2 Standard file formats

Biomedical signal databases are used in several areas, such as engineering, scientific research

and healthcare. Database standardization facilitates multicenter collaboration and data shar-

ing. As a consequence of the benefits brought by data format standardization, a large number

of standards for biological data recording have been created [44].

Following, a list of standard file formats for biosignal databases (as well as other file

formats that are not specific for biosignals) that can represent an alternative solution for the

mentioned problem is presented.

• *.mat - MATLAB

MATLAB file format (.*mat) is one of the most known file formats in the biomedical

engineering area. This file format saves data in binary (not human-readable) form.

*.mat files have a 128 byte header (with information about the file) followed by one

or more data elements. Each data element is composed of an 8 byte tag followed by

the data in the element. The tag function is to specify the number of bytes in the

data element and how these bytes should be interpreted (as 16 bit values, 32 bit values,

floating point values or other). The tags provide fast access to individual data elements

within a *.mat file, since they map the data. Once found a tag when exploring a file,

it is possible to skip ahead a chosen number of bytes until the next tag [28].

Despite being a powerful tool, MATLAB is not Open Source and thus cannot be used

freely, making it necessary to look for other solutions regarding biosignal databases

management.
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• *.txt

Text files are globally known by users with a broad range of usage applications since

they are computer files, existing inside of the file system. This type of file format is

not specific to save biological data or any other type of data; hence it can be used in

many areas. *.txt files are structured as a sequence of lines, with special characters to

indicate when a new line starts, and when the end of the file was reached.

In addition to the advantage of being more portable than binary files, both across

systems and programs, text files can be more easily accessed and modifed, for example,

using one of the many available text editors.

There are some acquiring system devices which use this file format to store data. In

this research work an equipment to acquire biosignals that records data in a text file

was used (bioPLUX wireless acquisition unit [37]). This is a portable, small sized and

light-weighted system with a 12 bit ADC and a sampling frequency of 1000 Hz. Data

is saved in text files (*.txt extension) composed by a header with 8 lines of information

about the record (date, time, sampling frequency, sampled channels, sampling resolution

and acquiring device mac address) and a section with the sampled channels (digitized

values), organized in columns.

The main disadvantage of this file format is the difficulty to have a fast access to the

data. In order to access data from a specific line of the file, all the previous lines need

to be read, making data accessing a slow process.

• *.edf - EDF

EDF is a simple format for archiving and exchanging of biological and physical signals.

The signals can have any (and different) physical dimensions and sampling frequencies.

An EDF file has an ASCII header containing mainly patient and recording time identi-

fication, the number of signals, the duration of the data records and the characteristics

(mainly dimension, calibration values, sampling frequency) of each signal. Following

the header are subsequent data records, each of the same duration, that contain the

recorded signals in 2 byte integer values.

The EDF file format, that can also accommodate annotations, markers, and events has

become standard for EEG and PSG (Polysomnography) acquisitions [12]. However,

the study of its specifications and the implementation of an EDF import/export unit

is a time consuming task (which may take a few days of work) [44].
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• *.dat - PhysioBank

PhysioBank is an archive with characterized digital recordings of physiologic signals

and related data for use by the biomedical research community. PhysioBank contains

biomedical signals from healthy subjects and patients with a variety of conditions.

Each PhysioBank database can contain more than one record, and each recording might

have three files: the header information (*.hea file), a short text file that describes the

signals (with the name or URL of the signal file, storage format, number and type of

signals, sampling frequency, calibration data, digitizer characteristics, record duration

and starting time), the annotation file, with the description of features of one or more

signals in the record and a binary (*.dat) signal file, containing digitized samples of one

or more signals.

• *.h5 - HDF5 (Hierarchical Data Format 5)

HDF5 is a file format for storing and managing data (not specific for biosignals). A

variety of datatypes is supported by HDF5, which is portable and extensible, allowing

applications to evolve in their use of this tool [18].

*.hdf5 (or in a simpler way, *.h5) files have a simple structure. The architecture includes

only two major types of objects:

– Datasets, which are multidimensional arrays of a homogenous type;

– Groups, which are container structures that can hold datasets and other groups.

An intuitive Python interface for this file format is available through the h5py pack-

age [17], allowing fast and robust storage of enormous amounts of data, organized by

name. The HDF5 file format allows fast and random access to any point of the data.

Taking into account the features, advantages and disadvantages of each file format men-

tioned before, HDF5 is the format that better fulfills the requirements defined for the pur-

posed work, i.e., to develop a tool that allows a fast access, visualization and processing of

long-term biosignals. Due to its features, HDF5 is a powerful tool for storing and managing

large amounts of data since this file format allows the necessary random access to any point

in the signal in a fast way.

In the next section, the developed data structure based on the chosen file format is

presented.
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3.3 Proposed data structure

In this section, the fundamentals of the proposed data structure are presented and the de-

signed algorithm for its creation is also explained.

3.3.1 Basis idea

Since an acquisition equipment that stores data in text files (*.txt) was used (the bioPLUX

unit), the major obstacle that appeared as a consequence of the file format that stored the

biosignals was the impossibility to have random access to a specific time window of the

recording, chosen by the user to visualize.

In order to overcome this difficulty, a new data structure that enables accessing the data in

a fast way was developed. As mentioned in the previous section, the data structure developed

in the present work was based on the HDF5 file format.

The data structure architecture is represented in Figure 3.1.

biosignals

zoom
levels

raw
data

processed data

.h5 file architecture

acquisition data 

- subject's name
- date
- mac address
- sampled channels
- digital channels
- recording duration
- sampling frequency

- ECG peaks
- (...)
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Figure 3.1: Proposed data structure for biosignals.

The data architecture (Figure 3.1) is based on three main blocks: acquisition data, biosig-

nals and processed data.

The first block (acquisition data) provides the user with the general information about

the acquisition: signal acquisition parameters (sampling frequency, sampled channels, digi-

tal channels, sampled channels, acquiring device mac address), recording information (date,

duration) or the subject characteristics (name, age).

The biosignals block, represented in Figure 3.1, contains the acquired biosignals (raw

data) and the different zoom levels. Thus, from this second block, the user can visualize the
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raw signals or specific parts of them, using the detail levels of visualization.

The different levels of visualization are stored in the new data structure so they only need

to be calculated once, allowing the user to start visualizing any specific part of the signals

instantaneously and at any time as it was required.

To obtain the different zoom levels, four subsampling parameters (mean, maximum, min-

imum, standard deviation), shown in Figure 3.1, are extracted from the signal.

The choice of these four specific parameters to represent several zoom levels of the signals

was based on:

• mean: identifies the biosignals’ central location and provides a representative measure

of the signals’ shape. The mean of a discrete signal X with n samples is represented

by E[X] and is calculated as it is given in equation 3.1.

E[X] = 1
n

n∑
i=1

Xi (3.1)

• maximum and minimum: are the parameters that define the envelope on which the

sampled signal is restrained;

• standard deviation error: gives information about the signal’s spreading, indicating

signal variation zones.

The zoom levels concept is the key for the visualization of long-term biosignals, since

with this kind of approach the tool provides rapidly a general overview of the entire signals

showing the mean, maximum, minimum and standard deviation. Visualizing the signal’s

morphology with more detail is also possible. For this, the user can access the higher zoom

levels, which contain a larger amount of data, allowing a thorough analysis of the signal in

specific time windows.

The third block in Figure 3.1, represents the processed data. In this part of the data

structure, processed data can be stored for further analysis. As an example, the ”processed

data” block allows saving the QRS peaks times extracted from ECG signals.

The process that enables the creation of the different zoom levels is described in the next

section.

3.3.2 Visualization levels creation algorithm

The visualization of biological signals is normally done by displaying an entire signal (opera-

tion that might take a long time to be carried out) or by displaying only a portion of the entire
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signal. However, displaying an entire signal (specifically a long-term biosignal) is a time con-

suming operation. In the other hand, visualizing only a portion of the entire signal can lead

to mistakes in signal analysis, increasing the risk of a bad diagnosis. Thus, the multi-level

visualization architecture aims at overcoming this problem, enabling the navigation over the

different zoom levels that represent the entire signal.

In signal processing, subsampling is a technique to reduce the amount of data of a signal.

A subsampling-based algorithm was developed in this work in order to create the biosignals’

zoom levels. Each zoom level provides a different resolution of the signal. The first (and more

detailed) level of visualization is the raw data. This level has the entire biosignal recording

and gathers the largest amount of information available about the biosignal being visualized.

The subsequent zoom levels provide less detailed information than the preceding one since

they have a smaller number of samples (because of the subsampling operations). In spite of

having a smaller amount of samples, thus a fewer quantity of data, which leads to less detail,

the different levels of zoom represent the same time interval.

Each subsampling operation is carried out by splitting the input signal in groups with a

selected number of samples - the resampling factor, that is going to be hereafter denoted by

r, and for each group the representative signals’ measures are calculated. The resampling

factor can be, for example 10, which means that the maximum, minimum, mean and standard

deviation will be computed from 10 to 10 samples. This way, the data length will be divided

by r, since each group with r samples will be represented by one new sample.

To allow an overview of the developed algorithm, a fluxogram representing the creation

of the biosignals data structure is shown in Figure 3.2.

There are three main parts in this procedure. The first task of this sequence is the

reception of the different inputs - the raw data to be converted to the new data structure

(with N samples), the different recording attributes (such as the sampling frequency, the

precision number of bits, the sampled channels and the recording date) that are read from

the .txt file on which the biosignals were recorded and finally, two optional parameters: the

resampling factor (r) and the maximum number of points that can be drawn on each zoom

level (npviz). This optional parameters are predifined to be 10 and 1000 respectively, if no

value is given by the user.

The second step of the present algorithm consists of writing the attributes of the acquisi-

tion (Figure 3.1 in the ”acquisition data” block). Besides the recording attributes read from

the acquisition file, other attributes given by the user (name of the patient, recording place,

and any other information that might be considered necessary) are written.
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inputs:
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- recording attributes
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Figure 3.2: Fluxogram of the developed algorithm for the creation of the proposed data structure.

After writing the recording attributes, the algorithm proceeds with raw data conversion.

Considering the potential of the HDF5 file format, described in section 3.2, the algorithm

creates a new group called ”raw”, on which the raw data is saved. The ”raw” group contains

different datasets. Each dataset saves one of the sampled channels. The raw data conversion

algorithm consists of reading a *.txt file line by line, saving the data into *.h5 file format,

i.e. the conversion step converts the *.txt file into the new data structure, which, as it was

mentioned, allows an easier and faster access to the acquired data.

The third step of the data structure algorithm is the creation of the zoom levels. The

first zoom level is obtained taking the raw data as the input signal and extracting the mean,

maximum, minumum and standard deviation error parameters (see Figure 3.1). For higher

zoom levels, the same parameters are extracted, but instead of using raw data, the algorithm

uses as input the data from the last zoom level to be created. In this case the algorithm

calculates the mentioned parameters taking advantage of the data reduction that is done on

each level computation. Thus, the algorithm is simplified, since it calculates the mean of
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means, the maximum of maxima, minimum of minima and the standard deviation error. It

should be noted that the standard deviation error, (std), is obtained taking into account the

expression given in equation 3.2, where E[X] represents the expected value for the random

variable X.

std(X) =
√

E[X − E[X]]2 =
√

E[X]− E[X]2 (3.2)

As it is represented in the algorithm’s fluxogram (Figure 3.2), the subsampling operations

are carried out while the new subsampled signal has a bigger number of samples than the

npviz parameter, that represents the limit (maximum) number of samples that the outermost

zoom level can have. If we take a raw signal with, for example, 1×106 samples and we choose

r = 10 and npviz = 500, taking into account that each zoom level iteration will divide the

number of samples of the signal by the given subsampling factor, the algorithm will iterate

4 times, until the subsampled signal has less than 500 samples. This example is represented

in Table 3.1.

Table 3.1: Example of different zoom levels and the respective number of samples

Subsampling iterations Zoom level Number of samples
0 raw data 1× 106

1 1 1× 105

2 2 1× 104

3 3 1× 103

4 4 1× 102

After creating the different zoom levels according to the signal length (N), the resampling

factor (r) and the maximum number of points that can be used to represent the signal on

each visualization level (npviz), the data structure creation routine stops.

The visual effect and data reducion that the described subsampling technique provides

are shown on Figure 3.3. As is is visible, the same signal can be represented by a smaller

amount of samples, with high visual resemblance and allowing a perfect perception of the

signal’s shape.

Thanks to the parameters that were already mentioned, it is possible to see the main

morphology of the signal (given by the mean), where the signal has passed through stronger

variations (indicated by the standard deviation shaded area), and the extreme values of the

signal (represented by the maximum and minimum lines).

Besides the creation of the ”acquisition data” and ”biosignals” sections of the new data

27



CHAPTER 3. DATA STRUCTURE

0 200 400 600 800 1000 1200 1400 1600 1800
10

0

10

20

30

40

0 200 400 600 800 1000 1200 1400 1600
10

0

10

20

30

40

1800

1800 samples

180 samples

subsampling

mean
maximum
minimum

standard error

A
m

pl
itu

de
A

m
pl

itu
de

Time(ms)

Time(ms)

Figure 3.3: Illustration of the effect produced by a subsampling operation over a random signal
(adimensional amplitude).

structure, the possibility of saving important processed data is provided. In the next section

this issue is explored.

3.3.3 Processed data saving

Besides data visualization and analysis, biosignals data processing plays a very important

role in the understanding of patients state and its evolution. After processing biosignals,

an important task is to save the data obtained with the processing operations, so it can be

accessed a posteriori, without running the processing algorithms again.

The developed data structure has a section to save processed biosignals data, such as

the ECG peaks detected by a QRS peak detection algorithm. A group called ”processed

data” is available in the data structure, and inside, several groups can be saved (following the

example, the processed data group could be called ”ECG peaks” and in this group a dataset

with the detected peaks could be saved for posterior access).

Such as long-term biosignals visualization, processing this specific type of biosignals is

challenging. If standard (non-parallel) processing algorithms are used, processing biosignals

with very large sizes becomes unfeasible due to memory errors. In this context, and to bridge

this problem, this work presents a new approach regarding the processing of long-term biosig-
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nals: parallel computing algorithms. In Chapter 5 this concept will be described with more

detail.

The new data format provides a broader approach to the visualization and processing

of biosignals, allowing the user to save the results of the biosignals processing tasks besides

the raw data from the acquisition and other information about the subject or the recorded

signals.
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Chapter 4

Long-term biosignals visualization

In this chapter, the developed signal visualization methods created for this study are de-

scribed. A tool to visualize long-term biosignals was implemented, based on the new data

structure introduced in Chapter 3.

4.1 Visualization tool purpose

The main idea of the visualization tool for long-term biosignals is to allow a general overview

of the entire signal in the first instance, giving the user the possibility to zoom in and out to

a specific time window, showing more or less detail.

This follows the concept of multiple levels of visualization, depicted in the previous chap-

ter. Displaying an entire long-term biosignal on the computer monitor would not give much

information to the user and would exceed the capabilities of the visualization device, since

this means trying to draw millions of points in a screen with only some thousands of available

pixels. Due to this difficulties, a tool to enable the fast assessment of biosignals morphology,

allowing the inspection of interesting portions of the signal with a greater level of detail was

designed and developed in the present work.

This approach is comparable to a web mapping service; however, instead of viewing images

of the Earth’s surface it enables the visualization of large electrophysiological signals.

A client-server model was selected for the implementation of the visualization tool, given

that data transmission via Internet is getting more common every day. Thus, a web envi-

ronment application was developed, giving the tool higher portability. A client-server model,

using Python as a way to manage data from the long biosignals and Javascript and HTML

(HyperText Markup Language) to create the visualization platform was implemented.

31



CHAPTER 4. LONG-TERM BIOSIGNALS VISUALIZATION

4.2 Visualization tool properties

The developed visualization tool enables the visualization of long-term biosignals which were

converted to the biosignals data structure that was already explained in Chapter 3. This

biosignal visualization tool gives the possibility to open multiple channels (corresponding to

different biosignals) from a recording.

The initial display shows the entire signals that are being visualized. This is done by

drawing the outermost, or by other means, the lowest zoom level, thus the one with less

detailed information about the signals.

The developed visualization tool gives the user the capability to analyze biosignals in

an easy and prompt way. The most important operations are the zooming and panning

actions; these actions allow an efficient navigation through the signals being visualized, either

by selecting smaller signal portions to be viewed or by moving through the temporal axis

(accessing different values of the signal in different time intervals). Zooming and panning

operations promote the assessment of the evolution in signal’s shape through time.

Client Server

1 The user chooses which
signal(s) must be opened
and the npviz parameter

2 Data is loaded, and the
outermost zoom level is 
sent through the connection

3 The user has access to the
requested biosignal and is able
to navigate, using zooming,
panning and channel selection
commands

4 Each time the user selects a
new window, the corresponding
data is loaded and sent for
visualization

Figure 4.1: Developed client-server model for the biosignal visualization interface.
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The developed client-server model, which allows an user friendly interface for biosignals

visualization is shown in Figure 4.1, presenting the different steps of the developed client-

server model for biosignals visualization. The first step represented in this figure involve the

inputs that the user must give in order to view the desired biosignals. In the first step, besides

choosing a recording to be explored, the user chooses the npviz parameter. This parameter

defines the maximum number of points that the visualization tool can use to represent the

signals on each zoom level. The second step one comprises the data loading process that

precedes data displaying. Steps 3 and 4 represent the signal navigation operations.

The developed visualization tool offers a set of possible operations that enhance the signal

navigation. The options provided as well as other interactive features are described below:

• Zoom: Performing zoom operations is possible using ±keys (+ key produces a 2×

zoom in and − key allows a 2× zoom out);

• Pan: Panning through the signal is possible by pressing the arrow keys of the keyboard.

This operation allows to go forward and backward in time, exploring the temporal

evolution of the signal;

• Expand channel: By pressing each channel being visualized with a double click, an

expanded view of the selected channel will appear. The ”normal” view can be reset by

pressing the same key.

• Select displayed channels: it is possible to select the channels to be visualized on-

the-fly, by pressing the key that corresponds to the desired channel. If channel 1 is

being shown, pressing ”1” will make it fade out; otherwise, if channel 1 is not already

being shown, pressing this key will make it show up.

• Select time window: this option is available by dragging the time window borders

in a overview window presented in the visualization tool (dragging these borders allows

a precise selection of the selected time window). Moving this time window forward or

backwards allows the user to explore the signal in different intervals of time with the

same length.

When the user presses the navigation keys, the signal being shown is updated to the new

position selected. Using one of these signal exploring operations, a new specific time-window

of the signal to be displayed is asked in each iteration. With that request, a command is

sent through the client-server connection, which returns the new data correspondent to the
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selected interval. In the case of the zooming operations, the selected time window to zoom

could belong to the same zoom level or to another.

As the user explores the signal, navigating through the different visualization levels, the

tool calculates the correct zoom level according to the time window that is being selected,

gets data from the data structure, and displays it.

The correspondence between the selected time window and the zoom level that should be

accessed, depending on the npviz parameter and the resampling factor with which the zoom

levels were calculated, was defined as presented in in table 4.1.

Table 4.1: Zoom level selection according to the size of the selected window to be viewed

npviz (samples) Resampling factor Selected window
(samples)

Zoom level

1000 10
[0,1000] 0 (Raw)
]1000, 10000] 1
]10000,100000] 2

2000 20
[0, 2000] 0 (Raw)
]2000, 40000] 1
]40000,800000] 2

As it is shown in the first example given in table 4.1, if the npviz parameter is set up to be

1000, the raw data (zoom level 0) will only be accessed for time windows with less than 1000

samples (if the sampling frequency is 1000Hz, this is equivalent to the visualization of less

than 1 second of the signal). If, in the other hand, the user is trying to visualize more than

1000 samples and less than 10000, the second zoom level should be accessed. This is because

in the second zoom level, 10000 samples of the original signal are represented by 1000 points

due to the resampling effect, explained in Chapter 3.3.2.

An expression for the calculation of the correct zoom level, z, corresponding to each se-

lected zoom window, was defined taking the examples of data window selections and the cor-

respondent zoom level, shown in table 4.1. The obtained expression is shown in equation 4.1,

where N is the selected number of points, r is the resampling, npviz is the maximum number

of points to be displayed and bxc represents the largest integer lower than x.
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z =
⌊(

log(N)
log(r) −

log(npviz)
log(r) + 1

)⌋
=
⌊(

log(N)− log(npviz)
log(r) + 1

)⌋

=
⌊(

log( N
npviz )

log(r) + 1
)⌋

=
⌊(

logr

(
N

npviz

)
+ 1

)⌋
(4.1)

This zoom level calculation formula, given in equation 4.1 works correctly for values of N

that comply with the expression:

N >
npviz

resampling
(4.2)

For the values of N that do not fulfill the condition given above, the visualization algo-

rithm assumes that the user is trying to access the raw data, since this situation occurs when

small time windows are selected.

This web environment tool lets the user explore signals using its different zoom levels and

there are two drawing stages in the process:

• Preview: This is the first drawing stage of the visualization tool, on which the signals’

informations to be drawn are only maximum and minimum (aiming for a fast and

representative overview). The information shown in the preview allows the perception

of the ”envelope” on which the signal values are constrained;

• Detailed view:

The detailed view must appear after the preview with an adequate delay. This delay

was defined to be 300 miliseconds. Thus, 0.3 seconds after the first drawing stage, the

second step draws the signal’s mean, as well as the maximum, minimum, and the error

shade (defined by mean±standard deviation error) with the intention of showing all

the signals’ characteristics. The delay between the preview and the detailed view was

chosen taking two important requirements into account: it should allow the user to

correctly distinguish the two drawing stages and it should be enough so that the the

visualization tool could access data in this time gap.

The existence of two drawing steps allows the user to have a fast view of the signal’s

shape (represented by the maximum and minimum lines) on each interaction. This phased
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drawing technique enables a faster navigation through the signal, since the user can ask for

new time windows to be displayed almost instantly. The detailed data is shown only when

the viewer stops in a specific time window, providing the user with the complete information

about the signal being observed.

When the user reaches the raw data level there are no statistical parameters of the biosig-

nal and the visuzlization presentes the raw original signal.

Figure 4.2: Developed biosignal visualization tool.

Figure 4.2 shows the aspect of the designed visualization tool. Six channels (EMG, ECG,

Respiration and the three accelerometer components - x, y and z) are visible. At the bottom

of the image, there is an overview window with the entire signal drawn, and a rectangle

indicating the current time window selected.

Besides identifying the current portion of the signal that is being visualized, the overview

window enables the user to select precise time windows in the signal to be displayed in detail.

This overview window enables the user to understand ”where” is the signal being explored,

i.e., identifies the time interval of the signal that is currently selected, and also enables this

time interval to be moved. Moving the time window allows the selection of a fixed lenght

window to visualize different sections of a signal (for example, the user is able to select a ten
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Figure 4.3: Representation of the functionalities featured by the overview window of the visualization
tool.

seconds visualization window, that shows the signal being explored from the instant 1’20”

until the instant 1’30” and then move this window forward, to visualize the same signal from

the instant 2’20” to 2’30”). The overview window of the developed visualization tool is shown

with more detail in Figure 4.3.

Using the overview window or the zooming and panning options enables a simple and fast

signal navigation. An outlook of the possibility to visualize signals through different detail

levels is shown in Figure 4.4. The evolution in the visual perception of a signal using different

detail levels of visualization is demonstrated. As the selected part of the signal shrinks, the

amount of data gets shorter and the detail level increases. In the top (a) the visualization

of an entire signal with more than 6 hours is provided. The below images (b,c,d) show the

effects produced by successive zooming in operations, with an increase in the level of detail

visualized. The bottom image (d) allows the visualization of a short window of the biosignal,

in which only four ECG QRS peaks are visible.

Besides the effect of the existence of different zoom levels on the visualization experience,

the npviz is also an important parameter that changes the way how the visualization is un-

dertaken. When this parameter is set to a small value, the visualization tool displays detailed

information later than when it set to larger values. As an example, if the user is trying to

visualize a segment of a biosignal and the npviz parameter is defined to be 1000, the detail

in the displayed information will be less than it would be with npviz = 3000. Figure 4.5

exhibits the differences in the way how the same biosignals are displayed (for the same time

window) using two distinct npviz values (1000 points for the upper image and 2000 for the

lower).
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a

b

c

d

Figure 4.4: Perspective of the evolution of signal visualization according to the selected zoom window.
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npviz = 1000

npviz = 2000

Figure 4.5: Effect of the npviz parameter in the visualization.
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A new biosignal visualization concept was presented in this chapter. This concept enables

the user to explore and analyze long-term biosignals, but its advantages are not limited to

large sized signals. Besides providing the possibility to open large datasets, the developed

tool allows several operations, such as zooming to multiple visualization levels, panning, and

other interactive features.

Beyond signal visualization and analysis, signal processing is also very important in order

to assure that relevant information is extracted from biosignals. This information is the basis

for the comprehension of the patients’s state, thus a correct identification of the ocurring

physiological events is a demand.

Chapter 5 presents an approach to parallel processing apllied to long-term biosignals, in

an attempt to overcome processing difficulties related to the signal sizes.
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Chapter 5

Long-term biosignals processing

Besides the problems related to visualization, long-term biosignals also need different ap-

proaches regarding signal processing.

Taking into account the sizes of long-term biosignals (which can reach several hours or even

days), a parallel computing solution was implemented. This chapter exposes the designed

and implemented method for long-term biosignals processing. The concepts of ”map” and

”reduce” are presented and its general application in algorithms for biosignals processing is

explored. Concluding this chapter, we present a specific application of this parallel processing

concept to ECG peaks detection.

5.1 The MapReduce algorithm

Since the goal is to process very large datasets, standard processing algorithms cannot support

the sizes of signals with huge sizes. This problems arise from the impossibility of loading

huge size biosignals to the computer’s memory for processing. In this case, the input for the

processing algorithms must not be the entire signal. In order to overcome the signal size

problems, a parallel processing solution was designed and is presented in the next section.

5.1.1 Overview

Parallel computing allows the division of a long task in several simpler subtasks, as it is

described in chapter 2.3.

Since the sizes of these signals are extremely large, running a processing algorithm using

a single CPU (Central Processing Unit) is not a plausible solution. Therefore, an algorithm

that can run using multiple CPU’s, was designed. This algorithm breaks a problem into

41



CHAPTER 5. LONG-TERM BIOSIGNALS PROCESSING

discrete parts that can be solved concurrently (instructions from each part are executed

simultaneously on different processing units).

The implemented parallel processing algorithm is based on a ”map” and ”reduce” process.

On this process, a long signal is divided in parts (the input signal is mapped in several portions

with fixed length), that are processed independently - the processing function is applied to

each input. After processing all the separated parts, the results are merged (”reduce” step).

With the designed approach, an answer to the long-term biosignal processing problem

with a parallel processing method is provided. This implementation enables a large scale

task distribution architecture, with a group of computers processing in parallel, each one of

them with a small part of the signal (see Figure 5.1).

Long-term
biosignal

Job server

task distribution
(map)

parallel
processing

merge results
(reduce)

output 1 output 2 output 3

processed
data

Figure 5.1: Representation of the parallel processing concept applied to long-term biosignals.
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The objective is to map the signal in intervals with fixed length and process each mapped

interval, using algorithms that work efficiently with shorter signals. After processing each

interval, the results are merged together. If the operation is working correctly, merged data

should be the same as the data that the detection algorithm would retrieve in case it could

receive the entire signal as input.

5.1.2 Algorithm design

The developed processing algorithm is presented below.

Hereafter, the discrete biosignal to be processed, X, described in equation 5.1 is consid-

ered, where k is an integer value that represents the signal’s number of samples.

X = {x1, x2, . . . , xk} (5.1)

The processing operation can be represented by equation 5.2.

Y = F (X) (5.2)

The operator F receives an entire biosignal (X) as input and returns Y . Since the input

signal might be very long, the need to map it in several smaller regions to be processed

separately becomes imperative.

However, X can be splitted in subgroups with a fixed number of samples - L. The signal

mapper is then a list of pairs that define the several subgroups (time intervals) to be processed

separately. Let us call this list of pairs J . J is described on equation 5.3.

J = {(0, L), (L− v, L− v + L),

(2L− 2v, 2L− 2v + L),

. . . ,

(mL−mv, mL−mv + L)} (5.3)

with v being the number of samples to be overlapped, and m an integer.

Selecting the signal (X) in the time intervals defined by J , the signal will be mapped.

Each subsignal can be defined by equation 5.4.
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x0 = {x0, . . . , xL}

x1 = {xL−v, . . . , xL−v+L}

· · ·xm = {xmL−mv, . . . , xmL−mv+L}

(5.4)

In the borders where the signal is splitted to be processed, there might occur some prob-

lems. Consider a function that needs to analyse a fixed length ”region” in order to localize

a specific event. If the signal is splitted in this ”region”, the event may not be detected,

and relevant information might be lost due to this splitting operation. In order to overcome

this kind of questions, the implemented algorithm has an overlapping number of samples, v

(everytime the algorithm runs for a selected time window, there is a number of samples from

the end of the last time window that is considered in the beggining of the actual one).

After mapping the signal, the processing algorithm is applied to the various intervals

mapped from the signal. Giving each interval to the input of the processing routine, we will

obtain a group of outputs, that can be defined by equation 5.5.

yj = f(xj) (5.5)

On this last step, in which j represents a subprocessing group, the results from the

independent separate processing tasks are merged together, in the ”reduce” operation. The

function that correctly joins together the outputs from the subprocessing tasks is denoted by

G, and the final result is given by equation 5.6.

Y = G(y0, y1, . . . ) (5.6)

Parallel processing in computers enables to divide a long operation in several smaller

tasks that can be carried out by different computer core processors. Considering a processing

operation with a fixed start time (Ts) , that takes a time T to be carried out by one processor

and that the processing is going to be divided by Ns processors, the total parallel processing

time (Tp) will be given by equation 5.7.

Tp = Ts + T

Ns
× (1 + Ov)× 2 (5.7)
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On equation 5.7, the overlap (Ov) is defined by the expression given in 5.8, where v is the

overlapping number of samples and Nslice is the number of samples of each processing slice.

Ov = v

Nslice
(5.8)

Since the existence of the overlap means that there are samples being processed in two

different subtasks, larger overlaps cause the processing to last longer, while smaller overlaps

lead to shorter processing duration. However, the overlap not only influences the process-

ing time but also the processing efficiency. When the overlap is not big enough, for some

processing functions there is the danger of occurring processing errors. An example is the

application of a causal filter to long-term biosignals. These type of filters make use of past

samples, thus an overlap that enables passing all the necessary information for the filter to

be applied is required.

5.2 Application: ECG processing algorithm

An example of a mature processing algorithm [35], which does not work properly taking

long-term biosignals as input, was adapted to this type of signals: the peak detector to be

applied on ECG signals.

A representation of the ECG peak detection algorithm is made in Figure 5.2.

t4 t5t1 t2 t3 t6 t7 t8 t9 t10t4 t5t1 t2 t3 t6 t7 t8 t9 t10
Figure 5.2: Representation of the processing algorithm for the ECG peaks detection.

The times (t1, t2, ..., t10) in Figure 5.2 indicate the peaks detected by the algorithm, while

the shaded areas represent the overlapping of the algorithm (where two processing windows

intersect).

With the mapping and reducing technique implementation, the large ECG signals are

mapped in a series of fixed time intervals and the processing function takes this intervals

as input (see Figure 5.1). For each interval, the processing results (detected ECG QRS
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peaks) are calculated and the outputs of the group of ”subprocessing” steps are merged, thus

resulting in the final result, which is an array with the ECG peaks detected from the input

ECG signal.

For the peak detection function in ECG signals, the considered overlap was defined by

making use of physiological information. Since the normal duration of a QRS complex varies

in the interval 0.06− 0.10s [20], the overlap was set to be 200 milliseconds, twice as large as

the upper limit of the QRS duration variation interval.
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Chapter 6

Performance Evaluation

In this chapter, a performance evaluation of the developed visualization and processing tools

for long-term biosignals was undertaken. In order to test the visualizing and processing

algorithms several types of biosignals have been acquired in long-term recordings. A case

study of the application of the developed tools to real long-term biosignals is presented for a

better understanding of its potential.

The developed tools were tested in order to evaluate their performance, using the acquired

biosignals. The creation of the multiple visualization levels was monitored; the performance

evaluation of the conversion algorithm is presented and discussed below.

6.1 Data structure creation evaluation

All the performance tests were made with the same computer - a Intel Core i7 720QM with

a 1.60GHz processor.

In all the presented results, it should be noted that a file with a size of, for example, 346,8

MB is equivalent to have a biosignal recording obtained in a 21 hours long acquisition with

a sampling frequency of 1000Hz.

Table 6.1: Data structure creation times.

text file size (MB) Conversion times (s)
raw data zoom levels

346,8 41 85
435,1 50 104
954,6 91 217

1.021,2 109 234
1.297,3 157 357
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Table 6.1 presents the performance of the developed conversion tools that transform the

data from the acquiring data format to the new data format dedicated to long-term biosignals

visualization and processing. As one can see, the conversion process is not instantaneous,

being a time consuming task in signal analysis.

Table 6.2: Load times for .txt and .h5 files

file size (MB) Load times (s)
.h5 file .txt file

14 0.01 6.35
144 0.04 64.33
347 0.57 349.33
424 0.79 (Memory Error)

However, the benefits of this conversion step are evidenced by the results presented in

Table 6.2; here, the focus goes to the differences in time consuming when loading data from

a file in the *.txt format or in the *.h5 file format, which was the chosen file format to be

used in the developed biosignals database architecture.

The presented results demonstrate that opening text files with biosignal acquisitions of

several hours by loading them on python would take a very long time or even cause a memory

error, the presented results (see table 6.2) are an evidence of the benefits of the developed

data structure on data accessing/visualization. Since the data conversion only has to be

carried out once, this benefits are even more easily observable.

Besides the data files creation performance, the visualization tool capabilities were also

tested. The results of such tests are available in the next section.

6.2 Visualization tool evaluation

The performance of the visualization tool is independent of the type and size of the signal

being visualized as well as of the zoom level on which the user is ”navigating” with the

developed tool.

Operations like zooming and panning over long-term biosignals, that take several seconds

using python visualization methods, are practically instantaneous using the developed tools.

Since the conversion only has to be carried out once, and acessing data from the new

structure takes only miliseconds, it is possible to understand the advantages brought by the

presented tools.

After assessing the visualization tool performance, the developed processing algorithm

performance is going to be scrutinized in the next section.
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6.3 Processing tool evaluation

Performance tests were carried out with the processing tools, so it could be confirmed if

the results of the new processing algorithms were obtained faster than using the standard

algorithm.

The processing results of the application of the developed MapReduce algorithm for the

detection of ECG peaks were compared with the output of the standard algorithms (which

do not use parallel processing), in order to analyze the efficiency of the new tools. The devel-

oped processing algorithm works correctly. This fact was expected, since the two processing

algorithms use the same root processing algorithm. The main difference between them is

that the parallel processing algorithm processes smaller inputs than the literature method.

The performance tests consisted of processing an entire signal by the non-parallel process-

ing algorithm and by the ”map” and ”reduce” algorithm using an ECG signal with 602613

samples (approximately 10 minutes because the sampling frequency of the acquiring device

is 1000 Hz). The results are shown in Table 6.3. In this specific case it was expected that

the parallel processing algorithm would spend less time processing the signal than the non-

parallel one.

Table 6.3: Comparison of the ECG processing times for the parallel and standard algorithms (applied
to a 10 minutes signal)

Processing algorithm Time consumed (s)
non-parallel 10.7

parallel (2 processors) 6.46
parallel (3 processors) 5.61
parallel (4 processors) 4.99

The performance results shown in Table 6.3 allow the perception of speed-up introduced

by the use of parallel processing. However, the processing times were obtained for a small

testing signal in order to allow using the non-parallel algorithm.

A different test was performed in order to better understand the influence of the utilization

of multiple processors for parallel processing. A long-term biosignal with approximately 10

hours of duration. The results of this test are shown in Table 6.4.

The results presented in Table 6.4 evidence the speed improvement introduced by the

developed parallel processing. This results are in compliance with the expected, since using

a larger amount of computing resources should accelerate the processing process. However,

these results do not show a linear increase in the speed of the parallel processing algorithm.
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Table 6.4: Comparison of the ECG processing times for the parallel and standard algorithms (applied
to a 10 hours signal)

Processing algorithm Time consumed (s)
parallel (2 processors) 309
parallel (3 processors) 243
parallel (4 processors) 214

This fact might be due to the factors already referred, such as the algorithms starting time.

The presented and discussed results allow the perception of the developed tools’ potential.

In order to better understand performance of these tools when applied in real-life situations,

the next section presents a case study with the implementation of the tools developed in this

work.

6.4 Case Study

In this section a case study involving the application of the developed data structure, visual-

ization and processing tools to real long-term biosignals is presented. 1

6.4.1 Protocol

Figure 6.1 presents the three steps that composed this study. The first step of this study

was the acquisition phase. A set of biomedical sensors were worn by the patients in specific

anatomic regions. These sensors were connected to the bioPLUX wireless acquisition unit,

which sent data via Bluetooth to a mobile phone, in which data was saved in a .txt file to be

processed after acquisition.

The second step was the conversion of the .txt file to the developed data structure and

the calculation of the zoom levels, which enabled the visualization of the acquired signals.

The third step was the signal processing. For that, the algorithm implemented in this

work was used to extract important physiological parameters from an ECG signal.

Following, the different stages of this study are minutely described. This study represents

an example of how to use the tools designed in this work.

Biosignal acquisition layout

Before acquiring biosignals, a set of electrophysiological signals to be acquired and sensor

placements were defined in order to create an acquisition protocol that does not negatively
1This study was done in collaboration with wiCardioResp project [46], which is supported by the National

Strategic Reference Framework program (NSRF-QREN). The signal acquisitions and the tests to the presented
data structure were performed in collaboration with Hospital Santa Maria.
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acquisition

conversion and
visualization

processing

Figure 6.1: Representative scheme of the sequence of tasks done during this case study.

affect the quality of life of the population that was monitored. The different characteristics

of the acquisition process are exposed below.

The population of this study was composed of three Amyotrophic Lateral Sclerosis (ALS)

patients and four healthy people (the control group) that volunteered for the mentioned

research project.

The acquisitions were carried out in the subjects’ homes, and during one night sleep (each

recording had the approximate duration of 8 hours).

These acquisitions aimed at the study of electrophysiological parameters that could indi-

cate potential ALS crisis throughout the night . All the subjects, patients and the control

group, were informed about the objectives of the research on which they were invited to

participate, and gave their approval to proceed with the biosignals acquisitions.

The acquisition equipment that was used to acquire the biosignals was the bioPLUX

research system, a wireless signal acquisition unit shown in Figure 6.2.
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Figure 6.2: Acquisition device used during the biosignal recordings of this study.

Acquired signals

Several types of biosignals such as as Electromyography, Electrocardiography, Electrodermal

activity, Acceleration and respiration were acquired. The way how the different sensors were

displayed in the body of the patients to be monitored is represented in Figure 6.3.

Figure 6.3: Layout of the acquisition setup.
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The biosignal acquisitions were undertaken using an wireless acquisition equipment, that

sent the recorded data to a smartphone by a bluetooth connection.

Given that three different biosignals to be acquired implied the placement of sensors in the

chest area (ECG, Respiration and ACC), these sensors were integrated in a chest strap. Such

configuration allowed not only the reduction of the interference in the signals to be acquired,

but also increased the usability of the system and the patients’ comfort. Thus, the display

of the various sensors was made as it is shown in Figure 6.3. The EDA sensor was placed

in the palm of the hand of the patient, the EMG sensor in the sternocleidomastoid muscle

and the ECG, ACC and respiration sensors were placed in a chest band, as it was already

said. Through this setup, the sweat signal, which is related to the sympathetic nervous

system (SNS), was monitored, allowing the extraction of relevant events associated with the

activity of this system; the EMG signal permitted the assessment of the muscular activations

in the neck (potential crisis indicators), the ECG was used for heart rate extraction and the

accelerometers monitored the patients’ movements during their sleep (when abrupt, these

may also indicate the ocurrence of a muscular crisis); finally, the respiration sensor’s purpose

was to extract the respiratory rate.

6.4.2 Biosignal Analysis

In spite of having biosignal recordings from 7 volunteers in this study, only one of them is

going to be addressed in this section. Since this work deals with long-term biosignals, this

section will only cover the analysis of the longest acquisition carried out. This recording has

approximately 10 hours of duration and the size of the acquisition file (*.txt) is 1, 3Gb .

Before visualizing and processing the acquired biosignals, the data conversion and creation

of the visualization levels were carried out.

The *.txt file with the acquired data was converted into the adopted (*.h5) format. For

that, the conversion tool developed in this work and described in Chapter 3 was used. This

conversion process took 557 seconds (approximately 10 minutes) to be concluded. The 10

minutes spent in the conversion included:

• 188 seconds for the raw data conversion;

• 369 seconds for the creation of the zoom levels.

After converting the signals to the developed data structure, they were analyzed with

the designed visualization tool. The visualization npviz parameter was set to 2000 points; a
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detailed assessment of the signals morpholophy was possible when a time window with 140

seconds of the signalwas selected. Since the sampling frequency of the acquired signal was

1000Hz, this time interval is equivalent to 140000 samples. Using the zoom level calculation

formula mentioned in Chapter 4, the zoom level corresponding to this time window is the

second.

Since one of the acquired signals was the ECG, the parallel processing algorithm was

applied to this signal. The algorithm took 213.8 seconds to run, using one computer with 4

active processing units and detected 45061 ECG R-peaks. This number of peaks (equal to

the number of heartbeats in the same period) allows to calculate the mean heart rate, that

in this case was 75 bpm (beats per minute).

Taking into account the time spent on each step of the implemented architecture and

considering a continuous analysis of the acquired signals, from the conversion up to the

signal processing an analysis of a long-term biosignal spent approximately 15 minutes, using

the tools developed and implemented in this work.

Due to the acquired biosignals characteristics (signals that imply an huge amount of data

to be saved, converted, visualized and processed) and considering that a physician needs

to have more than one tool to carry out all these processes, 15 minutes is considered an

good results result, given that some of these computing could be done even during the signal

acquisiton phase that took 10 hours. The developed tools integrate all the necessary processes

for the physician to make a fast and accurate analysis of the patients’ signals. Furthermore,

with the developed visualization tool, the physician can visualize an entire electrophysiological

signal, being allowed to increase the zoom level to obtain more detail about a specific part of

the biosignal. All these features are available in a user-friendly software.
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Chapter 7

Conclusions

In this concluding chapter, a summary of the developed work, its general results and ac-

complishments will be presented. The future objectives for the continuation of the already

achieved results are also highlighted in this chapter.

7.1 General achievements

The main goal of this thesis was to develop dedicated tools that enable long-term biosignals

visualization and processing.

In order to accomplish the purposed objectives, the first step was to create a new data

structure for biosignals that could provide the possibility to have a fast access to data.

Besides this requirement, the designed data structure was projected to provide a multilevel

visualization of data.

An algorithm to calculate multiple zoom levels of long-term biosignals was implemented.

This algorithm produces subsampled levels, with the support of parameters enable to repre-

sent data using a smaller amount of samples: the mean, maximum, minimum and standard

deviation. The mentioned algorithm creates the different detail levels according to two pa-

rameters: maximum number of samples that represent the signal in the outermost zoom level

and the resampling factor.

The developed visualization tool is general, which means that any type of signal repre-

sented by a time series can be explored with it. Besides being general, the visualization tool

allows the visualization of long-term biosignals acquired during several hours.

In addition to the developed work on the visualization levels and the biosignals visualiza-

tion tool, a processing approach for long-term biosignals was also developed and implemented.

The problem of long-term biosignals processing resides in the impossibility of carrying out
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the processing of an entire signal with this dimension. In order to bridge this problem, an

implemented processing tool based on the concept of parallel processing was presented. With

this concept, a MapReduce algorithm for independent multi task processing was created. This

algorithm allows long-term biosignals to be efficiently processed by dividing the processing

task in multiple feasible processing subtasks. The results of each subtask are then gathered,

generating the processed data.

The performance of the developed tools was evaluated. Several long-term biosigals acqui-

sitions were carried out in order to perform these performance tests.

The time consuming of data conversion and visualization levels creation was monitored.

Regarding signal processing, the presented algorithm was applied to a specific case of ECG

QRS peaks detection.

The conversion tool results indicated that it is faster (up to double speed) than the existing

standard file converter regarding raw data conversion. The visualization tool also proven to

be more efficient than standard methods, thanks to the implemented multi-level architecture

and to fast data accessing. With respect to biosignal processing, the implemented parallel

algorithm exhibited great results, with an increase in the processing speed when compared

to the non-parallel algorithm.

Besides allowing the user to save the results of the parallel biosignal processing algorithms,

saving the raw data from the acquisition and possible important information about the subject

or the recorded signals, this format allows a new way of exploring biological data, in a fast and

intuitive multi-level visualization of the biosignals, compatible with the web environment.

Considering standard formats for storage and exchange of biological and physical signals,

it is possible to conclude that the new and innovative developed data structure allows a

broader approach to the visualization and processing of biosignals (particularly for long-term

biosignals).

7.2 Future work

The present thesis does not answer all the problems related to long-term biosignals visualiza-

tion and processing. Some aspects can be improved, therefore a list of future work suggestions

is presented below.

• Processed data visualization: The visualization tool is prepared to display biosig-

nals data. However, graphical display of processed data as a way of link the extracted
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properties of signals and signals. We intend to make it possible to visualize at the same

time the signal and important processed data, such as the ECG peaks detected.

• New processing algorithms adapted to long-term biosignals: Other future goal

is to develop new processing algorithms adapted to long-term biosignals, such as the

heart rate variability (HRV), since it’s parameters are of great importance in clinical

cases that need long-term monitoring, such as neuromuscular diseases.

• Automatic calculation of the overlap: a necessary improvement to the processing

algorithm is an automatic calculation of the indicated number of overlapping samples

to be considered for each processing operation. This will remove one input parameter

from the processing algorithm.

The growing need to monitor patients, particularly in a long-term perspective leads to the

obligation of visualizing and processing very large biosignals. Patients in ambient assisted

living (AAL) are an example of the growing urgency of developing tools that allow a correct

and prompt tracking of the health state and its evolution.

Due to this demands, dedicated tools for long-term biosignal analysis were developed.

Since biosignal analysis and processing is a promising area in medicine, sports and research,

the opportunity to give a contribute with innovating techniques for the evolution of this field

was a very gratifying and enriching experience.
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Appendix A

Publications

During the development of this project, one article was submitted and accepted to an in-
ternational conference. This publication is entitled ”Long-term biosignals visualization and
processing” and will be presented in BIOSIGNALS 2012, of the ”5th International Joint
Conference on Biomedical Engineering Systems and Technologies” (BIOSTEC 2012).
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Abstract: Long term acquisitions of biosignals are an important source of information about the patients’ state and evo-
lution, but in some situations involves managing very large datasets, which makes signal visualization and
processing an hard task. To overcome these problems, we introduce a new data structure to manage long term
biosignals. A fast multilevel visualization tool for any biosignal, based on the concept of subsampling is pre-
sented, with focus on the representative signal parameters (mean, maximum, minimum and standard deviation
error). The visualization tool enables an overview of the entire signaland a more detailed visualization in spe-
cific parts which we want to highlight. The ”Split and Merge” concept is also exposed for long term biosignal
processing. A processing tool (ECG peak detection) was adapted for long term biosignals and several types
of biosignals were used to test the developed algorithm. The visualization tool has proven to be faster than
the standard methods and the developed processing algorithm detected the peaks of long term ECG signals
fast and efficiently. The non-specific character of the new data structure and visualization tool, and the speed
improvement in signal processing techniques introduced by these algorithms makes them useful tools for long
term biosignals visualization and processing.

1 INTRODUCTION

The increasing development of medical systems
and applications for human welfare and quality of
life has been supported by patients’ body signals
monitoring. There are several types of body sig-
nals, also called biosignals, including bioelectric,
bioimpedance, biomagnetic, bioacustic, biomechan-
ical and biochemical signals (Bronzino, 2000). These
biosignals give the researcher/clinician a perspective
over the patient’s state since they carry useful infor-
mation for the comprehension of complex physiologic
mechanisms underlying the behavior of living sys-
tems. The process of monitoring biosignals may be
as simple as a physician estimating the patient’s mean
heart rate by feeling, with the fingertips, the blood
pressure pulse. Biomedical signal analysis is nowa-
days a method of the greatest importance for data in-
terpretation in medicine and biology, since the manip-
ulation and processing of data provide vital informa-
tion about the condition of the subject or the status of
the experiment.

Signal visualization and processing techniques
have been developed to help the examination of many
different biosignals and to find important information

embedded in them. In clinical cases, such as sleep dis-
orders and neuromuscular diseases, a constant moni-
toring of the patient’s condition is necessary (Pinto
et al., 2010). This requirement is due to the possible
occurrence of sudden alterations in the patient’s state.
The demand for a correct and prompt diagnosis leads
to a mandatory identification of insufficiency signs in
the clinical context; With this intention, long term
biosignal acquisitions are one of the possible meth-
ods that allow a continuous monitoring of the patient
(Kayyali et al., 2008). However, long term acquisi-
tions generate large amounts of data. In order to ana-
lyze and follow up the patient’s condition it is very
important to visualize the acquired signals and ex-
tract relevant information from them. In patients with
neuromuscular diseases, the heart rate variability, res-
piration, muscular and electrodermal activity signals
are extremely important, since they indicate when a
muscular crisis is occurring. The electrodermal activ-
ity signals are also very important when monitoring
epilepsy patients or for the diagnosis of bipolar disor-
ders, since the nervous system is a major intervenient
in this cases (Poh et al., 2010), (Kappeler-Setz et al.,
2010). In a future perspective, the continuous mon-
itoring of these signals would allow the health care



providers to know beforehand when the patient needs
assistance, assuring the patients’ comfort and safety
while they are continuously and remotely monitored
in an ambient assisted living conditions (Sousa et al.,
2010).

The long duration datasets obtained with these ac-
quisitions exceed the capabilities for which standard
analysis and processing software were designed. In
addition to processing problems related to the diffi-
culty of handling large amounts of data, displaying
long term biosignals using standard visualization soft-
ware is not feasible. Difficulties to visualize signals
obtained in long acquisitions (e.g. recording for sev-
eral hours) rise up from our inability to correctly vi-
sualize the entire signal displayed.

Considering the described problems with the long
term biologic signals visualization and processing and
the importance of this type of signals in health and
research areas, we propose a new solution, by devel-
oping tools that enable a simple visualization of very
large biosignals and an effective processing of these
signals.

In this paper we present a new data structure de-
signed for long term biosignals and we describe the
tools developed to provide the possibility of having
dedicated software for the visualization of biosignals
in a fast and user friendly way (not only for very long
biosignals, but also beneficial for smaller signals).

These tools have future perspectives to become
powerful for biosignals inspection and analysis, ac-
cessible remotely with a web based tool. Regarding
signal processing, we have implemented algorithms
for an efficient processing of very large datasets based
on parallel processing approaches.

In order to test the developed tools, several biosig-
nals were acquired. Different time varying biosig-
nals obtained from human volunteers, such as as elec-
tromyography (EMG), electrocardiography (ECG),
electrodermal activiy (EDA), accelerometry or respi-
ration signals. However, our goal was not to develop
tools to be applied to a specific type of signal but to
be as general as possible.

The following section presents the developed tools
and the new data structure, designed for long term
biosignals. There are three distintc parts: the first
details the designed data structure, the second pro-
vides information on the implemented tools to visu-
alize long term biosignals, and in the third one, the
developed algorithms for long term biosignals pro-
cessing are exposed and explained. In section 3 we
present the methods of the developed work and dis-
cuss the results and algorithm’s performance. Finally,
we conclude the work in section 5.
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Figure 1: Proposed data structure for biosignals

2 PROPOSED DATA STRUCTURE
AND DEVELOPED TOOLS

2.1 Long term biosignals data structure

The visualization of long term biosignals is very im-
portant in order to monitor electrophysiological data
from patients. As we are dealing with very long sig-
nals, a tool to display large amounts of data is neces-
sary.

Since we used acquisition equipment that saves
(raw) data in text files, the major obstacle that ap-
peared as a consequence of the file format that stored
the signals was the impossibility to have random ac-
cess to a specific time window of the recording, cho-
sen by the user to visualize. In order to overcome
this difficulty, we decided to create a new data struc-
ture that enables accessing the data fast. This struc-
ture was based on the HDF5 file format, which is
a powerful tool for storing and managing different
types of data allowing the necessary random access to
any point in the signal being visualized (HDF group,
2007).

The data structure architecture (represented in
Figure 1) is based on a section containing the biosig-
nals, and a section for the processed data. Besides the
two mentioned sections, a third one exists, contain-
ing information about the data, such as the acquisition
date, the sampled channels or the sampling frequency.

The biosignals section is composed by the raw
data and the different “zoom levels”. These levels of
zoom are the key for the phased visualization of sig-
nals that is developed. To obtain the different zoom
levels, the four subsampling parameters (mean, max-
imum, minimum, standard deviation) shown in figure
1 are extracted from the signal.

There are fundaments for the choice of this four
specific parameters to represent several zoom levels
of the signals. Data mean identifies its central lo-
cation. It is a representative measure of the signals
shape. Maximum and minimum parameters define the



envelope on which the sampled signal is restrained,
while the standard deviation error provides informa-
tion about the signal’s spreading.

The different zoom levels are created by a subsam-
pling proccess. Each zoom level provides a different
resolution of the signal. The first (and more detailed)
level is the raw data, and the subsequent zoom lev-
els are less detailed than the preceding one, having
a smaller number of samples (because of the subsam-
pling operations) but representing the same time inter-
val. The subsampling operation is carried out by split-
ting the input signal in groups with a selected number
of samples - the resampling factor (this factor can be
for example 10, which means that the maximum, min-
imum, mean and standard deviation will be computed
from 10 to 10 samples) and for each group calculating
the representative signals’ measures.

The first zoom level is obtained taking the raw
data as input signal, while for higher zoom levels, the
same four parameters are extracted, but instead of us-
ing raw data, the algorithm receives as input the data
from the last zoom level to be created. In this case the
algorithm calculates the mentioned parameters taking
advantage of the data mining that is done on each
level computation. Thus, the algorithm is simplified,
since it calculates the mean of means, the maximum
of maxima, minimum of minima and the standard de-
viation error. It should be noted that the standard de-
viation error, (sd), is obtained taking into account the
expression given in equation 1, where E[X ] represents
the expected value for the random variable X .

sd(X) =
√

E[X−E[X ]2] =
√

E[X ]−E[X ]2 (1)

The visual effect and data mining of the described
subsampling technique are shown on Figure 2.

The new data format provides a broader approach
to the visualization and processing of biosignals, al-
lowing the user to save the results of the biosignals
processing tasks besides the raw data from the acqui-
sition and other information about the subject or the
recorded signals.

2.2 Long term biosignals visualization

A tool to visualize view long term signals was imple-
mented, based on the new data structure.

The main idea of the visualization tool for long
term biosignals is to allow a general overview of the
entire signal in the first instance, giving the user the
possibility to zoom in and out to a specific time win-
dow. This approach is comparable to a web map-
ping service, however, instead of viewing images of
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Figure 2: Illustration of the effect produced by a subsam-
pling operation over a random signal (adimensional ampli-
tude).

the Earth’s surface it enables the visualization of large
electrophysiological signals.

Data transmission via Internet is getting more
common every day, and so a web environment appli-
cation able to work in the web was developed, in order
to provide a tool to visualize signals on the internet,
by uploading or downloading them. A client-server
model, using python as a way to manage data from
the long biosignals and javascript to create the visual-
ization platform has been implemented.

The tool enables the visualization of long term
biosignals which have been converted to the already
mentioned data structure. When the user runs the tool,
the initial display is done by drawing the entire sig-
nal that is being visualized. This is the outermost, or
by other means, the biggest zoom level, thus the one
with less detailed information about the signal. When
the user presses the navigation keys the signal being
shown is updated to the new position selected. Signal
navigation is facilitated by an overview window, that
indicates the selected region of the signal and enables
the user to select precise time windows in the signal
to be visualized in detail.

This web environment directed tool lets the user
explore signals using its different zoom levels and
there are two drawing stages:

• Preview: on which the signals’ informations to
be drawn are only the maximum and minimum
(aiming for a fast and representative overview);

• Detailed view: that draws the signal’s mean, as
well as the maximum, minimum, and the error
shade (defined by mean±standard deviation error)
with the intention of showing all the signals’ char-
acteristics.



The existence of two drawing steps allows the user
to have a fast view of the signal’s shape (represented
by the maximum and minimum lines) on each in-
teraction. This phased drawing technique enables a
faster navigation through the signal, since the user
can ask for new time windows to be displayed almost
instantly. The detailed data is shown only when the
viewer stops in a specific time window, providing the
user with the complete information about the signal
being observed.

When the user reaches the raw data level, no de-
tailed information is shown, since there are no statisti-
cal parameters of the biosignal - the detail is the signal
itself.

As the user ”navigates” through the signal, the
tool calculates the correct zoom level according to the
time window that is being selected, gets data from the
data structure, and displays it. The correct zoom level
z corresponding to each selected zoom window is ob-
tained with the equation 2.

z =
⌈(

log(N)

log(R)
− log(V )

log(R)
+1
)⌉

(2)

Where N is the number of points that we are
trying to see, R is the resampling, V is the maximum
number of points to be displayed and dxe represents
the ceiling operation (rounding for the next integer).

2.3 Long term biosignals processing

Besides the problems inherent to visualization, long
term biosignals also need different approaches regard-
ing signal processing. In this work we introduce a
new method to process long term biosignals. Since
we are working with very large datasets, the input for
these algorithms cant be the entire signal. In order
to overcome the signal size problems, we suggest a
block processing solution.

The implemented processing algorithms are based
on a ”split and merge”’ process, in which a long signal
is divided in parts (split inputs), that are processed
independently - the processing function is applied to
each input - and connect the various results (merge
outputs).

Taking into account that the signals sizes can
reach many hours, a parallel processing solution has
been implemented. With our approach we answer to
the long term biosignal processing problem with a
parallel processing method (dividing a large problem
into smaller ones that can be solved independently).

This implementation enables a large scale task
distribution architecture, with a group of computers

processing in parallel, each one of them with a small
part of the signal.

The objective is to map the signal in intervals with
fixed length and process each mapped interval, using
an algorithm that works efficiently with shorter sig-
nals. After processing each interval, the results are
merged together. If the operation is working correctly,
merged data should be the same as the data that the
detection algorithm would retrieve in case it could re-
ceive the entire signal as input.

Hereafter, we consider the discrete biosignal to be
processed, X , described in equation 3, where k is an
integer value that represents the signal’s number of
samples.

x(n) = {x1,x2, . . . ,xk} (3)
The processing operation can be represented by

equation 4.

Y = F(X) (4)
The operator F receives an entire biosignal (X) as

input and returns Y . Since the input signal might be
very long, the need to map it in several smaller regions
to be processed separately becomes imperative.

However, X can be splitted in subgroups with a
fixed number of samples - L. The signal mapper is
then a list of pairs that define the several subgroups to
be processed separately. Let us call this list of pairs J.
J is described on equation 5.

J = {(0,L),(L− v,L− v+L),
(2L−2v,2L−2v+L),

. . . ,

(mL−mv,mL−mv+L)} (5)

with v being the number of samples to be over-
lapped, and m an integer.

Selecting the signal (X) in the time intervals de-
fined by J, the signal will be mapped. Each subsignal
can be defined by equation 6.

x0 = {x0, . . . ,xL}
x1 = {xL−v, . . . ,xL−v+L}

· · · (6)

In the borders where the signal is splitted to be
processed, there might occur some problems. In order
to overcome this kind of questions, the implemented
algorithm has an overlapping number of samples, v
(everytime the algorithm runs for a selected time win-
dow, there is a number of samples from the end of the
last time window that is considered in the beggining
of the actual one).
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Figure 3: Representation of the processing algorithm for the
ECG peaks detection.

After mapping the signal, the processing algo-
rithm is applied to the various intervals mapped from
the signal. Giving each interval to the input of the
processing routine, we will obtain a group of outputs,
that can be defined by equation 7.

y j = f (x j) (7)

On this last step, in which i represents a subpro-
cessing group, the results from the independent sepa-
rate processing tasks are merged together, in the ”re-
duce” operation. The function that correctly joins to-
gether the outputs from the subprocessing tasks is de-
noted by G, and the final result is given by equation
8.

Y = G(y0,y1, . . .) (8)

An example of a mature processing algorithm
(Pan and Tompkins, 1985), which do not work prop-
erly on long term biosignals was adapted to this type
of signals: the peak detector to be applied on ECG
signals. A representation of the ECG peak detection
algorithm is made in figure 3. The times (t1, t2, ..., t10)
indicate the peaks detected by the algorithm, while
the shaded areas represent the overlapping of the al-
gorithm (where two processing windows intersect).
With the mapping and reducing techinque implemen-
tation, the large signals are mapped in a series of time
intervals and the processing functions take this inter-
vals as input. For each interval, the processing results
are calculated and the outputs of the group of ”sub-
processing” steps are merged.

Parallel processing in computers enables to di-
vide a long operation in several smaller tasks that can
be carried out by different computer core processors.
Considering a processing operation with a fixed start
time (Ts), that takes a time T to be carried out by one
processor and that the processing is going to be di-
vided by Ns processors, the total parallel processing
time (Tp) will be given by equation 9.

Tp = Ts +
T
Ns
× (1+Ov)×2 (9)

On equation 9, the overlap (Ov) is defined by the
expression given in 10, where v is the overlapping

number of samples and Nslice is the number of sam-
ples of each processing slice.

Ov =
v

Nslice
(10)

Since the existance of the overlap means that there
are samples being processed in two different subtasks,
a bigger overlap causes the processing to last longer.
However, if the overlap is too small, there is the dan-
ger of ocurring processing errors. In order to prevent
these errors, our ECG peak detection algorithm only
considers the data to be efficiently processed when
there are coincident peaks in the output (adjacent sub-
tasks detect at least one common peak).

3 PERFORMANCE EVALUATION

3.1 BIOSIGNAL ACQUISITION
METHODS

Several types of biosignals such as as electromyo-
graphy (EMG), electrocardiography (ECG), electro-
dermal activiy (EDA), accelerometer and respiration
have been acquired in cooperation with the WiCar-
dioResp project (wiCardioResp, 2011) in order to test
the visualizing and processing algorithms. The acqui-
sitions were carried out at the patients’ homes, with
their approval, during the night (each recording had
the approximate duration of 8 hours).

The equipment used to acquire the biosignals nec-
essary for this work was the bioPLUX research sys-
tem, a wireless signal acquisition unit (PLUX - Wire-
less Biosignals, 2011). This system is portable, small
in size and light-weighted, has a 12 bit ADC and a
sampling frequency of 1000 Hz, and creates text files
with the acquired (raw) data.

With the acquired biosignals, the developed tools
have been tested in order to evaluate their perfor-
mance. Times of the creation of visualization levels,
the visualization tool performance, and time consum-
ing in processing algorithms were monitored. Besides
the speed tests, efficiency tests were carried out with
the processing tools, so it could be confirmed if the re-
sults of the new processing algorithms were correct.

3.2 Results and discussion

Regarding data conversion to the new data structure,
the performance results are described in table 1. All
the performance tests were made with a Intel Core i7
720QM with a 1.60GHz processor.

Considering that opening text files with sizes of
this order of magnitude by loading them on python



Table 1: Conversion times

text file size (MB) Conversion times (s)
raw data zoom levels

346,8 41 85
435,1 50 104
954,6 91 217

1.021,2 109 234
1.297,3 157 357

Table 2: Load times for .txt and .h5 files

file size (MB) Load times (s)
.txt file .h5 file

14 0.01 6.35
144 0.04 64.33
347 0.57 349.33
424 0.79 (Memory Error)

might take a long time or even cause a memory error,
the presented results (see table 2) are an evidence of
the benefits of the developed data structure on data
acessing/visualization.

The performance of the visualization tool is inde-
pendent of the type and size of the signal being visu-
alized as well as of the zoom level on which the user
is ”navigating” with the developed tool.

Operations like zooming and panning over long
term biosignals, that take several seconds using
python visualization methods, are practically instan-
taneous using the developed tools.

Since the conversion only has to be carried out
once, and acessing data from the new structure takes
only miliseconds, it is possible to understand the ad-
vantages brought by the presented tools.

Figure 4 shows the aspect of the designed visual-
ization tool. Five channels (ECG, Respiration and the
three accelerometer components - x, y and z) are vis-
ible and one of them (ECG) is expanded. At the bot-
tom of the image, there is an overview window with
the entire signal drawn, and a rectangle indicating the
current time window selected.

The processing results of the application of the de-
veloped MapReduce algorithm for the detection of
ECG peaks were compared with the output of the
standard algorithms (without parallel processing), in
order to analyze the efficiency of the new tools.

4 CONCLUSIONS

Considering standard formats for storage and ex-
change of biological and physical signals, it is easy to
see that the new and innovative developed data struc-
ture allows a broader approach to the visualization

Figure 4: Biosignal visualization tool

and processing of biosignals (particularly for long
term biosignals). Besides allowing the user to save
the results of the parallel biosignal processing algo-
rithms, saving the raw data from the acquisition and
possible important information about the subject or
the recorded signals, this format allows a new way of
exploring biological data, in a fast and intuitive multi-
level visualization of the biosignals. Since the devel-
oped visualization tools are compatible with the web
environment, they can be used for data sharing in the
internet.

5 FUTURE WORK

In future work we aim to create an algorithm that
allows processed data visualization, as a way to link
the processed data and the signal. We intend to make
it possible to visualize at the same time the signal and
important processed data, such as the ECG peaks de-
tected, or the EDA events that ocurred.

Other future goal is to develop new processing al-
gorithms adapted to long term biosignals, such as the
heart rate variability (HRV), since it’s parameters are
of great importance in clinical cases that need long
term monitoring, such as neuromuscular diseases.

Regarding parallel processing techniques, some
improvements are still necessary, such as an auto-
matic calculation of the indicated number of overlap-



ping samples to be considered for each processing op-
eration.
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Appendix B

Work route

During this work, a variety of tools were used. The presented algorithms were developed
using Python [43], C [38] and Javascript [16] programming languages, with the help of
Eclipse and Aptana as an integrated development environment. The Python packages used
were the numpy [34], scipy [33], matplotlib [19], h5py [17], weave [39] and parallel
python [45].

During a research work, as the defined objectives are achieved, new ideas arise, and the
problems that emerge while dealing with the purposed tasks lead to new approaches, in order
to meet the expected results.

Initially, the idea of this work was to create a new data structure that could provide the
researchers or clinicians with tools for a fast and effective biosignals visualization and pro-
cessing. Since *.hdf5 files were chosen to store the data, and the used acquisition equipment
writes data into *.txt files, a conversion tool had to be developed. This tool should be able
to read text files with millions of lines, which is a time consuming task. The first approach
was to use python, and read the text file, line by line, converting data to the new file type.
However, it was decided to try to improve the performance of the developed algorithm. In
order to reduce the time consuming of the developed conversion algorithm, a text file reading
function was developed using C programming language. This C code was input in the python
code, using python’s ”weave” package. This alteration allowed a faster data conversion.

The data visualization tool, described in Chapter 4 of this work was also matured from
an initial version. The first version of the visualization tool was developed using a python
package (matplotlib). This visualization tool met the objectives of this work, however it was
not very fast. Looking for a faster biosignal navigation/visualization tool, an alternative was
developed. Due to the advantages of using the internet, the new version of the visualization
tool was designed in a web environment, using javascript as a data displaying system and
python as data server. This update enabled an improvement in the tool’s navigation speed.
Asking for new data windows using only python is tens of times slower than using Javascript,
because the matplotlib redraws all the graphical elements on each time window selection,
while with Javascript it was possible to only draw the lines that represent the signals being
inspected.

In the beginning of this work, signal processing was thought to be done using non-parallel
algorithms. However, it was chosen to take advantage of the parallel processing concept, be-
cause the application of non-parallel algorithms would not be feasible. The parallel algorithms
were developed taking the MapReduce framework as a guiding example.

In the end, the objectives were accomplished, with improved results that exceed the initial
expectations. Despite being a non-linear route, since different approaches have been designed
and tested until the presented results were obtained, this work produced very useful tools
which can prove to be very valuable for long-term biosignals visualization and processing.
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