

Bishoksan Kafle

Modeling Assembly Program with
Constraints

 A Contribution to WCET Problem

Dissertação para obtenção do Grau de Mestre em
Lógica Computacional

Orientador: Pedro Barahona, Professor Catedrático,
Faculdade de Ciências e

Tecnologia,
 Universidade Nova de Lisboa

Co-orientador: Franck Cassez, Principal Researcher,

NICTA

 Júri:

Presidente: Prof. Doutor José Júlio Alferes

 Arguente: Prof. Doutor Luis Gomes
 Vogal: Prof. Doutor Pedro Barahona

September 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157625051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Bishoksan Kafle

Modeling Assembly Program with
Constraints

 A Contribution to WCET Problem

Dissertação para obtenção do Grau de Mestre em
Lógica Computacional

Orientador: Pedro Barahona, Professor Catedrático,
Faculdade de Ciências e

Tecnologia,
 Universidade Nova de Lisboa

Co-orientador: Franck Cassez, Principal Researcher,

NICTA

 Júri:

Presidente: Prof. Doutor José Júlio Alferes

 Arguente: Prof. Doutor Luis Gomes
 Vogal: Prof. Doutor Pedro Barahona

September 2012

Modeling Assembly Program with Constraints: A Contribution to WCET Problem. Copy-
right em nome do Bishoksan Kafle, da FCT/UNL e da UNL, 2012.
A Faculdade de Ciencias e Tecnologia e a Universidade Nova de Lisboa tém 0 direito, perpétuo
e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impres-
sos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que
venha a ser inventado, e de a divulgar atraves de repositôrios cientificos e de admitir a sua côpia
e distnibuiçao com objectivos educacionais ou de investigacao, não comerciais, desde que seja
dado crédito ao autor e editor.

i

Dedicated to my Parents

ii

Acknowledgments

First, I would like to thank my supervisor Prof. Pedro Barahona for his kind supervision of this
thesis. Without his scientific virtue, wide-knowledge, support and advices this thesis would
have never been possible. I am also thankful for his great patience and understanding. My sin-
cere gratitude to my co-supervisor Dr. Franck Cassez, NICTA, Australia for kind supervision,
guidance, valuable advices and for the original proposal of the thesis.

I would like to thank the EMCL consortium for the two year scholarship and for giving me
a chance to learn from the best. I would also like to thank all the staff members who guided me
during my studies here in Europe.

I want to thank all of my friends in Dresden, Lisbon, Bolzano and Vienna who have made
my these two years as one of the most beautiful periods in my life from all perspectives. I like
to thank Sudeep Ghimire for proof-reading and for being there whenever I was in need.

Finally, my deepest gratitude goes to my beloved family and relatives for always encourag-
ing, supporting and understanding me. In God I remain.

iv

Abstract

Model checking with program slicing has been successfully applied to compute Worst Case
Execution Time (WCET) of a program running in a given hardware. This method lacks path
feasibility analysis and suffers from the following problems: The model checker (MC) explores
exponential number of program paths irrespective of their feasibility. This limits the scalability
of this method to multiple path programs. And the witness trace returned by the MC corre-
sponding to WCET may not be feasible (executable). This may result in a solution which is
not tight i.e., it overestimates the actual WCET.

This thesis complements the above method with path feasibility analysis and addresses these
problems. To achieve this: we first validate the witness trace returned by the MC and generate
test data if it is executable. For this we generate constraints over a trace and solve a constraint
satisfaction problem. Experiment shows that 33% of these traces (obtained while computing
WCET on standard WCET benchmark programs) are infeasible. Second, we use constraint
solving technique to compute approximate WCET solely based on the program (without tak-
ing into account the hardware characteristics), and suggest some feasible and probable worst
case paths which can produce WCET. Each of these paths forms an input to the MC. The more
precise WCET then can be computed on these paths using the above method. The maximum of
all these is the WCET. In addition this, we provide a mechanism to compute an upper bound of
over approximation for WCET computed using model checking method. This effort of com-
bining constraint solving technique with model checking takes advantages of their strengths
and makes WCET computation scalable and amenable to hardware changes. We use our tech-
nique to compute WCET on standard benchmark programs from Mälardalen University and
compare our results with results from model checking method.

Keywords: Worst Case Execution Time (WCET), constraint solving, model checking, static
analysis.

vi

Contents

1 INTRODUCTION 1
1.1 Motivation . 1
1.2 Structure of this work . 2
1.3 Contributions . 3

2 TIMING ANALYSIS TECHNIQUES AND WCET 5
2.1 Overview of Timing Analysis Techniques . 6
2.2 WCET . 6

2.2.1 WCET Challenges . 7
2.2.2 WCET Methods and Tools . 8

2.3 Previous Work . 9
2.3.1 IPET . 11

2.4 General Consideration . 11

3 CONSTRAINTS AND CONSTRAINT SOLVERS 13
3.1 Constraint Satisfaction Problem (CSP) . 13
3.2 Constraint Satisfaction Optimization Problem (CSOP) 14
3.3 Constraint Solvers . 14

3.3.1 Complete solvers . 14
3.3.2 Incomplete solvers . 15

3.4 Constraint programming . 16
3.4.1 Variable . 17
3.4.2 Constraints . 17
3.4.3 Search . 18

3.5 Partial Conclusion . 20

4 PATH FEASIBILITY ANALYSIS 21
4.1 Some assumption about the program (path) . 22
4.2 Path Based Analysis . 22
4.3 Extracting Path Constraints . 23

4.3.1 Modeling Register, Stack and Memory . 23
4.3.2 Maintaining Version for the Variables . 24
4.3.3 Updating Arrays . 26
4.3.4 Constraints Generation Algorithm . 27

4.4 Constraint Solving . 29
4.5 Experiment and Results . 29
4.6 Partial Conclusion . 30

viii

5 DECOMPILATION OF ASSEMBLY PROGRAM 31
5.1 Source and Target Program . 31

5.1.1 Subset of ARM Assembly Language . 31
5.1.2 Subset of C Language . 32

5.2 Decompilation Phases . 33
5.2.1 Reconstruct CFG from Assembly Code . 34

5.2.1.1 Partitioning assembly instructions into basic blocks 35
5.2.1.2 CFG from List of Basic Blocks . 36

5.2.2 Loops . 37
5.2.3 HLL Code Generation . 37

5.2.3.1 Generating Code for a Basic Block 38
5.2.3.2 Generating Code from Control Flow Graphs 38

5.3 Mapping between Assembly Language and HLL . 40
5.4 Partial Conclusion . 41

6 MODELING HLL WITH CONSTRAINTS 43
6.1 Transformation of HLL to CPM . 44

6.1.1 Rewriting Rules for different kinds of instructions 44
6.1.1.1 Declaration . 44
6.1.1.2 Assignments . 46
6.1.1.3 Loop statements . 46
6.1.1.4 Conditional Statement . 48
6.1.1.5 Special case: Array assignment . 50
6.1.1.6 Code Block . 51
6.1.1.7 Basic Block Timing, Optimization function and Search 51

6.1.2 Labeling . 51
6.1.3 Rules for Generating Labeling Function . 54

6.2 Partial Conclusion . 55

7 WCET COMPUTATION 57
7.1 OVERVIEW OF THE METHOD AND TOOL CHAIN 57
7.2 Experimental Results . 60

7.2.1 Comments on the Results . 61
7.3 Comparison between two WCET computation approaches 61

7.3.1 Comments on the Comparison . 62
7.4 Paths Study . 62
7.5 Partial Conclusion . 63

8 CONCLUSIONS AND FUTURE WORKS 65

REFERENCES 67

A CPM FOR SOME BENCHMARK PROGRAMS 71

ix

List of Figures

2.1 Basic notions concerning timing analysis of systems. 5
2.2 WCET calculation methods. 10

3.1 An example of CP model for a feasible solution in Comet 17
3.2 An example of CSP in Comet . 18

4.1 An example of a path in assembly language . 28
4.2 The system of constraints for the path in figure 4.1 . 29

5.1 A decompiler . 31
5.2 Formal Grammar of Assembly Language handled . 32
5.3 An example of source program: fib-O0 . 34
5.4 Partition of program into basic blocks . 36
5.5 CFG of fib-O0 . 37
5.6 Code generation for BBs except for transfer of control instructions 38
5.7 Complete HLL code for fib-O0 . 39
5.8 Complete HLL optimized code for fib-O0 . 40

7.1 Tool Chain Overview(Aprox. WCET Tool) . 58
7.2 Code to obtain worst case paths . 59
7.3 Tool Integration with Cassez et. al WCET Tool . 59
7.4 CFG bs-O2 . 63

x

List of Tables

4.1 Path Feasibility Results . 30

7.1 Approximate WCET Computation . 61
7.2 Comparison between two approaches of WCET computation 62

xii

Listings

A.1 CPM: fib-O0 . 71
A.2 CPM: insertsort-O2 . 73
A.3 CPM: bs-O2 . 76

xiv

Chapter 1
INTRODUCTION

”The best way to predict the future is to invent it.”
Alan Kay

Hard real-time systems are those that have crucial deadlines. Typical examples of real-time sys-
tems include defense and space systems, embedded automotive electronics, air traffic control
systems, command control systems etc. They are composed of a set of tasks and are charac-
terized by the presence of a processor running application specific dedicated software. Here, a
task may be a unit of scheduling by an operating system, a subroutine, or some other software
unit. In these systems, the correctness of the system behavior depends not only on the logical
results of the computations, but also on the physical instant at which these results are produced.
So each real-time task has to be completed within a specified time frame.

In order to schedule these systems, we need to know some bounds about execution times of
each task i.e. the worst-case execution-time (WCET). These bounds are needed for allocating
the correct CPU time to the tasks of an application. They form the inputs for schedulability
tools, which test whether a given task set is schedulable (and will thus meet the timing re-
quirements of the application) on a given target system. Together with schedulability analysis,
WCET analysis forms the basis for establishing confidence into the timely operation of a real-
time system [1]. WCET analysis does so by computing (upper) bounds for the execution times
of the tasks in the system.

This chapter presents the motivation behind this work, lists the contributions we made and
presents the overall structure of the thesis.

1.1 Motivation

There are two main classes of methods for computing WCET [2]: Testing/Measurement and
Verification based methods. But only the verification based methods (also known as static
methods) are guaranteed to produce safe WCET [3]. Two different kinds of techniques are
predominant in static methods, namely, Integer Linear Programming(ILP) based and Model
Checking based.

ILP based techniques [2, 3] rely on the construction of a control flow graph (CFG) and the
determination of the loop bounds. This can be achieved using user annotations or sometimes

1

CHAPTER 1. INTRODUCTION

inferred automatically. Hereby, the WCET is computed by solving a maximum cost circulation
problem in this CFG. Each edge is associated with a certain cost for executing it. The algorithm
implemented in these tools use both the program and the hardware specification to compute the
CFG fed to the ILP solver. The architecture of the tool is thus monolithic i.e., it is not easy to
add support for a new hardware. But these techniques are fast and can handle large programs
[4]. They implement implicit path enumeration technique (IPET) and this considerably simpli-
fies path analysis [5].

On the other hand, the model checking based techniques presented in [3] rely on the fully
automatic method to compute a CFG(without user annotations). It describes the model of the
hardware as a product of timed automata (independently of the program). The model of the
program running on a hardware is obtained by synchronizing the program with the model of
the hardware. Computing WCET is then reduced to a reachability problem on the synchro-
nized model and solved using the real time model checker UPPAAL1. These techniques [3, 4]
are slower and perform better for simplified programs. But allow easy integration of complex
hardware models such as cache and pipelines.

Considerable amount of works have been done on both tasks [2, 3, 4, 5, 6], but each of them
usually misses the aspect of the other. In this thesis, we purpose a technique which is a com-
bination of these two to take advantage of their strengths and make WCET computation tech-
niques scalable and amenable to changes. The idea behind this is to use ILP based techniques
for path analysis and model checking based techniques for integration of complex hardware
models.

To achieve this, we compute approximate WCET solely based on the program (only consider-
ing clock cycles for each instruction from its manual) without taking into account the hardware
characteristics (cache and pipelines) using Constraint Programming (CP) instead of ILP. Based
on this approximate value, we propose some feasible and most probable worst case paths to
model checking based techniques. Model checking technique then combines the hardware
model to this program path suggested by CP and computes the precise WCET. In doing so,
we get rid of monolithicity problem of ILP based techniques and the scalability issues of the
model checking techniques and yet keeping intact their strengths.

1.2 Structure of this work

The rest of this work is organized as follows. The next chapter provides an overview of timing
analysis techniques and WCET. Chapter 3 provides some background knowledge about con-
straints and constraint solvers. Chapter 4 deals with the path analysis, mainly, the algorithms
and results of path validation. Chapter 5 discusses briefly about high-level language gener-
ation from assembly language. Similarly, chapter 6 presents some rewriting rules to obtain
Constraint Programming Model (CPM) of a high level language. Chapter 7 explains about
our technique of computing approximate WCET. Next, chapter 8 concludes this thesis, by pro-
viding a summary of this work, and highlighting some possible research directions for future
work. Finally, Appendix A is a supplementary chapter which presents CPM of some bench-
mark programs used to compute WCET.

1Real time model checker UPPAAL -http://www.uppaal.org/

2

http://www.uppaal.org/

CHAPTER 1. INTRODUCTION

1.3 Contributions

The major contribution of this research work is to complement model checking technique pro-
posed in [3] with path analysis. To this purpose, we validate the witness trace returned by
the model checker while computing WCET and generate test data if it is feasible. We explore
further research directions to deal with infeasible traces/paths. We propose a technique based
on constraint programming to compute an approximate WCET solely based on the program
without taking into account the hardware characteristics (caches and pipelines). Based on this
approximate WCET, we suggest some feasible and worst case paths to the model checking
tool to integrate complex hardware characteristics in order to compute precise WCET. During
this process, we deal with the decompilation of ARM assembly program to C like syntax and
rewriting rules from C to constraints model. Further, we compare the results of our technique
of approximate WCET computation with the results from Cassez et al. ([3]). Finally, we pro-
vide a way of computing an upper bound for over-approximation of WCET computed using
model checking technique.

3

Chapter 2
TIMING ANALYSIS TECHNIQUES
AND WCET

”Joy in looking and comprehending is nature’s most beautiful gift.”
Albert Einstein

This chapter presents some background knowledge about WCET, its challenges and some
methods and tools for computing WCET. The knowledge of the maximum time consumption
of each program or task or piece of code is a prerequisite for analyzing the worst-case timing
behavior of a real-time system and for verifying its temporal correctness. This maximum time
needed by each program is assessed by means of WCET analysis. Figure 2.1 taken from [2]
depicts several relevant properties of a real-time task. The lower curve represents a subset of
measured executions. Its minimum and maximum are the minimal observed execution times
and maximal observed execution times, resp. The darker curve, an envelope of the former, rep-
resents the times of all executions. Its minimum and maximum are the best-case and worst-case
execution times, resp., abbreviated BCET and WCET.

Figure 2.1: Basic notions concerning timing analysis of systems.

A task typically shows a certain variation of execution times depending on the input data or

5

CHAPTER 2. TIMING ANALYSIS TECHNIQUES AND WCET

different behavior of the environment. The set of all execution times is shown as the upper
curve. The shortest execution time is called the BCET, the longest time is called the WCET.
In most cases the state space is too large to exhaustively explore all possible executions and
thereby determine the exact worst-case and best-case execution times. Timing analysis is a
process of deriving execution-time bounds or estimates. A tool that derives bounds or estimates
for the execution times of application tasks is called a timing-analysis tool.

2.1 Overview of Timing Analysis Techniques

Timing analysis attempts to determine bounds on the execution times of a task when executed
on a particular hardware. The time for a particular execution depends on the path through the
task taken by control (referred to as the program path analysis problem) and the time spent in
the statements or instructions on this path on this hardware (referred to as micro-architectural
modeling). Both these aspects need to be studied well in order to provide a solution to this
problem. The focus of this thesis is on the program path analysis problem. The structure and
the functionality (i.e., what the program is computing) of a program determines the actual paths
taken during its execution. Any information regarding these helps in deciding which program
paths are feasible and which are not. While some of this information can be automatically in-
ferred from the program, this is a difficult task in general (e.g., regarding the information about
functionality of a program).

Accordingly, the determination of execution-time bounds has to consider the potential control-
flow paths and the execution times for this set of paths. A modular approach to the timing-
analysis problem splits the overall task into a sequence of subtasks. Some of them deal with
properties of the control flow, others with the execution time of instructions or sequences of
instructions on the given hardware. Many of today’s approaches to WCET analysis demand
that the programmer provide information about (in)feasible execution paths of the code to be
analyzed. This path information is described at the high-level language interface. On the other
hand, the actual computation of WCET, that uses this path information, takes place at the
machine-language level, where the execution times of basic actions can be accurately modeled.
Today’s practical approaches to WCET analysis therefore have to bridge the gap between these
two different representation levels. This makes timing analysis difficult and interesting as a
research topic. The progress in this field has led to a number of techniques and tools which
will be discussed in the next sections.

2.2 WCET

WCET analysis computes upper bounds for the execution times of programs for a given appli-
cation, where the execution time of a program is defined as the time it takes the processor to
execute that program. Formally, it can be defined as [3]:

Definition 2.1 The WCET of a program P on a hardwareH , represented asWCET (P,H), is
the maximum execution time(time(H,P, d)) ofP onH for all input data d, where time(H,P, d)
is the execution time of P for input data d on H .

Mathematically,
WCET (P,H) = max

d∈D
time(H,P, d) ,∀d

In general, the WCET problem is undecidable as it is equivalent to solving the halting problem.
However, real-time systems only use a restricted form of programming, which guarantees that

6

CHAPTER 2. TIMING ANALYSIS TECHNIQUES AND WCET

programs always terminate; recursion is not allowed or explicitly bounded as are the iteration
counts of loops. A reliable guarantee based on the worst-case execution time of a task could
easily be given if the worst-case inputs for the task were known. Unfortunately, in general the
worst-case inputs are not known and are hard to derive. We should bear in mind the following
points regarding the WCET [1]:

1. WCET analysis computes upper bounds for the WCET, i.e. it does not guarantee to
return the WCET exactly.

2. The WCET bound computed for a piece of code is application- dependent , i.e., a single
piece of code may have different WCETs, and thus WCET bounds in different applica-
tion contexts.

3. WCET analysis assesses the duration that the processor is actually executing the ana-
lyzed piece of code, i.e. assuming non-preemptive execution. It is important to note that
the results of WCET analysis do not include waiting times due to preemption, blocking,
or other interference.

4. WCET analysis is hardware-dependent. WCET analysis therefore has to model the fea-
tures of the target hardware on which the code is supposed to execute.

In order to make real-time systems temporally predictable and to keep the price of such systems
reasonable, the computed WCET has to be [1, 3] :

1. safe i.e., it must not under-estimate the worst case, and

2. tight otherwise either the set of tasks are wrongly declared non schedulable or the cost
has to be paid in order to compensate with the pessimism.

Let C be the computed WCET and M be the measured WCET on the real platform for some
program P , then the over approximation is given by the formula: (C −M)/M ∗ 100. The
computed WCET is considered tight when the difference between C and M is lesser or equal
to some epsilon(ε).

2.2.1 WCET Challenges

Computing the WCET of a program is a challenging and difficult task. It is usually a very hard
problem and there are several factors which are responsible for this [1, 3] :

1. WCET analysis has to consider all possible inputs of the program to ensure a real safe
upper bound;

2. The hardware on which a program runs usually features a multi-stage pipelined processor
and some fast memory components called caches; executing a sequential program is then
a concurrent process where the different stages of the pipeline and the caches and the
main memory run in parallel;

3. The WCET must be computed on the binary code (or an assembly language equivalent
version) where the execution-time of basic actions can be accurately modeled;

4. The characterization of execution path takes place on the source-code level, but the
WCET must be computed on the binary code, so the WCET analysis has to bridge this
gap between these two different representations. Modern compilers produce smart or
optimized compiled programs making it difficult to identify in the machine code the
execution paths that have been characterized at the source level.

7

CHAPTER 2. TIMING ANALYSIS TECHNIQUES AND WCET

2.2.2 WCET Methods and Tools

There are two main classes of methods for computing WCET [2, 7] :

1. Testing-based methods or Measurement based methods: These methods attack some
parts of the timing-analysis problem by executing the given task on the given hardware
or a simulator, for some set of inputs. They then take the measured times and derive
the maximal and minimal observed execution times, or their distribution or combine the
measured times of code snippets to results for the whole task. The measurements of a
subset of all possible executions produce estimates, not bounds for the execution times,
if the subset is not guaranteed to contain the worst case. Even one execution would be
enough if the worst-case input were known but in general, this is as difficult as computing
WCET. These methods might not be suitable for safety critical embedded systems but
they are versatile and rather easy to implement. There are some tools which implement
these techniques, to mention a few, RapiTime1 and Mtime [8] etc.

2. Verification-based methods or static methods: This class of methods does not rely on ex-
ecuting code on real hardware or on a simulator, but rather considers the code, combines
it with some (abstract) model of the system i.e. hardware, and obtains upper bounds from
this combination. Static methods compute bounds on the execution time. The common
things among the tools which implement these methods are computation of an abstract
graph, the CFG, and an abstract model of the hardware. Then with static analysis tool
they can be combined to get WCET. The CFG should produce a super-set of the set of all
feasible paths. Thus the largest execution time on the abstract program is an upper bound
of the WCET. Such methods produce safe WCET, but are difficult to implement. The
price they pay for this safety is the necessity for processor-specific models of processor
behavior, and possibly imprecise results such as overestimated WCET bounds. In favor
of static methods is the fact that the analysis can be done without running the program
to be analyzed which often needs complex equipment to simulate the hardware and pe-
ripherals of the target system. In spite of these difficulties of implementation, there are
some tools which implement these techniques, to mention a few, Bound-T 2, Chronos
[9], SWEET [10] and aiT 3 [11] etc.

Though it is widely discussed by Wilhelm ([12]) that MC is not good for WCET computation,
Cassez et al. ([3]) and Dalsgaard et al. ([6]) justify its use to compute WCET and have tools
based on model checking techniques. The above mentioned verification tools have following
limitations:

1. these methods for computing WCET rely on annotations on the binary program (equiv-
alently assembly program) to analyze. These annotations are often manually asserted
which are error-prone.

2. the algorithms and tools that implement these methods are rather monolithic and difficult
to adjust to a new hardware.

Cassez et al. ([3]) solve these limitations using model checking technique. However, this
technique suffers from the following problems:

1Rapita Systems Ltd. Rapita Systems for timing analysis of real-time embedded systems. http://www.
rapitasystems.com/

2Tidorum Ltd. Bound-T time and stack analyser. http://www.bound-t.com/.
3AbsInt Angewandte Informatik. aiT Worst-Case Execution Time Analyzers. http://www.absint.com/

ait/.

8

http://www.rapitasystems.com/
http://www.rapitasystems.com/
http://www.bound-t.com/
http://www.absint.com/ait/
http://www.absint.com/ait/

CHAPTER 2. TIMING ANALYSIS TECHNIQUES AND WCET

1. The MC explores exponential number of program paths irrespective of their feasibility.
These limit MC’s scalability to multiple path programs.

2. The witness trace returned by the MC corresponding to the WCET may not be feasible
(executable). This may result in solution which is not tight.

Thus the goal of this thesis is to complement Cassez et al.’s technique [3] with static path anal-
ysis. This technique can be summarized in the following three steps [3]:

1. Construction of CFG: The CFG of a program P is built using the technique of program
slicing [13], in an iterative manner. The starting point is a partial CFG P0 built as follows: P is
unfolded from the initial instruction and the unfolding process stops when (1) it reaches final
instruction or (2) it reaches an instruction for which the next value of register pc is unknown
(e.g., a branch instruction with a computed target). The value of target is obtained by further
slicing P0 with an ad hoc slice criterion: the slice enables to compute the possible values of the
target. Then P0 is extended using this new information (performing the unfolding as before)
and P1 is obtained . Repeating this operation will build the full CFG Pn of P . As it assumes
that P always terminates this iterative computation is guaranteed to terminate as well.

2. Modeling Hardware: This method is centered around a number of models as it needs
to model main memory, caches and pipelines. These are modeled using timed automata (TA).
As the focus of this thesis is not in the micro-architectural modeling, we refer the readers to
[3] for detailed description. It should be noted that this model is independent from the program
description.

3. WCET Computation as a Reachability Problem: The model of a program P running
on a hardware is obtained by synchronizing (the automaton of) the program with the (TA)
model of the hardware. Computing the WCET is reduced to a reachability problem on the
synchronized model and solved using the model-checker UPPAAL. It is assumed that P has
a set of initial states I (pc gives the initial instruction of P). P has also a set of final states
F (e.g., pc with a particular value). The language L(P) of P is the set of traces generated by
runs of P that starts in I and ends in F . A trace here is a sequence of assembly instructions.
As we assume that P always terminates, this language is finite. Then it can be generated by
a finite automaton Aut(P). The hardware H (including pipeline, caches and main memory)
can be specified by a network of timed automata Aut(H). Feeding H with L(P) amounts to
building the synchronized product Aut(H)×Aut(P). On this product final states are defined
when the last instruction of P flows out of the last stage of pipeline. A fresh clock x is reset
in the initial state of Aut(H) × Aut(P). The WCET of P on H is then the largest value,
max(x), that x can take in a final state of Aut(H) × Aut(P) (we assume that time does not
progress from a final state). We can compute max(x) using model-checking techniques with
the tool UPPAAL. To do this, a reachability property “(R): Is it possible to reach a final state
with x ≥ K?” is checked on Aut(H) × Aut(P). If the property is true for K and false for
K + 1, then K is the WCET of P .

2.3 Previous Work

WCET analysis caught attention about two decades ago ([14], [15], [16], [17]). Substantial
progress has been made in this area since then. Several methods/tools have been made avail-
able for computing WCET. WCET analysis is usually divided into three parts: a fairly machine-
independent flow analysis (or “high-level analysis“) of the code, where information about the

9

CHAPTER 2. TIMING ANALYSIS TECHNIQUES AND WCET

possible program flows is derived, a low-level analysis where the execution time for atomic
parts of the code is decided from a performance model for the target architecture, and a final
calculation where the information from these analyses is put together in order to derive the
actual WCET bounds. There are three main categories of calculation methods proposed in the
WCET literature: structure-based [18], path-based [19] and Implicit Path Enumeration Tech-
nique (IPET) [2, 5, 20, 21].

Path-based methods suffer from exponential complexity and tree-based methods cannot model
all types of program-flow, leaving IPET as the preferred choice for calculation because of the
ease of expressing flow dependencies and the availability of efficient ILP solvers. IPET con-
straint systems can be solved using either constraint-programming [22, 23] or ILP [5, 24] with
ILP being the most popular. A large number of tools use these techniques, to mention a few:
aiT [11], Bound-T, Chronos [9] etc.

Fig. 2.2(a) taken from [2] shows an example control-flow graph with timing on the nodes
and a loop-bound flow fact. Fig. 2.2(d) illustrates how a structure-based method would pro-
ceed according to the task syntax tree and given combination rules. Fig. 2.2(b) illustrates how a
path-based calculation method would proceed over the graph in Fig. 5(a). The reader is refered
to [2, 20] for an exhaustive presentation of the first two methods.

Figure 2.2: WCET calculation methods.

10

CHAPTER 2. TIMING ANALYSIS TECHNIQUES AND WCET

2.3.1 IPET

IPET calculation is based on a representation of program flow and execution times using alge-
braic and/or logical constraints. Each basic block and/or edge in the basic block graph is given
a time (tentity) and a count variable (xentity), denoting the number of times that block or edge
is executed. The WCET is found by maximizing the

∑
i∈entities xi ∗ ti , subject to constraints

reflecting the structure of the program and possible flows.

Figure 2.2(c) shows the constraints and WCET formula generated by a IPET-based calcula-
tion method for the program illustrated in Figure 2.2(a). The start and exit constraints states
that the program must be started and exited once. The structural constraints reflects the pos-
sible program flow, meaning that for a basic block to be executed it must be entered the same
number of times as it is exited. The loop bound is specified as a constraint on the number of
times node A can be executed.

This thesis aims to model structural as well as functionality constraint of a program automat-
ically to filter out infeasible paths using verification techniques as in [25]. We use constraint
programming which allows for more complex constraints to be expressed and provides great
facility for automatic loop bounds inference, with a potential risk of larger solution times. The
use of constraint logic programming is reported in [26, 27, 28] in the WCET community to
handle complex flow analysis and timing variability.

2.4 General Consideration

After having looked at the state of the art for computing WCET, we found that only verifica-
tion based techniques can produce safe WCET bounds [3]. The mostly used tools use static
analysis and ILP and few others use Model Checking techniques to compute WCET. The tools
which implement the first technique are scalable but need some manual intervention to provide
program annotations (e.g., loop bounds) and are monolithic in nature while those which im-
plement the second technique solve these problems and suffers from scalability issues as they
do not filter out infeasible paths while computing WCET. Thus this thesis aims at bridging the
gap between these techniques to take advantage of their strengths to compute WCET.

11

Chapter 3
CONSTRAINTS AND CONSTRAINT
SOLVERS

Constraint programming represents one of the closest approaches computer science has yet
made to the Holy Grail of programming: the user states the problem, the computer solves it.

E. C. Freuder, Constraints, 1997.

A constraint [29] is a restriction on the space of possibilities for some choice; it can be consid-
ered as a piece of knowledge that filters out the options that are not legitimate to be chosen, and
hence narrowing down the size of the space. Formulating problems in terms of constraints have
proven useful for modeling fundamental cognitive activities such as vision, language compre-
hension, default reasoning, diagnosis, scheduling, and temporal and spatial reasoning, as well
as having applications for engineering tasks, biological modeling, and electronic commerce. In
this chapter, we provide some background knowledge about constraints and constraint solvers.

3.1 Constraint Satisfaction Problem (CSP)

Basically, a CSP is a problem composed of a finite set of variables, each of which is associated
with a finite domain, and a set of constraints that restricts the values the variables can simulta-
neously take. The task is to assign a value to each variable satisfying all the constraints [30].

Definition 3.1 (CSP) A CSP can be defined as the triple 〈X,D,C〉 , where X = {x1, ..., xn}
is a finite set of variables, with respective domains D = {D1, ..., Dn} which list the possible
values for each variable Di = {v1, ..., vk}, and a set of constraints C = {C1, ..., Ct}. A
constraint Ci can be viewed as a relation Ri defined on the set of variables Si v X such that
Ri denotes the simultaneous legal value assignments of all variables in Si . Thus, the constraint
Ci can be formally defined as the pair 〈Si, Ri〉; Si is called the scope of the constraint.

Definition 3.2 (Solution CSP) A solution of the CSP is an n-tuple 〈v1, ..., vn〉 where each vi ∈
Di corresponds to the value assigned to each variable xi ∈ X , and the assignment satisfies all
constraints in C simultaneously.

Consider the famous n Queens Problem as an example of CSP. One is asked to place n queens
on the n × n chess board, where n ≥ 3, so that they do not attack each other. One possible

13

CHAPTER 3. CONSTRAINTS AND CONSTRAINT SOLVERS

representation of this problem as a CSP uses n variables, x1, ..., xn , each with the domain
[1..n]. The idea is that xi denotes the position of the queen placed in the ith column of the
chess board. The appropriate constraints can be formulated as the following dis-equalities for
i ∈ [1..n− 1] and j ∈ [i+ 1..n]:

• xi = xj (no two queens in the same row),

• xi − xj = i− j (no two queens in each South-West – North-East diagonal),

• xi − xj = j − i (no two queens in each North-West – South-East diagonal).

The sequence of values (6,4,7,1,8,2,5,3) corresponds to a solution for n = 8, since the first
queen from the left is placed in the 6th row counting from the bottom, and similarly with the
other queens.

3.2 Constraint Satisfaction Optimization Problem (CSOP)

All solutions are equally good for solving CSPs. In applications such as industrial scheduling,
some solutions are better than others. In other cases, the assignment of different values to the
same variable gives different costs. The task in such problems is to find optimal solutions,
where optimality is defined in terms of some application-specific functions. We call these
problems CSOP [30].

Definition 3.3 (CSOP) A CSOP 〈X,D,C, f〉 is defined as a CSP together with an optimiza-
tion function f which maps every solution tuple to a numerical value, where 〈X,D,C〉 is a
CSP, and if S is the set of solution tuples of 〈X,D,C〉, then f : S → numerical value. Given
a solution tuple t, we call f(t) the f -value of t. The task in a CSOP is to find the solution
tuple with the optimal (minimal or maximal) f -value with regard to the application-dependent
optimization function f .

As an example consider the following problem:

min. f(x, y) = x2 + 2y2 + 2xy − 18

subject to the constraint
x− y = 1

We are looking for the minimum value for f(x; y) over the domain of x; y that satisfy x−y = 1.

3.3 Constraint Solvers

There are two broad classes of constraint solvers: complete solvers and incomplete solvers. We
will briefly discuss about them in the the following subsections.

3.3.1 Complete solvers

Complete solvers implement decision procedures that take a given CSP and produces a solved
form of the problem [31]. Examples of complete solvers include CLP(R) and CLP(B) that are
used for solving real constraints and boolean constraints respectively. Since CLP(R) imple-
ments simplex algorithms, solving linear constraints is quite efficient. However, for CLP(B),
the fact that the underlying representation of boolean functions is based on Boolean Decision
Diagrams results in exponential time being required for solving constraints.

14

CHAPTER 3. CONSTRAINTS AND CONSTRAINT SOLVERS

3.3.2 Incomplete solvers

The most interesting and fundamental concept in constraint solving that drives incomplete
solvers is called constraint propagation. Solvers that implement propagation techniques are
based on the observation that if the domain of any variable in some CSP is empty, the CSP
is unsatisfiable. These solvers try to transform a given CSP into an equivalent CSP whose
variables have a reduced domain. If any of the domains in the reduced CSP becomes empty,
the reduced CSP, and hence the original CSP are said to be unsatisfiable since both CSPs are
equivalent. The solvers work by considering each constraint of the CSP one by one, and they
use the information about the domain of each variable in the constraint to eliminate values from
domains of the other variables. These procedures alone may not succeed in getting a solution as
the case often, and hence enumeration of variables can be also needed. Therefore, incomplete
solvers interleave propagation and enumeration to obtain a solution or to infer the absence of
any solution. An incomplete solver can find a solution to a problem, but it can’t distinguish
between there being no solution and the solver’s inability to find it [31]. This means, reaching
the fix point would not guarantee the feasibility. In order to guarantee this, we need to label the
input variables.

Example of such solver includes Choco, Comet [32] and CLP(FD). Choco is a java library for
CSP, CP and explanation-based constraint solving (e-CP). It is built on a event-based propaga-
tion mechanism with backtrackable structures. Choco is an open-source software, distributed
under a BSD license. The details can be obtained from Choco’s homepage 1. Comet is a hybrid
optimization system, combining CP, local search, and linear and integer programming. It is
also a full object-oriented, garbage collected programming language, featuring some advanced
control structures for search and parallel programming, supplemented with rich visualization
capabilities. The details can be obtained from Comet’s homepage 2. CLP (FD) is used to solve
constraints over finite domains. Boolean constraints can also be modeled here as a special case
of finite domain constraints with each variable having domain D = {0, 1}. Since, propagation
may be of no use in the worst case scenario, the CLP(FD) solver has an exponential time com-
plexity on the size of the domains. There are different levels of consistency criteria that can
be achieved by the constraint propagation algorithm. The most important ones include node
consistency, arc consistency, and bound consistency.

A CSP is node-consistent if there does not exist a value in the domain of any one of its variables
that violates a unary constraint in the CSP. In particular, a CSP with no unary constraints is
vacuously node consistent. This criterion is of course very trivial but it is very important when
it is considered in the context of an execution model that incrementally computes solution from
partial solutions. Consider now a CSP of the form:
< {x1, ...xn} , {x1...xn−1 ∈ N, xn ∈ Z} , {x1 ≥ 0, ..., xn ≥ 0} > where N denotes set of nat-
ural numbers and Z denotes the set of all integers. Then this CSP is not node consistent, since
for the variable xn the constraint xn ≥ 0 is not satisfied by the negative integers from its do-
main. But when we change the domain of the variable xn to be N then this CSP becomes node
consistent since for every variable xi every unary constraint on xi coincides with the domain
of xi, where i = 1..n.

A more demanding consistency criterion is arc-consistency. To be considered for arc-consistency,
a CSP must first be node-consistent. In addition, for every pair of variables 〈x, y〉 , for every

1http://choco.emn.fr/
2http://dynadec.com/

15

http://choco.emn.fr/
http://dynadec.com/

CHAPTER 3. CONSTRAINTS AND CONSTRAINT SOLVERS

constraint Cxy defined over variables x and y , and for each value vx in the domain of x,
there must exist some value vy in the domain of y that supports vx . For example, the CSP
〈{x, y} , {1..5, 1..5} , {x+ y > 7}〉 is not arc-consistent because there is no support in the do-
main of y when x takes 1 or 2 that satisfies the constraint x + y > 7. The same holds for y
also. An arc-consistent CSP which is equivalent to the original CSP is obtained by reducing
domains of x and y from {1, 2, 3, 4, 5} to {3, 4, 5}.

Another type of consistency criteria is called bounds consistency defined on numeric con-
straints which are arithmetic constraints of equalities or inequalities. For example, the CSP
〈{x, y} , {1..10, 1..10} , {x > y}〉 in not bound-consistent because there are some bound val-
ues in the domain of both variables that can never be part of any solution as they do not have
any matching value in the other variable to satisfy the given constraint. If x takes the value
1, then there is no any matching value in y that can satisfy the constraint x > y . There-
fore 1 should not be in the domain of x. Similarly, there is no matching value for x when
y takes the value 10. Likewise, 10 should not be in the domain of y. A bound-consistent
equivalent CSP will be 〈{x, y} , {2..10, 1..9} , {x > y}〉 . Another example can be the CSP
〈{x, y} , {3..10, 1..8} , {x = y}〉 . There is no any matching values for y when x takes either 9
or 10 because we have an equality constraint x = y. Similarly should y take either 1 or 2, there
is no matching value in x that satisfies the given constraint. A bound-consistent equivalent CSP
in this case will be 〈{x, y} , {3..8, 3..8} , {x = y}〉.

Algorithms that impose arc-consistency are polynomial on the number of variables, where
as algorithms that impose bounds-consistency are linear on the size of domains of variables.
Global constraints have specialized propagation algorithms that exploit the semantics of the
constraints to obtain a much faster propagation, and hence a much faster solving of the con-
straints.

To this end, we have chosen Comet as the constraint solver to use in this thesis because of
the following reasons:
1. It can handle all the constraints in our case (linear and non-linear),
2. It provides multiple facilities like CP and linear programming (LP),
3. It is free for educational purpose,
4. We have good knowledge of it.

3.4 Constraint programming

CP is an emergent software technology for declarative description and effective solving of
large, particularly combinatorial, problems especially in areas of planning and scheduling. It
has its roots in computer science, logic programming, graph theory, and the artificial intelli-
gence efforts of the 1980s. CP consists of optimizing a function subject to logical, arithmetic,
or functional constraints over discrete or interval variables, or finding a feasible solution to a
problem defined by logical, arithmetic, or functional constraints over discrete or interval vari-
ables. It is also an efficient approach to solving and optimizing problems that are too irregular
for mathematical optimization. This includes time tabling problems, sequencing problems, and
allocation or rostering problems.

CP can be characterized pretty well by the equation:

CP =Model + Search

16

CHAPTER 3. CONSTRAINTS AND CONSTRAINT SOLVERS

A CP model looking for a feasible solution has the structure (in Comet [32]) as shown in the
figure 3.1:

1 import cotfd;
2 Solver<CP> cp();
3 //declare the variables
4 solve<cp> {
5 //post the constraints
6 }
7 using {
8 //non deterministic search
9 }

Figure 3.1: An example of CP model for a feasible solution in Comet

First it imports the library that is needed, in this case the finite domain one (cotfd). Then
specifies the solver to use, which is CP. It can be seen that there is a clear separation between
the modeling part, that declares the variables and posts the constraints, and the search part. We
now briefly explain about the ingredients of CP.

3.4.1 Variable

The first step in modeling a problem is to declare variables. Comet has three primitive types:
int, float and bool. These primitive types are given by value in function or method parameters.
There are four types of incremental variables: integer, floating point, boolean, and set over in-
tegers. Incremental variables can be seen as a generalized version of typed variables with extra
functionality. Each incremental variable is assigned a domain of values, either automatically
or explicitly by the user. They are declared as below.

1 var<CP>{int} x(cp,1..10);
2 var<CP>{bool} b(cp);
3 var<CP>{float} f(cp,1,5);
4 var<CP>{set{int}} s(cp);

Discrete integer variables, also called finite domain integer variables (f.d. variables), are the
most commonly used. The first line in the above example declares a variable x with the integer
interval domain [1..10] in Comet. The second line declares a boolean variable b and the third
line a float variable f in the range of 1 and 5 etc.

3.4.2 Constraints

Constraints act on the domain store (the current domain of all variables) to remove inconsistent
values. Behind every constraint, there is a sophisticated filtering algorithm, that prunes the
search space by removing values that don’t participate in any solution satisfying the constraint.
The domain store is the only possible way of communication between constraints: whenever a
constraint C1 removes a value from the domain store, this triggers the detection of a possible
inconsistent value for another constraint C2 . This inconsistent value is in turn removed, and
this propagates, until reaching a fixedpoint, which means that no constraint can remove a
value. This is the basic idea of the fixpoint algorithm. As soon as a variable’s domain becomes
empty, the domain store fails, meaning that there is no possible solution, and the search has to

17

CHAPTER 3. CONSTRAINTS AND CONSTRAINT SOLVERS

backtrack to a previous state and try another decision. To summarize, a constraint system must
implement two main functionalities:

1. Consistency Checking: verify that there is a solution to the constraints, otherwise tell the
solver to backtrack

2. Domain Filtering: remove inconsistent values, i.e., values not participating in any solu-
tion

A constraint can be posted to the CP solver with the post method. The constraint must always
be posted inside a solve {}, solveall {} or suchthat {} block, otherwise Comet does not
guarantee the results. The following example posts the constraint that variables x and y must
take two different values.

1 cp.post(x != y);

3.4.3 Search

Search in CP consists in a non-deterministic exploration of a tree with a backtracking search
algorithm. The default exploration algorithm is Depth-first Search. Other search strategies
available are: Best-First Search, Bounded Discrepancy Search, Breadth-First Search, etc. The
following example in Comet [32] explores all combinations of three 0/1 variables using a
depth-first strategy:

1 import cotfd;
2 Solver<CP> cp();
3 var<CP>{int} x[1..3](cp,0..1);
4 solveall <cp> {
5 }
6 using {
7 label(x); //search part
8 cout << x << endl;
9 }

Figure 3.2: An example of CSP in Comet

This produces the following output.

1 x[0,0,0]
2 x[0,0,1]
3 x[0,1,0]
4 x[0,1,1]
5 x[1,0,0]
6 x[1,0,1]
7 x[1,1,0]
8 x[1,1,1]

Constraint programming has been extended to constraints over other domains among the most
important ones being boolean constraints, real linear constraints and finite domain constraints.

Boolean Constraints: A constraint is called boolean if each variable in the constraint has a

18

CHAPTER 3. CONSTRAINTS AND CONSTRAINT SOLVERS

domain D = {0, 1}. Such constraints are particularly useful for modeling digital circuits, and
boolean constraint solvers can be used for verification, design, optimization etc. of such cir-
cuits. An example of boolean constraint is shown below where the domain of the variables
x, y, z is D:

(x ∨ y) ∧ (¬x ∨ y ∨ z) ∧ (¬x ∨ ¬z)

Real Linear Constraints: Such constraints have variables that can take any real value. Unlike
finite domains, real domains are continuous and infinite. The solver called clp(R) is bundled
into many Prolog implementations as a library package which is used to solve real constraints.
In addition to all the common arithmetic constraints, clp(R) solves a number of linear equa-
tions over real-valued variables, covers the lazy treatment of nonlinear equations, features a
decision algorithm for linear inequalities that detects implied equations, removes redundan-
cies, performs projections (quantifier elimination), allows for linear in-equations, and provides
for linear optimization. They are not present in Comet. An example of such constraint is shown
below where the domain of the variables x, y is real number:
2.4 ∗ x5 ≤ 10.1 + 4.2 ∗ y6

Finite Domain Constraints All variables in such constraints get associated with some finite
domain, either explicitly declared by the program, or implicitly imposed by the finite-domain
constraint solver. By finite domain, we mean some subset of integers. Therefore, only integers
and unbound variables are allowed in finite domain constraints.

Finite-domain constraint solvers mainly deal with two classes of constraints called primitive
constraints and global constraints. All other types of constraints are automatically translated
to conjunctions of primitive and global constraints, and then solved. Classes of primitive con-
straints include (among others):

• Arithmetic constraints: Examples include x+ y = 5 which constraints x and y to take
values that can be summed up only to 5, and x > y which constraints the value taken by
x to be always greater than the value taken by y, and

• Propositional constraints: are complex constraints formed by combining individual
constraints using propositional combinators. The main propositional combinators in-
clude ∧, ∨,⇒, and⇔ which play roles similar to logical conjunction, disjunction, im-
plication and bi-implication respectively. For example, given constraints C1 and C2 , the
propositional constraint C1∧C2(C1∨C2) is satisfied if and only if both(either one of C1

or C2) is satisfied. Another propositional constraint C1 ⇒ C2 evaluates to true if C1 is
false or C2 is true. An important property of this constraint is that if C1 evaluates to true,
then C2 should necessarily evaluate to true. This can be used to specify constraints that
are needed only under some condition. For this reason, such constraints are also called
conditional constraints.

Some of the most important global constraints defined in Comet include alldifferent, atleast,
atmost and cardinality etc. The alldifferent function allows to state that each variable in an
array of CP variables takes a different value. For example:

1 import cotfd;
2 Solver<CP> cp();
3 var<CP>{int} x[1..5](cp,1..6);
4 solve<cp>
5 cp.post(alldifferent(x));

19

CHAPTER 3. CONSTRAINTS AND CONSTRAINT SOLVERS

A solution is x = [4, 2, 5, 1, 6] since all the values are different. Details about other global
constraints defined in Comet can be obtained from its manual [32].

An important concept in search is labeling of variables. The labeling functions are used on
variables over finite domains to check satisfiability or partial satisfiability of the constraint
store (the constraint store contains the constraints that are currently assumed satisfiable.) and
to find a satisfying assignment [31]. A labeling function is of the form label (〈variable〉),
where the argument is a variable over finite domain. Whenever the interpreter evaluates such
a function, it performs a search over the domains of the variable to find an assignment that
satisfies all relevant constraints. Typically, this is done by a form of backtracking: variables are
evaluated in order, trying all possible values for each of them, and backtracking when incon-
sistency is detected.

The first use of the labeling function is to actually check satisfiability or partial satisfiabil-
ity of the constraint store. When the solver adds a constraint to the constraint store, it only
enforces a form of local consistency on it. This operation may not detect inconsistency even if
the constraint store is unsatisfiable. A labeling function over a set of variables enforces a satis-
fiability check of the constraints over these variables. As a result, using all variables mentioned
in the constraint store results in checking satisfiability of the store.

The second use of the labeling function is to actually determine an evaluation of the vari-
ables that satisfies the constraint store. Without the labeling functions, variables are assigned
values only when the constraint store contains a constraint of the form x = value and when
local consistency reduces the domain of a variable to a single value. A labeling function over
some variables forces these variables to be evaluated. In other words, after the labeling func-
tions have been considered, all variables are assigned a value. Typically, constraint solvers
are written in such a way that labeling functions are evaluated only after as many constraints
as possible have been accumulated in the constraint store. This is because labeling functions
enforce search, and search is more efficient if there are more constraints to be satisfied. Con-
sider the example presented in the figure 3.2. When the solver solves this CSP, The function
label(x) is evaluated as all constraints are satisfied in the constraint store (in fact there are no
constraints), forcing a search for a solution of the constraint store. Since the constraint store
contains exactly the constraints of the original CSP, this operation searches for a solution of
the original problem. Please refer to chapter 6.1.2 for sophisticated labeling policies.

3.5 Partial Conclusion

In order to understand better the matter of the discourse, in this chapter, we introduced some
concepts related to constraint programming and constraint solvers. Next, we chose Comet as
the constraint solver to be used in this thesis.

20

Chapter 4
PATH FEASIBILITY ANALYSIS

Representation is the essence of programming.
Fred Brooks, 1995.

This chapter deals with path analysis, mainly, the algorithms and results of path validation.
The execution time of a given program depends on the actual program trace (or program path)
that is executed. Determining a set of program paths to be considered which can give WCET
is a core component of any analysis technique for WCET. In the context of our application,
this path is returned by the MC as a witness path for the computed WCET. This means that
the WCET is the execution time of this path in the given hardware model. So if the path is
infeasible the corresponding WCET is subjected to change. In practice, we may get tighter
WCET value, which is of importance in the context of real time embedded system. We can
determine the feasibility of a path through static analysis. Static analysis is a technique that
is performed without actually executing the path taking into consideration all the inputs of the
program from where the path is extracted. In most cases the analysis is performed on some
version of the source code and in the other cases some form of the object code. In our case we
perform analysis on the assembly code.

The input path to our system is a witness trace returned by the MC. We symbolically exe-
cute this path and create a set of constraints on the program’s variables. Then a constraint
solver (in our case Comet) is used to solve these constraints. A solution to the set of constraints
is test data that will drive execution down the given path. If it can be determined that the set of
constraints is inconsistent, then the given path is shown to be non executable. The technique
that will be described here also aids in path validation. We have also developed a path analysis
tool which produces the result of path feasibility (whether feasible or not), given a path. Here
we use the terms feasible, valid, consistent and executable indistinctly. Finally, we applied our
technique to validate some paths derived while computing WCET using method proposed in
[3] on WCET benchmark programs [33] and present some results.

This tool has the following capabilities:

1. Classifies the given path as feasible or infeasible. Not all program paths are feasible
and, therefore, classification of feasible and infeasible paths is of value in analyzing
programs.This helps us refine the computed WCET in order to get the tighter result
which is of prime importance.

2. Generates test data to drive execution down a program path.

21

CHAPTER 4. PATH FEASIBILITY ANALYSIS

3. As the tool operates directly on binaries (Assembly Code), it is able to analyze even
proprietary software.

4.1 Some assumption about the program (path)

It is assumed that the program from which a path is extracted is completely stored in the mem-
ory. So all the instructions in a given path have some memory address (hexadecimal or decimal
number) associated with them. We assume that the references to stack is via specialized regis-
ter sp only and references to memory cells do not depend on the input variable. If some register
or memory position is never assigned any value in the program then it is considered as an input
value. Moreover we assume that the path does not contain any loop i.e. the path is finite. An
example of a path taken from famous binary search (bs-O2) program is shown below. The
first column represents the memory address and the second column after ’:’ is the operator of
assembly language also known as instruction (e.g., add, mov etc.) and the columns that follow
are the operands to the corresponding operator. Please refer to 5.2 for the formal grammar of
the subset of assembly language we handled. It should be noted that a path does not have any
procedure declaration but only the sequence of assembly instructions which may come from
multiple procedures/functions.

1 13648 : add r3,r3,#3
2 13652 : mov r2,#0
3 13656 : add r1,r3,r2
4 13660 : asr r1,r1,#1
5 13664 : ldr ip,[r0,r1 lsl #3]
6 13668 : cmps ip,#0
7 13672 : subeq r3,r2,#1
8 13676 : beq 0003578 13680
9 13680 : subgt r3,r1,#1

10 13684 : addle r2,r1,#1
11 13688 : cmps r2,r3
12 13692 : ble 0003558 13656
13 13656 : add r1,r3,r2
14 13660 : asr r1,r1,#1
15 13664 : ldr ip,[r0,r1 lsl #3]
16 13668 : cmps ip,#0
17 13672 : subeq r3,r2,#1
18 13676 : beq 0003578 13680
19 13680 : subgt r3,r1,#1
20 13684 : addle r2,r1,#1
21 13688 : cmps r2,r3

4.2 Path Based Analysis

Path based analysis consists of analyzing just one path at a time which is conceptually simple
and often simpler to implement. Now, it is important to know how this path is retrieved from
MC in our case. WCETs are reported in [34] along with .xml file and .q file for some of the
WCET benchmark programs from Mälardalen University [33]. This .xml file is the uppaal
model i.e., program plus hardware model for model checker UPPAAL, the query .q contains
the reachability property formulated in timed computation tree logic (TCTL), that is, ”Is it
possible to reach a final state with GBL−CLK ≥ K + 1?” where GBL−CLK is the global

22

CHAPTER 4. PATH FEASIBILITY ANALYSIS

clock which is reset at the beginning of each verification process and K is some integer value.
When this property is false and was true for K, in this case K is the computed WCET. We can
simply load this .xml file in MC UPPAAL and run this query over it. The MC returns a witness
trace corresponding to the computed WCET K and we can save the trace in a file. This is a
huge file with sequence of program instructions along with cache and pipeline modeling. The
file can be parsed to obtain solely the trace corresponding to the program. Then this trace can
be validated with our technique.

Our main contribution to the state of the art is to deal with path feasibility for low level lan-
guage like ARM assembly which is of great importance for embedded systems as they execute
low level code and to generate test data if the path is feasible.

4.3 Extracting Path Constraints

There is no algorithm that can tell us whether an arbitrary statement is reachable. Nor is
there an algorithm for deciding the feasibility of program paths [35, 36]. However, if some
restrictions are put on the programs, the problem becomes decidable. In the present work,
we assume that numeric expressions involves finite domain integers. Similar to some existing
works [36, 37, 38], we generate test data in two steps: firstly extract a set of constraints from
a given path, and then solve the constraints. Given a path, we can obtain a set of constraints
called path predicates or path constraints. The path is executable if and only if these constraints
are satisfiable. Basically, there are two different ways of extracting path constraints [36] :

1. Forward expansion: It starts from the first instruction, and builds symbolic expressions
as each statement in the path is interpreted.

2. Backward substitution: It starts from the final instruction and proceeds to the first, while
keeping a set of constraints on the input variables.

In this thesis, we focus on the forward expansion method. This method is chosen because of the
implementation points of view, equally backward substitution method can be chosen. It is not
obvious to derive path constraints from assembly code, as a constraint has to be derived from
one or more instructions. The path constraints are derived taking into account the semantics of
each assembly instruction. Further difficulties arise from the fact that assembly code involves
registers stack, memory etc. and we need to model them properly in order to reflect their
characteristics.

4.3.1 Modeling Register, Stack and Memory

The ARM microprocessor has 16 general-purpose registers: r0 − r15. Some aliases are used
for certain registers e.g., r13 is also referred to as SP , the stack pointer. r14 is also referred to
as LR, the link register. r15 is also referred to as PC, the program counter. The details about
the registers and their special purpose can be found in ARM Architecture Reference Manual
[39]. We consider that the variables corresponding to registers, stack and memory assume val-
ues from a finite domain (FD).

In sequel, we model each register as an array of integer variable which represents its evolu-
tion along the path. In Comet, we declare this in the following way:

23

CHAPTER 4. PATH FEASIBILITY ANALYSIS

1 int maxValue =2ˆ31-1;
2 int minValue =-2ˆ31;
3 range Values = minValue..maxValue;
4 int max_assignment= 10;
5 Solver<CP> cp();
6 var<CP>{int} r0[0..max_assignment](cp, Values);

The 3rd line in the above code defines finite domain for variables in which we solve our path
constraints. The 4th line declares the number of assignments that a certain register can take
i.e. evolution history of this register, which is 10 in this case. Then the last line declares
a vector r0 which take values from integer interval domain Values and its index ranges over
0..max−assignment. CP is the solver we use to solve the constraints.

Similarly, we model stack and memory as matrices of integer and in sequel, they are repre-
sented by S and D respectively. The first index represents stack or memory position and the
second represents the evolution of certain position (stack or memory) along the path. In Comet,
we declare this in the following way:

1 range fIndexS = 1024..2068; //declares the range of first index of S
2 range fIndexD = 6024..8068; //declares the range of first index of D
3 var<CP>{int} S[fIndexS, 0..max_assignment](cp, Values);
4 var<CP>{int} D[fIndexD, 0..max_assignment](cp, Values);

The 3rd line declares the matrix S which assume values from finite domain Values and its first
index ranges from 1024..2068 and the second index from 0..max−assignment. Similarly,
The 4th line declares the matrix D which assume values from finite domain Values and its first
index ranges from 6024..8068 and the second index from 0..max−assignment. We distin-
guish between the memory and the stack while modeling, as this is the case in the assembly
language also.

4.3.2 Maintaining Version for the Variables

A challenge of translating programs from procedural languages like assembly language to a
constraint system in a declarative language like Comet is how to represent procedural lan-
guage’s variables, which have state, with declarative language’s variables that are stateless.
For example, the statement add r1, r1,#1 is a valid assignment statement in Assembly that
changes the state of the variable r1. The semantics of this statement is that it takes the current
value of r1, adds 1 to it, and assigns the sum back to the same variable r1. In procedural lan-
guages like Assembly, no matter what a variable contains, it is possible to assign a new value
to it . But the same statement add r1, r1,#1 will never hold in Comet. This is because Comet
considers both occurrences of r1 to have the same value so it will never succeed in finding any
such value that can be added to one and still remains the same! One way to solve this prob-
lem in declarative language is to replace the statement add r1, r1,#1 with another statement
add r2, r1,#1, and using the variable r2 in the place of other subsequent occurrences of r1.

While implementing a parser, we have taken into account the concept of introducing versions
for variables. As the parser reads the instructions along the path, it generates constraints in
static single assignment (SSA) form. SSA is a property of an intermediate representation (IR),
which says that each variable is assigned exactly once. Existing variables in the original IR
are split into versions, new variables typically indicated by the original name with a subscript,

24

CHAPTER 4. PATH FEASIBILITY ANALYSIS

so that every definition gets its own version. The concept of maintaining versions for vari-
ables works like this: every time a parser reads a new variable, it instantiates the version of
the variable to its initial value 0. The version of a variable will be updated every time the
parser comes across an assignment statement where some expression is assigned to this vari-
able. After an assignment the current version of the variable will be the new version. The
name of the variable in the constraint system the parser generates will be the name that the
parser reads from the program qualified by the current value of its version at the end. Assume
the parser has just read variables r0, r1 and r2. At this moment, the current version of these
three variables is 0 by definition. The assignment statement add r2, r1, r0 will be represented
as r2[1] = r1[0] + r0[0] or the assignment statement add r1, r1,#1 that we considered above
will be represented as r1[1] = r1[0] + 1 in the resulting constraint system which clearly solves
the problem that has been discussed above. Since the assignment statements have updated the
current versions of r1 and r2 to 1, another assignment statement add r2, r1, r0 will be rep-
resented as r2[2] = r1[1] + r0[0] in the constraint system. Here r2 has been assigned twice
which causes its current version to be 2, r1 has been assigned only once which causes its cur-
rent version to be 1, and r0 was not assigned at all which causes its current version to remain
0. In a clear picture, this can be seen as following:

1 add r2, r1, r0
2 add r1, r1, 1
3 add r2, r1, r0

In the constraints system, this looks like:

1 r2[1] = r1[0]+ r0[0]
2 r1[1] = r1[0]+1
3 r2[2] = r1[1]+r0[0]

However, introducing versions for variables may cause some confusion due to inconsistent
update of variable versions which is caused by the presence of conditional statements along the
path. For example ARM assembly language consists of instructions like moveq, addeq whose
semantics is that if the result of last comparison is equal then perform mov or add operation
otherwise these operations will not be executed. Let us consider the following sequence of
instructions:

1 cmp r0, r1
2 addgt r0, r0, #1
3 addle r1, r1, #1 // if(r0>r1){r0=r0+1} else {r1=r1+1}
4 add r2, r0, r1 // r2 = r0+r1

Lets try to give some idea of transformation without any particular syntax of Comet. The
condition r0 > r1 will be represented as r0[0] > r1[0], the assignments r0 = r0 + 1 as
r0[1] = r0[0]+1 and r1 = r1+1 as r1[1] = r1[0]+1. But how to represent r2 = r0+r1? If
we simply put r2[1] = r0[1] + r1[1] after if..else statement, this is wrong since either r0[1] or
r1[1] will be invalid depending on the evaluation of the condition. In order to match changes of
versions in different branches of a conditional statement, the easiest way is to add a matching
assignment statement in the other branch. In our example, adding r1[1] = r1[0] in the if block
and r0[1] = r0[0] in the else block guarantees that no matter what the condition is, it is safe
to represent the assignment r2 = r0 + r1 as r2[1] = r0[1] + r1[1] in the constraints system
being generated. This is true because if the condition is true variable r0 will be assigned a new
value and its version will be updated like before but what is new here is the added assignment
r1[1] = r1[0] which will cause the update in the version of the variable r1 parallel to that

25

CHAPTER 4. PATH FEASIBILITY ANALYSIS

of r1[1] = r1[0] + 1 in the else block. Similarly, if the condition is false, the assignment
r0[1] = r0[0] in the else block will do the matching of the version of variable r0 with that of
the assignment r0[1] = r0[0] + 1 in the if block. It may be the case that the else block may not
be present. The following example will illustrate this case:

1 cmp r0, r1
2 addgt r0, r0, #1 // if(r0>r1){r0=r0+1}
3 add r2, r0, r1 // r2 = r0+r1

The safe way to transform this is as shown in the following figure.

1 if(r0[0]>r1[0]){
2 r0[1] = r0[0] + 1;
3 }else{
4 r0[1] = r0[0] ;
5 }
6 r2[1]=r0[1] + r1[0];

In doing so, the version of r0 is correctly updated irrespective of whether the if condition holds
or not, so at the end we always get the right assignment for r2.

4.3.3 Updating Arrays

Transforming assembly instruction to constraint system is straight forward if the instruction
does not involve array manipulation that is manifested by str instruction. In this case, the data
have to be written in the memory or in the stack. In order to model correctly the whole stack or
memory has to be copied and only the specific position will receive the new value. The reason
behind this is the representational difference between Assembly and Constraint system. Let’s
clarify this issue with some example. Let’s assume that the current versions of all variables
are 0 and the update−history for the array is also 0, which means that the array has not been
updated so far.

1 1. str r0, [sp,#12]
2 2. str r1, [r0]

The semantics of these instruction are: the first one stores the value of r0 in the stack S (recall
our assumption about the program path that the access to the stack is only through the special
register sp) at position sp+12 whereas the second one stores the value of r1 in the memory D
at position r0. At this point let’s recall the declaration of S and D.

1 var<CP>{int} S[fIndexS, 0..max_assignment](cp, Values);
2 var<CP>{int} D[fIndexD, 0..max_assignment](cp, Values);

It has to be guaranteed that the positions accessed or written for S and D must be within their
range. The transformation of above lines of code in the pseudo language looks like following:

1 1. S[(sp[0]+12),1] =r0[0];
2 forall(i in fIndexS: i != (sp[0]+12)){
3 S[i,1]=S[i, 0];
4 }
5 2. D[(r0[0],1] =r1[0];
6 forall(i in fIndexD: i != (r0[0])){
7 D[i,1]=D[i, 0];
8 }

26

CHAPTER 4. PATH FEASIBILITY ANALYSIS

The instructions are translated into sequence of constraints. The first line stores the value of
r0 at sp+ 12 of S and the following forall loop copies the old array to the new one as it was
except for the position which was updated. Same reasoning applies for the update of D. We
can see that constraint variables (sp[0], r0[0]) appear as the index of the array, in the literature,
this is known as element constraint. In the same way, we can index a matrix with a row and
column variable. It is worth to point out that writing in array is a costly operation as the whole
array has to be copied. We can write a bit smarter code which looks elegant and is shown
below.

1 1. forall(i in fIndexS){
2 S[i,1]=(i == (sp[0]+12))*r0[0] + (i != (sp[0]+12))*S[i, 0]
3 }
4

5 2. forall(i in fIndexD){
6 D[i,1] = (i == r0[0])*r1[0] + (i != r0[0])*D[i, 0]
7 }

There are only two possibilities, whether i is equal to sp + 12 or not. So we have boolean
expression and the flow is controlled by this. If the case is true, the array at this position is
updated with the recent value. If not, the positions of the array will receive the old values. This
is how the new copy of the array is generated.

4.3.4 Constraints Generation Algorithm

Now we are going to present an algorithm based on the forward expansion which generates the
set of constraints from a given path. Let PC be the set of path constraints corresponding to the
path Pa. As we know that a path is the sequence of assembly instructions, we denote by Pa[i]
the ith instruction of the sequence. Similarly, len denotes the length of Pa i.e. the total number
of instructions in the sequence. Then PC can be obtained in the following way:

Algorithm 1: extractPathConstraints(Pa): set of Constraints
len← Length(Pa)
i = 0;
PC = {};
while i < len do

if Pa[i] is assignment instruction then
PC = PC ∪ genAssignConsInSSAForm(Pa[i]) ;

else if Pa[i] is cmp or tst instruction then
saveOperands(cmpOp1, cmpOp2);

else if Pa[i] is conditional instruction then
PC = PC ∪ genCondConstraintsInSSAForm(Pa[i], cmpOp1, cmpOp2);

else
DO NOTHING

end if
i ++;

end while
return PC

The function saveOperands(.,.) saves the operands cmpOp1 and cmpOp2 of the comparison
instructions (cmp or tst) which can be used later. The function genAssignConsInSSAForm(.)
and genCondConstraintsInSSAForm(.,.,.) generates constraints in SSA form depending on the
semantics of the instruction in question. The later one considers the result of the last compar-

27

CHAPTER 4. PATH FEASIBILITY ANALYSIS

ison instructions while generating constraints. It should be noted that the concept of version
explained above is the same as SSA form. Let PS be the size of the path and SM be max(size
of stack, size of memory) . This algorithm runs in polynomial time with respect to PS and
the space needed is bounded by |PS| ∗ |SM |. This space bound is because of the fact that in
the worst case, for an instruction (e.g., str instruction) we need to generate SM number of
constraints which occupies |SM | space.

We assume that assignment instructions are all those that do not contain branching instruc-
tions like (b, bl, bx and b 〈cond〉) etc. where 〈cond〉 can be one of le, gt, eq, cs, ne, cc etc.
Similarly, we classify instructions as conditional which have the form b 〈cond〉. For more
details one can consult ARM Manual [39]. Let us consider the following path and run this
algorithm to produce the set of constraints.

Example

1 1. 7932: mov r2, #80
2 2. 7936: add r1, ip, r2
3 3. 7940: ldr r4, [sp,#12]
4 4. 7944: cmp r4, r0
5 5. 7948: bne #7920
6 6. 7920: mov r3, #1
7 7. 7924: mov r2, r3

Figure 4.1: An example of a path in assembly language

Let’s assume that the current versions of all the variables are 0. According to our assump-
tion, instructions at 1, 2, 3, 6, 7 correspond to assignment instructions, line 4 to comparison
instruction and line to 5 conditional instruction. Let’s analyze this example in details. When
the parser finds the first instruction (at line 1), it recognizes the type of instruction(assignment
instruction) and its semantics(i.e. copy the value of the second operand to the first). Then it
updates the version of register r2 to 1 and assigns 80 to it. After this the parser advances to
the second instruction and discovers another assignment instruction and its semantics (i.e. add
second operand with the third and put the result in the first). It updates the version of the first
operand r1 to its next version which is 1 and assigns the sum of second operand and third
operand to it. As the second and third operand’s value is not modified according to the seman-
tics of the add instruction, their current version is used, which is 0 for ip and 1 for r2. Then,
the next instruction that the parser finds is ldr, which may access the stack or the data memory.
According to our convention, the access to the stack is only through the register sp. The parser
finds this information and accesses the stack with the interpreted index that is sp[0] + 12 and
loads this value in r4, updating the version of r4 to 1. Now the parser finds the comparison in-
struction cmp, in this case the parser saves its operands to some local variables of the program.
So far we have seen that the constraints generation is straight forward for assignment instruc-
tion however it is not the case for conditional instruction because it has to consider the operands
of the previous comparison instruction plus the jumping address and the memory address of the
instruction that follows. The jumping address is the one that comes as its first operand. If this is
equal to the memory address of the instruction that follows it, then the jumping took place. As
in this example, the jumping address 7920 followed by bne for the instruction at line 5 is equal
to the memory address of the following instruction at line 6. In this case there is a jump. So the
constraint is generated taking into account the semantics of bne, i.e., the last saved operands

28

CHAPTER 4. PATH FEASIBILITY ANALYSIS

are different from each other, r4[1]! = r0[0] . Suppose the instruction that follows line 5 has a
memory address which is currentaddress+4, then there is no jump but sequential execution
of instructions (this is because each instructions are of 4 bytes in ARM Assembly). Then, in
this case we need to negate the constraint generated when there was a jump, !(r4[1]! = r0[0])
or equivalently (r4[1] == r0[0]). The same logic of assignment instruction can be applied
to the instruction at line 6 and 7. The set of constraints generated for the path in figure 4.1 is
shown below.

1 {
2 1. r2[1] = 80 ,
3 2. r1[1] = ip[0]+ r2[1] ,
4 3. r4[1] = S[sp[0]+12,0],
5 4. r4[1] != r0[0],
6 5. r3[1] = 1 ,
7 6. r2[2] = r3[1]
8 }

Figure 4.2: The system of constraints for the path in figure 4.1

4.4 Constraint Solving

After obtaining the path constraints, we have a CSP . Now solving this CSP would tell us
whether the path is feasible or not. CSP represents a very general kind of problem. The choice
of the constraints solver depends on the type of constraints that we generate. If the constraints
are linear we can use Linear solver, if they are boolean we can use boolean solver and non
linear solver in case they are non linear. In our case, the system of constraints can be non-linear
if the assembly instruction contains MUL (multiplication), or DIV (division) over integers. In
order to use the solver, we need to generate constraints in line with its syntax. The above path
constraints can be written in Comet in the following way:

1 cp.post(r2[1] = 80);
2 cp.post(r1[1] = ip[0]+ r2[1]);
3 cp.post(r4[1] = S[sp[0]+12,0]);
4 cp.post(r4[1] != r0[0]);
5 cp.post(r3[1] = 1);
6 cp.post(r2[2] = r3[1]);

It should be noted that the translation is straight forward. These constraints can be posted in
the solve {...} or subject to {...} with the method post on the solver cp.

4.5 Experiment and Results

We have studied many path examples from [34]. In most cases, the feasibility of paths can be
decided very quickly. Some experimental results are summarized in the table 4.1. In this table,
Benchmark is the program from where the path is extracted,Description gives information
about the program, PL: the length of the path, Feasibility: the result of feasibility analysis
i.e. feasible if it is feasible, infeasible otherwise, CGT andCST denotes the constraint gen-
eration time and constraint solving time respectively. For our experiment, we use a computer
which has Intel Core 2 Duo CPU with 2.20GHz speed and 2048 MB memory with Ubuntu
11.10 system, and measure the timings in milliseconds.

29

CHAPTER 4. PATH FEASIBILITY ANALYSIS

Table 4.1: Path Feasibility Results

SN Benchmark Description PL Feasibility CGT(ms) CST(ms)
1 fib-O0 Simple iterative Fibonacci

calculation, used to calculate
fib(300)

4591 feasible 548 13420

2 fib-O1 1853 feasible 418 32
3 fib-O2 803 feasible 201 20
4 bs-O0 Binary search for the array of

800 integer elements(array not
given)

344 infeasible 143 144

5 bs-O1 192 feasible 138 11304
6 bs-O2 145 feasible 134 8508
7 insertsort-O0 Insertion sort on a reversed array

of size 11
1708 infeasible 396 164

8 insertsort-O1 805 infeasible 248 92
9 insertsort-O2 729 feasible 164 2888

Note: In table 4.1, file-Ox indicates that the file was compiled using gcc -Ox. (optimization
option).

Comments on the result

1. Almost 33% of program paths are infeasible while 66% are feasible.
2. While computing WCET, the MC explores the paths in a program irrespective of their fea-
sibility and the longest path is chosen in terms of the time this path takes to be executed in
the abstract model of the hardware. When a program has several paths, the MC has to make
many choices (explore branches) and there are more changes of making wrong choices before
concluding a worst case path i.e. choosing an infeasible path. This is manifested by bs − Ox
and insertsort−Ox.
3. CGT are proportional to the path length, i.e. if the path is longer then it takes more time to
generate constraints. This is because our algorithm for constraint generation is polynomial in
the length of the path.
4. CST varies according to the program. The very high value for fib−O0 is justified because
the path consists of instructions which write multiple times to the stack. In this case, the whole
stack has to be updated and the number of constraints generated also increases significantly
which take more time to solve.

4.6 Partial Conclusion

In this chapter, we presented an algorithm for constraints generation for assembly code. We
applied it to generate constraints for paths returned by MC while computing WCET on some
benchmark programs from from Mälardalen University using method described in [3]. We also
presented some results of solving these constraints which indicates whether a given path is
valid or not. The results showed that approximately 33% of the paths are infeasible.

30

Chapter 5
DECOMPILATION OF ASSEMBLY
PROGRAM

”No computer has ever been designed that is ever aware of what it’s doing; but most of the
time, we aren’t either.”

Marvin Minsky

This chapter describes the process of decompilation of assembly program. A decompiler is a
program that reads a program written in a machine language (assembly language) – the source
language and translates it into an equivalent program in a high-level language – the target
language [40]. This is illustrated in figure 5.1.

source program

(assembly language)
Decompiler

target program

(high level language)

Figure 5.1: A decompiler

5.1 Source and Target Program

In our case, the source program is written in subset of ARM assembly language and the target
program is the subset of standard C.

5.1.1 Subset of ARM Assembly Language

We build a parser for the source program in an incremental manner i.e., as we verify more
benchmark programs more new instructions are added to the parser. Currently the parser can
handle the following instructions with their standard syntax: bx, stmdb, ldmia, mov, str, ldr,
tst,bl, b, sub, add, mvn, asr, lsl. Most of these instructions can be made conditional by attaching
some conditional mnemonic at their end. The set of conditional mnemonics we handle are : eq,
le,gt, ne, lt, ge, cs, hi, ls, cc. The conditional instructions are executed only when the condition
is true. Please refer to [39] for the syntax and semantics of such instructions. A part of the
formal grammar expressed in standard BNF notation is shown below. At the moment, we only

31

CHAPTER 5. DECOMPILATION OF ASSEMBLY PROGRAM

handle a single procedure (function) i.e., a program for us is a single procedure which can be
recursive but does not call another procedure.

1 <program> ::= <procedureDeclaration> :
2 <assemblyInstruction>
3 (<EOL> <assemblyInstruction>)* //<EOL> is the end of line
4

5 <procedureDeclaration> ::= <INTEGER_NUMBER>(<IDENTIFIER>)
//<IDENTIFIER> is a valid identifier and <<INTEGER_NUMBER>> is a
positive integer number

6

7 <assemblyInstruction> ::= <INTEGER_NUMBER> :
8 <oneOperandInstruction>
9 |

10 <twoOperandInstruction>
11 |
12 (
13 <addInstruction>
14 |
15 <subInstruction>
16 |
17 <ASRInstruction>
18)
19

20

21 <oneOperandInstruction> ::= bx lr
22

23 <twoOperandInstruction> ::= <lslInstruction> | <movInstruction>
24 | <stmdbInstruction> | <strInstruction>
25 | <ldmiaInstruction> | <ldrInstruction>
26 | <cmpInstruction>
27 | <branchRelatedInstructions>

28
...

29
...

Figure 5.2: Formal Grammar of Assembly Language handled

5.1.2 Subset of C Language

The language C is standard. So instead of presenting a formal grammar for it, we would like to
mention some restrictions we put in it. The language we generate have the following property.

1. The program is completely structured i.e. there are no conditional jumps, there are no
exit from loop bodies (there are no ’break’ or ’return’ statements in loop bodies)

2. It does not contain ’switch’ statements.

3. It has no library calls or external function calls.

4. Only Data Types are integers and single/multi dimensional array of Integers.

These restrictions allows us easy transformation from C to CPM, which we deal in the next
chapter.

32

CHAPTER 5. DECOMPILATION OF ASSEMBLY PROGRAM

5.2 Decompilation Phases

A decompiler, or reverse compiler, attempts to reverse the process of a compiler which trans-
lates a high-level language program into a binary or executable program. The structure of
decompilers is based on the structure of compilers; similar principles and techniques are used
to perform the analysis of programs. So the main phases of decompilation among others are:

• Syntax analysis: The syntax analysis, is the process of analyzing a text, made of a se-
quence of tokens (e.g., words), to determine its grammatical structure with respect to a
given (more or less) formal grammar. These words can be represented in a parse tree.

• Control flow analysis: A control flow graph of each subroutine in the source program is
also necessary for the decompiler to analyze the program. This representation is suited
for determining the high-level control structures used in the program. The control flow
analyzer phase attempts to structure the control flow graph of each subroutine of the
program into a generic set of high-level language constructs. This generic set must con-
tain control instructions available in most languages; such as looping and conditional
transfers of control.

• Code generation: The final phase of the decompiler is the generation of target high-level
language code, based on the control flow graph and assembly code. Variable names are
selected for all local stack, argument, and register-variable identifiers. Control structures
and intermediate instructions are translated into a high-level language statement.

Decompilation is well established technique and the detailed description of it can be found in
[40]. Decompilation is not the purpose of this thesis rather it is just an intermediate step to get
to the main purpose, so we will only cover few basic things here.
Next, we will present an example program taken from [34], which will be used to clarify
different steps we follow in this chapter. This is the Fibonacci program which calculates the
Fibonacci-number 300. we are not interested in the actual result of the computation, but only
in the time it takes to compute it.

33

CHAPTER 5. DECOMPILATION OF ASSEMBLY PROGRAM

1 /*
2 00003214 <fibO0>:
3 00: sub sp, sp, #32
4 04: str r0, [sp, #4]
5 08: mov r3, #1
6 0c: str r3, [sp, #16]
7 010: mov r3, #0
8 014: str r3, [sp, #20]
9 018: mov r3, #2

10 01c: str r3, [sp, #12]
11 020: b 050 <fib+0x50>
12 024: ldr r3, [sp, #16]
13 028: str r3, [sp, #24]
14 02c: ldr r2, [sp, #16]
15 030: ldr r3, [sp, #20]
16 034: add r3, r2, r3
17 038: str r3, [sp, #16]
18 03c: ldr r3, [sp, #24]
19 040: str r3, [sp, #20]
20 044: ldr r3, [sp, #12]
21 048: add r3, r3, #1
22 04c: str r3, [sp, #12]
23 050: ldr r2, [sp, #12]
24 054: ldr r3, [sp, #4]
25 058: cmp r2, r3
26 05c: ble 024 <fib+0x24>
27 060: ldr r3, [sp, #16]
28 064: str r3, [sp, #28]
29 068: ldr r3, [sp, #28]
30 06c: mov r0, r3
31 070: add sp, sp, #32
32 074: bx lr
33 */

Figure 5.3: An example of source program: fib-O0

5.2.1 Reconstruct CFG from Assembly Code

CFG construction takes two steps [41]. The first step partitions the code into a set of basic
blocks (BBs). The second step looks at the branches in the code and fills in the CFG’s edges
to represent the flow of control. Informally, the code in a BB has: one entry point, meaning no
code within it is the destination of a jump instruction anywhere in the program; one exit point,
meaning only the last instruction can cause the program to begin executing code in a different
BB. Under these circumstances, whenever the first instruction in a BB is executed, the rest of
the instructions are necessarily executed exactly once, in order. The code may be source code,
assembly code or some other sequence of instructions. More formally:

Definition 5.1 A sequence of instructions forms a BB if : the instruction in each position
dominates, or always executes before, all those in later positions, and no other instruction
executes between two instructions in the sequence.

This definition is more general than the intuitive one in some ways. For example, it allows
unconditional jumps to labels not targeted by other jumps. This definition embodies the prop-
erties that make BB easy to work with when constructing an algorithm. The blocks to which

34

CHAPTER 5. DECOMPILATION OF ASSEMBLY PROGRAM

control may transfer after reaching the end of a block are called that block’s successors, while
the blocks from which control may have come when entering a block are called that block’s
predecessors. The start of a BB may be reached from more than one location. BBs become the
nodes in the CFG.

5.2.1.1 Partitioning assembly instructions into basic blocks

The basic outline of the algorithm that we follow to partition assembly instructions into basic
blocks is as follows [42] :

The algorithm for generating basic blocks from a sequence of code is simple: the parser scans
over the code, marking block boundaries, which are instructions which may either begin or end
a block because they either transfer control or accept control from another point. Then, the
sequence is simply ”cut” at each of these points, and basic blocks remain.

Input : A sequence of assembly instructions.
Output: A list of basic blocks.

• Step 1. Identify the leaders in the code. Leaders are instructions which come under any
of the following 3 categories :

– The first instruction is a leader.

– The target of a conditional or an unconditional goto/jump instruction is a leader.

– The instruction that immediately follows a conditional or an unconditional jump
instruction is a leader.

• Step 2. Starting from a leader, the set of all following instructions until and not including
the next leader is the basic block corresponding to the starting leader. Thus every basic
block has a leader. Instructions that end a basic block (also called trailers) include:

– Unconditional and conditional branches, both direct and indirect

– Returns to a calling procedure

– The return instruction itself.

Instructions which begin a new basic block include

– Procedure and function entry points

– Targets of jumps or branches

– ”Fall-through” instructions following some conditional branches

Note that, because control can never pass through the end of a basic block, some block
boundaries may have to be modified after finding the basic blocks. In particular, fall-
through conditional branches must be changed to two-way branches, and function calls
throwing exceptions must have unconditional jumps added after them. Doing these may
require adding labels to the beginning of other blocks. Let’s run this algorithm for the
example presented in the figure 5.3. According to the step 1, the leaders are instructions
at line: 2 (first instruction), 11 and 26 (instruction that immediately follows a branching
instruction). According to the step 2, the trailers are instructions at line: 10 and 25
(branching instructions) and 31 (return instruction). The basic blocks supposed to be the
sequence of instructions from line 2-10, 11-25 and 26-31. However, instruction at line
22 is a start to a basic block for being a target of a branching instruction. Therefore the

35

CHAPTER 5. DECOMPILATION OF ASSEMBLY PROGRAM

pre-assumed basic block 11-25 is divided into two basic blocks 11-21 and 22-25. So
the final basic blocks are the sequence of instructions from line 2-10, 11-21, 22-25 and
26-31. This is shown clearly in the figure 5.4.

Figure 5.4: Partition of program into basic blocks

5.2.1.2 CFG from List of Basic Blocks

Once the assembly program is partitioned into basic blocks, we represent the flow of control
between them by a flow graph. The nodes of the flow graph are the basic blocks. There is an
edge from block B to block C if and only if it is possible for the first instruction in block C to
immediately follow the last instruction in block B. There are two ways that such an edge could
be justified:

• There is a conditional or unconditional jump from the end of B to the beginning of C.

• C immediately follows B in the original order of instructions, and B does not end in an
unconditional jump.

We say that B is a predecessor of C, and C is a successor of B. Often we add two nodes, called
the entry and exit, that do not correspond to executable instructions. There is an edge from the
entry to the first executable node of the flow graph, that is, to the basic block that comes from
the first instruction of the assembly code. There is an edge to the exit from any basic block that
contains an instruction that could be the last executed instruction of the program. If the final
instruction of the program is not an unconditional jump , then the block containing the final
instruction of the program is one predecessor of the exit, but so is any basic block that has a
jump to code that is not part of the program.

36

CHAPTER 5. DECOMPILATION OF ASSEMBLY PROGRAM

Figure 5.5: CFG of fib-O0

From the above BBs, we know that there is a direct jump from the last instruction of BB1
to the first instruction of BB3, so we create the corresponding edge from BB1 to the start of
BB3. Similarly, a conditional branching from the last instruction of BB3 to the beginning of
BB2 and BB4 would create two edges. And there is a edge going from end of BB2 to the
beginning of BB3 as it is sequentially followed. The complete CFG can be seen in the figure
5.5. Additionally, we can add two nodes, called entry and exit nodes. In such case, there are
edges from entry to BB1 and BB4 to exit node.

5.2.2 Loops

In oder to generate HLL, loops need to be identified in a CFG. We say that a set of nodes L in
a flow graph is a loop if [42]

• There is a node in L called the loop entry with the property that no other node in L has a
predecessor outside L. That is, every path from the entry of the entire flow graph to any
node in L goes through the loop entry.

• Every node in L has a nonempty path, completely within L, to the entry of L.

We implemented the algorithm of Johnson presented in [43] to detect loops. In the figure 5.5,
according to the above definition, BB2 and BB3 form a loop with BB2 as the loop entry.

5.2.3 HLL Code Generation

The code generator generates code for a predefined target high-level language. The following
examples make use of the C language as target language. In fact, we can call it a pseudo
language which has C like syntax. As in our case, we assume that all variables take integer
values in a finite domain, we abstract away from the burden of declaration of the types of the
variables also. It should be noted that we refer to it asC, subset ofC or pseudo language and all
of them mean the same. The modeling of registers and memory are not the same as explained in
the chapter 4. As we are transforming from procedural (assembly) to procedural (C) language,
the language itself (C) maintains the states of its variables. So registers are simple int variable
and memory is an array of int in C. So the transformation is rather simpler than in the previous
chapter. The basic idea here is to generate codes in C based on the semantics of the assembly
instruction. We do so by generating code for BBs and establishing flow control from CFG as
described in [40].

37

CHAPTER 5. DECOMPILATION OF ASSEMBLY PROGRAM

5.2.3.1 Generating Code for a Basic Block

Consider the control flow graph of figure 5.5 after control flow analyses. For each basic block,
the instructions in the basic block are mapped to an equivalent instruction of the target lan-
guage. Transfer of control instructions (i.e., bl, bx, b 〈cond〉 etc.) where 〈cond〉 is ble,bge, bgt
etc. are dependent on the structure of the graph (i.e. they belong to a loop or a conditional jump
or be equivalent to a goto), and hence, code is generated for them according to the control flow
information, described in the next subsection (subsection 5.2.3.2). This section illustrates with
an example on how to generate code for all other instructions of a basic block. It should be
noted that the code generation is similar to what has been explained in chapter 4 except for
maintaining the versions for the variables. The figure 5.6 shows the code generated for the
basic blocks of figure 5.4 except for the transfer of control instructions.

Figure 5.6: Code generation for BBs except for transfer of control instructions

5.2.3.2 Generating Code from Control Flow Graphs

The information collected during control flow analysis of the graph is used in code generation
to determine the order in which code should be generated for the graph. Consider the graph in
figure 5.5 with structuring information where BB1 is the root node.

The generation of code from a graph can be viewed as the problem of generating code for
the root node, recursing on the successor nodes that belong the structure rooted at the root node
(if any), and continue code generation with the follow node of the structure. Recall that the
follow node is the first node that is reached from a structure (i.e., the first node that is executed
once the structure is finished). Follow nodes for loops conditionals are calculated during the
control flow analysis phase. Other transfer of control nodes transfer control to the unique suc-
cessor node; hence the follow is the successor, and termination nodes (i.e., bx) are leaves in
the underlying depth-first search tree of the graph, and hence terminate the generation of code
along that path. Figure 5.7 shows the complete code generated corresponding to the assembly
code shown in the figure 5.3.

38

CHAPTER 5. DECOMPILATION OF ASSEMBLY PROGRAM

1 {
2 sp = sp - 32;
3 S[sp + 4] = r0;
4 r3 = 1;
5 S[sp + 16] = r3;
6 r3 = 0;
7 S[sp + 20] = r3;
8 r3 = 2;
9 S[sp + 12] = r3;

10

11 Loc0:
12 r2 = S[sp + 12];
13 r3 = S[sp + 4];
14 while(r2 <= r3)
15 {
16 r3 = S[sp + 16];
17 S[sp + 24] = r3;
18 r2 = S[sp + 16];
19 r3 = S[sp + 20];
20 r3 = r2 + r3;
21 S[sp + 16] = r3;
22 r3 = S[sp + 24];
23 S[sp + 20] = r3;
24 r3 = S[sp + 12];
25 r3 = r3 + 1;
26 S[sp + 12] = r3;
27

28 goto Loc0;
29 }
30 r3 = S[sp + 16];
31 S[sp + 28] = r3;
32 r3 = S[sp + 28];
33 r0 = r3;
34 sp = sp + 32;
35

36 }

Figure 5.7: Complete HLL code for fib-O0

When generating code for the loop body or the loop follow node, if the target node has already
been traversed by the code generator, it means that the node has already been reached along
another path, therefore, a goto label needs to be generated to transfer control to the target code.
So is the case for BB3 in the above example. The complete algorithm for code generation can
be found in chapter 7 of [40]. It can be seen that this is a naive code generation. The BBs can
be optimized before generating the code. Many techniques of BB optimizations are discussed
in [42]. But the techniques that we employed for the BB optimization are elimination of ex-
traneous loads and stores instructions and the algorithm for this is presented in [44], register’s
name elimination (only in some places). As we can see, the HLL code still has statements like
goto which need to be removed. For our prototype tool, we removed this manually. However
techniques for this are explained in [40]. So after possible optimization (automatic or manual)
we obtained final code as shown in the figure 5.8. This code will be used in the next phase to
be translated to CPM.

39

CHAPTER 5. DECOMPILATION OF ASSEMBLY PROGRAM

1 fib-O0(a)
2 {
3 s04 = a ;
4 s16 = 1;
5 s20 = 0;
6 s12 = 2;
7 while(s12 <= s04){
8 s24 = s16;
9 s16 = s16 + s20;

10 s20 = s24;
11 s12 = s12 + 1;
12 }
13 a = s16;
14 }

Figure 5.8: Complete HLL optimized code for fib-O0

At the end, we would like to copy this note from Cifuentes ([40]). It is hard to capture the
semantics of the program and that decompilation is economically impractical, but it could aid
in the transportation process.

This project made use of known technology to develop a decompiler of assembler programs.
No new concepts were introduced by this research, but it raised the point that de-compilation is
to be used as a tool to aid in the solution of a problem, but not as tool that will give all solutions
to the problem, given that a 100% correct decompiler cannot be built.

5.3 Mapping between Assembly Language and HLL

Decompilation is an intermediate step towards computing WCET as shown in the toolchain
7.1. As the time for BB can be determined precisely at assembly level, we take note of it once
the basic blocks are formed. Timing for each instruction can be found in ARM reference man-
ual 1. Regarding the timings, the manual states that All accesses are from cached regions of
memory. If an instruction causes an external access, either when prefetching instructions or
when accessing data, the instruction takes more cycles to complete execution. However in our
case, we always assume data cache misses i.e., the address to read data from or write data to are
never in cache and the penalty for this is 34 cycles. This number is obtained from some expert
in the field. But for instructions, we assume that there is no instruction cache miss. Without
cache analysis, the safe thing to assume is that there is always a cache miss while computing
WCET. As we do not pretend to compute precise WCET and instruction cache miss applies to
all instructions unlike data, we do not take this into consideration. This affects the approximate
WCET we compute by instruction−cache−miss−penalty ∗number−of−instructions cy-
cles. According to this, we have computed the following timings for the basic blocks of figure
5.4.

time−BB1 = 169;

time−BB2 = 351;

time−BB3 = 89;

1http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0091a/
BEIEDGJJ.html

40

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0091a/BEIEDGJJ.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0091a/BEIEDGJJ.html

CHAPTER 5. DECOMPILATION OF ASSEMBLY PROGRAM

time−BB4 = 132;

These timings are used in CPM to compute an approximate WCET. We also preserve a mapping
between the assembly code and the high level code as we need this while generating worst case
paths. This will be discussed further in the next chapters.

5.4 Partial Conclusion

This chapter presented some techniques and examples to generate high level language from
assembly code. Even though decompilation is economically impractical, in many cases its use
is justified (e.g., in this thesis). This is an intermediate step in computing WCET according to
our approach.

41

Chapter 6
MODELING HLL WITH
CONSTRAINTS

”If you optimize everything, you will always be unhappy.”
Donald Knuth

In this chapter, we discuss with examples about the rewriting rules to convert a program in C
into a constraint model. If we want to use constraints programming as a tool to optimize/mea-
sure certain behavior of source code(e.g., runtime) written in C like language(we refer it as
C or its subset), there must be a way of transforming the original program into a system of
constraints on which the actual optimization process can be done using constraint solvers.
The success of the optimization process depends not only on how efficiently the solver can
solve/optimize the constrains system but also on how accurately the original program can be
transformed into the system of constraints. The accuracy of the transformation is very crucial
because a significant difference between the original program and the corresponding system
of constraints will make any judgment that has been made about the original program based
on the system of constraints unacceptable. Therefore, the transformation should always keep
the semantics and logic of the original program for the given behavior, and the only significant
difference allowed is the representation used. In this study, the source program is written in
C and its corresponding constraint system uses Comet syntax. The responsibility of keeping
the semantics and logic of the source program in the resulting system of constraints falls on
the parser which is the component doing the task of transforming the C program into a con-
straint programming (Comet). The parser reads a program written in C, transforms each of the
C structures it gets on the way into Comet structures, and generates a system of constraints
equivalent to the original program it has read. This needs the parser to be capable of reading,
recognizing and parsing all types of C structures. However, since the focus of this work is
not to build a complete parser to convert C programs to their equivalent constraint systems,
this parser handles programs written is some subset of C with characteristics as mentioned in
section 5.1.2. The parser reads structures from the subset of C , and generates the correspond-
ing constraints in Comet. The issue of transforming C structures from the source program
into these constraints will be discussed in detail in section 6.1 where the equivalent constraints
generated by the parser for each and every structure in the C subsets are shown. This type of
conversion for program verification was also discussed by Tewodros in his Master Thesis [25].

43

CHAPTER 6. MODELING HLL WITH CONSTRAINTS

6.1 Transformation of HLL to CPM

Constraint solvers are used as optimization tools in our work, a parser is required that can
generate a semantically equivalent system of constraints for the input program. The system of
constraints should be modeled in such a way that the constraint solver can solve it as efficiently
as possible. The input is the program obtained in the previous chapter. In this section, we
discuss with examples about the rewriting rules to convert a program in C (program in short)
into a CPM. The parser generates a semantically equivalent system of constraints for the input
program. It works in two steps. In the first step, it parses HLL to obtain information about
the variables and their nesting so that we can declare them correctly in the constraint model.
It also collects information about the conditionals, loop’s condition etc. which leads to new
variables. In the second step, it writes to the output file, the declaration of library to import, the
specification of the solver we are going to use, constants that will be used in the transformation
along with the variables. Then it generates the corresponding constraints and writes to the file.
The resulting file is modified manually to supply the optimization function and the execution
times for the basic blocks. In some cases, the labeling function is also modified manually to
gain performance.

Now we look into the different constructs of the program and their transformation into the
constraint model. Basically, we deal with assignments, conditionals and loops. As an example
consider the program from figure 5.8. We will use this example as far as it covers different
aspects of transformation.

6.1.1 Rewriting Rules for different kinds of instructions

The structural transformation from HLL to CPM is easy as the control structure in both the
languages have similar constructs. The problem arises when we need to maintain different
states in CPM for a HLL variable and this makes it difficult and tricky and sometimes tedious.
The input program is divided into code blocks also known in the literature as basic blocks, each
block being a sequence of instructions which are executed once. In our example program, there
are four blocks as explained in chapter 5. And each such block has a context corresponding to
its nesting in conditional (if-then-else) and loop (for, while and do) statements.

6.1.1.1 Declaration

We have compiled the following working rules for the declaration of variables in CPM. The
study about variables declaration is done in the first phase of parsing.

1. Any variable v in the program should be mapped into an array variable v[< ctx >]
where
-< ctx > is a tuple of indices corresponding to the deepest block where an assignment
to that variable (i.e. v = Expr) occurs, where Expr is some arithmetic or boolean ex-
pression. If a variable is only read in the program we just declare it as a simple constraint
programming f.d. variable without states.

2. All loops have ranges 1..n for some n ∈ N representing the maximum number of itera-
tions of the loops, the variables within loop have corresponding ranges 0..n, to model the
state of the variables before the loop is executed. If a variable is assigned more than once
outside of the loop then we can assign different name to this variable and use accordingly
in the subsequent reading.

44

CHAPTER 6. MODELING HLL WITH CONSTRAINTS

3. In CPM, a boolean variable is assigned to each block controlled by if-else statement
whereas boolean array variable is assigned to each block in a loop. These boolean
variables control the execution of these blocks in a given context.

Following the above rules, the declaration section of CPM looks as follows for our example
program of figure 5.8. The explanation of each declaration is provided as comment and the
compliance rule is mentioned.

1 //importing finite domain integer library as we are solving our
problem in finite domain

2 import cotfd;
3 //defining the domain of vars
4

5 //maxInt is a constant which represent the maximum value of integer
that we consider

6 int maxInt = 2ˆ32 -1;
7 //represents our finite domain
8 range NonNeg = 0..maxInt;
9

10 //maximum number of times loop is iterated(n)
11 int maxIters = 300;
12

13 //counting iterations
14 range Iters = 1..maxIters; //range of loop blocks (rule #2)
15 range Iter0 = 0..maxIters; //range of var. in loop(range of states:

rule #2)
16

17 // Solver declaration, in our case is constraint programming solver
18 Solver<CP> cp();
19

20 //The following variable are associated with the solver and their
value is in the range NonNeg.

21

22 //variables s12, s16, s20 are assigned within the while loop and
outside of the loop,

23 //so their indices starts from 0 to maximum number of possible
iterations:maxIters (rule #2 and rule #1)

24 var<CP>{int} s12[Iter0](cp,NonNeg);
25 var<CP>{int} s16[Iter0](cp,NonNeg);
26 var<CP>{int} s20[Iter0](cp,NonNeg);
27

28 //whereas variable s24 is assigned only within the loop, so its
indices are in the range Iters

29 var<CP>{int} s24[Iters](cp,NonNeg);
30

31 //var a is assigned once and is assigned outside of the loop, but
it was read before it was assigned(this may mean that it was
assigned somewhere before)

32 // so we need to maintain two states for this variable. (rule #1)
33 var<CP>{int} a[1..2](cp,NonNeg);
34 //var s04 is assigned only once and it is assigned outside of the

loop, so we do not need to maintain state for this. (rule #1)
35 var<CP>{int} s04(cp,NonNeg);
36 //The following two variables are related to the loop
37 //nits collects the number of effective iterations(iterations

actually taken place according to CPM)

45

CHAPTER 6. MODELING HLL WITH CONSTRAINTS

38 var<CP>{int} nits(cp,NonNeg);
39 //wh1 is an array variable which encodes the condition of the while

statement and controls the block within while (rule #3)
40 var<CP>{bool} wh1[Iter0](cp);

6.1.1.2 Assignments

Assignments are the most common type of instructions that appear in programming and as-
signment changes the state of a variable in question.

1. Every variable assignment: v = Expr in a program is rewritten into a conditional con-
straint in CPM and is posted, that is,
cp.post(control =⇒ v[< ctx(v) >] == contextedExpression)
where
- control is the boolean(array) variable controlling the block where this assignment
occurs. If the assignment occurs outside of the control structure(loop or conditional),
control is replaced by TRUE.
- < ctx(v) > is the tuple of indices corresponding to the nesting of the block and
- contextedExpression is the expression of the right hand side, where the program vari-
ables are replaced by the corresponding array variables of CPM.

We consider the following instructions to show the use of above rules. For variable assignments
that occur inside the loop, we present examples later.

1 s04 = a ;

Its representation in CPM:

1 //rule #1
2 //here the contol is always true, so we do not need to put it
3 //a[1] is the contexted expression(adequate state of a), as s04 is

assigned only once, we do not need its context
4 cp.post(s04 == a[1]) ;

6.1.1.3 Loop statements

We need to be careful while transforming loop as it involves many details mentioned below.

1. For every loop (be it for, while or do) in the program, a forall loop is created in CPM:
forall(i in 1..n) ctxLoopBlock
where
- n is an upper bound on the number of loop iterations
- ctxLoopBlock is the conversion of loop block according to the conversion rules

2. For every such loop, a boolean array variable loop-name[< ctx >, loop − index] is
created to control the corresponding loop block
where
- loop-name is a new non-ambiguous name; and
-< ctx > is the tuple of indices corresponding to the nesting of the block where the loop
appears; and
-loop− index is an index which maps into different loop iterations, with range 0..n.

46

CHAPTER 6. MODELING HLL WITH CONSTRAINTS

3. The 0th instance of the boolean array variable should be posted to True. Taking into
account the context where it occurs as well as the possibility that the block where it
occurs is executed, the following two constraints are posted:
cp.post(control => (loop− name[< ctx >, 0] == True))
cp.post(!control => (loop− name[< ctx >, 0] == False))

4. The other instances of the boolean array variable depend on the type of the loop.

(a) In while loop, all iterations are dealt in a same way, since not even the first iteration
may execute, hence the following constraints are posted:
cp.post(loop − name[< ctx >, i − 1] => (loop − name[< ctx >, i] ==
iterCondition))
cp.post(!loop−name[< ctx >, i−1] => (loop−name[< ctx >, i] == False))
where
-iterCondition is the loop condition of the program expressed with adequate array
variables. These two points are semantically equivalent to
cp.post(loop−name[< ctx >, i] == (loop−name[< ctx >, i−1] && iterCondition)),
which is done to guarantee that whenever the ith iteration of the loop is false, all
the future iterations are false too.

(b) In do..while loop, the first iterations is always executed, and the constraint is mod-
ified depending on the iteration count i as shown below
if (i == 1)
cp.post(loop−name[< ctx >, i−1] => (loop−name[< ctx >, i] == True)))
if (i > 1)
cp.post(loop − name[< ctx >, i − 1] => (loop − name[< ctx >, i] ==
iterCondition)))
but always
cp.post(!loop−name[< ctx >, i−1] => (loop−name[< ctx >, i] == False))
to guarantee that whenever the ith iteration of the loop is false, all the future itera-
tions are false too.

(c) for loop can be dealt in many ways. One way is to convert it to while or do..while
loop and deal with it as explained before. The following lines of codes shows how
to convert for loop to while loop.

1 for(BEFORE−STATEMENT; FINISH−STATEMENT; ITERATE−STATEMENT)
2 {
3 LOOP−CODE
4 }

1 BEFORE−STATEMENT
2 while(FINISH−STATEMENT)
3 {
4 LOOP−CODE
5 ITERATE−STATEMENT
6 }

Now, let’s generate the constraints corresponding to while loop from our example 5.8.

47

CHAPTER 6. MODELING HLL WITH CONSTRAINTS

1 //As this while block(the whole while structure) is free that is
not under any control statement,we post the following constraint

2 //to indicate that its 0 instance is always true. rule #3,
3 cp.post((wh1[0] == true));
4

5 forall(i in Iters) //rule #1
6 {
7 //wh1 coressponds to rule #2, and it controls this while loop
8 //current state of while is previous state of while together in

conjunction with the condition itself, this is done to make
sure that

9 //whenever the last iteration is false, all the future iterations
are false

10 cp.post(wh1[i] == (wh1[i-1] && (s12[i-1] <= s04))); rule #4.a
11

12 //whenever the ith condition is true for the loop, all the
statements within while are posted for this iteration.

13 //The following code explains the assignment rule #1 as the
control here is wh1[i].

14 cp.post(wh1[i] =>
15 (
16 (s24[i] == s16[i-1]) &&
17 (s16[i] == s16[i-1] + s20[i-1]) &&
18 (s20[i] == s24[i]) &&
19 (s12[i] == s12[i-1] + 1)
20)
21);
22 }
23

24 //These four instructions can be posted seperately also as shown
below.

25 cp.post(wh1[i] => (s24[i] == s16[i-1]));
26 cp.post(wh1[i] => (s16[i] == s16[i-1] + s20[i-1]));
27 cp.post(wh1[i] => (s20[i] == s24[i]));
28 cp.post(wh1[i] => (s12[i] == s12[i-1] + 1));

6.1.1.4 Conditional Statement

In this, we consider if..then and if..then..else. They are different in HLL but in CPM both
of them take the same form in terms of the structure(not in terms of functionality).

1. For every if instruction in the program, a boolean array variable if − name[< ctx >]
is created to control the corresponding then and else blocks
where
- if − name is a new non-ambiguous name, and
- < ctx > is the tuple of indices corresponding to the nesting of the block where the if
statement appears.

2. The boolean if − name is subjected to two conditional constraints, namely:
cp.post(control =⇒ (if − name[< ctx >] == ctxCondition)) and
cp.post(!control => (if − name[< ctx >] == False));
where
- control is the boolean array variable of the block where the if statement occurs;

48

CHAPTER 6. MODELING HLL WITH CONSTRAINTS

- ctxCondition is the if condition of the program expressed with the adequate array
variables

(a) For every assignment appearing in the else block of the program a similar constraint
is posted in CPM but conditioned by the negation of the if-name array variable
cp.post(!if −name[< ctx >] => ctxAssignement] where ctxAssignement is
the assignment of the program expressed with the adequate array variables

(b) For every variable assigned either in the then or in the else block, a corresponding
assignment must be considered in the other block but the value of variable in the
new context will be its value in the last context. If else block does not exist, we
should consider the else block and a corresponding assignment must be considered
as in the previous case.

We consider the following example to explain this situation. Details of conditional statement
was explained in chapter 4.

1 {
2 s16 = x; //x is the input parameter
3 if(s16==11)
4 {
5 a = s16;
6 }else{
7 b = s16;
8 }
9 }

The transformation of this into CPM looks as follows:

1 //here ifcond is the boolean variable which controls this
conditional statement.

2 // This has to be declared first as it was explained in declaration
section. rule #1

3

4 //rule #2, as the if condtion is not under control of any external
condition, we can simply post single constraint below

5 cp.post(ifcond == (s16[1] == 11));
6 //if part
7 //variable a = 16 is executed when the if condition is true, so

whenever ifcond holds we need to post this constraint. But b
gets updated when this condition is false.

8 //so when ifcond holds we need to explicitely say that b does not
change that means it takes its previous value. Similar logic
applies to a in else block.

9 cp.post(ifcond => (a[1] == s16[1])); // rule #2.a
10 cp.post(ifcond => b[1] == b[0]); // rule #2.b
11

12 //else part
13 cp.post(!ifcond => (a[1] == a[0])); // rule #2.a
14 cp.post(!ifcond => b[1] == s16[1]); // rule #2.a

Suppose now that we are just given the if block without else block. But in CPM we need to
generate the else block also as shown below to make sure that the previous value for a is copied
when the condition is false.

49

CHAPTER 6. MODELING HLL WITH CONSTRAINTS

1

2 cp.post(ifcond == (s16[1] == 11));
3 //if part
4 cp.post(ifcond => (a[1] == s16[1])); // rule #2.a
5

6 //else part
7 cp.post(!ifcond => (a[1] == a[0])); // rule #2.a

6.1.1.5 Special case: Array assignment

Each array variable is indexed by a tuple of indices, an index for each loop condition in the
deeper nested block in which the assignment occurs. When multiple assignments are made
to the same variable within a block, an extra index should be used to distinguish the different
states of the variable during the block execution. Lets consider the following hypothetical code
in HLL with two nested loops, where D is an array and is assigned twice inside the loop:

1 r6 = 2;
2 while(r6 != 11) //lets represent by outer, i is the iteration

count
3 {
4 while(r4 != 0) //lets represent by inner, j is the iteration

count
5 {
6 D[3] = 1;
7 r2 = D[3];
8 D[7] = 3;
9 r4 = (0 == r2);

10 }
11 r6 = r6 + 1;
12 }

Let’s only consider the instructions where the array D is updated in the above example and leave
the rest of the instructions for the moment. Remember that updating array is a costly process
and was discussed in chapter 4. Let n and m be the maximum iteration count for outer while
loop(represented as outer) and for inner while loop(represented as inner) respectively. Also
consider that the indices of D ranges over IndexRangeD that is 0..p where p is some integer.
Assume that the array D is assigned only inside both of the loops. In the resulting constraint
system, the array variable D has 4 indices, i.e. one for the outer loop(i), one for inner loop(j),
one to account for multiple assignments made within the block(1 for the first assignment and 2
for the second assignment), one for the array index(k which ranges over IndexRangeD).

The following list shows the codes corresponding to the update of array D within the block.
The update occurs only when both the conditions controlling the block are true. According to
the first instruction, the current state of D at index 3 will receive 1 and all other will have the
value from the previous iteration. But if this is the first iteration then it takes the value of D
before starting the loop. In case of the second instruction, the previous value for D will be
from the first update.

50

CHAPTER 6. MODELING HLL WITH CONSTRAINTS

1 forall(i in 1..n) //where n is the max number of iteration for the
outer loop

2 {
3 forall(j in 1..m) //where m is the max number of iteration for the

inner loop
4 {
5 forall(k in IndexRangeD){// where IndexRangeD is the range in

which indices of D lie.
6

7 cp.post((outer[i] && inner[i,j]) => D[i,j,1,k] == (k==3)*1 +
(k!=3)*D[i-1,j-1,2,k]);

8 cp.post((outer[i] && inner[i,j]) => D[i,j,2,k] == (k==7)*3 +
(k!=7)*D[i,j,1,k]);

9

10 }
11 }
12 }

6.1.1.6 Code Block

A code block is a sequence of one or more statements where each statement can be a declara-
tion, an assignment, an if..then..else statement or a while loop. When the parser reads a generic
code block S1 ; S2 ; S3 , it transforms the code block into the sequence of statements C1 , C2 ,
C3 where Ci refers to the constraint corresponding to the statement Si of the original program.

6.1.1.7 Basic Block Timing, Optimization function and Search

So far we have discussed about transforming HLL into CPM. This step is also an intermediate
step towards the computation of approximate WCET. In order to produce the CPM needed for
computation of an approximate WCET, we need to augment this model with timings of the
BBs in the program and pose optimization problem in this augmented model. The complete
CPM of the example program fib-O0 presented in the figure 5.8 is shown in appendix A. It
should be noted below that maximizing clocks would maximize the number of loop iterations
also which is manifested by the presence of nits in the formulation of clock constraints(line
51). The search for loop’s truth values(wh1) are made in using block. The last block prints the
result of computation and thus the approximate WCET.

6.1.2 Labeling

The concept of labeling was previously introduced in 3.4.3. The order of labeling variables
makes difference during search in finite domain constraint solvers. The performance of these
solvers is subjected to labeling algorithm designed. Search in Comet can be deterministic,
which means that, at each node of the search tree, you have the possibility to control the sub-
trees under that node.

Consider the following pseudo code example of famous binary search program where low-
erIndex and upperIndex represent the lower and upper indices of array S and Element is the
item we are looking for.

51

CHAPTER 6. MODELING HLL WITH CONSTRAINTS

1 while (lowerIndex <= upperIndex){ //while condition: while
2 //compute midpoint
3

4 if (S[midPoint]==Element) { //if condition: if1
5 //Element found
6 }
7 else {
8 if (S[midPoint] > Element) { //if condition: if2
9 //search in the lower part of the array

10 }
11 if (S[midPoint] < Element) { //if condition: if3
12 //search in the upper part of the array
13 }
14 }
15 }

In order to know the the truth values of while and if conditions, we need to label them so that
the solver tries to instantiate their values. There are many different ways of doing this, some
of them guide the search process while some others just add extra burden to the solver. One of
the first attempt of labeling the above code is the following.

1 //label all iterations of while
2 label(while);
3 //label all iterations(iteration--because it is within while) of if1
4 label(if1);
5 //label all iterations(iteration--because it is within while) of if2
6 label(if2);
7 //label all iterations(iteration--because it is within while) of if3
8 label(if3);

If we label like this, the solver first instantiates while condition for each iterations, lets say with
1, upto maximum iterations. Then does the same with the rest of the if conditions. Labeling all
of them at one time is costly and makes backtracking difficult. This can be seen as horizontal
labeling. A second attempt is the following code.

1 forall(i in 0..30){
2 //label first iterations of while, if1, if2, if3 and successively
3 label(while[i]);
4 label(if1[i]);
5 label(if2[i]);
6 label(if3[i]);
7 }

In the above case, the solver instantiates the first iterations of while condition and its nesting.
This can be seen as vertical labeling. This solution is better than the first one because labeling
is done step by step for each iteration, making search more efficient. However looking at the
semantics of the above code fragment, we know that if while condition is false, then the rest of
the code will not be executed. Similarly, if2 or if3 will be executed only if if1 is false. These
two attempts do not take this into consideration. This is an important thing to consider to make
search efficient. A third attempt takes this into consideration and produce the following code
for labeling. This avoids unnecessary labeling and performance was increased by several times
in our experiment. We have opted this method in our tool implementation.

52

CHAPTER 6. MODELING HLL WITH CONSTRAINTS

1 forall(i in 0..30)
2 //label while condition in the first step
3 try<cp> {
4 cp.post(while[i] == 1);
5 //label if conditions(if1, if2, if3) only if while is true
6 try<cp> {
7 cp.post(if1[i] == 1);
8 }
9 |

10 //label if2 and if3 only if while is true and if1 is false
11 {
12 cp.post(if1[i] == 0);
13 try<cp> {
14 cp.post(if2[i] == 1);
15 }
16 |
17 {
18 cp.post(if2[i] == 0);
19 }
20 try<cp> {
21 cp.post(if3[i] == 1);
22 }
23 |
24 {
25 cp.post(if3[i] == 0);
26 }
27 }
28 }
29 |
30 {
31 cp.post(while[i] == 0);
32 }

If the above fragment of code (6.1.2) is used for optimization(maximization or minimization)
purpose, we can be bit smarter while choosing the right value from the finite domain that will
help the solver to attain its maximum value faster. Let’s assume that the maximum value of
the objective function is in function of number of iterations of while condition i.e., executing
while more times will increase the value of the objective function. So as to reach the maximum
value faster we can try to post while with true first and then with false. If it is a minimization
problem then post while with false first and then with true. It is to be noted that in Comet the
order of labeling is also important. The result is different if if1 is labeled before while and while
is labeled before if1. This shows care should be taken while labeling variables.

Based on the above observation we can define some transformation rules for labeling the con-
trol structures(e.g., if, while) of a program. Given a program we can obtain all the control
structures out of it. We can define a grammar in such a way that a control is either if or while or
their sequence or their arbitrary nesting. Let control < ctx > be the context of control w.r.t.
its nesting in loop where < ctx > represents the tuple of indices corresponding to its nesting.
In the absence, [< ctx >] can be eliminated.

53

CHAPTER 6. MODELING HLL WITH CONSTRAINTS

1 control <-- if
2 <-- while
3 <-- control; control //a control comes sequentially after

other
4 <-- control1(control2) //control2 is nested inside control1,

where control1, control2 are controls
5 <-- if control1 then control2

6.1.3 Rules for Generating Labeling Function

In this subsection, we present labeling rules for different constructs of HLL like if, while etc.
case 1: if

1 try<cp> {
2 cp.post(if[<ctx>] == 1);
3 }
4 |
5 {
6 cp.post(if[<ctx>] == 0);
7 }

case 2: while

1 forall(i in 0..maxIters) //where maxIters is the maximum number of
possible iterations for while

2 try<cp> {
3 cp.post(while[i,<ctx>] == 1);
4 }
5 |
6 {
7 cp.post(while[i,<ctx>] == 0);
8 }

case 3: control1; control2

1 //control1
2 try<cp> {
3 cp.post(control1[<ctx>] == 1);
4 }
5 |
6 {
7 cp.post(control1[<ctx>] == 0);
8 }
9 //control2

10 try<cp> {
11 cp.post(control2[<ctx>] == 1);
12 }
13 |
14 {
15 cp.post(control2[<ctx>] == 0);
16 }

54

CHAPTER 6. MODELING HLL WITH CONSTRAINTS

case 4: control1(control2)

1 //control1
2 try<cp> {
3 cp.post(control1[<ctx>] == 1);
4 //control2
5 try<cp> {
6 cp.post(control2[<ctx>] == 1);
7 }
8 |
9 {

10 cp.post(control2[<ctx>] == 0);
11 }
12 }
13 |
14 {
15 cp.post(control2[<ctx>] == 0);
16 }

case 5: if control1 then control2
In order to simplify the reading of the rule, let’s define a function called label(control) in the
following way.

1 label(control[<ctx>]) == try<cp> {
2 cp.post(control[<ctx>] == 1);
3 }
4 |
5 {
6 cp.post(control[<ctx>] == 0);
7 }

Now the transformation for if..then..else.. looks like following:

1 //control1
2 try<cp> {
3 cp.post(if[<ctx>] == 1);
4 //control1
5 label(control1[<ctx>]);
6 }
7 }
8 |
9 {

10 cp.post(if[<ctx>] == 0);
11 //control2
12 label(control2[<ctx>]);
13 }

6.2 Partial Conclusion

In this chapter, we presented some rewriting rules to transform HLL(C like) to CPM. In addi-
tion to this, we explained with examples the transformation of different constructs(e.g., assign-
ments, conditionals, loops etc.) of HLL to CPM. This transformation is one of the fundamental

55

CHAPTER 6. MODELING HLL WITH CONSTRAINTS

step in computing WCET according to our approach. We also discussed about efficient way of
labeling CP variables.

56

Chapter 7
WCET COMPUTATION

”The computing field is always in need of new cliches.”
Alan Perlis

In this chapter, we study an efficient way, based on IPET (described in 2.3.1), of determining
the approximate worst case running time of a program in ARM architecture. Based on this
approximate WCET, we also suggest some feasible paths which can lead to the worst case.
The more precise WCET can be calculated using the method proposed by Cassez et al. ([3]) in
these paths, taking into account the hardware characteristics(caches and pipelines) which bring
tricky dependencies to WCET. Our approach complements the method proposed in [3] in the
following ways:

1. Avoids the need for generating substantial exponential number of paths, and makes this
method highly scalable.

2. As the paths we propose are feasible, the obtained WCET is tight which is not the case
in [3].

3. Provides the over approximation of computed WCET so that the buyers of the tools get
confidence in the product they are buying.

In order to achieve this, the road map we follow is to translate the assembly code into HLL and
model HLL with CP. Using IPET based approach on CPM, we can compute the approximate
WCET. Taking advantage of the CP solver like Comet, we can obtain the paths which gives
WCET greater or equal to certain threshold value and supply these paths to the model checker.
Finally, we apply our technique to WCET benchmark programs from Mälardalen University 1

slightly modified by Cassez et al. and present some results.

7.1 OVERVIEW OF THE METHOD AND TOOL CHAIN

As mentioned in the chapter 2, Computing the WCET of a program is usually a very hard
problem. Our approach to deal with this problem consists of three steps:

1. We first convert assembly program to HLL. In doing so, we maintain the mapping be-
tween two different levels of code and the time(without considering the effects of the
special hardware characteristics) for the basic blocks. This is described in chapter 5.

1Mälardalen WCET Research Group. WCET Project – Benchmarks. http://www.mrtc.mdh.se/
projects/wcet/benchmarks.html.

57

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

CHAPTER 7. WCET COMPUTATION

2. We model HLL with constraints to obtain the CPM of a program. This is described in
chapter in 6.

3. We compute approximate WCET. For this we Optimize(maximize) a characteristic func-
tion(execution time of the program) on CPM and the maximum value corresponds to an
approximate WCET.

Next, we discuss about this last step. Then, we provide some probable worst case paths which
can lead to WCET. The overview of our tool chain is presented in the figure 7.1.

assembly program

Decompiler
HLL program

Constraints Rewriter
CPM Aprox.

WCET

Threshold

worst case paths

CP Solver

Figure 7.1: Tool Chain Overview(Aprox. WCET Tool)

In this, the rectangular box corresponds to a module and the arrow shows the the connections
between different modules. The text on top of the arrow shows the input for the next module.
The input to our decompiler is the program in assembly language, and it outputs the program in
HLL which will be fed into the constraints rewriter module. This module produces CPM of the
HLL program which becomes input to the next module called constraints solver. We augment
CPM with the following CSOP and supply it to the CP solver(Comet).

max
N∑
i=0

c(i) ∗ t(i) (7.1)

where
- N is the number of BBs
- c(i) is the execution count of BBi

- t(i) is the runtime of BBi

The solver solves this CPM and maximizes the expression 7.1. The maximum value corre-
sponds to the approximate WCET. This is how the approximate WCET of a given assembly
program is computed.

Based on this approximate WCET, we can supply a threshold(lesser or equal to WCET) and
taking advantage of the constraints solver we can generate paths which can give WCET(maximum
value of the characteristic function) greater or equal to the given threshold. This is done using
solveall method of Comet. The code corresponding to this can be presented as follows(all other
code remains same as in A.1 except for printing the paths which is done within the search). For
this particular example, knowing the truth value of while condition is enough to derive the
paths. So we only print this.

58

CHAPTER 7. WCET COMPUTATION

1 solveall<cp>{
2 //nits is the number of times the loop is iterated effectively,
3 //as we infer loop bounds automatically, we can calculate this
4 cp.post(nits == sum(i in Iters)(wh1[i]));
5 //timeX is the rough time for the basic block X.
6 cp.post(clocks == timeBB1
7 //for the first time BB3 is always executing
8 + timeBB3
9 +timeBB4

10 + nits * (timeBB2+timeBB3)
11);
12 //get all paths where clocks>=max_clock,
13 //where max_clock is the threshold value we supply
14 cp.post(clocks>=max_clock);
15 }
16

17
...

18

19 using {
20 label(wh1);
21 cout<<wh1<<endl;
22 }

Figure 7.2: Code to obtain worst case paths

From these truth values, a complete path can be derived as all other blocks will be executed
once except the one within the loop. For example, if a loop is executed 10 times in the worst
case, the block within the loop is repeated 10 times in a path in an appropriate place where loop
occurs in a sequential program. However, the generated paths are high level paths as they were
obtained from high level program. Since the transformation from HLL to CPM maintains all
the logical structure of HLL(if, while etc.), and we have preserved a mapping between HLL and
assembly program, we can translate these paths into low level paths. In our implementation,
we have a module which transforms each high level paths to low level paths. These new set of
paths will be inputs to Cassez et al. tool(see figure 7.3 for tool chain integration). The precise
WCETs can be calculated using his method on these paths. The maximum of all these values
corresponds to the WCET.

assembly program
Aprox. WCET tool

worst case paths
Cassez et al. tool

precise WCET

Figure 7.3: Tool Integration with Cassez et. al WCET Tool

The advantages of our approach are:

• The over approximation(OA) is bounded from above by the following expression

OA ≤ (C − Pc)/Pc ∗ 100 (7.2)

where
- C: WCET computed by Cassez et al. tool (path may be infeasible)

59

CHAPTER 7. WCET COMPUTATION

- Pc: WCET computed by Cassez et al. tool on the worst path according to CPM (feasible
path).

• We can produce the values of input data which produce WCET, thanks to the state of the
art constraint solver.

• Li and Malik [5] pointed out that functionality constraints(i.e. what program is com-
puting) of a program are hard to automatize but in our case we do so by transforming
HLL to CPM and cut off all kinds of infeasible paths including infeasibilities caused
by functionality of a program. This is something which has not been done in WCET
community.

We applied our technique to the WCET benchmark programs(slightly modified by Cassez et
al.) and the results are summarized in section 7.2. These modifications are documented in [3].

7.2 Experimental Results

Table 7.1 shows approximate WCET results obtained using our tool chain. We took three
benchmark programs from WCET benchmark programs from Mälardalen University for our
experiment. They are:

• fib-O0 = Simple iterative Fibonacci calculation, used to calculate fib(300)

• bs-O2 = Binary search for the array of 800 integer(only Array is given not the element)

• insertsort-O2 = Insertion sort on a reversed array of size 11

We have considered programs with different characteristics for our experiment:

1. programs compiled with different optimizations options(e.g., -O2, -O0) because they
stress different parts of the hardware and the WCETs differ.

2. different sets of programs: single path program(fib-O0) and multiple paths program(bs-
O2 and insertsort-O2) to see how different programs affect the computation time.

The second column in the table 7.1 shows a benchmark program, the third column gives de-
scription of a program, the fourth column represents the computed approximate WCET(measured
in number of processor cycles) and the last column represent the time to compute the WCET.
We use a computer which has Intel Core 2 Duo CPU with 2.20GHz speed and 2048 MB mem-
ory with Ubuntu 11.10 system, and measure the timings in milliseconds. For approximate
WCET computation, we assume the following:
- In-order exec: The instructions are executed in order.
- No instruction cache misses: This is not important to us as we are not computing the real
WCET but approximate one.
- Always data cache misses: The address to read data from or write data to are never in cache
and the penalty for this is 34 cycles. In both of these cases, there will be cache update.

60

CHAPTER 7. WCET COMPUTATION

Table 7.1: Approximate WCET Computation

SN Benchmark Description A. WCET A. CT(ms)
1 fib-O0 Simple iterative Fibonacci

calculation, used to calculate
fib(300)

131950 36

2 bs-O2 Binary search for the array
of 800 integer elements(array
given)

842 648

3 insertsort-O2 Insertion sort on a reversed array
of size 11

9504 208

7.2.1 Comments on the Results

1. The result shows that the WCET computation times are higher for multiple paths program
as the solver needs to search and backtrack many times in order to maximize the characteristic
function. In case of the single path program, there is no search, so the solver produces the
result much faster.

2. Without using heuristic the computation time for insertsort-O2 was 6534 ms. To obtain
better result we modify the labeling function(search function) in such a way that the search for
the elements of the array starts from upper bound of their domains towards the lower bound.
This was done with the knowledge of the program in consideration. If the elements in the array
are in reversed order, sorting them takes longer time. With this heuristic during search we ob-
tain CT as low as 208 ms. Using the labeling strategies presented in 6.1.2, we obtained WCET
computation time for bs-O2 as low as 648 which was 6736 with naive labeling.

3. The highest approximate WCET for fib-O0 is justified by having instructions in assem-
bly language of fib-O0 which access and update stack multiple times. As we consider that
there are always data cache misses and the penalty for each such miss is 34 cycles, the WCET
is higher. If we do not consider data cache miss we obtain results as low as 15348. This shows
how important is cache analysis for WCET computation.

4. The lowest approximate WCET for bs-O2 is because of the presence of few instructions
which access the main memory and low penalty for them.

7.3 Comparison between two WCET computation approaches

Table 7.2 compares our result with the result from Cassez et al. The second column represents
the benchmark programs, the third column A. WCET represent the approximate WCET com-
puted with our method, and A. CT(ms) in the fourth is the time to compute this approximate
WCET. Similarly, P. WCET is the precise WCET (i.e. WCET computed taking into considera-
tion the hardware characteristics) computed using Cassez et al.’s method and P. CT is the time
to compute this. The times are measured in milliseconds.

61

CHAPTER 7. WCET COMPUTATION

Table 7.2: Comparison between two approaches of WCET computation

SN Benchmark A. WCET A. CT(ms) P. WCET P. CT(ms)
1 fib-O0 131950 36 8098 2320
2 bs-O2 842 6736 628 15800
3 insertsort-O2 9504 208 1326 11680

7.3.1 Comments on the Comparison

1. The results are obtained much faster in our case than Cassez’s case, the highest being 64
times faster. This is manifested by constraint solvers implementing the path pruning techniques
unlike model checkers. This shows that constraint solvers are normally better suited for path
analysis than model checkers. But exception applies to some programs(bs-O2) in which case
the time gain is not so significant in comparison to other cases of the experiment because there
are many equally weighed(i.e. paths which produce equal approximate WCET) feasible and
probable worst case paths(e.g., when the searched element is not present in the array). So prun-
ing paths is difficult.

2. Approximate WCETs in our case are way larger than the precise WCETs. This is because
in our model we have not taken into consideration the caches and pipelines which have huge
effects on WCETs. In case of bs-O2 the results are almost the same as this program accesses
memory very few times and the effects of data cache misses are not so significant. The small
difference is due to the pipeline effects.

3. The most important is that approximate WCETs preserve the ordering with respect to precise
WCETs. We obtained approximate WCETs higher than the precise WCETs as expected.

7.4 Paths Study

We discussed briefly in section 7.1 on how we can provide most probable worst case paths for
the tool chain integration. In this section, we focus our study around the number of these paths
necessary to guarantee that these include the worst case path. In fact, we generate sufficient
number of feasible paths if there are. In order to study the bound on the number of these paths to
generate, we implemented a method which compares paths(compare the sequence of memory
locations of the two paths) generated by constraint solver with the witness path returned by MC.
The comparison makes sense only if the path returned by MC is feasible. If the comparison
succeeds, then these paths are the same. If not, we count the number of failure until we find
the same path. This limiting number will be the number of paths that need to be generated by
the constraint solver. In principle, this number could be substantially large in comparison to
the total number of feasible paths. If we consider the example of bs-O2, there are several paths
which correspond to not finding the element in the array and have the same cost according to
CPM and we can put them in one class. We may have several such classes depending upon the
cost of the paths. So we can supply one representative of each class with high cost to the MC.

62

CHAPTER 7. WCET COMPUTATION

Figure 7.4: CFG bs-O2

We compared paths generated by the constraint solver to the path from MC for the above three
programs for which we computed approximate WCET. For fib-O0 and insertsort-O2 the first
path from constraint solver coincided with the path from MC. So in these cases, generating
single path is sufficient which is manifested by having a single path with the highest cost and
we call this a clear winner. For fib-O0, only one path is feasible for a given number so this is
the obvious answer. And for insertsort-O2 the worst case should occur when the array is com-
pletely reversed. In this sense of analysis, both solvers(CS and MC) produce the same path.
However this is not the case in bs-O2. There is no unique situation under which the worst case
scenario can occur but multiples(e.g., there are multiple paths which can lead to not finding an
element in the array). Figure 7.4 is the CFG of bs-O2. The edge BB2 to BB4 is taken when the
element is found. Simply looking at the graph the worst case should occur when we do not visit
BB4 directly from BB2 but through BB3 because in this case there is extra cost of visiting BB3.
The CPM reports this as the worst case, however the model checker returns as the worst case
when the element is found in the last iteration of the search loop(i.e., BB4 visited directly from
BB2). We can reproduce the case of MC when we put negative number as the cost of visiting
BB3 in the code example A.3. According to CPM, this path falls in the third class, having the
third highest cost. CPM reports second class with paths corresponding to not finding the ele-
ment in less than log2N step where log2N is the worst number of steps we have to try during
the search. The difference is accounted because of the caches and pipelines considerations in
one and not in the other method. This shows that it is not always the case that the worst path
according to CPM is the real worst path. Now the case arises when the witness path from MC
is infeasible(this can be verified using the methodology described in chapter 4). It does not
make sense the comparison as we never generate infeasible paths. So in conclusion, if there is
no clear winner according to CPM we supply representatives of few classes(if there are) with
high costs as the most promising paths. In case of having a clear winner, we can supply just a
single path. This conclusion was drawn from our empirical study in few benchmark programs
and more reliable guarantee can be obtained by studying more benchmark programs.

7.5 Partial Conclusion

In this chapter, we described a procedure of computing approximate WCET(without consider-
ing the hardware characteristics) of a program. We applied our technique to compute WCET

63

CHAPTER 7. WCET COMPUTATION

of some standard benchmark programs and compared our results with the results from Cassez
et al. [3]. The results showed that our timings to compute WCET are shorter than his timings.
Based on this approximate WCET, we generated some most probable feasible worst case paths
which will be used to compute precise WCET using Cassez et al.’s [3] technique. We also pro-
vided a way to compute an upper bound for over approximation on computing WCET using
his method.

64

Chapter 8
CONCLUSIONS AND FUTURE
WORKS

”One finds limits by pushing them.”
Herbert Simon

In this thesis, we developed a technique to validate program paths written in low level lan-
guage(ARM Assembly) and generate input data if the path is valid. We implemented a path
analysis tool and used it to validate paths1 produced as the result of computation of WCET
using model checking technique [3]. The results show that almost 33% of the paths are infea-
sible. This means that the computed WCET may not be tight, and this leads further to path
analysis.

The above mentioned fact gave us motivation to do path analysis. So we provided a comprehen-
sive methodology to program path analysis in the context of WCET, which deals with structural
as well as functionality constraints of a program automatically and also deduces loop bounds.
We developed a technique to compute approximate WCET(without taking into account the
hardware characteristics) using IPET. We also implemented a prototype tool chain and used
it to compute approximate WCET on some standard benchmark programs from Mälardalen
University. We compared our results with the results from Cassez et al. [3]. The comparison
revealed that our method was faster by large magnitude than Cassez et al.’s. Based on this
approximate WCET, we propose some most probable worst case paths which can give WCET.
We supply these paths to Model checking tool proposed in [3] to compute precise WCET on
these paths. Moreover, we provided the theoretical upper bound of over approximation while
computing WCET using Cassez et al. method. For the programs we have studied our technique
scales well, but overall scalability can not be guaranteed.

For future works, we want to extend the set of supported instructions so that we can study
more benchmark programs and any conclusion made based on large set of programs becomes
stronger and more reliable. In addition to this, we would like to extend our technique to han-
dle multiple procedures/functions instead of a single one. We would also like to look into the
seamless integration of CS and MC so that we can combine the benefits of both to take WCET
computation to a new height. Further, we would like to study the global scalability of our
technique(WCET computation) by studying more of standard benchmark programs as well as
programs from other benchmarks. Taking a comprehensive set of benchmark programs, we can

1http://www.irccyn.fr/franck/wcet/

65

http://www.irccyn.fr/franck/wcet/

CHAPTER 8. CONCLUSIONS AND FUTURE WORKS

guarantee that the paths supplied by CS contains the real worst case path with certain probabil-
ity. This will be really useful information and we would like to focus in this direction also. We
also would like to use linear solver in the future when the constraints are linear because they
are known to be faster than CP solver.

During this research, we realized that using CS for path validation is not so beneficial. If a
path is infeasible, we have no way to know the cause of in-feasibility. It means that the solver
does not provide any hints about inconsistent core(the root cause of in-feasibility). Many state
of the art tools like SAT and Satisfiability Modulo Theories(SMT) solvers have this facility.
One recommendation for path validation is to use SMT solver. If the inconsistent core could
be known, we may possibly refine the constraint model using this information. Some model
checkers gives this facility however we are not aware of any constraints solver doing this. To
the best of my knowledge, CS for the next generations should fill up these gaps.

66

Bibliography

[1] Peter P. Puschner and Alan Burns. Guest editorial: A review of worst-case execution-time
analysis. Real-Time Systems, 18(2/3):115–128, 2000.

[2] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mi-
tra, Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per Stenström.
The worst-case execution-time problem - overview of methods and survey of tools. ACM
Trans. Embedded Comput. Syst., 7(3), 2008.

[3] Jean-Luc Béchennec and Franck Cassez. Computation of wcet using program slicing and
real-time model-checking. CoRR, abs/1105.1633, 2011.

[4] Benedikt Huber and Martin Schoeberl. Comparison of implicit path enumeration and
model checking based wcet analysis. In Niklas Holsti, editor, WCET, volume 10 of OA-
SICS. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009.

[5] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded software using
implicit path enumeration. IEEE Trans. on CAD of Integrated Circuits and Systems,
16(12):1477–1487, 1997.

[6] Andreas Engelbredt Dalsgaard, Mads Chr. Olesen, Martin Toft, René Rydhof Hansen,
and Kim Guldstrand Larsen. Metamoc: Modular execution time analysis using model
checking. In Björn Lisper, editor, WCET, volume 15 of OASICS, pages 113–123. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2010.

[7] Franck Cassez. Timed games for computing wcet for pipelined processors with caches.
In 11th Int. Conf. on Application of Concurrency to System Design (ACSD’2011), pages
195–204. IEEE Computer Society, June 2011.

[8] Bernhard Rieder, Peter P. Puschner, Ingomar Wenzel, and Ingomar Wenzel. Using model
checking to derive loop bounds of general loops within ansi-c applications for measure-
ment based wcet analysis. In WISES, pages 1–7, 2008.

[9] Xianfeng Li, Yun Liang, Tulika Mitra, Abhik Roychoudhury, and Abhik Roychoudhury.
Chronos: A timing analyzer for embedded software. 2007.

[10] Jakob Engblom, Andreas Ermedahl, Mikael Sjödin, Jan Gustafsson, and Hans Hansson.
Worst-case execution-time analysis for embedded real-time systems. STTT, 4(4):437–
455, 2003.

67

BIBLIOGRAPHY

[11] Christian Ferdinand, Reinhold Heckmann, and Reinhard Wilhelm. Analyzing the worst-
case execution time by abstract interpretation of executable code. In ASWSD, pages 1–14,
2004.

[12] Reinhard Wilhelm. Why ai + ilp is good for wcet, but mc is not, nor ilp alone. In In
Verification, Model Checking and Abstract Interpretation (VMCAI), LNCS 2937, 2004.

[13] Mark Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357, 1984.

[14] Eugene Kligerman and Alexander D. Stoyenko. Real-time euclid: A language for reliable
real-time systems. IEEE Trans. Software Eng., 12(9):941–949, 1986.

[15] A. Mok, P. Amerasinghe, M. Chen, and K. Tantisirivat. Evaluating tight execution time
bounds of programs by annotations. IEEE Real-Time Syst. Newsl., 5(2-3):81–86, May
1989.

[16] Peter P. Puschner and Christian Koza. Calculating the maximum execution time of real-
time programs. Real-Time Systems, 1(2):159–176, 1989.

[17] Alan Shaw. Reasoning about time in higher-level language software. IEEE Transactions
on Software Engineering, 15:875–889, 1989.

[18] Antoine Colin and Isabelle Puaut. Worst case execution time analysis for a processor with
branch prediction. Real-Time Systems, 18(2/3):249–274, 2000.

[19] Christopher A. Healy, Robert D. Arnold, Frank Mueller, David B. Whalley, and Mar-
ion G. Harmon. Bounding pipeline and instruction cache performance. IEEE Trans.
Computers, 48(1):53–70, 1999.

[20] Björn Lisper. Fully automatic, parametric worst-case execution time analysis. In Jan
Gustafsson, editor, WCET, volume MDH-MRTC-116/2003-1-SE, pages 99–102. Depart-
ment of Computer Science and Engineering, Mälardalen University, Box 883, 721 23
Västerås, Sweden, 2003.

[21] Peter P. Puschner and Anton V. Schedl. Computing maximum task execution times - a
graph-based approach. Real-Time Systems, 13(1):67–91, 1997.

[22] Greger Ottosson and Mikael Sjodin. Worst-case execution time analysis for modern hard-
ware architectures. In In Proc. ACM SIGPLAN Workshop on Languages, Compilers and
Tools for Real-Time Systems (LCT-RTS’97, pages 47–55, 1997.

[23] Jakob Engblom and Andreas Ermedahl. Pipeline timing analysis using a trace-driven
simulator. In The 6th International Conference on Real-Time Computing Systems and
Applications (RTCSA ’99),, pages 88–95, December 1999.

[24] ANDREAS ERMEDAHL. A Modular Tool Architecture for Worst-Case Execution Time
Analysis. PhD thesis, Uppsala University, Dept. of Information Technology, Box 325,
Uppsala, Sweden, June 2003.

[25] Tewodros Awgichew Beyene. Constraint based Certification of Imperative Programs.
Master’s thesis, Universidade Nova de Lisboa, Portugal, October 2011.

[26] Adrian Prantl, Jens Knoop, Markus Schordan, and Markus Triska. Constraint solving for
high-level wcet analysis. CoRR, abs/0903.2251, 2009.

68

BIBLIOGRAPHY

[27] Adrian Prantl, Markus Schordan, and Jens Knoop. Tubound - a conceptually new tool
for worst-case execution time analysis. In Raimund Kirner, editor, WCET, volume 8
of OASICS. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany, 2008.

[28] Amine Marref and Guillem Bernat. Predicated worst-case execution-time analysis. In
Fabrice Kordon and Yvon Kermarrec, editors, Ada-Europe, volume 5570 of Lecture Notes
in Computer Science, pages 134–148. Springer, 2009.

[29] Rina Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003.

[30] Edward P. K. Tsang. Foundations of constraint satisfaction. Computation in cognitive
science. Academic Press, 1993.

[31] Krzysztof R. Apt. Principles of constraint programming. Cambridge University Press,
2003.

[32] Dynamic Decision Technologies Inc. Comet tutorial @ONLINE. http://dynadec.
com/, 2010.

[33] Wcet benchmark programs from mälardalen wcet research group @ONLINE. http:
//www.mrtc.mdh.se/projects/wcet/benchmarks.html.

[34] Wcet benchmark programs from franck cassez’s homepage @ONLINE. http://www.
irccyn.fr/franck/wcet/.

[35] Elaine J. Weyuker. Translatability and decidability questions for restricted classes of
program schemas. SIAM J. Comput., 8(4):587–598, 1979.

[36] Jian Zhang and Xiaoxu Wang. A constraint solver and its application to path feasibility
analysis. International Journal of Software Engineering and Knowledge Engineering,
11(2):139–156, 2001.

[37] Richard A. DeMillo and A. Jefferson Offutt. Constraint-based automatic test data gener-
ation. IEEE Trans. Software Eng., 17(9):900–910, 1991.

[38] Lori A. Clarke. A system to generate test data and symbolically execute programs. IEEE
Trans. Software Eng., 2(3):215–222, 1976.

[39] Arm architecture reference manuals @ONLINE. http://infocenter.arm.com/
help/index.jsp?topic=/com.arm.doc.set.architecture/index.
html.

[40] Cristina Cifuentes. Reverse Compilation Techniques. PhD thesis, QUEENSLAND UNI-
VERSITY OF TECHNOLOGY, Australia, July 1994.

[41] Keith D. Cooper, Timothy J. Harvey, and Todd Waterman. Building a control-flow graph
from scheduled assembly code. Technical report, 2002.

[42] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princiles, Techniques, and
Tools. Addison-Wesley, 1986.

[43] Donald B. Johnson. Finding all the elementary circuits of a directed graph. SIAM J.
Comput., 4(1):77–84, 1975.

[44] B.C. Housel. A Study of Decompiling Machine Languages into High-Level Machine
Independent Languages. PhD thesis, Purdue University, Computer Science, August 1973.

69

http://dynadec.com/
http://dynadec.com/
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.irccyn.fr/franck/wcet/
http://www.irccyn.fr/franck/wcet/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.architecture/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.architecture/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.architecture/index.html

Appendix A
CPM FOR SOME BENCHMARK
PROGRAMS

Listing A.1: CPM: fib-O0
1

2 //fib-O0 (300) but it does not calculate the fib nr
3 import cotfd;
4 //defining the domain of vars
5 int maxInt = 2ˆ16;
6 range NonNeg = 0..maxInt;
7 //max nr of iterations
8 int maxIters = 300;
9

10

11 //time for basic blocks
12 int maxTime=100000;
13 int timeBB1=169;
14 int timeBB2=351;
15 int timeBB3=89;
16 int timeBB4=132;
17 range Time=0..maxTime;
18

19 //counting iterations
20 range Iters = 1..maxIters;
21 range Iter0 = 0..maxIters;
22

23

24 Solver<CP> cp();
25 var<CP>{int} s12[Iter0](cp,NonNeg);
26 var<CP>{int} s16[Iter0](cp,NonNeg);
27 var<CP>{int} s20[Iter0](cp,NonNeg);
28 var<CP>{int} s24[Iters](cp,NonNeg);
29 var<CP>{int} a[1..2](cp,NonNeg);
30 var<CP>{int} s04(cp,NonNeg);
31

32 var<CP>{int} clocks(cp,Time);
33

34 var<CP>{int} nits(cp,NonNeg);
35 var<CP>{bool} wh1[Iter0](cp);

71

36

37

38 int t1 = System.getCPUTime();
39

40 //optimization function, the clock cycle of the processor
41 maximize<cp>
42 clocks
43

44 subject to {
45

46 cp.post(nits == sum(i in Iters)(wh1[i]));
47 //this can be deduced from the CFG presented in chapter 4
48 cp.post(clocks == timeBB1
49 + timeBB3 //for the first time BB3 is always

executing
50 +timeBB4
51 + nits * (timeBB2+timeBB3)
52);
53 cp.post(
54

55 (s04 == a[1]) &&
56 (s16[0] == 1) &&
57 (s20[0] == 0) &&
58 (s12[0] == 2));
59

60 cp.post((wh1[0] == true));
61

62 forall(i in Iters){
63 cp.post(wh1[i] == (wh1[i-1] && (s12[i-1] <= s04)));
64

65

66 cp.post(wh1[i] => (
67 (s24[i] == s16[i-1]) &&
68 // (s16[i] == s16[i-1] + s20[i-1]) &&
69 (s16[i] == s16[i-1]) && //to avoid the calculation of fib nr
70 (s20[i] == s24[i]) &&
71 (s12[i] == s12[i-1] + 1)));
72

73 //cout << i << " - " << clocks << endl;
74 }
75 cp.post((a[2] == s16[nits]));
76 }
77 using {
78 //search
79

80 //we want to search the truth value of each iteration
81 label(wh1);
82

83 }
84

85 int t2 = System.getCPUTime();
86

87 //printing of results
88 if (cp.getSolution() == null)
89 cout << "no solution obtained in " << t2-t1 << " milisecs" << endl;
90 else {

72

91 cout << nits << " iterations in " << clocks << " clock cycles" <<
endl;

92 cout << " with result fib(" << a[1] << ") = " << a[2] << endl;
93 cout << " obtained in " << t2-t1 << " milisecs" << endl;
94 }

Listing A.2: CPM: insertsort-O2
1

2 /*
3 HLL for insertsort-O2
4

5 D is the input array
6 insertsort-O2(D){
7 n = 11; // D size
8 r6 = 2;
9 r0 = 2;

10 do{ // 1 to n
11 r1 = r0-1
12 ip = D[r0];
13 r2 = D[r1];
14 if (ip<r2){
15 r3 = r0;
16 do{ // 1 to n
17 D[r0] = r2;
18 r2 = D[r3-2];
19 r4 = (r1>0 && r2>ip);
20 r0 = r1;
21 D[r3-1]=ip;
22 r1 = r1-1;
23 r3 = r3-1;
24 }while(r4 != 0);
25 }
26 r6=r6+1;
27 r0=r6;
28 }while (r6 != 11);
29 }
30 */
31

32 import cotfd;
33

34 int T[1..5]=[498,98,147,18,24];
35

36 int d = 10;
37 int m = d-1;
38 int n = d;
39 range Outs0 = 0..m;
40 range Outs1 = 1..m;
41 range Inns0 = 0..n;
42 range Inns01= 0..n+1;
43 range Inns1 = 1..n;
44 range Inds0 = 0..d;
45 range Inds01= 0..d+1;
46 range Inds1 = 1..d;
47 range Ints = 0..d; // d

73

48 range Time = 0..2ˆ30;
49

50 Solver<CP> cp();
51 var<CP>{int} r0[Outs0, Inns01](cp,Inds01);
52 var<CP>{int} r1[Outs0, Inns0](cp,Inds0);
53 var<CP>{int} r2[Outs0, Inns0](cp,Ints);
54 var<CP>{int} r3[Outs0, Inns0](cp,Inds0);
55 var<CP>{int} r6[Outs0](cp,Inds01);
56 var<CP>{int} ip[Outs0](cp,Ints);
57 var<CP>{int} D[Outs0, Inns0,1..2,Inds0](cp,Ints);
58 var<CP>{int} clocks(cp,Time);
59 var<CP>{int} out_c(cp,Time);
60 var<CP>{int} inn_c[Outs0](cp,Time);
61 var<CP>{bool} outer[Outs0](cp);
62 var<CP>{bool} ifc[Outs0](cp);
63 var<CP>{bool} r4[Outs1, Inns1](cp);
64 var<CP>{bool} inner[Outs0,Inns0](cp);
65

66 int t1;
67 int t2;
68 int t3;
69 int t4;
70

71 int t0 = System.getCPUTime();
72

73 maximize<cp> clocks subject to {
74 //solve<cp> {
75

76 // time
77 t1 = System.getCPUTime();
78 cp.post(out_c == sum(i in Outs0) outer[i]);
79 forall (i in Outs0) cp.post(inn_c[i] == sum(j in Inns0)

inner[i,j]);
80 //cp.post(clocks == T[1]+out_c*(T[2]+T[3]*sum(j in

Outs1)(inn_c[j])+T[4])+T[5]);
81 cp.post(clocks == T[1]+ T[5]+
82 sum(i in Outs1)
83 (
84 (i<out_c)*
85 (T[2]+
86 ifc[i]*(T[3]* inn_c[i]+T[4])+
87 (!ifc[i])*T[4]
88)
89)
90

91)
92 ;
93

94 // initial vector
95

96 forall(k in Inds0) cp.post(D[0,n,2,k] == (k>0)*(d-k+1));
97 //cp.post(D[0,n,2,0] == 0);
98 //forall(k in 1..d) cp.post(D[0,n,2,k] > 0);
99 // forall(k in 1..d-1) cp.post(D[0,n,2,k] > D[0,n,2,k+1]);

100

101 cp.post(true => (r0[0,n+1] == 2));

74

102 cp.post(true => (r6[0] == 2));
103 cp.post(true => (outer[0] == true));
104

105 forall(i in Outs1){
106 if (i == 1) cp.post(outer[i-1] => (outer[i] == true));
107 if (i > 1) cp.post(outer[i-1] => (outer[i] == (r6[i-1] !=

d+1)));
108 cp.post(!outer[i-1] => (outer[i] == false));
109

110 cp.post(outer[i] => r1[i,0] == r0[i-1,n+1]-1);
111 cp.post(!outer[i] => r1[i,0] == r1[i-1,n]);
112 cp.post(outer[i] => ip[i] == D[i-1,n,2,r0[i-1,n+1]]);
113 cp.post(!outer[i] => ip[i] == ip[i-1]);
114

115 cp.post(outer[i] => (r2[i,0] == D[i-1,n,2,r1[i,0]]));
116 cp.post(!outer[i] => (r2[i,0] == r2[i-1,n]));
117

118

119 cp.post(outer[i] => (ifc[i] == (ip[i] < r2[i,0])));
120 cp.post(!outer[i] => (ifc[i] == false));
121

122 cp.post(!ifc[i] => (inner[i,0] == false));
123 cp.post(!ifc[i] => (r2[i,n] == r2[i,0]));
124 cp.post(!ifc[i] => (r0[i,n] == r0[i-1,n+1]));
125 cp.post(!ifc[i] => (r1[i,n] == r1[i,0]));
126 forall(k in Inds0) cp.post(!ifc[i] => (D[i,n,2,k] ==

D[i-1,n,2,k]));
127

128 cp.post(ifc[i] => r3[i,0] == r0[i-1,n+1]);
129 cp.post(ifc[i] => r0[i,0] == r0[i-1,n+1]);
130 forall(k in Inds0) cp.post(ifc[i] => (D[i,0,2,k] ==

D[i-1,n,2,k]));
131 cp.post(ifc[i] => (inner[i,0] == true));
132

133 forall(j in Inns1){
134 if (j == 1) cp.post(inner[i,j-1] => (inner[i,j] == true));
135 if (j > 1) cp.post(inner[i,j-1] => (inner[i,j] == r4[i,j-1]));
136 cp.post(!inner[i,j-1] => (inner[i,j] == false));
137 forall(k in Inds0){
138 cp.post((inner[i,j] && k == r0[i,j-1]) => D[i,j,1,k] ==

r2[i,j-1]);
139 cp.post((inner[i,j] && k != r0[i,j-1]) => D[i,j,1,k] ==

D[i,j-1,2,k]);
140 cp.post(! inner[i,j] => D[i,j,1,k] == D[i,j-1,2,k]);
141 }
142 cp.post(inner[i,j] => r2[i,j] == D[i,j,1,r3[i,j-1]-2]);
143 cp.post(!inner[i,j] => r2[i,j] == r2[i,j-1]);
144 cp.post(inner[i,j] => (r4[i,j] == ((r1[i,j-1] > 0) && (r2[i,j]

> ip[i]))));
145 cp.post(!inner[i,j] => (r4[i,j] == false));
146 cp.post(inner[i,j] => r0[i,j] == r1[i,j-1]);
147 cp.post(!inner[i,j] => r0[i,j] == r0[i,j-1]);
148 forall(k in Inds0){
149 cp.post((inner[i,j] && k == r3[i,j-1]-1) => D[i,j,2,k] ==

ip[i]);

75

150 cp.post((inner[i,j] && k != r3[i,j-1]-1) => D[i,j,2,k] ==
D[i,j,1,k]);

151 cp.post(! inner[i,j] => D[i,j,2,k] == D[i,j,1,k]);
152 }
153 cp.post(inner[i,j] => r1[i,j] == r1[i,j-1]-1);
154 cp.post(!inner[i,j] => r1[i,j] == r1[i,j-1]);
155 cp.post(inner[i,j] => r3[i,j] == r3[i,j-1]-1);
156 cp.post(!inner[i,j] => r3[i,j] == r3[i,j-1]);
157 }
158 cp.post(outer[i] => r6[i] == r6[i-1]+1);
159 cp.post(!outer[i] => r6[i] == r6[i-1]);
160 cp.post(outer[i] => r0[i,n+1] == r6[i]);
161 cp.post(!outer[i] => r0[i,n+1] == r0[i,n]);
162 }
163 t2 = System.getCPUTime();
164 cout << endl << " ==== posted all in " << t2-t1 << " ms =======" <<

endl;
165 }
166

167 using {
168 forall(i in Outs1) {
169 // label(outer[i]);
170 // try<cp> cp.label(outer[i],true); | cp.label(outer[i],false);
171 tryall<cp>(v in 0..1) by (-v) cp.post(outer[i] == v);
172 // label(ifc[i]);
173 try<cp> cp.label(ifc[i],true); | cp.label(ifc[i],false);
174 forall(j in Inns0)
175 //label(inner[i,j]);
176 try<cp> cp.label(inner[i,j],true); | cp.label(inner[i,j],false);
177 }
178 forall(k in Inds1)
179 label(D[0,n,2,k]);
180

181 t3 = System.getCPUTime();
182 cout << endl << " ==== labelled all in " << t3-t2 << " ms ======="

<< endl;
183 }
184

185 t4 = System.getCPUTime();
186

187 if (cp.getSolution() == null)
188 cout << "no solution obtained in " << t4-t0 << " milisecs" << endl;
189 else {
190 cout << " wcet time of " << clocks << " clock cycles " << endl;
191 cout << " obtained in " << t4-t0 << " milisecs" << endl;
192 cout << " with initial vector: " << endl;
193 forall(k in Inds0) cout << D[0,n,2,k] << " "; cout << endl;
194 cout << " and sorted vector: " << endl;
195 forall(k in Inds0) cout << D[m,n,2,k] << " "; cout << endl;
196 cout << endl;
197

198 }

Listing A.3: CPM: bs-O2

76

1 //bs-O2 : This method is extracted from main method of the assembly
code.

2 //so the return element is not shown.
3 /*
4 bs-O2(x){
5 r3=799;
6 ip=0;
7 do{
8 r1 = (ip + r3)/2;
9 r4 = S[8*r1];

10 if (r4 == r0)
11 r3=ip-1;
12 else {
13 if (r4 > r0) r3 = r1 - 1;
14 if (r4 < r0) ip = r1 + 1;
15 }
16 }while(ip<=r3);
17 }
18

19 */
20

21 import cotfd;
22

23 int maxInt = 2000;
24 range NonNeg = 0..maxInt;
25 int maxIters = 12;
26 int n = 1600; //size of array
27 range Iters = 1..maxIters;
28 range Iter0 = 0..maxIters;
29 range Iter1 = 1..maxIters+1;
30 //time for basic blocks
31 int maxTime=10000;
32 int timeBB1=49;
33 int timeBB2=61;
34 int timeBB3=6;
35 int timeBB4=12;
36 int timeBB5=3;
37 range Time=0..maxTime;
38

39 int S[0..n-1];
40

41 Solver<CP> cp();
42 var<CP>{bool} wh1[Iter1](cp);
43 var<CP>{bool} if1[Iter0](cp);
44 var<CP>{bool} if2[Iter0](cp);
45 var<CP>{bool} if3[Iter0](cp);
46 var<CP>{int} nits(cp,NonNeg);
47 var<CP>{int} r0[1..2](cp,-1..maxInt);
48 var<CP>{int} r1[Iters](cp,NonNeg);
49 var<CP>{int} r3[Iter0](cp,-1..maxInt);
50 var<CP>{int} r4[Iters](cp,NonNeg);
51 var<CP>{int} ip[Iter0](cp,NonNeg);
52 var<CP>{int} r5[Iter0](cp,-1..maxInt);
53 var<CP>{int} clocks(cp,Time);
54

55 int t1 = System.getCPUTime();

77

56 //the elements of the array
57 S[0]=0; S[1]=807;
58 S[2]=2; S[3]=1249;

59
...

60 S[1596]=1596; S[1597]=1669;
61 S[1598]=1598; S[1599]=1096;
62

63 maximize<cp>
64 clocks
65 subject to
66 {
67

68 cp.post(nits == sum(i in Iters) (wh1[i]));
69 cp.post(clocks == timeBB1 + timeBB5 +
70 sum(i in Iters)(((i<=nits)*(timeBB2 +
71 if1[i]*timeBB4 + (!if1[i])*(timeBB3+timeBB4))))) ;
72

73 cp.post(r3[0]== 799);
74 cp.post(ip[0]== 0);
75

76 //initilization
77 cp.post(if1[0]==false);
78 cp.post(if2[0]==false);
79 cp.post(if3[0]==false);
80 cp.post(wh1[1] == true);
81

82 forall(i in Iters){
83

84 cp.post(wh1[i] => (r1[i]== ((ip[i-1]+r3[i-1])/2)));
85 cp.post(wh1[i] => (r4[i]== S[2*r1[i]]));
86 //value found
87 cp.post(wh1[i] => (if1[i] == (r4[i]==r0[1])));
88 cp.post(!wh1[i] => (if1[i] == false));
89

90 cp.post((wh1[i] && if1[i]) =>(r3[i]==ip[i-1]-1));
91 cp.post((wh1[i] && if1[i]) =>(ip[i]==ip[i-1]));
92

93 cp.post((wh1[i]) => (if2[i] == (r4[i] > r0[1])));
94 cp.post((!wh1[i]) => (if2[i] == false));
95 cp.post((wh1[i] && !if1[i] && if2[i]) => (r3[i] == r1[i]-1));
96 cp.post((wh1[i] && !if1[i] && if2[i]) => (ip[i] == ip[i-1]));
97

98 cp.post(wh1[i]=>if3[i]==(!if1[i] && !if2[i]));
99 cp.post(!wh1[i] => (if3[i] == false));

100

101 cp.post((wh1[i] && if3[i]) => (ip[i]==r1[i]+1));
102 cp.post((wh1[i] && if3[i]) => (r3[i]==r3[i-1]));
103

104 cp.post(wh1[i+1] == (wh1[i] && (r3[i] >= ip[i])));
105 }
106

107 }
108

109 using {
110 //r0[1] is the element we are searching for

78

111 label(r0[1]);
112

113 forall(i in Iters){
114

115

116 try<cp>{
117 cp.post(wh1[i]==1);
118 try<cp>{
119 cp.post(if1[i]==1);
120 }
121 |
122 { cp.post(if1[i]==0);
123 try<cp> {cp.post(if2[i]==1);}|{cp.post(if2[i]==0);}
124 }
125 }
126 |
127 { cp.post(wh1[i]==0);}
128 }
129

130 }
131

132 int t2 = System.getCPUTime();
133 cout << endl;
134

135 if (cp.getSolution() == null)
136 cout << "No solution found " << endl;
137 else {
138 cout << " The solution is obtainted in " << t2-t1 << "

miliseconds" << endl;
139 cout << " Computed WCET is " << clocks<< " cycles" << endl;
140 }

79

	Introduction
	Motivation
	Structure of this work
	Contributions

	Timing Analysis Techniques and WCET
	Overview of Timing Analysis Techniques
	WCET
	WCET Challenges
	WCET Methods and Tools

	Previous Work
	IPET

	General Consideration

	Constraints and Constraint Solvers
	Constraint Satisfaction Problem (CSP)
	Constraint Satisfaction Optimization Problem (CSOP)
	Constraint Solvers
	Complete solvers
	Incomplete solvers

	Constraint programming
	 Variable
	Constraints
	Search

	Partial Conclusion

	Path Feasibility Analysis
	Some assumption about the program (path)
	Path Based Analysis
	Extracting Path Constraints
	Modeling Register, Stack and Memory
	Maintaining Version for the Variables
	Updating Arrays
	Constraints Generation Algorithm

	Constraint Solving
	Experiment and Results
	Partial Conclusion

	Decompilation of Assembly Program
	Source and Target Program
	Subset of ARM Assembly Language
	Subset of C Language

	Decompilation Phases
	Reconstruct CFG from Assembly Code
	Partitioning assembly instructions into basic blocks
	CFG from List of Basic Blocks

	Loops
	HLL Code Generation
	Generating Code for a Basic Block
	Generating Code from Control Flow Graphs

	Mapping between Assembly Language and HLL
	Partial Conclusion

	Modeling HLL with Constraints
	Transformation of HLL to CPM
	Rewriting Rules for different kinds of instructions
	Declaration
	 Assignments
	 Loop statements
	 Conditional Statement
	Special case: Array assignment
	Code Block
	Basic Block Timing, Optimization function and Search

	Labeling
	Rules for Generating Labeling Function

	Partial Conclusion

	WCET Computation
	Overview of the Method and Tool chain
	Experimental Results
	Comments on the Results

	Comparison between two WCET computation approaches
	Comments on the Comparison

	Paths Study
	Partial Conclusion

	Conclusions and Future Works
	References
	CPM for some Benchmark Programs

