
New University of Lisbon
Faculty of Science and Technology
Departament of Informatics

Master’s Thesis

European Master’s program in Computational Logic

Constraint-based Verification of
Imperative Programs

Tewodros Awgichew Beyene

Lisbon
(October, 2011)

ii

New University of Lisbon
Faculty of Science and Technology
Departament of Informatics

Master’s Thesis

Constraint-based Verification of
Imperative Programs

Tewodros Awgichew Beyene (35031)

Supervisor: Professor Pedro Barahona

work presented in the context of the European
Master’s program in Computational Logic, as the
partial requirement for obtaining Master of Sci-
ence degree in Computational Logic

Lisbon
(October, 2011)

iv

Acknowledgements

I would like to thank Professor Pedro Barahona, my supervisor, for accepting me to
work on this very interesting and motivating topic with him. He has been not only
providing me with invaluable ideas through out the work but also being available to
help me every time I have challenges and difficulties.

Julio Marino’s and Manuel Carro’s lectures on rigorous software development at
the Polytechnical University of Madrid (UPM) provided me the first exposure to mod-
ern software verification tools. I would like to thank both professors for first intro-
ducing me to core concepts of model checking, theorem proving, program logics, and
computer aided formal verification.

I also like to thank my father Awgichew Beyene and my mother Almaz Lemma for
paying all the sacrifices to make me reach where I am today. I extend my regards to all
of my brothers and sisters, family members and friends who have been encouraging
me, supporting me, and more importantly praying for me. I would like to give special
thanks to Edengenet Mashilla, my fiancée, who has been a great help not only during
my masters study but also during the three years of my life abroad. God bless you all!

FCT has been a very enjoyable place to study. I am grateful to the members of the
faculty and fellow students, specially to those in the department of informatics, for
enabling such an environment where both pursuing of academic goals and having fun
go together.

But above all, I glorify God for His ever lasting love, forgiveness and protection
upon me. I thank Jesus for providing me with such helpful professors, caring family,
and supportive friends. Thank You God!

v

vi

Abstract

The continuous reduction in the cost of computing ever since the first days of com-
puters has resulted in the ubiquity of computing systems today; there is no any sphere
of life in the daily routine of human beings that is not directly or indirectly influenced
by computer systems anymore. But this high reliance on computers has not come
without a risk to the society or a challenge to computer scientists. As many computer
systems of today are safety critical, it is crucial for computer scientists to make sure
that computer systems, both the hardware and software components, behave correctly
under all circumstances. In this study, we are interested in techniques of program ver-
ification that are aimed at ensuring the correctness of the software component.

In this work, constraint programming techniques are used to device a program ver-
ification framework where constraint solvers play the role of typical verification tools.
The programs considered are written in some subset of Java, and their specifications
are written in some subset of Java Modeling Language(JML). In our framework, the
program verification process has two principal steps: constraint generation and con-
straint solving. A program together with its specification is first parsed into a system of
constraints. And then, the system of constraints is processed using constraint solvers
so that the correctness of the original program is proved to hold, or not, based on the
outcome of the constraint solving. The performance of our framework is compared
with other well-known program verification tools using standard benchmarks, and
our framework has performed quite well for most of the cases.

Keywords: Program Verification, Model Checking, Constraint Programming

vii

viii

Contents

1 Introduction 1

2 Review of the State of the Art 3
2.1 Introduction . 3
2.2 Program Verification . 4

2.2.1 Correctness of a Program . 4
2.2.2 Earlier Issues in Program Verification 6
2.2.3 Program Verification Methods . 7

2.3 Constraint Programming . 18
2.3.1 Constraint Satisfaction Problem(CSP) 18
2.3.2 Constraint Solving Approaches . 22

3 Constraints Model Generation 25
3.1 Introduction . 26
3.2 The subset of Java language handled . 27

3.2.1 Subset of Java language . 27
3.2.2 Subset of JML . 29
3.2.3 An example program . 31

3.3 Input program to constraints model transformation 31
3.3.1 An important consideration: versioning 31
3.3.2 Program to constraints transformation 34
3.3.3 JML code to constraints transformation 46
3.3.4 Example of program to constraints transformation 47

4 Constraint Solving Models 49
4.1 Introduction . 49
4.2 Finite Domain Model . 50

ix

x CONTENTS

4.3 Hybrid Model . 52
4.3.1 Extending a Finite Domain Model into a Hybrid Model 53
4.3.2 Labeling Algorithm . 55
4.3.3 An Example for the Hybrid Model 56

5 Experimental Results 59
5.1 Introduction . 59
5.2 Frameworks Considered for Comparison 60

5.2.1 ESC/Java . 60
5.2.2 CBMC . 60
5.2.3 BLAST . 60
5.2.4 EUREKA . 61
5.2.5 WHY . 61
5.2.6 CPBPV . 61

5.3 Benchmark Programs Used . 62
5.3.1 Triangle Classification . 62
5.3.2 Binary Search . 62
5.3.3 Bubble Sort with Initial Condition 63

5.4 Comparative Results . 65
5.4.1 Triangle Classification . 65
5.4.2 Binary Search . 66
5.4.3 Bubble Sort . 67

6 Conclusions 69
6.1 Summary . 69
6.2 Future Work . 70

A System of constraints for the benchmark programs 75
A.1 Tritype - Hybrid Model . 75
A.2 Tritype - Finite Domain Model . 77
A.3 Binary Search - Hybrid Model . 78
A.4 Binary Search - Finite Domain Model . 80
A.5 Buble Sort - Hybrid Model . 81
A.6 Buble Sort - Finite Domain Model . 82

List of Figures

2.1 A simple one loop program . 9

3.1 Subset of Java . 30
3.2 Subset of JML . 31
3.3 An example program . 32
3.4 A sample code illustrating variable versions 34
3.5 Transformation with wrong version of variables 34
3.6 Transformation with correct version of variables 34
3.7 If_Else statement transformation . 37
3.8 If_Else statement without the else part . 38
3.9 If_Else statement with more changes in the else part 38
3.10 If_Else statement with changes in both of the If and the Else parts 39
3.11 Transformation of nested If_Else statement 39
3.12 More efficient nested If_Else representation 40
3.13 An example code with a while loop . 41
3.14 Constraint system representing a while loop 42
3.15 Sample program with nested while loops 43
3.16 Representation of the inner most loop . 44
3.17 Representation of the second inner loop 44
3.18 Constraints’ model corresponding to the sample while loop program . . 45
3.19 Representation of a simple JML specification 47
3.20 Example for transformation of a JML specification with quantifier 47
3.21 Constraints’ model corresponding to the example program 48

4.1 A finite domain model example . 51
4.2 Narrowing of domains to keep bounds consistency 52
4.3 Sicstus Prolog implementation of the labeling algorithm 56

xi

xii LIST OF FIGURES

4.4 Representation of the example program in the hybrid model 57

5.1 Triangle Classification . 63
5.2 Binary Search . 64
5.3 Bubble Sort with Initial Condition . 64

List of Tables

5.1 triangle classification without an error . 65
5.2 triangle classification with an error . 66
5.3 binary search without an error . 66
5.4 binary search with an error . 67
5.5 buble sort without an error . 67

xiii

xiv LIST OF TABLES

1
Introduction

The continuous reduction in the cost of computing ever since the first days of com-
puters has resulted in the ubiquity of computing systems in today’s world; there is
no any sphere of life in the daily routine of human beings in the 21st century that is
not directly or indirectly influenced by computer systems. Some of the areas where
computer systems have become a very important and integral part of their existence
include banking, production line control, air traffic control and transportation, etc. But
this high reliance of the society on computer systems has not come without a higher
risk to today’s society or without a stronger challenge to today’s computer scientists.
Since many computer systems of today are safety critical in a sense that failure of such
systems can cause a catastrophic loss to the society in terms of not only money and time
but also invaluable human life, it is crucial for computer scientists to make sure that
computer systems behave correctly under all circumstances. For the whole computer
system to behave correctly, it must be ensured that both the hardware and software
components behave correctly. However, in this study, we will be interested only in
the software component of computer systems, and we deal with techniques of pro-
gram verification that are aimed at ensuring the correctness of the software compo-
nent. Though most modern computer systems consist of sophisticated hardware and
software components, ensuring the correctness of their software component is often
more challenging than that of their underlying hardware component.

In this work, constraint programming techniques are used for program verification

1

1. INTRODUCTION

with constraint solvers playing the role typical verification tools play in typical pro-
gram verification set ups. The programs considered are written in some subset of the
Java programming language, and their preconditions and postconditions are written
in some subset of the Java Modeling Language(JML). The program verification pro-
cess has two principal steps: constraint generation and constraint solving. A program
together with its precondition and postcondition is first parsed into a system of con-
straints. Then, the system of constraints is processed using constraint solvers so that
the correctness of the original program is proved to hold, or not, based on the outcome
of the constraint solving.

The rest of this document is structured in this way: In Chapter 2, we introduce
the notions of program verification and program correctness followed by a detailed
discussion of some of the major program verification methods. In addition, the chap-
ter includes a brief discussion of constraint programming and constraint solving tech-
niques. In Chapter 3, the subsets of Java and JML considered in this work for writing
the program and its specification respectively are given. The chapter starts by dis-
cussing briefly the scope of the work together with the strategy employed to verify a
given program. This is followed by the discussion of how each of the constructs in Java
and JML is transformed into an equivalent constraint so that a semantically equivalent
system of constraints is generated for some program given in the subset of Java whose
specification given in the subset of JML. In Chapter 4, the constraint solving models
corresponding to the program to be verified are discussed. The efficiency of the entire
program verification process is highly dependent on the efficiency of the constraint
solving. In Chapter 5, the experimental results of our approach are presented in com-
parison with other commonly used program verification tools and benchmarks using
some standard benchmark programs. In Chapter 6, we conclude by providing a sum-
mary and directions of future work.

2

2
Review of the State of the Art

2.1 Introduction

A computer program can be considered as a mathematical object whose properties can
be formally specified so that mathematical proofs can be done on the program to check
whether the program satisfies a given set of properties or not. Program verification
deals with ensuring that programs satisfy the given set of properties. In this work,
constraint programming techniques are used for program verification with constraint
solvers playing the role typical verification tools would play in typical program verifi-
cation set ups.

This chapter deals with two core concepts used in the work; Program Verification
and Constraint Programming. The rest of this chapter is structured in this way: The
next section of this chapter addresses program verification in general. A brief overview
of program verification will be given in section 2.2 followed by a detailed discussion on
correctness of a program in section 2.2.1 where the different properties that make a pro-
gram correct are given. Although formal verification has enjoyed several recent suc-
cesses in proving correctness of industry-scale hardware and software systems, there
were mountainous obstacles to program verification in its early stage and still there are
several objections that are raised against it. In section 2.2.2, some of these issues are
discussed along with how program verification techniques in general have tried to an-
swer the questions posed by the issues. In section 2.2.3, a detailed discussion for some
of the most important approaches to program verification is given. The last part of the

3

2. REVIEW OF THE STATE OF THE ART 2.2. Program Verification

chapter discusses constraint programming in some detail whose techniques are used
for program verification in this work. Section 2.3.1 provides a formal definition as well
as illustration of constraint satisfaction problems (CSPs) followed by a brief coverage
of basic constraint solving techniques used by constraint solvers in section 2.3.2.

2.2 Program Verification

Program verification is the use of formal techniques to ensure that programs satisfy a
set of formally specified correctness properties. As computer programs are becoming
part of more and more systems that we depend on for our daily lives, the need for
efficient and effective program verification techniques that can be scaled up to industry
level programs has been increasing. Most of the methods being commonly practiced
today to ensure correctness properties for programs involve simulation of the expected
properties of programs, and testing using a set of "critical" test data. There are a few
serious limitations to this approach. One limitation is the fact that simulation of today’s
complex systems on all possible input sequences in any reasonable time is not possible.
Another limitation is the fact that "critical" test data is a very vague expression that
lacks formal definition to be of any practical use. Furthermore, whereas simulation
and testing methods are very good in detecting well-defined types of errors, they may
fail to catch elusive design faults that may make the system to behave unexpectedly
only under a particular set of conditions.

In program verification methods, one models a program in a mathematical logic
under some well defined theory, and formally proves that the program satisfies its
desired specifications. Program verification techniques assume that the input program
is syntactically correct - missing semicolons, parenthesis and the like are not the issues
of program verification - and their concern will be in detecting semantic difference
between the program and its specification.

2.2.1 Correctness of a Program

The correctness of a given program is specified in terms of the desirable properties it
needs to satisfy. The main properties used to define correctness of a given program are
given below [1]:

1. Partial correctness :
A program is said to satisfy partial correctness if and only if whenever there is a
result produced by the program, the result is correct with respect to the task to be
solved by the program. For example, upon termination of a bubble sort program,

4

2. REVIEW OF THE STATE OF THE ART 2.2. Program Verification

the input should indeed be sorted. It is called partial because the property is
defined on the implicit condition of termination; the program is not guaranteed
to terminate which means that it is not guaranteed to deliver any result at all in
some situations.

2. Termination :
A program is said to terminate if and only if it finishes its computation and ex-
its normally or aborts its computation and exits abnormally after a finite amount
of time. The problem of determining whether a given program will always fin-
ish execution or will keep on running forever is called the program termination
problem or the uniform halting problem. Although it roots back to the era of
Hilbert’s decision problem before the invention of computers, and was proven
not to be decidable, the program termination problem was one of the most ac-
tively researched and debated areas of theoretical computer science [2].

3. Absence of failures :
Failures in a given program are caused by violations of the operational semantics
governing one or more operations in the program or programming language con-
structs used in the program. Some common causes of program failures include
division by zero, trying to access an array out of its range, and stack overflow.
One desirable property of programs is the absence of any such cause of failure.

4. Interference freedom :
It refers to the property that none of the simultaneously running components of
a given concurrent program can modify the variables shared with another com-
ponent in such a way that the change is undesirable for the other component.

5. Deadlock freedom :
A concurrent program is said to be free from deadlock if and only if it does not
end up in a situation where one or more of the non-terminated components of
the program are waiting indefinitely for a condition becoming true.

6. Correctness under fairness assumption :
Fairness usually means that a particular choice is taken sufficiently often pro-
vided that it is sufficiently often possible [3]. Sometimes it is important to use
fairness assumptions on the environment the program works in. For example,
we may assume that a particular scheduler in our environment never ignores
some process forever, and it will eventually schedules the process. A concurrent
program is said to be correct under the fairness assumption if and only if when-
ever a given component of of the program needs some resource, it is not the case

5

2. REVIEW OF THE STATE OF THE ART 2.2. Program Verification

that it will be denied access indefinitely.

The first three properties of correct programs apply for both sequential and concurrent
programs whereas the remaining three properties apply only for concurrent programs.
In general, ensuring any one of these properties is more challenging for concurrent
programs than that of sequential programs. Since this work deals with techniques for
verification of partial correctness for a subset of sequential Java programs, this review
of the state of the art for program verification will be more focused on approaches to
verification of partial correctness for sequential programs.

2.2.2 Earlier Issues in Program Verification

Although formal verification has enjoyed several recent successes in proving correct-
ness of industry-scale hardware and software systems, there were mountainous obsta-
cles to program verification in its early stage and still there are several objections that
are raised against it.

The first challenge is based on the fact that many formal theories are undecidable or
they need algorithms with super-exponential time bounds to be decidable. This leads
to the conclusion that verification techniques that are based on mechanical theorem
proving on such theories may keep on running forever.

The second challenge regards the specification of the desired properties of pro-
grams. To verify that a program has a certain property, the property must be speci-
fied using some formal language. Here an important question arises: can this formal
specification of the program be any simpler than the program itself? If not, verification
may end up verifying whether a complicated object representing the program is con-
sistent or not, in some complicated technical sense, with another complicated object
representing the set of specifications. This can not lead the verification process to cor-
rectness and reliability, but instead to a multiplication of the possibility for errors. A
more fruitful answer for this challenge was the emergence of specification languages
that are solely designed and used for the purpose of clearly specifying the result of
computations in programs. These specifications languages are completely different
from the programming ones because they are not required to be efficiently executable
(or even executable at all).

The third challenge is an important one raised by Richard De Millo, Richard Lipton,
and Alan Perlis in their article[4]. The article argues that program verifications are
to programming as "imaginary formal demonstrations" are to mathematics, and they
have no role in practice. The authors also quote "..if it requires 27 equations to establish

6

2. REVIEW OF THE STATE OF THE ART 2.2. Program Verification

that 1 is a number, how many will it require to demonstrate a real theorem?" In other
words, this comment of suspicion on program verification is based on a questionable
view of what, if any, the role of formal methods can be in mathematics and computer
science.

2.2.3 Program Verification Methods

Formal verification of programs entails a mathematical proof showing that the pro-
gram satisfies its desired set of properties which should be formally specified. This
requires some method for mathematically modeling the program and deriving its de-
sired set of properties as theorems. The main difference among the various formal
verification approaches comes from the choice of the mathematical formalism used in
the process of modeling a program and deriving its set of desired properties.

2.2.3.1 1. Program Logics - Hoare Logic

Specifying the semantics of a program in terms of the effects of its instructions on the
states of the underlying machine is called an operational approach to modeling the
program, and the resulting semantics is called operational semantics [5]. Operational
semantics form the basis for program verification using methods such as model check-
ing, theorem proving, etc. However, the need to reason about the underlying machine
in the operational approach makes it cumbersome to prove correctness of a program.
Program logics on the other hand focus on simplifying program verification by factor-
ing out the details of the machine executing the program from the verification process.
The goal in program logics is to deal with the program text itself as a mathematical
object [6, 7].

In program logics, each instruction of the program is considered as performing a
transformation of predicates. For some sequence of instructions I in a given program-
ming language, the axiomatic semantics of the programming language are specified
by a collection of formulas of the form {P}I{Q}, where P and Q are first order pred-
icates over the program variables. Such a formula can be read as: "If P holds for the
state of the machine when the program is poised to execute I, then, after the execution
of I, Q holds." Predicates P and Q are called the precondition and postcondition for I

respectively.

For example, if I is a single instruction specifying an assignment statement x := a,
then its axiomatic semantics is given by the following schema, also known as the
Axiom o f Assignment.
Axiom of Assignment:

7

2. REVIEW OF THE STATE OF THE ART 2.2. Program Verification

{P}x := a{Q} holds if Q is obtained by replacing every occurrence of the variable x in P

by a.
Hoare [103] provides five such schema, and an inference rule often called rule o f composition

to specify the semantics of a simple programming language.
Rule of Composition:
Infer {P}〈i1 : i2〉{Q} from {P}i1{R} and {R}i2{Q}. Here 〈i1 : i2〉 represents the sequential
execution of the instructions i1 and i2. Another rule that allows generalization and use
of logical implication is given below.
Rule of Implication:
Infer {P}i{Q} from {R1}i{R2}, P =⇒ R1, and R2 =⇒ Q.

Hoare logic, which is an instance of program logics, is defined as a proof system that
consists of first-order logic, together with Hoare axioms and inference rules to deal
with program correctness. In order to use Hoare logic to reason about program cor-
rectness, assertions need to be mapped to predicates on the program variables, and
instructions of the program are considered as transformation of such predicates. The
semantics of a programming language specified by describing the effect of executing
instructions on assertions about states (rather than states themselves) is known as ax-
iomatic semantics. Hoare logic (or in general program logics) is a proof system over
the axiomatic semantics of the programming language. Given P and Q as the precon-
dition and postcondition of the program Π respectively, proving correctness consists
of deriving the formula {P}Π{Q} as a theorem.
To do program verification, one annotates the program with assertions at certain loca-
tions that corresponds to the entry and exit of the basic blocks of the program such as
loop tests, and the entry and exit points of the program itself. These annotated pro-
gram points are called cutpoints. The entry point of the program is annotated with the
precondition, and the exit point is annotated with the postcondition. One then shows
that if the program control is in an annotated state satisfying the corresponding asser-
tion, then the next annotated state will also satisfy its assertion.
Let us consider the simple one loop program in figure 2.1: it has 2 variables X and Y,
and loops 5 times incrementing X and decrementing Y in each iteration. The cutpoints
for the program are at counters 1 (program entry), 3 (loop test), and 7 (termination).
The assertions associated with each cutpoint are shown to the right. The precondition
P is assumed to be universally true, and the postcondition says that the variable X has
the value 5.

Now we need to show that every time the control reaches a cutpoint, the asser-
tion holds. Let us analyze the cutpoints given by the program counter values 1 and

8

2. REVIEW OF THE STATE OF THE ART 2.2. Program Verification

1. X:=0; {T}
2. Y:=5;
3. if (Y<1) goto 7; {(X+Y)=5}
4. X:=X+1;
5. Y:=Y-1;
6. goto 3;
7. HALT {X=5}

Figure 2.1: A simple one loop program

3. To show that given the assertion at 1, after executing counters 1 and 2, the asser-
tion at 3 holds (which can be represented as 1→ 3), we need to prove the formula
{T}〈X := 0;Y := 5〉{(X +Y) = 5} as a theorem. The formula is called proof obligation.
By applying the axioms of assignment, rule of composition, and implication rule, the
simplified proof obligation T =⇒ (0+10)= 10 is obtained. From this example, it can be
seen that by applying Hoare axioms, a formula that is free from constructs of the pro-
gramming language is obtained. Such a formula is called verification condition. The
complete correctness proof of the program given above consists of generating such ver-
ification conditions for each of the execution paths 1→ 3, 3→ 3, and 3→ 7, and showing
they are logical truths. In practice, the verification conditions can be more complicated
formulas with a need to do non-trivial proofs.
Doing program verification using axiomatic semantics requires two tools:

• a verification condition generator(VCG) that takes an annotated program as an
input and generates the verification conditions

• a theorem prover that proves the verification conditions

A possible pitfall of this approach is the fact that it depends on two trusted tools,
namely a VCG and a theorem prover. Nevertheless, program logics and axiomatic
semantics have been commonly used both in program verification theory and its ap-
plication [8, 9, 10]. The principal benefit of using this approach is to abstract out details
of the underlying machine from the program.

2.2.3.2 2. Theorem Proving

Theorem proving is one of the most well studied approaches to program verification.
The approach is based on the use of computer programs called theorem provers to
construct and check derivations of theorems about the mathematical object which is
the topic of interest in some formal logic. Any such formal logic consists of a formal
language to express formulas about the object, a set of formulas called axioms that can

9

2. REVIEW OF THE STATE OF THE ART 2.2. Program Verification

be interpreted as self-evident truths about the object, and a set of validity preserving
inference rules for deriving new formulas about the object from the existing ones. The
logic has to make sure that the set of formulas representing axioms are valid, and the
set of inference rules are validity preserving which means that the application of one
or more inference rules of the logic to the axioms must result in a valid formula. A
formula resulting from applying one or more inference rules to the axioms of the logic
is called a theorem. A sequence of one or more formulas such that each formula is
either an axiom or result of applying an inference rule to some other formula that
come before this formula in the sequence is called a derivation or deduction. In the
sense of theorem proving, verification means the process of showing the existence of
at least one derivation for some formula of interest in the logic of the theorem prover.

Being the base for the theorem proving approach, there has been a number of the-
orem provers being in use today. Some of the most popular ones include HOL, Coq,
ACL, Isabelle, NuPrl, PVS, TPS and Leo. The logics these theorem provers are designed
to work with range among various domains; there are theorem provers for first-order
logic, higher-order logic, set theory, etc. There are also significant variations among
theorem provers depending on the level of automation and the need of interaction with
a user. Some like HOL needs more interaction with trained users while others like PVS
can work fine with just a little need of interaction with the user. Theorem provers like
TPS and Leo require no interaction with a trained user and hence belong to a group
of theorem provers called Automatic Theorem Provers (ATPs). Despite these diversity
of features, one common feature of all theorem provers is that they support logics that
are very expressive. This expressivity has allowed the applications of theorem provers
to proof well known theorems in different mathematical domains. The best example is
that Nqthm theorem prover has been able to mechanically verify Godel’s incomplete-
ness theorem [11]. But, this expressivity does not come without a cost; as it was pointed
out in section 2.2.2, any such sufficiently expressive logic that is consistent must be un-
decidable. This means that there can not be an automatic procedure for determining
if there is a derivation for some formula in a given logic, and therefore, the successful
use of theorem proving for deriving nontrivial theorems typically requires interaction
with a trained user. Any attempt to do theorem proving without a need of interaction
between the theorem prover and the trained user requires trading of expressivity for
automation like the case for the ATPs.

Nevertheless, theorem provers remain as one of the most important players in the
area of formal verification. Three of the most important things theorem provers are
generally known to do are:

• Given a formal logic, the theorem prover can mechanically verify if a certain

10

2. REVIEW OF THE STATE OF THE ART 2.2. Program Verification

sequence of formulas corresponds to a valid derivation in the formal logic. This
is done by checking if each formula in the derivation is either an axiom in the
formal logic or a result of applying an inference rule from the formal logic on the
previous formula of the sequence.

• When a heuristics for proof search is provided by the user, the theorem prover
can practically assist the user in the construction of a proof by implementing the
heuristics. Such heuristics of proof search include generalizing the formula for
applying mathematical induction, using appropriate instantiation of previously
proven theorems, judicious application of term rewriting, and so on.

• If the formula to be verified as a theorem can be expressed in some well-identified
decidable subset of the formal logic, then the theorem prover can make use of
decision procedures to determine if the formula is a theorem or not without a
need to interact with a trained user. For example, the ACL2 theorem prover that
has decision procedures for deciding linear inequalities over rationals [12].

Although there have been major successes in approaches aimed at automating the
search of proofs, undecidability still poses strong challenge on the automation. There-
fore, having a substantial interaction between the theorem prover and a trained user
is inevitable during the construction of nontrivial derivation for a formula using theo-
rem proving. In the interaction, the user is responsible for providing an outline for the
derivation of the formula required to be proved, and the theorem prover is responsi-
ble for deciding if a formal proof can be devised from the outline that can be used for
deriving the formula.

The approach to verify correctness of programs using theorem provers is exactly
the same as the approach to prove the correctness of any other mathematical statement
in a formal logic. The desired properties of the program are specified as formulas in
the logic of the theorem prover, and an attempt to derive the formulas is made from
the logic using the inference rules of the logic. But the size of the formulas that need
to be manipulated in order to verify programs could be extremely larger than those
manipulated to prove typical mathematical statements.

The main goal in formal verification research has been to automate proofs of cor-
rectness as much as possible which does not match with the fact that theorem provers
in practice need interaction with trained users to perform their activities. Neverthe-
less, theorem provers continue to be very useful players in formal verification for the
following 3 important reasons:

• In some cases, sufficiently expressive logic is needed simply to specify the desired
correctness properties of the program, and theorem proving is the only method

11

2. REVIEW OF THE STATE OF THE ART 2.2. Program Verification

one can depend on for proving such properties.

• Sometimes even when specifying the desired correctness properties is possible
with some decidable logic, for example, when one wants to reason about a finite-
state system, theorem proving has the advantage of being both succinct and gen-
eral.

• A very practical reason to use theorem proving is that fact that theorem provers
provide a substantial degree of control of the derivation process of complex theo-
rems for the user. This can be exploited by the user in different ways, for example,
by proving key intermediate lemmas that assist the theorem prover in its proof
search.

2.2.3.3 3. Model Checking and Bounded Model Checking

In theorem proving, automation is traded for the expressivity of the formal logic used
in the given theorem prover. But this does not change the fact that automation is the
ultimate target of formal verification, whether for a program or a more complex com-
puting system, and therefore, enabling automated verification, if possible, is a key con-
sideration. Given a desirable property to be verified, automated verification methods
make use of a decidable formalisms to represent the property as a formula under the
formalism being used, and a decision procedure, an algorithm that terminates with the
correct yes/no answer for some given decision problem, to prove the truth or falsity of
the formula.

Model Checking is one such method that was introduced in 1981 by Clarke and
Emerson [13], and independently by Queille and Sifakis shortly after [14]. It is an
automatic technique for verifying finite state reactive systems. Specifications are ex-
pressed in a propositional temporal logic, and the reactive system is modeled as a state-
transition graph. The model checking algorithm implements an efficient search proce-
dure to determine automatically if the specifications are satisfied by the state transition
graph. In the context of program verification, it determines if the model of a given pro-
gram satisfies its specification. The model of the program consists of all the possible
states the program can be at any one point during its execution, and transitions that
describe how a program evolves from one of its possible states to another. Therefore,
states of the program and the possible transitions among them together provide the
building bricks for modeling the program. A state is an evaluation of the program
counter, the values of all program variables, and the configurations of the stack and
the heap. The desired property of the program is specified as a logical formula. The
model checking algorithm checks whether the desired correctness property is satisfied

12

2. REVIEW OF THE STATE OF THE ART 2.2. Program Verification

by the reachable states of the program by exhaustively exploring each of these states. If
the desired property holds in all states of the program, the algorithm terminates with
the answer true; otherwise if it does not hold in any of the reachable states of the pro-
gram, the model checking algorithm computes a counterexample, an execution trace
leading to a state of the program in which the property does not hold. This procedure
is guaranteed to terminate if the state space is finite. The ability of model checking
algorithms to compute counterexamples is considered as a key feature, and by some
even as a reason for its acceptance as a formal verification techniques [15]. Although
the direct application of model checking techniques to implementation level code can
significantly increase the computational requirements for a verification, the promise
of this approach is that it can eliminate the need for expert model builders and can
place the power of automated verification techniques where it belongs: in the hands of
programmers [16].

Model checking tools verify partial specifications that are usually classified as safety
or liveness properties. Safety properties describe the unreachability of bad states, such
as when null pointer is dereferenced, stack overflow has occurred, API usage con-
tracts, like the order of function calls, are not respected, etc. Liveness properties on
the other hand describe that something good eventually happens such as the condi-
tion that requests must be served eventually, a program must eventually terminate,
etc. Like program logics, model checkers take specifications of a program given in the
form of preconditions and postconditions. However, unlike the case in program logics
where different specifications are given for the properties that should hold at differ-
ent points in the program, specifications in model checkers are defined for the entire
program.

The fact that model checking algorithms are based on exhaustive examination of
reachable states has raised a very critical issue in model checking called state-space
explosion: the state-space of a program is exponential on various parameters of the
program of which the most important ones are number of variables and the width of
the data-types. The state-space can even be infinite if there exist function calls and
dynamic memory allocations in the program. Concurrency worsens the problem even
more due to the different thread schedules that must be considered which are expo-
nential on the number of statements in the program. Despite the possibility of ending
in unmanageably huge state-space, model checking algorithms generate sets of states
to be analyzed by using instructions in the program, and store them to ensure that they
are visited no more than once.

Model checking algorithms are divided into two principal categories depending on
their methods for representing states: Explicit-state model checking algorithms and

13

2. REVIEW OF THE STATE OF THE ART 2.2. Program Verification

Symbolic model checking algorithms. Explicit-state model checking algorithms use an
explicit representation of the system’s global state graph, usually given by a state tran-
sition function. Symbolic model checking algorithms use a symbolic representation for
the state set, usually based on binary decision diagrams [17].

Explicit state model checking methods need to explicitly represent the program as
a state transition graph by recursively generating successors of states starting from the
initial state. The graph may be constructed in a depth-first, breadth-first, or using some
heuristic. Every time a new state is generated, it is checked for a property violation on
the fly, so that errors can be detected without a need to build the entire graph. Explored
states are stored in a hash table to avoid recomputing their successors when some state
that has been already explored is regenerated. The generated states are compressed
before storage so that memory usage is optimized. If the available memory is insuffi-
cient, lossy compression methods can be used. This may be risky because it may lead
to some error states being missed. In practice, with state spaces containing close to a
billion states, and hash tables of several hundred megabytes, the probability of miss-
ing a state can be less than 0.1% [18]. An important method of pruning state space
exploration for concurrent programs is called partial order reduction [19]. The order
in which instructions in different threads are executed may not make a difference for
proving some properties. Transitions whose interleavings do not affect the property
can be grouped into classes. A model checker only needs to generate one represen-
tative of each class while constructing the state graph. In the best case, partial order
reduction can reduce the state space to be explored by a factor that grows exponen-
tially in the number of threads. An explicit state model checker evaluates the validity
of the temporal properties over the model by interpreting its global state transition
graph as a Kripke structure, and property validation amounts to a partial or complete
exploration of the state space.

Symbolic model checking methods, which are based on manipulation of boolean
formulas, represent sets of states unlike the explicit state ones that enumerate indi-
vidual states. The most well known symbolic representations are boolean decision
diagrams(BDDs) [20] and propositional logic [21] for finite sets, and finite automata
[22] for infinite sets. A BDD is obtained from a boolean decision tree by maximally
sharing nodes and eliminating redundant nodes. For a fixed variable ordering, BDDs
are well suited for model checking since they allow boolean functional equivalence
(essential in symbolic model checking) to be checked efficiently. Although BDDs can
represent well system with excess of 1020 states, the memory requirement for storing
and manipulating BDDs is very huge since the set of states represented by boolean
functions grows exponentially. The issues in using finite automata for infinite state

14

2. REVIEW OF THE STATE OF THE ART 2.2. Program Verification

space are comparable with that of BDDs for finite state space [23]. Symbolic represen-
tations such as propositional logic formulas are more memory efficient, at the cost of
computation time.

Symbolic techniques work well for proving correctness and handling state-space
explosion due to program variables and data types. Explicit state techniques are well
suited to error detection and handling concurrency. A general approach to counter the
issue of state-space explosion that is not specific to proving correctness or detecting
errors unlike the two techniques above is abstraction. Since a program can, in general,
be represented by an infinite-state model, existing tools do not directly check programs
against specifications. Instead, a conservative finite state abstraction of the program is
first generated. In this approach, the state-space explosion is prevented by analyzing
a sound abstraction of the program that consists of smaller state space. Such an ab-
straction of the program used to be manually constructed, but due to advancements in
the corresponding tools recently, the construction can now be done automatically. A
framework known as CounterExample Guided Abstraction Refinement (CEGAR) [24]
iteratively create a more precise abstractions of the program until the desired proper-
ties are proven or a real counterexample is generated. Chaki, et al. [24] summarizes
the CEGAR process as follows:

• Model Creation : A model is computed using the control flow graph (CFG) of the
program in combination with an abstraction method called predicate abstraction
[25], [26]. Properties such as the equivalence of predicates are decided with the
help of a theorem prover.

• Verification : Verify that the abstraction conforms to the specification. If this is the
case, the verification is successful. Otherwise, obtain a possibly spurious coun-
terexample and go to the next step

• Validation: Check whether the counterexample extracted in the verification step
is valid. If this is the case, then we have found an actual bug and the verification
terminates unsuccessfully. Otherwise construct an explanation for the spurious-
ness of the counterexample and proceed to the next step

• Refinement: Use the spurious counterexample from the previous step to con-
struct an improved set of predicates. Return to the first (model creation) step to
extract a more precise model using the new set of predicates instead of the old
one. The new predicate set is constructed in such a way as to guarantee that
all spurious counterexamples encountered so far will not appear in any future
iteration of this loop.

15

2. REVIEW OF THE STATE OF THE ART 2.2. Program Verification

The explicit state, symbolic as well as abstraction based model checking approaches
discussed above differ from each other on how they view and try to tackle the state-
space explosion. But in general, there are two approaches to program verification using
model checking. The first approach requires transforming the implementation level
specification of the program (the code) systematically into a language that some given
verification tool can recognize. The program is rewritten in the syntax of the given
verification tool. An example is the first Java Pathfinder [27] which targets the SPIN
model checker [28]. This approach requires building a sort of parser that can read
and transform the implementation level specifications of the program (the actual code)
into detailed verification models that can be verified by a model checker. For the trans-
formation to be done accurately, the parser needs to be able to interpret the semantic
content of the program, and transform it into equivalent representations in the verifi-
cation model. The second approach involves the design of verification tools that can
take the program written in a certain programming language, and do the verification
reasoning on the program itself without a need for transformation. The verification
tool is designed specifically to handle a given programming language, and separate
tools are needed to handle each and every language. Examples for this approach in-
clude the second Java Pathfinder tool [29] and Blast tool [30]. This approach requires
a verifier that can make accurate decisions on the validity of a program execution af-
ter reasoning on the program itself. The major challenge in this approach will be the
construction of a full fledged verification tool for any formally defined programming
language. The challenge will be exacerbated for a programming language that was not
designed initially with the intention of making it amenable for verification tools.

In conclusion, the following facts have paved the way for the acceptance and high
success of model checking techniques in formal verifications of computing systems:

• Model checking is automatic

• Its approaches are not mainly based on doing proofs

• Model checking algorithms run fast

• When verification fails, counterexamples are generated, and

• It works well with Partial specifications

Actually, the introduction of symbolic model checking is considered as the ground
breaking achievement for the subsequent success of model checking in solving industry-
scale verification problems. The combination of symbolic model checking with BDDs
enabled the representation of programs whose number of states is in excess of 1020

16

2. REVIEW OF THE STATE OF THE ART 2.2. Program Verification

as discussed earlier in this section. The integration of abstraction techniques into this
process attracted a range of interest in model checking from the industry. This was fol-
lowed by a significant number of realistic systems, mostly of hardware nature, could
be verified using these model checking methods, which eventually resulted in accep-
tance and adoption of the methods in various areas of the computing industry in gen-
eral. The principal limitation of these methods is the large memory requirement of the
boolean functions used to represent the set of states. This limitation had motivated
Biere et al. to propose a technique called Bounded Model Checking(BMC) in 1999
[21] which was based on SAT techniques rather than BBDs. This technique is a form of
Model Checking that performs a depth-bound exploration of the state-space which im-
plies that the need to examine the entire state space is relaxed. BMC explores program
behavior exhaustively, but only up to a certain depth limit. If the incorrect properties
of the program are exhibited only in states that are beyond this depth limit, then BMC
will not catch this bugs, and may "verify" the program as correct.

Therefore, it is important of the BMC algorithm to explore "deep enough" so that
there is a guarantee that all the behaviors of the program are represented and evalu-
ated, and exploring further deep will only get states that have already been explored.
The depth limit that provides such a guarantee for the BMC algorithm is called a com-
pleteness threshold [31]. However, since finding the smallest such threshold is as hard
as model checking itself, in practice, BMC based methods usually try to compute and
make use of an approximate value for the completeness threshold. The approxima-
tion can be done either through syntactic analysis or by using iterative algorithms.
The first option uses the high-level worst-case execution time (WCET) to approximate
the depth-bound. Since this time is given by a bound on the maximum number of
loop-iterations, the number of loop-iterations is computed first by simply using syn-
tactic analysis of the loop structures, and then the WCET time is determined from
the number of loop iterations. If the number of loops can not be extracted from the
loop structures, iterative algorithms will be applied to approximate the bound. In the
iterative algorithm approach, an initial guess of the bound on the number of loop it-
erations is made, and then the loop is unrolled up to the bound with the assumption
that some conditions called unwinding assertions hold. If the conditions are violated,
a new higher bound is guessed, and the algorithm proceeds recursively until it reaches
a point where the unwinding assertions are satisfied. This method is very useful when
loops in a given program have run-time bound.

BMC is the best technique to find bugs that are not deep inside the state-space.
The very useful feature of generating a counterexample trace when a bug is found is
one of the best characteristics it takes from model checking techniques. On the down

17

2. REVIEW OF THE STATE OF THE ART 2.3. Constraint Programming

side, BMC is not generally complete, and completeness can be guaranteed only for
programs whose loops are not too deep.

There are a number of tools that implement BMC for program verification. BMC
was applied for the first time as a novel formal verification approach for equivalence
checking of small, assembly-language routines for digital signal processors (DSP) by
Currie et al. [32]. One of its first implementations of BMC for C programs is CBMC
[33] developed at Carnegie Mellon University.

In this work, constraint programming techniques are applied to the bounded model
checking approach to get an efficient program verification framework. Therefore, we
will first discuss the main features of constraint programming in the next subsection.

2.3 Constraint Programming

Constraint programming is one of the most exciting developments in programming
languages of the last two decades. It has now become one of the most suitable meth-
ods for modeling and solving optimization problems that involve complex relation-
ship among entities of the problem, and combinatorial search. This is due to the fact
that constraint programming is based on strong theoretical foundation. Unlike tra-
ditional programming languages, for instance object oriented languages, that provide
little support for specifying relationships among the programmer defined objects, such
relationships among programmer-defined objects form the base of constraint program-
ming. This fact is attracting widespread commercial interests as many critical problems
like job scheduling, timetabling and routing can be efficiently solved using constraint
programming.

A constraint is a restriction on the space of possibilities for some choice; it can be
considered as a piece of knowledge that filters out the options that are not legitimate to
be chosen, and hence narrowing down the size of the space. Formulating problems in
terms of constraints has proven useful for modeling fundamental cognitive activities
such as vision, language comprehension, default reasoning, diagnosis, scheduling, and
temporal and spatial reasoning, as well as having applications for engineering tasks,
biological modeling, and electronic commerce [34].

2.3.1 Constraint Satisfaction Problem(CSP)

A CSP in general consists of three main components:

• A set of variables which are objects that can take some value.

18

2. REVIEW OF THE STATE OF THE ART 2.3. Constraint Programming

• A set of domains for each variable in the CSP. The set of possible value for each
variable is called its domain.

• A set of constraints which are rules that impose limitation on the values that a
variable or a combination of variables may be assigned.

Therefore, a CSP can be defined as a model of some problem that consists of variables,
their domains, and constraints. A common example to illustrate a CSP is the n−Queens

problem which is aimed at placing n queens on an n× n chessboard such that there is
no possibility of attack between any two of the n queens. Two queens are said to attack
each other if they are put on the same row or the same column or the same diagonal of
the chessboard. One way of modeling this problem as a CSP is as follow: there are n

variables {x1, ...,xn} for each column of the chessboard, the domains for each variable xi

will be Di = {1, ...,n}, and the constraint on each pair of columns is that the two queens
must not share a row or a diagonal.

Formally, a CSP can be defined as the triple 〈X ,D,C〉, where X is a finite set of vari-
ables X = {x1, ...,xn}, with respective domains D = {D1, ...,Dn} which list the possible
values for each variable Di = {v1, ...,vk}, and a set of constraints C = {C1, ...,Ct}. A con-
straint Ci can be viewed as a relation Ri defined on the set of variables Si ⊆ X such
that Ri denotes the simultaneous legal value assignments of all variables in Si. Thus,
the constraint Ci can be formally defined as the pair 〈Si,Ri〉; Si is called the scope of
the constraint. A solution of the CSP is an n-tuple 〈V1, ...,Vn〉 where each Vi ∈ Di corre-
sponds to the value assigned to each variable xi ∈ X , and the assignment satisfies all
constraints in C simultaneously.

For example, the n−Queen problem for the case of 4 queens can be modeled as a
CSP using finite domains as follows: There are four variables X = {x1,x2,x3,x4}, with
domain Di = {1,2,3,4} for each of the variables. There are six constraints that avoids
any two queens from attacking each other; C1 = R1,2, C2 = R1,3, C3 = R1,4, C4 = R2,3,
C5 = R2,4, and C6 = R3,4. Here, Ri, j is a relation mapping each possible value of queen
i with a possible value of queen j simultaneously. The six constraints are given below
by extension:

• R1,2 = {(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)}

• R1,3 = {(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3)}

• R1,4 = {(1,2),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,2),(4,3)}

• R2,3 = {(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)}

• R2,4 = {(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3)}

19

2. REVIEW OF THE STATE OF THE ART 2.3. Constraint Programming

• R3,4 = {(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)}

Constraint programming is enabled by embedding constraints in some host lan-
guage. The first host languages used were logic programming languages such as Pro-
log, which explains the reason for the field to be initially called constraint logic pro-
gramming. In the language of Prolog, the domains of variables were represented as
a set of Herbrand terms and constraints were formed as equalities between Herbrand
terms. A CSP that consist of such constraints is solved by using the unification facility
of the Prolog host language to unify the Herbrand terms. For example, the constraint
stud(Id,Name) = stud(35031, tewodros) is solved through unification by assigning Id to
35031 and Name to tewodros. Constraint logic programming has been extended to
constraints over other domains among which the most important ones are boolean
constraints, real linear constraints and finite domain constraints.

2.3.1.1 Boolean Constraints

A constraint is called boolean if each variable in the constraint has a domain D = {0,1}.
Such constraints are particularly useful for modeling digital circuits, and boolean con-
straint solver can be used for verification, design, optimization etc. of such circuits.

2.3.1.2 Finite Domain Constraints

All variables in such constraints get associated with some finite domain, either explic-
itly declared by the program, or implicitly imposed by the finite-domain constraint
solver. By finite domain, we mean any set that can be mapped into a subset of integers.
Therefore, only integers and domain variables are allowed in finite domain constraints.

Finite-domain constraint solvers mainly deal with two classes of constraints called
primitive constraints and global constraints. All other types of constraints are automat-
ically translated to conjunctions of primitive and global constraints, and then solved.
Classes of primitive constraints defined by the solver include:

• Membership constraints: Examples include X in 1..5 which constraints the vari-
able X to have the set {1,2,3,4,5} as its domain, and domain(L,1,5) which con-
straints a list of variables L such that each variables in L has the set {1,2,3,4,5}
as its domain.

• Arithmetic constraints: Examples include X +Y # = 5 which constraints X and Y

to take values that can be summed up only to 5, and X# > Y which constraints
the value taken by X to be always greater than the value taken by Y .

20

2. REVIEW OF THE STATE OF THE ART 2.3. Constraint Programming

• Reified constraints: Instead of merely posting constraints, it is often useful to
reflect its truth value into a boolean variable B, so that the constraint is posted
if B is set to 1, the negation of the constraint is posted if B is set to 0, B is set to
1 if the constraint becomes entailed, and B is set to 0 if the constraint becomes
disentailed. This mechanism is known as reification. A reified constraint is writ-
ten as Cons# <=> B where Cons is the constraint to be reified and B is a boolean
variable.

• Propositional constraints: are complex constraints formed by combining indi-
vidual constraints using propositional combinators. The main propositional com-
binators include #/\, #\/, # =>, and # <=> which play roles similar to logical
conjunction, disjunction, implication and bi-implication respectively. For exam-
ple, given constraints C1 and C2, the propositional constraint C1#/\C2 (C1#\/C2)
is satisfied if and only if both(either) of C1 and C2 are satisfied.
Another propositional constraint C1# =>C2 valuates to true if C1 is false or C2 is
true. An important property of this constraint is that if C1 is true (resp. C2 is false),
then C2 should necessarily be true (resp. C1 should necessarily be false). This can
be used to specify constraints that are needed only under some condition. For
this reason, such constraints are also called conditional constraints.

Some of the most important global(combinatorial) constraints defined by the solver
include all_different, element, global_cardinality, etc. For example, all_di f f erent([X ,Y,Z])

constraints any variable in the list to take a unique value which is different from any
other variable in the list. Another global constraint, element(X ,L,Y), constraints Y to be
the X th element of the list L given some list L.

New user-defined primitive constraints can be added to the solver by writing so-
called indexicals whereas new user-defined global constraints can be also written in
Sicstus Prolog by means of a programming interface. A detailed explanation of the
various finite-domain constraints defined by the solver together with how to add user
defined constraints is given in [35].

2.3.1.3 Real Linear Constraints

Such constraints have variables that can take any real value. Unlike finite domains,
real domains are continuous and infinite. The solver called clp(R) is bundled into
many Prolog implementations as a library package which is used to solve real con-
straints. In addition to all the common arithmetic constraints, clp(R) adopts a simplex
like approach to solve a number of linear equations over real-valued variables, to cover

21

2. REVIEW OF THE STATE OF THE ART 2.3. Constraint Programming

the lazy treatment of nonlinear equations, to feature a decision algorithm for linear in-
equalities that detects implied equations, to remove redundancies, to perform projec-
tions (quantifier elimination), to allow for linear dis-equations, and to provide linear
optimization [35].

2.3.2 Constraint Solving Approaches

Given a CSP 〈X ,D,C〉, there are different ways of getting a value for each variable in
X from its respective domain in D that satisfies all constraints in C. A framework that
has utilities defined in it for modeling a given problem as a CSP, and that produces the
solution to the CSP if there is at least one or that tells the absence of a solution is called
a constraint solver. There are two broad classes of constraint solvers: complete solvers
and incomplete solvers.

2.3.2.1 Complete Solvers

Complete solvers implement decision procedures that take a given CSP and produces a
solved form of the problem. Examples of complete solvers include CLP(R) and CLP(B)
that are used for solving real linear constraints and boolean constraints respectively.
Although solving real linear constraints in itself is not possible in polynomial time,
since CLP(R) implements simplex algorithms, solving linear constraints is quite ef-
ficient. However, for CLP(B), the fact that the underlying representation of boolean
functions is based on Boolean Decision Diagrams results in exponential time being
required for solving constraints.

2.3.2.2 Incomplete Solvers

The most interesting and fundamental concept in constraint solving that drives in-
complete solvers is called constraint propagation. Solvers that implement propagation
techniques are based on the observation that if the domain of any variable in some CSP
is empty, the CSP is unsatisfiable. These solvers try to transform a given CSP into an
equivalent CSP whose variables have a reduced domain. If any of the domains in the
reduced CSP becomes empty, the reduced CSP, and hence the original CSP are said to
be unsatisfiable since both CSPs are equivalent. The solvers work by considering each
constraint of the CSP one by one, and they use the information about the domain of
each variable in the constraint to eliminate values from domains of the other variables.
These procedures alone may not succeed in getting a solution, as the case is often, and
hence enumeration of variables can be also needed. Therefore, incomplete solvers in-
terleave propagation and enumeration to obtain a solution or to infer the absence of

22

2. REVIEW OF THE STATE OF THE ART 2.3. Constraint Programming

any solution. Example includes CLP(FD) which is used to solve constraints over finite
domains. Boolean constraints can also modeled here as special case of finite domain
constraints with each variable having the domain D = {0,1}. Since propagation may
be of no use in the worst case scenario, eventhough propagation has a polynomial time
complexity, the CLP(FD) solver has an exponential time complexity on the size of the
domains.

There are different levels of consistency criteria that can be achieved by the con-
straint propagation algorithm. The most important ones include node consistency, arc
consistency, and bound consistency.

A CSP is node-consistent if there does not exist a value in the domain of any one
of its variables that violates a unary constraint in the CSP. This criterion is of course
very trivial but it is very important when it is considered in the context of an execution
model that incrementally computes solution from partial solutions.A more demanding
consistency criterion is arc-consistency. To be considered for arc-consistency, a CSP
must first be node-consistent. In addition, for every pair of variables 〈X ,Y 〉, for every
constraint Cxy defined over variables X and Y , and for each value Vx in the domain of
X , there must exist some value Vy in the domain of Y that supports Vx. For example, the
CSP 〈{X ,Y},{1..5,1..5},{X +Y > 7}〉 is not arc-consistent because there is no support
in the domain of Y when X takes 1 or 2 that satisfies the constraint X +Y > 7. The
same holds for Y also. An arc-consistent CSP which is equivalent to the original CSP is
obtained by reducing domains of X and Y from {1,2,3,4,5} to {3,4,5}.

Another type of consistency criteria is called bounds consistency defined on nu-
meric constraints which are arithmetic constraints of equalities or inequalities. For ex-
ample, the CSP 〈{X ,Y},{1..10,1..10},{X > Y}〉 in not bound-consistent because there
are some bound values in the domain of both variables that can never be part of any so-
lution as they do not have any matching value in the other variable to satisfy the given
constraint. If X takes the value 1, then there is no any matching value in Y that can sat-
isfy the constraint X >Y . Therefore 1 should not be in the domain of X. Similarly, there
is no matching value for X when Y takes the value 10. Likewise, 10 should not be in the
domain of Y. A bound-consistent equivalent CSP will be 〈{X ,Y},{2..10,1..9},{X >Y}〉.
Another example can be the CSP 〈{X ,Y},{3..10,1..8},{X =Y}〉. There is no any match-
ing values for Y when X takes either of 9 or 10 because we have an equality constraint
X = Y . Similarly should Y take either 1 or 2, there is no matching value in X that
satisfies the given constraint. A bound-consistent equivalent CSP in this case will be
〈{X ,Y},{3..8,3..8},{X = Y}〉.

Algorithms that impose arc-consistency are polynomial on the number of variables,
whereas algorithms that impose bounds-consistency are linear on the size of domains

23

2. REVIEW OF THE STATE OF THE ART 2.3. Constraint Programming

of variables. Global constraints have specialized propagation algorithms that exploit
the semantics of the constraints to obtain a much faster propagation, and hence a much
faster solving of the constraints.

24

3
Constraints Model Generation

In this work, an efficient way of verifying a program with respect to its specification
is studied. The input program is written in some subset of Java, and its specifica-
tions (precondition and postcondition) are written in some subset of JML. The only
datatypes allowed in the program are integers and array of integers. The program
is assumed to be functional and sequential, and it is assumed not to make any func-
tion calling. The desired property of the program we are interested to prove is partial
correctness with respect to the its specification.

In General, a Bounded Model Checking based approach is used, and in particular,
the first approach of Model Checking that requires transformation of the program into
the language of the verification tool is applied. Since constraint solvers are used as
verification tools in our work, a parser is required that can generate a semantically
equivalent system of constraints for the input Java program and its specification in
JML. The system of constraints is formed as the union of the constraints corresponding
to the program, its precondition, and the negation of its postcondition. The system of
constraints should be modeled in such a way that the constraint solver can solve it as
efficiently as possible. The constraint solver then takes this system of constraints and
tries to solve it. If it succeeds in at least one scenario, then the solution is returned as a
bug of the program. If it fails in every possible scenario, the program is assumed to be
correct.

25

3. CONSTRAINTS MODEL GENERATION 3.1. Introduction

3.1 Introduction

For the verification of a given program via constraints programming as a tool, there
must be a way of transforming the original program into a system of constraints on
which the actual verification process can be done using constraint solvers. The success
of the verification process depends not only on how efficiently the solver can solve
the constrains system but also on how accurately the original program can be trans-
formed into the system of constraint. The accuracy of the transformation is very crucial
because a significant difference between the original program and the corresponding
system of constraints will make any judgment that has been made about the original
program based on the system of constraints unacceptable. Therefore, the transforma-
tion should always keep the semantics and logic of the original program, and the only
significant difference allowed is the representation used. In this study, the original
program is written in Java and its corresponding constraint system uses Sicstus Prolog
syntax. The responsibility of keeping the semantics and logic of the original program
in the resulting system of constraints falls on the parser which is the component doing
the task of transforming the Java program into a constraint logic program in Sicstus
Prolog.

The parser reads a program written in Java along with its preconditions and post-
conditions written in the Java Modeling Language(JML), parses each of the Java struc-
tures it gets on the way into Sicstus Prolog structures, and generates a system of con-
straints equivalent to the original program it has read. This requires the parser to be
capable of reading, recognizing and parsing all types of Java structures. However,
since this work does not focus on building a complete parser to convert Java programs
to their equivalent constraint systems, this parser handles only programs written is
some subset of the Java programming language. The parser also handles precondi-
tions and postconditions written only in some subset of JML. These subsets of Java
and JML the parser can handle are discussed in detail in section 3.2. The parser reads
structures from the Java or JML subset it can handle, and generates the corresponding
constraints in Prolog. The issue of transforming Java structures from the original pro-
gram into these constraints will be discussed in detail in section 3.3 where the equiv-
alent constraints generated by the parser for each and every structure in the Java and
JML subsets are shown.

26

3. CONSTRAINTS MODEL GENERATION 3.2. The subset of Java language handled

3.2 The subset of Java language handled

The original program which is the input to the parser can be considered as consisting
of two main parts; the first part is the specification of the preconditions and postcondi-
tions of the program written in JML, and the second part is the actual program written
in Java. Although the parser does the translation of both parts together, the languages
used to program or specify these two parts are totally different, and the subsets of each
of these languages that the parser can handle are also different. Therefore, the parser
considers the original program as a JML code, which specifies the preconditions and
postconditions of the program, followed by the actual Java program as shown in the
grammar below.

Original_Program --> JML_Code, Program

3.2.1 Subset of Java language

The subset of Java language the parser can handle contains only basic and simple struc-
tures of the language that are sufficient to handle the sample programs used in this
study but the subset can be scaled up in case of any need to incorporate more struc-
tures.
The parser assumes the input program to be a function that has a return type, a name
which is an identifier, a list of arguments which are the input parameters of the func-
tion, and contains a code block followed by a return statement between opening and
closing parentheses.

Program --> Type, Identifier, ’(’,List_Of_Arguments,’)’,

’{’, Code_Block, Return_Statement, ’}’

A code block is a sequence of statements where each statement can be a declaration,
an assignment, an if_else statement, a while loop or any of these followed by a code
block.

Code_Block --> Declaration | Declaration, ’;’, Code_Block |

Assignment | Assignment, ’;’, Code_Block |

If_Else | If_Else, Code_Block |

WhileLoop | WhileLoop, Code_Block

Since we are considering only programs with variables of type integer or one-dimensional
array of integers, a type is either the keyword int or int[], and all declarations are state-
ments of the form type followed by an identifier. An assignment is a statement which

27

3. CONSTRAINTS MODEL GENERATION 3.2. The subset of Java language handled

consists of the equality sign =, and an identifier and an expression to the left and right
hand side of the sign respectively.

Type --> int | int,’[’, ’]’

Declaration --> Type, Identifier

Assignment --> Identifier, ’=’, Expression

The definition of an expression is given recursively as a number, an identifier, or any
two expressions combined by one of the arithmetic operators in {+,−,∗,/}. In Java,
an array variable of type integer can have additional expressions for different purpose;
for example given an array variable arr, its ith element can be given as the expression
arr[i], and its length can be given as the expression arr.length. Since this two types of
expressions are used repeatedly in the sample programs considered in this study, it
has been inevitable for the parser to include them in the base definition of expressions,
in addition to numbers and identifiers. The full definition of an expression is given
below.

Expression --> Number | Identifier |

Identifier, ’.’, length |

Identifier, ’[’, Expression, ’]’ |

Expression Binary_Op Expression

Binary_Op --> ’+’ | ’-’ | ’*’ | ’/’

An if_else statement consists of the keyword i f followed by a condition, a code block in
between two parentheses and an optional else part. The else part starts by the keyword
else followed by a code block in between two parentheses.

If_Else --> if, Condition, ’{’, Code_Block, ’}’ |

if, Condition, ’{’, Code_Block, ’}’, else,

’{’, Code_Block, ’}’

A while-loop is a statement that starts with the keyword while followed by a condition
and a code-block in between two parentheses.

WhileLoop --> while, Condition, ’{’, Code_Block, ’}’

A condition is a unit-condition, negation of another condition or any two conditions
combined using a boolean operator. A unit-condition consists of two expressions com-
bined together by a comparison operator.

Condition --> UnitCondition | ’!’, Condition |

Condition, Boolean_Op, Condition

28

3. CONSTRAINTS MODEL GENERATION 3.2. The subset of Java language handled

UnitCondition --> Expression, Comparison_Op, Expression

Comparison_Op --> ’==’ | ’!=’ | ’>’ | ’>=’ | ’<’ | ’<=’

Boolean_Op --> ’&&’ | ’||’

The complete grammar for the subset of Java language the parser can handle is shown
in figure 3.1. In addition to the main structures whose definition is given above, the
grammar below contains definitions of basic structures like Identi f ier, Number and
Return_Statement that are used as the building blocks in the definitions above.

3.2.2 Subset of JML

Like the subset of the Java language considered above, the subset of JML that can be
handled by the parser contains only basic structures of the modeling language that are
used in the sample programs considered in this study. In case of any need to handle
more structures, the subset can be extended by providing the definitions of the addi-
tional structures to the parser.
A JML code consists of the precondition followed by the postcondition.

JML_Code --> ’/*’, Precondition, Postcondition,’*/’

A precondition starts by the character @ followed by the keyword requires, and then a
JML-condition will complete the definition.

Precondition --> ’@’, requires, JMLCondition

A postcondition has the character @ and the keyword ensures at the beginning fol-
lowed by a postcondition block. A postcondition block is defined as a sequence of one
or more postcondition statements. Each postcondition statement starts by the character
@ followed by two JML-conditions which are separated by the symbol ==> showing
the implication relation between the two conditions.

Postcondition --> ’@’, ensures, Postcondition_Block

Postcondition_Block --> Postcondition_Statement |

Postcondition_Statement, ’&&’,

Postcondition_Block

Postcondition_Statement --> ’@’, JMLCondition, ’==>’, JMLCondition

A JML condition can be a normal condition like the one defined in the previous sub-
section for the subset of Java, or can also be defined using a for loop as shown below.

29

3. CONSTRAINTS MODEL GENERATION 3.2. The subset of Java language handled

Program --> Type, Identifier, ’(’,List_Of_Arguments,’)’,

’{’, Code_Block, Return_Statement, ’}’

Identifier --> Letter | Letter, Followers

Followers --> Number | Number, Followers | Letter |

Letter, Followers

Letter --> a | b || ’A’ | ’B’ || ’Z’

Number --> Positive_Number | Negative_Number

Positive_Number --> Digit | Digit, Positive_Number

Negative_Number --> ’-’, Positive_Number

Digit --> 0 | 1 | | 9

List_Of_Arguments --> Declaration |

Declaration, ’,’, List_Of_Arguments

Code_Block --> Declaration | Declaration, ’;’, Code_Block |

Assignment | Assignment, ’;’, Code_Block |

If_Else | If_Else, Code_Block |

WhileLoop | WhileLoop, Code_Block

Type --> int | int, ’[’, ’]’

Declaration --> Type, Identifier

Assignment --> Identifier, ’=’, Expression

If_Else --> if, Condition, ’{’, Code_Block, ’}’ |

if, Condition, ’{’, Code_Block, ’}’, else,

’{’, Code_Block, ’}’

Condition --> UnitCondition | ’!’, Condition |

Condition, Boolean_Op, Condition

UnitCondition --> Expression, Comparison_Op, Expression

Comparison_Op --> ’==’ | ’!=’ | ’>’ | ’>=’ | ’<’ | ’<=’

Boolean_Op --> ’&&’ | ’||’

Expression --> Number | Identifier |

Identifier, ’.’, length |

Identifier, ’[’, Expression, ’]’ |

Expression Binary_Op Expression

Binary_Op --> ’+’ | ’-’ | ’*’ | ’/’

WhileLoop --> while, Condition, ’{’, Code_Block, ’}’

Return_Statement --> return, Identifier

Figure 3.1: Subset of Java

30

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

JMLCondition --> Condition |

forall, Declaration, ’(’,Condition, ’&&’,

Condition, ’)’, ’;’, Condition

The complete grammar for the subset of JML the parser can handle is shown in fig 3.2.

JML_Code --> ’/*’, Precondition, Postcondition, ’*/’

Precondition --> ’@’, requires, JMLCondition

JMLCondition --> Condition |

forall, Declaration, ’(’, Condition, ’&&’,

Condition, ’)’, ’;’, Condition

Postcondition --> ’@’, ensures, Postcondition_Block

Postcondition_Block --> Postcondition_Statement |

Postcondition_Statement, ’&&’,

Postcondition_Block

Postcondition_Statement --> ’@’, JMLCondition, ’==>’, JMLCondition

Figure 3.2: Subset of JML

3.2.3 An example program

The program below computes the sum of all even numbers less than or equal to a
given integer number. The program requires its input not to be a negative number
and in turn it ensures its output to have some value depending on the value of the
input and whether this input is even or odd. The program along with its precondition
and postconditions written in the subset of Java language and JML subset the parser is
made to recognize is shown in figure 3.3.

Therefore, in order for some program to be transformed into the constraint system
using the constraint solvers that can do the verification process, the program must be
written using only the constructs and syntax that can be recognized by the parser.

3.3 Input program to constraints model transformation

3.3.1 An important consideration: versioning

A problem that will be uncovered when trying to translate a program in procedural
languages like Java to a constraint system in a declarative language like Prolog is how

31

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

/*@ requires (N>=0);

@ ensures @ (N mod 2== 0)==>(/result==(((N*N)+(2*N))/4)) &&

@ (N mod 2==1)==>(/result==(((N*N)-1)/4))

*/

int sumOfEven(int N) {

int i; int sum;

i=0;

sum=0;

while(i<=N){

if(i mod 2 ==0) {sum=sum+i;}

i=i+1;}

return sum;

}

Figure 3.3: An example program

to represent procedural language’s variables, which have state, with declarative lan-
guage’s variables that are stateless. For example, the statement X = X + 1 is a valid
assignment statement in Java that change the state of the variable X . This statement
takes the current value of X , adds the value 1 to it, and assigns the sum back to the
same variable X . In procedural languages like Java, no matter what a variable con-
tains, it is possible to assign a new value to it as far as the data type is valid. But the
same statement X = X + 1 will always fail in Prolog. This is because Prolog tries to
unify both occurrences of X with the same value but it will never succeed in finding
any such value that can be added to one and still remains the same! One way to solve
this problem is to replace the statement X = X + 1 with another statement Y = X + 1,
and using the variable Y in the place of other subsequent occurrences of X . In the im-
plementation of this parser, the concept of introducing versions for each occurrence of
each variable in the original program, which play a role like that of state in procedural
language variables, is applied.

The concept of versioning variables works like this: every time a parser reads a
declaration of a new variable, it instantiates the version of the variable to its initial
value 0. The version of a variable will be updated every time the parser comes across
an assignment statement where some expression is assigned to the variable. After the
assignment the current version of the variable will be the new version. The name of
the variable in the constraint system the parser is going to generate will be the name
the parser reads from the program qualified by the current value of its version at the
end. Assume the parser has just read the declarations of variables X , Y and Z. At

32

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

this moment, the current version of these three variables is 0 by definition. The Java
expression X +Y will be represented as X0+Y 0 in the resulting constraint system. But
the Java assignment statement Z = X +Y will be represented as Z1 = X0+Y 0 or the
assignment statement X = X +1 that we considered above will be represented as X1 =

X0+ 1 in the resulting constraint system which clearly solves the problem that was
discussed above. Since the assignment statements have updated the current versions
of X and Z to 1, another assignment statement Z = X +Y will be represented as Z2 =

X1+Y 0 in the constraint system. After declaration, Z has been assigned twice which
causes its current version to be 2, X has been assigned only once which causes in its
current version to be 1, and Y was not assigned at all which causes its current version
to remain 0.

int X; int Y; int Z;

Z=X+Y; ------> Z1=X0+Y0

X=X+1; ------> X1=X0+1

Z=X+Y; ------> Z2=X1+Y0

However, introducing versions for variables may cause some confusion due to un-
matched update of variable versions in the different paths of the program when there
is branching in the program. This occurs often when parsing if_else statements and
while loops. Let us consider the sample code given in figure 3.4. Since transformation
of programs to constraint systems is not yet discussed we use a Java if_else statement
focusing on the assignments inside the if and the else code blocks. The condition X >Y

will be represented as X0 > Y 0, the assignment X = X + 1 as X1 = X0+ 1, and the as-
signment Y = Y + 1 as Y 1 = Y 0+ 1. But how to represent Z = X +Y ? Simply adding
Z1 = X1+Y 1 after the if_else statement alone, as shown in figure 3.5, is wrong since ei-
ther X1 or Y 1 will be invalid depending on the evaluation of the condition. In order to
match changes of versions in different branches of a conditional statement, the easiest
way is to add a matching assignment statement. In our example, adding Y 1 =Y 0 in the
if block and X1 = X0 in the else block, as shown in figure 3.6, guarantees that no matter
what the condition is, it is safe to represent the assignment Z = X +Y as Z1 = X1+Y 1
in the constraints system being generated. This is true because if the condition is true
variable X will be assigned a new value and its version will be updated like before but
what is new here is the added assignment Y 1 = Y 0 will cause the update in the ver-
sion of the variable Y parallel to that of Y 1 = Y 0+ 1 in the else block. Similarly, if the
condition is false, the assignment X1 = X0 in the else block will do the matching of the
version of variable X with that of the assignment X1 = X0+1 in the if block.

33

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

int X; int Y; int Z;
if(X>Y) {X=X+1} else {Y=Y+1};
Z=X+Y;

Figure 3.4: A sample code illustrating variable versions

if(X0>Y0){X1=X0+1} else{Y1=Y0+1}
Z1=X1+Y1

Figure 3.5: Transformation with wrong version of variables

if(X0>Y0){X1=X0+1,Y1=Y0} else{Y1=Y0+1,X1=X0}
Z1=X1+Y1

Figure 3.6: Transformation with correct version of variables

Although it adds computational complexity to the parser, the idea of having ver-
sion for each occurrence of every variable in the original program has enabled simple
transformation of assignment statements from the original Java program into the con-
straint system which is based on Sicstus Prolog syntax.

3.3.2 Program to constraints transformation

The parser transforms the Java language constructs it reads from the original program
into finite domain constraints so that they can be solved using the CLPFD library of
Sicstus Prolog. The transformation for each of the main structures in the Java language
subset the parser can handle is given below.

3.3.2.1 Declaration

When the parser reads a declaration like int x or int[] tab, an initial version of 0 is instan-
tiated for the variable, and a corresponding declaration of the variable will be made in
the syntax of Sicstus Prolog CLPFD library which states the domain of the variable to
be in the range -65635 to 65635.

For example, when the declaration int x is read, the parser adds the corresponding
domain declaration statement _x0 in − 65635..65635 in the constraints system. Simi-
larly, when the declaration int[] tab is read, since tab is an array variable, the parser
makes a domain declaration domain(_tab0,−65636,65635) which implies that _tab0 is
a list variable that corresponds to the integer array tab in Java.

It can be seen that the original variable is not only postfixed by its version but also
prefixed by an underscore. This is the technique used by the parser to ensure that
a given identifier is a valid variable in Prolog; by adding the underscore sign, any
identifier whether it starts by lower case letter or upper case letter is guaranteed to be
a valid Prolog variable.

34

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

3.3.2.2 Expression

Transforming Java expressions into their equivalent Prolog expressions is trivial when
the Java expression consists of only integer variables or constants, and there is no array
sub-expression inside the expression. For example, the parser transforms the expres-
sions x, x+2, and 5 into _x0, _x0+2 and 5 respectively assuming the current version of
x is 0.

But transforming expressions which contain some array sub-expressions is not straight
forward due to the representational difference between Java and Prolog. Given an ar-
ray variable arr, we have already defined in section 3.2 two important expressions
on array variables which are arr.length and arr[i] holding the length and the ith ele-
ment of the array respectively. When the expression arr.length is read, with the as-
sumption that arr is already declared as a list _arr0, the parser adds the statement
length(_arr0,_arr0Len0) to the constraint system and the newly created variable _arr0Len0
will play a role in the constraint system equivalent to arr.length in the Java program.
The parser has its own ways of generating unique fresh variables when required. For
example, when the parser reads the Java expression arr.length+ x, it adds the state-
ments length(_arr0,_arr0Len0) and _arr0Len0+_x0 into the constraints system.

When the expression arr[i] is read, with the assumption of _i0 is the current copy
for variable i used as the index of the array, the parser adds the statement _i1# = _i0+
1 and element(_i1,_arr0,_arr0Elem0) to the constraint system, and the newly created
variable _arr0Elem0 will play a role in the constraint system equivalent to arr[i] in the
Java program. Arrays in Java start from 0 for the first element where as the constraint
element starts from 1 for the first element of an array. The assignment _i1# = _i0+ 1
is added to match this semantic difference. For example, when the parser reads the
Java expression arr[i] + x, like the case above, it adds the statements _i1# = _i0 + 1,
element(_i1,_arr0,_arr0Elem0) and _arr0Elem0+_x0 into the constraints system.

3.3.2.3 Assignment

In section 3.3.1, it was discussed that every time an assignment is done to some vari-
able, the version of that variable is updated. Therefore, an assignment not only requires
the parser to make the accurate representation of the assignment statement but also to
keep track of changes in the versions of variables that appear at the left hand side of
the assignment operator. When the parser comes across an assignment statement there
are two cases depending on the left hand side of the assignment operator. The trivial
case is when the left hand side is a simple integer variable. For example, x = x+1 will
be transformed into _x1# = _x0+1.

The case is non-trivial when the left hand side is an indexed array variable. For

35

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

example, when the parser comes across the assignment arr[i] = 5, with the assumption
that arr is already declared as a list _arr0, it needs to create the next version of the
variable, which should be a list of similar size for this example, say _arr1 then it should
copy all elements of _arr0 to _arr1 except the ith element; 5 should be assigned to the
the ith element of _tab1. In Sicstus Prolog syntax, the parser transforms the assignment
arr[i] = 5 into the set of statements given below and adds to the constraints system.

_i1#=_i0+1,

same_length(_tab0,_tab1,_tab0Len0),

(for(Count0,1,_tab0Len0) do

element(Count0,_tab0,_tab0Elem0),

element(Count0,_tab1,_tab1Elem0),

(Count0#=_i1)#=>_tab1Elem0#=5,

#\(Count0#=_i1)#=>_tab1Elem0#=_tab0Elem0)

3.3.2.4 Condition

Conditions are one of the most frequently encountered structures for the parser since
they form part of if_else statements, while loops, preconditions and postconditions.
Generally, when the parser reads a condition, it first creates a new boolean variable us-
ing its automatic variable generation facility, reifies the condition to the newly created
boolean variable, and uses the boolean variable instead of the actual condition. For ex-
ample, when the parser reads the condition x > 5, it creates a new boolean variable say
_bool0, does reification of this variable and the condition using the reified constraint
_bool0# <=> _x1# > 5 assuming the current version of the variable x is 1, and uses
_bool0 in the place of the condition x > 5.

At the start of this chapter, it was said that the main objective of the parser is to
transform Java programs into their equivalent constraints’ system in such a way that
efficient solving of the generated constraints’ system is facilitated. The parser has a
number of techniques to achieve its efficiency objective. One such technique is applied
when a new condition is read. Whenever the parser reads a condition, before creating
a new variable and reifying the condition with the variable, it checks whether the con-
dition (or the negation of the condition) has already been read by the parser sometime
before this moment or not. If the condition has been already read by the parser be-
fore, it means that the condition has been already reified with some boolean variable.
Therefore, the parser can simply make use of this variable without a need to create a
new variable, and also without a need to do any reification. Similarly, if the negation
of the condition has been already read by the parser before, it means that the negation
of the condition has been already reified with some boolean variable. Therefore, the

36

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

parser can simply make use of the negation of this variable without a need to create a
new variable, and also without a need to do any reification.

For example, assume that after reading the condition x > 5 and doing the reification
to _bool0 above, the parser reads additional conditions y > 10, x > 5, and x <= 5 one
after the other in some program. The condition y > 10 has not been already read by
the parser before, so the parser creates a new boolean variable say _bool1 and does
the reification using the reified constraint _bool1# <=> _y1# > 10 with the assumption
that the current version of variable y is 1. For the condition x > 5, since the parser has
already read an instance of this condition before, it will just use the boolean variable
which was previously reified to this condition by the parser which is _bool0. For the
condition x <= 5, since the parser has already read its negation which is x > 5 and
has already done a reification between the negation of the condition and the boolean
variable _bool0, the negation of the boolean which is #_bool0 will be used to represent
the condition x <= 5.

3.3.2.5 If_Else Statement

When an if_else statement is read, the parser transforms it into a conjunction of two
logical implication statements under the syntax of Sicstus Prolog CLPFD library where
the first logical implication represents the if block, and the second logical implication
represents the else block of the if_else statement. The left hand side of the implication
that represents the if block will be the condition of the if_else statement where as the
left hand side of the implication that represents the else block will be the negation of
the condition of the if_else statement. This is illustrated by the sample if_else state-
ment code given in figure 3.7 along with its corresponding constraint generated by
the parser. It can be seen that the constraint generated is a conjunction of the first im-
plication (_bool0# => _y2# = 5) representing the if block, and the second implication
(#_bool0# => _y2# = 10) representing the else block. The first implication has _bool0
on its left hand side where as the second implication has (#_bool0) on its left hand
side.

if(x>5){y=5;} else{y=10;}

_bool0#<=>_x1#>5,
_bool0#=>_y2#=5,
(#_bool0)#=>_y2#=10

Figure 3.7: If_Else statement transformation

The else part is optional in an if_else statement as it was specified in section 3.2,

37

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

and it is common to have an if_else statement with an if block only i.e without the
optional else block. Even when the if_else statement consists of only the if part in the
original Java program, it is usually the case that assignment statements generated by
the parser to handle version matching of variable will be added to the else part in the
constraint system. This can be illustrated by the sample Java code and its correspond-
ing constraint given in figure 3.8 (It is assumed that the versions of both variables x and
y were 1 when the parser read the statement). It is obvious that the first implication,
(_x1# > 5# => _y2# = 5) represents the actual statement given in the Java program. But
the second part, (#\(_x1# > 5)# => _y2# = _y1), is generated and added by the parser
to match the changes done by the if part so that the current version of the variable will
be the same whether the if path or the else path is followed.

if(x>5){y=5;}

_bool0#<=>_x1#>5,
_bool0#=>_y2#=5,
(#_bool0)#=>_y2#=_y1

Figure 3.8: If_Else statement without the else part

Sometimes more changes to the version of variables could be done in the else part
of the if_else statement which requires addition of version matching assignments in
the if part. Given below is a sample if_else statement and its corresponding constraint
generated by the parser with the assumption that the version of all variables was 1
when the statement was read by the parser.

if(x>5){y=5;} else{y=10; z=10;}

_bool0#<=>_x1#>5,
_bool0#=>(_y2#=5#/_z2#=_z1),
(#_bool0)#=>(_y2#=10#/_z2#=10)

Figure 3.9: If_Else statement with more changes in the else part

It can be seen that the variable z is changed only in the if block, which requires a ver-
sion matching statement for the variable to be added to the if block. Therefore, the first
implication that represents the if part of the statement has the assignment _z2# = _z1
playing the role of matching the versions of the variable in the if block and else block.
It is also common that some variables will be changed in the if block but not in the
else and some others will be changed in the else block but not in the if block. In this
case, version matching assignments need to be added to both of the implications rep-
resenting the if block and else block of the if_else statement. This is illustrated by the

38

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

example code given in figure 3.10 along with its corresponding constraint generated
by the parser.

if(x>5){y=5; m=5;} else{y=10; z=10;}

_bool0#<=>_x1#>5,
_bool0#=>(_y2#=5#/_m2#=5#/_z2#=_z1),
(#_bool0)#=>(_y2#=10#/_z2#=10#/_m2#=_m1)

Figure 3.10: If_Else statement with changes in both of the If and the Else parts

It is common to have nested if_else statements in the original program. When an
if_else statement is nested in another one, it means that either or both of the if and else
blocks of the statement have another if_else statement inside. Normally, the parser
does not do anything special to handle this case, and it simply treats the block with
the nested if_else statement like any other block. This can be illustrated by the nested
if_else statement and its corresponding constraint shown in figure 3.11. As it is given
below, the nested if_else statement i f (x > 10){z = 0;}else{z = 5;} itself is transformed
into the constraint (_bool1# => _z2# = 0#/\(#_bool1)# => _z2# = 5). This constraint
is treated simply as an element of the if block for the outer if_else statement like the
other statement _y2# = 5.

if(x>5){y=5; if(x>10){z=0;} else{z=5;}}
else{y=10; z=10;}

_bool0#<=>_x1#>5,
_bool1#<=>_x1#>10,
_bool0#=>(_y2#=5#/\(_bool1#=>_z2#=0#/\(#_bool1)#=>_z2#=5)),
(#_bool0)#=>(_y2#=10#/_z2#=10)

Figure 3.11: Transformation of nested If_Else statement

A more efficient and elegant way of representing a nested if_else statements is by
giving it a special treatment from the rest of statements in the block in such a way that
by just using the condition or the negation of condition of the outer if_else statement
that it is nested in, the nested statement can be described independent of the rest of the
block. This can be illustrated by the sample code shown in figure 3.12 together with its
corresponding constraints generated by the parser. The parser can do the transforma-
tion into either of these representations.

39

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

if(x>5){y=5; if(x>10){z=0;} else{z=5;}}
else{y=10; if(x>0){z=-5;} else{z=-10;}}

_bool0#<=>_x1#>5,
_bool1#<=>_x1#>10,
_bool2#<=>_x1#>0,
_bool0#=>_y2#=5,
_bool0#/_bool1#=>_z2#=0,
_bool0#/\(#_bool1)#=>_z2#=5,
(#_bool0)#=>_y2#=10,
(#_bool0)#/_bool2#=>_z2#=-5,
(#_bool0)#/\(#_bool2)#=>_z2#=-10

Figure 3.12: More efficient nested If_Else representation

3.3.2.6 While Loop

Transformation of a while loop into a constraint needs the application of a bound so
that the loop is guaranteed to terminate after a fixed number of iterations in the con-
straints system. Therefore, unlike the case in the original Java program where the deci-
sion to continue in the loop or to break the loop is made depending on some condition,
the constraint corresponding to the while loop iterates some fixed number of times,
which is the bound given before hand, independent of the condition of looping given
in the original program. But what is being done inside the loop during each iteration
depends on the evaluation of the condition. In order to implement this concept, there
are certain things the parser does whenever it reads a while loop. The first thing it
does is to identify the variables which appear at the left hand side of any assignment
operation in the loop. This is very important because a new version for each of these
variables must be created every time the loop is executed. For each of these variables,
a list is created whose first element is the current value of the variable and whose size
is equal to the number of iterations we want the loop to run for or simply the bound
of the loop. Additional variables the parser should identify are the ones that are only
used in the loop but do not appear on the left hand side of any assignment. Since there
is no any need to change the version of any of these variables, the parser does not need
to create a list of versions of these variables; just the current version is enough for the
loop. For example, let us exemplify what the parser does when it reads a while loop
with the code fragment given in figure 3.13.

The parser identifies that there are three variables in the loop: x, i, and sum, out
of which x and sum appear at the left hand side of some assignment where as i does
not appear at the left hand side of any assignment. Therefore the parser creates a
list containing copies of x and sum variables to be used during each iteration of the

40

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

int x; int i; int sum; int fsum;
x=0; i=1; sum=0;
while(x<10)
{

x=x+i;
sum=sum+x;

}
fsum=sum;

Figure 3.13: An example code with a while loop

loop. Assuming a maximum bound of 20, the parser creates a list of size 20 for each
of these variables in the constraint system by adding the statements length(_x0List,20)
and length(_sum0List,20). In addition, the current values of both of these variables
must be assigned to the first elements of the corresponding lists. The parser enforces
this assignment by adding the assignments _x0List = [_x0|_] and _sum0List = [_sum0|_]
to the constraint system. There is no need to create copies of variable i since its value
is not subject to change in the body of the loop. So, the parser will have the two lists
_xoList and _sum0List containing all the copies of variables x and sum respectively each
of which are going to be used during each iteration of the loop, and _i0 for the variable
i which remains unchanged during any iteration of the loop.

Once the parser has identified these two sets of variables, it implements the while
loop as a predicate that has three sets of arguments: the lists created by the parser for
each variable changed in the body of the loop, the variables that are not changed in the
loop, and new variables corresponding to the variables subject to change in the loop.
Each of these new variables is used to hold the value of the last copy of the variable
that is subject to change. For the example above, the only additional variables required
are the ones for the last copies of the variables subject to change. In order for these
variables to be used as the next versions of the variables, the parser gives the name of
the next versions of the original variables for these new variables. i.e for variables x and
sum, whose current versions before starting the loop was both 0, their next version will
be with version 1 for both which are _x1 and _sum1. Once these three sets of variables
are identified the parser calls the predicate whileloop0 which represents the actual body
of the loop by adding whileloop0(_x0List,_sum0List,_i0,_x1,_sum1) into the constraint
system.

The next thing the parser does is to implement the predicate that plays the actual
role of the while loop. The main feature of this predicate is that it takes the first element
of each list for the variables subject to change in the loop, computes the new values for
each of these variables as the predicates executes, assigns the new values of each vari-
able to the second element of the list representing the variable, and finally calls itself

41

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

recursively using the same arguments except for the lists representing the variable sub-
ject to change. In the recursive call, the predicate uses the tails of each of the input lists
that represent the variables subject to change in the loop. What the predicate does dur-
ing its execution depends on the evaluation of the condition. If the condition evaluates
to true, then it does what ever is there in the body of the loop, but if the conditions
evaluates to false the predicate does version matching operations by just assigning old
versions of variables to the new ones. The implementation of the whileloop0 predicate
from the example in figure 3.13 along with the complete transformation of the loop
done by the parser is shown in figure 3.14.

length(_x0List,20),
length(_sum0List,20),
whileloop0(_x0List,_sum0List,_i0,_x1,_sum1),
fsum#=_sum1.

whileloop0([_x0],[_sum0],_,_x0,_sum0).
whileloop0([_x0,_x1|_x0ListTail],[_sum0,_sum1|_sum0ListTail],
_i0,_xFinal,_sumFinal):-

(_x0#<10) #=> (_x1#=_x0+_i0 #/\ _sum1#=_sum0+_x1),
#\(_x0#<10) #=> (_x1#=x0 #/\ _sum1#=_sum0),
whileloop0([_x1|_x0ListTail],[_sum1|_sum0ListTail],
_i0,_xFinal,_sumFinal).

Figure 3.14: Constraint system representing a while loop

In the input Java program, it could be the case that one or more nested while loops
exist. Like the case for nested if_else statements, the parser has its own way of han-
dling nested while loops. As it was discussed above, a while loop is transformed into
a predicate consisting of mainly a set of logical implication statements such that each
statement in the body of the loop forms the right hand side of some implication state-
ment, and the condition of the loop forms the left hand side of every implication state-
ment. What the parser does to transforms a nested loop into the set of predominantly
implication statements is similar with that of a simple loop, but unlike the case for a
simple loop where the left hand side of the implication statement consists of only the
condition of the loop, during transformation of a nested while loop, the left hand side
of each implication statement is the conjunction of all the condition of the current loop
and all the loops the current loop is nested in.

Let us illustrate this transformation logic applied by the parser for nested while
loops using the sample program given in figure 3.15. The program has three while
loops; the first (outer most) loop is a simple loop since it is not nested in any other
loop, the second loop is a nested loop since it forms part of the body of the first loop,
and the third (inner most) loop is nested in two levels since it forms part of the body

42

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

of the second loop which is a nested loop itself.

int sumOfAllComb(int P, int Q, int R)
{

int sum; sum=0;
int i; i=0;
while(i<=P) {

int j; j=0;
while(j<=Q){

int k; k=0;
while(k<=R) {

sum=(((sum+i)+j)+k);
k=(k+1); }

j=(j+1); }
i=(i+1); }

return sum;
}

Figure 3.15: Sample program with nested while loops

Since the focus here is to see how the parser handles nesting of while loops, we
start by discussing how the transformation is done to the inner most loop. The predi-
cate whileLoop0 in figure 3.16 is the resulting predicate of transforming the inner most
loop. Like in any predicate resulted from transforming a while loop by the parser,
whileLoop0 consists of mainly logical implication statements in addition to some reifi-
cation definitions of conditions. An important point to notice here is that although the
only condition of the inner most loop in the Java program was k <= R which is repre-
sented as _k1# =< _R0, the left hand side of each logical implication in the predicate
consists of not only this condition from the inner most loop which is reified as _bool2
but also conditions from all the loops the current loop is nested in which are _bool1 and
_bool0. It can be seen that _bool0 and _bool1 which are the boolean variables reifying
the conditions i <= P and j <= Q from the original Java program are the conditions of
the while loops that the inner most loop is nested in, and hence they take part in the
inner most loop in conjunction with the condition of the inner most loop itself.

Let us consider the case for the second while loop in the sample program above
which is neither the inner most nor the outer most loop; it is nested by the first (outer
most) loop, and it also nests the third (inner most) loop. Since the inner most loop does
not have any effect on the left hand side of the logical implication statements in the
corresponding predicate of the second loop, the left hand side of all implication state-
ments for the second loop will have the conjunction of the conditions of the first(outer
most) and second loops. The predicate whilLoop1 in figure 3.17 is the transformation

43

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

whileLoop0([_k2],[_sum2],_P0,_Q0,_R0,_i1,_j1,_k2,_sum2).

whileLoop0([_k1,_k2|_kTail],[_sum1,_sum2|_sumTail],_P0,_Q0,_R0,
_i1,_j1,_kSol,_sumSol):-
_exBool0#<=>_i1#=<_P0,
_exBool1#<=>_j1#=<_Q0,
_exBool2#<=>_k1#=<_R0,
((_exBool0#/_exBool1)#/_exBool2)#=>_sum2#=(((_sum1+_i1)+_j1)+_k1),
((_exBool0#/_exBool1)#/_exBool2)#=>_k2#=(_k1+1),
((_exBool0#/_exBool1)#/\(#_exBool2))#=>_sum2#=_sum1,
((_exBool0#/_exBool1)#/\(#_exBool2))#=>_k2#=_k1,
whileLoop0([_k2|_kTail],[_sum2|_sumTail],_P0,_Q0,_R0,_i1,_j1,_kSol,_sumSol).

Figure 3.16: Representation of the inner most loop

whileLoop1([_j2],[_sum2],_P0,_Q0,_R0,_i1,_j2,_sum2).

whileLoop1([_j1,_j2|_jTail],[_sum1,_sum2|_sumTail],_P0,_Q0,_R0,
_i1,_jSol,_sumSol):-
_exBool0#<=>_i1#=<_P0,
_exBool1#<=>_j1#=<_Q0,
(_exBool0#/_exBool1)#=>_k1#=0,
length(_k1List,20),
_k1List=[_k1|_],
length(_sum1List,20),
_sum1List=[_sum1|_],
whileLoop0(_k1List,_sum1List,_P0,_Q0,_R0,_i1,_j1,_k2,_sum2),
(_exBool0#/_exBool1)#=>_j2#=(_j1+1),
(_exBool0#/\(#_exBool1))#=>_sum2#=_sum1,
(_exBool0#/\(#_exBool1))#=>_j2#=_j1,
whileLoop1([_j2|_jTail],[_sum2|_sumTail],_P0,_Q0,_R0,_i1,_jSol,_sumSol).

Figure 3.17: Representation of the second inner loop

of the second loop by the parser.

The case is trivial for the first (outer most) loop. Since this loop is not nested in
any other loop, the parser transforms the loop into a predicate that contains logical
implications with the left hand side of each implications has only the condition of the
loop. This is exactly the same as what the parser does when there is no nesting of
loops. It is important to notice here that the parser is sensitive towards loops a given
loop in nested in, but is not sensitive towards loops that are nested in the given loop.
This is to say that the treatment of the parser towards a while loop differs depending
on whether the loop is nested in another loop or not but the treatment does not differ
depending on whether the loop nests another loop or not. The complete output of the
parser after transforming the sample Java program is given in figure 3.18.

44

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

sumOfAllComb(_P0,_Q0,_R0,_sum2):-
_P0 in -65635..65635,
_Q0 in -65635..65635,
_R0 in -65635..65635,
_sum1#=0, _i1#=0,
length(_i1List,20), _i1List=[_i1|_],
length(_sum1List,20), _sum1List=[_sum1|_],
whileLoop2(_i1List,_sum1List,_P0,_Q0,_R0,_i2,_sum2).

% Definition of predicates representing loops
whileLoop2([_i2],[_sum2],_P0,_Q0,_R0,_i2,_sum2).
whileLoop2([_i1,_i2|_iTail],[_sum1,_sum2|_sumTail],_P0,_Q0,_R0,
_iSol,_sumSol):-
_exBool0#<=>_i1#=<_P0, _exBool0#=>_j1#=0,
length(_j1List,20), _j1List=[_j1|_],
length(_sum1List,20), _sum1List=[_sum1|_],
whileLoop1(_j1List,_sum1List,_P0,_Q0,_R0,_i1,_j2,_sum2),
_exBool0#=>_i2#=(_i1+1),
(#_exBool0)#=>_sum2#=_sum1,
(#_exBool0)#=>_i2#=_i1,
whileLoop2([_i2|_iTail],[_sum2|_sumTail],_P0,_Q0,_R0,_iSol,_sumSol).

whileLoop1([_j2],[_sum2],_P0,_Q0,_R0,_i1,_j2,_sum2).
whileLoop1([_j1,_j2|_jTail],[_sum1,_sum2|_sumTail],_P0,_Q0,_R0,_i1,
_jSol,_sumSol):-
_exBool0#<=>_i1#=<_P0, _exBool1#<=>_j1#=<_Q0,
(_exBool0#/_exBool1)#=>_k1#=0,
length(_k1List,20), _k1List=[_k1|_],
length(_sum1List,20), _sum1List=[_sum1|_],
whileLoop0(_k1List,_sum1List,_P0,_Q0,_R0,_i1,_j1,_k2,_sum2),
(_exBool0#/_exBool1)#=>_j2#=(_j1+1),
(_exBool0#/\(#_exBool1))#=>_sum2#=_sum1,
(_exBool0#/\(#_exBool1))#=>_j2#=_j1,
whileLoop1([_j2|_jTail],[_sum2|_sumTail],_P0,_Q0,_R0,_i1,_jSol,_sumSol).

whileLoop0([_k2],[_sum2],_P0,_Q0,_R0,_i1,_j1,_k2,_sum2).
whileLoop0([_k1,_k2|_kTail],[_sum1,_sum2|_sumTail],_P0,_Q0,_R0,_i1,_j1,
_kSol,_sumSol):-
_exBool0#<=>_i1#=<_P0, _exBool1#<=>_j1#=<_Q0,
_exBool2#<=>_k1#=<_R0,
((_exBool0#/_exBool1)#/_exBool2)#=>_sum2#=(((_sum1+_i1)+_j1)+_k1),
((_exBool0#/_exBool1)#/_exBool2)#=>_k2#=(_k1+1),
((_exBool0#/_exBool1)#/\(#_exBool2))#=>_sum2#=_sum1,
((_exBool0#/_exBool1)#/\(#_exBool2))#=>_k2#=_k1,
whileLoop0([_k2|_kTail],[_sum2|_sumTail],_P0,_Q0,_R0,_i1,_j1,_kSol,_sumSol).

Figure 3.18: Constraints’ model corresponding to the sample while loop program

45

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

3.3.2.7 Code Block

As already described in section 3.2, a code block is a sequence of one or more state-
ments where each statement can be a declaration, an assignment, an if_else statement
or a while loop. When the parser reads a generic code block S1;S2;S3, it transforms the
code block into the sequence of statements C1,C2,C3 or the conjunction C1 #/\C2 #/\C3

where Ci refers to the constraint corresponding to the statement Si of the original pro-
gram.

3.3.3 JML code to constraints transformation

JML-conditions are at the heart of the definition of both the preconditions and the
postconditions as it was discussed in section 3.2. Since a JML-condition is either a
condition or a sequence of conditions that are combined using the logical operators
&& or ‖, the transformation of JML-conditions in the Java program to finite domain
constraints or real constraints is the same like that of transformation of conditions
in the main program. For preconditions, since they are defined in terms of JML-
conditions alone, the transformation is trivial. For example, let us assume the pre-
condition of some program is given as @ requires x > 5 && x < 10. This precon-
dition will be transformed into the finite domain constraint _x0# > 5#/_x0# < 10.
Optionally, the conditions can be also reified to some boolean variables which will
be subsequently used instead of the conditions in the transformed precondition. i.e.
_bool1# <=> _x0# > 5, _bool2# <=> _x0# < 10, _bool1#/_bool2.

Similarly, the technique of transforming postconditions of a program into the con-
straints system is trivial but since what is needed in the constraint system is the nega-
tion of the postconditions, some tweaking must be done to change the postcondition
block which is a sequence of postcondition statements into their negation. From the
section 3.2, the postcondition block is a conjunction of postcondition statements which
can be represented as A1∧A2∧ ...∧An, and its negation will be ¬A1∨¬A2.....∨¬An where
¬Ai represents the negation of each of the the postcondition statements. But postcondi-
tion statements are given as C1→C2 which implies that their negation will be C1∧¬C2.
For example, if the parser reads a postcondition @ ensures @ (x > 5) ==> (/result ==

1)&& @ (x <= 5) ==> (/result == 2), it will transform the postcondition into the finite
domain constraint (_x0# > 5#/\(#\y1# = 1))#\/(_x0# =< 5#/\(#\y1# = 2)) assuming
that y is the variable returned by the program and its final version is 1. Optionally,
the conditions can be also reified to some boolean variables and the boolean variables
can be used instead of the conditions in the negation of the postcondition statement
generated by the parser as shown below.

46

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

@ensures @(x>5)==>(/result==1)&& @(x<=5)==>(/result==2)

will be translated into

(_x0#>5#/\(#\y1#=1))#\/(_x0#=<5#/\(#\y1#=2))

or into

_bool1#<=> _x0#>5,
_bool2#<=> y1#=1,
_bool3#<=> _x0#=<5,
_bool4#<=>y1#=2,
(_bool1#/\(#_bool2))#\/(_bool3#/\(#_bool4))

Figure 3.19: Representation of a simple JML specification

JML specifications that involve quantifiers on an array are transformed into con-
straints on a list and each element of the list is accessed by using the element/3 con-
straint. Figure 3.20 shows how a JML precondition specified using a quantifier on an
array is transformed into its corresponding constraint.

@ requires (forall int i; i>=0 && i<arr.length-1; arr[i+1]>=arr[i])

length(_arr0,_arr0Len),
_min0#=0, _max0#= (_arr0Len-1)-1,
(for(_i0,_min0,_max0) do _i1#=_i0+1,
element(_i0,_arr0,_i0arr0Elem), element(_i1,_arr0,_i1arr0Elem),
_i1arr0Elem#>_i0arr0Elem)

Figure 3.20: Example for transformation of a JML specification with quantifier

This way of transformation is good enough if we are always dealing with array of
integers. However, since in this work other data types, specifically reals, are used as
it will be discussed in the next chapter, a more complex way of dealing with quani-
tified specifications is needed. The parser handles well quantified specifications over
integers but for reals a manual transformation is required.

3.3.4 Example of program to constraints transformation

The constraint system generated after transforming the sample program given in fig-
ure 3.3 is shown in figure 3.21. The maximum bound the parser assumes for the while
loop is 20 in this transformation.

47

3. CONSTRAINTS MODEL GENERATION 3.3. Input program to constraints model transformation

sumOfEven(_N0,_sum1):-
_N0 in -65635..65635,
_i0 in -65635..65635,
_sum0 in -65635..65635,
_i0#=0,
_sum0#=0,
length(_i0List,20),
length(_sum0List,20),
_i0List=[_i0|_],
_sum0List=[_sum0|_],
whileLoop0(_i0List,_sum0List,_N0,_i1,_sum1),
% precondition
_N0#>=0,
%postcondition
_N0m2#=(_N0 mod 2),
(_N0m2#=0#/\(#_sum1#=(((N*N)+(2*N))/4)))#\/(_N0m2#=1#/\
(#_sum1#=(((N*N)-1)/4))).

%Definition of whileloop0
whileLoop0([_i0],[_sum0],_,_i0,_sum0).
whileLoop0([_i0,_i1|_i0ListTail],[_sum0,_sum1|_sum0ListTail],_N0,
_iFinal,_sumFinal):-
_bool0#<=>_i0#=<_N0,
_i0m2#=(_i0 mod 2),
_bool1#<=>(_i0m2#=0),
(_bool0 #=>
(_bool1#=>_sum1#= _sum0+1) #/\ ((#_bool1) #=> _sum1#=_sum0) #/\
_i1#=(_i0+1)) #/\
((#_bool0) #=> _sum1#=_sum0 #/\ _i1#=_i0),
labeling([],[_N0,_bool0,_bool1]),
whileLoop0([_i1|_i0ListTail],[_sum1|_sum0ListTail],_N0,
_iFinal,_sumFinal).

Figure 3.21: Constraints’ model corresponding to the example program

48

4
Constraint Solving Models

4.1 Introduction

Once the original program is transformed into a constraint system, the constraint solv-
ing process, which is equivalent to verification of the original program, is done on the
newly generated constraint system. Therefore, the efficiency of the verification process
boils down to how efficiently the generated constraint system can be solved which
in turn depends on the constraint solver(s) being used. In this study, two constraint
solving models are considered; a Finite Domain model that uses a finite domain solver
alone to solve the system of constraints, and a Hybrid model that uses a combination
of a finite domain solver and a real linear solver to solve the system of constraints. In
each of these models, the constraints to be solved must be given in the syntax that is
valid for the solver(s) used in the model. Since the finite domain solver and the real
linear solver differ in their syntax, the parser is able to do the transformation of the
original program into the system of constraints in such a way that each constraint in
the system is given in the syntax of the solver it is intended to be solved in. The system
of constraints generated from the input Java program in the previous chapter belongs
to the finite domain model class since the use of finite domain solvers alone is enough
to successfully solve the constraint system. Finite domain models are dealt in detail in
section 4.2. A hybrid model - as it may be guessed from the name - makes use of both
solvers of type finite domain and real domain; some constructs of the original program
are transformed into finite domain constraints, while others are transformed into real

49

4. CONSTRAINT SOLVING MODELS 4.2. Finite Domain Model

constraints. Since all the constraints generated in the way discussed in the previous
chapter are of type finite domain, the parser need to have additional techniques for
generating real constraints for the Java constructs that are needed to be represented
as real constraints. Hybrid models together with how the parser generates real con-
straints which form part of the system of constraints in a hybrid model are dealt with
in section 4.3.

4.2 Finite Domain Model

In finite domain model, the original program is transformed into a system of finite
domain constraints all of which can be solved by a finite domain solver. In this work,
a finite domain solver for Sicstus Prolog called CLPFD is used to solve the constraints
in a finite domain model. The constraint system generated by the parser given in the
previous chapter consists entirely of finite domain constraints, and hence it can be
solved with the use of a finite domain solver alone. For this reason, the default model
of constraint solving is finite domain model.

One main feature of this model is that basic constructs in the original program such
as unit conditiond and assignments, as well as high level constructs in the program
such as more complex conditions, if_else statements, while-loops, etc are all repre-
sented in the system of constraint as finite domain constraints. Another main feature
is that the standard labeling procedure defined by the solver is used to label variables
in the system of constraints. There are two types of variables in the system of con-
straints subject to labeling during the constraint solving process. The first type consists
of boolean variables created by the parser during the constraint generation to represent
all the decision structures in the original Java program such as a conditions of if_else
statements and while loops. Such decision structures are represented in terms of con-
straints reified to those boolean variables as it was discussed in section 3.3.2. The
second type consists of those variables introduced into the system of constraints each
of which corresponds to each variable in the original program itself.

The code given in figure 4.1 is the constraint system generated in the previous chap-
ter for the sumO f Even program. It can be taken as an example for the finite domain
model since it is the default constraint generated by the parser. The first observation
from this code is that labeling for the main predicate sumO f Even, and the predicate rep-
resenting the while loop whileLoop0 is done separately. If a variable subject to labeling
is being used in nested loops, doing the labeling in the inner most loop makes the con-
straint system to get solved faster than doing the labeling in the outer loops. Another

50

4. CONSTRAINT SOLVING MODELS 4.2. Finite Domain Model

sumOfEven(_N0,_sum1):-
_N0 in -65635..65635,
_i0 in -65635..65635,
_sum0 in -65635..65635,
_i0#=0,
_sum0#=0,
length(_i0List,20), _i0List=[_i0|_],
length(_sum0List,20), _sum0List=[_sum0|_],
whileLoop0(_i0List,_sum0List,_N0,_i1,_sum1),
% precondition
_N0#>=0,
%postcondition
_N0m2#=(_N0 mod 2),
(_N0m2#=0#/\(#_sum1#=(((N*N)+(2*N))/4)))#\/
(_N0m2#=1#/\(#_sum1#=(((N*N)-1)/4))).

%Definition of whileloop0
whileLoop0([_i0,_i1|_i0ListTail],[_sum0,_sum1|_sum0ListTail],
_N0,_iFinal,_sumFinal):-
_bool0#<=>_i0#=<_N0,
_i0m2#=(_i0 mod 2),
_bool1#<=>(_i0m2#=0),
_bool0#/_bool1#=>_sum1#= _sum0+1,
_bool0#/\(#_bool1) #=> _sum1#=_sum0,
_bool0 #=>_i1#=(_i0+1),
(#_bool0)#=> _sum1#=_sum0 #/\ _i1#=_i0,
labeling([],[_N0,_bool0,_bool1]),
whileLoop0([_i1|_i0ListTail],[_sum1|_sum0ListTail],_N0,_iFinal,_sumFinal).
whileLoop0([_i0],[_sum0],_,_i0,_sum0).

Figure 4.1: A finite domain model example

observation is that since there is no variable to be labeled in the main predicate no la-
beling is done. But inside the whileLoop0 predicate, three variables are labeled. The
first variable, _N0 represents the input N to the original program where as the boolean
variables _bool0 and _bool1 reified to the constraints _i0# =< _N0 and _i0m2# = 0 re-
spectively refers to the conditions of the while loop and the if_else statement inside the
while loop of the original Java program.

The finite domain model does not need any special labeling algorithm or reifica-
tion technique. It only makes use of the facilities available in the CLPFD library of the
Sicstus Prolog. However, irrespective of the solver in use, the worst case time com-
plexity required to check satisfiability of a given system of constraints is polynomial
on the number of variables being labeled in the model and the size of the domain
of each of these variables. For example, to just prove the unsatisfiability of the CSP
〈{X ,Y},{0..1000,0..1000},{X >Y,X <Y}〉, it takes the finite domain solver hundreds of

51

4. CONSTRAINT SOLVING MODELS 4.3. Hybrid Model

steps narrowing the domains of both variables while trying to keep bound-consistency
of the CSP using the given constraints as propagators. The entire process of narrowing
the domains until proving of unsatisfiability is shown below:

Domain of X Domain of Y Narrowing constraint
0..1000 0..1000 X>Y
1..1000 0..999 X<Y
1..998 2..999 X>Y
3..998 2..997 X<Y
...

495..500 494..499 X<Y
495..498 496..499 X>Y
497..498 496..497 X<Y
{} 496..497

Figure 4.2: Narrowing of domains to keep bounds consistency

In the first narrowing step, narrowing of the original domain 0..1000 for both vari-
ables is done using the constraint X > Y . Since there is no any value in the domain of
Y for X taking 0 such that X > Y holds, 0 is left out of the domain of X . Similarly, since
there is no any value in the domain of X for Y taking 1000 such that X > Y holds, 1000
is left out of the domain of Y . The second narrowing step will be done on the reduced
domains, 1..1000 for X and 0..999 for Y , using the constraint X < Y . By continuously
narrowing the domains of both variables using the two constraints alternatively, we
reach a point where the domain of X is reduced to empty set implying that the CSP is
unsatisfiable.

If a simple CSP with two variables of very small domain takes around 500 steps to
reach unsatisfiability, then it is easy to imagine how exponentially the time complexity
grows for CSPs that have constraints with more number of variables such as X +Y ≥
Z+W , and specially if the variables have larger domains, say −100000..100000 instead
of 0..1000.

4.3 Hybrid Model

A hybrid constraint solving model makes use of both finite domain solver and the real
solver to efficiently solve the system of constraints generated by the parser. The system
of constraints intended to be solved in a hybrid model by itself consists of both finite
domain constraints, which need the use of the finite domain solver to be solved, and
real constraints, which need a real solver to be solved. The logic in hybrid model is
that rather than transforming every construct from the original program into a finite

52

4. CONSTRAINT SOLVING MODELS 4.3. Hybrid Model

domain constraint, like that of finite domain model, some constructs from the original
program are transformed into real constraints to take advantage of the fact that solving
real linear constraints is not dependent on the size of the domains of variables, and
some other constructs are still transformed into finite domain constraints. Therefore,
the hybrid model adds at the top of the finite domain model an efficient way of solving
the system of constraints by representing some important constructs from the original
program as real constraints.

4.3.1 Extending a Finite Domain Model into a Hybrid Model

An important point to see here will be which of the constructs from the original pro-
gram are transformed into finite domain constraints, and which are transformed into
real constraints. Since the transformation of the original program into a system of con-
straints, specifically in the finite domain model, was discussed in chapter 3, we can
consider the hybrid model as an extension of the finite domain model where some
constructs from the original program are transformed into real constraints rather than
finite domain constraints. This model extends the finite domain model in 3 main ways:

4.3.1.1 Declaration

Domain declarations such as _x0 in − 65635..65635 and domain(_tab0,−65635,65635)
that are added to the constraint system by the parser when it reads type declarations
such as int x and int[] tab are no more needed in the system of constraints for the hybrid
model. This is because every variable read from the program is not considered as a
finite domain variable anymore; it will be considered as a real variable, and basic con-
structs from the program that use such variables are transformed into real constraints.

4.3.1.2 Unit Condition

The first basic constructs from the original program that make use of variables are
unit conditions. Unlike the case for the finite domain model where unit conditions
are transformed into finite domain constraints, unit conditions in the hybrid model are
transformed into real constraints since variables from the program are represented as
real variables. For example, the unit condition x <= 10 is transformed into the real
constraint _x0 =< 10.

However, reifying a real constraint with some boolean variables and making use
of the boolean variable instead of the constraint itself in places where using the con-
straint is needed is no more possible unlike the case for the finite domain model. In
other words, reification is not possible for the real constraints representing the unit

53

4. CONSTRAINT SOLVING MODELS 4.3. Hybrid Model

conditions. Hence another technique should be devised to form a relation between the
real constraint and some boolean variable created by the parser so that the constraint
(the negation of the constraint) is posted when the corresponding boolean variable
has a value 1 (0 respectively). Such boolean variables that are used in the constraint
system in the place of real constraints representing some unit conditions are called ex-
ternal booleans. The relation between a given constraint and its external boolean is
shown by forming an order pair (b,C) where b is a constant that can be easily asso-
ciated with some variable B which actually is used instead of the real constraint C in
the constraint system. A list of such order pairs is kept in the system of constraints for
all real constraints used in the system. This list is very important in solving the sys-
tem of constraints because it is the only way of identifying which constraint to launch
whenever some of the external booleans are assigned with some value. For example,
for the constraint _x0 =< 10 given above, the parser can create an external boolean say
_exBool0 to be used instead of the constraint itself in the system of constraints, and
this relation between the boolean variable and the constraint is shown by keeping the
order pair (exBool0,_x0 =< 10) in the system of constraints. It can be assumed how
easily the constant exBool0 and the variable _exBool0 can be associated to each other
during constraint solving.

More complex conditions that consists of more than one unit conditions are still
represented as finite domain constraints over the external booleans that represent the
unit conditions. These finite domain constraints then are reified to boolean variables
called internal booleans so that they can be used instead of the constraints themselves
in the system of constraints. For example, let us see how the condition (x<= 10&&x>=

0) is transformed into a system of constraints in the hybrid model by comparing the
equivalent in the finite domain model. The representation for the finite domain model
is given as:

_bool0#<=>_x0#=<10,
_bool1#<=>_x0#>=0,
_bool2#<=>_bool0#/_bool1,

The boolean variable _bool2 will play the role of the condition in the rest of the sys-
tem of constraints. In the hybrid model, the two unit conditions x <= 10 and x >= 0 are
represented as real constraints _x0 =< 10 and _x0 >= 0 associated with two external
boolean variables _exBool0 and _exBool1 respectively, the whole condition is repre-
sented as a finite domain constraint _exBool0#/_exBool1 which is the conjunction of
the two external booleans representing the two unit conditions, and this finite domain
constraint is reified to an internal boolean variable _inBool0. In addition, a list of order
pairs is used to denote the relation between external booleans and the corresponding

54

4. CONSTRAINT SOLVING MODELS 4.3. Hybrid Model

constraints. The complete representation of the example condition in the hybrid model
is given as:

_inBool0#<=>_exBool0#/_exBool1,
[(exBool0,_x0=<10),(exBool1,_x0>=0)]

4.3.1.3 Assignment

An assignment gets similar treatment like unit conditions; it will be transformed into
a real constraint, and the constraint is associated to an external boolean that plays the
role of the assignment in the rest of the system of constraints. Then an order pair is
used to denote the association between the constraint and the external boolean. A list
of such order pairs is formed if there are more than one such associations in the system
of constraint to aid the process of solving constraints later. For example, let us consider
how the assignment in the statement i f (x > 5){y = 1;} is handled by the hybrid model
by comparing it to how the same statement is handled by the finite domain model. The
finite domain model represents the statement as:

_bool0#<=>_x0>5,
_bool1#<=>_y0#=1,
_bool0#=>_bool1

In the hybrid model, the statement is represented as:

_inBool0#<=>_exBool0,
_inBool0#=>_exBool1,
[(exBool0,_x0>5),(exBool1,_y0=1)],

Apart from the way variables, unit conditions and assignments are represented,
the hybrid model represents all other constructs from the original program in the same
manner like that of the finite domain model.

4.3.2 Labeling Algorithm

Like that of the finite domain model, labeling of variables is required in the hybrid
model as well. However, there are differences of labeling in the two models regarding
the variables that are subject to labeling and how the labeling is done to the variables.
Since variables in the system of constraints representing program variables are of type
real, there is no need to label these variables. Therefore, the only variables left for label-
ing are the decision boolean variables created during the generation of the constraints
by the parser to represent decision constructs such as unit-conditions and conditions,
as well as assignments. As discussed in the previous section, there are two types of

55

4. CONSTRAINT SOLVING MODELS 4.3. Hybrid Model

such decision variables in the hybrid model: external booleans which are associated to
some real constraints, and internal booleans that are reified with some finite domain
constraints. Actually, only the internal booleans are labeled using the known labeling
procedure provided by the CLPFD library. But at every labeling of all these internal
booleans, the external booleans are checked if they have acquired some value, possibly
0 or 1. If an external boolean has acquired a value 1, the corresponding real constraint
is posted, or if an external boolean has acquired a value 0, the negation of the corre-
sponding real constraint is posted.

Solving the system of constraints in the hybrid model consists of labeling all inter-
nal booleans followed by checking the values of all the external booleans, and posting
the necessary real constraints to the system for the external booleans with some value
assigned. A special labeling algorithm is defined to efficiently carry out these activities
during solving constraints for the hybrid model. The complete implementation of this
algorithm specified in the syntax of Sicstus Prolog is shown in figure 4.3.

doLabeling(InBools,ExBoolVarsPair,ExBoolsConsPair):-
domain(InBools,0,1),
(foreach((_,ExBools2El),ExBoolVarsPair) do ExBools2El in 0..1),
my_label(InBools,ExBoolVarsPair,ExBoolsConsPair).

my_label(Ibs, ExBoolVarsPair, ExBoolsConsPair):-
labeling([],Ibs), my_lab(ExBoolVarsPair, ExBoolsConsPair).

my_lab([],_).
my_lab([(N,V)|Vs],[(N,C)|Cs]):-
indomain(V),apply_v(V,C), my_lab(Vs,Cs).

apply_v(1,Rel):- {Rel}.
apply_v(0,Rel):- neg(Rel,Neg),{Neg}.

neg(A = B, A =\= B).
neg(A =\= B, A = B).
neg(A > B, A =< B).
neg(A =< B, A > B).
neg(A < B, A >= B).
neg(A >= B, A < B).

Figure 4.3: Sicstus Prolog implementation of the labeling algorithm

4.3.3 An Example for the Hybrid Model

The system of constraints generated in finite domain model for the sample program
given in figure 3.3 was shown in figure 3.21. The system of constraints generated in

56

4. CONSTRAINT SOLVING MODELS 4.3. Hybrid Model

hybrid model for the same program is given in figure 4.4.

sumOfEven(_N0,_sum1):-
_exBool0,
_exBool1,
length(_i0List,20),
length(_sum0List,20),
_i0List=[_i0|_],
_sum0List=[_sum0|_],
whileLoop0(_i0List,_sum0List,_N0,_i1,_sum1),
% precondition
_exBool9,
%postcondition
_exBool10,
(_exBool11#/\(#_exBool12))#\/(_exBool13#/\(#_exBool14)),
InBools = [],
ExBools = [(exBool0,_exBool0),(exBool1,_exBool1),
(exBool9,_exBool9),(exBool10,_exBool10),(exBool11,_exBool11),
(exBool12,_exBool12),(exBool13,_exBool13),(exBool14,_exBool14)],
ExCons = [(exBool0,_i0=0),(exBool1,_sum0=0),(exBool9,_N0>=0),
(exBool10,_N0m2=(_N0 mod 2)),(exBool11,_N0m2=0),
(exBool12,_sum1=(((N*N)+(2*N))/4)),(exBool13,_N0m2=1),
(exBool14,_sum1=(((N*N)-1)/4))],
doLabeling(InBools, ExBools,ExCons).

%Definition of whileloop0
whileLoop0([_i0],[_sum0],_,_i0,_sum0).
whileLoop0([_i0,_i1|_i0ListTail],[_sum0,_sum1|_sum0ListTail],
_N0,_iFinal,_sumFinal):-
_inBool0#<=>_exBool2,
_exBool3,
_inBool1#<=>_exBool4,
(_inBool0 #=>
(_inBool1#=>_exBool5)#/\ ((#_bool1)#=>_exBool6)#/_exBool7)#/\
((#_inBool0) #=> _exBool6 #/\ _exBool8),
InBools0 = [_inBool0,_inBool1],
ExBools0 = [(exBool2,_exBool2),(exBool3,_exBool3),(exBool4,_exBool4),
(exBool5,_exBool5),(exBool6,_exBool6),(exBool7,_exBool7),
(_exBool8,_exBool8)],
ExCons0 = [(exBool2,_i0=<_N0),(exBool3,_i0m2=(_i0 mod 2)),
(exBool4,_i0m2=0),(exBool5,_sum1=_sum0+_i0),(exBool6,_sum1=_sum0),
(exBool7,_i1=_i0+1),(_exBool8,_i1=_i0)],
doLabeling(InBools0,ExBools0,ExCons0),
whileLoop0([_i1|_i0ListTail],[_sum1|_sum0ListTail],_N0,
_iFinal,_sumFinal).

Figure 4.4: Representation of the example program in the hybrid model

57

4. CONSTRAINT SOLVING MODELS 4.3. Hybrid Model

The while loop is assumed to have a maximum bound of 20 similar to the assump-
tion that was done for the finite domain model. The doLabeling predicate calls the
special labeling algorithm that is given in figure 4.3.

58

5
Experimental Results

5.1 Introduction

In this work, the hybrid model for solving constraints is proposed that involves com-
bining a finite domain solver and a real solver to efficiently solve the system of con-
straints generated by the parser for some program to be verified in an effort to verify
the program. In order to evaluate the actual performance of the model, it is impor-
tant to make a comparison between the performance results achieved by the model
and some other available and commonly used frameworks of program verification. In
this chapter, we present how the hybrid model has performed with respect to other
common program verification frameworks and tools. The performance of all of the
frameworks involved in the comparison, including the one suggested by this work, is
given in terms of the time it takes each framework to verify some standard benchmarks
for program verification.

In section 5.2, a brief introduction of the other frameworks involved in the per-
formance comparison will be discussed followed by another brief introduction of the
benchmarks used for the comparison in section 5.3. Finally, the actual performances of
each of the framework is presented for each of the benchmarks is section 5.4.

59

5. EXPERIMENTAL RESULTS 5.2. Frameworks Considered for Comparison

5.2 Frameworks Considered for Comparison

The performance of the hybrid model is compared with six other frameworks and tools
developed for verifying programs. These frameworks and tools are developed by dif-
ferent people and they target programs written in different languages. The verification
mechanisms employed by the frameworks and tools also vary in general.

5.2.1 ESC/Java

ESC/Java (Extended Static Checker for Java) [36] is a program verification tool that
attempts to find common run-time errors in JML-annotated Java programs by static
analysis of the program code and its formal annotations during compile time. ESC/-
Java uses extended static checking, which is a collective name referring to a set of tech-
niques for statically checking if the program satisfies its desired correctness properties.
Extended static checking techniques often employ an automated theorem prover as a
verification method, and ESC/Java used the Simplify theorem prover.

5.2.2 CBMC

CBMC [37] is a Bounded Model Checker for ANSI-C and C++ programs. It first trans-
forms the program into a control-flow graph (CFG), and with the assumption that
desired properties of the program are given in the form of assertions, follows paths
through the CFG to each of these assertions, and build formulas that corresponds to
each of such paths. It then uses SAT solvers to check if the formulas built are satisfiable.
CBMC allows verifying array bounds (buffer over-flows), pointer safety, exceptions
and user-specified assertions.

5.2.3 BLAST

BLAST(Berkeley Lazy Abstraction Software Verification Tool) [38] is an automatic ver-
ification tool for C programs which is based on Model Checking approach. The goal
of BLAST is to check if a given program satisfies its temporal safety properties or
not. Blast constructs, explores, and refines abstractions of the program state space,
also called abstract model of the program, based on lazy predicate abstraction and
interpolation-based predicate discovery. Then this abstract model is model checked
for safety properties.

60

5. EXPERIMENTAL RESULTS 5.2. Frameworks Considered for Comparison

5.2.4 EUREKA

EUREKA [39] is a symbolic model checker for Linear Programs with arrays, i.e. pro-
grams where variables and array elements range over a numeric domain, and expres-
sions involve linear combinations of variables and array elements. Desired correctness
properties are specified by addind them in the form of assertions to the program, and
the EUREKA tool checks if the assertions are reachable, and hence the correctness prop-
erties hold. The fragment of C programming language handled by the tool support a
number of features such as arbitrarily nested loops, non-determinism, etc. EUREKA
interprets the counterexample guided abstraction refinement (CEGAR) paradigm in a
novel way by using array indexes instead of predicates. A defining feature of EUREKA
is that it abstracts the program with respect to a family of sets of array indexes; the ab-
straction is a Linear Program (without arrays), and refinement searches for new array
indexes.

5.2.5 WHY

Why is a software verification platform that takes annotated programs written in a
very simple imperative programming language of its own, generates verification con-
ditions, and sends them to existing provers (proof assistants such as Coq, PVS, HOL
4, etc or decision procedures such as Simplify, Yices, etc) to prove that the generated
verification conditions hold. Since it has tools for translating Java and C programs into
Why programs, Why can handle programs written in both of these languages [40].
The Why tool is capable of declaring logical models, which are types, functions, pred-
icates, axioms and lemmas, that can be used in programs and annotations. The fact
that Why tool supports a number of existing provers allows verification conditions to
be discharged by several provers independently.

5.2.6 CPBPV

CPBPV (Constraint Programming framework for Bounded Program Verification) [41]
is a constraint programming framework for bounded program verification that uses
constraint stores to represent the specification and the program, and explores execu-
tion paths non-deterministically to verify the conformity of a program with its speci-
fication. An input program whose precondition and postcondition are given is said to
be partially correct if each constraint store produced from the program and the precon-
dition implies the postcondition. CPBPV does not explore spurious execution paths as
it incrementally prunes execution paths early by detecting that the constraint store is

61

5. EXPERIMENTAL RESULTS 5.3. Benchmark Programs Used

not consistent. This framework uses the rich language of constraint programming to
express the constraint store for the program.

CPBPV is the closest one to our framework since it is based on bounded-model
checking approach, and it applies techniques of constraint programming. However,
CPBPV uses finite domain constraints to express the original program, and finite do-
main solvers to solve the system of constraints corresponding to the program. Our
framework, on the other hand, uses both finite domain constraints and real linear con-
straints to express the original program, and uses a hybrid solver, which combines both
finite domain solvers and real linear solvers, to make efficient constraint solving which
results in efficient verification of the program.

5.3 Benchmark Programs Used

5.3.1 Triangle Classification

The tritype program is a standard benchmark in test case generation and program
verification since it contains numerous non-feasible paths: only 10 paths correspond to
actual inputs because of complex conditional statements in the program. The program
takes three positive integers as inputs (the triangle sides) and returns 2 if the inputs
correspond to an isoscele triangle, 3 if they correspond to an equilateral triangle, 1
if they correspond to some other triangle, and 4 otherwise. The complete program
written in Java and JML is shown in figure 5.1.

5.3.2 Binary Search

The second benchmark is a binary search program which determines if a value x is
found in a sorted array tab or not. If it is found, the program returns the index of x,
otherwise, it simply returns -1. The tritype program has a number of execution paths
but it neither has array variables not while loops. The binary search program has an
array variable and a while loop which makes it more complex than the tritype program,
and hence it is useful to show how program verification tools can cope up with this
added difficulties. The complete binary search program together with its specification
is given in figure 5.2.

62

5. EXPERIMENTAL RESULTS 5.3. Benchmark Programs Used

/*@ requires (i >= 0 && j >= 0 && k >= 0);
@ ensures
(((i+j)<=k||(j+k)<= i||(i+k)<= j)==>(\result==4))
&&((!((i+j)<=k||(j+k)<= i||(i+k)<=j)&&(i==j&&j==k))==>(\result==3))
&&((!((i+j)<= k||(j+k)<= i||(i+k)<=j)&&!(i==j&&j==k)&&

(i==j||j==k||i==k))==>(\result==2))
&&((!((i+j)<=k||(j+k)<= i||(i+k)<= j)&&!(i==j&&j==k)&&

!(i==j||j==k||i==k))==>(\result==1));

*/
int tritype (int i, int j, int k)
{
int trityp;
if (i == 0 || j == 0 || k == 0) {trityp = 4;}
else {

trityp = 0;
if (i == j) {trityp = trityp + 1;}
if (i == k) {trityp = trityp + 2;}
if (j == k) {trityp = trityp + 3;}
if (trityp == 0) {

if ((i+j) <= k || (j+k) <= i || (i+k) <= j) {trityp = 4;}
else {trityp = 1;}

}
else {

if (trityp > 3) {trityp = 3;}
else {

if (trityp == 1 && (i+j) > k) {trityp = 2;}
else {

if (trityp == 2 && (i+k) > j) {trityp = 2;}
% Error trityp==1

else {
if (trityp == 3 && (j+k) > i) {trityp = 2;}
else {trityp = 4;}

}}}}}
return trityp;

}

Figure 5.1: Triangle Classification

5.3.3 Bubble Sort with Initial Condition

The third benchmark is a program that performs a bubble sort of an array tab which
contains integers from 0 to t−1 in decreasing order where t is the length of the array tab.
This program has more complexity level than both the binary search and the tritype
program for two main reasons. The first reason is that this program not only needs to
read and use the values in the array variable but also needs to assign new values at
some positions in the array. The second reason is that there is a nested while loop in
this program which further adds complexity to the program.

63

5. EXPERIMENTAL RESULTS 5.3. Benchmark Programs Used

/*@ requires(\forall int i;(i>=0&& i<tab.length-1);
tab[i]<=tab[i+1]);

@ ensures
@ ((\result==-1)==>(\forall int i; (i>=0&& i<tab.length);

tab[i]!=x))
@ && ((\result!=-1)==>(tab[\result]==x));
@*/

int binarySearch (int[] tab, int x)
{

int index = -1;
int m=0;
int l=0;
int u=tab.length-1;
while (index==-1 && l<=u) {

m=(l+u)/2;
if (tab[m]==x) {index=m;}
else {

if (tab[m]>x) {u=m-1;}
else {l=m+1;} % Error u=m-1

}
}
return index;

}

Figure 5.2: Binary Search

The complete bubble sort program together with its specification is shown in fig-
ure 5.3.

/* @ requires(\forall int i;0<= i&& i<tab.length;
tab[i]=tab.length-1-i);

@ ensures(\forall int i;0<= i&& i<tab.length-1;
tab[i]<=tab[i+1]);

*/
int[] tri(int[] tab)
{

int i=0;
while (i<tab.length-1){

int j=0;
while (j < tab.length-i-1) {

while (j < tab.length-i-1) {
if (tab[j]>tab[j+1]) {

int aux = tab[j]; tab[j]= tab[j+1]; tab[j+1] = aux;}
j=j+1;}

i=i+1;}
}

return tab;
}

Figure 5.3: Bubble Sort with Initial Condition

64

5. EXPERIMENTAL RESULTS 5.4. Comparative Results

5.4 Comparative Results

Most of the results given in this work for the frameworks and tools that are briefly in-
troduced in section 5.2 are taken from [42]. Although we have tried to cross check these
results by running tests on our machine for CPBPV, ESC/Java, CBMC, and BLAST, we
have succeeded only in running CBMC; the tool for CPBPV was not available in the
web, and we could not succeed in running ESC/Java and BLAST on our machine al-
though they are freely available. The results taken from [42] were produced on a ma-
chine with Intel Pentium(R) M @1.86 GHz processor, and 1.5GB of RAM. The machine
that we used to run the tests for our framework and CBMC tool has Intel Pentium(R)
dual core CPU @2.00GHz processor, and 4GB of RAM.

Before going directly to the experimental results, we introduce four terms that are
used to describe some special cases of performances in [42]. These terms are: UNABLE
which means that the framework is unable to validate the program, TIMEOUT which
means that it takes more than 6000 seconds to validate the program, NOT_FOUND
which means that it is unable to find an error when an incorrect program is given, and
finally FALSE_ERROR which means that it finds an "error" in a correct program. For
CBMC, we use the name CBMC 4.0 to differentiate the results we have obtained on our
machine from the results we have taken from [42] for which we simply use CBMC. In
addition, we use the abbreviations HM and FDM for the Hybrid Model and the Finite
Domain Model of our framework respectively.

5.4.1 Triangle Classification

The BLAST tool is unable to verify the given triangle classification program due to
its internal working logic, but it is able to verify a simpler version of the program
whose results are given here. The experimental results for both correct and erroronous
versions of the program are given in tables 5.1 and 5.2 respectively.

Tool Hybrid Model Finite Domain Model CBMC 4.0 CPBPV
Time(sec) 0.037 2.543 0.197 0.287
Tool ESC/Java CBMC Why BLAST
Time(sec) 1.828 0.820 8.850 0.716

Table 5.1: triangle classification without an error

For both cases, the hybrid model of our framework has taken shorter time than
the other tools to complete the verification task. However, the finite domain model

65

5. EXPERIMENTAL RESULTS 5.4. Comparative Results

Tool Hybrid Model Finite Domain Model CBMC 4.0 CPBPV
Time(sec) 0.003 0.468 0.056 0.056
Tool ESC/Java CBMC Why BLAST
Time(sec) 1.853 NOT_FOUND NOT_FOUND 0.452

Table 5.2: triangle classification with an error

performance is only better than the Why tool for the case without an error, and the
Why and CBMC tools for the case with error. The reason for this performance of the
finite domain model is the existence of many comparisons that involve variables in the
tritype program that need a number of steps to solve the resulting constraints system
as illustrated in figure 4.2.

5.4.2 Binary Search

The expermental results for the binary search program are given for arrays of length
8, 16, 32, 64, 128 and 256. Since there is a while loop in the program, all frameworks
except the CPBPV require additional information in the form of loop invariant or loop
unfolding bound. ESC/Java, CBMC, and the hybrid model require an overestimate of
the number of loop unfoldings whereas the Why framework requires an invariant to
work. For the correct version, ESC/Java returns a false error whereas BLAST is unable
to do the verification for array of any length. The Why tool returns UNABLE if no
invariant is given, but if an invariant is given, it achieves an efficient performance by
verifying the program in 11.18 seconds irrespective of the size of the array. However,
for the erroneous version, it always returns NOT_FOUND. The experimental results
for both correct and erroneous versions of the binary search program for the rest of the
tools are given in tables 5.3 and 5.4 respectively.

Tool HM FDM CBMC 4.0 CPBPV CBMC
Time(sec) for length 8 0.033 Time out 31.049 1.081 1.370
Time(sec) for length 16 0.198 Time out 467.821 1.690 1.430
Time(sec) for length 32 1.536 Time out Time out 4.043 Time out
Time(sec) for length 64 23.634 Time out Time out 17.009 Time out
Time(sec) for length 128 503.307 Time out Time out 136.800 Time out
Time(sec) for length 256 Time out Time out Time out 1731.696 Time out

Table 5.3: binary search without an error

The finite domain model is too inefficient for the case without error like the case
for the triangle classification program(and for the same reason); there are comparisons

66

5. EXPERIMENTAL RESULTS 5.4. Comparative Results

Tool HM FDM CBMC 4.0 CPBPV CBMC ESC/Java
Time(sec) for length 8 0.005 0.000 0.167 0.027 1.380 1.210
Time(sec) for length 16 0.008 0.006 0.449 0.037 1.690 1.347
Time(sec) for length 32 0.047 0.006 1.052 0.064 7.620 1.792
Time(sec) for length 64 0.258 0.006 3.802 0.115 27.050 1.886
Time(sec) for length 128 2.003 0.009 9.831 0.241 189.200 1.964

Table 5.4: binary search with an error

with each element of the array variable that make the model to rely on enumeration
which makes it so slow. However, since the error can be uncovered in the first enu-
meration of variables, the finite domain model performance was the best for the case
with an error. For the remaining tools, in both cases, the hybrid model has performed
better than the other tools for an array size of up to 32. However, when the size of the
array is getting larger than 32, the hybrid model’s performance declines. The reason is
that the while loop is represented as a predicate whose number of execution depends
on the size of the array and there is no smart way of handling the execution when the
loop conditions do not hold any more.

5.4.3 Bubble Sort

The experimental result for bubble sort given in [42] does not include the results of
BLAST and Why frameworks, and also the results given are only for the correct version
of the program. We have given the experimental results of the rest of the frameworks
for the correct version of the program in table 5.5.

Tool HM FDM CBMC 4.0 CPBPV ESC/Java CBMC EUREKA
Time(sec) length 8 0.063 0.053 0.192 0.031 3.778 1.110 91.000
Time(sec) length 16 0.367 0.345 0.955 0.032 Unable 2.010 Unable
Time(sec) length 32 2.628 2.364 5.385 Unable Unable 6.100 Unable
Time(sec) length 64 21.450 Unable 36.148 Unable Unable 37.650 Unable

Table 5.5: buble sort without an error

For this benchmark, the finite domain model of our framework performs as good
as the hybrid model for array size of 8, 16 and 32. The reason is that the program does
not deal with any variable i.e. the input array comprises integers from 0 to N-1 in the
reverse order where N is the length of the array, and hence no labeling is involved. The
hybrid model is slightly delayed since the special labeling that would be useful in the
case of variables adds extra overhead and makes the constraint solving a little slower
when the program does not deal with any variable but only with integer constants.

67

5. EXPERIMENTAL RESULTS 5.4. Comparative Results

The finite domain model performs better than all the tools except CPBPV for array
sizes of 8 and 16, and its performance is the best for array size 32. However, for array
size of 64, it runs out of memory due to the need to create a new array every time there
is an array assignment. The hybrid model’s performance is the best for array of size
64.

68

6
Conclusions

6.1 Summary

In general, the aim of this thesis has been to show that an efficient program verification
framework can be devised by using constraint solvers as a tool, and to demonstrate
this by devising such verification framework for programs written in some subset of
Java and whose specification is given in some subset of JML.
We began in Chapter 1 by discussing how high reliance of daily life routines of human
beings on computer systems demands a highly reliable software system, and how crit-
ical it is to ensure program correctness. This is followed by a brief description of the
technique applied in this work to do program verification more efficiently. In Chap-
ter 2, we introduce the notions of program verification and program correctness fol-
lowed by a detailed discussion of some of the major program verification methods.
This is then followed by a detailed discussion of constraint programming and con-
straint solving techniques. Chapter 3 starts by a brief discussion on the scope of the
work regarding what class of Java programs are handled together with the strategy em-
ployed to verify a given program. Then, the subsets of Java and JML considered in the
work for writing the program and its specification are given respectively. This is fol-
lowed by the discussion of how each of the constructs in Java and JML is transformed
into an equivalent constraint so that a semantically equivalent system of constraints
is generated for some program given in the subset of Java whose specification given
in the subset of JML. In Chapter 4, the constraint solving models considered in this

69

6. CONCLUSIONS

work to enable efficient way of solving the system of constraints generated for the pro-
gram to be verified are given. The efficiency of the entire program verification process
is highly dependent on the efficiency of the constraint solving. In Chapter 5, the ex-
perimental results of our approach are presented in comparison with other commonly
used program verification tools and benchmarks using some standard benchmark pro-
grams.
The primary contributions of this thesis can be summarized as follows.

• A survey of some of the most important software verification methods for general
purpose programming languages.

• A specific purpose parser for transforming a given program into system of con-
straints. Although the parser can handle only some simple subset of Java, it can
be easily extended by adding more Java constructs to its language.

• An efficient program verification framework for verifying programs written in
some subset of Java which is the main contribution of the work.

6.2 Future Work

This work focused on verification of programs written in a subset of Java language
whose specifications are given in a subset of JML. The general directions for future
work will be to extend the framework by incorporating more Java and JML constructs
so that it can eventually be used to verify a wider range of Java programs. One possible
extension is to allow more data types such as float, double, multidimensional arrays,
etc to be used in programs. Another extension can be enabling the use of non-linear
expressions in the program. In this work, when the parser reads expressions x >= y

and x < y, it automatically recognizes that they are opposite of one another which is
very important for efficient solving of the resulting constraint system. However, the
parser can not automatically conclude ¬(p∨q) and ¬p∧¬q are opposite of one another.
This is one more area for future work which can make the constraint solving even
more efficient. In the previous section, it was mentioned that the current logics of
representing while-loops and array assignments were responsible for some inefficient
performance of the framework. Another area of future work, therefore, is an efficient
way of representing while-loops and array assignments. Quantified JML specifications
are important areas of future work as we do not have a complete way of generating
constraints automatically for such specifications.

70

Bibliography

[1] Krzysztof R. Apt, Frank de Boer, and Ernst-Rdiger Olderog. Verification of Sequen-
tial and Concurrent Programs. Springer Publishing Company, Incorporated, 3rd
edition, 2009.

[2] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Proving program ter-
mination. Commun. ACM, 54:88–98, May 2011.

[3] Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness in lan-
guages for distributed programming. Technical report, Austin, TX, USA, 1988.

[4] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social processes and
proofs of theorems and programs. Commun. ACM, 22:271–280, May 1979.

[5] J. Mccarthy. Towards a mathematical science of computation. In In IFIP Congress,
pages 21–28. North-Holland, 1962.

[6] Edsger W. Dijkstra. Guarded commands, non-determinacy and a calculus for
the derivation of programs. In Proceedings of the international conference on Reliable
software, pages 2–2.13, New York, NY, USA, 1975. ACM.

[7] C. A. R. Hoare. An axiomatic basis for computer programming. communications
of the ACM, 12(10):576–580, 1969.

[8] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal safety
properties of interfaces. pages 103–122. Springer-Verlag, 2001.

[9] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for java, 2002.

[10] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy
abstraction. SIGPLAN Not., 37:58–70, January 2002.

71

BIBLIOGRAPHY

[11] Natarajan Shankar. Metamathematics: Machines, and Goedel’s proof. Cambridge
University Press, 1994.

[12] P. Manolios M. Kaufmann and J S. Moore. Acl2 case studies. In Computer-Aided
Reasoning. Kluwer Academic Publishers, June, 2000.

[13] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. In Logic of Programs, Workshop,
pages 52–71, London, UK, 1982. Springer-Verlag.

[14] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent
systems in cesar. In Proceedings of the 5th Colloquium on International Symposium on
Programming, pages 337–351, London, UK, 1982. Springer-Verlag.

[15] Edmund M. Clarke and Helmut Veith. Counterexamples revisited: Principles,
algorithms, applications. In Birthday ..., pages 208–224, 2003.

[16] Gerard J. Holzmann. Trends in software verification. In In: Proceedings of the
Formal Methods Europe Conference, 2003.

[17] Stefan Edelkamp, Stefan Leue, and Alberto Lluch-Lafuente. Directed explicit-state
model checking in the validation of communication protocols. Int. J. Softw. Tools
Technol. Transf., 5:247–267, March 2004.

[18] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of automated
techniques for formal software verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 27(7):1165–1178, July 2008.

[19] Patrice Godefroid. Partial-order methods for the verification of concurrent sys-
tems - an approach to the state-explosion problem, 1995.

[20] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35:677–691, 1986.

[21] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Sym-
bolic model checking without bdds. In Proceedings of the 5th International Conference
on Tools and Algorithms for Construction and Analysis of Systems, TACAS ’99, pages
193–207, London, UK, 1999. Springer-Verlag.

[22] Yonit Kesten, Oded Maler, M. Marcus, Amir Pnueli, and Elad Shahar. Symbolic
model checking with rich ssertional languages. In Proceedings of the 9th Interna-
tional Conference on Computer Aided Verification, CAV ’97, pages 424–435, London,
UK, 1997. Springer-Verlag.

72

BIBLIOGRAPHY

[23] J. R. Burch, E. M. Clarke, K. L. Mcmillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 10 20 states and beyond, 1990.

[24] Sagar Chaki, Edmund Clarke, and Alex Groce. Modular verification of software
components in c. In IEEE Transactions on Software Engineering, pages 385–395, 2003.

[25] Susanne Graf and Hassen Saidi. Construction of abstract state graphs with pvs.
pages 72–83. Springer-Verlag, 1997.

[26] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. Au-
tomatic predicate abstraction of c programs. In Proceedings of the ACM SIGPLAN
2001 conference on Programming language design and implementation, PLDI ’01, pages
203–213, New York, NY, USA, 2001. ACM.

[27] S. Park W. Visser G. Brat, K. Havelund. Java pathfinder - a 2nd generation of a
java model checker. In Proceedings of Workshop on Advances in Verification, 2000.

[28] Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng., 23:279–295,
May 1997.

[29] Klaus Havelund and Thomas Pressburger. Model checking java programs using
java pathfinder, 1998.

[30] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Soft-
ware verification with blast. In Proceedings of the 10th international conference
on Model checking software, SPIN’03, pages 235–239, Berlin, Heidelberg, 2003.
Springer-Verlag.

[31] Daniel Kroening and Ofer Strichman. Efficient computation of recurrence diame-
ters. In Verification, Model Checking and Abstract Interpretation, pages 298–309, 2003.

[32] David W. Currie, Billerica Ma, Alan J. Hu, Sreeranga Rajan, Masahiro Fujita, and
Sunnyvale Ca. Automatic formal verification of dsp software, 2000.

[33] Edmund Clarke, Daniel Kroening, and Karen Yorav. Behavioral consistency of c
and verilog programs using bounded model checking, 2003.

[34] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, New York,
NY, USA, September 2003.

[35] Mats Carlsson et al. SICStus Prolog User’s Manual. Swedish Institute of Computer
Science, Kista, Sweden, September 2010.

73

BIBLIOGRAPHY

[36] KindSoftware. Esc/java2 summary. http://kind.ucd.ie/products/

opensource/ESCJava2/. Accessed August 12, 2011.

[37] Carnegie Mellon. Bounded model checking for ansi-c. http://www.cprover.
org/cbmc/. Accessed August 12, 2011.

[38] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The soft-
ware model checker blast: Applications to software engineering. INT. J. SOFTW.
TOOLS TECHNOL. TRANSFER, 2007.

[39] Alessandro Armando, Massimo Benerecetti, Dario Carotenuto, Jacopo Manto-
vani, and Pasquale Spica. The eureka tool for software model checking. In Proceed-
ings of the twenty-second IEEE/ACM international conference on Automated software
engineering, ASE ’07, pages 541–542, New York, USA, 2007.

[40] Jean christophe Filliâtre and Claude Marché. The why/krakatoa/caduceus plat-
form for deductive program verification. In In CAV ’07, pages 173–177, 2007.

[41] Hélène Collavizza, Michel Rueher, and Pascal Van Hentenryck. Cpbpv: A
constraint-programming framework for bounded program verification. Comput-
ing Research Repository, pages 327–341, 2008.

[42] Hélène Collavizza, Michel Rueher, and Pascal Van Hentenryck. Comparison be-
tween cpbpv, esc/java, cbmc, blast, eureka and why for bounded program verifi-
cation. Computing Research Repository, abs/0808.1, 2008.

74

http://kind.ucd.ie/products/opensource/ESCJava2/
http://kind.ucd.ie/products/opensource/ESCJava2/
http://www.cprover.org/cbmc/
http://www.cprover.org/cbmc/

A
System of constraints for the

benchmark programs

A.1 Tritype - Hybrid Model

ver_tritype([A,B,C,Ty]):-
Dummy=Dummy,
statistics(runtime,[_,_]),
tritypeHM(A,B,C,Ty),
nl,write([A,B,C,Ty]),
statistics(runtime,[_,T]), write(’runtime (in ms) ’= T),nl.

ver_tritype(_):-
write(’programa verified.................’),

statistics(runtime,[_,T]), write(’runtime (in ms) ’= T),nl.

% System of constraints for the tritype program ********
tritypeHM(_i0,_j0,_k0,_trityp5):-
(_inBool0#<=>((_exBool0#\/_exBool1)#\/_exBool2)),
_inBool0#=>_exBool3#/_exBool26#/_exBool7#/\
_exBool10#/_exBool13,
(#_inBool0)#=>_exBool4,
(_inBool1#<=>_exBool5),
(#_inBool0#/_inBool1)#=>_exBool6,
(#_inBool0#/\(#_inBool1))#=>_exBool7,
(_inBool2#<=>_exBool8),
(#_inBool0#/_inBool2)#=>_exBool9,

75

A. SYSTEM OF CONSTRAINTS FOR THE BENCHMARK PROGRAMS

(#_inBool0#/\(#_inBool2))#=>_exBool10,
(_inBool3#<=>_exBool11),
(#_inBool0#/_inBool3)#=>_exBool12,
(#_inBool0#/\(#_inBool3))#=>_exBool13,
(_inBool4#<=>_exBool14),
(_inBool5#<=>((_exBool15#\/_exBool16)#\/_exBool17)),
(#_inBool0#/\(_inBool4#/_inBool5))#=>_exBool18,
(#_inBool0#/\(_inBool4#/\(#_inBool5)))#=>_exBool19,
(_inBool6#<=>_exBool20),
(#_inBool0#/\(#_inBool4#/_inBool6))#=>_exBool21,
(_inBool7#<=>(_exBool22#/\(#_exBool15))),
(#_inBool0#/\(#_inBool4#/\(#_inBool6#/_inBool7)))#=>_exBool23,
(_inBool8#<=>(_exBool24#/\(#_exBool17))),
(#_inBool0#/\(#_inBool4#/\(#_inBool6#/\(#_inBool7#/_inBool8))))
#=>_exBool23, % Error _exBool19, Correct _exBool23
(_inBool9#<=>(_exBool25#/\(#_exBool16))),
(#_inBool0#/\(#_inBool4#/\(#_inBool6#/\(#_inBool7#/\
(#_inBool8#/_inBool9)))))#=>_exBool23,
(#_inBool0#/\(#_inBool4#/\(#_inBool6#/\(#_inBool7#/\
(#_inBool8#/\(#_inBool9))))))#=>_exBool18,

% Precondition
((_exBool27#/_exBool28)#/_exBool29),

% Postconditions
(((_exBool15#\/_exBool16)#\/_exBool17)#/\(#_exBool18))#\/
(((#\((_exBool15#\/_exBool16)#\/_exBool17))#/\
(_exBool5#/_exBool11))#/\(#_exBool21))#\/
((((#\((_exBool15#\/_exBool16)#\/_exBool17))#/\
(#\(_exBool5#/_exBool11)))#/\((_exBool5#\/_exBool11)#\/_exBool8))
#/\(#_exBool23))#\/((((#\((_exBool15#\/_exBool16)#\/_exBool17))
#/\(#\(_exBool5#/_exBool11)))#/\(#\((_exBool5#\/_exBool11)#\/
_exBool8)))#/\(#_exBool19)),

ExBoolCons =
[(exBool0,_i0=0),(exBool1,_j0=0),(exBool2,_k0=0),(exBool3,_trityp1=4),
(exBool4,_trityp1=0),(exBool5,_i0=_j0),(exBool6,_trityp2=(_trityp1+1)),
(exBool7,_trityp2=_trityp1),(exBool8,_i0=_k0),(exBool9,_trityp3=
(_trityp2+2)),(exBool10,_trityp3=_trityp2),(exBool11,_j0=_k0),
(exBool12,_trityp4=(_trityp3+3)),(exBool13,_trityp4=_trityp3),
(exBool14,_trityp4=0),(exBool15,(_i0+_j0)=<_k0),
(exBool16,(_j0+_k0)=<_i0),(exBool17,(_i0+_k0)=<_j0),
(exBool18,_trityp5=4),(exBool19,_trityp5=1),(exBool20,_trityp4>3),
(exBool21,_trityp5=3),(exBool22,_trityp4=1),(exBool23,_trityp5=2),
(exBool24,_trityp4=2),(exBool25,_trityp4=3),(exBool26,_trityp5=
_trityp1),(exBool27,_i0>=0),(exBool28,_j0>=0),(exBool29,_k0>=0)],

InBools = [],
ExBoolVars =

76

A. SYSTEM OF CONSTRAINTS FOR THE BENCHMARK PROGRAMS

[(exBool0,_exBool0),(exBool1,_exBool1),(exBool2,_exBool2),(exBool3,
_exBool3),(exBool4,_exBool4),(exBool5,_exBool5),(exBool6,_exBool6),
(exBool7,_exBool7),(exBool8,_exBool8),(exBool9,_exBool9),(exBool10,
_exBool10),(exBool11,_exBool11),(exBool12,_exBool12),(exBool13,
_exBool13),(exBool14,_exBool14),(exBool15,_exBool15),(exBool16,
_exBool16),(exBool17,_exBool17),(exBool18,_exBool18),(exBool19,
_exBool19),(exBool20,_exBool20),(exBool21,_exBool21),(exBool22,
_exBool22),(exBool23,_exBool23),(exBool24,_exBool24),(exBool25,
_exBool25),(exBool26,_exBool26),(exBool27,_exBool27),(exBool28,
_exBool28),(exBool29,_exBool29)],

doLabeling(InBools,ExBoolVars,ExBoolCons).

A.2 Tritype - Finite Domain Model

ver_tritype([A,B,C,Ty]):-
Dummy=Dummy,
statistics(runtime,[_,_]),
tritypeFDM(A,B,C,Ty),
nl,write([A,B,C,Ty]),
statistics(runtime,[_,T]), write(’runtime (in ms) ’= T),nl.

ver_tritype(_):-
write(’programa verified.................’),

statistics(runtime,[_,T]), write(’runtime (in ms) ’= T),nl.

% System of constraints for the tritype program ********
tritypeFDM(_i0,_j0,_k0,_trityp5):-
domain([_i0,_j0,_k0],-65635,65635),
domain([_trityp0,_trityp1,_trityp2,_trityp3,_trityp4,_trityp5],0,6),
B0#<=>(B01#\/B02#\/B03),
B01#<=>(_i0#=0),
B02#<=>(_j0#=0),
B03#<=>(_k0#=0),
B0#=>_trityp1#=4,
B0#=>_trityp5#=_trityp1,
(#\B0)#=>_trityp1#=0,
B1#<=>(_i0#=_j0),
((#\B0)#/\B1)#=>_trityp2#=(_trityp1+1),
((#\B0)#/\(#\B1))#=>_trityp2#=_trityp1,
B2#<=>(_i0#=_k0),
((#\B0)#/\B2)#=>_trityp3#=(_trityp2+2),
((#\B0)#/\(#\B2))#=>_trityp3#=_trityp2,
B3#<=>(_j0#=_k0),
((#\B0)#/\B3)#=>_trityp4#=(_trityp3+3),
((#\B0)#/\(#\B3))#=>_trityp4#=_trityp3,
B4#<=>(_trityp4#=0),

77

A. SYSTEM OF CONSTRAINTS FOR THE BENCHMARK PROGRAMS

B5#<=>((B11#\/B12)#\/B13),
B11#<=>((_i0+_j0)#=<_k0),
B12#<=>((_i0+_k0)#=<_j0),
B13#<=>((_j0+_k0)#=<_i0),
((#\B0)#/\(B4#/\B5))#=>_trityp5#=4,
((#\B0)#/\(B4#/\(#\B5)))#=>_trityp5#=1,
B6#<=>(_trityp4#>3),
((#\B0)#/\((#\B4)#/\B6))#=>_trityp5#=3,
B7#<=>((_trityp4#=1)#/\(#\B11)),
((#\B0)#/\((#\B4)#/\((#\B6)#/\B7)))#=>_trityp5#=2,
B8#<=>((_trityp4#=2)#/\(#\B12)),
(#\B0#/\(#\B4#/\(#\B6#/\(#\B7#/\B8))))#=>_trityp5#=2,
% Error _trityp5#=1, Correct _trityp5#=2
B9#<=>((_trityp4#=3)#/\(#\B13)),
(#\B0#/\(#\B4#/\(#\B6#/\(#\B7#/\(#\B8#/\B9)))))#=>_trityp5#=2,
(#\B0#/\(#\B4#/\(#\B6#/\(#\B7#/\(#\B8#/\(#\B9))))))#=>_trityp5#=4,

%Precondition
(((_i0#>=0)#/\(_j0#>=0))#/\(_k0#>=0)),

%Postconditions
(B5#/\(#\(_trityp5#=4)))#\/
(((#\B0)#/\(#\B5)#/\((B1#/\B2)#/\B3))#/\(#\(_trityp5#=3)))#\/
((((#\B0)#/\(#\B5)#/\(#\((B1#/\B2)#/\B3)))#/\((B1#\/B2)#\/B3))#/\
(#\(_trityp5#=2)))#\/((((#\B0)#/\(#\B5)#/\(#\((B1#/\B2)#/\B3)))#/\
(#\((B1#\/B2)#\/B3)))#/\(#\(_trityp5#=1))),

labeling([],[B0,B01,B02,B03,B1,B2,B3,B4,B5,B6,B9,B7,B8,B11,
B12,B13,_i0,_j0,_k0]).

A.3 Binary Search - Hybrid Model

:- use_module(commonLib).
ver_bin([N,L,X,I]):-
statistics(runtime,[_,_]),
length(L,N),
pre_condition(L),
bsHM(N,L,X,I),
neg_pos_condition(I,X,L),
statistics(runtime,[_,T]),
write(’ runtime (in ms) ’: T).
ver_bin(_):-
write(’programa verified.................’),
statistics(runtime,[_,T]), write(’ runtime (in ms) ’: T).

pre_condition(L):- incr(L).
incr([_]).
incr([A,B|T]):- {A =< B},incr([B|T]).

78

A. SYSTEM OF CONSTRAINTS FOR THE BENCHMARK PROGRAMS

neg_pos_condition(-1,X,L):- !,nth0(_,L,X1),{X1=X}.
neg_pos_condition(K,X,L):- {K >= 0}, nth0(K,L,Y),{X =\= Y}.

% System of constraints for the binary search program ********
bsHM(_tab0Len,_tab0,_x0,_index2):-
Ln is (ceiling(log(_tab0Len+1)/log(2))+1),
_index1#=(-1),
_m1#=0,
_l1#=0,
length(_tab0,_tab0Len),
_u1#=(_tab0Len-1),
length(_index1List,Ln),
_index1List=[_index1|_],
length(_l1List,Ln),
_l1List=[_l1|_],
length(_m1List,Ln),
_m1List=[_m1|_],
length(_u1List,Ln),
_u1List=[_u1|_],
whileLoopHM(_index1List,_l1List,_m1List,_u1List,_tab0,_x0,
_index2,_l2,_m2,_u2).

% Definition of predicates representing loops ***************
whileLoopHM([_index1,_index2|_indexTail],[_l1,_l2|_lTail],
[_m1,_m2|_mTail],[_u1,_u2|_uTail],_tab0,_x0,_indexSol,_lSol,_mSol,
_uSol):-
(_inBool0#<=>(_index1#=(-1)#/_l1#=<_u1)),
(#_inBool0)#=>_l2#=_l1#/_u2#=_u1#/_index2#=_index1#/\
_m2#=_m1,
_inBool0#=>_m2#=((_l1+_u1)/2),
nth0(_m2,_tab0,_tab0Elemm2),
(_inBool0#/_exBool6)#=>_index2#=_m2#/_l2#=_l1#/_u2#=_u1,
(_inBool0#/\(#_exBool6#/_exBool8))#=>_u2#=(_m2-1)#/_l2#=_l1,
(_inBool0#/\(#_exBool6#/\(#_exBool8)))#=>
_l2#=(_m2+1)#/_u2#=_u1, % Correct
%(_inBool0#/\(#_exBool6#/_exBool8))#=>
%_u2#=(_m2-1)#/_l2#=_l1, % Error
(_inBool0#/\(#_exBool6))#=>_index2#=_index1,
ExBoolCons0 = [(exBool6,_tab0Elemm2=_x0),(exBool8,_tab0Elemm2>_x0)],
ExBoolVars0 = [(exBool6,_exBool6),(exBool8,_exBool8)],
InBools0 = [],
doLabeling(InBools0,ExBoolVars0,ExBoolCons0),
whileLoopHM([_index2|_indexTail],[_l2|_lTail],[_m2|_mTail],
[_u2|_uTail],_tab0,_x0,_indexSol,_lSol,_mSol,_uSol).
whileLoopHM([_index2],[_l2],[_m2],[_u2],_tab0,_x0,_index2,_l2,
_m2,_u2).

79

A. SYSTEM OF CONSTRAINTS FOR THE BENCHMARK PROGRAMS

A.4 Binary Search - Finite Domain Model

:- use_module(commonLib).
ver_bin([N,L,X,I]):-
statistics(runtime,[_,_]),
length(L,N),
pre_condition(L),
bsFDM(N,L,X,I),
neg_pos_condition(I,X,L),
statistics(runtime,[_,T]),
write(’ runtime (in ms) ’: T).
ver_bin(_):-
write(’programa verified.................’),
statistics(runtime,[_,T]), write(’ runtime (in ms) ’: T).

pre_condition(L):- incr(L).
incr([_]).
incr([A,B|T]):- {A =< B}, incr([B|T]).
neg_pos_condition4(-1,X,L):- !,element(_,L,X).
neg_pos_condition4(_,X,L):- \+element(_,L,X).

% System of constraints for the binary search program ********
bsFDM(_tab0Len,_tab0,_x0,_index2):-
Ln is (ceiling(log(_tab0Len+1)/log(2))+1),
domain([_x0|_tab0],-65635,65635),
_index1#=(-1),
_m1#=0,
_l1#=0,
length(_tab0,_tab0Len),
_u1#=(_tab0Len-1),
length(_index1List,Ln),
_index1List=[_index1|_],
length(_l1List,Ln),
_l1List=[_l1|_],
length(_m1List,Ln),
_m1List=[_m1|_],
length(_u1List,Ln),
_u1List=[_u1|_],
labeling([],[_x0|_tab0]),
whileLoopFDM(_index1List,_l1List,_m1List,_u1List,_tab0,_x0,_index2,_l2,
_m2,_u2).

% Definition of predicates representing loops **********
whileLoopFDM([_index1,_index2|_indexTail],[_l1,_l2|_lTail],[_m1,_m2|_mTail],[_u1,_u2|_uTail],
_tab0,_x0,_indexSol,_lSol,_mSol,_uSol):-
(_inBool0#<=>(_index1#=(-1)#/_l1#=<_u1)),
(#_inBool0)#=>_l2#=_l1#/_u2#=_u1#/_index2#=_index1#/_m2#=_m1,
_inBool0#=>_m2#=((_l1+_u1)/2),
nth0(_m2,_tab0,_tab0Elemm2),

80

A. SYSTEM OF CONSTRAINTS FOR THE BENCHMARK PROGRAMS

(_exBool6#<=>_tab0Elemm2#=_x0),
(_inBool0#/_exBool6)#=>_index2#=_m2#/_l2#=_l1#/_u2#=_u1,
(_exBool8#<=>_tab0Elemm2#>_x0),
(_inBool0#/\(#_exBool6#/_exBool8))#=>_u2#=(_m2-1)#/_l2#=_l1,
(_inBool0#/\(#_exBool6#/\(#_exBool8)))#=>_l2#=(_m2+1)#/_u2#=_u1,%Correct
%(_inBool0#/\(#_exBool6#/_exBool8))#=>_u2#=(_m2-1)#/_l2#=_l1,% Error
(_inBool0#/\(#_exBool6))#=>_index2#=_index1,
labeling([],[_inBool0,_exBool6,_exBool8]),
whileLoopFDM([_index2|_indexTail],[_l2|_lTail],[_m2|_mTail],[_u2|_uTail],
_tab0,_x0,_indexSol,_lSol,_mSol,_uSol).
whileLoopFDM([_index2],[_l2],[_m2],[_u2],_tab0,_x0,_index2,_l2,_m2,_u2).

A.5 Buble Sort - Hybrid Model

:- use_module(commonLib).
ver_bub([N,T2,LBound]):-
statistics(runtime,[_,_]),
N1 is N-1,
pre_condition(N1,T1),
bubHM(T1,T2,LBound),
neg_pos_condition(T2),
statistics(runtime,[_,T]), write(’ runtime (in ms) ’: T).
ver_bub(_):-
write(’programa verified.................’),
statistics(runtime,[_,T]), write(’ runtime (in ms) ’: T).

pre_condition(N,[H|T]):- N>0, N1 is N-1, {H=N}, pre_condition(N1,T).
pre_condition(0,[0.0]).
neg_pos_condition([A,B|_]):- {A>B},!.
neg_pos_condition([A,B|T]):- {A=<B},neg_pos_condition([B|T]).

% System of constraints for buble sort
bubHM(_tab0,_tab2,LBound):-
_i1#=0,
length(_i1List,LBound), _i1List=[_i1|_],
length(_tab0List,LBound), _tab0List=[_tab0|_],
write(input:_tab0),nl,
whileLoopBubHM1(LBound,_i1List,_tab0List,_i2,_tab2),
write(sorted:_tab2),nl,!.

% Definition of predicates representing loops ****************
whileLoopBubHM1(LBound,[_i1,_i2|_iTail],[_tab0,_tab2|_tabTail],
_iSol,_tabSol):-
length(_tab0,_tab0Len),
length(_tab2,_tab0Len),
_exBool1#<=>_i1#<(_tab0Len-1),
_j1#=0,
length(_j1List,LBound), _j1List=[_j1|_],

81

A. SYSTEM OF CONSTRAINTS FOR THE BENCHMARK PROGRAMS

length(_tab0List2,LBound), _tab0List2=[_tab0|_],
whileLoopBubHM2(_j1List,_tab0List2,_i1,_j2,_tab2),
_exBool1#=>_i2#=(_i1+1),
_tab0LenLoop#=_tab0Len-1,
(for(I,0,_tab0LenLoop),param(_tab0,_tab2,_exBool1) do
nth0(I,_tab0,_tab0ElemI),nth0(I,_tab2,_tab2ElemI),
(#_exBool1)#=>_exBool12, % _tab2ElemI#=_tab0ElemI,
doLabeling([],[(exBool12,_exBool12)],[(_exBool12,_tab2ElemI=_tab0ElemI)])),
(#_exBool1)#=>_i2#=_i1,
whileLoopBubHM1(LBound,[_i2|_iTail],[_tab2|_tabTail],_iSol,_tabSol).
whileLoopBubHM1(_,[_i2],[_tab2],_i2,_tab2).

% Definition of predicates representing loops ****************
whileLoopBubHM2([_j1,_j2|_jTail],[_tab0,_tab2|_tabTail],_i1,_jSol,
_tabSol):-
length(_tab0,_tab0Len),
_tab1LenLoop#=_tab0Len-1,
same_length(_tab0,_tab2,_tab0Len),
_exBool1#<=>_i1#<(_tab0Len-1),
_exBool3#<=>_j1#<((_tab0Len-_i1)-1),
(_exBool1#/_exBool3)#=>_j2#=(_j1+1),
(#_exBool1)#\/(#_exBool3)#=>_j2#=_j1,
nth0(_j1,_tab0,_tab0Elemj1),
nth0(_j2,_tab0,_tab0Elemk1),
doLabeling([],[(exBool5,_exBool5),(exBool11,_exBool11)],
[(_exBool5,_tab0Elemj1>_tab0Elemk1),(_exBool11,_aux1=_tab0Elemj1)]),
(_exBool1#/_exBool3#/_exBool5)#=> _exBool11,
(for(I1,0,_tab1LenLoop),
param(_tab0,_tab2,_exBool1,_exBool3,_exBool5,_j1,_tab0Elemk1,_j2,_aux1) do
nth0(I1,_tab0,_tab0ElemI1),nth0(I1,_tab2,_tab2ElemI1),
(#_exBool1)#\/(#_exBool3)#=>_exBool6,
(_exBool1#/_exBool3#/_exBool5#/\(I1#=_j1))#=>_exBool7,
(_exBool1#/_exBool3#/_exBool5#/\(I1#=_j2))#=>_exBool8,
(_exBool1#/_exBool3#/_exBool5#/\(I1#\=_j1)#/\(I1#\=_j2))#=>_exBool9,
(_exBool1#/_exBool3#/\(#_exBool5))#=>_exBool10,
doLabeling([],[(exBool6,_exBool6),(exBool7,_exBool7),(exBool8,_exBool8),
(exBool9,_exBool9),(exBool10,_exBool10)],[(_exBool6,
_tab2ElemI1=_tab0ElemI1),(_exBool7,_tab2ElemI1=_tab0Elemk1),
(_exBool8,_tab2ElemI1=_aux1),(_exBool9,_tab2ElemI1=_tab0ElemI1),
(_exBool10,_tab2ElemI1=_tab0ElemI1)])),
whileLoopBubHM2([_j2|_jTail],[_tab2|_tabTail],_i1,_jSol,_tabSol).
whileLoopBubHM2([_j2],[_tab2],_i1,_j2,_tab2).

A.6 Buble Sort - Finite Domain Model

:- use_module(commonLib).
ver_bub([N,T2,LBound]):-
statistics(runtime,[_,_]),

82

A. SYSTEM OF CONSTRAINTS FOR THE BENCHMARK PROGRAMS

N1 is N-1,
pre_condition(N1,T1),
bubFDM(T1,T2,LBound),
neg_pos_condition(T2),
statistics(runtime,[_,T]), write(’ runtime (in ms) ’: T).
ver_bub(_):-
write(’programa verified.................’),
statistics(runtime,[_,T]), write(’ runtime (in ms) ’: T).

pre_condition(N1,L):- (for(I,0,N1),foreach(I,L1) do true), reverse(L1,L).

neg_pos_condition([A,B|_]):- A#>B,!.
neg_pos_condition([A,B|T]):- A#=<B,neg_pos_condition([B|T]).

% System of constraints for buble sort
bubFDM(_tab0,_tab2,LBound):-
_i1#=0,
length(_i1List,LBound),
_i1List=[_i1|_],
length(_tab0List,LBound),
_tab0List=[_tab0|_],
whileLoopBub0(LBound,_i1List,_tab0List,_i2,_tab2).

% Definition of predicates representing loops *****************
whileLoopBub0(LBound,[_i1,_i2|_iTail],[_tab0,_tab2|_tabTail],
_iSol,_tabSol):-
length(_tab0,_tab0Len),
_exBool1#<=>_i1#<(_tab0Len-1),
_j1#=0,
length(_j1List,LBound),
_j1List=[_j1|_],
length(_tab0List,LBound),
_tab0List=[_tab0|_],
whileLoopBub1(_j1List,_tab0List,_i1,_j2,_tab2),
_exBool1#=>_i2#=(_i1+1),
same_length(_tab0,_tab2,_tab0Len),
_tab0LenLoop#=_tab0Len-1,
(for(I,0,_tab0LenLoop),param(_tab0,_tab2,_exBool1) do
nth0(I,_tab0,_tab0ElemI),nth0(I,_tab2,_tab2ElemI),
(#_exBool1)#=>_tab2ElemI#=_tab0ElemI),
(#_exBool1)#=>_i2#=_i1,
whileLoopBub0(LBound,[_i2|_iTail],[_tab2|_tabTail],_iSol,_tabSol).
whileLoopBub0(_,[_i2],[_tab2],_i2,_tab2).

% Definition of predicates representing loops *****************
whileLoopBub1([_j1,_j2|_jTail],[_tab0,_tab2|_tabTail],_i1,_jSol,
_tabSol):-
length(_tab0,_tab0Len),
_tab1LenLoop#=_tab0Len-1,

83

A. SYSTEM OF CONSTRAINTS FOR THE BENCHMARK PROGRAMS

same_length(_tab0,_tab2,_tab0Len),
_exBool1#<=>_i1#<(_tab0Len-1),
_exBool3#<=>_j1#<((_tab0Len-_i1)-1),
(for(I0,0,_tab1LenLoop),param(_tab0,_tab2,_exBool1,_exBool3) do
nth0(I0,_tab0,_tab0ElemI0),nth0(I0,_tab2,_tab2ElemI0),
(#_exBool1)#\/(#_exBool3)#=>_tab2ElemI0#=_tab0ElemI0),
(#_exBool1)#\/(#_exBool3)#=>_j2#=_j1,
(_exBool1#/_exBool3)#=>_j2#=(_j1+1),
nth0(_j1,_tab0,_tab0Elemj1),
nth0(_j2,_tab0,_tab0Elemk1),
_exBool5#<=>_tab0Elemj1#>_tab0Elemk1,
(_exBool1#/_exBool3#/_exBool5)#=>_aux1#=_tab0Elemj1,
(for(I1,0,_tab1LenLoop),param(_tab0,_tab2,_exBool1,_exBool3,
_exBool5,_j1,_tab0Elemk1,_j2,_aux1) do
nth0(I1,_tab0,_tab0ElemI1),nth0(I1,_tab2,_tab2ElemI1),
(_exBool1#/_exBool3#/_exBool5#/\(I1#=_j1))#=>
_tab2ElemI1#=_tab0Elemk1,
(_exBool1#/_exBool3#/_exBool5#/\(I1#=_j2))#=>
_tab2ElemI1#=_aux1,
(_exBool1#/_exBool3#/_exBool5#/\(I1#\=_j1)#/\(I1#\=_j2))#=>
_tab2ElemI1#=_tab0ElemI1),
(for(I3,0,_tab1LenLoop),
param(_tab0,_tab2,_exBool1,_exBool3,_exBool5) do
nth0(I3,_tab0,_tab0ElemI3),nth0(I3,_tab2,_tab2ElemI3),
(_exBool1#/_exBool3#/\(#_exBool5))#=>_tab2ElemI3#=_tab0ElemI3),
whileLoopBub1([_j2|_jTail],[_tab2|_tabTail],_i1,_jSol,_tabSol).
whileLoopBub1([_j2],[_tab2],_i1,_j2,_tab2).

84

	Introduction
	Review of the State of the Art
	Introduction
	Program Verification
	Correctness of a Program
	Earlier Issues in Program Verification
	Program Verification Methods

	Constraint Programming
	Constraint Satisfaction Problem(CSP)
	Constraint Solving Approaches

	Constraints Model Generation
	Introduction
	The subset of Java language handled
	Subset of Java language
	Subset of JML
	An example program

	Input program to constraints model transformation
	An important consideration: versioning
	Program to constraints transformation
	JML code to constraints transformation
	Example of program to constraints transformation

	Constraint Solving Models
	Introduction
	Finite Domain Model
	Hybrid Model
	Extending a Finite Domain Model into a Hybrid Model
	Labeling Algorithm
	An Example for the Hybrid Model

	Experimental Results
	Introduction
	Frameworks Considered for Comparison
	ESC/Java
	CBMC
	BLAST
	EUREKA
	WHY
	CPBPV

	Benchmark Programs Used
	Triangle Classification
	Binary Search
	Bubble Sort with Initial Condition

	Comparative Results
	Triangle Classification
	Binary Search
	Bubble Sort

	Conclusions
	Summary
	Future Work

	System of constraints for the benchmark programs
	Tritype - Hybrid Model
	Tritype - Finite Domain Model
	Binary Search - Hybrid Model
	Binary Search - Finite Domain Model
	Buble Sort - Hybrid Model
	Buble Sort - Finite Domain Model

