
João Pedro Martins Rogeiro

Licenciado em Engenharia Informática

Geometry Based Visualization with OpenCL

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientador : Professor Doutor Fernando Birra, Professor Auxiliar,
Universidade Nova de Lisboa

Júri:

Presidente: Doutor Pedro Abílio Duarte de Medeiros

Arguente: Doutor João Madeiras Pereira

Vogal: Doutor Fernando Pedro Reino da Silva Birra

December, 2011

iii

Geometry Based Visualization with OpenCL

Copyright c© João Pedro Martins Rogeiro, Faculdade de Ciências e Tecnologia, Universi-
dade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

Abstract

This work targets the design and implementation of an isosurface extraction solution
capable of handling large datasets. The Marching Cubes algorithm is the method used
to extract the isosurfaces. These are graphical representations of points with a constant
value (e.g. matter density) within volumetric datasets. A very useful approach to visual-
ize particular regions of such data.

One of the major goals of this work is to get a significant performance improvement,
compared to the currently available CPU solutions. The OpenCL framework is used to
accelerate the solution. This framework is an open standard for parallel programming of
heterogeneous systems recently proposed. Unlike previous programming frameworks
for GPUs such as CUDA, with OpenCL the workload can be distributed among CPUs,
GPUs, DSPs, and other similar microprocessors.

Keywords: Isosurface Extraction, Volume Visualization, Marching Cubes, OpenCL

v

vi

Resumo

Este trabalho tem como finalidade o desenho e implementação de uma solução de
extracção de isosuperfícies capaz de lidar com grandes conjuntos de dados. O algoritmo
Marching Cubes é o método utilizado para extrair as isosurperfícies. Estas surperfícies
são representações gráficas de pontos com valor constante (p.e. densidade da matéria)
dentro de um conjunto de dados volumétrico. Uma abordagem muito útil para visualizar
certas regiões desses dados.

Um dos grandes objectivos deste trabalho é conseguir um aumento de velocidade sig-
nificativo, comparado com as soluções de CPU actualmente disponíveis. A framework
OpenCL é usada para acelerar a solução. Esta framework é um norma aberta de progra-
mação paralela para dispositivos heterogéneos recentemente proposta. Ao contrário de
anteriores frameworks de programação para GPUs como CUDA, com OpenCL a carga
de trabalho pode ser distribuída por por vários CPUs, GPUs, DSPs e outros microproces-
sadores idênticos.

Palavras-chave: Extracção de Isosuperfícies, Visualização de Volumes, Marching Cubes,
OpenCL

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 3

2 Related Work 5
2.1 Marching Cubes . 5

2.1.1 Introduction . 5

2.1.2 Algorithm . 6

2.1.3 Challenges . 7

2.1.4 Implementations . 9

2.2 OpenCL . 15

2.2.1 Introduction . 15

2.2.2 Architecture . 16

3 Implementation 23
3.1 Introduction . 23

3.2 Summary . 23

3.3 Host Modules . 24

3.3.1 mcDispatcher . 24

3.3.2 mcCore . 32

3.3.3 clScan . 34

3.3.4 clHelper . 35

3.4 OpenCL . 36

3.4.1 Kernels . 36

3.4.2 Enhancements . 40

4 Results Analysis 45
4.1 Single Device . 47

4.1.1 Performance Enhancements . 52

4.1.2 Objects Identification . 59

ix

x CONTENTS

4.2 Multiple Devices . 59

5 Conclusion 61
5.1 Future Work . 62
5.2 Contributions . 62

6 Matrix Multiplication Example 67
6.1 CUDA . 67
6.2 OpenCL . 71

7 Datasets 77

List of Figures

1.1 Enlarging peak performance gap between GPUs and CPUs. 2

2.1 Illustration of a logical cube (voxel) formed by two adjacent slices of data. 6

2.2 Illustration of the 15 basic intersection topologies. 6

2.3 Illustration of reflective (A with Af) and rotational (A with Ar) symmetries. 7

2.4 Illustration of face ambiguity and resolutions. 8

2.5 Illustration the 23 intersection topologies exploiting only rotation. 8

2.6 Illustration of internal ambiguity (two facetizations of the case 4). 9

2.7 Illustration of a naive scan applied to an eight-element list in log2(8) = 3

steps. 12

2.8 Illustration of the platform model. 17

2.9 Illustration of a two-dimensional (2D) arrangement of work-groups and
work-items. 18

2.10 Illustration of a conceptual OpenCL device memory model. 20

2.11 Illustration of the difference between data parallel and task parallel pro-
gramming models. 21

3.1 Overview of the execution work-flow (to keep it simple only Marching
Cube modules are visible, most OpenCL modules usage is done inside
mcCore module). 24

3.2 mcDispatcher module execution work-flow. 25

3.3 Processing time of a 2563 samples dataset using different work unit sizes. 28

3.4 Processing speedup from worst case of a 2563 samples dataset using dif-
ferent work unit sizes. 28

3.5 Processing speedup from previous case of a 2563 samples dataset using
different work unit sizes. 29

3.6 Processing time of a 5123 samples dataset using different work unit sizes. 30

3.7 Processing speedup from worst case of a 5123 samples dataset using dif-
ferent work unit sizes. 30

xi

xii LIST OF FIGURES

3.8 Processing speedup from previous case of a 5123 samples dataset using
different work unit sizes. 31

3.9 mcCore module execution work-flow. 33
3.10 mcCore module memory usage. 34

4.1 Algorithm performance running on different devices and with different
(small) datasets. 47

4.2 Algorithm performance running on different devices and with different
(big) datasets. 48

4.3 Algorithm speedup running on different devices and with different datasets. 48
4.4 Algorithm device usage on different devices and with different datasets. . 50
4.5 Algorithm components performance on different devices using the skull

dataset. 51
4.6 Algorithm’s components performance on different devices using the 8 skulls

dataset. 51
4.7 Algorithm’s components performance on different devices using the un-

knownHISO dataset. 52
4.8 Without prefetch. 54
4.9 With Prefetch. 55
4.10 Prefetch on OpenCL 1.0. 55
4.11 Algorithm components time on different devices using skull dataset. . . . 56
4.12 Algorithm components time on different devices using 8 skulls dataset. . 57
4.13 Algorithm components time on different devices using unknownHISO dataset. 57
4.14 Device usage on different devices and with different datasets. 59
4.15 Simple demo test using multiple devices. 60

7.1 Skull dataset. 77
7.2 Engine dataset. 78
7.3 Aneurysm dataset. 78
7.4 Sphere dataset. 79
7.5 8 skulls dataset. 79

List of Tables

2.1 Illustration of a naive scan applied to a binary list, resulting in a unique
and sequential values. 13

2.2 Illustration of a naive prefix sum applied to a integer list, resulting in the
sum of all previous values. 13

2.3 Memory allocations and access capabilities. 19

3.1 Details about processing a 2563 samples dataset using different work unit
sizes. 27

3.2 Results about processing a 2563 samples dataset using different work unit
sizes. 27

3.3 Details about processing a 5123 samples dataset using different work unit
sizes. 27

3.4 Results about processing a 5123 samples dataset using different work unit
sizes. 29

4.1 Units used in the test results. 46

4.2 Datasets used to perform the tests. 46

4.3 Systems used to preform the tests. 46

4.4 Devices used to preform the tests. 46

4.5 Algorithm performance running on different devices and with different
datasets. 47

4.6 Algorithm components performance running on a Quadro FX3800 device
with different datasets. 49

4.7 Algorithm components performance running on a Tesla C1060 device with
different datasets. 50

4.8 Algorithm components performance running on a Tesla C2050 device with
different datasets. 50

4.9 Algorithm performance using pinned memory. 53

4.10 Fetch component performance using pinned memory. 53

xiii

xiv LIST OF TABLES

4.11 Algorithm performance using local memory. 53
4.12 Generation component performance using local memory. 54
4.13 Algorithm performance using prefetch. 54
4.14 Device usage using prefetch. 54
4.15 Algorithm enhanced performance running on different devices and with

different datasets. 56
4.16 Algorithm’s components performance running on a Quadro FX3800 de-

vice with different datasets. 58
4.17 Algorithm’s components performance running on a Tesla C1060 device

with different datasets. 58
4.18 Algorithm’s components performance running on a Tesla C2050 device

with different datasets. 58
4.19 Algorithm performance using object identification with 2 objects. 59
4.20 Algorithm performance using object identification with 65 objects. 60
4.21 Algorithm’s performance using multiple devices. 60

Listings

6.1 CUDA kernel of matrix multiplication example. 67
6.2 CUDA host program of matrix multiplication example. 68
6.3 OpenCL kernel of matrix multiplication example. 71
6.4 OpenCL host program of matrix multiplication example. 71

xv

xvi LISTINGS

1
Introduction

Marching Cubes (MC) [LC87] is one of the most common algorithms for indirect volume
rendering1 (IVR) of volumetric datasets, it allows the creation of three-dimensional (3D)
models of constant value. This can be very useful in many scientific areas, such as med-
ical imaging, geophysical surveying, physics and computational geometry, but some of
these applications require huge data sets to produce reliable models. A major problem
is that the number of elements grows to the power of three with respect to sample den-
sity, and the massive amounts of data puts hard requirements on processing power and
memory bandwidth, even harder if the visualization is interactive or dynamic.

In the past, one way of handling problems with massive amounts of data was to use
a distributed version2 of the marching cubes algorithm [Mac92]. This approach could
use supercomputers or a cluster of computers to speed-up the process, but it yield scale
problems due to typical bottlenecks of distributed approaches, like latency and limited
bandwidth. More processing units implied more network bandwidth to feed them and a
central unit powerful enough to receive the results. Ultimately, to speed-up the process
the use of higher frequency CPUs was required, because the overhead of adding more
processing units wouldn’t pay-off its costs.

Eventually the increase of frequency stalled and the solution found by the computer
industry was to couple more processors in a single physical package. Although the shift

1Indirect Rendering techniques involve rendering of an intermediate structure, such as an isosurface, that
has been extracted from the data.

2In distributed computing, a distributed version divides the problem into many tasks, each of which is
solved by one node.

1

1. INTRODUCTION

toward multi-core CPU architectures has created a strong potential for highly efficient
solutions, at least compared with distributed ones, they still lacked the resources for high
demanding usages.

Graphics processing units (GPUs) have always been based on a many-core design and
their overall performance has continued to increase at a much higher rate than the tradi-
tional multi-core CPUs, shown in figure 1.1. Performance increase led to units more pro-
grammable, capable of producing complex graphics effects, through the use of shaders3.
This also allowed their usage in fields besides graphics applications.

There has been a lot of research on volume data processing using GPUs. This field
involves huge computational tasks with challenging memory bandwidth requirements,
building on massive parallelism. Such workloads have the potential to preform much
better using massive parallel processing devices such as the GPUs, than the highly so-
phisticated serial processing offered by the CPUs.

But despite all previous facts, programing GPUs was a lot more complicated and
much more restricted than any multi-core CPU architecture.

Figure 1.1: Enlarging peak performance gap between GPUs and CPUs.

With the advent of General-Purpose computing on Graphics Processing Units (GPGPU)
came a new degree of freedom to implement algorithms capable of exploiting such pro-
cessing power. This would turn GPUs into open architectures, much like the regular
CPUs but with tremendous parallel-processing power. To enable this new computing
paradigm there are several frameworks, CUDA [NBGS08] introduced by NVIDIA and
OpenCL [mun10] proposed by Khronos Group being the most popular ones.

We will be focusing on OpenCL, a new and open standard for task-parallel and data-
parallel heterogeneous computing on a variety of modern CPUs, GPUs, DSPs, and other
microprocessor designs. This is mainly due to the limited range of hardware devices

3A shader is a set of software instructions, which is used primarily to calculate rendering effects on
graphics hardware with a high degree of flexibility.

2

1. INTRODUCTION 1.1. Motivation

supported by other frameworks, they are either limited to a single microprocessor family
or don’t support heterogeneous computing. For example, something developed with
CUDA can only run on NVIDIA devices.

OpenCL provides easy-to-use abstractions and a set of programming APIs based on
past successes with CUDA and other programming frameworks. Even if OpenCL can’t
completely hide significant differences in hardware architecture, it does guarantee porta-
bility and correctness. This makes it much easier to port OpenCL programs for different
architectures, beginning with a generic version and then tweak each of them indepen-
dently.

OpenCL can be a significant help in implementing an accelerated version of the March-
ing Cubes algorithm. At least compared with graphics-based programing standards, al-
though much more verbose than similar CPU versions. Besides the advantages from the
programming point of view, OpenCL also provides a clean and simple way to manage
the hardware resources. A solution that can distribute its workload across several devices
has the potential for great performance improvements.

1.1 Motivation

Besides the technical viability, this implementation also seeks its practical use. Its need
comes from a scientific project4 that expects to build a set of GPU-accelerated tools.
These tools perform heavy computational tasks that without GPU assistance would be
too much impractical or require considerable CPU processing power.

Providing a visualization solution like this one using CPU power makes little to no
sense. If the final results are presented by the GPU and it’s possible to produce such
results using also the GPU, why not do the whole process there?

In situations where it’s practical to use CPU power, the resources can be very expen-
sive if similar performances are expected. Using GPU assistance can be viewed as just a
way of building a solution that otherwise would be more expensive.

4Project developed by the Departamento de Informática in collaboration with the Departamento de Ma-
teriais

3

1. INTRODUCTION 1.1. Motivation

4

2
Related Work

In this chapter we provide an introduction to the components used in our solution. Sec-
tion 2.1 begins with a brief introduction to what are the goals and requirements of the
marching cubes algorithm. Then the fundamental stages in the standard algorithm are
explained. Ending with some of the relevant approaches to our solution. Section 2.2 also
begins with an introduction, including a brief history of GPGPU and the components of
OpenCL. After that, an overview of OpenCL architecture is supplied, described follow-
ing four models.

2.1 Marching Cubes

Marching Cubes [LC87] is a computer graphics algorithm, published in the 1987 SIG-
GRAPH proceedings by Lorensen and Cline, with the purpose of modeling 3D medical
data, typically, produced by scanners such as computed tomography (CT) or magnetic
resonance (MR). The output of the algorithm is a polygonal mesh representing points of
a constant value (e.g. pressure, temperature, velocity, density) within a volume.

2.1.1 Introduction

Usually we know in advance the shape of the body we want to model, but sometimes
that is not the case, therefore, in some of those cases, we can use the marching cubes
algorithm to build a close model. To achieve this there are a couple of requirements
which are necessary to meet. An isovalue that will determine whether a given point is
"inside" or "outside" of the isosurface1. And a volumetric data set, or a function capable of

1Since the algorithm can also work with open surfaces, the terms inside and outside aren’t strictly correct,
they are used for simplicity purposes.

5

2. RELATED WORK 2.1. Marching Cubes

produce such data set, representing the desired model. This data must be arranged as a
regularly structured grid of 3D points, P (x, y, z).

2.1.2 Algorithm

The algorithm begins by identifying which is the relevant data to build the isosurface,
according to the isovalue specified by the user. This is done analyzing all logical cubes,
also known as voxels2, formed by two adjacent slices of data, each corner has a value, four
at each slice, like in figure 2.1. Each of these values are compared against a threshold, the
isovalue, to determine if it belongs inside or outside the surface, values that exceeds (or
equals) the isovalue belong inside. Only cubes with values inside and outside are rele-
vant, this means that the surface cuts (intersects) the cube somewhere.

Figure 2.1: Illustration of a logical cube (voxel) formed by two adjacent slices of data.

Since cubes have eight corners and each corner has two possible states, inside and out-
side, there are 28 = 256 possible combinations of edge intersections. In order to simplify
the process of determining edge intersections it’s used a look-up table (built offline) with
all possible combinations, which is indexed in such way that each corner has a distinct
weight, a power of two. For example, if a cube has corner 1 and 3 inside, the correspon-
dent index would be 12 + 32 = 10. In the original MC implementation [LC87] the 256
combinations were reduced to 15, shown in figure 2.2, by using symmetry properties like
rotation and reflection (complementarity), shown in figure 2.3.

Figure 2.2: Illustration of the 15 basic intersection topologies.

Based on the index previously calculated it’s determined which edge topology each
relevant cube has, using an edge table (also built offline). Since this table only provides

2A voxel is a volume element, representing a value on a regular grid in 3D space. This is analogous to a
pixel, which represents 2D image data in a bitmap.

6

2. RELATED WORK 2.1. Marching Cubes

Figure 2.3: Illustration of reflective (A with Af) and rotational (A with Ar) symmetries.

the intersection topology it’s necessary to calculate the actual intersection based on the
value of each corner via linear interpolation. All vertex information needed to build the
patches (triangles) that compose the surface is generated in this step.

With all vertex information generated the only thing missing it’s calculating normals
for each triangular patch, for smooth rendering purposes. The original algorithm [LC87]
calculates a unit normal at each cube vertex using central differences and interpolating
the normal for each triangle vertex. Another way [NY06] of accomplish this after the
facets have been created is to average the normals of all the faces that share a triangle
vertex.

To finish the process it’s necessary to render all vertex information, a collection of
triangular patches across all relevant cubes forming the triangular mesh that defines the
isosurface. Moreover, the rendering process can also use normal information to produce
Gouraud-shaded models.

2.1.3 Challenges

There are two main challenges while using marching cubes algorithm, the first is correct-
ness and consistency, the second is efficiency and performance. End-user understanding
of a data set is positively impacted if the extracted isosurface is both correct and topologi-
cally consistent. An efficient algorithm can also have impact on user experience, specially
if the output is a dynamic model and not a static one.

An isosurface is correct if it accurately matches the behaviour of a known function
(or some assumed interpolant) that describes the phenomenon sampled in the data set.
If each component of an isosurface is continuous then it is topologically consistent. It’s
possible for an isosurface to have a consistent topology and not be correct.

When marching cubes was initially introduced the problems of topologically consis-
tency weren’t address. Only later it was discovered that some of the basic intersection
topologies could be facetized in multiple ways. The consistency problems arise when
two adjacent cubes share faces that can be intersected in multiple ways and the default
intersections are inconsistent, generating face ambiguity, like in figure 2.4(a). The un-
resolved ambiguity produces a hole in the isosurface, which will lead to a topological
inconsistency. The resolution of such problems requires variation of the intersection in

7

2. RELATED WORK 2.1. Marching Cubes

one or both cubes, like in figure 2.4(b) and figure 2.4(c).

(a) isosurface with holes from
an ambiguity in a face shared
by two cubes

(b) one alternate facetization
that yields a topologically con-
sistent isosurface for the cubes

(c) another alternate facetiza-
tion that yields a topologically
consistent isosurface for the two
cubes

Figure 2.4: Illustration of face ambiguity and resolutions.

Since the use of reflective symmetries is what causes face ambiguity, one simple way
of resolving the problem directly is to use a look-up table that don’t exploit such symme-
tries, like in figure 2.5.

Figure 2.5: Illustration the 23 intersection topologies exploiting only rotation.

The facetization of a cube that hasn’t ambiguous faces can still have internal ambigu-
ity, this kind of ambiguity doesn’t cause inconsistency but can yield an incorrect isosur-
face, as shown in figure 2.6.

Efficiency is very important in graphics algorithms, its iterative nature provide great
potential for optimizations, which can lead to better performance. Marching cubes al-
lows a few enhancements that can save a lot of processing time and consumed memory.

8

2. RELATED WORK 2.1. Marching Cubes

(a) disjoint
facetizations

(b) linking face-
tization

Figure 2.6: Illustration of internal ambiguity (two facetizations of the case 4).

Employing computation avoidance and parallelization techniques can improve the algo-
rithm performance.

Beginning with computation avoidance, one way of reducing processing cycles is to
avoid unnecessary operations on non-relevant (empty) cells, which in general represents
up to 70%. Although this technique can’t be used in all steps, since generating a correct
isosurface requires each cell to be visited at least once to determine if the cell is rele-
vant or not, it can avoid many unnecessary computations. Another enhancement is the
possibility of sharing all common data, from the twelve edges of a cube only three need
processing since the rest was already processed or will be, with the exceptions of bound-
aries.

Parallelization presents an interesting path for improving performance. In theory a
completely parallel algorithm can lead to unlimited speed-ups, with the necessary re-
sources. Like most graphics algorithms, marching cubes exhibits a degree of intrinsic
parallelism (e.g., cube faces not shared with previously visited cubes can be processed
independently), its parallelization offers the potential for performance improvement.

Sometimes there are commitments between efficiency and performance that need to
be done. A parallelized solution of marching cubes requires splitting data to be dis-
tributed through the processing resources, and each portion of data has boundaries that
are shared with adjacent portions. This means that some data is duplicated, wasting
memory, and some work is also duplicated, wasting processing cycles. Typically, this
kind of commitments have a spot where efficiency and performance are better combined.

2.1.4 Implementations

Since our solution will be implemented with OpenCL we will be focusing our attention
on solutions of the Marching Cubes algorithm based on stream processors like GPUs.
This kind of solutions has been a topic of intensive research in recent years. Mainly
because MC algorithm is particularly suited for parallelization and sometimes the re-
quired processing power is huge. But even in solutions based on GPUs, which have mas-
sive processing power and memory bandwidth, the employment of computation avoid-
ance strategies are really important. Unfortunately, this strategies greatly increase the

9

2. RELATED WORK 2.1. Marching Cubes

complexity of such solutions, mostly due to programming functionality being graphics-
based.

Prior to the introduction of geometry shaders (GS), GPUs completely lacked function-
ality to create custom primitives directly. Consequently, geometry had to be instantiated
by the CPU or be prepared as a vertex buffer object (VBO). Therefore, a significant part
of the work needed to be done in the CPU. Or a fixed number of triangles had to be as-
sumed for each MC cell, wasting unnecessary resources.

A very common approach while using vertex shader (VS) or fragment shader (FS) so-
lutions is to exploit a generalization of the MC algorithm, the marching tetrahedra (MT)
algorithm [Elv92]. It has some advantages due to the reduced amount of redundant tri-
angle geometry, since MT never requires more than two triangles per tetrahedron. In
addition, inspecting only four corners is enough to determine the configuration of the
tetrahedron, reducing the amount of inputs. MT has also the advantage of being easily
adapted to unstructured grids. Pascucci et al. [Pas04] and Klein et al. [KSE04] are a couple
of examples that explored this approach.

Even though MT being very common there are also approaches that used the MC
algorithm. Goetz et al. [KW05] used the CPU to classify MC cells and only then were
passed to the GPU to process the rest of the algorithm. A similar approach was followed
by Johansson et al. [JC06] where a kd-tree were used to cull empty regions. In both situa-
tions was noted that this pre-processing on the CPU limits the speed of the algorithm.

When using hardware with shader model (SM) 4 capabilities the GS stage can pro-
duce and also discard geometry on the fly. This is very useful since most methods based
on previous hardware generations produce isosurfaces that are cluttered with degener-
ate geometry. Degenerated geometry can yield poor performance because of unneces-
sary computations, which can represent a significant percentage. To produce a compact
sequence of triangles additional post-processing is required, such as stream compaction.

An interesting approach was followed by Dyken et al. [DZTS08] where they reformu-
lated MC as a data compaction and expansion process. This reformulation was base on
Histogram Pyramid (HP) algorithm [ZTTS06], previously only used in GPU data com-
paction. The implementation was suitable for any graphics hardware with at least SM 3
capabilities, using OpenGL 2.0 or a comparable graphics APIs. The entire process was
computed on the GPU and at the same time could produce a compact sequence of isosur-
face triangles, resulting in a highly efficient and interactive MC implementation. At the
time, they claimed the performance crown of GPU-based isosurface extraction solutions.
They also created a CUDA version but performed worst than the SM 3 implementation,
due to the usage of an earlier framework version that lacked some functionality to avoid

10

2. RELATED WORK 2.1. Marching Cubes

unnecessary copy of data.

Another implementation of MC in CUDA is presented by Nagel [Nag08]. This ap-
proach has very specific properties, it’s able to handle data sets so large that cannot be
entirely loaded in the working computer’s main memory. These data sets can be of two
kinds, a single volumetric grid that is too large to fit in memory and many temporal
volumetric grids that individually fit in memory, but combined don’t. Because of these
restrictions the process is force to compute only data set’s portions at a time in the GPU
and then send them back to the CPU. After that, vertex information is compressed to
make rendering possible. Thanks to this method the author claims that this solution can
handle data sets as large as 77GB.

The NVIDIA GPU Computing SDK also provides an MC implementation in CUDA
C source form3. Because of that it will be provided a deeper presentation than previously
done with other presented solutions. Although, trying to omit certain implementation
details or optional features for simplicity sake. Even without any kind of introduction
to NVIDIA’s CUDA framework shouldn’t be too difficult to understand the implemen-
tation principles. Besides, most framework architecture details are common to OpenCL,
examined in the section 2.2.

The application follows a typical structure of a GPGPU approach. It’s composed of
two parts, the main program that executes on the CPU and functions that execute on the
GPU.

The main program executed on the CPU do initializations, memory allocations and
CUDA device coordination. All code that is executed only once or just a few times, work
where serial processors are good at. The source code file is marchingCubes.cpp and
most relevant functionality is in function computeIsosurface().

The functions executed on the GPU do all operations that require large amounts of
iterations and can be parallelized. These programs represent, or at least should represent,
all the heavy work and most of the processing cycles.
The source code file is marchingCubes_kernel.cu.

The application has three functions that run on the GPU, each with a different task:

1. classification of voxels topology (classifyVoxel)

2. separation of occupied voxels from empty ones (compactVoxels)

3. calculation of triangle’s vertices and normals (generateTriangles)

Additionally, there’s also a CUDPP library4 function that runs on the GPU, preforming
scan operations, also known as perfix sum operations. All these functions will be further
explained in the algorithm context.

3http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#marchingCubes
4http://code.google.com/p/cudpp/

11

2. RELATED WORK 2.1. Marching Cubes

One relevant part of the MC algorithm is the look-up table, which in this case is built
offline and stored like a texture. In this solution there’s also a vertex table that covers all
possible cube topologies, also built offline and stored like a texture. Since the data being
processed is arranged in a 3D form, the processing elements are also organized in such
way. All other bits of initialization, memory allocation, and other operations which aren’t
relevant to the MC algorithm will be ignored.

This MC algorithm begins by classifying all voxels in the data set, this operation is
done by the first GPU function. The goal of this evaluation is to populate two lists, one
with the numbers of vertices per voxel, the other indicating whether a voxel is occupied.
Each thread processes one voxel at a time and regardless its organization all vertex are
verified, even if some vertices are shared with other voxels.

After classification an scan operation (also known as prefix-sum) is applied on the
binary list that contains all occupied and empty voxels. A naive version of this operation
is able to sum n elements of a list in log2(n) steps, illustrated in figure 2.7. Along with
the sum, it also produces a new list where all ones are replaced by unique and sequential
values, as shown in table 2.1.

Figure 2.7: Illustration of a naive scan applied to an eight-element list in log2(8) = 3 steps.

The previous operation is particularly useful in the next stage. To be able to produce
an isosurface efficiently it’s necessary to filter out all voxels that aren’t useful, the empty
ones. Taking advantage of the list produced in the previous stage, which enumerated all
occupied voxels, a new list containing only useful voxels is created. This operation is also
called compaction and is done by the second GPU function.

12

2. RELATED WORK 2.1. Marching Cubes

1 0 0 1 1 0 1 1
1 1 0 1 2 1 1 2
1 1 1 2 2 2 3 3
1 1 1 2 3 3 4 5

Table 2.1: Illustration of a naive scan applied to a binary list, resulting in a unique and sequential values.

After compaction another scan operation is applied, this time on the list containing
the vertices for each voxel. The operation results in its sum and a list that contains the
vertices index for each voxel. The principle is the same as the above but with integers,
shown in table 2.2.

3 0 0 6 3 0 9 12
3 3 0 6 9 3 9 21
3 3 3 9 9 9 18 24
3 3 3 9 12 12 21 33

Table 2.2: Illustration of a naive prefix sum applied to a integer list, resulting in the sum of all previous
values.

All previous stages produced the necessary information for starting the triangle gen-
eration at this stage, it corresponds to the third GPU function. Vertices are interpolated
to find out where the actual edge intersection occurred, producing more detail. This in-
formation is stored in shared memory instead of local one, which is claimed to be faster.
After that, it starts organizing vertices in triangles, and calculating their surface normals.
The final result is the population of two lists, one with vertex information, the other with
normal information. The information of these two lists are indexed based on the list
produced in the previous stage, creating a compact stream of isosurface triangles. Since
there’s a list of occupied voxels it’s possible to run this operation only on them, discard-
ing all irrelevant ones.

The final stage is rendering all triangle information to create the isosurface. Addition-
ally, the triangle surface normal information is used to enable shading.

Besides some brute force operations, like the verification of voxels topology, all heavy
work is done in GPU, ensuring good performance and even interactivity. One detail that
is also pointed in the source code is that, it’s possible to combine the both scan operations
into just one. Because the information related with each voxel shares the same index in
both lists.

There’s a detail that is not completely true but was used for keep the presentation

13

2. RELATED WORK 2.1. Marching Cubes

easy to understand. The scan operation used was inclusive when in reality the exclusive
is used, it fits computer programming needs better. In the exclusive prefix sum, the first
element in the result list is the identity element (0 for add operation) and the last element
of the operand list is not used. More detailed information about these operations with
CUDA is available in [HSO07].

One thing that all the above solutions have in common is that all preform better than
CPU approaches. Some with marginally speed-ups others with huge ones, depending on
the chosen approach. But most of them required at least moderate implementation efforts
since working with graphics-based APIs, isn’t an easy task. In this field, GPGPU APIs
provide easier ways to implement such solutions, in theory it requires the same efforts
that parallel-CPU solutions.

14

2. RELATED WORK 2.2. OpenCL

2.2 OpenCL

OpenCL (Open Computing Language) is an open royalty-free standard for general pur-
pose parallel programming across CPUs, GPUs and other processors, giving software
developers portable and efficient access to the power of these heterogeneous processing
platforms.

2.2.1 Introduction

The internal architecture of early GPUs were too tied to graphics programming stan-
dards such as DirectX and OpenGL. The tight relationship ensured an overall good per-
formance, but limited the possibilities to what was provided by such graphics standards.
Eventually, the GPU makers introduced customizable processing elements in the GPUs
pipelines to overcome this limitation. These elements were able to run specific programs,
called shaders.

Custom processing elements evolved over time, replacing more fixed function stages
in the GPU pipeline. Eventually all these elements were unified, being able to provide
functionality that were previously offered by different elements. The change was also
reflected in the shaders, that went from assembly to high-level languages, capable of of-
fering programs with advanced functionality. This would allow the creation of stunning
applications, like video games, and the beginning of what is today known as GPGPU.

Before the introduction of GPGPU standard APIs this kind of processing was already
done, it could be accomplished using OpenGL and DirectX APIs, but that was a really
tough job.

When Nvidia introduced its GPGPU implementation, known as CUDA, the task of
creating something capable of running on a GPU became much easier. This framework
provides an easy API, which isn’t graphics-based like OpenGL or DirectX, coupled with
C language (with some restrictions and Nvidia extensions) for writing kernels, the actual
functions that execute on GPU devices.

OpenCL born from efforts of Apple while developing the Grand Central framework,
its goal was to make multi-threaded parallel programming easier, later they realized it
could be mapped nicely to the GPGPU problem domain. Then they wrapped up their
Grand Central API into an API specification and, supported by Nvidia, AMD and Intel,
released it to the Khronos Group as OpenCL.

OpenCL is the first open standard capable of producing programs that execute across
heterogeneous platforms consisting of CPUs, GPUs, and other processors. This flexibil-
ity is defined in its specification [mun10], made up of three main parts: the language
specification, platform layer API and runtime API.

15

2. RELATED WORK 2.2. OpenCL

The language specification describes the syntax and programming interface for de-
veloping kernels. The language used is based on subset of ISO C99, due to its prevalence
and familiarity in the developer community. To guarantee consistent results across dif-
ferent platforms, a well-defined IEEE 754 numerical accuracy is defined for all floating
point operations. One of the weakest points in CUDA is not being able to guarantee such
accuracy, very important in scientific fields. There’s also some functions that assist the
manipulation of such numerical formats. The developer has the option of pre-compiling
their OpenCL kernels or letting that operation be preformed in runtime. Compilation in
runtime guarantees that kernel programs can run on devices that don’t even exist.

The platform layer API offers access to functions that query the OpenCL system, pro-
viding all kinds of useful information. Based on such information, developers can then
choose the fittest compute devices to properly run their workload. It is at this layer that
contexts and queues for operations such as job submission and data transfer requests are
created.

The runtime API is responsible for managing the resources in the OpenCL system. It
allows performing operations defined in contexts and queues.

2.2.2 Architecture

To help describe OpenCL architecture, it’s presented a hierarchy of models based on
OpenCL specification [mun10]:

• Platform Model

• Memory Model

• Execution Model

• Programming Model

2.2.2.1 Platform Model

Every OpenCL environment has one host, where the software to control the devices is ex-
ecuted, typically a CPU. The host is connected to, at least, one computational device, which
can be a CPU, GPU, or another accelerator. Each device contain one or more compute
units (processor cores). And these units are themselves composed of one or more single-
instruction multiple-data (SIMD) processing elements. This model is shown in figure 2.8.

2.2.2.2 Execution Model

OpenCL programs are composed of two parts, a host program that executes on the host
and kernels that execute on computing devices. The host program controls the device(s)
and typically executes serial code that wouldn’t take advantage of computing devices’
parallelism. Kernels are parallel portions of code that can be accelerated in computing

16

2. RELATED WORK 2.2. OpenCL

Figure 2.8: Illustration of the platform model.

devices.

The key property of OpenCL execution model is defined by how kernels execute.
Each kernel submitted for execution gets an index space, which is mapped to all in-
stances. A kernel instance is called work-item and is identified by its index in the cor-
responding index space. The kernel code executed is the same in all work-items but each
one of them has a different identification (ID), allowing different execution pathways.

Each kernel submission is applied to a group of work-items, called work-group. These
groups provide a simple yet powerful organization and like work-items they are also
identified by an index. Since work-items IDs are only unique within a work-group it’s
necessary to use their global ID or a combination of their work-item and work-group IDs
to identify them globally. The work-items in a given work-group execute concurrently
on the processing elements of a single compute unit.

The space index used to identify work-items or work-groups is called NDRange. A
NDRange is an N-dimensional index space, where N can be one, two or three. Figure 2.9
is an example of a two-dimensional (2D) arrangement of work-groups and work-items.

After learning how working units are organized it’s time to know how to submit re-
quests to them. OpenCL defines a context that provides resources to enable the execution
of the kernels. The context includes the following resources:

Devices The collection of OpenCL devices to be used by the host.

Kernels The OpenCL functions that run on OpenCL devices.

Program Objects The program source and executable that implement the kernels.

Memory Objects A set of memory objects visible to the host and the OpenCL devices.

17

2. RELATED WORK 2.2. OpenCL

Figure 2.9: Illustration of a two-dimensional (2D) arrangement of work-groups and work-items.

OpenCL API provides functionality to create and manipulate the context. To coor-
dinate the execution of the kernels there’s a facility called command-queue. This queue
schedules commands onto the devices within the context. These commands include the
following functionality:

Kernel execution commands Execute a kernel on the processing elements of a device.

Memory commands Transfer data to, from, or between memory objects, or map and
unmap memory objects from the host address space.

Synchronization commands Constrain the order of execution of commands.

The commands queued are then executed asynchronously between the host and the
device. The order of execution depends on the mode, which can be in-order or out-of-order.

In-order execution guarantees the submission order. It fallows the logic first in first
out (FIFO), in other words, a prior command on the queue completes before the following
command begins. This serializes the execution order of commands in a queue.

Out-of-order execution doesn’t enforce any particular order, following commands
don’t have to wait for the current to finish execution. Any order constrains must be
enforced by the programmer through explicit synchronization commands.

Kernel execution and memory commands submitted to a queue generate event ob-
jects. These are used to control execution between commands and to coordinate execu-
tion between the host and devices.

18

2. RELATED WORK 2.2. OpenCL

It is possible to associate multiple queues with a single context. These queues run con-
currently and independently with no explicit mechanisms within OpenCL to synchronize
between them.

2.2.2.3 Memory Model

OpenCL defines four different memory regions that are available to the kernels. These
memory regions differ mainly in size, latency and access capabilities. Much like the lev-
els of cache in a CPU, with the exception that in OpenCL they are explicitly manipulated,
providing great potential for optimizations. Smaller regions are the fastest and also clos-
est to the working units, and vice-versa. A conceptual OpenCL device memory model
is shown in figure 2.10. Table 2.3 resumes memory allocations and access capabilities of
different regions from the device and the host.

Global Memory This memory region permits read/write access to all work-items in all
work-groups. Work-items can read from or write to any element of a memory ob-
ject. Reads and writes to global memory may be cached depending on the capabil-
ities of the device.

Constant Memory This memory region permits read access to all work-items in all work-
groups. Work-items can read from or write to any element of a memory object.
Reads and writes to constant memory may be cached depending on the capabilities
of the device.

Local Memory A memory region local to a work-group. This memory region can be
used to allocate variables that are shared by all work-items in that work-group.
It may be implemented as dedicated regions of memory on the OpenCL device.
Alternatively, the local memory region may be mapped onto sections of the global
memory.

Private Memory A region of memory private to a work-item. Variables defined in one
work-item’s private memory are not visible to another work-item.

Global Constant Local Private
Host Dynamic allocation Dynamic allocation Dynamic allocation No allocation

Read / Write access Read / Write access No access No access
Device No allocation Static allocation Static allocation Static allocation

Read / Write access Read-only access Read / Write access Read / Write access

Table 2.3: Memory allocations and access capabilities.

Memory models of the host and OpenCL devices are almost independent, that’s be-
cause the host is outside of the OpenCL scope. However they interact when explicitly

19

2. RELATED WORK 2.2. OpenCL

Figure 2.10: Illustration of a conceptual OpenCL device memory model.

copying data or mapping and unmapping regions of a memory object. These two opera-
tion are accomplished using the command queuing mechanism explained previously, in
sub-sub section 2.2.2.2.

Explicit copy of data between the host and a device may be a blocking or non-blocking
operation. Blocking operation function calls return only after the host can be safely
reused, without the risk of tempering the data being transferred. Non-blocking opera-
tion function calls return as soon as the command is enqueued.

OpenCL uses a relaxed consistency memory model, for example, the state of memory
visible to a work-item is not guaranteed to be consistent across the collection of work-
items at all times.

Within a work-item memory has load / store consistency. Local memory is consistent
across work-items in a single work-group at a work-group barrier. Global memory is
consistent across work-items in a single work-group at a work-group barrier, but there
are no guarantees of memory consistency between different work-groups executing a
kernel.

2.2.2.4 Programming Model

OpenCL API explicitly supports data parallel and task parallel programming models. The
primary supported model in the design of OpenCL is data parallelism.

20

2. RELATED WORK 2.2. OpenCL

In the data parallel programming model, the same kernel is passed through the com-
mand queue to be executed simultaneously across the compute units or processing ele-
ments. The index space associated with the OpenCL execution model defines the work-
items and how the data maps onto the work-items.

For the task parallel programming model, different kernels are passed through the
command queue to be executed on different compute units or processing elements. The
parallelism can be express by enqueuing multiple tasks.

The figure 2.11 shows the different between the two models. Supposing that a pro-
gram is composed by four independent tasks that operate on a data set to produce a
result. While it’s possible to process those four tasks simultaneously it’s also possible to
divide the data in four equal parts and apply the combination of the four tasks to them
simultaneously.

Figure 2.11: Illustration of the difference between data parallel and task parallel programming models.

There are two domains of synchronization in OpenCL, work-items in a single work-
group and commands enqueued to command-queue(s) in a single context.

Synchronization between work-items in a single work-group can be accomplished us-
ing barriers. All the work-items of a work-group must execute the barrier before any are
allowed to continue execution beyond the barrier. Note that the work-group barrier must
be executed by all work-items of a work-group or by none of them, to avoid dead-locks.
There is no mechanism for synchronization between work-groups.

Synchronization between commands in command-queues can be accomplished using
barriers or events.

Command-queue barriers ensure that all previous queued commands have finished
and any memory changes are visible to posterior queued commands before they begin
executing. This barrier can only be used to synchronize between commands in a single
command-queue.

21

2. RELATED WORK 2.2. OpenCL

Events result from OpenCL API function calls that enqueue commands. A posterior
command waiting for certain event can guarantee that updates to memory objects are
visible before the command begins execution.

22

3
Implementation

3.1 Introduction

The goal is to implement an (indirect) volume rendering solution using the Marching
Cubes algorithm, taking advantage of the OpenCL framework. This framework allows
to accelerate the execution of the algorithm, using heterogeneous processing devices, in
its heavy paths. Which means that besides the traditional CPUs it’s possible to use GPUs
and other kinds of (parallel) processors, like the IBM Cell, to explore their high paral-
lel processing power. Also, this framework is device/vendor independent (contrary to
CUDA), it provides portability between different families of devices. The implementa-
tion tries to be as efficient and parallel as possible, allowing it to be fast and scale up well
in multi-processor devices. Its generic design tries to promote extensibility and readabil-
ity over small tweaks.

3.2 Summary

This implementation bundles two important components, one focused on the Marching
Cubes algorithm (mc* prefixed modules) and the other addressing OpenCL implementa-
tion details (cl* prefixed modules). The algorithm component has two fundamental mod-
ules, one in charge of decompose and distribute the work for the available processing
devices (mcDispatcher) and the other containing a Marching Cubes algorithm’s imple-
mentation (mcCore). The OpenCL component part offers extended functionality (clScan)
and low-level API abstraction (clHelper).

The execution starts by loading the dataset to main memory, then the mcDispatcher
module defines work units (independent subsets of the dataset) and distributes them

23

3. IMPLEMENTATION 3.3. Host Modules

for the available processing devices, following a method similar to round-robin. This
division of the dataset in smaller pieces allows big volumes of data to be processed, in
addition to enable the usage of more than one device in parallel. These work units are
computed by the mcCore module, which can work in parallel by (at least) as many in-
stances as available devices, each producing a fraction of the output until all of them are
finished. The mcCore implementation of the Marching Cubes algorithm takes as input
an isovalue and a dataset and outputs the corresponding 3D model (geometry and shad-
ing). This module is divided in three phases (classification, compaction and generation),
closely corresponding the three OpenCL kernel functions used to speed up the algorithm.

Figure 3.1: Overview of the execution work-flow (to keep it simple only Marching Cube modules are visible,
most OpenCL modules usage is done inside mcCore module).

3.3 Host Modules

3.3.1 mcDispatcher

This module divides the work into smaller pieces, called work units, and dispatches them
to be processed. Each work unit produces a memory entry (a fraction of the final result)
that make the output list. The division of work brings some advantages, related to a
higher division granularity, but there are also some associated costs.

One important advantage is the possibility of processing high quantities of data (big
datasets). The memory usage during a regular execution of the algorithm (mcCore mod-
ule) reaches several times the input (dataset) size, without the division it would be im-
possible to process an input with more than a small fraction of the device’s memory.

Another important advantage is the distribution of work by multiple devices, this
allows to aggregate their processing power and memory capacity to some extent. Since
each work unit is pretty much independent from each other, it becomes easy to distribute
and process them among different devices. To handle multiple devices in a practical

24

3. IMPLEMENTATION 3.3. Host Modules

way, each has an independent execution path (using threads) and it’s responsible for
requesting work every time it becomes unoccupied and there’s available work units yet
to be processed.

The associated costs of duplicate data across boundaries of two consecutive work
items are seen as overhead. Since datasets and work units are made of slices (like a
stack of paper), being one slice (a sheet) the smallest unit of data, each division accounts
for (at least) one slice of overhead. In addition, the process of dispatching may have to
account for exceptions, boundaries that didn’t result from division (the first and last slice)
require especial treatment. This exceptional treatment only happens when the duplicated
data goes further behind the boundary, in such case the overhead grows up one slice, in
both extremities (exception made to the the first and last slice), for each extra level of
duplicity. Another technical detail that influences the overhead is the work unit size, it
must be defined considering aspects like overhead ratio, runtime algorithm’s memory
requirements, fair distribution of work across multiple devices, among others.

Besides the resulting overhead there’s also the extra technical work of coordinate mul-
tiple concurrent paths of execution (threads). This coordination make use of locks, a mu-
tual exclusion method, to ensure that each work unit (or some part of it) is assigned only
to one device. A central variable is used to hold the progress of work, it points to the first
slice of the remaining undone work. Whenever a work unit is requested this variable is
updated to reflect the current progress of work, in a complete exclusive way.

Figure 3.2: mcDispatcher module execution work-flow.

3.3.1.1 Work Unit Size

Choosing a good work unit size can help minimize the side effects of the work division.
But this choice has to have into account several important factors, such as the device
memory size and processing power, the usage of multiple devices, the overall perfor-
mance, among other things. In this context, small work units are sets having just a few
slices while big work units have many slices.

25

3. IMPLEMENTATION 3.3. Host Modules

As previously mentioned, during a regular execution of the algorithm (mcCore mod-
ule) the memory usage reaches several times the input (work unit) size, which can be-
come a problem if the input size is too big. In extreme cases can be impossible to run a
single execution the algorithm, in less extreme cases there’s still the problem of the lim-
ited amount of space to store other work units results (algorithm runtime needs + other
work units results). Another issue with big work units is the unbalanced distribution
of work when using multiple devices, specially relevant on the last work units. Some
devices may become idle whereas others stay running for a significant period of time.

While using big work units leads to unwanted consequences, using too small units
also has big disadvantages. Small work units means more divisions, more duplicated
data, more overhead and a bigger performance hit. This happens because duplication is
done for complete slices, so even if each slice is quite big (its area) but the work unit has
just a few of them the overhead is high.

Device processing power can also assist the decision, specially useful when there are
multiple devices and they yield different performances. Although useful in certain situa-
tions this subject wasn’t deeply studied and because of that it doesn’t help in the decision
making process.

To see how the work unit size affects the algorithm’s execution some tests were con-
ducted using two different sized datasets, 2563 and 5123 samples, while different work
unit sizes are being used. To focus the attention on this subject and keep things as simple
as possible no additional details will be given about the input or the output, they are not
important here and are further analysed in chapter 4. This results help choose a good
work unit size in ideal conditions.

Tables 3.1 and 3.3 present details about the execution, the columns size and percentage
are pretty much self explanatory and the column count has the quantity of work units
resulted from the corresponding work unit size. Tables 3.2 and 3.4 present results about
the execution, the columns time have the total time spent, the columns worst have the
speedup (in percentage) from the worst case (which is the first), the columns previous have
the speedup (also in percentage) from the previous case (hence the non existing result in
the first case) and the column speedup has the speedup between the devices. Figures
3.3, 3.4 and 3.5 are charts based on the results from table 3.2 (2563 samples dataset) and
figures 3.6, 3.7 and 3.8 are based on the table 3.4 (5123 samples dataset).

After analysing the results there’s a clear trend, independently of the dataset size
(either the number of slices or their size) the work units with 30 slices are the ones which
best reflect a good choice without compromising the factors previously mentioned. This
conclusion can be best backed up by the figures 3.5 and 3.8, in which it’s possible to see
what are the gains from each step. In both cases it’s clear that the gains are significant
until that mark, becoming marginal after that, this makes the work unit size around 30
slices the best choice. Another conclusion that can be taken from this results (and also
from what was already mentioned) is that the work unit size based on the number of

26

3. IMPLEMENTATION 3.3. Host Modules

work unit overhead
size(slices) size(MB) count size(slices) size(MB) percentage

10 2,5 29 84 21,0 24,71%
20 5,0 14 39 9,8 13,22%
30 7,5 9 24 6,0 8,57%
40 10,0 7 18 4,5 6,57%
50 12,5 6 15 3,8 5,54%
60 15,0 5 12 3,0 4,48%
70 17,5 4 9 2,3 3,40%
80 20,0 4 9 2,3 3,40%
90 22,5 3 6 1,5 2,29%

100 25,0 3 6 1,5 2,29%

Table 3.1: Details about processing a 2563 samples dataset using different work unit sizes.

work unit Quadro FX3800 Tesla C2050
size(slices) time(ms) worst previous time(ms) worst previous speedup
10 200 - - 193 - - 1,04
20 170 15,00% 15,00% 143 25,91% 25,91% 1,19
30 146 27,00% 14,12% 123 36,27% 13,99% 1,19
40 143 28,50% 2,05% 116 39,90% 5,69% 1,23
50 140 30,00% 2,10% 116 39,90% 0,00% 1,21
60 136 32,00% 2,86% 110 43,01% 5,17% 1,24
70 133 33,50% 2,21% 110 43,01% 0,00% 1,21
80 133 33,50% 0,00% 106 45,08% 3,64% 1,25
90 130 35,00% 2,26% 103 46,63% 2,83% 1,26
100 130 35,00% 0,00% 103 46,63% 0,00% 1,26

Table 3.2: Results about processing a 2563 samples dataset using different work unit sizes.

work unit overhead
size(slices) size(MB) count size(slices) size(MB) percentage

10 10 57 168 168 24,71%
20 20 27 78 78 13,22%
30 30 18 51 51 9,06%
40 40 14 39 39 7,08%
50 50 11 30 30 5,54%
60 60 9 24 24 4,48%
70 70 8 21 21 3,94%
80 80 7 18 18 3,40%
90 90 6 15 15 2,85%

100 100 6 15 15 2,85%

Table 3.3: Details about processing a 5123 samples dataset using different work unit sizes.

27

3. IMPLEMENTATION 3.3. Host Modules

Figure 3.3: Processing time of a 2563 samples dataset using different work unit sizes.

Figure 3.4: Processing speedup from worst case of a 2563 samples dataset using different work unit sizes.

28

3. IMPLEMENTATION 3.3. Host Modules

Figure 3.5: Processing speedup from previous case of a 2563 samples dataset using different work unit sizes.

work unit Quadro FX3800 Tesla C2050
size(slices) time(ms) worst previous time(ms) worst previous speedup
10 1063 - - 883 - - 1,20
20 946 11,01% 11,01% 756 14,38% 14,38% 1,25
30 916 13,83% 3,17% 716 18,91% 5,29% 1,28
40 903 15,05% 1,42% 696 21,18% 2,79% 1,30
50 890 16,27% 1,44% 680 22,99% 2,30% 1,31
60 883 16,93% 0,79% 670 24,12% 1,47% 1,32
70 880 17,22% 0,34% 670 24,12% 0,00% 1,31
80 880 17,22% 0,00% 663 24,92% 1,04% 1,33
90 876 17,59% 0,45% 660 25,25% 0,45% 1,33
100 876 17,59% 0,00% 660 25,25% 0,00% 1,33

Table 3.4: Results about processing a 5123 samples dataset using different work unit sizes.

29

3. IMPLEMENTATION 3.3. Host Modules

Figure 3.6: Processing time of a 5123 samples dataset using different work unit sizes.

Figure 3.7: Processing speedup from worst case of a 5123 samples dataset using different work unit sizes.

30

3. IMPLEMENTATION 3.3. Host Modules

Figure 3.8: Processing speedup from previous case of a 5123 samples dataset using different work unit sizes.

slices it’s a better approach than using the storage space.

Even with 30 being a good choice there are some situations where this size is not
practical, specially when dealing with big slices (its area). Since it’s important to keep
a moderate usage of memory because of the runtime needs and the results from other
work units, the storage space approach is also used to limit extreme cases. This implies
an enforcement of maximum and minimum limits in the memory usage, based on the
device memory and reference dataset sizes. Besides device memory, dataset sizes are
also used because they provide real numbers. As reference datasets, the small one has
1283 samples (8MB) and the big one has 10243 samples (4GB). The minimum work unit
size is set to 4MB, which allows the small dataset to be divided in 2 work units (each
with 64 slices). The maximum work unit size is set to the smaller size between 128MB or
device memory size/30. The first one allows the big dataset to have the ideal work unit
size (32 slices), whereas the second means that the runtime needs of the algorithm are
limited to about 1/5 of the device’s memory size, being the remaining used to store other
work units output results. So, it’s used the work unit size of 32 slices (around 30 and
power of two) if it’s within the enforced limits, else the necessary math are preformed to
meet them.

31

3. IMPLEMENTATION 3.3. Host Modules

3.3.2 mcCore

As previously mentioned, this module contains the Marching Cubes algorithm imple-
mentation and it’s divided in three phases. In fact, the first two phases are just an effi-
ciency requirement due to parallel implementation constrains, that is, the third (and last)
phase do all the necessary work to build a model from the input dataset. The first two
phases are just responsible for analyse and discard all the irrelevant data, generating a
compacted version of the input dataset. This way the third phase will only process data
that matters, and since it’s the most expensive, the two previous phases are very im-
portant in the whole process. Previous implementations of the algorithm using OpenGL
without Geometry Shaders suffer a great performance hit because weren’t able to discard
useless data, this would consume too much memory and processing time, render them
inefficient and unable to scale up.

All critical paths of the algorithm are executed making use of OpenCL, through kernel
functions. The host code provides the glue for setting up the execution of the algorithm,
making a pipeline with the three phases.

The execution (and the first phase) begins by uploading the input dataset data to the
device memory (in 3D texture form) and creating the two necessary memory buffers to
output the results from the mcClassification kernel. These memory buffers, filled by the
execution of the kernel, contain the analysis of the dataset (according to the chosen iso-
value). For each voxel, one buffer indicates if the voxel is relevant (occupied) or not and
the other the voxel’s number of vertices (or triangles). The relevance buffer may seem
redundant, since it is possible to deduce it from the buffer with the number of triangles
(it’s only relevant if it has at least one triangle), but is necessary for the next phase. The
execution of the kernel ends this phase.

The second phase is all about using the results from the previous phase and discard-
ing all the data (and further work) that isn’t relevant. This translates into a new buffer
containing just the indexes of voxels that will contribute to the output, a compacted index
buffer produced by mcCompation kernel. But before executing the kernel it’s necessary
to preform an (exclusive) scan on the buffer holding voxels’ relevance. Since this buffer
has binary data the result is a buffer with an unique index, sequentially ordered, for all
relevant voxels. Scanning an array also provides the sum of all its entries, in this case
the number of relevant voxels, useful to determine the compacted buffer size and the
resources used by the mcGeneration kernel. Also, if the result of this sum is zero the
work is done, meaning that aren’t any relevant voxel and that the execution of the al-
gorithm is complete. For the remaining cases the next step is to create the compacted
buffer previously mentioned and fill it by executing the mcCompation kernel. After the
kernel execution there are two buffers no longer necessary, the voxels’ relevance and its
scanned version. These are released and replaced by the compacted version, which ends

32

3. IMPLEMENTATION 3.3. Host Modules

the second phase.

The third and final phase is responsible for producing the model’s geometry and the
corresponding shading data. The result are two buffers, one containing groups of three
vertices (triangles) and the other their normals, filled by the mcGeneration kernel. But
before executing it there’s one thing missing, a scanned version of the buffer with the
amount of vertices per voxel (produced in the first phase). The result is a buffer with
unique indexes (or positions) for all relevant voxels, but this time not sequentially or-
dered (non-binary array). Each index is the sum of the vertices from all previous entries.
This fulfils exactly the requested needs because it allows to output all data in independent
positions (addresses) and without any holes, similar to what was done in the previous
phase. And once again, the sum of all entries, preformed by the scan, is useful to deter-
mine the output buffers size. After being scanned the triangles buffer is released since
it’s no longer needed. Now it’s possible to execute mcGeneration kernel, which fills the
output buffers. At this point, all remaining buffers, except the last two (geometry and
shading buffers), are released and the algorithm is finished.

Figure 3.9: mcCore module execution work-flow.

3.3.2.1 Memory Usage

As shown in figure 3.10 and already mentioned, the memory usage while executing mc-
Core module reaches several times the input size. The least heavy execution uses 4x the
input size and happens when there’s no relevant voxel. The most expensive execution
uses at least 4x times the input size plus the compacted buffer size, or 2x times the input
size plus the compacted buffer size plus 2x output buffer size, if it’s bigger than the pre-
vious. Since the compacted buffer and the output buffers don’t have a fixed size, it’s not
possible to predict a priori which of the two has the most expensive usage. It’s only possi-
ble to predict that the memory usage is at least 4x time the input size plus the compacted
buffer size (which most of the times is small, almost neglectable).

33

3. IMPLEMENTATION 3.3. Host Modules

Figure 3.10: mcCore module memory usage.

3.3.2.2 Data Format

This module takes as input a dataset and an isovalue, both of which are floating-point
type (cl_float). The dataset is a simple array, implicitly arranged in a three dimensional
form (volume’s data), and the isovalue is a single value. The output can be released in
one of two forms, VBOs1 or OpenCL memory buffers, these are also floating-point type
(cl_float4) and are stored in device memory. The difference between the two is that only
memory buffers can be retrieved by the host and only VBOs can be used directly by
OpenGL.

3.3.2.3 CPU Implementation

A serial implementation that resembles the OpenCL one but skipping the unnecessary
tasks, like compaction and all involved steps. Such implementation has the purpose of
being the base reference for a serial version, it’s very important to see how the OpenCL
implementation preforms against it. The followed approach was to build something that
could provide the same results while making it very simple and clean. Although it has
no special tweak, the execution path is very strait forward which make it very fast.

The results aren’t uploaded to the GPU, which isn’t completely fair when compared
with the OpenCL implementation.

3.3.3 clScan

This module provides the scan operation, a fundamental functionality in this implemen-
tation, also known as prefix sum or reduction. The operation outcome is the sum of all val-
ues from a vector while arranging it in a very useful way, performed in parallel, which
makes such operation a very important piece of parallel computation.

1Vertex Buffer Objects

34

3. IMPLEMENTATION 3.3. Host Modules

Just to recap, each value in the output vector results from summing all previous val-
ues in the input vector (e.g.: out[2] = in[0] + in[1]). This operation has two variants,
inclusive 2 and exclusive 3, the former sums all previous values including it self while
the latter doesn’t, only includes previous values. While there are two variants, only the
exclusive one is relevant in this case because its values can be used as proper indexes.

The output values can be used to uniquely address their corresponding 4 input ones,
that is, for each non-null input value there’s a corresponding unique output one. These
values can be used as unique addresses to define independent and self-contained chunks
of data on shared resources, allowing multiple processor units to operate simultaneously
on it.

In this implementation scan is used to know the output size and the output indexes
of dynamic sized buffers. The first case uses the scan operation on a binary vector, which
counts (summing just ones and zeros can be thought as counting) how many elements (or
components) are non-null and at the same time produces a vector containing unique and
sequential indexes just in the corresponding non-null elements positions. These results
are used to create a vector containing only non-null data based on the previous binary
input vector. The second case uses scan on an integer vector, which sums all its elements
and indexes (not sequentially) the non-null ones. Such results are used to create buffers
and define independent chunks of data within them.

This module reuses the OpenCL Parallel Prefix Sum (aka Scan) Example 5

from Apple, adapted to fit the needs of the implementation. Instead of creating it from
scratch the solution was forked from Apple’s example, which provides features like non-
power of two sizes, memory bank conflict avoidance and usage of local memory to store
partial sums.

3.3.4 clHelper

This module provides some abstractions to the low-level OpenCL API. Tasks such as er-
ror reporting, resource and program handling, resource information, profiling and some
others are offered as simple functions. Such tasks would require several steps using the
OpenCL API. These functions try to be as generic as possible although some of them
make some compromises oriented towards this implementation. This abstracted API
was created with usability in mind, properties like similar behaviour and ease of use
show that.

Although errors can be ignored, all functions handle and forward OpenCL errors,
which can be very useful to know how things go in the OpenCL runtime while still using
these abstractions.

2e.g: out[1] = in[0] + in[1]
3e.g.: out[1] = in[0]
4the same position in both vectors
5http://developer.apple.com/library/mac/#samplecode/OpenCL_Parallel_Prefix_Sum_Example

35

3. IMPLEMENTATION 3.4. OpenCL

Some functions return the result directly instead of changing the arguments’ refer-
enced value, a very common approach in the OpenCL API. Tasks returning data in na-
tive types can be greatly simplified, reducing to just a function call what would require
several lines of code using the OpenCL API. Profiling, resource information and error
reporting functions benefit most with such approach.

Management of resources allows to initialize and free OpenCL resources in one step
each, tasks that can be highly automatized. This is mostly because these resources are
the minimum requisites to preform any useful work using OpenCL. Besides the common
steps to initialize such resources, like platform and device selection and assignment of
command queues to devices, the context creation also handles interoperation between
OpenCL and OpenGL. Platforms can be selected based on their name, devices can be se-
lected based on a provided list and their type. The creation returns a (struct) object that
comprises the necessary OpenCL (opaque) objects, while the first is used by some func-
tions offered by this module it’s still possible to have direct access to OpenCL using the
second ones. Besides the necessary OpenCL objects there’s also some useful information,
which avoids querying OpenCL to know things like the maximum work-group size and
available global and local memory.

Compilation and management of binaries are handled in a simple and automated
manner. It’s possible to compile programs’ sources into binaries and store them on disk
for future use. This avoids compiling always from source, which shrinks the initialization
process time.

Simpler functionality such as resources information, error reporting, profiling events
and creating shared buffers (GL-CL) are also provided.

3.4 OpenCL

3.4.1 Kernels

3.4.1.1 mcClassification

This kernel is responsible for analyse and classify all voxels from the input dataset. This
work depends on the isovalue, it influences the interpretation. The result is the output
of two arrays – one containing relevance (occupied or empty, binary values) the other
vertices, for each voxel.

Since the output size is fixed (an input voxel corresponds to one entry in each array),
even for the entry size, there’s no need to calculate the output positions in advance. They
are mapped linearly, which can be (independently) calculated only at the moment they
are needed. mcClassification is the only kernel that outputs arrays with a predictable size,
later kernels will have to employ some technique to know the output size and positions.

Each work-item is responsible for one voxel, which means that are launched as many
work-items as voxels, a direct relation between the input size, the amount of work-items
and also the output size (1:1:2). This implementation arranges the work-items in a 3D

36

3. IMPLEMENTATION 3.4. OpenCL

grid, it follows closely the input dataset form (3D texture) to avoid unnecessary con-
versions between different arrangements (1D to 3D). Although useful it’s not strictly re-
quired, instead of calculating only the output position (on 1D arrays) it would be possible
to use an 1D arrangement of work-items and calculate the necessary coordinates (on a 3D
texture) instead. But since most operations are related to the input it’s much preferable
to use 3D arrangement of work-items. Later kernels will not follow this approach be-
cause in those situations it would be counter productive, further details about them will
be given ahead.

The execution can be started as soon as the dataset and the isovalue are available
(and the output arrays are created). Each work-item gets its own coordinates, the base
to determine the voxel’s corners coordinates used to read the corresponding values from
the input texture. Together with the isovalue these corner values are used to determine
the voxel’s combination, which is then used to know how many vertices (or triangles) the
voxel will produce. To know how many vertices a combination produces there are a table
with all possible combinations (256) that are looked up, this table was built offline. Since
the output is done to an unidimensional array, it’s necessary to convert a 3D position
to an 1D position. The 1D position is then used to write the amount of vertices and its
binary variant (relevance - has vertices or not), to each array.

Kernel 1 mcClassification pseudo-code

input: dataset, isoValue
output: occupied[], vertices[]

sizes← getSizes()
coordinates← getCoordinates()
outputPosition← getPosition(coodinates, sizes)

corners[8]← getV oxelCornersV aluesFromDataset(dataset, coordinates)
combination← calculateV oxelCombination(isoV alue, corners)
verticesCount← getV oxelV erticesCount(combination)

vertices[outputPosition]← verticesCount
if verticesCount then
occupied[outputPosition]← OCCUPIED_V OXEL

else
occupied[outputPosition]← EMPTY _V OXEL

end if

3.4.1.2 mcCompaction

This is the simplest and also the lightest of all kernels, its goal is to create an array which
contains only the indexes of non-empty entries from an array of binary values. Imple-
menting the above functionality sequentially it’s as simple as read each value from the
input array and if it’s not zero add its index to the output array. Now, when there’s more

37

3. IMPLEMENTATION 3.4. OpenCL

than one thread of execution problems arise, some data paths may suffer from concur-
rency problems, in particular the output positions. To solve such problems it’s common
to use a mutual exclusion method to protect the affected data, but such technique doesn’t
fit well under our model of independent data, it greatly hits parallel performance. A bet-
ter solution to this problem can be achieved with an extra array, holding the positions
for all output data, which can be obtained by a scanned version of the input array. Note
that this result can only be accomplished in arrays with binary values, which is the case
(when needed, convert non-binary arrays to binary ones can be easily done). With the
positions (addresses) for all output entries obtained, each work-item will be in charge of
processing one entry, and since all entries are independent it’s possible to process all of
them in a truly parallel way.

Once again there’s a direct relation between the input data size and the amount of
work-items launched (1:1), but not with the output data size. In contrast with the previ-
ous kernel, this doesn’t arrange work-items in a 3D grid, it prefers a flat 1D arrangement
because all data arrays involved (the inputs and the output) are unidimensional.

Each work-item begins by getting its index, which uses to determine the entry it’s in
charge with and where it can write the results (through the scanned array). Then, it only
has to check the corresponding input value to decide if it has to write its index to the
output array or not.

This kernel doesn’t perform compaction per se, it only discards data considered irrel-
evant, producing (in general) a much smaller array, hence the name.

Kernel 2 mcCompaction pseudo-code

input: values[], scannedValues[]
output: compacted[]

position← getPosition()
compactedPosition← scannedV alues[position]

if values[position] then
compacted[compactedPosition]← position

end if

3.4.1.3 mcGeneration

The last kernel is responsible for producing all model’s data (geometry and shading).
It takes as input a dataset, an isovalue, a scanned version of the array containing the
amount of vertices each voxel produces and an array holding only the indexes of the
voxels which produce vertices (relevant ones), referred to as compacted. And outputs
two arrays, these contain geometry (vertices) and shading (normals), respectively.

The scanned array will be used in the same manner as in the previous kernel, this time
providing output positions (memory addresses) for the resulting output data (vertices
and normals). This array is necessary because not all voxels produce the same amount

38

3. IMPLEMENTATION 3.4. OpenCL

of vertices, and it’s not desirable to assume the maximum for all of them. And, since
they are processed in an independent way (to allow efficient parallelization) the position
where they will write the results must be known in advance.

As previously said, this kernel will only work on relevant voxels (listed in the com-
pacted array), each of them are processed by one work-item. Once more there’s a di-
rect relation between an input size, this time the compacted array, and the work-items
launched (1:1). This kernel (like the first one) has data with different arrangements, the
dataset are 3D while all other input and output buffers are in a 1D form. Since voxel
attribution is based on the compacted array (1D), work-items will also follow the unidi-
mensional arrangement.

The execution begins by determining its own work-item index, which is then used to
get the position of one relevant voxel from the compacted array. This voxel position is
converted to coordinates (1D to 3D) and the same steps used in the mcClassification are
replicated here up to determining the voxel combination (exception made to the voxel’s
corners, that besides their values also hold their coordinates). This may seem redundant
because it’s possible to save also the combination and get it at this point, instead of pre-
forming all the necessary steps to determine it again. But the voxel’s corners values, used
to determine the combination, are also used in further steps, which means this values
would still need to be fetched. So, the only work that could be saved was the calculations
to determine the combination, and since it’s faster to preform them than get it from an
array, the redundant work are excused.

After determining the combination it’s calculated all vertices along the edges (formed
by the corners). This vertices are determined using linear interpolation, applied between
any two corners that form an edge, using their values as weights. All potential vertices
(12) are calculated, even if they are outside the edge’s limits, because it avoids branching,
unnecessary complexity and cause no side effects on the next steps.

The next step is to get the amount of vertices produced by the voxel (the same way
as in the first phase), an array listing which edges (their vertices) are used to build the
triangles (looking up in a table containing the edges of all combinations, also built offline)
and the output position for the whole voxel (through the scanned array).

At this point it’s now possible to execute the final step, produce the vertices and its
respective normals. This step consists of a block that loops as many times as the number
of vertices to produce, while the individual output position is incremented and the edge
array is iterated. Each loop produces one vertex and its normal and store them in the
geometry and shading arrays, respectively. The vertices are fetched from the vertices
array calculated in previous steps, using the current iteration of the edge array as the
index. Its normals are calculated using the central difference method.

39

3. IMPLEMENTATION 3.4. OpenCL

Kernel 3 mcGeneration pseudo-code

input: dataset, isoValue, scanned[], compacted[]
output: geometry[], shading[]

rawPosition← getPosition()
position← compacted[rawPosition]
coordinates← getCoordinatesFromPosition(position, dataset.sizes)

corners[8]← getV oxelCornersV aluesFromDataset(dataset, coordinates)
combination← calculateV oxelCombination(isoV alue, corners)
vertices[12]← calculateV oxelV ertices(isovalue, corners)

verticesCount← getV oxelV erticesCount(combination)
voxelEdges[]← getV oxelEdges(combination)
voxelOutputPosition← scanned[position]

for v ← 0 : verticesCount do
edge← voxelEdges[v]
outputPosition← voxelOutputPosition+ v

geometry[outputPosition]← vertices[edge]
shading[outputPosition]← calculateNormal(dataset, vertices[edge])

end for

3.4.2 Enhancements

The next subsections detail some enhancements to the original algorithm implementation
presented previously in this chapter. These can be performance or usability enhance-
ments.

3.4.2.1 Local Work-Group Size

Setting a good local work-group size can be very important and in some situations tweak-
ing this value can yield some performance improvements. This happens because kernel
executions always define an local work-group size, even if it’s not explicitly defined. In
cases where the global work size isn’t multiple of good numbers, like powers of two, this
can be very bad, performing much worst than technically could. It’s also possible that
some local work-group sizes, even if defined as a power of two, can hurt performance in-
stead of improve it. To solve such problems, local work-group size isn’t explicitly defined
(where isn’t necessary) but the global work size is ceiled to a multiple of the maximum
kernel local work-group size. This way the drivers can figure what’s best, while in some
situations doesn’t reflect the best possible performance it’s future-proof.

40

3. IMPLEMENTATION 3.4. OpenCL

3.4.2.2 Images

In some situations using images to store data (better known as textures in CUDA or
OpenGL) instead of plain buffers has big advantages. This advantages are presented as
performance enhancements and also as higher-level objects in the kernel code (function-
alities and usability) compared to buffers. In this implementation, one particular case
that can benefit greatly from using data in image form is the input dataset.

This data is read-only (reading and writing to the same texture within a kernel isn’t
supported) and its 3D structure is closely mapped to the execution arrangement of the
work-items, which benefits from the spatial locality of their access patterns. Contrary to
buffers, images are always cached (optimized for 2D spatial locality), most of the time
reading from a texture costs only a cache read and not a read from global memory, much
more expensive. The combination of the data access pattern and the texture cache opti-
mization is a great fit, achieving better performance than buffers (even if they are cached
- following their 1D structure). Images are used to avoid uncoalesced loads from global
memory, which has big negative performance consequences.

Besides reading performance, images also offer some functionality within a kernel
which buffers simply don’t, because they lower-lever entities. Handling buffers struc-
tured in 3D (or 2D) is a manual job, that is, it’s necessary some extra code to provide
the functionality. Instead, images already have built-in functions that provide very use-
ful functionality, which are supported in hardware by dedicated units (texture units).
Images feature filtering which can turn discrete data into continuous data (interpolat-
ing contiguous values) and addressing modes which handle boundaries in a very simple
way (clamp, repeat or limit values behind boundaries). In this implementation, calculat-
ing vertices normals relies heavily in interpolating values from the input dataset, using
images avoids extra code and even enhance performance because the interpolation is pre-
formed by dedicated hardware units (a win-win situation). Also, not worry with bound-
aries avoids some corner-cases code, which sometimes means branching (performance
hit) due to condition instructions.

3.4.2.3 Pinned Memory

Pinned memory (or page-locked) transfers achieve the highest bandwidth between the
host and the device. This kind of memory is needed to preform DMA transfers, opera-
tions that are not preformed by the CPU and so have their limitations. In this case, the
limitation relies in the fact that during these kind of transfers page-faults are not sup-
ported.

There are some side effects of using this tweak. Since the allocation and fill operations
that are too slow, using this memory as a dynamic buffer isn’t viable. To use it as a static
buffer it’s necessary preload all data needed during execution. But due to this memory
being also allocated on the device memory the costs of using it are pretty high.

41

3. IMPLEMENTATION 3.4. OpenCL

3.4.2.4 Local Memory

Local memory (called shared memory in the CUDA world) is typically used to share
data between work-items in the same work-group. This can also be accomplished using
global memory but at a much lower speed, even in devices with great global memory
bandwidth available because local memory is located on-chip 6, which makes it much
faster (up to 100x under ideal conditions).

In this case local memory is not used to share data in a work-group, but to avoid using
global memory to store work-item’s own private data (automatic variables). Each work-
item have a private memory space in which can hold its private data, this memory is very
fast (at least as fast as local memory) but unfortunately very small, global memory is used
to mask the limited space of private memory (just like swap). When a kernel needs too
much private data some of it is allocated in global memory, which will probably hurt
performance. To avoid such penalty the next best thing is used, local memory, which can
be as fast as private memory under ideal conditions. Such conditions are bank-conflict
free memory accesses, which can be obtained using the right offsets for each work-item.

This way of using local memory can be viewed as a form of caching, because the data
is brought to a closer and faster memory instead of storing and loading it from global
memory (which can be cached in certain devices).

3.4.2.5 Prefetch

Prefetch in this context refers to fetch data before its real need, so that when becomes
necessary there’s already available. Since it’s possible to upload data to the device in the
background while executing kernels, this enhancement uploads the input data that will
be used by the next work unit while the current one is being processed.

In theory this tweak would allow to hide the input data upload time completely from
all work units except the first one. Completely hidden because the work unit’s execution
time is bigger than the fetch time. If the execution time became lower than the fetch
one then the upload wont be completely hidden, only partially, corresponding to the
execution time.

3.4.2.6 Object Identification

There are situations, specially with big datasets, where the geometry model has so much
details or is so big that some kind of identification would be very useful to distinguish
different parts. This feature tries to do that using color to tell apart geometry regions with
a different identification.

This implementation doesn’t perform any kind of identification per se, it only dif-
ferentiates geometry extents with different colors and transparency. This identification
is accomplished using an extra dataset that has a tag for every voxel formed from the

6explain on-chip e off-chip

42

3. IMPLEMENTATION 3.4. OpenCL

value’s dataset. The two datasets must have identical sizes, the value’s dataset must be
bigger by 1 unit in each dimension, because for every voxel must exist a corresponding
identification tag. And for every different tag there’s a matching entry in the color table
(like the vertices or triangles table). These entries are made of 4 channels, each with 8-bit
integers, corresponding to the RGBA color model.

Another way of identifying particular zones, without producing the entire model, is
clipping (discarding some geometry). Without this feature the output geometry would
always produce the entire input dataset’s model. This way, besides tagging different
portions of the geometry is also possible to discard some of them using a particular tag,
the background tag.

This feature tries to be as efficient as possible, without introducing too many changes
and costs. There’s an increase in memory consumption on the input, as an extra dataset,
and also on the output, as the extra color data, more 1/4 and 1/8 respectively (producing
the entire model). Also the classification an generation kernels saw an increase in exe-
cution time, attributed almost exclusively to the extra memory accesses, less than 10%
(again, producing the entire model). Now classification kernel must have into account
not only voxel’s combination but also the its identification tag (in this particular case, the
background tag) to know what should discard.

Kernel 4 mcClassification pseudo-code with object identification

input: values, isoValue, valuesID
output: occupied[], vertices[]

sizes← getSizes()
coordinates← getCoordinates()
outputPosition← getPosition(coodinates, sizes)

if getV oxelID(valuesID, coordinates) then
corners[8]← getV oxelCornersV alue(values, coordinates)
combination← calculateV oxelCombination(isoV alue, corners)
verticesCount← getV oxelV erticesCount(combination)

vertices[outputPosition]← verticesCount
if verticesCount then
occupied[outputPosition]← OCCUPIED_V OXEL

else
occupied[outputPosition]← EMPTY _V OXEL

end if
else
vertices[outputPosition]← 0
occupied[outputPosition]← EMPTY _V OXEL

end if

In addition to the geometry and shading buffers already produced by the generation
kernel, a color buffer must also be produced. Each vertex has a color, associated with its

43

3. IMPLEMENTATION 3.4. OpenCL

voxel identification tag.

Kernel 5 mcGeneration pseudo-code with object identification

input: values, isoValue, scanned[], compacted[], valuesID
output: geometry[], shading[], color[]

rawPosition← getPosition()
position← compacted[rawPosition]
coordinates← getCoordinatesFromPosition(position, values.sizes)

corners[8]← getV oxelCornersV alues(values, coordinates)
combination← calculateV oxelCombination(isoV alue, corners)
vertices[12]← calculateV oxelV ertices(isovalue, corners)

verticesCount← getV oxelV erticesCount(combination)
voxelEdges[]← getV oxelEdges(combination)
verticesColor ← getV oxelID(valuesID, coordinates)
voxelOutputPosition← scanned[position]

for v ← 0 : verticesCount do
edge← voxelEdges[v]
outputPosition← voxelOutputPosition+ v

geometry[outputPosition]← vertices[edge]
shading[outputPosition]← calculateNormal(dataset, vertices[edge])
color[outputPosition]← verticesColor

end for

44

4
Results Analysis

This chapter provides results achieved by the implementation described in chapter 3 and
further enhancements described in subsection 3.4.2. These results are split in the single
device (4.1) and multiple devices (4.2) sections. Enhancements used in a single device
execution can also be applied to a multiple devices execution.

All units used in the next tables and figures are specified in the table 4.1, allowing to
present uncluttered and uniform results while saving precious space in some long tables.
Uniformity is specially useful when comparing results directly, assuming they belong to
the same category.

The datasets used to preform the tests in this chapter are detailed in the table 4.2 and
shown in the chapter 7 of the appendix. The column output triangles reflects only the
geometry, but the output size column already accounts for all generated data (geometry
plus shading).

The hardware used run the tests in this chapter is detailed in table 4.3 and 4.4.

The timing results presented in this chapter were obtained repeating each test 3 times
and averaging the total time, after a warm up cycle. Timings concerning overall execu-
tions are measured by host timers, with a microsecond resolution, and rounded to mil-
liseconds. Whereas kernel timings are measured by the device, which reports nanosec-
ond resolution timestamps, and rounded to 1/10 of the millisecond. Device timings were
retrieved using OpenCL profiling API and accounting only the time spent executing, the
enqueue and submit times were considered host time. Sometimes, due to some limitation
(typically memory), there’s no available result.

45

4. RESULTS ANALYSIS

category unit
time millisecond (ms)
size mebibyte (MiB)
speedup how many times (x)
usage percentage (%)
enhance percentage (%)
cost percentage (%)

Table 4.1: Units used in the test results.

input output
dataset samples size isovalue triangles size
skull 256 * 256 * 256 64 50 1.528.872 139
engine 256 * 256 * 128 32 80 593.620 54
aneurysm 256 * 256 * 256 64 50 251.012 22
sphere 256 * 256 * 256 64 - 377.000 34
8 skulls 512 * 512 * 512 512 70 6.419.964 578
unknownHISO 1024 * 1024 * 476 1904 45 6.260.182 573
unknownLISO 1024 * 1024 * 476 1904 30 16.097.484 1473

Table 4.2: Datasets used to perform the tests.

details System 1 System 2
operating system Ubuntu 10.04
processor Xeon E5506 (4x 2.13Ghz)
memory 12GB DDR3

opencl devices
Quadro FX3800 Quadro FX3800
2x Tesla C1060 Tesla C2050

device drivers 285.05.09 285.05.15

Table 4.3: Systems used to preform the tests.

details Quadro FX3800 Tesla C1060 Tesla C2050
compute units 24 30 48
processing elements 192 240 448
processor clock(mhz) 1204 1296 1147
memory interface(bits) 256 512 384
memory speed(mhz) 1600 1600 3000
memory bandwidth(GB/s) 51,2 102,4 144
global memory size(GiB) 1 4 3
opencl profile 1.0 1.0 1.1
compute capability 1.3 1.3 2.0
power consumption(watts) 108 188 238

Table 4.4: Devices used to preform the tests.

46

4. RESULTS ANALYSIS 4.1. Single Device

4.1 Single Device

These results were achieved executing the algorithm just like it’s described in chapter 3,
without any of the enhancements described in subsection 3.4.2. Such results are used as
the base reference for comparing with other modified versions of the algorithm, either by
performance or usability enhancements.

The table 4.5 and figures 4.1 and 4.2 show overall execution timings of all datasets
running on the CPU and on OpenCL devices. Besides timings, there’s also the achieved
speedup between CPU and OpenCL versions. Although figures 4.1 and 4.2 contain the
same kind of information they are split to provide a good readability.

input CPU Quadro FX3800 Tesla C1060 Tesla C2050
dataset time time speedup time speedup time speedup
skull 1248 151 8,3x 105 11,9x 85 14,7x
engine 526 68 7,7x 49 10,7x 39 13,5x
aneurysm 455 111 4,1x 84 5,4x 68 6,7x
sphere 546 115 4,7x 85 6,4x 68 8,0x
8 skulls 6319 884 7,1x 597 10,6x 511 12,4x
unknownHISO 12956 2824 4,6x 2009 6,4x 1678 7,7x
unknownLISO 18862 - - 2166 8,7x 1776 10,6x

Table 4.5: Algorithm performance running on different devices and with different datasets.

Figure 4.1: Algorithm performance running on different devices and with different (small) datasets.

47

4. RESULTS ANALYSIS 4.1. Single Device

Figure 4.2: Algorithm performance running on different devices and with different (big) datasets.

Figure 4.3: Algorithm speedup running on different devices and with different datasets.

48

4. RESULTS ANALYSIS 4.1. Single Device

One conclusion that can be quickly spotted is the CPU performance being more af-
fected by the output data size than the input data size. While on the OpenCL side the
input data size weights considerably more. This difference can be easily saw on tests
which used the datasets skull, engine, aneurysm and sphere. The explanation for this
difference relies on the different approach followed by the CPU (serial) and the OpenCL
implementations (parallel). As previously said, the OpenCL implementation copies the
input data to its memory and preforms several steps to classify and discard non-relevant
data, which accounts for most of the execution time. On the other hand, the CPU imple-
mentation doesn’t have to preform most intermediate classification steps, which shifts
must execution time weight to the generation process.

Another easy trend to spot is the speedup being bigger on datasets which produce
more output data. This is true either between CPU and OpenCL devices as between
powerful and less-powerful OpenCL devices. Because the generation phase has more
computation work (processor-bound) than the other steps (or phases, for that matter),
the more powerful devices are able to have higher speedups.

The tables 4.6, 4.7 and 4.8 and figures 4.5, 4.6 and 4.7 provide a good insight of the
algorithm execution. While tables 4.6, 4.7 and 4.8 show processing times for each in-
dividual component (including total), figures 4.5, 4.6 and 4.7 present a good graphical
representation of them. Also, figure 4.4 present a clean representation of the device us-
age among different datasets.

All columns from tables 4.6, 4.7 and 4.8 contain algorithm components timings, excep-
tion made to usage. Usage represents the percentage of the execution time spent in the
device. The remaining is spent on the host, typically enqueueing commands to command
queues and then submitting them to the devices.

input Quadro FX3800
dataset fetch class. scan comp. scan gen. sum usage
skull 18,3 30,5 16,9 3,6 16,9 42,6 128,7 85%
engine 8,3 15,1 8,5 1,7 8,1 15,7 57,5 84%
aneurysm 16,8 30,5 16,9 3,1 16,3 7,3 90,9 82%
sphere 18,4 30,5 16,9 3,2 16,3 9,4 94,7 82%
8 skulls 147,7 221,9 124,9 25,6 124,8 191,0 836,0 95%
unknownHISO 732,9 682,1 465,8 94,1 465,8 200,3 2641,1 94%

Table 4.6: Algorithm components performance running on a Quadro FX3800 device with different datasets.

The first thing that catches the attention is the usage results (or the host times, which
represent the same thing presented in different form), synonymous of efficiency. While on
smaller datasets this efficiency is similar among all devices, around 70-80%, it increases
when executing bigger datasets. The worst device in terms of efficiency is the Tesla C2050
and although improving on bigger datasets it can’t be as efficient as the others. Further
investigation revealed that although the Tesla C2050 has bigger host timings (enqueueing

49

4. RESULTS ANALYSIS 4.1. Single Device

input Tesla C1060
dataset fetch class. scan comp. scan gen. sum usage
skull 16,8 15,7 12,0 1,8 12,0 21,7 80,0 76%
engine 8,4 7,8 6,1 0,8 5,8 7,7 36,6 75%
aneurysm 16,7 15,5 12,0 1,6 11,6 3,9 61,4 73%
sphere 16,8 15,5 12,0 1,6 11,6 4,9 62,5 74%
8 skulls 137,2 125,1 86,6 13,1 86,6 97,1 545,8 91%
unknownHISO 511,2 663,2 315,7 45,3 315,7 100,6 1951,7 97%
unknownLISO 509,6 662,9 315,7 46,2 315,7 256,7 2106,9 97%

Table 4.7: Algorithm components performance running on a Tesla C1060 device with different datasets.

input Tesla C2050
dataset fetch class. scan comp. scan gen. sum usage
skull 18,1 8,5 9,4 1,8 9,4 14,6 61,8 73%
engine 9,0 4,3 4,7 0,9 4,5 4,8 28,1 72%
aneurysm 17,9 8,5 9,3 1,7 9,0 2,9 49,5 73%
sphere 16,7 8,5 9,3 1,7 9,0 3,0 48,3 71%
8 skulls 149,9 70,2 69,6 13,6 69,7 59,6 432,6 85%
unknownHISO 516,8 318,4 255,3 49,9 255,3 69,0 1464,7 87%
unknownLISO 515,0 318,4 255,2 50,0 255,3 177,5 1571,4 88%

Table 4.8: Algorithm components performance running on a Tesla C2050 device with different datasets.

Figure 4.4: Algorithm device usage on different devices and with different datasets.

50

4. RESULTS ANALYSIS 4.1. Single Device

Figure 4.5: Algorithm components performance on different devices using the skull dataset.

Figure 4.6: Algorithm’s components performance on different devices using the 8 skulls dataset.

51

4. RESULTS ANALYSIS 4.1. Single Device

Figure 4.7: Algorithm’s components performance on different devices using the unknownHISO dataset.

and submitting), using OpenCL profile 1.1 these only get event worst.

The compaction component being the simplest is also the lightest, accounting for only
a small fraction of the total time. And the stranger results are there, where the Tesla C1060
outperforms the Tesla C2050.

4.1.1 Performance Enhancements

In the next subsections 4.1.1.1, 4.1.1.2 and 4.1.1.3 only three datasets are used, since these
represent the all use cases. These are, bigger output than input data size, similar input
and output data sizes and smaller output that input data, respectively. Each subsection
presents results applying performance enhancements individually, explained in subsec-
tion 3.4.2. The goal is to show if there’s any performance improvement or not, and if
there is how much it is. All enhance columns present results which compare them with
the results from table 4.5.

4.1.1.1 Pinned Memory

The tests performed in this subsection uses the enhancement detailed in 3.4.2.3. Improve-
ments are expected only on the fetch component, presented in table 4.10.

All devices benefit from this enhancement, although some more than others. The
Tesla C2050 can achieve 6GB/s of transfer bandwidth.

52

4. RESULTS ANALYSIS 4.1. Single Device

input Quadro FX3800 Tesla C1060 Tesla C2050
dataset time enhance time enhance time enhance
skull 145 4% 99 6% 76 12%
8 skulls - - 563 6% 453 13%
unknownHISO - - 1883 7% 1494 12%

Table 4.9: Algorithm performance using pinned memory.

input Quadro FX3800 Tesla C1060 Tesla C2050
dataset time enhance time enhance time enhance
skull 15,4 19% 14,7 14% 13,1 38%
8 skulls - - 108,8 26% 98,4 52%
unknownHISO - - 394,5 30% 368,5 40%

Table 4.10: Fetch component performance using pinned memory.

4.1.1.2 Local Memory

The tests performed in this subsection uses the enhancement detailed in 3.4.2.4. Improve-
ments are expected only on the generation component, presented in table 4.12.

input Quadro FX3800 Tesla C1060 Tesla C2050
dataset time enhance time enhance time enhance
skull 149 1% 114 -8% 78 9%
8 skulls 853 4% 640 -7% 480 6%
unknownHISO 2740 3% 2095 -4% 1621 4%

Table 4.11: Algorithm performance using local memory.

Although Quadro FX3800 has seen its performance improved it can’t be compared to
the Tesla C2050 improvement. The Tesla C1060 has an inexplicable performance hit.

4.1.1.3 Prefetch

The tests performed in this subsection uses the enhancement detailed in 3.4.2.5. Improve-
ments are expected only on the usage, presented in table 4.14. Here usage can be higher
than 100% because components aren’t executed serially, like before, there’s parallelism
between fetch and execution. Figures 4.8 and 4.9 show the difference between using and
not using such enhancement.

While on Tesla C2050 the improvement was almost perfect, on the other devices there
isn’t any kind of improvement. On the Tesla C1060 it even hurt performance due to the
lower bandwidth achieved while fetching the data.

Figure 4.10 shows what happens when using OpenCL profile 1.0. The Tesla C2050 is
the only device supporting such profile that’s why it’s the only one reflecting improve-
ments. Using Tesla C2050 with profile 1.0 also yields results similar to figure 4.10.

53

4. RESULTS ANALYSIS 4.1. Single Device

input Quadro FX3800 Tesla C1060 Tesla C2050
dataset time enhance time enhance time enhance
skull 41,1 4% 30,9 -30% 8,6 70%
8 skulls 168,6 13% 126,2 -23% 34,0 75%
unknownHISO 187,7 7% 137,9 -27% 38,2 81%

Table 4.12: Generation component performance using local memory.

input Quadro FX3800 Tesla C1060 Tesla C2050
dataset time enhance time enhance time enhance
skull 139 9% 111 -5% 79 8%
8 skulls 865 2% 657 -9% 445 15%
unknownHISO 2960 -5% 2176 -8% 1360 23%

Table 4.13: Algorithm performance using prefetch.

input Quadro FX3800 Tesla C1060 Tesla C2050
dataset usage enhance usage enhance usage enhance
skull 85 1% 78 3% 80 10%
8 skulls 95 0% 92 1% 97 15%
unknownHISO 94 -1% 98 0% 108 24%

Table 4.14: Device usage using prefetch.

Figure 4.8: Without prefetch.

54

4. RESULTS ANALYSIS 4.1. Single Device

Figure 4.9: With Prefetch.

Figure 4.10: Prefetch on OpenCL 1.0.

55

4. RESULTS ANALYSIS 4.1. Single Device

4.1.1.4 Combined Enhancements

The tests performed in this subsection uses the previous enhancements combined. Since
not all devices improve performance when using some enhancements, only the ones that
improve performance are turned on. In some cases it’s also possible that some enhance-
ment has to be turned off due to some device limitation, like memory. That’s the case for
the Quadro FX3800 on 8 skulls and unknownHISO datasets and the Tesla C2050 on the
unknownHISO dataset.

input Quadro FX3800 Tesla C1060 Tesla C2050
dataset time enhance time enhance time enhance
skull 144 5% 99 6% 60 42%
engine 65 5% 46 7% 28 39%
aneurysm 107 4% 78 8% 47 45%
sphere 108 6% 79 8% 48 42%
8 skulls 853 4% 563 6% 337 52%
unknownHISO 2740 3% 1883 7% 1115 50%
unknownLISO - - 2042 6% 1445 23%

Table 4.15: Algorithm enhanced performance running on different devices and with different datasets.

Figure 4.11: Algorithm components time on different devices using skull dataset.

As we can see, all devices have performance improvements but the Quadro FX3800
and the Tesla C1060 don’t event reach the two digits. On the other hand, the Tesla
C2050 which was already the best device have great performance improvements, it event

56

4. RESULTS ANALYSIS 4.1. Single Device

Figure 4.12: Algorithm components time on different devices using 8 skulls dataset.

Figure 4.13: Algorithm components time on different devices using unknownHISO dataset.

57

4. RESULTS ANALYSIS 4.1. Single Device

input Quadro FX3800
dataset fetch class. scan comp. scan gen. sum usage
skull 15,4 30,4 16,9 3,6 16,9 41,1 124,3 86%
engine 7,7 15 8,5 1,7 8,1 14,1 55,1 85%
aneurysm 15,3 30,4 16,9 3,1 16,3 7,6 89,6 84%
sphere 15,3 30,4 16,9 3,2 16,3 8,5 90,6 84%
8 skulls 139,2 221,8 124,9 25,6 124,8 168,6 804,9 94%
unknownHISO 658,4 682,3 466,7 94,1 465,7 187,7 2554,9 93%
unknownLISO - - - - - - - -

Table 4.16: Algorithm’s components performance running on a Quadro FX3800 device with different
datasets.

input Tesla C1060
dataset fetch class. scan comp. scan gen. sum usage
skull 14,7 15,5 12 1,8 12 21,7 77,7 78%
engine 7,3 7,7 6,1 0,9 5,8 7,9 35,7 78%
aneurysm 14,6 15,4 12 1,6 11,6 4 59,2 76%
sphere 14,6 15,4 12 1,6 11,6 4,8 60 76%
8 skulls 108,8 124,8 86,6 13,1 86,6 97,7 517,6 92%
unknownHISO 394,5 662,5 315,7 45,3 315,7 100,3 1834 97%
unknownLISO 394,1 663 315,7 46,3 315,7 256,9 1991,7 98%

Table 4.17: Algorithm’s components performance running on a Tesla C1060 device with different datasets.

input Tesla C2050
dataset fetch class. scan comp. scan gen. sum usage
skull 13,1 8,5 9,4 1,8 9,4 8,6 50,8 85%
engine 6,6 4,2 4,7 0,9 4,5 2,9 23,8 85%
aneurysm 13,1 8,5 9,4 1,7 9 1,8 43,5 93%
sphere 13,1 8,5 9,4 1,7 9 2 43,7 91%
8 skulls 98,2 70,2 69,6 13,6 69,6 34,1 355,3 105%
unknownHISO 367,6 319 255,3 49,9 255,3 38,3 1285,4 115%
unknownLISO 570,6 318,8 255,4 50 255,3 93,4 1543,5 107%

Table 4.18: Algorithm’s components performance running on a Tesla C2050 device with different datasets.

58

4. RESULTS ANALYSIS 4.2. Multiple Devices

Figure 4.14: Device usage on different devices and with different datasets.

reaches the 50% mark.

4.1.2 Objects Identification

The tests performed in this subsection uses the enhancement detailed in 3.4.2.6. Costs
represent the executions timings compared with the results achieved in the subsections
4.1.1.4.

input
Quadro FX3800 Tesla C2050

time
cost

time
cost

dataset class. gen. execution class. gen. execution
skull 29,8 43 155 7% 9,6 9,2 64 7%
8 skulls 208,1 176,8 937 10% 77,1 36,4 354 5%

Table 4.19: Algorithm performance using object identification with 2 objects.

As it’s possible to see, the object identification has neglectable costs. Also, using just
2 or 65 identification tags has the same costs. One side effect of using this feature is the
size grow by 1/9th, storing the extra color data.

4.2 Multiple Devices

These results are achieved running the algorithm just like it’s described in chapter 3 (in-
cluding improvements) but this time by multiple devices in parallel. Since the work is

59

4. RESULTS ANALYSIS 4.2. Multiple Devices

input
Quadro FX3800 Tesla C2050

time
cost

time
cost

dataset class. gen. execution class. gen. execution
skull 29,7 43,1 155 7% 9,6 9,2 64 7%
8 skulls 207,4 177 938 10% 77,2 36,4 354 5%

Table 4.20: Algorithm performance using object identification with 65 objects.

already divided in smaller portions, the work units, the only thing left is to distribute
them by multiple devices. In theory this modification can bring huge performance im-
provements (and also memory capacity) because device’s resources are aggregated.

input
Tesla C2050 Tesla C2050

Quadro FX3800 Tesla C2050
dataset time enhance time enhance
8 skulls 508 -34% 481 17%
unknownHISO 1133 -2% 1607 17%
unknownLISO - - 1773 15%

Table 4.21: Algorithm’s performance using multiple devices.

Unfortunately the tests reveal that using multiple devices don’t bring any kind of
performance improvement when using heterogeneous devices. And even when using
homogeneous devices the improvements are small.

Figure 4.15: Simple demo test using multiple devices.

Figure 4.15 shows a simple demo test of a parallel execution with homogeneous de-
vices, in this case 2x Tesla C1060.

60

5
Conclusion

The target of this work was to implement an (indirect) volume rendering solution using
the Marching Cubes algorithm, which could take advantage of the OpenCL framework
to speedup its execution. Such requisite was largely met, the created solution is capable
of handling huge datasets and preforms much quicker than CPU versions. While much
less flexible than CPU implementations can be, its potential performance gains justify the
trade.

Since the Marching Cubes algorithm can be implemented in a complete parallel way,
using this framework is a great way to speedup things up, tapping into the GPUs process-
ing power (which have a theoretical peak performance much higher than the available
in CPUs). Besides great processing power, GPUs also have stunning memory bandwidth
a skill which is very important in this algorithm. Aside from the generation kernel, all
other kernels put much more pressure on memory operations that arithmetical opera-
tions. The classification kernel is a good example of how IO-bound this algorithm is and
how memory bandwidth affects its performance.

Parallel and serial versions of the Marching Cubes algorithm differ considerably. To
allow an efficient parallelization, this implementation have to spent much of its execu-
tion time doing things that serial versions simply don’t have. The biggest difference are
in the compaction (involving the scan operation), which is completely unnecessary in a
serial version. The compaction steps are used to avoid unnecessary computations, which
depends much of the scan operation. Besides compaction, the execution follows a strait
forward implementation of the Marching Cubes algorithm, each voxel is classified and
then the relevant ones are used to generate the representation model (or isosurface).

Compared to the initial base implementation, the Marching Cubes CUDA sample

61

5. CONCLUSION

included in the NVIDIA GPGPU SDK (detailed in subsection 2.1.4), this implementation
offers a much more refined solution:

• capable of handling much bigger datasets and non power of two dataset sizes;

• makes use of prefetch to hide fetch times (which account for a big portion of the
execution time);

• caches binary programs to shrink initialization times;

• allows the selection of devices and the order by witch they are used;

• provides (on request) useful profiling data and/or verbose execution trace;

• provides object identification.

5.1 Future Work

Unfortunately there are some shortcomings in this implementation. The inability to
achieve some improvements which in theory could have yielded great performance im-
provements. Specifically, the usage of multiple devices and the prefetch of the input data
on devices using OpenCL profile 1.0. Upon some investigating and testing we can only
speculate that the OpenCL driver used on ours tests have some caveats, it seems that at
some point some operations are serialized in some way, even if there’s more than one
command queue or device.

Future work would start by deeply investigate the causes of the shortcomings in this
implementation. Test and improve the rudimentary and untested load balance function-
ality. Investigate deeply some conclusions made from testing (running several instances
of the benchmarking concurrently on the same device) that lead to believe that some de-
vices (like the Tesla C2050 used in the tests) aren’t being completely used and can be
squeezed more performance out of them. Another direction that could be taken is to use
data types which consume less memory space, currently the type cl_float4 is used to store
only 3 values.

5.2 Contributions

• An OpenCL accelerated Marching Cubes algorithm implementation capable of han-
dling large datasets, distribute the workload across several devices (although the
results achieved aren’t particularly interesting) and identify different objected within
a dataset;

• A layer with the intent of ease the development of OpenCL programs. This layer
provides some abstraction from the low-level functions offered in OpenCL API;

62

5. CONCLUSION

• Two utilities, a viewer providing the visualization capabilities and also a bench-
mark to preform tests and measure performance.

63

5. CONCLUSION

64

Bibliography

[DZTS08] Christopher Dyken, Gernot Ziegler, Christian Theobalt, and Hans-Peter Sei-
del. High-speed marching cubes using HistoPyramids. Computer Graphics
Forum, 27(8):2028–2039, 2008.

[Elv92] T. Todd Elvins. A survey of algorithms for volume visualization. 1992.

[HSO07] Mark Harris, Shubhabrata Sengupta, and John D. Owens. Parallel prefix sum
(Scan) with CUDA. In Hubert Nguyen, editor, GPU Gems 3. Addison Wesley,
August 2007.

[JC06] Gunnar Johansson and Hamish Carr. Accelerating marching cubes with
graphics hardware. In Proceedings of the 2006 conference of the Center for Ad-
vanced Studies on Collaborative research, page 39, Toronto, Ontario, Canada,
2006. ACM.

[KSE04] Thomas Klein, Simon Stegmaier, and Thomas Ertl. Hardware-accelerated re-
construction of polygonal isosurface representations on unstructured grids.
IN PROCEEDINGS OF PACIFIC GRAPHICS ’04, pages 186—195, 2004.

[KW05] Peter Kipfer and Rüdiger Westermann. GPU construction and transparent
rendering of Iso-Surfaces. In G. Greiner, J. Hornegger, H. Niemann, and
M. Stamminger, editors, Proceedings Vision, Modeling and Visualization 2005,
pages 241–248. IOS Press, infix, 2005.

[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution
3D surface construction algorithm. In Proceedings of the 14th annual conference
on Computer graphics and interactive techniques, pages 163–169. ACM, 1987.

[Mac92] Paul Mackerras. A fast parallel marching-cubes implementation on the fujitsu
ap1000. 1992.

[mun10] The OpenCL specification, 2010.

65

BIBLIOGRAPHY

[Nag08] Henrik R. Nagel. GPU optimized marching cubes algorithm for handling very
large, temporal datasets. Trondheim, Norway, 2008. Norwegian University of
Science and Technology.

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable par-
allel programming with CUDA. Queue, 6(2):40–53, 2008.

[NY06] Timothy S. Newman and Hong Yi. A survey of the marching cubes algorithm.
Computers & Graphics, 30(5):854–879, October 2006.

[Pas04] V. Pascucci. Isosurface computation made simple: Hardware acceleration,
adaptive refinement and tetrahedral stripping. IN JOINT EUROGRAPHICS -
IEEE TVCG SYMPOSIUM ON VISUALIZATION, pages 293—300, 2004.

[ZTTS06] Gernot Ziegler, Art Tevs, Christian Theobalt, and Hans-Peter Seidel. GPU
point list generation through histogram pyramids. Technical Report MPI-
I-2006-4-002, Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85,
66123 Saarbrücken, Germany, June 2006.

66

6
Matrix Multiplication Example

These examples were taken from http://gpgpu-computing4.blogspot.com . Their
purpose is to show the differences between CUDA and OpenCL languages in a similar
and simple program.

6.1 CUDA

Listing 6.1: CUDA kernel of matrix multiplication example.

1

2 #ifndef _MATRIXMUL_KERNEL_H_

3 #define _MATRIXMUL_KERNEL_H_

4

5 #include <stdio.h>

6

7 // Thread block size

8 #define BLOCK_SIZE 3

9

10 #define WA 3 // Matrix A width

11 #define HA 3 // Matrix A height

12 #define WB 3 // Matrix B width

13 #define HB WA // Matrix B height

14 #define WC WB // Matrix C width

15 #define HC HA // Matrix C height

16

17 // CUDA Kernel

18 __global__ void

19 matrixMul(float* C, float* A, float* B, int wA, int wB)

20 {

67

6. MATRIX MULTIPLICATION EXAMPLE

21

22 // 2D Thread ID

23 int tx = threadIdx.x;

24 int ty = threadIdx.y;

25

26 // value stores the element that is

27 // computed by the thread

28 float value = 0;

29 for (int i = 0; i < wA; ++i)

30 {

31 float elementA = A[ty * wA + i];

32 float elementB = B[i * wB + tx];

33 value += elementA * elementB;

34 }

35

36 // Write the matrix to device memory each

37 // thread writes one element

38 C[ty * wA + tx] = value;

39 }

40

41 #endif // #ifndef _MATRIXMUL_KERNEL_H_

Listing 6.2: CUDA host program of matrix multiplication example.

1

2 #include <stdlib.h>

3 #include <stdio.h>

4 #include <math.h>

5 #include <matrixMul_kernel.cu>

6

7 // Allocates a matrix with random float entries.

8 void randomInit(float* data, int size)

9 {

10 for (int i = 0; i < size; ++i)

11 data[i] = rand() / (float)RAND_MAX;

12 }

13

14 ///

15 // Program main

16 ///

17

18 int

19 main(int argc, char** argv)

20 {

21

22 // set seed for rand()

23 srand(2006);

24

25 // 1. allocate host memory for matrices A and B

26 unsigned int size_A = WA * HA;

27 unsigned int mem_size_A = sizeof(float) * size_A;

68

6. MATRIX MULTIPLICATION EXAMPLE

28 float* h_A = (float*) malloc(mem_size_A);

29

30 unsigned int size_B = WB * HB;

31 unsigned int mem_size_B = sizeof(float) * size_B;

32 float* h_B = (float*) malloc(mem_size_B);

33

34 // 2. initialize host memory

35 randomInit(h_A, size_A);

36 randomInit(h_B, size_B);

37

38 // 3. print out A and B

39 printf("\n\nMatrix A\n");

40 for(int i = 0; i < size_A; i++)

41 {

42 printf("%f ", h_A[i]);

43 if(((i + 1) % WA) == 0)

44 printf("\n");

45 }

46

47 printf("\n\nMatrix B\n");

48 for(int i = 0; i < size_B; i++)

49 {

50 printf("%f ", h_B[i]);

51 if(((i + 1) % WB) == 0)

52 printf("\n");

53 }

54

55 // 8. allocate device memory

56 float* d_A;

57 float* d_B;

58 cudaMalloc((void**) &d_A, mem_size_A);

59 cudaMalloc((void**) &d_B, mem_size_B);

60

61 // 9. copy host memory to device

62 cudaMemcpy(d_A, h_A, mem_size_A,

63 cudaMemcpyHostToDevice);

64 cudaMemcpy(d_B, h_B, mem_size_B,

65 cudaMemcpyHostToDevice);

66

67

68 // 4. allocate host memory for the result C

69 unsigned int size_C = WC * HC;

70 unsigned int mem_size_C = sizeof(float) * size_C;

71 float* h_C = (float*) malloc(mem_size_C);

72

73 // 10. allocate device memory for the result

74 float* d_C;

75 cudaMalloc((void**) &d_C, mem_size_C);

76

77 // 5. perform the calculation

69

6. MATRIX MULTIPLICATION EXAMPLE

78 // setup execution parameters

79 dim3 threads(BLOCK_SIZE, BLOCK_SIZE);

80 dim3 grid(WC / threads.x, HC / threads.y);

81

82 // execute the kernel

83 matrixMul<<< grid, threads >>>(d_C, d_A,

84 d_B, WA, WB);

85

86 // 11. copy result from device to host

87 cudaMemcpy(h_C, d_C, mem_size_C,

88 cudaMemcpyDeviceToHost);

89

90 // 6. print out the results

91 printf("\n\nMatrix C (Results)\n");

92 for(int i = 0; i < size_C; i++)

93 {

94 printf("%f ", h_C[i]);

95 if(((i + 1) % WC) == 0)

96 printf("\n");

97 }

98 printf("\n");

99

100 // 7. clean up memory

101 free(h_A);

102 free(h_B);

103 free(h_C);

104 cudaFree(d_A);

105 cudaFree(d_B);

106 cudaFree(d_C);

107

108 }

70

6. MATRIX MULTIPLICATION EXAMPLE

6.2 OpenCL

Listing 6.3: OpenCL kernel of matrix multiplication example.

1

2 // kernel.cl

3 // Multiply two matrices A * B = C

4 // Device code.

5

6

7 // OpenCL Kernel

8 __kernel void

9 matrixMul(__global float* C,

10 __global float* A,

11 __global float* B,

12 int wA, int wB)

13 {

14

15 // 2D Thread ID

16 int tx = get_local_id(0);

17 int ty = get_local_id(1);

18

19 // value stores the element

20 // that is computed by the thread

21 float value = 0;

22 for (int k = 0; k < wA; ++k)

23 {

24 float elementA = A[ty * wA + k];

25 float elementB = B[k * wB + tx];

26 value += elementA * elementB;

27 }

28

29 // Write the matrix to device memory each

30 // thread writes one element

31 C[ty * wA + tx] = value;

32 }

Listing 6.4: OpenCL host program of matrix multiplication example.

1

2 // Multiply two matrices A * B = C

3

4 #include <stdlib.h>

5 #include <stdio.h>

6 #include <math.h>

7 #include <oclUtils.h>

8

9 #define WA 3

10 #define HA 3

11 #define WB 3

71

6. MATRIX MULTIPLICATION EXAMPLE

12 #define HB 3

13 #define WC 3

14 #define HC 3

15

16 // Allocates a matrix with random float entries.

17 void randomInit(float* data, int size)

18 {

19 for (int i = 0; i < size; ++i)

20 data[i] = rand() / (float)RAND_MAX;

21 }

22

23 ///

24 // Program main

25 ///

26

27 int

28 main(int argc, char** argv)

29 {

30

31 // set seed for rand()

32 srand(2006);

33

34 // 1. allocate host memory for matrices A and B

35 unsigned int size_A = WA * HA;

36 unsigned int mem_size_A = sizeof(float) * size_A;

37 float* h_A = (float*) malloc(mem_size_A);

38

39 unsigned int size_B = WB * HB;

40 unsigned int mem_size_B = sizeof(float) * size_B;

41 float* h_B = (float*) malloc(mem_size_B);

42

43 // 2. initialize host memory

44 randomInit(h_A, size_A);

45 randomInit(h_B, size_B);

46

47 // 3. print out A and B

48 printf("\n\nMatrix A\n");

49 for(int i = 0; i < size_A; i++)

50 {

51 printf("%f ", h_A[i]);

52 if(((i + 1) % WA) == 0)

53 printf("\n");

54 }

55

56 printf("\n\nMatrix B\n");

57 for(int i = 0; i < size_B; i++)

58 {

59 printf("%f ", h_B[i]);

60 if(((i + 1) % WB) == 0)

61 printf("\n");

72

6. MATRIX MULTIPLICATION EXAMPLE

62 }

63

64 // 4. allocate host memory for the result C

65 unsigned int size_C = WC * HC;

66 unsigned int mem_size_C = sizeof(float) * size_C;

67 float* h_C = (float*) malloc(mem_size_C);

68

69 // 5. Initialize OpenCL

70 // OpenCL specific variables

71 cl_context clGPUContext;

72 cl_command_queue clCommandQue;

73 cl_program clProgram;

74 cl_kernel clKernel;

75

76 size_t dataBytes;

77 size_t kernelLength;

78 cl_int errcode;

79

80 // OpenCL device memory for matrices

81 cl_mem d_A;

82 cl_mem d_B;

83 cl_mem d_C;

84

85 /***/

86 /* Initialize OpenCL */

87 /***/

88 clGPUContext = clCreateContextFromType(0,

89 CL_DEVICE_TYPE_GPU,

90 NULL, NULL, &errcode);

91 shrCheckError(errcode, CL_SUCCESS);

92

93 // get the list of GPU devices associated

94 // with context

95 errcode = clGetContextInfo(clGPUContext,

96 CL_CONTEXT_DEVICES, 0, NULL,

97 &dataBytes);

98 cl_device_id *clDevices = (cl_device_id *)

99 malloc(dataBytes);

100 errcode |= clGetContextInfo(clGPUContext,

101 CL_CONTEXT_DEVICES, dataBytes,

102 clDevices, NULL);

103 shrCheckError(errcode, CL_SUCCESS);

104

105 //Create a command-queue

106 clCommandQue = clCreateCommandQueue(clGPUContext,

107 clDevices[0], 0, &errcode);

108 shrCheckError(errcode, CL_SUCCESS);

109

110 // Setup device memory

111 d_C = clCreateBuffer(clGPUContext,

73

6. MATRIX MULTIPLICATION EXAMPLE

112 CL_MEM_READ_WRITE,

113 mem_size_A, NULL, &errcode);

114 d_A = clCreateBuffer(clGPUContext,

115 CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,

116 mem_size_A, h_A, &errcode);

117 d_B = clCreateBuffer(clGPUContext,

118 CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,

119 mem_size_B, h_B, &errcode);

120

121

122 // 6. Load and build OpenCL kernel

123 char *clMatrixMul = oclLoadProgSource("kernel.cl",

124 "// My comment\n",

125 &kernelLength);

126 shrCheckError(clMatrixMul != NULL, shrTRUE);

127

128 clProgram = clCreateProgramWithSource(clGPUContext,

129 1, (const char **)&clMatrixMul,

130 &kernelLength, &errcode);

131 shrCheckError(errcode, CL_SUCCESS);

132

133 errcode = clBuildProgram(clProgram, 0,

134 NULL, NULL, NULL, NULL);

135 shrCheckError(errcode, CL_SUCCESS);

136

137 clKernel = clCreateKernel(clProgram,

138 "matrixMul", &errcode);

139 shrCheckError(errcode, CL_SUCCESS);

140

141

142 // 7. Launch OpenCL kernel

143 size_t localWorkSize[2], globalWorkSize[2];

144

145 int wA = WA;

146 int wC = WC;

147 errcode = clSetKernelArg(clKernel, 0,

148 sizeof(cl_mem), (void *)&d_C);

149 errcode |= clSetKernelArg(clKernel, 1,

150 sizeof(cl_mem), (void *)&d_A);

151 errcode |= clSetKernelArg(clKernel, 2,

152 sizeof(cl_mem), (void *)&d_B);

153 errcode |= clSetKernelArg(clKernel, 3,

154 sizeof(int), (void *)&wA);

155 errcode |= clSetKernelArg(clKernel, 4,

156 sizeof(int), (void *)&wC);

157 shrCheckError(errcode, CL_SUCCESS);

158

159 localWorkSize[0] = 3;

160 localWorkSize[1] = 3;

161 globalWorkSize[0] = 3;

74

6. MATRIX MULTIPLICATION EXAMPLE

162 globalWorkSize[1] = 3;

163

164 errcode = clEnqueueNDRangeKernel(clCommandQue,

165 clKernel, 2, NULL, globalWorkSize,

166 localWorkSize, 0, NULL, NULL);

167 shrCheckError(errcode, CL_SUCCESS);

168

169 // 8. Retrieve result from device

170 errcode = clEnqueueReadBuffer(clCommandQue,

171 d_C, CL_TRUE, 0, mem_size_C,

172 h_C, 0, NULL, NULL);

173 shrCheckError(errcode, CL_SUCCESS);

174

175 // 9. print out the results

176 printf("\n\nMatrix C (Results)\n");

177 for(int i = 0; i < size_C; i++)

178 {

179 printf("%f ", h_C[i]);

180 if(((i + 1) % WC) == 0)

181 printf("\n");

182 }

183 printf("\n");

184

185 // 10. clean up memory

186 free(h_A);

187 free(h_B);

188 free(h_C);

189

190 clReleaseMemObject(d_A);

191 clReleaseMemObject(d_C);

192 clReleaseMemObject(d_B);

193

194 free(clDevices);

195 free(clMatrixMul);

196 clReleaseContext(clGPUContext);

197 clReleaseKernel(clKernel);

198 clReleaseProgram(clProgram);

199 clReleaseCommandQueue(clCommandQue);

200

201 }

75

6. MATRIX MULTIPLICATION EXAMPLE

76

7
Datasets

These are the datasets used in chapter 4.

Figure 7.1: Skull dataset.

77

7. DATASETS

Figure 7.2: Engine dataset.

Figure 7.3: Aneurysm dataset.

78

7. DATASETS

Figure 7.4: Sphere dataset.

Figure 7.5: 8 skulls dataset.

79

	Introduction
	Motivation

	Related Work
	Marching Cubes
	Introduction
	Algorithm
	Challenges
	Implementations

	OpenCL
	Introduction
	Architecture

	Implementation
	Introduction
	Summary
	Host Modules
	mcDispatcher
	mcCore
	clScan
	clHelper

	OpenCL
	Kernels
	Enhancements

	Results Analysis
	Single Device
	Performance Enhancements
	Objects Identification

	Multiple Devices

	Conclusion
	Future Work
	Contributions

	Matrix Multiplication Example
	CUDA
	OpenCL

	Datasets

