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Abstract

In this dissertation we will address two types of homogenization problems. The first one is a
spectral problem in the realm of lower dimensional theories, whose physical motivation is the study
of waves propagation in a domain of very small thickness and where it is introduced a very thin
net of heterogeneities. Precisely, we consider an elliptic operator with e-periodic coefficients and the
corresponding Dirichlet spectral problem in a three-dimensional bounded domain of small thickness 4.
We study the asymptotic behavior of the spectrum as € and § tend to zero. This asymptotic behavior
depends crucially on whether ¢ and ¢ are of the same order (§ & ¢), or ¢ is of order smaller than that
of § (6 =™, 7 < 1), or ¢ is of order greater than that of § (6 = &7, 7 > 1). We consider all three
cases.

The second problem concerns the study of multiscale homogenization problems with linear growth,
aimed at the identification of effective energies for composite materials in the presence of fracture or
cracks. Precisely, we characterize (n+ 1)-scale limit pairs (u, U) of sequences {(u.LY 12> Duc o) feso C
M(Q;RY) x M(Q;R¥N) whenever {u.}.~o is a bounded sequence in BV (£;R?). Using this
characterization, we study the asymptotic behavior of periodically oscillating functionals with linear
growth, defined in the space BV of functions of bounded variation and described by n € N microscales.

Key Words: Periodic homogenization, spectral analysis, dimension reduction, I'-convergence,
asymptotic expansions, space BV of functions of bounded variation, BV -valued measures, multiscale
convergence, linear growth
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Resumo

Nesta dissertacao serao tratados dois problemas no ambito da teoria da homogeneizagao. O primeiro
refere-se a um problema espectral no dominio das teorias de baixa dimensao, que tem como motivagao
o estudo de propagagao de ondas em dominios de pequena espessura e onde € introduzida uma fina rede
de heterogeneidades. Mais precisamente, consideramos um problema espectral definido num dominio
tridimensional de espessura §, com condigoes de Dirichlet nulas, associado a um operador eliptico
com coeficientes e-peridédicos. Apresentamos o comportamento assimptético do espectro quando € e §
tendem para zero, distinguindo trés casos: o caso em que a frequéncia das oscilagoes e a espessura do
dominio sdo da mesma ordem de grandeza (g = §), o caso em que a frequéncia das oscilagdes é muito
maior do que a espessura do dominio (§ = €™, 7 < 1) e, finalmente, o caso em que a espessura do
dominio é muito menor do que a frequéncia das oscilagoes (6 =7, 7 > 1).

O segundo problema aqui tratado reporta-se ao estudo de problemas de homogeneizagao caracterizados
por multiplas escalas microscépicas e condigoes de crescimento lineares, que tém em vista a
identificacao da energia efectiva de compédsitos com fracturas ou rachas. Mais precisamente,
caracterizamos os pares limite a (n + 1)-escalas (u,U) de sucessdes {(u-LY o, Ducg)}eso C
M(Q;RY) x M(Q;R>*N) em que {u.}eso é limitada. Usando esta caracterizagio, estudamos o
comportamento assimptético de funcionais periodicamente oscilantes com condiges de crescimento
lineares, definidos no espago BV das fungoes de variacao limitada e caracterizados por n € N escalas
microscdpicas.

Termos Chave: homogeneizacao periédica, analise espectral, reducao dimensional, I'-convergéncia,
expansoes assimptdticas, espagco BV das fungoes de variagao limitada, medias com valores em BV,
convergéncia a multiplas escalas, crescimento linear
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are defined in an obvious way

usual Lebesgue spaces
usual Sobolev spaces

space of functions of bounded variation

weak and weak-x convergence, respectively

o-algebra of the Borel subsets of a topological space X

space of Z-valued Radon measures

d-dimensional Lebesgue measure

everywhere in R? except in a set of zero d-dimensional Lebesgue measure

set of all N x N real matrices A =
coercive a.e. in €
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Chapter 1

Introduction

This dissertation is devoted to the study of mathematical problems within the framework of
homogenization theory, which addresses the description of the macroscopic or effective behavior of
a microscopically heterogeneous system. There are multiple applications in the fields of physics,
mechanics and engineering sciences, from which we emphasize problems aimed at the modeling of
composites, stratified or porous media, finely damaged materials, or materials with many holes or
cracks.

From the mathematical point of view, homogenization is often associated to the study of the
asymptotic behavior of oscillating partial differential equations, or of minimization problems yielding
from certain oscillating functionals, depending on one or more small-scale parameters. Several
approaches have been proposed to handle this type of problems, such as the method of asymptotic
expansions (see the books of Bensoussan, Lions and Papanicolaou [13], Jikov, Kozlov and Oleinik
[53], Bakhvalov and Panasenko [12], and Sanchez-Palencia [69]) and methods using the concepts of
G-convergence due to Spagnolo (see Spagnolo [71] and De Giorgi and Spagnolo [35]), H-convergence
due to Murat and Tartar (see Murat and Tartar [63], Tartar [73] and Murat [62]), I'-convergence
due to De Giorgi (See De Giorgi and Dal Maso [36] and De Giorgi and Letta [37]), and two-scale
convergence due to Nguetseng (see Nguetseng [64]), further developed by Allaire [1] and Allaire and
Briane [2]. For a comprehensive introduction to the theory of homogenization and for an overview of
the different homogenization methods, we refer to the book of Cioranescu and Donato [28].

As a simple illustration of a homogenization problem, we briefly describe the problem regarding
the study of the thermal conductivity of a periodic composite material. Composites are structures
constituted by two or more finely mixed materials that, depending on the performance we are looking
for, in general exhibit a better behavior than the average of its components, and for this reason they
may have an impact in industrial applications. Loosely speaking, the smaller the heterogeneities, the
better the mixture, which then seems homogeneous (see Fig. 1.0.1).

Assume that we are given two isotropic, homogeneous materials, one of thermal conductivity k; and
the other of thermal conductivity ko. Consider a three-dimensional body occupying a certain region
Q) C R? made of a heterogeneous material, which is a mixture of the two given materials such that the
material of thermal conductivity k; occupies a certain portion 7 of €2, and the material of thermal
conductivity ks occupies its complement Qg := Q\Q;. Assume further that both Q; and €9 are the
union of many subregions whose size is much smaller when compared to the size of the body, so that
they seem evenly distributed and therefore may be modeled by a periodic distribution characterized
by a small parameter €. Precisely, assume that the thermal conductivity at each point x € € is given

1



1.1

by
ke (z) == k(f)

£

where £ > 0 is a small parameter, and k is the Y-periodic function, being Y := [0,1]3 the reference
cell ', defined for all y € Y by

L k1 inyYh
k(y) ‘_{k;2 ify € V\Yq,

where Y7 is a measurable subset of Y.

A
—

Fig. 1.0.1. Microscopically heterogeneous material

Note that

Q= < U a(z—i—Yl)) NQ and Qy:= < U s(z—l—Y\Y1)> naQ.
Z€Z3 2€73
Assuming without loss of generality that the temperature on the surface 92 of the body is zero and
representing by f the heat source, then the temperature u. = u.(z) at each point x € Q) satisfies the
Dirichlet problem

{ —div(k.Vue) = f in , (1.0.1)

us =0 on 0f).
We observe that two scales characterize problem (1.0.1): the macroscopic one, x, which indicates
the position in €, and the microscopic or fast-oscillating scale, £, which assigns the position in the
reference cell, in the sense that there exists a unique y € Y such that £ =y + 2 for some z € VAR

It is commonly agreed in the engineer and physics communities that the bigger is the ratio between
the size of the body and the size of each of its separated components, that is, the smaller ¢ is, the
more stable are the physical properties (in this case, the heat transfer) of the mixture. Moreover, the
global or effective behavior of the mixture generally differs from the average of its components.

Heuristically, we seek to replace the heterogeneous material by a “fictitious” homogeneous material
whose global characteristics are dictated by the effective properties. From the mathematical point
of view, this reduces to the study of problem (1.0.1) in the limit as ¢ — 07. Precisely, we want to
investigate whether {u. }c~o converges is some sense to some function ug as ¢ — 07, and, if so, we aim

For simplicity, we take here as reference cell the unit cube in R3, but we could have taken any bounded interval in R3,

as suggested by Fig. 1.0.1.



at describing the limit problem of (1.0.1) that admits ug as solution. Under some mild hypotheses
on f (see, for example, Cioranescu and Donato [28] for the details), the answer to these questions
is affirmative: {u.}eso converges weakly in H}(Q), as ¢ — 0F, to a function ug, solution of the
homogenized Dirichlet problem

—div(A"Vu) = f in Q
’ 1.0.2
{ u=70 on 052, ( )
where A" := (a?j)lgi,j<3 € M3*3 is the constant matrix whose coefficients are given by
h awj .o
a;; = [ k(y) (51-3- - —) dy, 1,5 €{1,2,3},
' Y 9y
where d;; is the Kronecker symbol, and w; is the solution of the cell problem
ok
—div(kVw;) = o inY,
Yi (1.0.3)

w; Y-periodic, /ij (y)dy = 0.

The matrix A" encodes the overall characteristics of the original mixture, and since it cannot be
written in the form al, with @ > 0 and I the identity matrix, we conclude that the homogeneous
limit material is not isotropic. We also observe that the considerations above are still valid in any
dimension N € N (and not just N = 3).

In this work we will sometimes adopt the variational point of view, i.e., instead of looking for solutions
of boundary problems of the type (1.0.1) we will be interested in solutions of minimization problems
associated with the energy functional corresponding to the physical system under study. For instance,
in the case of problem (1.0.1), we would be led to the study of the minimization problem

min{/gkg(w)|Vu(x)|2 dx—Q/Qf(x)u(x)dx: ueH&(Q)}

These minimization problems often assume the general form
min{ fe(z, Du(x))dz: u € A},
Q

where A is the class of admissible u’s. In the limit as ¢ — 07 we expect a minimization homogenized
problem of the form

min {/ Jrom(Du(x))dz: u € A},
Q

where fuom plays the role of the matrix A" in (1.0.2), and it is given by asymptotic homogenization
formulas or cell problem formulas, which correspond to the variational formulation of the cell problems
(1.0.3).

In this dissertation we will address two types of homogenization problems. The first one, briefly
described in Subsection 1.1, is a spectral problem within the realm of lower dimensional theories, whose
physical motivation is the study of waves propagation in a domain of very small thickness and where a
very thin net of heterogeneities is introduced. The second problem, outlined in Subsection 1.2, concerns
the study of multiscale homogenization problems with linear growth, aimed at the identification of
effective energies for composite materials in the presence of fracture or cracks.
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1.1. SPECTRAL ANALYSIS IN A THIN DOMAIN WITH PERIODICALLY
OSCILLATING CHARACTERISTICS.

Within the framework of quantum mechanics, Schrodinger’s equation for the time-independent wave
function ¢ associated to a particle in a three-dimensional space is given by:

~ Ay ve = B,
2m

where 7 := h/27, h being Plank’s constant, m is the mass of the particle, A is the usual Laplace’s
operator, V is the potential energy and E is the energy of the system with wave function ¢. When
we consider the particle to be confined to a certain domain Q C R?, but otherwise free, precisely,
when the potential function is of the form V(z) :=0if x € Q, and V(z) := +oo if z ¢ Q, then the
problem of finding the spacial wave function 1 and the energy levels E reduces to solving the following
eigenvalue problem for the Laplace’s operator:

—Av=Xv in Q,
v=20 on 01,

where, using standard mathematical notations, we identified v = v and A = %"E In the joint
works with Mascarenhas [45] and with Mascarenhas and Piatnitski [46], we addressed this eigenvalue
problem in the case in which the domain has a very small thickness § and the material presents very
small e-periodic heterogeneities. We proved that the energy levels depend strongly on both small
parameters d and € and on their ratio.

Precisely, let £, > 0 be small parameters, and consider the thin domain €5 := w x 61, where w C R?
is a bounded domain, and I := (—1/2,1/2). Our goal is to study the asymptotic behavior as € — 0T
and § — 07 of the spectral problem

{div(AEva) =A2v!  ae. in s, (1.1.1)

v? € Hy(Qs),

where A.(z) := A(%), z € R?, with A = (a;;)1<ij<3 € [L>®(R?)]3*? a real, symmetric and Y-periodic
matrix, where Y := (0, 1)?, satisfying appropriate boundedness and coercivity hypotheses. We assume
further that an3 = 0 a.e. in Y, a € {1,2}. We refer to Chapter 3 for the details.

The spectrum o of problem (1.1.1) is discrete and can be written as o := {A2;, € R": i € N},
where 0 < )\‘;i < )\gﬂ»ﬂ for all ¢« € N, and Xg’i — 400 as i — +o00. For fixed € > 0, as the thickness
of the domain goes to zero (§ — 07) all the eigenvalues go to infinity. For fixed § > 0, a classical
result in the theory of homogenization asserts that as € — 01 the eigenvalues converge to eigenvalues
associated with the corresponding homogenized problem of (1.1.1). As we mentioned before, in the
case in which the small parameters € and § converge to zero simultaneously, the asymptotic behavior
of the spectrum o depends crucially on whether £ and § are of the same order (¢ ~ §), or ¢ is of
order smaller than that of 0 (¢ < §), or ¢ is of order greater than that of § (¢ > §). The results
corresponding to the cases ¢ ~ § and ¢ < § were announced in Ferreira and Mascarenhas [45]. In
Ferreira, Mascarenhas and Piatnitski [46] detailed proofs of the statements formulated in Ferreira and
Mascarenhas [45] were provided, and the case € > ¢ was studied. Our main tools are I'-convergence
and asymptotic expansion techniques.

The homogenization of spectral problems, supported by a large bibliography, was first treated in
Vanninathan [75] and Kesavan [54], [55]. The methods of analysis of spectral problems in terms of

4



operator convergence have been introduced in Oleinik, Shamaev and Yosifian [65] and Attouch [8].
Other homogenization approaches in spectral problems and related topics have been proposed by
Allaire and Conca [3], Allaire and Malige [4]. The homogenization of singularly perturbed operators
has been considered in Kozlov and Piatnitski [56], [57] and some other works. The novelty in the
homogenization spectral problem treated here is its study in the realm of lower dimensional theories.

the references therein, for other spectral problems within lower dimensional theories.

A BRIEF DESCRIPTION OF THE CASE ¢ ~ §. Let A.; be a kth eigenvalue associated with problem
(1.1.1) for 6 = e. Then (see Theorem 3.1.1)
Ho
)\a,k = 3 + Ve k,
€
where o > 0 is the first eigenvalue associated with a certain bidimensional periodic spectral problem

with nonzero potential. Moreover, v, — v as € — 07, with v a k' eigenvalue associated with the
bidimensional homogenized spectral problem in the cross section w

{ —div(B"Vp) = vy a.e. inw, (1.1.2)

¢ € Hj(w),

where B" is a certain 2 x 2 constant matrix. Loosely speaking, the term £ provides information on

how the eigenvalues A, diverge, and also on the precise shift of the spectrum in order to retain the
macroscopic behavior of the physical problem under study, which is given by the limit problem (1.1.2).
As expected this is a two-dimensional problem of the same type of the original three-dimensional one,
but with constant coefficients. Note that {/\g,k — %}%N = {Ve ik }ken is the spectrum of the shifted
operator — div(A.V) — %I with zero Dirichlet boundary conditions, where I represents the identity
operator.

The asymptotic behavior of the eigenfunctions associated with A j will also be provided. We refer to
Chapter 3 for the details.

A BRIEF DESCRIPTION OF THE CASE € < . Assume that a,g are uniformly Lipschitz continuous in
Y. Let A x be a k" eigenvalue associated with problem (1.1.1) for § = 7, with some 7 € (0, 1), and
let i € N be such that =1 < 7 < h+1 Then (see Theorem 3.1.2)

%

_ Qj T
Aek = Z T 2i12)-2j + pe + Ve ks
=0

where gy = 72 fY as3(y)dy > 0, and for j € N, g; are well-determined constants. Furthermore, pI — 0
ase — 07, v — vy as e — 0, with v, a k' eigenvalue associated with a certain bidimensional
homogenized spectral problem in the cross section w, of the same type as (1.1.2). Here, the sum
Zj‘:o Mhiﬁ plays the role of ‘;—3 in the above case € ~ §. The term pl, which is innocuous in
the limit as it converges to zero, is related to this sum and we may think of it as a remainder. The
asymptotic behavior of the eigenfunctions associated with A ;. will also be provided.

A BRIEF DESCRIPTION OF THE CASE ¢ > ¢. i) This case is considerable more difficult to handle
than the previous ones, and it depends strongly on the behavior of the potential az3. An interesting
case in applications is when the potential ass oscillates between two different values (which is the

5



case of composites). In that direction new hypotheses on ags are introduced: Assume that a,p are
smooth functions and that there exists an open and smooth subdomain @ of Y, Q@ CC Y, such that
ass coincides with its minimum, ani,, in @ and is a smooth function strictly greater than ap, in
Y\Q. Let ;1 be the first eigenvalue of problem (1.1.1) with § = &7 for some 7 € (1, +00). Then (see
Theorem 3.1.4)

amin7T2

_ Yo -3
Aen = or +E—2+5T p1+--+e

k(r—1)—2

205 +p; +V;—,17

where k is the first integer greater or equal than 2/(7—1), vy > 0 is the first eigenvalue associated with
a certain bidimensional spectral problem on @, and p;, i € {1,---, k}, are well-determined constants,
p7| < Cetbt2)7=(k+3) 0 as e — 0T, for some constant C' independent, of ¢, and v], vanishes as
¢ — 0T. In this case, the limit problem degenerates.

ii) Finally, under quite more general hypotheses than those above, we are able to characterize the

limit spectrum in the sense of Kuratowsky: Assume that ags attains a minimum value, ayin, at some

Jo € R? such that aqp and ags are continuous in some neighborhood of §y. Then (see Theorem 3.1.7)
lin, (e%70.) = [aminm?, +00] , (1.1.3)
E—>

where o, represents the spectrum of problem (3.1.2) with § = &7 for some 7 € (1, +00), and the limit

in (1.1.3) is to be understood in the sense of Kuratowsky, that is, [amin7?, +00] is the set of all cluster

points of sequences {\:}es0, Ac € €270-.

1.2. REITERATED HOMOGENIZATION IN BV VIA MULTISCALE CONVERGENCE.

Within the framework of nonlinear elasticity, the elastic energy associated with an N-dimensional
composite materials is of the form

/Q (&, Vu(z)) dz,

where Q C RY denotes the reference configuration, v : Q — R? is the deformation of the body, and f.
stands for the elastic stored density energy. We will assume that f. satisfies linear growth conditions,
which is the natural setting for composite materials in the presence of fractures or cracks. In order to
allow for jump-type discontinuities, we consider the space of admissible deformations to be the space
BV (Q;R?) of functions of bounded variation. In the presence of n microscales, or fast-oscillating
variables, we seek to characterize the asymptotic behavior as € — 07 of energy functionals of the form

x x x x dD%u
F.(u ::/ Se , Vu(z dx—l—/ & R , x) )d||D%ul|(x
W= G am @ [ G ae apmg @) A
(1.2.1)
for u € BV (£;R?) with Du = Vuﬁ% + D%u the Lebesgue decomposition of Du with respect to E%,

where

f00<y17 e aynaf) = thU.p f(yh — 7yn’t§)
t—s 400 t

is the recession function of a certain function f : R™N x RN — R, separately periodic in the first n
variables and satisfying linear growth conditions, and g1, ..., 0, are positive functions in (0, c0) such
that for all i € {1,---,n} and for all j € {2,---,n},

0;(¢)

li i =0, li — 7 =. 1.2.2
lim 0i() e (1.2.2)
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In the context of multiscale composites, the functions o1, ..., 05, stand for the length scales or scales of
oscillation. The second condition in (1.2.2) is known as a separation of scales hypothesis. A simple
example of such functions p; is the case in which g;(¢) :=¢*, i € {1,---,n}.

We observe that for fixed ¢ > 0, and under some hypotheses on f, the functional in (1.2.1) is the
relaxed functional in BV (Q;R?) of

U — /Qf(g%(a)7..'7gni(5)7vu(z))dx

with respect to the L' (£2;R?) topology (see Fonseca and Miiller [49]).

We now briefly describe the methodology adopted to carry out the aforementioned asymptotic
characterization. In a joint work with Fonseca [43] we generalized the notion of two-scale convergence
for sequences of Radon measures with finite total variation obtained in Amar [5] to the case of
multiple periodic length scales of oscillations. The main result in Ferreira and Fonseca [43] concerns
the characterization of the multiple-scale limit of {(ucLY|q, Duc|o)}eso € M(2;RY) x M(Q; R*N)
whenever {u.}.~ is a bounded sequence in BV (Q;R?). Using this characterization and the periodic
unfolding method (see, for example, Cioranescu, Damlamian and De Arcangelis [26] and Fonseca
and Kromer [47]), in a subsequent joint work with Fonseca [44] we treated multiscale homogenized
problems in the space BV of functions of bounded variation of the form (1.2.1). In the case of one
microscale we recovered Amar’s result [5] under more general conditions, as well as Bouchitté’s result
[16] and De Arcangelis and Gargiulo’s result [34]; for two or more microscales the results we obtained

are new.

Precisely, let @ C RY be an open set and let Y := (0,1)N. For i € N, Y; is a copy of Y. We
use the subscript # to represent Y; X --- x Y,,-periodic functions (or measures) with respect to
the variables (y1,---,yn). We say that a sequence {pc}eso C M(€;R™) of Radon measures with
finite total variation in 2, (n + 1)-scale converges to a Radon measure with finite total variation
Lo € (CO(Q; Cu(Yrx-- -xYn;]Rm)))/ ~ Mz (2xY7 x- - -xY,; R™) in the product space QxY7 x- - -xY,,,
if for all ¢ € Co(Q2; C (Y1 x -+ x Yy,; R™)) we have

xr X
lim @(m,—,,—)d,u (x):/ gp(xvylaay)dﬂo(xayl77y )7
=0T Jo 01(¢) on(€) : AXY1 X XYy, " "

. . . 1)-
in which case we write MELe)Si 1.

This notion of convergence is justified by a compactness result, which asserts that every bounded
sequence in M(;R™) admits a (n + 1)-scale converging subsequence (see Theorem 4.1.3).
Furthermore, the usual weak-x limit in M(;R™) is the projection on 2 of the (n + 1)-scale limit,
so that the latter captures more information on the oscillatory behavior of a bounded sequence in
M(Q;R™) than the former. This leads us to study the asymptotic behavior with respect to the
(n 4 1)-scale convergence of first order derivatives functionals with linear growth of the form (1.2.1).

In that direction, the first step is the characterization of the (n + 1)-scale limit associated with
{(weL™q, Duc o)}, € M(RY) x M(QRPN), {u.}eso being a bounded sequence in BV (€;R?).
This was established in Ferreira and Fonseca [44] and may be summarized as follows (see Chapter 4
for the details). Assume that the length scales g1, ..., 0, are, in addition, well separated (c.f. Allaire
and Briane [2]), i.e., there exists m € N such that for all i € {2,---,n}, we have

B (QQ(<)> )m ="

7




Then, up to a not relabeled subsequence,

N n+1)-sc
uL LQ( E) Tu,

where 7, € Myx(2 X Y7 x -+ x Y3 Rd) is a certain measure only depending on u, and

(n+1)-sc
Due-— Aupay g

where Ay, op, € Myu(Q x Yy X -+ X Y;RN) is a certain measure depending on v and on
n measures p; € My (Q x Yy x -+ x Y;_1; BVg(Y;; RY), ie., measures p; € M(Q x Yy x -+ X
Yi_1; BV (Y3 R?)) for which there exists a measure )\; € Myp(Qx Yy x - x Y R?*N) such that for
all Be B(Qx Yy x---Y; 1), E e B(Y;), we have

(Dy, (1:(B))) (E) = Xi(B x E).

The measures 7, and Ay, ... admit an explicit characterization, whose proof is not a simple
generalization of the case n = 1 treated in Amar [5]. In fact, considerable modifications are required
when n > 2, similar to those in Allaire and Briane [2] in the Sobolev setting. Moreover, we found out
that fully developing the underlying measure-theoretical background was not straightforward.

Using the main results in Ferreira and Fonseca [43], in Ferreira and Fonseca [44] we characterized and
related the functionals

Fsc(uv M, s /J’n) := inf { 1}52(1)2f Fe(us): Ue € BV(Qa Rd)) Du&‘ (ﬂ“’i)‘sc Au,ul,.“,pn}

and
Fhom(y) := inf { liminf F.(u.): ue € BV (4 RY), u. = u weakly-x in BV(Q;Rd)}

e—0*t
for u € BV(;RY) and p; € M, (Q x Yy x -+ x Y;_1; BVx(Yi;RY)), i € {1,---,n}, where F is given
by (1.2.1).
Precisely, under certain hypotheses on the function f (see Chapter 5 for the details), for all
(U, oy 5 ) € BV (G RY) x M (2 BV (Y13 RY)) X - X M (Q x Yy X -+ x Yyo1; BV (Y, RY))
we have that (see Theorem 5.1.3)

dAaC
F(u, phy, - ) :/ f(y1,-~-,yn,M(fU,y1,-~-,yn)) dady; - - - dyn
! QXY x--xY, dL(nJrl)N

+ £ (10 s () A e 0 )
1" Y Iy g\ YL,y u yYlst T .
QX Yy XXV TR ! Hebn !
(1.2.3)
Moreover, for all u € BV (£2;R?),
Fhom(u) = inf FSC(UaHh o 7“’77,)
1 €M (BVy (YRD), .,
o EMG (XYL X+ XYy _15B Vg (Y RD)) (1 2 4)
[ fuml(Fut@) o+ [ (o) (550 2)) D)
= hom{ VU(X x hom T \Z u||(x),
Q" Q" d||Dsul|

where fhom is given by a cell problem formula (see (5.1.4)).

For simplicity, in (1.2.4) we provided the integral representation concerning the case in which a

coercivity hypothesis on f is assumed. However, one of our main contributions in Ferreira and Fonseca
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[44] was proving a similar result without assuming coercivity, or boundedness from below, of f. Such
weak hypotheses are often useful to deal with degenerate media.

The main ingredients we will use to establish (1.2.3) and (1.2.4) are the unfolding operator (see
Cioranescu, Damlamian and De Arcangelis [25], Cioranescu, Damlamian and Griso [27]; see also
Fonseca and Kromer [47]) and Reshetnyak’s continuity- and lower semicontinuity-type results. The
approach via the unfolding operator, in connection with the notion of two-scale convergence and in the
framework of homogenization problems, sometimes referred as periodic unfolding method, has already
been adopted by other authors in the Sobolev setting (see, for example, Cioranescu, Damlamian and
De Arcangelis [25], Cioranescu, Damlamian and De Arcangelis [26], Fonseca and Kromer [47]).

This dissertation is organized as follows. In Chapter 2, we collect the basic notations and background
results that are used in the subsequent chapters. In Chapter 3, we prove the results announced
in Section 1.1 above concerning the asymptotic behavior as ¢ — 07 and § — 07 of the spectrum
of an elliptic operator with e-periodic coefficients in a three-dimensional bounded domain of small
thickness 0. The aim of Chapter 4 is to prove the characterization of (n + 1)-scale limit pairs (u, U)
of sequences {(ueL™|q,Duc|g)teso C M(QRY) x M(QRDN) whenever {uc}oso is a bounded
sequence in BV (£2;R?) referred in the Section 1.2. Finally, in Chapter 5, we treat multiple-scale
homogenization problems in the space BV of functions of bounded variation, using the notion of
multiple-scale convergence developed in Chapter 4; in particular, we prove the integral representations
(1.2.3) and (1.2.4) claimed in Section 1.2.






Chapter 2

Preliminaries

The aim of this chapter is to provide a survey of the concepts and known results used throughout
this dissertation. At the beginning of each section we will give references where proofs of the results
therein and further considerations on the corresponding topic may be found.

2.1. MEASURE THEORY.

In this section we briefly overview properties of measures. We refer to the books Fonseca and Leoni
(48], Rudin [68], Evans and Gariepy [40], Ambrosio, Fusco and Pallara [7], and to the references
therein.

2.1.1. Positive Measures

Definition 2.1.1. (o-algebra, measurable space, measurable set) Let X be a nonempty set. We say
that a collection 9 C 2% is a o-algebra (in X) if ) € M, X\E € M whenever E € M, and M is
closed under countable unions. If M C 2% is a o-algebra, we call the pair (X, 9) a measurable space,
and a set E C X is said to be measurable if E € 9.

Definition 2.1.2. (Borel o-algebra, Borel set) Let X be a topological space. The smallest o-algebra
in X that contains all open subsets of X is called the Borel o-algebra (in X ) and is represented by
B(X). A set E € B(X) is said to be a Borel set.

Definition 2.1.3. (Positive measure, measure space) Let (X, 9) be a measurable space. We say that
a set map p : M — [0, 400] is a positive measure on M if u(P) = 0 and p is countably additive, i.e.,

M(DOE> - iu@-) (21.1)

whenever {E;} jen is a countable collection of mutually disjoint measurable sets. The triple (X, 9, 1)
is called a measure space.

Definition 2.1.4. (Restriction of a measure) Let (X, 91, 1) be a measure space and let E € 9. The
measure p| g : MM — [0, +oo] defined by

ws(F) = p(FAE), Fem,
is called the restriction of p to the measurable set E.
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2.1

Definition 2.1.5. (o-finite set, o-finite and finite measures) Let (X, 9, u) be a measure space. A
set E € M is said to have o-finite ;i measure if it can be written as a countable union of measurable
sets of finite ;1 measure. In the case in which X has o-finite p measure we say that p is o-finite. If
w(X) < 400 we say that pu is finite.

The next result concerns monotone convergence properties of measures.

Proposition 2.1.6. Let (X,9M, 1) be a measure space. If { E;};en C 9 is an nondecreasing sequence,

then
+oo
M( U Ej) = M u(E;).
j=1

If{E;}jen C 9 is an nonincreasing sequence with p(E;) < 400, then
+oo
u( ﬂlEg) =l u(E)).
j=

Definition 2.1.7. (Borel, Borel regular and Radon measures; inner and outer regular sets) Let
(X, 9, 1) be a measure space, with X a topological space. We say that

(i) p is a Borel measure if B(X) C 9;

(ii) p is a Borel regular measure if it is a Borel measure and for every set E € 9 there exists a set
F € B(X) such that F' D E and u(E) = p(F);

(iii) u is a Radon measure if it is a Borel measure satistying the following conditions:
(a) pu(K) < 4oo for every compact set K C X,
(b) every open set A C X is inner regular, i.e u(A) = sup{u(K): K C A, K compact},
(c) every set E € 9 is outer regular, i.e u(E) = inf{u(A): AD E, A open}.

Definition 2.1.8. (Support of a Borel measure) Let (X,9, u) be a measure space, with X a
topological space and p a Borel measure. The support of u is the set

supp p := {x € X: p(O) > 0 for every open neighborhood O of x}.

Definition 2.1.9. (Negligible set) Let (X,9, u) be a measure space. We say that a set M C X is
p-negligible if there is a measurable set E € 9 such that E D M and u(E) = 0. A property P(x)
depending on x € X is said to hold p-almost everywhere in X (in short, to hold p-a.e. in X or to hold
for p-a.e. v € X )*1 if the set {x € X: P(x) does not hold} is ji-negligible.

In applications it is often very important to guarantee that subsets of sets of zero measure are still
measurable.

Definition 2.1.10. (Complete measure) Let (X, 9, ) be a measure space. We say that p is complete
if given any set E € MM with u(E) = 0, then every subset of E belongs to 9.

If p is the I-dimensional Lebesgue measure £!, I € N, then its dependence is often omitted, and we simply write a.e. in

X or for a.e. x € X.
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It is always possible to complete a measure. Precisely,

Proposition 2.1.11. Let (X, 9, 1) be a measure space and let 9. be the collection of all sets E C X
for which there exist F,G € M with F' C E C G and such that u(G\F) = 0. Define p.(E) := u(F).
Then M, is a o-algebra that contains MM and p. : M. — [0,+00] is a complete measure, which are
called the . completion of 9 and the completion of u, respectively.

One of the most important examples of completion of a measure is the completion of the Lebesgue
measure on the Borel o-algebra.

Notation 2.1.12. Let | € N. We will represent by £' both the I-dimensional Lebesgue measure on
the Borel o-algebra and its completion.

2.1.2. Measurable Functions

Definition 2.1.13. (Measurable and Borel functions) Let (X,9) and (Z,9) be two measurable
spaces. We say that a function u: X — Z is measurable if u=*(F) € 9 for all F € N. In the case in
which X and Z are topological spaces, M = B(X) and N = B(Z) we say that u is a Borel function.

Remark 2.1.14. If X and Z are topological spaces, a function v : X — Z is Borel if, and only if, for
every open set A C Z we have u=!(A) € B(X).

We now extend the notion of measurability to functions defined everywhere except in a set of zero

measure.

Definition 2.1.15. (Generalization of the notion of measurable function) Let (X, 9, u) and (Z,M)
be a measure and a measurable space, respectively, and let E € 9 be such that u(X\E) = 0. We say
that u : E — Z is measurable over X if u=!(F) € 9 for all F € N.

Remark 2.1.16. Let (X, 9, 1) be a measure space and let u : E — [—o00,+00] be a measurable
function over X, where E € M is such that u(X\E) = 0. Then the function @ : X — [—00, +<]
defined by
i(w) = {u(m) 1:f:Jc ek,
0  ifzreX\E,
is measurable and fX udy = fE wdp, where [ dp is the usual Lebesgue integral with respect to the
measure [.

Definition 2.1.17. (Simple function) Let (X,9M) be a measurable space. We say that a function
s : X — R is a simple function if it is measurable and if it takes finitely many values. If ¢y, ..., ¢, are
the distinct values of s, then we write

m
§= Z CiXE;>
i=1
where X, is the characteristic function of the measurable set E; := s~({¢;}).

Theorem 2.1.18. Let (X,9M) be a measurable space and u : X — [—o00, +00] a measurable function.
Then there exists a sequence {s;};en of simple functions such that

lim s;(z) =
im s (2) = u(x)
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2.2

for all x € X. Moreover, the convergence is uniform in every set in which u is bounded.

Lemma 2.1.19. (Fatou’s Lemma) Let (X, 9, u) be a measure space. The following statements hold:

(i) If {u;};en Is a sequence of nonnegative measurable functions u; : X — [0,40c], then the
function u := lim inf u; is measurable and

j—+o0
/uduglimin/ujdu;
X =t Jx

(ii) If {u;}jen is a sequence of measurable functions u; : X — [—o0,+oo] for which there exists a
measurable function v : X — [0,400] such that u; < v for all j € N, and [, vdpu < +oo, then

the function v := limsupu; is measurable and
j—too

/ud,u} limsup/ uj; dp.
X j—+oo JX

Theorem 2.1.20. (Lebesgue Dominated Convergence Theorem) Let (X, 9, 1) be a measure space,
and let {u;};cn be a sequence of measurable functions u; : X — [—o0, 400 such that

lim u;(z) =
v (2) = u(z)

for p-a.e. ¥ € X. If there exists a Lebesgue integrable function®? v : X — [0,+o00] such that
lu;j(x)| < v(x) for p-a.e. x € X and for all j € N, then u is Lebesgue integrable and

lim / lu; —u|ldp = 0.
Jj—too Jx
In particular,
lim u; dp z/ udp.
X X

Jj—oo
Corollary 2.1.21. Let (X,90, 1) be a measure space and let {u;};en be a sequence of measurable
functions uj : X — [—o0,+00]. If

+oo
Z/ luj| dp < 400,
j=1"%

then the series Z;r:oi uj(x) converges for p-a.e. x € X, the function u(z) := j:f u;(x), defined for

u-a.e. x € X, is Lebesgue integrable, and

+o00 +oo
jdp = i dp.

We now state a measurable selection criterion (see Fonseca and Kromer [47, Lemma 3.10]; see also
Castaing and Valadier [24]) and we recall Lusin’s Theorem, which will be useful results for our analysis
in Chapter 5.

We recall that a function v : X — [—o0, +00] is said to be Lebesgue integrable (in a measure space (X,9, p)) if it is

measurable and fX [v|dp < 4o0.
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Lemma 2.1.22. Let (X, M) and (Z,N) be two measurable spaces, with Z a separable metric space.
Let T': X — 2% be a multifunction such that for every z € X, I'(x) C Z is nonempty and open, and
for every z € Z, {x € X: z € I'(z)} is measurable. Then I" admits a measurable selection, i.e., there
exists a measurable function vy : X — Z such that for all x € X, v(x) € T'(x).

Theorem 2.1.23. (Lusin’s Theorem) Let (X, M, ) and (Z,MN) be a measure and a measurable space,
respectively, with X a finite dimensional normed vector space, Z a separable metric space, and p a
finite Radon measure on 9. Let u : X — Z be a measurable function. Then for all § > 0 there exists
a compact set K C X with u(X\K) < ¢ such that uk is continuous.

2.1.3. Decomposition and Differentiation of Measures

Definition 2.1.24. (Absolutely continuous and mutually singular measures) Let (X,9) be a
measurable space and let pi, v : 9 — [0, +00] be two positive measures on M. We say that

(i) v is absolutely continuous with respect to p if v(E) = 0 whenever E € 9 is such that u(E) = 0,
in which case we write v < ;

(ii) p and v are mutually singular if there exist two disjoint sets X,,, X,, € 9 such that X = X,UX,
and for all E € 9 one has

wWE)=wENX, and v(E)=v(ENX,),
in which case we write p L v.

Theorem 2.1.25. (Radon—Nikodym Theorem) Let (X,9%) be a measurable space and let p,
v: 9 — [0, +0oc] be two positive measures on M such that p is o-finite and v is absolutely continuous
with respect to p. Then there exists a measurable function u : X — [0, +00], unique up to a set of u
measure zero, such that v = u p, that is,

v(E) = / udp
E
for all E € 9.

Definition 2.1.26. (Radon-Nikodym derivative) The function u in Theorem 2.1.25 is said to be the
dv

Radon—Nikodym derivative of v with respect to u, and we write u = a
Theorem 2.1.27. (Lebesgue Decomposition Theorem) Let (X, ) be a measurable space and let fu,
v: 9 — [0, +0o0] be two positive measures on 9 being p o-finite. Then there exist two measures v*¢,
v : M — [0, +o0] such that

v=v*+v’ (2.1.2)

and v*¢ < p. Moreover, if v is o-finite, then v* L p and the decomposition (2.1.2) is unique, i.e.,
if % and v® are two positive measures on 9 such that v* < p, v° L p and v = 0% + v°, then

a

v* =10 and v° = v°.

Definition 2.1.28. (Lebesgue decomposition of a measure, absolutely continuous part, singular part)
Let (X,90) be a measurable space and let p, v : 9 — [0, +0oc] be two o-finite measures. We say that




is the Lebesgue decomposition of v with respect to u, where v*¢ and v*® are the measures given by
Theorem 2.1.27. The measures v°¢ and v® are called, respectively, the absolutely continuous part and
the singular part of v with respect to p.

We finish this subsection by stating a local version of the Besicovitch Derivation Theorem.

Theorem 2.1.29. (Besicovitch Derivation Theorem) Let E C R! be a Borel set and let p,
v:B(E) — [0,+o] be two Radon measures. Then

v = 9% =+ V57 1 < L, v L L,
and there exists a Borel set M € B(F) such that u(M) = 0 and for all x € E\M it holds

dv®e . v((x+rC)NE)

(2) = vi((x+rC)NE)
dp R p((z+rC)NE)

oot uw(z+rC)NE)

eR,

:O7

where C' is an arbitrary bounded, convex closed set containing the origin in its interior.

2.1.4. Signed Measures

Definition 2.1.30. (Signed measure) Let (X,9M) be a measurable space. We say that a set map
A9 — [—o0,+00] is a signed measure on M if \()) = 0, the range of X\ is either contained in
[—00,400) or in (—oo, +00], and X is countably additive (i.e., (2.1.1) holds with u replaced by X).

In particular, every positive measure is a signed measure.

Theorem 2.1.31. (Jordan Decomposition Theorem) Let (X,9) be a measurable space and let
A9 — [—o0,+00] be a signed measure. Then there exists a unique pair (A\~, A1) of mutually
singular positive measures, one of which is finite, such that A\ = A\t — \=.2:3

Definition 2.1.32. (Total variation of a signed measure) Let (X,9) be a measurable space and let
A I — [—o0, +00] be a signed measure. The positive measure ||A|| : 9T — [0, 4+o00] defined for each
E €9 by

IAI(E) = AT (E) + A (E)

is called the total variation of \.

Proposition 2.1.33. Let (X,9) be a measurable space and let A : M — [—o0, +0o0] be a signed
measure. Then

+oo
IAI(E) = sup { Z INE;)|: {Ej}jen C M is a partition ofE}
j=1

for all E € 9.

Definition 2.1.34. (o-finite, absolutely continuous and mutually disjoint signed measures) Let (X, 2t)
be a measurable space and let A\, 7 : 9 — [—00, +00] be two signed measures. We say that \ is o-finite
if its total variation ||| is o-finite. The measure T is said to be absolutely continuous with respect to

23 This equality is often called the Jordan or Hahn decomposition of .
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2.4
2.5
2.6

A, and we write T < A, if ||7|| is absolutely continuous with respect to ||\||. We say that A\ and T are
mutually singular, and we write A L 7, if ||A|| and ||7|| are mutually singular.

Remark 2.1.35. Let (X,9) be a measurable space, X : 9 — [—o0,+00] a signed measure, and
w9 — [0, +00] a o- finite positive measure. Applying Lebesgue Decomposition Theorem to the two
pairs (A, ;1) we can find positive measures (A\%¢)*, (\*)* on 9 such that (\*°)* < p and

)\:i: _ ()\ac):t + ()\s):l:_

Moreover, in view of the Radon Nikodym Theorem, there exist measurable functions u* : X —
[0, 4+0oc], unique up to a set of u measure zero, such that (\*)* = u*p (in other words, u* =

d(A\®)* /du). Since at least one of the measures AT is finite, we may define
A= (AT — (A7 A= (AT = (AT, wi=ut —ur.

Then \*¢ is a signed measure with A\*¢ < pu and A\*¢ = w pu. Furthermore, if A is in addition o-finite,
then \* | p and the decomposition
A=A 4N (2.1.3)

is unique (in the sense of Lebesgue Decomposition Theorem). As in the positive case, (2.1.3), and the

measures \*¢ and \° are called, respectively, the Lebesgue decomposition, the absolutely continuous
aAnee

part and the singular part of A with respect to u. We also write u = -

Proposition 2.1.36. (Polar Decomposition Theorem) Let (X,9) be a measurable space and let
A M — [—oo,+x] be a o-finite signed measure. Then there exists a measurable function

u: X — [—00,400] such that |u(z)| =1 for ||M||-a.e. ¢ € X and u = ﬁzg

Definition 2.1.37. (Signed Radon measure) Let (X, 90) be a measurable space with X a topological
space. A signed measure \ : M — [—o0, +0o0] is said to be a Radon measure if || A|| : 9 — [0, +0o0] is
a positive Radon measure.

In this dissertation we will also be interested in vector-valued measures.

Definition 2.1.38. (Vector-valued measures and their total variation) Let (X,90t) be a measurable
space. We say that a set map A = (\i,--+,Ap) : M — R™ is a vectorial measure on M5 if each
component \; : MM — R is a signed measure, i € {1,---,m}. The total variation of X\ is the finite
positive measure ||A|| : M — [0, +00) on M defined by

+oo 2.6
[IN|(E) = sup { Z INE;)|: {Ej}jen C M is a partition ofE} (2.1.4)
j=1

for all E € 9.

Definition 2.1.39. (Vectorial Radon measure, space M(X;R™)) Let (X,9) be a measurable space
with X a topological space. A vectorial measure A = (A1, -+, A\y,) : M — R™ is said to be a Radon

This equation is often called the polar decomposition of .
If m =1, it is said to be a real measure on 9.

In fact, it can be checked that ||A[[(-) given by this supremum defines a finite measure on 9 (see, for example, Rudin

[68])
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measure if each component \; : 9 — R is a signed Radon measure, i € {1,---,m}. We represent by
M(X;R™) the space of all vectorial Radon measures A : B(X) — R™ on B(X), endowed with the
total variation norm || - || given by (2.1.4).

Remark 2.1.40. It can be checked that M(X;R™) is a Banach space.

The notions of o-finite vectorial measure, absolutely continuous and mutually singular vectorial
measures are defined in a similar way as in Definition 2.1.34. In particular, every vectorial measure is
o-finite. Moreover, arguing componentwise and in view of Remark 2.1.35, if (X,907) is a measurable
space, A : 9 — R™ a vectorial measure and p : MM — [0, +00] a o-finite positive measure, then there
exists a unique pair (A%“, A*) of R™-valued measures on 9 such that

A= )\ac+>\57 \ac <<,u, A8 J_,LL,

and, up to a set of u measure zero, there exits a unique measurable function v : X — R™ such that

A% = wu . As before, u is known as the Radon—Nikodym derivative of A*¢ with respect to p, and we

axee
dp

write u =

Equality A = A% + \5(= %;C i+ A%), and the measures A\*® and \* are called, respectively, the
Lebesgue decomposition, the absolutely continuous part and the singular part of A with respect to pu.
We further observe that the Polar Decomposition Theorem still holds for R™-valued measures with
the obvious modifications.

2.1.5. Product Measures

Definition 2.1.41. (Product o-algebra) Let (X,9) and (Z,MN) be two measurable spaces. The
smallest o-algebra that contains all sets of the form E X F', where E € 9 and F € N, is represented
by MM @ N and called the product o-algebra of MM and N.

Theorem 2.1.42. (Fubini’s Theorem) Let (X,9M, ) and (Z,M,v) be two measure spaces. Then
there exist a o-algebra MM x N containing M @ N and a positive measure p X v : M X N — [0, +o0]
on M x N such that for all E € M, ' € N, we have

(1 x v)(E x F) = u(E) v(F)>".

Moreover, if y and v are complete measures and u : X X Z — [—o00,+00] is p X v-integrable, then
for p-a.e. x € X the function u(x,-) is v-integrable and for v-a.e. z € Z the function u(-,z) is
p-integrable; furthermore, the functions [, u(-,z)dv(z) and [, u(x,-)dp(x) are p-integrable and v-
integrable, respectively, and

| e aatxnen = [ [uenwe)ae = [ ([ eaw)we.

Remark 2.1.43. Fubini’s Theorem still holds for measures p and v not necessarily complete provided
u: X X Z — [—00,+00] is assumed to be M @ N-measurable. This will often be our case.

Definition 2.1.44. (Product measure) Let (X,9, ) and (Z,MN,v) be two measure spaces. The
measure pt X v given by Fubini’s Theorem is called the product measure of p and v. We represent by
p @ v the restriction of i x v to the product o-algebra M @ MN, i.e., p @V = ji X V|gmgn-

27 With the convention w(E)v(F) := 0 whenever u(E) =0 or v(F) = 0.
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2.8
2.9

We will be particularly interested in the case in which X and Z are topological spaces and 9 = B(X)
and M = B(Z). In this case we have that B(X) ® B(Z) C B(X x Z), but equality may fail. However,
if X and Z are separable metric spaces, then B(X) ® B(Z) = B(X x Z). Moreover, if € M(X;R)
and v € M(Z;R) are nonnegative, then p ® v is a nonnegative measure in M(X x Z;R) satisfying

(1 ® v)(E x F) = p(E) v(F) (2.1.5)

for all E € B(X), F € B(Z).
More generally, if A € M(X;R), 7 € M(Z;R), with X and Z separable metric spaces, we define

AT = AT T+ A @7 - AT er -2 o7,

where A = A* — A~ and 7 = 77 — 7~ are the Jordan decompositions of A and 7, respectively.
Then A ®@ 7 € M(X x Z;R) and (2.1.5) holds with u and v replaced by A and 7, respectively.
Similarly, in the case in which A € M(X;R) and 7 = (71, -+, Ts) € M(Z;R™), A ® 7 is the measure
in M(X x Z;R™) satisfying (2.1.5) (with @ and v replaced by A and 7, respectively) defined by
ART:=(ART1,  , A® Typ)-

2.1.6. Space of Radon Measures as a Dual Space

Throughout this subsection, Y := (0,1)" is the unit cube in RY, and for each i € N, Y; stands for a
copy of Y.

Definition 2.1.45. (Q-periodic function) Let ¢ : RY — R™ be a function and Q = TI}Y (0, b;)*®
an interval in RN. We say that ¢ is Q-periodic if for all k € 7Z and for a.e. x € RY one has
o(x + kbie;) = p(x), where {e;};—1 ... n is the canonical basis of RN. If p : R™™ — R™  we say that ¢
is Y1 x -+« x Yy, -periodic if for all i € {1,---,n} the function (Y1, ..., Yi—1, *Yit1, -, Yn) is Yi-periodic
for a.e. Yi, .oy Yi1, Yit1s s Yn € RV,

Let X be a normal o-compact metrizable space. We represent by C(X; R™) the space of all continuous
functions ¢ : X — R™, while C.(X;R™) is the subspace of C'(X;R™) of functions with compact
support. The closure of C,.(X; R™) with respect to the supremum norm ||-||« is denoted by Co(X;R™).
It is well known that Co(X;R™) is a separable Banach space, and that ¢ € Co(X;R™) if, and only
if, ¢ € C(X;R™) and for all > 0 there exists a compact set K, C X such that for all z € X\K,,
lo(x)| < n. Moreover, if Q& C RY is an open and bounded set, then Cp(£2;R™) coincides with the
space of continuous functions in €2 vanishing on 9.

We will also consider the Banach spaces
Cu(Y1 X x Y R™) :={p € C(R™;R™): ¢ is Y] x -+ X Yn—periodic}z'9

endowed with the supremum norm || - [e, and Co(X;Cx (Y1 x -+ x Y,,;R™)), which is the closure
with respect to the supremum norm || - [|o of Co(X;Cx(Y7 X -+ x Y,,;R™)). The latter is the space
of all functions ¢ : X x R™ — R™ such that for all z € X, ¢(x, -) € Cy(Y7 X -+ x Y,,; R™) and for
all y1, .o, yn € RN 0(-,y1,. .., yn) € Co(X;R™).

We could as well consider the case in which ) is not necessarily open.
The space Cy (Y1 X - -+ X Yy; R™) can be identified with the space Co(T1 X - - - X Ty; R™), where each T; is a copy of the

N-dimensional torus T'.
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For our convenience, we introduce here some related Banach spaces that will be used in the sequel
of this work. We write C*(X;R™) (respectively, C*(X;R™) and C§¥(X;R™)), k € N, to denote
the space of all functions in C(X;R™) (respectively, C.(X;R™) and Co(X;R™)) whose i‘!-partial
derivatives are continuous functions in X for all ¢ € {1,---,k}. We say that ¢ € C>®(X;R™)
(respectively, C>°(X;R™) and C§°(X;R™)) if for all k € N, p € C*(X;R™) (respectively, CF(X;R™)

c

and CF(X;R™)).

The spaces Ci(Yl X oo X Y R™) O (Y x - x Vi R™), Cf(X;C;i(H X o X Yo R™)),
CE(X;C2 (Y1 X -+ X Yo R™)), CH(X;CE(Yy x -+ x Vi R™)) and C§°(X; O (Y1 X -+ X Y3 R™))
are now defined in an obvious way.

If m =1 the co-domain will often be omitted (e.g., we write Cy(X) instead of Cy(X;R)).

The next theorem shows that we can identify the dual of Cy(X;R™) with the space M(X;R™).

Theorem 2.1.46. (Riesz Representation Theorem in Cy(X;R™)) Let X be a locally compact
Hausdorff space. Then every bounded linear functional L : Co(X;R™) — R is represented by a
unique vectorial Radon measure A = (Ay,- -+, A\y,) € M(X;R™) in the sense that

L(cp):/Xgo~d/\ ::Z/Xapi(a:)d)\i(a:)zm (2.1.6)

for all ¢ = (p1,--+,pm) € Co(X;R™). Moreover, the norm of L coincides with the total variation
norm ||A||(X). Conversely, every functional of the form (2.1.6), where A = (A1, -+, Ap) € M(X;R™),
is a bounded linear functional on Co(X;R™).

In view of the previous theorem, the norm of a vectorial Radon measure A € M(X;R™) is alternatively
given by
NGO =sup{ [ oo x@): ¢ € COXR™), folle < 1.

Moreover,

Theorem 2.1.47. Let X be a o-compact metric space, and let {\;};jen C M(X;R™) be a sequence
of vectorial Radon measures such that

sup A, () < +oo.
JEN

Then there exist a subsequence {\;, }ren of {\;};en and a vectorial Radon measure A € M(X;R™)
such that
N, =\ weakly-x in M(X;R™) as k — —+oo,

that is,

for all p € Co(X;R™).

Proposition 2.1.48. Let X be a locally compact, separable metric space. Let {\;};en C M(X;R™),
A € M(X;R™) be such that \; > \ weakly-x in M(X;R™) as j — +oco. Then

IAICX) < Lim inf ;[ (X).

210" Also written as the duality pairing (X, ©) yq(x;Rm),C0(X;R™)-
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Notation 2.1.49. If p € Cyp(X) and A = (A1, -+, A\p) € M(X;R™), then we set

[ = ([ e@ane., [ e@ane)

If o= (g1, pm) € Co(X;R™) and A € M(X;R), then we define

[ e = ( [a@ae. [ som<z>dx<z>).

Having in mind Theorem 2.1.46 and footnote 2.9, we write My (Y1 x -+ x Y3,; R™) and My (X x
Y1 x - x Y,;R™) to denote the duals of Cy (Y1 X --- x Y,; R™) and Cp(X; Cu (Y7 x --- x Y,,; R™)),
respectively.

2.1.7. Disintegration of Measures

In this subsection we recall a disintegration property of Radon measures in a product space. We refer
to Evans [42] for the proof (see also Ambrosio, Fusco and Pallara [7]).

Theorem 2.1.50. Let X and Z be two o-compact, separable metric spaces, and let u : B(X x Z) —
[0, +00) be a finite positive Radon measure. Represent by 7, the canonical projection of . onto Z,
i.e., the measure defined by 7,(F) := (X x F) for all F € B(Z). Then for 7 ,-a.e. z € Z there exists
a finite positive Radon measure v, : X — [0, +00) such that v,(X) = 1, and such that for all bounded
and continuous function ¢ : X x Z — R the mapping

2o [ el (a)

is m,-measurable and

/XXZW(x,z)d/i(x,z)Z/Z</Xg0(x,z)dz/z(x)) A, (2). (2.1.7)

2.1.8. Reshetnyak’s Continuity and Lower Semicontinuity Results

In this subsection we recall two results due to Reshetnyak [66] (see also Ambrosio, Fusco and Pallara
[7], Spector [72]).

Theorem 2.1.51. (Reshetnyak’s Continuity Theorem) Let X be a locally compact, separable metric
space, and let {\;}jen C M(X;R™), A € M(X;R™) be such that \; =~ \ weakly-x in M(X;R™)
and || A;][(Q) — [|A[(R2) as j — +o0. Then

Jim [ oo grt@) Ayl = [ (e grn@) dinie

for every continuous function ¢ : X xR"™ — R satisfying a growth condition of the type |¢(z, z)| < C|z|
for some C' > 0 and for all (z,z) € X x R™.

Remark 2.1.52. If we replace X by an open set Q C RY, then Reshetnyak’s Continuity Theorem
holds for every continuous and bounded function ¢ : Q x S™~! — R, where S™~! denotes the unit
sphere of R™,
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Theorem 2.1.53. (Reshetnyak’s Lower Semicontinuity Theorem) Let X be a locally compact,
separable metric space, and let {\;}jen C M(X;R™), A € M(X;R™) be such that \; 2\ weakly-x
in M(X;R™). Then

i [ oo @) Al > [ (e @) dide

for every continuous function ¢ : X x R™ — R, positively 1-homogeneous and convex in the second
variable, and satisfying a growth condition of the type |p(x,z)| < C|z| for some C' > 0 and for all
(x,z) € X x R™.

Remark 2.1.54. If we replace X by an open set 0 C RV, then Reshetnyak’s Lower Semicontinuity
Theorem holds for every lower semicontinuous function ¢ : Q x R™ — [0,+00], positively 1-
homogeneous and convex in the second variable.

2.2. LEBESGUE AND SOBOLEV SPACES.

In this section we recall well known results concerning Lebesgue and Sobolev spaces that will be used
in this work. We refer to the books Brezis [22], Evans and Gariepy [40], Fonseca and Leoni [48], Leoni
[60], and to the references therein.

2.2.1. Lebesgue Spaces

Definition 2.2.1. (L? Spaces) Let (X, 9, 1) be a measure space and let 1 < p < + oco. We define

2.11
LP(X, p) := {u : X — [—00,+00]: u measurable and ||u||pr(x ) < +oo} )

where

1/p
P if 1<
ull Lo (x ) = ([QM dp if 1< p < +oo,
esse suplu| := inf{C € R: |u(z)| < C for p-a.e. v € X} if p=+o0.

Notation 2.2.2. When there is no possibility of confusion, we will simply write LP(X) in place of
LP(X,p), and || - || »(x), || - ||» or || - ||, in place of the norm || - ||pr(x, ). Moreover, if p = +oo then
L stands for LP. In the case in which = L', we define [y u(z)dz := [y u(z)dp.

Remark 2.2.3. Endowed with the norm ||-|| 1»(x ), LP (X, ) is a Banach space for every 1 < p < 400,
and L?(X,u) is a Hilbert space. If 1 < p < +oco, then LP(X,p) is reflexive and its dual may be
identified with LP/(P=1) (X, 11). In the case in which p is o-finite the dual of L* (X, 1) may be identified
with L>°(X, ), and if in addition (X,9) is separable, then so is LP(X, u) for all 1 < p < +o0.

Definition 2.2.4. (Holder conjugate exponent) Let 1 < p < + oo. The Holder conjugate p’ of p is
given by

—37 if1<p<+oo,
r._ ) P—
P=9 %o ifp=1,

1 if p = 400,

Underlined is the identification of a measurable function u with its equivalence class [u], that is, the set of all measurable

functions that coincide with u p-a.e. in X.
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1
so that (with an abuse of notation) ~ + — =1
p p

Theorem 2.2.5. (Holder’s Inequality) Let (X, 90, ) be a measure space and let 1 < p < + oo. If u,
v: X — [—00, +00] are measurable functions, then

lwollrxy < llullze ool x)-
In particular, if u € L?(X) and v € L? (X)) then uv € L'(X).
Definition 2.2.6. (Weak convergence in LP) Let (X, 9, 1) be a measure space and let 1 < p < + oo.
Ifp € {1,400} assume in addition that p is o-finite. We say that a sequence {u;}jen C LP(X) weakly

(weakly-x if p = +00) converges to a function u € LP(X), and we write u; — u (= if p = +00), if for
all v e LP (X) we have

lim ujvd,u:/ wovdp.
X X

j——+oo

Proposition 2.2.7. Let (X,9M, 1) be a measure space and let 1 < p < + oo. If p = 400 assume in
addition that p is o-finite. Let {u;}jen C LP(X), u € LP(X). The following conditions hold:

(i) If u; — u weakly in LP(X) (=, weakly-x if p = +00) as j — oo, then

lullLe(xy < Hminf [lugl|Lex) < sup [lugl|Le(x) < +oo.
Jj—-+oo jEN

(i) If 1 < p < 400, uj — u weakly in LP(X) as j — +o0, and |[u|rr(x) = ljminf||uj||Lp(X), then
J—oo
uj — uin LP(X) as j — +oc.

(iii) If 1 < p < 400 and sup,ey ||ujllLr(x) < 400, then there exists a subsequence {uj, }ren
of {u;j}jen such that u;, — v weakly in LP(X) as k — +oo for some v € LP(X). If in
addition (X,9M) is separable, then this property also holds in L°°(X) with respect to the
weak-x convergence.

Definition 2.2.8. (Vectorial LP spaces) Let (X,9, u) be a measure space and let 1 < p < +oco. We
define

LP(X, ;R := {u: (ur, - ug): X — RE: wy € LP(X, ) for all i € {1,---,d}},

and we endow LP(X, y; R?) with the norm || - | e (x,psmey given by

d 1/p
(ZHuiip(X’m) if1 <p<+oo,
i=1

||UHLP(X7M;R‘1) = d
Z ||U;Z’||Loo(X7M) ifp = +400.
i=1

When there is no possibility of confusion, we write LP(X; R?) instead of LP(X, ju; R?).

Remark 2.2.9. In some situations it will be more convenient to use the equivalent norm in
LP(X, u; RY) defined by

1/p
Pqd if1< ,
ull Lo ey = (/X ul” dp if1<p<+oo
esse suplu| ;= inf{C € R: |u(z)| < C for p-a.e. v € X} if p=+o0,
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where, we recall, | - | stands for the euclidean norm in R9.

Definition 2.2.10. (Spaces L) Let (X,90, 1) be a measure space, with X a topological space and
w9 — [0, +00] a Borel measure, and let 1 < p < + co. A measurable function u : X — [—00, +]
(respectively u : X — R?) is said to belong to LY (X) (respectively L} (X;R%)) if u € LP(K)

loc loc

(respectively LP(K;R?)) for every compact set K C X.

We finish this subsection by stating Riemann—Lebesgue’s Lemma, which provides an example of
bounded sequences in LP whose weak (weak-* if p = +00) limit can be explicitly characterized.

Theorem 2.2.11. (Riemann-Lebesgue’s Lemma)?12 Let 1 < p < + oo and let u € LY (RY) be a

loc
Q-periodic function, with QQ an arbitrary N-dimensional bounded interval. For ¢ > 0 and x € RV,

define .
ue(x) = u(E)

Then u, — @ (= if p= +o0) in LP (RN) (L>®°(RN) if p = 4+00), where @ is (the constant) given by

loc
IS B O
U= ﬁN(Q)/Q (y) dy.

Using Riemann-Lebesgue’s Lemma, in Donato [39] it is shown that if g1, ..., 0n, n € N, are positive
functions in (0,00) such that for all ¢ € {1,---,n} and 7 € {2,---,n}, lim._ g+ 0;(¢) = 0 and
lim, o+ 0(¢)/0j—1(¢) = 0, then given ¢ € C(Q2; Cx (Y1 x - -+ x Yy,; R?)) we have that

*

Y1 x--- XY,

(P( . s —91(6) s ... y Qn(g)
weakly-x in Li2 (€; R?). In particular, if ¢ € Co(Q; C (Y1 x -+ x Y,,;R?)) then (2.2.1) holds weakly-*

in L>°(Q;RY).

Also, if ¢ : R®™™ — Ris a Y] x --- x Y,-periodic function such that for some 1 < p < + oo and for
a.e. y, € Y, we have (-, y,) € Cy(Y1 x -+ x Y1) and [|o(-, Yn)llcy (vix-xv_1) € LP(Yn), then

loc

) — ¢ weakly in LI (RN)  if 1 < p < +oo,
(2.2.2)

) = & weaklyx in Li5, (RY) if p = +oo,

C

where

A
Il

Yix---xYy,

2.2.2. Sobolev Spaces

Throughout this subsection 2 denotes an open subset of R and we consider the L? spaces with
respect to N-dimensional Lebesgue measure. The space of (d x N)-dimensional matrices will be
identified with RdN, and we write RdXN. If f = (gkl)lgkgd,lglgNa C = (Ckl)lgkgd,lglgN c RdXN, then

d N
E:¢=) ) &l

k=11=1

Here, and in the sequel, € is a small parameter taking values on an arbitrary sequence {Ej}jeN of positive numbers
converging to zero. We write €, {uc}e>0 and € — 0% in place of ¢;, {ue;}jen and g5 — 0% as j — oo, respectively.

Moreover, €’ represents a subsequence of ¢, and we write &’ < e.
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represents the inner product of ¢ and ¢, while || := /€ : € denotes the norm of &.

Definition 2.2.12. (Weak derivatives) Let u € L, (Q) and let i € {1,---,N}. A function g € L{ ()
satistying for all ¢ € C°(§2) the equality

ua(b dm:—/qﬁgdx

is said to be the i*" derivative of u, and we write g = V;u or ou/ox;.

Remark 2.2.13. If it exists, the i-th derivative of an L{, () function is unique. Moreover, it coincides

with the classical one in the case in which u € C*(2), the reason why the same notation is used for
both.

Definition 2.2.14. (Spaces W'P) Let 1 < p < + oo. We define
WhP(Q) == {ue LP(Q): Viu € LP(Q) for all i € {1,---,N}},

and if u € WHP(Q) we set Vu := (Vyiu,- -+, Vyu) € RY.
Similarly, we define
W RY) == {u = (u1,- -, ug): Q= R u; € WHP(Q) for all j € {1,---,d}},
and if u = (uy, -, uq) € WHP(Q;RY) we set Vu := (Viu;) 1<;<a € RV,
1<GEKN

If p = +o0, we simply write WH(Q) := WLP(Q) and W1 >°(Q; R?) := WP(Q;RY).

Remark 2.2.15. When endowed with the norms

1/p
lullwona = (Hullip(m HIVullLo@pyy ) TSP < oo,
lull Lo (@) + IVullLoe (irn) if p = +o0,
and
1/p
el oz = (”“”im;m FIVulopacn) | 1<p <Aoo,
llull Loe (ray + [ V|| Loo (max v if p = +o0,

the spaces WP (Q) and WhP(Q; R?), respectively, are:
(i) Banach spaces if 1 < p < + oo,
(ii) Hilbert spaces if p = 2,
(iii) separable if 1 < p < 400,
(iv) reflexive if 1 < p < +o0.
Definition 2.2.16. (Weak convergence in W) Let 1 < p < + oo. We say that a sequence
{u;}jen C WHP(Q) weakly (weakly-x if p = +oc0) converges to a function u € WHP(Q), and we

write u; — u (> if p = +00), if u; — u and Vu; — Vu weakly in LP(Q) (=, weakly-x if p = +00)

as j — +o0.

25



Proposition 2.2.17. Let 1 < p < +o00. If {u;};en is a bounded sequence in W (Q) then there exist
a subsequence {u;, }ren of {u;};jen and a function w € WYP(Q) such that uj, — u (= if p = +00)
weakly (weakly-x if p = +o00) in WHP(Q) as k — +oo.

Definition 2.2.18. (Higher order Sobolev spaces) Let k € N with k > 2, and let 1 < p < + co. We
define by induction the Sobolev space W*?(Q) as

Whe(Q) = {u € LP(Q): Vu e W’“*l’p(Q;RN)}.

Remark 2.2.19. Alternatively, WP (Q) is given by
WEP(Q) = {u € L'(Q): D*ue (), 1< |o] <k},
where for a = (aq,---,ay) € NYY we put

. glaly of N
D% := and |o| = E ;.
0zt 0xy? - - - 0x N —

=1

When endowed with the norm

1/p
(e + X ID%ule)  if1<p <,

ullwre@) == LS lal Sk

Hu||Loo(Q) + Z ||DO‘UHL°°(Q) ifp: 400,
LS ol Sk
properties (i)-(iv) of Remark 2.2.15 hold for W*P((Q).

We now state two results concerning density of smooth functions in W*?(Q).

Theorem 2.2.20. (Meyers—Serrin) Let k € N and 1 < p < +o0. Then the space C*(Q) N WFP(Q)
is dense in WkP(Q).

Theorem 2.2.21. Let 1 < p < +oo and assume that 9) is Lipschitz. Then the space C*(Q)NW*?(Q)
is dense in WkP(()).2-13

2.2.3. Poincaré-Type Inequalities and Embeddings

Definition 2.2.22. (Spaces Wy **) Let k € N and 1 < p < +0o. We represent by Wg’p(ﬂ) the closure
of C2°(Q) in W*P(Q) (with respect to the topology of W*P(Q)).

Notation 2.2.23. We set H*(Q) := W"2(Q) and HE(Q) := W2 ().

Theorem 2.2.24. (Poincaré’s Inequality) Let 1 < p < 4+00. The following statements hold:

(i) (Poincaré in W,?(Q)) Assume that the open set 0 has finite width, ie., it lies between two
parallel hyperplanes. Then for all u € WO1 P(Q),

P
()P dar < d—/ V()P de,
Q P Ja

This result is valid for more general open sets €2, precisely, those having the segment property; we refer to Leoni [60]

for the details.
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where d is the distance between the two hyperplanes.

(i) (Poincaré in W1(Q))) Assume that the open set () is also bounded, connected, and with 95
Lipschitz. Let E C § be a Lebesgue measurable set with positive measure. Then there exists
a positive constant C' = C(p, ), F) such that for all u € W1P(Q),

/ lu(z) — upl? de < C / V()P dz,
Q Q

1

where up = EN—(E)/ u(z) da.
E

Theorem 2.2.25. (Rellich-Kondrachov Theorem) Assume that Q is bounded and that 02 is locally
Lipschitz. Let k € N and 1 < p < + oo. Then W¥*?(Q) is compactly embedded in:

(i) L9(Q) if kp < N, p < q < p*,
(i) C(Q) ifkp > N,
(iii) C*(Q) if 0 < s <k— 1T,
where p* := Np/(N — kp) ifkp < N and p* := +oc if kp = N, and C°*(Q) is the space of all functions

u € C(Q) such that

wp M@l

T, y€Q,zty |z —yl*

Remark 2.2.26. The previous theorem holds for an arbitrary open and bounded set €} if we replace
Whe(Q) by Wy (Q).

2.3. INTEGRATION WITH RESPECT TO FUNCTIONS OF BOUNDED VARIATION-VALUED
RADON MEASURES.

In this section we start by recalling some well known properties of functions of bounded variation, and
we refer to the books Ambrosio, Fusco and Pallara [7], Evans and Gariepy [40], Ziemer [77], and to
the references therein. We also collect properties of integration with respect to certain Banach-valued
measures, which seems to be hard to find in literature and which will play an important role in this
dissertation.

As in subsection 2.2.2, throughout this section €2 denotes an open subset of R and we consider the L'
space with respect to N-dimensional Lebesgue measure. The space of (d x N)-dimensional matrices
will be identified with R, and we write R¥*N

2.3.1. Space of Functions of Bounded Variation

Definition 2.3.1. (Function of bounded variation, spaces BV (2;R9) and BVj,.(Q;R%)) A function
u : Q — R? is said to be of bounded variation if u € L'(Q;R?) and its distributional derivative
Du belongs to M(£; RN that is, if there exists a measure Du € M(;RYN) such that for all
peC.(N),je{l,---,d} andi € {1,---, N} one has

[ @5 @ e == [ o) Dy (a),
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where u = (u1,---,uq) and Du; = (Dyuj,---,Dyu;). The space of all such functions u is denoted
by BV (Q;R?). We say that u € BVio.(Q;R?) if u € BV(Q;RY) for every open set € compactly
contained in Q (briefly Q' CcC Q).

Remark 2.3.2. The space BV (Q2;R?) is a Banach space when endowed with the norm
[ull Bv(araey = l[ullLr@rae) + [ Dul[(€2).

Remark 2.3.3. If u € WHY(Q;RY), then u € BV (;R?Y) with Du = Vuﬁféz and ||Du|(R2) =
Jo|Vu|da.

Notation 2.3.4. For a function v € BV (Q;R?) the Radon-Nikodym derivative of the absolutely
continuous part of Du with respect to [,JL\& is represented by Vu, and the singular part of Du with
respect to ﬁfgz is denoted by D*u. With this convention, the Lebesgue decomposition of Du with

respect to Lﬁ) becomes
Du = Vuﬁféz + D%u.

Theorem 2.3.5. (Lower semicontinuity in Ll _ of the total variation) Let {u;};jen C BV (;R?),

loc
u € BV (Q;RY) be such that u; — u in Ll _(Q;R?). Then

|Dul(92) < limjn | D (5.
J—T00

Theorem 2.3.6. (Approximation by smooth functions) Let u € BV (Q;R?). Then there exists a
sequence {u;}jen C C(Q;RY) N BV(Q;RY) such that

Jimluj = ullpy@pay =0, lim /Ivuj(ar)ld:c=|\DuH(Q)-
Jj—+oo j—+ Jo

The norm topology is too strong for our purposes, which motivates the introduction of a weaker notion
of convergence in BV (£; R?). The usefulness of the latter is justified by a compactness result.

Definition 2.3.7. (Weak-x convergence in BV') We say that {u;};en C BV (€; R?) weakly-+ converges
to a function u € BV (Q;R?) in BV (Q;R?), and we write u; = u, if u; — u (strongly) in L*(Q;R9)
and Du; = Du weakly-x in M(Q; RN as j — +o0.

Theorem 2.3.8. From every bounded sequence in BV (€2;RY) we can extract a weakly-x convergent
subsequence in BV (€; R?).

‘We now state the BV version of Theorems 2.2.24 and 2.2.25.

Theorem 2.3.9. (Embedding Theorem) Assume that 2 is bounded and that 92 is Lipschitz. Then
for all 1 < p < 1*2 we have that BV ({;R?) is compactly embedded in LP(2;RY). Moreover,
BV (Q;R%) is continuously embedded in L (€2; R?).

Theorem 2.3.10. (Poincaré’s Inequality) Assume that ) is bounded and that Of) is Lipschitz. Then
there exists a positive constant C = C({2) such that for all u € BV (;R%) and 1 < p < 1*, we have

lu — ual Lr(oiray < Cl|Dul|($2).

214 We recall that 1* = +oo if N =1, and 1* = N/(N —1)if N > 1.
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In this dissertation the functions of bounded variation that are periodic assume an important role.
Definition 2.3.11. (Space BVy(Y;R%)) We define

BV(Y;RY) = {u € BVjoo(RY;RY): u is Y-periodic},
endowed with the norm of BV (Y;R%), where Y := (0,1)

Remark 2.3.12. We have that BVy(Y;R%) is a Banach space, and if u € BVy(Y;R%), then
Du € M#(Y; RdXN).

2.3.2. Integration with respect to BV (Y:R%)-valued Radon measures

In this subsection, X denotes a o-compact separable metric space, £ an open subset of RY, and for
each i € N, Y; stands for a copy of Y := (0,1)V

Integration with respect to Banach-valued measures seems to be hard to find in literature. Here we
collect properties of integration with respect to BV (Y; R%)-valued Radon measures, which will play
an important role in Chapters 4 and 5. The considerations in this subsection may also be found in
Ferreira and Fonseca [43].

We start by recalling the notion of Banach space-valued measures. For a more detailed exposition see,
for example, Diestel and Uhl [38].

Definition 2.3.13. (Borel and Radon Banach-valued measures) Let Z be a Banach space. We say
that p : B(X) — Z is a (Z-valued) Borel measure if the following conditions are satisfied:

i) u(0) =0
ii) Given any countable family {B;}jeny of mutually disjoint Borel subsets of X, the series
Zj 1 1(Bj) converges (in Z) and

o0 (o)
u( U Bj) = u(B)
j=1 j=1
If, in addition, the condition
iii) The total variation of p,
leell(X —sup{ZHu )z: {Bj}jen C B(X) is a partition ofX},

is finite,
is satisfied, then we say that p is a (£Z-valued) Radon measure with finite total variation, and we write
pweMX;Z).
Notice that if g € M(X; Z), then ||p| : B(X) — [0, 00) defined by

||| (B —sup{Zu z: {Bj}jen C B(X )1sapartitionofB}, B e B(X),
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is a finite positive Radon measure on B(X).

We will be particularly interested in the case in which X = Q x Y7 x --- x Y;_1 for some ¢ € N, where
AXxYy X xY,_1:=Q ifi=1,
and Z = BVy(Y;; RY).

Let p € M(X;BVg(Y;RY) and B € B(X). Then u(B) € BVy(Y;R%), and so D,(u(B)) €
My (Y;RN) Moreover, it can be checked that the mapping Dyu : B € B(X) — Dypu(B) =
D, (p(B)) belongs to M(X; My (Y;RPN)) in the sense of Definition 2.3.13.

In fact, since p(f)) = 0, we have
Dyp(0) = Dy(p(0)) = 0. (2.3.1)

Let {B,} en be a countable family of mutually disjoint Borel subsets of X. Define the functions vy
and ve by

k “+o0
Vg = Zu(Bj) and vy = Z“(BJ)
1 j=1

j:
respectively. Since p € M(X; BVx(Y;R?)), we have vy, veo € BVy(Y;RY). Moreover, given any
w e CF(Y; RY),

Z/Iw Bj)(y)ldy < HWIIwZIIM ) By vime) < [wlloo| ]| (X) < o0

Consequently (see Corollary 2.1.21),

/wvwdy—/zwu dy—Z/wu ) dy,

and
+oo
Therefore,
/ (- voo)dy = lim [ (w-vp)dy, (2.3.2)
Y k—+oo |y

and since w € C’;"(Y; R?) was taken arbitrarily, we conclude that vy — vs as k — 400, in the sense
of distributions. Thus, Dyv, — Dyvs as k — +o00, in the sense of distributions, and so

k
kEI-"I:lOOZD ) = kET@oD (;N(Bj)) = kgrme U = Dyvoe

+o0 +o0 +oo
sl
j=1 j=1 j=1
in the sense of distributions, where we have used the fact that p € M(X;BVg(Y;R%)). Since

B> = U;F_OOB- € B(X), we have Dypu(B>®) = D,(u(B%>)) € My(Y;R>N) and thus we proved
that Zj:f Dy u(Bj) converges and it is equal to Dy, pu(B>) € My (Y;R¥*N) so that

“+oo “+oo
Dun( U B) - > D) (233)
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Moreover, the total variation of Dy pu,
“+oo
| Dype||(X) := sup { Z Dy t(Bj)l| my (viraxny: {Bj}jen C B(X) is a partition of X},
j=1
is finite due to the inequality || D, (pt(B))|| a1, (v raxny < [[0(B)]l vy, (v iray, for all B € B(X), and to

the fact that p has finite total variation. This, (2.3.1) and (2.3.3) yield D, € M(X; My (Y;R¥>*N)).

As we will see in Chapter 4, the measures g € M(2x Yy x -+ x Y;_1; BV (Yi; R?)) whose associated
mapping D, may be identified with an element of M, (Qx Y] X+ - - x Y;; R¥N) will play an important
role in the characterization of the multiscale limit of the sequence of distributional derivatives of a
bounded sequence in BV (£2;R?). This motivates the following definition.

Definition 2.3.14. (Space M, (Q x Y7 x -++ x Y;_1; BV(Y;; R))) We represent by M, (2 x Y1 x
<o X Y;_1; BV(Yi; RY)) the space of all BV (Y;; RY)-valued Radon measures pr € M(2 X Y7 X +++ X
Y;_1; BV (Yi; RY)) for which there exists a RN -valued Radon measure A € Myx(Q x Y7 x -+ x
Y;; RN such that for all B € B(Q2x Y1 x --- x Y;_1), E € B(Y3),

(D ((B)) (E) = A(B x E). (2.3.4)
We say that A is the measure associated with D, .

Note that since B(Q2x Yy x---xY;_1)®@B(Y;) = B(Qx Yy x---xY;), it follows that if p € M(Qx Y7 X
cee X Yi_l;BV#(Yi;Rd)), then there exists at most one measure A € My (Q x Y3 x --- X Y;; ROXN)
satisfying (2.3.4).

Example 2.3.15. Fixi € N, let 7 € Myx(Q x Y7 x -+ x Y;_1;R), and let v € BV (Y;; R?). Then
the mapping

pw:BeBOQXxYy x - xY 1)~ uB)=17(BxY; x---xY;_q)v
belongs to M(Q x Y7 X - -+ x Y;_1; BVy(Y;; RY)), with
[l[ (2 x Y1 x - x Vi) = [|T[(Q2 x Y1 x -+ X Yia) vl By (vire)-

Observe also that for all B € B(Q2 x Y1 x --- x Y;_1), (Dy,pu)(B) = D, (nu(B)) = 7(B)Dv. Moreover,
defining A\ := 7 ® Dv, we have that A\ € Myx(Q x Y7 x -+ x Y;;R>N) and (2.3.4) holds. Thus,
BEM(QXY] X x Y_1; BVg(Y;;RY)).

Our goal now is to give sense to the expression

/ QD(x, Y1, 7yi) du(a@ Y1, 7yi71)dyi7 (235>
QXY x--xXY;

whenever ¢ € Co(;Cy (Y x -+ x Y;)) and p € M(Q x Y1 x -+ x Y;_1; BVg(Y;; RY)).

Step 1. We start by assuming that ¢ = 1, and we write Y in place of Y7. As it is usual when defining an
integral, we will start by giving meaning to (2.3.5) for simple functions and then, using approximation
arguments, we will extend such notion to more general functions. Let s :  — R be a Borel, simple
function, with

5= ZCiXBw (2.3.6)
i=1
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where m € N, ¢y, ..., ¢, € R are distinct and By, ..., By, € B(£2) are mutually disjoint. If B € B(2),
then we define the integral of s over B with respect to g, and we write [, s(x) du(z), as the function
in BV4(Y;R?) given by

m

/Bs(x) dp(x) ==Y e;u(BiN B). (2.3.7)

i=1
Let ¢ : 2 — R be a bounded, Borel function, and lep {s;};jen be a sequence of Borel, simple functions

converging uniformly in Q to ¢, with s; := >/, CZ(»J)XBQ) as in (2.3.6). We have that

J

[ 5i0) duo

mj ) ’HL]' ) )
a= [ [ S u(5) ar < 31 [u(5)
=1 i=1

L1(Y;R4)
and

[ ([storamo) [ o) < S 16 o (7)) |

where we used (2.3.7). Consequently, using the definition of the total variation of p,

J
J

Since sup; ||s;]|cc < 0o and p has finite total variation, we deduce from (2.3.8) that the sequence

{ [ du(m)}jeN

is uniformly bounded in BVy(Y;R%). Thus, up to a (not relabeled) subsequence, we may find
u € BVy(Y;RY) such that

[ ) du

v+ |0, ([ ss@)an@)| @) < sl lull@) (238)

and also

[ 5i@) duo

ay< S|l (B2) = [ Iss (@l alal o) (23.9)
i=1

/sj(x) dp(r) = u weakly-x in BV (Y;R%) as j — +oc.
)

Assume now that {¢;},en is another sequence of Borel, simple functions converging uniformly in © to
¢, and such that

/tj(w) dp(x) v weakly- in BV#(Y;Rd) as j — +o0,
Q

for some v € BV#(Y;Rd). Then {s; —t;}jen is a sequence of Borel, simple functions converging
uniformly in © to 0, and so (2.3.8) ensures that u = v for LN-a.e. y € R, This gives sense to the
following definition.

Definition 2.3.16. (Integral with respect to pu) Let ¢ : @ — R be a bounded, Borel measurable
function. If B € B(Q) and p € M(Q; BVy(Y;RY)), then we define the integral of ¢ over B with
respect to p, and we write [, ¢(x) dp(x), as the function in BVy(Y;R?) given by

/B ¢(x) dp(z) = (wx-BVyx(Y;R?)) -jli)r_{loo ; sj(x)dp(z),

where {s;},en Is a sequence of Borel, simple functions converging uniformly in Q to ¢.
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The following lemma will be useful in the sequel. Its proof uses (2.3.8), (2.3.9), Definition 2.3.16,
Lebesgue Dominated Convergence Theorem and the lower semicontinuity of the total variation.

Lemma 2.3.17. Let ¢ : Q — R be a bounded, Borel measurable function and p € M(Q; BV (Y;R9)).

The following hold:
) [ | [ o dut)|dy < [ s@)dlul:
Y [/Q Q
ii) If v is the set application given by v(B) := /¢($) dp(z), B € B(Q), then v €
B
M(Q; BV(Y5R?)), and ||[||(B) < ||l |lpll(B) for all B € B(9).

PROOF. Let {s;}jen, s;(z) := 31 E )XB(’)( ), be a sequence of Borel, simple functions converging

uniformly in € to ¢.

i) Tt suffices to pass (2.3.9) to the limit as j — +o0, using Definition 2.3.16 and Lebesgue Dominated
Convergence Theorem.

ii) Using the fact that p() = 0, from (2.3.7) we deduce that

v(0) = (wx-BVx(Y;RY)) - lim [ s;(z)dp(z) = 0.

j—+o0 i]

Let {Bi}ren C B(f) be a countable family of mutually disjoint sets. Define B® := U} By
and, for M € N, BM = U} B,. We want to show that ZZS v(B) € BVy(Y;R?) and
v(B>®) = Zk 1 V(By). By (2.3.7), we have that

[ i) due) = i [, s duta)

v(BM) = ¢(x) dp(x) = (wx-BVg(Y;RY)) - lim s;(z) dp(x)

BM Jj—+oo BM

= (wx-BVx(Y;R)) - dim { Z/B }

Thus,

(2.3.10)
_ Z{ wx-BVy(Y;R ))—jlu}rloo . s; () dp,(m)}
M
S [ o) dute) = S ulB0).
k=1 B k=1

On the other hand, since xp~¢ — xpm @ is a bounded, Borel measurable function, by i) we get
JB%) = (B |y = \ | o @) = xw )] @) ()
< [ Jxo=(@) = xaw (@) [6(o)] el

dy

- / 6(@)] dllull(@) < l6llz=(@ Il (B=\BY) — o,
B\ BM M—+oo

where we have used the fact that ||| is a positive finite Radon measure on B(§2) (see Proposition 2.1.6).
Hence,
oo\ __ 1 . d B . M
V(BY) = (Ly(Y;RY) - lim v(BY). (2.3.11)
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Using the fact that v(B>) € BV#(Y R?), from (2.3.10) and (2.3.11) we conclude that 35 v/(By) €
BVy(Y;R?) and v(B*>) = Zk % v(B).

Finally, since for all B € B(f2), we have v(B) = (wx-BVx(Y;RY))-lim; 4 [ 5;(z) dp(z), by the
lower semicontinuity of the total variation and using (2.3.8) we get

B s vme < Jim [ | [ si60) duto) e +iming \Dy ( / sj<x>du<w>)H<Y>< 161l (B).
34»4»00 Y B ]4»+oo B
Hence,
(B —sup{D M svacran: {B;)yen C B(Q) is a partition ofB} < l6llocllull(B),
which concludes the proof of ii). O

Note that if ¢ : @ — R and v : Y — R are bounded, Borel functions, then given p €
M(Q; BVx(Y;RY)) and B € B(Q2), the integral

/ngy¢( )1 (y) dps(x)dy —/ </¢ ) dps( ) y) ¥ (y) dy (2.3.12)

is well defined in R<.

By considering first bounded, Borel simple functions, one can show that

i [ (Lo an)w Zcb "

whenever ¢; : Q@ =R, ¢; : Y — R, i€ {l,---,m}, are bounded, Borel functions.

HHH ), (2.3.13)

In fact, for simplicity, assume that m = 2. Let sq, so,t1, t2 be simple functions, and write

my ma U L2
=Y aixa, s2=Y bixs, ti=Y cxc, ta=» dixp,
i=1 i=1 i=1 i=1

with my,ma,l1,lo € N, {a;}2Y, {0} {cz} ", {d;}2 | finite collections of distinct real numbers,
{AY™ B} € B(Q), and {C;}L |, {D J2 C B(Y) ﬁnite collections of mutually disjoint sets.

It can be shown that

s1ty + Salo = Z RiXE; XF;
i=1

where for all i € {1,---,m}, r; € R and |k;| < ||s1t1+ s2ta||co, {Ei}T, is a family of mutually disjoint
Borel subsets of 2, and for all i € {1,---,m}, F; € B(Y).

[ ([s@an@)ntmars [ ([ s aut)o am a
/Y < i a;(w(A)) (y)> (i cixe, (y)> + ( f: b; (11(B;)) (y)) ( i dixp, (y)) d
[[s1t1 + satafl Z/ |(1(E;)) (y)| dy

||slt1+s2t2||ooz / [ (1(E)) ()| dy < Ilsats + satallooll 2] (),

Thus,

Z“z z XF( )dy
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from which we deduce (2.3.13) for simple functions. To prove the general case, if ¢; : Q@ — R,

¥; Y = R, i€ {1, ---,m}, are bounded, Borel functions, then for each j € N we can find s;i) Q0 —-R
(i

and t;i) Y — R, Borel simple functions, such that s; ) ¢; uniformly in €2 as j — +o0, and tg»i) — P

uniformly in Y as j — +oco. By definition,

/ 0u(x) dp() = (wn BV (VD) - 1 [ 50 (2) dpa(e),
Q I Ja

so that the uniform convergence t;i) — 1 in Y as j — 400 entails

i [ (0@ an@) o wray = [ ([ onto) dute)) ) vi o) o

for all i € {1,---,m}. To conclude, it suffices to pass to the limit as j — +o0 the inequality

S [ ([ ant)neway

m

Sl

i=1

< el (€2)

established above for simple functions.
We are finally in position to give sense to (2.3.5) (for i = 1).

Definition 2.3.18. (Integral with respect to “p ® £1LVY”) Let p € M(Q; BVy(Y;RY)) and let ¢ €
Co(2;C4(Y)). We define

/Qxyw(x7y) du(z)dy := jETw{i/Y (/Q o (x) du(x))(y) v (y) dy}, (2.3.14)

where for each j € N, m; € N, and for all i € {1,...,m;}, ¢§j) € Co(Q), ng) € Cx(Y), and {¢;}en,
with ;= >0 ¢§J)¢§J), converges to ¢ in Co(2; Cx(Y)).

Remark 2.3.19. (i) Given ¢ € Co(;Cx(Y)), the existence of a sequence {pj}jen as in
Definition 2.3.18 is a consequence of the Stone-Weierstrass Theorem.
(ii) Note that (2.3.14) reduces to (2.3.12) when p(x,y) = ¢(z)(y) with ¢ € Co(Q2), ¥ € Cx(Y).

(iii) Estimate (2.3.13) ensures that the limit in the Definition 2.3.18 exists and does not depend on
the approximating sequence. Moreover,

/ o(,y) du(w)dy' < el Il (£2), (2.3.15)
QxY

for all p € Co(; Cx(Y)) , and

€ Co(2;C4(Y)) — 5 Y@(%y) dp(x)dy

defines a linear continuous functional.

(iv) We could have considered the more general setting in which ¢ € C(Q; Cx(Y))NL>(2xY"). In this
case, (iii) above still holds with “p € Cy(Q; Cx(Y"))” replaced by “p € C(€; C(Y)) NL>(Q2 x Y)”.
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Next we prove an integration by parts formula for measures in M, (€; BV (Y; R?)). We first introduce
some notations. If a € R? and b € RV, then a ® b stands for the (d x N)-dimensional rank-one matrix
defined by a ® b := (aibj)lgigd’lgjgjv € RIxN,

Lemma 2.3.20. Let p € M, (Q; BVx(Y;RY)), ¢ € Co(?) and ¢ € C4(Y) be given. Then

[ (ot auta)) o Totmay=- [ o) vt axie.p) (2:3.16)
v \Ja Qxy
where A € My (Q x Y;R>N) s the measure associated with D, .

ProOOF. Fix B € B(Q), and let A\g € M4 (Y;R) be the (projection) measure defined by Ap(-) :=
A(B x -). We have that

/Y ( /Q x5 (@) du(a:))(y)@w(y) dy = /Y ((B) (W) © Vib(y) dy = — /Y (y) dD, (1(B)) (y)

- /Y b As)=— [ ) dr(zy) = — / x5 () () dA(z, ),

BXxY QxY

(2.3.17)
where we have used the fact that u(B) € BV (Y;R?) and the disintegration property of a Radon
measure (see (2.1.7)) applied to )‘:LthY’

Since any function in Cy(2) can be approximated with respect to the uniform convergence in Q by
Borel, simple functions, (2.3.16) follows from (2.3.17) and Definition 2.3.16. O

Step 2. We define (2.3.5) recursively for an arbitrary ¢ € N. Fix i > 2, and let ¢ € Cp(€2; Ce(Y7 X
coxYioq))and p € M(Qx Yy x -+ x Y;_1; BV (Y;, RY).

Proceeding as before (see (2.3.7) and Definition 2.3.16), we define the integral of ¥ over B €
B(2x Yy x -+ xY;_1) with respect to p, and we write fB Ha,yr, -, yi1) dp(x,y1, -+, yi-1), as the
function in BV (Y;; RY) given by

/B¢($»y17 e 7yi—1> dli(x’fgl, o 'ayi—l)

= (’LU*—BV#(}/“ Rd)) -j hgl S_](x’ Yt ayi—l) d[J/(Z‘, Yty 7yi—1)a
where {s;};en is a sequence of Borel simple functions s; : € x RE-DN LR ¥V} x -+ x Y;_;-periodic
in the variables (y1,- -, y;—1), converging uniformly in Q x Y7 x -+ x Y;_; to ¢.
Let ¢ € Co(;Cx(Y1 x --- x Y;)), and take a sequence {¢;},en converging to ¢ in Cp(€2; Cu (Y7 X
-++xY;)), where each ¢; is of the form ¢;(z,y1, -+, Yi—1,¥i) = D1y 19,(3)(1‘, Y1y s Yio1) ,(j)(yi) with
m; € N, and for all k € {1,---,m;}, 192]) € Co(;Cx (Y1 x - x Y1), z/),(cj) € Cx(Y;). Once again
proceeding as before (see (2.3.12) and Definition 2.3.18) we can give sense to the expression

Z/Y (/Q S ﬂ,ﬁj)(x,yl,---,yi_l)du(ﬂf,yl,---,yz-_l))(yi) () dys (2.3.18)
k=1 i XYy X X Y51

in RY, and prove that the limit of (2.3.18) as j — +oc exists and is independent of the approximating
sequence. We then define

/ o(@,y1, - y) dp(z, yr, - yio1)dys
QXY x---XY;

mj - |
TR Z/ (/ 1956])(1‘7y1’.“’yi1)du‘(x7y17"'7yi1>>(yi)¢l(c])(yi)dyi.
ImHee Y N JOxyixexYiog
(2.3.19)
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Similarly, if ¢ € Co(Q; Cx (Y1 x -+ x Y;;RY)), then we set
/ So(xayl7"'7yi)'du(l‘?yh"'ayifl)dyi
QXY x---xY;

= lim Z/ (/ ﬁg)(i,ylw'-,yi—l)du(:c,yu“',yi—1)>(yi) - (y:) dys,
J—+oo 1Y QXY X XY;_1

(2.3.20)
where cpj(x,yl,_-~-,yi,1,yi) = > 19,?)(307311,-~_-,yi,1)w,(f)(yi) with m; € N, and for all £ €
{1,---,m;}, ﬁg) € Co(;Cu(Y1 x -+ x Y1), 1/1,?) € Ou(Y;,RY), converges to ¢ in Co(€2; Cy(Yr x
o x Y RY) as j — +oo.
If, in particular, g € M, (2 x Y7 x -+ x Y;_1; BVy(Yi,R?)) then similar arguments to those of
Lemma 2.3.20 ensure that for all ¥ € Co(€;Cy (Y1 x --- x Yi_1)), ¢ € CL(Y:) and 6 € Cy(Y;RY)
one has

/ (/ Ha,yr, -, Y1) dp(, g, - - 7yzl)>(y2) ® V(y;) dy;
Y; AXYyX--XY; 1 (2.3_21)

:_/ ﬁ(x’yla"'7yi—1)w(yi)d)‘(xayl7"'7yi)a
QXY x--XY;

where A € My (Qx Yy x- - xY;; RN is the measure associated with Dy, , and for all k € {1,---,d},

/ ( / v(x,yl,---,yi_1>duk<x,y1,--~,yi_1>)<yi>dive<yi>dyi
Y; QXY x-xXY; 1

(2.3.22)
= _/ 7‘9(1'7y13 t ayifl) g(yl) ! d)‘(k)(xayla T ayi)v
QXY x---xY;

where A(y) denotes the k' row of A and p,, denotes the k" component of .

Remark 2.3.21. As observed in Remark 2.3.19 (iv), in (2.3.20) we may consider the more general
setting in which ¢ € C(€Q; Cp (Y1 x -+ x Yi; RY))NL®(Q x Y7 x - - x Y;; R?Y). In this case, the functions
ﬂgcj) are to be taken in C(Q; Cu (Y1 x---xY;))NL>®(2x Y7 x---xY;), and, as before, the corresponding
limit in (2.3.20) is independent of the approximating sequence (with respect to the supremum norm
II“ oo in 2 x Yy X -+ x Y;).

Moreover,

F((p) ::/ So(xaylf"ayi)'d“(x7yl7""7yi—1)dyi
QXY x---XY;

for p € C(Q;C4 (Y1 x -+ x Vi R))NL®(Q x Yy x - x Y;; RY), defines a linear continuous functional,
and we have

|F(0)| < lllloollpell (2 x Y1 x -+ x Yiy).

Furthermore, proceeding as in Lemma 2.3.17 and (2.3.19), in the particular case in which ¢ is scalar
and does not depend on vy;, then

Js

/ o(@,y1, - yim) dp(z, ya, -+ yie1) [dys

QAXYyx---XY;i_1

</ 0@ 91, )| Al @9, 5-1),
QAXYy X--XY;_1
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and if we define for all B € B(Q2 x Y7 x --- x Y;_1),
V(B) = \/Bso(xﬁylv e 7yi71) dﬂ(ﬂf»yh T 7yi71>7
then we have that v € M(Q x Y7 x -+ x Y;_1; BV (Yi; R)), and ||v|(B) < ¢l (B)-

2.4. UNBOUNDED LINEAR OPERATORS IN HILBERT SPACES: SPECTRAL THEORY.

The purpose of this section is to recall some results regarding spectral properties of unbounded linear
operators defined in Hilbert spaces. We refer to the books Brezis [22], Dal Maso [31], Dautray and
Lions [32], Gilbarg and Trudinger [52], Oleinik, Shamaev and Yosifian [65], and to the references
therein.

We start by recalling certain definitions concerning unbounded linear operators in Hilbert spaces. Let

H be a real Hilbert Space, endowed with a scalar product (-|-) and the associated norm || - |.

Definition 2.4.1. (Unbounded linear operator (u.l.o.); domain, range and kernel of an u.l.o.) A
linear map A : D(A) C H — H defined in a linear subspace D(A) of H with values in H is said to
be an unbounded linear operator (briefly u.l.o.) in H. The set D(A) is called the domain of A. The
sets R(A) and N(A) given by

R(A) :={Au: ue D(A)} and N(A):={ue D(A): Au =0},
respectively, are named the range of A and the kernel (or null space) of A, respectively.

Definition 2.4.2. (Densely defined, closed, coercive and bounded u.l.o.) Let A: D(A) C H — H be
an unbounded linear operator in H. We say that A is

(i) densely defined if D(A) is dense in H;
(ii) closed if the graph of A, that is, the set G(A) defined by

G(A) := {(u, Au): v € D(A)},

is a closed subset of H x H;

(iii) bounded (or continuous) if D(A) = H and there exists a constant ¢ > 0 such that for allu € H
one has
[MAull < cflull.

We represent by £(H) the set of all bounded linear operators in H.

Remark 2.4.3. When endowed with the norm

Au
lMlleqry = sup 124
u€H\{0} ||UH

Ae £(H),

£(H) is a Banach space.

Notation 2.4.4. Let A: D(A) C H — H be an unbounded linear operator in H, and let E be a subset
of D(A). We represent by A(FE) the image of E through A, that is, the set A(F) := {Au: u € E}.
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Definition 2.4.5. (Compact u.l.o.) We say that a bounded operator A € £(H) in H is compact if
A(Bp) has compact closure in H, where By == {u € H: ||u|| < 1} is the closed unit ball in H.

Notation 2.4.6. We represent by T the identity operator in H.

Definition 2.4.7. (Resolvent of an u.l.o., resolvent operator) Let A : D(A) C H — H be a closed
unbounded linear operator in H. The resolvent p(A) of A is the set defined by

p(A) :={X e R: (A — \I) is bijective from H onto H}.

For each \ € p(A) we call the resolvent operator associated with A to the bounded linear operator in
H defined by Ry := (A — X\Z)~1, the inverse map of (A — \T).

Definition 2.4.8. (U.lLo. with compact resolvent) We say that a closed unbounded linear operator
A:D(A) C H— H in H is an operator with compact resolvent if there is A\ € p(A) such that the
associated resolvent operator R (A) is compact.

Remark 2.4.9. Let A: D(A) C H — H be a closed unbounded linear operator in H. If there is
a X\ € p(A) for which Rx(A) is compact, then for all p € p(A) the corresponding resolvent operator
R,(A) is compact.

Definition 2.4.10. (Spectrum, point spectrum of an u.l.o.) Let A : D(A) C H — H be a closed
unbounded linear operator in H. The spectrum o(A) of A is the complement in R of its resolvent,
that is, o(A) := R\p(A). The point spectrum o,(A) of A is the set of all A\ € o(A) for which
N(A—\T) #{0}.

Definition 2.4.11. (Eigenvalue, eigenspace, eigenfunction, multiplicity of an eigenvalue, simple
eigenvalue, (normalized) eigenpair) Let A : D(A) C H — H be a closed unbounded linear operator in
H. Each X € 0,(A) is called an eigenvalue of A, in which case the subspace N(A— XT) of H is said to
be the associated eigenspace, u € N(A—AT)\{0} an associated eigenfunction, and the dim N (A—\Z),
i.e., the dimension of the space N (A — \T), its multiplicity (or geometric multiplicity). If A € o,(.A)
is such that dim N (A — MZ) = 1, then X is said to be simple. An eigenpair of A is a pair (\,u), where
A€ op(A) and u € N(A— NT)\{0}; it is said to be normalized (in H) if |ju| = 1.

Definition 2.4.12. (Adjoint operator of an u.l.o., self-adjoint u.l.o.) Let A : D(A) C H — H be a
densely defined unbounded linear operator in H. The adjoint operator of A is the unbounded linear
operator A* : D(A*) C H — H in H, where

D(A*) :={v € H: there exists ¢, > 0 s.t. |(v|Au)| < ¢, ||u| for all u € D(A)}, (2.4.1)
defined for each v € D(A*) by A*v :=w with w € H the unique element in H satisfying
(v|Au) = (w|u) for all u € D(A). (2.4.2)
We say that A is self-adjoint if A* = A.

Remark 2.4.13. The above definition makes sense since the set D(A*) in (2.4.1) comprises the
elements v € H for which the linear map u € D(A) — (v|Au) is continuous with respect to the norm
of H. Since D(A) is dense in H, this linear map can be uniquely extended to a continuous linear
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map in H. In view of the Riesz Representation Theorem, there is a unique element w € H satisfying
(2.4.2). We further observe that for all u € D(A) and v € D(A*) one has (v|Au) = (A*v|u).

Proposition 2.4.14. If A is an unbounded linear operator in H that is closed and densely defined,
then so is its adjoint operator A*.

The next result concerns the solvability of the equation u — Au = f, where A € £(H) is a compact
operator and f € H. In particular, it asserts that either for every f € H the equation u — Au = f
has a unique solution, or the homogeneous equation u — Au = 0 has [ linearly independent solutions
(for some | € N), in which case the inhomogeneous equation © — Au = f is solvable if, and only
if, f satisfies | orthogonality conditions, namely, f € N(Z — A*)*. This dichotomy is known as the
Fredholm Alternative.

Theorem 2.4.15. (Fredholm Alternative) Let A € £(H) be a compact operator. Then
(i) N(Z — A) is finite dimensional;

(ii) R(Z — A) is closed;
(iii) R(ZT — A) = N(T — A*)*;
(iv) N(Z — A) = {0} if, and only if, R(T — A) = H;

(iv) dim N(Z — A) = dim N(Z — A*).

We now state two results concerning spectral properties of self-adjoint compact linear operators in H.
In general, the operators that we will be dealing with in this dissertation are not compact but admit
a compact inverse operator for which these results will apply.

Theorem 2.4.16. (Spectrum of a self-adjoint compact operator) Let A € £(H) be a self-adjoint
compact operator in H. Then

(i) o(A) = o,(A)U{0}, and the set 0,(A) of eigenvalues of A is either finite or can be written as
a sequence converging to zero; moreover, 0 € o,(A) if N(A) # {0};

(ii) for each A\ € o0,(A) except perhaps for A = 0, the dimension of the associated eigenspace
N(A — )\Z) is finite;

(iii) the spaces N(A — AT), with A € 0,(A), are pairwise disjoint and H is the direct Hilbert sum
of the eigenspaces N(A — A7), i.e.,

H= N(A - AT).
A€o, (A)

Lemma 2.4.17 (Vishik-Lyusternik Lemma) Let A € £(H) be a compact self-adjoint operator in
H. Suppose that there exist a real number v > 0 and an element f € H with ||f|| = 1 such
that ||Af — v f|| < ¢, for some constant ¢ > 0. Then there is an eigenvalue X € o,(A) of A such
that |\ — | < ¢. Moreover, for any C' > c¢ there exists w € H, which is a linear combination of
eigenfunctions associated with eigenvalues of A belonging to the interval [y — C,~+ C], and such that
Jull = 1 and Ju — f| < 2¢/C.
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2.4.1. Quadratic Forms and Associated Unbounded Linear Operators

Definition 2.4.18. (Quadratic form) A function F' : H — [0,+o00| is said to be a (nonnegative)
quadratic form if there is a (unique) symmetric bilinear form a : D(F) x D(F) — R, where
D(F):={u€ H: F(u) < 400} is the domain of F, such that

Flu) = {a(mu) ifue l?(F),
400 otherwise.

Remark 2.4.19. Every quadratic form is convex.

Definition 2.4.20. Let F' : H — [0,+0o0] be a quadratic form and a : D(F) x D(F) — R the
associated symmetric bilinear form. Set V := D(F). The unbounded linear operator A : D(A) C

V — V in V associated with I is the operator defined by

D(A) := {u € D(F): there is (a unique) v € V such that a(u,w) = (v|w) for all w € D(F)},
Au = for all w € D(F').
(2.4.3)

Remark 2.4.21. The uniqueness of v € V in (2.4.3) is a consequence of the density of D(F') into
V. Moreover, by the Riesz Representation Theorem, u € D(A) if, and only if, the linear application
w — a(u,w) is continuous in D(F') with respect to the topology of H. We further observe that for
every u € D(A) and w € D(F) we have (Au|w) = a(u,w). In particular, taking w = u we obtain
(Aulu) = a(u,u) for all w € D(A).

Theorem 2.4.22. Let F : H — [0,+00] be a quadratic form and let A : D(A) C V — V be the
unbounded linear operator in V := D(F) associated with F. If F is lower semicontinuous in H?1®
then A is self-adjoint in V.

Definition 2.4.23. (Scalar product and norm in D(F)) Let F' : H — [0, +o00] be a quadratic form
and a : D(F) x D(F) — R the associated symmetric bilinear form. The scalar product (-|-)pry in
D(F) is defined by

(ulv) p(ry == alu,v) + (ulv), u,v € D(F),

and the corresponding norm || - || p(py in D(F) is given by

[ullpery = V@) + [[ul]?, we D(F).

Proposition 2.4.24. Let F : H — [0, +0o0] be a quadratic form. Then D(F') is a Hilbert space when
endowed with the scalar product (-|-) p(r) if, and only if, F' is lower semicontinuous in H.

Proposition 2.4.25. Let F' : H — [0,+00] be a lower semicontinuous quadratic form and let

A:D(A) CV — V be the unbounded linear operator in V := D(F') associated with F. Then D(A)
is dense in D(F') with respect to the norm || - || p(r).

Proposition 2.4.26. Let F' : H — [0,+00] be a lower semicontinuous quadratic form and let

A: D(A) CV — V be the unbounded linear operator in V := D(F') associated with F'. Consider the
quadratic form G : H — [0, +o0] defined by

Glu) = { (Aulu) ifu € D(A),

+00 otherwise.

2.15 gee Definition 2.5.3 in Subsection 2.5.1 below.
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Then F = sc”G, where sc"G is the lower semicontinuous envelope of G in H?16.

2.4.2. The Case of Elliptic Partial Differential Operators

In Chapter 3 we will be particularly interested in spectral properties of a specific type of unbounded
linear operators, namely, partial differential operators.

Definition 2.4.27. (M((,n,9), Ms(¢,n,Q)) Let @ C RN be an open set and let (,n € R
be such that 0 < ¢ < mn. We represent by M((,n,) the set of all N x N real matrices
A = (a;j)1<ij<n € [L=®(Q)]V*N such that for all £ € RN and for LN -a.e. z € Q,

(A(2)€l€) = ¢lill, (2.4.4)
[A)E] < nll€]l- (2.4.5)

We represent by Mg (¢, n, ) the set of all matrices in M (¢, n, ) that are symmetric, precisely, the set
of all matrices A = (a;j)1<ij<n € M(,n,Q) such that for all i, j € {1,---,N} and for LN -a.e. z € Q,

agj(x) = a;i(z).

Notation 2.4.28. For simplicity, if A is an N x N matrix and &1,& € RY, we often write A& &, in
place of (A&|&2).

Assume that Q € RY is a bounded and open set, let b € L>°(Q) be nonnegative and let A € Ms(¢,n, )
for some (,n € R such that 0 < ¢ < 7. Define the continuous and symmetric bilinear form
a: H(Q) x HY(Q) — Rin H(Q) by

a(u,v) := /QA(J:)Vu(x)VU(x) dx—l—/ﬂb(:c)u(x)v(m) dx (2.4.6)

for u,v € Hg(Q).

In view of (2.4.4) and Poincaré’s Inequality, we have that a(-,-) is coercive in HJ () x H} (), i.e.,
there exists ( > 0 such that for all u € H}(f2), one has

au,w) > Cllullf - (2.4.7)

We now introduce the densely defined self-adjoint unbounded linear operator A : D(A) C L%(Q) —
L2(Q) in L?(Q) defined by

D(A) :={u € H}(Q): v+ a(u,v) is continuous in Hg () for the topology of L*(Q)}, (2.4.8)
a(u,v) = (Aufv) for all u € D(A) and v € H (), o
where (+|-) stands for the inner product in L?(€2).
Remark 2.4.29. In other words,
Y9 du
— _div(A — — (a;; — 2.4.
Au div(AVu) + bu ijzﬂ oz, (a” &Ej) + bu (2.4.9)

2.16 go0 Definition 2.5.4 in Subsection 2.5.1 below.
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for w € D(A), where
D(A) = {u € H)(Q): div(AVu) € L*(Q)}. (2.4.10)

An operator operator of the form (2.4.9) is said to be a partial differential operator. Under condition
(2.4.7) it is said to be elliptic.

Equipped with the graph norm

lullpeay = y/llull oy + I Aullay, € D(A),

D(A) is a Hilbert space embedded into H} () with continuous injection. Since the injection of Hg (£2)
into L?(Q) is compact, it follows that the injection of D(A) into Hg(£2) is also compact. In view of
the Lax-Milgram Theorem, A is an isomorphism of D(A) onto L*(Q2), A~! € £(L*(9)) is self-adjoint
and compact. Therefore, we can apply the following general result with V = HJ(Q2) and H = L*(Q)
in order obtain spectral properties of A.

Theorem 2.4.30. Let V be a Hilbert space dense and compactly embedded in H. Let a(-,-) be
a continuous, symmetric and coercive bilinear form in V x V, and let A : D(A) C H — H be the
self~adjoint unbounded linear operator in H defined by

{ D(A) :={u € V: v a(u,v) is continuous in V for the topology of H }, (2.4.11)

a(u,v) = (Aulv) for allu € D(A) andv € V.
Then

(i) o(A) = o,(A) and for each eigenvalue A € o,(A) the associated eigenspace N(A — \T) is finite
dimensional;

(ii) o,(A) can be written as a nondecreasing sequence {\ }ren, where each eigenvalue is repeated
according to its multiplicity, such that A\, — +o00 as k — +00;

(iii) the eigenfunctions uy, of the operator A normalized in H and associated with \j satisfy the

variational formulation
{a(uk,v) = Mg (uglv) forallveV,

2.4.12
gl = 1. (24.12)

(iv) the vector subspace generated by the eigenfunctions uy, (normalized in H) is dense in V and in
H, with {uy, }ren forming an orthonormal basis of H;

(v) representing for each | by U; the subspace generated by {ui,---,u;}, we have that

Al = min G(U,U), Ak = min G:(U,u), k> 2. (2413)
ueV,|lul|=1 eV lul=1,
ueUk71

Remark 2.4.31. (A word on the nomenclature) Consider the elliptic partial differential operator
defined by (2.4.6) and (2.4.8). In the literature, the problem of finding the eigenvalues and the
corresponding eigenfunctions of A is often referred as the spectral problem associated with the operator
(— div(AV) + b) with Dirichlet boundary conditions, and is posed as: find (\,u) such that

{ —div(AVu) + bu = Au  a.e. in Q,

ue HLQ). (2.4.14)
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Remark 2.4.32. (The periodic case) Besides Dirichlet boundary conditions, we will also be interested
in the case of periodic boundary conditions. Precisely, let Y := (0,1). We represent by H,(Y) the

closure of C(Y') with respect to the H'(Y)-norm. For 1 < p < + oo, LY (Y;R™) stands for the

p
loc

space of all functions in LY (RN;R™) which are Y -periodic. We say that a matrix is Y -periodic if

each of its components is a Y -periodic function.

Let b € LE(Y) be such that infy b > 0, and let A = (a;;)1<i,j<n € [L;S(Y)]NXN be a Y -periodic
matrix in Ms(¢,n,Y). Arguing as in the beginning of this subsection, Theorem 2.4.30 can be applied
to the bilinear form a : H;& (V) x H#(Y) — R defined in H;# (Y) by

a(u,v) :=/YA(y)VU(y)Vv(y) dy+/yb(y)U(y)v(y) dy (2.4.15)

for u,v € H;#(Y), with V = H%E(Y) and H = Liﬁ(y)'

As in the Dirichlet case, the associated elliptic partial differential operator A : D(A) C L% (Y) —
L% (Y) defined by (2.4.11) can be alternatively given by
N

0 ou

Au = — div(AVu) + bu = — —(ai-—

( ) Z J 8?-/]’

o ) + bu

ij=1
for uw € D(A), where
D(A) = {u € Hi(Y): div(AVu) € LL(Y)}.
In this setting, (2.4.14) takes the form: find (A, w) such that

—div(AVu) +bu = u a.e. inY,
u e Hy(Y),

and is said to be the periodic spectral problem associated with the operator (— div(AV) + b).

We observe also that since Y is connected and Lipschitz continuous, it can be proved that the first
eigenvalue A1,

M= min { [ AwTut Vet a + |

uEH#(Y} Q

b(y)u(y)o(y) dy},
Tl 2y =1

is simple and the associated eigenfunction u, belongs to H;E Y)n C;gs (Y) for some 0 < s < 1, and
can be chosen to be a strictly positive function (see Gilbarg and Trudinger [52]).

2.5. I'-CONVERGENCE AND G-CONVERGENCE.

In this dissertation, we will often adopt variational methods to study the problems treated here. In
particular, the notions of I'-convergence and G-convergence will play an important role. In this section
we collect some properties concerning these two concepts, and we refer to the books Dal Maso [31],
Cioranescu and Donato [28], Jikov, Kozlov and Oleinik [53], and to the references therein.

2.5.1. I'-Convergence

The notion of I'-convergence may be introduced in an arbitrary topological space. However, for our
purposes throughout this work, it suffices to consider topological spaces satisfying the first axiom of
countability, in which case I'-convergence acquires a sequential characterization.
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In the sequel of this subsection, X is a topological space satisfying the first axiom of countability, i.e.,
every point has a countable neighborhood basis. We represent by {F}}en and {Fjs}s5>0 a sequence
and a family of functions from X into R, respectively.

Definition 2.5.1. (I-limit inferior, I-limit superior, I-limit) We say that F’ : X — R and
F": X — R are the I'-limit inferior and the T'-limit superior, respectively, of the sequence {F;}jen if
for all x € X we have

F'(z)= min{ljmianj(xj): rjeX,z;—rinX asj— —l—oo}
j—+o0

and
F'(z) = min{limsuij(:ﬂj): zjeX,z; —xinX as j — —i—oo}.

j—+oo

We often represent F' by F—limjnf F; and F" by I'-limsup Fj.
j—+o0

j——+oo

If there exists a function F : X — R such that
FF=F'=F

then we write F = T'- 'lirj_a F}, and we say that the sequence {F};}jen I'-converges to F' in X or that
j—+o0

F' is the I'-limit of {Fj}jen in X.
We say that F' : X — R and F"' : X — R are the I'-limit inferior and the I'-limit superior, respectively,

of the family {F5}s-¢ if for every sequence of positive numbers {0;}jen converging to zero we have

F’ =T-liminf Fs, and F” = I'-limsup Fs;,

Jj—+oo j——+oo

respectively. We say that the family {Fj}s~o I'-converges to a function F : X — R if for every
sequence of positive numbers {0; }jen converging to zero we have

F =T-liminf F;, = I'-limsup F;.

oo oo

Remark 2.5.2. As an immediate consequence of the definition, the sequence {F;};en I'-converges to
F in X if, and only if, the following conditions are satisfied:

(i) for all x € X and for every sequence {z;},;en converging to x in X, we have

F(z) < liminf Fj(z;);

Jj—-+o0

(ii) for all x € X there is a sequence {z;};en converging to x in X such that

F(z) = lim F;(z;).
Jj—-+o0

Definition 2.5.3. (Lower semicontinuous function, L.s.c.) We say that a function F : X — R is lower
semicontinuous (briefly Ls.c.) in X if for all x € X and for every sequence {x;};cn converging to x in
X, we have

F(z) < liminf F(z;).

j—+oo
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Definition 2.5.4. (Lower semicontinuous envelope) Let F' : X — R. The Ls.c. envelope of F is the
function sc”F defined for all x € X by

s F(z) :=sup {G(z): G is ls.c., G < F}.

Remark 2.5.5. It can be checked that sc”F' is the greatest l.s.c. function bounded from above by F'.

Examples 2.5.6. (I-limits) 1) If the functions F; are independent of z, i.e., if for all j € N
there exits a constant a; € R such that Fj(z) = a; for all z € X, then F’ = liminf; . a; and

" — 13
F" =limsup;_,, . a;.

2) If the functions F are independent of j € N, i.e., if there exits a function F' : X — R such that
F;=F forall j € N, then F' = F" = s’ F, that is, {F}} en I'-converges to s¢’ F in X.

We now state two important properties of I'-limits.
Proposition 2.5.7. If {F}, }xen is a subsequence of {Fj};en, then

I-liminf F; < I'-liminf Fj, and I'-limsup F; > I'-limsup Fj, .
j——+oco k—+o00 j—+o0 k—-+o0

In particular, if {F};},;en I'-converges to F' in X then also {F}, }xen I'-converges to F' in X.
Proposition 2.5.8. The functions F' and F" are lLs.c. in X.

The first of the next two results shows that the I'-limits remain unchanged if we replace the functions
F}; by their Ls.c. envelopes sc™Fj. The second characterizes the behavior of the I'-convergence under
continuous perturbations.

Proposition 2.5.9. We have that

I-liminf sc” Fy = I-liminf F; and I'-limsupsc F; = I'-limsup Fj.

j—+oo j—+oo j——+oo Jj—+4o0

In particular, {F;}jen T-converges to F : X — R in X if, and only if, {sc"F;}jen '-converges to F in
X .

Propositions 2.5.10. Let G : X — R be a continuous function. Then

I-liminf(F; + G) = (F—ljmianj) +G and T-limsup(F; + G) = (F-limsupF}) +G.
j—+o0

Joee j—too j—+oo
In particular, if {F;}jen T'-converges to F in X, then {F; + G}jen I'-converges to F + G in X.

We will now see that, under some equi-coercivity hypotheses, the I'-convergence of {F}} en to a
function F' in X implies the convergence of the infima of F}; to the minimum of F.

Definition 2.5.11. (Coercive function) We say that F : X — R is coercive if for all t € R, the closure
of the set {F <t} :={x € X: F(x) <t} is a compact subset of X.

Definition 2.5.12. (Equi-coercive sequence of functions) The sequence {F;}jen is said to be equi-
coercive (in X) if for all t € R there exist a closed and compact subset K; of X such that for all j € N
one has {F; <t} C K;.
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Proposition 2.5.13. The sequence {F}};jen Is equi-coercive if, and only if, there exists a Ls.c. and
coercive function G : X — R such that F; > G in X for all j € N.

Definition 2.5.14. (6-minimizer of a function) Let F': X — R and § > 0. A point z € X is said to
be a §-minimizer of F' in X if
F(z) < inf F(y)+9 L
< max{ in == .
v & yeX 4 0
Remark 2.5.15. Ifinfx F > —oo and if § > 0 is small enough, then x is a §-minimizer of F in X if,
and only if,
F(z) < inf F(y) +4.

yeX

The next result concerns the convergence of the infima of an equi-coercive sequence of functions.

Theorem 2.5.16. Assume that the sequence {F}}jen is equi-coercive and that I'-converges to a
function F : X — R in X. Then F is coercive and

in Fl(x) = li inf F;(z).

L
Moreover, if for all j € N x; is a minimizer of F; in X, or more generally a ¢ ;-minimizer, where {0; } jen
is a sequence of positive numbers converging to zero, then every accumulation point x of {z;}en is a
minimizer of F' in X and

F(z) = lim Fj(z;).
J—-+oo

Finally, we state two results, the first of which shows that the I'-convergence in X satisfies Urysohn’s
convergence property; the second one establishes a compactness property of the I'-convergence.

Proposition 2.5.17. The sequence {F;};en T-converges to a function F : X — R in X if, and only
if, from every subsequence of {F};};cn we can extract a further subsequence that I'-converges to F' in
X.

Theorem 2.5.18. Assume that X admits a countable basis. Then from every sequence {F;};en we
can extract a I'-convergent subsequence.

Remark 2.5.19. In some cases we will be interested in the study of the I'-convergence with respect
to the weak topology of a Banach space, which is not metrizable. Nevertheless, under some suitable
hypotheses the previous definitions and results may be extended to this case. Precisely, assume that
X is a Banach space whose dual is separable. Then there exists a metric d in X for which the weak
topology in every bounded in norm subset B coincides with the topology induced in B by the metric
d. Thus, restricted to B, the weak topology satisfies the second axiom of countability.

Assume now that {F;} ey is a sequence of functions defined in X with values in R such that F; > G
for all j € N, where G : X — R is a function satisfying lim ;400 G(x) = 400. In this setting, the
study of the I'-convergence of {F;}jen with respect to the weak topology of X reduces to study of
the T'-convergence of {F}},cn with respect to the weak topology of a bounded in norm subset B of
X ; we are thus confined to the study of the I'-convergence in a topological space satisfying the second
axiom of countability. As such, under these hypotheses, we can make use of the definitions and results
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stated above, where in place of convergence in X one should read convergence with respect to the
weak topology of X.

2.5.2. G-Convergence

Definition 2.5.20. (Weak solution for the Dirichlet problem) Let 2 C RN be an open and bounded
set, f € H™Y(Q), and A = (a;j)1<1,j<n € [LZ(Q)V*N. We say that u is a weak solution of the
Dirichlet problem

(2.5.1)

—div(AVu) = f inQ,
u =0 on 0,

if u belongs to H} () and satisfies the variational equation
| A@Tule)Vela) s = (7002 0 o)

for all v € H} ().

Remark 2.5.21. In view of Lax—Milgram Theorem, if we assume that A € M((,n,§) for some
¢,n € R such that 0 < { < n then for all f € H=1(Q) there exists a unique weak solution u for the
corresponding Dirichlet problem (2.5.1). Moreover, under additional regularity hypotheses on €2, A
and f, it can be proved that u is a weak solution if, and only if, it is a solution in the classical sense
(see, for example, Gilbarg and Trudinger [52]).

Definition 2.5.22. (G-convergence, G-limit) Let Q@ C RY be an open and bounded set and let
¢,n € R be such that 0 < ¢ < 7. We say that a sequence of matrices {A:}c>0 C Ms(¢,n,Q) G-
converges to a matrix Ay € Mg(¢,n,Q) if for every f € H=1(Q) the weak solution u. of the Dirichlet
problem

—div(A:Vue) = f in€Q,
ue =0 on 01,

is such that u. — ug weakly in H}(Q) as e — 0T, where uq is the weak solution of the Dirichlet

problem
{ —div(4ApVu) = f inQ,
u=20 on 0N2.

In this case, the matrix Ay is said to be the G-limit of the sequence {A¢}c~o.

The next theorem states the main properties of G-convergence.
Theorem 2.5.23. Let Q C RN be an open and bounded set and let (,n € R be such that 0 < ¢ < 7.
Let {A:}o~0 be a sequence of matrices in Mg((,n,$2). Then

(i) (compactness) there exists a subsequence {A. }er~o of {A:}eso that G-converges to some
AO S MS(CJ%Q),

(ii) (uniqueness) the sequence {A.}.~¢ admits at most one G-limit;

(iii) (locality) if {A.}es0 G-converges to some Ay € Mg(¢,n,Q) and if {B:}eso € Mg((,n,Q) is
another sequence G-convergent to some By € Mg((,n,Q) and for which there exists a set w C
such that A = B, for all ¢ > 0 and a.e. in w, then Ay = By;

(iv) (Urysohn) {A.}cso G-converges to some Ay € Mg((,n,Q) if, and only if, from every
subsequence of {A.}.~o we can extract a further subsequence that G-converges to Ayg.
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The next theorem relates the G-convergence of a sequence of matrices and the I'-convergence of a
certain sequence of associated functionals.

Theorem 2.5.24. Let Q C RN be an open and bounded set and let (,n € R be such that 0 < ¢ < 7.
Let {A.}es0 C Mg(¢,n, Q) and Ag € Ms(¢,n,Q). Then {A.}.~o0 G-converges to Ay if, and only if,
the sequence of functionals {J.}c~o, where J. : L*(Q) — [0, +oc] is defined by

J.(u) = {/QAE(:C)VU(JU)Vu(m)dx ifu € HE (),

400 otherwise,

for u € L*(Q), T-converges in L*(Q) to the functional Jo : L?(2) — [0, +00] given for u € L?(2) by

Jo(u) = {/QAO(;U)VU(:E)VU(:U) dr ifu€ H(Q),

+o00 otherwise.

Remark 2.5.25. The notion of G-convergence above may be generalized to the case in which the
matrices in M (¢, n,)) are not necessarily symmetric. This generalization is called H-convergence and
it was introduced by Tartar in [73], and further developed by Murat and Tartar in [63] (see also Murat

[62]).

In Chapter 3 we will mostly be interested in a particular type of sequences of matrices in Mg((,n,€2).
Precisely, let Y := (0,1)V, let ¢(,n € R be such that 0 < ¢ < 5, and let A = (a;j)1<ij<n €
[L (Y)V*N be a Y-periodic matrix in Mg(¢,n,Y). For each & > 0, set

X .o
Ae = (a5;)1<ij<n, where af;(z) == ay; <E>’ i,je{l,---,N} (2.5.2)

Observe that each matrix A, is €Y -periodic and belongs to Mg(¢,n, O) for every open subset O of
RY. The next result is a classical one within homogenization theory.

Theorem 2.5.26. Let  C RY be an open and bounded set, and let {A.}.~o be the sequence of
matrices defined in (2.5.2). Then there exists a constant matrix A" € Mg(¢,n,Q) such that {A.}.~o
G-converges to A". Moreover, the sequence of functionals {J.}.~o, where J. : H}(2) — R is given by

Je(u) ::/QAE(x)Vu(:E)Vu(x)dx

foru € Hg(S2), T-converges with respect to the weak topology of Hg () to the functional J : HE(2) —
R defined by

J(u) = / A"Wu(x)Vu(z) dz
for u € H}(Q)). The matrix A" is also called the homogenized limit of the sequence {A.}.~o.

2.5.3. Convergence of Eigenvalues of Sequences of Unbounded Operators

In this subsection we state two results in terms of G-convergence and I'-convergence regarding
convergence of eigenvalues, and of the associated eigenfunctions, of sequences of densely defined self-
adjoint operators. The first one is a classic result within homogenization theory (see Kesavan [54],
[55]; see also Boccardo and Marcellini [14]).
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Theorem 2.5.27. Let Q0 C RY be an open and bounded set, Y := (0,1), and A = (a;j)1<i j<n €
[L;Z’(Y)]NXN a Y-periodic matrix in Mg((,n,Y") for some ¢,n € R such that 0 < ¢ < n. For each
£ > 0 consider the €Y -periodic matrix in Ms(¢,n,9Q) defined by (2.5.2). Let A" be the homogenized
limit of {A:}eso. Represent by { A k}ren and {\;}ren the nondecreasing sequences formed by
the eigenvalues of the operators —div(A.V) and — div(A"V) with Dirichlet boundary conditions,
respectively, where each eigenvalue is repeated according to its multiplicity, and let {u. y}ren and
{uy}ren be the associated L*(§))-normalized sequences of eigenfunctions, respectively. Then for all
keN,
Aek — Ap ase — 07F

and, up to a not relabeled subsequence,
Ue ) — ug, weakly in H} () ase — 0.

Moreover, if A, is simple then the whole sequence {uc j}->0 converges.

The next result, whose proof can be found in Bouchitté, Mascarenhas and Trabucho [19, Thm. 3.1], will
play an important role in the study of the spectral problem addressed in Chapter 3 of this dissertation.

Proposition 2.5.28. Let A. : H. — H. be a sequence of densely defined self-adjoint operators,
where H. coincides algebraically with H endowed with a scalar product (-|-). such that

crl|ull? < (u|u). < ealul|?, for suitable positive constants cy, ca, (2.5.3)
lim+(u5|vs)8 = (u|v) whenever u. — u and v. — v in H ase — 0%. (2.5.4)
e—0

Let G. : H — (—00,+00] be defined by Ge(u) := (Aculu)e, if u € D(A:), and G(u) := +oo,
otherwise. Assume further that the three following conditions hold:

(i) G.(u) = — collul|?, for a suitable constant cy > 0 independent of ¢;

(ii) If sup G.(us) < 400 and sup |juc|| < +oo, then the sequence {u.}.~o Is strongly relatively
e>0 e>0
compact in H;

(iii) {Ge}eso I'-converges to a certain functional G.

Then, the limit functional G determines a unique closed linear operator Ay : H — H with compact
resolvent such that G(u) = (Agu|u), for allu € D(Ag). Furthermore, the spectral problems associated
with A, converge in the following sense: let (Ve i, ue ;) and (vk, ui) be such that

Ue € D(-Aa); Asua,k = Ve,kUeg ks Ve < Ve 2 < < Ve k < ey (ue,k|u£7l)a = Okts
uy, € D(Ap), Aour = viug, S < s S < v (ur|ur) = on,

where k,l € N and 6y, denotes the Kronecker symbol. Then v, — v, as e — 0. Moreover, up to
a subsequence that we will not relabel, {uc j }.~¢ converges as e — 0" to an eigenfunction associated
to v. Conversely, any eigenfunction uy, is the strong limit of a particular sequence of eigenfunctions
of A, associated with v, .
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Chapter 3

Spectral Analysis in a Thin and Periodically
Oscillating Medium

Under the motivation mentioned in the Introduction (see Subsection 1.1), we consider an elliptic
operator with e-periodic coefficients and the corresponding Dirichlet spectral problem in a three-
dimensional bounded domain of small thickness §. We study the asymptotic behavior of the spectrum
of this problem as both positive parameters ¢ and ¢ tend to zero. As we will see this asymptotic
behavior depends crucially on the ratio between e and §.

The results corresponding to the cases ¢ =~ 0 (0 = ¢) and ¢ € § (§ = €7, 7 < 1) were
announced in Ferreira and Mascarenhas [45]. In Ferreira, Mascarenhas and Piatnitski [46] detailed
proofs of the statements formulated in Ferreira and Mascarenhas [45] were provided, and the case
e>d (0 =¢", 7> 1) was studied.

Our analysis relies on I'-convergence and asymptotic expansions techniques for spectral problems.
Some of our arguments are based on the Vishik-Lyusternik Lemma.

3.1. MAIN RESULTS.

Let w be an open and bounded subset of R? and let § be a positive parameter. Consider the thin
domain Qj := w x dI, where I := (—1/2,1/2). Throughout this chapter the Greek characters a and
B take their values in the set {1,2} and we will often write Z instead of (x1,z2). Given a function
f:RT = R, de {23}, Vf stands for the vector (0f/0x1,0f/0x3), while V3f and Asf stand for
Of /0x3 and 0% f/0x3, respectively.

Let Y := (0,1)% and let A = (aij)i<ijen € [LF(Y)]P*? be a 3 x 3 real, Y-periodic matrix in
Ms(¢,n,Y x I) for some (,n € R such that 0 < ¢ < n (see Definition 2.4.27). Notice that in view of
(2.4.4) and (2.4.5), we have that for all £ € R? and for a.e. § €Y,

Cllel® < (Am)ele) < nllel. (3.1.1)

In order to simplify the notations, we will often write A€ in place of (A£|€). For each € > 0 define
T\ ..
A = (afj)lgi)jgg,, where afj(i‘) = aij(g), i,j €{1,2,3}.

We observe that each matrix A, is eY-periodic and belongs to Mg((,n,w x I); moreover, it satisfies
(3.1.1) a.e. in w. Our goal is to characterize the asymptotic behavior as € and ¢ tend to zero of the
eigenvalues /\‘g associated with the spectral problem
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{ —div(A.Ve?) = X030 a.e. in Q, (3.1.2)

17? € H& (Qg)

Fig. 3.1.1. Thin and periodically oscillating media

We also assume that aq,z = 0 a.e. in R?, thus we admit that the planar flux associated to the wave
function depends exclusively on the behavior of this function in the cross-section w. This hypothesis
enables us to decouple the limit problem, simplifying a lot our computations. We denote by A and
A, the 2 x 2 matrices A := (ang) and A, := (ag3), respectively.

As we have seen in Subsection 2.4.2, by Theorem 2.4.30 the spectrum ¢ of the self-adjoint operator
—div(A.V) in L?(Qs) with Dirichlet boundary conditions is discrete and can be written as a
nondecreasing sequence {)‘gk}kGNv where each eigenvalue is repeated according to its multiplicity,
such that )\gk — 400 as k — +o0.

Moreover, in view of (2.4.13), (3.1.1) and Poincaré’s Inequality, A2 ; > 0. We further observe that by
Theorem 2.5.27, for each § fixed we have that for all k& € N, )\g,k — A} as ¢ — 0%, where {A\$ }ren
is the nondecreasing sequence formed by the eigenvalues of the operator — div(A"V) in L?(Qs) with
Dirichlet boundary conditions, being A" the homogenized limit of {A.}.~¢. On the other hand, using
(2.4.13), it can be checked that for each e fixed one has )\g’k — 400 as d — 01, for all k£ € N. Here
we are interested in the case in which both parameters € and d converge to zero simultaneously.

A detailed characterization of the asymptotic behavior of o2 is given in Theorem 3.1.1 for the case
€ & 0, in Theorem 3.1.2 for the case ¢ < ¢, and in Theorems 3.1.4 and 3.1.7 for the case € > §. As
we mentioned before, our analysis relies on I'-convergence and asymptotic expansions techniques
for spectral problems. Some of our arguments are based on the Vishik-Lyusternik Lemma (see
Lemma 2.4.17).

Consider the quadratic energy E? : L(w x 61) — [0, +o00] defined by

~5 / A (Z)Vo(z®)Vo(z0) da®  if b € HY (w x 61),
EE (’U) T wxd8I

+00 otherwise,

(3.1.3)

for © € L?(w x 8I), whose associated operator (in the sense of Definition 2.4.20) is precisely the self-
adjoint operator — div(A4.V) in L?(w x 6I) with Dirichlet boundary conditions (see Subsection 2.4.2).

As it is usual in the dimension reduction framework, the first step is to perform a rescaling and a change
of variables in order to transform problem (3.1.2) into an equivalent one defined in the fixed domain
w x I. To each point 2% = (2%, 23) € w x §I we associate the point x = (7, x3) = (2°,6 '2}) € w x I,
and we define v € Hg(w x I) by v(z) := 9(2°) whenever o € H}(w x dI). Accordingly, we rescale the
energy in (3.1.3) by dividing it by ¢ so that the new energy becomes E? : L?(w x I) — [0, 4-00],

- e - a55(T) .
ES(v) = { /MXIAs(x)Vv(x)Vv(x) + 3:’52 |Vav(z)?de if v € H}(w x I), (3.1.4)
+0o0 otherwise.

The rescaled spectral problem reads
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(3.1.5)
v) € HY(w x I).

- asg .
{ - dlvi(AEva) — ﬁAgUg = )\g vg a.e.inw x I,
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We stress that problems (3.1.2) and (3.1.5) are equivalent.

Before stating our main results, we will introduce some notation. Since we are interested in the
cases € & §, ¢ < 0 and € > J, we consider 6 = €7 for each 7 € (0,400), and we introduce the
L?(Y )-normalized first eigenpair (ul o, 7 ) for the bidimensional periodic spectral problem

{ —20 D div(AVQT) + azgam?¢l = pl¢l ae. inY, (3.1.6)

oL € Hy(Y).

We recall that the eigenvalue uZ , is real, positive and simple, and the associated L?(Y")-normalized
cigenfunction ¢7 ; belongs to Hy (Y') OC’;’S(Y), for some 0 < s < 1, and may be chosen to be a strictly
positive function (see Remark 2.4.32).

We will distinguish three cases: 7 =1, 7 < 1 and 7 > 1. Notice that if 7 = 1 then problem (3.1.6)
does not depend on ¢, and for that reason we simply write (10, ®o) to denote its L?(Y)-normalized
first eigenpair.

Let us also introduce the following unidimensional spectral problem in the interval I:

{ —0"=¢0 ae.in I,

g ¢ HAD), (3.1.7)

whose n'" L2(I)-normalized eigenpair is represented by (gn,Gn) for each n € N, with (¢1,6;1) :=
(72,32 cos(mx3)), x3 € I. The following statement characterizes the behavior of ¢ in the case § ~ e.

Theorem 3.1.1. (¢ ~ §) Under the above hypotheses, let (Ac ;v ) be a k'™ eigenpair associated
with problem (3.1.5) for § = ¢, and let (v, ¢y) be a k' eigenpair associated with the bidimensional
homogenized spectral problem in the cross section w

{ —div(B"Vp) =vp ae. inw,
)

¢ € Hy(w

where the 2 x 2 constant matrix B" is the homogenized limit of the family of €Y -periodic matrices

{BE}E>07 BE = (bfxﬂ) with o ~
_ z T
(@) = oo(Z )] aas(2)-
Then, there exists a self-adjoint operator A. : H. — H., where H. coincides algebraically with
L?(w x I) endowed with the scalar product (-|-). defined by

(ulv)e := /wXI ‘qﬁo(g) ’2u(ac)v(x) dz, u,v € L*(w x I),

such that D(A.) is dense in H}(w x I) and

T
Ak = g Fren,  ven(@ as) = qso(g)ug,k(z,zg) ae. (,13) €w x I, (3.1.8)

where (Vg , Us 1) IS a kth eigenpair of A., that is,
Uep € D(A), Acle kp = Ve plie ks, Ve1 SVe2 < o0 S Vet < o0y (Ue k|Usi)e = O

Furthermore, v, j, — vy ase — 07 and, up to a subsequence that we do not relabel, u. . — uy weakly
in HY(w x I) as € — 0T, where uy is the product of an eigenfunction associated with vy and 0.
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Conversely, any product of eigenfunctions u, = @61 is the weak limit of a particular sequence of
eigenfunctions associated with v, j,.

We next provide the characterization of crfgs when ¢ < §. For each j € Ny define
o= [ @)y () d (3..9)
Y

where 19 =1 in Y and, for j > 1, v; are the solutions of the recurrence problems in H;E Y)

j—1
—div(A() V) = —ass(D) 71 + Y obj1-1, /Y ;) dy = 0. (3.1.10)
£=0

Theorem 3.1.2. (¢ < §) Suppose that the above hypotheses are fulfilled and that in addition a.p are
uniformly Lipschitz continuous in Y. Let (/\s,k7 Us,k) be a k" eigenpair associated with the problem
(3.1.5) with § = " for some 7 € (0,1), and let (uZ o, ¢7 ) be the L?(w)-normalized first eigenpair of
(3.1.6). Let i € N be such that -+ < 7 < 4,
bidimensional homogenized spectral problem in the cross section w

and let (v, 1) be a k' eigenpair associated with the

— 3 h Vi = i
{ le(Aanp) =vp a.e inw, (3.1.11)

@€ Hy(

where the 2 x 2 constant matrix A" is the homogenized limit of the sequence {A.}.~o. Then,
plo — m [y ass(§)dy = oo as € — 0T, ¢Io(z/e) — 1 = @Yo uniformly in w as ¢ — 0T, and
there exists a self-adjoint operator A. : H. — H., where H. coincides algebraically with L?(w x I)
endowed with the scalar product (-|-). defined by

(ufv). = / y

such that D(A.) is dense in H}(w x I) and

d);O(g) ’QU(x)v(x) dz, u,v € L*(w x 1),

i _
% _ x _ _
Ae ke = E m +pL +vek, Vei(T,x3) = (bg,o(g)ug’k(a:,xg,) a.e. (T,x3) €ewx I, (3.1.12)
=0

where (Ve i, uc 1) is a k' eigenpair of A., that is,
Ue,k S D(As)a Asus,k = Vg kUg k, Vel < Ve 2 < e < Ve k < ety (ug’k|uE,l)€ = 5klc

Furthermore, pI — 0 ase — 07, vy — v, as € — 07, and, up to a subsequence that we will not
relabel, ue , — uy, weakly in H} (w x I) as e — 0%, where uy, is the product between an eigenfunction
associated with vy, and 01. Conversely, any product of eigenfunctions uy, = @01 is the weak limit of
a particular sequence of eigenfunctions associated with v j.

Remark 3.1.3. If the series ), - o ||¥jllz2(v) converges, the same happens with >, - |o;| since
from (3.1.9) we obtain that |p;| < C|1;| 12y, where C'is a constant independent of j. Moreover,

¢
Zgj:poand ij:fyTng,

i>0 i>0
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where (po, ¢o) is the L?(Y)-normalized first eigenpair of (3.1.6) for 7 = 1. In fact, the sum on the
right hand side of (3.1.10) is the general term of the Cauchy convolution of the series ¢ := 2;‘20 Y
and p 1= Zj>0 pj. Summing (3.1.10) in j € Ny and passing to the limit, we get

{ —div(AVY) +azz 2 = ptp ae. inY,
Ye YY), [y¢dy=1,

which implies 1 = ¢o/ [, ¢o dy and p = .

We further observe that since = < 7 < #1, the convergence of 3, .  |o;| implies that for fixed
€ >0 and as T — 17, we have
i
9j Ho
> @ 2 (3.1.13)
3=0

This shows that as T tends to 1, the development (3.1.12) tends to the development (3.1.8). To prove

(3.1.13) we fix e > 0 and we consider, for an arbitrary 6 > 0, jo € N such that >, [pj| <. As 7
is of order i%v to obtain the desired convergence it is enough to prove that
L2t
J
lim > " e™5 pj = p = po. (3.1.14)

i——+00

Jj=0

Since

7
2(+1)
g g i+l ,0_7

Jj=jo+1

<D ol <6,

i Jo i
2(+1) 2(+1) 20+
g g i+l p] = E g itl p] _|_ g g itl pja
Jj=0 Jj=0 J>Jjo

Jj=jo+1

and ‘
Jo

) 2(7+1) Jo
lim g lop; = E Pjs
0 =0

i——+00 4
]:

the arbitrariness of § yields (3.1.14).

The case € > §, say § = €™ with 7 € (1,400), seems a lot more difficult to handle due to the
degeneracy of the corresponding problem (3.1.6). Indeed, in the case 7 > 1 the asymptotic behavior
of p1f o depends strongly on the behavior of the potential ass (see, for instance, Kozlov and Piatnitski
[56], [57]). An interesting case is when the potential agg oscillates between two different values, as
it is the case of a two media mixture. In that direction we introduce new hypotheses on az3. In
Theorem 3.1.4 we identify the asymptotic expansion of the first eigenvalue. In Theorem 3.1.7 we
provide a characterization of the limit spectrum in the sense of Kuratowsky.

Theorem 3.1.4. (¢ > §) Under the general hypotheses stated above, assume in addition that a3 are
smooth functions and that there exists an open, connected and smooth subset Q of Y, Q CC Y, such
that ass coincides with its minimum, ayy,, in @ and is a smooth function strictly greater than i, in
Y\Q. Let (vo,q0) be the L*(Q)-normalized first eigenpair of the bidimensional spectral problem in Q

—div(AVq) =vq a.e. in Q,

Let 0. := {\cr € RT: k € N} be the spectrum of problem (3.1.5) with 6 = ¢” for some T € (1, +0c0).
Let k € N be such that k > -2+, and let (I 0, ¢L ) be the L*(Y)-normalized first eigenpair of (3.1.6).
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Then pil o — amin®?, Lo — qo weakly in H#(Y) as € — 07, where we identify qo with its extension
by zero to the whole Y, and

2

Amin T 120} _ —1)—
Aep =Tt e T 4 ol 40T,
where p;, i € {1,---,k}, are well determined constants, |pT| < Ce*+2)7=(+3) 0 ase — 0F, for

some constant C' independent of €, and

T — 3
viq = inf { /
YEH] () w

20 (2)¥ll 2=

oo (2)] ATvTvas)

vanishes as € — 0.

Remark 3.1.5. Theorem 3.1.4 is valid under weaker regularity hypotheses on the coefficients. In
fact, as it will become clear within the proof, instead of smoothness it suffices to assume that ang are
Ck+2 functions and that in Y\Q ass is also a C**2 function, where k is the smallest natural number
satisfying k > % In particular, the smaller the positive number T — 1 is, the more regularity on the
coefficients is required.

Remark 3.1.6. Hypotheses of Theorem 3.1.4 cover the important case where ass oscillates between
two different values, but rule out the case in which as3 is constant. Nevertheless, it is easy to see
that under the general hypotheses stated at the beginning of the present chapter, if a3 is constant,
then for any 7 € (0,+00), ul, = agzm? and ¢Lo = 1. Moreover, as it will become clear from our
kth

arguments, if ()\g,k,va’k) isa eigenpair associated with problem (3.1.5) with § = ", then

a337r2
)\5 k=

k= e + Ve k;
where v, j, — v, ase — 07 and, up to a subsequence that we do not relabel, v. j, — v, = @01 weakly
in H}(w x I) as € — 0%, being (vg, 1) a k' eigenpair associated with (3.1.11).

Finally, under quite more general hypotheses than those of Theorem 3.1.4, the next theorem
characterizes the limit spectrum in the sense of Kuratowsky.

Theorem 3.1.7. (¢ > 0) Assume the general hypotheses stated at the beginning of the present
chapter and, in addition, assume that w is connected and that ags attains a minimum value, Gy, at
some 7o € R? such that aqp and azz are continuous in some neighborhood of ijy. Then,

lim (52706) = [aminWQ, —i—oo] , (3.1.16)
e—0t

where the limit in (3.1.16) is to be understood in the sense of Kuratowsky, that is, [aminWQ, —i—oo] is
the set of all cluster points of sequences {\: }c~0, e € €27 0.

The remaining part of this chapter is organized as follows. In Section 3.2 we prove some auxiliary
results. Section 3.3 is devoted to the proof of Theorem 3.1.1, while Section 3.4 to the proof of
Theorem 3.1.2. Finally, in Section 3.5 we prove Theorems 3.1.4 and 3.1.7.
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3.2. PRELIMINARY RESULTS.

In this section we prove two preliminary results that play an important role in the subsequent sections.
The first result concerns a classical change of unknowns (see Vanninathan [75]; see also Allaire and
Malige [4]). In the cases ¢ = ¢ and ¢ < § it will allow us to transform the energies (3.1.4) into
functionals for which Proposition 2.5.28 applies.

Proposition 3.2.1. For fixed 1, > 0, consider the functions u and v related by

v(z) = go(g)u(az) for a.e. v = (T,23) € w x I. (3.2.1)

Then v € H} (w x I) if, and only if, u € H}(w x I). Moreover, if v € Hi(w x I), then

ro(5)[f ) V() Vu(z) a

| A@u@9u@ + B2 - L@ s - [
wx T € € wx I

Proor. We will proceed in two steps.
Step 1. We begin by proving that equality (3.2.2) holds for every u € H(w x I) N L>®(w x I).

Fix u € Hy(w x I) N L>®(w x I). Since ¢7, € Hy(Y)N C’gf(Y) for some 0 < s < 1, the function v
defined by (3.2.1) belongs to H}(w x I) N L (w x I). Furthermore, we have

B
_ Hepo

o v(z)|* dz

/ ! A@)T0(@)Vo(a) + B 2y 2

527'
/wx]

[ 2aevony(Z)utw on (2 )ute) + BT

xI €

.

_/ ILLE7O
2

wxI € T

We claim that for a.e. x3 € I,

oro( D) @) Vu@)Tule) + A V670 (2) Voo () lu(a) P do

fo(D)[ )P dr

To(2)[ @) az.

| 520 9020(2) Fero (D) @) + 24:(2) V02 (2) Tulw) 67 (£ ) ulw) az

€
. /o
+/ a33($)7r2
w

527’

fo(D)[ )P az, (323)

ANE 9 1_ Ko
Lo(2)[ Tt az = [ 52

from which Step 1 will follow.

To prove claim (3.2.3) we start by observing that since w is an open and bounded subset of R? there
exist m. pairwise disjoint translated sets of Y, denoted by Y;, i = 1,---,m,, such that

Mme
w Cw, wherew:= int( U sYl-).
i=1

Representing by @ the extension by zero of the function u to the set @ x I, we have @ € Hg(w x I) N
L>®(@ x I). Using the change of variables 3 := £, defining w(y,z3) := @(ey, #3), and recalling that
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a5;(z) = a;;(L), we obtain for a.e. x5 € I:

[ A 90a(2) o (Z) I+ 200 900 (2) Tt o7
;o(f)\ fu()P? dz

a T
. / (@)
w €

- EQZ || FA0Te @V o

¥ /Y A0V (0) e 3)67 o) i)+ | o) e

_522 [ 2 4@V o umnl) + 567 5) (0ot 22) ) ]
(3.2.4)
For a.e. x3 € I, let w,, € H;E(Y) N L*>®(Y') be the function defined by

Me

wazg § w? +szx3

where z; € Z? are such that Y; =Y + 2, i = 1,---,m.. Notice that L pWas € H#(Y) Using the
Y-periodicity of a;; and ¢, and using ¢7 w., as a test function in the variational formulation of
<0, we get for a.e. 3 € I:

52

23| [ FAOTLA T L0 F) + BP0 (LoD )

—2| [ AT T 0L 0n @) + L ) @) g 329
=¢’ /Y ’;‘éi’ 2@ (0T0(B)we (7)) A7 = / Zif fo(D)[ )P az,

where in the last equality we used the definition of w,,, w and 4, the Y-periodicity of ¢ ; and the

change of variables Z := ey.

From (3.2.4)—(3.2.5) we derive claim (3.2.3).

Step 2. We establish (3.2.2).

We start by proving that if v € H}(w x I), then the function u given by (3.2.1) belongs to Hg(w x I)

Fix v € Hy(w x I). Since ¢7 5 € Hu(Y) N C’;E’S(Y) is strictly positive, the function

| A@Tu@9u@) + B - Hep
wx T 6

€2T

2o(D)[ 4@ Vu@) Vutz) de.
(3.2.6)

~

u(z) := f(xi , ae x=(T,x3) Cwxl,
EO(E)

is well defined and belongs to L?(w x I). Moreover, Vau € L?(w x I).
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Let {v, }nen be a sequence in C§°(w x I) such that v, — v in H}(w x I) as n — +o0. Setting
Up = Uy /Lo, We have u, — u and Viu, — Viu in L?(w x I) as n — +oo. Furthermore, for all
neN, u, € Hi(wx I)N L*®(w x I), and so, by Step 1,

€ ~ T

/ A7)V, (2) Vo (2) + a332(f) 2o (@))% — 2200, (@) dr

wx T € € (3 2 7)
o ) 2.
- / ;0(7)‘ A (2)Vun (2) Vup (z) da.
wxT €
The convergence v, — v in Hg(w x I) as n — +oo yields
: T (e = a33(T) s Mo 2
lim Ae(Z)Voy(2) Vo (z) + =5 =77 o (2)|* — - |vn ()" d

e e = - (3.2.8)

v(x)|? da,

— [ A@Tu@ o) + D e - 2

€2T 627‘

which, together with (3.2.7), implies that

sup {/
neN wxI

Consequently, since there is a constant c. > 0 such that ¢I,(-/e) > c., from (3.1.1) we get

0 (%) ‘21‘_15 (%) Vi, (2)Vu, () dx} < +o0.

sup,, [[Vun| L2(wx g2y < +0o. Therefore, u € Hj(w x I) and u, — u weakly in Hg(w x I) as
n — +00.

Using the sequential lower semicontinuity with respect to the weak topology of L?(w x I;R?) of the
convex functional F : L?(w x I; R?) — R defined by

0(%) ’2A5(:E)w(x)w(x) dz, we L2(w x I;R?),

we conclude that

lim inf
n—-+oo wx T

From (3.2.7)—(3.2.9) we deduce (3.2.6).

0(%) IZAE(E)vun(x)vun(x)dx > /M

Changing the roles between u and v we conclude that if u € HE(wx I) then v also belongs to H3 (wx I),
and the converse of (3.2.6) holds true. O

Unfortunately, the lack of a positive uniform lower bound for {¢§70}8>0 when 7 > 1 will prevent

us from using Proposition 2.5.26, and consequently Proposition 2.5.28, in the case € > §. To treat

0

0 associated

this last case we will make use of an alternative result that shows that the spectrum o
with the tridimensional problem (3.1.5) equals a countable union of spectra associated with certain

bidimensional problems.

Proposition 3.2.2. Let B € Mg((,n,w) and let b € L>°(w) be such that { < b(-) < n a.e. in w. For
each n € N, let {)\;n)} keN be the nondecreasing sequence formed by the eigenvalues associated with
the bidimensional spectral problem

(3.2.10)

—div(B(Z)Ven) + b(Z)snn = Anpn  ae. T € w,
¢n € Hg(w),
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where each eigenvalue is repeated according to its multiplicity, and, we recall, (s,,6,) represents
the n'" eigenpair of problem (3.1.7). Then {)\,(C")}k hen

{j\m}meN, where eigenvalues are repeated according to their multiplicity, which coincides with the

can be written as a nondecreasing sequence

spectral sequence of the tridimensional spectral problem

{ —divy(B(2)Vv) = b(z)Asv = M ae. (T,23) € w x I, (3.2.11)

ve Hi(wxI).
In particular, A\ = A = )\gl).
PROOF. Denote by ()\,(Cn)7go,(€")) a L*(w)-normalized k' eigenpair of problem (3.2.10). It can be
checked that

(1) the family of functions {v,(cn) = @,(Cn) (Z)0n(z3): n € N, k € N} forms an orthonormal basis of
L?(w x I);
2) for each n € Nand k € N, (/\,gn),v,(cn)) is an eigenpair of (3.2.11).
Furthermore, in view of Theorem 2.4.30 applied to V := H}(w x I), H := L*(w x I), and
a(,+): Hi(w x I) x H}(w x I) — R defined by

a(u,v) = B(z)Vu(z)Vu(x) + b(z)Vau(r)Viv(r) dz = / C(z)Vu(x)Vu(z) dz

wxI wx T

for u,v € Hj(w x I), where C' = (¢;j)1<i,j<3 € Ms(¢,n,w x I) is the matrix given by (cag) := B,
Cas = 0, and ¢33 := b, we conclude that all eigenvalues of (3.2.11) belong to {)\,(Cn)}kneN. This
completes the proof. O

3.3. PROOF OF THEOREM 3.1.1 (e = ).

In this section we prove Theorem 3.1.1. Let us recall that (ug, ¢o) is the first L?(Y)-normalized
eigenpair for problem (3.1.6) with 7 = 1, while (g1, 0;) = (72, /2 cos(rx3)) is the first L?(I)-normalized
eigenpair for problem (3.1.7). Since we are expecting the asymptotic behavior mentioned in (3.1.8)
for the shifted spectrum o. — L7, instead of the energy defined in (3.1.4) for 6 = ¢, we consider the
functional I. : L?(w x I) — [0, 4+00], defined by

L(v) = {/WIAE(:E)VU(JJ)VU(J:) + %2—?_)|V3U(1‘)|2 - g v(x)]*de if v e Hi(w x I), (3.3.1)

+00 otherwise.

Using Proposition 3.2.1 with 7 = 1, we conclude that I.(v) = G.(u), where G, : L?(w x I) — [0, +oq]
is the functional given by

G (u) = B.(z)Vu(z)Vu(x) + bgzgj) (|V3u(a:)|2 - 772|u(a:)|2) dr ifue Hi(wx 1), (3.3.2)

wx [T
400 otherwise,

where, a.e. T € w,

— ANIE: T ANIE: T

Bel@) = (tis(@) € M, bi(@) = fou (2 )| aan (T): 850(@)i=[on(Z) [ aaa(2).
Remark 3.3.1. Notice that since ¢y belongs to H%E(Y) N C;S(Y) for some 0 < s < 1, and is strictly
positive, we have that B. := |¢o(2)|?A. is an €Y -periodic matrix belonging to Mg(¢,7,w x I) for
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some (,7 € R independent of ¢ and such that 0 < ¢ < 7. In particular, for all ¢ € R? and for a.e.
T € w, one has

inf (B.(2)¢l€) > Cliél. (33.3)

In order to prove Theorem 3.1.1, we start by showing that that the sequence {G.}.>¢ satisfies the
hypotheses of Proposition 2.5.28.

Proposition 3.3.2. Let G. be the functional in (3.3.2). Then the sequence {G.}.~o I'-converges in
L?(w x I) ase — 07 to the functional G : L*(w x I) — [0, +00] defined by

Glu) == {/thVgD($)V<p(LE) Az if u(Z,z3) = p(Z) 61 (23), ¢ € Hy(w),
400 otherwise

for uw € L?(w x I), where the constant matrix B" is the homogenized limit of the sequence {B.}.~o.
Moreover, G also satisfies conditions (i) and (ii) in Proposition 2.5.28.

Proor. We will proceed in two steps (see Remark 2.5.2).

Step 1. We prove that if u.,u € L?(w x I) are such that u. — u in L?(w x I) as ¢ — 07, then

G(u) < lim ief Ge(ue). Furthermore, conditions (i) and (ii) in Proposition 2.5.28 are satisfied.

e—0
We start by observing that if w € HE(w x I), then for a.e. € w, w(, -) € H}(I). Thus, since ¢; = 72
is the first eigenvalue associated with problem (3.1.7), we have, a.e. T € w,

/ (IVsw]? — 7|w|?) dzs > 0. (3.3.4)
I

This and (3.3.3) ensure that G. > 0in L?(wx I). Hence, condition (i) in Proposition 2.5.28 is satisfied.

Let ue,u € L?(w x I) be as in the statement of Step 1. Up to a subsequence (which we will not
relabel), we may assume without loss of generality that

liminf G = lim G < .
mgaf Gelue) = T, Gelue) < oo

Then {u.}eso C Hd(w x I) and sup, Ge(u:) < +o00. Using (3.3.4), (3.3.3) and the uniform bound of
{ucteso in L?(w x I), we get

/ V| de < C, / Va2 do < Ce? + 71'2/ lu|2dz < C, (3.3.5)
wx T wx T

wxI

where C and C are constants independent of . Consequently, sup, ||uc|| Hl(wx1) < +oo and ue — u
weakly in Hi(w x I) as e — 0. The sequential lower semicontinuity of the L?-norm with respect to
the weak topology and (3.3.5) yield

/ (|V3u|2 — 772|u|2) dx < 0.
wx T

Hence, taking into account (3.3.4), [,(|Vsul? — 7%|u|?) dzs = 0 for a.e. Z € w, from which we deduce
that there is a function ¢ € H}(w) such that w(Z,z3) = ¢(Z) 61 (x3) for a.e. (Z,23) € w x I.

Using Fubini’s Theorem, Fatou’s Lemma, Proposition 2.5.26 (see also Remark 3.3.1) and the condition
01|21y = 1, we obtain

e—0t e—0t I

liminf G.(u.) > liminf /w  Bea)Vu(o) V() da > / { /w B"u(x)Vu(z) dz | des = G(u).
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Finally, to conclude Step 1, we observe that if sup, G (u.) < 400 and sup, ||uc||r2(wx ) < 400, then
(3.3.5) holds. Consequently, condition (ii) in Proposition 2.5.28 is also satisfied.

Step 2. We prove that for any u € L?(w x I) there exists a sequence {u.}.~o C L?(w x I) satisfying
e — uin L?(w x I) as e — 07 and G(u) = lim G (ue).
e—0

Given u € L?*(w x I), the only nontrivial case is when u(z,x3) = ()6 (z3) with ¢ € H}(w),
otherwise, considering Step 1, it is enough to take u. = u.

By Proposition 2.5.26, there exists a sequence {¢. }e~o0 C HE(w) converging to ¢ in L?(w) and such
that

lim [ B.(Z)Ve-(7)Ve. () di;:/Bh?@(f)@p(:f)df.

e—0t J,
Recalling that [, (167]* — 72|61]?) dzs = 0, in order to obtain the intended equality it suffices to define
ue (T, x3) := pe(T) O1(x3). This concludes Step 2 as well as the proof of Proposition 3.3.2. O

We now prove Theorem 3.1.1.

PROOF OF THEOREM 3.1.1. Let H. be the Hilbert space H := L?(w x I) endowed with the scalar
product (-|-)e, where

(ulv)e == /wa ‘(bo(g) ‘zu(a:)v(a:) dr, w,ve L*(wxI).

Since ¢o € Hy(Y) ﬂC’;gS(Y) is a strictly positive function, there exist positive constants ¢; and ¢y with
0 < ¢1 < ¢2 and such that for all § € Y we have ¢; < ¢¢(y) < c2. Moreover, by Riemann-Lebesgue’s
Lemma,

%0 (2) ‘2 - / |60(7)|”dg = 1 wealdy-x in L>(R?) as £ — 0.
€ Y

Hence conditions (2.5.3) and (2.5.4) hold. On the other hand, for each € > 0, G. defined in (3.3.2) is a
nonnegative lower semicontinuous quadratic form in L?(w x I) (see Proposition 2.4.24). Consequently,
in view of Theorem 2.4.22 and using Riesz Representation Theorem, the associated unbounded linear
operator in H., A. : D(A.) C H. — H., is a densely defined self-adjoint operator in H.. We further
observe that D(A.) is also dense in H}(w x I). Let {(Vek,ue k) }ren and {(vk, ¢x) }ken be such that

Ue, k € H(]i(w X I)a Aaue,k = Vg, kU¢ K, Vel < Ve 2 < -0 < Ve k < - Ty (us,k|u5,l)6 = (Skla
¢r € Hj(w), —divy(B"Vgr) = vppr, << Sy <o (prler) = b,
where (-|-) represents the standard scalar product in L?(w).

By Propositions 2.5.28 and 3.3.2 (see also Propositions 2.4.26 and 2.5.9), v, — v as ¢ — 0.
Moreover, up to a subsequence that we do not relabel, u. j — uy weakly in H} (wx I) ase — 0T, where
uy, is the product between an eigenfunction associated with v, and ;. Conversely, any eigenfunction
up = by is the weak limit of a particular sequence of eigenfunctions associated with v, j.

To finish the proof of Theorem 3.1.1 we are left to show that (3.1.8) holds. Considering for each k € N,
1 € R and functions wy, and wy, such that

wg(x) = ¢0(§)u~)k($), a.e. x = (ZT,x3) Ew x I,

Proposition 3.2.1 implies that wy belongs to H} (w x I) if, and only if, wy, belongs to H(w x I), and
also that the equalities

G () = (Acp|Wr)e = pr(Wp|dr)e,  (Wr|Wr)e = dp
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hold true if, and only if, the equalities
o (AT a33 Ho
I (wy) = (* divz(A:Vwy) — ?Agwk - ijk’wk) = pg(wglwr), (wglwr) = 6

are satisfied, where (-|-) represents the standard scalar product in L?(w x I) and I is the functional
in (3.3.1). Replacing px by Ve i, wi by vex and Wy by ue x, we conclude the proof of (3.1.8). O

3.4. PROOF OF THEOREM 3.1.2 (e € §)

This section is devoted to the proof of Theorem 3.1.2. The arguments are similar to those of
Theorem 3.1.1, however, in this case problem (3.1.6) does depend on €; this compels us to study
the asymptotic behavior of its first L?(Y")-normalized eigenpair (ul o, ¢Z,) as ¢ — 0F. Throughout
this section we assume that 7 € (0, 1) is fixed, and that 6 =&7.

Proposition 3.4.1. Assume that, in addition to the hypotheses made at the beginning of Chapter 3,
aqp are uniformly Lipschitz continuous in Y. Let {(g;,%;)};en, be given by (3.1.9)~(3.1.10), and let
iENbesuchthat% <7<
behaves as follows:

H—Ll Then ¢ o(-/e) — 1 = v uniformly in w as e — 0%, and ul

plo =00+ oy 4o 42 4 o(e2(7T)), (3.4.1)

PROOF. Let us start by proving that ul, — 00 = 72 [y ass(y) dy > 0 as ¢ — 0T, and that all the
other eigenvalues of problem (3.1.6) tend to 400 as ¢ — 0%. By Rayleigh’s formula for uf, (see
Theorem 2.4.30-(v)),

o= min{ [ S AOTOTH) +anoPar) (342

1
PEH (V)

”¢”L2(Y):1

T

Using (3.1.1) and ¢ = 1 as a test function in (3.4.2), we conclude that (7% < ul 5 < go. In particular,

limsup il , < 00
e—0t '
Since ¢ is a minimizer for uf ,, using again (3.1.1) we deduce that ||?¢;0||L2(y) —0ase — 0T.
Consequently, ¢ ; — 1 in H# (Y) as e — 0", In turn, this implies

e—0

fiminf iy > timinf [ asa(0)7l70(0) 47 = oo
’ 6—>O+ Y ’

Therefore, pZ , — 0o as ¢ — 07.

Similarly, using Rayleigh’s formula for p. ; and admitting that the latter is bounded, we are led to a
contradiction, since we would conclude that any minimizing sequence of eigenfunctions must converge
on the one hand to the constant function 19 = 1 and on the other hand to a function having zero
mean (by the orthogonality condition). So, except for the first, all the eigenvalues of problem (3.1.6)
tend to +oo as ¢ — 0F.

We now prove the statement on the asymptotic behavior of ¢ ;. If, in addition, we suppose that a.g
are uniformly Lipschitz continuous in Y, then (see Gilbarg and Trudinger [52, Thm. 8.8]) {¢ o}e>0
is uniformly bounded in H2(Y). Due to the compact injection of H2(Y) in C(Y), we conclude that
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¢ o(y) — 1 uniformly in Y as ¢ — 0T. Finally, the Y-periodicity of ¢7 , ensures that ¢7 o(-/c) — 1
uniformly in w as e — 0F.
We are left to establish (3.4.1), for which we will base ourselves on the Vishik-Lyusternik Lemma (i.e.,

Lemma 2.4.17). For the sake of simplicity we will present the proof only for i = 1, the argument being
easily generalized for i > 1.

We start by setting e := ¢2(-7) . = 1lo, b(7) = m2ass(y), and we define the unbounded linear
operator Ac : D(Ac) C Ly (Y) — LZ(Y) in L (Y) by

Ap =~ div(A(3) V) + bla)e
for
¢ € D(A) = {p € Hy(Y): div(AVy) € L3 (Y)}.

Then (see Subsection 2.4.2), A-! belongs to £(L3¢(Y)) and is a compact self-adjoint operator in
L(Y). We then apply Lemma 2.4.17 to H := L%(Y), to the operator AZ", to the real number
Ye := (00 +€01) 71, and to the function f. := f./||fe|lu, where fe := Acbe with . := g + €11 + €2)a.
Observe that || f.||z — 0o as € — 07 and recall that gy > 0.

Since AZ L fe — Vefe = Ve — Ve A = we, using (3.1.9)-(3.1.10) we conclude that

we = (62((b —00)th2 — 011) — 63911/12) (00 +€o1)™".

Using the condition gy > 0, we deduce that for all € > 0 small enough and for a constant ¢ independent
of €, [|we|m < e?c. Consequently,

[wellz _ -
=g
[ fell e

for all € > 0 small enough and for some other constant ¢ independent of €. For any such €, Lemma 2.4.17

H“4;_1ji “’76}2”11

yields the existence of an eigenvalue . of A-! satisfying [A. — (0o + €01) 7! < €®c. Since all the
eigenvalues of A1 tend to zero, except for the first, which converges to oy 1> 0, we conclude that
for all € small enough, A\, = u='. Hence,

e — (0 + €01)| < €,
for some other constant ¢ independent of €. This concludes the proof for ¢ = 1. O
As it was already mentioned, the main ideas of the proof of Theorem 3.1.2 are those of Theorem 3.1.1.

P
c,0

We are expecting the asymptotic behavior referred in (3.1.12) for the shifted spectrum o, — iz, (see

also (3.4.1)), and so instead of the energy defined in (3.1.4) for 6 = &7, we consider the functional
I7 : L*(w x I) — [0, +00] defined by

527 827

I7(v) = { / A (Z)Vo(z)Vu(z) + a53(7) |Vav(x)|? — Fe.0 lo(x)]?dz  if v € Hi(w x I),
€ ’ wx I
+00 otherwise
for v € L?(w x I). By Proposition 3.2.1, we have that I7 (v) = GT(u), where GT : L?(w x I) — [0, +o0]

is the functional given by

() = { /wXIBg(f)vu(x)vu(x) + bif) (IV5u(@)? — wu(@)?) o if u € Hy(w x 1),

+00 otherwise

(3.4.3)
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for u € L?(w x I), where for a.e. T € w,

2
o) (2)
€,0 c e

BI(z):= (by5(x)) € M**?, b75(T) =

o) faua(L). 1550 =

The analogue to Proposition 3.3.2 reads as follows.

Proposition 3.4.2. Let G be the functional in (3.4.3). Then the sequence {GL}.~o I'-converges in
L?(w x I) as € — 0T to the functional G™ : L*(w x I) — [0, +0o0] defined by

G (u) == {/WAthO(:C)Vga(x) dz ifz(x,xg,) = () 01(x3), € Hy(w),
00 otherwise

for u € L%(w x I), where A" is the homogenized limit of the sequence {A.}.~q. Moreover, GT also
satisfies conditions (i) and (ii) in Proposition 2.5.28.

PROOF. The proof is very similar to that of Proposition 3.3.2, and so we only outline the main
differences.

Step 1. We prove that if u.,u € L?(w x I) are such that u. — wu in L?(w x I) as ¢ — 0T, then
G"(u) < lim ir+1f GZ(ue). Furthermore, conditions (i) and (ii) in Proposition 2.5.28 are satisfied.
e—0

Without loss of generality we may assume that liminf, o+ GI(u.) = lim._, o+ GI(us) < +00. Then,
using (3.1.1) and the uniform convergence ¢7,(-/e) — 1 in w as € — 0T (see Proposition 3.4.1),
we conclude that (3.3.5) holds. Consequently, u. — u weakly in Hi(w x I) as ¢ — 0%, where

u(Z, x3) = @(Z)01 (x3) for some p € H(w), a.e. (Z,73) € w x 1.

2,0('/5”2 > 1 — ~. Therefore, Fubini’s Theorem,
(3.1.1), Fatou’s Lemma, Proposition 2.5.26 and the condition ||01[/z2(;) = 1 ensure that

Fix 0 < v < 1. Then for all € sufficiently small,

liminf G7 (u.) > liminf BI(%)Vue(r)Vue(z) dr

e—0t e—=0t JoxT

> (1_7)/1 [nminf/wAg(x)vug(x)vug(gx) dz|des > (1—~) G (u),

e—0t

from which we conclude that G (u) < lim(i)IJ}f GI(u.) by letting v — 0t.
E—

To prove that GT satisfies conditions (i) and (ii) in Proposition 2.5.28 it suffices to repeat the
corresponding arguments in Step 1 of Proposition 3.3.2. This concludes Step 1.

Step 2. We prove that for any u € L?(w x I) there exists a sequence {uc}.~o C L?(w x I) satisfying
ue —uin L*(wx I) ase — 07, and G"(u) = lim GI(u.).

e—0

Given u € L*(w x I), the only nontrivial case is when u(Z,z3) = ¢(Z) 61 (x3) for some ¢ € H}(w),
otherwise, considering Step 1, it’s enough to take u. = u.

By Proposition 2.5.26, there exists a sequence {¢.}eso C H}(w) converging in L?(w) to ¢ and such
that
tim [ A.(5)Vie(2) Ve () dr = / A (2) V() dz. (3.4.4)
e w w
Fix v > 0. Let ¢p > 0 be such that for all 0 < ¢ < eo, |¢7o(-/¢)|” < 1+ . Define
ue(Z,23) = ¢(%)01(x3). Recalling that [, (|61|* — 72|61]*)dws = 0, from (3.4.4) and (3.1.1) we
conclude that
lim sup G7 (ue) = lim sup/ BI(2)Vpe(z)Vp(r)dr < (1 + 'y)/ AW (2)Ve(z)dz = (1 +7) G (u).

e—0t e—0+ w

| 2
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Letting v — 07 and using Step 1, we conclude Step 2 as well as the proof of Proposition 3.4.2. O

Proor or THEOREM 3.1.2. Replacing G. by GT, (po,d0) by (ulg,%Io), and recalling Proposi-
tions 3.4.1 and 3.4.2, the proof of Theorem 3.1.2 is analogous to that of Theorem 3.1.1. O

3.5. PROOF OF THEOREMS 3.1.4 AND 3.1.7 (e > §)

Throughout this section we assume that 7 € (1, +00) is fixed, and that 6 = €”. As we mentioned before,
the lack of a positive uniform lower bound for {¢7 y}c~o will prevent us from using Proposition 2.5.28.
So, in order to prove Theorems 3.1.4 and 3.1.7, we will take advantage essentially of Propositions 3.2.1
and 3.2.2, and of the asymptotic behavior of the eigenpair (ul o, #7 ;) introduced in (3.1.6), which is
the aim of the following lemmas.

To simplify the statements and the proof of the lemmas, we introduce some notations:

T 2
. 2 -1 ._ Heo — AminT T
b:= (a33 - amin)ﬂ- ) €=¢c ) He ‘= 52(7_71) ) (be - ¢5,0'

Problem (3.1.6) then reads

—div(AVe,) + %(be = UePe a.e.inY,
€

(3.5.1)
(bs S H}#(Y% ||¢EHL2(Y) =1.

The asymptotic behavior of (ji, @) depends strongly on the behavior of the potential b. As we referred
at the beginning of this chapter, an interesting case is when b oscillates between two different values
and this justifies the present hypotheses on the coefficients.

Lemma 3.5.1. Under the hypotheses of Theorem 3.1.4 and using the above notations, let (v, qo)
represent the L?(Q)-normalized first eigenpair of problem (3.1.15), and consider qq extended by zero
to the whole Y. Let also .1 represent the second eigenvalue of problem (3.5.1) and vy the second
eigenvalue of problem (3.1.15). Then {¢.}c~o converges in norm to qq in L?(Y') and weakly in H'(Y').
Moreover,

e — v and lim ir+1f fe1 = V1. (3.5.2)
e—0

In particular, there exist a positive constant C' and ¢y > 0 such that for all 0 < € < €y we have
He1 — e 2 C.
Proor. We will proceed in several steps.

Step 1: We prove that p. < vg.

Noticing that b vanishes in @), the eigenvalue p. is given by the Rayleigh’s formula

. T | _
pe = inf {/YAvgzswdereQ/Y\Q b|¢|2dy}. (3.5.3)

1
PEH, (V)

191 L2 yy=1

Using in (3.5.3) test functions ¢ € Hg(Q), with [|¢|z2(g) = 1, extended by zero to the whole Y, we
obtain

pe < inf {/ AVqqugj} =1, (3.5.4)
a€H(Q) Q

lall 2 gy=1
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which concludes Step 1.
Step 2. We establish the convergence of {¢p¢}eso-

In the previous step we proved that
_ _ 1 [
po= [ AV 50 a5+ % [ voPar<n= [ AVaTads (35.5)
Y €I Q

Consequently,
/A%ewedgg/ﬁvqovqodg, / bloc|* dy < 2. (3.5.6)
Y Q \@Q

Using (3.1.1), from the first estimate in (3.5.6) we conclude that ||V e[ 12(y) is bounded independently
of e. Hence, up to a subsequence, {¢.}.~o converges to some ¢y € H;E(Y) weakly in H'(Y) and
strongly in L?(Y). A lower semicontinuity argument then yields

/ AV Vo dy < / AV oV o dy < lim(i)gf / AV V. dy < / AV qoVqo dy. (3.5.7)
Q Y A Y Q

Fix ¢ > 0 such that b(-) > ¢ in Y\Q. Then, in view of the second estimate in (3.5.6),

2
166l =/ 16247 < Sy — 0,
2D " Jyg

€
C e—0t

Thus ¢g = 0 a.e. in Y\Q. Consequently, ¢g € H}(Q) and pollz2(q) = 1. Finally, from (3.5.7) and
since ¢q is admissible in the variational definition of 1, we obtain ¢y = qg, as well as the convergence
of the whole sequence {¢.}c~o.

Step 3. We prove that p. — vy as € — 0T,
By (3.5.5), we have

o 1 o
He = / Av¢ev¢e dy + _2/ b|¢6‘2 dy > / Av¢ev¢e dy,
Y € Jv\Q Y
and so, in view of (3.5.7) and since ¢g = qo,

e—0t

liminf g, > / AVqoVqo dij = v,
Q

which, together with (3.5.4), concludes Step 3.

Step 4. We prove that lim ir+1f e, = V1.
e—0

Let ¢ 1 be a L?(Y)-normalized eigenfunction associated with . 1. Then ¢, 1 € H;& (Y), |¢eallz2vy =
L, [ 6.9)6.1(9)dy =0, and
Y

o 1
feg = inf {/ AV¢V¢dg+—2/ b¢|2dg}
verl, (). [ oocaz—o LJy € Jy\Q
Y
1612y =1 (3.5.8)

_ _ 1
/ A1V ben dg+ = / bles|? d.
Y & JIv\Q
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If liminf p1c ;1 = 400 there is nothing to prove, so that, extracting a subsequence if necessary, we may
e—0t
assume without loss of generality that

liminf g1 = 1i el < .
ot flen = I, He1 < +00
Then, in view of (3.5.8) and (3.1.1), and arguing as in Step 2, we conclude that up to a subsequence

that we do not relabel,
$eq — ¢ weakly in H(Y) as e — 0T,

for some ¢ € H(Y), and lim._o+ g) = 0. In particular, b e HNQ), ||(5||L2(Q) =1 and

O-/qﬁ6 ) ben (9) dy Eﬁ+/¢o dy—/qu(y)é(y)dy

m= { / AVqquy} < / AVTaay. (35.9)
Q Q

qEHé(Q)-,fQ aqpdy=0

Hence,

H‘ZHL2(Q):1

Finally, from (3.5.8), (3.5.9), and using a lower semicontinuity argument, we get

hmmfu6 1> hmlnf/ AV 1V 1dy > / Ad(7) o(7) dj = / Ag(7 dy > 14.

e—0t

This yields Step 4.

To conclude the proof of Lemma 3.5.1 it suffices to observe that from Steps 3 and 4 we obtain
hm 1nf(,uE 1— fe) = v — v >0,
where we also used the fact that v is simple. O

Lemma 3.5.2. Under the hypotheses of Theorem 3.1.4 and using the previous notations, the L*(Y)-
normalized first eigenpair (., ¢.) of problem (3.5.1) has the following asymptotic behavior for any
integer n € N:

e = Vo + €1 + iz 4+ € gy + pre,
where yu;, i € {1,---,n}, are well determined constants and |p, | < ¢,€"t=, for some positive constant

¢, Independent of €, and

¢e =qo + 6stl,e + 62¢2,5 +-+ End)n,e + Tn,e,
where ¢; , i € {1,---,n}, are well-defined functions in L*(Y') and I7n,ell 2 vy < Cn€" T2 for a certain
positive constant ¢, independent of .

PRrOOF. The proof is based on the asymptotic expansion technique. We will detail the proof for n = 1,
being clear how to extend it for the higher orders.

For v > 0 we define Q, := {y € Y : dist(y, Q) < v}. Let 79 > 0 be such that the outward normals to
0@ of length 2+ do not intersect. Consider a system of local coordinates (s,8) on (QQ2+,\@, where 6
represents the local coordinate on 9Q and s € [0,2vy) stands for the distance to 9Q in the outward
normal direction. In these local coordinates, equation (3.5.1) in Q2,,\Q reads

= _ b
—div(A*V) + b* - Vo, + = Pe = Hee, (3.5.10)
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for a certain uniformly elliptic matrix A* = (ap3) with smooth coefficients as functions of s and 0,
and for a certain vector b* = (b}, b3), where b}, b5 are also smooth functions of s and 6.

In the sequel we will deal with different coordinates on each side of 9Q). For the sake of simplicity we
will abusively identify f(g) with f(g(s,#)) or, conversely, g(s,0) with g(s(y),0(%))-

For small € > 0 we search for ¢, and u. with the following development

fhe = Vo + ey + g + -, (3.5.11)
b =qo+ P+ EPo e+, (3.5.12)

where, we recall, (g, qo) is the L?(Q)-normalized first eigenpair of problem (3.1.15), and for each
i € N, ¢; . have the form

o (y)
0uc() = 1 67 (2,0) in Qu,\Q, (3.5.13)
0 in Y\QZ»YO.

In view of the regularity assumptions on the coefficients a,g and b and in Y\Q, the following Taylor
expansions for @ fixed hold true

) 8 aﬁ (9 a,(} s2 83@2/3 g3
2 2 3 83
b(s,60) = b(0,0) + §b< )s+ 2 "(0 0> ZS( (5).0) 5 (3.5.15)

Setting 7 = s/e, T € [0,270/€), substituting (3.5.11), (3.5.12) and (3.5.13) in (3.5.10), using expressions
(3.5.14)—(3.5.15) and collecting like powers of €, we obtain in Q2+, \@, for the power €1, that ¢ must
satisfy

2¢+
—aj;1(0,0) 902 + b(0,0) 7
where 6 is a parameter.
Denote by ;" the solution, for fixed 6, of
521/}1
—af(0,0)——5- 72 +b(0, 9)1/)1 =0,
81/)1 1
li 0) = )= ———.
Jim i (r,0) =0, 5 -(0,6)= a1,(0,0)

Then

1 _ /ai(o-ﬂ) .
¢T(T, 9) — e HICK))

at,(0,0)b(0,0)

)

and we define
(bl+ (T’ 9) = [(AVquQ)(g(Q 9))] Q/Jfr (7—7 9)’
where ng represents the outward normal to 0Q at (0,6), so that we may have
Folon = _
(a1 52 ) (0.0) = (AVaone) (5(0.0)).
Also, ¢; must satisfy o
{ —div(AV¢7 ) = vod; + H1go  a.e. in @,
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and, from the compatibility condition (see Theorem 2.4.15)

/ (AVqong)¢y do = m/ lq0]* d7,
0Q Q

we obtain

1 = / (AVqong) ¢y do = _/ |Avq0nQ\2¢1+ do < 0. (3.5.17)
0Q 0Q

So, ¢7 is uniquely defined as the solution of (3.5.16) with p; given by (3.5.17), and satisfying
/ Go6r dg = 0. (3.5.18)
Q

Collecting the terms of order € we conclude that in Q2.,\@, #3 must satisfy

oy

—aj(0,0) =N

+b(0,0)p5 = R(1,0),

0)r

where R(7,6) is a finite sum of functions of the type f(#)7e 9(¥)7 with f and g bounded as functions

of 6 and g is strictly positive. Therefore, problem

2
~a12(0.0) 2% 410,00 = R(r.0)
im0 (r0) =0, a1y (0.0) 22 (0.0) = (AT 67 o) 3(0.0).

has a unique solution ¢, which is smooth in (7,6) and decays exponentially to zero as 7 — 4o00.

We now define ¢, in ) as the solution in @) of

{ —div(AV¢y ) = vogs + pi¢y + pago  ae. in Q,
d)Z_\aQ(g(O,a)) = d);(oa 9)a

with
pa = [ (A¥ang) e do
oQ
so that the compatibility condition is satisfied.

Now, in order to make the function ¢, and its derivatives continuous on 9@, we introduce a smooth
function 15 , defined in @, such that 7/’2_\8Q =0 and flvd);nQ = fflvgb;nQ Consider also a cut-off
function ¢, € C*°(R; [0, 1]) such that ¢, (s) =1 if s < 9, and ¢, (s) = 0 if s > 2.
Finally, we set

we(@ ( (

gﬁ()+ez¢2()+e by (9) ifj€q,
5@ 4

) ey (S?)’@(?)))@%(S(@)) if 7 € Qo \Q, (3.5.19)
if 7 € Y\Q2y,,

and
Ae = vy + €1 + €2 . (3.5.20)

Then, it can be checked that for suitable constants ¢y and ¢; independent of ¢, the following estimates
hold true

[wellL2(v) < 1+ coe?, (3.5.21)
H — div(AVw,) +

< e/ (3.5.22)
L2(Y)

1
—bw, —
62 € € €
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Indeed, from (3.5.18) and the fact that gy vanishes outside @ it follows that ¢ . is orthogonal to go.
Thus, considering the normalization ||go||z2(yy = 1, we obtain

g0 + €brellizvy) = 1+ €ll¢1.cl72(v)- (3.5.23)

This implies in particular that ||go + €p1,ellz2(yy = 1 and ||qo + €p1,ellr2(vy < g0 + €¢1v€”%2(Y)‘
Therefore, (3.5.21) is a consequence of (3.5.23).

To justify (3.5.22), we use (3.5.19) and (3.5.20) and the definitions of all functions qo, ¢, ¢F, Vg
and ¢-,. After straightforward rearrangements we obtain

ere (9) ify€Q,
— div(AV Low, = hwe = 4 ot (st 0. DY i o 3.5.24
1V( we) + 2 We eWe €T, S(y),e(y>, ? if [TRS QQ"/O\Q7 ( «J. )
0 ify e Y\Qg%7
where
7o lz2(Q) < 2 and IrF(s,0,7)] < c3Tle T (3.5.25)

with positive constants cq, c3, ¢4, and j € N, independent of €. It follows from the second upper bound
in (3.5.25) that for some positive constant cs,

||re+H%2(Y\Q) < Cs€. (3.5.26)

Then, in view of the first upper bound in (3.5.25) and thanks to (3.5.26) and (3.5.24), we obtain
estimate (3.5.22).

In order to obtain the announced estimates we notice that by Lemma 3.5.1 we can find ¢y > 0 such
that for all € < ¢ the ground state p. and the second eigenvalue fi 1 of problem (3.5.1) satisfy the
inequality pte1 — pte = € > 0. So, using Vishik-Lyusternik Lemma (see Lemma 2.4.17), from (3.5.21)
and (3.5.22) we get

|Ac — e < c6€®?,  |Jwe — PellL2(v) < cre’?, (3.5.27)

for some positive constants cg,c7 independent of e. Considering the definitions of w. and A, we
conclude, from (3.5.27), that

e — (vo + epr)| < 0863/2, e — (g0 + 6¢1,s)||L2(Y) < ch3/2,

for some constants cg > 0 and ¢g > 0. This completes the proof for n = 1. O

We now prove Theorems 3.1.4 and 3.1.7.

ProoOF OF THEOREM 3.1.4. By Proposition 3.2.2, the first eigenvalue A.; of the tridimensional
problem (3.1.5) coincides with the first eigenvalue )\glz of the following bidimensional problem
PR a55(T) B
- dlv(AE(m)Vgogl)) + ‘fTWQQOS) =AM ae Fecw,
ot € Hi(w).
Also, the corresponding L2-normalized eigenfunctions v, ; and will) satisfy the following relation

ve1(x) = goiﬁ(:f)@l(xg), a.e. x = (T,x3) Ew X I,
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where 6; is the first L?(I)-normalized eigenfunction of problem (3.1.7).

On the other hand, recalling the proof of Proposition 3.2.1, relation (3.2.2) holds true if we restrict
(3.2.1) to v and u only depending on Z. Using (3.2.2) for ¢, € Hj(w) satisfying

o) = 620 (2)0(@), ac.zew
we obtain

@+ D 22yp@)2 az

1 A@) V(@) V() + 8
Ao =AY = inf e (3.5.28)
e [ e@pas
. [leno(G)] @ve@vi@as
He0 . w \eE He .0 T
= T l,glf( ) ANE = S TVer
e 1w T _ _ T ’
A [ ene(5)| w@p as

Using Lemma 3.5.1 and recalling the notations introduced at the beginning of this section, we get
pilo = aminm” and @7 5 — qo weakly in Hy(Y) as ¢ — 0%, and

2
AminT ) -3
Aen= =g+ e e te
e“T 5

E(r—1)—2

pr + pl + Vg,

where |p7| < Cetb+2)7=(+3) 0 as e — 0F,

To conclude the proof of Theorem 3.1.4 we are left to prove that v7; — 0 as e — 0. Construct a
sequence {9 }e~o in Hg(w) as follows: for each e > 0 let K. := {x € Z*: e(k +Y) C w}, and define

T. = int< U i+ ?)).

reK,

Consider the cut-off function ¢., introduced in Lemma 3.5.2 in the definition of w. (see (3.5.19)).
Extend ¢., to the whole R? by Y-periodicity, and define ¢. by 9.(Z) = d»m(%') if z € T, and
Ye(Z) :=01if T € w\T..

Using the definition of v7;, taking 1. as test function, using the uniform bounds in (3.1.1), the
usual change of scales j = ¢!, together with the Y-periodicity of ¢~ and @7 (), and since we have
Vol (v) < ¢/70, We obtain

T\ 2| = TN (2 o,
O e L[ el a
0< 7, < 77/TE 6,0(6)‘ ’ ¢’YO<5> €z _ ’1762 Q2wo\Qw0’ O( )} .
el T e T\ |2 7N 12 S 2.2
F o@D e [ JoratmPas

Using Lemma 3.5.2 with £ = n and recalling the definitions and the estimates therein, we obtain for

g = g(sv 9) € QZ“{O\Qu

(3.5.29)

Co((5,0)) = ™ P(5,0) + 1k (3.5.30)
where, since 7 > (k + 2) /k,

Irk.ellzng) < ae™DETD) < et (3.5.31)

72



and P satisfies the following pointwise estimate
1P(s,0)2 < i a (f)jme*bm? (3.5.32)
, < 2 m 5.
for some positive constants a,,, b,, and for some j,, € N, independent of ¢.

Consequently, putting together (3.5.30), (3.5.31) and (3.5.32), and in view of (3.5.29), we conclude

that
5 , Nl .
- — —1=jm o —bm 2 jm
0<v; < = (/Q |02 0(®)| dy) Eﬁ @y e L Im g =bm X / sim ds

@210\ (3.5.33)
2(/ |¢ | dy> £2(2+%)
&€

for some constant ¢ independent of e. Having in mind that from Lemma 3.5.1, fQ |¢;0(g)|2 dy — 1
as ¢ — 07, we may pass in (3.5.33) to the limit as ¢ — 0T to conclude the proof of Theorem 3.1.4. OO

PROOF OF THEOREM 3.1.7. We start by observing that we may assume without loss of generality
that 0 € w.

In view of the definition of A. 1 (see (3.5.28)), we deduce that

Amin
7T2

)\s,l = 9

527-
and so

lim (52705) - [aminﬂ'Q,—Foo]. (3.5.34)

e—0+
To prove the opposite inclusion we fix ¢ > 0 and we recall the notations of Proposition 3.2.2 with B,
b and )\,(;) replaced by A., gi and )\i k), respectively. Let also O’E = {)\ ke N}.

For fixed € > 0 we have that EQTASk — 400 as k — 4o00. Using a diagonal argument we can find a
sequence {\}c~o C 0. such that \. — 400 as ¢ — 0", Thus,

+o00 € lim (¢*70.). (3.5.35)

e—0t
Moreover, by Proposition 3.2.2 one has

— J o

neN

We claim that
El_i,%lJr (627—09)) D [aminﬂ'Q, +00). (3.5.36)

Assume that (3.5.36) holds. Then the inclusion o, D o yields

lim (5 05) O lim (5270(1)) O [AminT?, +00),
e—0t e—0t

which, together with (3.5.34) and (3.5.35), establishes (3.1.16).

In order to show (3.5.36) we first perform a change of variables that will transform problem

{—div(As(;E)Vgogl)) ?’53( ) 2 2 = APl ae 7 € w, (3.5.37)
Pe € H(i (w)a
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into an equivalent one allowing us to pass to the limit as ¢ — 0". Recall that problem (3.5.37)
corresponds to (3.2.10) for n=1, with B replaced by A. and b replaced by Z%ﬁ

Let w, := % — ¥ where 7 is a point of minimum of ass. Notice that if Z C R? is a bounded set,

eT eT—1>
then for all € > 0 small enough, Z C w,, since w is connected, 0 € w, and 7 > 1. Associating to each
function ¢ € Hi(w) the function ¢ € Hi(we) defined by 9(2) := p(¢7% + €fjp) and using the change

of variables z := e~7Z — '~ ", (3.5.37) becomes

= div(D=(2)Vye”) +de(2)ul” = ptVu ae. s € v, (3.5.38)
wél) € Hé(ws)a
(1) ._ c2ry(1) e T
where ps’ := " \"’, while D, and d. are defined by
D.(2) := A(e™ "2+ 50), do(2):=ass(e™ 2+ 70)n%, Z€RY (3.5.39)
respectively. In view of (3.1.1), for all £ € R? and for a.e. Z € R? one has
CllEN? < (De(2)€l6) <mliEll, ¢ < de(2) <. (3.5.40)

Notice also that D. € Ms(¢,n,R?). Hence, up to a subsequence that we do not relabel, the sequence
{D.}.~¢ G-converges to some matrix Dy in any open and bounded subset of R? (see Theorem 2.5.23)
and the sequence {d.}.~¢ weakly-x converges in L>(R?) to some dy € L>°(R?). On the other hand,
since aqp and agg are continuous in a neighborhood of o, D. — A(%o) and d. — a33(fjo)72 uniformly
on each compact subset of R? as ¢ — 0%. Thus, by definition of G-limit, we conclude that Dy = A(%o)
and dy = a33(Jo)7 = aminm2. In particular, the whole sequences {D. }.~o and {d.}.~¢ converge.

Let S. represent the self-adjoint operator (— div(D.V) + dg) in L?(w.) with Dirichlet boundary

conditions. Then its spectrum is o(S.) = 2o T herefore, proving (3.5.36) is equivalent to proving

lim o(S;) D [do, +00). (3.5.41)

e—0t

Consider now the inverse operator, S=!, of S., i.e., the compact self-adjoint operator in L?(w.) that
to each f. € L?(w,.) associates the function S=!f. := 1., where 1. € H{(w.) is the solution of

- diV(stws) +d.p. = f.  a.e. in we,
{ws € H} (we). (3.5.42)

For the sake of simplicity we will not distinguish a function in H{ (w.) from its zero extension to the
whole R

Let us also introduce the self-adjoint operators in L?(R?), S := (— div(DgV) + do) and its inverse
operator S~! that to each f € L?(R?) associates the function S~1f := v, where ¢ € H'(R?) is the
solution of

{ —div(DoVe)) + dotp = f  a.e. in R?, (3.5.43)

Y € HY(R?).

Since Dy is a positive definite constant matrix and dy > 0, o(S) = [do, +00). Hence, if we prove that

lim o(S7') Do(S7), (3.5.44)

e—0+
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3.1

it follows that lim._+ 0(S:) D 0(S) = [do, +00), which is precisely (3.5.41). In order to show (3.5.44),
we start by proving that S-1 converges strongly to S~1 as ¢ — 0F; more precisely, if f € L?(R?),
then S- 1 fxw. — S71f in L?(R?) as e — 0F.

Let f € L?(R?), and define f. := fyxo. € L?(w:). Let ¥ := S-'f. (extended by zero outside w.)
and ¢ := S71f. Thanks to (3.5.40), we have, up to a subsequence that we do not relabel, 1. — ¢
weakly in H'(R?) as ¢ — 07, for some ¢ € H'(R?). Moreover, since 1. is the solution of (3.5.42), if
¥ € C°(R?) then we have, for all £ > 0 small enough, suppd C w. and

DV NV + doap9dz = fodz. (3.5.45)
R2 R2

Letting € — 0T we obtain

DoVVi + dopddz = | fodz. (3.5.46)
R2 R2

Since ¥ € C2°(R?) was arbitrary, we deduce that ¢ = 1 a.e. in R?. Thus, ¢, — 1 weakly in H!(R?)
as € — 0T and so, to establish the strong convergence in L?(R?) it suffices to prove that

lim/ |w5|2d2:/ 9|2 dz.
e—0t Jr2 R2

Let L := liminf,_, o+ fR2 |9-|? dz. Without loss of generality we may assume that the inferior limit
defining L is actually a limit, otherwise we would extract a subsequence. By the sequential lower
semicontinuity of the norm with respect to the weak topology of L?(R?), L > fRz || dz.

To prove the converse inequality, we start by proving that if {v.}es0 C H*(R?) and v € H'(R?) are
such that v, — v weakly in H1(R?) as e — 07, then

Fo(v) < liminf FL(ve), (3.5.47)

e—0t

where for each e > 0, F. : H}(R?) — [0, +0o0] is defined by

D.(2)Vu(2)Vu(2) + (de(2) — o)|u(2)2dz  if v € H(w.),

400 otherwise,

F.(v):=

for some ¢ € R such that inf. d. > ¢ > 0, and Fy : HY(R?) — [0, +00] is given by
Fo(v) := | DoVu(Z)Vu(2) + (do — ¢)|v(z)|> dz.3!
R2

In order to show (3.5.47) we may assume without loss of generality that the limit inferior on the
right hand-side of (3.5.47) is actually a limit and that this limit is finite. Then, by definition of F_,
ve € H (w.) for all € > 0.

Defining g := — div(DoVv) + (dg — ¢)v, we have that g € H~1(R?). Moreover, if 0. € H}(w.) is the
solution of —div(D.Vd.) + (d. — ¢)¥. a.e. in w,, then given an arbitrary ¢ € C2°(R?) the equality

/ D.V5.V0 + (d. — )09z = (9,9) g (o 13 (o) (3.5.48)

It can be shown that actually the sequence of functionals {F:}>0 I'-converges with respect to the weak topology of

H'(R?) as € — 07 to the functional Fy (see also Dal Maso [31, Thm. 13.5]).
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holds for all & > 0 small enough. In view of (3.5.40), we have, up to a subsequence that we do not
relabel, U, — © weakly in H'(R?) as e — 0T, for some © € H!(R?). Letting ¢ — 07 in (3.5.48), we
obtain for all ¥ € C°(R?),

Do?’[)?ﬁ + (do — C)1~)’l9 dz = <g, 79>H*1(R2),H1(R2)~ (3549)
R2

Consequently, ¥ is the solution of

—div(DoVd) + (dg — )0 =g a.e. in R?,
0 € HY(R?).

Since g = — div(DoVv) + (do — ¢)v, we conclude that © = v a.e. in R%. On the other hand, using the
fact that (3.5.48) holds for all ¥ € H}(w.) and (3.5.49) holds for all ¥ € H'(R?), and using the weak
convergence 0. — ¥ = v in H*(R?), we get

/ Daﬁﬁe?@s + (da — C)|'D€|2 dz = <g, ﬁE>H—1(wE),Hé(wE)
we (3.5.50)
— <g7U>H*1(R2),H1(R2) = / Do?’u?’u + (do — C>|’U‘2d5.
e—0t R2

Moreover, since 0 minimizes F(w) — 2(g, W) g-1(w,) Bl (w.)> W € H}(w.), we have that F.(v.) —
2<gaU€>H*1(w€),Hé(u}5) = FE(IN}E) — 2<gaﬁE>H*1(w5),Hé(w5)' ThiS, together with (3550) and the
convergences

<9,U5>H71(%),H(§(w5) s—>—01 (9, U>H*1(]R2),H1(]R2)7 <9,775>H71(w€),H3(w5) €j0>+ (g, U>H*1(]R2),H1(R2)7

yield
liminf F.(v.) > liminf F.(0.) = Fy(v),

e—0t e—0t

which establishes (3.5.47).

In view of (3.5.47), and since 1. — ¢ in H'(R?) as e — 07, we conclude that

liminf [ DV V. + (do — 0|2 dz > / DoV + (do — O)[[2 dz (3.5.51)
R2

e—=0t S,

for any 0 < ¢ < (. Furthermore, using in addition the strong convergence f. — f in L?(R?) as
e — 07, and the fact that (3.5.45) holds for all ¥ € H}(w.) and (3.5.46) holds for all ¥ € H'(R?), we
deduce that

DVUTv. + dfpfaz= [ fods — [ pods= [ DvuTe + aofaz

we we e—0

Consequently,
liminf [ DoV Vipe + (de = Ql¢pel*dz = lim, </ D NNV + dc|ye|? dz) —(L

e—0 we

(3.5.52)
_ / DoV + doly|? dz — CL,
R2

where we also used the definition of L. From (3.5.51) and (3.5.52) we deduce that L <[5, [¢]* dz.
Hence, L = [ [¢]?dz and S;'fe = ¢ — ¢ =S~ f in L*(R?) as e — 0.
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Finally, we prove (3.5.44). Assume by contradiction that there is v € o(S~!) which is not a cluster
point of o(S1). Then there exist ¢ > 0 and g > 0 such that for all v. € o(S-!) with 0 < & < &g one
has

lve =] > c.
Let f € L?(R?), and set f. := fx., € L*(w.). If 7. € o(S7 1) with 0 < & < &g, then

IS fe = v felle@e) = IS fe = vfellLzny = e — VI fellLz . = el fellzme)- (3.5.53)

Using the strong convergence of S-! established above together with the strong convergence f. — f
in L?(R?) as ¢ — 07", and letting e — 07 in (3.5.53), we get

IS™'f = vfllr2®e) = el fll L2 re)

which contradicts the fact that v € o(S™1) since f € L?(R?) was taken arbitrarily. Thus (3.5.44)
holds, and this finishes the proof of Theorem 3.1.7. O
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Chapter 4

Multiscale Convergence of Sequences

of Radon Measures

Under the motivation mentioned in the Introduction (see Subsection 1.2), in this chapter we are con-
cerned with the characterization of (n+1)-scale limit pairs (u, U) of sequences {(u: LN o, Duc o) }es0 C
M(Q;RY) x M(Q; R>*N) whenever {u.}.~o is a bounded sequence in BV (€;R?). This characteri-
zation, established in Ferreira and Fonseca [43], is useful in the study of the asymptotic behavior of
periodically oscillating functionals with linear growth, defined in the space BV of functions of bounded
variation and described by n € N microscales, undertaken in Chapter 5.

The notion of two-scale convergence was first introduced by Nguetseng [64] and further developed
by Allaire [1]. Tt was used to provide a mathematical rigorous justification of the formal asymptotic
expansions that used to be commonly adopted in the study of homogenization problems (see, for
example, Bensoussan, Lions and Papanicolaou [13], Jikov, Kozlov and Oleinik [53] and Sanchez-
Palencia [69]).

In Allaire and Briane [2] the authors extended that notion to the case of multiple separated scales of
periodic oscillations. Precisely,

Definition 4.0.1. Let n, N € N, let Q C RY be an open and bounded set, and let Q := [0,1]". Let
01,y 0n ¢ (0,00) — (0, 00) satisty for all i € {1,---,n} and for all j € {2,---,n},
lim 0;(¢) =0, lim o) (4.0.1)
e—07F e—0+ 0j—1(€)
A sequence {u.}.~o C L?(Q) is said to (n+1)-scale converge to a function ug € L*(Qx Q1 x - x Qy),
where each Q; is a copy of Q, if for every p € L*(;Cx(Q1 X -+ X Qy,)) we have

X xXr
li . d
et Que(m)g’(% o1(e)’ ’Qn(s)) *

- / u0($7y1a T 7y7l)<p(x7y17 e 7yn) dxdyl o dyn7
AXQ1 X XQn

. . . 1 -
in which case we write ugwuo.

Remark 4.0.2. In the context of multiscale composites, the functions 1, ..., 0, stand for the length
scales or scales of oscillation. The second condition in (4.0.1) is known as a separation of scales
hypothesis.
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Also, Allaire and Briane [2] established a compactness result concerning this notion and provided the
relationship between the (n + 1)-scale limit and the usual weak limit in L?(2) (see [2, Thms. 2.4 and
2.5]). Precisely,

Theorem 4.0.3. Let {u.}.~o be a bounded sequence in L*(S)). Then, there exist a (not relabeled)
(n+1)-sc
€

subsequence of {u.}.~o and a function ug € L*(2 x Q1 x - -+ x @Q,,) such that u. ug. Further-
more, u. — ug weakly in LQ(Q) as e — 0%, where tg(w) = leX-..XQ uo(Z, Y1, Yn) dy1 -+ - dyn,

and lim. o+ [luc||z2(0) = lluollL2(@x Qi x---x@n) = llUollz2()-

In general the (n + 1)-scale limit differs from the weak limit in L?(2), with the (n + 1)-scale limit
capturing more information on the oscillatory behavior of a bounded sequence in L?(2) than its weak
limit in L?(Q). The proof of Theorem 4.0.3 follows the arguments introduced in the case n = 1 treated
in Allaire [1] (see also Nguetseng [64]).

Moreover, in order to study the asymptotic behavior of the solutions of certain partial differential
equations with periodically oscillating coefficients in the space H(Q), the (n + 1)-scale limit of
gradients was fully characterized in Allaire and Briane [2, Thm. 1.2]. Precisely,

Theorem 4.0.4. Let {u.}.~o be a bounded sequence in H'(S2). Then there exist u € H*()) and n
functions u; € L*( x Q X - -+ X Qi_l;H#(Qi)), fori e {1, ---,n}, such that

ue LTy, (4.0.2)
and, up to a not relabeled subsequence,
Vue 20Ty + 3"V, g (4.0.3)

i=1
Furthermore, given any u € H'(Q) and u; € L*( x Q1 x --- x Qi—1; Hy(Q4)), i € {1,---,n}, there
exists a bounded sequence {u.}.~q for which (4.0.2) and (4.0.3) hold.

Remark 4.0.5. In the theorem above, the function u is the weak limit in H'(§)) of the sequence
{uc}es0. The terms Vy,u; in (4.0.3) may be interpreted as the gradient limits at each scale.

Remark 4.0.6. Definition 4.0.1 and Theorem 4.0.4 admit simple generalizations to the cases LP(£))
and WP (Q), respectively, for any p € (1, 00).

Theorem 4.0.4 extends Prop. 1.14 (i) in Allaire [1] to the case in which n > 2, but its proof requires
significant changes and is rather more difficult. By means of this result, Allaire and Briane [2]
completely characterize the asymptotic behavior as ¢ — 07 of solutions of the family of boundary
value problems
{—diV(AEVus) =f ae. inQ,
u: =0 on 012,
), and A is a N x N matrix satisfying appropriate

R

where f € L*(Q), A:(2) = Az, ;%5 o9
coercivity and boundedness hypotheses, and such that A(z,-) is @1 X - -+ X Q,-periodic (see Allaire
and Briane [2, Thm. 1.3]).

A similar analysis was undertaken in Allaire [1] in the case n = 1. Also in Allaire [1] (see [1, Thms. 3.1
and 3.3]), the author provides a simple and elegant proof for the homogenized functional of a sequence
{I.}c>0 of functionals of the form

we WyP(Q;RY) — I(u) := /
Q

f(g, Vu(x)) dx.
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Following this last approach, in Amar [5] the author extended the notion of two-scale convergence
to the case of bounded sequences of Radon measures with finite total variation, and characterized
the two-scale limit associated with a bounded sequence in BV (Q) (see Amar [5, Thm. 3.6]). Using
this characterization, the asymptotic behavior as ¢ — 07 of sequences of positively 1-homogeneous
and periodically oscillating functionals with linear growth, defined in the space BV of functions of
bounded variation, of the form

we BV(®) = L= [ £ gt @) dlul@)

is given in Amar [5, Thm 4.1].

The purpose of the present chapter is to present an extension of the notion of two-scale convergence
for sequences of Radon measures with finite total variation introduced in Amar [5] to the case of
multiple periodic length scales of oscillations, and the characterization of the (n + 1)-limit associated
with a bounded sequence in BV (; R?). The remaining part of this chapter is organized as follows.
In Section 4.1 we state our main results, whose proofs are presented in Section 4.2. This study was
elaborated in the joint work with Fonseca [43].

4.1. MAIN RESULTS.

The notations introduced in Subsection 2.1.6 and the analysis undertaken in Subsection 2.3.2 will play
an important role in the sequel.

Definition 4.1.1. Let m,n, N € N, let Q C RY be an open set and define Y := (0,1)N. Let o1, ..., 0n
be positive functions in (0,00) satisfying (4.0.1). We say that a sequence {jic}teso C M(Q;R™) of
Radon measures (n+ 1)-scale converges to a Radon measure jig € Myx (2 x Yy x --- xY,,; R™), where
eachY; is a copy of Y, if for all p € Cp(2; Cx(Y1 x -+ x Y,,; R™)) we have

X X
lim @(Z,—,"',—>'dﬂ51’ :/ P Y1, 5 Yn d,U Ty Y1, 5 Yn)s 4.1.1
0 o1(¢) on(e) (@) QXYix- XY, (@0 ) dusola b (4L1)

e—0*t

(n+1)-sc
[

in which case we write . 14o-

Remark 4.1.2. The (n + 1)-scale limit po may depend on the sequence {¢}. Indeed, let n = 1,
o1(e) =€ foralle > 0, let @ C RY be open and bounded, and let ¥ € C(Y'). Define pic := (=) LN q.
If o € Co(Q;Cx(Y)), then by the Riemann-Lebesgue’s Lemma

i - = 1l r z = _. (/N N
lim 990(177 5) dpe(z) = lim QQO(I, 8)19(5) dz /Qxygp(:c,y)ﬁ(y) dzdy =: (LYo @ IL,, )

e—0*t e—0*t

and

lim Qcp(gc, g) dpez ()

e—0t

X T
fizn v, 2 )05 )de= z,91)0(y2) dedy:d
[o(w 2)0(G)dr= [ i) dudynase

e—0t

/ w(rc,y)( 0(ya) dyz) dedy =: (0L o ® L)), @),
QxY Y2

where 9 := fy Y(y) dy. Hence usz'%ﬁNLQ ® VLY, while p.2 2'%551\19 ® Eév. This example shows

Yy
(n+i)—sc 1o and ME,L?-SLAO, with ¢’ < e, but ug # \o. What

that it may be the case that p.
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(n+1)-sc
E,

we can guarantee is that p. po- This is due to the dependence of the test functions on the

length scales.

The notion of (n+1)-scale convergence is justified in view of the following compactness result asserting
that every bounded sequence {fi}eso in M(2;R™) admits a (n + 1)-scale convergent subsequence.

Theorem 4.1.3. Let {pe}es0 C M(2;R™) be a bounded sequence. Then there exist a subsequence
{ter Yerso of {peteso and a measure pg € Myx( X Yy x -+ x Y,; R™) such that e (7L+;,)_sc 1o -

As in the cases studied in Allaire [1], Allaire and Briane [2], and Amar [5], the (n + 1)-scale limit
contains more information on the oscillations of a bounded sequence in M(€2;R™) than its weak-x
limit, in that the latter is the canonical projection of the (n + 1)-scale limit onto (.

Proposition 4.1.4. Let {ic}c>0 C M(;R™) and prg € Myx(Q x Yy x -+ x Y,,; R™) be such that
Jie ("+?-sc po. Then p. = fig weakly-« in M(Q;R™) as ¢ — 0T, where fig € M(Q;R™) is the
measure defined for all B € B() by

/_l,o(B) = ‘[L()(B XY XX Yn)
Moreover, ||fio]] () < [|uol[(Q x Y1 x -+ x Y,,) < liminf, o+ ||pe| ().

Remark 4.1.5. In view of Proposition 4.1.4, since every weakly-x convergent sequence in M (§2; R™)
is bounded, the same holds for any (n + 1)-scale convergent sequence in M(€2; R™).

Assume that {u.}.~o C BV(;RY) is a bounded sequence. By Theorem 4.1.3, there exist
subsequences of {UEENLQ}E>0 and {Du. }.>o that (n+1)-scale converge. The next theorem provides a
characterization of these (n+ 1)-scale limits as well as the relationship between them. We will assume
a stronger separation of scales hypothesis than the one in (4.0.1), precisely (cf. Allaire and Briane

2),

Definition 4.1.6. The scales o1, ..., 0, are said to be well-separated if there exists m € N such that
for alli € {2,---,n},
. m 1
lim ( 0i(e) ) = 0. (4.1.2)
e—0t \0i—1(e) ) 0ile)

The case in which g;(¢) := &' is a simple example of well-separated scales. Indeed, it suffices to take
m=mn-+1.

Theorem 4.1.7. Let {u.}.~o C BV(Q;R?) be a sequence such that u. = u weakly-x in BV (Q; R?)
as ¢ — 0%, for some u € BV (Q;R?). Assume that the length scales o1, ..., 0, satisfy (4.0.1) and
(4.1.2). Then

a) uLVq (n+i)'sc Tu, where 7, € Myu(Q x Y7 x -+ x Yy,;R?) is the measure defined by
mu=ula@ Ly,
ie., if p € Co(Q;Cp(Yr x -+ x Y3 RY)) then
<Tu790> :/ Qp(wvylv"'ayn) u(‘r)dxdyldyn
QXY X XYy,
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b) there exist a subsequence {Duc}erso of {Duc}eso and n measures p; € My (2 x Yy X -+ X
Yi—1; BVy(Y;; RY), i € {1, ,n}, such that

(n+1)-sc
Duer~—— Ay oot

where Ay op, € Myz(Q X Yp X -0 X Y,; RN is the measure

Y1, Yn

n—1
Miyomga, = D @ L2V + 3" M@ £l 00, 4, (4.1.3)
i=1
ie., if p € Co(Q;Cy (Y1 X -+ X Yy ; R*N)) then

<)‘u,ﬂly"'7#nvtp> :/ @(-% Y1,y yn) : dDu($>dy1 e dyn
QXY X+ XY,

n—1
+ Z (@, g, yn) s dXi(@, yr, o ys)dYigr - dyn
Q

i=1 XY X XYy

+/ @(x,yl,"',yn):dAn(I,yl,"',yn%
OXY) X XY,

and each \; € Mz (Q2x Yy x -+ x Y;; RN) is the measure associated with Dy, p,;, i € {1,---,n}.

The proof of Theorem 4.1.7 is not a simple generalization of the analogous result in the case n =1
treated in Amar [5]. When n > 2, and similarly to Allaire and Briane [2], some new arguments
are needed. We also show that Theorem 4.1.7 fully characterizes the (n + 1)-scale limit of bounded
sequences in BV (€;R9), in that:

Proposition 4.1.8. Let u € BV(;RY) and let p; € My (Q x Yy x -+ x Y;_1; BVx(Y;;RY)),
i € {1,---,n}. Then there exists a bounded sequence {u.}.~o C BV (S;R?) for which a) and b)
of Theorem 4.1.7 hold (with ¢’ replaced by ¢).

Remark 4.1.9. Proposition 4.1.8 together with Theorem 4.1.7 represent the BV version of Theo-
rem 4.0.4.

4.2. MuLTISCALE CONVERGENCE IN BV.

We start this section by proving Theorem 4.1.3 and Proposition 4.1.4, which are simple generalizations
of Amar [5, Thm 3.5] (see also Allaire [1]) and Amar [5, Lemmas 3.3 and 3.4], respectively. Here, the
letter C represents a generic positive constant, whose value may change from expression to expression.

PrROOF OF THEOREM 4.1.3. Let ¢ := sup..qllpl[() < 4o0o. For all ¢ > 0 and ¢ €
Co(2;Cx(Y7 x --- x Y;,; R™)) we have that

fele ) 4

Hence F. : ¢ € Co(Q;Cu(Y1 X -+ x Vs R™)) = Fo(p) = [po(z, 25, -+, =2=) - duc(z) is a

oi(e)’ 7 anm(s)
linear and continuous functional in Cp(€2; Cx (Y1 X - -+ x Y,,; R™)). By Riesz Representation Theorem

< cflélloo- (4.2.1)
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(see Theorem 2.1.46), there exists a measure \. € M,»(Q x Y7 x --- x Y,,;R™) such that for all
€ Co(;Cu(Yy x - x Y, R™)),

T T
Fe(p) = /990(% Q1_(8)7 Tt Qn(E)) dpe(z) = </\sv90>My#(QxY1x~~-xm;Rm),Co(Q;C#(Y1X~~~xYn;Rm))

:/ @(xaylf",yn)'dAE(xay17"'7yn)‘
QOxY)x--XY,
Using (4.2.1) we have sup,~¢ [|[A||[(2 x Y7 x--- x Y, ) ¢, and so there exist a subsequence {\./}o/~0

of {Ac¢}e>0 and a measure \g € My#(Q X Yy x - xY,;R™) such that A XN\ weakly-* in
Myu(Qx Yy x -+ x Y,;R™) as e’ — 07, that is,

hHOI <)‘€'790>M,Co = <)‘0790>M’Co7

e’

or, equivalently,

T T
lim 90<957 [ >'d/1/5/$ :/ L, Y1y Yn d)\O TyY1,yYUn
/=0t Jq 01(¢) on(g’) (@) QAXY1 X XYy, ( ) ( )
for all ¢ € Co(; C4 (Y1 x --- x Yy,;R™)). This proves that s, /M)\ 0

PROOF OF PROPOSITION 4.1.4. Let ¢ € Cy(€2;R™) be given. By (4.1.1) we have

Jim [o@-dn@ = [ o) dpolne ) = [ o) diote).

Thus pe = fig weakly-x in M(Q;R™) as e — 0.
Furthermore,

0] I (2 X Y1 x -+ X Y)

Sup{/ o(@, Y1, Yn) - dpo(@,y1 -+, Yn):
QXY x Y,

we%@@ﬂanxnmmxwm<@

we%mwﬂanxmmmxwm<§

< liminf | su / (m,i,~-~,i>-d5$:

e—07F [ p{ Qgﬁ 01(¢) on(€) pe (@)
@e%mmwmexan»Mu<§}

<1m%g[wp{/¢ dpe( ¢ecamRmxwwm<1H

= timinf |z |(©)

where we have used the fact that if ¢ € Co(;Cx(Y1 X -+ x Y,,;R™)), then for each ¢ > 0, the

function ¢.(z) := ¢(, CIN an(s)), x € €, belongs to Cy(2; R™) and
x x
oo = Sup €, [ < sup €, sy Yn )| — el
ol =sup (2. 05 ) € s el =l

y; €RN ic{1,.--,n}
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On the other hand,

I0l(@) = sup { [ 660) - dpo(e): o € Colu &™), ol <1}
s [ 0a) oz o105 6 € Col@R™), ol < 1]
QXY X--XY,
gsup{/ Sp(xvyla"'ayn)'d/U'O(‘rayl"'vyn):
QXY X+ XY,
¢ € Co@CHY X x V™), [l < 1]
= [luoll(2 x Y1 x -+ x Yp),
which concludes the proof of Proposition 4.1.4. O

In order to prove Theorem 4.1.7 we we need an auxiliary lemma, which is an extension of Amar [5,
Thm. 2.5] (see also Allaire and Briane [2, Lemma 3.7]). We first introduce some notation.

Let p € C°(RY) be the function defined by
1

oo feeP = <1,
p() {0, 2] > 1,

where ¢ > 0 is such that [,y p(2)dz = 1. For each 0 <& < 1 let

pe(x) == ELNp (g) (4.2.2)

Then p. € C°(RY) and

/N pe(x)de =1, suppp. C B(0,e), p- =0, p(—x)=p(x), (4.2.3)
R

for all z € RV,

For 0 < & < 1/2, let 7. denote the extension to R by (-3, 5)V-periodicity of the function pe_1 1)~
Then 7. € C3°(Y) is such that

/Q @) dy =1, 730, ne(~2) = ne(a), (4.2.4)

for any unit cube Q@ C RY and x € RY.

Lemma 4.2.1. Let A € My»(QxY; X -+ X Yp; R™) be given. The following conditions are equivalent:

i) for alli € {1,---,n} there exists a measure p; € M, (2 x Y7 x --- x Y;_1; BV4(Y;)) such that
)\1 ifn = 1,

Yit1sYn

n—1
AEY SN @ LN, A ifn =2,
=1

where each \; € My (2 x Y1 x --- x Y;;RY) is the measure associated with D, p,;
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ii) for all ¢ € CZP(Q;CF (Y1 x - x Yy;RY)) such that divy, ¢ = 0 and, if n > 2, for all
ke{lv"'an_l}axeg7yienaie{la"'ﬂz};

/ divyk @(‘raylv"'ayn) dyk+1 dyn - 0,
Yk+1>< XY,

we have
/ @(x7y17"'7yn)'dA(‘rayh'";yn):O'
QXY x Y,

ProOF. We will give the proof only for n = 2, the argument being easily adapted for any n € N.

Step 1. Assume first that i) holds, and let ¢ € C2°(€2; O (Y1 x Ya; R™M)) be such that div,, ¢ = 0 and

divyl QD(Z', Y1, 92) dy2 - 0
Y2

Using the decomposition of \ as in i), we have

/ ¢ - dA(z,y1,92) :/ @ - dAi(z,y1)dys +/ ¢ - dXa(z,y1,Y2)- (4.2.5)
QAxY; XY QxY; XYs QAxY; XY

We will show that both integrals on the right-hand side of (4.2.5) are equal to zero. Let {¢;};en
be a sequence of the form ¢;(z,y1,y2) = Y120, ,(j)( ) ,(Cj)(yl)ﬂ,gj)(yg), where m; € N and for
all ke {1,--,my}, o) € 02(Q), ¢ € Cx(W1), ) € OF(Yo;RY), converging to ¢ in
C5° (0 O3 (Y X Yo RY)). Then,

/ divy, @jdya = > (¢§j’w,§” : / o dyQ) N / divy, pdys =0 in Co(Q; Cu(Y1)), (4.2.6)
Yo k=1 Ya Ya

divy, ;= 3 6P dive?) — divy, o =0 in Co(Q: Cy(Ys x V2)). (4.2.7)
k=1

as j — +oo. The convergence p; — ¢ in Cy(€2; Cx (Y1 x Y2; RY)) as j — +o00 and Lemma 2.3.20 (see
also Remark 2.3.21) yield

/ o(x,y1,y2) - dAi(z,y1)dy2 = lim iz, y1,y2) - dAi(z, y1)dy2
QAxY; XY J—too QXY XYs

:jihfoo{z/myl ) () / o ya)dyg}
- jEToo {—;/Yl (/d) ) dpy ( ))(le)vzﬂ;&j)(yﬁdm : /Y2 H,Ej)(yg)dyg}
_jg?m{li/yl (/Qﬁm z) dpy (2 ))( 1) (])(yl)dyl}

where 1/319) = V%(g v, H(J dys. By (4.2.6), >°,7, k w — 0in Cp(R;Cx(Y1)) as j — +oo, and
so, using (4.2.8) and Definition 2.3.18, we obtain

(4.2.8)

/ oz, y1,y2) - A (2, y1)dys = / 0dp, (z)dy; = 0. (4.2.9)
QXY xYs QxYy
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Similarly, in view of (2.3.19), (2.3.22) and (4.2.7), we get

/ @(x7y17y2) . d)\Q(maylayQ) = hm Soj(x7y17y2> . d)\2($>ylay2)
QXY XYs J=+%0 Jaxyi xYs

= lim {Z /MXYZ o @) )0 () - dxz(x,yl,m)}

— 400
J k=1

‘jiiffoo{ Z /Y ( / L@ é”(ynduz(x,yl))(m)dive;ﬂ(yg)dyz}

= / 0dpy (2, y1)dy2 = 0.
QXYl XY2

(4.2.10)

From (4.2.5), (4.2.9) and (4.2.10), we conclude that

/ oz, y1,92) - dA(@, y1,92) = 0,
QXY XYs

which proves ii).

Step 2. Conversely, assume by contradiction that ii) holds but A ¢ £, where & is the space of all
measures 7 € My (Q x Y7 x Ya; RY) for which there exist two measures p, € M, (Q; BV (Y1)) and
o € M, (Q x Y7; BV4(Y3)) such that

T_)\1®LN+>\2a

where A1 € Myx(Q x Y1;RY) and Ay € Myx(Q x Y7 x Yo;RY) are the measures associated with
Dy, pqy and Dy, o, respectively.

Note that € is a vectorial subspace of M, (2 x Y7 x Yo; RY). We claim that it is weakly-x closed.

Substep 2a. Assume that the claim holds. Recalling that in a Banach space, a convex set is weakly
closed if, and only if, it is closed, then by a corollary to the Hahn—Banach Theorem (see, for example,
[22, Cor. 1.8]), there exists a function ¢ € Co(Q; Cx (Y7 x Yo; RY)) such that for all 7 € &,

(T, 90>My#(9><Y1XYZ;RN),CO(Q;C#(YI><Y2;]RN)) = / o(x,y1,92) - d7 (2,91, 92) = 0,
QxY; XYs
(4.2.11)
(A ) My (XY X YasRN),Clo (Q:Cs (Y1 X YoiRN ) = / o(®,y1,92) - AN(2, Y1, y2) # 0.
QXY XY

Let f € CX(Q), g € CF(Y1) and h € C3(Y2) be arbitrary. Define p; : B(2) — BVg(Y1),
Mo s B(2 x Y1) — BVy(Ys) by

_ (/Bf(a:)dsr:>g, B e B(Q), (/f () d:cdy1>h EeB@xY)

Clearly, py € M(; BVk(Y7)) and py € M(Q x Y1; BV4(Ys)). Moreover, for all B € B(Q),
E € B(Q x Y1),

Dy, (1,(B) ( | @ dx) VoLyi, Dylua(E ( | @t dxdyl) VeV,
Hence p; € M, (€; BV4(Y1)) and py € M, (Q x Y1; BV (Y2)), with
M= LY @ VoL, and = (forly® £Ny,) @ VhLNy,,
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respectively. Thus \; ® Eé\g, A2 € &€, and so by the first condition in (4.2.11), and denoting by (-, -)
the duality pairing in the sense of distributions, we conclude that

0 =/ o(w,y1,y2) - dA1 (2, y1)dy2 =/ (@, y1,y2) - (f(#)Vg(y1)) dzdyidyz
QxY; XY QXY xYs

= /Qm (/1/2 w(%yl,yz)dyz) (f(x)Vg(y1)) dzdy: = — </Y2 divy, wdyz7fg>,

and

0= / pla,y1,92) - dda (2, y1,92) = / p(z,y1,92) - (f(2)g(y1) Vh(y2)) dzdy: dy,
QXY xYs QXY XY2
= — (divy, ¢, fgh) .
The arbitrariness of f € C2°(2), g € CF (Y1) and h € CF(Yz) yields

/ divy, pdy2 =0 and divy, ¢ =0, (4.2.12)
Y2

in the sense of distributions.

Substep 2b. We show that (4.2.12) and ii) contradict the second condition in (4.2.11). We will derive
such contradiction by proving that there exists a sequence {¢;}jen C C2°(Q; CZ (Y1 X Ya; RY)) such
that divy, ¢; =0, [}, divy, ¢;dy2 = 0 and ¢; — ¢ in Co(9; Cy(Y1 X Y2;RY)) as j — +oc.

Let 0 < e < 1/2, and let p. € C.(RY) and 1. € Cx(Y') be the functions introduced above (see (4.2.2),
(4.2.3) and (4.2.4)). For x € Q, y1,y2 € RY, define

e(@,y1,y2) = / (@, 41, y2)me (Y1 — y1)n=(y2 — y5) dyydys.
Y1 ><Y2

Then ¢. € Co( CF (Y1 x Yo;RY)) and ¢ — ¢ in Cp(Q; Cx (Y1 x Yo; RY)) as € — 0F. Moreover, by
(4.2.12) divy, . = 0 in Q x RY x RY and sz divy, p-dys = 0 in Q x RN, In fact, let f € C°(Q).
We have that

Ldiva 906($7y1,y2)f(;(;)dx:/

(/ [o(z, y1, ya)ne(y1 — y1)] - Vo= (y2 — y5) dyidyé>f(x) dz
Q\JYixYs

= —/ [o(z, 1. y2)me (1 — y1)] - Vigne(y2 — y3) f () dedyydys
QxY; XY
= (divy ¢, me(y1 — Ine(y2 — ) f) = 0,

where we used (4.2.12). The continuity of div,, . and the arbitrariness of f € C°(Q) yield
divy, p. =0in Q x RN x RN for all 0 < e < 1/2.

Similarly, using (4.2.4), (4.2.12) and Fubini’s Theorem, we deduce that
L (L v onteanm) die ) 560 a
Q Yo
= —/ </ (@, 91,Y5) - Vyrne(y1 — y1)n=(y2 — yé)dyidy’z)f(x) dady,
QXYQ Yl XY2
= */ P(x,91,Y3) - Ve (yr — yi)(/ ne(y2 — yé)dyz)f(ﬂf) dady dys,
QXYl ><Y2 Y2
= —/ o(x,y1,95) - Vyrne(y1 — 1) f(z) dedyydyy = </ div,: ¢ dys, ne(y1 — -)f> =0,
QAxY; XY Yo
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from which we conclude that for all 0 < e < 1/2, [y, divy, @cdys =0 in Q x RN,
Extend ¢, to RN x RN x RN by zero outside Q x RY x RY, and for each j € N let

. 2 e
Kji={o e Q: ol <j, dista RN\Q) > 5] 0 mn,90) = el ), ),

&5 (2, 1,12) 1= /N P, y2)pi(x —a')da',
R

for all (z,y1,y2) € RY x RY x RY, where p1 is the function given by (4.2.2) with ¢ replaced by 1/3.
J _—
Notice that K; C Kj41, and U;enK; = 2. Moreover, since supp p1 C B(0,1/5) we have
J

1
suppgégs) C {(x,yl,yg) e RY xRNV xRV : dist(z, K;) < 5}

C {x € Q: dist(x,09) > %} x RN x RY.

Hence,

J

P9 € C(Q0F (V1 x Yo RY)),  div,, 7 =0, / div,, 3\ dys = 0.
Yo
Furthermore, arguing as in [48, Thm 2.78], we have that 95;6) — . in Cp(Cx(Yy x Yo; RY))
as j — +oo. Finally, using a diagonalization argument we can find a subsequence j. < j such
that ¢. == @\” € CX(UCF (Y1 x Ya;RN)), divy, ¢ = 0, [y, divy, -dys = 0 and @. — ¢ in
Co(Q; Cx (Y1 X Yo; RYN)) as e — 0F. Using ii),

0= / Ge(w,y1,92) AN (T, y1,92) — o(x,y1,y2) AN (@, y1,72) as € — 0T,
OxXY; XYs QxY1xYs

which contradicts the second condition in (4.2.11).
It remains to prove the claim, i.e., £ is weakly-x closed.

Substep 2c. We start by proving that the set £; of all measures 7 € M4 (2 x Y1; RY) for which there
exists a measure p; € M, (€Q; BV4(Y1)) such that 7 is the measure associated with Dy, p, (i.e., for
all Be B(Q), E € B(Y1), 7(B x E)=D,,(p,(B))(E)) is weakly-+ closed.

Since the weak-x topology is metrizable on every closed ball of M, (Q2xY7; RY), by the Krein—Smulian
Theorem to prove that &£ is weakly-x closed it suffices to show that &; is sequentially weakly-x closed.
Let {7;}jen C & and 7 € Myx(Q x Y1;RY) be such that 7; = 7 weakly-x in M,»(Q x Y1;RY) as
j — 400, that is, for all ¢ € Co(2; Cy(Y1;RY)) we have

i (@, 1) dr(z,p1) = / (@, 1) dr (e, 11).
=+ Jaxy, QxY;

We want to prove that 7 € & . Let {ugl)}jeN C M, (Q; BV4(Y1)) be such that 7; is the measure
associated with D,, u§-1) for each j € N.

Fix j € N, and let 'Y : B(Q) — BV4(Y1) be defined by

g

i (B) = i (B) - /Y p(B)dy:, B e B(9).
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It can be seen that each ;15-1) satisfies conditions i) and ii) of Definition 2.3.13. In fact, since
(1) € M, (Q; BV4(Y1)), we deduce that

and, proceeding as in the proof of (2.3.2), given any sequence {B;};en C B(£2) of mutually disjoint
Borel sets,

o (0) - () ()= Sota  S

i= Y121

=5 ()~ [ By an) = ,zgn
—1 Y1

7

Moreover, for all B € B(2), D,, (ugl)(B)) D,, (u§ )(B)) and
125 1122) = sup{z |57 (B)llsvy: {Bitien € B(Q) is a partition of Q}

< 2sup { Z ||uj Bi)llBv,(v1): {Bi}tien C B(f) is a partition of Q}
)
= 2u(9) < o0,

Thus uJ b e M, (Q; BV4(Y1)), being 7; the measure associated with Dylﬁ;l). Furthermore,

||HJ (R LY (v1)) = SUP { Z ||H HLl* ¢ {Bitien C B(Q) is a partition of Q}

< Csup { Z 1Dy, (@Y (B) (Y1) {Bi}ien € B(Q) is a partition of Q}

oo
=C sup E sup E |D,,1 (Ek)}
{B; }IeNCB(Q) 1 (Ek}kENCB(Yl)
partition of Q partition of Y|
oo
=C sup E sup E |7;(B; x Ej)|
(Bi}ienCB@) T—{ {Ep}rencBO) ¢
partition of Q partition of Y7
o0
<C  sup Y sup E (75 [1(Bi x Ex) < Cll7;[[(2 x Y1),
{B; }LENCB<Q) ) {Ek}kenCB(Y1) h—1
partition of partition of Yy

(4.2.13)
where 1* is the Sobolev conjugate of N, and where we have used a Poincaré inequality in BV (see
Theorem 2.3.10) taking into account that for each B € B(Q), i1 ( ) is a function in BV (Y1) with zero
mean value.

Since sup; ey [|75][(2 x Y1) < oo, and as M(Q;L; (V1)) ~ (CO(Q;LQ(Yl))), (see, for example, [38,
p.182]), from (4.2.13) we deduce the existence of a (not relabeled) subsequence of {ﬂ§1)}jeN and of a
measure 1 € M(Q; L%Z (Y1)) such that

ﬁg-l) X i weakly-+ in M(Q;L;Z (Y1)) as j — +o0.

In particular, for all ¢ € Cy(Q2; C4(Y1)) we have

lim (o) dis! (2)dy, = / e, y1) di(a)dys, (4.2.14)
J=+oe Jaxy, OxY;
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where the integrals are to be understood in the sense of Subsection 2.3.2.

We want to prove that fi € M, (Q; BV4(Y1)) and that 7 is the measure associated with Dy, fi,

thus proving that 7 € £. We start by showing that i € M, (Q; BVx(Y1)). Let ¢ € Cp(2) and
(1

P € C’#(Yl;]RN ) be given. Taking into account that 7; is the measure associated with Dy, fi;

Lemma 2.3.20 and the weak-+ convergence 7; Xrin My (Q x Y1;RY) as j — +oo, we have

lim $(x) divep(yr) dp ()dyr = lim ( / o(x) dﬂS»l)(x))(yl) div (1) dys
Y1 Q

=+ Jaxy, j—+oo

= lm 6(2) (1) - dr (2, 41) = — / o(2) () - dr(z ).

j=+o Joxy, axy;

(4.2.15)

From (4.2.14) and (4.2.15), we get

[ ([ewa)omanvwman=- [  swvm arm. @210

for all ¢ € Cp(2) and ¢ € C#(Yl;RN).
We claim that for all B € B(Q) and ¢ € C4(Y1;R"Y), we have

/Y ) o) div o) o = = [ ) -daon). (4.2.17)

where 75(-) := 7(B X -), thus showing that f1(B) € BV (Y1) with Dy, (i(B)) = 75.

Indeed, proceeding as in Lemma 2.3.17, it can be proved that for all bounded, Borel functions

¢ : Q — R, we have
/Y / o(x) dji(x)

Fix 6 > 0. Since ||| € M(Q;R) and ||7|| € My%(22 x Y1;R) are positive, finite Radon measures, we
may find an open set As D B and a closed set Cs C B such that

dy < / |6()] dall (). (4.2.18)

122][(As\Cs) <0, [IT[I((As\Cs) x Y1) < 6. (4.2.19)

By Urysohn’s Lemma, we may also find a function ¢5 € Cp(€;[0,1]) such that ¢s = 0 in 2\ As and
¢s =1 in Cs. Then, in view of (4.2.18),

/Y1 </Q¢5(x) dﬂ(ﬂC))(yl)divw(yl)dyl - /Y1 f(B)(y1) div e (y1) diys

(4.2.20)
<C||V1/J\|oo/ /Q(%(w) — xp(2))di(z)| dyr < 2C[|Ve oo |l (A5\Cs).-
From (4.2.19) and (4.2.20), we get
i ([ osto) ) ) divoton) dn = [ () ) div () (1.221)
Similarly,
Jim G5 (@) (y1) -dr(z,y1) = [ Y1) - d7(y1)- (4.2.22)
- QxY; Y1
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Considering (4.2.16) with ¢ replaced by ¢s, passing to the limit as § — 0 taking into account (4.2.21)
and (4.2.22), we deduce (4.2.17). In particular, for all B € B(Q), FE € B(Y1),

Dy, (i(B))(E) = 75(E) = 7(B x E). (4.2.23)

To conclude that fi € M, (92; BV4(Y1)) it remains to prove that fi has finite total variation. As in
(4.2.13), by (4.2.23) we get

sup { Z | Dy, (f(B;))||(Y1): {Bi}ien C B(Q) is a partition of Q} < |17 x Y7).
Consequently,
l2]|(£2) = sup { Z (B \BVQ‘#(Y1 {Bi}ien C B(Q) is a partition of Q}

<6sup{2 (B 51 () + 1D (B [(¥2)): {Bi}ien € B(S) s a partition om}

< (supli 0 x ¥i) 4 7@ x Y1) ) <.,
JE

where we have also used (4.2.13). Thus, it € M, (Q; BV4(Y1)) and 7 is the measure associated with
Dy, 1, which shows that 7 € £, and this concludes the proof that &£; is a weakly-x closed subspace of
My#(ﬂ X Yl;RN).

Substep 2d. Similarly to Substep 2c¢, one can show that the space & of all measures 7 €
Myx (2 x Yy x Yo; RY) for which there exists a measure py € M, (Q x Y;; BV (Y2)) such that 7 is the
measure associated with Dy, p, (i.e., for all B € B(Q x Y1), E € B(Y2), 7(B x E) = Dy, (o (B))(E))

is weakly-x closed.

Substep 2e. We are now in position to prove that & is a weakly-x closed vectorial subspace of
Myx(Q x Y1 x Ya;RY). As before, it suffices to show that & is sequentially weakly-x closed. Let
{7;}jen C & be a sequence such that 7; = 7 weakly-x in M,x(Q x V3 x Yo;RY) as j — +oo. We
want to prove that 7 € €.

For each j € N write 7; = 7'(1 ®LY -‘rT( ) where ’7' ) e My#(Q X Yl,RN) and T ) e My (2 x Y7 x
Y2; RY) are the measures associated with D,, /,Lj ) and D ya b ) for some u ) e M, (Q; BV4(Y1)) and
2 e M, (Q x Y7; BV4(Y3)), respectively.

Let ¥ € Cp(Q;Cx(Y1;RY)) be such that [[J]|oc < 1. Then ¥ can be seen as an element of
Co(Q; Cx (Y1 x Yo; RY)), still with norm less than or equal to 1. Moreover,

(T55 0) My 4 (X Vi X YaiRN),Co (04 (Y1 X YaiRN)) =/ W, y1) drj(@, y1,y2)
QxXY1xXYs
:/ 19(937y1)d7j(1)($7y1)dy2+/ 19($ay1)d7';2)(337y1,y2)
QXY xYs QXY xYo

:/Q N 19(%1/1)017;1)(%%) = <T;1)719>M1,#(Q><Y1;RN),CO(Q;C#(YI;RN))7
XY
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since [y, vy, V(@ 31) d717 (2,51, 2) = 0 by (2.3.21) (with i = 2 and ¢ = 1). This implies that

[IT5[1(€2 < Y1 x ¥3)

= SUP { (T5, OY M, 4 (0x Vi X Vo RN ),Co (0 (i xVa )y : @ € Co(; C (Y1 x Yo RY)), [[0]lo < 1}

Hence {T}l) }jen is a bounded sequence in M, (2xY7; RY), and so there exist a subsequence {T](kl)}keN
of {T;l)}jeN and a measure 71 € M,4(2 x Y1; RY) such that T;kl) 2oy weakly-x in M4 (Q x Y13 RY)
as k — +o0. Since T;kl) € & forall k € N, and & is a weakly-* closed subspace of M4 (Q x Y1;RY)
(see Substep 2c), we conclude that 7 € & . Let p; € M, (Q; BV4(Y1)) be such that 7y is the measure
associated with D, .

Next, write T;j) =T}, 77](:) ®Eé\£, so that ij) S ®£]y\; =: 79 weakly-x in M4 (2 x Y] x Yo; RY)
as k — +o0o. Since T;If) € & for all k € N, by Substep 2¢ we conclude that 75 € £&. Thus we can find

o € M, (Q x Y1; BV4(Ys)) such that 7 is the measure associated with D,, pto. Finally,
T=7‘1®£é\g +1 €€,
and this concludes the proof of the claim. O

PROOF OF THEOREM 4.1.7. a) We claim that for all ¢ € Co(€%; C4(Y1 x -+ X Yy,;R?)) we have

xT xT

lim [ olx,—, -, —— ] u xdz:/ plx,yr, -, ~u(z) dxedyy - - - dyy,.
et < 1(8) n(E)) E( ) Vi Y ( Y1 yn) ( ) Y1 Yn

If p € C(Q;Cx(Yy X -+ x Yy,; RY)), then by Riemann—Lebesgue’s Lemma

*

(p(.? S )4/ (-, yn) dyr - dyn 4.2.25
0@ w@) T I, ) (4:2.25)
weakly-x in L°

2 (Q;RY) as e — 0T, from which (4.2.24) follows since by hypothesis u. — u (strongly)
in L*(€;RY) as e — 0T, and since if ¢ € Cp(Q2; Cy (Y7 x -+ x Yy,;RY)) then (4.2.25) holds weakly-x
in L>=(Q;RY).

b) By reasoning component by component, we may assume without loss of generality that d = 1.
Since { Du. }o~0 is a bounded sequence in M(£2; RY), by Theorem 4.1.3, and up to a subsequence (not
relabeled),

Dy mt0mses (4.2.26)
for some f19 € My (2 x Y7 x -+ x Y,; RY).
We claim that if p € C°(Q;CF (Y1 x -+ x Y,; RY)) is such that div,, ¢ = 0 and, if n > 2, for all
ke {1,"',71_1},1'69, yle}/lvle{l7an}7
/ dlvyk gD(iL’, Y1, ayn) dyk—i-l e dyn - 07 (4227)
Yeqr1 X XYy
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then we have

/ So(xayla"Wyn)'d/JO(x,ylv"’vyn):/ Lp(xvylv,yn)dDu(x)dyldyn
QXY X--XY, QAXY]X--XY,

(4.2.28)
If the claim holds, then by Lemma 4.2.1 there exist n measures p; € M, (Qx Yy x---xY;_1; BV4(Y;)),
i €{1,---,n}, such that

n—1
—i)N
o~ Dujg @ Ly =D N Ly + A,
=1

where each \; € Myx(Qx Y7 x -+ x Y;; RY) is the measure associated with Dy, ;. This will establish
statement b).

Let us prove (4.2.28). Let ¢ € C2°(€; 0 (Yy x -+ % Y,; RY)) be such that div,, ¢ = 0. Using the
fact that u. € BV () we obtain

— 7/Q(divz ) (m ng) e an(g ) ue(z) dz (4.2.20)
n—1
- ]; Q%(g)/ﬂ(di"yk ©) <$a de EEEE g%@)) ue () dz.

By a) and Fubini’s Theorem, we deduce that

x T
lim div,, Ty ——, ue(x) dx
e—0+ Q( ?) < 01(e) Qn(é)) (@)
= / (dive ) (z,y1, -+ yn)u(z) dedy - - - dy, (4.2.30)
QAXY1 X--XY,

= —/ o(x, Y1, -, yn) - dDu(z)dyr - - - dyy.
QAXY; X+ XY,

We claim that, if in addition ¢ is such that for n > 2 and for all k € {1,---,n — 1},

/ dlvyk @("I"?yl)"'yyn> dyk+1 dyn :O7
Yip1 X XY,

then for all k € {1,---,n — 1},

lim 1(8)/Q(divyk ©) (x Lol )us(x) da = 0. (4.2.31)

e—0+ Ok 01(e) on(€)

Assume that (4.2.31) holds. Then passing (4.2.29) to the limit as € — 07, from (4.2.26), (4.2.30) and
(4.2.31) we get (4.2.28), which concludes the proof of Theorem 4.1.7.

It remains to establish (4.2.31). The main ideas to prove (4.2.31) are those of Allaire and Briane
[2, Thm. 3.3, Cor. 3.4], which we will include here for the sake of completeness. Let n > 2, fix
kEe{l,---,n—1} and define ¥y, := div,, . By (4.2.27), we can write

k
19]6('1:7y17"'7yn): Z 195 )(xvyla"'vyi)7
i=k+1
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where the functions 195’” are given by the inductive formulae

o) = g, / O dy,
Y,

n

ﬁgk)::/ ﬁkdyi+1~-~dyn—/ Ypdy;---dy, ifie{k+1,---,n—1}
Yig1 X XYy Yix--xYy
By construction, for each i € {k+1,---,n} one has

I® € 0; = {ﬂ € CR(QCF (Vi % - x V7)) : / Iy, 1) dys o}.
Y;

Moreover, for n > 2 and k € {1,---,n— 1},

=Y S e e ) @

i=k+1
Hence, using the boundedness of {uc}e~¢ in BV (Q) and (4.0.1), to prove (4.2.31) it suffices to show
that for each i € {k+1,---,n} there exists a constant C; = C(ﬂgk)), independent of ¢, such that

(e s

Fixi € {k+1,---,n}. To simplify the notation, in the remaining part of the proof we will drop the
dependence on 7 and k of the function 19£k), so that 19§k) =9 € O,

< CilluellByv () (4.2.32)

As shown in Allaire and Briane [2, Lemma 3.6, there exists a linear operator S : 9 € O; — S € ON
such that div,, (SVY) = 9 and ||SY||ec < C||Y] o0, for some constant C. Then we can write

9116) v (x 91326) C Q;(CE)>
B div<(&9) <x 91—(5)£>) - (%) 91%6) Te9) <x 913(;5)"”’ Qife)) ’

where T is the linear operator given by

i—1

To0) = g;_1(e) diva (S0) + ) Q@ES) div,, (S9).
j=1 =7

Note that 1.9 € O;. Indeed, T.¥ € O; inherits the same regularity of Sv, and
/ div,(S9) dy; = divw/ SYdy; =0, / div,, (SY) dy; = div,, / Svdy; =0,
Y; Y Y; Y;

for all j € {1,---,i— 1}, and so [, T.9dy; = 0.

Let us now analyze the right-hand side of (4.2.33). On the one hand we have that

/Qdiv<(519)<x,gli(6),-~-,$>>ug(x)dx = ‘ —/9(519)<x,gli8),-..,Q;(”e))dpus(x)
< 1S9 oo | Due[[(2) < Cl[9]|oo [ Due [|(£2).
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On the other hand, the function Qi el 9) (- ) is of the same type as the function

a@ T wE

1 . .
=G am o we)
Applying (4.2.33) to T.¥ instead of ), and reiterating this process m times, with m as in (4.1.2), we

Qi )19<: Qlf )’“-7 @ig(g )> '
=2 (Qz 1())> div<(S(Ts)jﬂ> <x7 le(f‘?)’”" Qi?&?))) (4234

J=0

+(_1)m< 0:(e) )m 1 ((Tg)mﬁ)(x, e )

Qifl(E) Qi(E)

get

Reasoning as above,

[ (2 (0o i

(4.2.35)
0i(e) Y j j
¢ 21 (0) (T2 Iloo [ Duc [|(2) < CII(T2) Voo | Duc || (£2)
for all j € {0,---,m — 1}, while
m [ 0i(€) )m 1 m ( x x )
-1 )"z, ——, -, —— | us(z)dx
Lo ((5%) @@ (e am e atg) =@ o
0i(e) )m 1 ’
< T)" | solluell i) < CI(T2)™ | sollue |l Lriq,
(255) g1 dlalelzs <N ol oo
where we used (4.0.1) and (4.1.2).
Finally using the definition of the operator T, we deduce that for all j € {0,---,m},
sup (T2) 00 < (HSﬁHCJ'(Q;C;(Yl><~-~><Yi;]RN)) + Hﬁ”cj(g;c;(ylX...Xyi))), (4.2.37)
so that (4.2.32) follows from (4.2.34)—(4.2.37). O

The proof of the converse of Theorem 4.1.7, that is, of Proposition 4.1.8, is hinged on a version for
BV (Y; R%)-valued measures of the classical Meyers—Serrin’s (density) Theorem. We will need some
auxiliary results.

For 0 < ¢ < 1/2, let p. € C®(RY) and 7. € Cr(Y) be functions satisfying (4.2.3) and (4.2.4),
respectively. Fix i € {1,---,n}, let p € M,(Q x Y1 x -+ x Y;_1; BVx(Y;,R%)) and denote by \ the
measure associated with D, . We define

wﬁ(x’yla e 7y1)

-/ (/ (oo Hne = ARG+ o)) o~ )
Yi QXY X xY;_

(4.2.38)
for x € Q. := {x € Q: dist(x,00) > e} and yi, ...,y; € RV,

Lemma 4.2.2. The function vy, defined in (4.2.38) belongs to C*°(Q.; C (Y1 x --- x Y;; RY)).

PrOOF. The proof is similar to the usual mollification case (see, for example, Ambrosio, Fusco and
Pallara [7]). It is done by induction on the order of the derivative, and the key ingredients are the
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difference quotients and the Lebesgue Dominated Convergence Theorem, taking into account the
regularity of p. and 7. O

Lemma 4.2.3. Let Q' CC € be an open, bounded set, and let 1, be the function defined in (4.2.38).
Then wﬁﬁ(i+1)NLQ/XY1X...XYi 5 pLP |y, weakly—x in Myu(Q x Yy x -+ x Y;;RY) as e — 0F, that is,
for all p € Co(Q;Cx(Yr x -+ x Y33 RY)) we have

lim W(mvyh T 7yi) : Wi(lﬁ Yt 7%) dmdyl o dyz

e=0T JOrx vy x--xY;

(4.2.39)
:/ ¢($7y17"'7yi)'dl"l‘(xayh"'ayifl)dyi,
Q' XYy x--XY;

where the last integral is to be understood in the sense of Subsection 2.3.2.

Proor. To simplify the notation, set Y =Y x - % Yio1, Y=Y, 5:=(y1,- -, yi—1) and y := y;
with the obvious conventions if ¢ = 1. Set also 7.(7) := H;_:ll Ne(yx). Notice that due to (4.2.4), for
all j € RC-DN o/ € RN we have

/J%(@?—ﬂ’)dz?:l, /ns(y—y’)dy=1- (4.2.40)
Y Y

Fix 0 < & < gp where 0 < g9 < 1/2 is such that ' C Q.. By (4.2.3), for all such ¢ and for all 2’ € ¥,
one has

/pg(x —2')dr = 1. (4.2.41)
Q

We will proceed in two steps.

Step 1. We start by proving that for every function f € C(Q; C#(ff X Y;C(Z;RY) NL®(Q x Y x
Y x Z;R%), where Z C R™ is an open and bounded set, we have

/ ~ f(x/ﬂ g/a y/a Z) : dp’(xlv g/)dyldz = / </ f(ml7 gl7 y/u Z) dZ) : d[l,(.%'/7 gl>dyl7 (4242)
QXY XY xZ 4

QXY xY
where the integrals are to be understood in the sense of Subsection 2.3.2.

In fact, let f;(2/,9,y,2) = Y 2, ﬁ,gj)(x’, 7) ,(Cj)(y')(é,(cj)(z), where m; € N, and for all & €
{Loomg), 0 € OO N L=@ x V), o)) € Cp(¥), ¢} € C(Z:RY) N L*(Z:RY), be
such that {f;};en converges to f with respect to the supremum norm || - [|» (such a sequence exists
as a consequence of the Stone-Weierstrass Theorem).

Then, by definition,

/ @) - du(e, )y dz
OXY XY xZ
(4.2.43)

mg

=m 3 [ ([ R o) (606 o) e

On the other hand, since [, gb,(cj )(z) dz € R%, by Fubini’s Theorem we have that for all j € N and
ke{l,---,m;},

foa (g anten i Jonr- (4 ) o) vt

~ (] ([ @aoa)- antein o) o o) o
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Finally, we observe that since [, f;dz =3, ([, oD dz 9yl )) converges to [, f dz with respect
to the supremum norm in Q x Y x Y, then, in view of Remark 2.3.21,

Jim S L[ ([oPeal e ) due) )u) ol )| ay

k=1 (4.2.45)
-/ ( [ 16352 dz> - due, )y
QXY XY Z

From (4.2.43)—(4.2.45) we obtain (4.2.42).

Step 2. We establish (4.2.39). Fix ¢ € Co(Q;Cx(Y7 x -+ x Y;;R?)). Using Fubini’s Theorem and
Step 1, with Z := Q' x YV x Y and f(2',7,y/,2,5,y) := p=(x — 2')7(§ — §')n-(y — ¥/ )p(x,5,y), and
considering (-, 7,y) extended by zero outside ', we get

/ SO(‘/I;?yh7yl)w§(x7yla7yl)dmdyldyz
Q' XYy x---XY;
= [ et { / ( [ oo = — ) duta g'))u/) nely — ) dy'] ddgdy
QXY XY Y Qxy
= / N </ _pe(e — ") (g — §') dp(a’, z?’))(y') n-(y —y')e(x, 7, y) dy' dedydy
Y xOXY xY QxY
= / _ </ o pele =) (G = 7 ) (y — v ), 7, ) d:vdzidy> du(z',7")dy’,
QXY XY QXY XY
and, using in addition (4.2.40) and (4.2.41),

/ 50(1'/,y/17"’7y£)du’(1’/7y/17'"ayg—l)dyé
Q' XY x---XY;

- /Q/my K/st(x - x/)dw) (/yns(g - g')d@)
</Yne(y—y’)dy> cp(x’,g',y/)} (e’ 7)dy/

/ . ( / . p5<xx/m(gg'ms(yy')w(m',g’,yvdxdgdy)du(mﬁ@’)dy'.
OXY XY QXY XY

Thus, by Remark 2.3.21,

‘/ Sp(xaylaayl)wﬁ(xvyhvyl)d'rdyldyl
Q' XYy x--XY;

7/ gp(z7y17"'7yi)dl‘l’(x7y1a"'7yi—1)dyi
QXY x--XY;

B ‘ /Q><1~/><Y (/ﬂx?xy (gp(x,g],y) - <,0(5U/,f/l,yl))

pe(@ — &) — §)ne(y — o) dzdgdy) du(', 7')dy

< max (@, §,y) — (@, 7, y)||pll(Q x ),
E (4.2.46)
where A, := {(z,7,y), (@, 7,y) € 2 x Y xY: lv—2'| <e, [§—§| <e, ly—y'| <e}, and where we
have also used the inclusions supp pe, suppn. NY C B(0,¢), as well as (4.2.40) and (4.2.41).
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The uniform continuity of ¢ entails

lim max’go x,7,y) — <p(x’,g’,y’)’ =0,

e—0*t

and so, to conclude Step 2 it suffices to pass (4.2.46) to the limit as e — 0. |

Lemma 4.2.4. Let Q' CC € be an open, bounded set, and let vy, be the function defined in (4.2.38).
Then Vyﬂ/ﬁﬁ(iﬂ)]v[sz/xylx~--in X\ weakly-x in Myz( x Yy x -+ x Vi RNY as e — 0, and

lim IVt (@ yr, s ys)l dedyr - dys = A (Q x Yy x - x Y)).
e—0T QXY % XY;

PRrOOF. Fix z € Q. and yl,---7yz ERN. Set Y i=V¥; x -+ x Yio, Y=Y, g:= (y1, ,¥i-1)s
y = y;, and 7:(g) = HK 1775(y,€) As in the previous proof, (4.2.40) holds. Using (2.3.21) and
(4.2.40), we get

Vit = [ ([ e == ) du i0)) @ Vel o)
— [ ([ oea =i = )l ))& Vol = ') 0

- /Q  pele— VG — ety — o) AN o).

XY XY

Hence V1, = - * A in Qe X RN where ¢ (z,y1, -, vi) = pe(z )HZ 1 M=(y;), and well known
results on mollification of measures yield the desired convergences (see, for example, Ambrosio, Fusco
and Pallara [7, Thm. 2.2]). O

Remark 4 2.5. Let ¢ € C.(Q) and p € M, (2 x Y1 x -+ x Y;_1; BVy(Yi;R?)) be given, and
define v(B) := fB x)dp(z,y1,- - ,yi—1) for all B € B(Q2 x Yy x -+ x Y;_1). By Remark 2.3.21,
ve M(Qx Y1 <o+ X Y;_1; BV (Yi; RY)). Note that suppv C supp ¢ x RE-DN,

Considering first functions @, ¢ of the form G(x,y1, -, y:) = (@, y1,- - -, Y1) (ys) and p(x, yy, - - -, y;) =
I, y1, - yio1)(yi) with 9,9 € Co(Q;Cu(Yy X --- x Yi_1)), b € Cy(Yi) and ¢ € CL(Yi), using
(2.3.21), arguing component by component, and finally considering a density argument, we conclude
that v € My (2 x Y1 X -++ x Y;_1; BV (Y;;RY)), with 7 := ¢ d\ being the measure associated with
D, v, so that

/ @(xaylv"'vyi)'dy(xﬂylv"'uyifl)dyi
QxYq X Y,

= / (@(x7y177y2)¢(x)) 'du(xvyla"'vyifl)dyi» (4247)
QXY x---xXY;

/ So(xayla"Wyi):dT(xvylv"'vyi)
QXYl Y,
= / (So(xvylaayz)qs(x)) : dA(‘(anl,"Wyi)a (4248)
QXY x Y;

for all ¢ € Co(Q;Cx(Y1 x -+ x Yi;RY)) and ¢ € Co(; Cpe(Yr X - -+ x Vs RNY),

Notice that the domain of the function v given by (4.2.38), is Q. x RN, In order to have it
defined on the whole Q x R*N | we extend v by zero. Precisely, for B € B(RY x Yy x -+ x Y;_1),
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let »(B) := v(BNQ xY; X+ xYi_1). Then v € M,(RY x Yy x -++ x Y;_1; BV(Y;; RY)), and

Supp vV = supp V.
In this setting, the function 5 defined in (4.2.38) (with p and €2 replaced by v and RY | respectively)
belongs to C° (]RN; cy (Y1 X oo X Yy Rd)). Furthermore,
supp S C Q x RN for all ¢ > 0 small enough, (4.2.49)
since for all y1,...,y; € RN, ¥s(-,y1,--+,y;) = 0 in {x € RN : dist(x,supp¢) > ¢}. Arguing as in
Lemmas 4.2.3 and 4.2.4, we conclude that
wgﬁ(iJrl)NLQXylx‘..xyi N VﬁNLYi weakly—* in My (2 X Yy X -+ x Yi;Rd) ase — 0T,

Vyizbéﬁ(”lwmxylx...xn X7 weakly-x in Myg(Q x Yy x - x Vi RN ase — 07F, (4.2.50)

lim IVy g (g1, -, yi)| dadyy - - - dy; = ||7]|(2 x Y7 x -+ x Y5).

=0T Jaxy, x--xY;

Proposition 4.2.6. Fixi € {1,---,n}, and let p € M,(Q x Y1 x --- x Y;_1; BVy(Y;;R?)). Denote
by A the measure associated with Dy, p. Then there exists a sequence {¢;}jen C C™(Q;CZ (Y1 x
X YRR NLYQ x Yy x - x Yo WEHEH(Y;; RY)) satisfying
wjﬁ(”l)NLQXylx.,.Xyi B H['NLY,- weakly-« in Myx(Q x Yy x -+ x Yi;R?) as j — +oo,
Vyiwjﬁ(i+1)NLQXY1X...X}/i 2N weakly-x in Myu(Q x Yy x -+ x Y RPN as j — +oo, (4.2.51)

lim [V, (g1, )| dedyr - - dys = A2 x Y7 x -+ x Y5).
J=+%0 JOxyix - xY;

Proor. For simplicity we will assume that ¢ = 1. The case ¢ > 2 may be treated similarly.

Let {Q}ren be a sequence of open sets such that 2 CC Q41 and

Q= G Qs
k=1

and consider a smooth partition of unity subordinated to the open cover {QkH\Qk,l }keN of Q, where
Qp := 0, that is, a sequence { P }ren such that

Ok € CF (Ut \ 13 0,1]), D ow(z) =1 forall z € Q. (4.2.52)
k=1

For each k € N, define v, := ¢rdp in the sense of Remark 4.2.5. In particular, suppv, C
(Q+1\Q—1). Let {@;}jen and {p;}jen be dense in Co(€; Cx(Y1;RY)) and Co(Q; Cp(Y1; RN)),
respectively.

By induction and by (4.2.49) and (4.2.50) (with v replaced by v}), given j € N we can find a sequence
{Eg)}keN of positive numbers converging to zero, with 5,(6]) < 5,?_1) (and E](CO) := 1/2), such that for

allk e Nandl € {1, ---,5} we have

(7)
supptyt C (1 \Qo1 ) x RY, (4.2.53)
o) )
/ Gu(x,y1) - gt (x,y1) dedy —/ Gi(z,y1) - dvg(z)dyr | < —, (4.2.54)
QXYl QXYI ‘72
) 1
[ e Vo @ dedn — [ o) sdntoan)| < s (0259
QXYl QXYI ‘7 2
3) 1
[ ¥y )| s — @ x ¥0)| < o1 (4.2.56)
QxYy
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where 7, is the measure associated with D, vy. For every open, bounded ' CC  only finitely many
Qp11\Qp—1 cover ', and so, in view of (4.2.53), for each j € N the function t; defined by

[€)]
(z,y1) Z%k 1) (4.2.57)

%)
belongs to C>(Q; C (Y1;RY)), with V45 = Y32, Vgt . Moreover, v; € LY(Q; Wh(Yy;RY))
and

Su§||¢j\|Ll(Qxyl;Rd) =: M < oo, SUPHVyﬂ/JJHLl(Qxyl Rraxny =t M < 0. (4.2.58)
J€ jEN

()
Indeed, thanks to (4.2.53), and defining 77/1;?: := 0, we obtain
/ 163 (2, 91)| dadys < Z / 465 (1) | iy
QxY; (er1\Q—1)X Y1

00 / ) ) W)
(U1 \ Q1) x V1

- S () R (@) + U5 ()| dadyy (4.2.59)
k=1

Zl/( Qi 1\ Q1) X Y1 [

@)

=)
ot o) don,

€r-1

o ()| +

2@
Q;Z}D]Z (l’, yl)‘ +

and

/ 19,65 (2 0)] oy < 5 / V()| dedy,
QOxY; =1’ (Qe11\Qp—1) X Y1

> v
B 1/ (Qu41\Qr—1)x Y1

(7)
Viuih ) + Vs (en) + V00 )| dady,

k=1
e @) 2@ €)
<>/ valwuk Hay)| + [V il ()| + | Vanvit (@, yn\] dady:.
ie1 Y (Q41\Qp—1) X Y1
(4.2.60)

We have that

(3)
/ _ o (%m)‘dl‘dyl
(e 1\Qr—1)xY1
-[ [ (L, ppte=1am )00 0~ )
(1 \Qk—1)xY1 | IV, RN Tk k

<[ .| ([ g te= i)ty
- /(Qkﬂ\ﬁ“) |/ | ([ rapto=aramnta) )| o o

< / ) / por (i — ) dllgll (') dar < 1]l (Qgr\Toor) < 11l (i \ D),
(Qr1\Qk—1) JQ Tk

dazdy,

o = 34)din e

where we used Fubini’s Theorem, (4.2.4), Lemma 2.3.17 (see also Remark 2.3.21), (4.2.53) and (4.2.3)
in this order. Thus,

£
U5l (@) dedyr < 21|pll(Q). (4.2.61)

oo
=1 /(QkJrl\ﬁkl) xYq
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Similarly,
()

o ()| dadyn < 21|wll(9),

Z/Qk\ﬂk 1 ><Y1

(oo}
Z /(sszrl\ﬁk)xyl

k=1
From (4.2.59), (4.2.61) and (4.2.62), we deduce the first condition in (4.2.58). To prove the second
condition in (4.2.58), we observe that from (4.2.53), (4.2.56), (4.2.52) and equality 7, = ¢ dA (see
Remark 4.2.5), we have that

n (4.2.62)
o ()| dadys < 2] ().

o0

E(kj) e . 1
_ Yok ()| dedys < (Il (@esn\ @) + 55
1Y (Qe1\Qr—1) XY —1

g |

<Y I\ ) +1 < 2N () +1

k=1

Arguing as above, and taking into account (4.2.60),

/ IV, ()| drdyy < 6] AI(Q x Y1) + 3,
QXYl

which concludes the proof of (4.2.58).

Now we prove the first convergence in (4.2.51). Let ¢ € Co(€2; Cx(Y1;R?)) be given, and fix n > 0.
There exists m € N such that

6 — Gmllcoicp (viiray) <1

Using (4.2.58), (4.2.57), (4.2.52), (4.2.53), (2.3.15) (see also Remark 2.3.21), (4.2.47) and (4.2.54), we
obtain for any j > m

/ o(x,y1) - Y2, y1) dedyy —/ @(w,y1) - dp()dyy
QXYl QXYI

] | 0m) = onlem) - vyl ) oy,
QOxYq

+ ‘/ Gm(x,y1) - ¥j(2, 1) dedy, —/ Gm(x,y1) - dp(w)dyy
QOxY: QOxY:

n \ [ Gulrn) = o) - dnte)n
Q><Y1

nM+Z

+77||u||( )

1
<Cn+ -
J

/ (,91) -0 (z,91) dady, — / (Em(@,92)60(@)) - dpax)dn
Q><Y1 QxYy

Letting first j — 400 and then n — 0%, we conclude that

lim o(x,y1) - Yj(x,y1) dady; = / @(w,y1) - dp(r)dy;.
J—=+ Joxy; QxY;

Since ¢ € Cp(Q; C4(Y1;RY)) was taken arbitrarily, this proves that
VL ayy, = pLN |y, weakly-x in My (Q x Yi;RY) as j — +oc.

102



We will now prove the second convergence in (4.2.51). Let ¢ € Co(; Cy(Y1;R*N)) be given, and
fix n > 0. There exists m € N such that

||50 - @mHoo < n
Using (4.2.58), (4.2.57), (4.2.52), (4.2.53), (4.2.48) and (4.2.55), we get for every j > m

/ @(mayl) : vyle(xayl)dxdyl _/ 80(%2/1) : d)‘(mvyl)
QxY; QAxY;

< ’/Q . (o(z,y1) — em(z,y1)) : Vy;(@,y1) dedy
XYy

+‘ [ enteasn) Vostem)dodin = [ on(en) s a\wa)
QxYy QxY;

n ‘ / - (o (r5) — pler91)) : dA(zs 1)

L)
<M + Z / em(z,y1) : Vy, ¥y (2,91) dedy —/ (m(z, y1) () : dA(@, y1)
QxY; QxY;

+77H>\H(Q x Y1)

1
<Cn+ —-
J
Letting first j — +oo and then n — 07, we conclude that

im o(@,31) 1 Vot (2, 31) dadyy = / o) : Az, ).
J=+ Jaxy; QxYy

Since ¢ € Cp(£2; Cx(Y7; RdXN)) was taken arbitrarily, we have just proved that

Vi 0 L2 awy, = A weakly-x in My (Q x Y1; R>N) as j — +oo. (4.2.63)
Using the lower semicontinuity of the total variation, convergence (4.2.63) yields
lim inf / 19,005 (1) dardyy > [A](Q x V7). (4.2.64)
j——+oo QxY;

To prove the converse inequality, let ¢ € C.(€; Oy (Y1; R¥*N)) be such that |||l < 1. Using similar
arguments to those in the proof of Lemma 4.2.4, Fubini’s Theorem, the symmetry of PG and 7.G)
k k

with respect to the origin, (4.2.48) and the inclusion suppy C €; x RY for some | € N, we deduce
that

[€)
/Q . e(@,y1) : Vb (z, y1) dadys = Z/Q . oz, 41) : Vi, vt (z,91) dady,
XY XYy

l

= Z/ p(z, 1) : {/ pr (@ — 2 ). (Y1 — y1) dfk(ﬂc’,y’l)]dxdyl
=1V XM RNxYy; k k

= / [/ Pz y)po(x —2 ). o (Y1~ yl)dwdyl} A7 (', 1)
_ RN xY; QxYy
= (4.2.65)

-3 / (pacomen) * 9) (o 93) « (e’ )
><Yl k k

=
—

l
= / ((p, Do) * ©) (2, 1) : dm(,91)
QxYy

k=
Z/Q zl: { P, (J) * (P)(37>y1)¢k;(1')} sdA(z,y1) :/ @i(x,y1) : d\(z, 1),

xY1 k=1 QxYq
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where @;(z,y1) = b, [(<pe§jms§j)) * @)(m,yl)@g(x)}. Notice that ||@;]lec < 1. Indeed, for all
x €8, y1 € Yy, we have

1@ (z,y1)| =

I
Z (/ pew (@~ .o (= yh)e(@' yh) da'dy; ¢k($))‘
QxYy k

k=1

l

<lell 32 [, rapa=ang =) do'd (o ) < |w\|m2¢k

k=1
where we used (4.2.3), (4.2.4), (4.2.52) and the condition ||¢|lcc < 1. Taking the supremum over
z € Qand y; €Y1, we get [|@j]loc < 1. Moreover, g; € Co(Q; C(Y1;R*N)) and so, from (4.2.65),
we deduce that

[ oo Vo) dodys <A@ Vo). (4.2.66)
QxYy

By density, taking into account (4.2.58) and using Lebesgue Dominated Convergence Theorem, we
conclude that (4.2.66) holds for all ¢ € Co(€2; Cy(Y1; R>*N)) with [|¢]|oe < 1. Hence

| 190 dedys < IXI(@ x i),
QxY;
which together with (4.2.64) yield

lim IV, ¥ (2, y1)[ dadys = [|A[[(2 x Y7). O

J=+o Jaxy,

Corollary 4.2.7. Fixi € {1,---,n}, and let p € M, (Q x Y1 x -+ x Y;_1; BVx(Y;;RY)). Denote by
A the measure associated with Dy, p. Then there exists a sequence {t;}jen C C2°(€; O (Y1 x -+ X
Y;; RY)) satisfying (4.2.51).

PROOF. As in the previous proof, we may assume without loss of generality that i = 1. Let
{¥rtren C C=(Q;CF (Va5 R?)) be the sequence given by Proposition 4.2.6. Let {Q;},en be a sequence
of open sets such that Q; CC Q11 and Q@ = (]2, Q;, and let {¢;} jen be a sequence of cut-off functions
¢j € C(;]0,1]) satisfying ¢; =1 in Q; and ¢; = 0 in Q\Q; 41, for all j € N. Define

V(@ y1) = () vr(z, 1)

We have that ¢, € C2(Q; C%(Y1;RY)). Let ¢ € Co(Q; Cu(Y1;RY)) and ¢ € Co(Q; Cye (Y13 RN))
be given. Then for all j € N, ¢¢; € Co(Q;Cx(Y1;RY)) and pg; € Co(;Cy(Yr; RN)). Using
the first two convergences in (4.2.51), Remark 2.3.19 (iii) (see also Remark 2.3.21), the convergence
lim; oo ||p]|(2\2;) = 0, the pointwise convergence ¢; — 1 in Q as j — +oo, and Lebesgue
Dominated Convergence Theorem, we get

lim i 5 -1y dzd lim i 5 () - dzd
Jdim  lim oy G(x,y1) - ¥y p(z,y1) dedys = dm  dim oy (@(z,y1)¢5(x)) - r(z, y1) dady
=t [ (Gl @) dulo)dn = [ Gen) - duodn,
-7_>+OO QXYl QXYI
and
lim  lim o(z,y1) : Vy, ) (x, y1) dedy,
j—+00 k—+o0 QxYy
= hm lim (p(‘r7y1) : (ﬁb](x)vyﬂ/’k(x’yl)) d‘rdyl
Jj—+00 k—-+o0 QxY;
= tim [ (g ) s dNea) = [ ) ).
J—=+° Jaxy; QxYy
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On the other hand,

QXxY;

/ Vs By (1) | ddlys = / 165(2) V(s3] dadys < / 1V, (2 1) | daedys,
QXYl QXYl 1

and so
lim sup limsup/ IV i k(2 y1) ] dedys < A2 xY),
QXYl

j—+oo k—+oo
where we have used the third convergence in (4.2.51). Using a diagonal argument together with the
separability of the spaces Cp(€2; Cx(Y1;R?)) and Co(; Oy (Y1; RPN)), we can find a subsequence
k; < k such that ; := 1/33»,;% € C?(Q;C%O(Yl;Rd)) and
z/JjLZQNLQXyl = ,uENLyl weakly-* in M4 (Q x Yl;Rd) as j — 400,
Vyl'leE2NLQXY1 20X weakly- in My (82 x Y1; RN as j — 400,

limsup/ IV, (2, y1)| dardyy < A(Q x V7).
QxY;

j——+oo

Finally, the convergence Vylzﬂjﬁmvmxyl X0\ weakly-* in Myx(Q x Y1;R*N) as j — 400 implies

J—+oo

timin [ [V, 00) dadyn > A x Y2)
QXYl

which concludes the proof. O

Corollary 4.2.8. Assume that 9) is Lipschitz. Let u € BV (;R%) and for each i € {1,---,n}, let
B € Mu(Q XYy x -+ x Y;_1; BV (Yi;RY)). Then there exist sequences {u;}jen C C*°(Q;R?) and
{zbél)}jeN C CX(Q; 0 (Y1 x -+ x Yi;RY)) satisfying

uj = u weakly-x in BV (Q;R?) as j — 400, 41i1_§1 /|Vuj(ac)|dx = || Dul|(€2),
J—=T0 J0O

(VUj + Z vyﬂpj(‘i))ﬁ(nJrl)NLQxYl XX Yy
i=1

I Ny, Weakly—x in My (2 x Y7 x -+ x Vs RPN) as j — 400, (4.2.67)

lim Vuj(x) + Z Vyiwy)(x, Y,y yz) dzdy; -+ - dyn
I+ Jaxyix - xY, P

= [ Ao yeopa, (2 X Y1 X o X YY),
where Ay 4, ..., IS the measure defined in (4.1.3).
Proor. We will proceed in two steps.

Step 1. We first prove that there are sequences {u;};eny C C°°(;R?) N WH(Q;RY) and {w§i)}jeN C
C®(Q;Cx (Y1 x -+ x Y;;RY)) satisfying (4.2.67).

Let {Q}ren be a sequence of open sets such that € CC Qgy1 and Q = U;il Q, and consider
a smooth partition of unity {¢x}ren subordinated to the open cover {Qk+1\ﬂk—1}keN of Q, where
Qo : =0, as in (4.2.52).

For each k € Nand i € {1,---,n}, define v¥ := ¢, du, in the sense of Remark 4.2.5, and let {cpy)}jeN
be dense in Cp(; Cx(Yy x -+ x Y;;RN)). Arguing as in the proof of Proposition 4.2.6 and as in
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Ambrosio, Fusco and Pallara [7, Thm 3.9] (see Theorem 2.3.6), for each j € N we can find a sequence

{e (j)}keN of positive numbers converging to zero, with €(j) (j 2 (and e,(co) :=1/2), such that for

allke N, le{l,---,j} and i € {1,---,n} one has
supp (Peiw * (ugr)) C (g1 \ Q-1 ),
1
[l 060 = wtnl + Ip 0+ (w0 Vo) = Vo do < 5. (1.2:68)
Q
LG .
supp Tﬁffc C (g1 \Q—1 ) X R,

€]
’/S (@, Y1 i) - Vi ¥k (2,91, i) dadys - dy
2XYy X B

-/ A0 ) A )| <
QXY x Y;

(J)
‘/ ‘V%w (2,91, -y ys) | dadyy - dy; — |72 x Y1 x - x V;)| <
QxXYy x--

where 1/} y were introduced in (4.2.38) and 7[ is the measure associated with D,,v¥.

Slmllarly to the proof of Proposition 4.2.6 and as in Ambrosio, Fusco and Pallara [7, Thm 3.9], for
each j € Nand i € {1,---,n} the functions u; and 1/15” defined by

oo
=Y (.0 * wo))(@), vy (@ yn, - y0) : Zw (51, i) (4.2.69)
k=1

belong to C*°(2;RY) NWHH(Q;R?) and O (Q; O (Y1 x - - - X Y3;R?)), respectively, and are such that

u; — u in LY RY) as j — +oo, jLiinOO/Q|Vuj(x)|dx = || Dul|(2),

SUPHVyA/J ||L1 (X Yy X x Yi;Rx Ny < OO, (4.2.70)

vyi@? DN 6 vy, = A weakly-x in Myz(Q X Y3 x -+ x Y RN as j — 400, (4.2.71)
In particular, u; 2w weakly-+ in BV (Q;R%) as j — +oo. In turn, this implies that

vujﬁ(nJrl)N\_Qxleme > Dujq ® LN

Y1, Yn
weakly-* in Myu (2 x ¥ x -+ x Yn,RdXN) as j — 4oo. Also, convergences (4.2.71) imply that
Vi LOIN o vy, N @LETIN, weakly-x in Mg (QX Y1 x -+ X Vs RPN ) as j — +oc.
Hence,

n
(Vuj + ZVy,i¢§l)>£(n+1)N|_Qxyl><...><y” I Ny, Weakly—x in My (2 x V7 x -+ x Vs RPN
i=1

as j — +o00. Using the lower semicontinuity of the total variation,

j—+4oo

hmmf/ ]vu»z+ V0 @y, ys)| dedys - - dyn
v i () ; vy (@, g1, y) | dadyy - - - dy (4.2.72)

P ”)\uJ*‘l"ﬂp‘nH(Q XY x---x Yn)
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Finally, let ¢ € C.(Q;Cx (Y1 X -+ x Yy ; R*N)) with |¢]|c < 1 be given. Let m € N be such that
supp ¢ C €, x RN, Taking into account (4.2.4), similar arguments to those of Proposition 4.2.6 (see
(4.2.65)) show that

/ 90(1'>y17 e ,yn) : vyﬂ/’]@) (Iayla e 7yz) dxdyl e dyn
QxY] % Y,

(4.2.73)
= / @j(xvylv to 7yn) : dAi(xvyla to ayi)dyi-‘rl o dyna
QXY x Y,
where @](Z‘v Y1, 7y7l) = Z;nzl |:((p5;]) H:’L:l 77655)) * 90) (:Ea Y1,y yn) ¢k(x)j| is such that
B, € Co(Q;Cu(Yy x -+ X Yo RPNV |3 ]lee < 1. (4.2.74)

On the other hand, using the identity
Vu; = lesgcw * (¢r dDu) + kzl P *(u®Vor) —u® Vo],
the estimate (4.2.68) and the condition ||¢||s < 1, we deduce that

/ 30(1.7y1;"'7yn) : vuj(l')dxdyldyn
QXY X XYy
. . @2
S Z/ (@, Y1, yn) : (pr * (Pr dDu)) (x) dadyy - - - dyn + =
k=1 QXYlX XYn k ]

In turn, using (4.2.3), (4.2.4) and Fubini’s Theorem,

m

/ (@91, yn) : (por * (¢, dDw)) (x) dzdy; - - - dyp
QxY: x Y, k

m

Z/ (,0(.13, Y1, 7yn) : </ P€<j> (J} — .T/)(bk(x/) dDu(x')) dxdyl . dyn
QOXY1x--xYy, RN Tk

k=1
= Z/ o, y1, -, Yn) - (/ or(x")p_ (x — ")
k=17 2xY1 X XY, RN XYy XX Yy, k
Hn m —yi) dDu(x")dy] - ~~dy;> dady; - - - dy,
:Z/ |:(/ @(x7y177yn)p5(ﬂ($l—$)
el VRV XY1 X XY, QXY X--xXY, k

H n. (J> — ;) dadyy - - dyn> b (x’)} : dDu(z")dy; - - - dyl,

=/ @j(@ y1, -5 yn) s dDu(a)dyy - - - dyj,.
QXY x Y,

(4.2.76)
Thus, from (4.2.73), (4.2.75) and (4.2.76) we conclude that
/ @(xayl,"',yn : (VUJ +ZV’UL .’IJ yh.-.,yi)) dxdyldyn
QXY x Y,
1
< / @j(x7y1,"'7yn) : d)\uﬂ-‘pu-,#n(x?yl?'"7yn) + = (4277)
QxXY; X XY, J
1
< Ay oo, (2 X Y1 X X V) + 37
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where in the last inequality we have used (4.2.74). Lebesgue Dominated Convergence Theorem,
(4.2.70) and an approximation argument ensure that for all ¢ € Cp(; C (Y;RYN)) with [|¢]jeo < 1
one has

/ (P(xayla"'ayn . (VU] +Zvy1'¢) x yla"’ayi)) dxdyldyn
QXY x Y,

< ||)\U/7/‘L15"'7”’n‘|(ﬂ X Yl X X Yn) + ;

Hence,

j—oo

limsup/ ‘Vuj +Zvy11/) (z,y1, -+ ys) | dadyr - - dyn < [ Xupy e, [[(QXYT X XY,
QXY X--XY,

which, together with (4.2.72), concludes Step 1.
Step 2. We prove that the sequences {u;};en and {wy)}jeN may be taken in C*(Q;R?) and
Ce Q0 (Y1 x -+ X Y;; R?)), respectively.

The argument is similar to that of Corollary 4.2.7. Let {u;}jen and {9;};en be the sequences
constructed in Step 1. Let {Q}ren be a sequence of open sets such that € CC Q41 and
Q = UrZ; U, and let {0 }ren be a sequence of cut-off functions 6, € C°(€;(0,1]) satisfying for
all k € N, 0 =1 in Q. Define

We 'have that Q/JJ(Z,)C € CX(Q0L (Y x -+ X Y;;RY)), with vyi¢§fi = okvyiz@“. For each j € N, let
{ug)}keN C C=(Q;R?) be a sequence such that

u,(f) — u; in WHH(Q;RY) as k — +o0. (4.2.78)
We observe that here, and only here, we use the hypothesis that 0f2 is Lipschitz. We have that

lim  lim /’uk —u(z)| de=0, lim lim /’Vu(]) dz = || Du/|(£2). (4.2.79)

j——400 k——4o00 Jj—+00 k—+o0

Let ¢ € Co(Q; Cp(Yy X -+ - x Yy; R*N)) be given. Using on the one hand convergence (4.2.78), and on
the other hand the pointwise convergence 6, — 1 in 2 as k — 400 together with Lebesgue Dominated
Convergence Theorem and taking into account estimate (4.2.70), we obtain

lim  lim TyY1, e :(Vu( )+ \Y Ty Y1, ')dxd coed
j——+00 k—4o00 Qxylx..-xYn(p( n yn) k Z yfq/}]k Y1 y’) n Yn

= hm go(xaylf"’yﬂ . (vuj Zvyﬂ/’ €T ylv"')?ﬁ)) dxdyl dyn
J=+0 Jaxy; x - xY,

= / go(x,yh e 7y’n) : d)\u,ul,...,un (%Z/l, IR y’n>7
QXY x Y,

(4.2.80)
where in the last equality we have used Step 1. By similar arguments, and since we can write

Vu) + 3,080 = Vi) — Vuy + 0.Vu; + 60, Y V08 + (1 - 0) Yy,

i=1 i=1
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we have

n
lim sup lim sup/ ‘Vu,(cj)(x) + Z 9 qﬁj(?]l (2,91, )| dedyy - dy,
j—+oo k—+oo JOAXYyX - P ’
< i li ‘ @)y _ . ‘
G lim {/Q Vuy’ (x) — Vu,(x)| dz
AxVixoxYy | ; Wy Y ' (4.2.81)
+ [ 4= 00yt ac
Q
= lim ‘Vu + Vi T, Y1, 0, y) | dedyy - - - dyy,
=40 Joxy oo x J Z Y ( 1 ) 1

= Ao (X Y7 X Yn).

From (4.2.79), (4.2.80) and (4.2.81), using the separability of Co(€2; Cy (Y1 X -+ x Y,,; R*N)) and a
diagonal argument, and finally the lower semicontinuity of the total variation, we can find sequences
as in the statement of Corollary 4.2.8. O

Remark 4.2.9. As it was observed within the previous proof, if 0S) fails to be Lipschitz, then
Corollary 4.2.8 holds replacing the condition “{u;};en C C®(Q;RY)” by “{u;}jen C C®(Q;RY) N
Wl’l(Q;Rd)”.

We are now in place to prove Proposition 4.1.8.

PROOF OF PROPOSITION 4.1.8. Let u € BV(Q;R?) and for i € {1,---,n}, let p; € M,(Q x Y7 x
- X Yie1; BV (Yi RY). Let {u;}jen © C(QRY) N WL RY) and {¢17}jen € C2(Q; CF (V1 x
- % Y;;RY)) be sequences satisfying (4.2.67).

For each € > 0 and j € N, define

€T T
UEJ( _U'j +ZQZ (’ ey — >’ xr e 0.

Then u. ; € WHH(Q;RY), and

Ve ;(z) = Vi, (z 4-23@z Vatp ( Q%(E)""’ _a:))

0ie
n i—1 Q EI @ x 7 n @ o T
i i i
+22;k 1 5 ykwj (J,', 91(6)7 y 92(5)) +§V%w3 (l‘, QI(E)’ s Qz(f‘:)>

Let ¢ € Co(€;C4 (Y1 x -++ x Y3 RY)) and ¢ € Cp(Q;C (Y1 X - -+ x Yy,; R*N)) be given. Since for
fixed j € Nand i € {1,---,n}, and for all (yi,---,7) € R, z wj(l)(x,y1,---,yi) has compact
support in RV, from (4.0.1) and (4.2.25) we deduce that

01(e)" " onle)

:/ @(1‘73/117yn)u](x)d$dy1dyn7
QXY x Y,

lim Q@(ac, x),~--, m )-uw—(m)dx: lim Q@(x, )-uj(x)dx

e—0+ e—0+
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and

T x

lim r,——, -, —— | : Vu. ;(x)dx
e—0+ Q(p( 01(¢) Qn(e)) 3(@)

€T €T €T x

~ [l a@) (0 Xl e g )

QXY x Y, i=1

Thus, in view of (4.2.67),

T T
lim lim ¢<x, ,---,—)-u7»mdm:/ o(x,y1, -y yn) - u(x) dadyy - - - dyp,
J—tooe—0t Jo 01(e) on(e) =4(®) QXY XXV, (=91 ) (=) !
(4.2.82)
and
x x
li li , AR : Vue j(x)d
i e gy am) Ve 1255

= / (p(xaylv Tty Z/n) : d)\u,p,l,“.,p,n (xaylv e 7yn)
QxYy x Y,

We claim that we may find a sequence {jc}.>o such that j. — +oo as e — 0T, and if we define
Ve := uc j., then {v:}c>0 is a bounded sequence in W1 (2; R?) satisfying a) and b) of Theorem 4.1.7.

In fact, let {Pm tmen and {@y, fmen be dense in Co(2; C (Y1 x - - x Yy RY)) and Cp(Q; Cy(Yy ¥
Y,; R¥>*N)) respectively. For each ¢ > 0, j,m € N, define

~ xT T
v 'm::/~7n Ty—F """y 5 ) U 'IEdSC,
SV QQD ( 91(8) Qn(5)> 67]( )

Em = / @m(xayl, o 'ayn) : U(SU) dxdyl o ’dyn7
QxYy % Y,
X X
v ,m::/ (1’, RN ):Vu i(x)dx,
€575 Q‘pm 91(5) Qn(f) EJ( )

By (4.2.82) and (4.2.83), for all m € N, we have

lim lim \Ilgj m = L, lim lim Y., = Ly, (4.2.84)

j—+o00 e—0t Jj—400 e—0+

For each € > 0, j € N set

(B )
1+|‘1’ dom = L] T Wejim = Lo

m=

—

oo

1
Fix § > 0, and let mg € N be such that Z om < 6/2. Then,

m=mgs+1

m ~ ~
d 1 |\Ije m*Lm| |\Ils m*Lm‘
<o = =+ o +9
S 2 [ <1+|\1: - L 1+ |9 jim — L



and so, using (4.2.84),

0 < limsuplimsup©,; <94, 0 < limsuplim ig_lf O ; <.

Jj—4oo  e—0+ j—+oo =0

Letting 6 — 0T, we obtain

lim limsup©.; = lim liminf©, ; = 0.
Jj—+o0 oo+ Jj—+00 e—=0t

By a diagonalization argument, we may find a sequence {jc}.~o such that j. — +oc as e — 0T, and

lim O, =0. (4.2.85)

e—0+

This way, given m € N, by definition of O, ;. and by (4.2.85), we have

1 |qj51j€vm — ‘Z/m| |\:[157j€1m - Lm|

= = <O.; > 0ase— 0",
1 + |\Ils’jaxm - Lm| 1 + |\Il’37jsam - Lm|) =

which implies
im U, =Ly, Lm U .= L. (4.2.86)

e—0+ ' e—0*

Finally, the existence of a sequence {v. }.~¢ as claimed above follows from (4.2.86), taking into account
the boundedness of {uc j.}eso in WH(Q;RY). O

We finish this section by proving an extension of Corollary 4.2.8 to the case in which €2 is bounded,
and that will play an important role in our application to homogenization in Chapter 5.

Proposition 4.2.10. Let © C RY be an open and bounded set such that 0S) is Lipschitz. Let
u € BV(;RY) and for each i € {1,---,n}, let p; € My(Q x Yy x -+ x Y;_1; BV (Yi; R?)). Then
there exist sequences {u;};jen C C*(Q;R?) and {1/)§i)}jeN C CX2(Cx (Y1 x - - - x Yi;RY)) satistying
(4.2.67), and such that

PYI Xu,ul’---,un weakly-x in Myy(Q x Y1 x -+ x YV RN x R) as j — +o0,

S - 4.2.87
T (Rl % Vi x X Vi) = Ry, [0 % Vi x e x Vo), (4.2.87)

where, for any B € B(2 x Y} x --- x Y,),

8) 1= ([ (Fusto)+ 30900 o)) don -y £V (5)),
i=1
N vtig (B) = (Mg, (B), LIV (B) ).

PROOF. The proof is very similar to that of Corollary 4.2.8. We will just point out the main differences.

In Step 1 of the proof of Corollary 4.2.8, for each j € N we require the sequence {E;(j)}keN to satisfy
the additional conditions

supp (PE;J') * dr) C (Qra1\Qe—1), sup |pw () — P * or(x)| < T (4.2.88)
g re

This is possible since if ¢ € C(2), then p. * ¢ converges uniformly to ¢ as e — 07 on every compact
subset of 2, and supp ¢, C (Qk+1\Qk_1 )
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Defining u; € C*(Q;R?) NWHH(Q;RY)) and 9 € C(Q; CF (Y1 x -+ x Y3 RY)) as in (4.2.69), then
(4.2.67) holds. Moreover, we clearly have \; = S\U,#ly...#nweakly—* in Mg (QxY)x- - xYy; RN xR)
as j — 400, which in turn implies that

ljminf||:\j||(Q XY X xY,) > ”5‘%#1,-"7#””(9 XYy x - xY,).
j—+00

Furthermore, given ¢ = (p,0) € Ce(Q;Cy (Y1 X -+ x Yo RPN)) 5 Op(Q;Cp (Y1 x -+ x Vy,)) with
¢]lso <1, then by (4.2.77)

/ w(xvyla"'vyn)'d)‘j(xaylv"'ayn)
QAXY]X--XY,
QXY X XY, i=1
+/ 0(x,y1, -, yn) dady: - - - dy,
QAXY] X--XY,
_ 1
< / @@, Y1, yn) Ay e, (T Y1, Yn) +
QXY1 X XY J

+/ 0,1, yn) dadys - - dyn,
QAXY;X--XY,

where @;(z,y1, -+, Yn) == D_pey [((psgju [Tizim.0) + @) (@ yr,--- yn) ¢k:($):|- Similarly, setting

n

Oy yn o un) = Y [ (oo [T m0) #0) @+ 9a) 61()]

k=1 L=

then, using (4.2.88) and Fubini’s Theorem, we deduce that

/ e(mvyla"'uyn)dxdyl"'dyn_/ ej(ﬁaylv"'ayn)dxdyl"'dyn
QAXY]X--XY, QXY X--XY,

LY ()

< -
J

Hence, defining o;(z, y1,+,yn) = S5y [ (0,00 [Ty 7,00) * ) (@31, 4n) d4()], we conelude
that

/ w(m7y17"'7yn)'d)\j(l‘ayla"'ayn)
QAXY1 X--XY,

_ - 1+ LN (Q
g / wj(m7yla"'7yn) 'd)‘u,ul ,,,,, /.Ln(xvyh'"vyn) + ¥ (4289)
QXY1 X XYn J

1+ £N(Q)

< ||5‘uu1un‘|(9 XYy X x V) + J

b

where in the last inequality we have used the fact that 1; € Co(Q; Cx (Y7 X - -+ x Yp; RN x R)) and
||1/?]||OO < 1. Using a density argument, together with Lebesgue Dominated Convergence Theorem,
we deduce that (4.2.89) holds for every ¢ € Co(€2;Cx(Yy X -+ x Yy ; RN x R)) with [|1h]le < 1.
Consequently,

limsup || A;][(Q2 x V3 x -+ x V,,) < ||;\u)“1,...7#n||(Q xY1 x - xY,).
j——+oo

Thus (4.2.87) holds. We proceed as in Step 2 of Corollary 4.2.8 to prove that the sequence {u; };en may
be taken in C*°(€2; R?) and that the sequences {w]@ }jen may be taken in C2°(9; O (Y1 x- - - x Yi; R%)).
O
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5.1

Chapter 5

Reiterated Homogenization in BV

via Multiscale Convergence

Under the motivation mentioned in the Introduction (see Subsection 1.2), in this chapter we treat
multiple-scale homogenization problems in the space BV of functions of bounded variation, using the
notion of multiple-scale convergence developed in Chapter 4. In the case of one microscale we recover
Amar’s result [5] under more general conditions; for two or more microscales we obtain new results.

This study was elaborated in the joint work with Fonseca [44].

As we referred in the previous chapter, in Amar [5] the author extended the notion of two-scale
convergence to the case of bounded sequences of Radon measures with finite total variation. This
was used to study the asymptotic behavior of sequences of positively 1-homogeneous and periodically
oscillating functionals with linear growth, defined in the space BV of functions of bounded variation.
Precisely, the following result is given in Amar [5].

Theorem A (cf. Amar [5, Thm. 4.1]). Let Q C RY be an open and bounded set with O Lipschitz,
let Q :=[0,1]", and let f : RN x RN — [0,00) be a function such that

(A1) for all £ € RN f(-,€) is continuous and Q-periodic;

(A2) for all y € Q, f(y,-) is convex, positively 1-homogeneous, and of class C*(RV\{0});

(A3) there exists a constant C > 0 such that for ally € Q, £ € RN, L[] < f(y,€) < Cl¢|.
For each € > 0, let I. : BV(2) — R be the functional defined by

L= [ 7(% 5ipm @) Al + [ o) = uta) ds

where v € LN/(N=D(Q), p € (1, N/(N —1)] if N > 1, and p € (1,00) if N = 1. Then for each ¢ > 0,
there exists a unique u. € BV () such that

: : x »
I (us) = werg%/n(m I.(w) = u;ev%/r}fl(ﬂ) {/Qf(g, Vw(:r)) dz + /Q|v(x) —w(z)] dx}.

Moreover, there exist u € BV () and p € M, (Q; BV(Q))>!, such that {u.}.~o weakly-x converges
tow in BV (2) as e — 0% and, up to a subsequence, { Du.}.~q two-scale converges to the measure

In Amar [5] no considerations on the application Dyu were made; in particular, the subspace M (Q; BV4(Q)) was not
introduced. In view of Theorem 4.1.7 we believe this is the correct setting, and so we use here the same notations as in

Subsection 2.3.2 and Chapter 4.
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Aup € Myu(Q x Q;RYN) given by (4.1.3) for n = 1. Furthermore,

lim L(ue) = nf © I(w,v) = I%(u, p),
=0 VEM4 (2BV4(Q))

where I*¢ is the two-scaled homogenized functional defined for w € BV (Q) and v, € M(Q; BV4(Q))

by
A

)= [ 1 g ) des

Finally, in the minimizing pair (u, i) the function u € BV () is uniquely determined.

[(z,y) + /Q‘U(JC) —w(z)P dz.

The proof of Theorem A is based on the so-called two-scale convergence method, which has the
virtue of taking full advantage of the periodic microscopic properties of the media, enabling the
explicit characterization of the local behavior of the system: The asymptotic behavior as ¢ — 07 of
the energies F. and of the respective minimizers wu. is given with regard to both macroscopic and
microscopic levels, through the two space variables x (the macroscopic one) and y (the microscopic
one), and through the two unknowns u and . The next step of the two-scale convergence method is to
obtain the effective or homogenized problem, that is, the limit problem only involving the macroscopic
space variable x, and which has as solution the function @(x) := fQ u(x,y) dy. This is usually done
via an average process with respect to the “fast variable” y of the two-scale homogenized problem. It
should be noticed that in some cases this averaging process leads to very complicated expressions for
the homogenized problem, and consequently, the nice form of the two-scale homogenized problem is
lost (see Allaire [1] for several references exemplifying such a phenomenon). Therefore, in particular
in these cases, the two-scale homogenized limit problem seems to be preferable.

For the class of functions f considered by Amar [5], Theorem A provides an alternative characterization
of the homogenized problem previously obtained by Bouchitté [16], [17], and summarizes as follows:
Theorem B (cf. Bouchitté [16, Thm. 2.1]). Let Q C RY be an open and bounded set, let Y := (0,1),
and let f : RN x RNY — R be a function such that

(B1) for all ¢ € RN, f(-,€) is measurable and Y -periodic;

(B2) for ally €Y, f(y,-) is convex;

(B3) there exists a constant C' > 0 such that for ally € Y, £ e RN, L[¢] = C < f(y,€) < C(1+¢)).
For each e > 0, let F. : L*(Q) — (—o00, 00| be the functional defined by

T
- if LI(Q
Pu(u) i {/Qf(&_,Vu(x)) Qe ifue WI(Q),
00 otherwise.
Then, the sequence of functionals {F.}.~o I'-converges in L'(Q) as ¢ — 0152, to the functional

Fy: LY() — (—o0, 0] given by

Fou) = Fu) ifue BV(Q),
O 00 otherwise,

where, for u € BV (Q),
dD%u

0 = [ fron(Fue) de+ [ (o) (g @) dIDul@),

52 See Definition 2.5.1 (see also Remark 2.5.2).
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with

(@ =0t { [ 1+ Vo) a6 €W, Grom)*(©) = 1 1)

t——+oo t

In view of Theorem 2.5.16, under the coercivity condition in (B3), if we consider the analogous
functional I. of Amar [5], i.e., the functional I.(u) := F.(u) + [,|v — u|? dz for u € L*(Q), where F,
is as in Theorem B, and v and p are as in Theorem A, then, assuming 02 Lipschitz and using the
continuous injection of BV (Q) in L?(2) (see Theorem 2.3.9),

lim  inf L (w)= li inf IL(w)= min Iy(w)= min I

B gy o) =t g ) = ming o) = ming, T,
where In(w) := Fy(w)+ [olv—w|? dz, I"(w) := F*(w)+ [,,[v—w[’ dz, and Fy and F" were introduced
in Theorem B. In particular, if f satisfies conditions (A1), (A2) and (A3), then I™(u) = I°¢(u, p),
where I°¢ and (u, ) € BV (2) x M, (Q; BV4(Q)) are as in the statement of Theorem A.

The proof of Theorem B relies on integral functionals of measures and their formulation by duality,
while, as we mentioned before, the proof of Theorem A is based on the two-scale convergence method
and is very similar to that of Allaire [1, Thm. 3.3] in which the subdifferentiability of f and the
regularity and boundedness of Vg f play a crucial role. In particular, the arguments used in Amar [5]
do not apply neither under weaker regularity hypotheses than those in (A2) nor under more general
linear estimates from above and from below than those in (A3).

Some questions then naturally arise: Is it possible to derive the two-scale homogenized functional
under weaker hypotheses than those considered in Amar [5]? May we establish the relation between
the two-scale homogenized functional I°° and the homogenized functional I"°™ in a systematic and
direct way? How to generalize this analysis to the case of multiple microscales? And to the vectorial
case? The goal of this chapter is precisely to give answers to these questions.

In particular, using Theorem 4.1.7 (and having in mind Proposition 4.1.4) we seek to characterize and
relate the functionals

F*(u,py, -, p,) := inf { hﬂéﬂf F.(u:): u. € BV(Q;RY), Du, (n+i)-5c /\U,HD“-’“”} (5.0.1)
and

Fhom(y) .= inf { liminf F.(uc): u. € BV(QRY), u. . u weakly-x in BV(Q;Rd)} (5.0.2)

E—>

for u € BV(;RY) and p; € My (Qx Yy x -+ x Yi_1; BV (Y;;RY)), i € {1,---,n}, where F. is of the

form

o= G am ) [ G e Md“m”((x) )
5.0.3

for u € BV (;RY), where

n’t
foo(ylf"aynaf) = hmsup f(yh Y 5)
t—s 400 t

is the recession function of a real valued function f : R™V x R¥*N — R separately periodic in the
first n variables.
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5.1. MAIN RESULTS.

Before we state our main result, we introduce some notation. Fix k € N and let g : R*N x RN - R
be a Borel function. We recall that the effective domain of g, dom.g, is the set

domeg = {(ylf'Wyk;E) € RkN X RdXN: g(yla"'7y/€7§) < 00}7

while the conjugate function of g is the function g* : R¥N x RN — R defined by

g*(yla"'7yka§*) = Suc‘ipN {555*_9(%7"'7?%75)}7 Y1, Yk ERNa g* ERdXN’ (511)
EERIX

and the biconjugate function of g is the function g** : R*N x RN _ R defined by

g**(yla"'7yka€) = Su}?N{g* 15_9*(y1»"'ayk»‘f*)}» Yty - Yk ERN7 g* eRdXN' (512)
£*ERAxX

We define a function gnom,, : RE-DN 5 RIXN _ R by setting
Ghomy, (y17 oy Yk—1, é—) = inf { / g(y17 oy Yk—1, Yk, é- + Vwk?(yk)) dyk: wk S W:;E’l(yk7 Rd)} (513>
Yi

for y1,...,yk—1 € RN £ € RN,

Let f: R™ x RN — R be a Borel function. If n = 1, we set fuom := fhom,, where fhom, is given
by (5.1.3) for k =1 and with g replaced by f, that is,

from(€) = inf{ Fyn &+ Vin(y) dyr: v € W;J(Yl;Rd)}.

Yi

If n = 2, we define fuom := (fhoms )nom,» Which is the function given by (5.1.3) for £ = 1 and with g
replaced by fhom,, where the latter is the function given by (5.1.3) for k = 2 and with g replaced by
f. Precisely,

from (&) = inf{ Jnoms (y1,€ + Vi (y1)) dyr: 1 € W;’l(yl;]Rd)}v

Y1

where

fhomg (y17 f) = inf { f(yh Y2, 5 + v¢2(y2)) dy2: ¢2 € W;{;l(}éa Rd)}

Y>

hom, ? 1€

Similarly, if n = 3 we define from 1= ((fhom3>hon12)

from(€) = inf{ /Y (fioms Jhoms, (U15 € + V1 (y1)) dy1 = 1 eW;‘(YuRd)},
where
(fnoms ) nom, (¥1: &) = inf{ /Y Froms (U1, y2, € + Viba(y2)) dya: o eW;J(YQ;Rd)}

with
froms (Y1, Y2, &) := inf {/Y fy1,y2,y3,§ + Vbs(ys)) dys: ¥s € W;’I(YS;Rd)}
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Recursively, for n € N we set
fhom = ((fhom")homn71 ) . (514)
--./ homy
Consider the following conditions:
(F1) for all € € RN f(-,€) is ¥} x - - x Yy,-periodic;
(F2) for all y1,....,yn € RN, f(y1,-++,yn,) is convex;

(F3) there exists C' > 0 such that for all yy,...,y, € RV, £ € RN

fyi, 5y, §) <O+ [€]);

(F4) for all § > 0 there exist ¢ € RN, b5 € R, such that |cs] — 0 as § — 0%, and for all
Yl, - Yn € RN € € RIXN,

f(y17"'ayn7£)+c(5'§+b5 207
(F4)' there exists C' > 0 such that for all yq,...,y, € RN, ¢ € RN,

Pl v ) > el = C:

(F5) foreveryyy,...,y, € RN § >0, there exists 7 = 7(y},- -+, 9., ) such that for all yy, ..., y, € RY
with |(y/17 T 7y;) - (yla T 7yn)| < T, and for all 'f € RdXNa

|f(yll7’y;w£) —f(3117"'>ym§)| < 6(1+ |§|)7

(F6) for all § > 0 there exists a; € LL(Y1 x --- x ¥,) such that 5||dé||L;(le--~xYn) — 0
as § — 0T, and there exits 75 > 0 such that for all y1,...,Yn_1,¥;, ..., %, 1 € RY with
[(y1s s Yn—1) = (Y1 yn—1)| < 75, and for all yy,, & € RN,

f(yla T 7yn717yn7§) > 56“5(3/17 o .7y’;7,71’yn> + (1 + 0(1))f(y/17 U 7:‘/’;7173/7”5)

(as § — 0T). If n > 3, then we assume in addition that for a.e. y,_1,y, € RY we have
&6('7yn—17yn) € C#(Yl X X Yn—2) with ||d6('7yn—hyn)”C#(le»--xY,L,g) € Ll(Yn—l X Yn)?

(F7) there exist a € (0,1) and L,C > 0, such that for all yy,...,y, € RY, for all £ € RN with
|€] =1, and for all t > L,

f(ylv"'7y7ht§) <£

foo(yla"'aynvg)_ ¢ B

o )

~

(F8) the conjugate function f* of f is a bounded function on its effective domain, dom, f*.

The next proposition will be used to establish integral representations for the multiple-scale functional
F*¢in (5.0.1) and for the homogenized functional F"*™ in (5.0.2).

Proposition 5.1.1. Let f : R™Y x RN — R be a Borel function satisfying hypotheses (F1), (F3)
and (F4). For n > 0, let f, be the function defined by f,(y1, -, yn,&) = f(y1, -, yn, &) + nl&l.
Then,
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(i) For all yy,...,yn € RN, &€ € RN the limit
Hm ((f5)")% (W1, o ¥, &) =2 ((for)™) (W1, Uns ) (5.1.5)

n—0+
exists, ((fo+)**)>® : R™™Y x RY — R is positively 1-homogeneous and convex in the last variable, and
()% < ((for)™)> < (F%).
Furthermore, if in addition
a) f also satisfies (F2), then ((fo+)**)> = f*;
b) d =1 and f also satisties (F7), then ((fo+)**)> = (f>°)**.
(i) For all ¢ € RN | the limit
im (((f2)™hom) ™ (€) = (((for ) Inom) ™ (€) (5.1.6)

n—0+
exists, with (((fo+)**)nom) " : RN — R positively 1-homogeneous, convex, and such that
((F*hom) ™ < (((For )™ nom) ™ < (((For)™)™ ) om < ((F)™) o
Furthermore, if in addition
a) f also satisfies (F2) and (F8), then (((f0+)**)hom)Oo = (fhom)™ = (F°°)hom;
b) f also satisfies (F2) and (F7), then (((fo+)™ Jhom) = (f*)hom;
¢) d=1 and f also satisfies (F7), then (((fo+)™)hom) = ((f*)*)op-

Remark 5.1.2. Hypothesis (F7) is common within variational problems with linear growth conditions
(see, for example, Bouchitté, Fonseca and Mascarenhas [18, Sect. 4], Babadjian, Zappale and Zorgati
[11]). We will prove (see Lemma 5.2.11 below) that under hypotheses (F1), (F3), (F4) and
(F7), we have (fhom)® = (f*)nom; in the scalar case, these conditions also ensure the equality
(f**)°° = (f°°)**. Other sufficient conditions to guarantee that (fhom)™ = (f*)nom are (F1)-(F4)
and (F8) (see Lemma 5.2.10 below), which is an hypothesis on f* that is often considered when
dealing with duality problems (see, for example, Témam [74, Ch. I1.4]).

Unless stated otherwise, we will always assume that the length scales o1, ..., 0, satisfy (4.0.1) and
(4.1.2). Our main result is the following.

Theorem 5.1.3. Let Q C RY be an open, bounded set with OQ Lipschitz, let Y; := (0,1)V,
i€ {l,---,n}, and let f : R"™N x RN — R be a Borel function satisfying (F1)-(F4), (F5) and
(F6). Then, for all (u,py, -+, p,) € BV(RY) x My (€Q; BV (Y1;RY)) x -+ x M (2 x Yy x -+ X
Y1 BV (Yar RY),

ac

Fsc(u’l'l’l""7l"l‘n> :/ f(yla"'7yn7%(xayla“Wyn)) dxdyldyn
QXY % XY, dL»

o'} d)\id-‘qw-v#n s
+ f (yla"'vynad)\s—(xvyh'"ayn)) dHAu,p,l,...,p,nH(xaylv'"ayn)'
QXY x--xY, || u,/.l,l,.‘.,p.nH
(5.1.7)
Moreover, for all u € BV (2;R?),
Fhom(y) = inf F*(uy gy -y fy,)
J75 EM*(Q;BV#(YI;Rd)) .....

P EMG (XYL X+ XYy _15B Vg (Yn;RD)) (5 1 8)

= [ (Ve e+ [ (o o) (37507 (@) D),
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where (fo+ hom)™ = (((fo+)’*’*)1wm)oo is the function defined by (5.1.6) (note that in view of (F2),
(fn)" = 1)

Furthermore, if in addition

(i) f satisfies one of the two conditions (F4)” or (F8), then (fo+ hom)™ = (fhom)™;
(11) f satisfies (‘7:7)7 then (f0+,}101n)oo = (foo)hom'

We remark that in Theorem 5.1.3 we do not assume coercivity nor boundedness from below of
f. The main ingredients of the proof are the unfolding operator (see Cioranescu, Damlamian
and De Arcangelis [25], Cioranescu, Damlamian and Griso [27]; see also Fonseca and Kromer
[47]) and Reshetnyak’s continuity- and lower semicontinuity-type results. The approach via the
unfolding operator, in connection with the notion of two-scale convergence and in the framework of
homogenization problems, sometimes referred as periodic unfolding method, has already been adopted
by other authors in the Sobolev setting (see, for example, Cioranescu, Damlamian and De Arcangelis
[25], Cioranescu, Damlamian and De Arcangelis [26], Fonseca and Krémer [47]).

We use the convexity hypothesis (F2) when establishing the lower bound for the infimum defining
F*¢, which is based on a sequential lower semicontinuity argument. We start by proving that the
(n+1)-scale convergence of a sequence of measures absolutely continuous with respect to the Lebesgue
measure is equivalent to the weak-x convergence in the product space 2 X Y7 X --- x Y,, in the sense
of measures of the unfolded sequence, i.e., the image through the unfolding operator of the original
sequence (see Lemma 5.2.4). Then we prove that the energy F. does not increase by means of the
unfolding operator (see Lemma 5.2.2). In order to conclude we need sequential lower semicontinuity
of the functional

d)ec
F()\) ::/ f yl’...vyn’i(x,yl7._"yn) dxdyldyn
QXY X XYy ( dLn+)N )
d\®
+ o s s Yny T @ yeees YUn d )\s x, sy Yn
[ A (R - (SR EPSTERAS

for A € My (2 x Yy x -+ x Y,; RN) with respect to weak-+ convergence in the sense of measures,
which requires convexity of f in the last variable (see, for example, Ambrosio and Buttazzo [6]). In
the scalar case d = 1 we can overcome this difficulty by a relaxation argument with respect to the
weak topology of W11(Q), which cannot be applied in the vectorial case since quasiconvexity is a
weaker condition than convexity (see, for example, Dacorogna [29]). As a corollary of Theorem 5.1.3,
we obtain the following result concerning the scalar case d = 1.

Corollary 5.1.4. Let  C RY be an open and bounded set with 9§ Lipschitz, let Y; := (0,1),
i € {l,---,n}, and let f : R"™™W x RN — R be a Borel function satisfying conditions (F1),
(F3), (F4), (F5) and (F6) with d = 1 and with o(1) replaced by —|o(1)| in (F6). Then, for all
(uy g, -+, ) € BV () X My (; BV (Y1) X -+ - x M (Q x Yy X -+ Y, _1; BV4(Y,,)),

dAaC
Fsc(ual’l’v"'vll’n):/ f**<y177yn7M(x7ylvayn))dxdyldyn
! QXY X XY, dﬁ(n+1)N

*% ) 00 dAZ?l"‘lv"'ap’n s
+ ((fO*) ) (ylv"'7yn7d)\s—(xvyla"'vyn)) d”/\u,lh,-..auﬂ”(xvyla"'vyn)a
QxY1 X xXYs || Uy 5., M, || )

(5.1.9)
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where ((fo+)**)®° is the function defined by (5.1.5). Moreover, for all u € BV (Q),

Fhom(y) = inf F5¢(u
(u) B €M (5B (YD), oo, (U, pg, s b
o EM (XY XX Yy _13B Vg (Yn))

. (5.1.10)
= [ honl(Futa)) dz+ [ (o) o) ™ (G507 @) dIDul 0)

where (((fo+)**)hom) " is the function defined by (5.1.6).
Furthermore, if in addition

(i) f satisfies the coercivity condition (F4)’, then ((fo+)**)* = (**)*° and (((fo+)** )hom) =
((f**)hom)oo;

(ii) f satisfies (F7), then ((fo+)™*) = (f>°)** and (((for)**)nom) ™

((foo)**)hom'

Remark 5.1.5. (Comments on the hypotheses) (i) If f is bounded from below, then (F4) is satisfied:
it suffices to take cs = 0 and bs = —b, where b := inf f € R. Hypothesis (F4) may be regarded as a
stronger version of the condition

(F4)* for all § > 0 there exists bs € R such that for all yy, ..., y,, £ € RV,

f(ylvayn7£)+5|§‘+b5 207

so f cannot decrease as —|€| but it can decrease as —|¢|* with a € (0,1): If f : R™N x R¥*N — [0, 00)

is a nonnegative function, and b € R, ¢ > 0, then for all o € (0, 1),

f(yla"'7yna§) = f(yl7,yna§)_c|€|a+b

is a function satisfying (F4)*. We do not assume (F4)* in place of (F4) in Theorem 5.1.3 and
Corollary 5.1.4 because in general the former is not inherited neither by fuom nor by f** from f,
whereas the latter is.

We observe that if [ is lower semicontinuous and independent of (y1,---,yn), then f satisfies (F4)*
if, and only if, it satisfies
lim inf &) > 0. (5.1.11)
j€l—+o0 [€]

Moreover, if f is in addition convex, then (5.1.11) is a necessary and sufficient condition for the
sequentially lower semicontinuity with respect to weak-x convergence in the sense of measures of the
functional

u € LYQ;RPNY) — Qf(u(a;)) dz.

Furthermore, (5.1.11) yields

WV

liminf | f(uc(z))dx
Q

e—0t

L1 (@) @+ [ (G @) i@

whenever u-LN|q = \ weakly-x in M(Q;R?*N) (see Fonseca and Leoni [48, Thm. 5.21]). This fact
will be used when establishing (5.1.8) and (5.1.10).

(ii) If f satisfies a growth condition of the form |f(y1, -, Yn,&)| < C(1+1€|) and is convex in the last
variable, then (see Boni [15]) (F5) holds if, and only if, the function f : R™N x RN x [0,00) — R
defined by

-~ . tf(yl’hyn,é) 1ft>0,
s Yns &) = ! i
fln Yn, &, 1) {foo(yh"',me ift =0,
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is continuous. In particular, if f is continuous, positively 1-homogeneous in the last variable, and
satisfies (F2), (F3), and (F4)*, then it also satisfies (F5) since in this setting f is continuous.

The continuity of f will be crucial in our analysis in order to apply Reshetnyak’s continuity- and lower
semicontinuity-type results (see Lemmas 5.2.5 and 5.2.6 below).

(iii) Hypothesis (F6) is a weaker version of the hypothesis

(F6) there exist a continuous, positive function w satisfying w(0) = 0, and a function a € L;é (V)
such that for all Y1, ... Yn—1, Yy s Y15 Uny & € RN we have

|f(yl7"'7yn—1;yn7§) - f(ylla"'ay;z—lvynagﬂ
< w(‘(ylv"Wyn*l) - (yllvy;zflﬂ)(a(yn) +f(y1a"'7yn7£))7

which often appears in the literature (see, for example, Braides and Defranceschi [21], Serrin [70]).

If f is of the form f(y1, -+, Yn, &) := g(y1, -+, Yn—1)h(yn, &), where g is a continuous and Y1 X+ - - XY, _1-
periodic function, and h is a function satisfying (F1)—(F5), then f satisfies (F1)—(F6); in particular,
we may consider g = 1, which corresponds to the case of one microscale (i.e., n = 1) and so, in
this situation, (F6) is trivially satisfied. Other simple examples of functions satisfying (F1)—(F6) are
functions of the form f(y1, -, yn,&) := g(y1,- -, yn)h(§), where g is continuous and Y1 X -+ X Y-
periodic, and h satisfies (F2)—(F4).

Remark 5.1.6. (i) Equalities (5.1.7) and the first one in (5.1.8) are valid under the more general
growth condition from below (F4)* (introduced in Remark 5.1.5 (i)). The reason why this condition
is not enough in order to conclude the second equality in (5.1.8) is that in general it is not inherited
by fnom, while (F4) is and this ensures that fnom satisfies (5.1.11), which, as we will see, will play a
crucial role in the proof.

(ii) In Theorem 5.1.3 and Corollary 5.1.4, we need the length scales to satisfy condition (4.1.2) only
to establish the equalities (5.1.8) and (5.1.10) involving Fho™,

In the case in which n = 1 and d = 1, we recover Amar’s integral representation [5] of the two-
scale homogenized functional F*° under more general conditions (see Remark 5.1.5 (ii) and (iii)).
Furthermore, if we assume a priori compactness of a diagonal infimizing sequence for the sequence
of functionals {F.}.~0, we recover Amar’s result [5] under more general conditions. We observe
that even if a priori compactness of a diagonal infimizing sequence is assumed in Theorem A, the
coercivity condition is still needed to validate the arguments in Amar [5]. We also recover Bouchitté’s
integral representation [16] of the effective energy F'°™ without assuming coercivity of f and without
assuming convexity of f in the second variable, but assuming continuity in the first one in order
to apply Reshetnyak Continuity Theorem, while in Bouchitté [16] f is assumed to be convex in the
second variable and coercive, but only measurable and Y-periodic in the first variable.

If n =1 and d > 1 in Theorem 5.1.3, then we recover De Arcangelis and Gargiulo’s integral
representation [34] of the effective energy F"°™ without assuming f to be bounded from below, but
assuming f to be continuous in the first variable and convex in the second one, while in De Arcangelis
and Gargiulo [34] f is only required to be nonnegative, measurable and Y-periodic in the first variable
and continuous in the second one. As we mentioned before, our hypotheses are related to the periodic
unfolding method and Reshetnyak Continuity Theorem’s hypotheses.

In the case in which n > 2, Theorem 5.1.3 and Corollary 5.1.4 provide new results in the literature in
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that, to the best of our knowledge, the homogenization of nonlinear periodically oscillating functionals
with linear growth and characterized by n > 2 microscales has not yet been carried out.

Finally, in the framework of homogenization by I'-convergence in the BV setting and for n = 1 we
also mention the works by Braides and Chiato Piat [20] and Carbone, Cioranescu, De Arcangelis and
Gaudiello [23] concerning the convex case; and Bouchitté, Fonseca and Mascarenhas [18, Sect. 4.3],
Attouch, Buttazzo and Michaille [9, Sect. 12.3] and Babadjian and Millot [10] regarding the nonconvex

case.

The remaining part of the present chapter is organized as follows. In Section 5.2 we prove
Proposition 5.1.1 and Theorem 5.1.3, and in Section 5.3 we prove Corollary 5.1.4.

5.2. PROOF OF THEOREM 5.1.3.

Throughout this section we will assume that n = 2. The cases in which n =1 or n > 3 do not bring
any additional technical difficulties. Given z € RY, we write [z] and (z) to denote the integer and
the fractional part of x componentwise, respectively, so that = [z] + (z) and [z] € ZV, (z) € Y. We
denote the Lipschitz constant of a function g on a set D by Lip(g; D); if D coincides with the domain
of g we omit its dependence. The letter C represents a generic positive constant, whose value may
change from expression to expression.

For n = 2 the energies F; in (5.0.3) take the form

T T o/ T x dD*%u R
F(u) = /Qf(gl—(g),QQ(E),Vu(a:))dx—i—/ﬂf (91(5),92(6),d||D5u”(x))d||D dl(z)  (5.2.1)

for u € BV (;R?), where, we recall, 1,02 : (0,00) — (0,00) are functions satisfying (4.0.1) (with
n = 2) and f*° is the recession function associated with f. Due to the convexity hypothesis (F2),
the limit superior defining f°° is actually a limit (see, for example, Fonseca and Leoni [48]), so that
[ RN x RNV x RN 5 R is given by

f(y1, 92, t€)

I W1, y2,6) = t—léinoo e

Moreover, under hypotheses (F1)—(F3) and (F4)* on f, we have that f°° is a Borel function satisfying
(F1), (F2), and the growth condition

Notice that in view of (F3), (F4)* and (5.2.2), the functional F. is well defined (in R) for every
u € BV(RY).

In Theorem 5.2.1 below we will establish (5.1.7). We will use the unfolding operator (see Cioranescu,
Damlamian and De Arcangelis [25], Cioranescu, Damlamian and Griso [27]; see also Fonseca and
Krémer [47]): For o > 0, 7, : L*(Q;R™) — LY(RY; LY, (Ya; R™)) is defined by

To(0)w ) =3 (o[ | + o2~ ) for w2 € RV, g € LR,

where § is the extension by zero of g to RY. Clearly 7, is linear, and for every g € L'(;R™)
1Zo(9) It @xyarm) < [1To(9) ||t @Y xvosmm) = 1G]t @y mm) = [l9]lL1(QRm). (5.2.3)
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and
lim |g(z) — T,(9)(x,y2)| dedy: = 0 (5.2.4)

0=0" JRN x v,
(see Fonseca and Kromer [47, Prop. A.1]).
Similarly, we define the operator A, : L}(Q x Ya; R™) — LY (RY; Ly (Y1; L' (Yo;R™))) by

Aoy 0) 1= e[ 7] + ol — n])v2) = Toh(92)) ar91)

for z,y; € RN 4y € Yo, h € L1 (2 x Ya; R™), where h is the extension by zero of h to RN x Y. A, is
linear, and for all h € L*(Q x Ya; R™),

”Ag(h)”Ll(QxleYz;Rm) < ||A9(h)“L1(]RN><Y1 X Yo;R™) = HiLHLl(RNsz;R’") = Hh||L1(Q><Y2;Rm) (5~2-5)

by (5.2.3) and Fubini’s Theorem. Moreover, we notice that for a.e. ys € Ya, we have

lim |\A(,y2) — To(h(-,y2)) (2, y1)| dedy; = 0

QHO*’ RN x Yy

by (5.2.4), and
/ () — To(h(-, o)) (s )| dadys < 2 / (e, y2)| dae € L} (¥3),
RN xY; RN

where we used (5.2.3) to obtain

[ 1Tt dsdn = [ i a)|

Thus, Lebesgue Dominated Convergence Theorem yields

lim |h(z,y2) — Ag(h)(z, y1,y2) | dedydys

0—=0" JRN x v, xYs

= lim (@, y2) = To(hl-,y2)) (2, y1)| dzdyrdyz = 0.

QHO*’ RN x Y1 xYs

Theorem 5.2.1. Let Q C RY be an open, bounded set with O Lipschitz, let Y| = Y5 := (0,1)",
and let f : RN x RNV x RN — R be a Borel function satisfying conditions (F1)-(F3), (F4)*, (F5),
(F6) for n = 2. Then (5.1.7) holds (with n = 2).

The proof of Theorem 5.2.1 is hinged on some lemmas. The first lemma “unfolds” the rapidly
oscillating sequence.

Lemma 5.2.2. Under the same hypotheses of Theorem 5.2.1, if {v.}.~0 C L*(Q; R¥¥) is a bounded
sequence then, for all n > 0,

. . X X
lim fnf /an(gl—@’ 2@ ve(e) do

(5.2.6)
> liminf / Fo (1, y2, Agy(0) (Tou(e) (ve)) (, 41, y2) ) dadyrdys,
QXY XY

e—0*+
Where fn(y17y2a§) = f(ylnyag) + 77|£‘
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Proor. Fix n > 0 and § > 0. Let b, € R be given by (F4)* (see Remark 5.1.5), and let
as € L#(Yl x Y3) and 75 > 0 be given by (F6). Then

falye ) = — by, (5.2.7)
and, for all y1, v}, y2 € RV, € € RN such that |y, — | < 75,

Fa(y1,92,€) = das(y1,y2) + (14 0(1)) fo (41, 42, €) — o(L)nlg] (as 6 — 0%). (5.2.8)

Set ¢ := sup, ||ve|L1(qraxny, €1 := 01(€) and 2 := 02(¢). Define

Ze, ={r € ZN: ey(k+Ya) N # 0}, Q= int( U 52(n+?2)). (5.2.9)

K/EZEQ

Notice that Q C Q., and, by (5.2.3),
Sl>113 172, (ve)ll L1 &N xvpsmaxny < e (5.2.10)
€

Recalling that 9. stands for the extension by zero to the whole RY of v., using (F3), a change of
variables and (F1), in this order, we obtain

JplE Zoe) o= [ 5 <—— QLS CEDE
Z / (& f,y(x)) dr — CLN (9.,\0)

KEZe, (p+Y2 ) 61 <

Z / fan —/<; + *yza Y2, Ve (2K + 523/2)) 5£de2 —ccy (962\9)'
Ya

KEZe,
(5.2.11)

Since [é] = k whenever x € go(k + Ya), LN (e2(k + Y2)) = &) and [y2] = 0 for all yo € Y3, in view of
the definition of 7¢, (v.), by Fubini’s Theorem, and from (5.2.11) we get

/fn(ﬁ, i,vg(x)) dz
Q €1 €2
g Z /52(,{+y2) (/3/2 f"(i_? [é} + Z—iyg,y%ﬁa (52{ } +€2?JQ)) dy2> dz — CLN (Q:,\Q)

KGZEQ

= [ n(Z[E] R T ) dede - CLY (22\0)
Qe x Yo €1

€1 LE9

> / fn(E—Q [E} + 5_2y2, s, T, (vs)(x,yg)) dadys — (b, + O) LN (Q,\9Q),
QxYs &1

€1 LEg
(5.2.12)

where in the last inequality we used (5.2.7).

By (4.0.1) there exists €5 > 0 such that for all 0 < £ < €5 one has 0 < e3/2; < 75/2\/N. For any such

E)
9 xZ & xZ 9 T
3[7%3 R ,3<7>+7y2’<757

sup Y
€1léer €1 €1 T€EQ,Y2€Y> €1 \&€2

€Q,y2€Y2
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thus (5.2.8) and (5.2.10) yield

e[ x E9
/QXY2 f"<5 {5} * gy%y%TEz (UE)(%Z%)) dxdys

>4 &5<:—1, yg) dadys + (1 +0(1)) /

x
fo( £ Tea(02) @, 2) ) dadys — [o(1) .
QxYa QxYs €1

(5.2.13)
Defining Z., and 2., as in (5.2.9) (with e and Y5 replaced by €; and Y7, respectively), and reasoning
as in (5.2.11)—(5.2.12), we conclude that

/ fn(;ay%?;z(vs)(x,yQ)) dxdyQ

e (5.2.14)

> / Fo(y1,y2, Aey (T2, (ve)) (2, 91, y2) ) dedyidys — (b, + O) LN (Q2:,\Q).
QXY1><Y2

By the Riemann—Lebesgue Lemma we have that for a.e. yo € Ya, as(-/e1,92) — le as(y1, y2) dys
weakly in L{ (RY). Hence,

loc
lim inf/ a6(£792) dzdys > ﬁN(Q)/ as(y1,y2) dyr1dya, (5.2.15)
e—0t QXYQ El Y1 ><Y2

where we have also used Fatou’s Lemma and Fubini’s Theorem.

In view of (5.2.12)—(5.2.15), we obtain

o x x
hmmf/ﬂf,,(—,g,va(x)) dz

e—0t &1

> (1+o0(1)) lim inf/ fo(y1,y2, Aey (T2, (ve)) (@, 91, y2)) dedy,dy, (5.2.16)
QxY; xXYs

e—0t

+5LY(@) [ aslun,va) dindys — o1 e
Y1 xYs

where we also used the convergences £V (€., \Q), LY (Q-,\Q2) — 0 as ¢ — 07, since 99 is Lipschitz
and so £LY(9Q) = 0. Finally, recalling that 6||d5||L31¢(y1><Y2) — 0 as 6 — 07, passing (5.2.16) to the
limit as § — 07 we get (5.2.6). O

Remark 5.2.3. The previous proof can be easily generalized to the case in which n > 3 by using
(2.2.2) in place of Riemann-Lebesgue Lemma (see (5.2.15)).

We now show that, similarly to what happens in the LP-case with p € (1,00) (see Cioranescu,
Damlamian and Griso [27, Prop. 2.14]), 3-scale convergence of a sequence of measures absolutely
continuous with respect to the Lebesgue measure is equivalent to a weak-x convergence in the sense
of measures in a product space of the unfolded sequence.

Lemma 5.2.4. Let Q C RY be open and bounded, let {v.}.~o C L*(£;R4*N) be a bounded sequence
and let \ € My# (QXYl ><Y2; RdXN). Then ’UEZZNLQ ‘3_% A if, and only jf, 'AQ1 () (’TQQ(E) (UE)),CSNLQX)/I XYa
2o\ weakly-x in My (Q x Y1 x Yo; RN as e — 07F.

PrOOF. For § > 0, define the sets
W5 = {HEZN: §(k+Y) CQ}, Qs ::int( U 6(n+7)).
KEWSs
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Take ¢ € C}(Q), ¢1 € CL(Y1) and ¢y € CL(Yo; RN), and let ¢ 1= ¢yh1¢h. Set &1 := p1(¢) and
€9 := 02(g). By (4.0.1) we can find & > 0 such that for all 0 < & < € one has

dist(supp ¢, 0\Q.,) > 261V N, dist(supp ¢, Q\Qe,) > 261 VN. (5.2.17)

Fix any such e. Using (5.2.17), the definition of A, , Fubini’s Theorem, and the equalities [%] =K
ifx €e1(k+Y1) and [y1] =0 if y; € Y7, in this order, we get

/ oz, y1,y2)  Ae, (T2, (ve)) (2, 1, y2) dedyidys
QXYl ><Y2

x
= T, Y1, 272, (v (5 [—}4—5 — , )d:cd d
/Q B o, y1,y2) : 1o, (ve) (€1 5 1(y1 — [n1])s v2 y1dys (5.2.18)
=/ ( > / w(xyyl,yz)rTsz(ve)(ém+61y17y2)dx)dy1dyz-
Y1 xXYs HEWEI El(I{JrYl)
Performing the change of variables = &1k + £1(, by Fubini’s Theorem the last integral in (5.2.18)
becomes
/ ( > / plerk +e16,y1,y2) « Tey (ve) (€16 + €1Y1, Y2) €]1de1> d¢dys,. (5.2.19)
Y1 ><Y2 KEW, Yl
Considering now the change of variables y; = ﬁ — K, and using again Fubini’s Theorem, (5.2.19)
reduces to
x
/ ( > / p(ein+et, = — ) :7;2(v5><x,y2>dx>d<dy2
Y1 xYs e1(k+Y1) €1

KREWe,

= /Y Y( /Q 5 oo o] rac =y2>~Z2(Ue)($ayz)dx>dCdy2 (5.2.20)

x x
:/ 90(61[ } +e1y1, — ,y2> 2 Te, (ve) (2, y2) dady dys,
Qe XY1XY2

where in the first equality we used the Y7-periodicity of ;.
We claim that if z € Q\Q,, U Q\Q,, then

(51 [g} n lel) A supp ¢ = 0. (5.2.21)

In fact, if there was z € (e1[% ] +e1Y1) Nsupp ¢, then z = &1 & ] + &1y for some y; € Y] and, by
(5.2.17),

261V N < dist(supp ¢, z) < |z — x| = ‘ 1[;} + 191 —x‘ = ‘ —€1< >—|—51y1‘ 251\/N,

which is a contradiction. Hence, (5.2.21) holds. Consequently,

/ W(ﬁl[ } +e1y1, — va) 2 Te, (ve) (2, y2) dzdy:dys
fea x¥1x%2 (5.2.22)
=/Q ey w(&[q +e1y1, — ,yz) 2 Te, (ve) (w, y2) dody: dya.
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Arguing as in (5.2.18)—(5.2.20), we have
x
/ @(81[ +e1y1, — ,yz) 2 Te, (ve) (7, y2) dadyrdyz
QE XY1><Yz E

} + ey, — ,y2> :v5(62n+52y2)dx)dy1dy2
K+Y)

K+ C} + 191, —/<o —|— C, —— /{) ve () dx)dyldC
H+Y2) €1

/ €1 */‘6+ C} +€1y1, FH' C,y2> 105(52/€+52y2)5évdy2)dy1dC

Y XY (

&€ [ X 3 X
= / 90(61 l:—Q [—} + —yg] +€1y1, -2 [—} + _2y2a _> : 'Us(x) dxdy,dyo,
Qey XY XY €1 L& €1 g1 Leg €1 €9

[ = —<]+sly1,2[;}+5—2<é):v5(x)dw>dyld<

€1

(5.2.23)
where in the fourth equality we used the Ys-periodicity of .
In view of (5.2.18)—(5.2.20) and (5.2.22)—(5.2.23), we conclude that
/ (P(x,yhyQ) : A€1 (zz(ve))(xvylayQ)dxdyldyQ
P (5.2.24)

- [ Bac (1,920 (0= (0, 2)) s () - w2 () oy,
Qoy xY1 xY2 [Sp)

where

£ IS 52 €T 82
2 [ ] + —2y2} e, be(z,y2) = — {_} + v wynye €RY
€9 €1 €1

as(‘raylva) —51[ o

€1

Notice that for all x € , y; € Y7 and ys € Y53,

|a5($7y17y2) - .’I,'| < 2\/N(51 + 82)7

be (2, 2) — 3‘ <2VN 2. (5.2.25)
€1 €1

Using (5.2.24) and (5.2.17), we obtain

€1 &2

xr X
‘/ @($7y1792) : Ael (Zg(ve))(maylayQ) dxdyldyQ - /(P(‘Ta ) _) : ’U5<{L') dx
QXY XY Q

/ Blac e . v0) s (o .y () ¢ 02 ()
Qe XY1 X Ya €2

—/ oz )1/)1( )1/12< ) : ve(z) dzdyrdys
952XY1XY2
< 2l (ragmny / [0l e, yn. 2) s (b 2)) = O(a)en ()| v- () ddyndy

QAxY; XY

< 2l Lo (vasmaxny /

QXY xYs

(nmw(mumw

(2, y2) — g)

+ ||¢1|\L;°(Y1)Lip(¢)\ae($ayhyz) - x’) |ve ()] dzdy: dya

< C(&?l + €9 + ?)7
1
(5.2.26)
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where in the last inequality we used (5.2.25) and the fact that sup, [[ve|p1(qraxny < 0.

Since functions of the form ¢ = ¢¥1ehe are dense in Co(;Cx (Y x Yo; R>*N)) and since
{ A e)(Toae)(v:))} C LYQ x V1 x Yo RPN, {o.} € LY RYYN) are bounded sequences (see
(5.2.3) and (5.2.5)), using a density argument, (4.0.1), and passing (5.2.26) to the limit as e — 07,
we conclude that v.LV o35\ if, and only if, Ay, () (Zp,(e)(ve)) L3N axyixva XX weakly-x in
Mz (2 x Y7 x Yo; RP>N) as e — 0F, O

The next lemma is a Reshetnyak continuity type result for functions not necessarily positively 1-
homogeneous, and similar to Kristensen and Rindler [58, Thm. 5] (see Delladio [33] for related results).

Lemma 5.2.5. Let U C R! be an open set such that L!(U) < co. Let g : U x R™ — R be a function
such that g : U x R™ x [0,00) — R defined by

§) ift>0
gz 1) = 1905 %) ’ 5.2.27
9(z.6,1) { =) ifto, (5.2.27)
is continuous and bounded on U x S™, where g™ (z,§) := limsup,_,  g(z,t£)/t is the recession

function of g and S™ is the unit sphere in R™ x R. If A € M(U;R™), let A € M(U;R™ x R) denote
the measure defined by A(-) := (A(-), £!(-)). Assume that \;, A € M(U;R™) are such that

N 55 A weakly— in M(U;R™ x R),  lim || A]|/(U) = |A|(T). (5.2.28)

j—+o0

i { [ o= o) s [ (e g @) anie)
= [ a(= G as+ [ o= (= g ) Al

PROOF. Since g is a continuous and bounded function on U x §™, in view of (5.2.28) Theorem 2.1.51

, o d)
im_ /U e I 2))alAll(=) = / gz, dW( 2))alIAl(2)- (5.2.30)

We claim that (5.2.30) reduces to (5.2.29). In fact, writing the Lebesgue decomposition of an arbitrary
€ M(U;R™) with respect to L! as

Then

(5.2.29)

yields

duac . s
= acl L \;U + 0,
then
A duac l s _ 1
n= (dﬁz 71)5 w+ W, 0), |l = ‘( VR )‘E v+ el (5.2.31)

are the Lebesgue decomposition of ji and ||fi| with respect to L', respectively.

In view of the Besicovitch Derivation Theorem, for £'-a.e. z € U, we have

~ d,u,aC 1
IR = ((f‘ffc (2.1) : (5.2.32)
dll (427 (2).1)
and for ||p®|-a.e. z € U, we have
dit dp®
0 5.2.33
i@ = (@) (5239
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From (5.2.31)—(5.2.33), and taking into account the positive 1-homogeneity of (£,t) € R™ x [0, 00) —
g(z,&,t), we deduce that

[ o @)aiine = [ a(=Sar.1)ds+ [ o= gle0)aeie)
- [ o= L @) at [ oo 51 0) Al

where in the last equality we used the definition of g. By (5.2.34) we conclude that (5.2.30) reduces
0 (5.2.29). O

(5.2.34)

Next we prove a Reshetnyak lower semicontinuity type result for functions not necessarily positively
1-homogeneous (see also Dal Maso [30], Giaquinta, Modica and Souéek [51]).

Lemma 5.2.6. Let U C R! be an open set such that L'(U) < co. Let g: U x R™ — R be a function
satisfying |g(z,&)| < C(1 +|£]), for some C > 0 and for every (z,£) € U x R™, and such that for all
z € U, g(z,-) is convex. Assume further that for all z € U and 6 > 0, there exists T = 7(Z,6) > 0
such that for all z € U with |z — Z| < 7, and £ € R™, we have |g(Z,§) — g(2,&)| < §(1 +|§]). If
Aj, A € M(U;R™) are such that \; =; X\ weakly-x in M(U;R™) as j — +o0, then

lim inf / g(z, &(z)> dz + / g (z, &(z)) d|| A3 (2)
Jj—+oo U ds! U d”)‘jH !
daee d)®
> = 0 (g, 2 *|I(2).
> [ o(= G @) e+ [ o= (= g5 @) dNIE)

PROOF. Let Aj,A € M(U;R™) be such that \; =; \ weakly-x in M(U;R™ x R). Defining
g *

5\]-, A€ M(U;R™ x R) as in Lemma 5.2.5, we see that Aj = A weakly-+ in M(U; R™ x R).

(5.2.35)

Let g: U x R™ x R — R be the function introduced in (5.2.27). Then (see Remark 5.1.5 (ii)) g is a
continuous function, and |g(z, &, t)| < 2C|(&,t)| for all (z,&,t) € U x R™ x [0, 00). Moreover, since for
each 7 € N there exist functions a; : U — R and b; : U — R™ such that

g(zag) = sup {ai(z) + bl(z) : g}a 900(275) = Sup {bz(z) ' §}7
i€N €N
(see Fonseca and Leoni [48, Prop. 2.77]), we have that for all (z,£,1) € U x R™ x [0, 00),

(zft)—sup{a,z )JE+bi(z) - £}

Thus for all z € U, (§,t) € R™ x [0,00) — §(z,&,t) is convex and positively 1-homogeneous. So,
Theorem 2.1.53 yields

d\; dX
ggg/g(dw”<0nﬁu> / (dwﬁﬂ|uu> (5.2.36)

Finally, we observe that by (5.2.34), (5.2.36) reduces to (5.2.35). O
PROOF OF THEOREM 5.2.1. Fix (u,py, ) € BV(Q;RY) x My (Q; BV (Y1;RY)) x My (Q x
Y1; BV (Ya;RY)), and set
d)\ac
G (u, oy, pa) ;:/ f(y1,y27 %(aﬁ,yhyz)) dady;dys
QxY; XY
dAu HisH2 s
+ 7 (s 5 (a1, 2) ) NG (91, 2):
QXYl XY2 d||)\

UsHy s I-‘2||
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We will proceed in two steps.

Step 1. We start by proving that

FSC(’UHIJ/DIJ’Z) 2 G(U7IJ’17I‘I’2)'

Let {ep}nen be an arbitrary sequence of positive numbers converging to zero as h — 400, and by
Proposition 4.1.8 let {uy }hen € BV (€;R9) be a bounded sequence such that DuhB—;ZCA/\%“DM. We
claim that

liminf F;, (up) = G(u, pq, ts). (5.2.37)

h—+o0

Since {Duy, }hen is bounded in M (£; R¥*Y) (see Remark 4.1.5), in view of (F3), (F4)* and (5.2.2),
we have that {F;, (up)}ren is bounded. Therefore, we may assume without loss of generality that
the limit inferior in (5.2.37) is actually a limit and that this limit is finite (which is true up to a
subsequence).

By Proposition 4.2.10 (with p; = 0), for each h € N we can find a sequence {u;-h)}jeN C WH(Q;RY)
such that

ug»h) 2wy weakly-x in BV (Q;RY),

~(h ~ . . J(h 3

125 A weaklyx in MQRPN xR), - lim [IAV)Q) = (@), (5:2.38)

where, for B € B(),
AN (B) = (/ Vuy" (2) dx,mB)), Mn(B) = (Dun(B), £~(B)).
B

Under hypotheses (F1)-(F3), (F4)*, (F5) (see also Remark 5.1.5 (ii)), it can be shown that for fixed
h € N, Lemma 5.2.5 applies to U := Q and g(x,§) := f(ﬁ, ﬁ,f), which ensures the continuity

of the functional Fy, with respect to the convergence (5.2.38), that is, lim;_, o F%, <u§_h)) = F, (up).
Consequently,
lim lim F., (ugh)) = lim ., (up). (5.2.39)

h—+400 j——+00 h—+oc0
Moreover, given ¢ € Co(£2; Cx (Y7 x Yo; R¥*N)) we have

Q1(€h) 02(en)

lim  lim <,0<91:,L ‘ ):Vu(-h)(x)dx: lim Qcp(ac,

, s dDup(x
h—+o00 j—+0 Jo Ql(éh) QQ(Eh) J h—+o00 ) h( )

= / @(xvylayZ) :dAu,pl,Mz(mvylayZ)a
QXY XYs
(5.2.40)
where we have used the weak-x convergence Vug.h)EN o i Duy, in M(Q; RPN and the 3-scale
convergence Duh%)\u#hw. In addition, in view of (5.2.38),

sup sup/ |Vu§h) ()| dz < oo. (5.2.41)
heN jeN Ja

Using the separability of Cp(Q; Cx (Y1 x Yo; R¥N)) and a diagonalization argument, from (5.2.39),

(5.2.40) and (5.2.41), we can find a sequence {j;} such that j, — +oo as h — +o0, and such that

h .
wp, = ug’) satisfies

wp € WHHLRY),  VwplN o2 N, s Jim Fe,(wn) = lim Fe, (un). (5.2.42)

Eh h—+oo
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Set ¢ := supy, Vw1 (graxyy < 0o and fix 7 > 0. Then by Lemmas 5.2.2 and 5.2.4, and by
Lemma 5.2.6 apphed to U := O x Y1 xYs and g(l‘7y1ay27€) = fﬁ(ylay27£)7 where fn(y17y2a€) =
f(y1,y2,&) + €], we conclude that

x x
lim F — lim F > liminf (—,—,v )d
pm Fe (un) e = lim Fe, (wn) + e > Hm inf /Qf" oren) ooy V@) de
> lim inf / Fa (1,92, Agi ) (Toaien) (Vwn) ) (2,91, 92) ) dadyrdys > F3°(u, py s o),
h=+00 Jaxyixv,
(5.2.43)
where
sc d)‘Z?pl,;LQ
F(u, py,s o) = In (yhyz, — (T, Y1, yz)) dzdydy:
QXY XY dc
e (5.2.44)
+ / f;;o (ylv Y2, %(:L Y1, yQ)) d|‘>‘z,p1,p2 H(I, Y1, yQ)
QXY1><Y2 d” u,/.Ll,[.L2||
Since f2°(y1,y2,§) = f°(y1, y2,§) +nl§], from (5.2.43) we deduce that
pm Fe, (un) + e 2 Gu, by, pa) + 0l Ay, | (Q X Y1 X V).
Finally, letting 7 — 0% we obtain (5.2.37).
Step 2. We prove that
FSC(’UHIJ’DIJQ) < G(uvl'l’17“2>' (5245)

Let {e}rhen be a sequence of positive numbers converging to zero as h — 400, and let {u;}jen C
g 1 2

Co@RY), {piV} o € O CE(YiRY) and {viP}  C C2 (@ 0F (Vi x YaiRY) be the

sequences given by Proposition 4.2.10. For each h, j € N define uy ; € C*(§); R?) by

) + oaen)i? (a, Ql(xgh), ﬁ) (5.2.46)

up () == u;(z) + Ql(Eh)l/J§1) (m, Q1z€h)

Using (4.0.1), (2.2.1), and (4.2.67), in this order, we have that for all ¢ € Cp(€; Cg (Y7 x Ya; RI*N))

it [ ey o) T @ = [ ) D)
(5.2.47)
Moreover,
x x
Fe,, (unj) = /Qf<@1 =l m,vm,j(m)) da
— rooo_ v . (1) _r
o /Qf<01(€h)7 Q2(6h)7vuj (#) + (Vur¥; )(x, Q1(8h)) dz
(2) x xZ )
+ /Q(Vyzwj )(1‘, Q1(5h)7 92(5h)) + ﬁh:] (1‘)) de,
where ) T (2) x x
nate) = o) (V) (o o) + e () (5 p iy )

02(en) (2) z r
M e IR G vt

We claim that if K € R™ is a compact set then there exists a positive constant C'(K), depending
only on K, such that for all y;,y, € RV, £,¢' € K,

|f (.92, ) — fyr,y2.6) < CE)IE - €. (5.2.48)
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In fact, the continuity of f (see Remark 5.1.5 (ii)) and (F1) ensure that there exists a positive constant
¢(K) only depending on K such that for all y;,y2 € RV, £ € K,

| f(y1,92,6)| < e(K). (5.2.49)

On the other hand, by (F2) (see, for example, Fonseca and Leoni [48, Thm. 4.36]) f(y1, y2, -) is locally
Lipschitz with

Lip(f(y1,y2,-); B(0;7)) <

Vdx N
r Sup{‘f(ylvy%g) _f(y17y27£,)‘ :5’5/ EB(()?QT)} (5250)
From (5.2.49) and (5.2.50), we deduce that (5.2.48) holds.

Taking into account (4.0.1), in view of (5.2.48) for each j € N we can find a positive constant C;
independent of ¢ such that

FEh(uh,j)
x €T (1) €T (2) xr xZ
< ——, —, Vu;(x) + (V¥ T, —— ) + (V1 z, , dzx
L4 (Gt ey T+ T o 55) + Ot (o 55 7))
+cj/|19h,j(x)|dx,
Q
(5.2.51)
with, for all j € N,
lim /|19h7j(x)|dx =0. (5.2.52)
h—+o0o Jo
Furthermore, the function
gj(m7y17y2) = f(yby?»vuj(x) + (Vyle(l))(xayl) + (Vyzwj('Q))($7yl7y2))
belongs to C(€; Cx (Y7 x Y2)), hence by (2.2.1)
x x
lim i, ——, dx:/ (Y1, y2) dedyrdys. 5.2.53
h—>+oo Qg]( Ql(f‘:h) QQ(fh)) QXY1><Y29]( 3/1 y2) yl y2 ( )

From (5.2.51)—(5.2.53) we conclude that

lim sup lim sup F,, (up, ;)
j—+4o00 h—+oo

< lim Sup/ F e, Vg (@) + (V08 (@, 91) + (V3082 (2, 91, 92)) dedyidys
J—+o0o JOAXYxYs

= G(U7N17H2)7 ( )
5.2.54

where in the last equality we invoked Lemma 5.2.5 applied to U := Q x Y x Y5 and g(x,y1,y2,§) :=
f(y1,y2,§), and also (4.2.87).

Using the separability of Co(€2; Cy (Y7 X Ya; R¥*N)) and a diagonalization argument, from (5.2.47) and
(5.2.54), and noticing that {up, ;}n jen is a bounded sequence in W11(Q;RY), we can find subsequences
hy < h and ji < j such that up, ; € C*(€;R?) satisfies

vuhkvjk ’CN\_Q%;‘-TS:)\%ILDIJQ’ lllchSrup FEh,k (uhk»jk) < G(U, Ky, Nz) (5255)
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Finally, consider the sequence {wy, }nen C BV (€2;RY) defined by

I T if h = hy, for some k € N,
L if h # hy for all k € N,

where {vj}hen C BV(Q;R?) is a sequence such that Dvh?’;%/\wbl#2 (which exists by Proposi-
tion 4.1.8). Then Dwy 225X, 4y, 4, and so by (5.2.55)

F(u, iy py) < limind B, () < limsup L, (un, 5,) < G, 1y, 2).
h—+00 k—+4o00

This concludes the proof of Theorem 5.2.1. O

The next theorem concerns the first equality in (5.1.8) relating the three-scale homogenized functional,
F*¢, and the effective energy, FPo™,

Theorem 5.2.7. Under the hypotheses of Theorem 5.2.1, assume further that the length scales o1, 02
satisfy the condition (4.1.2). Then, for all u € BV ({; R?),

Fhom(u) = inf Fsc(uvl'l’l»llﬁ)'
1 EM (2BVy (Y15RY))
#2EM*(QXY1¢BV#(Y2;Kd))

PROOF. Let u € BV (£;R?) be given. We will proceed in two steps.

Step 1. We prove that

Fhom(y) > inf F*¢(u, oy, phy)- (5.2.56)
K1 EM(Q3BVy (Y15RD))
P €My (2X Y13 BVy (Yo iRY))

Let {ep}nen be an arbitrary sequence of positive numbers converging to zero as h — +oo, and let
{up}nen € BV (£;R9) be a sequence weakly-x converging to u in BV (Q;R?) as h — +o0. By (F3),
(F4)* and (5.2.2), liminfy, o Fe, (up) € R. Using Theorem 4.1.7, we can find a subsequence hy < h
and measures fi; € M, (Q; BVg(Y1;RY)), 1y € M (Q x Y1; BV (Y2;R?)), such that

. R TI 3- N 2N 3-sc R
kEI-Poo Fe,, (un,) = 1h1g_~1_1;0f Fe, (un),  un, ah: ul™ 10 @ Ly s Dup, ShSkC Aoy oo
Hence, taking into account Theorem 5.2.1 (see (5.2.37)),
inf F(u, pys pg) < F(u, iy, o) < liminf Fy, (up).
K1 EM (25BVy (Y15RY)) h—+00 )

o €My (2X Y13 BViy (Yoi;RD))
Taking the infimum over all sequences {uy, }ren as above, we deduce that (5.2.56) holds.

Step 2. We show that

Fhom(y) < inf F3(u, oy, o). (5.2.57)

1 EM (QBVy (Y15RD))
#2€M*(QXY1;BV#(Y2;JR‘1))

Let {ex}ren be an arbitrary sequence of positive numbers converging to zero as h — 400, and take
€ My (9 BV (Y1;RY), py € My (Q x Y15 BVy(Ya;R?)). Reasoning as in the proof of (5.2.45),
we can find a subsequence hy < h and a sequence {vy }ren C C°°(Q;R?) such that (see (5.2.46) and
(5.2.55))

kgrfoo /Q|Uk - u‘ dz = O, Vvk‘CNLQ%)‘u,ul,uza lllcrgilolcl?Fshk (Uk) < FSC(U,HD “’2)
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Consequently, we also have that Duv, = Du weakly-x in M(Q; R*>*Y) as k — +oo. Finally, define

_{vk if h = hy for some k € N,
Up ‘= .
u  otherwise.

Then uy, = u weakly-x in BV (Q;R%) as h — +o0, so that

Fhom(y) < %imianshy(uh) < limsup F,, (vk) < F™(u, py, pg),
—Too k—+oc0
from which we get (5.2.57) by taking the infimum over all p; € M, (Q; BVy(Y1;RY)) and p, €
M (Q x Y15 BVy(Ya; RY)). )

Remark 5.2.8. We observe that Theorems 5.2.1 and 5.2.7 hold if (F4)* is replaced by (F4) (see also
Remark 5.1.5 (i)).

In order to establish the integral representation for the effective energy F"™ stated in Theorem 5.1.3
we will need some auxiliary results. The first one is a simple consequence of Kristensen and Rindler
[58, Thm. 6] (see also Dal Maso [30] in the case in which d = 1 and g is coercive).

Lemma 5.2.9. Assume that Q@ C RY is an open and bounded set with 0§} Lipschitz, and let
g : RN . R be a convex function such that for all ¢ € RN and for some constant M > 0,
19(€)] < M(1 + [£]). Then, for all § > 0 and for all u € BV (Q;R¥¥N) there exists a sequence
{uj}jen € WHL(Q; RPN such that u; = u weakly-x in BV (Q;R¥*N) as j — 400, and

o/ dD%u < .
/Q o(Vu()) dz + / o (G @) AID"ul@) 46> tim [ g(Fu;(w) .

j—+ Jo
The next two lemmas provide sufficient conditions under which equality (ghom)®® = (¢°°)hom holds.

Lemma 5.2.10. Let g : RV x RNV x RN — R be a Borel function satisfying conditions (F1)—(F4)
and (F8). Then,
(ghom)OC - (goc)hom~ (5258)

PROOF. We start by observing that, arguing as in Attouch [8, Thm. 4], we can prove a similar result
to Bouchitté [17, Lemme 3.5]: If o : RY x RY x R¥Y — R is a Borel function satisfying hypotheses
(F1)—(F4), then for all y; € RV, ¢* € RN (see (5.1.1) and (5.1.3)),

(hhom, )" (y1,8") = W (y1,y2,€" + Wa(y2)) dya (5.2.59)

inf /
Vo€ Ey (Yo;RIXN) [y,

where, for k € N,
E#(Yk;Rde) = {\IJ = (\Ijij) GL;EO(Yk;RdXN);
/ U(yx)dyr =0, div¥;. =0 for all i € {1,--~,d}}_
Y

Similarly, since hpom, : RY x RN — R is also a Borel function satisfying conditions (F1)-(F4), we
have that for all £&* € R*N,

(Phom)*(§) = (Phoms ) (y1,&" + U1 (y1)) dys. (5.2.60)

inf /
‘IlleE#(Yl;RdXN) Y1
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Moreover, for all y1,y2 € RY, ¢ € RN (see, for example, Rockafellar [67, Thm. 13.3, Lemma 7.42]),

R (y1, Y2, &) = sup §:8% (hhom,)™ (y1,6) = sup £:&%  (5.2.61)
(y1,y2,£*)€ domh* (y1,€*)€ dome (hhoms, )™

If, in addition, A* is bounded from above in dom.h*, then we claim that for all y;,yo € RV, £* € RN

(™) (y1, 92, €") = {0 if (41, 92,£7) € domeh”, (5.2.62)
oo otherwise.

Indeed, under this additional hypothesis, we have that for each y;,y2 € RY the set {¢* € RN .

(y1,¥2,£*) € domch*} is convex and closed. Hence (see, for example, Ekeland and Témam [41],

Rockafellar [67]), the indicator function xgom,n+, that is, the function defined by

0 if (yl,yg,f*) € domeh*,

* e—
Xdom, b (Y1, Y2,€7) + {oo otherwise,

coincides with its biconjugate function (Xdom,n+)**. On the other hand, defining for each ¢ > 0,

h(y1,y2,t&) — h(y1, 92,0
ht(ylayQag) = (yl v2 g)t (yl v2 )a y1’y2€RNa€€RdXNa

due to the convexity hypothesis we have that for all yy,y2 € RV, € € RN+ € RT = hy(y1, 92, &) is
nondecreasing and

sup he(y1,y2,§) = Hm he(y1, y2, &) = h™(y1, 92, €).
t>0 t——+o0
Furthermore, it can be shown that for all y;,y, € RV, £, &% € R&XN,
%nf h:(y17 Y2, g*) = lim h’: (y17 Y2, f*) = Xdomh* (yla Y2, E*);
>0 t——+o00

(n6h5) " wroe.€) = (suphe) (.02 = () (01.92:).

so that (5.2.62) follows from the equality (Xdom,h* )™ = Xdom.h* -

We now establish equality (5.2.58) in two steps. Notice that both ghom, and gnom, as well as their
respective recession functions, are real-valued Borel functions satisfying similar conditions to (F1)—
(F4).

Step 1. We prove that (ghoms )™ = (9°°)homs,-

Inequality (ghoms)™® < (9°°)hom, follows from the definitions of both functions and using Lebesgue
Dominated Convergence Theorem taking into account (F3) and (F4).

We claim that to prove that (ghom, ) = (¢°°)hom,, it suffices to show that

*

dome(ghom, )" D dome (9% )nom,) - (5.2.63)
In fact, if (5.2.63) holds then by (5.2.61) we have that
(ghomg)oo > ((goo)homQ)ooc (5264)

Since (¢°°)hom, 1S positively l-homogeneous in the last variable, we have that ((goo)hom,z)oO =
(9°°)hom,, which together with (5.2.64) yields (ghom,)™ = (6°°)homs-
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We now prove (5.2.63). Let (y1,£*) € dome((goo)homz)*. Then, by (5.2.59) (with g replaced by ¢,
there exists Uy € Ey(Ya; RN) such that

/Y (%) (0140, + T (ga)) dys < 00,

and so (5.2.62) ensures that for a.e. yo € Y2 we have (y1,y2,* + Ua(y2)) € dom.g*. From (5.2.59)
and (F8) we conclude that

(ghoms)" (41, €%) < / 0% (41,42, € + U(yn)) dya < C < ox.

Y2

Thus, (y1,£*) € dome(ghom,)™, which proves (5.2.63). So, (ghom,)™ = (¢°°)hom, and, consequently,

((ghomQ)m)homl = ((gm)hom)homl = (97 )hom, (5.2.65)

where in the last equality we used definition (5.1.4).
Step 2. We prove that (ghom)™ = (¢°°)hom-

It suffices to observe that (F3), (F8) and (5.2.59) imply that (ghom,)* is also bounded on its effective
domain. Hence, reasoning as before and in view of (5.2.60),

((ghomz )OO)

Thus, from (5.2.65)—(5.2.66) we conclude that (ghom)> = (9°°)hom- O

= ((gromsJnom, )~ = (ghom) - (5.2.66)

homy

Lemma 5.2.11. Let g : RY x RY x RN — R be a Borel function satisfying conditions (F1), (F3),
(F4) and (F7). Then (ghom)™ = (¢°°)hom-

PRrROOF. Note that (F7) is equivalent to requiring that there exist constants C,L > 0 and « € (0,1)
such that given y;, yo € RN and ¢ € R¥¥ arbitrarily, then for all t € R such that ¢|¢| > L,

11—
g(y17ty2at€) g C|§|ta .

9% (Y1, 92,€) — (5.2.67)

We now prove that
(ghomg)oo = (goo)horn2~ (5268)

Inequality (ghoms)™ < (¢°°)hom, follows from the definitions of both functions and Fatou’s Lemma
taking into account (F3) and (F4)’.

Conversely, fix y; € R, ¢ € RN, By definition of infimum, for each ¢t > 1 we can find
P € W;l(Yg;Rd) such that

e+t omy (Y1, 16) 1
/ 91, Yo, t€ + Vi (y2)) dyy < (y1,1€) 1 (5.2.69)
v, t t t
In particular, (5.2.69), together with (F3) and (F4)’, yields
€+ Vi (y2)l dyz < C(1+ [€)), (5.2.70)

Y2

for some positive constant C' independent of t.
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By definition of (¢°°)homs,,

9% (W1, Y2, & + Vbe(y2)) dye,

S

(6% Vnoma (41,€) < / 0% (1, 42, € + Vb () dy
Y2
CL
< =
t

+)
Yo {y2: t|E+ Ve (y2)|>L}

where we used the fact that in view of (F3), ¢°°(y1,¥2,£) < C|¢|. Invoking, in addition, (5.2.67),
(F4) and (5.2.69), in this order, we have
CL Y2, tE +tV +V
(goo)homz(ylaf) < T +/ g<y1 y2 gt wt(yz)) + C|£ 1/:;(3/2)
Yan{yz2: t|€+ Vb (y2)|> L}

|1—o¢
dy

<
= t t

CL+1)+1  ghom(yr,t€) C - a
< ( - ) _|_gh (tyl 5) +t_a(c(1+|€|)>1 7

(5.2.71)
where in the last estimate we also used Holder’s Inequality together with (5.2.70). Letting t — 400,
we conclude that (¢°°)homs < (Ghom, ). Thus, (5.2.68) holds. Consequently,

((ghomz)oo> = ((goo)homg)homl = (9 )hom-

hom-

Next we show that
= ((9nomahom: ) ™ (5.2.72)

((ghom2 )Oo>

which will finish the proof since, by definition, ((ghom2)hom1)oo = (Ghom )™

hom;

In view of the hypotheses on g and using definition (5.1.3), it can be shown that gnom, : RY x RN —
R is a Borel function satisfying conditions (F1), (F3) and (F4)’. If we prove that ghom, also satisfies
(F7) then, reasoning as in the proof of (5.2.68), we deduce that (5.2.72) holds.

Let C,L > 0 and a € (0,1) be given by (F7) for g. Fix y; € RY and ¢ € R¥¥ such that |¢| = 1. Let
t > L := max{1, L}. Using (5.2.68) and (5.2.71), we have

(y1,t8)

(9homa) (91, §) — T2 Ghoms (U1, £€)

= (9 noms (31, €) — P2
(5.2.73)

L+1 1 -«
< B Claoyn < 1

where (' is a positive constant independent of ¢.

Conversely, for each 0 < § < 1 we can find 5 € W;;l(}/g, R?) such that

/;/ goo(ylv y27§ + V'I/J(;(yZ)) dy2 < (goo)homg (yh 5) + 5, (5274)

so that, in view of (F3) and (F4)’,

1
Y
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From (5.2.68), (5.2.74) and (5.2.67), and taking into account that ¢> > 0, we conclude that

M — (ghomz)oo(yl’ §)

t
b 7t +tv oo
< / g(yl Y2 §t ¢5(y2)) —g (yl,y2,§+Vw5(y2))dy2 44
Ya €+ Vibslan) = ( 4 s () (5.2.76)
<C iyz dy2+/ 9(y1, Y2, s (Y2 dys + 6
Y t Yo {ya: t|E+Vebs (y2) <L} ¢
2 11—«
Lae+0 +C(1+L)+6’

te t

where in the last inequality we also used Holder’s Inequality together with (5.2.75), and (F3). Letting
d — 0% in (5.2.76), using the fact that ¢ > ¢t* whenever ¢ > 1 together with (5.2.73), we deduce that
Jhoms, Satisfies (F7). O

We now prove Proposition 5.1.1.
PROOF OF PROPOSITION 5.1.1. Without loss of generality we may assume that the parameter n > 0
takes values on a sequence of positive numbers converging to zero.

(i) We start by observing that for fixed yi,y2 € RV, & € RN the sequences {f,(y1,v2,&)}y>0,
{()* (Y1, 92, &) b0 and {((f5)**)°° (Y1, Y2, &) }y>0 are decreasing (as 7 — 07), so that the respective
limits as n — 0% exist and are given by the infimum in 1 > 0.

Recalling definition (5.1.2) and in view of (F3) and (F4), we have that the biconjugate function f**
of f is such that for all y1,y2 € RY, f**(y1, 2, ) is a convex function which coincides with the convex
envelope Cf(y1,y2,-) of f(y1,y2,-) (see, for example, Fonseca and Leoni [48, Thm. 4.92]). Precisely,
for all (y1,y2,£) € RY x RN x RIXN,

f**(ylay%g) - Cf(ylay27§) ‘= sup {g(f) g: RdXN —-R convex, g() < f(yl7y23 )} (5277)

Note that the same holds true for (f,)**. Consequently, ((f,)**)> is a convex function, since the
recession function of a convex function is a convex function. Moreover, for all n > 0, we have that

< ()™ < s (5.2.78)

and so, using the fact that the pointwise limit of a sequence of convex functions is a convex function,
passing (5.2.78) to the limit as n — 0% we get

lim ()™ (y1,92,6) = F7 (41,92, )- (5.2.79)

n—
In view of (5.2.78), (f**)>° < ((fy)™)>® < (fy)>; thus, letting » — 0T and observing that
(fn)oo(yluy%g) = foo(ylvy%f) +77|§‘7 we have

() (1,92, 6) < ((for)™) = (w1, 92, 6) < (F7)7 (w1, 42, 6), (5.2.80)

where we also used the fact that both functions (f**)°° and ((fy+)**)°° are convex in the last variable,
since the recession function of a convex function is also a convex function. We further observe that
((fo+)*)° is positively 1-homogeneous in the last variable because it is the pointwise limit of a
sequence of positively 1-homogeneous functions in the last variable.
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(i)-a) If, in addition, f also satisfies (F2), then (f**)>° = f°° = (f°°)**, which, together with (5.2.80),
implies that ((fo+)**)> = f°°.

(i)-b) Assume that d = 1 and that, in addition, f also satisfies (F7).

In the scalar case d = 1 the notions of convexity and quasiconvexity agree (see, for example, Dacorogna
[29, Thms. 5.3, 6.9]), therefore f** is alternatively given by

FWMW&@ZHﬁ{Lf@hm£+VMwﬂw:¢€WWﬂY& (5.281)

for (y1,v0,€) € RV x RN x RV,

Since f, is a Borel function satisfying conditions (F1), (F3), (F4)’ and (F7), using (5.2.81) and
arguing as in the proof of Lemma 5.2.11, it can be shown that (f,)** also satisfies (F7) and that

((Fn)*)> = ((f)>). Consequently,

((for)™) > (Y1, 92, €) = TIE%+((fn)**)w(y17y27f) = 712%1+((fn)w>**(y1,y2,€) = (f>)" (Y1, 92, 6),
(5.2.82)
where the last equality may be proved in a similar way as (5.2.79) (with f replaced by f°°).

(ii) Just as (i) above, it can be shown that the limit (5.1.6) exists and defines a positively 1-
homogeneous convex function (((fo+)™)hom)  : RY — R.

By (5.1.3), (F3) and (F4), there exists a constant M > 0 such that for all y;, yo € RY, £ € RN,

[f (1,42, )1 S M+ [E]), | froms (Y1, )] < M+ [E]), | from (§)] < M (1 + [£]). (5.2.83)

Using in addition (5.2.79), Lebesgue Dominated Convergence Theorem yields

Hm ((f)™ homs (¥1,€) < (" )noms

'r]~>0+

which, together with inequality ((f,)** )homs = (f**)hom,, implies that

lim ((fn)**)homz (¥1,€) = (" )noms (¥1, )

n—0+

Similar arguments ensure that

lim ((fn)**)hom(g) = lim (((fn)**)homz)homl (5) = ((f**)homz)homl (5) = (f**)hom(f)a (5-2-84)

n—0+ n—0+
and that
i ()" = (F0)") )0 O < (™)) 6): (5.2.85)

with ((fo+)**)°° the function defined by (5.1.5), where in the last inequality we used (5.2.80).

Using the fact that if ¢ is a function satisfying (F3) and (F4) then (ghom)™ < (¢°°)hom, passing to
the limit as n — 0% the chain of inequalities

((Fhom) ™ < (((Fa)Ihom) ™ < (((F1)™)%) o
from (5.2.85) we obtain

(" mom) ™ (€) < (((Fo+ )™ Inom) ™ (€) < ((F0+)™) ™) o (€) < ((F%)) o (©)- (5.2.86)
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(ii)—a) Assume that, in addition, f also satisfies (F2) and (F38).

In this case, from (5.2.86) we get

(fhom)oo < (fO*,hom)oo < (foo)homa (5287)

o0

where (fo+ hom)™ = (((f0+)**)hom) = liIélJr ((]”7,)},Om)oo(§)7 since (f,)** = f,. To conclude that
T]*)
(fo+ hom)™® = (fom)™ = (f*)nom it suffices to apply Lemma 5.2.10 to f, taking into account (5.2.87).

(ii)-b) Assume that, in addition, f also satisfies (F2) and (F7).

As before, using (5.1.3), equality (f,)*°(y1,v2,&) = f*(y1,v2,&) + n|¢|, and Lebesgue Dominated
Convergence Theorem together with (5.2.83), we obtain

hm ((fn)oo)hom(f) - (foo)hom(g)~ (5288)

n—0+

By Lemma 5.2.11 applied to f,, we conclude that for all n > 0, ((f;)hom)™ = ((f5)°>°)hom, Which,
together with (5.2.88), yields (fo+ hom)™ = (f*°)hom-

(ii)—c) Assume that d = 1 and that, in addition, f also satisfies (F7) (with d = 1).
As we observed in (i)-b), (f,)** is a Borel function satisfying conditions (F1), (F3), (F4)" and (F7).
Applying Lemma 5.2.11 to (f,)**, using the first equality in (5.2.85) and by (5.2.82),

(((Fo+) ™ hom) () = Tim_ () Ihom) ™ (€) = Lm_ (((£2))>) o0 (€)

n—0+ n—0+
= (((F0+)™)°) pom &) = ((F7)) o (6)-
This concludes the proof of Proposition 5.1.1. O

We finally prove Theorem 5.1.3.

PROOF OF THEOREM 5.1.3. By Theorem 5.2.1 and Remark 5.2.8, we have that (5.1.7) holds.

We observe that in view of (F1)—(F4), we have that both fhom, and fhom are real-valued Borel

functions, satisfying (F1)—(F4), and we can find a constant M > 0 such that for all y;, y2 € RY, ¢ €
Rde7

1f (1 p2, )1 S M+ (8D, [fhoms (Y1, )| < ML+ [E]), [ fnom (§)] < M (1 +[E)). (5.2.89)

Moreover, since (F4) holds for fhom,

> 0. 5.2.90
€] —+oo  [€] ( )

The first equality in (5.1.8) is given by Theorem 5.2.7 (see also Remark 5.2.8). To prove the second
equality in (5.1.8) we will proceed in several steps.

Step 1. We show that for all u € BV (€; R?),

inf F i) > [ (Vo) @5 + [ (o) (1050 )) a0 0.

My €M, (QBVy (YqRD)) d||DSu||
[LZEM*(Slxyl;BV#(YQ;Rd))

(5.2.91)
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Fix (u, pry, o) € BV (Q;R?) x M, (Q; BV (Y1;RY)) x M, (Q x Y1; BV (Y2; R?)), and let {u;}jen C
C>=(Q;RY), {w](-l)}jeN C Oy C’;f’(Yl;Rd)) and {QL](-Q)}jGN C OX(Q 0 (Yr x Y5; R9)) be sequences
given by Proposition 4.2.10.

By (5.1.7), applying Lemma 5.2.5 to U := Q x Y7 x Y3 and g(x,y1,y2,€) = f(y1,v2,€) (see also

Remark 5.1.5 (ii)), and using the definitions of fhom, and fhom together with Fubini’s Theorem, we
conclude that

F*(u, py, po) = /

QxXY1xXYs

dxae
f(y1, yo, —qpav - (@, yz)) dzdydy,

dAs
+/ foo<y17y2’M Z,Y1,Y2 )d A T, Y1, Y2
QxY1xYa d”)\s ||( ) H U7H17M2H( )

UsHy s Ko

~ lim F (1,92, Vg (@) + (V) (@, 91) + (V40 (@, 91, 92)) dedyrdys
J—too QxY; XY

WV

J—-+oo

lim inf/ Jhoms (yl, Vu;(z) + (Vy1$;l))(x, yl)) dady;
QXYl

WV

hmlg/ﬂfhom(v’u](w))dw

Jj—+
> [ fron(Vat@) de+ [ (Grom) (G507 (@) dID*ul0)

where in the last inequality we have used [48, Thm. 5.21] (see also Remark 5.1.5 (i)) taking into
account that VujﬁN I8 X Du weakly-* in M(Q;R¥*N) as j — +o00, and that fuom is a real-valued
convex function satisfying (5.2.90). Taking the infimum over all p; € M, (Q; BVy(Y1;R?)) and
Mo € M, (2 x Yi; BV (Ye; RY)), we obtain (5.2.91).

Step 2. We prove that for all u € W11(Q;R9),

inf F*(u, pq, o) </thom(Vu(ac))dac. (5.2.92)

1 EM (QBViy (Y15RD))
Mo €M (X Y15 BVy (Y25RY))

Fix 7 > 0, and let 0 < 7 < 1 be such that for all measurable sets D C Q with £V (D) < 7,

| @+ vu@par <o (5.2.03)

In view of (5.2.83), without loss of generality we may assume that for all z € €,
Jhom(Vu(z)) € R. (5.2.94)

Fix 0 < 6 < 7, and consider the multifunction I'j : Q — oW+ MR Gofined, for each z € Q, by

Io(z) := {wl e Wy (Yi;RY): Froms (Y1, V() + Vor (11)) dyr < from (Vu(z)) + 5}.

Y1

By (5.2.94), for all z € Q one has I'{(z) # 0. Moreover, if {1);}jen C W;’I(Yl;Rd)\I"f(m) is a
sequence converging in W#l (Y1;R?) to some v, then, taking into account (5.2.83) and the continuity of
Jhoms (Y1, ), by Lebesgue Dominated Convergence Theorem we deduce that ¢ € W;&’l(Yl; RN\ ().
Thus, I'{(z) is an open subset of W;’I(Yl; R%).  Furthermore, given 1; € W;’I(Yl; R%), the
measurability of the function

x = g Jhoms (Y1, Vu(x) + Vi1 (1)) dyr — from(Vu(x)) — 6
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ensures the measurability of the set {x € Q : ; € I'{(x)}. Thus, by Lemma 2.1.22 we
can find a measurable selection ¢, : Q — W;ﬁ’l(Yl;]Rd) of T9. Moreover, by Lusin’s Theorem,
Py € Ll(Qg;W;’l(YI;Rd)) for a suitable measurable set s C  such that £V (Q\Qs) < §. Since
for a.e. € Qs one has ¥y (z) € I'{(z), in view of (5.2.83) and (5.2.93) we obtain

/Q Froms (Y1, Vu(x) + V001 (z,91)) dzdy; < /Q from (Vu(z))dz + Mn 4+ LN (Q),  (5.2.95)
sXY1

where we also used the fact that 0 <6 <7 <n.

Similarly, let 0 < 7 < § be such that for all measurable sets £ C Q5 x Y with L2V (E) < 7,
/ (1 + |Vu(z) + Vy, 01 (2, 91)]) dedy; < 7. (5.2.96)
E

As before, we may assume without loss of generality that for all (z,y1) € Qs x Y7 we have

froms (Y1, Vu(z) + Vy, 1 (z,41)) € R. Moreover, fixed 0 < v < 7, the multifunction I'J : Q5 x Y7 —
1,1 .

oWy (Y2iRY) defined, for each (z,y1) € Q5 x Y7, by

L3z, y1) = {1/12 € Wy (Y; RY): F(yr,y2, V(@) +V,, 91 (2, 91) + Ve (ya)) dys
Y2

< Froms (91, V(@) + VB (2, 11)) + v},

is such that for all (x,y1) € Qs x Y1, I'3(z,y1) is a nonempty and open subset of W%L’I(YQ;]RUZ)7 and
for all ¢q € W;&’l(Yg;Rd), the set {(z,y1) € Qs x Y1 : 9o € I'J(x,y1)} is measurable. Hence, by
Lemma 2.1.22 we can find a measurable selection 5 : Qs X Y7 — W#l(YQ;Rd) of I'J. Moreover, by
Lusin’s Theorem, 1y € LY(E.; W;;l(Y-Q;Rd)) for a suitable measurable set £, C €25 x Y7 such that
LN (Q5 x Y1\E,) < 7. Since for a.e. (z,y1) € E., one has s(z,y1) € T3 (2, 1), in view of (5.2.83) and
(5.2.96) we get

/ S, y2, Vu(@) + Vy, 1 (z, 1) + Vi, to(2, y192)) dady: dys
By (5.2.97)

< / Fuoms (1, V() + ¥y, 61 (2, 1)) dzdys + My + LY ().
QgXYl

Finally, define 1y € L1(Q; W' (Y1;RY)), ¢y € LY(Q x Yi; Wy (Yo RY)) by setting ¢y (z) := ¢y (x)
if © € Qs, ¥1(x) = 0 if © € QO\Qs, a(z,91) = Yoz, 1) if (z,y1) € E,, and ¥o(z,y1) = 0 if
(x,11) € (2xY1)\E,. Using the usual identification of an integrable function with a measure, elements
of L*($; W#l(Yl; R%)) and L' (9 x Yy; W;l(Yg; R?)) can be seen as elements of M, (Q; BV (Y;;RY))
and M, (2 x Y1; BV (Ya; R?)), respectively. Considering this identification (see also (4.1.3)), we have

/\u,wlﬂl)z [QX Y1 xYa = Vu£?|jg><Y1 xYa + Vylwlﬁgfgxm xYs + Vy2w2£?|jg><Y1 XYa* (5'2'98)
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From (5.1.7), (5.2.98), (5.2.83), (5.2.93), (5.2.96), (5.2.97) and (5.2.95), in this order, we deduce that

inf FSC(”?“’I)H@)

K1 EM (2BVy (Y15RY))
o €My (X Y13 BViy (Yoi;RD))

— inf {/ f(y1 Y2 dAZC&(I 1 y2)) dzdy;dy2
QXYl ><Y2 ' ’ dESN ’ ’

M1 €My (2BViy (Y15RD))
Mo E M (Q2XY15BVy (YoiRY))

dAS
+/ foo(yhy?v Z,HUHZ (%?ﬂa?&)) d|)\i7”17”2||($,y17y2)}
QXY xXYo d”)‘ ”

U152

/ Fyi,y2, Vu(x) + V01 (2,91) + Vi Y2(z, 91, y2)) dedyidys
QXYl XY2

N

/ f(y1,y2, Vu(z)) dedy dys
(Q\Q(s) ><Y1 XY2

+ / f 1, y2, Vu(x) + Vy, 1 (2, 51)) dedyidys
(25 xY1)\Ey)xY2

+ / 1,92, V(@) + Vb1 (z,91) + Vi b2 (2, y192)) dzdy: dyo
E,YXYQ

<2M77+/th0m(Vu(:c))dac+2(M77+77£N(Q)).

Letting n — 0", we obtain (5.2.92).
Step 3. We prove that if (F4)’ is satisfied, then the converse of (5.2.91) holds for all u € BV (Q; R?).

Indeed, let u € BV(Q;R?). Since fuom : RN — R is a convex function satisfying (5.2.83), in view
of Lemma 5.2.9 for all n > 0 we can find a sequence {u;}jeny C W11 (€; R?) weakly-+ converging to u
in BV (Q;R?) and such that

) o/ dD%u s
i [ fron(F05(0)) o < [ fuom(Fut@) ot [ (o) (50 (2)) APl 0) 0.
=t Jo Q Q d||Dsul|
Under the present hypotheses on f, it can be checked that F'°™ is sequentially lower semicontinuous
with respect to the weak-x convergence in BV (€2;R¢). Hence, using Theorem 5.2.7 and (5.2.92),
inf F*°(u, by, o) < liminf inf F*(uj, py, po)
My EM*(Q;BV#(Yl;Rd)) j——+oo [J.IEM*(Q;BV#(Yl;Rd))
ILQEM*(QXYUBV#(YziRd)) IJ‘QEM*(QXYIEBV#(Y2§Rd))
) o [ dD%u s

< im oo (Vg4 < [ from(Fute) de + [ (rom)™ (575000 (@) dID%ul @) +

Q Q Q d|| Dsul|

oo
from which we conclude Step 3 by letting n — 0.
Step 4. We establish the second equality in (5.1.8).

Let u € BV (£;R9), and fix n > 0 (which, without loss of generality, we assume will take values on a
sequence of positive numbers converging to zero). Then f, (we recall, f,(y1,92,€) = f(y1,y2,£)+nl¢])
satisfies conditions (F1)—(F3), (F4)’, (F5); condition (F6), which was only used in Lemma 5.2.2, reads
slightly different for f,, than for f (see (5.2.8)), but it can be checked that this difference is innocuous.
So, in view of Steps 1, 2 and 3 applied to f,,

. dD%u

in (g, 1) = /Q Fr o (Va(2)) dar + /Q o)™ (15 (2)) D% (1),

My €M (Q BV (Y1iRD)) d||D5u||
[LZGM*(SZXYl;BV#(YZ;Rd))

(5.2.99)
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where Fp¢is the functional given by (5.2.44), and where f;, hom := (f5)hom-

In order to pass (5.2.99) to the limit as n — 07, we start by observing that for fixed (u, pq, o) €
BV (4 R?Y) x M, (Q; BV4x(Y1;RY)) x M, (Q % Y1; BVg(Y2; R?)), Ay, e, has finite total variation and
{F5¢(u, py, o) by>0 is a bounded decreasing sequence, and so

lim inf F(u, py, po) = inf inf FL(u, pys o)
n—0t  py ML (2BVy (Y1iRY)) N>0  py €My (2BVy (Y1:RD))
P €My (22X Y13 BViy (YoiRD)) Mo €My (2X Y13 BViy (YoiRD))
B nf nf B B o s (5.2.100)
= in inf F7°(u, py, po) = in (s pty, pa).
uleM*(Q;Bv#(yl;Rd)) n>0 1 EM(Q5BVy (Y15RE))
o €My (X Y1 BVy (Yo iRD)) o €My (X Y13 BVy (YoiRY))

Furthermore, using Lebesgue Dominated Convergence Theorem together with (5.2.89), in view of
(5.2.84) (observing that thanks to (F2), f** = f and (f,)** = f,) and of (5.1.6) we get

lim /Q From(Vu()) da = /Q From(Vu(z)) dz, (5.2.101)

n—0+

and

, «( dD%u . B o dDu )
tin | (o) (g ey () 10wl () = /Q (s rom) (g ey ) APl (@) (5:2.102)

n—0+
From (5.2.99), (5.2.100), (5.2.101) and (5.2.102), we conclude Step 4.
Finally, we observe that
a) if, in addition, f satisfies (F4)’, then by Step 1-Step 4, we have that (fo+ nom)™ = (from)™;

b) if, in addition, f satisfies (F8), then by Proposition 5.1.1 (ii)-a), (fo+hom)™ = (fhom)™ =
(foo)hom§
c) if, in addition, f satisfies (F7), then Proposition 5.1.1 (ii)-b) yields (fo+ hom)™ = (f*)hom. O

5.3. PROOF OF COROLLARY 5.1.4.

As in the previous section, below we will assume, without loss of generality ,that n = 2, since the
generalization to an arbitrary n € N does not bring any additional technical difficulties.

The proof of Corollary 5.1.4 relies on Theorems 5.1.3 and on the next lemma concerning properties

inherited by f** from f.

Lemma 5.3.1. Assume that f : RN x RY x RY — R is a function satisfying conditions (F1), (F3),
(F4)’, (F5) and (F6) with d = 1. Then the biconjugate function f** of f is a real-valued Borel
function in RN x RN x RN and verifies conditions (F1), (F3), (F4)’, (F5) and (F6) with d = 1.

PROOF. By (5.2.77) and since f1 < fo implies that Cf; < Cfa, the only nontrivial condition to verify
is (F5).

Fix (y},95) € RY x RN and § > 0 arbitrarily. Set § := §/(1 + 20?), where C is given by (F3) and
(F4)', and let 7 = 7(y},v5,6) be given by (F5) for f and for such 4.

Fix ¢ € RY and (y1,y2) € RY x RY such that |(y],v5) — (y1,72)| < 7. By (5.2.81), for each € > 0 we
can find o, € W, >°(Y) such that

/Yf(yl,yz,é“Jr Voe(y))dy < £ (y1,92,6) + ¢ (5.3.1)
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and so,

T (1, y9:6) — 7 (v, 92, 6) < / (f(yi7y’z,€+vsoe(y))—f(y17y2,€+V<pe(y)))dy+e
Y (5.3.2)

< [ 30+ ie+ Ve dy+ e
where in the last inequality we used (F5) for f.
In view of (5.3.1), (F3) and (F4)’, we have that &[|¢ + V||p1yrvy) — C < C(1 4 [¢]) +e. Thus,
from (5.3.2) we deduce that

£y, €) = F7 (y1,2,6) <O(1+ C*(2+ [€]) + (6C + 1)e < 6(1 + [€]) + (6C + 1e.

Letting ¢ — 07, we conclude that

Interchanging the roles between (v, v5,&) and (y1,y2,&), we prove that f**(yi,v2,&) — f**(y1, ¥4, &)
5(1 + |€]) also holds. Thus f** satisfies (F5). O

PROOF OF COROLLARY 5.1.4. We proceed in two steps.

Step 1. We prove that if in addition f satisfies (F4)’, then (5.1.9) holds with (f;7)° replaced by
(f**)°°, and (5.1.10) holds with (((f0+)**)h0m)oo replaced by ((f**)hom)oo.

Substep 1.1. We show that the infima (5.0.1) and (5.0.2) remain unchanged if we substitute f by its
biconjugate function f**.

Fix (u, pq, o) € BV () x M, (€; BV4(Y1)) x M, (2 x Y1; BV4(Y2)), and define

F 5 (u, pyy o) = mf{hmmfF *(ue) : ue € BV(92), DUE}%AU,[JI,[Jz}

e—0

and
Frebom(y) . — inf { hmmfF *(ue): ue € BV(Q), ue >, u weakly-x in BV(Q)},

e—0

where F** is the functional given by (5.2.1) for d = 1 and with f replaced by f**.

Notice that by Lemma 5.3.1 and Remark 5.1.5 (i), f** is a real-valued continuous function in
RY x RN x RY satisfying conditions (F1), (F3), (F4)’, (F5) and (F6) with d = 1.

Since f** < f, we have that F***(u, uq, o) < F*(u, py, ptg) and F**hom(y) < Fhom(y). To prove
the opposite inequalities, we start by observing that in view of (5.2.38)—(5.2.42) the following equalities
hold:

F*5(u, oy, py) = inf { hmlan *(ue) : ue € WHHQ), VU(:LNLQB_%AU)HIJLZ}

Ve (@) )da : ue € WHHR), VLYo 55 Ay, -

e—0t

:inf hmlnf/f**
o1(e 2(6)

Moreover, a similar argument to (5.2.38)—(5.2.42) ensures that also

Frehom )y — inf { liminf FX* (ue): ue € WHHQ), ue 2. u weakly-x in BV(Q)}

e—0t

e—0t

= inf { liminf/Qf** (Q%(&)’ in(s)’ Vus(x)>dx: u. € WH(Q), u. 2. u weakly-+ in BV(Q)}.
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Fix 6 > 0. We can find a sequence {ej, }nen of positive numbers converging to zero as h — 400, and

a sequence {up hheny C WHH(Q) such that Vuh,Cng'a—iC\)\u#hM and

F**7SC(U7 Ml,ﬂg) +02> lim f** (le ?

) )’ 02(€h>,Vuh(x))daj.

On the other hand (see, for example, Marcellini and Sbordone [61, Cor. 3.13]; see also Ekeland and
Témam [41, Chapter X]), since f is a continuous function satisfying (F3) and (F4)’, for each h € N
there exist a sequence {ugh) }jeN C WH1(Q) weakly converging to u; in WH1(Q) and such that

ok xz €T . x X (h)
——, —— Vup(z))de = lim —— — Vu; /(x) )dx.
/Qf (meh) E R )= i, o <gl<sh> e )
Hence,
ok, 8 : : x x (h)
F*5(u, oy, 40> lim lim ,——, Vu: '(z) )dz, 5.3.3
( 1231 HZ) h——+oo j—stoo Qf(gl (Eh) QQ(Eh) j ( )) ( )

and for all ¢ € Cy(Q; Cx (Y7 x Ya; RY)),

x xT x xT

02(en)

lim lim

r,—, - Vup(x)dr
h—+00 j—+00 Q(p( 01(er)” 02(en) ) n()

:/ o(z,y1,12) 'd/\u,ul,ug(xayhyQ)'
QXYl XYQ

(5.3.4)
Using a diagonalization argument and the separability of Co(€2; Cy (Y1 x Yo; RY)), from (5. (5.3.4)
(h)

3.3),
and (F4)" we can find a sequence {jp}nen such that j, — +00 as h — 400, vy = uy,” € WH(Q),
vthNLQ%\)\u,ul,uz and

T x

F*5¢(u, py, +6> lim / ——, ——, Vup(x) |dx = F*(u, py, poy),
( 1251 I’LQ) h=too Qf(Ql(Eh) Q2(€h) h( )) ( 231 /‘1’2)

where in the last inequality we used the definition of F*¢(u, uy, p,). Letting § — 07, we conclude
that F**ysc(ua /’1'17“2) 2 FSC(ua /’l’lﬂ H2)

The proof of inequality F**ho™ (y) > Fhom(y) is similar. Thus, we conclude that F**°(u, p,, o) =
F(u, poy, pg) and FF00m (u) = Fhom (u).

Substep 1.2. Finally, we observe that in view of Theorem 5.1.3 (i) and Lemma 5.3.1, we have that for
all (u, pq, o) € BV () x M, (€; BV4(Y1)) X M, (2 x Y1; BV4(Y2)),

Jaktts . ok dAZ?["‘uIJ’z dzduyrd
(u7“17#’2) . f Y1,Y2, (x7y17y2) ray1dys

QXY XY d'CSN
3k \ 0O d)\ivl-‘p/-‘q s
+ (f) (yl,yza W(x,yhyz)) d||/\u,“1,y2||($aylay2)
QXYlXYQ H u,”17[.L2H

and

#%,hom _ *%,8C
F (u) = e oy T (s, pry, prg)
Mo €M (2XY1;BV4 (Y2))
= [ hom(Fut@) o+ [ (o)™ (150 (@) Dl 2)
0 hom 0 hom d||D5u|| )

and this, together with Substep 1.1, completes the proof of Step 1.
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Step 2. We establish Corollary 5.1.4.

Fix 7 > 0 (which, without loss of generality, we assume will take values on a sequence of positive
numbers converging to zero), and let F;¢ and F;mm be the functionals given by (5.0.1) and (5.0.2) for
d = 1, respectively, with f replaced by f;.

Assuming (F6) with o(1) replaced by —|o(1)| in (F6), it can be shown that we may use Step 1 for f,,.
Thus, for every (u, i1, tty) € BV (Q) x M, (Q; BV4(Y1)) x M, (Q x Y1; BV4(Y3)),

FSC(U,HD u’2) = /

QXYl ><Y2

a

*ok d)\uvcl-‘q’l»‘z
(fn) (y1, Y, W(% Y1, yz)) drdy;dys

dAg
+/ sk \ 00 Y2, UsHy 5o x, , d )\; z, Y1,
oo, 0 (150, e, 42)) NG |1 92)

Uy by o
(5.3.5)
and
hom . . sC
Fn (U) - M1€M*(1Y121;£V#(Y1)) Fn (U7 B NQ)
Mo €M (Q2XY1;BVy (Ya)) (5 3 6)

= [ o (Vut@)) da+ [ () o)™ (g ) Dl @)
In order to pass (5.3.5) and (5.3.6) to the limit as n — 0T, we start by observing that for fixed
(u, oy, o) € BV () X M, (Q; BV4(Y1)) x M, (2 x Y1; BV4(Y2)), the sequences {F;C(u, 1, o) bys0
and {F};"m(u,ul, Ho) >0 are decreasing (as 7 — 07), so that the respective limits as n — 07 exist
and are given by the infimum in 1 > 0.

Let {uc}es0 C BV() be such that Duc 25\, ;. .. Then {Du.}eso is bounded in M(Q; RY) (see
Remark 4.1.5), and so since (f,,)*(y1,v2,€) = f*°(y1,y2, &) + n[€|, we have

(s oy pr) < Tim inf P (ue) +nC,

where C is a constant independent of €. Letting 7 — 0T and then taking the infimum over all such
sequences {ue fe>0, we conclude that lim, o+ Fp¢(u, py, pta) < F*(u, py, ). Conversely, since for
allp >0, f; > f, we have that F(u, puy, ) = F*(u, pty, o). Hence,

nli)%h F;C(u,ul,uz) = FSC(Uau‘lau’Z)' (537)

Similar arguments ensure that
lim_ FPo™(u) = FPO™(u). (5.3.8)

n—0
Moreover, as in (5.2.100),
lim inf Foe(u, py, po) = inf FoC(u, oy, o). (5.3.9)
n—0t  pyeM(BVL(Y1:RD) By €My (B V4 (Y1iRD))
MQEM*(QXYI;BV#(YZ;Rd)) /.LQEM*(QXleBV#(YQ:Rd))

So, letting 7 — 0% in (5.3.5) and (5.3.6), thanks to (5.3.7), (5.3.8), (5.3.9), (5.2.79), (5.2.80), (5.2.84),
(5.2.86) and Lebesgue Dominated Convergence Theorem together with (F3) and (F4), we obtain
(5.1.9) and (5.1.10).

Finally, we observe that in view of Step 1, if f satisfies in addition (F4)’, then
((for)™)> = ()% and (((fo+)*nom) ™ = (/" Inom) -

Moreover, if, in addition to (F1), (F3), (F4), (F5) and (F6), with o(1) replaced by —|o(1)| in (F6),
f satisfies the condition (F7), then by Proposition 5.1.1 (i)-b) and (ii)—c),

((for)™)> = () and (((for )™ nom) ™ = (/)™ porn- 0
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Chapter 6
Future Research Projects

Wave propagation. In the sequence of the problem described in Chapter 3, we would like to address
the case in which the coefficients a3, @ € {1, 2}, are not necessarily null and, in the case € > ¢, when
different hypotheses on ass are assumed. Another interesting variant of the problem in Chapter 3 is
when instead of Qs := w x 01 we consider Qs := {(Z,23) € R®: Z € w, |z3] < $hs(Z)}, where hs
determines the d-dependent profile x5 = +hs(T).

Effective energies for composite materials in the presence of fracture or cracks. Following
the work described in Chapters 4 and 5, we would like to address a similar problem within the scope of
second order derivatives theories. It amounts to characterize the multiscale limit of bounded sequences
of the second-order distributional derivatives of functions of Bounded Hessian. The next steps are
the characterization of multiscale homogenized functionals associated with homogenization problems
with linear growth involving dependence on the Hessian and the study of the relation between the
multiscale homogenized functional with the classical homogenized functional.
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