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Abstract

Commodity hardware nowadays includes not only many-core CPUs but also Graph-
ics Processing Units (GPUs) whose highly data-parallel computational capabilities have
been growing at an exponential rate. This computational power can be used for purposes
other than graphics-oriented applications, like processor-intensive algorithms as found
in the scientific computing setting. This thesis proposes a framework that is capable of
distributing computational jobs over a network of CPUs and GPUs alike. The source code
for each job is an OpenCL kernel, and thus universal and independent from the specific
architecture and CPU/GPU type where it will be executed. This approach releases the
software developer from the burden of specific, customized revisions of the same appli-
cations for each type of processor/hardware, at the cost of a possibly sub-optimal but
still very efficient solution. The proposed run-time scales up as more and more powerful
computing resources become available, with no need to recompile the application. Ex-
periments allowed to conclude that, although performance improvement achievements
clearly depend on the nature of the problem and how it is coded, speedups in a dis-
tributed system containing both GPUs and multi-core CPUs can be up to two orders of
magnitude.

Keywords: Job Scheduling; GPGPU; OpenCL; Run-time support; Distributed Comput-
ing; Scientific Computing
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Resumo

O hardware de grande consumo para o mercado residencial ja inclui ndo s6 CPUs
com diversos niicleos mas também placas graficas (GPUs), cujas elevadas capacidades
de processamento paralelo tém crescido a um ritmo exponencial. Este enorme poder
computacional pode ser usado em aplicagdes que fazem uso intensivo do processador
e que ndo estdo orientadas para o processamento grafico, tais como alguns algoritmos
comuns em ambientes de computagdo cientifica. Esta tese propde uma framework vocaci-
onada para a distribuicdo de trabalhos (jobs) computacionais numa rede de CPUs e GPUs
de forma transparente para o utilizador. O cédigo-fonte de cada job é um kernel OpenCL.
Este c6digo é universal e independente da arquitectura especifica e tipo de CPU/GPU
onde ird ser executado. Tal facto permite evitar a necessidade da criagdo de versoes espe-
cificas das mesmas aplica¢des para cada tipo de processador /hardware. A solugdo obtida
ndo serd 6ptima para cada tipo de processador individualmente, mas em média apresen-
tard elevados graus de eficiéncia. O ambiente de execugdo escala com a adi¢do de novos
recursos computacionais sem necessidade de recompilacdo da aplicacdo. Os resultados
experimentais obtidos permitem concluir que, apesar de haver uma clara dependéncia
na natureza do problema e da codificacdo da aplicacdo, a melhoria de desempenho ob-
servado num sistema distribuido contendo GPUs e CPUs multi-core pode ascender as

duas ordens de grandeza.

Palavras-chave: Escalonamento de Trabalhos; GPGPU; OpenCL; Suporte de Run-time;

Computagdo Distribuida; Computagdo Cientifica
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Introduction

1.1 Introduction

The processing power of Graphics Processing Units (GPUs) has been climbing up on the
TeraFlop (TF) scale at an exponential rate. This growth made this kind of processors very
attractive for executing applications unrelated to graphics processing [OHLGSP08]. As of
early 2011, with 400 USD one can buy a graphics card with a computing power of 1.35 TF.
With 25 of those cards (approx. 10.000 USD), one can theoretically achieve a computing
power equivalent to the last 100 clusters of the TOP 500 list of supercomputers [Top].

The computational power provided by GPUs has been used by many types of ap-
plications with High Performance Computing (HPC) requirements such as those found
under the scientific computing field. Very meaningful performance improvements have
been achieved but, most of the times, this has been done at the cost of an hardware-centric
approach. Applications are usually developed and optimized for specific kinds of pro-
cessing units and even specific models, and the implemented optimizations are hugely
dependent on that hardware. Supporting tools could help in this process by providing
hardware-independent performance improvements, but current such tools are not yet
available and widespread. Aggregation of multiple machines is one known approach by
which further performance improvements can be attained. By utilizing the processing
power of multiple CPUs and GPUs, the time needed for processing specific algorithms
can be reduced to a great extent.

The current trend of cluster management systems and associated job scheduling tools
is to only consider CPUs as eligible processors and GPUs as mere I/O devices. GPU
integration middlewares have focused on strictly local-machine integration or, for dis-

tributed systems, have only provided means for utilizing GPUs on remote machines. To
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1. INTRODUCTION 1.2. Motivation

the best of our knowledge, there is a lack of job dispatching and scheduling tools for
these latter systems. Load balancing on these systems could allow for optimized use of
the hardware, and a transparent utilization of these heterogeneous resources to the user.

This dissertation presents a framework that considers GPUs as first-class processors.
The aggregated computing power of various CPUs and GPUs on multiple computational
nodes significantly improves execution times with reduced complexity for the applica-
tion programmer. Some scheduling algorithms specifically designed to such environ-
ments are provided. A prototype implementation is described and evaluated with both a
synthetic application and a real-world, scientific computing application. These applica-
tions were used to benchmark the framework and measure the influence of using CPUs
and GPUs in their overall execution time.

1.2 Motivation

Many companies and research organizations are confronted with computational prob-
lems that require huge amounts of processing power to be solved. These HPC problems
are commonly found under the scientific computing field as well as other fields of re-
search. Usual causes for the long processing time of these algorithms are their inherent
complexity and requirements for long-lasting computations, and huge sets of data that
must be processed by specific algorithms.

One of the most common ways for dealing with the huge requirements of HPC appli-
cations is by resorting to multiple, interconnected machines under infrastructures com-
monly known as computer clusters. These infrastructures usually comprise hundreds
or thousands of computational nodes under the management of a single organization.
These are usually complex systems and require specialized human resources to be con-
figured and maintained. Various software applications for these environments exist that
aim at facilitating the task of cluster management. Associated with adequate job sched-
ulers, these systems can be utilized by various HPC applications in order to reduce the
execution times of such applications.

Another possible solution is to resort to the so-called computing Clouds. These are
mostly on-line, Internet-based services that allow organizations to rent some computing
time and storage space on remote systems, managed by third-party organizations, where
their applications are processed.

With the advent of highly performant general-purpose GPUs (GPGPU), new oppor-
tunities for HPC have emerged in the last years, and some scientific applications have
been ported to run on clusters of GPUs attaining considerable performance improve-
ments [FQKYS04]. However, integration of this kind of hardware into “traditional” clus-
ter systems currently treats them as auxiliary specialized processors, and not as general
purpose processors capable of executing the same applications as CPUs.

Scientific computing and HPC applications in general are usually comprised of a se-

ries of steps, each one contributing to reach an intended, final solution. It is frequent
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1. INTRODUCTION 1.2. Motivation

that among these steps, only a few are very processor-intensive and have HPC require-
ments. On these intensive steps, it is common that a huge set of data can be parti-
tioned into smaller chunks where each chunk is processed by the same or different al-
gorithms, respectively under a SIMD or MIMD execution model, as defined by Flynn’s
taxonomy [Fly72]. The common approach is to distribute these chunks of data to a set of
machines, where the algorithm is processed in parallel on the available CPUs and thus
reducing the program’s overall execution time.

Examples of such HPC applications are very common. Some algorithms used by
chemistry researchers require huge amounts of data to be processed by relatively sim-
ple algorithms: this is the case of protein docking algorithms [KKSEFAV92], useful for
studying the structure of complex proteins. Other algorithms, such as gene identification
algorithms [BN96] are used to identify genes associated with characteristics of animal
populations — although the most processor-intensive parts of the algorithm may not
depend on huge sets of data, great amounts of time can be required in order to simulate
considerable numbers of genes. Other examples not confined to the research field also
follow a pattern that may allow for high parallelism: the Range-Doppler Algorithm [Esa]
is one such example that is used by the military and for geological studies — given large
sets of data acquired by orbiting radars and pertaining to the Earth’s surface, the algo-
rithm is used to render graphical images of the Earth’s surface.

The cluster computing approach is not viable for many companies and research orga-
nizations due to its deployment and management complexity and their associated costs.
On the other hand, the Cloud computing solution, although freeing the organization
from the intricacies of system management, still involves high and sometimes unafford-
able costs for many organizations, and introduces additional security considerations as
well. When resorting to GPU computing, huge speedups might be attained, but these are
usually dependent on the specificities of certain hardware models.

This thesis proposes a distributed system capable of combining the performance gains
of parallel, multi-CPU execution with the huge speedups attainable by the addition of
GPUs for general-purpose computations. By considering GPUs as first-class processors,
hand-in-hand with CPUs, the aggregated power of multiple CPUs and GPUs provides
a way to achieve high performance improvements at reduced costs. Taking into ac-
count the hardware characteristics of GPUs — massively data-parallel multiprocessors
designed for the SIMD execution model —, applications that follow the SIMD execution
model are among those that can make the most out of these processors. They should,
preferably, be allocated to these types of processors. Applications that follow other exe-
cution models, such as MIMD, can also be made to fit into current GPUs, but with very
limited performance benefits (if any). Their execution on CPUs is usually more appro-
priate. The framework is capable of further reducing the overall execution time by pro-
cessing parts of the intended computations on less-fitting hardware, when such decisions

lead to performance improvements.



1. INTRODUCTION 1.3. Contributions

The proposed system can be described as a general-purpose, GPU-aware comput-
ing framework. It resorts to OpenCL [Mun10], a platform-independent framework for
writing programs capable of taking advantage of parallel architectures, including CPUs,
GPUs, and other processors. The framework receives jobs submitted by applications and
dispatches them for execution on an available Processing Unit (PU). Once computed,
job results are returned back to the application. In order to decide to which PU should
each job be submitted, the framework takes into account various aspects that differen-
tiate these PUs such as processing power, available memory (RAM) and the bandwidth
available to transfer data to be processed on the different PUs.

Classic job scheduling algorithms used by distributed job scheduling frameworks usu-
ally consider all available machines to present if not equal, at least similar computing
processing capabilities. On some cases, GPUs display performance speedups over 100x
relatively to regular PCs. The algorithms used on traditional clusters are not adequate to
environments where processors differ so much. As such, a set of scheduling algorithms
were developed for use with the proposed framework. The proposed scheduling algo-
rithms were evaluated and benchmarked by different applications. Such experiments
are described in Chapter 4, where a corresponding analysis of the attained results is also
presented.

1.3 Contributions

This dissertation proposes a generic framework that allows the submission and manage-
ment of jobs capable of running on CPUs, GPUs and other multiprocessor architectures.
This document analyses, describes an existing implementation and evaluates the possi-

bilities of such a system. As a result, the following contributions are given:

e The design and implementation of a generic framework for parallel job scheduling
on CPUs, GPUs and other heterogeneous architectures;

e An API for easing the development and integration of domain-dependent applica-

tions willing to use the framework;

e A set of scheduling algorithms to be used with the framework, to provide appro-
priate dispatching of jobs to the available computing resources;

e A comparative analysis on the influence of the selected job scheduling algorithms,
as well as with applications of different natures and the resulting, consequent exe-

cution times attained under each configuration;

e A study on the impact of using GPUs as first-class processors in the HPC setting.

4



1. INTRODUCTION 1.4. Structure of This Document

1.4 Structure of This Document

The remainder of this document is structured as follows. Chapter 2 gives an overview
over the existing technology upon which this work is made possible. In Chapter 3 we
present the proposed general-purpose scientific computing framework, describing in de-
tail its design and architecture, and each component of the system. Chapter 4 presents a
validation and performance evaluation of the implemented system prototype. Finally, in
Chapter 5 some concluding remarks are presented and some guides for future work are
outlined. Two appendices are included: in Appendix A the API services, available for
application developers for integration with the framework, are presented. Appendix B
includes a set of detailed charts pertaining to the values achieved by the execution and

performance tests of the experimental validation chapter.
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Related Work

2.1 Introduction

In order to better understand the building blocks for this thesis and the proposed frame-
work, it is essential to be aware of the relevant theory and existing technologies that
enable the feasability of the proposed solution.

The main concepts of parallel and distributed computing are presented on Section 2.2.
Section 2.3 covers current approaches for HPC such as cluster architectures, grids and
Clouds, common on the scientific computing field. A survey of the past of GPU com-
puting, as well as the current approaches for GPGPU is presented on Section 2.4. The
main concepts of job scheduling, and the common architectures and algorithms used in
distributed scheduling systems are described on Section 2.5. Finally, an overview of ex-
isting job schedulers for HPC architectures, as well as existing frameworks that allow

launching jobs on graphics processing units is presented on Section 2.6.

2.2 Parallel and Distributed Computing

Parallel computing is not a recent topic in computer science and engineering. Concurrent
and parallel algorithms and processors exist since at least the 1960s [Dij65]. However,
processors capable of running multiple instructions at the same time on the same physical
machine did not become mainstream until recently. In fact, nowadays most consumer-
grade computers being sold are multiprocessors with multiple cores and even multiple
CPUs. Despite the generalization of parallel hardware (CPU), most programs are still
tied to the “classical” model of sequential execution that prevailed until recently.

Using multiple processors in parallel allows for an application to reduce its execution

7



2. RELATED WORK 2.2. Parallel and Distributed Computing

time. This is normally achieved by following one of the models described by Flynn's
taxonomy [Fly72] — Single Instruction Single Data (SISD); Single Instruction Multiple
Data (SIMD); Multiple Instruction Single Data (MISD) or Multiple Instruction Multiple
Data (MIMD). A short description of each follows:

e SISD — A processor handles a single stream of instructions on a single stream of
data in a sequential manner. This is the “classic” approach of monoprocessors that

do not provide any parallelism.

e SIMD — A processor handles one stream of instructions on multiple streams of data
at the same time, in parallel. For instance, executing the same operation over a set
of elements of a vector at the same time. This is the common approach for GPUs
and computational architectures such as Digital Signal Processors (DSP), designed
specifically to converting analog signals into digital representations. Common CPU
architectures have also adopted this approach at the instruction level, for example

with Intel’s SSE instruction set extensions.

e MISD — This is mostly a theoretical model in which multiple instruction streams
would operate on a single stream of data at the same time. There is currently no

known practical application for such approach.

e MIMD — Multiple instruction streams operate on multiple data streams in parallel.
This is an important model in parallel and distributed computing where multiple
processors treat multiple sets of data at the same time.

Distributed computing is an expanding field of computing where an application uses
computing resources that are located on independent, interconnected machines. Multiple
machines are used in order to achieve reduced execution times, lower than what would
be possible if a single machine was used. Distributed systems are also considered when
the cost to deploy multiple slower machines is lower than what would be necessary to
spend on an equivalent faster machine.

Several issues raise from the fact that the multiple processors are more decoupled
than in the single-machine parallel computing model. The interconnect network’s la-
tency and throughput, the location and accessibility of the data to be processed (shared
or distributed among the processors) and the associated communication model must be
taken into account by the application programmer, in order to achieve the intended ob-
jective and acceptable performance gains in a distributed system.

2.2.1 Influence of the Network

The quality of the connectivity between its multiple components is a very important as-
pect of a distributed system. A connection’s quality can be assessed by two main mea-

sures: link throughput and link latency.
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The throughput of a link is defined as the amount of data that can be transmitted per
unit of time. It is often measured in Megabit/s or Megabyte/s (Mb/s or MB/s, respec-
tively).

Link latency is the time needed for a small packet of data to transit from one end
of the network to another. For common LAN or Internet links it is often measured in
milliseconds (ms). Link latency can be regarded as the time it takes since the sender
initiated the transfer until the receiver starts obtaining the transmitted data.

For large amounts of data, latency is usually a negligible instant, making connection
throughput a more important factor. For small amounts of data, latency can be a de-
termining factor when assessing the link’s quality. These concepts are important when
working with distributed systems. Take, for instance, a system in which a huge amount
of data must be processed by a simple (fast) algorithm. If the connection’s throughput is
low it may take a long time to transmit the data from one end of the system to another.
In the end, it may be faster to process this data locally, thus overturning the distributed
solution. On the other hand, if small amounts of data are to be processed by a slower
algorithm, the network’s throughput may not be that much relevant and the execution in

remote faster nodes may be rewarding.

2.2.2 Memory Models

Shared Memory Shared Memory is found on parallel applications where a given mem-
ory region is accessible by multiple program threads. Each thread accesses the shared
memory space, and may read or modify it. This raises several issues, as multiple threads
may concurrently modify overlapping or coincident memory regions, making the state
of one or more threads inconsistent with the state of the data. This is known as the critical
section problem. It must be overcome by resorting to synchronization mechanisms such
as locks or semaphores. Under this model, communication between processes is com-
monly approached by using reserved spaces of shared memory. Each thread may store
information on such space, making it available for other threads. Communication among
processes hosted in different machines must be provided by other means, such as MPI,
described further in this section.

There are several standards and APIs that allow for taking advantage of parallel com-
puting with shared memory spaces. Two of the most used APIs are POSIX Threads and
OpenMP.

— POSIX Threads (Pthreads) [Pth] is a standard, including an API, software develop-
ers to specify the thread behaviour on a given program in a straightforward way.
Typical Pthreads implementations create threads locally, on the same machine as
the parent process executes, and their execution scheduling is managed by the Op-
erating System or a user-level runtime library. Threads may run on the same CPU
core as the parent process or on any of the available cores. Memory access con-

flicts are frequent and, in order to avoid them, locks, semaphores and synchronized

9



2. RELATED WORK 2.2. Parallel and Distributed Computing

regions are provided to the programmer by the API.

— OpenMP [Omp] is an API that facilitates shared memory programming. Using
OpenMP, applications may take advantage of as many processor cores as avail-
able in a straightforward way. The highest performance gains are attainable when
each OpenMP thread accesses data disjoint from the data accessed by the remaining
threads. This reduces the need for synchronization and allows for the highest pos-
sible speedups. Communication between processes is achieved through the usage
of shared variables. The OpenMP API is focused on local shared memory models

only.

Distributed Memory Under a distributed memory model, each thread can only have
direct access to its own private memory space. In order to share data, threads must resort

to some communication method.

— Remote Procedure Calls (RPCs) [Gro08; Thu(09] are a convenient way to allow for
inter-process communication. Using RPCs an application may request the execu-
tion of a given function on another process that may be running on a remote ma-
chine. When used in the context of object-oriented programming languages, RPCs
are commonly referred to as Remote Invocations. Java’s Remote Method Invocation

(RMI) API [Cor10] is an example of such an implementation.

— Another approach lies on the usage of message-passing protocols. These allow for
applications to exchange data in a simplified way. The Message Passing Interface
(MPI) is a standard actively maintained by the MPI Forum [Mpia]. MPI allows to
create portable applications, where point-to-point and collective communication
models are possible. Using the point-to-point communication model, one program
thread sends a message to another thread. Under the collective communication
model, one thread may send a single message to a set of threads associated with
a specific group (referred to as communicator). There are currently two major MPI
implementations: Open MPI [GSBCBLO06] and MPICH2 [Mpib]. Although the MPI
standard allows implementations to provide seamless communication between ma-
chines using different architectures (such as 32-bit machines communicating with
64-bit machines), as well as multithreaded applications to send and receive mes-
sages on multiple threads at the same time, both Open MPI as well as MPICH2
support of these features is still experimental.

Distributed Shared Memory This is a memory model where running threads may ex-
ecute on physically different machines. A virtual shared data space can be accessed by
multiple threads, in a similar way to what occurs under the Shared Memory model. Ad-
ditionally, each thread usually has exclusive access to a private data space.

- Linda [ACGS86; GC92] is a language for communication/coordination between pro-

cesses. It is based on a global tuple-space that may be accessed concurrently by
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multiple processes. Each process may atomically add or remove tuples from this
tuple-space. Tuples are identified by a tag and have a dynamic format: each tuple
is composed of a set of fields and each field may hold data of any type. This flexibil-
ity makes it easy to implement distributed data types, although possibly not in the
most efficient manner. Communication between processes is straightforward: one
process commits a tuple onto the shared tuple-space; a receiver process may fetch

that tuple and reads its contents afterwards.

— Glenda [SBF94] is a derivative from Linda. Glenda adds the possibility to use a
private tuple space, where data may be addressed to a specific process. Any process
may insert data into the private tuple space of any other process, but only the owner
may read it. This allows for a more direct communication method using the shared

memory space.

2.3 Cluster, Grid & Cloud Computing

The demand for computational power has been increasing. Current companies and or-
ganizations have to deal with more complex and demanding applications than those
of the past. Applications with HPC requirements are becoming more and more com-
mon [Bak00; Hpc; Ope].

HPC is usually approached by using multiple computers. The processing speed of
certain computing tasks can be increased by resorting to Networks or Clusters of Work-
stations (NOW /COW). Using enough resources, the performance gains of a NOW/COW
can be comparable to what is achievable with regular clusters. The reduced deployment
costs are usually a determining factor that is taken into account when resorting to this
solution. Another approach lies on the usage of many middle- and high-end dedicated
computers. These machines can be interconnected and configured in such a way as to
allow for the aggregation of their capabilities. Applications using these Clusters of com-
puters usually treat the multi-machine system as a single, complex architecture. More
recently, various organizations have worked together in order to collectively achieve
greater performance gains. They do so by aggregating the computing power of their
clusters, making them accessible using an inter-network — creating what are usually re-
ferred to as Grids [FK99]. Seeing business opportunities on these powerful hardware in-
frastructures, some companies have started making them accessible to the general public.
By renting storage space and processing power, they provide services to their costumers
that hide the complexity of the underlying infrastructure — thus introducing the concept
of Cloud computing [FZRLO08]. Following, we further describe each of these infrastruc-

tures.

COW Clusters of Workstations (COW) or Networks of Workstations (NOW) [Mor03]

can be created by connecting lower-end computers, such as those found at university
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campuses or companies’ offices. The aggregated computing power of these networked
machines can be used in a concerted way in order to accelerate the processing time of
highly demanding, parallelizable applications. This approach allows to put existing re-
sources to use, by using machines that would be idle otherwise. Under these environ-
ments, the machines of the cluster can be available for users to locally log-in and use
with common desktop applications. COW systems usually account for this by excluding
these machines from the pool of available resources for cluster purposes. When users
log-out of the machine, it can be readmitted and jobs can be submitted to it.

Figure 2.1 depicts the logotype of the Berkeley NOW Project. It portrays with a play-
ful analogy how a considerable number of machines with lower capacities working in a

concerted way can surpass the computing power of higher-end machines.
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Figure 2.1: Logo of the Berkeley NOW Project. (Source: [Ber])

Computer Clusters In order to construct a specialised HPC infrastructure, an organi-
zation may resort to a computer cluster [Mor03]. Under this approach, many computers
are installed on a dedicated environment and are interconnected by a high-bandwidth,
low-latency network. This is in contrast to the typical mainframe approach, where all
resources are centred around a single (and usually very expensive) very fast computer.
To process an highly demanding task, each node of a cluster is assigned the processing
of a part of the whole problem. When the program finishes running the results of the
computation are gathered by resorting to some aggregation mechanism and returned to
the application. Good application speedups are usually attained, although this depends
on the processing speed of the machines that compose the cluster and the possibilities for
parallelism presented by the application [Amd67].

The setup and management of a computer cluster is not a trivial task. The necessary
facilities may not exist and may need to be built, the necessary hardware acquired and
installed. The installation, configuration and maintenance of the system requires addi-
tional human resources. System administrators must manage and monitor the system
on a regular basis to make sure it keeps providing acceptable levels of service. Aside
from the monetary and human resources costs, this means that such infrastructures take

weeks or months since the first investment is made until they are ready for production.
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Moreover, with the constant progress on the processing power of new computers, orga-
nizations sooner or later will want to upgrade their hardware. Aside from the financial
costs these upgrades involve, they frequently increase the complexity of the management

and, consequently, the amount of work required to administer the system.

Grids It is possible for organizations to increase the potential performance of their sys-
tems without resorting to upgrades on their existing computing infrastructure. Grid com-
puting makes this possible and is an approach that has been gaining momentum [FK99].
Different organizations cooperate by connecting their existing clusters, making their re-
sources available to each other. Grids are distributed architectures, where each site may
be administered by different organizations such as universities, governments or corpo-
rations. This makes it possible to leverage the possibilities of existing systems by ag-
gregating their capabilities and without significant upgrades. The capabilities of such
architectures are increased each time any of the involved entities improves its computing
resources such as storage, computing nodes or other components, thus benefiting all par-
ticipants on the grid. This allows for greater scalability, bringing more computing power
available at reduced costs for each organization involved.

The distributed nature of grids poses important challenges: each grid node may
be administered by a different organization and, as such, present different configura-
tions. The heterogeneity of architectures and software systems as well as different au-
thentication and security policies must be taken into account when planning such sys-
tems [FZRLO0S].

The Cloud The grid approach is still fairly inaccessible for most organizations as it usu-
ally evolves in a cooperative style: each of the involved organizations must collaborate
in providing a certain amount of resources to the grid. Smaller entities are excluded from
this approach as many don’t have the necessary financial and/or human resources to
manage such technology. Many organizations would like to be able to simply pay for
some processing time and storage space on a grid so their time-consuming algorithms
can run more efficiently. The so-called Cloud [FZRLO08] is associated with this paradigm:
processing time and storage are seen as a service for which the costumer pays. The cos-
tumer is granted access to these resources during the contracted amount of time and does
not need to know the intricacies of the underlying hardware supporting its execution —
thus the analogy with a while cloud, hiding what is on the inside.

Cloud services require the provider to ensure performance, availability and reliability
at high levels so that the service can be competitive. The main Cloud service providers
are organizations that can afford to serve high levels of demand to a huge number of
clients without any service disruption during huge amounts of time. Companies capable
of serving such services rely on resilient and greatly distributed data centres: Google,

Amazon and Microsoft are some of the most well-known.
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24 GPU Computing

There has been a constant demand from the video-game industry towards faster and
more advanced graphics processors. This has lead to a very significant evolution in terms
of processing power for this kind of hardware in recent years. Figure 2.2 illustrates the
evolution in terms of Giga FLoating-point Operations Per Second (GFLOPS) for NVIDIA
cards in comparison with the FLOPS evolution of Intel CPUs.
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Figure 2.2: Comparison of the evolution of peak GFLOPS between NVIDIA’s GPUs and
Intel’s CPUs. (Source: [Cudb])

The past decade saw an astonishing progress in this field: around 2002, the top-grade
GPUs showed a number of FLOPS similar to the available CPUs at the time, with less
than 20 GFLOPS. In 2006, GPUs were capable of performing at around 300 GFLOPS, with
their CPU counterparts still under the 30 GFLOPS bar [OLGHKLP07]. As of 2011, AMD
is producing graphics cards that are capable of 4,64 TFLOPS! and NVIDIA is reaching
the 1.5 TFLOPS mark. The highest-grade CPUs are still peaking at 100 GFLOPS values.

It is important to note, however, that these numbers do not imply that a program’s
performance will scale proportionally to the increase in FLOPS values. Rather, they must
be regarded as a sign of the evolution that this kind of hardware has been experiencing.
Until recently, GPUs only outperformed CPUs in GFLOPS values for single-precision
calculations. However, some GPU models already surpass the computational speed of
CPUs, such as NVIDIA’s Tesla C2050 general purpose computing-oriented GPU. This
data allows to conclude that GPUs are presently the cheapest high performance data-
parallel processors available.

The main difference between the processing capabilities of CPUs and GPUs is related

! ATI Radeon™ HD 5970 Graphics Specifications —http: //www.amd. com/us/products/desktop/
graphics/ati-radeon-hd-5000/hd-5970/Pages/ati-radeon-hd-5970-overview.aspx#2
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with their different execution models. CPUs are designed to provide high performance to
sequential code; the classic approach to parallelism on a CPU was instruction-level paral-
lelism and the main focus regarding performance was in processing a single program as
fast as possible. GPUs, on the other hand, are designed to provide high processing par-
allelism; they are especially conceived to execute a given set of operations over huge sets
of data in parallel. CPU processing is thus focused on providing low latency at the cost
of lower throughputs. GPUs may display higher processing latencies but much higher
processing throughputs.

Lately, CPU development has evolved to provide more processing parallelism with
multiple processing cores, which drifts away from the old trend of focusing solely on in-
creasing single-process speed [Gee05; OHO05]. However, as shown above, the throughput
of current CPUs is still not comparable, and is not even evolving at the same pace as the
current GPUs’ processing throughput.

Some models of NVIDIA’s Tesla brand of GPUs do not provide any video output;
others are shipped in blades ready for mounting in data-center racks — these GPUs are
specifically designed for HPC, showing that the market for the GPGPU is building up and
actively demanding more from this kind of processors. Also, until recently, GPUs could
not be programmed in a flexible manner. This has also been changing: old GPUs could be
considered as pipelines of fixed-function processors; current GPUs are better described
as pipelines of programmable and fixed-function units. All of these factors create great
opportunities for applications that benefit from the capabilities of modern graphics pro-
cessing hardware: large computational requirements, substantial parallelism is possible,
and for which computational throughput is an important factor.

In the following sections we discuss in more detail the architecture of modern GPUs,
present an overview of the evolution of the programming models and languages for

GPGPU, and cover the current approaches and possibilities for GPU programming.

2.4.1 Architecture of GPUs

GPUs are designed for rendering images on a screen. Although the resulting output may
vary greatly (from a simple terminal emulator with plain text printed on it to a complex,
high-definition, three-dimensional scene with millions of objects interacting with each
other), the sequence of steps needed for rendering these images is, for the most part, very
similar. In a simplified way, the typical GPU can be seen as a pipeline of steps, where the
output of each step is the input of the next step.

The pipeline of a typical GPU can be explained in a simple way as a sequence of five
main steps [OHLGSPO08]: the initial input is a set of data representing a list of geometric
primitives, formed by vertices on a three-dimensional (3D) coordinate system. The fol-
lowing set of operations are applied to the input data: I) Vertex Operations: each vertex
is transformed into screen space and shaded (shadows help giving the notion of depth

to three-dimensional objects) — this is an highly parallel operation as each vertex may
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be processed independently of all others; II) Primitive Assembly: vertices are converted
to triangles, the basic hardware-supported primitive of current GPUs; III) Rasterization:
triangles are evaluated in order to determine which pixels on the 3D space they cover.
Each pixel will be associated with a fragment primitive for each triangle that may cover
it, meaning that each pixel’s colour may be computed from several fragments; IV) Frag-
ment Operations: each pixel is coloured according to colour information from the vertices
and/or a texture residing in the GPU’s global memory. This stage is also highly parallel
as each pixel’s computation is independent from all others; V) Composition: each pixel’s
colour is evaluated. Usually the colour of each pixel corresponds to the fragment that
is nearer to the viewer or the “camera”. Finally, after all the steps are computed, the

rendered image is ready to be output to the screen.

Each of these stages is performed by dedicated hardware components. The typical
GPU is composed of hundreds or thousands of parallel, SIMD processors, grouped ac-
cording to their specialization within the graphics processing pipeline. The data to be
processed is divided in chunks and input to the first processors in the pipeline; after each
processing step the data is transferred onto the next specialized processors, in a succes-
sion that repeats until the final image is ready for rendering on the screen. In this way,
GPUs explore both task and data parallelism: multiple stages of the pipeline are computed
concurrently (task parallelism), as well as multiple subsets of the overall data on each stage
of the pipeline (data parallelism). Figure 2.3 illustrates the multiprocessor architecture of a
consumer-grade NVIDIA graphics card. In green and blue are different processor types;
in orange, different memory regions accessible by each group of processors. Arrows in-
dicate the possible directions of the flow of data during a processing sequence.
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Figure 2.3:  Architecture diagram of NVIDIA’s GeForce 8800 GTX GPU.
(Source: [OHLGSPO08])

The Vertex and Fragment Operations stages described earlier were traditionally per-
formed by fixed-function processors that the programmer could only parametrize using
pre-defined options. GPUs have progressively evolved in order to allow programmers to

submit customized programs to these stages. As graphical applications increased their
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requirements from GPUs, GPUs have also evolved in order to provide application pro-

grammers more flexibility.

2.4.2 Evolution of General Purpose Programming on GPUs (GPGPU)

There has been significant evolution in terms of programming languages targeting the
GPU. Initially, programs used the fixed-function processing units of GPUs to achieve
the results they intended; as these processors progressively started to get more pro-
grammable, the first GPGPU assembly languages were introduced [OLGHKLPO07].

With Microsoft’s DirectX 9, higher level programming was made possible, through
HLSL (High Level Shading Language) [Hls]; Cg, also a Shading Language, introduced
the ability to compile to multiple targets [Cgm], and GLSL [KBR09] was a widely used,
cross-platform Shading Language. All these languages were targeted at simplifying the
task for programmers at rendering images, and not general-purpose programming. In
order to create general-purpose programs using these languages, it was necessary to
think in terms of graphics processing, and thus adapt the necessary algorithms to this
paradigm, an approach that could at best be described as very hard for most applica-
tions.

BrookGPU [BFHSFHHO04] and Sh [MDTPCMO04] were both introduced as extensions
to C that abstract the logic of the GPU and allow programming in terms of streams.
Accelerator [TPO06] (a set of extensions to C# by Microsoft), RapidMind [McC06] and
PeakStream [Pap07] allow for just-in-time compilation, and PeakStream was the first to
introduce support for debugging. RapidMind was bought by Intel in 2009 and is be-
ing incorporated into Intel’s in-development Ct [Rap] parallel programming technology.
PeakStream was bought by Google in 2007 [Pea].

AMD also released programming languages targeting their GPUs: CTM [Hen07],
which provides direct calls to the hardware while hiding the image processing logic;
and CAL [Atia], with an higher-level abstraction than CTM. Later NVIDIA released
CUDA [Cudb], which is an even higher-level language than CAL. By the end of 2008,
the first version of OpenCL [Mun10] was released.

24.3 CUDA

CUDA [Cudb] is a computing architecture that enables general-purpose computing on
compatible NVIDIA graphics cards. CUDA is designed to allow programming parallel
applications that will scale with the evolution of future GPU architectures.

In order to run general-purpose computations on GPUs using CUDA, an application
must, at some point during its execution, request the launching of a CUDA kernel on an
available device. This is achieved by resorting to the CUDA API (a C / C++ library pro-
vided by NVIDIA). A CUDA kernel must be programmed in the C for CUDA language,
a language derived from C with some additions for parallel programming on NVIDIA
GPUs.
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There are two main abstractions that CUDA comprises: a hierarchy of thread groups
and a hierarchy of memories. These abstractions allow the programmer to think in terms
of fine or coarse-grained thread parallelism as well as fine or coarse-grained data paral-
lelism. This allows to create programs that are independent of the number of available
processors, which permits them to scale independently of the hardware details and ca-
pabilities of the graphics card where they are computed.

CUDA has recently gained high visibility on the GPGPU field [Cuda] and started to be
widely adopted by many applications. Driven by the market pull for massively-parallel
computing, several hardware vendors started showing an high interest on GPGPU com-
puting — leding to the creation and further development of the OpenCL parallel com-

puting framework.

244 OpenCL

OpenCL [Mun10] is a new, open, free and platform-independent computing framework
that allows software development for heterogeneous platforms. It was initially devel-
oped by Apple, and many companies such as AMD, IBM, Intel and NVIDIA later joined
forces, defining the first stable specification of the language in December, 2008. Over the
last two years (2009 and 2010), there have been new developments every month regard-
ing to OpenCL, with support from new vendors, new Software Development Kits (SDKs)
and new tools appearing at a steady pace. Currently it is already possible to create pro-
grams capable of running on CPUs, GPUs, and other types of multiprocessors such as
(up to this date) the IBM Cell, the IBM Power VMX architecture and Creative Labs’ Zii
(ARM architecture) embedded systems [Ocl]. Most recently, Intel released its OpenCL
implementation supporting their CPU processors.

The OpenCL architecture is heavily inspired by the CUDA model. Like CUDA, it is
defined by various hierarchies of abstractions [Mun10]. These hierarchies are mapped

into concepts of the platform, execution and memory models.

Plaftorm Model The OpenCL platform model is composed of Hosts, which are com-
prised of one or more Compute Devices. Each Compute Device is comprised of Com-
pute Units, and each Compute Unit contains one or more Processing Elements. Though
these abstraction are really general and implementation-dependent, these can be and are

usually instantiated as follows:
e Host — A single computer;
e Compute Device — Each GPU or all CPUs in the same Host;
e Compute Unit — Each single symmetric multiprocessor of a GPU or each CPU core;

e Processing Elements — Single Instruction, Multiple Data (SIMD) elements of the
Compute Units.
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Execution Model An OpenCL program is composed of two main parts: the host code
and the runtime code. The host code runs on the host machine’s CPU and prepares the
execution of the runtime code: it must select the device where the runtime will run on,
input data onto the device memory and provide properties that will help the OpenCL
runtime manage the task’s execution. The runtime code, composed of OpenCL kernels
(analogous to C functions) runs on the selected device, executing in accordance with the
preferences previously set by the host code. The runtime code is provided by the host
code in source-code format. The runtime code is compiled for the target device only in
the moment when kernel execution is requested by the host code.

Each kernel is executed multiple times on the selected Compute Device. Each of these
multiple instances of a kernel is called a work-item. Work-items run in parallel if the
Device has the capability to do so. The number of times a kernel is executed corresponds
to the total number of work-items that will be instantiated. Figure 2.4 illustrates with a
visual representation the OpenCL index space for work-items. Work-items are grouped
in work-groups. Work-groups (as well as work-items) are organized along a one, two
or three-dimensional array which composes the global index space for all items, the N-
Dimensional-Range (NDRange).
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Figure 2.4: The decomposition of an OpenCL NDRange into work-groups and
work-items. (Source: [Sto09])

Before launching an OpenCL program, the host code must specify the desired number
of dimensions for the NDRange index space. A multi-dimensional NDRange must be
used when the logical mapping of a kernel is sound with such spacial representation.
The number of desired (global) work-items along each dimension of the NDRange must
also be provided, as well as the number of work-items that comprise each work-group.
As all work-groups must be composed of the same number of items, the total number of
global work-items must be divisible by the number of items per work-group. The chosen
configuration must provide an indication on the affinity between each of the items: if the
application needs multiple work-items to share information, this sharing should occur as
much as possible inside the same group. Every work-item is attributed a global identifier

that corresponds to its N-dimensional index on the NDRange. It is also attributed a local
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identifier inside its group. Every work-group is identified by an index in a similar way:.

The number of total work-items as well as the number of work-items per work-group
can have a huge influence on the performance of a kernel. Moreover, not all devices
have the same capabilities and some may not support the same number of work-items as
others. Prior to its execution, the same OpenCL kernel can (and should) be configured
to fit better on the hardware it will run on. Alternatively, it is possible to choose default
values recommended for the device, at the cost of a sub-optimal execution time.

Memory Model The memory model used by OpenCL also follows an hierarchical ap-
proach. It is possible to use global, constant, local or private memory. Global memory is
a large, slow-access memory space, usually the DRAM on the GPU or regular RAM for
a CPU — it is shared by all work-items. Constant is a read-only constant cache. Local
memory allows several work-items on the same work-group to access a memory space.
Private memory is only visible to each work-item. Figure 2.5 illustrates the relationship
between the different memory locations and their visibility by the work-items.

Private Private Private Private
Memory Memory Memory Memory
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Compute Device
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Figure 2.5: OpenCL Memory and Platform Models. (Source: [Mun08])

Given the vast diversity of hardware architectures that support OpenCL, there may
be different ways to program the same kernel, which perform better on a specific kind of
hardware but not on another. This means that the programmer has to decide what type of
kernel is best for each target device [Sto09]. Also, the program will be more portable and
faster for every architecture if different, equivalent kernels are provided for each type of
device (e.g., one kernel for GPUs and one kernel for CPUs). This is a huge advantage
over previous frameworks, allowing the creation of programs that may select the best

algorithm to execute depending on the target architectures available at runtime.
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2.5 Distributed Job Scheduling

Computer clusters are commonly used for reducing the time needed to execute applica-
tions with huge computational demands. In order to optimise the mapping of tasks to
computing resources, the submitted jobs must be allocated to the available resources in
an efficient way.

Non-trivial applications are usually comprised of multiple stages. Frequently, only
the most processor-intensive stages of such programs are sent for execution on clusters.
When submitted to a scheduler, these tasks are usually referred to as jobs. Job schedulers
are, as such, an essential part of a computer cluster. They automate the resource sharing
and optimize the overall utilization of the system.

Upon submission, jobs are usually inserted onto a job queue. The scheduler makes
decisions taking into account various aspects of the job queue, as well as the available
resources that jobs need in order to execute. Job scheduling algorithms are characterized
by two main aspects [HSSYO00]: the workload allocation policy and the job dispatching
strategy. Workload allocation policies determine what resources shall be allocated to
which jobs. For example, an allocation policy might determine that small jobs are to be
distributed evenly among all available machines, all receiving the same amount of such
jobs; in other instance, an allocation policy might determine that the fastest machines
should be reserved for the sole execution of bigger, long-lasting jobs. Job dispatching
strategies determine the order by which jobs are selected from the queue to be executed.

All jobs require a given amount of resources to be executed. It is usual for job sched-
ulers to take these requirements into account in order to send jobs to the available re-
sources in such a way that they are better utilized. For example, if a job requires a given
number of processors to execute, it will have to wait until that number is available. An-
other example is when a job needs a certain amount of storage space — if that storage
space is not available because it is being used by currently-running jobs, a scheduler may
postpone its execution to a later time, when the required space is available.

Appropriate workload allocation policies and dispatching strategies distribute the
load of the system over the available resources in a more equilibrated way, avoiding
idle resources while others are overused and while providing a fair waiting time to job

submitters until their jobs” computation results are returned to them.

Cluster Job Scheduling

A single-machine scheduler — i.e., a process scheduler like those found on common
PC Operating Systems (OSes) such as Windows, GNU/Linux or MacOS — can usually
achieve high usage rates. Resources are confined and the scheduler has a global view of
the whole system utilization. A cluster system confined to a single site can be seen, in a
simplistic way, as a single, parallel machine [HSSY00]. A central scheduler for a computer

cluster can have full visibility and manageability of all available resources of the site.

21



2. RELATED WORK 2.5. Distributed Job Scheduling

These available resources are usually homogeneous and their configuration is bound to
common administrative policies. Usually, network latency and throughput are neglected
and are not concerns of these kinds of schedulers. Under these environments, common
dispatching strategies such as First-Come, First-Serve (FCFS) and Backfill (see Section 2.5.2)

are common and usually provide satisfying results.

Grid Job Scheduling

Under a grid environment, similarly to what occurs under cluster environments, pro-
grammers do not usually select the specific machines where each job will be launched. It
is not humanly feasible to take into account the resource load, capabilities and the current
state of each of the available sites when using a shared system with the dimensions of a
grid computing system. Grid job schedulers attempt to automate this by managing the
system, and scheduling each job to the most fitting site or specific computational node.
The restrictions and parameters of the submitted job, as well as the available machines’
current state and capabilities are usually taken into account. Aside from job schedulers
capable of dispatching jobs on a grid, new algorithms and job scheduling techniques

must be employed in order to handle the grid’s characteristics and inherent complexity.

There has been some work on integrating existing job schedulers into grid comput-
ing infrastructures [SKSS02]. In comparison to computer clusters, grids are usually much
more heterogeneous systems. Computer architectures, software environments and con-
figurations may differ significantly across sites. Additionally, security policies may re-
strict access to some of the available resources. To make things even harder sites may
disconnect, reconnect, or change their configurations over the course of time. The net-
work that connects the different sites must also not be neglected — the link latency and
throughput can hamper job and data transfer more significantly than on a cluster system.

Deciding where to run each job becomes a much more complex task.

Given this heterogeneity as well as the possible unavailability of resources, a central-
ized approach is necessarily more complex and has to deal with new challenges usually
not found under the cluster computing environment. Furthermore, taking into account
such a huge amount of environment variability for many jobs can render the scheduler
the bottleneck of the system — although, the load of the job scheduler may be alleviated,
under the trade-off of producing sub-optimal scheduling decisions. The alternative is
to decentralize the scheduling system. In this approach, each site may deploy different
schedulers with different scheduling algorithms, potentially resulting in different overall
performance results depending on the site where a job is dispatched.

Following, we present some possible architectures for distributed job scheduling and
some job scheduling algorithms. Finally, we provide an overview of existing cluster and

grid job schedulers as well as existing GPU-aware schedulers.
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2.5.1 Scheduling architectures

Hamscher et al. [HSSY00] proposed a classification scheme for scheduler architectures.
These can be applied to single-site (cluster) and multi-site (grid) scheduler architectures,

although they are mostly useful in characterizing multi-site schedulers.

Centralized (Figure 2.6) One single scheduler, called the meta-scheduler, maintains in-
formation about all sites. All jobs to be executed on the system must be submitted to
this meta-scheduler. The meta-scheduler dispatches jobs to the available local sites; once
on the local sites, jobs are executed and no more scheduling decisions are made locally.
Sites provide live information to the meta-scheduler when jobs complete and processors
are free in order allow the scheduler to maintain a consistent view of the system. This
approach has the downside of putting much computational weight over the single meta-
scheduler. Also, the scheduler is a central point of failure, meaning that if it fails or is
inaccessible for some reason none of the sites may be used for job processing, even if
they are accessible and working correctly.

~ —p jobs
< --» information
scheduler

Figure 2.6: Centralized Scheduling. (Source: [HSSYO00])

Hierarchical (Figure 2.7) Under the hierarchical approach, a single meta-scheduler is
still responsible for receiving jobs. The meta-scheduler decides where must jobs be dis-
patched to. Additionally, each site has its own scheduler. There is still a single point of
failure, but the load of the scheduling decisions can be more balanced and fine-grained
at site-level. The scheduling algorithm used by the meta-scheduler may differ substan-
tially from those used by the local schedulers. Also, the local schedulers may implement
different scheduling algorithms between each other.

~meta-scheduler

y i v

N N \
scheduler scheduler scheduler

Figure 2.7: Hierarchical Scheduling. (Source: [HSSY00])
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Decentralized By decentralizing the global meta-scheduler, one scheduler is used at
each site and jobs may be submitted to any of them. This raises the need for some com-
munication or synchronization mechanism between schedulers so they can share infor-
mation pertaining to the current load of each site. This is a more scalable approach as
the addition of more sites does not represent a significant increase on the load imposed
on any of the existing schedulers. Also, the failure or inaccessibility of a single scheduler
will only render its local site unavailable, and the remainder of the system may proceed
operating normally. Despite these advantages, this approach may provide sub-optimal
scheduling decisions as none of the schedulers has a global view of the whole system.
Two alternative schemes may be adopted for optimizing this approach: using direct com-

munication between schedulers (Figure 2.8) or a pool of waiting jobs (Figure 2.9).

e When using direct communication, schedulers may resend jobs directly to another
site when a given threshold is reached. Jobs may be sent to another site with lower
utilization so that they can be executed earlier than if they were kept waiting on
the local queue. Schedulers also exchange information in order to maintain current
information pertaining to their state so that decisions can be made using a more

complete view of the system.

Figure 2.8: Decentralized Scheduling, resorting to direct communication.
(Source: [HSSY00])

e Alternatively, jobs that can’t be started soon enough due to local resource unavail-
ability can be sent to a job-pool. When one of the schedulers detects that its re-
sources are being under-utilized, it may fetch waiting jobs from the pool. Some
balancing mechanisms may be used in order to avoid starvation, which could pre-
vent pooled jobs from being executed — for example, weights may be attributed
to pooled jobs as they get “older”, ensuring that they will eventually be fetched.
Alternatively, instead of being fetched from the pool, jobs may be pushed onto the
schedulers at specific times.

K-Distributed Model This is a distributed scheme proposed by Viyaj Subramani et
al. [SKSS02], derived from the decentralized, direct communication model. Schedulers
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Figure 2.9: Decentralized Scheduling resorting to a Job-pool. (Source: [HSSYO00])

local to each site send every job submitted to them to the K least loaded sites. When the
first site initiates a job’s execution, it notifies the originating site, which in turn notifies
the remaining K — 1 sites to cancel the job in question. It has the adverse consequence
that more, useless jobs will be present on all queues, a situation known as overbooking.

This scheme also increases the communication overhead between sites.

K-Dual Distributed Model This scheme is similar to the K-Distributed model, but in
this case two queues are used. One for local jobs and another for remote jobs. All jobs are
sent to the K least used sites in addition to the local queue. Enqueued remote jobs are ex-
ecuted only when the queue for local jobs is empty or when they can backfill into the local
queue without delaying any local jobs. In spite of this being an apparent optimization, the
aforementioned K-Distributed model achieved better overall performance results than
this one under the simulation environments conducted by their authors [SKSS02].

2.5.2 Job Scheduling Algorithms

Along with cluster and grid computing, job scheduling techniques and algorithms have
been researched and developed at a significant pace [FR95; FRSSW97; FRS05].

Two main approaches may be followed: static or dynamic scheduling [FR95]. Static
scheduling does not consider instantaneous system states when calculating job allocation
decisions. The scheduler does not take into account current workload information or
average system behaviours such as the mean job arrival rate at the scheduler and job
execution rates.

Dynamic scheduling, on the other hand, takes the state of the system into account.
Live data pertaining to the state of the components is fetched by (or pushed into) the
scheduler, leading to better decisions at the cost of increased network utilization and
some scheduling overhead.

Jobs submitted to a cluster or grid scheduler are usually comprised of three essential
parts: the code to be executed at the computational nodes; the data to be processed by
the given program; and a set of attributes. These attributes usually comprise, among

other parameters, the number of processors needed by the program; input/output (I/O)
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devices that may be required (such as printers, graphics cards or other devices connected
to the computational nodes), as well as a prediction of the expected execution time for the
given job. The first two attributes are usually seen as limiting by job schedulers: if there
are not enough parallel processors or if the requested I/O devices are being used by other
jobs, the job will be delayed until they become available. The predicted time, however,
can be seen as simply a hint and is, most of the times, used as an upper limit for the job
execution time. If a job takes longer than the predicted time, it is simply killed by the
host node. Aside from expectable inaccuracies, killing jobs upon exceeding the predicted
time has been reported to have the side-effect of users telling the scheduler that their jobs
are much longer than they really are, in order to avoid getting their jobs killed.

Job scheduling algorithms can be categorized in two main aspects [HSSY00]: the de-
termination of resources to be allocated for each job and the order by which jobs are
selected for dispatching Allocation of resources for each job is determined by a workload
allocation policy. Well-known allocation policies may give priority to nodes with the most
free resources, nodes that have been the least utilized or follow some other policy. These
are further discussed in Section 2.5.2.1. The order by which jobs are dispatched is deter-
mined by a job dispatching strategy. The most naive approach is perhaps to dispatch jobs
in the order by which they were submitted to the scheduler, in a First-Come First-Serve
fashion. However, the impact of waiting for a job to be finished may be different for dif-
ferent applications. Take, for instance, the case when a user submits a job that is expected
to take just a few seconds and the queue is filled with long-duration jobs. These long
jobs may take hours to complete, making the short job wait until they are finished. Were
the short dispatched before these long jobs, the time that the submitter would have to
wait would be substantially reduced, and the impact over the long jobs might very well
be negligible. Reordering of jobs may be achieved by observing the predicted execution
times, by number of needed processors and/or by some categorization scheme. For ex-
ample, jobs categorized as “quick administrative tasks” should be dispatched ahead of
all other jobs. Jobs categorized as “non-interactive / batch” can probably go after many

other smaller ones. We further discuss common dispatching strategies in Section 2.5.2.2.

2.5.2.1 Workload Allocation Policies

Workload allocation policies determine how the load is distributed among the available
machines. The fraction of the total workload that each node will execute is thus deter-
mined by these policies. A better policy does not necessarily mean that work is more
evenly distributed by every node but that the overall throughput is higher.

Some common allocation schemes are:

e BiggestFree — picks the machine with the most free resources from those that have
enough resources to process the selected job. This strategy may lead to starva-
tion because smaller jobs are allocated more easily, occupying resources needed for

longer jobs, which may force them to be delayed indefinitely.
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e Random — chooses a random machine from all available machines. On average,
this ends up being a fair strategy, although obviously it does not optimize the over-

all run-time of jobs.

e BestFit — chooses the machine whose resources, upon assignment of the current

job, will be utilized to their maximum extent.

e EqualUtil (also known as Dynamic Least Load) — chooses the machine that has
been least utilized up to the current moment. Under heterogeneous environments
this strategy has the disadvantage of not taking into account the capabilities of
heterogeneous machines, wasting available resources on faster/more capable ma-
chines.

e Weighted and Optimized Weighted Workload — these are strategies proposed by
Xueyan Tang et al. [TCO0]. Jobs are attributed to machines using a supra-linear pro-
portion to each machine’s capabilities. Faster machines get much more jobs than
slower machines. It was found out that when system load is low, it is better to
assign a much greater amount of jobs to fast machines than to use a directly pro-
portional allocation scheme. However, under heavy load and as system utilization
approaches 100%, a (directly proportional) weighted scheme becomes more appro-
priate.

2.5.2.2 Dispatching Strategies

As discussed above, job scheduling algorithms can also be categorised based on the dis-
patching strategy they follow. This determines the order by which jobs are selected for
execution.

Job dispatching can follow a “First-Come First-Serve” order, or jobs may be reordered.
Reordering takes place in order to allow for better utilization of the resources and to
provide better system throughput. Jobs can be categorised manually, by the submitting
users, or by an automatic procedure. These categories can be taken into account for
reordering. Pre-defined categories such as “urgent”, “administrative”, “non-interactive
/ batch” can be used. Another common categorization scheme consists of classifying jobs
based on width (the number of processors they need) and length (the predicted duration).
Under this approach, the available resources can be abstracted and seen as a container of
fixed width, and jobs are reordered and allocated to the resources in such a way as they
can fit into this width along the course of time. Figure 2.10 illustrates this abstraction.

Following, we present some of the most commonly found dispatching strategies for

job schedulers:

e First-Come First-Serve (FCFS) — Jobs are sent for execution on the same order as
they arrive to the scheduler. This may seem a fair policy, but it has the disadvantage

of allowing big, long-running jobs go ahead of small jobs. If these smaller jobs were

27



2. RELATED WORK 2.5. Distributed Job Scheduling

executed in front of the longer jobs, the submitter would have to wait much less
time for them to finish, and the difference on the bigger jobs” overall time would

not be as significant.

e Shortest Job First (SJF) — Smaller jobs always go ahead of longer jobs. This benefits
smaller jobs, avoiding long wait times because of much longer jobs that would be
dispatched before in a FCFS and for which a smaller wait time is not significant.
However, if many small jobs are submitted, this strategy can lead to the starvation
of longer jobs which are never scheduled for execution.

e Random — the next job to be dispatched is picked in a (pseudo-)random way. This
has overall fair results, although it is obviously not optimized for the available re-
sources and job needs.

e Backfilling — Backfilling is an optimization over FCFS that has shown several ad-
vantages over other dispatching techniques [FRS05]. It requires each job to provide
an indication of its predicted execution time. When a job at the head of the queue
is waiting to be dispatched, the scheduler checks if, given the available resources,
there are smaller jobs on the queue that can be dispatched before without delay-
ing the first job. If so, they are dispatched in advance. Some issues influence the
behaviour of backfilling:

¢ Gang scheduling — this is a more complex approach as it requires additional sup-
port from the computing environment in order to be effective. The overall idea is
that currently running, less urgent or bigger jobs, can be preempted (paused) in
order to give way for smaller jobs [FRS05]. This approach presents some important
drawbacks. Efficiency problems arise if I/O operations are being performed by jobs
that are to be preempted: these jobs will instead have to wait for the I/O operation
to finish. If communication between jobs is taking place, synchronization between
the affected nodes is required, implying possibly huge software overheads to keep
control over such situations.

Qucued Jobs

Reserved Jobs

Time —»

/ -
— Running Jobs

Resources

Figure 2.10: The scheduling process as a fixed-width container. (Source: [SKSS02])
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e Weighted and Optimized Round-Robin — these dispatching strategies were pro-
posed by Xueyan Tang et al. [TC00] to be used in conjunction with the Weighted and
Optimized Workload policies (see Section 2.5.2.1). Jobs are dispatched to their des-
tination machines with a proportional frequency on the amount of work attributed

on each machine. This has been shown to benefit overall job execution performance.

2.6 Frameworks for High Performance Computing

There are currently many cluster and grid job schedulers, both commercial and non-
commercial. Some are incorporated into more complex infrastructures that simplify the
management and monitoring of cluster systems, while others are simpler programs fo-
cused on a single task. A considerable amount of work has been developed on imple-
menting algorithms suitable to be executed on GPUs. However, supporting infrastruc-
tures and middleware systems that simplify programming and ease the task of creating
programs for hybrid CPU and GPU systems are still scarce.

The following sections present an overview of the currently existing distributed job

schedulers as well as GPU-aware frameworks.

2.6.1 Job Schedulers

The Moab Cluster Suite [Mab] is an integrated suite that targets to simplify the manage-
ment of cluster systems. It incorporates resource monitors and many additional func-
tionalities such as centralized management for multiple databases and storage systems.
The suite’s Workload Manager component dynamically adjusts workload over the nodes
in a transparent way to its users. Overall, Moab allows to centralize the configuration
of a single or multiple clusters, including the creation of virtual clusters, giving origin to
even more sophisticated setups. Moab also provides some management functionalities
for grid environments.

The Maui Scheduler [Mau] is a job scheduler engine that allows for job submission
and management. Upon submission, it determines where each job shall be allocated
according to its computational needs and the available resources. It also has some inte-
grated system monitoring functionalities. The Maui Scheduler can be integrated into the
Moab Cluster Suite.

Oracle Grid Engine [Ora] (previously known as Sun Grid Engine), although named
as a grid engine, is mainly targeted at cluster management. Its targets are similar to those
of the Moab Cluster Suite. By resorting to the Hedeby project [Hed], it is possible to
integrate multi-cluster systems.

TORQUE [Tor] is a Resource Manager aimed primarily at managing available re-
sources. It is the successor of the original Portable Batch System (PBS) [Pbs], an his-
torically well-known scheduler. Although TORQUE has a built-in scheduler, it may be
integrated with other more feature-complete schedulers.
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Condor [Con] is a software framework that can be used under cluster and COW
(Cluster of Workstation) environments. Its most distinctive feature is the fact that it al-
lows the inclusion of regular workstations under a distributed computing environment.
By detecting that a computer has been idle for a certain amount of time (usually two
hours), it automatically makes that computer’s resources available to the pool of avail-
able machines. As soon as a keystroke or the movement of the mouse is detected or if
some process not managed by Condor starts using a significant amount of CPU, Condor
removes the machine in question from the pool. Some integration with grid environ-

ments is also supported.

2.6.2 Local and Distributed GPU-Aware Frameworks and Schedulers

Although there is a vast array of options for computer cluster managers and schedulers,
systems of this kind that take GPUs into account as first-class processors are rare, if not
inexistent. Current job managers usually only take CPUs into account as job processing-
capable resources, and see GPUs as mere I/O devices. A lot of interest has been shown
in the past in the integration of GPUs into cluster systems in order to take advantage of
distributed GPU processing power [KESSASPHO09]. Different GPUs capable of general-
purpose computations perform at different processing speeds, and are suited to more
specific problems (preferably, SIMD tasks) than the CPU. Also, as shown in Section 2.4,
the GPGPU field is evolving significantly, and the processing speed of GPUs is increas-
ing at what appears to be an exponential rate. Current practices for GPU integration in
clusters still do not take these important aspects into account. Following, we provide
an overview of some distributed and non-distributed frameworks that take advantage
of GPUs in order to improve the processing time of general-purpose applications. We
also present some frameworks that allow to further extend the capabilities of computer
clusters by better integrating GPGPUs into their infrastructures beyond the limiting I/O
device approach.

A local machine-based, CPU and GPU middleware was proposed by Victor Jiménez
et al. [[VGGFNO9]. It demonstrates the feasibility of a scheduling middleware that is able
to dispatch jobs (or tasks) onto a GPU or CPU. The most computationally-intensive func-
tions of the program must be submitted to the scheduler, which decides in runtime which
available processor will execute the requested code segment. It resorts to CUDA, so the
CPU functions have to be adapted in order to fit into the CUDA processing model. A
predictive scheduling algorithm was developed that allows to take each PU’s processing
speed into account as well as the already-observed run times of each function treated by
the application.

Cédric Augonnet et al. proposed a system [ANO08] that is capable of providing a uni-
tied view when programming on heterogeneous (single-machine) computers comprised
of both CPUs and GPUs, as well as for the Cell BE and FPGAs. The main focus of this
approach was on providing a unified way for memory access on these processors, where
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the memory transactions between different processors could be simplified.

In [HRFGA10], Everton Hermann et al. proposed a middleware system that aims at
abstracting the number of GPUs on a single machine. Under this abstraction, a CUDA
kernel is submitted to the middleware, which sends it to be processed in one of the avail-
able GPUs. If an equivalent implementation is available for both CPUs and GPUs, only
one of them is executed on either one of the CPUs or one of the GPUs, as determined by
a scheduler, internal to the middleware.

Maestro [SMV10] is yet another middleware framework that is designed for manag-
ing multiple OpenCL devices and optimizing resource usage by applications. It provides
a single buffer for submitting data to be transferred to the devices as well as a single ker-
nel execution request queue. Upon installation, a set of benchmarks are executed on the
multiple devices in order to assert their capabilities. During kernel execution, the mid-
dleware decides on which device each kernel shall be executed. When the same kernel is
submitted multiple times, Maestro performs variations upon the NDRange index space
configuration, data transfer size, as well as different divisions of work among the devices
in order to reduce the run-time of each kernel. As long as the kernel run time is reduced,

further variations are tested.

CaravelaMPI [YS09] is a distributed computing environment that enables using mul-
tiple GPUs on a number of machines for scientific computations. Using a flow-model, it al-
lows to submit an input data stream onto the framework, receiving an output data stream
after it has been processed by a number of pipelined GPUs. This framework resorts to
the GLSL shading language, meaning that tasks submitted to it will only be executed on
GPUs.

rCUDA [DPaSMQO10] allows for remote CUDA kernel processing. No job schedul-
ing takes place. When kernels are submitted, they are immediately dispatched to the
selected device and it is left to the CUDA runtime’s responsibility to manage the execu-
tion of the kernels on the local queue of each device.

MOSIX is a cluster management system [BS10b; BS10a]. It is distributed as a patch for
the Linux kernel and its main target is to offload processes from machines to other, less-
loaded, interconnected machines. Processes are usually started on a local machine; if,
during their execution, it is determined that another computer in the cluster has enough
resources as to increase the performance of the computations, the process is automatically
paused, transferred and resumed on the target machine. This cluster system has recently
released an OpenCL-based support layer (Virtual OpenCL layer, VCL) [BBNLS10]. This
layer allows for applications to see all (configured) GPUs and CPUs installed on all ma-
chines in the cluster as if they were directly accessible from the host machine. In a similar
way to the rCUDA approach, applications can then request the execution of OpenCL
kernels in one or in multiple OpenCL devices.
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2.7 Summary

In this chapter we presented the fundamental concepts of parallel and distributed com-
puting. We covered the concepts and usual approaches of Cluster, Grid and Cloud
computing. Afterwards, we reviewed the recent history as well as the current state of
General-Purpose computing on GPUs (GPGPU), including an overview on the hardware
architecture as well as past and current supporting languages for GPGPU. Finally, we
covered some infrastructures used for distributed job scheduling under cluster and grid
environments, as well as some common job scheduling algorithms for these distributed
systems. Finally, we presented an overview on previous work on frameworks that allow
for better integration of applications into heterogeneous computing systems comprising
multiple CPUs and/or multiple GPUs, both under local and distributed environments.

The following chapter introduces a proposal for a distributed job scheduler for het-
erogeneous environments. Its design and the currently implemented prototype are pre-
sented and discussed.
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A Distributed Computing
Framework for Heterogeneous

Environments

3.1 Introduction

This chapter presents a distributed computing framework designed to take advantage
of computer systems comprised of heterogeneous architectures. The framework may be
deployed either on a single local machine, or on multiple distributed resources, allowing
programs to take advantage of all the heterogeneous Processing Units available in these
systems.

Section 3.2 describes the system design, proposing a framework composed by a set
of components, with well-defined roles. The role of Jobs on the framework is introduced
and each of the framework’s components is subsequently described in detail. An Appli-
cation Programming Interface (API), designed to facilitate the integration of applications
with the framework’s components, is also presented in this section. The details of the
prototype that was developed and implemented in order to validate the proposed sys-
tem are covered in Section 3.3. The architectural configurations supported by the system
are also described in this section. Afterwards, the most relevant implementation details
of each of the framework’s components are described, and the chapter finishes with a

thorough description of the implemented scheduling algorithms.
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3.2 System Design

As previously mentioned, small and medium-sized organizations that have high require-
ments for computing currently have to deal with serious limitations: cluster, grid and
cloud computing might be too expensive and difficult to manage in order to be realistic
options. Turning to the GPU solution, and as shown in Section 2.5, current ways of inte-
grating multiple and heterogeneous computational resources on the same environment
do not presently provide a seamless, consistent view to the programmer. Developers usu-
ally have to explicitly determine in development-time what Processing Unit will process
each part of a program’s algorithms and end up optimizing their code for these specific
processors. Under distributed environments, more often than not, job schedulers do not
even consider GPUs as processing units capable of processing jobs, and leave the han-
dling of such hardware units at the consideration of the software developer.

Taking the current state of GPU and heterogeneous computing into account, a few
core objectives were kept in mind while designing the framework: i) all PUs available
on a computer should be considered eligible for accelerating the processing time of high-
demanding programes; ii) the resulting framework should be reusable for other scientific
computing and HPC applications; iii) it should be easy to adapt the framework to run
under different hardware and network configurations and iv) scalability to an arbitrary
number of computers and PUs should be strived.

The framework was conceived by grouping the major roles of the system into dif-
ferent components. The functionalities of each component are well contained, but the
components must be able to communicate with each other in order to progress on their
flow of execution. We make a distinction between the domain-dependent and the domain-
independent components. Domain-dependent components must be programmed by or
with the aid of a domain specialist who must be knowledgeable about the application
and is expected to know how to interpret the results returned by the application. On the
other hand, domain-independent components may be reused for other applications and
computational environments. Despite allowing some customisation by appropriate con-
tiguration options, these domain-independent components do not need to be modified
in order to support new applications or hardware configurations.

Applications that use the framework create Jobs, which represent the work unit that
is submitted to the system for execution. The component that generates these jobs is the
Job Manager (JM). Being the only domain-specific component, the J]M must be designed
specifically for each application willing to use the framework, and must be developed
with the aid of a domain specialist. In order to simplify the integration of applications
into the existing framework, the JM is linked to the application and resorts to an Applica-
tion Programming Interface (API) for accessing and communicating with the remainder
of the framework. Appendix A contains a description of the services made available by
the API to the JM.

After creating jobs, the J]M must submit them to the framework. The PU where each
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job will be processed is determined by the framework, jobs are processed and, upon com-
pletion, their results are returned to the JM that created and submitted them. Figure 3.1
illustrates the job-handling workflow on the framework. It can be described as follows:
1. After creating a Job, the JM submits it to the framework. The Job Scheduler (JS) is the
component responsible for receiving newly-received jobs; 2. The JS selects a PU where
the Job will be executed. The Job is then sent to the corresponding Processing Unit Man-
ager (PU-M); 3. The PU-M launches the Job onto the selected PU. Upon Job execution
completion, the results of the computation are sent to a Results Collector (RC); 4. Finally,
the Job’s computation results are available and can be fetched from the RC by the JM.

Domain Specific Components  Domain Idependent Components  Processors
Job Processnng !
Application Scheduler Unit Manager
/ Processing s‘
A é Unit Manager
Job CPUs
Manager Fl) <:§ and

Results GPUs
Processmg :
Collector | ~~—3 Lot

Figure 3.1: Framework main components and Job workflow.

All of these components may be running on a single node or scattered among a set of
nodes. Each component is only required to be able to communicate with the components
with which it must exchange data. Different instantiations of the framework may also
deploy different numbers of components of each type in order to better utilize specific
hardware configurations. We present some local and distributed configurations that may

be used under typical COW, cluster and grid environments:

e A single instance of each component, all components on the same machine — this
configuration can be used to take advantage of multiple PUs existent on a single
machine. Jobs created by the Job Manager are submitted to the local Job Scheduler,
which chooses a local adequate PU to execute each Job. This allows to transparently

take advantage of all resources available on a single machine.

e One central Job Scheduler; multiple, distributed PU-Ms — appropriate for environ-
ments where each computational node may be comprised of multiple PUs, such
environments COWs in scientific research organizations, or as in corporate com-
puter clusters. A PU-M may be installed on each node. On the simplest case, a sin-
gle Job Manager submits jobs to a Job Scheduler, which dispatches them to chosen
PU-Ms. If necessary, multiple Job Managers may submit jobs to the same, central
Job Scheduler. In order to distribute the data comprising job results among multi-
ple nodes, multiple instances of Results Collectors may be deployed — in this case,
RCs should preferably be deployed on machines with generous amounts of RAM

and/or hard-disk storage space in order to handle all the received data.
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e Multiple Job Schedulers; multiple PU-Ms — under a multi-cluster/grid environ-
ment where each node of each cluster is running an instance of a PU-M, a Job Sched-
uler may be installed on a central/“entry-point” node for each computer cluster.
Job Managers submit jobs to one of the JSs, that dispatch these jobs to the PU-Ms
on their respective, local cluster. This configuration may create some decisional ef-
fort on the Job Manager’s programmer, as a decision must be taken on to which JS
each job should be sent.

One possibility to overcome the decision problem on the JM’s part is to deploy
one additional Job Scheduler, acting as a meta-scheduler!. Jobs are submitted to the
meta-scheduler, which decides to which of the other schedulers each job should
be dispatched. Subsequently, the local (cluster-level) Schedulers decide to which
PU-M should jobs be dispatched to.

Another possibility is to have a PU-M managing a set of nodes. This allows for
using a single Job Scheduler, dispatching jobs to these PU-Ms. For this to be possi-
ble, an underlying OpenCL implementation should provide a unified view of a set
of devices spanning multiple computational nodes to a single PU-M. Projects such
as MOSIX VCL [BS10b] seem to be able to bring forth this possibility, but further
research into this solution is necessary in order to assert its feasibility.

Following, we present each of the framework’s building blocks in detail.

3.2.1 Jobs

Jobs are the basic computational work units handled by the framework. A Job comprises
a task describing the algorithm to be executed, the input data to be processed, and a set
of attributes. Figure 3.2 depicts a schematic representation of a Job.

A Job’s task defines the algorithm to be executed. It

must be provided as the source-code of an OpenCL ker- Task:
nel. Due to the heterogeneity support of OpenCL, this
same kernel may be launched on different kinds of mul- :

. : Attributes:
tiprocessor architectures such as CPUs, GPUs as well D Category
as other kinds of processors (see Section 2.4.4). Job at- K%E;qeeffns NDRange

tributes are: an unique identifier (ID), a category iden-
Figure 3.2: The components of

tifier, a set of Processing Unit preferences, the desired Job
a Job.

NDRange configuration for the kernel defined on the
job’s task and a set of arguments containing the data to be processed.

Every Job must have its own identifier (ID). An ID must be unique for every job
submitted by the same JM, for at least as long as the given job is present on the framework
(i.e., it has been submitted and the corresponding results were not yet collected by the
originating JM).

'This configuration is not yet supported by our prototype.
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Each Job can be associated with a user-defined category. Jobs that will predictably
display a similar behaviour when processed on the same PU should be considered as
jobs of the same category and defined as such by the software developer. This may be
used by some scheduling algorithms to improve scheduling decisions. See Section 3.3.4
for further details on job categories.

Processing Unit preferences provide a set of informations and hints for selecting the
most appropriate type of PU for the given Job. A PU type corresponds to a specific
OpenCL-supported device type. At the time of this writing, they are: CPU, GPU or
ACCELERATOR [Mun10]. There are five levels of PU preference:

e Required — only one type of PU may be defined as Required. The job may only
be processed by that type of PU. If no PU of that type is available, the Job is not
processed by the framework at all.

e Preferred — the given job will be preferably processed by PUs of the types indicated
as Preferred. This may be used to indicate that the programmer knows that this
job will perform better on some PUs than others.

e Allow — much like Preferred PU types, types marked as A11low may also be
chosen by a JS to dispatch the given job. These types should be given a lower

precedence when making scheduling decisions, in comparison to Preferred PU
types.
e Avoid — the given job may be processed on PUs of type marked as Avoid, although

the programmer would rather that not to happen. This can be used when the user
expects that the algorithm on the job’s task will perform bad on a given type of PU.
However, if there are no alternatives or the existing ones are not satisfying, the job

may be processed there as a last resort.

e Forbid — the given job may not be processed on PUs marked as Forbid. This is
useful when a job’s task is using certain OpenCL extensions not found on all PU
types and will therefore fail on PUs that don’t support them, or when the algo-
rithm is known to perform so much worse on a given PU type that it should not be
considered for processing there.

These levels must be used at the user’s convenience. For example, if a given job’s task
consists of an intensive highly data-parallel (SIMD) computation, one will probably pre-
fer it to be executed on a GPU. On the other hand, if the job requires the computation of a
long, complex algorithm, that may branch to completely different steps of the algorithm
for different input data, it may be more appropriate to request that the job be executed
ona CPU.

An indication on the number of OpenCL work-items that must process the job may
also be provided. Albeit an optional attribute, choosing an optimized NDRange configu-

ration may increase job processing performance significantly. It this attribute is omitted,
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the defaults given by the OpenCL implementation for the selected PU will apply at run-
time.

Data to be processed must be associated with the Job’s arguments. These arguments
correspond to the parameters of the OpenCL kernel on the Job’s task. Arguments may be
of four types: input data, which will be transferred to the destination PU as provided by
the JM; output data, which will contain the job’s computation results and will be returned
to the JM after the job is completed; empty buffers, which will be allocated in global
memory for use by the kernel, but does not contain valid data at the start of the kernel
and will be lost at its end. An argument may also contain both input data at the start of
the kernel’s computation and output data at the end of it, in which case its contents will
be transferred to the PU and back again.

Jobs must also indicate the specific Results Collector from which the submitting Job

Manager expects to fetch the data returned at the end of the job’s execution.

3.2.2 Job Manager (JM)

The Job Manager is the system’s domain-specific component. Given an HPC application,
the JM is the portion of the program that is responsible for creating jobs, submitting them
and receiving their computations’ results from the framework.

The JM must be conceived taking into account the properties of the data to be pro-
cessed and the domain-specific algorithm. Applications with high-processing needs are
usually composed of multiple steps [KRKSEFAV92; BN96; Esa; Aze09]. Each step may cor-
respond, for example, to a simple calculation of a few numbers; a processing-intensive
computation; or a simple, repetitive task that spans large amounts of data. Steps may
or may not depend on values determined by previous steps. A JM should create jobs
for those steps that take a long time to be computed in order to reduce their overall ex-
ecution time. Depending on the nature of the algorithms, applications can benefit from
task and/or data parallelism. Using task parallelism, multiple steps are processed si-
multaneously. With data parallelism, the data processed on a step is partitioned and the
same algorithm is executed in parallel by multiple processors, doing the same computa-
tion over different sets of data. This is reflected on the way jobs are created. When task
parallelism is intended, jobs with different tasks, each corresponding to a different stage
of the algorithm, are created and submitted to the framework. When data parallelism is
intended, jobs with the same task, each with a different set of data, are submitted instead.

The JM may request to be notified when the results of a previously-submitted job are
available. When the notification arrives, the J]M may then collect the job’s output data.
This mechanism makes it possible for the JM to continue processing further computations
while at the same time being able to receive the requested data as soon as it is available.
Alternatively, the Job Manager may query the Results Collector from time to time in order
to check if the required data is available and, subsequently, fetch it. After receiving the

results from a previous computation, the J]M may store this data and, if needed, create
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new jobs based on it.

3.2.3 Application Programming Interface (API)

To aid the development of the domain-specific Job Manager, an Application Program-
ming Interface (API) is provided. The API can be seen as a thin layer that facilitates the
integration between the domain-specific and the domain-independent components of the
framework. Using the API, users of the framework and domain specialists are freed from
having to think in terms of the lower-level communication layer as well as the details of
the job-building process. They may instead focus on the aspects of task creation, defining
job attributes, data partitioning and data gathering. Aside from facilitating the develop-
ment process, the services provided by the API also ensure that no obviously invalid data
is input into the system, and issue warnings or errors under such situations.

The API provides data types, structures and variables to simplify the job creation
process. Functions are also provided to ease the creation of jobs, their submission to the
framework, and retrieval of computation results. A complete description of the available

API services and utilities is provided on Appendix A.

3.2.4 Job Scheduler (JS)

The Job Scheduler is the component that receives jobs when they are submitted to the
framework by a Job Manager. Received jobs are added to a queue of pending jobs and
are subsequently dispatched by the JS to an available PU according to a scheduling algo-
rithm.

When a PU-M is started, an initial setup phase takes place: the OpenCL capabilities
of all of its PUs, as well as performance metrics for each of them, are communicated to
a JS. The JS then evaluates the quality of the connection between itself and the commu-
nicating PU-M. This is done by determining the latency and throughput between these
components. These informations are subsequently stored as a set of properties associated
with each PU. After this registration process is complete, the JS can then dispatch queued
jobs to the PUs managed and made available by each of the registered PU-M.

The JS stores received jobs on its local job queue according to a certain order, deter-
mined by a given enqueueing policy. This can be a First-Come First-Served policy or, if
desired, a policy that might reorder jobs according to some prioritization scheme. For
example: jobs coming from a specific J]M or jobs of a given category may be enqueued
ahead of all others in order to antecipate the moment they start being processed on an
available PU.

At the same time, the scheduler progressively dispatches enqueued jobs. According
to a job dispatching strategy a job is chosen and, according to a workload allocation pol-
icy, an available PU is selected to process that job (Sections 2.5.2 and 3.3.4 describe typical
scheduling algorithms and the ones implemented in the current prototype, respectively).
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The decision on which PU must be selected for executing each job (the workload pol-
icy), as well as the dispatching strategy, can be configured by parametrizing the JS to the
user’s preference. Obviously, different algorithms render different scheduling decisions,
and consequently different overall execution times for the same sets of jobs. The most
adequate algorithms should be chosen for the environment on which the framework is
being deployed. Given the differences between the multiprocessor architectures sup-
ported by OpenCL, running a code piece on a device may bring huge benefits in terms
of program speedup, in comparison to running the same code on another device. On the
other hand, if the system comprises PUs whose capabilities are all very similar, it might
be irrelevant to opt for one or other of the available PUs. Various properties can be taken
into account by a scheduling algorithm in order to perform better decisions such as the
performance metrics retrieved at registration time pertaining to each PU, the link quality
between the JS and each PU-M, the properties of each PU-M, and Jobs’ task properties,
attributes, as well as data sizes and types.

In order to acquire a more precise and updated view of the system, the JS receives
informative data pertaining to the current state of each registered PU-M and correspond-
ing PUs. This information can be actively queried by the JS or it may be sent by the
PU-Ms, either after the occurrence of a given event or periodically, after certain amounts
of time. After a job finishes being processed, a notification is sent to the JS by the PU-M,
informing it of the occurrence. The JS can also receive system usage statistics such as PU
usage rates and the number of jobs each PU has processed up to the moment. A peri-
odic heartbeat can be sent from the PU-M to the ]S so that it can keep track of PU-Ms that
are accessible and those that may have disconnected; this heartbeat can be used to keep
track and improve connection quality estimates as well. Job scheduling algorithms may
use these informations in order to adapt their scheduling decisions to the current system
in run-time. For example, some PUs may be overloaded by requests for processing many
jobs, while others are being kept idle unnecessarily. Live system state informations can
be used to detect and overcome such situations.

3.2.5 Processing Unit Manager (PU-M)

The Processing Unit Manager is the component responsible for receiving jobs dispatched
by the Job Scheduler and launching them on the selected PU. When jobs complete, the
output of their computations is sent by the PU-M to the Results Collector originally se-
lected by the Job Manager.

As described on Section (3.2.4), when a PU-M is launched, a series of steps are taken
in order to acquire a detailed view of the managed resources. A set of static properties
are retrieved from the local environment such as available memory, processor types and
clock frequencies. Additionally, the PU-M also carries out performance tests on each of
the available OpenCL devices in order to determine device throughput (by means of a

raw FLOPS measure) and the bandwidth of host-to-device memory transfers. During
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the registration phase, the PU-M transmits these properties to the JS and answers to the
connection quality inspection tests requested by the JS.

After registering with a JS, the PU-M is available to receive jobs and launch them on
PUs for processing. A local job queue is maintained for each PU, where jobs are enqueued
and dequeued following a FCFS order. Each job is processed only after the previous one
for the same PU completed its execution. No rescheduling decisions are taken by the
PU-M, as those were already made by the JS.

Each argument of a job is annotated by the JM as containing input, output or an aux-
iliary data space for use by the kernel. When preparing the execution of a job, arguments
marked as input are initialized and their contents copied from the host to the OpenCL de-
vice memory. The other types of arguments only need to be allocated — no initialization
is needed for them. After a job’s execution completes successfully, the data on the argu-
ments marked as output is returned to the requested RC. A new job on the same PU'’s job
queue can be executed afterwards, repeating the aforementioned execution cycle. In case
ajob fails to be compiled by the OpenCL runtime compiler or a run-time error occurs, the
data on its arguments is considered invalid. Such data is discarded and a failure message
associated with the job is sent to the RC. The JM should process the received error codes
appropriately.

Also after each job completes its execution, the PU-M sends a notification to the JS.
The time taken to transfer the data in the job’s arguments to the device and the kernel exe-
cution time are provided to the JS, to allow a more accurate view of the PU’s performance
and enable better scheduling options.

The PU-M also comprises a passive communications module for responding to status
enquiries from the JS, as well as a periodic module for providing system status, allowing
the JS to keep track of useful live system informations.

3.2.6 Results Collector (RC)

The Results Collector has two main functionalities: receiving data pertaining to job com-
putational results sent by Processing Unit Managers and sending such data back to the
Job Manager that submitted the job. This is the simplest component of the framework
and its purpose is simply to behave as a buffer, holding results until they are claimed by
the JM. This can be useful to alleviate the burden of storing potentially huge amounts of
data that could accumulate and overload the PU-M or the JM.

Job results are received by the RC after they are sent from the PU-M. They are stored
on an indexed structure, so that finding the results of a given job can be done quickly.

Jobs results can only be requested by the JM that created them. When a JM requests
the results for a given job, and if such data is available, it is sent to the JM and deleted
from the RC. If the data is not yet available, an error message is sent instead.

A JM may register a request on the RC to be notified when the results of a given job

are available. This avoids frequent or at least periodic checks from the JM to know if
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the desired data is available to be fetched. After receiving a notification request, the RC
will send a notification to the corresponding JM as soon as the desired data is available.
Afterwards, the JM can fetch such data.

3.3 Prototype

A prototype implementation was created to validate the proposed framework. Although
initially intended to be a simplified version of the overall system, the current version
evolved until the point where it includes most of the initially functionalities.

The current implementation was designed with extensibility in mind. The basic com-
ponents of the framework can be considered modular enough so that future improve-
ments can be made by modifying only specific parts of each component. Different local
and distributed component deployment configurations are supported. Due to the nature
of the components, deploying the framework under new system configurations should
not represent a major change on their internal structure.

Various scheduling algorithms were implemented in order to test the framework. We
designed a new, score-based workload allocation policy in order to provide a scheduling
algorithm that is intrinsically designed from scratch to deal with heterogeneous comput-
ing units such as CPUs and GPUs under the same distributed system. The following
sections further describe the most relevant details of the implemented prototype.

3.3.1 Dependencies on Third-Party Systems

The current version of the system is implemented in C. The communication between
components is attained by a communications layer resorting to MPI [Mpia]. Currently
there is currently a strict dependency on MPICH2 [Mpib], as this is the only stable im-
plementation with support for applications with multiple (and possibly concurrently)
communicating threads. Each job’s task is expected to be a correct OpenCL [Mun10]
source-code to be submitted to any OpenCL device. Using provider-specific extensions
to the OpenCL specification on kernels submitted to the framework may result in unde-
fined behaviour, depending on the device the kernel is processed on. All machines on
which a component is launched must provide MPICH2 runtime support as well as nec-
essary OpenCL libraries. PU-Ms require any needed GPU drivers installed and loaded
in order to launch jobs onto GPUs.

3.3.2 Supported Configurations

The current implementation’s components may be deployed in different configurations,
being easy to adapt to different hardware setups.

The system may be deployed on a fully-local configuration, with one instance of each
component running on the same machine. Alternatively, in order to take advantage of

multiple hardware resources, the components may be scattered among various machines.
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All configurations described on Section 3.2 may be deployed, except those that include
deploying multiple levels of Job Schedulers, following a meta-scheduler approach. Al-
though, deploying multiple, independent JSs is supported. A configuration involving a
PU-M capable of managing a set of PUs on a group of disparate machines has not been
tested.

3.3.3 Implementation Details

Some additional details about the implementation of the various components should be
taken into account. We present the most relevant details of the domain-independent

components:

Job Scheduler The ]S, much as like as all of the other components, was designed with
future expandability in mind. As a consequence, job scheduling algorithms may be im-
plemented and replaced without considerable modifications to the core of the JS compo-
nent. More specifically, all it takes at this point to implement a new job dispatching or
workload allocation algorithm, is simply to create a new source file containing the neces-
sary functions, edit one header file and to provide a string with the desired algorithm’s
name as an argument to the JobScheduler program executable.

The way the ]S treats the data received by PU-Ms (both the static data retrieved at
PU-M registration time, as well as live system information) depends on the workload
allocation algorithm. The reception of this data is fully handled by the core JS, but how it
is stored, managed and used by the scheduling algorithms depends on their implemen-
tation. Section 3.3.4 provides a detailed overview of each of the implemented algorithms
and how they use the available PU informational data.

Processing Unit Manager The static properties of each device managed by the PU-M
are collected at launch time from the OpenCL runtime installed on the machine. The type
of each device, global and local memory sizes, clock frequencies, NDRange dimension
limits supported by each device, as well as other properties, are all retrieved from the
OpenCL runtime. This provides a platform-independent way of acquiring these details.
Aside from these static properties, three additional performance tests are conducted by
the PU-M:

1. Host-to-device memory throughput (GB/s) — a simple and intensive data transfer
is performed between the host machine and the OpenCL device, using OpenCL
buffer creation and writing functions. This allows to determine the peak data rate
at which it is possible to transfer data from the host machine’s RAM to each specific
device’s global memory;

2. Kernel compilation and submission latency (seconds) — this measures the time

spent by overhead operations when submitting a kernel to a device. The time taken
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for the creation, compilation, submission and retrieval of a simple kernel without

any data transfers or processing taken on the device is measured;

3. Device throughput (seconds™!) — a kernel that performs a significant amount of
parallel processing is submitted to the device. The time taken to process this ker-
nel is used to obtain a rough estimate on the processing speed of the device. The
throughput is thus measured as the inverse of this kernel’s execution time (time
faster devices get higher values; slower devices get lower values). Currently, this
is only an approximation to a more proper FLOPS measurement that should be

implemented in the future.

OpenCL provides a queueing mechanism that allows for multiple kernels to be en-
queued and that dispatches them onto the devices as they are available to process kernels.
However, it was decided not to use this mechanism. Using the OpenCL queue mecha-
nism would increase the complexity of synchronizing memory allocations onto the de-
vices with the launching of the respective kernels. Huge memory allocations would have
to wait until enough device memory was available, which only adds more complexity
to the system. An external queue to OpenCL, in the PU-M’s application layer is used
instead.

All network transfers are processed independently of kernel processing. This means
that while a kernel is being processed by an OpenCL device, the PU-M might receive
more jobs in parallel from the JS. A relevant performance improvement is achieved by the
fact that when a job finishes being processed, its output data is sent as soon as possible
to the respective requested RC. A new thread is created for this purpose, allowing for the
following job to be processed at the same time that network transfer takes place.

Results Collector Data received by the RC is currently only stored in RAM memory,
by resorting to a binary search tree [Tse]. This was a decision made in order to improve
insertion, search and deletion times with potentially huge amounts of data. The tree
nodes are ordered by the unique identifier corresponding to each job-submitting JM, as
well as the ID of each submitted job (result).

3.3.4 Available Scheduling Algorithms

All algorithms currently implemented follow a static scheduling approach and dispatch
enqueued jobs as soon as possible. The JS does not wait for status updates or availability
notifications from PU-Ms before dispatching any enqueued jobs. However, if a job is
submitted to a JS, and a PU-M had already processed previous jobs and provided live
system information, the JS may take that information into account.

3.3.4.1 Dispatching Strategies

All jobs received by the JS are enqueued by the order they arrive. Only one job dispatch-
ing strategy is implemented: a simple FCFS strategy. No prioritization scheme is used
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and jobs are not reordered.

3.3.4.2 Workload Allocation Policies

Two main workload allocation policies were implemented: round-robin and a score-
based workload allocation policy. The latter can be parametrized to customise its be-
haviour, and up to this moment two main variations were used: the fixed and the adaptive
approaches.

Round-Robin Workload Allocation Policy (RR) The Round-Robin workload alloca-
tion policy selects PUs in a round-robin fashion. The absolute or relative performance
properties of each PU are not taken into account by this policy.

Job attributes pertaining to PU type preferences are considered as follows. If a job
is required to be processed on a certain PU type, only PUs of that type are considered
for processing the job. Otherwise, if a job indicates preferred PU types, a PU of that type
is chosen for processing if available. If no PU of type preferred is available, one of the
available PUs with type identified as allowed is chosen. If no PU of type preferred or allowed
is available, one of the available PUs of type marked as avoid will be chosen. Finally, if
none of the previous succeeded, one of the types that is not marked as forbidden on the job
is selected. The pseudo-code on Listing 3.1 shows this preference-based method used for
selecting an eligible PU. The selectPU function simply selects one of the applicable PUs
following a round-robin fashion, as shown on Listing 3.2. No live system information is

taken into account by the RR allocation policy.

Score-Based Workload Allocation Policy The score-based workload allocation policy
was developed in order to create an algorithm that better fits the balanced utilization of
the heterogeneous computing resources targeted by the framework.

To select which of the PUs will execute a given job, the algorithm analyses the prop-
erties of the available PUs. Weighting the PU properties with the job’s requirements and
attributes, a score is given to each PU. The PU that returns the best score is selected for pro-
cessing the job. All PU properties can be taken into account by the algorithm. Different
parametrizations give different weight factors to each property, increasing or decreasing
the relevance of certain aspects of the PU in spite of others. A weight factor of 0 (zero)
can be used to ignore certain PU properties.

The implementation maintains a local registry for each PU containing the currently
enqueued jobs, an approximation of the start time of the first job presently at the local
queue and the number of jobs of each category that have already been processed. After
a PU is selected for processing a given job, its local queue registry is updated with the
information pertaining to this job.

When the JS receives a finished job notification from a PU-M, the queue registry for
the corresponding PU is updated: the finished job is removed from the queue and the

start time of the following job in the queue (if there is any) is updated. This information
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bool allocateJobToPU (Job job) {
bool success = false;

if (job.requiresPUType)
return selectPU (job, job.requiredPUType);

if (job.hasPreferredTypes)
success = selectPU(job, job.preferredPUTypes);

if (!success && job.hasAllowedTypes)
success = selectPU (job, job.allowedPUTypes);

if (!success && job.hasAvoidableTypes)
success = selectPU (job, job.allowedPUTypes);

if (!success) {
PUType_List allPUTypes = getAllSupportedTypes();
allPUTypes.remove (job . forbidPUTypes) ;

success = selectPU (job, allPUTypes);
}

return success;

Listing 3.1: PU selection by preference, pseudo-code.

PU_List allPUs; //contains all available PUs

bool selectPU (Job job, PUType_List possibleTypes) {
PU_List suitablePUs = allPUs.getPUsOfType(possibleTypes);
PU selectedPU;
suitablePUs .remove_PUs_without_enough_resouces_for (job);

selectedPU = suitablePUs.head;

if (selectedPU == NULL)
return false;

job .execOnPU = selectedPU;
allPUs .remove(selectedPU) ;
allPUs. tail = selectedPU;

return true;

Listing 3.2: Round-Robin PU selection, pseudo-code.

46




3. A DISTRIBUTED COMPUTING FRAMEWORK FOR HETEROGENEOUS ENVIRONMENTS 3.3. Prototype

is later on taken into account by both the fixed and adaptive approaches. The number of
jobs with the same category as that of the recently-finished job as well as the time that
was spent for processing the job are also recorded on the registry. The fixed approach

ignores these values, but the adaptive approach takes them into account.

The time spent for processing jobs of each category is stored following a weighted
average method. If no jobs of the same category had been processed by that PU yet,
the value that is kept is the same as what was reported by the PU. If any jobs of the same
category had already been processed by that PU, the value that is kept is a time-weighted
average between the stored value and the received new one. This has the effect of giving
increasingly less weight to old values. Currently we use an empirical weight of 50% to
the newly received one.

Given a dequeued job from the JS” queue, the general score-based workload allocation
policy behaves as follows:

1. Job preferences on PU types are taken into account in the same way as under the
RR allocation policy. Refer to Section 3.3.4.2 and Listing 3.1 for details.

2. From the list of PUs with suitable types, select those that have enough hardware
resources and capabilities to process the given job (i.e., device global memory size,
support for the requested NDRange dimensions, ...).

3. Determine the score for the given job on each PU. The PU that gets the best score is
chosen for processing the job.

4. Update the local registry with information about the job.

The pseudo-code in Listing 3.3 shows the general structure of the score-based work-
load allocation policy.

Fixed approach Under the fixed approach, live system information received by the
JS pertaining to past job execution times on PUs is not taken into account. Parameters
used by this approach are those acquired on the initial performance measurements made
by PU-Ms on their local PUs, performance measurements over the communications link
between the JS and PU-Ms, the number of jobs on the PUs” queues, and the start time for
the first job on each queue.

The scorePU function (Equation 3.1), as parametrized for the fixed approach, returns
an approximation of the time at which a given job is predicted to finish on a given PU.
This function adds the predicted time at which a job will be submitted by the respective
PU-M to the PU, to the predicted time it will take to submit and process that job on the
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PU_List allPUs; //contains all available PUs

bool selectPU (Job job, PUType_List possibleTypes) {
PU_List suitablePUs = allPUs.getPUsOfType(possibleTypes);
PU selectedPU = NULL;

//Step 1
suitablePUs.remove_PUs_without_enough_resouces_for (job) ;

if (suitablePUs.length == 0)
return false;

/] Step 2
float bestScore FLT MAX;
float currScore = FLT MAX;

forall (PU currPU : suitablePUs) {
currScore = scorePU (currPU, job);
if (currScore < bestScore) f{
bestScore = currScore;
selectedPU = currPU;

}

}

if (selectedPU == NULL)
return false;

job .execOnPU = selectedPU;
job.predictedFinishTime = bestScore;

// Step 3
selectedPU . addInfoToRegistry (job);

return true;

Listing 3.3: Score-Based PU selection, pseudo-code.

PU.

startT (job, PU) + TTP(job, PU),

available At(PU) < startT(job, PU);
available At(PU) + TTP(job, PU),

available At(PU) > startT (job, PU).

scorePU (job, PU) = (3.1)

The instant when a job starts to be processed can be predicted in one of two ways:

a) If the PU is predicted to finish processing all jobs on its queue before the given job is
ready to start being processed, the instant at which the given job will be started is
given by the startT" function (Equation 3.2).

startT'(job, PU) = currTime+ LinkLatency(PU)+TimeT oTrans fer(job, PU) (3.2)
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b) If the PU is predicted to finish processing all jobs on its queue after the given job is
ready to start being processed, the instant at which the given job will be started is
given by the available At function (Equation 3.3).

nEnqJobs

available At(PU) = FirstJobStartedAt(PU) + Y TTP(queJob;, PU) (3.3)
=1

The time it will take for submitting and processing the job by the PU is given by the TT'P
function (Equation 3.4).

TTP(job, PU) = JobSubmissionLatency(PU)
+ DeviceDataTrans ferTime(job, PU) (3.4)
+ ProcessingTime(job, PU)

The startT function (Equation 3.2) returns the instant when the PU-M will dispatch
a job to a PU, if the local queue of the PU is empty. Parameters used are the current
system time (currT'ime), the latency of the connection between the JS and the PU-M
(LinkLatency) and the time needed to transfer the job’s data to the respective PU-M of
the given PU (T'imeT oT'rans fer), obtained by multiplying the job’s input data size (MB)
by the inverse of the connection throughput [(MB/s)~].

The available At function (Equation 3.3) returns a prediction of the instant when a PU
will be next available. Parameters used by this function are the time at which the first
job on the queue was started (F'irst.JobStartedAt), the number of jobs on the PU’s local
queue (nEngJobs) and information maintained by the JS about the jobs on the queue,
queJoby, ..., queJob,pgnjobs-

The T'T P function (Equation 3.4) returns the predicted time to process a job on a PU.
Parameters taken into account are the local job submission latency from the PU-M to
the given PU (JobSubmissionLatency), the time to transfer the job’s input data to the
device (DeviceDataT'rans ferTime), obtained by multiplying the job’s input data size
(MB) by the inverse of the host-to-device bandwidth [(MB/s) 1] of the PU and the actual
predicted time for processing the job on the PU.

The fixed approach ignores the processing times received by the JS after PUs finish
processing jobs. The ProcessingTime parameter is therefore constant for all jobs on each
PU along the course of the JS’s execution. The value used on this parameter a perfor-
mance estimation measure for each device, as acquired at PU-M initialization time (cur-
rently, an approximation of FLOPS). The inverse of this value is used, representing the
speed of each device (the lower the value, the faster the device). Like described earlier,
the relevance of this parameter can be increased or decreased by resorting to a multipli-

cation factor. Currently, this factor is fixed at 1 (one).

The consequence of this is that all jobs for each PU are seen as equal in terms of time
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needed to be processed. Consequently, they end up being allocated to PUs proportionally
on their processing capabilities, also taking into account the connections’ properties and

the time to prepare and initialize job execution on them.

Adaptive approach Under the adaptive approach, the processing time of past jobs is
taken into account. Job categories are assumed to be associated to jobs with similar char-
acteristics and are used to compute an estimation of the job processing time. Parameters
used by this approach are those acquired on the initial performance measurements made
by PU-Ms on their local PUs, performance measurements over the communications link
between the JS and PU-Ms, the number and categories of jobs on the PUs” queues, and
the start time for the first job on each queue.

When a job of a certain category is dequeued from the JS” job queue, the algorithm
uses the AdaptScorePU function (Equation 3.5) to determine the score for each PU. This
function behaves as follows:

a) If the given PU has not been selected for processing a job of the same category as that

of the current job, the returned score is the lowest possible: 0 (zero);

b) If the given PU has already been selected for processing a job of the same category as
that of the current job, the returned score corresponds to the value returned by the
scorePU function (Equation 3.1).

0 , —alreadySubmitted(job, PU);

scorePU (job, PU), alreadySubmitted(job, PU).
(3.5)

The alreadySubmitted function returns true if a job of the given category has already

AdaptScorePU (job, PU) = {

been submitted to the given PU. Otherwise, it returns false.

Observed processing times are updated under this approach, which means that the
ProcessingTime value of the TT' P function (Equation 3.4) will correspond to a value that
was communicated from the PU to the JS. However, when the PU has not yet finished
processing its first job of the same category, such value has not been acquired yet. In that
case, the ProcessingT'ime value will correspond to the same performance indicator as
what is used under the fixed approach (the initial estimation of the processor speed).

The overall behaviour of the adaptive approach can be described as follows:
1. Jobs of a given category C, are initially submitted to each PU in a RR fashion;

2. After all PUs have been submitted at least one job of category C, subsequent jobs
of the same category are submitted following an allocation policy similar to that of

the fixed approach;
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3. When PUs start providing the processing times of jobs of category C, these values
are taken into account, and the observed processing times are considered when
dispatching future jobs to those PUs.

3.4 Summary

This chapter presented a framework that aims at improving the utilization of all com-
puting resources in heterogeneous computer systems, both on fully local systems and on
multiple distributed machines. The chapter started with a description of the design of the
overall system, followed by a detailed description of all of the components that comprise
the framework, namely: the Job Manager, the Job Scheduler, the Processing Unit Manager
and the Results Collector. The structure of a job was also described, as well as an API that
can ease the development process of programs that use the framework. Subsequently, we
provided some details of the prototype that we developed, and that allowed to validate
and further assess the capabilities of the framework and its functionalities. Two workload
allocation policies were implemented: round-robin and score-based. Their behaviour, in
the context of the framework’s Job Manager, was described in detail.

In the following chapter, the presented framework is evaluated and benchmarked,
and the performance of the different algorithms is assessed under different utilization

scenarios.
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Evaluation

4.1 Introduction

In this chapter we present the experimental work performed to assess the validity as well
as the performance gains our framework brings forth.

In Section 4.2 we present the hardware that was used for each of the performed ex-
perimental tests. Section 4.3 describes the criteria used to evaluate the results of each
of those experiments. In Section 4.4, the two applications that were used to validate the
framework are introduced and, afterwards, the benchmarking results and corresponding
achieved speedups are presented and discussed.

4.2 Experimental Settings

For each application, three sets of tests were performed in order to evaluate the perfor-
mance of their original implementations, their behaviour under an OpenCL environment

and the performance gains achievable by resorting to the present framework.

e The first set of tests consisted on an assessment of the execution time of the orig-
inal, sequential versions of the existing algorithms. These tests were performed
under a strictly local environment, using a single CPU core of each of the available
machines. The list and characteristics the machines that were used is depicted in
Table 4.1.

e The second set of tests aimed at evaluating the behaviour of the different avail-
able PUs under different OpenCL kernel configurations. These tests used the im-

plemented framework and were conducted under a local configuration. A single
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instance of each component of the framework was deployed, and all components

were running on the same machine.

o Tests in the third set aimed at reducing the execution time of the original programs.
Under this setting, the Job Manager, the Job Scheduler and the Results Collector
were all launched on the same machine. Multiple Processing Unit Managers were
deployed, one on each of the remaining machines. These machines hosted both
multiprocessor CPUs as well as consumer-grade and scientific computing-targeted
GPUs (see Table 4.1). An initial subset of benchmarks restricted the usage of PUs
to only CPUs. The subsequent set of benchmarks allowed both CPUs and GPUs as
eligible processors for the submitted jobs. The job configuration and attributes used
on the distributed tests were inferred from an analysis of the behaviour displayed
by the different PUs on the previous tests.

Table 4.1: Hardware details (horizontal rules separate PUs on different hosts).

Designation PU type Comp. Units! Clock RAM
SunFire X4600 M2 CPU 16 1.00 GHz 32GB
Intel Core 2 6420 CPU 2 2.13GHz 2GB
NVIDIA Quadro FX 3800 GPU 24 1.20GHz 1GB
Intel Xeon E5506 CPU 4 2.13GHz 12GB
NVIDIA Quadro FX 3800 GPU 24 1.20GHz 1GB
NVIDIA Tesla C1060 GPU 30 1.30 GHz 4GB
NVIDIA Tesla C1060 GPU 30 1.30 GHz 4GB
Intel Core i5 650 CPU 4 (2 x 2HT)? 3.20GHz 4GB
NVIDIA GeForce GTX 480 GPU 15 1.40 GHz 1.5GB
Intel Xeon 5150 CPU 4 (2 x 2HT)? 2.66 GHz 2GB

'OpenCL-reported Compute Units. For CPUs, this is equivalent to the number of virtual CPU cores.
?Processors with HyperThreading technology.

For the distributed tests, the JM, JS and RC were launched on an additional com-
puter with an Intel Core 2 Duo T6400 processor (totaling 2 cores) at 2.0GHz and 4 GB of
RAM. Communication between different machines was performed over a virtual private
network overlaying a 100 Mbit LAN.

All tests were conducted with MPICH2 version 2.1.1 [Mpib]. OpenCL runtime for
CPU execution was supported by the OpenCL libraries provided by ATI’s Stream SDK,
version 2.2 [Atib]. All GPUs that were used are NVIDIAs, so NVIDIA’s OpenCL libraries
as well as NVIDIA graphics driver for Linux, version 260.19.14 [Nvi] were used for sup-
porting kernel execution on GPUs.

The results of the benchmarking tests executed when launching the framework are
depicted in Figure 4.1. Chart 4.1a shows the time needed for the creation, compilation

and submission of a simple kernel on each PU. Although there is a noticeable difference
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on kernel submission latency for the SunFire one should note that the time unit under
consideration is milliseconds. This means that these absolute values end up being of no
impact in the execution time of longer-lasting jobs, that need more than a couple of sec-
onds to be processed. Chart 4.1b shows the bandwidth of the bus used for data transfer
from the respective PU-M’s main memory to the PU memory. This might be a transfer
from the computer’s main RAM to a GPU’s dedicated memory space or to a memory
space visible by the OpenCL runtime for CPU kernel execution. It is interesting to note
that the average data copy bandwidth to the available GPUs outperforms the average
RAM-to-RAM performance for the available CPUs. In Chart 4.1c, we show the absolute,
parallel performance of each PU as determined by the execution of a parallel, bench-
marking job (somewhat comparable to a FLOPS measurement). The parallel processing
capabilities of GPUs are quite noticeable, with the GTX 480 evidencing itself as a very,
very fast parallel processor. The relative speeds between CPUs are also well reflected
by the charted values. Higher-resolution versions of these charts can be found in Ap-
pendix B.

It must be noted that the initial benchmarking tests are portraying an imprecise view
of the computational properties of the PUs. Although processor intensive, the initial test
job is a simple SIMD computation with a small memory footprint. A job of this kind may
be subject to caching and other optimizations on some PUs and not on others. When more
complex and longer-lasting jobs are submitted to these PUs, their relative performances
may differ. Ideally, these initial benchmarks should be regarded as performance indicators

and not as definite assessments on the available processors.

4.3 Evaluation Criteria
The framework was evaluated according to three main criteria:

1. The impact of the introduction of a new type of processing units (GPUs) in an en-
vironment where only CPUs were used — A first subset of tests restricts the usage
of PUs to only CPUs. For the subsequent set of tests, both CPUs and GPUs are
allowed. Afterwards, we compare the turnaround times observed by the Job Man-
ager for both cases.

2. The effect of submitting different numbers of jobs to solve the same problem —
Various tests are performed in which different numbers of jobs are created. Creating
less jobs implies more computational requirements on each job; creating more jobs
implies fewer computational requirements on each job. The impact of such work
divisions on the overall turnaround times is evaluated.

3. The achieved speedups over the original versions of the algorithms — The execu-
tion times of the original, sequential versions of the algorithms are compared to

those achieved when resorting to the framework under a distributed setting.
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Figure 4.1: PU properties inferred by the Processing Unit Managers
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The overall turnaround times observed by the Job Manager are measured since the

first job is submitted until all of the corresponding results are fetched.

4.4 Testing Applications

Two main applications were developed to evaluate the performance gains brought forth
by the framework. The first is a Mandelbrot Set renderer; the second is Fdist, a gene
identification algorithm, used for identifying differentiated genes on a population.

Three sets of tests were performed: the first consisted on the execution of the original,
sequential algorithms. The second was a set of local tests conducted in order to investi-
gate and better understand the behaviour of the different available PUs under different
OpenCL configurations. Finally, a series of distributed tests were performed in which
different scheduling algorithms were tested, under both CPU-only as well as CPU+GPU
environments. The job configuration and attributes used on the distributed tests were in-
ferred from an analysis of the behaviour displayed by the different PUs on the previous
tests.

4.4.1 Mandelbrot Set Renderer

Mandelbrot Set [Man83] generation programs are well-known applications in which an
image can be computed with a theoretically infinite level of detail. The Mandelbrot Set
is analogous to many scientific observations in which, depending on the distance of the
observer to the subject, more or less detail can be detected. This test application renders
a highly detailed area of a Mandelbrot Set. Aside from being a very processor-intensive
algorithm, it can also be considered an embarrassingly parallel problem. Each pixel of the
obtained canvas can be computed independently of all others, and there is absolutely no
need for synchronization or communication between the different processors executing
the algorithm.

A sequential C program was used as the original implementation of the algorithm.
The amount of processing for this algorithm is parametrized by the number of possi-
ble colours that are expected in the final rendered image. This is directly reflected on
the number of possible iterations of the most computationally-intensive cycle of the pro-
gram. Regions with mostly black pixels take longer times to be computed, as the deter-
mination of a black pixel yields the longest-lasting computations; coloured regions are
overall faster to compute. The amount of data to be processed is determined directly by
the width and height, in pixels, intended for the final image. Despite these differences in
processing requirements between pixels, when adapted to be run in parallel, this appli-
cation maps well to a SIMD execution model.

An OpenCL kernel was directly derived from the original implementation, each item
computing an horizontal strip of the final image. For example, for an image of 1024 x1024

pixels, if 512 items are to process it, each one computes a strip of 1024x2 pixels. When
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generating multiple jobs, the canvas is divided in equal parts for each job, also in hori-

zontal strips.

4.4.1.1 Experimental Results

Sequential Benchmarks The chart in Figure 4.2 shows the execution times of the Man-
delbrot Set renderer under sequential execution (using a single CPU core). Execution
times are shown for both the original, C version (in blue/dark), and for the OpenCL im-
plementation (in yellow /light) executing with a single item, therefore, in a single proces-
sor. The program was parametrized to render a 10240 x 10240 pixel canvas, with 1,048,576
possible colours. This configuration generates a raw image with 300 MB.
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Figure 4.2: Execution times for the original Mandelbrot Set rendering program on the
available CPUs.

It took several hours for the algorithm to complete in all machines. The Intel Core i5
CPU displayed the fastest execution times, averaging at 5h 2min 20s. The Intel Core 2 6420
CPU showed the worst execution times, with 10h9min42s. There is a visible overhead
introduced by OpenCL on most machines. For the processors where this overhead is not
evident, the execution times are very similar to those of the original C implementation.

On average, the OpenCL version introduced an overhead of 4.32%.

Local, Configuration Evaluation Tests The chart in Figure 4.3 shows the performance
behaviour of a single job, parametrized to render a 1024 x 1024 pixel canvas, with 1,048,576
possible colours (rendering a 3 MB image). The job was submitted under a framework
setup using only a single node with the number of global items was fixed 512 and along
a single dimension — one-dimensional NDRange!. The tests benchmarked the perfor-

mance of the devices with different group size configurations.

"Most PUs have a limit of 512 items per group, so a decision was made to only test configurations that
could be acceptable for all available PUs
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Figure 4.3: Performance behaviour of the Mandelbrot Set kernel with a 1-dimensional
NDRange. Comparing CPU (dark/blue) and GPU (light/green) performances.

Blue/dark bars show the execution times under a CPU. Green/light bars show the
execution times under a GPU. As all PUs of the same type displayed a similar behaviour,
we only present the absolute numbers for one PU of each kind: the SunFire X4600 M2 for
CPUs and the NVIDIA GeForce GTX 480 for GPUs.

When running on CPUgs, it is clear that the algorithm’s performance worsens when
group sizes are larger. When groups are defined as containing a single item, we observe
the best performance values. This is expected, as there should be no benefit from group-
ing SIMD items that present no synchronization requirements. On the other hand, when
using groups of 512 items, a slight decrease in the execution time is perceivable. A possi-
ble explanation, which requires further testing for verification, might be that with a group
of size 512 items and a total of 512 global items, only a single group will be present. This
might reduce to a certain extent the overhead of group management by the underlying
OpenCL runtime.

As for the performance observed when running on GPUs, a different behaviour was
observed: job run time was practically constant independently of the work-group config-

uration.

The chart in Figure 4.4 depicts the performance behaviour of a job launched under
similar conditions as those of the previous tests (Figure 4.3), but using a two-dimensional
NDRange, totalling 512 x512 items. The values charted on the horizontal axis correspond
to the number of items per group dimension — the total number of items per group is
determined by raising these values to the second power. The total items per group is
limited by both AMD (which supported CPU execution) and NVIDIA’s OpenCL imple-
mentations to a maximum of 1024 items per group, and for that reason no more than 32

items per group dimension can be used.

The variation in the behaviour of CPUs is comparable to that observable under the

one-dimensional NDRange tests. On the other hand, when observing the algorithm’s
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Figure 4.4: Performance behaviour of the OpenCL Mandelbrot Set kernel, 2-dimensional
NDRange, CPU and GPU compared.

performance on the GPU, there is a very meaningful change. By resorting to a two-
dimensional NDRange, with a single item per group, job runtime was already at about
one third of the time observed under the one-dimensional configuration (Figure 4.3). This
might be explained by the fact that now, many more global items are processing the al-
gorithm in parallel, thus reducing overall processing time. When grouping items into
larger groups, GPU execution performance kept improving. This behaviour was unex-
pected due to the SIMD nature of the application, but it might possibly be explained by
the underlying characteristics of GPU hardware, where groups of processors are associ-
ated and designed to run in a concerted SIMD manner (see Section 2.4.1).

Distributed Benchmarks The chart in Figure 4.5 depicts the turnaround times observed
by the Job Manager for different numbers of jobs under a distributed environment. Sub-
mitted jobs were configured to use a two-dimensional NDRange of 512x512 items and
groups of 8x8 items. The algorithm is parametrized for rendering 1,048,576 possible
colours and to generate a canvas of 10240x 10240 pixels. The Job Scheduler is configured
to resort to the fixed score-based workload allocation policy.

Blue/dark bars indicate turnaround times when all submitted jobs were defined as
required to be processed on CPUs, while green/light bars correspond to the observed
turnaround times when jobs were allowed to execute in both CPUs and GPUs.

When using only CPUs, it is noticeable that more jobs provided better turnaround
times. A clear performance drop is visible when less than or as many as 8 jobs were
submitted, when compared to the submission of 16 or more jobs. By analysing the Job
Scheduler’s execution logs, it was possible to understand that, for just a few jobs, be-
cause under the fixed approach the first jobs arriving at the scheduler are dispatched to
the faster machines, the jobs that arrive later are dispatched to slightly slower machines.
In the case of the 8 jobs, for example, this results in the last two jobs being submitted to the

two Xeon machines. Coincidentally, these two last jobs correspond to the lower region
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Figure 4.5: Turnaround times observed by the Job Manager for the distributed Man-
delbrot Set computation using the fixed workload allocation approach. CPU-only and
CPU+GPU compared.

of the Mandelbrot Set detail being computed, and are in fact the most computationally-
intensive regions, resulting in these machines being used for the heaviest computations.
With 16 and more jobs, this region was partitioned in much smaller chunks, and its com-
putational impact was less noticeable.

Including GPUs as eligible processors had a very noticeable positive impact on the
overall turnaround time. The longest turnaround time was of 15 minutes, when only a
single job was submitted, while the shortest was of a mere 2 minutes and 35 seconds, with
32 jobs. Refer to Figures B.3a and B.3b in Appendix B for a more detailed view of these
charts.

The turnaround times for the adaptive approach are depicted in Figure 4.6. All job
attributes were configured to the same values as those used under the fixed approach.
Additionally, all jobs were attributed the same category.
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Figure 4.6: Turnaround times observed by the Job Manager for the distributed Mandel-
brot Set computation using the adaptive workload allocation approach. CPU-only and
CPU+GPU compared.
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Before initiating all benchmarking sessions for this approach, a Mandelbrot Set ren-
dering job calculating a reduced canvas of 10241024 was sent to each PU. These profiling
jobs had the same category as the following benchmark’s jobs, so that their execution time
was recorded by the JS and taken into account for the subsequent score attributions (see
Section 3.3.4.2).

Overall turnaround times were, on average, worse under this approach than those
observed when resorting to the fixed approach. We believe that this might have hap-
pened because the initial profiling jobs, being representatives of the average computation
for the whole Mandelbrot Set detail, were not representative of the majority of the subse-
quent jobs. This ended up misleading the adaptive algorithm and thus provided worse
scheduling decisions than when merely taking into account the raw parallel processing
speed of the PUs.

Once more, including GPUs provided much lower turnaround times, in all cases still
better than under the fixed approach when using only CPUs.

Achieved Speedups The best turnaround times were achieved under the fixed alloca-
tion approach by submitting 32 jobs to both CPUs and GPUs. The corresponding overall
turnaround time, observed by the JM, was of 2min 5s, a speedup of 116.7 x to the fastest
(on the Intel Core i5 CPU) and 235.3 x to the slowest (on the Intel Core 2 CPU) sequential
execution times achieved with the original algorithm.

Under the adaptive allocation approach, best results were also obtained when com-
bining CPU and GPU processing power, with 4min 23s when submitting 64 jobs. This
represents a speedup of 68.8 x to the fastest and 138.8 x to the slowest execution times
achieved with the sequential, original algorithm.

4.4.2 Identification of Genes Potentially Under Natural Selection

Genes that differ substantially relatively to the gene pool where they belong tend to be
subject to natural selection. The Fdist application [BN96] simulates a coalescent pro-
cess [Hud91] generating many simulated neutral genes under an island model [Wri43].
Heterozygosity and Fst [WC84] are calculated for all simulated loci. Empirical datasets
are compared to simulations with the same average Fst. All genes that are outliers to the
surface made with Heterozygosity and Fst are deemed to be candidates for being under
selection. This can be used, for example, to determine what specific genes are associated
with skin and hair colour, what genes are susceptible to certain viruses such as the HIV,
genes that are resistant to treatments, genes that influence the amount of meat available
on livestock animals, as well as many other differentiating indicators.

The results of a simulation are used to render a chart indicating the probability of
occurrence for specific markers (i.e., the Heterozygosity/Fst surface described above).
Genes that fall outside the charted area to a certain confidence interval (typically 95% or

99%) are considered to have been potentially influenced by natural selection. By defining
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the number of simulated genes to very high values (millions), a smother surface can be

generated than one typically achieved by simulating thousands of genes.

By the nature of this application, the simulation of each gene is independent from all
others and no synchronization or communication is necessary between the simulation
of different genes. However, due to a random behaviour inserted onto certain parts of
the algorithm, each run may diverge significantly from the others. On the developed
OpenCL kernel, each item simulates an equal subset of the requested number of total
genes. Items may diverge significantly on their execution state, meaning that this appli-
cation maps well to a MIMD execution model, and not a SIMD execution model. When
generating multiple jobs, each one simulates an equal subset of the overall number of
intended genes.

44.21 Experimental Results

Sequential Benchmarks The original, C version of the algorithm was executed on the
available CPUs. Being a sequential implementation, only a single core of each CPU is
used. The algorithm was configured to simulate 5,120,000 genes, and generates a 90 MB
output file. The OpenCL version of the algorithm was also processed on each CPU in a
stand-alone configuration (without attachment to the framework) and with a single-item
configuration, i.e., sequentially.

The original implementation of the algorithm takes a few hours to be processed on
all CPUs. The OpenCL version displays consistently worse execution times. The Core i5
CPU provided the best execution times, with 3h 56min 50s. The Core 2 was the slowest
processor for this program, executing it in 7h21min51s. The chart in Figure 4.7 shows
the observed execution times both with the original, C implementation (dark/blue bars)
and with the OpenCL implementation (yellow/light bars).
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Figure 4.7: Execution times for the original gene simulation program on the available
CPUs.
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Local, Configuration Evaluation Tests The Chart in Figure 4.8 depicts the performance
behaviour of a single job under a local, single-PU environment. The job was parametrized
for using 512 global items and for simulating 5120 genes, generating a 90 KB output file.
The framework was configured in a similar way as that for the local tests of the Man-
delbrot Set algorithm (only one computer, all components local). Similarly to what was
observed under the Mandelbrot tests, all PUs of the same type displayed a similar be-
haviour, and for that reason we only show the absolute values obtained with the SunFire
CPU and the NVIDIA GTX 480 GPU. Blue/dark bars show CPU execution times and

green/light bars show the execution times under the GPU.

Time (min) 1-Dimensional NDRange
3
B Processed on CPU _
2,5 _ _
OProcessed on GPU
2

.H.H.H.H A4 4l al B
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Figure 4.8: Performance behaviour of the OpenCL gene identification kernel,
1-dimensional NDRange, CPU and GPU compared.

In this case, there is an evident performance decrease when the number of items per
group is increased, both with CPUs as well as with GPUs. It is also visible that GPU
performance is consistently much worse than what is attained with a CPU. These results
should be expected as this is a MIMD, complex application, and GPU hardware is cur-
rently not optimized for these types of programs.

The OpenCL version of this algorithm has huge memory requirements, limiting the
problem to at most 512 items per job in the available hardware. Consequently, for the
two-dimensional tests, jobs were configured to use a number of items that was 484, the
nearest square number to 512 — meaning that the global work-item configuration was
set to 22x22 items. The number of simulated genes was defined to 4840, thus making
each item simulate exactly 10 genes. Various numbers of items per group were tested
and the resulting PU behaviour is displayed in Figure 4.9.

The obtained performance values were very similar to those achieved under similar
one-dimensional configurations (groups are similar when their have a similar number of
items under a two-dimensional and a one-dimensional NDRange: a 22-item, 2D group is
similar to a 4-item, 1D group; an 11%-item group is similar to a 128-item group and a 222-
item group is similar to a 512-item group). When compared with the one-dimensional

configuration, meaningful performance improvements were not observed when using
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Figure 4.9: Performance behaviour of the OpenCL gene identification kernel,
2-dimensional NDRange, CPU and GPU compared.

both CPUs or GPUs with a two-dimensional configuration.

Distributed Benchmarks For the distributed benchmarks, jobs were submitted with a
one-dimensional NDRange configuration. each job was configured to use 512 items and
a single item per group. An output file of 90 MB is generated from the simulation of a
total of 5,120,000 genes on each test. Different numbers of submitted jobs were tested for
each configuration of the JS’s score-based workload allocation policy. On these charts,
blue/dark bars show the turnaround times observed when all submitted jobs were con-
figured to only be dispatched on the available CPUs. Green/light bars show turnaround
times when the submitted jobs allowed being processed on both CPUs and GPUs.

The Chart in Figure 4.10 pertains to the obtained turnaround times when the Job
Scheduler was configured to use the score-based workload allocation policy, with the
fixed configuration.

The first, obvious, and very noticeable observation is that the overall observed turnaround
time when GPUs are allowed to be used is much worse than what is observed when only
CPUs are allowed. Performance when using CPUs can hardly be seen under the scale of
this chart. A more detailed view of the turnaround times for CPUs is available in Fig-
ure B.5a, in Appendix B. For a CPU-only environment, performance is best when 5 jobs
are used, and there is a visible peak on the observed turnaround time when 2 jobs are
used. When a single job was submitted, it was processed by the SunFire PU. With two
jobs, the first was sent to the SunFire and the second to the Core i5 PU. It was observed
that the latter processor displayed speedups of only 2x when running this kernel in par-
allel, in spite of having 4 virtual CPU cores. Taking this into account, two main factors
might have lead to the observed turnaround time for two jobs: first, the fixed approach
takes into account the raw, parallel processing speed of the devices, independently of
the jobs” processing characteristics; second, the observed speedup (2x) for this processor
might be due to the fact that this is an HyperThreaded CPU, which might not be able
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Figure 4.10: Turnaround times observed by the Job Manager for the distributed gene
identification program using the fixed workload allocation approach. CPU-only and
CPU+GPU compared.

to fully parallelize this MIMD application on each physical core. The JS” recorded raw
speed for this PU indicated much higher speeds for the processor than those attained for
this specific application, thus providing this sub-optimal scheduling decision.

When using GPUs, submitting between 10 and 50 jobs gives the best results. Perfor-
mance decreases when using 100 and more jobs. This is explained by the fact that the
Tesla and Quadro FX GPUs were much slower for this problem than the other available
PUs (about 10x slower than the GTX 480, about 100x slower than the CPUs). With the
fixed approach, and because raw PU speeds are taken into account, more jobs are being
sent to these machines, worsening the overall processing time. When fewer jobs are sub-
mitted, a smaller impact is observed on the overall turnaround time because these GPUs

receive less jobs.

Finally, the Job Scheduler was configured to use the adaptive workload approach.
The resulting turnaround times observed by the Job Manager are seen on the Chart in
Figure 4.11. Jobs were submitted with a configuration similar to that used with the fixed
approach benchmarks. The initial, profiling jobs generated 5120 genes and can be said to
be relatively accurate representatives of the forthcoming jobs” computations.

The achieved results show that good turnaround times were obtained, both when us-
ing only CPUs and when using CPUs and GPUs. It is visible that using only a few (less
than about 5) or too many (more than 200) jobs renders worse results. This is understand-
able because when too few jobs are submitted, some PUs will be idle while others will be
used intensively. When using many jobs, each job computes a very small portion of the
overall intended computation, and the data transfers and overheads introduced by each
component become more prevalent, increasing the overall turnaround time observed by
the JM.
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Figure 4.11: Turnaround times observed by the Job Manager for the distributed gene
identification program using the adaptive workload allocation approach. CPU-only and
CPU+GPU compared.

Achieved Speedups The best results for the gene identification algorithm with the fixed
approach were attained when using 5 jobs and by allowing only CPUs to be used. The
JM observed a total turnaround time of 23min 29s. This is a speedup of 10.1x relatively
to the fastest and 18.8x to the slowest sequential executions, observed on the Core i5 and
the Core 2 PU, respectively.

With the adaptive allocation approach, best times were achieved when submitting 20
jobs that only allowed execution on CPUs. A turnaround time of 17m 13s was observed.
This is a speedup of 13.7 x to the fastest and 25.6x to the slowest sequential executions.

4.5 Summary

In this chapter we have shown the experimental work performed to validate and assess
the capabilities of the proposed framework. We have also described the hardware setting
where the validation benchmarks were executed.

We presented results for two distinct types of applications. First, we tested and bench-
marked a Mandelbrot Set renderer — a SIMD application. Afterwards, we tested and
benchmarked an application that implements a gene identification algorithm, used in a
real-world scientific computing setting that follows a MIMD approach.

The original sequential versions of both applications had huge execution times (sev-
eral hours in any of the available CPUs). The applications were adapted to use the
proposed framework and benchmarked with the scheduling algorithms proposed in the
Chapter 3. Very meaningful results were achieved for the SIMD application, with speedups
of up to 253.3 x, where the addition of GPUs clearly benefited the algorithm’s overall per-
formance. For the MIMD application, it was observed that GPUs did not perform well,
but the proposed score-based adaptive workload allocation policy, provided very accept-

able and improved overall execution times. The performance of the algorithm was not
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impaired by the usage of sub-optimal processors, that in some instances even contributed
to reducing the observed turnaround times. Speedups of up to 25.6x were achieved for
this application.

The next chapter presents an overview of the work described on this dissertation and

provides some possibilities for future work.
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5.1 Conclusions

HPC applications have huge computational requirements. In order to process a problem
with high processing demands, research companies and organizations can either resort
to dedicated computer clusters or rent some computing time in so-called cloud services.
However, these solutions usually require software and hardware specialists for config-
uration and maintenance of complex infrastructures or are too expensive for the orga-
nization in question. With the emergence of GPGPU, inexpensive, high-performance
processors are available at very reduced costs for these organizations.

The present dissertation proposed a framework and its corresponding implementa-
tion that takes advantage of existing computing infrastructures where a number of multi-
processor CPUs, as well as GPUs with General-Purpose computing capabilities, are read-
ily available. This framework targets at greatly accelerating HPC programs and scientific
computing applications. It is composed of a set of components that are sufficiently flex-
ible so that they may be deployed under different system configurations to better fit the
hardware infrastructure. Various configurations such as single-computer multi-PU ma-
chines, Clusters of computers or even multi-site COWs are supported. The component
of the framework that is responsible for job scheduling is configurable and allows for
the usage of different scheduling algorithms. For this end, a set of scheduling algorithms
were proposed in order to better take advantage of the architectures available under such
heterogeneous environments.

The proposed framework was validated by implementing a complete and fully func-
tional prototype, on which two applications of a different nature were tested. The first is

a SIMD synthetic application that generates a detailed region of a Mandelbrot Set. The
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second is a MIMD program that generates genes for a real-world scientific computing
application. The total accumulated time of the tests is on the order of thousands of hours,
which makes us believe that the current implementation of the framework can be consid-
ered stable enough to be used by scientific computing domain specialists not accustomed
to parallel or distributed computing.

Very significant performance improvements were achieved by using the framework
for both applications. Given an appropriate scheduling algorithm is selected, the frame-
work is capable of selectively choosing appropriate devices, depending on the require-
ments of the submitted jobs. The historical, observed behaviour of previously submitted
jobs can be taken into account, which allows to optimise subsequent scheduling deci-
sions. Under a distributed environment, and resorting to five CPUs and five GPUs, we
achieved speedups of one to two orders of magnitude, with reduced effort on the devel-

opment of the specific applications.

5.2 Future Work

Further research is needed to better evaluate which job scheduling algorithms better com-
bine the problem characteristics with the system properties to maximize job throughput.
This includes the development of more sophisticated job scheduling algorithms, tailored
specifically for job allocation under heterogeneous systems that include multicore CPUs
and GPUs. All job scheduling algorithms available in our prototype follow a static ap-
proach, in that jobs are dispatched from the JS as soon as possible, and may stay on the
local queues of the PUs for a long time. This could be optimized by letting some jobs wait
on the JS queue and dispatching them only when a certain deadline arrives, allowing for
better usage of the computational resources.

Some algorithms may benefit from pipeline-oriented data processing algorithms, where
a sequence of OpenCL kernels are applied in sequence to the same data set. Currently,
this processing model is not supported by the framework, but we envisage that it should
be possible to include it with only a limited set of changes in the source code.

The current implementation of the framework only supports submitting jobs to CPUs
or GPUs. However, OpenCL has seen relevant developments since the first release of the
specification, being supported by more and more manufacturers and by the release of
new tools at a steady pace. OpenCL implementations are available for other multipro-
cessor architectures such as the IBM CellBE, FPGAs and some embedded devices [Zii].
MOSIX with VCL [BBNLS10] proposes to provide an OpenCL runtime in which all de-
vices on a cluster of computers can be made visible as belonging to the same node. Our
proposal does not impose any intrinsic limitations to the supported architectures. The
framework can thus support the forthcoming runtimes by lightly tailoring the PU-M to
better fit new OpenCL devices.

Not all OpenCL features are supported by the framework. For example, currently

only global memory, read /write parameters can be associated with each job. The OpenCL
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specification allows kernel arguments to be stored on a constant memory space, which
can reduce kernel execution time. This issue should be addressed by our framework.

Due to the prototype and experimental nature of the current implementation, some
features can still be optimized. The initial PU benchmarking kernels should be replaced
by a more proper FLOPS assessment program. The Results Collector’s RAM-only storage
approach could also be extended to use other stable storage devices such as hard disks.

Very interesting speedups have been achieved by a relatively straightforward adap-
tation of existing programs to OpenCL and to the framework, without any further fine-
grained optimizations. It is possible that these applications might achieve even greater
speedups if these algorithms are fine-tuned or even partially rewritten so that they can
take better advantage of the available hardware.

Other use-cases are planned to verify the performance gains achievable with other
applications and different environments. Two interesting settings are the adaptation of
an existing BLAS API to resort to the framework and a setting where multiple appli-
cations with different behaviours and requirements use the same pool of resources si-
multaneously, assessing the framework’s workload-balancing capabilities under stress

conditions.
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API

This Appendix describes the API services made available to simplify the integration of
applications with the current framework. Some familiarity with the OpenCL platform,
execution and memory models is required in order to understand the concepts and tech-
nologies on which this API depends. Refer to Section 2.4.4 of this document and Section 3
of the OpenCL Specification [Mun10] for a complete overview and description of the core
principles behind this standard. Some familiarity with the MPI Standard [Mpia] is rec-
ommended, although not required.

Currently, the API provides data types, data structures and functions in the C pro-
gramming language. The purpose of these services is to ease the implementation of a
Job Manager. All of these services can be overridden by the Job Manager. However, this
implies that the user of the framework must also be concerned with the correctness of the
interface between the application and the remaining components of the framework. By
resorting to this API, the user is released from this burden and can focus on the imple-
mentation of the Job Manager. Refer to Chapter 3 for a detailed description of the overall

system and each of its components.

In order to submit a job or a set of jobs to the framework for execution, some API
function calls are mandatory, others are optional while others are mutually exclusive. A
careful read of these pages is recommended before attempting to use any of these API

functions.
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A.1 API Data Types, Data Structures and Global Variables

Data Types

All OpenCL runtime data types (cl_int, cl_char, cl_float, ...) are available to the Job Man-
ager. All arguments associated with jobs to be submitted to the framework must be of
one of these types.

Data Structures

The API provides two data structures to the Job Manager: Job and JobResults. Jobs should
not be manipulated manually. Their fields should only be modified indirectly by API
functions. Non-compliance may result in unspecified behaviour. In order to read the con-
tents of JobResults data structures’ fields, the user may access its fields directly. However,
they should not be modified. Listing A.1 presents the relevant fields of the JobResults

data structure.

typedef struct {

(...)
int joblID;

int nTotalResults;
int xresultSizes;
void **xresults;

int returnStatus;
} JobResults;

Listing A.1: The relevant fields of the JobResults data structure

Listing A.2 presents an example covering the typical process for retrieving data from
a JobResults data structure. In this example, a single job was submitted and only one
output argument was associated with the job. Hence, there is only one result buffer to be
fetched.

Enumerations

The admissible types for the jobs” arguments are defined on the argument_type enumer-
ation. These are the types required by the setArgument API call and are shown in
Listing A.3.

The set »PU API functions require an OpenCL device type to be indicated. Currently,
only the OpenCL-defined CL_DEVICE_TYPE_CPU and CL_DEVICE_TYPE_GPU values of

the cl_device_type enumeration are supported.
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Job job;
int xlocalResultBuffer;

void resultAvailable (int jobID) ({

JobResults *JR = getResults(job);

if (JR == NULL) {
fprintf (stderr ,"An error has occurred while fetching the results for the
job with ID %i.\n", jobID);
/l cleanup
return;
}
printf ("Results successfully fetched for Job with ID %i.\n", jobID);
printf("Job execution return status: ");
switch (JR—>returnStatus) {
case (JOB_RETURN_STATUS_SUCCESS) :
printf ("kernel executed successfully.\n");
break;
case default:
fprintf (stderr,"kernel failed while executing (error %i). Please check
the system log.\n", JR—>returnStatus);
// cleanup
return;
}
assert (JR—>nTotalResults == 1);
localResultBuffer = malloc(JR—>resultSizes[0]);
memcpy(localResultBuffer , JR—>results [0], JR—>resultSizes[0]);
deleteResults (JR);
printf("First value on the result buffer: %i\n",localResultBuffer[0]);

Listing A.2: Sample implementation of the resultAvailable callback function.

typedef enum ({

}

INPUT,

OUTPUT,
INPUT_OUTPUT,
EMPTY_BUFFER
argument_type;

Listing A.3: The argument_type enumeration

83




A. API

Global Variables

The following global variables are available to the Job Manager:

int defaultSchedID — The Unique Identifier for the Job Sechduler.

int defaultRCID — The Unique Identifier for the Results Collector.
These variables can be assigned automatically by resorting to the initDistribCL API call
and their values can be queried (but may not be modified) by the Job Manager.

A.2 API Functions

void initDistribCL ( int argc, char xargv[])

int argc — Argument count

char xargv[] — Argument vector

Initializes the environment and performs any necessary, initial interactions with the
other components of the framework.

argv may not contain arguments other than --job-schedulerand --result-collector,
each followed by a number, indicating the MPI rank of each of these components. By
specifying these ranks, the defaultSchedID and defaultRCID global variables are
available to the programmer, and may be used in subsequent calls to identify these com-
ponents.

This function must be called before all other API functions.

void quitDistribCL ( void )

Notifies the framework that no more operations will be requested from it. The Job
Manager may continue execution, but no further calls to API functions shall be made
afterwards.

Job xcreateJob ( void )
Creates a new, empty job. The attributes of this job must be provided with subsequent
calls to API functions.

return — A pointer to a newly-created job.

void setJobID ( Job %job, int jobID )

Job xjob  — A previously-created job (see createJob)
int jobID — A numerical identifier

Assigns an identifier to a job. This must be an unique identifier and may not be

reused until the job results are returned to the sender. Reusing an identifier is illegal and
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the resulting behaviour is unspecified.

This function must be called before a job is requested to execute.

void setRequiredPU ( Job *job, cl_device_type requirePU )

Job xjob — A previously-created job (see createdJob)
cl_device_type requirePU — An OpenCL device type where the job is required to
be processed on

A given job’s task may be designed in such a way that it has to run on a certain type
of Processing Unit. If this is the case, setRequiredPU should be called, identifying the
(OpenCL) type of such hardware.

After calling this function, the remaining set «PU API functions may not be called for
the same job.

void setPreferPU ( Job job, cl_device_type preferPU )

Job xjob — A previously-created job (see createJob)
cl_device_type preferPU — An OpenCL device type where the job is preferred to
be processed on

A given job’s task may be designed in such a way that it is predictable it will perform
better on some types of Processing Unit than on others. setPreferPU may be called, by
order of preference to indicate this preference.

If setRequiredPU was not used, at least this or one of the remaining set «PU API
functions must be called at least once so that the job may execute on an available Process-
ing Unit.

void setAllowPU ( Job *job, cl_device_type allowPU )

Job *job — A previously-created job (see createJob)
cl_device_type allowPU — An OpenCL device type where the job is allowed to be
processed on

If a given type of Processing Unit should be capable of executing a given job, that
should be indicated using this function.

If setRequiredPU was not used, at least this or one of the remaining set +PU API
functions must be called at least once so that the job may execute on an available Process-
ing Unit.

void setAvoidPU ( Job *job, cl_device_type avoidPU )

Job xjob — A previously-created job (see createJob)
cl_device_type avoidPU — An OpenCL device type where the framework must
avoid processing the job on
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Although they could run on a given type of Processing Unit, certain jobs should not
run on certain PU types. For example, jobs that can only be executed in parallel by a
small number of simultaneous OpenCL global items should avoid being run on a GPU.
Such restrictions should be indicated by resorting to the set AvoidPU function.

If setRequiredPU was not used, at least this or one of the remaining set «PU API
functions must be called at least once so that the job may execute on an available Process-

ing Unit.

void setForbidPU ( Job xjob, cl_device_type forbidPU )

Job xjob — A previously-created job (see createJdob)
cl_device_type forbidPU — An OpenCL device type where the job must not be

processed

Certain device types are not indicated for performing certain kinds of jobs. For ex-
ample, a long-lasting job that may not run in parallel or that may only be processed by a
single OpenCL item, must not be let run on a GPU. These restrictions should be indicated
by resorting to the setForbidPU function.

void setJobCategory ( Job *job, int category )

Job xjob — A previously-created job (see createJob)
int category — A user-defined category for this job

Jobs may be categorized based on their characteristics (see Section 3.2.1). Depending
on the selected scheduling algorithm for the Job Scheduler, more adequate scheduling
decisions can be made when job categories are cleverly chosen. Refer to Section 3.3.4 for
a reference on the currently implemented scheduling algorithms that take job categories
into account.

Calling this function is optional. Although jobs may be submitted without any as-
sociated category, using this facility may significantly improve overall Job turnaround
times (see Chapter 4 for an experimental assessment of such improvements for different

applications).

void setDimensions ( Job %job, int nDim, int xnIltemsPerDim,
int snltemsPerGroup )

Job xjob — A previously-created job (see createJdob)

int nDim — The number of dimensions for the OpenCL index-space
(NDRange) that the job’s task will be mapped to

int *nltemsPerDim  — The number of global work-items on each dimension

that the job’s task will be mapped to
int *nltemsPerGroup — The number of local work-items on each dimension that
the job’s task will be mapped to
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This function associates an OpenCL NDRange index space configuration (see Sec-
tion 2.4.4) to the given job’s task. This configuration usually has a significant impact on a
job’s execution time and as such it must be chosen with care.

Calling this function is optional. If it is not called for a given job, the following config-
uration is used: the index space of the task will be one-dimensional; the number of global
items will be the maximum supported by the OpenCL device where the job is executed;
and the number of items per group will be determined in run-time by the supporting
OpenCL implementation. Leaving this decision to the runtime may lead to sub-optimal

execution times.

void loadSourceFile ( Job %job, char xtaskSourceFile )

Job xjob — A previously-created job (see createJdob)

char xtaskSourceFile — The pathname of an OpenCL source file

Loads the contents of a file stored on the file system onto the job’s task. This file’s
contents will be the source code of the OpenCL kernel that shall be executed upon the
submission of the job. taskSourceFile is expected to be a null-terminated string indi-
cating the pathname of the file. Currently, only a single source file per job is supported.

Calling this function is mandatory before submitting a job for execution.

void setStartingKernel ( Job xjob, char xstartingKernel )

Job xjob — A previously-created job (see createJdob)

char xstartingKernel — The name of the starting kernel

The OpenCL source file may contain multiple function definitions. set StartingKernel
must be used to identify the name of the function where the task’s execution shall start.
This starting function can be seen as the analogous to the main function on a standard C
program.

Calling this function is mandatory before submitting a job for execution.

void setArgument ( Job xjob, argument_type argType,
size_t argSize, void xargument )

Job *job — A previously-created job (see createJob)
argument_type argTlype — The type of the argument

size_t argSize — Size of the argument, in bytes

void xargument — A pointer to the argument’s data

Associates data with a job. Each time setArgument is called, the data pointed to by
argument is associated with the corresponding parameter of the job task’s starting func-

tion. The first time setArgument is called, it associates the data to the first parameter.
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The second time, to the second parameter, and so forth. The order by which data is asso-
ciated with a job must correspond to the order of the arguments of the starting function’s
prototype. setArgument must be called as many times as there are arguments for this
starting function.

The argType parameter identifies the type of the current argument. Currently this
can be one of: INPUT, OUTPUT, INPUT_OUTPUT or EMPTY_BUFFER. A description of
each follows:

e INPUT — data that is going to be made available, unmodified, to the kernel as one

of it’s arguments. This data will be discarded upon job execution completion;

e OUTPUT — a memory space that will return data when the job’s execution is com-
plete. Its contents are to be filled by the running kernel;

e INPUT_OUTPUT — data that is both going to be made available to the running

kernel as well as returned to the Job Manager after the job’s execution is over;

e EMPTY_BUFFER — a memory space that is going to be allocated before the job’s
execution starts and used as a kernel argument. Its contents are to be filled by the

running kernel. This data is discarded upon job execution completion.

When calling setArgument, INPUT and INPUT_OUTPUT argument types need to
be allocated and point to valid memory locations. This data must remain consistent un-
til the job is sent for execution. free ()ing this data is also the responsibility of the Job
Manager implementation. OUTPUT and EMPTY_BUFFER argument types need not to
point to a valid memory location (i.e., a NULL argument can be used) — but an adequate
corresponding argSize is mandatory.

As of the current version, all arguments are associated with the OpenCL device’s
global memory space, as read-write buffers. This means that all of the task’s starting
function’s parameters must be declared with the __global qualifier. It might also be
desirable to take this into account in order to implement performance adaptations at the
kernel level.

A job may not be submitted for execution without having at least one argument asso-
ciated with it.

void setResultsCollector ( Job *job, int rcID )

Job xjob — A previously-created job (see createJob)
int rcID — A Results Collector’s MPI Rank

Associates a job with a Results Collector. This will be the RC where the job’s output
data will be available after its execution is complete. If the ——result-collector ar-
gument is provided to the initDistribCL API call, the defaultRCID global variable
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may be used as this function’s rcID argument.
A job may not be submitted to execution without having been associated with a Re-
sults Collector.

void requestResultNotification ( Job *job )
Job xjob — A previously-created job

Request a notification on the availability of the output data for this job from the as-
sociated Results Collector. After calling this function, the RC will notify the Job Man-
ager after the job’s execution is complete and the resulting output data is available to be
fetched. This notification is signaled to the Job Manager by the invocation of the callback
function resultAvailable. This function must be implemented by the Job Manager,
independently of requestResultNotification being called or not.

Calling this function is optional. It may be called either before or after the job was
submitted for execution.

The callback function’s prototype is as follows: void resultAvailable (int jobID), where
jobID corresponds to the ID of the submitted job for which the resulting data is available.
This callback function is invoked on a new thread of the Job Manager’s process. Thread-

safety must therefore be taken into account when implementing this function.

void sendJobToExec ( Job *job, int schedID )

Job *job — A previously-created and configured job
int schedID — A Job Scheduler’s MPI Rank

This function submits the job to the provided Job Scheduler so that it can be executed
in one of the system’s Processing Units. If the -~ job-scheduler argument is provided
to the initDistribCL API call, the defaultSchedID global variable may be used
here.

This function may only be called if all of the following API functions were already
called for the given job: createJdob, setJobID, setRequiredPU or at least of the
other set xPU functions, loadSourceFile, setStartingKernel, setArgument and
setResultsCollector. It may not be called after deleteJob was been called for the

same job.

JobResults xgetResults ( Job *job )

Job xjob — A previously-created and configured job

Fetches the output data of the given job, if it has already completed execution. If the
results are not available yet, a NULL value is returned.
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The data inside a JobResults data structure may be read directly but should not be
changed manually. If changing this data is required, it should first be copied to a buffer

local to the JM.
return — A pointer to a JobResults data structure, containing the output data of

the given job. NULL if the results were not available at the time of the

invocation.

void deleteJob ( Job xjob )
Job xjob — A previously-created job

Deletes a job, freeing all resources allocated to it. The arguments that may have been
associated with the job are not freed and their management is the responsibility of the
Job Manager’s implementation.

After calling this function, no more operations or API functions may be called over

the same job: it has been definitely erased from memory.

void deleteResults ( JobResults xJR)
JobResults )R — A JobResults data structure returned by the getResults API

function

Deletes a JobResults data structure, freeing all resources allocated to it. This structure
is expected to have been returned by the getResults APIcall. Calling deleteResults
over data structures created otherwise results in unspecified behaviour.

After calling this function, no more operations may be called over the same structure:

it has been definitely erased from memory.
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Additional Charts

This Appendix provides additional figures with more detailed versions of some of the
charts that are presented and described on the Evaluation Chapter. The PU Properties in-
ferred from the Processing Unit Managers installed on the various machines presented in
Section 4.2 are provided with a higher detail. These charts are followed by more detailed
views of the turnaround times registered by the Job Manager for the local, configuration
tests as well as the distributed benchmarks, described in Section 4.4.
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(c) PU parallel processing throughput.

Figure B.1: Device properties as inferred by the Processing Unit Managers.
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(a) Mandelbrot Set, CPUs, Fixed workload allocation.

(b) Mandelbrot Set, GPUs, Fixed workload allocation.
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(c) Mandelbrot Set, CPUs, Adaptive workload allocation.

(d) Mandelbrot Set, GPUs, Adaptive workload allocation.

Figure B.3: Turnaround time for the distributed Mandelbrot Set computation.
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(a) Gene identification, CPUs, 1-dimensional NDRange. (b) Gene identification, GPUs, 1-dimensional NDRange.
Time (h) Adaptive Allocation Approach Time (h) Adaptive Allocation Approach
0,7 0,7
B Processed on CPUs OProcessed on CPUs+GPUs
0,6 0,6 —
0,5 0,5 I
0,4 - 0,4 - -
0,3 - 0,3 - -
02 - 02 - e s
01 7 01 - — 1 1 —
0 - 0

1 2 5 10 20 25 50 100 200 250 500 1000
Submitted Jobs

1 2 5 10 20 25 50 100 200 250 500 1000
Submitted Jobs

(c) Gene identification, CPUs, 2-dimensional NDRange.

(d) Gene identification, GPUs, 2-dimensional NDRange.

Figure B.5: Turnaround time for the distributed Gene identification kernel.
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