

António Miguel Cardia Melro Rodrigues

Licenciado em Ciências da Engenharia Mecânica

Análise e projecto de estruturas para substituição do disco intervertebral

Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica

Orientador: Professor Doutor Pedro Samuel Gonçalves Coelho, Professor Auxiliar da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa

Júri:

Presidente: Prof. Doutor António Paulo Vale Urgueira Vogal(ais): Prof. Doutor Rui Miguel Barreiros Ruben Prof. Doutor Pedro Samuel Gonçalves Coelho

Copyright

Análise e projecto de estruturas para substituição do disco intervertebral.

Copyright © 2012 António Miguel Cardia Melro Rodrigues

Faculdade Ciências e Tecnologia,

Universidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa tem o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor.

Agradecimentos

Quero agradecer ao meu orientador, Professor Doutor Pedro Coelho, pelo apoio e disponibilidade prestados no decorrer dos vários meses de trabalho dedicados à dissertação, bem como por todo o conhecimento transmitido sobre as várias áreas tratadas e estudadas no decorrer do mesmo.

À *University of Michigan* pelo fornecimento de vários apontamentos utilizados no decorrer desta dissertação, mais especificamente, as curvas de tensão-extensão dos ensaios experimentais dos provetes, os dois modelos de elementos finitos da coluna vertebral humana e suína, bem como os modelos dos provetes utilizados.

À minha família e amigos que me apoiaram no decorrer desta dissertação, mais especificamente, à minha avó, licenciada em Sociologia, cujos conselhos sobre a escrita de uma dissertação foram uma mais-valia. À minha amiga Carla Pasadas, licenciada em enfermagem, que me forneceu referências bibliográficas importantes relacionadas com o tema da medicina.

Ao doutor José Moniz, neurologista, que me deu informações relativamente à nomenclatura utilizada nos vários componentes da coluna vertebral.

Por fim, quero deixar agradecimentos ao Departamento de Engenharia Mecânica e Industrial (DEMI) da Faculdade de Ciências e Tecnologia (FCT) por disponibilizar as instalações e equipamentos necessários para o desenvolvimento deste trabalho.

Resumo

A presente dissertação tem como principal objectivo a análise e projecto de estruturas para substituição de um disco intervertebral. Mais especificamente, determinar a distribuição de material que oferece a maior rigidez possível ao dispositivo de substituição considerando um constrangimento de volume.

Tal foi conseguido efectuando, numa fase inicial, um estado de arte sobre a área da medicina da coluna vertebral humana e alguns procedimentos cirúrgicos relativos à substituição do disco intervertebral. Uma revisão de trabalhos na área da fusão intervertebral e optimização topológica foi feita, entre eles, de um modo mais aprofundado, um modelo de elementos finitos duma coluna lombar suína. Neste tinha sido efectuada uma análise e optimização de um dipositivo de fusão intervertebral.

Com os conhecimentos adquiridos no decorrer destas várias pesquisas e revisões de trabalhos anteriormente realizados, foi então possível analisar e melhorar um modelo de elementos finitos da coluna lombar humana. Esta possuía um dispositivo de fusão intervertebral que foi posteriormente optimizado utilizando um método de optimização topológica através de um código de programação escrito em *FORTRAN*.

Outros assuntos em estudo no decorrer desta dissertação incluem análises linear e não linear, método da homogeneização para identificação de propriedades mecânicas de *scaffolds*. O estudo destes assuntos aplica o método dos elementos finitos através do *software ANSYS*.

Palavras chave:

Biomecânica, optimização topológica, homogeneização, *scaffold*, fusão intervertebral, disco artificial.

Abstract

This work has as main objective the analysis and design of structures to replace an intervertebral disc. More specifically, to determine the distribution of material that offers the greatest possible stiffness to the replacement device considering a constraint volume.

This was achieved by performing at an early stage, a state of art related to medicine on the area of the human spine and some surgical procedures for replacement of the intervertebral disc. A review of studies in the field of topology optimization and intervertebral fusion was made, between them, in a deeper way, a finite element model of a swine lumbar spine. On this one, it was made an analysis and optimization of an intervertebral fusion cage.

With the knowledge acquired in the course of these various studies and reviews of works achieved previously, it was possible to analyze and improve a finite element model of a human lumbar spine. This one have an intervertebral fusion cage which is then optimized using an topological optimization method using a programming code written in *FORTRAN*.

Other topics studied in the course of this work include linear and nonlinear analysis, homogenization method for identification of mechanical properties of scaffolds. The study of these subjects is applied to the finite element method by *ANSYS* software.

Keywords:

Biomechanics, topology optimization, homogenization, scaffold, intervertebral fusion, artificial disc.

Índice de matérias

COPYRIGHT	I
AGRADECIMENTOS	V
RESUMO	VII
ABSTRACT	IX
ÍNDICE DE FIGURAS	XV
ÍNDICE DE QUADROS	XXV
SIMBOLOGIA E NOTAÇÕESX	XXIII
CAPÍTULO 1 - INTRODUÇÃO	1
1.1. Medicina e engenharia	3
1.2. Objectivos da dissertação	5
1.3. Estrutura da dissertação	6
CAPÍTULO 2 - A BIOMECÂNICA DA COLUNA VERTEBRAL E FUSÃO INTERVERTEBRAL	9
2.1. A COLUNA VERTEBRAL, OS VÁRIOS COMPONENTES QUE A CONSTITUEM E AS SUAS FUNÇÕES	10
2.1.1. Os principais componentes da coluna vertebral	10
2.1.2. Ligamentos - Os componentes auxiliares da coluna vertebral	13
2.2. Os vários tipos de movimento da coluna vertebral – Forças e momentos	15
2.2.1. Os movimentos da coluna vertebral	15
2.2.2. Forças e momentos	16
2.3. O DISCO INTERVERTEBRAL E A SUA BIOMECÂNICA	16
2.3.1. O núcleo pulposo e o anel fibroso	17
2.3.2. A biomecânica do disco	18
2.4. PROPRIEDADES MECÂNICAS DOS VÁRIOS CONSTITUINTES DA COLUNA VERTEBRAL	20
2.5. Artroplastia	22
2.6. Artrodese	26
2.6.1. Stress shielding em dispositivos de fusão	27
2.6.2. Fusão intervertebral: Avaliação radiológica precoce da fusão e subsidência	30
2.6.3. Análise biomecânica de dispositivos de fusão intervertebral	31
2.6.4. Dispositivo de fusão intervertebral lombar bioabsorvível	32
2.6.5. Optimização topológica aplicada à biomecânica do disco intervertebral	33
CAPÍTULO 3 - PROJECTO DE SUPORTES BIOMIMÉTICOS RECORRENDO À OPTIMIZAÇÃ	0
MULTI-ESCALA E HOMOGENEIZAÇÃO INVERSA	37
3.1. MODELO DE ELEMENTOS FINITOS APLICADO A UMA COLUNA VERTEBRAL	38
3.2. Análise estática	44

3.2.1. Análise linear	44
3.2.2. Análise não linear	45
3.2.3. Análise comparativa	45
3.3. Optimização topológica a uma escala	47
3.3.1. O software ANSYS e o compilador FORTRAN	47
3.3.2. Optimização do dispositivo de fusão intervertebral – Resultados	49
3.4. Optimização topológica a duas escalas	51
3.4.1. Teoria da Homogeneização	52
3.5. SIMULAÇÃO NUMÉRICA DE ENSAIOS MECÂNICOS	57
3.5.1. Extensão constante	62
3.5.2. Tensão constante	70
CAPÍTULO 4 - IDENTIFICAÇÃO EXPERIMENTAL E NUMÉRICA DAS PROPRIEDADES	
MECÂNICAS DOS SUPORTES BIOMIMÉTICOS	77
	70
4.1. FABRICO DE SCAFFOLDS	۰۸ دە
4.2. IDEN HIFICAÇAO EXPERIMENTAL	
4.2.1. Scallous	02
4.2.2. Provetes sondos	04 0 <i>5</i>
4.3. SIMULAÇÃO DOS ENSAIOS MECANICOS EM ELEMENTOS FINITOS	85 00
4.3.1. Analise nice r	00
4.5.2. Analise hau-initial $4.5.2$. Analise hau-initial 4.4 Compapação entre os vários pestilitados obtidos	90
4.4. COMPARAÇÃO ENTRE OS VARIOS RESULTADOS OBTIDOS	95
CAPÍTULO 5 - MODELO NUMÉRICO DA COLUNA LOMBAR HUMANA	99
5.1. O MODELO DE ELEMENTOS FINITOS	100
5.2. Análise estática	103
5.2.1. Análise linear	103
5.2.2. Análise não-linear	104
5.3. ANÁLISE COMPARATIVA	105
CAPITULO 6 - OPTIMIZAÇÃO TOPOLÓGICA APLICADA À SUBSTITUIÇÃO DO DISCO	
INTERVERTEBRAL	107
6.1. ΒΕΣΗ ΤΑ ΡΟΣ ΡΑ ΟΡΤΝΗΖΑ ΟΙ Ο ΤΟΡΟΙ Ο ΟΙΟΑ	112
6.1.1. Optimização topológica recorrendo a uma anólica linear	113
6.1.2. Optimização topológica recorrendo a uma análise não linear	115
6.2 Result tabos da optimização topológica recorrendo a uma analise nao-inical	115
0.2. RESULTADOS DA OF HWIZAÇÃO TOFOLOGICA AFLICADA AO DISFOSTITVO DE FUSAO	117
CAPÍTULO 7 - CONCLUSÕES E DESENVOLVIMENTOS FUTUROS	119
BIBLIOGRAFIA	121
ANEXOS A	137
Δ ΑΒ ÂΜΕΤΡΟς DE ODTIMIZAÇÃO DA COLUNIA ΜΕΡΤΈΡΡΑΙ, ΟΙΤΊΝΑ	140
FAKAMETROS DE OPTIMIZAÇÃO DA COLUNA VERTEBRAL SUINA	148

VALORES EXPERIMENTAIS DOS MÓDULOS DE ELASTICIDADE DOS PROVETES PRODUZIDOS POR SLS	149
GRÁFICOS DAS CURVAS DE TENSÃO-EXTENSÃO DOS MATERIAIS	150
Ensaio em x	150
Ensaio em y	151
Ensaio em z	152
PARÂMETROS ADICIONAIS DOS PROVETES PRODUZIDOS EXPERIMENTALMENTE	153
Apresentação dos provetes para o caso 20 e 30	154
RESULTADOS RELATIVOS AOS ENSAIOS NÃO LINEARES FEITOS AOS PROVETES	155
GRÁFICOS DAS CURVAS DE TENSÃO – EXTENSÃO NOMINAIS RESULTANTES DOS ENSAIOS DE COMPRES	SSÃO
NOS PROVETES	173
PARÂMETROS DE OPTIMIZAÇÃO DA COLUNA VERTEBRAL HUMANA	180
Análise linear	180
Análise não-linear	181

Índice de figuras

Capítulo 1

- Figura 1.1. Planos anatómicos principais do corpo humano. Imagem extraída de *The Burton Report 2011*. Legenda: laranja: Plano coronal; verde: Plano transversal; azul: Plano sagital.
- Figura 1.2. Comparação de um esquema de alavanca com uma parte do esqueleto humano seguido de um exemplo de um mecanismo real que usa o sistema alavanca (a) tesoura, b) barra a mover uma pedra e c) pinça). Legenda: F- Fulcro (eixo de rotação); E- elemento que fornece força à alavanca; R- Elemento que provoca a força resistente. Imagens extraídas de Graaff 2011.
- Figura 1.3. Lado esquerdo: ilustração de uma artrodese efectuada numa coluna vertebral (imagem extraída de Centro médico da coluna vertebral 2012). Lado direito: Vários exemplos de dispositivos utilizados na artrodese (imagens extraídas de Epari et al. 2011, Jonbergen et al. 2005, Horak et al. 2007 e Bruyn et al. 2011).
- Figura 1.4. Esquema simplificado da estrutura da dissertação. Legenda: Laranja Apresentado no capítulo 2; Azul – Apresentado no capítulo 3; Vermelho – Apresentado no capítulo 4; Verde – Apresentado no capítulo 5; Roxo – Apresentado no capítulo 6; Preto – Apresentado no capítulo 7; Castanho – Apresentado no capítulo 8.

- Figura 2.1. A coluna vertebral e os principais componentes que a constituem (Graaff *et al.* 2001, Seeley *et al.* 2003). Imagem extraída de Graaff *et al.* 2001, tradução efectuada com o auxílio de Abrahams *et al.* 2003 e Rigutti *et al.* 2008.
- Figura 2.2. As funções dos ligamentos da coluna vertebral (White et al. 1990).
- Figura 2.3. Representação dos principais ligamentos da coluna vertebral. Imagem extraída

de *Spine Universe* 2011, tradução efectuada com o auxílio de Rigutti *et al.* 2008.

- **Figura 2.4.** Esquema simplificado dos vários tipos movimentos e esforços na coluna vertebral Imagem extraída de White *et al.* 1990.
- Figura 2.5. O disco intervertebral e a sua constituição. Imagem extraída de *The jornal of Bone and Joint Surgery* 2012, Springerimages 2012.
- Figura 2.6. Diagrama temporal do disco intervertebral artificial. Exemplos de alguns discos desenvolvidos ao longo do tempo. Imagens extraídas de Bao *et al.* 1996, Bono *et al.* 2004, Patil *et al.* 1980, Taksali *et al.* 2004, Zhu e Shen 2008 e KITA 2011.
- **Figura 2.7.** Prótese de núcleo original desenvolvida por Ray. Imagem extraída de Zhu *et al.* 2008.
- Figura 2.8. A) Dispositivo em cilindro *Harms* com a sua malha de titânio e abaixo o esquema representativo do mesmo. B) Dispositivo em caixa *SynCage* e abaixo o esquema do mesmo. Imagens extraídas de Epari *et al.* 2011.
- Figura 2.9. Extensão no excerto de osso no dispositivo cilíndrico e em caixa, quando sujeitos a uma compressão axial. Imagens extraídas de Epari *et al.* 2011. Legenda: Preto dispositivo em caixa (SynCage); Cinzento Dispositivo em cilindro (Harms).
- Figura 2.10. Deformação no enxerto de material do dispositivo em cilindro (*Harms*) e dispositivo em caixa gerada (*SynCage*) gerada pela penetração vertebral no dispositivo. Imagem extraída de Epari *et al.* 2011. Legenda: Preto dispositivo em caixa (*SynCage*); Cinzento Dispositivo em cilindro (*Harms*).
- Figura 2.11. Estenose cervical (compressão dos nervos da coluna pelo disco ou vértebra). Imagem extraída de Ortopedia 2012.
- Figura 2.12. Imagens esquemáticas dos dispositivos utilizados na simulação de elementos finitos. Imagem extraída de Fantigrossi *et al.* 2007. a) *BAKTM*; b) *InterfixTM*; c) *Interfix FlyTM*.
- Figura 2.13. Imagens esquemáticas dos 4 modelos simulados sobre compressão axial. Pode

- Figura 2.14. Dispositivo F-U-HA/PLLA. Imagem extraída de Hojo et al. 2005.
- **Figura 2.15.** Dispositivo projectado (*scaffold*) para a coluna de um suíno de *Yucatan* utilizando optimização topológica. Imagem extraída de Coelho *et al.* 2011.
- **Figura 2.16.** Dispositivo projectado (*scaffold*) para a coluna lombar utilizando optimização topológica. Imagem extraída de Kang *et al.* 2010.
- **Figura 2.17.** Protótipo (de cera) do dispositivo de fusão intervertebral, projectado utilizando optimização topológica. Imagem extraída de Lin *et al.* 2004.
- **Figura 2.18.** Protótipo de um dispositivo *RF*, projectado utilizando optimização topológica. Imagem extraída de Zhang *et al.* 2008.

- Figura 3.1. Porco de *Yucatan*. Imagem extraída de Lonestar 2012.
- **Figura 3.2.** O elemento é definido por 8 nós e possui 3 graus de liberdade em cada um: translação nas direcções de *x*, *y* e *z*. Informações extraídas do software ANSYS.
- Figura 3.3. O elemento é definido por 3 nós e possui 6 graus de liberdade em cada um: translação nas direcções de x, y e z e rotação em torno dos eixos x, y e z. Informações extraídas do software ANSYS.
- **Figura 3.4.** Esta barra 3D é de tensão/compressão uniaxial e possui 3 graus de liberdade: translação nas direcções de *x*, *y* e *z*. Informações extraídas do *software ANSYS*.
- Figura 3.5. O Solid64 é utilizado em estruturas sólidas anisotrópicas. O elemento é definido por 8 nós tendo 3 graus de liberdade cada um: translação nas direcções de x, y e z. Informações extraídas do *software ANSYS*.

- Figura 3.6. As condições de carga utilizadas no modelo de elementos finitos da coluna vertebral suína. a) Caso 1: Compressão; Caso 2: Compressão + Flexão; Caso 3: Compressão + Flexão lateral esquerda; Caso 4: Compressão + Extensão; Caso 5: Compressão + Flexão lateral direita; Caso 6: Compressão + Torção horária; Caso 7: Compressão + Torção anti-horária.
- **Figura 3.7.** Fluxograma explicativo do processo de optimização que ocorre com o *software ANSYS* e o compilador *FORTRAN*.
- **Figura 3.8.** Gráfico da percentagem de constrangimento violada ao longo do número de iterações.
- Figura 3.9. Gráfico do valor da função objectivo (flexibilidade) ao longo do número de iterações.
- Figura 3.10. Imagem da malha de *E.F.* lado esquerdo. Imagem do dispositivo optimizado (volume a 50%) do lado direito, onde a branco se tem a zona sem material (densidade= 0), e a preto, a zona com material (densidade= 1).
- **Figura 3.11.** Os 3 modelos de *scaffolds* obtidos a partir do método de homogeneização inversa aplicada ao dispositivo de fusão intervertebral. A dimensão de aresta d é de 0.004 m. Três células unitárias foram obtidas com três diferentes constrangimentos: a) Caso 11; b) Caso 20; c) caso 30. E_{PCL} e v são o módulo de elasticidade e coeficiente de *Poisson* do material base, respectivamente.
- **Figura 3.12.** a) Domínio heterogéneo (material poroso). b) Domínio homogéneo equivalente com propriedades elásticas homogeneizadas. Onde, Ω^{ε} : domínio macroscópico; Ω^{H} : domínio homogeneizado; *F*: força concentrada; *b*: força volúmica; *t*: Carregamento exterior na fronteira; Γ_{t} : fronteira da tensão *t* imposta; Γ_{u} : fronteira do deslocamento imposto.
- **Figura 3.13.** Imagem ampliada de osso trabecular (*cancellous bone*) e osso compacto (*compact bone*). Imagem extraída de Cowin *et al.* 2001.
- Figura 3.14. Esquema simplificado das simulações numéricas pretendidas.

- **Figura 3.15.** Esquema simplificado que mostra a distinção entre uma célula *shifted* e não *shifted* retirada do padrão periódico.
- **Figura 3.16.** Os 3 tipos de células utilizadas mostrando a sua versão *shifted* (lado direito) e não *shifted* (lado esquerdo).
- Figura 3.17. Imagem de elementos finitos e características da respectiva malha de uma célula unitária do caso 11 e da sua repetição 5x5x5 no espaço tridimensional. Referencial cartesiano é o mesmo da figura 3.16.
- Figura 3.18. Imagem de elementos finitos e características da respectiva malha de uma célula unitária do caso 20 e da sua repetição 5x5x5 no espaço tridimensional. Referencial cartesiano é o mesmo da figura 3.16.
- Figura 3.19. Imagem de elementos finitos e características da respectiva malha de uma célula unitária do caso 30 e da sua repetição 5x5x5 no espaço tridimensional. Referencial cartesiano é o mesmo da figura 3.16.
- **Figura 3.20.** Esquema do que foi projectado em elementos finitos para o ensaio de compressão a (extensão constante). No referencial cartesiano, *y* refere-se ao eixo onde corre a compressão.
- Figura 3.21. Imagens dos modelos de elementos finitos sem e com as condições fronteiras aplicadas para o ensaio de extensão constante com uma célula unitária. Legenda: Azul - Material sólido; Roxo – Material do vazio.
- Figura 3.22. Gráficos comparativos entre o módulo de elasticidade homogeneizado e o da estrutura em função do número de repetições de células para os casos 11 e 20, nos 3 eixos de compressão. Tipo de ensaio Extensão constante.
- Figura 3.23. Gráficos comparativos entre o módulo de elasticidade homogeneizado e o da estrutura em função do número de repetições de células para o caso 30, nos 3 eixos de compressão. Tipo de ensaio – Extensão constante.

- **Figura 3.24.** Esquema do modelo de elementos finitos para o ensaio de compressão a tensão constante. No referencial cartesiano, *y* refere-se ao eixo onde corre a compressão.
- Figura 3.25. Imagens dos modelos de elementos finitos sem e com as condições fronteiras aplicadas para o ensaio de tensão constante.
- Figura 3.26. Gráficos comparativos entre o módulo de elasticidade homogeneizado e o da estrutura em função do número de repetições de células para os casos 11 e 20, nos 3 eixos de compressão. Tipo de ensaio Tensão constante.
- Figura 3.27. Gráficos comparativos entre o módulo de elasticidade homogeneizado e o da estrutura em função do número de repetições de células para o caso 30, nos 3 eixos de compressão. Tipo de ensaio Tensão constante.

- Figura 4.1. Processos da fabricação do *scaffold*. a) *Scaffold* poroso projectado utilizando técnicas de *IDB* e em seguida convertido para ficheiro de formato *STIL*. b) Um molde termoplástico foi fabricado utilizando uma máquina *RP*. c) Um molde de hidroxiapatite secundária foi fundido dentro do molde termoplástico seguido de um processo de sinterização e aquecimento. d) O *Scaffold* poroso de *PLGA* foi fundido dentro do molde secundário, o qual foi removido por um ácido *RDO*. Imagem extraída de Saito *et al.* 2010.
- Figura 4.2. Imagens dos 3 scaffolds e das células unitárias que os constituem. Em que a) Caso 11, b) Caso 20 e c) Caso 30. Imagens fornecidas pela University of Michigan.
- Figura 4.3. As três dimensões de provetes (células de base com 2,3 e 4 mm de aresta). No caso desta imagem, trata-se do caso 20. Imagem fornecidas pela University of Michigan.
- Figura 4.4. Exemplo de um ensaio de compressão feito a um provete de PCL

(polycaprolactone). Ensaios efectuados na University of Michigan.

- Figura 4.5. Valores do módulo de elasticidade experimental com o desvio padrão obtido para o caso 11. Valores dos desvios padrões fornecidos pela University of Michigan.
- Figura 4.6. Valores do módulo de elasticidade experimental com o desvio padrão obtido para o caso 20. Valores dos desvios padrões fornecidos pela University of Michigan.
- Figura 4.7. Valores do módulo de elasticidade experimental com o desvio padrão obtido para o caso 30. Valores dos desvios padrões fornecidos pela University of Michigan.
- **Figura 4.8.** Gráfico da curva de tensão extensão nominal (E_x = 295.52 +/- 4.41). Gráfico fornecido pela *University of Michigan*.
- **Figura 4.9.** Gráfico da curva de tensão extensão nominal (E_y = 292.74 +/- 9.91). Gráfico fornecido pela *University of Michigan*.
- **Figura 4.10.** Gráfico da curva de tensão extensão nominal (E_z = 311.74 +/- 1.24). Gráfico fornecido pela *University of Michigan*.
- Figura 4.11. Elemento tetraedro de 10 nós com 3 graus de liberdade (translação em x, y e z). Informações extraídas do *software ANSYS*.
- **Figura 4.12.** Apresentação do provete do caso 11, para uma célula de 4mm com compressão em y. Perspectiva oblíqua, alçados e vista de topo. Modelos fornecidos pela *University of Michigan*.
- **Figura 4.13.** Esquema de um ensaio de compressão feito num provete, em que *y* é o eixo onde ocorre a compressão.
- **Figura 4.14.** Imagem da deformada do provete 11*y*4 (caso 11, células de 4 mm com compressão em *y*) após análise linear.

- **Figura 4.15.** Imagem da deformada do provete 11*y*4 (caso 11, células de 4 mm com compressão em y) após análise não-linear.
- **Figura 4.16.** Distinção das zonas que constitui um gráfico de curva tensão extensão nominal de um provete compacto.
- Figura 4.17. Gráfico da curva tensão extensão nominais do provete de elementos finitos.
- **Figura 4.18.** Gráfico de regressão onde se compara os resultados do módulo de elasticidade experimental e numérico (AL) para cada um dos casos. A regressão utilizada é do tipo linear (y=mx+b).

Capítulo 5

- Figura 5.1. Modelo em elementos finitos da coluna vertebral humana (zona lombar) com o dispositivo de fusão intervertebral em destaque. Modelo sólido fornecido pela University of Michigan.
- **Figura 5.2.** Imagens dos vários componentes que constituem o modelo de elementos finitos da coluna vertebral humana.
- Figura 5.3. Os 7 casos de carga aplicados ao modelo da coluna vertebral humana. a)
 Compressão, b) Compressão + flexão, c) Compressão + flexão lateral direita, d)
 Compressão + extensão, e) Compressão + flexão lateral esquerda, g)
 Compressão + torção horária, h) Compressão + torção anti-horária.

- **Figura 6.1.** Breve descrição das três categorias de optimização estrutural, seguida de um exemplo prático. Imagem extraída de Bendsoe *et al.* 2003.
- **Figura 6.2.** Domínio de projecto: Ω Volume de projecto; f Força volúmica; t carregamento exterior na fronteira Γ **t**; Γ **u** Fronteira onde o deslocamento é imposto. Imagem extraída de Bendsoe *et al.* 2003.

- **Figura 6.3.** Lado esquerdo: Viga em consola sujeita a uma força. Lado direito: Viga optimizada. Imagem extraída de Sigmund *et al.* 2001.
- Figura 6.4. Optimização topológica multicarga de uma viga. a) Domínio de projecto, b) caso de carga única, c) Caso de múltipla carga. Imagem extraída de Gulbenkian 2012.
- Figura 6.5. Gráficos da percentagem de constrangimento violada (parte superior) e do valor da flexibilidade (parte inferior) em função do número de iterações. Método de optimização aplicado utilizando uma análise linear.
- **Figura 6.6.** Imagem da malha de *E.F.* à esquerda. Imagem do dispositivo optimizado (volume a 50%) recorrendo a análise linear, à direita.
- Figura 6.7. Gráficos da percentagem de constrangimento violada (parte superior) e do valor da flexibilidade (parte inferior) em função do número de iterações. Método de optimização aplicado utilizando uma análise não-linear.
- **Figura 6.8.** Imagem da malha de *E.F.* à esquerda. Imagem do dispositivo optimizado (volume a 50%) recorrendo a análise não-linear, à direita.

ANEXOS A

- Figura A1 Apresentação do provete do caso 20, para uma célula de 4mm com compressão em y. Perspectiva oblíqua, alçados e vista de topo.
- **Figura A2** Apresentação do provete do caso 30, para uma célula de 4mm com compressão em y. Perspectiva oblíqua, alçados e vista de topo.

Índice de quadros

Capítulo 1

Tabela 1.1. Patologias associadas à coluna vertebral, possíveis causas e possíveis curas ou tratamentos para as mesmas. (Imagens retiradas de Seeley et al. 2003, Spine Universe 2011, QUIROPRAXIA 2011, Neves 2011).

Capítulo 2

Tabela 2.1.	Imagem e descrição de uma vértebra lombar.
Tabela 2.2.	Imagem e descrição de um disco intervertebral.
Tabela 2.3.	Imagem e descrição das juntas intervertebrais.
Tabela 2.4.	Imagem e descrição dos orifícios intervertebrais.
Tabela 2.5.	Breve descrição dos sete principais ligamentos da coluna vertebral (Zee et al. 2007).
Tabela 2.6.	Forças e momentos utilizados no modelo de elementos finitos da coluna vertebral humana (zona lombar).
Tabela 2.7.	Imagens e descrição do movimento de compressão aplicado disco intervertebral (plano sagital) (Bogduk <i>et al.</i> 2005) (imagens extraídas de Bogduk <i>et al.</i> 2005).
Tabela 2.8.	Imagens e descrição do movimento de tracção aplicado disco intervertebral (plano sagital) (Bogduk <i>et al.</i> 2005) (imagens extraídas de Bogduk <i>et al.</i> 2005).
Tabela 2.9.	Imagens e descrição do movimento de corte aplicado disco intervertebral (plano sagital) (Bogduk <i>et al.</i> 2005) (imagens extraídas de Bogduk <i>et al.</i> 2005).
Tabela 2.10.	Imagens e descrição do movimento de flexão/extensão aplicado disco intervertebral (plano sagital) (Bogduk <i>et al.</i> 2005) (imagens extraídas de Bogduk <i>et al.</i> 2005).
Tabela 2.11.	Imagens e descrição do movimento de torção aplicado disco intervertebral (plano sagital) (Bogduk <i>et al.</i> 2005) (imagens extraídas de Bogduk <i>et al.</i> 2005).
Tabela 2.12.	Propriedades mecânicas dos ligamentos. Abreviaturas utilizadas referentes à

terminologia Anglo-Saxónica.

- Tabela 2.13.
 Propriedades mecânicas do corpo vertebral.
- Tabela 2.14. Propriedades mecânicas das juntas intervertebrais.
- Tabela 2.15. Propriedades mecânicas do disco intervertebral.
- Tabela 2.16.
 Os quatro tipos de dispositivos de fusão que actualmente existem.

Capítulo 3

Tabela 3.1.	As vértebras (osso cortical e osso trabecular).
Tabela 3.2.	Um dos dois discos intervertebrais (núcleo pulposo e anel fibroso).
Tabela 3.3.	Juntas intervertebrais.
Tabela 3.4.	Dispositivo de fusão artificial com propriedades do material <i>PCL</i> (<i>polycaprolactone</i>).
Tabela 3.5.	Ligamentos da coluna vertebral (lombar). Os valores estão apresentados pela ordem exposta na tabela.
Tabela 3.6.	Valores das forças utilizadas no modelo de elementos finitos da coluna vertebral em relação aos três eixos cartesianos.
Tabela 3.7.	Valores dos deslocamentos e reacções resultantes da análise linear.
Tabela 3.8.	Valores dos deslocamentos e reacções quando efectuada uma análise não-linear.
Tabela 3.9.	Comparação entre os valores de forças de reacção de uma análise linear e uma não-linear.
T 1 1 2 4 0	

Tabela 3.10. Comparação entre os valores de deslocamentos de uma análise linear e uma

não-linear.

- Tabela 3.11.
 Comparação entre os valores de momentos de reacção de uma análise linear e uma não-linear.
- **Tabela 3.12.** Valores do módulo de elasticidade $(E^{\rm H})$ pelo método de homogeneização.
- **Tabela 3.13** Valores do módulo de elasticidade $((C^{H})^{-1})$.
- **Tabela 3.14.**Comparação quantitativa entre os valores homogeneizados e os valores
estimados E^* para o ensaio de compressão a extensão constante. Repetição de
células 1x1x1.
- **Tabela 3.15.**Comparação quantitativa entre os valores homogeneizados e os valores
estimados E^* para o ensaio de compressão a extensão constante. Repetição de
células 2x2x2.
- **Tabela 3.16.**Comparação quantitativa entre os valores homogeneizados e os valores
estimados E^* para o ensaio de compressão a extensão constante. Repetição de
células 3x3x3.
- **Tabela 3.17.**Comparação quantitativa entre os valores homogeneizados e os valores
estimados E^* para o ensaio de compressão a extensão constante. Repetição de
células 4x4x4.
- **Tabela 3.18.**Comparação quantitativa entre os valores homogeneizados e os valores
estimados E^* para o ensaio de compressão a extensão constante. Repetição de
células 5x5x5.
- **Tabela 3.19.** Comparação quantitativa entre os valores homogeneizados e os valores estimados E^* para o ensaio a tensão constante. Repetição de células 1x1x1.
- **Tabela 3.20.** Comparação quantitativa entre os valores homogeneizados e os valores estimados E^* para o ensaio a tensão constante. Repetição de células 2x2x2.

Tabela 3.21. Comparação quantitativa entre os valores homogeneizados e os valores

estimados E^* para o ensaio a tensão constante. Repetição de células 3x3x3.

- **Tabela 3.22.** Comparação quantitativa entre os valores homogeneizados e os valores estimados E^* para o ensaio a tensão constante. Repetição de células 4x4x4.
- **Tabela 3.23.** Comparação quantitativa entre os valores homogeneizados e os valores estimados E^* para o ensaio a tensão constante. Repetição de células 5x5x5.

- **Tabela 4.1.**Parâmetros SLS e a sua descrição (Partee et al. 2005).
- Tabela 4.2.Módulos de elasticidade experimentais (média) dos vários provetes testados.Valores fornecidos pela University of Michigan.
- Tabela 4.3. Parâmetros dados pelo ANSYS utilizando o MEF, para o provete de célula 2 mm.
- Tabela 4.4. Parâmetros dados pelo ANSYS utilizando o MEF, para o provete de célula 3 mm.
- Tabela 4.5. Parâmetros dados pelo ANSYS utilizando o MEF, para o provete de célula 4 mm.
- Tabela 4.6.
 Módulos de elasticidade dos provetes resultantes de uma análise linear (AL).
- **Tabela 4.7.** Parâmetros calculados de uma análise não-linear para o provete 11y2.
- Tabela 4.8.
 Módulos de elasticidade resultantes de uma análise não-linear (ANL).
- **Tabela 4.9.** Cálculo dos desvios entre os módulos de elasticidade (em MPa) experimentais $(E_{\text{Exp.}})$ e os das análises lineares (E_{AL}) e não lineares (E_{ANL}) para os modelos de células de 2 mm.
- **Tabela 4.10.** Cálculo dos desvios entre os módulos de elasticidade (em MPa) experimentais $(E_{\text{Exp.}})$ e os das análises lineares (E_{AL}) e não lineares (E_{ANL}) para os modelos de células de 3 mm.

- **Tabela 4.11.** Cálculo dos desvios entre os módulos de elasticidade (em MPa) experimentais $(E_{\text{Exp.}})$ e os das análises lineares (E_{AL}) e não lineares (E_{ANL}) para os modelos de células de 4 mm.
- Tabela 4.12. Tempo de cálculo (HH:MM:SS) das análises lineares (AL) e não lineares (ANL).

Capítulo 5

- Tabela 5.1.
 Características dos vários componentes do modelo de elementos finitos da coluna vertebral humana.
- **Tabela 5.2.**Valores das forças utilizadas para modelar os 7 casos de carga utilizados no
modelo de elementos finitos da coluna vertebral humana.
- **Tabela 5.3.** Valores das deformações, forças e momentos de reacção provocados pelos 7casos de carga na coluna vertebral humana para uma análise linear.
- **Tabela 5.4.**Valores das deformações, forças e momentos de reacção provocados pelos 7
casos de carga na coluna vertebral humana para uma análise não-linear.
- Tabela 5.5.
 Comparação entre os valores das forças de reacção resultantes de uma análise linear e uma não-linear para a coluna humana.
- Tabela 5.6.Comparação entre os valores de deslocamentos resultantes de uma análise linear e
uma não-linear para a coluna humana.
- Tabela 5.7.
 Comparação entre os valores dos momentos de reacção resultantes de uma análise linear e uma não-linear para a coluna humana.

ANEXOS A

Tabela A1Valores das forças e momentos na coluna vertebral (Parte I).

Tabela A2Valores das forças e momentos na coluna vertebral (Parte II).

Tabela A3	Módulo de elasticidade de alguns ligamentos da coluna vertebral.
Tabela A4	Coeficiente de Poisson de alguns ligamentos da coluna vertebral.
Tabela A5	Módulo de elasticidade dos componentes do corpo vertebral (Parte I).
Tabela A6	Coeficiente de Poisson dos componentes do corpo vertebral (Parte I).
Tabela A7	Módulo de elasticidade dos componentes do corpo vertebral (Parte II).
Tabela A8	Coeficiente de Poisson dos componentes do corpo vertebral (Parte II).
Tabela A9	Módulo de elasticidade dos componentes do corpo vertebral (Parte III).
Tabela A10	Coeficiente de Poisson dos componentes do corpo vertebral (Parte III).
Tabela A11	Módulo de elasticidade dos componentes do corpo vertebral (Parte IV).
Tabela A12	Coeficiente de Poisson dos componentes do corpo vertebral (Parte IV).
Tabela A13	Módulo de elasticidade dos componentes do Disco intervertebral (Parte I).
Tabela A14	Coeficiente de Poisson dos componentes do Disco intervertebral (Parte I).
Tabela A15	Módulo de elasticidade dos componentes do Disco intervertebral (Parte II).
Tabela A16	Coeficiente de Poisson dos componentes do Disco intervertebral (Parte II).
Tabela A17	Módulo de elasticidade dos componentes do Disco intervertebral (Parte III).
Tabela A18	Coeficiente de Poisson dos componentes do Disco intervertebral (Parte III).
Tabela A19	Parâmetros de optimização da coluna vertebral suína
Tabela A20	Valores experimentais e os respectivos desvios padrões dos módulos de

elasticidade dos provetes produzidos por SLS.

- Tabela A21
 Valores experimentais de alguns parâmetros nos provetes produzidos por SLS.
- Tabela A22Parâmetros calculados e utilizados na análise não-linear do provete 11x4 em
elementos finitos. A cinzento encontram-se os pontos de onde se obteve o
módulo de elasticidade.
- Tabela A23Parâmetros calculados e utilizados na análise não-linear do provete 11y3 em
elementos finitos. A cinzento encontram-se os pontos de onde se obteve o
módulo de elasticidade.
- Tabela A24Parâmetros calculados e utilizados na análise não-linear do provete 11y4 em
elementos finitos. A cinzento encontram-se os pontos de onde se obteve o
módulo de elasticidade.
- Tabela A25Parâmetros calculados e utilizados na análise não-linear do provete 11z2 em
elementos finitos. A cinzento encontram-se os pontos de onde se obteve o
módulo de elasticidade.
- Tabela A26Parâmetros calculados e utilizados na análise não-linear do provete 11z3 em
elementos finitos. Não possui pontos para se obter o módulo de elasticidade.
- Tabela A27Parâmetros calculados e utilizados na análise não-linear do provete 11z4 em
elementos finitos. Não possui pontos para se obter o módulo de elasticidade.
- Tabela A28Parâmetros calculados e utilizados na análise não-linear do provete 20x3 em
elementos finitos. A cinzento encontram-se os pontos de onde se obteve o
módulo de elasticidade.
- Tabela A29Parâmetros calculados e utilizados na análise não-linear do provete 20x4 em
elementos finitos. A cinzento encontram-se os pontos de onde se obteve o
módulo de elasticidade.
- Tabela A30Parâmetros calculados e utilizados na análise não-linear do provete 20y3 em

elementos finitos. A cinzento encontram-se os pontos de onde se obteve o módulo de elasticidade.

- Tabela A31Parâmetros calculados e utilizados na análise não-linear do provete 20y4 em
elementos finitos. A cinzento encontram-se os pontos de onde se obteve o
módulo de elasticidade.
- **Tabela A32**Parâmetros calculados e utilizados na análise não-linear do provete 20z3 em
elementos finitos. Não possui pontos para se obter o módulo de elasticidade.
- Tabela A33Parâmetros calculados e utilizados na análise não-linear do provete 20z4 em
elementos finitos. A cinzento encontram-se os pontos de onde se obteve o
módulo de elasticidade.
- **Tabela A34**Parâmetros calculados e utilizados na análise não-linear do provete 30x3 em
elementos finitos. Não possui pontos para se obter o módulo de elasticidade.
- Tabela A35Parâmetros calculados e utilizados na análise não-linear do provete 30y3 em
elementos finitos. A cinzento encontram-se os pontos de onde se obteve o
módulo de elasticidade.
- Tabela A36Parâmetros calculados e utilizados na análise não-linear do provete 30y4 em
elementos finitos. A cinzento encontram-se os pontos de onde se obteve o
módulo de elasticidade.
- Tabela A37Parâmetros calculados e utilizados na análise não-linear do provete 30z3 em
elementos finitos. Não possui pontos para se obter o módulo de elasticidade.
- **Tabela A38**Parâmetros calculados e utilizados na análise não-linear do provete 30z4 em
elementos finitos. Não possui pontos para se obter o módulo de elasticidade.
- **Tabela A39**Parâmetros de optimização da coluna vertebral humana (AL).
- **Tabela A40**Parâmetros de optimização da coluna vertebral humana (ANL).

Simbologia e notações

Latim

a	Eixo para o qual um dado parâmetro é calculado.
AREA	Área da base normal à aplicação da força ou deslocamento.
b	Ordenada na origem.
$C^{ m H}_{ m ijkl}$	Tensor de flexibilidade homogeneizado.
d	Comprimento da aresta de uma célula.
D ou L	Comprimento total da estrutura.
DR	Desvio relativo.
Ε	Módulo de elasticidade ou rigidez.
E_{AL}	Módulo de elasticidade obtido por análise linear.
E_{ANL}	Módulo de elasticidade obtido por análise não-linear.
E _{ANSYS}	Módulo de elasticidade obtido pelo software ANSYS.
$E_{\mathrm{EXP.}}$	Módulo de elasticidade experimental.
$E^{\rm H}$ ou $E_{\rm HOMO}$	Módulo de elasticidade ou rigidez homogeneizado.
$E^{ m H}_{ m ~ijkl}$	Tensor de elasticidade ou rigidez homogeneizado.
E _{ijkl}	Tensor de rigidez que caracteriza o material.
F	Força concentrada.
F_{i}	Força com origem no ponto <i>i</i> .
f	Vector de força.
$f_{ m v}$	Força volúmica.
$K_{\rm e}(E_{\rm e})$	Matriz de rigidez de um elemento.

Μ	Número de casos de carga aplicados.
m	Declive.
Ν	Número de elementos.
n _e	Número total de elementos na base.
р	Coeficiente de penalização.
R^2	Coeficiente de determinação.
R_i	Reacção na base da célula ou estrutura.
<i>n_r</i>	Número de nós ou reacções na base.
t	Carregamento exterior na fronteira.
и	Vector deslocamento.
$U_{ m r}$	Deslocamentos reais.
u _r	Deslocamentos provocados pelas forças reais aplicadas.
$u_{ m v}$	Deslocamentos virtuais.
Vestrutura	Volume da estrutura.
V _{máximo}	Volume máximo.
Vole	Volume do elemento.
W _{fextr}	Trabalho realizado pelas forças exteriores reais.
$W_{ m fintv}$	Trabalho realizado pelas forças interiores virtuais.
W _K	Coeficiente de importância de cada carga.
a	

Grego

ε	Matriz das deformações constante.
Ĺ	Matriz das tensões constante.
В	Parâmetro de carga.

Γ_u	Fronteira do domínio onde um deslocamento está imposto.
Γ_t	Fronteira do domínio onde uma tensão está imposta.
δ	Deslocamento.
З	Extensão.
ε_{ij} ou ε_{kl}	Tensor das deformações.
ρ	Densidade de material.
$P(\mathbf{x})$	Densidade que representa a ausência ou presença de material num ponto x.
$ ho_{ m min}$	Matriz das tensões constante.
σ	Tensão.
$\sigma_{\rm lk}$ ou $\sigma_{\rm ij}$	Tensor das tensões.
$\sigma_{ m VM}$	Tensão de Von Mises.
Ω	Volume do domínio.
$arOmega^arepsilon$	Volume do domínio heterogéneo.
$arOmega^{ m H}$	Volume do domínio homogeneizado.

Operadores

<'>	Simbologia para se referir à média (média volumétrica de uma função,
	média aritmética ou média ponderada conforme referido no texto

Abreviaturas

AIB	Autologous iliac bone.
AL	Análise linear.
ALL	Anterior Longitudinal Ligament.
ANL	Análise não-linear.

CAD	Computer-aided design.
CFC	Carbon fibre cage.
CL	Capsulary Ligament.
СТ	Computerized axial tomography.
DR	Desvio relativo.
E.F.	Elementos finitos.
FDA	Food and Drug Administration.
FDM	Fused Deposition Molding.
FL	Ligamentum Flavum.
FORTRAN	IBM Mathematical FORmula TRANslation System.
IDB	Image-based design.
ISL	Interspinous Ligament.
ITL	Intertransverse Ligament.
MMA	Method of moving asymptotes.
MEF	Método dos elementos finitos.
PCL	Polycarprolactone.
PLGA	Poly lactide-co-glycolide acid.
PLL	Posterior Longitudinal Ligament.
RDO	Rapid Decalcifier hydrochloric.
S	Shifted.
SFF	Solid freeform fabrication.
SLA	Stereolithography.
SLS	Selective laser sintering.
SSL	Supraspinous Ligament.
STIL	Standard Test Interface Language.
Capítulo 1

Introdução

Qualquer movimento do corpo, como o acto de sentar, levantar ou correr envolve o sistema esquelético (ver Seeley *et al.* 2003). Este confere forma ao corpo humano e protege os vários tecidos moles e os órgãos internos. O esqueleto humano é constituído por tecidos vivos e dinâmicos com a capacidade de crescerem, de se adaptarem a vários tipos de solicitações mecânicas e de se repararem a si próprios em caso de lesão (ver Gamradt *et al.* 2005).

Podem enumerar-se 4 funções do esqueleto humano: suporte, protecção, movimento e armazenamento. Suporta o nosso próprio peso, além de ainda ter a capacidade de suportar peso extra; protege todos os órgãos que ele envolve e juntamente com os músculos e ligamentos do corpo, possibilita que este tenha movimento, além disso, alguns minerais presentes no nosso organismo, encontram-se nos ossos e aí são armazenados (ver Seeley *et al.* 2003).

O sistema esquelético pode ser dividido por 3 planos anatómicos principais subdivididos em duas direcções cada um: coronal ou frontal (anterior e posterior), transversal (superior e inferior) e sagital (esquerdo e direito) (figura 1.1.) (ver Seeley *et al.* 2003).

Figura 1.1. – Planos anatómicos principais do corpo humano. Imagem extraída de The Burton Report 2011. Legenda: laranja: Plano coronal; verde: Plano transversal; azul: Plano sagital.

Infelizmente nem todas as lesões no esqueleto humano, sejam elas provocadas por um acidente, patologia ou envelhecimento podem ser reparadas pelo próprio organismo e como tal, é necessária a intervenção especializada de tratamentos conservadores ou cirurgias para resolver tais problemas.

Na tabela 1.1. encontram-se enumeradas, no que diz respeito à coluna vertebral humana, algumas das lesões, suas causas e respectivos tratamentos. Essas lesões pertencem ao grupo das discopatias degenerativas, pois encontram-se em alguns casos associadas à coluna vertebral e ao disco intervertebral. A cura ou tratamento como a artrodese está na base do objectivo desta dissertação, e será tratada e aprofundada na secção 2.6. Outra possibilidade é a artroplastia, esta também será mencionada na secção 2.5.

Além destas duas cirurgias mencionadas, existem outras possibilidades cirúrgicas, como a discectomia. Esta consiste na remoção do núcleo do disco intervertebral ou parte dele, usualmente seguida da substituição do mesmo utilizando um fragmento de osso de outra parte do corpo, promovendo a fusão intervertebral (artrodese) (ver *Spine Universe* 2011).

Para mais informações sobre este assunto, ver Harms 2001, Kalichman 2010, Montenegro 2011, Ramalho 2011, KITA 2011, Espondilite Anquilosante 2012 e Hérnia discal 2012.

Tabela 1.1. – Patologias associadas à coluna vertebral, possíveis causas e possíveis curas ou tratamentos para as mesmas. (Imagens retiradas de Seeley *et al.* 2003, *Spine Universe* 2011, QUIROPRAXIA 2011, Neves 2011).

Patologia e o seu significado	Imagem ilustrativa	Algumas causas possíveis	Alguns possíveis tratamentos ou curas
Espondiolistese Deslizamento significativo de uma vértebra sobre a outra.		Anomalias congénitas, fractura por fadiga, osteoartrose degenerativa, traumatismo agudo, etc.	Tratamento conservador (medicação e fisioterapia). Em caso grave, será necessária intervenção cirúrgica.
Hérnia discal Rotura do anel com a consequente saída do líquido do núcleo.		Excesso de peso corporal, profissões que exijam levantamento de pesos excessivos por períodos de tempo prolongados, etc.	Repouso absoluto associado com medicação analgésica, fisioterapia. Em casos mais graves será necessária intervenção cirúrgica.
Artrose Perturbação crónica de uma articulação caracterizada pela degeneração da cartilagem e do osso adjacente.	NORMAL ARTROSE	Idade, excesso de peso, excesso de esforço nas articulações causadas por uma actividade física ou má postura corporal, etc.	Medicação. Nos casos mais graves, a intervenção cirúrgica.
Espondilite anquilosante Doença reumática inflamatória crônica que afecta articulações	Normal Espondilite anquilosante	As suas causas não são muito conhecidas, sabe-se que é mais comum aparecer em pessoas com um certo tipo de grupo sanguíneo (<i>HLA B27</i>).	Não existe cura. Fisioterapia e medicamentos são alguns dos tratamentos possíveis. A intervenção cirúrgica é necessária em alguns casos.

1.1. Medicina e engenharia

A engenharia mecânica compreende uma vasta área cujas aplicações mais comuns e conhecidas são geralmente relacionadas com a área industrial ou concepção e análise de estruturas como chassis de carros, aviões, etc. Contudo, observando as coisas por outro prisma, podem associar-se as funções do esqueleto humano com as de um *chassis* e outros componentes

associados ao mesmo, os quais permitem suportar o peso do carro, permitem que este se movimente do modo desejado e protegem os componentes internos do mesmo assim como os passageiros.

Uma outra comparação possível será o exemplo de um sistema de alavanca, onde um objecto ou força aplicada tira proveito de um ponto fixo e de um braço de comprimento D para multiplicar a força mecânica. Podem distinguir-se 3 elementos num sistema de alavanca: o elemento que fornece a força (E), o fulcro ou eixo de rotação (F) e o objecto ou força resistente (R). Este sistema também pode ser aplicado ao corpo humano, onde uma articulação funciona como um fulcro, o músculo fornece a força ou momento, e o objecto ou peso a ser suportado ou movido, a força resistente (figura 1.2.) (Graaff *et al.* 2001).

Figura 1.2. – Comparação de um esquema de alavanca com uma parte do esqueleto humano seguido de um exemplo de um mecanismo real que usa o sistema alavanca (a) tesoura, b) barra a mover uma pedra e c) pinça). Legenda: F- Fulcro (eixo de rotação); E- elemento que fornece força à alavanca; R- Elemento que provoca a força resistente. Imagens extraídas de Graaff *et al.* 2001.

Na figura 1.2.a) observa-se o movimento de inclinação da cabeça para trás. Aqui, o músculo (E) inclina a cabeça em torno da vértebra C1 (Atlas) (F) suportando o peso do crânio (R). Na figura 1.2.b) o músculo (E) levanta o calcanhar com o intuito de levantar o corpo dos dedos dos pés (R). Nesta acção de se meter em bicos dos pés, os dedos serão o fulcro ou eixo de rotação

(*F*). Na figura 1.2.c), o braço eleva um peso com a mão, em que o músculo (*E*) eleva a mão com o peso (*R*) rodando-a em torno do cotovelo (*F*).

Portanto, como se pode comprovar pelos vários exemplos atrás referidos, os ossos no corpo humano, comportam-se como estruturas sujeitas a vários tipos de esforços, e como tal é possível e vantajoso aplicar o conhecimento da engenharia ao esqueleto humano a fim de prever, prevenir e até corrigir anomalias provocadas por factores como patologias, envelhecimento e acidentes. Ao aliarem-se os conhecimentos da engenharia mecânica à da medicina, surge a biomecânica.

1.2. Objectivos da dissertação

O principal objectivo desta dissertação é a concepção de um dispositivo para artrodese também conhecida como fusão intervertebral (figura 1.3.), dispositivo esse com características biomiméticas, as quais promovem a fusão intervertebral. Para tal utilizou-se um modelo de elementos finitos da coluna lombar humana com esse dispositivo, tendo o mesmo sido obtido utilizando optimização topológica. Com o fim de auxiliar no cumprimento deste objectivo, foi efectuada uma revisão sobre os trabalhos já realizados nesta área.

Outro objectivo parcelar inclui uma pesquisa sobre a área da medicina da coluna vertebral e a sua biomecânica a fim de ser possível aplicar os conhecimentos da engenharia na mesma. Também foi efectuado um breve estudo sobre a área de optimização e programação utilizando o compilador de linguagem *FORTRAN*.

Figura 1.3. – Lado esquerdo: ilustração de uma artrodese efectuada numa coluna vertebral (imagem extraída de imagem extraída de Centro médico da coluna vertebral 2012). Lado direito: Vários exemplos de dispositivos utilizados na artrodese (imagens extraídas de Epari *et al.* 2011, Jonbergen *et al.* 2005, Horak *et al.* 2007 e Bruyn *et al.* 2011).

As causas para a aplicação da artrodese podem ser várias de entre acidentes ou patologias, causas estas que provocam desconforto e/ou dor no paciente. A artrodese consiste em fundir duas ou mais vértebras da coluna vertebral após a remoção do disco intervertebral retirando o movimento existente entre essas vértebras, com o intuito de diminuir a dor anteriormente existente (ver Harms 2001). Este método consiste em utilizar espaçadores ou parafusos e um dispositivo biocompatível (com características que possibilitam a fusão óssea com as vértebras) (figura 1.3.).

1.3. Estrutura da dissertação

A modelação de um dispositivo para fusão intervertebral requer um aprofundar dos conhecimentos de medicina e da mecânica da coluna vertebral aos quais se faz referência no capítulo 2.

O capítulo 3 irá ser dividido em 2 partes. O mesmo irá servir de iniciação ao capítulo 5. Na primeira parte apresentam-se casos de carga numa coluna lombar de um suíno, utilizando-se um dispositivo de fusão intervertebral com características biomiméticas, dipositivo esse modelado utilizando optimização topológica através de um método de homogeneização inversa. Os casos de carga são utilizados para uma análise linear e outra não-linear. Comparações entre as duas foram posteriormente efectuadas. De acrescentar que, a primeira parte deste capítulo é uma revisão de um trabalho anteriormente feito nesta área com o intuito de assimilar conhecimentos para serem utilizados no capítulo 5. A segunda parte pretende mostrar o quão próximo o método dos elementos finitos se aproxima dos resultados teóricos de homogeneização. Esta teoria assume o meio a ser estudado como sendo infinito, e é então comparada com uma estrutura de dimensões finitas.

No capítulo 4 poder-se-ão observar alguns métodos de fabrico utilizados na construção de um provete com características biomiméticas.

Foram anteriormente realizados ensaios de compressão e tirados os valores das propriedades mecânicas dos mesmos. Estes valores são comparados com os valores das propriedades mecânicas utilizando o método dos elementos finitos através do *software ANSYS*. Isto permite que se possa comparar o método computacional com o experimental.

No capítulo 5 os mesmos casos de carga utilizados no capítulo 3 serão aplicados numa coluna vertebral humana (zona lombar). Posteriormente, será simulada uma análise linear e outra não linear. As comparações entre as duas serão efectuadas.

No capítulo 6 proceder-se-á à modelação do dispositivo de fusão intervertebral utilizado na coluna lombar referida no capítulo 5, através do método de optimização de topologia. Os resultados da aplicação deste método também aqui serão referidos.

Esta optimização será efectuada de duas maneiras, uma fazendo uma simulação de uma análise linear, e outra, não linear.

No capítulo 7 e último, serão explicitadas as observações feitas no decorrer deste trabalho e retiradas as respectivas conclusões.

Na figura 1.4. apresenta-se um esquema resumido da estrutura da tese. Basicamente, esta é constituída por 7 capítulos. O capítulo 2 e 3 servirão como meio de aprendizagem para o capítulo 5, o qual será seguido do capítulo 6. O Capítulo 4 é um capítulo de informação adicional da tese, o qual apresenta um estudo sobre *scaffolds* e os seus métodos de fabricação.

Figura 1.4. – Esquema simplificado da estrutura da dissertação. Legenda: Laranja – Apresentado no capítulo 2; Azul – Apresentado no capítulo 3; Vermelho – Apresentado no capítulo 4; Verde – Apresentado no capítulo 5; Roxo – Apresentado no capítulo 6; Preto – Apresentado no capítulo 7; Castanho – Apresentado no capítulo 8.

Capítulo 2

A biomecânica da coluna vertebral e fusão intervertebral

A fim de se poder aplicar a área da mecânica à coluna vertebral com o intuito de se modelar um dispositivo de fusão intervertebral, é necessário adquirir o conhecimento mínimo na área da medicina relativa a coluna vertebral (ver secção 2.1.), assim como das propriedades mecânicas de cada um dos seus componentes (ver secção 2.4.).

A coluna vertebral é um elemento constituinte de todos os seres vertebrados (ver Vertebrados 2012). De um ponto de vista de engenharia, trata-se de uma estrutura mecânica à qual são aplicados vários tipos de esforços, consequentes ou resultantes dos vários movimentos (ver secção 2.2. e 2.3.).

Do ponto de vista da medicina, a coluna vertebral, assim como qualquer osso do corpo humano, é um organismo vivo em constante mudança, podendo algumas dessas mudanças ser causadas por lesões, envelhecimento e patologias. Os conhecimentos do ser humano relativamente à medicina têm melhorado nestes últimos anos, e actualmente, apesar da complexidade do osso, é possível fazer substitutos do mesmo, podendo estes ir desde próteses artificiais a *scaffolds* e dispositivos de fusão. Estes substitutos ósseos podem ser aplicados à coluna vertebral humana através de vários métodos ou cirurgias (ver secção 2.5. e 2.6.).

2.1. A coluna vertebral, os vários componentes que a constituem e as suas funções

A coluna vertebral é um conjunto de vários ossos e outros elementos biológicos que funcionam como um todo. Várias articulações, músculos, vértebras, ligamentos e os vários nervos permitem que a coluna vertebral humana consiga cumprir as funções para o qual foi concebida.

2.1.1. Os principais componentes da coluna vertebral

No ser humano, a coluna vertebral tem 4 funções distintas (Graaff *et al.* 2001): apoia a cabeça e extremidades superiores enquanto permite a liberdade de movimento; permite o bipedismo; serve de ligação entre os vários órgãos viscerais permitindo a passagem de nervos e ainda, protege a espinal-medula das várias solicitações a que é sujeita no dia-a-dia. A constituição da coluna vertebral humana, encontra-se na figura 2.1.

	Curva cervical	Possui 7 vértebras enumeradas de C1 a C7, sendo a C1 chamada de Atlas e a C2 de Áxis. São as mais densas e as segundas menores da coluna vertebral.
Vértebras Discos intervertebrais	—Curva torácica	Possui 12 vértebras enumeradas de T1 a T12. Esta curva constitui a maior zona da coluna vertebral humana. Estas são maiores que as vértebras cervicais.
Juntas intervertebrais Orifícios intervertebrais		Possui 5 vértebras enumeradas de L1 a L5. São as maiores vértebras da coluna vertebral, possuem sistemas espinhosos densos para fixar os mais poderosos músculos das costas.
Sacro Cóccix	Curva pélvica	O sacro é constituído por 4 a 5 vértebras sacrais fundidas (S1-S4/5). O cóccix é constituído por 3 a 5 vértebras fundidas (Co1-Co3/4/5) e são as vértebras mais pequenas da coluna vertebral.

Figura 2.1. – A coluna vertebral e os principais componentes que a constituem (Graaff *et al.* 2001, Seeley *et al.* 2003). Imagem extraída de Graaff *et al.* 2001, tradução efectuada com o auxílio de Abrahams *et al.* 2003 e Rigutti *et al.* 2008.

Existe um motivo em termos mecânicos para a existência destas curvas. Estas possibilitam que a coluna vertebral tenha uma capacidade de absorção de choques aumentada e uma rigidez adequada ao nível das zonas articulares mantendo uma enorme flexibilidade nas mesmas (ver White *et al.* 1990).

Nas tabela 2.1. a 2.4., encontram-se em detalhe as funções e as várias partes constituintes dos componentes referidos na figura 2.1. Devido ao facto de a fusão intervertebral ser estudada na parte lombar da coluna, as vértebras lombares terão o principal destaque, pois as vértebras, dependendo da curva da coluna onde se encontram, são diferentes umas das outras.

Vértebra (lombar)	Descrição	
Arco vertebral Corpo Corpo Apófises articulares Apófises espinhosa	Constituem a parte rígida da coluna vertebral. São constituídas por um bloco de osso anterior chamado corpo vertebral e por um anel ósseo posterior chamado arco vertebral. A vertebra é constituída por osso trabecular (aspecto poroso) contida numa camada fina de osso cortical (aspecto compacto). O arco vertebral é constituído por 7 apófises (4 articulares, 1 espinhosa e 2 transversas). Existem cerca de 33 vértebras no corpo humano, mas algumas como são fundidas, pode dizer- se que existe um total de 26 vértebras móveis (Graaff <i>et al.</i> 2001, White <i>et al.</i> 1990).	

Tabela 2.1. – Imagem e descrição de uma vértebra lombar.

Tabela 2.2. - Imagem e descrição de um disco intervertebral.

Tabela 2.4. - Imagem e descrição dos orifícios intervertebrais.

As vértebras são especificadas por uma letra (ou duas no caso da zona do cóccix) que representa a zona da coluna a que é referida e por um número que representa a posição da vértebra em questão, sendo a ordem deste número dada de cima para baixo. Um disco intervertebral também é especificado utilizando esta terminologia. Por exemplo, se se pretender especificar o disco intervertebral que se encontra entre a vértebra L4 e a L5, pode dizer-se disco L4-L5.

2.1.2. Ligamentos - Os componentes auxiliares da coluna vertebral

Os componentes anteriormente falados apesar de se puderem considerar os principais, pois são eles que dão forma à coluna vertebral, por si sós, não seriam capazes de proporcionar movimento à coluna ou resistência ao mesmo, sem o auxílio de componentes como os ligamentos e os músculos da coluna.

Os ligamentos são estruturas uniaxiais, por outras palavras, eles são mais eficazes a carregar cargas nas direcções em que as fibras se encontram. Deste modo, estes podem ser comparados a cabos, resistem às forças de tracção, mas encurvam quando submetidos à compressão.

No esquema da figura 2.2. encontram-se descritas as três funções desempenhadas pelos ligamentos (White *et al.* 1990).

Figura 2.2. - As funções dos ligamentos da coluna vertebral (White et al. 1990).

Existem vários ligamentos na coluna vertebral que se distinguem uns dos outros pela sua localização, tamanho e movimento em que intervêm. De entre os vários ligamentos, existem 7 a destacar na coluna. Estes encontram-se ou passam pela zona lombar da coluna vertebral (figura 2.3.). Na tabela 2.5. encontra-se uma breve descrição sobre esses 7 ligamentos, bem como a região da coluna em que se encontram e o movimento em que intervêm.

- Figura 2.3. Representação dos principais ligamentos da coluna vertebral. Imagem extraída de Spine Universe 2011, tradução efectuada com o auxílio de Rigutti et al. 2008.
- Tabela 2.5. Breve descrição dos sete principais ligamentos da coluna vertebral (Zee *et al.* 2007). Entre parêntesis encontram-se as abreviaturas da terminologia Anglo-Saxónica.

Ligamento(s)	Descrição	Região	Movimento interveniente
Longitudinal Anterior (ALL)	É uma estrutura de tecido fibroso que se encontra na superfície anterior das vértebras e dos discos.	Do áxis ao sacro	Extensão
Longitudinal Posterior (PLL)	É uma estrutura de tecido fibroso que se encontra na superfície posterior das vértebras e dos discos.	Do áxis ao sacro	Flexão
Intertransversais (ITL)	São semelhantes a cabos arredondados ligados aos músculos da zona lombar.	Lombar	Flexão lateral
Cápsulas Articulares (CL)	As fibras destes ligamentos são geralmente orientadas numa direcção perpendicular ao plano das articulações.	Do áxis à lombar	Flexão
Flávio (<i>LF</i>)	Estes ligamentos referidos como ligamentos amarelos, representam o mais puro tecido elástico no corpo humano.	Do áxis ao sacro	Flexão
Interespinhosos (ISL)	São estreitos e alongados na região torácica, mais grossos na região lombar, e menos desenvolvidos a nível do pescoço.	Do áxis à lombar	Flexão
Supraespinhoso (SSL)	É mais espesso e amplo na região lombar do que é na torácica.	Torácica e lombar	Flexão

2.2. Os vários tipos de movimento da coluna vertebral – Forças e momentos

2.2.1. Os movimentos da coluna vertebral

Como já foi anteriormente referido, uma das funções da coluna vertebral, é permitir a liberdade de movimento, essa é oferecida pelas articulações que se encontram na coluna, que são os discos intervertebrais e as juntas intervertebrais. Esses movimentos estão relacionados com esforços, sejam os mesmos oriundos de forças ou momentos. A movimentos de translação correspondem forças de compressão, tracção ou corte. Por outro lado, a movimentos de rotação correspondem momentos de flexão ou torção aplicados. Olhando para a figura 2.4., podem perceber-se os movimentos possíveis entre duas vértebras.

Figura 2.4.- Esquema simplificado dos vários tipos movimentos e esforços na coluna vertebral. Imagem extraída de White *et al.* 1990).

2.2.2. Forças e momentos

Após uma selecção de valores de entre os vários artigos disponíveis na literatura sobre as forças e momentos na coluna vertebral, em especial na região lombar, resume-se a informação na tabela 2.6. Os valores encontrados na totalidade de todos os periódicos encontram-se em ANEXOS A (ver tabela A1 e A2). Estes valores são tidos como referência para os valores que a coluna vertebral do ser humano comum suporta no dia-a-dia.

É difícil quantificar as translações e rotações que as forças e momentos originam ou viceversa, pois as mesmas variam de vértebra para vértebra dependendo da posição anatómica em que se encontram. Estes valores serão utilizados no modelo de elementos finitos projectado e analisado no capítulo 5.

Tabela 2.6. – Forças e momentos utilizados no modelo de elementos finitos da coluna vertebral humana (zona lombar).

Tipo de esforço	Forças [N]	Momentos [N.m]
Compressão/tracção	500	
Torção		11,45
Flexão/extensão		0 a 20
Flexão lateral		7,5
Deslizamento (corte)	400	

2.3. O disco intervertebral e a sua biomecânica

Conforme se pode ver na tabela 2.2., o disco é constituído por 3 partes distintas: o núcleo pulposo; o anel fibroso e a plataforma do disco. Estas 3 partes distintas juntas oferecem ao disco certas características do ponto de vista mecânico que o fazem ter a capacidade de desempenhar as suas funções.

O disco é forte o suficiente para não entrar em colapso quando sujeito a forças, forças essas que podem ser superiores ao peso do corpo que se encontra acima dele (por exemplo, durante o saltitar). Este ainda consegue ser deformável mas ao mesmo tempo suficientemente forte para não ser lesado durante um movimento, que graças aos músculos e ligamentos da coluna vertebral, é feito de forma estável nos 3 eixos (ver Nordin *et al.* 2001).

2.3.1. O núcleo pulposo e o anel fibroso

O núcleo, como anteriormente mencionado, é constituído por 90% de água, o que permite que o mesmo seja deformado sob pressão, mas sendo de natureza líquida, o seu volume não pode ser comprimido. Por outro lado, o anel fibroso é a parte envolvente do núcleo. Este é constituído por fibras de colagénio, que por sua vez se encontram organizadas entre 10 a 20 folhas de lamelas. As mesmas encontram-se densamente compactadas, o que lhes confere uma rigidez elevada. Apesar do anel ser o elemento que resiste aos vários esforços da coluna, sem o núcleo, este acabaria por curvar, ceder e ser lentamente esmagado. Por outras palavras, o núcleo impede o anel de se curvar ao exercer uma pressão interna sobre ele, e juntos conseguem desempenhar a função do disco intervertebral permitindo que as articulações da coluna suportem os vários esforços que lhe são impostos.

Figura 2.5. – O disco intervertebral e a sua constituição. Imagem extraída de *The jornal of Bone and Joint* Surgery 2012, Springerimages 2012.

Na figura 2.5., como se pode ver, dentro de cada lamela, as fibras de colagénio encontram-se paralelas umas às outras e passam de uma vértebra para outra. Ainda se pode observar que existe um angulo de 30° a 35° entre as fibras de colagénio e a horizontal (Bogduk *et al.* 2005, Shikinami 2010), ângulo este que vai alternando de lamela para lamela, umas para a direita, outras para a esquerda.

Ao contrário do que aparenta a figura 2.5., nem todas as lamelas formam anéis completos à volta do núcleo. Cerca de 40% são incompletas, e acabam ou fundem-se entre elas.

2.3.2. A biomecânica do disco

As cargas no disco podem ser classificadas em termos de intensidade e duração. É importante esta distinção porque o disco possui propriedades, como a da viscoelasticidade, que dependem tanto do tempo de carga como da sua intensidade. O disco tem dois tipos de comportamento distintos relacionados com este segundo ponto. Se o mesmo se encontrar sujeito a uma carga de baixa magnitude, apresentará uma baixa resistência e por isso, elevada flexibilidade. Quando a magnitude aumenta, a resistência do disco também aumenta, tornando-se estável e rígido.

Existem três propriedades principais que o disco possui: viscoelasticidade, histerese e armazenamento de energia. A viscoelasticidade permite que o disco tenha o comportamento viscoso e elástico. Por outras palavras, quando sujeito a uma carga, a sua deformação é linear com o tempo, e após a remoção da carga, este volta à sua forma original. O disco também possui propriedades de histerese, ou seja, ele é capaz de perder energia quando sujeito a cargas repetitivas (vibração) e ciclos de carga/descarga (fenómeno de fadiga) (White *et al.* 1990). Devido ao facto de armazenar energia, e de as fibras de colagénio terem um comportamento elástico, estas ao esticarem-se como molas, conseguem armazenar energia. Quando a carga é retirada, o recolhimento das fibras faz com que a energia das mesmas seja transmitida ao núcleo, permitindo que este restaure a sua forma original.

Como referido na secção 2.2., os movimentos da coluna vertebral podem ser variados. Deste modo, podem destacar-se 5 tipos de esforços aplicados ao disco (Bendsoe *et al.* 2004): compressão, tracção, corte, flexão e torção (tabelas 2.7. a 2.11.).

Em suma, estudar os movimentos da coluna e os respectivos esforços provocados no disco torna-se importante, pois utilizando os mesmos, foi possível escolher e projectar os casos de carga aplicados aos modelos de elementos finitos utilizados no capítulo 5. Tabela 2.7. – Imagens e descrição do movimento de compressão aplicado disco intervertebral (plano sagital) (Bogduk *et al.* 2005) (imagens extraídas de Bogduk *et al.* 2005).

Compressão	Descrição	
	 É o tipo de esforço mais presente na coluna vertebral. Sob compressão, o disco diminui de altura provocando uma expansão radial, a qual é resistida pelas fibras. O núcleo transmite a intensidade da carga da plataforma superior para a plataforma inferior, ou seja, ele tende a deformar-se, mas é impedido de o fazer pelas plataformas superior e inferior. O núcleo impede o anel de se curvar, mantendo este a sua postura vertical e transmitindo deste modo e com mais eficácia, a força da vértebra superior para a inferior. 	

Tabela 2.8. – Imagens e descrição do movimento de tracção aplicado disco intervertebral (plano sagital) (Bogduk *et al.* 2005) (imagens extraídas de Bogduk *et al.* 2005).

Tracção	Descrição	
	 É um esforço pouco comum na coluna vertebral, ocorrendo, por exemplo, aquando da sustentação do peso do corpo com os braços ou durante a prática de natação. Um corpo vertebral move-se a uma distância igual em todos os pontos relativamente à outra superfície e todas as fibras resistem à extensão da mesma maneira. O disco resiste melhor à compressão do que à tracção, pois quando sujeito a esta última, as propriedades oferecidas pelo núcleo pulposo não se verificam. 	

Tabela 2.9. – Imagens e descrição do movimento de corte aplicado disco intervertebral (plano sagital) (Bogduk *et al.* 2005) (imagens extraídas de Bogduk *et al.* 2005).

Corte	Descrição	
	 Não é um movimento muito comum na coluna vertebral, e quando ocorre com grande intensidade num curto espaço de tempo, pode provocar o descolar da plataforma do disco em relação à vértebra. Existe movimento relativo (deslizamento) entre as superfícies planas de vértebras adjacentes. Esta solicitação é contrariada pelo anel fibroso onde certas fibras (resistentes) ficam sob tensão e outras (passivas) ficam encurvadas. As fibras do anel nas posições anterior e posterior também contribuem para a resistência, embora com menor intensidade. 	

Tabela 2.10. – Imagens e descrição do movimento de flexão/extensão aplicado disco intervertebral (plano sagital) (Bogduk *et al.* 2005) (imagens extraídas de Bogduk *et al.* 2005).

Flexão/extensão	Descrição
-	Esta força resulta de um momento aplicado no disco, que pode resultar numa flexão (p.ex. acto de fazer uma vénia), ou numa extensão (p. ex. acto de fazer a "ponte"). Esta também pode ser lateral esquerda ou direita. Numa flexão, a extremidade anterior do corpo comprime o disco levando as lamelas nessa zona a encurvarem, enquanto que a extremidade oposta estica as lamelas localmente.

Tabela 2.11. – Imagens e descrição do movimento de torção aplicado disco intervertebral (plano sagital) (Bogduk *et al.* 2005) (imagens extraídas de Bogduk *et al.* 2005).

Torção	Descrição
	Pode ocorrer no sentido horário ou anti-horário. Em qualquer dos casos, metade das fibras nas lamelas do anel estarão esticadas enquanto a outra metade encurvadas.

2.4. Propriedades mecânicas dos vários constituintes da coluna vertebral

Como já referido anteriormente, irá proceder-se à modelação de uma coluna vertebral humana em elementos finitos no capítulo 5, e como tal é necessário saber as propriedades mecânicas (módulo de elasticidade e coeficiente de *Poisson*) dos vários componentes utilizados na mesma, ligamentos, vértebra, juntas intervertebrais e disco intervertebral.

Uma selecção dos valores das propriedades desses componentes biológicos num conjunto de artigos consultados foi efectuada (ver tabela A3 a A18 em ANEXOS A). Através dessa consulta

e utilizando como critério a consistência de valores divulgados, resumem-se nesta secção os valores das propriedades mecânicas através das tabelas 2.12. a 2.15.

	Módulo de elasticidade	Coeficiente de Poisson
Ligamentos	E [MPa]	ν
Ligamento Longitudinal Anterior (ALL)	20	0,3
Ligamento Longitudinal Posterior (PLL)	20	0,3
Ligamentos Interespinhosos (ISL)	4-10	0,3
Ligamento Supraespinhoso (SSL)	10	0,3
Ligamento Flávio (LF)	20	0,3
Ligamento Transversal (TL)	50-60	0,3
Ligamentos Intertransversais (ITL)	60	0,3
Ligamentos Cápsulas Articulares (CL)	7-8	0,3
Ligamento Alar (AL)	5	0,3
Ligamento Apical (APL)	5	0,3
Ligamento Nucal (NL)	5	0,3

Tabela 2.12. – Propriedades mecânicas dos ligamentos. Abreviaturas utilizadas referentes à terminologia Anglo-Saxónica.

Tabela 2.13. - Propriedades mecânicas do corpo vertebral.

	Módulo de elasticidade	Coeficiente de Poisson
Corpo vertebral	E [MPa]	ν
Osso cortical	12000	0,3
Osso trabecular	100	0,2
Elementos posteriores	3500	0,3
Pedículo	3500	0,3
Lâmina	3500	0,3

Tabela 2.14. – Propriedades mecânicas das juntas intervertebrais.

	Módulo de elasticidade	Coeficiente de Poisson
Juntas intervertebrais	E [MPa]	v
Juntas intervertebrais	5,5	0,4

	Módulo de elasticidade	Coeficiente de Poisson
Disco intervertebral	E [MPa]	ν
Núcleo polposo	1	0,49
Anel fibroso (Base viscosa)	4,2	0,45
Anel fibroso (fibra exterior)	550	0,3
Anel fibroso (segunda fibra)	495	0,3
Anel fibroso (terceira fibra)	440	0,3
Anel fibroso (quarta fibra)	420	0,3
Anel fibroso (quinta fibra)	385	0,3
Anel fibroso (fibra interior)	360	0,3
Plataforma do disco	500	0,4

Tabela 2.15. – Propriedades mecânicas do disco intervertebral.

2.5. Artroplastia

Artroplastia é uma operação a uma articulação, para lhe restituir tanto quanto possível, a mobilidade e a função. Relativamente à artroplastia do disco intervertebral, os seus principais objectivos são diminuir a dor de costas a nível do disco, restaurar a altura do disco para proteger os elementos neurais e preservar o movimento de modo a prevenir artropatias (doença das articulações) ou outras doenças associadas a essa (Gamradt *et al.* 2005). A artroplastia é um procedimento reconstrutivo que utiliza próteses móveis (discos intervertebrais artificiais), com o objectivo de restituir a anatomia da coluna, mantendo o movimento próximo do normal. Para mais informações sobre este assunto, ver Horak *et al.* 2007 e Zavarsek *et al.* 2006.

Olhando para a figura 2.6., pode observar-se uma escala evolutiva dos discos artificiais ao longo de vários anos de estudo. Observa-se uma notória evolução dos mesmos, começando com o mais básico possível, uma esfera compacta que se limita a dar a altura do disco e a manter um movimento entre as vértebras, até a discos com capacidades articulares.

Figura 2.6. – Diagrama temporal do disco intervertebral artificial. Exemplos de alguns discos desenvolvidos ao longo do tempo. Imagens extraídas de Bao *et al.* 1996, Bono *et al.* 2004, Patil *et al.* 1980, Taksali *et al.* 2004, Zhu e Shen 2008 e KITA 2011.

Olhando para o diagrama, e em primeiro lugar, observando-o por volta do ano de 1950, pode ver-se a esfera de aço *Fernstrom* (Bono *et al.* 2004, Gamradt *et al.* 2005, Link *et al.* 2004). Apesar da sua simplicidade, esta esfera, quando observada cuidadosamente, consegue-se perceber que foi concebida para desempenhar as duas funções mais básicas do disco intervertebral original: manter a altura do disco e o movimento entre as vértebras. Os bons resultados a curto prazo tinham sido relatados, mas devido ao facto de o ponto de contacto entre a esfera e a superfície da vértebra ser tão pequeno, a longo prazo, observava-se uma concentração de tensões na mesma, levando o osso da vértebra a sucumbir e as bolas de aço a entrarem por ele dentro. Para agravar isto, o movimento intervertebral produzia forças de corte na interface osso-metal.

Em meados de 1980, outros discos como o projecto de Patil (Bao *et al.* 1996, Patil *et al.* 1980) ou o dispositivo de Lee (Bao *et al.* 1996, Bono *et al.* 2004, Lee *et al.* 2004) podiam ser encontrados. Estes ao contrário da grosseira esfera de aço *Fernstrom*, possuíam características

elásticas, que ofereciam propriedades de amortecimento, dado tratar-se de um material compressível. O projecto de Lee também foi o primeiro dispositivo a ter em conta a rigidez torsional. Além disso, as superfícies do mesmo eram feitas de hidroxiapatite (material usado em revestimento ósseo), promovendo crescimento ósseo em próteses/implantes. O projecto de Kostuik (Bono *et al.* 2004) foi desenvolvido por volta de 1990, e este nunca passou dos ensaios com animais, possivelmente por a articulação ter um movimento muito limitado (apenas flexão e extensão eram possíveis).

Uma nova era dos discos apareceu com a geração dos *SB charité*. A principal característica da primeira versão (*SB charité I*) (Bao *et al.* 1996, Bono *et al.* 2004, Errico 2004, Freeman *et al.* 2006, Gamradt *et al.* 2005, Lee *et al.* 2004, Ross 2009 e Taksali *et al.* 2004) era o facto do núcleo de polietileno não estar restringido, sendo deste modo possível, haver movimentos nos 3 eixos. Contudo, num movimento posterior ou anterior, o eixo de rotação não ocorria no ponto médio, mas sim mais para o lado posterior ou anterior respectivamente. Além disso, a concentração de tensões ao longo das áreas de superfície levava à migração e sedimentação no corpo vertebral num certo número de pacientes. A segunda geração, *SB charité II* (Bao *et al.* 2004, Ross 2009 e Taksali *et al.* 2004, Errico 2004, Freeman *et al.* 2006, Gamradt *et al.* 2005, Lee *et al.* 2004, Ross 2009 e Taksali *et al.* 2004, resolveu este último problema, pois possuía extensões planas nas laterais esquerda e direita das plataformas de metal. Apesar destas alterações, fracturas por fadiga eram comuns na plataforma de aço, e levaram a falhas iniciais.

Na terceira e actual versão (*SB charité III*) (Bao *et al.* 1996, Bono *et al.* 2004, Errico 2004, Freeman *et al.* 2006, Gamradt *et al.* 2005, Lee *et al.* 2004, Ross 2009 e Taksali *et al.* 2004) verificaram-se 3 grandes diferenças. Primeiro, já possuía plataformas planas, o que minimizava a subsidência da mesma em ensaios clínicos; segundo, os materiais utilizados para produzir as plataformas, e eram feitos de uma liga leve o que resultava num desgaste menor, e por fim, para maximizar a integração óssea, as plataformas eram porosas e revestidas com titânio.

Durante, a geração do *SB Charité III*, outros discos apareceram. Um exemplo é o *Prodisc* de Marnay (Bono *et al.* 2004, Errico 2004, Gamradt *et al.* 2005, Link *et al.* 2004, Taksali *et al.* 2004), cuja principal diferença, relativamente à geração do SB Charité, era o facto de o implante do *Prodisc* ter-se baseado numa interface articulada e semi-constrangida única no núcleo de polietileno fixado à parte interior e superior de duas plataformas metálicas. Outra diferença encontra-se na fixação. O *SB Charité* utilizava 6 dentes, enquanto este passou a utilizar uma barbatana sagital.

Discos como o *Maverick* de Mathews (Bono *et al.* 2004, Errico 2004, Freeman *et al.* 2006, Gamradt *et al.* 2005, Taksali *et al.* 2004) ou o *Prestige* de Gill (Bono *et al.* 2004, Link *et al.* 2004, Taksali *et al.* 2004), tiveram um enorme destaque devido ao facto de o contacto na articulação ser metal com metal, ou seja, o núcleo ao contrário dos casos anteriores, não era feito de um polímero ou material sintético. Superfícies de rolamentos alternativos que não sejam feitos de polietileno têm sido defendidas nestes últimos anos. Implantes metálicos e cerâmicos têm demonstrado resultados comparáveis a curto e médio prazo para substituir discos de rolamento de polietileno. A importância destes implantes baseia-se na hipótese de que os microdetritos metálicos e cerâmicos teriam menos efeitos no osso circunvizinho e no tecido mole. O disco *Maverick*, ainda utilizado na actualidade, possui plataformas feitas de cobalto-cromo, e apesar de não conter qualquer polímero ou material elástico, a sua capacidade de absorção de choque biomecânico é quase idêntica à do *ProDisc*.

Na década de 90, foi desenvolvido o *Bryan Total Cervical Disc* (Bono *et al.* 2004, Link *et al.* 2004, Taksali *et al.* 2004), que possuía duas características que o faziam ser diferente dos anteriormente falados. Primeiro, apresentava um "líquido articular" contido dentro de uma membrana envolvendo o disco, e segundo, o núcleo em vez de utilizar polietileno, utilizava poliuretano, que tinha uma capacidade de absorção de choque acrescida relativamente ao anterior.

Igualmente na década de 90, apareceu o primeiro disco aprovado pela *FDA*, o *AcroFlex* de Steffee (Bono *et al.* 2004, Freeman *et al.* 2006, Lee *et al.* 2004). Este dispositivo consistia num núcleo de borracha vulcanizada (borracha à qual foi aplicado calor e pressão, a fim de dar forma e propriedades ao produto final) interposto entre plataformas revestidas a titânio porosas. A utilização do implante foi posteriormente interrompido por causa da possível carcinogenicidade (mutação) de solventes baseados em benzeno utilizados durante o processo de vulcanização. Mas tudo ficou resolvido, após a remoção do químico responsável por esta carcinogenicidade.

Outras alternativas que apareceram para a substituição total do disco, foi a substituição parcial do mesmo, ocorrendo esta apenas no núcleo. Ray desenvolveu a prótese de núcleo original (*PDN*) (figura2.7.) bem como várias subsequentes versões modificadas. O maior desafio do projecto era impedir a sua expulsão do espaço do disco. O componente essencial é um travesseiro de gel hidrofóbico que absorve água e se expande após a implantação. O gel é contido por uma rede de malha de polietileno para evitar expansão excessiva. Duas almofadas são colocadas transversalmente no interior do espaço de disco, preservando o anel o máximo possível. No entanto, as migrações do núcleo costumavam ocorrer, o que levou a uma mudança na técnica de implante de tal forma que este é colocado a partir de uma abordagem lateral deixando o anel posterior intacto.

Figura 2.7. - Prótese de núcleo original desenvolvida por Ray. Imagem extraída de Zhu et al. 2008.

Bao e Higham (ver Bono *et al.* 2004) concentraram-se na reprodução de um núcleo focandose não só nas propriedades mecânicas do mesmo, mas também nas propriedades fisiológicas. Anteriormente, substituir o disco com um elastómero sem uma quantidade de água significativa, tal como silicone ou um poliuretano, diminuiria a fonte de nutrição necessária para o disco, o que acabaria por levar a uma deterioração do anel fibroso. Para contornar este problema, desenvolveram um núcleo intervertebral feito de hidrogel, que continha 70% de água, o que lhe permitia cumprir o seu papel em termos mecânicos e fisiológicos.

Em suma, foram vários os discos que apareceram ao longo dos mais de 50 anos de estudo sobre a artroplastia do disco intervertebral. Sem sombra de dúvida se torna impossível comparar uma esfera de aço *Fernstrom* com o actual *Acroflex* ou *Maverick*, mas é certo, que estas evoluções só foram possíveis porque várias erros foram cometidos e com eles, novos conhecimentos e técnicas foram adquiridas. Deste modo, na actualidade, pensar em fazer num disco artificial capaz de substituir na perfeição o disco intervertebral original, parece cada vez mais uma realidade.

2.6. Artrodese

A fusão (artrodese) da coluna ainda é a opção de tratamento mais utilizada hoje em dia, pois as técnicas de artroplastia disponíveis não são aplicáveis a todos os casos (Brolin *et al.* 2004), e também ainda não está comprovado que os resultados clínicos sejam melhor do que os da artrodese (Chen *et al.* 2009, Denozière *et al.* 2004, Errico 2004).

A artrodese consiste em submeter duas ou mais vértebras a uma anquilose, ou seja, uma restrição do movimento da articulação, utilizando para tal os componentes anteriormente falados no capítulo 1. Após a cirurgia não haverá mobilidade nessa articulação, a dor nela também será diminuída, e a fusão ocorre após 3 meses. Durante esse tempo, o paciente necessita de um repouso relativo. Os parafusos ficando quase inteiramente dentro da vértebra, raramente causarão dor ou desconforto aos pacientes, e na maioria dos casos a remoção dos mesmos não é necessária.

Relativamente aos dispositivos de fusão, existem quatro grandes tipos mencionados e explicados na tabela 2.16. (Boa saúde 2012, Vadapalli *et al.* 2006).

Tipo	Descrição
Alogénicos	Implante de osso de outro indivíduo, usualmente um cadáver. Contêm o risco de transmissão de doenças infecciosas.
Autológos	Implante de osso do próprio indivíduo, normalmente retirado do osso ilíaco. Este tipo de implantes requer um tempo de cirurgia e um tempo de recuperação do paciente superiores.
Metálicos biocompatíveis	Implante metálico com capacidades de não ser rejeitado pelo organismo, usualmente feito de titânio, pode possuir duas formas: "caixa ou cilíndrica". Existe um risco elevado de migração do dispositivo para a vértebra, além das possíveis falhas mecânicas. Também ocorre o risco de após a fusão das vértebras, existam resíduos de metal que podem levar a complicações.
Não metálicos biocompatíveis e bio absorvíveis	Implante produzido em <i>PCL</i> ou <i>PLLA</i> . Além de promover uma fusão eficaz entre as vértebras, estes degradam-se após a mesma, dando lugar a material ósseo. Isto é possível por possuir um módulo de elasticidade semelhante ao do osso.

Tabela 2.16. - Os quatro tipos de dispositivos de fusão que actualmente existem.

Outra alternativa disponível consiste na produção de um disco capaz de substituir e imitar o natural (Vadapalli *et al.* 2006). Esta área ainda é actual e portanto ainda se encontra em desenvolvimento, sendo esta estudada pela engenharia dos tecidos.

São vários os trabalhos e estudos feitos na área da fusão intervertebral. Em seguida, irá proceder-se a um estado de arte sobre esses trabalhos com o objectivo de se melhorarem os conhecimentos sobre a artrodese na coluna vertebral.

2.6.1. Stress shielding em dispositivos de fusão

A principal função de um dispositivo de fusão intervertebral é corrigir uma deformação mecânica e assegurar estabilidade enquanto mantém um ambiente perfeito para que a artrodese ocorra.

Parte dessa estabilidade parece estar dependente das cargas mecânicas bem distribuídas no enxerto de osso. Deste modo, acredita-se que o ambiente, em termos mecânicos, pode ser critico para o sucesso e fusão do enxerto de osso.

Stress shielding ou tensão de protecção é a redistribuição de carga no osso que ocorre após a substituição de uma articulação por uma outra artificial (Wheeless 2012). Neste trabalho

pretendeu-se comparar esse parâmetro entre um dispositivo de fusão em cilindro e um em caixa (figura 2.8.).

O dispositivo *Harms* é um cilindro vertical furado sem plataformas superiores ou inferiores e tem o maior furo (poro) possível tendo em conta o seu volume. O seu tipo de construção possibilita a ocorrência de crescimento ósseo, mas por outro lado a estrutura do mesmo reduz a rigidez. O dispositivo *Syncage* tem a forma de uma caixa e possui plataformas superiores e inferiores, tendo as mesmas um maior número de pequenos furos relativamente ao dispositivo *Harms*. Ambos os dispositivos foram preenchidos com enxertos de osso extra para promover a fusão das vértebras ao disco.

Figura 2.8. – a) Dispositivo em cilindro *Harms* com a sua malha de titânio e abaixo o esquema representativo do mesmo. b) Dispositivo em caixa *SynCage* e abaixo o esquema do mesmo. Imagens extraídas de Epari *et al.* 2011.

Para o efeito, gerou-se um modelo a duas dimensões axissimétrico de elementos finitos com o dispositivo incorporado e uma vértebra adjacente. A análise foi dividida em duas partes. Na primeira, a vértebra foi carregada por uma forca de compressão axial (resultados na figura 2.9.), e na segunda, foi simulada o efeito de penetração da vértebra (resultados na figura 2.10.). Os dois parâmetros a ter em conta neste estudo foram a rigidez do dispositivo e o tamanho ou número de poros em comparação com a distribuição de extensões (ver resultados do estudo destes dois parâmetros em Epari *et al.* 2011).

Figura 2.9. – Extensão no excerto de osso no dispositivo cilíndrico e em caixa, quando sujeitos a uma compressão axial. Imagens extraídas de Epari *et al.* 2011. Legenda: Preto – dispositivo em caixa (SynCage); Cinzento – Dispositivo em cilindro (Harms).

A deformação do enxerto de osso no dispositivo *Syncage* foi no geral mais baixo do que no *Harms* (figura 2.9.). Também se pode verificar que as deformações no dispositivo em cilindro pareceram ser mais uniformemente distribuídas, ao contrário do outro no qual as deformações foram mais concentradas no enxerto acima das plataformas.

Figura 2.10. - Deformação no enxerto de material do dispositivo em cilindro (*Harms*) e dispositivo em caixa gerada (*SynCage*) gerada pela penetração vertebral no dispositivo. Imagem extraída de Epari *et al.* 2011. Legenda: Preto – dispositivo em caixa (*SynCage*); Cinzento – Dispositivo em cilindro (*Harms*).

A penetração da vértebra no dispositivo cilíndrico resultou numa deformação significativa do osso em cerca de 28%, enquanto que deformações mais baixas foram encontradas no dispositivo

em caixa (cerca de 17%) (figura 2.10.). Também se pode observar na mesma figura que o aspecto mais aberto do dispositivo cilíndrico permite que o enxerto de material seja igualmente deformado ao longo do dispositivo. Por outro lado, no dispositivo em caixa, as plataformas fazem com que a concentração de tensões não ocorra na região das mesmas, mas se torne mais concentrada na região central. O furo central no dispositivo em caixa não parece surtir tanto efeito como o dispositivo cilíndrico totalmente aberto no que diz respeito a transferir cargas para o enxerto de tecido adicionado.

Em suma, o dispositivo *SynCage* possui um *stress shielding* mais irregular. A sua elevada rigidez, comparativamente ao dispositivo *Harms*, leva a uma redução de tensões nas plataformas, provocando por outro uma concentração das mesmas na parte central. Além disso, penetrações precoces da vértebra adjacente no dispositivo *Harms* podem fornecer uma estabilidade pós-operatório, carregando em seguida o enxerto de tecido, transmitindo assim as condições necessários para que a fusão ocorra (Epari *et al.* 2011).

2.6.2. Fusão intervertebral: Avaliação radiológica precoce da fusão e subsidência

O trabalho desenvolvido (Jonbergen *et al.* 2005) está intimamente ligado à parte da medicina, afastando-se da área da engenharia. O uso de dispositivos de fusão intervertebral cervical tem-se tornado popular, mas elevadas subsidências têm sido observadas. Os autores pretenderam mostrar resultados radiológicos a curto prazo do dispositivo de titânio tendo em conta a fusão e a subsidência.

A fusão bem sucedida e a falta de subsidência podem influenciar os resultados clínicos a longo prazo e portanto, para que o dispositivo possa ser aceite, dados radiológicos precoces são necessários antes da implementação deste dispositivo em larga escala. Para a obtenção destes dados, foi então efectuada uma fusão intervertebral cervical anterior com o dispositivo da figura 2.8.B) em setenta e um pacientes, dos quais cinquenta e sete tinham sido diagnosticados com uma doença no disco cervical, enquanto outros catorze com estenose cervical (figura 2.11.).

Figura 2.11. – Estenose cervical (compressão dos nervos da coluna pelo disco ou vértebra). Imagem extraída de Ortopedia 2012.

Como resultados finais, nenhum paciente foi perdido durante o acompanhamento e a fusão ocorreu após 6 meses em todos os pacientes. Em 10 pacientes, no período entre 3 a 6 meses após a operação, o dispositivo sofreu subsidência e observou-se que o disco C6-C7 se encontrava significativamente mais envolvido.

Como conclusão, pôde observar-se uma maior tendência para a subsidência do dispositivo na plataforma da C7 em pacientes com patologias relacionadas com o disco. Deste modo, um dispositivo modificado foi projectado, tendo melhorado o contacto com a superfície inferior da vértebra, o que reduzem a subsidência na C7 (Jost *et al.* 1998).

2.6.3. Análise biomecânica de dispositivos de fusão intervertebral

A fusão intervertebral tem-se tornado bastante comum nas cirurgias à coluna vertebral. Deste modo é importante o estudo das interacções biomecânicas entre as estruturas da coluna vertebral e o dispositivo de fusão intervertebral.

No trabalho (Fantigrossi *et al.* 2007) foram efectuadas simulações computacionais, onde 4 modelos de elementos finitos foram desenvolvidos, reproduzindo o disco intervertebral *L4-L5* em condições intactas e após a substituição do mesmo por um dos 3 dispositivos de fusão utilizados. Este modelo era constituído por duas vértebras, as suas juntas intervertebrais, os principais ligamentos e o disco intervertebral. Os dispositivos de titânio para fusão intervertebral utilizados nesta simulação, foram: o *BAKTM*, o *InterfixTM* e o *Interfix FlyTM* (figura 2.12.). Foram efectuadas várias simulações com várias condições de carregamento sujeitas a uma pré-carga de compressão constante.

Figura 2.12. – Imagens esquemáticas dos dispositivos utilizados na simulação de elementos finitos. Imagem extraída de Fantigrossi *et al.* 2007. a) *BAKTM*; b) *InterfixTM*; c) *Interfix FlyTM*.

Um grande aumento da rigidez nos vários componentes da coluna vertebral induzida por todos os dispositivos de fusão, foi observado em todos os casos de carga considerados. A distribuição de tensões na superfície do osso foi avaliada e discutida. Na figura 2.13., pode observar-se a distribuição de tensões nos 4 modelos simulados (um modelo intacto e outros 3 com os dispositivos de fusão intervertebral).

As diferenças observadas entre as propriedades biomecânicas dos vários modelos testados foram associadas às características geométricas e cirúrgicas dos 3 dispositivos (Fantigrossi *et al.* 2007).

Figura 2.13. – Imagens esquemáticas dos 4 modelos simulados sobre compressão axial. Pode observar-se a distribuição de tensões na coluna vertebral. Imagem extraída de Fantigrossi *et al.* 2007. a) Utilizando o dispositivo *BAKTM*; b) Utilizando o dispositivo *InterfixTM*; c) Utilizando o dispositivo *Interfix FlyTM*; d) intacta.

2.6.4. Dispositivo de fusão intervertebral lombar bioabsorvível

No trabalho (Hojo *et al.* 2005) teve como principal objectivo, um estudo *in vivo* sobre um disco para fusão intervertebral produzido a partir de um compósito bioactivo e bioabsorvível. Anteriormente, testes *in vitro* demonstraram que este tipo de discos possuía um excelente desempenho biomecânico.

O propósito do estudo "in vivo" foi avaliar a viabilidade e vantagem do dispositivo feito de F-u-HA/PLLA (compósito forjado de hidroxiapatita e poli L-lactídeo) (figura 2.14.) quando comparado a um transplante de osso ilíaco autólogo (AIB) e a um dispositivo de fibra de carbono (CFC). O transplante com osso ilíaco autólogo (AIB) é um transplante efectuado tirando osso da zona do quadril e enxertando-o na zona do disco, tornando-se este, um dispositivo feito apenas de osso trabecular. O CFC ou dispositivo de fibra de carbono, tem um aspecto semelhante ao dispositivo F-U-HA/PLLA.

Para se testar estes três dispositivos, vinte e cinco ovelhas adultas foram submetidas a uma fusão intervertebral lombar posterior na L2-3 com um sistema de parafusos de titânio. Dos três

dispositivos utilizados, dois (*CFC* e *F-u-HA/PLLA*) foram preenchidos com osso trabecular colhido localmente.

Figura 2.14. – Dispositivo F-U-HA/PLLA. Imagem extraída de Hojo et al. 2005.

Foi efectuado Scans *CT* ("*Computerized Axial Tomography*") para avaliar o sucesso da fusão intervertebral nos dispositivos. Resultados histológicos mostraram que os dispositivos *F-u-HA/PPLA* tiveram um contacto directo com mais osso vertebral, e os *CFC* foram rodeados com uma fina camada de fibras sem qualquer sinal de inflamação. A qualidade da fusão nos vários componentes da coluna usando os dispositivos *F-u-HA/PLLA* foram iguais aos da *AIB* ou *CFC*s, tanto radiograficamente como biologicamente. Contudo, efectuando uma observação histórica, a biocompatibilidade do dispositivo F-U-HA/PLLA foi obviamente superior ao *CFC*. Foi portanto confirmado que os novos dispositivos biocompatíveis e bioabsorviveis tem vantagens valiosas sobre os *CFC* no uso da cirurgia reconstrutiva da coluna (Hojo *et al.* 2005).

2.6.5. Optimização topológica aplicada à biomecânica do disco intervertebral

Os trabalhos anteriormente tratados, apesar de estarem directamente ligados com o objectivo desta dissertação, não aplicam a optimização topológica ao projecto dos dispositivos anteriormente estudados e testados. Neste subcapítulo irão ser mencionados vários trabalhos cuja modelação de um *scaffold* para substituição intervertebral foi conseguida a partir de optimização topológica.

No periódico Coelho *et al.* 2011 projectou-se um dispositivo de fusão intervertebral com propriedades de um *scaffold*, ou seja, o dispositivo teve de possuir uma quantidade de poros suficientemente elevada para as células do osso penetrarem e assim tornar possível uma fusão óssea com a vértebra. Este dispositivo foi integrado e testado numa coluna vertebral de um

suíno de *Yucatan* projectada em elementos finitos (figura 2.15.). O mesmo foi projectado tendo em conta o objectivo de maximizar a rigidez global da espinha, tendo como constrangimentos locais a permeabilidade da microestrutura do *scaffold*. Este trabalho será analisado no capítulo seguinte, falando dos vários casos de carga e dos resultados obtidos após a aplicação de optimização topológica.

Figura 2.15. - Dispositivo projectado (*scaffold*) para a coluna de um suíno de *Yucatan* utilizando optimização topológica. Imagem extraída de Coelho *et al.* 2011.

Do mesmo modo que no periódico Coelho *et al.* 2011, no periódico Kang *et al.* 2010 foi aplicada a optimização topológica a um projecto de microestruturas para a criação de um *scaffold* (figura 2.16.), esperando-se que este forneça ambientes mecânicos e mássicos adequados para a formação de novo tecido ou osso. Um módulo de compressibilidade e difusidade isotrópica alvos foram alcançados a partir de um modelo óptimo de microestrutura porosa.

Figura 2.16. - Dispositivo projectado (*scaffold*) para a coluna lombar utilizando optimização topológica. Imagem extraída de Kang *et al.* 2010.

Nos artigos Lin *et al.* 2004 e Lin *et al.* 2003 (figura 2.17.), desenvolveu-se um dispositivo de fusão intervertebral com arquitectura interna porosa através de optimização topológica. Efectuou-se a comparação deste dispositivo com os dispositivos convencionais.

No artigo Zhong *et al.* 2006 (figura 2.18.), o objectivo foi desenvolver um novo dispositivo e testar as suas características biomecânicas utilizando o método dos elementos finitos. Este estudo foi feito à coluna lombar empregando a optimização topológica.

Figura 2.17. – Protótipo (de cera) do dispositivo de fusão intervertebral, projectado utilizando optimização topológica. Imagem extraída de Lin *et al.* 2004.

Figura 2.18. – Protótipo de um dispositivo *RF*, projectado utilizando optimização topológica. Imagem extraída de Zhang *et al.* 2008.
Capítulo 3

Projecto de suportes biomiméticos recorrendo à optimização multiescala e homogeneização inversa

Considere-se um modelo de elementos finitos de uma coluna vertebral lombar de um suíno de *Yucatan* (figura 3.1.) (cedido pela *University of Michigan*, Coelho *et al.* 2011). O suíno, no geral, é um animal com características bastante semelhantes às do ser humano, por exemplo, têm em comum o sistema circulatório, o coração, o sistema digestivo, a alimentação e até os dentes. Relativamente ao suíno de *Yucatan*, cujo nome em inglês se escreve "*Yucatan mini pig*", difere dos outros da mesma espécie, pelo facto de este ser mais dócil e fácil de domar, sendo necessário por isso, recorrer-se a menos tranquilizantes. Além disso, estes suínos possuem um peso semelhante ao do ser humano, cerca de 75 quilos, ao contrário de outros de raça diferente, que podem ultrapassar os 230 quilos. Para mais informações, ver Lonestar 2012.

Figura 3.1. – Porco de Yucatan. Imagem extraída de Lonestar 2012.

Este capítulo divide-se em duas partes. A primeira parte do capítulo 3 é uma revisão do que já foi anteriormente feito e tratado em Coelho *et al.* 2011. Nesta parte será analisado o modelo de elementos finitos da coluna vertebral lombar de um suíno do *Yucatan* (ver secção 3.1.), a qual se encontra sujeita a 7 casos de carga (ver secção 3.1.). A este modelo foi aplicada optimização topológica com homogeneização inversa, obtendo-se como resultado um dispositivo de fusão vertebral optimizado (ver secção 3.3.).

A segunda parte consiste em testar uma hipótese relacionada com o método da homogeneização. Numa estrutura com uma repetição periódica finita, quanto mais perto de zero for o quociente entre o comprimento de aresta da célula unitária e da dimensão característica da estrutura, mais próximo o valor do módulo de elasticidade da estrutura se encontra do respectivo valor homogeneizado (ver secção 3.4.).

3.1. Modelo de elementos finitos aplicado a uma coluna vertebral

Sendo o suíno semelhante a um ser humano, a coluna projectada em elementos finitos tem características igualmente próximas à coluna de um ser humano. Este modelo de elementos finitos é constituído por 4 vértebras, 2 discos, os 7 ligamentos principais da coluna vertebral e as respectivas juntas articulares. Além disso, ainda possui um dispositivo artificial, ao qual é aplicada a optimização topológica. Esta coluna vertebral ainda será sujeita a 7 casos de carga. Na figura 2.15 do capítulo 2, pode-se ver o modelo da coluna vertebral lombar suína em elementos finitos, com especial destaque para o dispositivo de fusão intervertebral com propriedades de um *scaffold* (Coelho *et al.* 2011).

O modelo é constituído por 4 tipos de elementos: o *Solid45* (modela osso trabecular, juntas articulares e discos); o *Link8* (modela 6 ligamentos da coluna); o *Shell63* (modela osso cortical) e o *Solid64* (dispositivo de fusão). Podem ver-se estas especificações de um modo mais pormenorizado nas tabelas 3.1. a 3.5.

Nas figuras 3.2. a 3.5. encontram-se as especificações e características simplificadas de cada um dos elementos utilizados.

Figura 3.2. – O elemento é definido por 8 nós e possui 3 graus de liberdade em cada um: translação nas direcções de *x*, *y* e *z*. Informações extraídas do *software ANSYS*.

Figura 3.3. - O elemento é definido por 3 nós e possui 6 graus de liberdade em cada um: translação nas direcções de *x*, *y* e *z* e rotação em torno dos eixos *x*, *y* e *z*. Informações extraídas do *software ANSYS*.

Figura 3.4. - Esta barra *3D* é de tensão/compressão uniaxial e possui 3 graus de liberdade: translação nas direcções de *x*, *y* e *z*. Informações extraídas do *software ANSYS*.

Figura 3.5. - O *Solid64* é utilizado em estruturas sólidas anisotrópicas. O elemento é definido por 8 nós tendo 3 graus de liberdade cada um: translação nas direcções de *x*, *y* e *z*. Informações extraídas do *software ANSYS*.

É de notar que as vértebras são constituídas por osso cortical (ou compacto) no exterior (modelado com o elemento *Shell63*) e osso trabecular (ou esponjoso) no interior (modelado com o elemento *Solid45*) (ver figura 3.13.). Além disso, neste modelo não se encontram os 7 principais ligamentos, mas sim apenas 6, estando os Cápsulas Articulares excluídos.

Vértebras (osso trabecular)	Características da malha
	Elemento utilizado = Solid45 E (módulo de elasticidade) = 100 MPa v (coeficiente de Poisson) = 0.2 Número de nós = 32994 Número de elementos = 132848 Volume ocupado = 96878.0 mm ³
Vértebras (osso cortical)	Características da malha
	Elemento utilizado = <i>Shell63</i> <i>E</i> (módulo de elasticidade) = 12000 MPa v (coeficiente de <i>Poisson</i>) = 0.3 Espessura (<i>mm</i>) = 0.5 mm Número de nós = 19949 Número de elementos = 39802 Volume ocupado = 18207.4 mm ³

Tabela 3.1. – As vértebras (osso cortical e osso trabecular).

Disco intervertebral (anel fibroso)	Características da malha
	Elemento utilizado = Solid45 E (módulo de elasticidade) = 10 MPa v (coeficiente de Poisson) = 0.4 Número de nós = 1500 Número de elementos = 4679 Volume ocupado = 2173.5 mm ³
Disco intervertebral (núcleo pulposo)	Características da malha
	Elemento utilizado = Solid45 E (módulo de elasticidade) = 1 MPa v (coeficiente de Poisson) = 0.45 Número de nós = 280 Número de elementos = 771 Volume ocupado = 410.2 mm ³

Tabela 3.2. – Um dos dois discos intervertebrais (núcleo pulposo e anel fibroso).

Tabela 3.3. – Juntas intervertebrais.

Juntas intervertebrais			Características da malha
		\$ \$	Elemento utilizado = Solid45 E (módulo de elasticidade) = 5 MPa v (coeficiente de Poisson) = 0.4 Número de nós = 807 Número de elementos = 1971 Volume ocupado = 751.9 mm ³

Tabela 3.4. – Dispositivo de fusão artificial com propriedades do material PCL (polycaprolactone).

Dispositivo de fusão artificial	Características da malha
	Elemento utilizado = Solid64 E (módulo de elasticidade) = 350 MPa v (coeficiente de Poisson) = 0.3 Número de nós = 1056 Número de elementos = 750 Volume ocupado = 742.2 mm ³

Tabela 3.5. – Ligamentos da coluna vertebral (lombar). Os valores estão apresentados pela ordem exposta na tabela.

ALL, PLL, ITL, SSL, ISL, LF (ver 2.1.2)	Características da malha
	Elemento utilizado = $Link8$ <i>E</i> (módulo de elasticidade) (MPa) = 20, 20, 58.7, 15, 11.6, 19.5 Área (mm ²) = 12.74, 6.67, 1.2, 30, 10, 8 Número de nós (2 por ligamento) = 138 Número de elementos = 69 Volume ocupado = 8112.2 mm ³

O modelo em elementos finitos tem 7 casos de carga diferentes, os quais foram utilizados na optimização topológica do dispositivo de fusão intervertebral. A optimização foi conseguida, não aplicando os casos de carga em simultâneo (caso de carga singular), mas em separado (caso de multicarga), o que faz com que o disco optimizado possua uma melhor estrutura de compromisso entre os vários carregamentos.

De seguida encontra-se um esquema das condições de carga utilizadas no modelo da coluna vertebral suína (figura 3.6.), seguida da tabela 3.6. com os respectivos valores, utilizados tanto na análise linear e não-linear, como na optimização do dispositivo de fusão. É de acrescentar que o índice designado a cada força F na figura 3.6., não depende da direcção ou sentido da força, mas sim do ponto de aplicação da mesma.

Figura 3.6. – As condições de carga utilizadas no modelo de elementos finitos da coluna vertebral suína. a) Caso 1: Compressão; Caso 2: Compressão + Flexão; Caso 3: Compressão + Flexão lateral esquerda; Caso 4: Compressão + Extensão; Caso 5: Compressão + Flexão lateral direita; Caso 6: Compressão + Torção horária; Caso 7: Compressão + Torção anti-horária.

Tabela 3.6. – Valores das forças utilizadas no modelo de elementos finitos da coluna vertebral em relação aos três eixos cartesianos.

		Anális	e linear/nã	io-linear	Optimização do dispositivo de fusão					
	F_1 [N]	F_2 [N]	<i>F</i> ₃ [N]	F_4 [N]	<i>F</i> ₅ [N]	F_1 [N]	F_2 [N]	<i>F</i> ₃ [N]	F_4 [N]	F_5 [N]
Caso 1	-115					-115				
Caso 2	-115	100	-100			-115	500	-500		
Caso 3	-115			46,6	-46,6	-115			233	-233
Caso 4	-115	-100	100			-115	-500	500		
Caso 5	-115			-46,6	46,6	-115			-233	233
Caso 6	-115			46,6	-46,6	-115			233	-233
Caso 7	-115			-46,6	46,6	-115			-233	233

Pela tabela 3.6. pode observar-se uma redução dos valores das forças utilizadas na análise linear ou não-linear, relativamente às utilizadas na optimização do dispositivo de fusão (valores originais). Isto deve-se ao facto da complexidade envolvente numa análise não-linear. Quando as forças aplicadas no modelo são muito elevadas, ocorre um erro de distorção relacionado com os vários elementos que o constituem. A fim de se puder comparar os resultados obtidos numa análise linear com uma não-linear, reduziram-se os valores de ambas.

3.2. Análise estática

3.2.1. Análise linear

Na análise linear efectuada neste modelo, os ligamentos foram modelados com o tipo *Link8* (ver figura 3.4.). Este tipo de elemento possui propriedades semelhantes a uma barra, resistindo à tracção e compressão, o que torna o modelo menos realista, pois os ligamentos biológicos possuem um comportamento mais semelhante ao de um cabo. No entanto, a utilização deste elemento possibilita uma análise com um custo computacional baixo.

Na tabela 3.7. encontra-se os resultados obtidos dos deslocamentos (em relação ao ponto de aplicação da força de compressão), forças e momentos de reacção resultantes das condições fronteiras aplicadas ao modelo.

Caso de carga	U_x [mm]	U_{y} [mm]	<i>U</i> _z [mm]	R_x [N]	<i>R</i> _y [N]	$R_{z}[N]$	M_x [N.mm]	<i>M</i> _v [N.mm]	<i>M_z</i> [N.mm]
1	-0,009	-0,600	-0,491	pprox 0	pprox 0	-115,000	692,710	105,351	pprox 0
2	-0,344	-2,927	-0,553	pprox 0	pprox 0	-115,000	1861,629	105,353	pprox 0
3	2,311	-0,321	-0,486	pprox 0	pprox 0	-115,000	692,711	1055,711	pprox 0
4	0,327	1,726	-0,428	pprox 0	pprox 0	-115,000	-476,209	105,350	pprox 0
5	-2,328	-0,879	-0,495	pprox 0	pprox 0	-115,000	692,710	-845,272	pprox 0
6	-0,217	0,602	-0,490	pprox 0	pprox 0	-115,000	752,810	105,351	-950,634
7	0,200	-0,598	-0,491	pprox 0	pprox 0	-115,000	632,610	105,353	950,634

Tabela 3.7. - Valores dos deslocamentos e reacções resultantes da análise linear.

De um modo semelhante ao caso anterior, foi gerada uma solução do modelo de elementos finitos tendo como base os 7 casos de carga, a diferença encontra-se relativamente aos ligamentos, modelados com o elemento cabo (*Link10*). Este tipo de elemento aproxima-se mais da realidade, pois quando sujeito à tracção, o comportamento é semelhante ao de uma treliça, resistindo à força de tracção imposta, mas não possuindo qualquer rigidez quando sujeito à compressão (encurva). No entanto, este modelo tem um custo computacional muito superior, pois a análise é não linear com grandes deslocamentos.

Na tabela 3.8. encontram-se os valores dos deslocamentos, forças e momentos de reacção resultantes das condições de fronteira aplicadas ao modelo.

Caso de carga	U_x [mm]	U_y [mm]	Uz [mm]	R_x [N]	<i>R</i> _y [N]	$R_{z}[N]$	M_x [N.mm]	<i>M</i> _y [N.mm]	<i>M_z</i> [N.mm]
1	-0,097	-1,069	-0,586	pprox 0	pprox 0	-115,000	815,574	94,235	pprox 0
2	-0,716	-4,341	-0,792	pprox 0	pprox 0	-115,000	2343,196	28,307	pprox 0
3	3,886	0,100	-0,641	pprox 0	pprox 0	-115,000	680,288	1504,700	pprox 0
4	1,581	6,877	-0,631	pprox 0	pprox 0	-115,000	-1286,076	295,921	pprox 0
5	-3,936	-1,477	-0,684	pprox 0	pprox 0	-115,000	861,118	-1293,918	pprox 0
6	-0,380	-1,050	-0,587	pprox 0	pprox 0	-115,000	876,454	61,596	-950,153
7	0,184	-1,062	-0,585	pprox 0	pprox 0	-115,000	754,426	126,606	950,729

Tabela 3.8. – Valores dos deslocamentos e reacções quando efectuada uma análise não-linear.

3.2.3. Análise comparativa

Nesta secção foram apresentados os resultados de uma análise feita com dois tipos de ligamentos, o *Link8* (elemento treliça), que resultou numa análise linear, que apesar de pouco realista, exigiu um custo computacional aceitável, e o *Link10* (elemento cabo), o qual tornou o modelo mais próxima do biológico, mas com a desvantagem de um custo computacional acrescido.

Nas tabelas 3.9. a 3.11. encontram-se expostos os resultados obtidos com o cálculo do desvio relativamente aos deslocamentos e reacções nos 3 eixos do referencial. Esse desvio relativo é calculado em percentagem a partir da equação (1).

$$DR_{ii} = \frac{X_i^{\text{ANL}} - X_i^{\text{AL}}}{X_i^{\text{AL}}} \times 100 \quad (\%)$$
(1)

Em que, X é o parâmetro para o qual o desvio está a ser calculado (deslocamento, força ou momento de reacção) e *i* é o eixo para o qual esse parâmetro está a ser calculado.

Tabela 3.9. – Comparação entre os valores de forças de reacção de uma análise linear e uma nãolinear.

	Aı	nálise linea	r	Aná	álise não-lir	near	DD	DD	
Caso de carga	$R_x[N]$	$R_{y}[N]$	$R_{z}[N]$	$R_x[N]$	$R_{y}[N]$	$R_{z}[N]$	DR_{xx} (%)	DR_{yy} (%)	$\frac{DR_{zz}}{(\%)}$
1 - 7	0,00	0,00	-115,00	0,00	0,00	-115,00	0,00	0,00	0,00

Tabela 3.10. - Comparação entre os valores de deslocamentos de uma análise linear e uma não-linear.

	А	nálise linea	ar	Aná	álise não-lir	near			
Caso de carga	U_x [mm]	<i>U</i> _y [mm]	U_{z} [mm]	U_x [mm]	U_y [mm]	U_z [mm]	$\frac{DR_{xx}}{(\%)}$	DR _{yy} (%)	DR _{zz} (%)
1	-0,01	-0,60	-0,49	-0,01	-1,07	-0,59	0,00	78,33	20,41
2	-0,34	-2,93	-0,55	-0,72	-4,34	-0,79	111,76	48,12	43,64
3	2,31	-0,32	-0,49	3,89	0,10	-0,64	68,40	-131,25	30,61
4	0,33	1,73	-0,43	1,58	6,88	-0,63	378,79	297,69	46,51
5	-2,33	-0,88	-0,50	-3,94	-1,48	-0,68	69,10	68,18	36,00
6	-0,22	-0,60	-0,49	-0,38	-1,05	-0,59	72,73	75,00	20,41
7	0,20	-0,60	-0,49	0,18	-1,06	-0,59	-10,00	76,67	20,41

Tabela 3.11. – Comparação entre os valores de momentos de reacção de uma análise linear e uma nãolinear.

a 1	Ar	nálise linea	r	Aná	álise não-lir	קת	DD		
Caso de carga	M_x [N.mm]	M_{γ} [N.mm]	<i>M_z</i> [N.mm]	M_x [N.mm]	<i>M</i> _y [N.mm]	<i>M_z</i> [N.mm]	DR_{xx} (%)	(%)	(%)
1	692,71	105,35	0,00	815,57	94,24	0,00	17,74	-10,55	0,00
2	1861,63	105,35	0,00	2343,20	28,31	0,00	25,87	-73,13	0,00
3	692,71	1055,98	0,00	680,29	1504,70	0,00	-1,79	42,49	0,00
4	-476,21	105,35	0,00	-1286,08	295,92	0,00	170,07	180,89	0,00
5	692,71	-845,27	0,00	861,12	-1293,92	0,00	24,31	53,08	0,00
6	752,81	105,35	-950,63	876,45	61,60	-950,15	16,42	-41,53	-0,05
7	632,61	105,35	950,63	754,43	126,61	950,73	19,26	20,18	0,01

Para a maioria dos casos, nota-se uma diferença nos valores dos deslocamentos na análise não-linear, relativamente à linear, isto porque agora quando sujeitos à compressão, os ligamentos não mostram qualquer resistência à força, e portanto o modelo encontra-se menos rígido. As reacções como seriam de esperar, permaneceram constantes, pois as forças aplicadas nos 7 casos de carga foram as mesmas de uma análise para outra. Por outro lado, em relação aos valores de cada momento, em geral, estes são maiores para uma análise não-linear. Contudo, uma observação pode ser destacada em relação aos casos 6 e 7, onde ocorre torção. Nestes notase que os valores dos momentos em torno do eixo z praticamente não se alteram, pois neste caso, todos os ligamentos se encontram à tracção, o que faz com que o efeito do elemento dos ligamentos, seja de cabo ou de treliça, não surta qualquer efeito.

Um factor a ter em conta nestes dois tipos de análise, é o tempo de processamento que demora cada uma delas a fazer. Deste modo, é possível concluir se é realmente vantajoso ter um modelo mais realista, quando este também é computacionalmente mais pesado. Enquanto o tempo de uma análise linear é de aproximadamente 10 minutos, o de uma não-linear, ultrapassa as 4 horas. Com um acréscimo de poder computacional no futuro, esta análise não-linear poderá ganhar um maior interesse neste modelo de elementos finitos.

3.3. Optimização topológica a uma escala

O modelo da coluna vertebral suína possui um componente chamado dispositivo de fusão intervertebral. Este foi optimizado, com o objectivo de maximizar a sua rigidez (ou reduzir a flexibilidade), sujeita a um constrangimento de volume.

O disco artificial, inicialmente uma estrutura com uma distribuição de material uniforme, após a optimização, ficou com uma nova distribuição de material, ou seja, retirando-o de onde a sua presença não é essencial, e colocando-o onde este é mais necessário.

É de notar que os resultados da optimização do dispositivo exibidos em 3.3.2. foram efectuados recorrendo unicamente à análise linear. Pois, devido à complexidade do problema, e aos erros resultantes da mesma durante a geração da solução, uma optimização do dispositivo recorrendo a uma não-linear não foi possível.

3.3.1. O software ANSYS e o compilador FORTRAN

A optimização foi conseguida utilizando dois *softwares* distintos, *ANSYS* e *Microsoft Visual Studio* (com um compilador *FORTRAN*).

O *software ANSYS* é um programa comercial de elementos finitos. Nesta dissertação foi considerada uma coluna vertebral lombar de um suíno de *Yucatan*, anteriormente modelada e optimizada em Coelho *et al.* 2011.

Um programa que utiliza linguagem de programação *FORTRAN*, o qual foi anteriormente programado é aplicado para optimização topológica do dispositivo artificial intervertebral.

Na figura 3.7., observa-se um fluxograma que explica uma iteração do processo de optimização do dispositivo.

Figura 3.7. – Fluxograma explicativo do processo de optimização que ocorre com o *software ANSYS* e o compilador *FORTRAN*.

O *software ANSYS* calcula os módulos de elasticidade de cada um dos elementos que constituem o dispositivo com base na matriz de distribuição de densidades. Uma nova solução é gerada pelo programa, tendo em conta as condições fronteiras impostas ao modelo. Após a solução gerada, vários parâmetros (extensões, volume, função objectivo) necessários para calcular a nova matriz de distribuição de densidades são calculados (ver figura 3.7.). Estes são enviados para o compilador *FORTRAN*, onde o optimizador *MMA* (*Method of Moving Asymptotes*) faz a actualização da distribuição de densidades. O compilador envia para uma janela de saída, o número da iteração em causa, o valor da função objectivo, e a percentagem de satisfação do constrangimento de volume. Este processo equivale a uma iteração e é repetido até ser atingido um número máximo de iterações (suficiente para a convergência).

3.3.2. Optimização do dispositivo de fusão intervertebral – Resultados

Relativamente à optimização do dispositivo, como anteriormente mencionado, este foi obtido com 35 iterações. Nos gráficos da figura 3.8. e 3.9., tem-se o valor da função objectivo (flexibilidade) e da percentagem de violação do constrangimento em função dessas iterações. Os valores utilizados para construir os respectivos gráficos, encontram-se em ANEXOS A (ver tabela A19). Relembrar que o objectivo desta optimização é conseguir um dispositivo que oferece a maior rigidez possível à coluna vertebral suína estando este sujeito a um constrangimento de volume de 50%.

Figura 3.8. - Gráfico da percentagem de constrangimento violada ao longo do número de iterações.

Figura 3.9. - Gráfico do valor da função objectivo (flexibilidade) ao longo do número de iterações.

Pelo gráfico da figura 3.8., várias observações podem saltar à vista. O constrangimento de volume nunca é violado. Este, como é pretendido, termina com a violação de constrangimento a 0%, ou seja, com a fracção de volume do dispositivo a 50%. Pelo gráfico da figura 3.9. vê-se uma diminuição da flexibilidade (aumento da rigidez) até convergir para cerca de 290 J. Na figura 3.10. encontra-se o resultado obtido com uma fracção volúmica de 50% relativamente ao volume do dispositivo inicial.

Figura 3.10. – Imagem da malha de *E.F.* lado esquerdo. Imagem do dispositivo optimizado (volume a 50%) do lado direito, onde a branco se tem a zona sem material (densidade= 0), e a preto, a zona com material (densidade= 1).

O dispositivo final como era esperado, retirou o material do centro, onde este se encontra sujeito a menos tensões, mantendo portanto o material nas extremidades, onde os valores das mesmas são superiores.

O aspecto deste novo dispositivo pode ser facilmente comparado ao de um disco intervertebral biológico. O anel fibroso seria a zona a preto, pois é este o responsável pela maior resistência aos vários esforços a que a coluna é sujeita. E o núcleo pulposo, o qual apareceria aqui como sendo a zona sem material ou branca, pois este funciona como um tecido mole. Relativamente ao dispositivo optimizado, é de notar que o modelo de elementos finitos da coluna vertebral suína não é simétrica, logo a distribuição de material também não o é.

3.4. Optimização topológica a duas escalas

A optimização anteriormente efectuada, foi obtida resolvendo um problema de distribuição de material apenas a uma escala (macroescala). Contudo, o método de optimização topológica pode ser aplicado a duas escalas (micro e macroescala), ou seja, obtendo-se não só a estrutura do dispositivo, mas ao mesmo tempo, o projecto do material de que este é feito (figura 3.11.).

Obtiveram-se em Coelho *et al.* 2011, 3 tipos de células unitárias representativas de um material celular de microestrutura periódica. As mesmas irão ser designadas por células unitárias ou casos 11, 20 e 30. Os casos 11 e 30 foram obtidos numa malha regular 30x30x30, enquanto o caso 20 foi numa malha 20x20x20.

Foi aplicada a teoria da homogeneização, retirando-se daí um valor de módulo de elasticidade equivalente do material da estrutura, o qual será designado por E^{H} .

Figura 3.11. – Os 3 modelos de *scaffolds* obtidos a partir do método de homogeneização inversa aplicada ao dispositivo de fusão intervertebral. A dimensão de aresta *d* é de 0.004 m. Três células unitárias foram obtidas com três diferentes constrangimentos: a) Caso 11; b) Caso 20; c) caso 30. *E*_{PCL} e *v* são o módulo de elasticidade e coeficiente de *Poisson* do material base, respectivamente.

3.4.1. Teoria da Homogeneização

Procede-se aqui a uma breve descrição sobre a teoria da homogeneização. Para uma melhor compreensão dos resultados, ver Coelho 2009.

Considere-se o exemplo da figura 3.12.a), onde se observa um dado volume de material Ω^{e} com uma elevada heterogeneidade (por exemplo, um material poroso como osso, figura 3.13.) sujeito a vários tipos de solicitações e onde se pretende efectuar uma análise do comportamento mecânico. A primeira ideia que poderia surgir para se proceder à análise do mesmo seria utilizar um método analítico ou numérico para resolver o problema com a modelação do detalhe geométrico das heterogeneidades. Contudo, neste caso o custo seria extremamente elevado ou mesmo proibitivo em termos computacionais. Devido à complexidade de um material compósito (elevado número de poros), utilizar um modelo de elementos finitos com tal modelação de detalhe de heterogeneidade geraria um modelo extremamente complicado com um número de graus de liberdade intratável. Isto limitaria bastante a sua resolução devido à velocidade de processamento imposta pelo *CPU*, que demoraria um espaço de tempo longo para se proceder a essa análise. Uma solução possível para o contorno deste problema será transformar o meio heterogéneo de elevada porosidade com domínio Ω^{e} num meio homogéneo equivalente (processo de homogeneização) com domínio Ω^{H} mantendo os mesmos efeitos de microescala e estando sujeito às mesmas condições de fronteira (figura 3.12.).

Figura 3.12. – a) Domínio heterogéneo (material poroso). b) Domínio homogéneo equivalente com propriedades elásticas homogeneizadas. Onde, Ω^{ε} : domínio macroscópico; Ω^{H} : domínio homogeneizado; *F*: força concentrada; f_{v} : força volúmica; *t*: Carregamento exterior na fronteira; Γ_{t} : fronteira da tensão *t* imposta; Γ_{u} : fronteira do deslocamento imposto.

Figura 3.13. – Imagem ampliada de osso trabecular (*cancellous bone*) e osso compacto (*compact bone*). Imagem extraída de Cowin *et al.* 2001.

Resumindo, este método permite a substituição de uma microescala em favor da macro, mas à custa de se tolerar uma perda de precisão de resultados comparada com a precisão do modelo detalhado de toda a microestrutura (Coelho 2009). A aplicação da teoria de homogeneização, apesar da sua prática utilização, obriga a que o problema real se aproxime da satisfação de três hipóteses indicadas de seguida (Coelho 2009).

Primeiramente, assume periodicidade na distribuição da heterogeneidade no domínio macroscópico, não obrigando contudo a que a microestrutura seja sempre a mesma em todo este domínio. Apenas é exigido que se mantenha uma periodicidade local, numa pequena vizinhança de cada ponto. Ou seja, a teoria aplica-se a materiais periódicos ou quase periódicos.

Outra hipótese assumida é a uniformidade de campos macroscópicos como o campo de tensão ou deformação, ou seja, regiões com grande concentração de tensão (gradientes elevadas), não são apropriadas para aplicar a teoria de homogeneização.

Por último, um meio heterogéneo constituído por várias células unitárias de dimensão d, inseridas num domínio macroscópico de dimensão D, a hipótese da teoria é:

$$\frac{d}{D} \ll 1 \tag{2}$$

Portanto, as propriedades elásticas calculadas pela teoria de homogeneização não dependem das dimensões quer da célula unitária quer do domínio macroscópico. Assume-se que $d/D \rightarrow 0$, ou seja, no limite tem-se um domínio macroscópico finito e célula unitária infinitesimal (0/const) ou uma célula unitária de tamanho finito mas num domínio macroscópico infinito (const/ ∞).

A teoria de homogeneização consiste em transformar um meio heterogéneo num meio homogéneo com propriedades elásticas macroscópicas equivalentes.

A equação fundamental, conhecida como lei de Hooke, que relaciona as componentes do tensor das tensões e as componentes do tensor das deformações aplicada ao dispositivo de fusão intervertebral é dada pela equação (3), onde se calcula o tensor de elasticidade homogeneizado $E^{\rm H}$.

$$\sigma_{ij} = E^{\rm H}_{ijkl} \varepsilon_{kl} \tag{3}$$

Em que σ_{ij} é o tensor das tensões e ε_{kl} é o tensor das deformações e E_{ijkl}^{H} representa o tensor de elasticidade homogeneizado (81 coeficientes elásticos).

Outra apresentação possível para a lei de Hooke é dada pela equação (4).

$$\varepsilon_{ij} = C_{ijkl}^{\rm H} \sigma_{kl} \tag{4}$$

Em que,

$$C_{ijkl}^{\rm H} = \left(E_{ijkl}^{\rm H}\right)^{-1} \tag{5}$$

Onde C^{H}_{ijkl} representa o tensor de flexibilidade ou *compliance* homogeneizado.

Através do método de homogeneização, foi possível calcular os coeficientes elásticos homogeneizados para as 3 células unitárias da figura 3.11. Devido às simetrias do tensor E^{H}_{ijkl} , este tem apenas 21 constantes elásticas, logo a equação (3) pode ser simplificada e escrita na forma matricial (6) (ver Zohdi *et al.* 2004).

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{13} \end{pmatrix} = \begin{bmatrix} E_{1111}^{H} & E_{1122}^{H} & E_{1133}^{H} & E_{1112}^{H} & E_{1123}^{H} & E_{1113}^{H} \\ \dots \dots & E_{2222}^{H} & E_{2233}^{H} & E_{2212}^{H} & E_{2223}^{H} & E_{2213}^{H} \\ \dots \dots & E_{3333}^{H} & E_{3312}^{H} & E_{3323}^{H} & E_{3313}^{H} \\ \dots \dots & \dots \dots & E_{13212}^{H} & E_{1223}^{H} & E_{1213}^{H} \\ \dots \dots & \dots \dots & \dots \dots & E_{2323}^{H} & E_{2313}^{H} \\ \dots \dots & \dots \dots & \dots \dots & \dots & E_{1313}^{H} \end{bmatrix} \cdot \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{33} \\ 2\varepsilon_{12} \\ 2\varepsilon_{23} \\ 2\varepsilon_{13} \end{pmatrix}$$
(6)

As matrizes que representam o E_{ijkl}^{H} para os casos 11, 20 e 30 respectivamente, encontram-se abaixo representadas.

Caso 11:

$$E_{ijkl}^{\rm H} = \begin{bmatrix} 55,8444 & 6,7504 & 17,5946 & 0,2607 & 1,4648 & -1,4071 \\ 6,7504 & 59,9713 & 24,7930 & 0,5287 & 2,3819 & -0,0968 \\ 17,5946 & 24,7930 & 125,1543 & 0,2117 & 3,7805 & -1,2348 \\ 0,2607 & 0,5287 & 0,2117 & 7,8032 & -0,0038 & 0,6792 \\ 1,4648 & 2,3819 & 3,7805 & -0,0038 & 28,7516 & 0,1149 \\ -1,4071 & -0,0968 & -1,2348 & 0,6792 & 0,1149 & 18,5278 \end{bmatrix}$$
[MPa]

Caso 20:

$$E_{ijkl}^{\rm H} = \begin{bmatrix} 50,3596 & 1,3301 & 16,1932 & 0,3907 & -0,2370 & -17,8793 \\ 1,3301 & 14,7345 & 7,9320 & 0,4700 & -10,4008 & -0,2777 \\ 16,1932 & 7,9320 & 96,6423 & 0,5130 & -11,1669 & -16,0732 \\ 0,3907 & 0,4700 & 0,5130 & 3,7597 & 0,0351 & 0,2232 \\ -0,2370 & -10,4008 & -11,1669 & 0,0351 & 16,7188 & 0,6669 \\ -17,8793 & -0,2777 & -16,0732 & 0,2232 & 0,6669 & 24,1615 \end{bmatrix}$$
[MPa]

Caso 30:

$$E_{ijkl}^{\rm H} = \begin{bmatrix} 38,3426 & 1,9372 & 24,9939 & 0,6012 & 0,3195 & -1,6310 \\ 1,9372 & 26,1918 & 15,7193 & 0,7550 & 1,4971 & 0,0032 \\ 24,9939 & 15,7193 & 89,9627 & 0,8988 & 2,2791 & -1,2374 \\ 0,6012 & 0,7550 & 0,8988 & 2,8649 & -0,0307 & 0,2572 \\ 0,3195 & 1,4971 & 2,2791 & -0,0307 & 18,4853 & 0,7466 \\ -1,6310 & 0,0032 & -1,2374 & 0,2572 & 0,7466 & 25,1351 \end{bmatrix}$$
 [MPa]

Olhando para as matrizes acima mencionadas, pode-se obter a tabela com os módulos de elasticidade longitudinais E_{1111}^{H} , E_{2222}^{H} , E_{3333}^{H} (tabela 3.12.).

Tabela 3.12. – Valores do módulo de elasticidade (E^{H}) pelo método de homogeneização.

	E_{IIII}^{H}	E_{2222}^{H}	E_{3333}^{H}
Caso 11	55,844	59,971	125,154
Caso 20	50,357	14,735	96,642
Caso 30	38,343	26,192	89,963

A forma matricial da equação (4) é dada por (Zohdi et al. 2004):

$$\begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{12} \\ 2\varepsilon_{23} \\ 2\varepsilon_{13} \end{cases} = \begin{bmatrix} C_{1111}^{H} & C_{1122}^{H} & C_{1133}^{H} & C_{112}^{H} & C_{1123}^{H} & C_{1113}^{H} \\ \dots & C_{2222}^{H} & C_{2233}^{H} & C_{2212}^{H} & C_{2223}^{H} & C_{2213}^{H} \\ \dots & C_{2222}^{H} & C_{2233}^{H} & C_{3312}^{H} & C_{3323}^{H} & C_{3313}^{H} \\ \dots & \dots & \dots & C_{3333}^{H} & C_{3312}^{H} & C_{3323}^{H} & C_{3313}^{H} \\ \dots & \dots & \dots & \dots & C_{1212}^{H} & C_{1223}^{H} & C_{1213}^{H} \\ \dots & \dots & \dots & \dots & \dots & C_{2323}^{H} & C_{2313}^{H} \\ \dots & \dots & \dots & \dots & \dots & C_{1313}^{H} \end{bmatrix} \cdot \begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{13} \end{pmatrix}$$
(7)

As matrizes que representam o C_{ijkl}^{H} para os casos 11, 20 e 30 respectivamente, encontram-se abaixo representadas.

Caso 11:

$$C_{ijkl}^{\rm H} = \begin{bmatrix} 0,0188 & -0,0011 & -0,0024 & -0,0003 & -0,0003 & 0,0006\\ -0,0011 & 0,0183 & -0,0034 & -0,0005 & -0,0005 & -0,0001\\ -0,0024 & 0,0034 & 0,0090 & 0,0000 & -0,0004 & 0,0002\\ -0,0003 & -0,0005 & 0,0000 & 0,0322 & 0,0000 & -0,0001\\ -0,0003 & -0,0005 & -0,0004 & 0,0000 & 0,0087 & -0,0001\\ 0,0006 & -0,0001 & 0,0002 & -0,0012 & -0,0001 & 0,0136 \end{bmatrix}$$
[MPa]

Caso 20:

$$C_{ijkl}^{\rm H} = \begin{bmatrix} 0,0273 & -0,0039 & -0,0015 & -0,0016 & -0,0019 & 0,0097 \\ -0,0039 & 0,1227 & -0,0013 & -0,0076 & 0,0378 & -0,0021 \\ -0,0015 & -0,0013 & 0,0128 & -0,0010 & 0,0037 & 0,0036 \\ -0,0016 & -0,0076 & -0,0010 & 0,0672 & -0,0028 & -0,0015 \\ -0,0019 & 0,0378 & 0,0037 & -0,0028 & 0,0279 & 0,0000 \\ 0,0097 & -0,0021 & 0,0036 & -0,0015 & 0,0000 & 0,0151 \end{bmatrix}$$
[MPa]

Caso 30:

$$C_{ijkl}^{\rm H} = \begin{bmatrix} 0,0322 & 0,0034 & -0,0095 & -0,0024 & 0,0001 & 0,0008\\ 0,0034 & 0,0434 & -0,0084 & -0,0048 & -0,0013 & -0,0000\\ -0,0095 & -0,0084 & 0,0153 & -0,0003 & -0,0005 & 0,0001\\ -0,0024 & -0,0048 & -0,0003 & 0,0883 & 0,0004 & -0,0010\\ 0,0001 & -0,0013 & -0,0005 & 0,0004 & 0,0136 & -0,0004\\ 0,0008 & -0,0000 & 0,0001 & -0,0010 & -0,0004 & 0,0100 \end{bmatrix}$$
[MPa]

Na tabela 3.13. encontram-se os valores dos inversos de C^{H}_{1111} , C^{H}_{2222} e C^{H}_{3333} .

	$(C_{1111}^{H})^{-1}$	$(C_{2222}^{H})^{-1}$	$(C_{3333}^{H})^{-1}$
Caso 11	53,062	54,744	110,675
Caso 20	36,635	8,151	78,339
Caso 30	31,017	23,056	65,570

Tabela 3.13. – Valores do módulo de elasticidade $((C^{H})^{-1})$.

3.5. Simulação numérica de ensaios mecânicos

O objectivo desta segunda parte do capítulo é testar a terceira hipótese da teoria de homogeneização (equação (2)). Esta diz que quanto maior for o valor de *D* relativamente a *d* numa estrutura periódica de dimensões finitas, mais próximo o valor do módulo de elasticidade da mesma se encontra do respectivo valor homogeneizado.

Esta hipótese foi testada, recorrendo ao método dos elementos finitos utilizando o *software ANSYS*. A variação do valor do quociente d/D é efectuada fazendo um ensaio de compressão a uma estrutura cuja dimensão varia de acordo com o número de repetição da célula unitária. Deste modo, espera-se que o valor do módulo de elasticidade obtido nesta estrutura se vá aproximando do valor homogeneizado à medida que a dimensão da estrutura ou o número de repetições aumente.

Na secção anterior, foram mostrados os módulos de elasticidade homogeneizados. De modo a possibilitar uma comparação com os mesmos, dois tipos de ensaios de compressão foram realizados, um cuja tensão aplicada era conhecida e constante (para comparar com $(C^{\rm H})^{-1}$) e outro onde o campo de deslocamentos era conhecido e de variação linear (para comparar com $E^{\rm H}$).

Um esquema das várias modelações efectuadas em ANSYS encontra-se na figura 3.14.

Figura 3.14. - Esquema simplificado das simulações numéricas pretendidas.

Na figura 3.14, pode observar-se uma distinção entre cada um dos tipos de células (caso 11, 20 e 30) e respectivos eixos onde aplica a compressão. Os termos *shifted* e não *shifted* referemse, dito de um modo resumido, à porção de célula que está a ser modelada. Olhando para o esquema abaixo (Figura 3.15.), pode perceber-se de imediato a diferença entre um caso e outro.

Figura 3.15. – Esquema simplificado que mostra a distinção entre uma célula *shifted* e não *shifted* retirada do padrão periódico.

Na figura 3.16. encontram-se para os 3 tipos de célula (11, 20 e 30), a forma não *shifted* (anteriormente mostrada na figura 3.11.) e a *shifted*.

Figura 3.16. – Os 3 tipos de células utilizadas mostrando a sua versão *shifted* (lado direito) e não *shifted* (lado esquerdo).

Procederam-se a ensaios de compressão numa célula única até à repetição tridimensional 5x5x5. As geometrias resultantes podem ser observadas nas figuras 3.17. a 3.19. para cada um dos três casos de células unitárias. A impossibilidade de aumentar a quantidade de repetições

para além de 5x5x5 foi encontrada quando se memória do computador disponível se tornou incapaz de suportar um tão elevado número de graus de liberdade.

Figura 3.17. – Imagem de elementos finitos e características da respectiva malha de uma célula unitária do caso 11 e da sua repetição 5x5x5 no espaço tridimensional. Referencial cartesiano é o mesmo da figura 3.16.

Figura 3.18. – Imagem de elementos finitos e características da respectiva malha de uma célula unitária do caso 20 e da sua repetição 5x5x5 no espaço tridimensional. Referencial cartesiano é o mesmo da figura

Figura 3.19. – Imagem de elementos finitos e características da respectiva malha de uma célula unitária do caso 30 e da sua repetição 5x5x5 no espaço tridimensional. Referencial cartesiano é o mesmo da figura 3.16.

O aumento do n.º de repetições torna-se importante quando se pretende estimar o módulo de elasticidade através do modelo elementos finitos e compará-lo com o do método da homogeneização. Quanto maior o número de repetição de células unitárias no modelo de elementos finitos, mais próximo de zero estará o valor do quociente d/D e, em principio, o valor do módulo de elasticidade do respectivo valor homogeneizado.

Para uma estrutura heterogénea perfeitamente constrangida, na ausência de forças fundamentais (como a força da gravidade), duas condições de carga fisicamente importantes satisfazem as condições de Hill Zohdi *et al.* 2004.

a) Deslocamento linear puro – material perfeitamente constrangido.

$$\mathbf{u}|_{\partial\Omega} = \mathbf{E}.\,\mathbf{x} \Rightarrow <\varepsilon >_{\Omega} = \mathbf{E} \tag{8}$$

b) Tracção pura - sem forças fundamentais aplicadas.

$$\mathbf{t}|_{\partial\Omega} = \mathcal{L}.\,\mathbf{n} \Rightarrow <\sigma >_{\Omega} = \mathcal{L} \tag{9}$$

Onde $\mathcal{E} \in \mathcal{L}$ representam tensores das deformações e tensões constantes, respectivamente, **t** e **u** representam uma força de tracção pura e um deslocamento linear impostos no domínio da estrutura Ω , **x** e **n** representam vectores de posição e da normal à fronteira e $\langle \varepsilon \rangle$ e $\langle \sigma \rangle$ representam a média da extensão e tensão, respectivamente, no domínio Ω .

A média da extensão e tensão são calculadas, respectivamente, por:

$$<\varepsilon>_{\Omega}=rac{\int_{\Omega}\varepsilon d\Omega}{|\Omega|}$$
 (10)

$$<\sigma>_{\Omega} = \frac{\int_{\Omega} \sigma d\Omega}{|\Omega|}$$
 (11)

Deste modo, uma estimativa do módulo de elasticidade pode ser calculada pela equação (12) (ver Zohdi *et al.* 2004).

$$E^* = \frac{\langle \sigma \rangle}{\langle \varepsilon \rangle} \tag{12}$$

Em que E^* é o valor estimado do módulo de elasticidade da estrutura.

Em suma, é possível obter estimativas dos coeficientes elásticos de uma estrutura com condições de fronteira de tensão constante aplicada ou deslocamento linear imposto (extensão constante).

3.5.1. Extensão constante

Para a obtenção de um deslocamento linear e uma consequente extensão constante em todo o domínio da estrutura foi necessário impedir a sua expansão lateral (\mathbf{u}_x , $\mathbf{u}_y = 0$ na figura 3.20.) e, além disso, multiplicar a cota vertical y dos nós da fronteira $\partial \Omega$, onde se encontra o deslocamento aplicado, por uma constante β (=0,01) de modo que $\mathbf{u}_y|_{\partial\Omega} = \beta y$. Resumindo, este método de aplicação de condições fronteira consiste na aplicação de um deslocamento em todos os nós da fronteira do domínio Ω que varia linearmente com a cota vertical entre a base de Ω e a face oposta. O tensor das deformações de Cauchy, $\boldsymbol{\varepsilon}$, para cada um dos eixos de compressão *x*, *y* (figura 3.20.) e *z* é então constante e é dado, respectivamente, por:

$$\boldsymbol{\varepsilon} = \begin{bmatrix} \beta & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \beta \end{bmatrix}$$
(13)

Figura 3.20. – Esquema do que foi projectado em elementos finitos para o ensaio de compressão a (extensão constante). No referencial cartesiano, y refere-se ao eixo onde corre a compressão.

Para o cálculo de $\langle \varepsilon \rangle$ em (10), entrou em linha de conta os elementos da fase sólida (ver quadro da figura 3.21.). O material do vazio tem um módulo de elasticidade 10^{12} vezes inferior ao do material sólido. O valor da tensão é zero nos elementos da fase do vazio, ou seja, existir elementos de vazio presentes ou não em Ω , em nada alterara o resultado de $\langle \sigma \rangle$. A tensão média pode ser obtida facilmente no pós-processamento do *ANSYS* através de:

$$<\sigma>=rac{\sum_{i=1}^{n}\sigma_{i}}{n}$$
 (14)

Onde *i* é o número do elemento a que o valor da tensão se refere, *n* é o número total de elementos finitos do provete que discretizam $\Omega e \sigma$ é o valor da tensão no elemento *i* segundo o eixo onde ocorre a compressão. A partir daqui o cálculo do módulo de elasticidade é imediato, sendo obtido pela equação (12).

Na figura 3.21. encontram-se representados, para os 3 eixos de compressão (x, y e z), o aspecto dos três tipos de células quando sujeitas ao meio de compressão com extensão constante.

Figura 3.21. – Imagens dos modelos de elementos finitos sem e com as condições fronteiras aplicadas para o ensaio de extensão constante com uma célula unitária. Legenda: Azul - Material sólido; Roxo – Material do vazio.

Em seguida encontram-se as tabelas enumeradas de 3.14. a 3.18. com a comparação entre os valores homogeneizados e os valores obtidos pelos métodos dos elementos finitos. Essa comparação é feita calculando um desvio relativo através da equação (15).

$$DR = \frac{E_{\text{HOMO}} - E_{\text{ANSYS}}}{E_{\text{ANSYS}}} \times 100 \quad (\%) \tag{15}$$

		Shifted=0		Shifted=1	
1x1x1	E ^H [MPa]	E^* [MPa]	DR (%)	E^* [MPa]	DR (%)
11 <i>x</i>	55,8444	86,3018	54,5398	83,5037	49,5292
11y	59,9713	87,6747	46,1944	88,5761	47,6975
11 <i>z</i>	125,1543	133,8715	6,9652	132,5616	5,9185
20 <i>x</i>	50,3569	84,7538	68,3062	77,7831	54,4636
20y	14,7345	64,4106	337,1414	65,1459	342,1317
20z	96,6423	121,3434	25,5593	114,0951	18,0592
30 <i>x</i>	38,3426	60,5873	58,0156	50,8675	32,6658
30y	26,1918	51,1203	95,1767	45,2764	72,8648
30z	89,9627	102,1553	13,5530	96,0532	6,7700

Tabela 3.14. – Comparação quantitativa entre os valores homogeneizados e os valores estimados E^* para o ensaio de compressão a extensão constante. Repetição de células 1x1x1.

Tabela 3.15. – Comparação quantitativa entre os valores homogeneizados e os valores estimados E^* para o ensaio de compressão a extensão constante. Repetição de células 2x2x2.

		Shifted=0		Shifted=1	
2x2x2	E ^H [MPa]	E^* [MPa]	DR (%)	E [*] [MPa]	DR (%)
11 <i>x</i>	55,8444	70,7900	26,7629	69,5336	24,5131
11y	59,9713	74,1780	23,6892	73,2320	22,1117
11 <i>z</i>	125,1543	129,6148	3,5640	127,7483	2,0726
20 <i>x</i>	50,3569	68,1541	35,3421	62,5544	24,2221
20y	14,7345	41,2413	179,8962	39,0476	165,0080
20z	96,6423	109,0619	12,8511	99,9720	3,4454
30 <i>x</i>	38,3426	50,4204	31,4997	44,6522	16,4558
<u>30y</u>	26,1918	39,9019	52,3450	36,0997	37,8283
30z	89,9627	96,0059	6,7175	92,5585	2,8854

		Shifted=0		Shifted=1	
3x3x3	E ^H [MPa]	E [*] [MPa]	DR (%)	E [*] [MPa]	DR (%)
11 <i>x</i>	55,8444	65,6779	17,6087	64,9268	16,2638
11y	59,9713	69,4277	15,7682	68,5206	14,2557
11z	125,1543	128,0429	2,3080	126,5544	1,1187
20 <i>x</i>	50,3569	61,2958	21,7227	57,3137	13,8150
20y	14,7345	32,3995	119,8887	30,0131	103,6927
20z	96,6423	103,1422	6,7257	95,4097	-1,2754
<u>30x</u>	38,3426	46,4860	21,2385	42,4437	10,6959
30y	26,1918	35,5288	35,6486	32,8050	25,2491
30z	89,9627	93,7820	4,2454	91,4025	1,6004

Tabela 3.16. – Comparação quantitativa entre os valores homogeneizados e os valores estimados E^* para o ensaio de compressão a extensão constante. Repetição de células 3x3x3.

Tabela 3.17. – Comparação quantitativa entre os valores homogeneizados e os valores estimados E^* para o ensaio de compressão a extensão constante. Repetição de células 4x4x4.

		Shifted=0		Shifted=1	
4x4x4	E ^H [MPa]	E [*] [MPa]	DR (%)	E^* [MPa]	DR (%)
11 <i>x</i>	55,8444	63,1326	13,0509	62,6053	12,1067
11y	59,9713	67,0045	11,7276	66,2187	10,4173
11z	125,1543	127,2260	1,6553	126,0195	0,6913
20 <i>x</i>	50,3569	57,5769	14,3377	54,5758	8,3780
20y	14,7345	27,7126	88,0797	25,5645	73,5010
20z	96,6423	99,7592	3,2252	93,3448	-3,4121
<u>30x</u>	38,3426	44,4156	15,8388	41,3134	7,7480
30y	26,1918	33,2241	26,8492	31,1141	18,7933
30z	89,9627	92,6361	2,9717	90,8242	0,9576

		Shifted=0		Shifted=1	
5x5x5	E ^H [MPa]	E [*] [MPa]	DR (%)	E [*] [MPa]	DR (%)
11 <i>x</i>	55,8444	61,6089	10,3224	61,2054	9,5999
11y	59,9713	65,5355	9,2781	64,8547	8,1429
11z	125,1543	126,7254	1,2553	125,7161	0,4489
20 <i>x</i>	50,3569	55,2593	9,7353	52,8839	5,0182
20y	14,7345	24,8156	68,4183	22,9195	55,5499
20z	96,6423	97,5825	0,9729	92,1316	-4,6674
<u>30x</u>	38,3426	43,1408	12,5140	40,6268	5,9573
30y	26,1918	31,8039	21,4269	30,0855	14,8661
30z	89,9627	91,9374	2,1950	90,4762	0,5708

Tabela 3.18. – Comparação quantitativa entre os valores homogeneizados e os valores estimados E^* para o ensaio de compressão a extensão constante. Repetição de células 5x5x5.

Nos gráficos que se seguem (figuras 3.22. e 3.23.) encontram-se os valores estimados E^* em relação ao número de repetições de células no espaço. Cada gráfico contém essa variação tendo em conta a célula unitária *shifted* (*S*=1) e não *shifted* (*S*=0). Uma linha do valor alvo, $E^{\rm H}$, também se encontra representado.

Figura 3.22. – Gráficos comparativos entre o módulo de elasticidade homogeneizado e o da estrutura em função do número de repetições de células para os casos 11 e 20, nos 3 eixos de compressão. Tipo de ensaio – Extensão constante.

Figura 3.23. – Gráficos comparativos entre o módulo de elasticidade homogeneizado e o da estrutura em função do número de repetições de células para o caso 30, nos 3 eixos de compressão. Tipo de ensaio – Extensão constante.

Uma observação evidente que se pode fazer relativamente aos gráficos é uma aproximação do valor de E^* ao E^H à medida que o número de repetições aumenta.

O maior desvio encontrado foi observado para o caso 20, com a compressão segundo o eixo em y. No entanto, identifica-se uma tendência de descida de aproximação ao valor alvo e, portanto, o desvio previsto para um aumento do n.º de repetições será menor. Convém sublinhar que a teoria da homogeneização é baseada em condições de fronteira de periocidade de deslocamento aplicadas à célula unitária, o que não é garantido que seja a situação que se passa quando a célula aqui é repetida um número finito de vezes e sujeita a condições de fronteira utilizadas neste caso. Por este motivo não é surpreendente que os valores estimados, e alvo, ainda que próximos, sejam sempre diferentes.

A diferença de valores entre as células *shifted* e não *shifted* foi próxima, e com o aumento do número de repetição de células, esta diferença teve tendência para diminuir para a maioria dos casos. O resultado da homogeneização não depende da célula unitária *shifted* ou não *shifted*, pois o padrão periódico resultante é o mesmo.

3.5.2. Tensão constante

Neste caso foi inserida uma placa de topo sobre o provete (ver figura 3.24.), com um módulo de elasticidade muito superior ao do material base, com uma ordem de grandeza 1000 vezes superior. Aplicou-se acoplamento entre os nós que constituíam a placa e o provete, fazendo com que estes, após a aplicação de uma pressão uniforme na placa se movimentassem em conjunto (na direcção da compressão). Uma aplicação directa da pressão sobre os elementos da fase de topo do provete não foi possível neste caso devido à rigidez praticamente nula associada ao vazio. Além disso, para evitar movimentos de corpo livre, dois nós, tanto na placa como na base do provete, foram completamente restringidos de movimento.

Figura 3.24. – Esquema do modelo de elementos finitos para o ensaio de compressão a tensão constante. No referencial cartesiano, y refere-se ao eixo onde corre a compressão.

Para este tipo de ensaio a extensão média na estrutura pode ser calculada de forma simplificada a partir da equação (16). Como se trata de uma placa onde a pressão está aplicada, o deslocamento médio desta é calculado com a equação (17).

$$<\varepsilon>=rac{<\delta>}{L}$$
 (16)

$$<\delta>=\frac{\sum_{i=1}^{n_e}\delta_i}{n_e} \tag{17}$$

Em que *L* é o comprimento total do provete (figura 3.24.), $\langle \delta \rangle$ é o deslocamento médio da placa onde é aplicada a pressão, δ_i é o deslocamento em cada elemento da placa e n_e é o número total de elementos na base. A tensão média é igual à pressão aplicada na placa e o módulo de elasticidade é estimado recorrendo novamente à equação (12).

Seguindo a mesma ordem do ensaio a extensão constante, a figura 3.25. mostra o aspecto dos 3 tipos de células quando estas se encontram sujeitas ao constrangimento de tensão constante.

Figura 3.25. – Imagens dos modelos de elementos finitos sem e com as condições fronteiras aplicadas para o ensaio de tensão constante.

Procedendo do mesmo modo que para o caso anterior, as tabelas 3.19. a 3.23. mostram os valores do módulo de elasticidade $E^* e E^H$ bem como o desvio calculado pela equação (15).

		<i>Shifted</i> = 0		Shifted= 1	
1x1x1	$(C^{\mathrm{H}})^{-1}$ [MPa]	E^* [MPa]	DR (%)	E^* [MPa]	DR (%)
11 <i>x</i>	53,0600	44,0729	-16,9376	52,4792	-1,0946
11y	54,7400	43,8070	-19,9726	34,5377	-36,9059
11 <i>z</i>	110,6700	112,2450	1,4231	99,2307	-10,3364
20 <i>x</i>	36,6400	34,8026	-5,0147	51,5012	40,5600
20y	8,1500	7,5122	-7,8258	3,5808	-56,0638
20z	78,3400	94,2374	20,2928	80,9608	3,3454
<u>30x</u>	31,0200	27,8590	-10,1902	22,1038	-28,7434
30y	23,0600	20,6037	-10,6518	16,9828	-26,3539
30z	65,5700	60,2908	-8,0512	62,1698	-5,1856

Tabela 3.19. – Comparação quantitativa entre os valores homogeneizados e os valores estimados E^* para o ensaio a tensão constante. Repetição de células 1x1x1.

Tabela 3.20. – Comparação quantitativa entre os valores homogeneizados e os valores estimados E^* para o ensaio a tensão constante. Repetição de células 2x2x2.

		<i>Shifted</i> = 0		<i>Shifted</i> = 1	
2x2x2	$(C^{\mathrm{H}})^{-1}$ [MPa]	E [*] [MPa]	DR (%)	E^* [MPa]	DR (%)
11x	53,0600	48,2845	-9,0002	52,6967	-0,6847
11y	54,7400	49,4948	-9,5820	49,8070	-9,0117
11z	110,6700	111,1635	0,4459	105,8874	-4,3215
20x	36,6400	35,4835	-3,1564	42,1468	15,0295
20y	8,1500	7,7289	-5,1669	6,2877	-22,8503
20z	78,3400	85,8596	9,5987	79,5492	1,5435
30x	31,0200	29,3314	-5,4436	26,2458	-15,3907
30y	23,0600	21,7986	-5,4701	20,0000	-13,2697
30z	65,5700	62,3904	-4,8492	63,3941	-3,3184
		Shifted= 0		<i>Shifted</i> = 1	
-------------	-------------------------------	----------------------	---------	----------------------	----------
3x3x3	$(C^{\mathrm{H}})^{-1}$ [MPa]	E [*] [MPa]	DR (%)	E [*] [MPa]	DR (%)
11 <i>x</i>	53,0600	49,7758	-6,1896	52,7381	-0,6067
11y	54,7400	51,1121	-6,6275	51,4765	-5,9618
11 <i>z</i>	110,6700	110,9008	0,2085	107,4233	-2,9337
20 <i>x</i>	36,6400	35,6855	-2,6051	39,9546	9,0464
20y	8,1500	7,7928	-4,3828	7,0105	-13,9816
20z	78,3400	83,3254	6,3638	79,0542	0,9117
<u>30x</u>	31,0200	29,7774	-4,0058	27,6670	-10,8092
30y	23,0600	22,1619	-3,8946	20,9437	-9,1774
30z	65,5700	63,1137	-3,7461	63,8015	-2,6971

Tabela 3.21. – Comparação quantitativa entre os valores homogeneizados e os valores estimados E^* para o ensaio a tensão constante. Repetição de células 3x3x3.

Tabela 3.22. – Comparação quantitativa entre os valores homogeneizados e os valores estimados E^* para o ensaio a tensão constante. Repetição de células 4x4x4.

		<i>Shifted</i> = 0		<i>Shifted</i> = 1	
4x4x4	$(C^{\mathrm{H}})^{-1}$ [MPa]	E^* [MPa]	DR (%)	E^* [MPa]	DR (%)
11 <i>x</i>	53,0600	50,5309	-4,7665	52,7610	-0,5635
11y	54,7400	51,9144	-5,1619	52,2533	-4,5427
11z	110,6700	110,7716	0,0918	108,1720	-2,2572
20 <i>x</i>	36,6400	35,7823	-2,3409	38,9016	6,1725
20y	8,1500	7,8236	-4,0049	7,3083	-10,3276
20z	78,3400	81,9918	4,6615	78,7920	0,5770
30 <i>x</i>	31,0200	29,9741	-3,3717	28,3759	-8,5239
<u>30y</u>	23,0600	22,3283	-3,1730	21,4108	-7,1518
30z	65,5700	63,4821	-3,1842	64,0046	-2,3874

		Shifted= 0		Shifted= 1	
5x5x5	$(C^{\mathrm{H}})^{-1}$ [MPa]	E [*] [MPa]	DR (%)	E^* [MPa]	DR (%)
11 <i>x</i>	53,0600	50,9877	-3,9056	52,7758	-0,5356
11y	54,7400	52,3985	-4,2775	52,7055	-3,7167
11 <i>z</i>	110,6700	110,6937	0,0214	108,6177	-1,8544
20 <i>x</i>	36,6400	35,8392	-2,1856	38,2937	4,5134
20y	8,1500	7,8417	-3,7828	7,4583	-8,4871
20z	78,3400	81,1893	3,6371	78,6315	0,3721
30 <i>x</i>	31,0200	30,0841	-3,0171	28,7993	-7,1589
30y	23,0600	22,4233	-2,7611	21,6881	-5,9493
30z	65,5700	63,7052	-2,8440	64,1263	-2,2018

Tabela 3.23. – Comparação quantitativa entre os valores homogeneizados e os valores estimados E^* para o ensaio a tensão constante. Repetição de células 5x5x5.

Gráficos do mesmo tipo dos apresentados na secção 3.5.1., são agora mostrados para os ensaios a tensão constante (figura 3.26. e 3.27.)

Figura 3.26. – Gráficos comparativos entre o módulo de elasticidade homogeneizado e o da estrutura em função do número de repetições de células para os casos 11 e 20, nos 3 eixos de compressão. Tipo de ensaio – Tensão constante.

Figura 3.27. – Gráficos comparativos entre o módulo de elasticidade homogeneizado e o da estrutura em função do número de repetições de células para o caso 30, nos 3 eixos de compressão. Tipo de ensaio – Tensão constante.

O valor do desvio tende a diminuir à medida que o número de repetições de células aumenta.

Todos os resultados tirados na segunda parte deste capítulo permitem concluir que para um padrão 5x5x5, os resultados de E^* estão suficientemente próximos dos valores homogeneizados. Assim, a teoria da homogeneização como meio de calcular as propriedades mecânicas de *scaffolds* de microestrutura periódica revela-se bastante útil e adequada no modelo de optimização topológica, pois na prática, um *scaffold* terá possivelmente um padrão superior a 5x5x5.

Outras análises relativas à segunda parte deste capítulo foram efectuadas ao longo desta dissertação, mas para não tornar este capítulo demasiado extenso e repetitivo, apenas dois tipos de ensaios (com tensão uniforme e com extensão uniforme) foram aqui aplicados, bem como apenas dois parâmetros (*shifted* e não *shifted*). Outro constrangimento testado foi o de uma aplicação de deslocamento directamente num dos lados do provete, mas os resultados, são semelhantes aos da pressão uniforme numa placa.

Capítulo 4

Identificação experimental e numérica das propriedades mecânicas dos suportes biomiméticos

Este capítulo é constituído por duas partes. Na primeira, podem observar-se os métodos de fabrico utilizados na construção de provetes com características biomiméticas. Esses provetes foram fabricados e em seguida ensaiados à compressão. Na segunda parte, os valores do módulo de elasticidade e curvas de tensão-extensão experimentais foram comparados aos resultados dos respectivos provetes modelados em elementos finitos.

São vários os métodos que existem para fabricação de *scaffolds* ou suportes biomiméticos, esses podem incluir filtração de partículas, método da separação de camadas e ainda utilização de gás para a fabricação dos mesmos. Contudo, devido á sua elevada porosidade e fina camada de material entre os poros, estes provetes tornam-se incapazes de suportar os esforços mecânicos a que se encontram submetidos quando inseridos no corpo humano em zonas de

carga. Além disso, nestes métodos de fabricação, os poros encontram-se desorganizados, e portanto não é possível controlar as suas interconectividades ou localizações (Saito *et al.* 2010).

Um método que contorna estes problemas é o da fabricação sólida livre (*solid freeform fabrication* ou *SFF*) ou prototipagem rápida (*RP*). Estereolitografia (*SLA*), sinterização selectiva por laser (*SLS*), modelação por depósitos fundidos (*FDM*) e impressão *3D* são alguns dos exemplos que utilizam o método *SFF*. Estas técnicas de fabricação permitem um controlo da geometria a fabricar e da sua repetibilidade bem melhor do que as técnicas mencionadas anteriormente. Contudo, as *SFF* estão condicionadas a um número reduzido de materiais, devido ao facto da limitação na temperatura ou métodos de ligação química (Saito *et al.* 2010).

Para contornar estes problemas, é possível utilizar a fabricação livre sólida indirecta. Esta é uma técnica única e versátil que usa modelação inversa para produzir *scaffolds*. Nesta técnica os moldes inversos com o formato dos *scaffolds* são fabricados em máquinas *RP*, utilizando *SLA* ou impressão *3D*. Estes moldes são em seguida enchidos com solução polimérica. Esta técnica permite a utilização de uma maior variedade de materiais como polímeros biodegradáveis sintéticos. Para mais informação sobre este assunto, ver Saito *et al.* 2010.

Os provetes experimentalmente testados e utilizados no decorrer deste capítulo foram produzidos utilizando *SFF* com uma máquina de prototipagem rápida de sinterização selectiva por laser (*SLS*).

4.1. Fabrico de scaffolds

A produção de um provete passa por duas fases: projecto e produção. O projecto pode ser conseguido através de vários métodos, entre os quais se destacam (Saito *et al.* 2010): *Computer-aided design (CAD)*, tomografia computacional (*CT*), elementos finitos (*E.F.*) e projecto baseado em imagem (*IDB*).

No artigo Saito *et al.* 2010 foi utilizada *IDB* seguida de *SFF* indirecta utilizando como material *PLGA* (*lactide-co-glycolide acid*). Na figura 4.1., extraída deste mesmo artigo, encontram-se as fases de processo pelo qual passou este *scaffold*.

Figura 4.1. – Processos da fabricação do *scaffold*. a) *Scaffold* poroso projectado utilizando técnicas de *IDB* e em seguida convertido para ficheiro de formato *STL*. b) Um molde termoplástico foi fabricado utilizando uma máquina *RP*. c) Um molde de hidroxiapatite secundária foi fundido dentro do molde termoplástico seguido de um processo de sinterização e aquecimento. d) O *Scaffold* poroso de *PLGA* foi fundido dentro do molde secundário, o qual foi removido por um ácido *RDO*. Imagem extraída de Saito *et al.* 2010.

Como anteriormente referido, o método utilizado na produção dos provetes testados neste capítulo foram fabricados através da sinterização selectiva por laser selectivo. Estes foram fabricados com material *PCL (polycaprolactone)*. Estes materiais foram escolhidos pelas seguintes razões: são materiais bioabsorvíveis e biocompatíveis; foram aprovados para uso clínico pela *FDA* e são adequados para utilizar no processo de *SLS*.

SLS é uma técnica de fabricação cujo objectivo é construir camada por camada, utilizando pós, calor radiante e um laser controlado por computador. Em termos práticos existem vários parâmetros a ter em conta quando se procede a este tipo de fabricação. Os mesmos encontramse descritos na tabela 4.1 (Partee *et al.* 2005).

Tabela 4.1. – Parâmetros	s SLS e a su	a descrição	(Partee et al.	2005).
--------------------------	--------------	-------------	----------------	--------

Parâmetro	Descrição
Potência de laser	Potência de laser.
Velocidade de scan	Velocidade do feixo de laser utilizado no scan.
Espaçamento do Scan	Distância paralela entre dois scans laser
Temperatura de base	Temperatura do material durante o scan de laser.
Intervalo entre camada	Tempo de exposição ao calor de uma camada antes de uma nova.

O projecto destes provetes foi efectuado utilizando *software* de *CAD*, o qual resultou em ficheiros de formato *STL* (*Standard Tessellation Language*) posteriormente utilizados na prototipagem rápida, ver figura 4.2. Nesta figura também se mostram as células unitárias em formato *STL* (parte central) e os respectivos modelos de *E.F.* (parte inferior). O projecto destes provetes foi efectuado na *University of Michigan*.

Figura 4.2. – Imagens dos 3 *scaffolds* e das células unitárias que os constituem. Em que a) Caso 11, b) Caso 20 e c) Caso 30. Imagens fornecidas pela *University of Michigan*.

Na figura 4.3. observam-se as três dimensões de provetes (4x4x8) fabricados em *University of Michigan*, com 2, 3 e 4 mm de dimensão de aresta da célula unitária.

Figura 4.3. – As três dimensões de provetes (células de base com 2,3 e 4 mm de aresta). No caso desta imagem, trata-se do caso 20. Imagem fornecidas pela *University of Michigan*.

Após a fabricação destes *scaffolds*, os mesmos foram submetidos a ensaios de compressão com o objectivo de tirar curvas de tensão/extensão e o respectivo módulo de elasticidade (figura 4.4.).

Figura 4.4. – Exemplo de um ensaio de compressão feito a um provete de *PCL* (*polycaprolactone*). Ensaios efectuados na *University of Michigan*.

4.2. Identificação experimental

4.2.1. Scaffolds

Além dos ensaios de compressão aplicados aos provetes (6 provetes por cada *design*, dimensão e direcção), estimou-se o valor do módulo de elasticidade. Relatam-se os valores dos 21 casos da tabela 4.2. Graficamente, podem encontrar-se estes valores (médias) com o respectivo desvio padrão na figura 4.5. a 4.7. Os valores tabelados encontram-se em ANEXOS A (ver tabela A20). Estes gráficos e valores foram fornecidos pela *University of Michigan*.

Tabela 4.2. – Módulos de elasticidade experimentais (média) dos vários provetes testados. Valores fornecidos pela *University of Michigan*.

E _{EXP.} (MPa)	2 mm	3 mm	4 mm	
		17,682	33,738	34,485
Caso 11	у	22,203	30,396	34,438
	z	52,027	70,169	73,201
	x		3,091	4,821
Caso 20	у		30,158	29,103
	z		47,965	52,645
Caso 30	x		9,629	15,462
	у		6,419	14,437
	z		16,744	24,825

Figura 4.5. – Valores do módulo de elasticidade experimental com o desvio padrão obtido para o caso 11. Valores dos desvios padrões fornecidos pela *University of Michigan*.

Figura 4.6. – Valores do módulo de elasticidade experimental com o desvio padrão obtido para o caso 20. Valores dos desvios padrões fornecidos pela *University of Michigan*.

Figura 4.7. – Valores do módulo de elasticidade experimental com o desvio padrão obtido para o caso 30. Valores dos desvios padrões fornecidos pela *University of Michigan*.

Uma observação relativa aos valores obtidos na tabela 4.2. pode ser feita. Para o mesmo *design* e direcção, o valor do módulo de elasticidade não devia depender da escala. Isto acontece devido ao facto que durante a fabricação dos provetes, a integridade estrutural não é conservada quando a dimensão dos mesmos é reduzida, devido a limitações de resolução da máquina.

4.2.2. Provetes sólidos

Ensaios experimentais de compressão a provetes compactos de *PCL* foram efectuados pela *University of Michigan*, deles obtiveram-se várias curvas de tensão-extensão. Dessas curvas apenas uma curva foi seleccionada para cada um dos 3 eixos de compressão, tendo como critério de escolha, a curva onde se obteve o maior valor da extensão em função de uma tensão. Em seguida mostram-se as curvas de tensão – extensão nominais, ver figuras 4.8. a 4.10. As curvas de todos os ensaios podem ser vistas em "Gráficos das curvas de tensão-extensão dos materiais" em ANEXOS A.

Figura 4.8. – Gráfico da curva de tensão extensão nominal (E_x = 295.52 +/- 4.41 [MPa]). Gráfico fornecido pela *University of Michigan*.

Figura 4.9. – Gráfico da curva de tensão – extensão nominal (E_y = 292.74 +/- 9.91 [MPa]). Gráfico fornecido pela *University of Michigan*.

Figura 4.10. – Gráfico da curva de tensão – extensão nominal (E_z = 311.74 +/- 1.24 [MPA]). Gráfico fornecido pela *University of Michigan*.

Como se pode observar pelos gráficos das figuras 4.8. a 4.10., o material *PCL* possui um comportamento não linear, mesmo assim pode-se identificar claramente um troço linear para baixos valores da extensão. Além disso, observa-se que este material possui um comportamento de material ortotrópico, ou seja, os módulos de elasticidade diferem nas três direcções cartesianas ($E_{x=}$ 295.52 +/- 4.41, $E_{y}=$ 292.74 +/- 9.91, $E_{z}=$ 311.74 +/- 1.24), embora dois deles sejam muito parecidos, o que leva a assumir também um comportamento transversalmente isotrópico.

Outros valores experimentais foram retirados durante os testes a estes provetes e podem ser consultados em ANEXOS A (ver tabela A21).

4.3. Simulação dos ensaios mecânicos em elementos finitos

Neste ponto proceder-se-á ao estudo e análise dos provetes anteriormente referidos, mas agora os mesmos ficheiros *STL* convertidos em modelos de elementos finitos utilizando o *Solid92* (figura 4.11.).

Figura 4.11. – Elemento tetraedro de 10 nós com 3 graus de liberdade (translação em x, $y \in z$). Informações extraídas do *software ANSYS*.

Os modelos de provetes feitos em elementos finitos incluem todos os modelos testados experimentalmente, à excepção de 4 provetes: o caso 11 com compressão em x para as dimensões de 2 e 3 mm, o caso 20 com compressão em z para 2 mm e o caso 30 com compressão em x para células de 4mm. Estes modelos foram fornecidos pela *University of Michigan*, contudo uma melhoria da malha foi efectuada no decorrer da dissertação.

Apresenta-se a imagem da figura 4.12. para um dos 18 provetes, o caso 11 com células de 4 mm e compressão em y. Imagens dos restantes provetes, para a mesma dimensão e direcção, encontram-se apresentados em ANEXOS A (ver "Apresentação dos provetes para o caso 20 e 30").

Figura 4.12. – Apresentação do provete do caso 11, para uma célula de 4mm com compressão em *y*. Perspectiva oblíqua, alçados e vista de topo. Modelos fornecidos pela *University of Michigan*.

Nas tabelas 4.3. a 4.5. encontram-se alguns parâmetros obtidos no decorrer desta análise de elementos finitos, valores estes que se tornaram úteis não só como meio de comparação com os valores experimentais, mas também como meio de calcular os módulos de elasticidade dos provetes.

Célula 2 mm		Valores obtidos pelo MEF				
		Área (mm ²)	C. Total (mm)	Fracção volúmica (%)		
	x					
Caso 11	у	71,982	17,023	40,656		
	z	71,939	17,009	40,658		
	x					
Caso 20	у					
	z					
Caso 30	x					
	у					
	z					

Tabela 4.3. – Parâmetros dados pelo ANSYS utilizando o MEF, para o provete de célula 2 mm.

Tabela 4.4. – Parâmetros dados pelo ANSYS utilizando o MEF, para o provete de célula 3 mm.

Célula 3 mm		Valores obtidos pelo MEF				
		Área (mm ²)	C. Total (mm)	Fracção volúmica (%)		
	x					
Caso 11	у	161,765	25,529	40,814		
	z	161,311	25,509	40,855		
	x	162,491	25,509	37,444		
Caso 20	у	162,279	25,483	37,690		
	z	161,436	25,515	37,932		
Caso 30	x	161,764	25,511	32,552		
	у	161,792	25,521	32,603		
	z	161,601	25,520	32,887		

Tabela 4.5. – Parâmetros dados pelo ANSYS utilizando o MEF, para o provete de célula 4 mm.

Célula 4 mm		Valores obtidos pelo MEF				
		Área (mm ²)	C. Total (mm)	Fracção volúmica (%)		
	x	286,904	34,019	40,691		
Caso 11	у	287,309	34,029	40,902		
	z	286,796	34,016	40,885		
	x	288,490	34,015	37,542		
Caso 20	у	288,349	33,967	37,752		
	z	287,240	34,017	37,934		
Caso 30	x	287,253	34,010	32,646		
	у	287,006	34,023	32,722		
	z	287,530	34,019	32,871		

Foram efectuados dois tipos de análises, uma linear (4.2.1.) e outra não linear (4.2.2.). Na primeira, utilizou-se um módulo de elasticidade constante ($E_{ANSYS} = 290$ MPa). Na análise não linear utilizaram-se as curvas de tensão-extensão experimentais das figuras 4.8. a 4.10. Em ambos os casos, calculou-se o módulo de elasticidade, os quais foram comparados com os valores experimentais.

4.3.1. Análise linear

Conforme referido, foi primeiramente simulado um ensaio de compressão linear nos provetes utilizando o elemento *Solid92*. Estes ensaios foram simulados utilizando como módulo de elasticidade e coeficiente de *Poisson*, $E_{ANSYS} = 290$ MPa e v=0.3, respectivamente. Além disso, devido à irregularidade do provete, tornou-se mais prático a aplicação de um deslocamento na parte inferior do provete, ao invés de uma pressão (figura 4.13.).

Figura 4.13. – Esquema de um ensaio de compressão feito num provete, em que y é o eixo onde ocorre a compressão.

Note-se que o deslocamento imposto no provete foi efectuado na parte inferior do mesmo. Isto para que o valor do mesmo fosse positivo, tendo a mesma direcção e sentido que o eixo y.

A deformada originada pela compressão provocada por um deslocamento aplicado para o provete da figura 4.12., encontra-se na figura 4.14.

Figura 4.14. – Imagem da deformada do provete 11y4 (caso 11, células de 4 mm com compressão em y) após análise linear.

Vários módulos de elasticidade foram calculados, um para cada um dos 18 modelos de elementos finitos. Para tal a tensão média é calculada pela equação:

$$<\sigma>=\frac{\sum_{i=1}^{n_r}R_i}{AREA}$$
 (18)

Sendo que *AREA* é a área de "envelope" da base do provete normal à aplicação do deslocamento, R_i a força de reacção em cada nó *i* da base e n_r o número de nós ou reacções calculadas na base. Esta força de reacção é dada pelo próprio *ANSYS* após a geração da solução.

A extensão média utilizada é calculada a partir do valor de deslocamento imposto no provete para simular o ensaio de compressão (equação (16)).

Os resultados obtidos dos módulos de elasticidade para esta análise encontram-se na tabela 4.6.

E _{AL} [MPa]		2mm	3mm	4mm
	x			44,286
Caso 11	у	42,397	42,715	41,905
	z	91,772	91,650	90,135
	x		8,985	8,337
Caso 20	у		34,029	29,212
	z		61,141	57,784
	x		19,138	
Caso 30	у		25,465	24,018
	z		50,600	50,273

Tabela 4.6. – Módulos de elasticidade dos provetes resultantes de uma análise linear (AL).

4.3.2. Análise não-linear

Este tipo de análise não utilizou um valor específico do módulo de elasticidade mas sim, directamente, as curvas de tensão-extensão obtidas durante o ensaio experimental de compressão dos provetes, mantendo o coeficiente de *Poisson* de 0.3. Trata-se portanto, de uma análise mais realista, mais próximo do modelo experimental. Contudo, devido ao facto de ser uma análise não linear, esta requer um poder computacional superior, tornando-se portanto uma análise mais pesada com um tempo de processamento superior à da análise linear.

O esquema do ensaio de compressão é idêntico ao da figura 4.13. A alteração efectuada no pré-processamento está relacionada com o modelo de material base utilizado, que ao invés de uma curva linear com um módulo de elasticidade constante de 290 MPa, utilizou-se a opção do *ANSYS* designada por *MELAS* (*Multilinear Elasticity*).

Esta opção de material descreve uma resposta em que uma carga e descarga seguem o mesmo caminho da curva tensão-extensão, ou seja, sempre que ocorre um descarregamento, o valor da extensão volta a zero (não há histerese). Este é um tipo de modelo de material de base indicado para a análise não linear pretendida, pois não exige que se defina nenhum valor de módulo de elasticidade inicial, nem condiciona a variação do declive de curva ao contrário do que acontece com o modelo de material *MISO (Multilinear Isotropic Hardening)* do *ANSYS*.

De um modo semelhante ao caso anterior, uma imagem da deformação originada pela compressão provocada pelo deslocamento para o provete da figura 4.12., encontra-se na figura 4.15.

Figura 4.15. – Imagem da deformada do provete 11*y*4 (caso 11, células de 4 mm com compressão em *y*) após análise não-linear.

Não foi possível retirar um valor do módulo de elasticidade em todos os ensaios de compressão realizados, devido às grandes deformações. Para valores demasiado elevados de extensão aplicados no provete, ocorre um erro a que o *software ANSYS* associa a uma distorção demasiado elevada de um ou mais elementos.

Para contornar este erro, a solução encontrada foi diminuir os valores dos deslocamentos (extensões) aplicados (valores originais na tabela A21 em ANEXOS A). O problema de tal solução era o de que os resultados finais não possuíam informação ou dados suficientes sobre a curva de resposta do provete, o que impossibilitava o cálculo de um módulo de elasticidade a partir dessa curva. Por exemplo, numa das curvas de tensão-extensão do material (figura 4.8.), podem distinguir-se quatro partes do gráfico (figura 4.16.).

O módulo de elasticidade é tirado da zona linear, o que implica que os gráficos de tensãoextensão da resposta da estrutura ou provete têm de possuir esta zona para possibilitar o cálculo do módulo de elasticidade. O problema anteriormente referido, causado pela redução do valor da extensão aplicada no provete, é que a curva resultante, não possuía na totalidade ou nem possuía de todo, a zona linear.

Figura 4.16. – Distinção das zonas que constitui um gráfico de curva tensão – extensão nominal de um provete compacto.

Após uma análise não linear bem sucedida, dois parâmetros eram gerados pelo *ANSYS*: o valor da deformação aplicada no provete (em mm) e a respectiva reacção provocada pela mesma na base do provete (*em Newton*). O valor total do deslocamento e reacção na base eram divididos em vários *substeps*, começando com um valor igual a zero e terminando com um valor máximo de reacção e deslocamento aplicados.

Partindo destes dois parâmetros, força e deslocamento, e utilizando o valor da área de secção de envelope do provete e o seu comprimento total, foi possível gerar as curvas de tensão-extensão nominais de resposta dos *scaffolds*.

O módulo de elasticidade é calculado a partir do valor do declive da zona linear (figura 4.17.), a partir da equação:

$$Declive_{i,i+1} = \frac{\sigma_{i+1} - \sigma_i}{\varepsilon_{i+1} - \varepsilon_i}$$
(19)

onde *i* é o número do substep.

Em seguida tem-se a tabela 4.7., onde se encontram vários parâmetros calculados para o exemplo do provete 11, com compressão em *y*, utilizando células de 2 mm.

Substep	δ [mm]	Força [N]	ε	σ [MPa]	Declive
1	0,0000	0,0000	0,0000	0,0000	0,0000
2	0,0167	1,2026	0,0010	0,0167	16,9902
3	0,0335	2,1524	0,0020	0,0299	13,4189
4	0,0526	3,2874	0,0031	0,0457	14,0314
5	0,0717	4,6122	0,0042	0,0641	16,3776
6	0,0909	6,1863	0,0053	0,0859	19,4588
7	0,1100	8,0063	0,0065	0,1112	22,4987
8	0,1291	10,0316	0,0076	0,1394	25,0381
9	0,1483	12,2651	0,0087	0,1704	27,6102
10	0,1674	14,6456	0,0098	0,2035	29,4277
11	0,1865	17,1405	0,0110	0,2381	30,8431
12	0,2056	19,7517	0,0121	0,2744	32,2795
13	0,2248	22,4821	0,0132	0,3123	33,7542
14	0,2439	25,3500	0,0143	0,3522	35,4529
15	0,2630	28,3664	0,0155	0,3941	37,2891
16	0,2822	31,5141	0,0166	0,4378	38,9123
17	0,3013	34,7546	0,0177	0,4828	40,0589
18	0,3204	38,0571	0,0188	0,5287	40,8264
19	0,3396	41,3900	0,0199	0,5750	41,2018
20	0,3587	44,7269	0,0211	0,6214	41,2508
21	0,3778	48,0587	0,0222	0,6676	41,1890
22	0,3970	51,3851	0,0233	0,7139	41,1210
23	0,4161	54,7068	0,0244	0,7600	41,0640
24	0,4352	58,0134	0,0256	0,8059	40,8764
25	0,4543	61,2930	0,0267	0,8515	40,5422
26	0,4735	64,5332	0,0278	0,8965	40,0565
27	0,4926	67,7252	0,0289	0,9409	39,4591
28	0,5117	70,8518	0,0301	0,9843	38,6520
29	0,5309	73,9017	0,0312	1,0267	37,7033
30	0,5500	76,8637	0,0323	1,0678	36,6172
31	0,5691	79,7327	0,0334	1,1077	35,4662
32	0,5883	82,5058	0,0346	1,1462	34,2819
33	0,6074	85,1746	0,0357	1,1833	32,9914
34	0,6265	87,7302	0,0368	1,2188	31,5935
35	0,6456	90,1527	0,0379	1,2524	29,9467
36	0,6576	91,5828	0,0386	1,2723	28,2874
37	0,6696	92,9304	0,0393	1,2910	26,6551

Tabela 4.7. – Parâmetros calculados de uma análise não-linear para o provete 11y2.

Em seguida tem-se o gráfico do valor da tensão nominal em função da extensão nominal (figura 4.17.).

Figura 4.17. - Gráfico da curva tensão - extensão nominais do provete de elementos finitos.

Observando o gráfico da figura 4.17. e a tabela 4.7., as 3 zonas mostradas na figura 4.17. podem ser encontradas. Do *substep* 1 ao 18, encontra-se o gráfico da zona de declive crescente; do *substep* 19 ao 23 encontra-se a zona linear, e do *substep* 23 ao último encontra-se por fim a zona de declive decrescente. Deste modo, o módulo de elasticidade do provete 11y2 pode ser calculado com o declive da zona linear, obtido com a equação (20).

$$E_{ANSYS} = Declive_{19,23} = \frac{\sigma_{23} - \sigma_{19}}{\varepsilon_{23} - \varepsilon_{19}}$$
(20)

Substituindo pelos valores da tabela 4.7., tira-se:

$$E_{ANSYS} = \frac{0,7600 - 0,5750}{0,0244 - 0,0199} = 41,156 MPa$$

As tabelas e os gráficos relativos aos restantes provetes encontram-se em ANEXOS A (ver "Resultados relativos aos ensaios não lineares feitos aos provetes"), sendo que neste capítulo apenas são mostrados os resultados dos módulos de elasticidade na tabela 4.8. Devido à impossibilidade de se utilizarem valores de extensão elevados pelos motivos anteriormente referidos, apenas foi possível retirar o módulo de elasticidade de alguns ensaios de compressão.

$E_{\rm ANL}$ (MPa)		2mm	3mm	4mm
	x			41,603
Caso 11	у	41,156	41,833	39,821
	z	99,980	*	*
	x		6,403	5,112
Caso 20	у		25,162	21,040
	z		*	53,822
Caso 30	x		*	
	у		20,981	18,707
	z		*	*

Tabela 4.8. – Módulos de elasticidade resultantes de uma análise não-linear (ANL).

*Curva incompleta, não existe possibilidade de tirar o módulo de elasticidade.

4.4. Comparação entre os vários resultados obtidos

Neste capítulo encontra-se uma comparação entre os vários módulos de elasticidade obtidos pelo método dos elementos finitos (ponto 4.2.) com os do método experimental (ponto 4.1.). Esta comparação é efectuada através do cálculo de um desvio relativo entre os dois casos.

O cálculo desse desvio, obtido pela equação (21), encontra-se nas tabelas 4.9 a 4.11. Este é efectuado tanto para a análise linear como para a não linear. Deste modo é possível perceber a aproximação do método dos elementos finitos relativamente ao valor experimental que utilizando uma análise não-linear quer uma linear.

Na tabela 4.12., uma comparação relativamente ao tempo de cálculo para uma análise linear e não linear, também pode ser observada.

$$DR_{\rm AL/ANL} = \frac{E_{\rm AL/ANL} - E_{\rm Exp.}}{E_{\rm Exp.}} \times 100 \ [\%]$$
(21)

2 mm		$E_{ m EXP.}$	$E_{ m AL}$	$E_{ m ANL}$	Erro _{AL}	Erro _{ANL}
	x	17,682				
Caso 11	у	22,203	42,397	41,156	90,952	85,363
	z	52,027	91,772	99,980	76,393	92,170
	x					
Caso 20	у					
	z					
	x					
Caso 30	y					
	z					

Tabela 4.9. – Cálculo dos desvios entre os módulos de elasticidade (em MPa) experimentais ($E_{Exp.}$) e os das análises lineares (E_{AL}) e não lineares (E_{ANL}) para os modelos de células de 2 mm.

Tabela 4.10. – Cálculo dos desvios entre os módulos de elasticidade (em MPa) experimentais ($E_{Exp.}$) e os das análises lineares (E_{AL}) e não lineares (E_{ANL}) para os modelos de células de 3 mm.

3 mm		$E_{ m EXP.}$	$E_{ m AL}$	$E_{ m ANL}$	Erro _{AL}	Erro _{ANL}
	x	33,738				
Caso 11	у	30,396	42,715	41,833	40,528	37,626
	z	70,169	91,650	*	30,613	
	x	3,091	8,985	6,403	190,683	107,158
Caso 20	у	30,158	34,029	25,162	12,836	-16,565
	z	47,965	61,141	*	27,470	
	x	9,629	19,138	*	98,754	
Caso 30	y	6,419	25,465	20,981	296,713	226,855
	z	16,744	50,600	*	202,198	

4 mm		$E_{\mathrm{EXP.}}$	$E_{ m AL}$	$E_{ m ANL}$	Erro _{AL}	Erro _{ANL}
	x	34,485	44,286	41,603	28,421	20,640
Caso 11	у	34,438	41,905	39,821	21,682	15,631
	z	73,201	90,135	*	23,134	
	x	4,821	8,337	5,112	72,931	6,039
Caso 20	у	29,103	29,212	21,040	0,375	-27,705
	z	52,645	57,784	53,822	9,762	2,236
	x	15,462				
Caso 30	У	14,437	24,018	18,707	66,364	29,574
	z	24,825	50,273	*	102,510	

Tabela 4.11. – Cálculo dos desvios entre os módulos de elasticidade (em MPa) experimentais ($E_{Exp.}$) e os das análises lineares (E_{AL}) e não lineares (E_{ANL}) para os modelos de células de 4 mm.

Tabela 4.12. – Tempo de cálculo (HH:MM:SS) das análises lineares (AL) e não lineares (ANL).

		2	mm	3	mm	4	mm
		AL	ANL	AL	ANL	AL	ANL
	x					0:02:15	22:14:41
Caso 11	у	0:00:56	16:12:58	0:01:46	28:27:21	0:03:18	26:35:58
	z	0:00:59	3:11:43	0:01:56	16:13:40	0:02:40	18:36:56
	x			0:09:42	7:10:07	0:05:14	25:15:46
Caso 20	у			0:01:21	16:07:39	0:02:19	24:59:16
	z			0:01:23	7:08:45	0:10:17	10:36:39
	x			0:04:38	22:05:13		
Caso 30	у			0:04:04	29:25:42	0:07:15	65:22:18
	z			0:04:00	21:53:26	0:03:17	63:08:39

Na figura 4.18., pode observar-se mais um critério de comparação entre os resultados obtidos na análise linear e os valores experimentais. Um gráfico de regressão linear com os vários parâmetros relacionados com o mesmo é um modo prático, não só de perceber o quanto os valores experimentais se aproximam dos numéricos, mas também em qual dos casos (11, 20 ou 30) se obteve o melhor resultado. Este gráfico não foi possível de gerar com a análise não linear devido à escassez de pontos representativos.

Figura 4.18. – Gráfico de regressão onde se compara os resultados do módulo de elasticidade experimental e numérico (AL) para cada um dos casos. A regressão utilizada é do tipo linear (y=mx+b).

Começando primeiro por comparar os valores do método dos elementos finitos com os experimentais, verificaram-se desvios bastante elevados, o motivo de tais ocorrências está em boa medida relacionada com o facto do método de produção dos provetes não ser perfeito. Durante o processo de sinterização do *PCL* em pó por laser, microporosidades são formadas no interior dos provetes. Deste modo, os provetes experimentalmente testados não são exactamente os mesmos que os respectivos modelos em elementos finitos, pois nestes últimos, aquelas imperfeições de fabrico não são tidas em conta.

Olhando para o gráfico da figura 4.18., três parâmetros da regressão linear podem ser analisados, m (declive da recta), b (valor da ordenada na origem) e o valor de R^2 (coeficiente de determinação). No caso ideal, valores experimentais e numéricos iguais, o resultado da regressão linear seria uma recta de declive 1 a passar na origem (b=0) e o valor de R^2 seria 1 (linha a tracejado na figura 4.18.). Deste modo, pode-se observar que o melhor resultado foi obtido para o caso 20, onde os valores dos 3 parâmetros acima referidos se aproximam mais dos ideais. Em contraste, os resultados numéricos obtidos para o caso 30, são os piores em termos de aproximação aos valores experimentais.

Relativamente às diferenças obtidas entre os modelos de elementos finitos testados com análise linear e não linear (ver tabelas 4.9. a 4.11.), uma observação pode ser tirada. Os valores no geral, aproximaram-se mais dos experimentais quando da utilização da análise não-linear. Pois utilizando a curva do material ao invés de um valor aproximado, o ensaio computacional aproxima-se mais do experimental. Contudo, levando em conta o tempo de cálculo de uma análise não-linear relativamente a uma linear (tabela 4.12.), a melhoria obtida é conseguida à custa de muito tempo e esforço computacional.

Capítulo 5

Modelo numérico da coluna lombar humana

No decorrer desta dissertação, vários foram os passos até se chegar à análise de uma coluna lombar humana. Os vários componentes da coluna lombar humana, as suas funções biológicas, as suas propriedades mecânicas, e o modo como estas últimas se relacionavam, tornou-se um objecto de estudo no decorrer desta dissertação. E com a revisão e o respectivo estudo de um modelo de elementos finitos de uma coluna vertebral suína, novos conhecimentos foram adquiridos relativamente à medicina, à programação em *ANSYS*, à análise linear e não linear e à optimização topológica de um dispositivo.

Na figura 5.1 encontra-se o modelo de elementos finitos analisado neste capítulo, onde também se pode observar o dispositivo de fusão que será posteriormente objecto de optimização no capítulo 6. O Modelo sólido da figura foi fornecido pela *University of Michigan*, enquanto a malha de elementos finitos foi gerada no âmbito desta dissertação.

Figura 5.1. – Modelo em elementos finitos da coluna vertebral humana (zona lombar) com o dispositivo de fusão intervertebral em destaque. Modelo sólido fornecido pela *University of Michigan*.

Neste capítulo modelou-se uma coluna vertebral humana, zona lombar, em elementos finitos, onde sete casos de carga semelhantes aos aplicados na coluna vertebral suína, foram também aqui, aplicados.

Posteriormente uma análise linear e não linear do modelo foi efectuada. Os resultados dos deslocamentos, forças e momentos de reacção encontram-se na secção 5.2.

5.1. O modelo de elementos finitos

Este modelo de elementos finitos possui várias características semelhantes ao modelo de elementos finitos da coluna vertebral suína que se encontra no capítulo 3. Contudo, existem diferenças relativas ao número de nós, número de elementos e condições aplicadas.

Figura 5.2. – Imagens dos vários componentes que constituem o modelo de elementos finitos da coluna vertebral humana. Legenda: a) Osso cortical, b) Osso trabecular, c) Discos intervertebrais, d) Juntas intervertebrais, e) Dispositivo de fusão, f) Ligamentos.

Tabela 5.1 Características dos vários componentes do modelo de elementos finitos da coluna
vertebral humana.

Componente	Tipo de elemento utilizado	N° de nós	N° de elementos	Volume ocupado [mm ³]
Osso cortical	Shell63	46231	93287	26566,40
Osso trabecular	Solid45	77691	329608	213799,73
Discos intervertebrais	Solid45	6801	27314	21615,00
Juntas intervertebrais	Solid45	20976	49182	1612,71
Dispositivo de fusão	Solid45	645	2036	1490,28
Ligamentos	Link8/Link10*	186	94	10628,14
TOTAL		98337	501521	275712,26

* O tipo de elemento utilizado na modelação dos ligamentos vai depender do tipo de análise pretendida,

linear ou não linear.

Os tipos de elementos utilizados para modelar a coluna lombar humana encontram-se igualmente explicados nas figuras 3.2. a 3.5. do capítulo 3. Os valores das propriedades mecânicas utilizados foram baseados nas tabelas 2.12. a 2.15 do capítulo 2.

Na figura 5.3. encontram-se as condições de carga aplicadas no presente modelo de elementos finitos. Os valores das forças utilizadas para a aplicar essas condições encontram-se na tabela 5.2. Estes foram baseados na tabela 2.6. do capítulo 2. É de acrescentar que o índice de cada força F na figura 5.3. não depende da direcção ou sentido da força, mas sim do ponto de aplicação da mesma.

Figura 5.3. – Os 7 casos de carga aplicados ao modelo da coluna vertebral humana. a) Compressão, b)
Compressão + flexão, c) Compressão + flexão lateral direita, d) Compressão + extensão, e) Compressão + flexão lateral esquerda, g) Compressão + torção horária, h) Compressão + torção anti-horária.

	F_1 [N]	<i>F</i> ₂ [N]	<i>F</i> ₃ [N]	F_4 [N]	F_5 [N]
Caso 1	-500				
Caso 2	-500	821	-821		
Caso 3	-500			407	-407
Caso 4	-500	-821	821		
Caso 5	-500			-407	407
Caso 6	-500			-621.5	621,5
Caso 7	-500			621,5	-621,5

Tabela 5.2. – Valores das forças utilizadas para modelar os 7 casos de carga utilizados no modelo de elementos finitos da coluna vertebral humana.

Apesar das evidentes semelhanças, este modelo, devido ao maior número de nós e elementos, requer um poder computacional superior, relativamente ao modelo da coluna vertebral suína.

5.2. Análise estática

Assim como para o modelo anterior da coluna suína, neste será igualmente efectuada uma análise linear e outra não linear.

5.2.1. Análise linear

A vantagem e desvantagem relativamente à utilização de uma análise linear são as mesmas que as do modelo do capítulo 3, ou seja, uma utilização de um elemento linear como o *Link8*, permite que a análise seja mais leve em termos computacionais. Contudo, este elemento é um elemento treliça, o qual, como explicado anteriormente, não tem um comportamento semelhante aos ligamentos biológicos.

Na tabela 5.3. encontram-se os valores das deformações, reacções e momentos originados pelos 7 casos de carga da figura 5.3.

Caso de carga	U_x [mm]	$U_{ m y}$ [mm]	U_z [mm]	R_x [N]	<i>R</i> _y [N]	$R_{z}[N]$	M_x [N.mm]	M_y [N.mm]	M_z [N.mm]
1 (Compr.)	0,435	0,202	-1,654	pprox 0	pprox 0	-500,000	-22040,995	30107,146	pprox 0
2 (Compr. + Flex.)	1,038	-1,992	-1,876	pprox 0	pprox 0	-500,000	-12329,575	31823,277	pprox 0
3 (Compr. + FLE)	-1,510	0,151	-1,535	pprox 0	pprox 0	-500,000	-21277,585	22659,755	pprox 0
4 (Compr. + Ext.)	-0,168	2,396	-1,433	pprox 0	pprox 0	-500,000	-31752,415	28391,015	pprox 0
5 (Compr. + FLD)	2,379	0,252	-1,774	pprox 0	pprox 0	-500,000	-22804,404	37554,538	pprox 0
6 (Compr. + TH)	-0,830	0,064	-1,632	pprox 0	pprox 0	-500,000	-22680,269	30107,148	-11372,376
7 (Compr. + TA)	1,700	0,340	-1,677	≈ 0	≈ 0	-500,000	-21401,720	30107,144	11372,375

Tabela 5.3. – Valores das deformações, forças e momentos de reacção provocados pelos 7 casos de carga na coluna vertebral humana para uma análise linear.

5.2.2. Análise não-linear

Do mesmo modo que para o caso anterior, uma análise baseada nos 7 casos de carga, foi efectuada para gerar uma solução com as respectivas deformadas e valores das forças e momentos de reacção. Contudo, esta foi realizada com grandes deslocamentos, onde ligamentos com propriedades de cabo (*Link10*) foram utilizados no lugar dos mesmos com propriedades de treliça (*Link8*). Os resultados obtidos encontram-se na tabela 5.4.

Tabela 5.4. – Valores das deformações, forças e momentos de reacção provocados pelos 7 casos de carga na coluna vertebral humana para uma análise não-linear.

Caso de carga	U_x [mm]	U_y [mm]	Uz [mm]	R_x [N]	<i>R</i> _y [N]	$R_{z}[N]$	M_x [N.mm]	M_y [N.mm]	M_z [N.mm]
1 (Compr.)	0,540	-0,276	-1,656	pprox 0	pprox 0	-500,000	-21902,736	30376,552	pprox 0
2 (Compr. + Flex.)	1,195	-3,388	-2,060	pprox 0	pprox 0	-500,000	-10521,864	32310,440	pprox 0
3 (Compr. + FLE)	-1,685	-0,372	-1,554	pprox 0	pprox 0	-500,000	-21041,964	21814,339	pprox 0
4 (Compr. + Ext.)	-0,200	2,577	-1,223	pprox 0	pprox 0	-500,000	-32663,162	28246,045	pprox 0
5 (Compr. + FLD)	2,719	-0,200	-1,821	pprox 0	pprox 0	-500,000	-22680,649	38828,318	pprox 0
6 (Compr. + TH)	-0,918	-0,265	-1,600	pprox 0	pprox 0	-500,000	-22750,107	29648,266	-11397,800
7 (Compr. + TA)	1,957	-0,077	-1,699	≈ 0	≈ 0	-500,000	-21393,743	31085,821	11270,712

5.3. Análise comparativa

Nesta secção, uma comparação entre os vários resultados obtidos para uma análise linear e não linear é efectuada (tabela 5.5. a 5.7.). Esta é obtida a partir de um cálculo do desvio relativo obtido com a equação (1) do capítulo 3.

Tabela 5.5. – Comparação entre os valores das forças de reacção resultantes de uma análise linear e uma não-linear para a coluna humana.

Caso de	1	Análise linea	r	An	álise não-lin	DR_{xx}	DR_{yy}	DR_{zz}	
carga	$R_x[N]$	$R_{y}[N]$	$R_{z}[N]$	$R_x[N]$	$R_{y}[N]$	$R_{z}[N]$	(%)	(%)	(%)
1 - 7	0,00	0,00	-500,00	0,00	0,00	-500,00	0,00	0,00	0,00

Tabela 5.6. – Comparação entre os valores de deslocamentos resultantes de uma análise linear e uma não-linear para a coluna humana.

Caso de	1	Análise linea	r	An	álise não-lin	ear	DR_{xx}	DR_{yy}	DR_{zz}
carga	U_x [mm]	U_y [mm]	U_z [mm]	U_x [mm]	U_y [mm]	U_z [mm]	(%)	(%)	(%)
1	0,44	0,20	-1,65	0,54	-0,28	-1,66	22,73	-240,00	0,61
2	1,04	-1,99	-1,88	1,20	-3,39	-2,06	15,38	70,35	9,57
3	-1,51	0,15	-1,54	-1,69	-0,37	-1,55	11,92	-346,67	0,65
4	-0,17	2,40	-1,43	-0,20	2,58	-1,22	17,65	7,50	-14,69
5	2,38	0,25	-1,77	2,72	-0,20	-1,82	14,29	-180,00	2,82
6	-0,83	0,06	-1,63	-0,92	-0,27	-1,60	10,84	-550,00	-1,84
7	1,70	0,34	-1,68	1,96	-0,08	-1,70	15,29	-123,53	1,19

Caso de	1	Análise linea	r	An	álise não-lin	DR_{xx}	DR	DR	
carga	M_x [N.mm]	<i>M</i> _y [N.mm]	<i>M_z</i> [N.mm]	M_x [N.mm]	M_y [N.mm]	<i>M_z</i> [N.mm]	(%)	(%)	(%)
1	-22041,00	30107,15	0,00	-21902,74	30376,55	0,00	-0,63	0,89	0,00
2	-12329,58	31823,28	0,00	-10521,86	32310,44	0,00	-14,66	1,53	0,00
3	-21277,59	22659,76	0,00	-21041,96	21814,34	0,00	-1,11	-3,73	0,00
4	-31752,42	28391,02	0,00	-32663,16	28246,05	0,00	2,87	-0,51	0,00
5	-22804,40	37554,54	0,00	-22680,65	38828,32	0,00	-0,54	3,39	0,00
6	-22680,27	30107,15	-11372,38	-22750,11	29648,27	-11397,80	0,31	-1,52	0,22
7	-21401,72	30107,14	11372,38	-21393,74	31085,82	11270,71	-0,04	3,25	-0,89

Tabela 5.7. – Comparação entre os valores dos momentos de reacção resultantes de uma análise linear e uma não-linear para a coluna humana.

De um modo geral, as conclusões são semelhantes às da análise linear e não-linear, efectuadas no capítulo 3. Ou seja, o valor dos deslocamentos tende a aumentar devido ao facto de os ligamentos, que anteriormente tendo um comportamento de treliça, resistiam ao movimento, e com um comportamento de um cabo, não. Estes encurvam, e portanto, o modelo da coluna fica menos rígido.

As reacções permaneceram constantes, pois as forças aplicadas na coluna vertebral, não se alteraram. No caso dos momentos aplicados no caso 6 e 7, estes permanecem constantes, pois os ligamentos nestes dois últimos casos encontram-se todos à tracção, o que implica que as propriedades oferecidas pelo elemento cabo (*Link10*) não são aqui verificas.

Relativamente ao tempo de processamento, verifica-se uma diferença de tempo significativa entre uma análise e outra. Enquanto que a coluna submetida a uma análise linear demora cerca de 30 minutos a ser processada, com uma análise não linear, este tempo aumenta para perto de 11 horas. Este custo computacional acrescido faz com que o modelo não-linear não se torne vantajoso, contudo, com a possibilidade de se poder diminuir o tempo de processamento, esta análise ganha uma nova importância, pois não há quaisquer dúvidas de que este tipo de análise é vantajoso do ponto de vista de proximidade do modelo da coluna real.

Capítulo 6

Optimização topológica aplicada à substituição do disco intervertebral

Segue-se uma breve explicação sobre optimização de topologia, que é utilizada para optimizar o dispositivo intervertebral nesta dissertação. Existem 3 categorias de optimização distintas: optimização dimensional, optimização de forma e optimização topológica. No esquema da figura 6.1. encontra-se uma breve descrição sobre cada uma das 3 categorias (Bendsoe *et al.* 2003).

Figura 6.1. – Breve descrição das três categorias de optimização estrutural, seguida de um exemplo prático. Imagem extraída de Bendsoe *et al.* 2003.

A optimização de topologia é a que tem maior potencial e é aplicada ao dispositivo de fusão intervertebral. O objectivo foi a minimização da flexibilidade (ou maximização da rigidez) do dispositivo de fusão sujeito a um constrangimento de volume de material máximo de 50% do volume geométrico total.

Num problema de minimização de flexibilidade apenas são definidos um domínio de projecto com volume Ω , as condições de fronteira, as cargas aplicadas e a fracção volúmica (ver
Gulbenkian 2012). Deste modo a estrutura não possui nenhuma geometria pré-definida à *priori*. Na figura 6.2. mostra-se um domínio de projecto arbitrário de um problema de optimização topológica.

Figura 6.2 – Domínio de projecto: Ω – Volume de projecto; f_v – Força volúmica; t – carregamento exterior na fronteira Γt ; Γu – Fronteira onde o deslocamento é imposto. Imagem extraída de Bendsoe *et al.* 2003.

Dois tipos de formulação de um problema podem ser destacados, um para um caso de carga singular, e outro para um caso múltiplo de carga (ver Gulbenkian 2012).

Em ambas as formulações pretende-se minimizar a flexibilidade da estrutura, sujeita a um constrangimento de volume. Resolve-se a distribuição de material num dado domínio de projecto, ou seja, faz-se a colocação de material em locais onde este é mais necessário e retira-se de locais onde este não é essencial.

Na figura 6.3. apresenta-se um caso de carga singular, onde uma em consola sujeita a um constrangimento de volume de 50% e uma força F foi optimizada. Esta foi obtida a partir do código de optimização *99 linhas* escrito em *MATLAB* por O. Sigmund (Sigmund *et al.* 2001).

Figura 6.3 – Lado esquerdo: Viga em consola sujeita a uma força. Lado direito: Viga optimizada. Imagem extraída de Sigmund *et al.* 2001.

A formulação segundo os trabalhos virtuais para o problema de optimização topológica para uma carga singular, pode ser descrito pela formulação (22). Uma breve descrição sobre a formulação encontra-se a seguir (Bendsoe *et al.* 2003).

$$\begin{array}{ll}
\min \\
u_r \in U, \rho & W_{Fext_r}(U_r) \\
s. a.: & W_{Fext_v}(U_v) = W_{Fint_v}(u_r, u_v), \quad \text{para todos os } u_v e \ U \\
& E_{ijkl}(x) = \rho(x)^p E_{ijkl}^0, \quad x \in \Omega
\end{array}$$
(22)

$$\int_{\Omega} \rho(x) d\Omega = V_{\text{estrutura}}(\rho(x)) \le V_{\text{maximo}}; 0 < \rho_{\text{min}} \le \rho \le 1$$

Em que W_{Fext_r} é o trabalho realizado pelas forças exteriores aplicadas, W_{Fint_v} é o trabalho realizado pelas forças interiores aplicadas, U_r representa os deslocamentos reais, u_r os deslocamentos provocados por forças reais aplicadas, U_v são os deslocamentos virtuais, E_{ijkl}^0 é o tensor de rigidez que caracteriza o material de base, E_{ijkl} representa o tensor de rigidez admissível num dado ponto de material, $\rho(x)$ é a densidade que representa a ausência ou presença de material num ponto x, p é a constante de penalização, $V_{estrutura}$ é o volume da estrutura, V_{maximo} é o volume máximo admissível e ρ_{min} é a densidade mínima do material.

Uma elevada flexibilidade implica um maior deslocamento num dado ponto, portanto um problema de minimização de flexibilidade é equivalente a um problema de minimização do trabalho realizado pelas forças exteriores aplicadas. Esta minimização encontra-se sujeita a 3 condições.

Primeiro, o trabalho realizado pelas forças exteriores aplicadas tem de ser equivalente ao das forças interiores. Segundo, o tensor de rigidez num dado ponto é 0 se não existir material (ρ =0) e é igual a E^0_{ijkl} se existir material (ρ =1). Por fim, o volume da estrutura é sempre igual ou inferior ao volume máximo admitido.

A melhor forma numérica de resolver o problema (22) é utilizar a variável ρ como contínua, a variar de 0 a 1, ao invés de discreta, onde o valor seria apenas de 0 ou 1. Contudo, no final do processo de optimização apenas se poderão observar pontos de densidade com ou sem material (0 ou 1), portanto é utilizada uma penalização p para que todos os valores de densidade convirjam para os extremos 0 ou 1. A este esquema de penalização chama-se *SIMP* ou *Solid isotropic material with penalization*.

Estes problemas, como foi no caso desta dissertação, são resolvidos utilizando métodos numéricos, como é o caso do método dos elementos finitos. Neste caso, o domínio Ω é discretizado por uma malha de elementos finitos, e onde a cada elemento está associado uma densidade ρ e um tensor de rigidez *E*.

A formulação de elementos finitos para o problema de optimização topológica passa a ser então escrita pela formulação (23) (Bendsoe *et al.* 2003). De notar que para evitar a existência de matrizes singulares de rigidez em elementos finitos, o valor de ρ_{min} nunca deve ser igual a 0, o valor usualmente utilizado é 10⁻³.

$$\min_{u_r \in U, \rho} \qquad W_{Fext_r} = f^T u$$
s. a.:
$$\left(\sum_{e=1}^N \rho_e^p K_e(E_e)\right) u = f$$

$$\sum_{e=1}^N vol_e \rho_e \le V_{\text{maximo}}; 0 < \rho_{\min} \le \rho \le 1; e = 1, ..., N$$
(23)

Em que
$$f$$
 é o vector de força, u é o vector de deslocamento, $K_e(E_e)$ é a matriz de rigidez de um elemento, vol_e é o volume de um elemento e N é o número de elementos.

A optimização topológica nem sempre é aplicada a estruturas onde as cargas são todas aplicadas em simultâneo. Um exemplo disto é o do modelo da coluna vertebral suína do capítulo 3, ou o da coluna vertebral humana do capítulo 5. Onde múltiplos casos de carga estão aplicados, separadamente. O resultado de aplicar estes casos de carga (F_1 e F_2), não simultaneamente, mas consecutivamente, resulta numa estrutura de melhor compromisso, o qual se pode observar na figura 6.4. Na mesma, observa-se o resultado obtido numa viga, tanto para o caso de duas cargas em simultâneo, como para o caso multicarga. Esta optimização foi obtida a partir do código *99 linhas* escrito em *MATLAB* por O. Sigmund (ver Sigmund *et al.* 2001).

Figura 6.4. – Optimização topológica multicarga de uma viga. a) Domínio de projecto, b) caso de carga única, c) Caso de múltipla carga. Imagem extraída de Gulbenkian 2012.

Pode-se constatar que quando as duas cargas são aplicadas separadamente, a viga optimizada em b) tem uma estrutura mais instável do que a do resultado da multicarga em c).

A formulação de um problema de optimização topológica para o caso multicarga passa a ser efectuada pela formulação (24) (Bendsoe *et al.* 2003).

$$\min_{u_r \in U, \rho} \sum_{K=1}^M w^k W_{Fext_r}(U_r^k), \quad com \sum_{k=1}^M w^k = 1$$

s. a.:
$$W_{Fext_v}^k(U_v) = W_{Fint_v}(u_r, u_v)$$
, para todos os $u_v \in U, k = 1, ..., M$

$$E_{ijkl}(x) = \rho(x)^p E_{ijkl}^0, \quad x \in \Omega$$
⁽²⁴⁾

$$\int_{\Omega} \rho(x) d\Omega = V_{\text{estrutura}}(\rho(x)) \le V_{\text{maximo}}; 0 < \rho_{\text{min}} \le \rho \le 1$$

Legenda:

M – Número de casos de carga

 W^k – Coeficiente de importância de cada carga (varia de 0 a 1)

A formulação do problema é semelhante ao caso de carga singular, com a diferença que para este caso são aplicadas M cargas. E portanto, M valores de flexibilidade serão igualmente calculados, sendo em seguida efectuada uma média ponderada, na qual a cada valor é atribuído um coeficiente de importância (W^k). Este pode variar entre 0 e 1, e no fim, a soma dos M coeficientes de importância terá de ser igual à unidade.

No caso dos dois modelos de elementos finitos utilizados nesta dissertação, tem-se M=7, e $W^{k}=1/7$.

O código *99 linhas*, referido anteriormente neste capítulo poderia ter sido o utilizado para efectuar a optimização dos dispositivos de fusão intervertebral utilizados tanto no modelo de elementos finitos do suíno, como também no humano. Mas devido ao facto de este ser extremamente pesado em termos computacionais aquando da sua utilização nestes modelos, um código equivalente escrito em *FORTRAN* foi utilizado. Utilizou-se o método das Assimptotas Móveis ou *MMA* para se efectuar a actualização de densidades.

6.1. Resultados da optimização topológica

Neste ponto, os resultados obtidos da optimização do dispositivo de fusão do modelo da coluna humana é exibido, do modo semelhante ao do modelo do capítulo 3. Contudo, para este caso, foi efectuada duas optimizações diferentes. Uma que recorria à análise linear, utilizando ligamentos com comportamento de treliça (*Link8*), e outro que recorria à análise não linear com grandes deslocamentos, onde os ligamentos possuíam um comportamento de cabo (*Link10*). Os dois resultados vão ser analisados em simultâneo.

6.1.1. Optimização topológica recorrendo a uma análise linear

Dois gráficos semelhantes aos das figuras 3.8. e 3.9. foram efectuados. De um modo semelhante ao modelo do capítulo 3, a optimização deste dispositivo também foi efectuada recorrendo a 35 iterações, onde se pretendeu obter um modelo com a maior rigidez possível, estando esta sujeita a um constrangimento de volume de 50%.

Nos gráficos da figura 6.5., originados a partir de uma optimização linear, têm-se os valores da violação do constrangimento e da flexibilidade em função das iterações.

Figura 6.5. – Gráficos da percentagem de constrangimento violada (parte superior) e do valor da flexibilidade (parte inferior) em função do número de iterações. Método de optimização aplicado utilizando uma análise linear.

Os valores dos quais foram construídos estes gráficos, bem como os gráficos obtidos a partir da optimização efectuada com análise não-linear, encontram-se em ANEXOS A (ver "Parâmetros de optimização da coluna vertebral humana").

O aspecto do dispositivo de fusão intervertebral optimizado utilizando uma análise linear aplicada no modelo de elementos finitos da coluna vertebral humana encontra-se na figura 6.6.

Figura 6.6. – Imagem da malha de E.F. à esquerda. Imagem do dispositivo optimizado (volume a 50%) recorrendo a análise linear, à direita.

6.1.2. Optimização topológica recorrendo a uma análise não-linear

Uma optimização ao modelo de elementos finitos da coluna vertebral humana foi novamente optimizada, utilizando as mesmas propriedades de materiais e as mesmas condições de carga. Contudo agora, os ligamentos possuem um comportamento diferente quando sujeitos a uma força de compressão, ou seja, não mostram resistência à mesma, ficando encurvados.

Nos gráficos da figura 6.7. tem-se o valor da violação do constrangimento e da flexibilidade em função das iterações, desta vez recorrendo a uma optimização efectuada com análise nãolinear.

Figura 6.7. – Gráficos da percentagem de constrangimento violada (parte superior) e do valor da flexibilidade (parte inferior) em função do número de iterações. Método de optimização aplicado utilizando uma análise não-linear.

O aspecto do dispositivo de fusão intervertebral optimizado utilizando uma análise nãolinear aplicada ao presente modelo de elementos finitos encontra-se na figura 6.8.

Figura 6.8. – Imagem da malha de *E.F.* à esquerda. Imagem do dispositivo optimizado (volume a 50%) recorrendo a análise não-linear, à direita.

6.2. Resultados da optimização topológica aplicada ao dispositivo de fusão

À primeira vista, os gráficos das figuras 6.5. e 6.7. têm aspectos idênticos e as comparações relativas aos mesmos são semelhantes às tiradas no capítulo 3, ou seja, o valor da flexibilidade vai decrescendo ao longo das iterações até estabilizar e o da percentagem de constrangimento de volume violado encontra-se sempre abaixo dos 0%, terminando a optimização com o constrangimento activo (volume parcial do dispositivo a 50%). Contudo, diferenças entre a optimização obtida por análise linear e não linear existem, com um foco especial no valor da energia total de deformação da estrutura global da coluna modelada. Na análise não linear, a esse valor é inferior ao da linear, e até mesmo durante a optimização, este tem um decréscimo superior.

Por outro lado, o aspecto geral do dispositivo optimizado está longe de ter um aspecto coerente, não existindo qualquer distinção entre a zona interior e exterior do mesmo, ao contrário da figura 3.10. Isto deve-se essencialmente ao facto da malha de elementos que compõe o dispositivo ser irregular e imperfeita. Além disso, o tamanho do dispositivo, comparativamente à plataforma da vértebra, tem uma área de superfície demasiado reduzida.

Capítulo 7

Conclusões e desenvolvimentos futuros

No capítulo 2, várias técnicas de fusão intervertebral foram mencionadas e, apesar da engenharia de tecidos continuar a investigar as áreas dos *scaffolds* para fusão intervertebral, ainda não se encontrou um que substituísse o osso humano na perfeição.

A homogeneização revelou ser um método bastante eficiente para estimar as propriedades mecânicas de *scaffolds* enquanto estruturas com material de microestrutura periódica. Os valores numéricos obtidos com modelos de elementos finitos de provetes ficaram satisfatoriamente próximos dos valores homogeneizados com uma estrutura cujo quociente d/D é 1/5.

No capítulo 4, foram comparados módulos de elasticidade obtidos a partir de provetes testados experimentalmente com os obtidos por simulação numérica. Os módulos de elasticidade retirados do modelo de elementos finitos são relativamente mais elevados quando comparados com o método experimental, pois existem factores que não estão a ser levados em

conta na simulação numérica como, por exemplo, as microporosidades do produto fabricado assim como as propriedades de ortotropia do material de base (*PCL*).

Ao longo desta dissertação, foi feito um estudo sobre a simulação numérica linear e nãolinear. No geral, conclui-se que, com o poder computacional disponível no decorrer desta dissertação e com as malhas de elementos finitos dos dois modelos da coluna vertebral utilizados, uma análise não linear é bastante dispendiosa em termos de custo computacional.

Os modelos de elementos finitos utilizados nesta dissertação podem ser melhorados, em especial o da coluna vertebral humana, porque o modelo poderia incluir mais segmentos desse órgão e a malha actual de elementos finitos possui algumas irregularidades relativas ao tamanho e forma dos elementos. Outros componentes como os músculos, podem ser também adicionados nestes modelos no futuro.

Relativamente à análise não-linear, na possibilidade de se ter disponível um poder computacional superior, esta poderá tornar-se mais interessante de aplicar.

De um modo geral, no que diz respeito à aplicação da optimização, esta foi feita apenas do ponto de vista de utilizador. Mas um estudo mais aprofundado sobre este assunto, também poderá ser efectuado, para melhorar o código de programação. Essencialmente poderá ser alterado, para manter uma relação de simetria entre o lado esquerdo e direito do dispositivo de fusão após este ser optimizado. Outra possível alteração, relativa ao modelo da coluna humana, seria fazer com que o código optimizasse não só a nível macroscópico, mas também microscópico, optimizando não só a forma do dispositivo de fusão como também a sua microestrutura. Contudo, isto traria um custo computacional ainda mais acrescido, portanto esta possibilidade exigiria sem dúvida a aplicação de técnicas de processamento paralelo.

Bibliografia

[1] Abrahams, P., "Atlas do corpo humano" (Tradução do original: "The Atlas of the Human Body"). Editorial Estampa, Lda., Lisboa, 2003.

[2] Adam, C., Pearcy, M., McCombe, P., "Stress analysis of interbody fusion – Finite element modeling of intervertebral implant and vertebral body". ELSEVIER, Clinical Biomechanics 18, pp. 265-272, 2003.

[3] Adams, M. A., Dolan, P., "Spine biomechanics". ELSEVIER, Journal of Biomechanics 38, pp. 1972-1983, 2005.

[4] Akamaru, T., Kawahara, N., Sakamoto, J., Yoshida, A., Murakami, H., Hato, T., Awamori, S., Oda, J., Tomita, K., "The transmission of stress to grafted boné inside a titanium mesh cage used in anterior column reconstruction after total spondylectomy: A finite-element Analysis". Lippincott Williams & Wilkins, Inc., Spine Volume 30, Number 24, pp. 2783-2787, 2005.

[5] An, H., Boden, S. D., Kang, J., Sandhu. H. S., Abdu, W., Weinstein, J, "Emerging Techniques for Treatment of Degenerative Lumbar Disc Disease". Lippincott Williams & Wilkins, Inc., Spine Volume 28, Number 15S, pp. S24-S25, 2003.

B

<u>A</u>

[6] Bao, Q., Mccullet, G. M., Higham, P. A., Dumbleton, J. H, Yuan, A. H., "The artificial disc: theory, design and materials". ELSEVIER, Biomaterials 17, pp. 1157-1167, 1996.

[7] Baumgartner, W., "Intervertebral Disc Prosthesis". United States Patent, 1992.

[8] Belytschko, T. B., Andriachhhi, T. P., Schultz, A. B., Galante, J. O., "Analog Studies of Forces in the human spine: Computational Techniques". J. Biomechanics, Vol. 6, pp. 361-371, 1973.

[9] Bendsoe, M. P., Sigmund, O., "Topology optimization: from airplanes to nanooptics". Techinal University of Denmark 2004. [10] Bendsoe, M. P., Sigmund, O., "Topology optimization: theory, methods and applications". Springer, 2003.

[11] Bogduk, N., Endres, S., "Clinical anatomy of the lumbar spine and sacrum". ELSEVIER, 2005.

[12] Bono, C. M., Garfim, S. R., "History and evolution of disc replacement". ELSEVIER, The spine journal 4, pp. 145S-150S, 2004.

[13] Broek, P. R., Huyghe, J. M., Ito, K., "Mechanical testing of an artificial intervertebral disc". Department of biomedical engineering, the Netherlands.

[14] Brolin, K., Halldin, P., "Development of a finite element model of the upper cervical spine and a parameter study of the ligament characteristics". Lippincott Williams & Wilkins, Inc., Spine Volume 29, Number 4, pp. 376-385, 2004.

[15] Buttermann, G. R., "Intervertebral Prosthetic Device". United States Patent, 1996.

[16] Buttermann, G. R., Beaubien, B. P., "Biomechanical characterization of an annulus-sparing spinal disc prosthesis". Elsevier, The spine journal 9, pp. 744-753, 2009.

<u>C</u>

[17] Cannella, M., Arthur, A., Allen, S., Keane, M., Joshi, A., Edward, V., Michele, M., "The role of the nucleus pulposus in neutral zone human lumbar intervertebral disc mechanics". ELSEVIER, Journal of Biomechanics 41, pp. 2104-2111, 2008.

[18] Castellvi, A. E., Huang H., Vestgaarden, T., Saigal, S., Clabeaux, D. H., Pienkowski, D., "Stress Reduction in Adjacent Level Discs via Dynamic Instrumentation: A finite element analysis". SAS Journal. Spring, PP. 74-81, 2007.

[19] Chen, C., Cheng, C., Liu, C., Lo, W., "Stress analysis of the disc adjacent to interbody fusion in lumbar spine", ELSEVIER, Medical Engineering & Physics 23, pp. 483-491, 2001.

[20] Chen, H., Cheung, H., Wang, W., Li, A., Li, K., "Biomechanical Analysis of the Unilateral Fixation With Interbody Cages". Lippincott Williams & Wilkins, Inc, Spine Volume 30, Number 4, pp. E92-E96, 2005.

[21] Chen, S., Zhong, Z., Chen, C., Chen, W., Hung, C., "Biomechanical comparison between lumbar disc arthroplasty and fusion". ELSEVIER, Medical Engineering & physics 31. Pp. 244-253, 2009.

[22] Cheng, C., Chen, H., Kuo, H., Lee, C., Chen, W., Liu, C., "A three-dimensional mathematical model for predicting spinal joint force distribution during manual liftings". ELSEVIER, Clinical Biomechanics Vol.13, supplement No.1, pp. S59-S64, 1998.

[23] Cheung, J. T., Zhang, M., Chow, D. H., "Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study". ELSEVIER, Clinical Biomechanics 18, pp. 790-799, 2003.

[24] Cheung, K. M. C., Zhang, Y. G., Lu, D. S., Luk, K. D. K., Leong, J. C. Y., "Reduction of Disc Space Distraction After Anterior Lumbar Interbody Fusion With Autologous Iliac Crest Graft". Lippincott Williams & Wilkins, Spine Volume 28, Number 13, pp. 1385-1389, 2003.

[25] Chiang, M., Zhong, Z., Chen, C., Cheng, C., Shih, S., "Biomechanical Comparison of Instrumented Posterior Lumbar Interbody Fusion with one or two Cages by Finite element Analysis". Lippincott Williams & Wilkins, Inc., Spine Volume 31, Number 19, pp. E682-E689,2006.

[26] Christophy, M, Senan, N. A. F., Lotz, J. C., O'Reilly, O. M., "A Musculoskeletal model for the lumbar spine". Biomech Model Mechanobiol, 2011.

[27] Coelho, P. G., Kang, H., Hollister, S. J., Lin, C-Y, Fernandes, P. R., Rodrigues H. C., "Hierarchical Topology Optimization of the intervertebral fusion cage with microstructure design control", ECCOMAS- Internacional converence on tissue engineering, 2011.

[28] Coelho, P. G., Modelos Hierárquicos para a análise e síntese de estruturas e materiais com aplicações à remodelação óssea", dissertação apresentada para obtenção do grau de Engenheiro Mecânico na especialidade de Resistência dos materiais pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Lisboa, 2009.

[29] Costi, J. J., Stokes, I. A., Gardner-Morse, M., Laible, J. P., Scoffone, H. M., Latridis, J. C., "Direct measurement of intervertebral disc maximum shear strain in six degrees of freedom: Motions that place disc tissue at risk of injury". ELSEVIER, Journal of Biomechanics 40, pp. 2457-2466, 2007.

[30] Cowin, S. C., "Bone Mechanics Handbook", segunda edição. CRC Press, 2001.

[31] Cusick, J. F., Yoganandan, N., "Biomechanics of the cervical spine 4: Major injuries". ELSEVIER, Clinical Biomechanics 17, pp. 1-20, 2002.

123

[32] Daggfeldt, K., Thorstensson, A., "The mechanics of back-extensor torque production about the lumbar spine". ELSEVIER, Journal of Biomechanics 36, pp. 815-825, 2003.

[33] Denozière, G, Ku, N. D., "Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc". ELSEVIER, Journal of Biomechanics 39, pp. 766-775. 2004.

[34] Dooris, A. P., Goel, V. k., Grosland, N. M., Gilbertson, L. G., Wilder, D. G., "Load-sharing between Anterior and Posterior elements in a lumbar Motion Segment Implanted with an artificial Disc". Lippincott Williams & wilkins, Inc., Spine Volume 26, Number 6, pp. E122-E129, 2001.

<u>E</u>

[35] El-Rich, M, Arnoux, P., Wagnac, E., Brunet, C., Aubin, C., "Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions". ELSEVIER, Journal of Biomechanics 42, pp. 1252-1262, 2009.

[36] Epari, D. R., Kandziora, F., Duda, G. N., "Stress Shielding in Box and Cylinder Cervical Interbody Fusion Cage Designs". Lippincott Williams & Wilkins, Inc., Spine Volume 30, Number 8, pp. 908-914, 2005.

[37] Errico, T. J., "Why a mechanical disc?". ELSEVIER, The spine journal 4, pp. 151s-157s, 2004.

[38] Espinha, L. C., Fernandes, P. R., Folgado, J., "Computational analysis of boné remodeling during na anterior cervical fusion". ELSEVIER, Journal of Biomechanics 43, pp. 2875-2880, 2010.

F

[39] Fantigrossi, A., Galbusera, F., Raimondi, M. T., Sassi, M., Fornari, M., "Biomechanical analysis of cages for posterior lumbar interbody fusion". ELSEVIER, Medical Engineering & physics 29, pp. 101-109, 2007.

[40] Freeman, Brian J. C., Davenpot, J., "Total disc replacement in lumbar spine: s systematic review of the literature". Springer-Verlag, Eur Spine J, PP. S439-S447, 2006.

[41] Fuhrmann, G., Gross, U., Kaden, B., Schmitz, H., Fritz, T., Kranz, C., Medizinische, M., "Intervertebral Disc Endoprosthesis". United States patent, 1989.

G

[42] Galbusera, F., Bellini, C. M., Brayda-Bruno, M., Fornari, M., "Biomechanical studies on cervical total disc arthroplasty: A literature review". ELSEVIER, Clinical Biomechanics 23, pp. 1095-1104, 2008.

[43] Gamradt, S. C., Wang, J. W., "Lumbar disc arthroplasty". ELSEVIER, The spine Journal 5, pp. 95-103, 2005.

[44] Gatton, M. L., Pearcy, M. J., Pettet, G. J., "Computational model of the lumbar spine musculature: Implications of spinal surgery". ELSEVIER, Clinical Biomechanics 26, 116-122, 2011.

[45] Graaff, Van De, "Human Anatomy", sexta edição. The McGraw-Hill companies, 2001.

[46] Gulbenkian, Gonçalo, "Optimização de topologia de estruturas aplicada a guardas de segurança rodoviária", Faculdade de ciências e tecnologia – Universidade Nova de Lisboa, 2012.

H

[47] Ha, S. K, "Finite element modeling of multi-level cervical spinal segments (C3-C6) and biomechanical analysis of an elastomer-type prosthetic disc". ELSEVIER, Medical Engineering & Physics 28, pp. 534-541, 2006.

[48] Harms, J., "Spine Surgery Information portal". Klinikum Karlsbad-Langensteinbach, 2001.

[49] Hedman, T. P, Kostuik, J. P., Fernie, R. G., Maki, B. E., "Artificial spinal disc". United States Patent, 1987.

[50] Heth, J. A., Hitchon, P. W., Goel, V. K., Rogge, T. N., Drake, J. S., Torner, J. C., "A Biomechanival Comparation Between Anterior and Transverse Interbody Fusion Cages". Lippincott Williams & wilkins, Inc., SPINE Volume 26, Number 12, pp. E261-E267, 2001.

[51] Hojo, Y., Kotani, Y., Ito, M., Abumi, K., Kadosawa, T., Shikinami, Y., Minami, A., "A biomechanical and histological evaluation of a bioresorbable lumbar interbody fusion cage". ELSEVIER, Biomaterials 26, pp. 2643-2651, 2005.

[52] Horak, Z, Tichy, P., Koukalova, J., Sedlacek, R., "Artificial Intervertebral disc".Poster session 1/spine, Journal of Biomechanics 40 (S2), 2007.

Ī

[53] Ivancic, P. C., Coe, M. P., Ndu, A. B., Tominaga, Y., Carlson, E. J., Rubin, W., Panjabi, M. M., "Dynamic mechanical properties of intact human cervical spine ligaments". ELSEVIER, The Spine Journal, pp. 659-665, 2007.

J

[54] Jonbergen, H. W., Spruit, M., Anderson, P. G., Pavloc, P. W., "Anterior cervical interbody fusion with a titanium box cage: early radiological assessment of fusion and subsidence". ELSEVIER, The spine journal 5, pp. 645-649, 2005.

[55] Jones, A. C., Wilcox, R. K., "Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis". ELSEVIER, Medical Engineering & Physics 30, pp. 1287-1304, 2008.

[56] Jost, B., Cripton, P. A., Lund, T., Oxland, T. R., Lippuner, K., Jaeger, P., Nolte L. P., "Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density". Springer-Verlag, Eur Spine j (1998), pp. 132-141, 1998.

<u>K</u>

[57] Kalichman, L., "The etiology of intervertebral disc degeneration".International Bone & Mineral Society, pp. 388-405, 2010.

[58] Kandziora, F., Pflugmacher, R., Schafer, J., Born, C., Duda G., Haas, N. P., Mittlmeier, T., "Biomechanical Comparision of Cervical Spine Interbody Fusion Cages". Lippincott Williams & Wilkins, Spine Volume 26, Number 17, pp. 1850-1857, 2001.

[59] Kandziora, F., Pflugmacher, R., Scholz, M., Eindorf, T., Schnake. K. J., Haas, N.
P., "Bioabsorbable Interbody Cages in a Sheep Cervical Spine Fusion Model". Lippincott
Williams & Wilkins, Inc., Spine Volume 29, Number 17, pp. 1845-1855, 2004.

[60] Kang, H., Lin, C., Hollister, S. J., "Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity". Medical and Bioengineering application, Struct multidisc optim (2010) 42, pp. 633-644, 2010.

[61] Keller, T. S., Colloca, C. J., Harrison, D. E., Harrison, D. D., Janik, T, J, "Influence of spine morphology on intervertebral disc loads and stresses in asymptomatic adults: "implications for the ideal spine". ELSEVIER, The spine Journal 5, pp. 297-309, 2005.

[62] Kim, P. K., Branch, L. C., "The lumbar degenerative disc: Confusion, mechanics, management". Lippincott Williams & wilkins, Clinical Neurosurgery, volume 53, 2006.

[63] Knowles, L. F., Dodge, F., "Apparatus for the treatment of the spinal column". Application march 26, 1952.

[64] Kumar, N., Judith, M. R., Kumar, A., Mishara, V., Robert, M. C., "Analysis of Stress Distribution in Lumbar Interbody Fusion". Lippincott Williams & Wilkons, Inc., Spine Volume 30, Number 15, pp. 1731-1735, 2005.

[65] Kumaresan, S., Yoganandan, N., Pintar, F. A., "Finite element analysis of the cervical spine: a material property sensitivity study". ELSEVIER, Clinical Biomechanics 14, pp. 41-53, 1999.

[66] Kumaresan, S., Yoganandan, N., Pintar, F. A., Maiman, D. J., "Finite element modeling of the cervical spine: role of intervertebral disc under axial and eccentric loads". ELSEVIER, Medical Engineering & Physics 21, pp. 689-700, 1999.

[67] Kurutz, M., Oroszváry, L., "Finite element analysis of weightbath hydrotraction treatment of degenerated lumbar spine segments in elastic phase". ELSEVIER, Journal of Biomechanics 43, pp. 433-441, 2010.

L

[68] Latridis, J. C., Gwynn, I., "Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus". ELSEVIER, Journal of Biomechanics 37, pp. 1165-1175, 2004.

[69] Lee, K. C., Goel, V. K., "Artificial disc prosthesis: design concepts and criteria". ELSEVIER, The Spine Journal 4, pp. 209S-218S, 2004.

[70] Lewia, G., Xu, J., "Biomechanical effects of autonomous augmentation on the adjacent unaugmented vertebral bodies: influence of the number of functional spinal units in a finite element model". Società Italiana Biomateriali, Journal of Applied Biomaterials & Biomechanics, Vol. 6 no.3, pp. 144-155, 2008.

[71] Li, Y., Lewis, G. "Association between extent of simulated degeneration of C5-C6 disc and biomechanical parameters of a model of the full cervical spine: a finite element analysis study". Società Italiana Biomateriali, J. Appl Biomater Biomech , vol. 8 no.3, pp. 191-199, 2010.

[72] Lin, C., Hsiao, C., Chen, P., Hollister, S. J., "Interbody Fusion Cage Design Using Intergrated Global Layout and Local Microstructure Topology Optimization". Lippincott Williams & Wilkins, Inc., Spine Volume 29, Number 16, pp. 1747-1754, 2004.

[743] Lin, C., Hsiao, C., Chen, P., Hollister, S. J., "Mechanical Performance of conventional threaded cage designs and interbody fusion cages designed by integrated global and local topology optimization". Summer Bioengineering Conference, 2003.

[74] Link, H. D., McAfee, P. C., Pimenta, L., "Choosing a cervical disc replacement". ELSEVIER, The spine journal 4, pp. 294S-302S, 2004.

[75] Little, J. P., Adam, C. J., Evans, J. H., Pettet, G. J., Pearcy M. J., "Nonlinear finite element analysis of anular lesions in the L4/5 intervertebral disc". ELSEVIER, Journal of Biomechanics 40, pp. 2744-2751, 2007.

[76] Lopez-Espina, C. G., Amirouche, F., Havalad, V., "Multilevel Cervical Fusion and its effect on disc degeneration and osteophyte formation". Lippincott Williams & Wilkins, Inc., Spine Volume 31, Number 9, pp. 972-978, 2006.

M

[77] Malandrino, A., Planell, J. A., Lacroix, D., "Statistical factorial analysis on the poroelastic material properties sensitivity on the lumbar intervertebral disc under compression, flexion and axial rotation". ELSEVIER, Journal of Biomechanics 42, pp. 2780-2788, 2009.

[78] Mascio, V., Bellini, C. M., Galbusera, F., Raimondi, M. T., Brayda-Bruno M., Assietti, R., "Lumbar total disc replacement: A numerical study". Società Italiana Biomateriali, Journal of Applied Biomaterials & Biomechanics 2010, Vol. 8 no.2, pp. 97-101, 2010.

[79] McNally, D. S., Arridget R. G. C., "An analytical Model of intervertebral disc mechanics". ELSEVIER SCIENCE LTD, J. Biomechanics, Vol, 28, pp. 53-68, 1995.

[80] Meakin, J. R., Reid, J. E., Hukins, D. W. L., "Replacing the nucleus pulposus of the intervertebral disc". ELSEVIER, Clinical Biomechanics 16, pp. 560-565, 2001.

[81] Mow, V. C., Huiskes, Rik, "Basic Orthopaedic Biomechanics and Mechano-Biology", Terceira edição. Lippincott Williams & Wilkins, 2005. N

[82] Natarajan, R. N., Chen, B. H., An, H. S., Andersson, G. B. J., "Anterior Cervical Fusion: A finite element model study on motion segment stability including the effect of osteoporosis". Lippincott Williams & Wilkins, Inc., Spine Volume 25, Number 8, pp. 955-961, 2000.

[83] Natarajan, R. N., Williams, J. R., Andersson, G. B. J., "Recent Advances in Analytical Modeling of lumbar disc degeneration". Lippincott Williams & Wilkins, Inc., Spine Volume 29, Number 23, pp. 2733-2741, 2004.

[84] Nerurkar, N. L., Elliott, D. M., Mauck, R. L., "Mechanical design criteria for the intervertebral disc tissue engineering". ELSEVIER, Journal of Biomechanics 43, pp. 1017-1030, 2010.

[85] Ng, H. W., Teo, E. C., Lee, V. S., "Statistical factorial analysis on the material property sensitivity of the mechanical responses on the C4-C6 under compression, anterior and posterior shear". ELSEVIER, Journal of Biomechanics 37, pp. 771-777, 2004.

[86] Noailly, J., Lacroix, D., Planell, J. A., "Finite element study of a Novel Intervertebral Disc substitute". Lippincott Williams & Wilkins, Inc., Spine Volume 30, Number 20, pp. 2257-2264, 2005.

[87] Noailly, J., Wilke, H., Planell, J. A, Lacroix, D., "How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process". ELSEVIER, Journal of Biomechanics 40, pp. 2414-2425, 2007.

[88] Nordin, M., Frankel, V. H., "Basic Biomechanics of the Musculoskeletal System", Terceira edição. Lippincott Wiliiams & Wilkons, 2001.

[89] Nowak, M., "On some properties of bone functional adaptation phenomenon useful in mechanical design". Acta of Bioengineering and Biomechanics, Vol. 12, No. 2, 2010.
[90] Nuckley, D. J., Ching, R. P., "Developmental biomechanics of the cervical spine:

Tension and compression". ELSEVIER, Journal of Biomechanics, pp. 3045-3054, 2006.

0

[91] Osvalder, A. L., Neumann, P., Lovsund, P., Nordwall A., "Ultimate strength of the lumbar spine in flexion – An in vitro Study". J. Biomechanics Vol. 23, No.5, pp. 453-460, 1990.

<u>P</u>

[92] Palomar, A. P., Calvo, B., Doblaré, M., "An accurate finite element model of the cervical spine under quasi-static loading". EISEVIER, Journal of Biomechanics 41, pp. 523-531, 2008.

[93] Partee, B., Hollister, S. J., Das, S., "Selective Laser Sintering of Polycaprolactone Bone Tissue Engineering Scaffolds". Mechanical and Biomedical Engineering Departments, University of Michigan, Ann Arbor, MI 48109-2125, U.S.A., 2005.

[94] Patil, A. A., Dak, N., "Artificial intervertebral disc". United States patent, 1980.

[95] Peck, S. R., "Atlas of the Human Anatomy for the artist". OXFORD UNIVERSITY PRESS, 1979.

[96] Pisharodi, M., "Artificial Spinal Prosthesis". United States Patent, 1991.

[97] Pisharodi, M., "Rotating, Locking Intervertebral Disc Stabilizer and Applicator". United States Patent, 1999.

[98] Polikei, A., Ferguson, S. J., Nolte, L. P., Orr, T. E., "Factors influencing stresses in the lumbar spine after the insertion of the intervertebral cages: finite element analysis.".Eur Spine J, pp: 413-420, 2003.

[99] Polikeit, A., Ferguson, S. J., Nolte, L. P., Orr, T. E., "The importance of the endplate for interbody cages in the lumbar spine". Eur Spine J, pp. 556-561, 2003.

[100] Potvin, J. R., Norman, R. W., McGill, S. M., "Reduction in anterior shear forces on the L4/L5 disc by the lumbar musculature". Clinical Biomechanics, pp. 88-96, 1991.

<u>Q</u>

[101] Qiu, T., Teo, E., Lee, K., Ng, H., Yang, K., "Validation of T10-T11 Finite Element Model and Determination of Instantaneous Axes of Rotations in three anatomical planes". Lippincott Williams & Wilkins, Inc., Spine Volume 28, Number 24, pp. 2694-2699, 2003.

<u>R</u>

[102] Rigutti, A., Sayalero, M., Andriullu, A. G., Ghermana, A. A., Cetverikova, O. A., Albisetti, E. e Mannuci, B., "Atlas ilustrado de anatomia" (título original: "Atlante di

anatomia"), Giunti Gruppo Editoriale, Firenze-Milano. Editado em Portugal por Girassol Eds, Lda, 2008.

[103] Ross, E. R. S., "Revision in artificial disc replacement". ELSEVIER, The spine Journal 9, pp. 773-775, 2009.

[104] Ruberté, L. M., Natarajan, R. N., Andersson, G. Bj., "Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments – A finite element model study". ELSEVIER, Journal of Biomechanics 42, pp. 341-348, 2009.

[105] Ruth, W. J., "Atlas of Common Subluxations of the Human Spine and Pelvis". CRC Press Boca Raton New York, 1997.

<u>S</u>

[106] Saito, E., Kang, H., Taboas, J. M. Diggs, A., Flanagan, C. L., Hollister, S. J., "Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications". J. Mater Sci: matter med 21: 2371-2383, 2010.

[107] Scholten, P. J. M., Veldhuizen, A. G., Grootenboer, H. J., "Stability of the human spine: a biomechanical study". Clinical Biomechanics 3, pp. 27-33, 1988.

[108] Schultz, D. S., Rodriguez, A. G., Hansma, P. K, Lotz, J. C., "Mechanical Profiling of intervertebral discs". ELSEVIER, Journal of Biomechanics 42, pp. 1154-1157, 2009.

[109] Seeley, R. R., Stephens, T. D., Tate, P., "Anatomia e fisiologia", sexta edição (título original: "Anatomy & Physiology"). McGraw-Hill Higher Education, 2003.

[110] Sekhon, L. H. S., Ball, J. R., "Artificial cervical disc replacement: Principles, types and techniques". Neurology India, Vol 53, Issue 4, 2005.

[111] Shikinami, Y., Kawabe, Y., Yasukawa, k., Tsuta, K., Kotani, Y., Abumi, K., "A biomimetic artificial intervertebral disc system composed of a cubic three-dimensional fabric". ELSEVIER, The Spine Journal 10, pp. 141-152, 2010.

[112] Shimamoto, N., Cunningham, B. W., Dmitriev, A. E., Minami, A., McAfee, P. C.,"Biomechanical Evaluation of stand-alone interbody Fusion Cages in the cervical spine".Spine, volume 26, number 19, pp. E432-E436, 2001.

[113] Shirazi-Adl, A., "Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element". ELSEVIER, Journal of Biomechanics 39, pp. 267-275, 2006. [114] Shirazi-Adl, A., "Nonlinear stress analysis of the whole lumbar spine in torsion – Mechanics of facet articulation". Pergamon, J. Biomechanics, Vol. 27, No. 3, pp. 289-299, 1994.

[115] Sigmund, O., "A 99 line topology optimization code written in Matlab". Struct Multidisc Optim 21, 120-127, Springer-Verlag 2001.

[116] Smit, T. H., Muller, R., Dijk, M., Wuisman, P. I. J. M., "Changes in Bone Architecture During Spinal Fusion: Three Years Follow-up and the Role of Cage Stiffness". Lippincott Williams & Wilkins, Inc., Spine Volume 28, Number 16, pp. 1802-1809, 2003.

[117] Spenciner, D., Greene, D., Paiva, J., Palumbo, M., Crisco, J., "The multidirectional bending properties of the human lumbar intervertebral disc". ELSEVIER, The spine journal 6, pp. 248-257, 2006.

[118] Steffen T., Tsantrizos, A., Irmgard, F. Aebi, M., "Cages: Design and concepts". Springer-Verlag, Eur Spine, pp. S89-S94 2000.

[119] Stoia, D. I., Toth-Tascau, M., "Modeling and manufacturing of an artificial intervertebral disc". Annals of DAAAM, 2009.

[120] Stokes, Ian A. F., "Mechanical function of facet joints in the lumbar spine". Clinical Biomechanics, pp. 101-105, 1988.

T

[12] Taksali, S., Grauer, J. N., Vaccaro, A. R., "Material considerations for the intervertebral disc replacement implants". ELSEVIER, The Spine Journal 4, pp. 231S-238S, 2004.

[122] Tanaka, N., An, H. S., Lim, T., Fujiware, A., Jeon, C., Haughton, V. M., "The relationship between disc degeneration and flexibility of the lumbar spine". ELSEVIER, The Spine Journal 1, pp. 47-56, 2001.

[123] Thompson, R. E., Pearcy, M. J., Barker, T. M., "The mechanical effects of intervertebral disc lesions". ELSEVIER, Clinical Biomechanics 19, pp. 448-455, 2004.

[124] Tovar, A., Gano, S. E., Mason, J. J., Reanud, J. E., "Optimum design of an interbody implant for lumbar spine fixation". ELSEVIER, Advances in Engineering software 36, pp. 634-642, 2005.

[125] Troup, J. D. G., "Biomechanics of the lumbar spinal canal". Clinical Biomechanics, pp.31-43, 1986.

[126] Tsantrizos, A., Andreou, A., Aebi, M., Steffen, T., "Biomechanical stability of five stand-alone anterior lumbar interbody fusion contructs". Springer-Verlag, Eur Spine J.,pp. 14-22, 2000.

[127] Tsuang, Y., Chiang, Y., Hung, C., Wei, H., Huang, C., Cheng, C., "Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation – A finite element study". ELSEVIER, Medical Enginnering & Psysics 31, pp. 565-570, 2009.

V

[128] Vaccaro, A. R., Singh, K., Haid, R., Kitchel, S., Wuisman, P., Taylor, W., Branch, C., Garfin, S., "The use of bioabsorbable implants in the spine". ELSEVIER, pp. 227-237, 2003.

[129] Vadapalli, S., Robon, M., Biyani, A., Sairyo, K., Khandha, A., Goel, V. K.,
"Effect of Lumbar Interbody Cage Geometry on Construct Stability: A Cadaveric Study".
Lippincott Williams & Wilkins, Inc., Spine Volume 31, Number 19, pp. 2189-2194,
2006.

[130] Van der Meulen M.C.H. and Huiskes R. (2002), Why Mechanobiology? A Survey article. Journal of Biomechanics, 35: 401-414

[131] Vialle, E. N., Vialle, L. R. G., Filho, U. B., "Artroplastia da coluna vertebral. Estudo prospectivo com seguimento mínimo de dois anos". Coluna/columna, pp.376-479, 2008.

W

[132] White, A. A., Panjabi, M. M., "Clinical Biomechanics of the Spine". J.B. L IPPINCOTT COMPANY, 1990.

Y

[133] Yao, J., Turteltaub, S. R., Ducheyne, P., "A three-dimensional nonlinear finite element analysis of the mechanical behavior of tissue engineered intervertebral discs under complex loads". ELSEVIER, Biomaterials 27, pp. 377-387, 2006.

[134] Yoganandan, N, Kumaresan, S., Pintar, F. A., "Biomechanics of the cervical spine part 2. Cervical spine soft tissue responses and biomechanical modeling". ELSEVIER, Clinical Biomechanics 16, pp. 1-27, 2001. [135] Yoganandan, N., Kumaresan, S. C., Voo, L., Pintar, F. A., Larson, S. J., "Finite element modeling of the C4-C6 cervical spine unit". ELSEVIER, Med. Eng. Phys. Vol 18, No.7, pp. 569-574, 1996.

Ζ

[136] Zander, T., Rohlmann, A., Bergmann, G., "Influence of different artificial disc kinematics on spine biomechanics". ELSEVIER, Clinical Biomechanics 24, pp. 135-142, 2009.

[137] Zander, T., Rohlmann, A., Calisse, J., Bergmann, G., "Estimation of muscle forces in the lumbar spine during upper-body inclination". ELSEVIER, Clinal Biomechanics 16 Supplement No. 1, pp. S67-S80, 2001.

[138] Zavarsek, S., Vu, T., Bryan, E., King S., Johnston, R., Abdulwadud, O., Parkhill, A., Harris, A., Green S., Mitchell A., "Artificial intervertebral disc replacement" (Total disc arthroplasty). Commonwealth of Australia, 2006.

[139] Zdeblick, T. A., Phillips, F. M., "Interbody Cage Devices". Lippincott Williams& Wilkins, Inc., Spine Volume 28, Number 15S, pp. S2-S7, 2003.

[140] Zee, M., Hansen, L., Wong, C., Rasmussen, J., Simonsen, E. B., "A generic detailed rigid-body lumbar spine model". ELSEVIER, Journal of Biomechanics 40, pp. 1219-1227, 2007.

[141] Zhang, Q. H., Teo, E. C., Ng, H. W., Lee, V. S., "Finite element analysis of moment-rotation relationships for human cervical spine". ELSEVIER, Journal of Biomechanics 39, pp. 189-193, 2006.

[142] Zhang, Q., Teo, E. C., "Finite element application in implant research for treatment of lumbar degenerative disc disease". ELSEVIER, Medical Engineering & physics 30, pp. 1246-1256, 2008.

[143] Zhong, Z., Wei, S., Wang, J., Feng, C., Chen, C., yu, C., "Finite element analysis of the lumbar spine with a new cage using a topology optimization method". ELSEVIER, Medical Engineering & Physics 28, pp. 90-98, 2006.

[144] Zhu, D., Gu, G., Wu, W., Gong, H., Zhu, W., Jiang, T., Cao, Z., "Micro-structure and mechanical properties of annulus fibrous of the L4-L5 and L5-S1 intervertebral discs". ELSEVIER, Clinical Biomechanics 23, pp. S74-S82, 2008.

[145] Zhu, Z., Shen, Q., "The research of Artificial Cervical Disc Replacement". ELSEVIER, Jorunal of Nanjing Medical University, 22, pp. 335-337, 2008.

[146] Zohdi, T. I., Wriggers, P., "Introduction to Computational Micromechanics". Springer, 2004.

Sites

[147] Spine Universe, Junho de 2011, <<u>http://www.spineuniverse.com</u>>.

[148] FreePatentsOnline.com, Free Patents Online all the inventions of mankind, Junho de 2011, < http://www.freepatentsonline.com>. (site de pesquisa de periódicos)

[149] QUIROPRAXIA, Corporal Clínica de Massoterapia o poder das mãos , Junho de 2011, < http://www.poderdasmaos.com>.

[150] Montenegro, H., ITC - Instituto de Tratamento da Coluna Vertebral, Junho de 2011, ht

[151] Ramalho, L., dor lombar a "dor nas costas", Junho de 2011, < http://www.dorlombar.com/>.

[152] Neves, L. F. C., Ortopedia madeira, Junho de 2011, <<u>http://www.ortopediamadeira.org</u>/>.

[153] ABC da SAÚDE Informações Médicas Ltda., ABC da saúde, Junho de 2011, <<u>http://www.abcdasaude.com.br</u>/>.

[154] KITA (Korea internacional trade association), tradecorea, , Junho de 2011, <<u>http://www.tradekorea.com></u>

[155] Bruyn, A., BONE SA, Junho 2011, <<u>http://www.bonesa.org.za</u>>.

[156] Burton Report 2000-2011, The Burton Report, Junho de 2011, < http://www.burtonreport.com/ >.

[157] CENTRO MÉDICO DA COLUNA VERTEBRAL: Escoliose, Hérnia Discal, Lombalgia, Dor Lombar..., Março de 2012, <<u>http://centromedicodacoluna.blogspot.com/</u>>.

[158] Espondilite Anquilosante, Março de 2012, http://saude.divulgueconteudo.com/221992-espondilite-anquilosante>.

[159] Hérnia discal, Março de 2012, <<u>http://www.instituto-</u> camoes.pt/glossario/Textos/Medicina/HTM/laminectomia.html>

[160] A resposta a todas as suas dúvidas sobre saúde, Março de 2012, <<u>http://www.criasaude.com.br/</u>>.

[161] Just another WordPress.com site, Março de 2012, <<u>http://myacsmprep.wordpress.com/</u>>.

[162] Vertebrados, Março de 2012, <<u>http://pt.wikipedia.org</u>>.

[163] Pilates Botucatu, Março de 2012, <<u>http://pilatesbotucatu.com.br/wp/</u>>.

[164] The Journal of Bone and Joint Surgery, Março de 2012, <<u>http://www.jbjs.org/</u>>.

[165] Springerimages, Março de 2012, <<u>http://www.springerimages.com/</u>>.

[166] Urso, Mr. Paulo S D', Março de 2012, <<u>http://www.pauldurso.com/</u>>.

[167] Wheeless, Textbook of Orthopaedics, Março de 2012, <<u>http://www.wheelessonline.com/></u>.

[168] Ortopedia, traumatologia, Março de 2012, br/>.

[169] Boa saúde, Março de 2012, <<u>http://boasaude.uol.com.br/></u>.

[170] Lonestar – Laboratory Swine, Março de 2012, <<u>http://lonestarswine.com/</u>>.

ANEXOS A

Referência	Parte a que se refere	Variáveis em estudo	Variação dos valores de momentos	Variação dos valores das forças
			[N.m]	[N]
92	Curva cervical C1-C7	Momentos, forças, rotações	-2,5 a 2.5	50 (compressão da coluna)
33	Curva lombar L3-L4	Momentos, forças, rotações, tensões	Torção = 11.45	Pré-carga = 720; Flexão posterior = 2000; Flexão anterior = 1000; Flexão lateral = 1300
35	Curva lombar - Saudável, fusão, disco artificial.	Mobilidade, forças, tensões		
29	Disco intervertebral	Deformação (mm), Rotação		
141	Curva cervical	Rotação	1	50
67	Curva lombar	Tensão, alongamento, encortamento, abaulamento, forças.		Uma grande variedade de forças
35	Curva torácica e lombar	Deslocamentos, forças, momentos, tensões no disco, rotações, deformações.	1) 0 a 20; 2) 7.5	Compressão= 3000 (L1-2), 2250(L2-3), 3250 (L3-4);
87	Curva lombar L3-L4; L4-L5	Forças, rotações, tensões		
78	Curva lombar L3-L5	Rotação, tensões, momentos	-12 a 12; 0 a 10	
75	Curva lombar L4-L5	Deslocamentos, momentos	0 a 20	
127	Curva lombar - Cages	Momentos, Pressão intradiscal, tensão	0 a 12	400 (pré-carga)
16	Curva lombar - Disco artificial	Momentos, Pressão intradiscal, tensão, rotação, deslocamentos	0 a 10	0 a 1600
39	Curva lombar - Cages	Deslocamentos, momentos, forças, tensões	0 a 12	0 a 2500, deslizamento anterior= 400N

Referência	Parte a que se refere	Variáveis em estudo	Variação dos valores de momentos	Variação dos valores das forças
			[N.m]	[N]
47	Curva cervical C5-C6	Momentos e rotações	0 a 1	
126	Curva lombar - Cages	Rotações		
129	Curva lombar - Cages	Rotação, momentos.	0 a 6	
137	Curva lombar - Musculos	Rotação, Pressão intradiscal, forças.		0 a 750 N (aprox.)
104	Curva lombar - L3-S1	Rotações, momentos, tensões.	-6 a 8	
17	Disco intervertebral	Momento, força, rigidez		-100 a 1400
76	Curva cervical - Fusão	Rotação, rigidez.		
82	Curva cervical - C5-C6	Rotações, tensões	0,5/1,8	105/73
86	Curva lombar - L3-L5 (Disco artificial)	Rotações, forças, tensões		0 a 25
34	Curva lombar - Disco artificial	Forças, momentos, rotações	-10 a 2	0 a 250
101	Curva torácica - T10 e T11	Rotações, momentos	-9 a +9; -6 a +6	
133	Disco intervertebral	Forças, deslocações, Pressão intradiscal, tensões, rotações	0 a 15	0 a 3000 (ensaios no disco)
134	Curva cervical	Forças, deslocações, energias, rigidez, tensões		Varia entre uma grande variedade de valores.
66	Curva cervical	Forças, deslocações, energias, rigidez, tensões		Varia entre uma grande variedade de valores.
113	Curva lombar	Rotações, momentos, forças	20	Pré-carga: 900, 1800, 2700
136	Curva lombar - disco artificial	Momentos, rotações.	0 a 7,5	500

Tabela A2 – Valores das forças e momentos na coluna vertebral (Parte II).	

E [MPa]												Ref	erência	a bibliog	gráfic	ca									
Ligamentos	92	71	141	67	35	127	47	97	25	104	85	85	85	82	13	34	4	101	23	51	55	55	55	55	55
ALL	43,8	30	20	8	11,4	20	54,5	20	20	12,6;15,6	10	15-30	11,9	15;30		0-20	20	20	20	10	7,8/20 (12%)	20;38	7,8;22,4	20	11,9
PLL	40,6	20	20	10	9,12	20	20	70	20	27,1;40;31,6	20	10-20	12,5	10;20		0-20	20	20	70	10	10/20 (11%)	70;20	10;7	20	12,5
ISL	4,9			5	4,56	12	1,5	28	11,6	4,15;11,4	3	4-8	3,4	4;10		0-12	10	11,6	20	10	10/11,6 (14%)	28;35,5	10;14,1	10	3,4
TL	135	20		5		59			58,7	125;313					86					10	10/58,7 (18%)	50;10	10;0,6		3,4
AL	5	5		5																					
ApL		20		5																					
NL			20	5																					
LF	31			5	5,7	19,5	1,5	50	19,5	24;40;36	50	5-10	2,4	5;10		0-19,5	10	19,5	50	10	15/19,5 (6,2%)	50/60	17;14,1	10	2,4
SSL				5	8,55	15		28	15	4,15;11,4	3	4-8	3,4			0-15	10	15	28	10	8/15 (20%)	28;35,5	8;10,5	10	3,4
ITL				5	11,4			50								0-58,7	10	11,6	28						
CL				5	22.8		20	20	32.9	7.5:12.7	20	7-30	7.7	7.3		0-33	10	32.9	50	10	7,5/32,9 (25%)	20:40	7.5:10.5	10	7.7

Tabela A3 – Módulo de elasticidade de alguns ligamentos da coluna vertebral.

Tabela A4 – Coeficiente de *Poisson* de alguns ligamentos da coluna vertebral.

ν											Refe	erência	a bibli	ográfica	ì										
Ligamentos	92	71	141	67	35	127	47	97	25	104	85	85	85	82	13	34	4	101	23	51	55	55	55	55	55
ALL		0,3	0,3	0,35	0,4	0,3		0,3						0,3		0,3	0,4		0,3						
PLL		0,3	0,3	0,35	0,4	0,3		0,3						0,3		0,3	0,4		0,3						
ISL				0,35	0,4	0,3		0,3						0,3		0,3	0,3		0,3						
TL	0,4	0,3		0,35		0,3		0,3							0,016										
AL	0,4	0,3		0,35																					
ApL		0,3	0,3	0,35																					
NL				0,35																					
LF				0,35	0,4	0,3		0,3						0,3		0,3	0,3		0,3						
SSL				0,35	0,4	0,3		0,3								0,3	0,3		0,3						
ITL				0,35	0,4											0,3	0,3		0,3						
CL				0,35	0,4			0,3						0,3		0,3	0,3		0,3						

									Refer	ência bi	bliográf	ica							
E [MPa]		71			71		71	33	33	33		70			70		38	141	67
Corpo vertebral	E11	E11 E22 E33			E22	E33					E11	E22	E33	E11	E22	E33			
Osso cortical	9600	9600	17800					12000			9600	9600	17800				10000	12000	12000
Osso trabecular				144	99	344			100					144	99	344	100	450	150
Elementos posteriores							3500			3000								3500	3500
Pédiculo																			
Lâmina																			

Tabela A5 – Módulo de elasticidade dos componentes do corpo vertebral (Parte I).

Tabela A6 – Coeficiente de Poisson dos componentes do corpo vertebral (Parte I).

								Re	ferênc	ia bibl	iográfica								
ν		71			71		71	33	33	343		70			70		38	141	67
Corpo vertebral	v11	v22	v33	v11	v22	v33					v11	v22	v33	v11	v22	v33			
Osso cortical	0,55	0,3	0,3					0.3			0,55	0,3	0,3				0,29	0,29	0,3
Osso trabecular				0,23	0,17	0,11			0,2					0,55	0,3	0,3	0,29	0,29	0,3
Elementos posteriores							0,29			0,3								0,29	0,3
Pédiculo																			
Lâmina																			

Tabela A7 – Módulo de elasticidade dos componentes do corpo vertebral (Parte II).

								Referên	cia bil	oliogra	áfica					
E [MPa]		78		77	77	77	127		39		47	142	142	142	142	142
Corpo vertebral	E11	E22	E33					E11	E22	E33						
Osso cortical	12000			8000	8000	12000	12000	12000			10000	12000	12000	12000	12000	10000
Osso trabecular	112	112	314	140	140	250	100	112	112	314	100	100	100	100	340/112	200/140
Elementos posteriores	3500						3500	3500			3500	3500	3000	3500	3500	3500
Pédiculo																
Lâmina																

							F	Referên	cia bi	bliogr	áfica					
ν		78		77	77	77	127		39		47	142	142	142	142	142
Corpo vertebral	v11	v11 v22 v33						v11	v22	v33						
Osso cortical	0,3			0,4	0,23	0,35	0,3	0,3			0,29	0,3	0,3	0,3	0,3	0,3
Osso trabecular	0,3	0,3	0,1	0,45	0,176	0,315	0,2	0,3	0,1	0,1	0,29	0,2	0,2	0,2	0,1/0,3	0,45/0,315
Elementos posteriores	0,25						0,25	0,25			0,29	0,25	0,3	0,25	0,25	0,25
Pédiculo																
Lâmina																

Tabela A8 - Coeficiente de Poisson dos componentes do corpo vertebral (Parte II).

Tabela A9 – Módulo de elasticidade dos componentes do corpo vertebral (Parte III).

								R	eferênci	a biblio	gráfica								
E [MPa]	98	70	36	25	104	104	104	85	85	85	85	82	14	34	4	101	23	1	33
Corpo vertebral																		E11	E22
Osso cortical	12000	1200	10000	12000	12000			12000	10000	10000	10000	10000	15000	1200	12000	10000	12000	700	700
Osso trabecular	100/200	100	450	100		100		100	450	100	100	450	500	100	100	100	100	140	140
Elementos posteriores	3500			3500			3500	3000	3500	3500	3500	3500				3500	3500		
Pédiculo														3500					
Lâmina														3500					

Tabela A10 - Coeficiente de Poisson dos componentes do corpo vertebral (Parte III).

									Ref	erência l	oibliográ	ifica							
ν	98	70	36	25	104	104	104	85	85	85	85	82	14	34	4	101	23	1	.33
Corpo vertebral																		v11	v22
Osso cortical	0,2	0,3	0,3	0,3	0,3			0,3	0,3	0,29	0,29	0,3	0,2	0,3	0,3	0,3	0,3	0,45	0,315
Osso trabecular	0,3	0,3	0,3	0,2		0,2		0,2	0,25	0,29	0,29	0,2	0,2	0,3	0,2	0,2	0,2	0,45	0,315
Elementos posteriores	0,4			0,25			0,25	0,3	0,25	0,29	0,29	0,25				0,25	0,25		
Pédiculo														0,25					
Lâmina														0,25					

						Referê	ncia bib	liográfic	a					
E [MPa]	133	55	55	55	55	55	55	55	55	55	55	55	135	18
Corpo vertebral	E33													
Osso cortical	1000	12000	12000	8000- 14000	12000	12000	22000	10000	10000	5000	12000	12000	10000	12000
Osso trabecular	200	100	100	375-2000	100	340	200	200	750	74	100	340	100	3000
Elementos posteriores		1000	3500		3500	3500	3500	3500		5000	3500	3500	3500	
Pédiculo														
Lâmina														

Tabela A11 - Módulo de elasticidade dos componentes do corpo vertebral (Parte IV).

Tabela A12 – Coeficiente de Poisson dos componentes do corpo vertebral (Parte IV).

	Referência bibliográfica															
ν	133	55	55	55	55	55	55	55	55	55	55	55	135	18		
Corpo vertebral	v33															
Osso cortical	0,315												0,29	0,3		
Osso trabecular	0,315												0,29	0,2		
Elementos posteriores													0,29			
Pédiculo																
Lâmina																
E [MPa]								R	eferê	ncias	bibliog	gráficas				
----------------------------	-----------------------	-----	----	-----	-----	-----	-----	------	-------	-------	---------	-------------	-------	----	-----	------
Disco intervertebral	Componente	71	71	71	33	12	33	70	70	38	22	67	67	35	78	77
Núcleo pulposo			1				0,1			3,4	1	1/0,4	1/0,4		1	
Cartilagem da plataforma																5
Parte rigida da plataforma				500				1000			500	100	100			1000
	Substância viscosa	4,2			4,2				8	3,4	3,4	4/0,4	4/0,4		0,7	
	Exterior	450				500						500/400/300				
	Segunda	450				485						500/400/301				
Fibras do anel fibroso	Terceira	450				485						500/400/302				
	Quarta	450				420						500/400/303				
-	Quinta	450				360						500/400/304				
	Interior	450				360						500/400/305				

Tabela A13 – Módulo de elasticidade dos componentes do Disco intervertebral (Parte I).

Tabela A14 – Coeficiente de Poisson dos componentes do Disco intervertebral (Parte I).

ν								Refer	ências I	oibliog	ráficas					
Disco intervertebral	Componente	71	71	71	33	12	33	70	70	38	22	67	67	35	78	77
Núcleo pulposo			0,499				0,499			0,49	0,49	0,49	0,499	0,495	0,499	0,17
Cartilagem da plataforma																0,17
Parte rigida da plataforma				0,4				0,4				0,4	0,4			0,3
0 1	Substância viscosa	0,45			0,45			0,4	0,45	0,4	0,4	0,45	0,45	0,45	0,45	0,17
	Exterior	0,3				0,3			0,45	0,4	0,4					
	Segunda	0,3				0,3			0,45	0,4	0,4					
Fibras do anel fibroso	Terceira	0,3				0,3			0,45	0,4	0,4					
	Quarta	0,3				0,3			0,45	0,4	0,4					
-	Quinta	0,3				0,3			0,45	0,4	0,4					
	Interior	0,3				0,3			0,45	0,4	0,4					

E [MPa]							Ref	erênci	as biblic	gráfic	cas							
Disco intervertebral	Componente	127	39	47	142	142	142	142	98	98	64	36	25	104	104	85	85	18
Núcleo pulposo		1	1	1	1	0,1	1	1					1		1			1
Cartilagem da plataforma																		
Parte rigida da plataforma		3000		500	24	360-550	357,5-550		1000			1000	24	24		300	2000	
	Substância viscosa		4,2	4,2	4,2	4,2	4,2	4,2			5		4,2			2,5	4,2	
	Exterior	50	500	450	450	360-550	357,5-550	500		550			450			110	450	30
	Segunda	50	500	450	450	360-551	357,5-551	500		495			450			110	450	30
Fibras do anel fibroso	Terceira	50	500	450	450	360-552	357,5-552	500		440			450			110	450	30
	Quarta	50	500	450	450	360-553	357,5-553	500		420			450			110	450	30
_	Quinta	50	500	450	450	360-554	357,5-554	500		385			450			110	450	30
	Interior	50	500	450	450	360-555	357,5-555	500		360			450			110	450	30

Tabela A15 – Módulo de elasticidade dos componentes do Disco intervertebral (Parte II).

Tabela A16 – Coeficiente de Poisson dos componentes do Disco intervertebral (Parte II).

ν			Referências bibliográficas															
Disco intervertebral	Componente	127	39	47	142	142	142	142	98	98	64	36	25	104	104	85	85	18
Núcleo pulposo		0,49	0,499	0,5	0,499	0,5	0,4999						0,499		0,49			0,49
Cartilagem da plataforma																		
Parte rigida da plataforma		0,25		0,4	0,4	0,3		0,499	0,4			0,3	0,4	0,4		0,3	0,2	
C 1	Substância viscosa	0,45	0,45	0,5	0,45	0,45	0,45	0,25			0,49		0,45			0,45		
	Exterior	0,45	0,3	0,3		0,3	0,3	0,3			0,49		0,3					0,45
	Segunda	0,45	0,3	0,3		0,3	0,3	0,3			0,49		0,3					0,45
Fibras do anel fibroso	Terceira	0,45	0,3	0,3		0,3	0,3	0,3			0,49		0,3					0,45
-	Quarta	0,45	0,3	0,3		0,3	0,3	0,3			0,49		0,3					0,45
	Quinta	0,45	0,3	0,3		0,3	0,3	0,3			0,49		0,3					0,45
	Interior	0,45	0,3	0,3		0,3	0,3	0,3			0,49		0,3					0,45

E [MD ₀]			Referências bibliográficas																	
			n	1	r	1	n	Kele	Tenetas	UIUIIO	giancas	1	r	r —	ı —	r	r			
Disco intervertebral	Componente	85	85	82	4	34	101	23	133	133	55	55	55	55	55	55	55	55	55	135
Núcleo pulposo		3,4	1	3	1	1,00E-06	1	1			4	1	2		1		1	1,56	1	3,4
Cartilagem da plataforma									23,8											
Parte rigida da plataforma		500	200	2000			500	25												500
Substância viscosa	3,4	3,4	4,2	3	4,5	4,2	4,2		1	2	4,2	8	4			4	2,56	4,2	3,4	
	Exterior			450	30	357-550	500	500		500	500	145	550		35	7,5	450		500	
	Segunda			450	30	357-551	500	500		500	500	145	550		35	7,5	450		500	
Fibras do anel fibroso	Terceira			450	30	357-552	500	500		500	500	145	550		35	7,5	450		500	
	Quarta			450	30	357-553	500	500		500	500	145	550		35	7,5	450		500	
-	Quinta			450	30	357-554	500	500		500	500	145	550		35	7,5	450		500	
	Interior			450	30	357-555	500	500		500	500	145	550		35	7,5	450		500	

Tabela A17 – Módulo de elasticidade dos componentes do Disco intervertebral (Parte III).

Tabela A18 – Coeficiente de *Poisson* dos componentes do Disco intervertebral (Parte III).

ν							Refer	ências	bibliog	ráficas										
Disco intervertebral	Componente	85	85	82	4	34	101	23	133	133	55	55	55	55	55	55	55	55	55	135
Núcleo pulposo		0,49	0,499	0,499	0,5	0,5	0,499	0,1												0,49
Cartilagem da plataforma									0,4											
Parte rigida da plataforma		0,4	0,4	0,4			0,25													0,4
	Substância viscosa	0,4	0,4	0,45	0,45	0,45	0,45	0,1		0,48										0,4
	Exterior			0,3	0,016	0,3-0,5		0,3		0,35										0,4
	Segunda			0,3	0,016	0,3-0,6		0,3		0,35										0,4
Fibras do anel fibroso	Terceira			0,3	0,016	0,3-0,7		0,3		0,35										0,4
	Quarta			0,3	0,016	0,3-0,8		0,3		0,35										0,4
	Quinta			0,3	0,016	0,3-0,9		0,3		0,35										0,4
	Interior			0,3	0,016	0,3-0,10		0,3		0,35										0,4

Parâmetros de optimização da coluna vertebral suína.

Iterações	Constr. de volume	Flexibilidade
1	0,00	339,38
2	-2,04	331,2
3	-4,41	316,44
4	-8,59	298,97
5	-5,28	291,32
6	-2,76	289,67
7	-1,6	288,85
8	-0,86	288,38
9	-0,38	288,24
10	-0,27	288,13
11	-0,21	288,07
12	-0,08	288,04
13	-0,06	288,03
14	-0,03	288,02
15	-0,04	288,01
16	-0,05	288
17	-0,02	287,99
18	0,00	287,99
19	-0,01	287,98
20	-0,01	287,98
21	-0,03	287,98
22	-0,01	287,97
23	0,00	287,97
24	0,00	287,97
25	0,00	287,97
26	0,00	287,97
27	0,00	287,97
28	0,00	287,97
29	0,00	287,97
30	0,00	287,97
31	0,00	287,97
32	0,00	287,97
33	0,00	287,97
34	0,00	287,97
35	0,00	287,97

Tabela A19 – Parâmetros de optimização da coluna vertebral suína.

Valores experimentais dos módulos de elasticidade dos provetes produzidos por SLS.

Caso	Eixo	Dimensão	E (MPa)	Desvio padrão
		2 mm	17,682	0,502
	х	3 mm	33,738	1,301
		4 mm	34,485	1,164
		2 mm	22,288	1,671
11	у	3 mm	30,441	1,315
		4 mm	34,438	1,086
		2 mm	52,028	1,115
	z	3 mm	70,169	2,607
		4 mm	73,201	2,410
		2 mm	0,000	0,000
	х	3 mm	3,095	0,246
		4 mm	6,533	3,835
		2 mm	0,000	0,000
20	У	3 mm	30,158	0,819
		4 mm	29,103	1,633
		2 mm	37,189	4,476
	Z	3 mm	47,965	1,666
		4 mm	52,645	1,512
	v	3 mm	9,636	0,317
	л	4 mm	15,462	0,314
30	v	3 mm	6,431	0,402
50	У	4 mm	14,437	0,488
	7	3 mm	16,744	1,311
	L	4 mm	24,825	1,230

Tabela A20 - Valores experimentais e os respectivos desvios padrões dos módulos de elasticidade dos provetes produzidos por SLS.

Gráficos das curvas de tensão-extensão dos materiais

Ensaio em *xx*

Ensaio em yy

Ensaio em ZZ

Parâmetros adicionais dos provetes produzidos experimentalmente

			Val	ores experimen	tais	
2 mm		Extensão à cedência	Area (mm²)	C. Total (mm)	Reacção (N)	T. de cedência (MPa)
	х	0,050	70,605	17,031	53,421	0,757
Caso 11	у	0,059	73,878	17,557	62,811	0,850
	z	0,030	71,771	16,758	106,413	1,483
	х					
Caso 20	у					
	z	0,011	70,904	16,832	30,783	0,434
	х					
Caso 30	у					
	z					
			Val	ores experimen	tais	
3 mm		Extensão à cedência	Area (mm²)	C. Total (mm)	Reacção (N)	T. de cedência (MPa)
	х	0,032	160,419	25,740	134,042	0,836
Caso 11	у	0,042	163,537	26,163	139,958	0,856
	z	0,040	164,547	25,171	341,902	2,078
	x	0,041	162,530	25,239	22,489	0,138
Caso 20	у	0,037	157,914	25,904	138,461	0,877
	z	0,038	161,273	25,148	226,419	1,404
	х	0,023	161,083	25,586	33,130	0,206
Caso 30	у	0,034	161,179	25,984	33,272	0,200
	z	0,031	162,877	25,192	68,505	0,421
			Val	ores experimen	tais	
4 mm		Extensão à cedência	Area (mm²)	C. Total (mm)	Reacção (N)	T. de cedência (MPa)
	x	0,027	288,454	34,049	240,213	0,833
Caso 11	у	0,033	283,402	34,727	255,149	0,901
	z	0,028	292,537	33,379	541,606	1,852
	х	0,024	287,666	33,790	36,221	0,126
Caso 20	у	0,037	282,909	34,630	235,772	0,834
	z	0,027	288,971	33,322	363,328	1,257
	х	0,029	288,823	34,033	112,387	0,389
Caso 30	у	0,041	284,183	34,806	126,142	0,444
	z	0,028	290,546	33,354	188,646	0,649

Tabela A21 – Valores experimentais de alguns parâmetros nos provetes produzidos por SLS.

Apresentação dos provetes para o caso 20 e 30

Figura A1. – Apresentação do provete do caso 20, para uma célula de 4mm com compressão em y. Perspectiva oblíqua, alçados e vista de topo.

Figura A2. – Apresentação do provete do caso 30, para uma célula de 4mm com compressão em y. Perspectiva oblíqua, alçados e vista de topo.

Resultados relativos aos ensaios não lineares feitos aos provetes

"Substep"	δ (mm)	Força (N)	ε (adim.)	σ (MPa)	Declive
1	0,0000	0,0000	0,0000	0,0000	0,0000
2	0,0153	2,7010	0,0005	0,0094	20,9203
3	0,0306	5,2427	0,0009	0,0183	19,6871
4	0,0481	7,9044	0,0014	0,0276	18,0393
5	0,0656	10,5074	0,0019	0,0366	17,6412
6	0,0831	13,1951	0,0024	0,0460	18,2157
7	0,1006	15,9991	0,0030	0,0558	19,0034
8	0,1181	18,9716	0,0035	0,0661	20,1459
9	0,1356	22,1318	0,0040	0,0771	21,4176
10	0,1531	25,4910	0,0045	0,0888	22,7662
11	0,1706	29,0497	0,0050	0,1013	24,1187
12	0,1881	32,8131	0,0055	0,1144	25,5057
13	0,2056	36,7686	0,0060	0,1282	26,8081
14	0,2231	40,9074	0,0066	0,1426	28,0500
15	0,2406	45,2186	0,0071	0,1576	29,2181
16	0,2581	49,7016	0,0076	0,1732	30,3832
17	0,2756	54,3531	0,0081	0,1894	31,5248
18	0,2930	59,1584	0,0086	0,2062	32,5668
19	0,3105	64,1006	0,0091	0,2234	33,4949
20	0,3280	69,1623	0,0096	0,2411	34,3050
21	0,3455	74,3290	0,0102	0,2591	35,0167
22	0,3630	79,5886	0,0107	0,2774	35,6457
23	0,3805	84,9352	0,0112	0,2960	36,2358
24	0,3980	90,3681	0,0117	0,3150	36,8205
25	0,4155	95,8847	0,0122	0,3342	37,3878
26	0,4330	101,4857	0,0127	0,3537	37,9601
27	0,4505	107,1707	0,0132	0,3735	38,5293
28	0,4680	112,9366	0,0138	0,3936	39,0771
29	0,4855	118,7764	0,0143	0,4140	39,5781
30	0,5030	124,6884	0,0148	0,4346	40,0681
31	0,5205	130,6598	0,0153	0,4554	40,4702
32	0,5380	136,6833	0,0158	0,4764	40,8227
33	0,5555	142,7458	0,0163	0,4975	41,0879
34	0,5730	148,8374	0,0168	0,5188	41,2850
35	0,5905	154,9524	0,0174	0,5401	41,4435
36	0,6014	158,7864	0,0177	0,5534	41,5742
37	0,6123	162,6256	0,0180	0,5668	41,6310

Tabela A22 – Parâmetros calculados e utilizados na análise não-linear do provete *11x4* em elementos finitos. A cinzento encontram-se os pontos de onde se obteve o módulo de elasticidade.

"Substep"	δ (mm)	Força (N)	ε (adim.)	σ (MPa)	Declive
1	0,000	0,000	0,0000	0,0000	0,0000
2	0,018	2,027	0,0007	0,0125	17,9035
3	0,036	3,655	0,0014	0,0226	14,3713
4	0,056	5,379	0,0022	0,0332	13,3205
5	0,077	7,204	0,0030	0,0445	14,1092
6	0,097	9,258	0,0038	0,0572	15,8690
7	0,117	11,568	0,0046	0,0715	17,8529
8	0,138	14,192	0,0054	0,0877	20,2725
9	0,158	17,096	0,0062	0,1057	22,4432
10	0,179	20,236	0,0070	0,1251	24,2567
11	0,199	23,636	0,0078	0,1461	26,2719
12	0,220	27,263	0,0086	0,1685	28,0299
13	0,240	31,053	0,0094	0,1920	29,2899
14	0,260	34,970	0,0102	0,2162	30,2649
15	0,281	39,009	0,0110	0,2411	31,2113
16	0,301	43,189	0,0118	0,2670	32,2971
17	0,322	47,508	0,0126	0,2937	33,3728
18	0,342	51,977	0,0134	0,3213	34,5308
19	0,363	56,628	0,0142	0,3501	35,9437
20	0,383	61,468	0,0150	0,3800	37,4006
21	0,403	66,468	0,0158	0,4109	38,6313
22	0,424	71,594	0,0166	0,4426	39,6146
23	0,444	76,816	0,0174	0,4749	40,3505
24	0,465	82,116	0,0182	0,5076	40,9514
25	0,485	87,474	0,0190	0,5407	41,4037
26	0,501	91,667	0,0196	0,5667	41,6588
27	0,517	95,866	0,0202	0,5926	41,7200
28	0,537	101,267	0,0210	0,6260	41,7290
29	0,558	106,666	0,0218	0,6594	41,7212
30	0,578	112,068	0,0226	0,6928	41,7461
31	0,599	117,477	0,0234	0,7262	41,7934
32	0,619	122,894	0,0242	0,7597	41,8584
33	0,639	128,305	0,0250	0,7932	41,8075
34	0,660	133,690	0,0258	0,8264	41,6140
35	0,680	139,037	0,0266	0,8595	41,3144
36	0,698	143,532	0,0273	0,8873	41,0030
37	0,715	147,994	0,0280	0,9149	40,6907

Tabela A23 – Parâmetros calculados e utilizados na análise não-linear do provete *11y3* em elementos finitos. A cinzento encontram-se os pontos de onde se obteve o módulo de elasticidade.

"Substep"	δ (mm)	Força (N)	ε (adim.)	σ (MPa)	Declive
1	0,000	0,000	0,0000	0,0000	0,0000
2	0,028	4,085	0,0008	0,0142	17,2340
3	0,056	7,329	0,0016	0,0255	13,6844
4	0,088	10,949	0,0026	0,0381	13,3659
5	0,120	14,967	0,0035	0,0521	14,8308
6	0,152	19,585	0,0045	0,0682	17,0488
7	0,184	24,917	0,0054	0,0867	19,6813
8	0,217	30,923	0,0064	0,1076	22,1710
9	0,249	37,523	0,0073	0,1306	24,3675
10	0,281	44,742	0,0082	0,1557	26,6466
11	0,313	52,431	0,0092	0,1825	28,3863
12	0,345	60,439	0,0101	0,2104	29,5601
13	0,377	68,707	0,0111	0,2391	30,5202
14	0,409	77,287	0,0120	0,2690	31,6735
15	0,441	86,214	0,0130	0,3001	32,9562
16	0,473	95,515	0,0139	0,3324	34,3339
17	0,505	105,232	0,0148	0,3663	35,8727
18	0,537	115,326	0,0158	0,4014	37,2624
19	0,569	125,727	0,0167	0,4376	38,3935
20	0,602	136,324	0,0177	0,4745	39,1203
21	0,634	147,053	0,0186	0,5118	39,6072
22	0,666	157,848	0,0196	0,5494	39,8501
23	0,698	168,654	0,0205	0,5870	39,8872
24	0,730	179,423	0,0214	0,6245	39,7551
25	0,762	190,156	0,0224	0,6619	39,6220
26	0,794	200,846	0,0233	0,6991	39,4637
27	0,826	211,489	0,0243	0,7361	39,2873
28	0,858	222,049	0,0252	0,7729	38,9814
29	0,890	232,471	0,0262	0,8091	38,4737
30	0,922	242,718	0,0271	0,8448	37,8278
31	0,955	252,743	0,0280	0,8797	37,0091
32	0,987	262,484	0,0290	0,9136	35,9559
33	1,019	271,857	0,0299	0,9462	34,6010
34	1,051	280,746	0,0309	0,9772	32,8173
35	1,083	289,010	0,0318	1,0059	30,5064
36	1,103	293,765	0,0324	1,0225	28,0851
37	1,123	298,102	0,0330	1,0376	25,6120

Tabela A24 – Parâmetros calculados e utilizados na análise não-linear do provete *11y4* em elementos finitos. A cinzento encontram-se os pontos de onde se obteve o módulo de elasticidade.

"Substep"	δ (mm)	Força (N)	ε (adim.)	σ (MPa)	Declive
1	0,000	0,000	0,0000	0,0000	0,0000
2	0,013	2,115	0,0008	0,0294	39,2030
3	0,026	3,996	0,0015	0,0555	34,8626
4	0,040	6,004	0,0024	0,0835	32,5591
5	0,055	8,032	0,0032	0,1117	32,8975
6	0,069	10,183	0,0041	0,1416	34,8834
7	0,084	12,521	0,0049	0,1740	37,9073
8	0,098	14,976	0,0058	0,2082	39,8114
9	0,113	17,602	0,0066	0,2447	42,5968
10	0,128	20,477	0,0075	0,2846	46,6181
11	0,142	23,772	0,0084	0,3304	53,4425
12	0,157	27,633	0,0092	0,3841	62,6067
13	0,171	31,821	0,0101	0,4423	67,9262
14	0,186	36,259	0,0109	0,5040	71,9691
15	0,200	40,977	0,0118	0,5696	76,5172
16	0,215	45,873	0,0126	0,6377	79,3939
17	0,230	50,841	0,0135	0,7067	80,5741
18	0,244	55,843	0,0144	0,7763	81,1177
19	0,259	60,880	0,0152	0,8463	81,6952
20	0,273	65,992	0,0161	0,9173	82,9034
21	0,288	71,200	0,0169	0,9897	84,4616
22	0,303	76,563	0,0178	1,0643	86,9610
23	0,317	82,156	0,0186	1,1420	90,7035
24	0,332	87,998	0,0195	1,2232	94,7575
25	0,346	93,966	0,0204	1,3062	96,7750
26	0,361	99,927	0,0212	1,3891	96,6827
27	0,375	105,827	0,0221	1,4711	95,6789
28	0,390	111,678	0,0229	1,5524	94,8876
29	0,405	117,538	0,0238	1,6339	95,0292
30	0,419	123,469	0,0246	1,7163	96,1801
31	0,434	129,505	0,0255	1,8002	97,9031
32	0,448	135,644	0,0264	1,8855	99,5549
33	0,463	141,809	0,0272	1,9712	99,9803
34	0,477	147,903	0,0281	2,0560	98,8333
35	0,492	153,874	0,0289	2,1389	96,8201
36	0,501	157,543	0,0295	2,1900	95,2116
37	0,510	161,177	0,0300	2,2405	94,2883

Tabela A25 – Parâmetros calculados e utilizados na análise não-linear do provete *11z2* em elementos finitos. A cinzento encontram-se os pontos de onde se obteve o módulo de elasticidade.

"Substep"	δ (mm)	Força (N)	ε (adim.)	σ (MPa)	Declive
1	0,000	0,000	0,0000	0,0000	0,0000
2	0,017	4,216	0,0007	0,0261	39,2068
3	0,034	8,063	0,0013	0,0500	35,7731
4	0,053	12,075	0,0021	0,0749	32,6382
5	0,073	16,073	0,0029	0,0996	32,5263
6	0,092	20,210	0,0036	0,1253	33,6658
7	0,112	24,645	0,0044	0,1528	36,0859
8	0,131	29,380	0,0051	0,1821	38,5240
9	0,151	34,318	0,0059	0,2127	40,1768
10	0,170	39,572	0,0067	0,2453	42,7473
11	0,189	45,249	0,0074	0,2805	46,1876
12	0,209	51,636	0,0082	0,3201	51,9671
13	0,228	59,082	0,0090	0,3663	60,5842
14	0,248	67,215	0,0097	0,4167	66,1715
15	0,267	75,794	0,0105	0,4699	69,8053
16	0,287	84,844	0,0112	0,5260	73,6309
17	0,306	94,385	0,0120	0,5851	77,6361
18	0,326	104,171	0,0128	0,6458	79,6163
19	0,345	114,078	0,0135	0,7072	80,6103
20	0,364	124,030	0,0143	0,7689	80,9720
21	0,384	134,020	0,0150	0,8308	81,2791
22	0,403	144,122	0,0158	0,8934	82,2005
23	0,423	154,378	0,0166	0,9570	83,4453
24	0,442	164,858	0,0173	1,0220	85,2633
25	0,462	175,701	0,0181	1,0892	88,2246
26	0,481	187,019	0,0189	1,1594	92,0909
27	0,500	198,752	0,0196	1,2321	95,4577
28	0,520	210,651	0,0204	1,3059	96,8196
29	0,539	222,519	0,0211	1,3794	96,5587
30	0,559	234,275	0,0219	1,4523	95,6553
31	0,578	245,932	0,0227	1,5246	94,8457
32	0,598	257,569	0,0234	1,5967	94,6796
33	0,617	269,299	0,0242	1,6694	95,4439
34	0,637	281,203	0,0250	1,7432	96,8512
35	0,656	293,306	0,0257	1,8183	98,4725
36	0,668	300,965	0,0262	1,8657	99,7125
37	0,680	308,661	0,0267	1,9135	100,1889

Tabela A26 – Parâmetros calculados e utilizados na análise não-linear do provete *11z3* em elementos finitos. Não possui pontos para se obter o módulo de elasticidade.

"Substep"	δ (mm)	Força (N)	ε (adim.)	σ (MPa)	Declive
1	0,000	0,000	0,0000	0,0000	0,0000
2	0,034	8,063	0,0010	0,0281	28,1185
3	0,068	15,067	0,0020	0,0525	24,4225
4	0,113	25,032	0,0033	0,0873	26,0615
5	0,159	36,460	0,0047	0,1271	29,8897
6	0,204	49,945	0,0060	0,1741	35,2671
7	0,249	67,916	0,0073	0,2368	47,0027
8	0,295	88,770	0,0087	0,3095	54,5404
9	0,340	111,593	0,0100	0,3891	59,6897
10	0,385	134,855	0,0113	0,4702	60,8407
11	0,431	158,709	0,0127	0,5534	62,3857
12	0,476	184,144	0,0140	0,6421	66,5223
13	0,522	211,642	0,0153	0,7380	71,9181
14	0,567	239,140	0,0167	0,8338	71,9171
15	0,612	266,352	0,0180	0,9287	71,1704
16	0,646	287,228	0,0190	1,0015	72,7973
17	0,680	308,660	0,0200	1,0762	74,7383

Tabela A27 – Parâmetros calculados e utilizados na análise não-linear do provete *11z4* em elementos finitos. Não possui pontos para se obter o módulo de elasticidade.

"Substep"	δ (mm)	Força (N)	ε (adim.)	σ (MPa)	Declive
1	0,000	0,000	0,0000	0,0000	0,0000
2	0,010	0,268	0,0004	0,0016	4,0180
3	0,021	0,527	0,0008	0,0032	3,8864
4	0,033	0,809	0,0013	0,0050	3,7056
5	0,045	1,084	0,0018	0,0067	3,6207
6	0,057	1,365	0,0022	0,0084	3,6869
7	0,069	1,656	0,0027	0,0102	3,8265
8	0,081	1,959	0,0032	0,0121	3,9737
9	0,093	2,276	0,0036	0,0140	4,1596
10	0,105	2,608	0,0041	0,0161	4,3647
11	0,117	2,954	0,0046	0,0182	4,5414
12	0,128	3,311	0,0050	0,0204	4,6945
13	0,140	3,679	0,0055	0,0226	4,8249
14	0,152	4,055	0,0060	0,0250	4,9443
15	0,164	4,440	0,0064	0,0273	5,0602
16	0,176	4,835	0,0069	0,0298	5,1788
17	0,188	5,238	0,0074	0,0322	5,2985
18	0,200	5,651	0,0078	0,0348	5,4237
19	0,212	6,073	0,0083	0,0374	5,5461
20	0,224	6,505	0,0088	0,0400	5,6647
21	0,236	6,944	0,0093	0,0427	5,7748
22	0,248	7,392	0,0097	0,0455	5,8789
23	0,260	7,846	0,0102	0,0483	5,9646
24	0,272	8,305	0,0107	0,0511	6,0297
25	0,284	8,769	0,0111	0,0540	6,0893
26	0,296	9,236	0,0116	0,0568	6,1321
27	0,308	9,705	0,0121	0,0597	6,1679
28	0,320	10,177	0,0125	0,0626	6,1985
29	0,332	10,652	0,0130	0,0656	6,2345
30	0,344	11,128	0,0135	0,0685	6,2573
31	0,356	11,608	0,0139	0,0714	6,3044
32	0,368	12,090	0,0144	0,0744	6,3226
33	0,379	12,573	0,0149	0,0774	6,3440
34	0,391	13,057	0,0153	0,0804	6,3666
35	0,401	13,436	0,0157	0,0827	6,3874
36	0,410	13,794	0,0161	0,0849	6,3961
37	0,418	14,153	0.0164	0.0871	6 4 1 0 4

 Tabela A28 – Parâmetros calculados e utilizados na análise não-linear do provete 20x3 em elementos finitos. A cinzento encontram-se os pontos de onde se obteve o módulo de elasticidade.

"Substep"	δ (mm)	Força (N)	ε (adim.)	σ (MPa)	Declive
1	0,000	0,000	0,0000	0,0000	0,0000
2	0,010	0,322	0,0003	0,0011	3,7175
3	0,020	0,643	0,0006	0,0022	3,7151
4	0,032	1,004	0,0009	0,0035	3,6504
5	0,044	1,356	0,0013	0,0047	3,5544
6	0,055	1,702	0,0016	0,0059	3,4944
7	0,067	2,048	0,0020	0,0071	3,5057
8	0,079	2,402	0,0023	0,0083	3,5765
9	0,090	2,764	0,0027	0,0096	3,6636
10	0,102	3,135	0,0030	0,0109	3,7500
11	0,114	3,516	0,0033	0,0122	3,8488
12	0,125	3,909	0,0037	0,0135	3,9701
13	0,137	4,314	0,0040	0,0150	4,0989
14	0,149	4,732	0,0044	0,0164	4,2217
15	0,160	5,159	0,0047	0,0179	4,3194
16	0,172	5,595	0,0051	0,0194	4,4055
17	0,184	6,037	0,0054	0,0209	4,4745
18	0,195	6,486	0,0057	0,0225	4,5353
19	0,207	6,940	0,0061	0,0241	4,5922
20	0,219	7,400	0,0064	0,0256	4,6463
21	0,230	7,864	0,0068	0,0273	4,6976
22	0,242	8,334	0,0071	0,0289	4,7516
23	0,254	8,810	0,0075	0,0305	4,8090
24	0,265	9,290	0,0078	0,0322	4,8584
25	0,277	9,776	0,0081	0,0339	4,9131
26	0,289	10,267	0,0085	0,0356	4,9604
27	0,300	10,762	0,0088	0,0373	5,0055
28	0,312	11,261	0,0092	0,0390	5,0425
29	0,324	11,761	0,0095	0,0408	5,0575
30	0,335	12,264	0,0099	0,0425	5,0865
31	0,347	12,769	0,0102	0,0443	5,1061
32	0,359	13,275	0,0105	0,0460	5,1101
33	0,370	13,781	0,0109	0,0478	5,1215
34	0,382	14,286	0,0112	0,0495	5,1085
35	0,394	14,792	0,0116	0,0513	5,1094
36	0,401	15,108	0,0118	0,0524	5,1107
37	0,408	15,422	0,0120	0,0535	5,0908

Tabela A29 – Parâmetros calculados e utilizados na análise não-linear do provete 20x4 em elementos finitos. A cinzento encontram-se os pontos de onde se obteve o módulo de elasticidade.

"Substep"	δ (mm)	Força (N)	ε (adim.)	σ (MPa)	Declive
1	0,000	0,000	0,0000	0,0000	0,0000
2	0,016	1,412	0,0006	0,0087	14,1065
3	0,031	2,711	0,0012	0,0167	12,9819
4	0,049	4,026	0,0019	0,0248	11,5027
5	0,067	5,345	0,0026	0,0329	11,5276
6	0,085	6,728	0,0033	0,0415	12,0929
7	0,103	8,251	0,0041	0,0508	13,3142
8	0,121	9,963	0,0048	0,0614	14,9756
9	0,139	11,854	0,0055	0,0730	16,5291
10	0,157	13,882	0,0062	0,0855	17,7354
11	0,175	16,039	0,0069	0,0988	18,8590
12	0,193	18,345	0,0076	0,1130	20,1621
13	0,211	20,787	0,0083	0,1281	21,3570
14	0,229	23,336	0,0090	0,1438	22,2856
15	0,247	25,959	0,0097	0,1600	22,9349
16	0,265	28,627	0,0104	0,1764	23,3272
17	0,283	31,316	0,0111	0,1930	23,5126
18	0,301	34,016	0,0118	0,2096	23,6064
19	0,319	36,731	0,0125	0,2263	23,7418
20	0,337	39,465	0,0132	0,2432	23,9015
21	0,355	42,231	0,0139	0,2602	24,1874
22	0,373	45,032	0,0146	0,2775	24,4913
23	0,391	47,869	0,0153	0,2950	24,8058
24	0,409	50,738	0,0160	0,3127	25,0818
25	0,427	53,625	0,0167	0,3304	25,2448
26	0,444	56,507	0,0174	0,3482	25,2006
27	0,462	59,371	0,0181	0,3659	25,0414
28	0,480	62,213	0,0189	0,3834	24,8481
29	0,498	65,021	0,0196	0,4007	24,5528
30	0,516	67,772	0,0203	0,4176	24,0575
31	0,534	70,470	0,0210	0,4343	23,5863
32	0,552	73,114	0,0217	0,4505	23,1183
33	0,570	75,705	0,0224	0,4665	22,6547
34	0,588	78,219	0,0231	0,4820	21,9852
35	0,602	80,132	0,0236	0,4938	21,4972
36	0,615	81,908	0,0241	0,5047	21,0979
37	0,629	83,653	0.0247	0.5155	20.7266

Tabela A30 – Parâmetros calculados e utilizados na análise não-linear do provete 20y3 em elementos finitos. A cinzento encontram-se os pontos de onde se obteve o módulo de elasticidade.

"Substep"	δ (mm)	Força (N)	ε (adim.)	σ (MPa)	Declive
1	0,000	0,000	0,0000	0,0000	0,0000
2	0,016	1,616	0,0005	0,0056	12,1146
3	0,031	3,138	0,0009	0,0109	11,4181
4	0,049	4,782	0,0015	0,0166	10,7842
5	0,067	6,347	0,0020	0,0220	10,2666
6	0,085	7,910	0,0025	0,0274	10,2542
7	0,103	9,517	0,0030	0,0330	10,5498
8	0,121	11,203	0,0036	0,0389	11,0578
9	0,139	12,991	0,0041	0,0451	11,7359
10	0,157	14,912	0,0046	0,0517	12,6013
11	0,175	16,972	0,0052	0,0589	13,5148
12	0,193	19,166	0,0057	0,0665	14,3955
13	0,211	21,486	0,0062	0,0745	15,2230
14	0,229	23,917	0,0067	0,0829	15,9487
15	0,247	26,457	0,0073	0,0918	16,6658
16	0,265	29,109	0,0078	0,1009	17,4002
17	0,283	31,862	0,0083	0,1105	18,0664
18	0,301	34,704	0,0089	0,1204	18,6429
19	0,319	37,623	0,0094	0,1305	19,1571
20	0,337	40,605	0,0099	0,1408	19,5615
21	0,355	43,632	0,0104	0,1513	19,8610
22	0,373	46,698	0,0110	0,1619	20,1151
23	0,390	49,795	0,0115	0,1727	20,3231
24	0,408	52,920	0,0120	0,1835	20,5014
25	0,426	56,062	0,0126	0,1944	20,6154
26	0,444	59,218	0,0131	0,2054	20,7096
27	0,462	62,386	0,0136	0,2164	20,7842
28	0,480	65,570	0,0141	0,2274	20,8908
29	0,498	68,765	0,0147	0,2385	20,9644
30	0,516	71,967	0,0152	0,2496	21,0083
31	0,534	75,182	0,0157	0,2607	21,0948
32	0,552	78,387	0,0163	0,2718	21,0264
33	0,570	81,590	0,0168	0,2830	21,0202
34	0,588	84,794	0,0173	0,2941	21,0188
35	0,606	87,985	0,0178	0,3051	20,9414
36	0,617	89,978	0,0182	0,3120	20,9222
37	0,628	91,962	0,0185	0,3189	20,8207

Tabela A31 – Parâmetros calculados e utilizados na análise não-linear do provete 20y4 em elementos finitos. A cinzento encontram-se os pontos de onde se obteve o módulo de elasticidade.

"Substep"	δ (mm)	Força (N)	ε (adim.)	σ (MPa)	Declive
1	0,000	0,000	0,0000	0,0000	0,0000
2	0,012	2,003	0,0005	0,0124	26,1275
3	0,024	3,934	0,0009	0,0244	25,1827
4	0,038	5,926	0,0015	0,0367	22,7296
5	0,052	7,849	0,0020	0,0486	21,9368
6	0,066	9,784	0,0026	0,0606	22,0788
7	0,080	11,764	0,0031	0,0729	22,5981
8	0,093	13,802	0,0037	0,0855	23,2536
9	0,107	15,928	0,0042	0,0987	24,2641
10	0,121	18,187	0,0047	0,1127	25,7751
11	0,135	20,560	0,0053	0,1274	27,0793
12	0,149	23,040	0,0058	0,1427	28,2927
13	0,163	25,633	0,0064	0,1588	29,5955
14	0,177	28,345	0,0069	0,1756	30,9385
15	0,190	31,187	0,0075	0,1932	32,4325
16	0,204	34,220	0,0080	0,2120	34,6157
17	0,218	37,563	0,0085	0,2327	38,1418
18	0,232	41,195	0,0091	0,2552	41,4497
19	0,246	45,021	0,0096	0,2789	43,6581
20	0,260	48,983	0,0102	0,3034	45,2106
21	0,274	53,063	0,0107	0,3287	46,5511
22	0,287	57,276	0,0113	0,3548	48,0759
23	0,301	61,653	0,0118	0,3819	49,9500
24	0,315	66,170	0,0123	0,4099	51,5444
25	0,329	70,786	0,0129	0,4385	52,6736
26	0,343	75,470	0,0134	0,4675	53,4482
27	0,357	80,197	0,0140	0,4968	53,9323
28	0,371	84,931	0,0145	0,5261	54,0282
29	0,384	89,657	0,0151	0,5554	53,9182
30	0,398	94,382	0,0156	0,5846	53,9221
31	0,412	99,119	0,0161	0,6140	54,0527
32	0,426	103,882	0,0167	0,6435	54,3452
33	0,440	108,686	0,0172	0,6732	54,8206
34	0,454	113,551	0,0178	0,7034	55,5220
35	0,467	118,512	0,0183	0,7341	56,6083
36	0,476	121,669	0,0187	0,7537	57,6402
37	0,485	124,869	0,0190	0,7735	58,4243

Tabela A32 – Parâmetros calculados e utilizados na análise não-linear do provete 20z3 em elementos finitos. Não possui pontos para se obter o módulo de elasticidade.

"Substep"	δ (mm)	Força (N)	ε (adim.)	σ (MPa)	Declive
1	0,000	0,000	0,0000	0,0000	0,0000
2	0,023	4,743	0,0007	0,0165	24,4627
3	0,046	9,131	0,0013	0,0318	22,6312
4	0,072	13,800	0,0021	0,0480	21,0740
5	0,098	18,545	0,0029	0,0646	21,4105
6	0,125	23,470	0,0037	0,0817	22,2297
7	0,151	28,681	0,0044	0,0998	23,5146
8	0,177	34,332	0,0052	0,1195	25,5039
9	0,203	40,348	0,0060	0,1405	27,1522
10	0,230	46,729	0,0067	0,1627	28,7967
11	0,256	53,503	0,0075	0,1863	30,5688
12	0,282	60,845	0,0083	0,2118	33,1359
13	0,308	69,147	0,0091	0,2407	37,4658
14	0,335	78,237	0,0098	0,2724	41,0239
15	0,361	87,806	0,0106	0,3057	43,1850
16	0,387	97,774	0,0114	0,3404	44,9842
17	0,413	108,238	0,0121	0,3768	47,2261
18	0,440	119,140	0,0129	0,4148	49,1984
19	0,466	130,291	0,0137	0,4536	50,3262
20	0,492	141,564	0,0145	0,4928	50,8737
21	0,518	152,845	0,0152	0,5321	50,9134
22	0,545	164,063	0,0160	0,5712	50,6248
23	0,571	175,272	0,0168	0,6102	50,5882
24	0,597	186,523	0,0175	0,6494	50,7751
25	0,623	197,864	0,0183	0,6888	51,1806
26	0,649	209,374	0,0191	0,7289	51,9461
27	0,676	221,124	0,0199	0,7698	53,0239
28	0,702	233,023	0,0206	0,8112	53,7003
29	0,728	244,949	0,0214	0,8528	53,8223
30	0,754	256,790	0,0222	0,8940	53,4378
31	0,781	268,450	0,0229	0,9346	52,6221
32	0,807	279,876	0,0237	0,9744	51,5656
33	0,833	291,083	0,0245	1,0134	50,5794
34	0,859	302,083	0,0253	1,0517	49,6428
35	0,886	312,899	0,0260	1,0893	48,8095
36	0,902	319,565	0,0265	1,1125	48,1364
37	0,918	326,178	0,0270	1,1356	47,7499

Tabela A33 – Parâmetros calculados e utilizados na análise não-linear do provete 20z4 em elementos finitos. A cinzento encontram-se os pontos de onde se obteve o módulo de elasticidade.

"Substep"	δ (mm)	Força (N)	ε (adim.)	σ (MPa)	Declive
1	0,000	0,000	0,000	0,000	0,0000
2	0,015	0,248	0,001	0,002	2,6613
3	0,029	0,471	0,001	0,003	2,3987
4	0,046	0,682	0,002	0,004	1,9848
5	0,063	0,885	0,002	0,005	1,9125
6	0,080	1,101	0,003	0,007	2,0300
7	0,096	1,340	0,004	0,008	2,2514
8	0,113	1,604	0,004	0,010	2,4862
9	0,130	1,886	0,005	0,012	2,6544
10	0,147	2,185	0,006	0,014	2,8085
11	0,163	2,503	0,006	0,015	2,9944
12	0,180	2,843	0,007	0,018	3,1953
13	0,197	3,201	0,008	0,020	3,3652
14	0,214	3,573	0,008	0,022	3,5037
15	0,231	3,956	0,009	0,024	3,6057
16	0,247	4,351	0,010	0,027	3,7098
17	0,264	4,757	0,010	0,029	3,8193
18	0,281	5,176	0,011	0,032	3,9386
19	0,298	5,604	0,012	0,035	4,0283
20	0,314	6,044	0,012	0,037	4,1441
21	0,331	6,498	0,013	0,040	4,2694
22	0,348	6,968	0,014	0,043	4,4199
23	0,365	7,449	0,014	0,046	4,5223
24	0,381	7,941	0,015	0,049	4,6298
25	0,398	8,443	0,016	0,052	4,7259
26	0,415	8,955	0,016	0,055	4,8137
27	0,432	9,478	0,017	0,059	4,9246
28	0,448	10,013	0,018	0,062	5,0336
29	0,465	10,555	0,018	0,065	5,0936
30	0,482	11,098	0,019	0,069	5,1130
31	0,499	11,649	0,020	0,072	5,1759
32	0,516	12,207	0,020	0,075	5,2483
33	0,532	12,768	0,021	0,079	5,2829
34	0,549	13,332	0,022	0,082	5,3019
35	0,566	13,901	0,022	0,086	5,3541
36	0,576	14,260	0,023	0,088	5,4061
37	0,587	14,623	0,023	0,090	5,4658

Tabela A34 – Parâmetros calculados e utilizados na análise não-linear do provete *30x3* em elementos finitos. Não possui pontos para se obter o módulo de elasticidade.

"Substep"	δ (mm)	Força (N)	ε (adim.)	σ (MPa)	Declive
1	0,000	0,000	0,000	0,000	0,0000
2	0,014	0,986	0,001	0,006	10,7593
3	0,029	1,886	0,001	0,012	9,8089
4	0,045	2,788	0,002	0,017	8,6104
5	0,062	3,650	0,002	0,023	8,2299
6	0,079	4,533	0,003	0,028	8,4261
7	0,095	5,471	0,004	0,034	8,9551
8	0,112	6,478	0,004	0,040	9,6106
9	0,128	7,566	0,005	0,047	10,3783
10	0,145	8,732	0,006	0,054	11,1319
11	0,161	9,973	0,006	0,062	11,8414
12	0,178	11,287	0,007	0,070	12,5368
13	0,194	12,678	0,008	0,078	13,2790
14	0,211	14,145	0,008	0,087	13,9997
15	0,227	15,678	0,009	0,097	14,6336
16	0,244	17,274	0,010	0,107	15,2280
17	0,260	18,928	0,010	0,117	15,7920
18	0,277	20,639	0,011	0,128	16,3249
19	0,293	22,399	0,011	0,138	16,7980
20	0,310	24,207	0,012	0,150	17,2568
21	0,326	26,062	0,013	0,161	17,7075
22	0,343	27,964	0,013	0,173	18,1469
23	0,359	29,908	0,014	0,185	18,5508
24	0,376	31,892	0,015	0,197	18,9367
25	0,393	33,913	0,015	0,210	19,2884
26	0,409	35,971	0,016	0,222	19,6401
27	0,426	38,061	0,017	0,235	19,9497
28	0,442	40,180	0,017	0,248	20,2238
29	0,459	42,324	0,018	0,262	20,4630
30	0,475	44,489	0,019	0,275	20,6582
31	0,492	46,668	0,019	0,288	20,7970
32	0,508	48,857	0,020	0,302	20,8968
33	0,525	51,054	0,021	0,316	20,9607
34	0,541	53,254	0,021	0,329	20,9984
35	0,558	55,453	0,022	0,343	20,9907
36	0,568	56,826	0,022	0,351	20,9704
37	0,578	58,198	0,023	0,360	20,9472

Tabela A35 – Parâmetros calculados e utilizados na análise não-linear do provete *30y3* em elementos finitos. A cinzento encontram-se os pontos de onde se obteve o módulo de elasticidade.

"Substep"	δ (mm)	Força (N)	ε (adim.)	σ (MPa)	Declive
1	0,000	0,000	0,000	0,000	0,0000
2	0,023	1,971	0,001	0,007	10,0504
3	0,046	3,753	0,001	0,013	9,0865
4	0,073	5,571	0,002	0,019	8,1100
5	0,100	7,372	0,003	0,026	8,0362
6	0,126	9,278	0,004	0,032	8,5050
7	0,153	11,345	0,004	0,040	9,2224
8	0,179	13,604	0,005	0,047	10,0768
9	0,206	16,037	0,006	0,056	10,8552
10	0,232	18,633	0,007	0,065	11,5816
11	0,259	21,405	0,008	0,075	12,3690
12	0,286	24,360	0,008	0,085	13,1820
13	0,312	27,472	0,009	0,096	13,8838
14	0,339	30,721	0,010	0,107	14,4956
15	0,365	34,092	0,011	0,119	15,0386
16	0,392	37,564	0,012	0,131	15,4933
17	0,418	41,129	0,012	0,143	15,9054
18	0,445	44,783	0,013	0,156	16,3010
19	0,472	48,526	0,014	0,169	16,7017
20	0,498	52,355	0,015	0,182	17,0807
21	0,525	56,260	0,015	0,196	17,4221
22	0,551	60,237	0,016	0,210	17,7464
23	0,578	64,278	0,017	0,224	18,0299
24	0,604	68,374	0,018	0,238	18,2712
25	0,631	72,513	0,019	0,253	18,4671
26	0,658	76,683	0,019	0,267	18,6037
27	0,684	80,868	0,020	0,282	18,6714
28	0,711	85,062	0,021	0,296	18,7151
29	0,737	89,255	0,022	0,311	18,7066
30	0,764	93,430	0,022	0,326	18,6278
31	0,790	97,580	0,023	0,340	18,5155
32	0,817	101,687	0,024	0,354	18,3211
33	0,844	105,751	0,025	0,368	18,1308
34	0,870	109,748	0,026	0,382	17,8357
35	0,891	112,811	0,026	0,393	17,5679
36	0,910	115,666	0,027	0,403	17,3024
37	0,930	118,468	0,027	0,413	16,9876

Tabela A36 – Parâmetros calculados e utilizados na análise não-linear do provete *30y4* em elementos finitos. A cinzento encontram-se os pontos de onde se obteve o módulo de elasticidade.

"Substep"	δ (mm)	Força (N)	ε (adim.)	σ (MPa)	Declive
1	0,000	0,000	0,000	0,000	0,0000
2	0,013	1,807	0,001	0,011	21,6386
3	0,026	3,524	0,001	0,022	20,5735
4	0,041	5,330	0,002	0,033	18,9217
5	0,057	7,083	0,002	0,044	18,3756
6	0,072	8,847	0,003	0,055	18,4812
7	0,087	10,655	0,003	0,066	18,9485
8	0,102	12,523	0,004	0,077	19,5802
9	0,117	14,474	0,005	0,090	20,4421
10	0,132	16,524	0,005	0,102	21,4790
11	0,147	18,692	0,006	0,116	22,7218
12	0,162	20,996	0,006	0,130	24,1421
13	0,177	23,440	0,007	0,145	25,6174
14	0,192	26,024	0,008	0,161	27,0783
15	0,207	28,754	0,008	0,178	28,6121
16	0,222	31,646	0,009	0,196	30,3023
17	0,237	34,701	0,009	0,215	32,0172
18	0,252	37,902	0,010	0,235	33,5434
19	0,267	41,231	0,010	0,255	34,8885
20	0,283	44,672	0,011	0,276	36,0599
21	0,298	48,215	0,012	0,298	37,1300
22	0,313	51,859	0,012	0,321	38,1886
23	0,328	55,606	0,013	0,344	39,2655
24	0,343	59,459	0,013	0,368	40,3858
25	0,358	63,417	0,014	0,392	41,4784
26	0,373	67,478	0,015	0,418	42,5549
27	0,388	71,632	0,015	0,443	43,5370
28	0,403	75,863	0,016	0,469	44,3420
29	0,418	80,156	0,016	0,496	44,9795
30	0,433	84,496	0,017	0,523	45,4897
31	0,448	88,880	0,018	0,550	45,9372
32	0,463	93,302	0,018	0,577	46,3487
33	0,478	97,764	0,019	0,605	46,7597
34	0,494	102,266	0,019	0,633	47,1814
35	0,509	106,808	0,020	0,661	47,5981
36	0,518	109,668	0,020	0,679	47,9423
37	0,527	112,542	0,021	0,696	48,1969

Tabela A37 – Parâmetros calculados e utilizados na análise não-linear do provete *30z3* em elementos finitos. Não possui pontos para se obter o módulo de elasticidade.

"Substep"	δ (mm)	Força (N)	ε (adim.)	σ (MPa)	Declive
1	0,000	0,000	0,000	0,000	0,0000
2	0,016	2,885	0,000	0,010	21,5000
3	0,032	5,662	0,001	0,020	20,6949
4	0,050	8,589	0,001	0,030	19,0899
5	0,068	11,404	0,002	0,040	18,3539
6	0,086	14,211	0,003	0,049	18,3052
7	0,104	17,065	0,003	0,059	18,6134
8	0,122	19,996	0,004	0,070	19,1149
9	0,141	23,025	0,004	0,080	19,7483
10	0,159	26,178	0,005	0,091	20,5627
11	0,177	29,474	0,005	0,103	21,4919
12	0,195	32,942	0,006	0,115	22,6167
13	0,213	36,609	0,006	0,127	23,9132
14	0,231	40,475	0,007	0,141	25,2121
15	0,249	44,542	0,007	0,155	26,5198
16	0,268	48,819	0,008	0,170	27,8897
17	0,286	53,322	0,008	0,185	29,3658
18	0,304	58,061	0,009	0,202	30,9044
19	0,322	63,020	0,009	0,219	32,3362
20	0,340	68,180	0,010	0,237	33,6500
21	0,358	73,522	0,011	0,256	34,8342
22	0,376	79,028	0,011	0,275	35,9047
23	0,395	84,684	0,012	0,295	36,8861
24	0,413	90,482	0,012	0,315	37,8109
25	0,431	96,422	0,013	0,335	38,7374
26	0,449	102,512	0,013	0,357	39,7086
27	0,467	108,754	0,014	0,378	40,7040
28	0,485	115,148	0,014	0,400	41,6956
29	0,503	121,687	0,015	0,423	42,6426
30	0,522	128,351	0,015	0,446	43,4606
31	0,540	135,121	0,016	0,470	44,1469
32	0,558	141,974	0,016	0,494	44,6892
33	0,576	148,894	0,017	0,518	45,1234
34	0,594	155,873	0,017	0,542	45,5121
35	0,612	162,909	0,018	0,567	45,8832
36	0,624	167,337	0,018	0,582	46,1976
37	0,635	171,789	0,019	0,597	46,4506

Tabela A38 – Parâmetros calculados e utilizados na análise não-linear do provete *30z4* em elementos finitos. Não possui pontos para se obter o módulo de elasticidade.

Gráficos das curvas de tensão – extensão nominais resultantes dos ensaios de compressão nos provetes.

20X3

20Z3

Parâmetros de optimização da coluna vertebral humana

Análise linear

Iterações	Const. de volume	Flexibilidade
1	0,00	1045,59
2	-1,99	1039,64
3	-2,90	1029,72
4	-3,55	1018,65
5	-4,31	1010,14
6	-2,96	1006,00
7	-2,04	1004,05
8	-1,80	1002,73
9	-1,32	1001,89
10	-0,76	1001,52
11	-0,56	1001,30
12	-0,54	1001,11
13	-0,33	1000,97
14	-0,17	1000,92
15	-0,08	1000,89
16	-0,09	1000,87
17	-0,04	1000,86
18	-0,02	1000,85
19	-0,01	1000,85
20	-0,01	1000,85
21	0,00	1000,85
22	0,00	1000,84
23	0,00	1000,84
24	0,00	1000,84
25	0,00	1000,84
26	0,00	1000,84
27	0,00	1000,84
28	0,00	1000,84
29	0,00	1000,84
30	0,00	1000,84
31	0,00	1000,84
32	0,00	1000,84
33	0,00	1000,84
34	0,00	1000,84
35	0.00	1000.84

Tabela A39 – Parâmetros de optimização da coluna vertebral humana (AL).
Análise não-linear

Iterações	Const. de volume	Flexibilidade
1	0,00	927,58
2	-2,04	914,62
3	-3,05	895,11
4	-3,68	876,27
5	-4,32	863,55
6	-3,08	857,68
7	-2,32	854,66
8	-1,87	852,76
9	-1,24	851,83
10	-0,73	851,36
11	-0,52	851,04
12	-0,44	850,83
13	-0,23	850,72
14	-0,14	850,67
15	-0,07	850,63
16	-0,05	850,61
17	-0,05	850,59
18	-0,02	850,57
19	-0,02	850,56
20	-0,02	850,56
21	-0,02	850,55
22	-0,02	850,55
23	-0.01	850,55
24	0,00	850,55
25	0,00	850,55
26	0,00	850,55
27	0,00	850,55
28	0,00	850,55
29	0,00	850,55
30	0,00	850,55
31	0,00	850,55
32	0,00	850,55
33	0,00	850,55
34	0,00	850,55
35	0,00	850,55

Tabela A40 – Parâmetros de optimização da coluna vertebral humana (ANL).