
Bruno Miguel de Melo Gonçalves Areal

Licenciado em Engenharia Informática

Building Anonymised Database Samples

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientador : Prof. Doutor José Alferes, Prof. Catedrático,
Universidade Nova de Lisboa

Co-orientador : Prof. Doutor Miguel Goulão, Prof. Auxiliar,
Universidade Nova de Lisboa

Júri:

Presidente: Doutor José Alberto Cardoso e Cunha

Arguente: Doutor Vitor Manuel Beires Pinto Nogueira

Vogal: Doutor José Júlio Alves Alferes

December, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157624789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

Building Anonymised Database Samples

Copyright c© Bruno Miguel de Melo Gonçalves Areal, Faculdade de Ciências e Tecnolo-
gia, Universidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

vi

Acknowledgements

First of all, I would like to thank my advisors, José Júlio Alferes and Miguel Goulão, for
their patience and support. And also to my employers, and specially to Lina Matos and
Paulo Castro, for bending the rules and giving me some of my work-hours for developing
this work. I would also like to thank all my colleagues and friends, who are always ready
to party but were also capable of not disturbing me when i really needed to get this work
done. A special thanks to Bruno Veigas, who stayed with me across the summer week-
ends (when everybody else was on vacations or at the beach), for shopping and cooking
for me while I was working, and also for his ideas when I was lost in my code, looking
for bugs. I’m forever indebted to Inês Matos, Sonia Furtado and Mário Fonseca for the
long nights online, helping me to surpass my lack of inspiration for writing this thesis.
Last, but definitely not least, I would like to thank my parents and my grandparents for
their continuous encouragement and motivation. A special thanks to Sofia for her love,
support and ability to get me back to work, even from the other side of the ocean.

vii

viii

Abstract

In this work we propose Anonym Database Sampler (ADS), a flexible and modular
system capable of extracting an anonymised, consistent and representative sample from
a relational database. ADS was envisioned for use in testing and development environ-
ments. To this end, a sample specification input is requested from the user, that is used by
ADS’s sampling engine to perform a stratified random sample. Afterwards a First-choice
hill climbing algorithm is applied to the sample, optimising the selected data towards the
specified requisites.

Finally, if some restrictions are still to be met, tuples and/or keys modifications are
performed, ensuring that the final sample fully complies with the initial sample specifica-
tion. While having a representative and sound database that developers can use in these
environments can be a great advantage, we assume that this representativeness does not
need to comply with a truly statistical representativity, which would be much harder to
obtain. Thereby, ADS samples are not appropriate for any kind of statistical data analysis.
After the sample being successfully extracted, due to the sensitivity of the data contained
in most organisation databases, a data anonymisation step is performed. The sampled
data is consistently enciphered and masked, preventing data privacy breaches that could
occur by delivering to developers a database containing some real operational data.

Keywords: anonymous sampling, database sampling, test databases, database, sam-
pling algorithm

ix

x

Resumo

Neste trabalho, propomos ADS, um sistema flexível e modular capaz de extrair uma
amostra anónima, consistente e representativa de uma base de dados relacional. ADS
foi concebido com o objectivo de ser utilizado em ambientes de teste e desenvolvimento
aplicacionais.

Para tal, é requerida ao utilizador a especificação da amostra que deseja obter. Es-
pecificação essa que será usada pelo motor de amostragem para produzir uma amostra
estratificada da base de dados original, onde em seguida será aplicado um algoritmo de
trepa-colinas de forma a optimizar os dados seleccionados de forma estes se aproximem
dos requisitos especificados.

Finalmente, se algumas restrições continuarem por cumprir, são realizadas modifica-
ções de tuplos e/ou chaves, assegurando-se assim que a amostra obtida é completamente
compatível com a especificação da amostra. Não obstante do facto de que uma base de
dados representativa e consistente nos seus ambientes de testes e desenvolvimento será
uma grande vantagem para os programadores, assumimos que esta representatividade
não necessitará de ser uma representatividade estatística no puro sentido da sua defini-
ção, algo que seria muito mais difícil de obter. Consequentemente, as amostras produzi-
das pelo ADS deverão apenas ser encaradas como dados para testes e desenvolvimento,
não sendo apropriados para qualquer tipo de análise estatística de dados. Após a amos-
tra ter sido extraída com êxito, devido à sensibilidade dos dados contidos nas bases de
dados da maioria das organizações, é executada uma anonimização de dados. Os dados
amostrados são cifrados e mascarados de forma consistente, prevenindo assim poten-
ciais violações de privacidade que poderiam ocorrer através da apresentação de dados
operacionais reais aos programadores.

Palavras-chave: amostragem anónima, amostragem de bases de dados, bases de dados
de teste, bases de dados, algoritmos de amostragem

xi

xii

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Solution proposed . 3

1.3 Structure of this document . 4

2 Related Work 5
2.1 Statistical sampling . 5

2.2 Sampling from databases . 6

2.2.1 Commercial applications for sampling from databases 7

2.3 Data anonymisation . 8

3 Sample specification language 9
3.1 Sample Definition . 11

3.2 Statistical Requirements . 12

3.3 Data Definitions . 15

3.4 Summary . 16

4 System architecture 17
4.1 Input handler components . 20

4.1.1 Database connector . 20

4.1.2 Database schema reader . 21

4.1.3 Sample specification parser . 23

4.1.4 Statistical data . 24

4.2 Internal Components . 25

4.2.1 Information data structure . 25

4.2.2 Query handler . 26

4.2.3 Error handler . 27

4.2.4 Anonymisation handler . 28

4.3 System execution . 28

xiii

xiv CONTENTS

5 Sampling engine 31
5.1 First step: stratified random sample . 34
5.2 Second step: First-choice hill-climbing optimisation 36
5.3 Third step: Data modification . 37

6 Tests and result analysis 41
6.1 Simple random sample . 42
6.2 ADS sampling engine sample . 44

7 Conclusions and future work 47

List of Figures

3.1 Sample specification expressions usage diagram 10
3.2 Example Database ER Diagram . 11
3.3 Sample definition usage diagram . 12
3.4 Statistical requirements usage diagram . 14
3.5 Data definitions usage diagram . 15

4.1 Anonym Database Sampler Process Diagram 17
4.2 Anonym Database Sampler Architecture . 19
4.3 Error function . 28
4.4 Minimum and maximum error functions 28
4.5 Anonym Database Sampler Execution Diagram 29

5.1 Sampling Engine Execution Diagram . 33
5.2 Cost function for the sample optimisation algorithm 37

xv

xvi LIST OF FIGURES

List of Tables

3.1 Available statistical variables and possible attribute types 13

5.1 Example of a employees table . 38
5.2 Example of a employees table after tuple modification 39
5.3 Example of a departments table . 39
5.4 Example of a employees table after key modification 39

6.1 Simple random sample specifying a sample size of 25% 43
6.2 Simple random sample specifying a sample size of 50% 43
6.3 ADS results specifying a sample size of 25% 45
6.4 ADS results specifying a sample size of 50% 46

xvii

xviii LIST OF TABLES

Listings

4.1 Database connector interface . 20
4.2 Database schema reader public methods . 21
4.3 Database schema reader loadTables method 22
4.4 Database schema reader key related methods 23
4.5 Sample specification object interface . 24
4.6 Statistical variables enumeration object . 24
4.7 Sample of a query for finding the ratio values for an attribute. 25
4.8 Internal data-structure database object interface 26
4.9 Example of a string used to generate a query 26
4.10 Error handler object interface . 27
4.11 Error handler object interface . 28
5.1 Generated queries for the stratified sample extraction 35
5.2 An example of a generated query for adding tuples 36
5.3 An example of a generated query for removing tuples 37
5.4 An example of a generated query for modifying tuples 38

xix

xx LISTINGS

List of Acronyms

SQL Structured Query Language

DBMS database management system

JDBC Java Database Connectivity Driver

JavaCC Java Compiler Compiler

ADS Anonym Database Sampler

xxi

xxii LISTINGS

Preface

Six months before I started this thesis, I left from my job at a small IT company to start
an internship at one of the biggest Portuguese financial institutions, which is also the
company where I work today. So when the time came, I was looking at the available
Master Thesis proposals, wondering how would I be able to successfully finish any of
these proposals while keeping my eight-hour-per-day work.

After some time talking to my friends, colleagues, bosses and professors, I came up
with what I thought that was a brilliant idea: creating my own master-thesis proposal!

This decision ended up by being one of the most challenging adventures I have ever
put myself into (and I am the extreme sports lover kind-of-guy...).

Almost all of my colleagues started working on their Master Thesis without having a
clue about what they were doing. They started reading some papers their advisors gave
them, doing some writing, and most of them only really understood what they were
working on when they already were half-way through their thesis. Their advisors knew
what they were doing, and that was more than sufficient. In my case, I was the one who
had to know what I needed to do, as I was the one who proposed my topic - but I really
had no clue.

I simply had an idea for a solution to a problem we had at my company - we really
needed to have representative development environment databases in which we could
trust while working on our projects - some sort of operational database sample; and I
knew that, given the multiple platform environments we work on, that solution should
be easily adaptable to as many projects as possible. I have convinced my bosses and my
advisors that this could be a cool problem to solve, and that it could result in a Master
Thesis. But that was all I had.

Eventually, whith my advisors help (and patience), we reached a consensus about
what my work was supposed to be, and how it should work. But even then, every de-
tail that we thought that could be solved by using some external tool (and many in fact
were), turned up not to be as easy to combine into a single system as we hoped. And I
soon discovered that a big Portuguese financial institution, where only "half of the Inter-
net" is available for "security reasons", is not the most friendly environment to develop

xxiii

xxiv LISTINGS

some academic and innovative IT work. And my laptop got stolen mid-summer. And
Oracle had bugs that where already patched, but those patches where not available for
our Oracle-Express free-version. And...

Past these hardships, this is the result. My Master Thesis was successfully completed!
My proposed solution does work! And I have learned a valuable lesson: Don’t you ever,
ever, ever propose to do something serious without knowing exactly what you are putting
yourself into, and how do you plan to accomplish it.

And if by any chance you are a student, reading this while looking for a Master Thesis
proposal and wondering if you should create your own, please read the above paragraph
again. All of it! :-)

1
Introduction

1.1 Motivation

When performing development operations over applications, developers usually find
themselves in the need of using some kind of database to store the data used by these
applications, usually relying in some sort of database management system (DBMS).

Taking into account that most of the development operations in organisations are re-
lated to maintenance or evolutionary operations [KKMS09], the possibility of using the
real data contained in production environments databases would provide a valuable ad-
vantage to developers, giving them the chance of making decisions based on real data.
Nevertheless, given the amount of data contained in most application databases, the op-
tion of providing such possibility would also imply higher infrastructure costs. In addi-
tion, due to the sensitivity of the data contained in most application databases, providing
access to such data would result on an unthinkable - and in many situations illegal -
breach of their clients privacy.

As a result, development environments databases are usually populated with ran-
domly generated data, or by manually inputting data requested by developers in order
to create all the test cases that they are able to identify. Albeit these methods can provide
data that developers can use in their work, it should be clear that the data contained in
these development environment databases are far from being a suitable representation
of the reality. Actually, this lack of data representativeness tends to be a bigger problem
than it may seem at first glance. Since most developers have no access to production
data, they are often misled by the data they possess, leading them to perform code opti-
misations that are not necessary and, on the other hand, neglecting some cases that seem
sporadic but actually happen recurrently.

1

1. INTRODUCTION 1.1. Motivation

In order to surpass this lack of data representativeness in development environment
databases, in this thesis we propose Anonym Database Sampler (ADS), a database sam-
pling system, capable of extracting an anonymised representative sample from a database.

Having a representative database in a development or testing environment can be a
huge advantage for developers, as it provides a richer environment, where developers
need not to rely on their own or clients’ best guesses of possible scenarios. In such rep-
resentative databases, the relationships between data can be faithfully kept, generating
a more realistic environment in which developers can detect a greater number of bor-
derline and uncommon scenarios. Nevertheless, this representativeness does not have to
take the form of a truly statistically representative database, which would be much more
expensive to obtain in every respect. For this usage, what needs to be kept are some
properties of the original data that tend to be crucial for testing applications, such as
maintaining minimal and maximal values for a given attribute, maintaining some values
averages or maintaing proportionality among data in relations. And most importantly,
maintaining database constraints, such as primary and foreign keys.

To extract a sample from a database, one could simply select a random sample from
the whole database, while ensuring its consistency using the key restrictions from the
original database. However, delivering to developers a randomly obtained sample database,
would likely fail to solve the data representativeness problem, given that a uniform
sampling method can not deliver a representative sample for populations with non-
uniform probability distributions [GHYZ04], i.e. performing a random sample over a
non-uniform distribution will likely fail to deliver a representative sample.

Therefore, and given that each database attribute will probably have its own distribu-
tion, to obtain a representative sample one needs first to define from what data he wishes
to obtain such representation (i.e., which attributes from the database he wishes to en-
sure representativeness, and to what extent). Given this, to guarantee that a database
sample meets the needs of the developers who will use it, ADS provides a sample spec-
ification tool, allowing developers to manifest the needs for their developments. Using
the provided specification, ADS can ensure that, at least for the specified data, the infor-
mation contained in the sample database reflects the characteristics of the data contained
in the original database. Moreover, by performing data anonymisation operations on the
obtained sample without damaging data consistency and representativeness, ADS also
prevents data privacy breaches.

As a result, ADS can provide to developers and organisations the advantages of using
real data in their development environments while lowering infrastructure costs, without
compromising data privacy.

This research was motivated by a real necessity of the company for which the author
works to. There, due mostly to privacy issues, the developers struggle to build their
own data for development based only on the knowledge they can obtain from the users
of their applications. In such context, the goal of this work is to deliver more suitable
databases for testing and development, based in real operational data. ADS is a proof

2

1. INTRODUCTION 1.2. Solution proposed

of concept prototype that achieves this goal, and will be subject to further improvements
when applied to software deployment.

1.2 Solution proposed

ADS is a flexible and modular system capable of extracting an anonymised representative
sample from a relational database, envisioned for application’s development, testing or
user training environments.

On the database domain, sampling is commonly employed in many areas where the
use of the whole database proves to be unnecessary or inefficient. In fact, many examples
of applications of database sampling can be found, from data mining [JL96] to query
optimisation [LNS90]. Consequently, most of the recent DBMS already maintain statistics
about their contained data, allowing them to automatically achieve some performance
optimisations.

Instead of using some random sampling algorithm to select which data should be
extracted to the sample, ADS requires a sample specification as an input. Combining
this option with the statistical information about the database contained data, the system
provides the possibility of performing a "fine-tuning" of the desired sample, by adjusting
the data’s relevance given the intended usage.

Since different situations may require different data privacy rules, the sample speci-
fication allows the definition of different sensitivity levels for each attribute contained in
the original database. As such, it is the developers’ responsibility to define these param-
eters, as they know better the data representativeness needed for their work. Moreover,
since these developers will also be the ones who use the extracted sample, multiple sam-
ple specifications can be further included. This option offers the possibility of imposing
minimal privacy levels for the most sensitive data by ensuring the most restrictive one.

It is worth mentioning that the anonymisation applied to the obtained samples is
not adequate for public exposure. As explained later, data anonymisation not only im-
plies some sort of encryption but also some other techniques that, when fully applied,
reduce data representativeness in order to minimise data disclosure. As a consequence,
since one of the system’s main goals is to deliver a suitable representative sample, ADS
data anonymisation serves essentially as a deterrent for data disclosure. The use of the
obtained samples should be restricted to related personnel, who already deal with sensi-
tive data in a daily basis and therefore have already signed some kind of non-disclosure
agreement. That said, the proposed architecture was designed so that stronger forms of
anonymisation can replace the encryption support used in the prototype produced in the
scope of this dissertation.

In summary, the main contributions of this thesis are:

• A simple and expressive sample specification language to define the characteristics
of the desired sample.

3

1. INTRODUCTION 1.3. Structure of this document

• ADS sampling engine and subsequent operational logic that makes possible the
extraction of an anonymised, consistent and representative sample from a relational
database.

• ADS itself, which architecture plays an important role in the whole system flexibil-
ity and modularity.

1.3 Structure of this document

The rest of this document is organised as follows: In Chapter 2 we present an overview of
the areas related with our work, along with a brief discussion about how our work relates
with the studies in those areas. In Chapter 3 we define the created sample specification
language and, subsequently, in Chapter 4 we discuss the architecture followed during
ADS’s implementation, while presenting the most relevant implementation details and
the system execution logic. Afterwards, we proceed by explaining the developed sam-
pling engine algorithm in Chapter 5, followed by the performed system tests and results
analysis in Chapter 6. Finally, in Chapter 7 we conclude this document with some final
considerations and identify future challenges for this work.

4

2
Related Work

In this chapter, we present an overview of the various areas related with database sam-
pling and anonymisation. This way, we begin by presenting in section 2.1 a quick re-
view about the most relevant statistical sampling concepts. Afterwards, we discuss in
section 2.2 the state of the art regarding the use of sampling in databases, while also in-
cluding an overview of the database sampling tools commercially available. Finally, in
section 2.3 we present a short overview over the existent data anonymisation techniques.

2.1 Statistical sampling

Sampling is an area of statistics, concerning the selection of a representative subset from
a given population, thus allowing to learn characteristics of a large group without having
to observe every contained element. As a consequence, sampling is commonly used in
many areas to gain a better knowledge about the characteristics of a population, given
the high costs (of money and/or time) involved in gaining such knowledge about every
item in a population.

Sampling is a largely studied and well established area. Consequently, the explana-
tions presented in this section can be found in most statistical books, like [Coc77].

Population The word population is used to denote the aggregate from which the sam-
ple is chosen. Thereby, the population to be sampled (i.e. the group of elements to
be sampled) should always match precisely the aggregate about which information is
wanted (i.e. target to be studied). For example, applying this definition to our work, if
we wish to obtain a sample of the data related with bank clients that use online-banking,
we should restrict the collection of data from the database to tuples that are related with

5

2. RELATED WORK 2.2. Sampling from databases

clients which have an online-banking id, excluding all the other tuples.

Simple random sample Simple random sampling is a method that consists in selecting
n (the desired sample size) units out of N (the size of the target population) such that
every one of the NCn distinct samples has an equal chance of being drawn. At any draw,
the process used to perform this kind of sample must give an equal chance of selection to
any of the elements in the population who have not already been drawn.

Stratified sample In stratified sampling, the population of N units is firstly divided
into sub-populations of N1, N2, ..., NL units respectively, according to well defined crite-
ria, so that the sub-groups are homogeneous. These sub-populations (known as strata)
are non-overlapping, and together they comprise the whole of the population, so that
N1+N2+ ...+NL = N . Once the strata have been determined, a random sample is drawn
from each, so that the drawings are made independently on each stratum. This technique
is particularly useful if data of known precision is wanted for certain subdivisions of the
population, being advisable to treat each subdivision as a "population" in its own right.
Stratification may also produce a gain in precision in the estimates of characteristics of
the whole population. It may possible to divide a heterogeneous population into sub-
populations, each of which is internally homogeneous. If each stratum is homogeneous,
in that the measurements vary little from one unit to another, a precise estimate of any
stratum mean can be obtained from a small sample in that stratum. These estimates can
then be combined into a precise estimate for the whole population.

2.2 Sampling from databases

In the recent years database management systems (DBMSs) became commonplace tools
in most organisations, being used to store most of their applications data, many times
creating databases with terabytes of information. In this sense, sampling proved to be
a powerful technique to deal with such large databases, for which Frank Olken’s work
in [Olk93] stands as one of the major contributions to this area. In fact, the recognised
value of sampling databases has come to the point where most of the modern DBMS
already include sampling mechanisms [CMN98, Ora11b] in order to achieve automatic
performance optimisations, mainly related with query size estimation or intermediate
query result sizes for query optimisation algorithms [LNS90, HK04]. Oracle DBMS even
supports the possibility of performing a query over a sample of a given table [Ora11c]
which is, as we discuss later, one of the reasons that made us choose this DBMS for the
development of this work.

Database sampling has also been applied to other database-related areas, like data
warehousing and data mining [CHY96]. Here, it is used to ease the process of defining a
solution for a specific problem, and then to apply that solution to the entire database [JL96],
like performing data mining of association rules [Toi96, ZPLO97]. In addition, database

6

2. RELATED WORK 2.2. Sampling from databases

sampling has also been proposed to maintain a warehouse of sampled data, allowing
quick approximate answers to analytical queries, while also easing data auditing and
interactive data exploration [BH06].

Even though several works have been proposed towards achieving a better sample
representativeness, these studies are mainly focused in new sampling algorithms, aiming
to solve the lack of capability of conventional uniform sampling methods for extracting
a representative sample from data with nonuniform probability distributions [GHYZ04,
PF00]. And to the best of our knowledge, not much work has been done in order to
obtain representative and consistent samples from a database to be used specifically in
application development environments.

In fact, one of the few studies we were able to find that is associated with our work
is the one presented in [BG00], which focuses on the advantages of using prototype
databases populated with sampled operational data, along with a proposal of a consis-
tent sampling database process. However, although agreeing with the argumentation
presented regarding the advantages of using sample databases, in this thesis we present
a different approach for the sampling process. By ensuring the same schema on both
original and sampled databases, while delivering to developers the creation of a sample
specification, we simplify the adjustment of the sampling process for different sample re-
quests or different database instances, without jeopardising the system modularity and
the adaptation for other DBMS. On the other hand, by requesting statistical data about tu-
ples and their relations as an input (which can be easily found stored in modern DBMS),
we achieve an agile sample process, given that the sample data selection becomes sim-
plified.

2.2.1 Commercial applications for sampling from databases

Notwithstanding the lack of academic studies on sampling databases for development
environments, there are a few commercial applications which announce to support such
functionality such as IBM Optim [Man11]. These applications are usually designed to be
integrated data management systems, and include many other features. For example,
IBM Optim is developed to archive, classify and manage the data within many database
instances and many DBMS (and particularly IBM DB2 DBMS [DB211]). Although these
features are not relevant within the context of this work, they tend to play a major role in
how a sample database is obtained by these commercial applications. These data man-
agement tools are focused in being capable of applying some kind of operation to a given
set of tuples, while ensuring that the data remains consistent by applying the same opera-
tion to all the related tuples. The same concept is applied to build test databases based on
operational data, where the data operations represent a consistent data extraction from
the original database.

This way, the selection of the data that should be present in the sample database is
performed by a user, defining a specific set of existent tuples. Although such sampling

7

2. RELATED WORK 2.3. Data anonymisation

method guarantees a consistent sample database, it should be clear that no data repre-
sentativeness is ensured. In fact, the operation being performed is more similar to a strata
selection than to a sample selection. Consequently, albeit the fact that we have an exact
representation for all the data related with the selected tuples, probably such representa-
tion will not reflect the real data distribution.

2.3 Data anonymisation

Data anonymisation is a largely studied area, with a broad range of work being devel-
oped in an everyday basis. Accordingly, given that the data to be anonymised is usu-
ally stored in some form of database, many of these studies focus in database content
anonymisation.

It is a common pitfall to think that data anonymisation is achieved by masking, en-
crypting or removing person-specific data with all explicit identifiers, such as name, ad-
dress and email. Assuming that data anonymity is maintained because, by looking di-
rectly to the obtained data, it seems impossible to associate those information’s to the
persons from which the data is related is incorrect. Using the remaining data we can,
in most cases, re-identify individuals by looking at unique characteristics found in the
released data, or by linking or matching the data to other data. For example, in a study
[Swe00] using 1990 U.S. Census it was reported that 87% of the United States population
had characteristics that made them unique based only on {postcode, gender, date of birth},
three characteristics that are usually not considered as a privacy invasion.

In [Dal86] a different approach was proposed to identify which are the attributes that
must be considered private, denoted quasi-identifiers. Quasi-identifiers are those attributes
that, like in the example stated above, seem safe for public disclosure but, when linked
to other data, can uniquely identify the object intended to be anonymised. In [Swe02]
a different anonymisation model is proposed, named k-anonymity. The concept behind
the k-anonymity model is to ensure that each sequence of quasi-identifier values within a
table appears with at least k occurrences. Consequently, by using this model, it is ensured
that an attacker can not link any of the anonimysed data to match less than k individuals.

Nevertheless, considering the known time restrictions for the development of this the-
sis, the fact that the anonymisation employed in the obtained database samples should be
seen as a dissuasion for data disclosure by related personnel, and also due to increase of
complexity that this option would imply, we chose only develop a consistent data mask-
ing method, leaving the k-anonymity implementation only to develop in future work.

8

3
Sample specification language

In order to create an anonymised and representative database sample, we need to specify
the data relevancy and sensitivity, along with other sample’s specifications, such as the
desired sample size or some data details that may be omitted from the original database
schema. To encode such specifications we need a language which allow us to clearly
define what rules must be ensured in the sample database and thus to guarantee that the
sample complies with all the requirements.

To the best of our knowledge, at the time that this work was developed, no such
such language has been developed or proposed. This way, we developed an "SQL-like"
declarative specification language, designed with the purpose of delivering an intuitive
way to pass such input into the system.

Declarative languages have the advantage to be substantially more succinct and self-
explanatory, as they state what should be the result of the computation rather than how
it is to be computed. As a result, using a declarative language allows us to define specifi-
cations which are clear and quickly understandable by its users, whereas the expressions
used to define the specification can be viewed as requests for the sample and the details
of how the sample is obtained are left to the abstract machine. Moreover, the creation of
the specification should be carried by the end users of the database sample, who know
the best which proprieties the database sample should meet. Therefore, delivering the
sample specification by "SQL-like" syntax expressions provides to the end user a more
familiar and intuitive way of stating their requests. Accordingly, declarative languages
are also verification oriented, and so, each sample specification expression not only in-
structs the system with information about the resulting sample database, but also serves
as a post-condition and hence ensuring the sample reliability.

Anonym Database Sampler (ADS) sample specification language can be defined in

9

3. SAMPLE SPECIFICATION LANGUAGE

three different expressions:

Sample definition which is used to define the percentage of the original database that
should be present in the sample, i.e. the sample size, along with its acceptable
error margin and the minimal anonymisation value that should be applied to all
the sampled data.

Statistical requirements which are used to define which statistical parameters should be
maintained by the sample for one or more attributes from a given table. Addition-
ally, one can also define that those statistical parameters should have a more restric-
tive error margin, or that the specified attributes should have an higher anonymi-
sation value than the one defined in the sample definition.

Data definitions which are used to instruct the system about some known information
about the database that can not be found in the original database schema, like re-
defining some attribute data type or creating some known foreign key restriction
that is omitted from the original schema.

As ilustrated in Figure 3.1, a sample specification starts with one sample definition
expression, followed by as many statistical requirements or data definitions as needed, by
any order. If any attribute appears in more than one expression for the same restriction,
the system will ensure that the more restrictive requirement is maintained.

;Sample
Definition

Statistical
Requirements

Data
Definitions

Figure 3.1: Sample specification expressions usage diagram

For the rest of this chapter, we present a detailed overview over each one of these
expressions, along with a running-example of the creation of a sample from a database.
In addition, the resulting sample specification example will be used in the rest of this
thesis.

For our example we used the default example database from Oracle database man-
agement system (DBMS). Here one can find typical information about an organisation
such as departments, employees and their job history. In Figure 3.2 we display the in-
formation contained in each one of these database tables and their connections. The
connections between each table are read as follows:

10

3. SAMPLE SPECIFICATION LANGUAGE 3.1. Sample Definition

• Departments have a manager and a location

• Locations have a country

• Countries have a region

• Employees have a department, a manager and a job

• Job history has a department, a job and an employee

Figure 3.2: Example Database ER Diagram

3.1 Sample Definition

Every sample specification must start with a sample definition expression. These are
used to specify the desired percentage value (P) of the original database that should be
obtained, along with the acceptable error margin value (V) and the minimal anonymisa-
tion level that should be applied to all the sample data.

The original database size is calculated by counting the total number of tuples con-
tained in every database table. This way, if each table of our example database contained
10 tuples, the original database size would correspond to 70 tuples. Furthermore, by re-
questing a 50% sample from such database, the system would try to extract a 35 tuple
database, containg a combination of tuples that would fulfill all the specified statistical

11

3. SAMPLE SPECIFICATION LANGUAGE 3.2. Statistical Requirements

requirements. However, such combination can be very hard (or even impossible) to ob-
tain, given that we also needed to ensure a sound database, by fullfilling all the original
database primary and foreing key restrictions. To this end, by specifying a sample size
error margin, one is relaxing this restriction, helping the system to successfully obtain his
desired sample.

The error margin is defined as a percentage of the desired value, and should be read
as P ± (P ∗ V

100). Considering the previous example, if one defined an error margin of
15%, the system would try to obtain a sample with a total number of tuples between 30
and 40.

The anonymisation value defines the sensitivity level of the sample data. In the cur-
rent implementation, only one anonymisation technique was implemented: data encryp-
tion. Therefore, the current acceptable values for the anonymisation value are 0 and 1,
where 0 means that no encryption should be made, and 1 indicate that the data should
be encrypted. However, the language implementation was performed bearing in mind
the adoption of some different data anonymisation techniques, like k-anonymity (cf. 2.3),
where anonymisation levels greater than 1 could represent the k anonymity value to be
ensured.

Sample definition requirement expressions can be formed as illustrated in Figure 3.3.
As one can observe, the definition should start by defining the desired sample size, fol-
lowed by the minimal accepted error and anonymisation values, by any order.

;with

anonymisation = value error = valueand

error = value and anonymisation = value

SAMPLE SIZE value %

Figure 3.3: Sample definition usage diagram

As an example, to obtain a sample with 50% of the original database size, with no
anonymisation level and accepting a 15% error margin, one should use the following
expression:

sample size 50% with error=15 and anonymisation = 0;

3.2 Statistical Requirements

Statistical requirements are used to specify which statistical characteristics should be pre-
served, and for which database attributes those statistical requirements should be ap-
plied. However, it should be clear that not every statistical variable is available for an

12

3. SAMPLE SPECIFICATION LANGUAGE 3.2. Statistical Requirements

attribute. For example, it makes no sense to maintain the average value of an employee
name.

Moreover, while some of these restrictions can be intuitive, and even detected based
on the attribute data type, some other statistical restrictions may apply. Based on these
scale types, some statistical operations can or can not apply to a given attribute, i.e. while
the calculus operation could be performed, the result could not be considered correct,
given that the attribute does not comply with some of the statistical variable definitions.
For example, while one can calculate the median value of a nominal attribute such as
email, using its alphabetical order, the result would be meaningless, given that such order
had no relation with any attribute’s characteristics.

Given this, as we explain in further detail in Chapter 4, we used Oracle’s DBMS sta-
tistical engine to obtain most of the statistical variables values, and reflected the Oracle
statistical restrictions in the language implementation. However, those restrictions are
only based on the attribute data type, and does not validate any of the scale type restric-
tions. Therefore, in the current ADS’s implementation, it should be the user to know
what statiscal variables she can apply to a given attribute.

In table 3.1 we present ADS supported statistical variables and their identifiers, along
with the attribute types each variable can be applied to. We separate these attribute
types into two major groups: numerical and non-numerical. Numerical attributes are
represented by long, double, float or integer numbers. All the other possible attribute
types are considered non-numerical, including date. For more information about these
restrictions, see [Ora11a]

Statistical Variable ADS variable id Numerical Non-numerical
Maximum max × ×
Minimum min × ×

Average avg ×
Standard Deviation sd ×

Median median × ×
Mode mode × ×
Ratio ratio × ×

Table 3.1: Available statistical variables and possible attribute types

It is noteworthy that we introduced a non-standard statistical variable: ratio. This
variable should be used when a developer wishes to maintain the distribution of a given
attribute instead of some other statistical variable of that attribute value. By specifying
that the ratio for the attribute A from table T should be preserved, one is requesting that,
for each value V in the domain of A, the tuple percentage whith the value V should
be the same in both the original and the sampled table T. For example, by using the
following expression, one is requesting a sample that contains the same percentage of
departments at any location in the sampled and the original departments table. The

13

3. SAMPLE SPECIFICATION LANGUAGE 3.2. Statistical Requirements

same percentage of departments at Lisbon, the same percentage of departments at Viseu,
the same percentage of departments at Evora, etc.

preserve ratio for LOCATION_ID from DEPARTMENTS;

Furthermore, by requesting to preserve the ratio of an attribute that is a foreign-key,
one can ensure that the ratio of the relations between the primary and the foreign table
are ensured, thereby allowing a correct data distribution between those two tables.

Statistical requirement expressions can be formed as illustrated in figure 3.4. As one
can observe, in addition to defining one or more statistical variables for one or more
attributes from a table, we can also add new error margins and new anonymisation re-
strictions for these attributes. In these expressions, error margins and anonymisation
restrictions are handled as in sample definition expressions (exposed in Section 3.1), but
applied to the table attributes that were specified. Additionally, if an attribute is specified
in more than one expression, the system will always consider the most restrictive error
margin and anonymisation value.

PRESERVE statistic
variable FOR attribute FROM table

;

, ,

with

anonymisation = value error = valueand

error = value and anonymisation = value

Figure 3.4: Statistical requirements usage diagram

As an example, consider that we wish to obtain a sample that maintains the max-
imum, minimum and average salary values from employees with a 10% error margin,
while also maintaining the median value for employees hire date with a 5% error value.
In addition, assume that we also wish to ensure the distribution of departments by coun-
try. This sample specification can be defined using the following expressions:

preserve max, min, avg for SALARY from EMPLOYEES with error=10;

preserve median for HIRE_DATE from EMPLOYEES with error=5;

preserve ratio for COUNTRY_ID from LOCATIONS;

preserve ratio for LOCATION_ID from DEPARTMENTS;

14

3. SAMPLE SPECIFICATION LANGUAGE 3.3. Data Definitions

3.3 Data Definitions

ADS relies on a well-designed database to successfully extract a sample from that database,
given that the system uses the foreign-key relations to ensure data consistency and rep-
resentativeness. Furthermore, attribute data types also play a major role in sample speci-
fication, given that some statistical variables can only be applied to numerical data types.

However, one frequently encounters "real-world" databases that, to keep up with the
evolution of the applications they interact with, have been repeatedly altered over time.
Typically, such alterations result in sub-optimally designed databases, in which both at-
tribute restrictions and the relationships between attributes are handled by the applica-
tion’s code. Furthermore, attributes are also frequently assigned to a type that does not
match their characteristics. For instance, although an employee number is an integer, it
makes no sense to calculate the average employee number.

To overcome these limitations, data definition expressions were included in the speci-
fication language of ADS. These expressions enable developers to instruct the system re-
garding relations and data restrictions that can not be collected from the database schema,
and can be used as illustrated in figure 3.5. Given that the data type re-definition func-
tionality, in the current implementation, serves only as a way to instruct ADS that a given
attribute should be used as a numerical or a non-numerical attribute, we decided to only
define two possible data types for this operation: Number and String. Using this option,
one can instruct the system about which statistical characteristics can be requested for a
given attribute. However, this conversion is only used by the system, and is not passed
into the sample database.

As an example, consider that we wish to instruct the system that the attribute phone_number
from the employees table should be used as a string, given that it would make no sense
to request to maintain the average value of such attribute. And that region_id from the
countries table is related with the region_id from the regions table. These definitions could
be stated using the following expressions, can be formed as summarized in Figure 3.5:

define PHONE_NUMBER from EMPLOYEES as STRING;

define REGION_ID from COUNTRIES = REGION_ID from REGIONS;

DEFINE attribute FROM table = attribute FROM table ;

AS

NUMBER

STRING

Figure 3.5: Data definitions usage diagram

15

3. SAMPLE SPECIFICATION LANGUAGE 3.4. Summary

3.4 Summary

In summary, ADS sample specification language is an inovative and intuitive way for
developers to explicitly describe their specific needs for any given database sample. As
presented, the language is simple enough for requesting a simple sample without effort,
but is also expressive enough for requesting a more specific database sample, where one
which to maintain information about the relations between the tables, or to provide a
better definition for some attributes.

Furthermore, as a declarative language, the sample specification is composed by a
set of restrictions that should be satisfied. Therefore, the user can concentrate in her
work and only needs to think about which data characteristics she needs to have in her
development environment, without worrying about how such sample can be obtained.

16

4
System architecture

The database samples produced by ADS are envisioned to be used in development and
test environments. To this end, the system was designed using a modular architecture
and can easily be adapted to any DBMS, offering the possibility of replacing the compo-
nents that directly interact with the database.

Sample
Specification

Database
Schema

Sample
Specification

Sample
Specification

Original
Database

Sample Database

Database
Statistics

Sampling and
Anonymisation

SQL Scripts

Sampling and
Anonymisation

Process

Figure 4.1: Anonym Database Sampler Process Diagram

17

4. SYSTEM ARCHITECTURE

As described in Figure 4.1, ADS input is fourfold: the relational database from which
we need a sample; the table schema for the data contained in that database system; the
statistical information about the data present in the database; and the specification of the
intended sample, which can be composed by more than one sample specification file, as
we explain later. Each one of these inputs is handled by a different component, which is
used to collect the desired information about the database into the system. As it is further
explained in Section 4.1, in the current system implementation both statistical data and
schema reader components use some DBMS features to collect the desired information.
Consequently, both of these components connect to the database through the database
connector component.

The information gathered by these input components is assembled into the internal
information data structure component, which is used as a gathering point where all the
other internal modules can refer to when in need for information to operate. Additionally,
the error, anonymisation and query handlers act as functionality wrapper components,
externalising the implementation of the following operations, respectively: error calcula-
tion, query generation and data anonymisation. By separating these functionalities from
the information data structure, we provide the possibility of adapting ADS to different
realities. Moreover, this option will also ease further developments of ADS’s features.

The sampling engine uses the query and error handlers, along with the informa-
tion data structure, to create a temporary sample of the original database in an internal
database. To this end, given that the DBMS containing the original database is also used
to store this internal database, the same database connector component is used to interact
with this internal database. One can find an illustration of the described system architec-
ture in Figure 4.2. Each component of the architecture is further explained in Sections 4.1
and 4.2.

The system’s implementation was performed in Java, not only for its "write once run
everywhere" characteristic, but also due to the availability of a wide range of tools and
libraries which diminished the effort required to proceed with the implementation of the
system. Thereby, we used the Java Database Connectivity Driver (JDBC) to handle the
database interactions, and Java Compiler Compiler (JavaCC) to generate the parser for
the sample specification language. The reason behind this choice relates primarily to the
fact that we have already used these technologies in the past. In addition, the chosen
database system was Oracle DBMS given that it provides a statistical engine, an almost-
standard SQL implementation and a fully compliant JDBC driver.

The current ADS implementation should be considered as an advanced prototype,
with the main purpose of providing a proof of concept for our system, leaving room
to further development and/or improvements. Nevertheless, we consider that ADS’s
flexible and modular architecture plays a major role to the future of this prototype, since
it allows the optimisation of the current features.

For the rest of this chapter we present an overview of the components that constitute

18

4. SYSTEM ARCHITECTURE

Original
Database

Internal
Database

Input Handler Components

Internal Components

Anonymisation
Handler

Sampling
Engine Query Handler

Error HandlerInformation
Data Structure

Statistical
Data

Component

Specification
Interpreter

Database
Schema
Reader

Database
Connector

Database
Connector

Figure 4.2: Anonym Database Sampler Architecture

19

4. SYSTEM ARCHITECTURE 4.1. Input handler components

the ADS architecture, while providing the most relevant details about their implementa-
tion. Given that the sample extraction process is one of the contributions from this thesis,
a more complete explanation is given in chapter 5.

This way, we begin by presenting in section 4.1 the components that handle ADS
requested inputs. Afterwards, in section 4.2, we discuss the system internal components.
Finally, in section 4.3 we present an overview over the system’s execution and possible
outputs.

4.1 Input handler components

The input handler components play a major role in the system modularity. By delivering
a separate and autonomous component to each input, each called by the system main
process wen needed, we ensure that ADS interaction with external systems is adaptable
to different technologies. For example, if one wishes to obtain a sample from a database
contained in a DBMS that does not have a statistical engine, one can develop a compo-
nent capable of finding the desired statistical information, or even use some external tool
capable of finding the statistical data and then pass it into the system as an input file.

4.1.1 Database connector

The current ADS implementation uses JDBC to handle the database interaction. How-
ever, given that not every DBMS delivers a full JDBC implementation, we encapsulated
it in a component to provide the possibility for using a different connection system.

This component is responsible for handling the connection to a given database, per-
forming the desired queries in that database, and also to manage the database save-points
providing the possibility of performing a rollback of an operation.

The database connector component consists of a single class, implementing the fol-
lowing interface:

1 public interface DatabaseConnection {

2 public String getDatabaseUrl();

3 public String getUsername();

4 public String getPassword();

5 public Connection getConnection() throws SQLException;

6 public void closeConnection() throws SQLException;

7 public ResultSet doQuery(String query) throws SQLException;

8 public int doUpdate(String query) throws SQLException;

9 public void setAutoCommit(boolean on) throws SQLException;

10 public void commit() throws SQLException;

11 public void setSavepoint() throws SQLException;

12 public void rollback() throws SQLException;

13 }

20

4. SYSTEM ARCHITECTURE 4.1. Input handler components

Listing 4.1: Database connector interface

4.1.2 Database schema reader

Given that Oracle DBMS fully implements the JDBC driver specification, we used of the
JDBC Metadata object to obtain the names of tables contained in the database, along
with their primary and foreign keys, which are used to create the system’s data struc-
ture used to store the information about the desired sample. Furthermore, like all other
input handler components, the database schema reader is designed as a self-contained
autonomous module, so that it can easily be replaced by another which can obtain the
database schema information in any other way.

This module contains two public methods, which should be called to obtain the database
schema information into ADS data-structure:

1. loadSchema(Database db), which is responsible for obtaining the schema table
names, primary and foreign keys;

2. getAndSetAttributeTypes(Database db), which is responsible to obtain the
datatypes for all the attributes that are relevant to the sample that will be obtained
- i.e. the key attributes and the attributes to which a statistical restriction was re-
quested by the sample specification.

This separation relies on the fact that, while the schema information is collected prior
to the sample specification being interpreted, the attribute data types are collected after
that operation. This way one can obtain the data types for all the relevant attributes.

A Database object is received by each method, such an object being the database
representation where the retrieved information is stored in the internal data structure.
These public methods’ implementation is presented in Listing 4.2 .

1 public static void loadSchema(Database db) throws SQLException,

2 PrimaryKeyNotFoundException {

3 loadTables(db);

4 loadKeyAttributes(db);

5 }

6

7 public static void getAndSetAttributeTypes(Database db) {

8 String allTablesString = CollectionUtils

9 .collectionToCommaSeparatedQuotedString(db.getTables().keySet());

10 String allAttsString = CollectionUtils

11 .collectionToCommaSeparatedQuotedString(db.getAllAttributes());

12

13 if (allTablesString != "" && allAttsString != "") {

14 String query = "select table_name, column_name, data_type "

21

4. SYSTEM ARCHITECTURE 4.1. Input handler components

15 + "from user_tab_cols where table_name in (" + allTablesString

16 + ") AND column_name in ("+ allAttsString + ")";

17 ResultSet rs = null;

18 try {

19 rs=db.getDirectConnection().prepareStatement(query).executeQuery();

20 String table, att, type;

21 while (rs.next()) {

22 table = rs.getString("table_name");

23 att = rs.getString("column_name");

24 type = rs.getString("data_type");

25 db.getTables().get(table).setAttributeType(att, type);

26 }

27 } catch (SQLException e) {

28 System.out.println("Error while getting attribute data types");

29 e.printStackTrace();

30 } finally {

31 if (rs != null) {

32 try {rs.close();} catch (SQLException e) {e.printStackTrace();}

33 } } } }

Listing 4.2: Database schema reader public methods

To get the information about the tables in the database schema, as mentioned before,
the JDBC Metadata object is used, being the table information also stored in the same
Database object. This is made precise in Listing 4.3, where we present the method re-
sponsible for this operation.

1 private static void loadTables(Database db) throws SQLException {

2 ResultSet tResultSet = db.getDirectConnection().getMetaData()

3 .getTables(null, db.getSchema(), null, null);

4 String newTableName;

5 while (tResultSet.next()) {

6 OracleTable newTable;

7 if (tResultSet.getString("TABLE_TYPE").equalsIgnoreCase("table")) {

8 newTableName = tResultSet.getString("TABLE_NAME");

9 newTable = new OracleTable(newTableName);

10 db.createTable(newTableName, newTable);

11 }

12 }

13 tResultSet.close();

14 }

Listing 4.3: Database schema reader loadTables method

After the table information is read, the same technique is used to obtain the primary
and foreign key information into the same database representation object. To this end, we

22

4. SYSTEM ARCHITECTURE 4.1. Input handler components

iterate over the previously created table objects, storing in each of them the correspond-
ing primary and foreign key information, as presented in Listing 4.4 .

1 private static void loadKeyAttributes(Database db)

2 throws SQLException, PrimaryKeyNotFoundException {

3 DatabaseMetaData metadata = db.getDirectConnection().getMetaData();

4 String schema = db.getSchema();

5 for (OracleTable table : db.getTables().values()) {

6 loadPKeys(schema, metadata, table);

7 loadFKeys(schema, metadata, table);

8 }

9 }

10

11 private static void loadPKeys(String schema, DatabaseMetaData metadata,

12 OracleTable table) throws SQLException {

13 ResultSet pKeys = metadata.getPrimaryKeys(null, schema,

14 table.getTableName());

15 String columnName, pKeyId;

16 while (pKeys.next()) {

17 columnName = pKeys.getString("COLUMN_NAME");

18 pKeyId = pKeys.getString("PK_NAME");

19 table.setPKeyAttribute(columnName, pKeyId);

20 }

21 pKeys.close();

22 }

23

24 private static void loadFKeys(String schema, DatabaseMetaData metadata,

25 OracleTable table) throws SQLException, PrimaryKeyNotFoundException {

26 ResultSet fKeys = metadata.getExportedKeys(null, schema,

27 table.getTableName());

28 String pKeyId, fKeyTable, fKeyColumn, fKeyId;

29 while (fKeys.next()) {

30 pKeyId = fKeys.getString("PK_NAME");

31 fKeyTable = fKeys.getString("FKTABLE_NAME");

32 fKeyColumn = fKeys.getString("FKCOLUMN_NAME");

33 fKeyId = fKeys.getString("FK_NAME");

34 table.setFKeyAttribute(pKeyId, fKeyTable, fKeyColumn, fKeyId);

35 }

36 fKeys.close();

37 }

Listing 4.4: Database schema reader key related methods

4.1.3 Sample specification parser

As stated before, the sample specification parser was implemented using JavaCC. At the
end of each expression, the system uses a visitor design pattern to pass into ADS internal
data structure the collected information, implementing the sample specification object

23

4. SYSTEM ARCHITECTURE 4.1. Input handler components

interface presented in Listing 4.5. This way, each line is interpreted as it is being read,
and any possible errors are promptly detected and returned to the end-user. In addition,
given that more than one restriction can be imposed on a single attribute, this imple-
mentation delivers the task of handling multiple restrictions to the internal components,
simplifying the future substitution of this component.

1 public interface SampleData {

2 public void setSampleSize(int sampleSize) throws InvalidSizeException;

3 public void setAnonim(int anonimisation) throws InvalidValueException;

4 public void setError(int error) throws InvalidErrorValueException;

5 public void setTableCondition(TableCondition condition)

6 throws InvalidTableNameException, InvalidValueException;

7 public int getSampleSize();

8 public int getError();

9 }

Listing 4.5: Sample specification object interface

4.1.4 Statistical data

The statistical data component is tightly integrated with the sample specification parser,
given that the possible statistical variables are incorporated in the sample specification
language grammar. This integration is achieved by using the enumeration object pre-
sented1 in Listing 4.6 which, when its correspondent value is obtained from the database,
is used to return the corresponding statistical variable object. This way, although the cur-
rent implementation uses Oracle’s statistical engine, for querying the database about the
desired attribute statistical value, this implementation can easily be overridden to en-
compass some other technique to obtain the desired statistics, without compromising the
system integration.

1 public enum StatVar {

2 AVG("avg"), MAX("max"), MIN("min"), SD("stddev"), MEDIAN("median"),

3 MODE("stats_mode"), RATIO("");

4 public String getSqlName(){ ... }

5 public void setError(ErrorValue limit){ ... }

6 public ErrorValue getError(){ ... }

7 public StatisticVar getStatObject(Comparable<?> value){ ... }

8 public StatisticVar getStatObject(){ ... }

9 }

Listing 4.6: Statistical variables enumeration object

1To help with the code readability, we omitted the private methods and the implemented code from
Listing 4.6, presenting only an "Interface” for the implemented Enumeration

24

4. SYSTEM ARCHITECTURE 4.2. Internal Components

This enumeration is then used by the statistical data object to obtain and refresh the
statistical data present in ADS internal infrastructure. To perform this operation, the sta-
tistical object obtains a list containing every attribute for which its restriction that had
not been collected or accomplished, and obtains the desired values for the statistical at-
tributes, which are directly stored in the internal data-structure.

The Oracle DBMS already provides some statistical functions, we used them to obtain
the desired values from the database using a query. However, this is not the case for the
ratio variable, which is not automatically provided by Oracle’s statistics.

When we want to preserve the ratio of a given attribute in a table, we must compute,
for each value V in the domain of that attribute, the percentage of tuples in that table that
have V. This computation is easily done in SQL.

For example, if the sample specification includes:

preserve ratio for department_id for Employees;

Then the list of values that must be computed is the one obtained from the SQL code
in Listing 4.7.

1 select count(*) into n from Employees;

2 select department_id, count(*)/n as r from Employees group by department_id;

Listing 4.7: Sample of a query for finding the ratio values for an attribute.

The computed list is passed to the corresponding StatisticVar object, and stored in
ADS’s internal data-structure for future operations.

4.2 Internal Components

ADS internal components can be viewed as three major groups: information data-structure,
handlers and the sampling engine which, as stated before, is covered in the next chapter.

4.2.1 Information data structure

This is the component used to store the information collected from ADS inputs. There-
fore, this data structure is designed to contain the database information and its schema
representation: the database tables, and their primary and foreign keys which are used to
represent the links between the tables. We also use this schema representation to store the
sample specification, spreading its information within their referenced object representa-
tions. Likewise, the necessary statistical data is also stored in the objects that represent
the attributes from where they were collected. Given that this module is used by all other
internal modules to obtain the information they need, we also implemented methods to
request some specific information directly, like asking for all the attributes from a give
table that have any associated statistical variable restriction, or all the attributes from all
tables for which the desired restrictions are yet to be fulfilled. On the other hand, no

25

4. SYSTEM ARCHITECTURE 4.2. Internal Components

metadata is stored in this data structure, given the high memory cost that such option
would imply.

To obtain information from the information data-structure component, one must use
the methods provided by the Database interface, which can be found in Listing 4.8.

1 public interface Database {

2 public String getSchema();

3 public DatabaseConnection getConnection();

4 public Connection getDirectConnection() throws SQLException;

5 public int updateDBSize() throws SQLException;

6 public int getDBSize();

7 public void createTable(String newTableName, OracleTable table);

8 public Iterator<OracleTable> getTablesByMaxTotalNumberOfpKeys();

9 public Iterator<OracleTable> getTablesByMinTotalNumberOfpKeys();

10 public String getDBLinkName() throws SQLException;

11 public String toString();

12 public void setTableCondition(TableCondition condition)

13 throws InvalidTableNameException, InvalidValueException;

14 public boolean isTableCreated(String tableName);

15 public Map<String, OracleTable> getTables();

16 public void setTables(Map<String, OracleTable> tables);

17 public Map<String, List<Attribute>> getConditionedTables();

18 }

Listing 4.8: Internal data-structure database object interface

4.2.2 Query handler

Given that most DBMS SQL implementations are inconsistent with the standard and usu-
ally incompatible between vendors, we use a new component to handle the query genera-
tion. The centralisation of these operations allows the system to maintain its adaptability,
without compromising the system’s integration and efficiency. To ensure this, we define
a query as a string variable that contains tags marking the parts that should be replaced
with correct parameters (and according to the query’s execution context). Then, each
query has an associated operation that generates the final query given these variables.
As a result of this design, in order to adapt this module to a different DBMS, one only
needs to replace the current prototypes with their equivalent, using the destiny DBMS
SQL specification.

1 insert into {#table_name#} with Q as (

2 select * from {#table_name#}@{#db_link#} {#condition#}

3) select * from Q sample({#sample_size#})

Listing 4.9: Example of a string used to generate a query

26

4. SYSTEM ARCHITECTURE 4.2. Internal Components

As an example, consider the string presented in Listing 4.9. This string is used to
obtain the query that will perform a copy of the data contained in a given table at the
original database into the corresponding table in the sample database, being the origi-
nal data restricted by a given condition. The generation of each query is handled by a
method that not only performs a direct substitution of the tags with their correspond-
ing values, but also converts the attribute’s list of conditions into their corresponding
SQL statements. One can find several examples of queries generated by this module in
Chapter 5.

4.2.3 Error handler

This component is used to check that the data restrictions are ensured in the obtained
sample, by verifying that the requested statistical values are within the specified error
margin. To meet this goal, this component starts by identifying the correct object type
for a given attribute restriction, obtaining the original value from the data structure com-
ponent along with its defined error margin. Afterwards, the original value is compared
with the current respective restriction value from the sample database. The difference
between both values is returned if it is greater than the defined error margin. Otherwise,
if the difference is within the error margin, the value is considered to be acceptable, and
zero is returned. It is noteworthy that this method is specially tailored for numerical
value comparison. Therefore, when confronted with non-numerical restriction compar-
isons (such as the median value for a date or a string), the given values and error margins
are converted to numbers before comparison.

The error handler component consists of a single class, implementing the following
interface:

1 public interface ErrorChecker {

2 public int getDBSizeError(Database original, Database destiny);

3 public int getStatVarError(StatisticVar<T> original,

4 StatisticVar<T> destiny);

5 }

Listing 4.10: Error handler object interface

Both methods return an integer, which represents the distance from the current value
to the original. This way, if the value is lower than the current, a negative number is
returned. Likewise, if the value is higher than the current, a positive number is returned.
In addition, these methods also verify the permitted error margin for the restriction being
evaluated. If the value meets the error margin restrictions, then an acceptable value has
been reached, and consequently 0 is returned.

In Figure 4.3 we present the error function implemented by both ErrorChecker

public methods, which rely in some private methods implementing the calculation of the
minimum and maximum values for the restricion being checked, considering the error

27

4. SYSTEM ARCHITECTURE 4.3. System execution

f(original, current) =

{
0 if min ≤ current ≤ max
original − current otherwise

Figure 4.3: Error function

margin defined in the sample specification. These calculus are performed as shown in
Figure 4.4.

min(original, error) = original − (original ∗ error
100)

max(original, error) = original + (original ∗ error
100)

Figure 4.4: Minimum and maximum error functions

4.2.4 Anonymisation handler

The anonymisation component is responsible for enciphering the data contained in the
final sample. To this end, it uses a temporary table in the internal database to store each
distinct value contained in the sample database, pairing it with its encrypted value. This
table is then used at the end of the execution process, to perform a substitution of each
identified value by its correspondent cypher.

The anonymisation handler component consists of a single class, implementing the
following interface:

1 public interface Anonymiser {

2 public void anonymise(Database destiny);

3 }

Listing 4.11: Error handler object interface

The anonymise(Database destiny) method is responsible for passing through
every table contained in the internal data-structure database representation object, col-
lecting the information about which attributes should be anonymised. Afterwards, every
attribute’s distinct value is collected into a temporary table, along with its corresponding
cipher. Finally, this temporary table is used to perform a coherent substitution in every
tuple where the original value is found.

4.3 System execution

As the system starts, it connects to the database from which the sample is to be extracted,
collecting its schema information. This information is then used to create the schema rep-
resentation in the information data structure component, by building objects to represent

28

4. SYSTEM ARCHITECTURE 4.3. System execution

each table, its contained attributes and data types, along with their primary and foreign
keys.

Read schema from Database

Create information data
structure

Read line from sample
specification

Add specified restrictions information
to data structure

Collect statistical information requested in the
specification

Sampling Engine
Execution

Anonymise sample

Extracted
sample ok?

Yes

End of
specification?

Yes

No

No

Figure 4.5: Anonym Database Sampler Execution Diagram

Afterwards, ADS reads the sample specification, storing the restrictions definitions
obtained in each line in its correspondent attribute representation in the data structure
component. When the end of the sample specification is reached, the statistical variable
values defined in the specification are obtained from the database, which are stored in
their correspondent attribute restriction representation.

After all the data is collected, ADS proceeds to the sampling engine execution, per-
forming the necessary actions to obtain a representative sample from the database, which
are described in Chapter 5.

When this execution is concluded, ADS presents the user with the statistical infor-
mation about the obtained database sample, highlighting the possible differences that
can occur and asking what action should be performed next. If the user is not satisfied

29

4. SYSTEM ARCHITECTURE 4.3. System execution

with the obtained sample, she can restart the sampling operation. If the obtained sam-
ple meets her needs, the system proceeds to the anonymisation operation and returns
the sample database creation and data insertion scripts to the user. The above system
execution description is sumarised in Figure 4.5.

30

5
Sampling engine

The sampling engine is the component that handles the sample extraction process, i.e. the
process that selects and copies data from the original database into the sample’s database.

In order to implement such a sampling engine, one could try to simplify by randomly
sampling each of the database’s tables, and subsequently verifying if all the specified
restrictions for each table were fulfilled. However, this solution would only work if all
of the database attributes had a normal distribution, since every tuple from each table
have the same probability of being selected. And even in that situation, such a sample
would hardly maintain every foreign-key restriction present in the original database, i.e.
the sample database thus obtained would hardly be consistent.

In alternative to simple random sampling, ADS offers another sampling method de-
noted stratified random sampling [MM44]. This sampling works by dividing the pop-
ulation in disjoint groups (strata), and then performing an independent random sample
on each of them. Moreover, the same percentage of tuples is selected from each strata,
ensuring that the desired sample size is achieved. This sampling technique allows a bet-
ter performance than simple random sampling in non-normal distributions and remains
equally efficient with normal distributions. This way, it is ensured that the proportions of
each original strata are maintained in the extracted sample, therefore reducing the sam-
pling error and helping to create a base sample where the data distribution is closer to
the original. Even so, one can not guarantee to comply with all the restrictions speci-
fied by the developer, mainly due to the fact that every tuple from a given strata has the
same probability of being selected. And, like in the simple random sampling technique,
foreign-key restrictions could hardly be maintained.

Given this, since we need to ensure all the developer’s specified restrictions and, even

31

5. SAMPLING ENGINE

more importantly, the sample database consistency, we needed to implement some com-
plementary technique. This technique, when combined with the previously described
method, should ensure that all the restrictions were fulfilled. Therefore, we developed a
First-choice hill-climbing [RN03] algorithm to optimise the sample data by achieving the
desired values for the sample’s statistical data, while also ensuring that the resulting
database sample was sound.

As a local search algorithm, rather than considering the multiple possible paths to
achieve a current state, the First-choice hill-climbing operates by considering a single state.
Then the algorithm only moves to neighbours of that state, i.e. states that can be reached
from the current one by performing some sort of action. Using such a local search al-
gorithm has two main advantages: (1) a very little amount of memory is required; and
(2) it is often possible to find reasonable solutions in large or infinite (continuous) state
spaces for which other systematic algorithms are unsuitable. Both of these advantages
are particularly suitable to our problem, given the typically large size of our standard
databases.

In a nutshell, a local search algorithm runs as a loop that continually moves in the
direction of increasing value, i.e. uphill, and terminates when it reaches a “peak” where
no neighbour has a higher value. Since there is no need to maintain a search tree, the
data structure for the current node only needs to record the state and the value of the
goal function.

Moreover, as previously mentioned, we use a stochastic hill climbing variation (First-
choice hill-climbing), that randomly chooses a movement from the set of all available up-
hill moves. This usually converges more slowly than the classical hill-climbing algorithm
(also known as steepest ascent), but in some state landscapes, it achieves better solu-
tions [RN03]. Since a state may have many (e.g. thousands of) successors, this variation
generates successors randomly, until one of the generated is better than the current state.

Nevertheless, while combining these two techniques explained above we can achieve
an accurate data combination sample, such combination may be impossible to obtain.
On one hand, the foreign key restrictions can force us to break some statistical restriction.
On the other hand, the data distribution for a given attribute can even be so characteristic
that it is not possible to maintain some statistical value for that attribute without breaking
the sample size restriction. For example, imagine that we have a two person population
to sample, father and son. It would be impossible to obtain a sample of such population
that maintains its average age, unless the sample matches the population.

Given this, the implemented sample process is three-folded. First, ADS uses a strati-
fied random sampling technique to produce an initial sample. Afterwards, a First-choice
hill-climbing optimisation algorithm is used to iterate over this base sample, swapping the
base sample tuples in order to make them closer to the desired values. Finally, if some
restrictions are yet to be fulfilled, a tuple and/or key modification is performed to ensure
that the final sample fully complies with the initial sample specification. An illustration
of this sample process can also be found in Figure 5.1.

32

5. SAMPLING ENGINE

Collect stratified sample

Collect sample's
statistical information

All restrictions
fulfilled?

Count > Max?

Modify Data

All restrictions
fulfilled?

Yes

No

Yes

No

Yes

Count++ No

Add Tuples Remove Tuples

Collect sample's
statistical information

Select random
action

Smaller
error

values?

Yes

No

Figure 5.1: Sampling Engine Execution Diagram

33

5. SAMPLING ENGINE 5.1. First step: stratified random sample

Instead of collecting information at run-time, the sampling engine process only uses
the information obtained by the previous components presented in Chapter 4. Using the
select into clause, ADS performs direct copies from the original to the internal database
through a database link, relying on the system components to obtain the information
used to verify the differences between the sample and the original databases. Therefore,
we deliver to the DBMS the task of copying the desired data, lowering ADS memory
usage.

5.1 First step: stratified random sample

In this step ADS extracts its base sample, using the statistical values defined in the sample
specification to create a stratified random sample from the desired tables. If no statistical
values are defined for a table, a simple random sample is extracted from that table.

In the case of the stratified random sample, the statistical variables are used to define
the strata, i.e. the database population is divided into disjoint groups by splitting each ta-
ble using all its specified statistical variables values. A random sample is then performed
for each strata independently, collecting the same percent of data from each. This way,
by defining more restrictions for a given table, one is increasing the stratification of the
sample extracted from such table, thereby providing a better representation of the table’s
data distribution.

To handle the random tuple selection, the current implementation relies on Oracle’s
DBMS select sample clause, which allows to instruct the database to select from a random
sample of data from a table, rather than from the entire table. Likewise, to perform a
stratified sample, we use this same clause on a sequence of queries, each one with a dif-
ferent sub-query limiting the sampled table data to the tuples that fall within the range of
the desired stratification, using the statistical variables values obtained by the statistical
data module.

As an example, in Listing 5.1 we present the queries generated for extracting a fifty
percent stratified sample from the original database. This stratification was created by
requesting ADS to maintain the average value for the employees salary, the ratio for
the different department locations, and the mode of the existent job positions maximum
salary value, using the following sample specification:

sample size 50% with error=5 and anonymisation = 1;

preserve avg for SALARY from EMPLOYEES with error=10;

preserve ratio for LOCATION_ID from DEPARTMENTS;

preserve mode for MAX_SALARY from JOBS;

These generated queries are sequentially executed in a separated database schema,
creating the base sample from which the anonymised sample database is created.

34

5. SAMPLING ENGINE 5.1. First step: stratified random sample

1 create table EMPLOYEES as with Q as (

2 select * from EMPLOYEES@originalDB where SALARY<=6461.6822

3) select * from Q sample(50)

4 insert into EMPLOYEES with Q as (

5 select * from EMPLOYEES@originalDB where SALARY>6461.6822

6) select * from Q sample(50)

7 create table JOBS as with Q as (

8 select * from JOBS@originalDB where MAX_SALARY=9000

9) select * from Q sample(50)

10 create table JOBS as with Q as (

11 select * from JOBS@originalDB where MAX_SALARY<>9000

12) select * from Q sample(50)

13 create table DEPARTMENTS as with Q as (

14 select * from DEPARTMENTS@originalDB where location_id=1400

15) select * from Q sample(50)

16 insert into DEPARTMENTS with Q as (

17 select * from DEPARTMENTS@originalDB where location_id=1700

18) select * from Q sample(50)

19 insert into DEPARTMENTS with Q as (

20 select * from DEPARTMENTS@originalDB where location_id=2700

21) select * from Q sample(50)

22 insert into DEPARTMENTS with Q as (

23 select * from DEPARTMENTS@originalDB where location_id=2400

24) select * from Q sample(50)

25 insert into DEPARTMENTS with Q as (

26 select * from DEPARTMENTS@originalDB where location_id=1800

27) select * from Q sample(50)

28 insert into DEPARTMENTS with Q as (

29 select * from DEPARTMENTS@originalDB where location_id=2500

30) select * from Q sample(50)

31 insert into DEPARTMENTS with Q as (

32 select * from DEPARTMENTS@originalDB where location_id=1500

33) select * from Q sample(50)

34 create table REGIONS as with Q as (select * from REGIONS@originalDB)

35 select * from Q sample(50)

36 create table LOCATIONS as with Q as (select * from LOCATIONS@originalDB)

37 select * from Q sample(50)

38 create table JOB_HISTORY as with Q as (select * from JOB_HISTORY@originalDB)

39 select * from Q sample(50)

40 create table COUNTRIES as with Q as (select * from COUNTRIES@originalDB)

41 select * from Q sample(50)

Listing 5.1: Generated queries for the stratified sample extraction

Additionally, if one specified that the maximum or minimum value of an attribute
from a given table should be kept, ADS performs a direct copy of the tuple where that
value is found from the original to the sample database, while excluding it from any strata
where it could be found.

When extracting a stratified sample, the samples’ original statistical values may not

35

5. SAMPLING ENGINE 5.2. Second step: First-choice hill-climbing optimisation

be maintained, depending on the sample’s sheer size. Statistically speaking, if the sample
is big enough, the contained data statistical variables are probably kept according to the
original, but one can not ensure that it will occur. Nevertheless, developers should be
able to specify the sample size that better fits their needs, thus limiting the minimum
sample size does not fit in the goals of this work.

This way, and also to not interfere with the randomness of the tuple selection, during
this step no "foreign-key" restrictions are ensured. Instead, these restrictions are used in
the following step, to help choosing the tuples that should be selected when performing
the base sample optimisation.

5.2 Second step: First-choice hill-climbing optimisation

In this second step, ADS uses a First-choice hill-climbing algorithm to optimise the sam-
ple’s statistical data, i.e. to perform a set of randomly chosen actions, exchanging tuples
towards the desired statistical values. The goal of this algorithm is to keep the statistical
values of the sample within the error margins defined during the specification, while si-
multaneously checking the integrity of the sample’s data and striving to ensure that all
the foreign-key restrictions present in the original database are also fulfilled by the sam-
ple. To accomplish this goal, the algorithm performs a set of randomly selected actions,
adding or removing tuples.

Each possible action has a corresponding query generator method, which is respon-
sible for generating the appropriated query for executing it. This query is then executed
in the sample database, adding or removing the tuples from the sample database.

As an illustration, the query presented in Listing 5.2 was generated for adding all
the tuples that were missing in the primary key table but were present as foreign key in
given table. More specifically, this query will copy from the original locations table all the
tuples from which its location_id can be found in the sample departments table, but not in
the sample locations table.

1 insert into LOCATIONS (

2 select * from LOCATIONS@originalDB o

3 where o.LOCATION_ID in (select LOCATION_ID from DEPARTMENTS)

4 and o.LOCATION_ID not in (select LOCATION_ID from LOCATIONS)

5)

Listing 5.2: An example of a generated query for adding tuples

Likewise, the query presented in Listing 5.3 was generated for removing all the tuples
from a given table for which their foreign keys can not be found in their corresponding
primary key table. More specifically, this query will remove from the job_history sample
table all tuples for which its employee_id cannot be found in the employees sample table.

36

5. SAMPLING ENGINE 5.3. Third step: Data modification

1 delete from JOB_HISTORY o where o.EMPLOYEE_ID not in

2 (select EMPLOYEE_ID from EMPLOYEES)

Listing 5.3: An example of a generated query for removing tuples

In an attempt to keep the statistical values within the pre-defined error margins, after
performing each action, ADS re-collects the sample data statistics. If this action brings
the statistical values closer to their counterparts in the original database, the changes are
stored as a save-point in the sample’s database. Otherwise, changes are simply rolled-
back. For each iteration, ADS independently performs the actions described above on
all the database’s tables. After an action is attempted in each table, ADS collects all the
statistics and compares them with the ones previously obtained using the function pre-
sented in 5.2. If a positive result is returned - i.e. if, overall, the new statistics are closer
to the original than the old ones - all save-points are committed to the sample database.
If not, all save-points are discarded.

n∑
restriction=1

‖previousErrorV aluerestriction‖ −
n∑

restriction=1

‖currentErrorV aluerestriction‖

Figure 5.2: Cost function for the sample optimisation algorithm

In short, ADS takes the difference from the current to the desired statistical values,
i.e. the current error values, as its cost function, and uses the foreign-key restrictions to
define the algorithm’s neighbourhood, in which tuples can be added if their foreign keys
are already present in the sample database, or removed if the primary key corresponding
to its foreign key cannot be found in sample database.

The algorithm stops when at least one of the following conditions occurs: (1) the
sample data is sound, in the sense that it complies with the foreign-key restrictions; (2)
all statistical values are within the specified error margins. But neither the first condi-
tion is necessarily the phase where the desired statistical values are met, nor the second
condition corresponds to a phase where all the foreign-key restrictions are satisfied. On
the other hand, the potential size of a database and the consequent number of possible
combinations, along with possible incompatibilities between the desired statistical values
and any tuples still to be added or removed, may lead the algorithm to end up running
indefinitely or never generate a sound database. Therefore, it is also possible to configure
ADS to stop this step of the sampling process after a bounded number of iterations.

5.3 Third step: Data modification

In spite of the precautions discussed in the previous Sections 5.1 and 5.2, there is always
a chance that inconsistent data remains in the sample. If that is the case, ADS performs

37

5. SAMPLING ENGINE 5.3. Third step: Data modification

one further step at this stage, which involves two possible actions: tuple and key mod-
ification. Tuple modification ensures that an attribute’s statistical values are within the
predefined range. For instance, if an attribute’s average is lower than desired - i.e. lower
than in the original database - ADS adds the difference between the current and the de-
sired statistical value to all values of that attribute. This is only performed to values
whose final result will not surpass the attribute’s predefined maximum, in an effort to
maintain the original statistical distribution. Similarly, if an attribute’s average is higher
than desired, ADS subtracts said difference to all values, only this time paying attention
not to fall behind the current minimum value.

As an example, consider that we sampled a table of employees where, among other
restrictions, we specified that the average of the employees salary should be maintained
with a 10% error margin. To simplify, assume also that original average salary was 2500,
which applying the defined error margin would gave us a value range from 2250 to 2750.
If the values presented in Table 5.1 were final, this average salary restriction would not
be fulfilled, given that the average employees salary in that table is 2812.5.

EMPLOYEE_ID SALARY DEPARTMENT_ID
125 3200 50
127 2400 100
130 2800 50
134 2900 80
135 2400 80
140 2500 80
141 3500 50
183 2800 50

Table 5.1: Example of a employees table

Therefore, as explained, if such a table arrived to the data modification step of ADS
sampling engine, the system would subtract the difference between the actual and the
original average salary (2812.5− 2500 = 312.5) to all values where such operation would
not modify the actual range of values, using a generated query as the one presented in
Listing 5.4.

1 update employees

2 set salary = salary-312.5

3 where salary-312.5 > (select min(salary) from employees)

4 and salary <> (select max(salary) from employees)

Listing 5.4: An example of a generated query for modifying tuples

This way, Table 5.1 would be modified into the Table 5.2. As one can observe by com-
paring both tables, the system did not modify any of the values that would fall behind the
minimum salary value, nor the maximum salary value. Particularly, the actual average

38

5. SAMPLING ENGINE 5.3. Third step: Data modification

salary value for Table 5.2 became 2656, which is an acceptable value given that is within
the defined value range.

EMPLOYEE_ID SALARY DEPARTMENT_ID
125 2888 50
127 2400 100
130 2488 50
134 2588 80
135 2400 80
140 2500 80
141 3500 50
183 2488 50

Table 5.2: Example of a employees table after tuple modification

Key modification, in turn, replaces any key containing mismatched data with one
randomly selected from the sample. To exemplify this, consider the previous resulting
Table 5.2, and also Table 5.3, where one can find the departments names for which the
employees work. As one can observe, although in Table 5.2 we have an employee that
works for the department that has an id equal to 100, no such department can be found
in Table 5.3.

DEPARTMENT_ID DEPARTMENT_NAME
130 Corporate Tax
160 Benefits
80 IT Helpdesk
50 Shipping

Table 5.3: Example of a departments table

This way, the system will randomly pick a department id from the ones he already
have in the departments table, for example changing the previously mentioned id from
100 to 160. Therefore, table 5.2 would be transformed into table 5.4.

EMPLOYEE_ID SALARY DEPARTMENT_ID
125 2888 50
127 2400 160
130 2488 50
134 2588 80
135 2400 80
140 2500 80
141 3500 50
183 2488 50

Table 5.4: Example of a employees table after key modification

39

5. SAMPLING ENGINE 5.3. Third step: Data modification

It is worth noting that both tuple and key modification can be performed only be-
cause the resulting samples are intended as user-defined representative datasets for use
in test and development environments, and are not appropriate for any kind of statisti-
cal data analyses. This way, while it is crucial to ensure data consistency along with the
user-defined restrictions, the truthfullness of the obtained data can be relaxed. It is not
necessary to maintain all the original data statistical characteristics to obtain a database
sample that can be used to accuratelly perform a specific application test.

40

6
Tests and result analysis

To correctly evaluate ADS’s features, the test-phase should take into account three differ-
ent databases: a small generic database, to be used also in the development environment;
a mid-scale database having as many relations as possible between its tables (allowing us
to perform some initial tests and also evaluate the system performance when confronted
with many relations); and a large scale database, to measure the performance evaluation
of our system.

However, due to time restrictions, we only used one database for testing ADS - the
Oracle-XE default example database, which is the same database we used in Chapter 3
examples and also the database used in our development environment.

To this end, we performed four sets of tests, two extracting a simple random sam-
ple from the original database, and two more extracted by the ADS sampling engine
algorithm presented in Chapter 5. The goal of these sets is to be able to compare ADS’s
sampling process with a simple random sample, and also study both methods facing dif-
ferent sample size restrictions. This way, in each two sets a twenty five and a fifty percent
sample is requested. Given the amount of data contained even in a small database like
this, and in order to be possible to compare each of these values within all the tests, we
decided to only present the values that will be specified as statistical variable restrictions
in ADS’s execution: the maximum and average values for the salary attribute from the
employees table, and the minimum and average value for the hire date attribute from
that same table. In addition, we also present these same values obtained from the orig-
inal database, presented as a range of values when appropriate, in order to be possible
to compare the test results with the desired values. Given that all of these methods use
some random operations, each set of tests comprises five independent runs of the sample
extraction.

41

6. TESTS AND RESULT ANALYSIS 6.1. Simple random sample

It is noteworthy that it is harder to obtain a representative sample from a small pop-
ulation. In fact, this difficulty is also the reason why we chose such sample sizes for our
tests. Given the small size of the original database, requesting a ten or fifteen percent
sample of such database resulted in a twenty or thirty tuple sample database, which re-
sulted in a two or three tuples-per-table database, where very little could be performed
in order to achieve a representative sample, and many times resulted in a impossible
problem, i.e. there was no possible tuple combination that could be selected in order to
achieve such a sample.

6.1 Simple random sample

As discussed in Chapter 5, if no statistical values restrictions are defined for a table in the
sample specification, ADS extracts a simple random sample from that table. This way, if
no statistical restrictions are defined for any table, ADS extracts a simple random sample
from the whole database. As the sampling engine has no statistical values to maintain, it
only guarantees database consistency, ensuring that a sound database sample is returned.

The results presented in Table 6.1 are the values obtained in five independent ex-
tractions of a random sample containing twenty five percent of the original database,
with a ten percent error margin, and performing the anonymisation operations. This was
achieved by using the following sample specification:

sample size 25% with error=10 and anonymisation = 1;

As can be observed in 6.1, very little can be guaranteed from such sample. For each
run, there is a considerable variation in all of the observed values, and only by chance
some of the resulting values are close to the ones found in the original database. Thus, not
much can be discussed based on these results given that, as expected, only a few match
the desired values. The only exceptions are the ones concerning the maximum salary
and the minimum hire date, which match the expected value in three of the five test runs.
Since all their matches occur in the same runs, both variables seem to be related.

Table 6.2 shows the values obtained in another five independent extractions, and this
time a fifty percent simple random sample was requested, with a five percent error mar-
gin and performing the anonymisation operations. Such sample can be obtained using a
specification similar to the previous:

sample size 50% with error=5 and anonymisation = 1;

The results from these runs are completely different from the previous ones, and
mostly all results comply with the desired values. As in the previous test, these results
are also close to what we expected. This is a consequence of extracting a greater sample,
which increases the probability of selecting a more representative sample. And this is true
for almost any sample whose size is equal to or greater than fifty percent of the original
population sample, simply because we are selecting a higher number of elements.

42

6. TESTS AND RESULT ANALYSIS 6.1. Simple random sample

Desired Value 1st Run 2nd Run 3rd Run 4th Run 5th Run
Database
Size

[48;59] 57 55 57 50 58

Average
Salary

6462 8309 5357 8541 11185 10563

Max Salary 24000 13000 24000 24000 17000 24000
Min Salary 2100 4200 2200 2400 4400 4800
Median
Hire Date

15-12-97 17-08-94 10-10-97 18-07-96 13-01-93 24-03-97

Max Hire
Date

21-04-00 07-02-99 06-02-00 12-12-99 07-12-99 29-01-00

Min Hire
Date

17-06-87 17-09-87 17-06-87 17-06-87 17-09-87 17-06-87

Table 6.1: Simple random sample specifying a sample size of 25%

Desired Value 1st Run 2nd Run 3rd Run 4th Run 5th Run
Database
Size

[102;112] 108 109 109 110 112

Average
Salary

6462 6634 6102 5947 6932 7225

Max Salary 24000 24000 24000 24000 24000 24000
Min Salary 2100 2200 2200 2200 2100 2100
Median
Hire Date

15-12-97 28-09-97 09-07-97 28-08-97 30-10-97 02-12-97

Max Hire
Date

21-04-00 24-03-00 08-03-00 08-03-00 21-04-00 08-03-00

Min Hire
Date

17-06-87 17-06-87 17-06-87 17-06-87 17-06-87 17-06-87

Table 6.2: Simple random sample specifying a sample size of 50%

However, as it is easy to see from the average salary value for the fifth run values,
all values are still conditioned by the probabilities of the tuple selection. In this way,
we cannot guarantee to hold any statistical variable value, nor ensure that the original
data will present a normal distribution. Furthermore, we cannot even choose a particular
data distribution, given that ADS should be able to extract a sample from any relational
database.

Thereby, a simple random sampling mechanism would not be sufficient to achieve
our goals, as a high probability of complying with a particular restriction also means that
there is some probability of not complying with such restriction.

43

6. TESTS AND RESULT ANALYSIS 6.2. ADS sampling engine sample

6.2 ADS sampling engine sample

The results presented in this section are obtained using ADS’s complete sampling pro-
cess. As discussed in Chapter 5, this process begins by extracting a stratified random
sample from the original database, using the specified statistical variables values to deter-
mine its strata. Afterwards, a First-choice hill-climbing optimisation is performed, adding
or removing tuples towards the desired statical values while ensuring consistency in the
sample database. Finally, if after this second step some restriction remains unfulfilled,
a data and/or key modification step is performed, ensuring that all restrictions are met.
These final modifications are only possible due to the goal of the extracted samples: being
used as development and test environments databases. As discussed in Chapter 1, while
having a representative and sound database can be a great advantage to developers, we
assume that this representativeness does not need to comply with truly statistical rep-
resentativity, which would be much more expensive to obtain. Nevertheless, given that
these data modifications are only performed after ADS tried to optimise the extracted
sample, we also ensure that the extracted sample data distribution is as close as possible
to the original. And if all the restrictions are already fulfilled, no data modification is
performed.

The results presented in table 6.3 are obtained from five independent ADS execu-
tions, where we specified that it should maintain the maximum and medium values for
the salary attribute from the employees table, and also the median and maximum hire
date for that same table. This specification was performed as bellow:

sample size 25% with error=10 and anonymisation = 1;

preserve max, avg for SALARY from EMPLOYEES with error=10;

preserve min, median for HIRE_DATE from EMPLOYEES;

As it can be observed, not only all the specified restrictions are met, but also all the
resulting values a generally much closer to the original values than the ones presented in
table 6.1, from the twenty five percent simple random sample. We think that this is a very
good result, mainly related with better tuple collection distribution provided by the ini-
tial stratification, followed by the performed sample optimisation. In addition, it should
be worth mentioning that while a data modification was performed to the medium salary
value in all runs, no data modification was applied to the median hire date at the fourth
and fifth runs. On the other hand, some key modifications also occurred, which made
possible to maintain the median hire date unchanged in those runs.

Table 6.4 presents the values from another five independent extractions, this time
specifying a fifty percent sample. As before, such sample can be obtained using a speci-
fication similar to the previous:

sample size 50% with error=5 and anonymisation = 1;

44

6. TESTS AND RESULT ANALYSIS 6.2. ADS sampling engine sample

Desired Value 1st Run 2nd Run 3rd Run 4th Run 5th Run
Database
Size

[48;59] 59 57 49 55 55

Average
Salary

[5815;7108] 6631 6461 6338 6674 7014

Max Salary 24000 24000 24000 24000 24000 24000
Min Salary 2100 2100 2500 2500 2400 2400
Median
Hire Date

15-12-97 11-03-97 17-08-97 10-07-97 10-03-97 10-03-97

Max Hire
Date

21-04-00 03-02-00 10-08-99 29-01-00 21-04-00 24-03-00

Min Hire
Date

17-06-87 17-06-87 17-06-87 17-06-87 17-06-87 17-06-87

Table 6.3: ADS results specifying a sample size of 25%

preserve max, avg for SALARY from EMPLOYEES with error=10;

preserve min, median for HIRE_DATE from EMPLOYEES;

Although at first sight the results from these test runs may appear to be worst than
the ones from the previous test presented in table 6.3, that is not the case. ADS only
performed data modification operations in the third and fifth runs, being able to find a
suitable tuple combination in all the other runs. Additionally, the results obtained from a
fifty percent simple random sample, i.e. the ones presented in table 6.2, can also look gen-
erally better than the ones obtained with this test. But that also is not true. As discussed
before, ADS’s ultimate goal is to obtain a database sample accordingly with a sample
specification, and in this test we achieved that goal without performing any data mod-
ification in three of the five runs. And all the statistical value restrictions were always
fulfilled in all the test runs, creating a uniform and much more reliable result-set.

As said before, these tests should be considered as a proof of concept validation, and
should be complemented by sampling some other databases in future work. To that
end, we identified two candidate systems for evaluation: the Mondial database [May99],
which is a mid-scale freely available database containing world-wide geographical in-
formation, featuring hundreds of relations between its tables; and the complete Oracle
example database package, which is a large-scale database that mirrors a large company
database, featuring a few hundred gigabytes of information. For more information about
the Oracle examples databases one can refer to [gR11].

As we discovered that the Mondial database schema does not contain any foreign-key
restriction, which ADS uses to ensure data consistency. Such database would be a great
candidate for testing the data redefinitions, and their relevance in ADS capabilities of
succefully fullfill the specified objectives. In addition, the full Oracle example database

45

6. TESTS AND RESULT ANALYSIS 6.2. ADS sampling engine sample

Desired Value 1st Run 2nd Run 3rd Run 4th Run 5th Run
Database
Size

[102;112] 104 108 109 112 110

Average
Salary

[5815;7108] 7101 7077 6393 7088 6762

Max Salary 24000 24000 24000 24000 24000 24000
Min Salary 2100 2400 2100 2200 2200 2200
Median
Hire Date

15-12-97 20-10-97 18-10-97 16-11-97 28-11-97 28-09-97

Max Hire
Date

21-04-00 23-02-00 06-02-00 08-03-00 21-04-00 08-03-00

Min Hire
Date

17-06-87 17-06-87 17-06-17 17-06-87 17-06-87 17-06-87

Table 6.4: ADS results specifying a sample size of 50%

pack (which is a commercial product) constitutes a close-to-reality large database, fea-
turing some more advanced database data organisation techniques such as partitioning.
This way, it would be a great way to perform some large-scale database sampling test.

46

7
Conclusions and future work

In this work we present ADS, a flexible and modular system capable of extracting an
anonymised, consistent and representative sample from a relational database, to be used
in testing and development environments, given a specification of what needs to be kept
in the sample.

To the best of our knowledge, not much has been done in obtaining representative
and consistent samples from a database in order to be used in application development
environments. Therefore, we believe that this is an important research, which not only
paves the way for future methods to create development and test databases based in real
data, but also helps to bridge the gap between academic research and the common organ-
isation problems. The clear advantage of our work is that our solution relies on real data,
which allows developers to get a deeper understanding of the said data characteristics.
Consequently, we believe this approach to be a powerful tool that helps developers to
create more accurate and therefore better applications.

Although the tests performed in Chapter 6 are insufficient to evaluate and make a
final assumption about ADS’s time and memory consumption, they show that the pro-
totype is capable of providing an anonymised sample accordingly to the sample speci-
fication. Moreover, despite the size of the database used for testing was not as large as
desired, the results indicate our method to be quite fast in finding a solution.

It is also worth noting that it is harder to obtain a representative sample from a small
population. In fact, in a small population, it is more likely that each element has a higher
relevance towards the population characterisation than in a larger one. As an extreme
example, consider two people: a father and a son. To obtain a small sample from this
population that maintains its age average, we can only select one of the elements of the
population, and so we would never obtain such average, given that both would have the

47

7. CONCLUSIONS AND FUTURE WORK

same relevance regarding that characteristic.

While the usefulness of a small sample database could be questioned (and in a real-
life scenarios such database could be simply anonymised and directly delivered to de-
velopers), we consider that successfully obtaining a 25 percent sample from such a small
database was an encouraging result. Applying our solution to a bigger database would
probably achieve at least the same level of success, as our trials with a 50 percent sample
seem to indicate.

Nevertheless this implementation should be considered as a working prototype for
a proof of concept, that leaves room for further development and/or improvements. To
this end, we consider that ADS’s flexibility and modularity plays a major role since it
eases the optimisation of the current features. Moreover, these characteristics also allow
the creation of new features that were not considered during the development of this
thesis.

For instance, one of the features that can be greatly improved is the data anonymi-
sation. This anonymisation is currently implemented through a cypher which creates a
consistent data mask that prevents data from being directly disclosed. However, as pre-
viously discussed in Chapter 2, this method can be easily reversed by using some data
analysis techniques. This way, one could develop a different anonymisation module us-
ing k-anonymity [Swe02], which was proven to be a much more reliable data anonymisa-
tion technique, and is already supported by the current sampling specification language
through the "anonymisation level" parameter. In fact, the k-anonymity concept lies in en-
suring that an attacker can not match any of the anonimysed data into less than k original
individuals. As a result, such implementation could be improved by merging k similar
tuples into a single one, while maintaining the desired statistical values. This way, one
could also use this technique to create a different sampling step, where similar tuples
were merged instead of being randomly selected.

Also regarding further research, the sample optimisation algorithm described in sec-
tion 5.2 can be extended not only to perform some new actions to find different neigh-
bours for a given state, but also to apply alternative local search algorithms, such as sim-
ulated annealing [RN03] or genetic search [RN03]. Note that, the whole sampling engine
was carefully designed as a separated component and where each possible operation is
also defined in a separated sub-component. This design makes possible the re-usage of
the current implementation and eliminates the overhead of developing all the internal
components that were created in the production of this thesis.

If a different sampling engine is used, bearing in mind that no direct data modification
was carried out, ADS could also be easily adapted to different areas of study, like data-
mining or database cleaning.

Furthermore, another interesting further work is to create a graphical user interface.
Such interface would allow developers to define the sample specification directly in the

48

7. CONCLUSIONS AND FUTURE WORK

database entity-relationship diagram, thus providing an even more intuitive way to de-
velopers to express their needs. Moreover, since the language interpreter is also imple-
mented as a separate component, one could easily replace the interpreter by such inter-
face.

49

7. CONCLUSIONS AND FUTURE WORK

50

Bibliography

[BG00] Jesús Bisbal and Jane Grimson. Database prototyping through consistent
sampling. In In the International Conference on Advances in Infrastructure for
Electronic Business, Science, and Education on the Internet (SSGRR’2000), to ap-
pear. Scuola Superiore Guglielmo Reiss Romoli (SSGRR, 2000.

[BH06] Paul G. Brown and Peter J. Haas. Techniques for warehousing of sample data.
In ICDE, page 6, 2006.

[CHY96] Ming-Syan Chen, Jiawei Han, and Philip S. Yu. Data mining: An overview
from a database perspective. IEEE Trans. Knowl. Data Eng., 8(6):866–883, 1996.

[CMN98] Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. Random sam-
pling for histogram construction: How much is enough? In SIGMOD Confer-
ence, pages 436–447, 1998.

[Coc77] William G. Cochran. Sampling Techniques, 3rd Edition. John Wiley, 1977.

[Dal86] Tore Dalenius. Finding a needle in a haystack or identifying anonymous cen-
sus records. Journal of Official Statistics, 2(3):329–336, 1986.

[DB211] IBM DB2. http://www-01.ibm.com/software/data/db2/, 2011.

[GHYZ04] Hong Guo, Wen-Chi Hou, Feng Yan, and Qiang Zhu. A monte carlo sampling
method for drawing representative samples from large databases. In SSDBM,
pages 419–420, 2004.

[gR11] Oracle Database Express Edition 11g Release 2. http://www.oracle.com/
technetwork/database/express-edition/downloads/index.

html, 2011.

[HK04] Peter J. Haas and Christian Koenig. A bi-level bernoulli scheme for database
sampling. In SIGMOD Conference, pages 275–286, 2004.

51

http://www-01.ibm.com/software/data/db2/
http://www.oracle.com/technetwork/database/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/express-edition/downloads/index.html

BIBLIOGRAPHY

[JL96] George H. John and Pat Langley. Static versus dynamic sampling for data
mining. In KDD, pages 367–370, 1996.

[KKMS09] Vidyadhar G. Kulkarni, Subodha Kumar, Vijay S. Mookerjee, and Suresh P.
Sethi. Optimal allocation of effort to software maintenance: A queuing theory
approach. Production and Operations Management, 18(5):506–515, 2009.

[LNS90] Richard J. Lipton, Jeffrey F. Naughton, and Donovan A. Schneider. Practical
selectivity estimation through adaptive sampling. In SIGMOD Conference,
pages 1–11, 1990.

[Man11] IBM Optim Integrated Data Management. http://www-01.ibm.com/

software/data/data-management/optim-solutions/, 2011.

[May99] Wolfgang May. Information extraction and integration with FLORID: The
MONDIAL case study. Technical Report 131, Universität Freiburg, Insti-
tut für Informatik, 1999. Available from http://dbis.informatik.

uni-goettingen.de/Mondial.

[MM44] William G. Madow and Lillian H. Madow. On the theory of systematic sam-
pling. Annals of Mathematical Statistics, 15(1):1–24, 1944.

[Olk93] Frank Olken. Random Sampling from Databases. PhD thesis, University of Cal-
ifornia at Berkeley, 1993.

[Ora11a] Oracle. http://docs.oracle.com/cd/B19306_01/server.102/

b14200/functions001.htm, 2011.

[Ora11b] Oracle. http://download.oracle.com/docs/cd/B19306_01/

appdev.102/b14258/d_stats.htm, 2011.

[Ora11c] Oracle. http://download.oracle.com/docs/cd/B19306_01/

server.102/b14200/statements_10002.htm#i2065953, 2011.

[PF00] Christopher R. Palmer and Christos Faloutsos. Density biased sampling: An
improved method for data mining and clustering. In SIGMOD Conference,
pages 82–92, 2000.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2003.

[Swe00] Latanya Sweeney. Uniqueness of simple demographics in the u.s. population,
2000.

[Swe02] Latanya Sweeney. k-anonymity: A model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570,
2002.

52

http://www-01.ibm.com/software/data/data-management/optim-solutions/
http://www-01.ibm.com/software/data/data-management/optim-solutions/
http://dbis.informatik.uni-goettingen.de/Mondial
http://dbis.informatik.uni-goettingen.de/Mondial
http://docs.oracle.com/cd/B19306_01/server.102/b14200/functions001.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/functions001.htm
http://download.oracle.com/docs/cd/B19306_01/appdev.102/b14258/d_stats.htm
http://download.oracle.com/docs/cd/B19306_01/appdev.102/b14258/d_stats.htm
http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/statements_10002.htm#i2065953
http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/statements_10002.htm#i2065953

BIBLIOGRAPHY

[Toi96] Hannu Toivonen. Sampling large databases for association rules. In VLDB,
pages 134–145, 1996.

[ZPLO97] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Wei Li, and Mitsunori
Ogihara. Evaluation of sampling for data mining of association rules. In
RIDE, 1997.

53

	Introduction
	Motivation
	Solution proposed
	Structure of this document

	Related Work
	Statistical sampling
	Sampling from databases
	Commercial applications for sampling from databases

	Data anonymisation

	Sample specification language
	Sample Definition
	Statistical Requirements
	Data Definitions
	Summary

	System architecture
	Input handler components
	Database connector
	Database schema reader
	Sample specification parser
	Statistical data

	Internal Components
	Information data structure
	Query handler
	Error handler
	Anonymisation handler

	System execution

	Sampling engine
	First step: stratified random sample
	Second step: First-choice hill-climbing optimisation
	Third step: Data modification

	Tests and result analysis
	Simple random sample
	ADS sampling engine sample

	Conclusions and future work

