

Francisco António Gonçalves Cavaco

Licenciado em Ciências de Engenharia

Ontologies Learn by Searching

Dissertation to obtain the Master degree in Electrical Engineering
and Computer Science

Orientador: Ricardo Luís Rosa Jardim Gonçalves

Professor Auxiliar, Departamento de Engenharia Electrotécnica

Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa

Co-orientador: João Filipe dos Santos Sarraipa, Investigador, UNINOVA

 Júri:

Presidente: Prof. Doutor José António Barata Oliveira
 Arguente: Prof. Doutor João Pedro Mendonça da Silva

 Vogais: Prof. Doutor Ricardo Luís Rosa Jardim Gonçalves
 Prof. Doutor Hervé Panetto

 MSc. João Filipe dos Santos Sarraipa

Setembro 2011

Copyright

Ontologies Learn by Searching©
Francisco António Gonçalves Cavaco

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de
exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de
investigação, não comerciais, desde que seja dado crédito ao autor e editor.

Aos meus pais,

v

ABSTRACT

Due to the worldwide diversity of communities, a high number of ontologies

representing the same segment of reality which are not semantically coincident have

appeared. To solve this problem, a possible solution is to use a reference ontology to be the

intermediary in the communications between the community enterprises and to outside.

Since semantic mappings between enterprise‘s ontologies are established, this solution

allows each of the enterprises to keep internally its own ontology and semantics unchanged.

However information systems are not static, thus established mappings become obsoletes

with time. This dissertation‘s objective is to identify a suitable method that combines

semantic mappings with user‘s feedback, providing an automatic learning to ontologies &

enabling auto-adaptability and dynamism to the information systems.

KEYWORDS

The keywords of this dissertation are: Ontology, Semantic mapping, Semantic

Interoperability, Dynamic Information Systems, Complex Systems.

vi

vii

RESUMO

Devido à existência duma diversidade de comunidades em todo o mundo, um número

elevado de ontologias que representam o mesmo segmento da realidade não sendo

semanticamente coincidentes têm surgido. Para resolver o problema, uma solução possível

é usar uma ontologia de referência como intermediária nas comunicações entre as

empresas de uma comunidade e para com o exterior. Desde que se estabelecem

mapeamentos semanticos entre as ontologias das empresas, esta solução permite que cada

uma das empresas mantenha internamente a sua própria ontologia e semântica inalterada.

Contudo os sistemas de informação não são estáticos, logo mapeamentos estabelecidos

tornam-se obsoletos com o tempo. O objetivo desta dissertação é então identificar método

que combine os mapeamentos semanticos com o feedback de utlizadores, proporcionando

uma aprendizagem automática às ontologias & obtendo assim alguma capacidade de auto-

adaptabilidade e dinamismo aos sistemas de informação.

PALAVRAS-CHAVE

As palavras-chave desta dissertação são: Ontologias, Mapeamentos semânticos,

Interoperabilidade semântica, Sistemas de Informação Dinamicos, Sistemas complexos.

viii

ix

ACKNOWLEDGEMENTS

The author wishes to express his sincere thanks and appreciation to all people that

helped him during his studies and during the realisation of this dissertation.

To his advisor Professor Ricardo Gonçalves for giving him the honour to work together,

for all the comments and suggestions during the development of this work which were

essential to be succeeded.

To João Sarraipa for being there every day, for his attention, guidance and support

during this research and the preparation of this dissertation.

And finally to his parents and his family who always believed him and supported him in

everything they could. You were always there and the author will never forget it.

x

xi

LIST OF ACRONYMS

AI - Artificial Intelligence

ANN - Artificial Neural Networks

ATL - Atlas Transformation Language

BN - Bayesian Network

CPT - Conditional Probability Table

DAG - Directed Acyclic Graph

EM - Expectation-Maximization

FL - Fuzzy Logic

GUI - Graphical User Interface

HTML - HyperText Markup Language

IDE - Integrated Development Environment

IPFP - Iterative Proportional Fitting Procedure

JSP - JavaServer Pages

KNN - Nearest Neighbour Algorithm

KRE - Knowledge Representation Element

KRRM - Knowledge Representation Requirements Model

LCIM - Levels of Conceptual Interoperability Model

LO - Learning Ontology

MLN - Markov Logic Network

MO - Mediator Ontology

OWL - Web Ontology Language

PC - Personnel Computer

RDF - Resource Description Framework

SME - Small and Medium Enterprises

xii

SVM - Support Vector Machines

URL - Uniform Resource Locator

XML - Extensible Markup Language

xiii

TABLE OF CONTENTS

1. Introduction .. 1

1.1. Motivation .. 1

1.2. Research Method ... 2

1.3. Dissertation Outline ... 4

2. Literature Review .. 5

2.1. Artificial Intelligence and Neuroscience ... 5

2.1.1. Conclusions... 7

2.2. Human Based Learning Techniques ... 7

2.2.1. Fuzzy Logic .. 7

2.2.2. Artificial Neural Networks .. 9

2.2.3. Conclusions... 11

2.3. Ontologies .. 11

2.3.1. Ontology Learning .. 12

2.3.2. Conclusions... 12

2.4. Operations research methods .. 12

2.4.1. Markov Chains .. 13

2.4.2. Bayesian Networks ... 14

2.4.3. BayesOWL .. 15

2.4.4. Conclusions... 16

2.5. Machine Learning ... 16

2.5.1. Instance-based learning ... 18

2.5.2. Data Mining .. 20

2.5.3. Conclusions... 23

3. Knowledge based methodology for semantic interoperability .. 25

3.1. Knowledge Representation Model for Systems Interoperability ... 25

3.2. Extending mentor methodology to a dynamic level .. 28

3.3. Knowledge based methodology. .. 30

3.4. Conclusions .. 33

4. Reference tools & models for ontology management.. 35

4.1. Used Technologies ... 35

4.1.1. Java ... 35

4.1.2. Web Services .. 36

xiv

4.1.3. Protégé .. 39

4.1.4. Conclusions .. 41

4.2. Reference Ontology ... 41

4.3. Mediator Ontology .. 43

5. oLEARCH Architecture .. 47

5.1. OLearch Services .. 47

5.1.1. Get products service .. 48

5.1.2. Increase weight service ... 52

5.2. OLearch Administrator GUI ... 53

5.2.1. New products .. 54

5.2.2. New concepts .. 54

5.3. OLearch GUI ... 55

5.4. Conclusions .. 55

6. Demonstrator Testing and Hypothesis Validation ... 57

6.1. Search functionality and relation’s creation. .. 57

6.2. New concepts Functionality .. 61

6.3. New products functionality ... 62

6.4. Dissemination Executed and Hypothesis Validation ... 63

7. Conclusions and Future Work .. 65

7.1. Future Work ... 66

8. References .. 67

Appendix 1 ... 71

Appendix 2 ... 75

xv

TABLE OF FIGURES

Figure 1.1: Phases of the Classical Research Method [1] .. 2

Figure 2.1: Two theoretical positions regarding the neuroanatomical distribution of the cortical

semantic network and schematic models based on these views [8]. ... 6

Figure 3.1: Knowledge Representation Elements ... 26

Figure 3.2: Knowledge Representation Requirements Model [67] .. 27

Figure 3.3: MENTOR Methodology ... 29

Figure 3.4: Changes to MENTOR methodology [80]. .. 30

Figure 3.5: Proposed architecture for knowledge-based methodology implementation. 31

Figure 4.1: Java code implemented to transform a concept weight in distance. 36

Figure 4.2: Implemented code to invoke oLEARCH web services. .. 37

Figure 4.3: Ajax implemented invocation. .. 37

Figure 4.4: Code to insert jQuery library into a web page. ... 38

Figure 4.5: Soap request. .. 38

Figure 4.6: oLEARCH JSP code and web page resulting. ... 39

Figure 4.7: Read an ontology into variable owlModel. ... 40

Figure 4.8: Example of reading a model element using protégé-OWL to java classes. 40

Figure 4.9: SPARQL java code exemple. .. 41

Figure 4.10: Reference Ontology classes and instances. .. 42

Figure 4.11: Reference Ontology instance with its properties. .. 42

Figure 4.12: Mediator’s model. ... 44

Figure 4.13: Mediator Instance representing a relation between ‘bolt’ and ‘parafuso’. 45

Figure 5.1: Project Architecture .. 47

Figure 5.2: Graph representation .. 49

Figure 5.3: Graph representation after weight transformation.. 50

Figure 5.4: Mediator ontology and reference ontology. .. 50

Figure 5.5: Graph created when user searched for “Chairs”. ... 51

Figure 5.6: Graph created when user searched for “Couch”. ... 51

Figure 5.7: Graph created when user searched for “Couch + Chairs”. ... 52

Figure 5.8: Graph after weight transformation. .. 52

Figure 5.9: oLEARCH Administration application .. 53

Figure 5.10: Information Models in Mediator. ... 54

Figure 5.11: oLEARCH GUI. .. 55

Figure 6.1: Search results for keyword “Chairs”. .. 58

Figure 6.2: Search results for keywords “Chairs+Mats”. ... 59

Figure 6.3: Search results for keyword “Chairs”. .. 59

Figure 6.4: Search results for keyword “Chair-Pad” after searched several times. 60

Figure 6.5: Search result for keyword “Junior-chair” after selected from the last search result. 61

Figure 6.6: oLEARCH Administration Application result for “New Concepts” button. 62

Figure 6.7: oLEARCH Administration Application result for “New Products” button. 63

xvi

1

1. INTRODUCTION

The formation of cooperation and collaboration alliances between several small

organizations is proving, in multiple cases, to be more efficient and competitive by

comparison with big companies. Manufacturing processes span nowadays across borders as

result of the globalization markets pressure, thus research on manufacturing management

has turned from an intra-enterprise to an inter-enterprise focus.

Consequently there is a growing interest in electronic business (e-business) solutions

to facilitate information sharing between organizations in the supply chain. However, due to

the worldwide diversity of communities, a high number of knowledge representation

elements, such as ontologies which are not semantically coincident, have appeared

representing the same segment of reality. Thus, even operating in the same domain,

enterprises do not understand each other, making the seamless communication among

various systems and applications more difficult and sometimes impracticable.

As a result, there is a demand for intelligent solutions capable of reinforcing

partnerships and collaborations between enterprises, which needs to be able to maintain and

manage its information systems dynamically. Thus, author proposes the increase of

Interoperability of industrial information systems domain by the use of a knowledge–based

methodology able to build a reference ontology and to provide its maintenance through the

system users feedback.

1.1. Motivation

Nowadays the world is in a constant change, which requires, dynamic information

systems. To deal with these systems there is an important need to implement solutions able

to intelligently evolve and adapt themselves to external feedback as from user‘s interactions.

With a large amount of information that can exceed the user capability to find what he

really searches for, there is a need of a tool to find what the user is looking for and to learn

from the user searching patterns. Thus, this dissertation intends to contribute to solve

semantic interoperability problems by proposing a methodology & platform able to interact

with humans, learning from them and helping them.

2

1.2. Research Method

The used research method on this dissertation was reasoned on the classical research

method [1] which consists on seven steps. This method starts with the study of a problem

and ends with the analysis of the obtained results. If these results are not the desired ones,

this method provides the possibility to go back to the first steps and try again a new

approach. In Figure 1.1 it is possible to see these referred seven steps.

Figure 1.1: Phases of the Classical Research Method [1]

A short description of each step of Figure 1.1 followed by the author is described

below:

1. Research Questions / Problem: This is the most important step in a research.

In this step the area of interest is defined by the research question, which may

have several secondary questions to better define its the main idea. The research

question must be clearly defined in order to make it able to be confirmed or

refuted. The author‘s research questions that conducted to this dissertation are:

 How to enhance the knowledge acquisition from information system‘s users?

 How to improve ontology based systems to facilitate its intelligence increase?

2. Background / Observation: The state of the art research is done in this step

studying previously similar works, presenting literature review and previously

projects in order to have a start point for the dissertation. Showing existing ideas

3

of other authors will identify the most suitable solutions, prototypes to be

developed for this dissertation.

All humans when thinking about some concept can create its mental description,

which can be different from person to person. This mental description depends

on the importance that description has in our mind and that can change as we

want. Is around these ideas to which the author wants to explore on the

specification of the intelligent information system able to adopt its concepts and

relations.

There are already some techniques able to improve intelligent systems, such as

fuzzy logic, artificial neural networks, machine learning, etc. To represent the

concepts, a knowledge base, ontologies may be used. They are well suit for

information sharing when their information domains are related to a particular

area of knowledge [2].

In this dissertation it is intended to build an ontology learn by searching from

user‘s usability, maintaining the knowledge base updated with the corresponding

semantic mappings. More details about this are described in section 2 - Literature

Review.

3. Formulate Hypothesis: This step is where the predictions for the results of the

research work are worked out. A hypothesis must be simple to understand,

specific, conceptually clear and measured. The author‘s hypothesis for this

dissertation are:

 An ontology based framework integrated with proper operational

research methods would facilitate the knowledge acquisition from user‘s

feedback and would increase the intelligence of information systems

management.

 Maintaining updated the mappings established between ontologies

would enhance knowledge re-use and adaptation.

4. Design Experiment: It is in this step where it is possible to find the detailed plan

of the experimental phase steps. It first gives an approach to the used

technologies in chapter 4 and then in chapter 5 it presents the architecture that

represents the proof-of-concept for the proposed dissertation.

4

5. Test Hypothesis: To test the hypothesis and get the results, the developed

prototype must be tested running under different scenarios. In chapter 6 there are

tests, whose results are analysed against the hypothesis.

6. Interpret / Analyse Results: This step is where the achieved results are

analysed against the hypothesis. If the results are not the expected ones,

conclusions can be discussed. After the results discussion, it is also needed to

consider next steps, giving some recommendations for further research. This

step is represented by the chapter 7 ―Conclusions and Future Work‖.

7. Publish Findings: If the research results end up in a valuable contribution to the

research community, it should be presented in order to share author‘s ideas. This

can be made as scientific papers, in conferences, Journals and so on. The author

published one scientific paper that represents his conceptual contribution to this

dissertation issue.

1.3. Dissertation Outline

The first section of this dissertation, the Introduction, states the main ideas that

conducted to the study for this research project. Then, the Literature Review chapter intends

to present the state of the art research conducted, containing a resume of the inspirational

literature used to support the implemented system functionalities, aligned with the

background observation. Chapter Knowledge based methodology for semantic

interoperability gives an overview where this dissertation proposed system will be embedded.

This also presents how such proposed system can work with MENTOR which is a

methodology to build a reference ontology of a community of enterprises that consequently

together can work to improve interoperability in manufacture domain of a set of enterprises.

Then all the architecture of both systems together is presented. In chapter Reference tools &

models for ontology management theoretical implementation is analysed, presenting the

used technologies in oLEARCH implementation. In chapter 5 it is presented oLEARCH

architecture including a description of the implemented oLEARCH services. Afterwards, in

chapter 6, the implemented architecture is tested and compared with formulated hypothesis

to check its validation. At the end, in Conclusions and Future Work chapter is where this

dissertation conclusions and future work topics are presented.

5

2. LITERATURE REVIEW

The Literature Review chapter intends to be a synthesis of the state of the art related to

the dissertation areas and concepts.

2.1. Artificial Intelligence and Neuroscience

Artificial intelligence was formally initiated in 1956. Its conception‘s goal was to

understand and emulate a biological brain in a computer simulation. Artificial intelligence

attempts to build intelligent systems as well as understand them. There are several

definitions for artificial intelligence which can be organized in four categories [3]: Systems

that think like humans; Systems that act like humans; Systems that think rationally; Systems

that act rationally. A system is rational if it does the right thing. The aim of computational

neuroscience is to explain how electrical and chemical signals are used in the brain to

represent and process information [4].

Neuroscience area is extremely complex, composed by many subfields [5]. Knowing

how neural systems processes all the gathered information is essential to understand human

brain, giving the opportunity for AI to develop not only in artificial neural networks but also in

other areas where there are a need to implement learning systems.

Research in neuroscience may provide to AI some opportunities to expand.

Computational neuroscience is the study of brain function in terms of the information

processing properties of the structures that make up the nervous system. It is an

interdisciplinary science that links the diverse fields of neuroscience, cognitive science and

psychology with electrical engineering, computer science, mathematics and physics [6].

Semantic memory (also called conceptual knowledge) is one of the aspects of human

memory that corresponds to general knowledge representation of objects, word meanings,

facts and people, without connection to any particular time or place [7]. This provides to

humans the ability to, given a concept, be able to create its mental visualization and also to

see the most important associations that the individual has to the referred concept. Although

this kind of memory may depend on individual‘s experience it is mostly shared in a given

culture.

http://en.wikipedia.org/wiki/Computational_neuroscience

6

Figure 2.1: Two theoretical positions regarding the neuroanatomical distribution of the cortical semantic network
and schematic models based on these views [8].

There are many theories supporting neural basis of semantic memory (Figure 2.1).

This distributed-only view proposes that a semantic network is composed by these regions

(Shape, Action, Sound, Colour, Words, and Motion) along with all the diverse connections

between them, represented by the green lines. However, there are several cases of

individuals whom suffered brain damages and could recover, probably because the entire

neural basis of semantic memory might have a different approach. Figure 2.1b suggests that,

in addition to distributed-only view proposed representation, there are connections (shown as

red lines) between the various shapes representations and a modal hub. It‘s in this hub

where the associations between different pairs of attributes (such as shape and name or

shape and action, etc.) are processed. Figure‘s right-hand side shows the corresponding

convergent architecture of these views [8].

Nowadays neuroscience has already enough knowledge regarding how parts of the

7

brain work. Some of this knowledge, like connections, internal connectivity and what is

represented by neuronal activity of each brain region, biophysical properties of single

neurons [9] and the effect of lesions, all might provide a solid base for computational

understanding of brain function regarding neuronal network operations of each region [10].

Learning mechanisms are, in addition, important to understand how brain processes the

information. Is by modifying the synaptic connection strengths (or weights) between neurons

that useful neuronal information processors for most brain functions, including perception,

emotion, motivation, and motor function, are built [11].

Accordingly to this, Hebbian learning [12] stated that simultaneous activation of cells

leads to increases in synaptic strength between those cells. These weights are adjusted in

order to better represent the relationship between two cells. Transporting it into artificial

neural networks, it can be a method of determining how to increase/decrease weights

between two neurons.

2.1.1. Conclusions

This research lead to better understand how human brain works and how can it be

represented in artificial intelligence. Using Figure 2.1b as inspiration for semantic

representation, the author proposes in this dissertation MEDIATOR as a modal hub to create

the associations between possible new concepts or possible new patterns and a reference

ontology for the other connections. For this dissertation both, MEDIATOR and reference

ontologies, are representing the knowledge base. To simulate strength‘s connections

between neurons the author will associate weights into each concept and into its conceptual

relations, therefore stronger relations will have a higher weight.

2.2. Human Based Learning Techniques

Although computers are getting faster, they are still not fast enough to perform all the

parallel operations of human brain at the same time. Discover brain‘s algorithm is one of the

major research objectives in computational neuroscience. Next are presented two human

based learning techniques, Fuzzy Logic and Neural Networks.

2.2.1. Fuzzy Logic

The concept of Fuzzy Logic (FL) was conceived by Lotfi Zadeh, a professor at the

University of California at Berkley. He reasoned that people do not require precise, numerical

8

information input, and yet they are capable of highly adaptive control. If feedback controllers

could be programmed to accept noisy, imprecise input, they would be much more effective

and perhaps easier to implement. The increasing level of information that can be obtained on

a system is essential for the improvement and the control of this system as well as the

processes linked with it. Human expert knowledge and acquisition by sensors directly on the

system, allow to access to this part of Knowledge. Linking these two sources which are as

different as complementary must contribute to a more complete and coherent knowledge

modelling, allowing a stronger integration of the system processes [13].

Unfortunately, U.S. manufacturers have not been so quick to embrace this technology

while the Europeans and Japanese have been aggressively building real products around it.

FL is a problem-solving control system methodology that lends itself to implementation in

systems ranging from simple, small, embedded micro-controllers to large, networked, multi-

channel PC or workstation-based data acquisition and control systems. It can be

implemented in hardware, software, or a combination of both. FL provides a simple way to

arrive at a definite conclusion based upon vague, ambiguous, imprecise, noisy, or missing

input information. It incorporates a simple, rule-based IF X AND Y THEN Z approach to a

solving control problem rather than attempting to model a system mathematically. Ex: terms

like "IF (process is too cool) AND (process is getting colder) THEN (add heat to the

process)".

FL requires some numerical parameters in order to operate such as what is considered

significant error and significant rate-of-change-of-error, but exact values of these numbers

are usually not critical unless very responsive performance is required in which case

empirical tuning would determine them. There are several unique features that make FL a

particularly good choice for many control problems. It is inherently robust since it does not

require precise, noise-free inputs and can be programmed to fail safely if a feedback sensor

quits or is destroyed. The output control is a smooth control function despite a wide range of

input variations. Since the FL controller processes user-defined rules governing the target

control system, it can be modified and tweaked easily to improve or drastically alter system

performance. New sensors can easily be incorporated into the system simply by generating

appropriate governing rules. Also, any sensor data that provides some indication of a

system's actions and reactions is sufficient. This allows the sensors to be inexpensive and

imprecise thus keeping the overall system cost and complexity low.

FL can control nonlinear systems that would be difficult or impossible to model

mathematically. This opens doors for control systems that would normally be deemed

unfeasible for automation. When there are a reasonable number of inputs and outputs for a

single implementation, defining the rule base can become complex since rules defining their

9

interrelations must also be defined. In these cases it is better to break the control system into

smaller chunks and use several smaller FL controllers distributed on the system, each with

more limited responsibilities.

An important property of FL is the membership function, which is a graphical

representation of the magnitude of participation of each input. It associates a weighting with

each of the inputs that are processed, define functional overlap between inputs, and

ultimately determines an output response. The rules use the input membership values as

weighting factors to determine their influence on the fuzzy output sets of the final output

conclusion. Once the functions are inferred, scaled, and combined, they are defuzzified into

a crisp output which drives the system. There are several applications of FL. In [13] it is

presented the improvement of a defect recognition system for wooden boards by using

knowledge integration from two expert fields, wood expertise and industrial vision expertise.

In this article, a numeric model of wood defect recognition was created according to a tree

structure where each inference engine is a fuzzy rule based. The aim of this work was to

obtain a generic model to recognize the defects, reusable and reproducible independently of

the user‘s experience.

Fuzzy Logic provides a completely different, unorthodox way to approach a control

problem. This method focuses on what the system should do rather than trying to understand

how it works. One can concentrate on solving the problem rather than trying to model the

system mathematically, if that is even possible. This almost invariably leads to quicker,

cheaper solutions. Once understood, this technology is not difficult to apply and the results

are usually quite surprising and pleasing.

2.2.2. Artificial Neural Networks

An Artificial Neural Network (ANN) [14] is an information processing paradigm that is

inspired by the way biological nervous system, such as brain, process information. An ANN

is like people, learns by example. It is configured for a specific application, such as pattern

recognition or data classification, through a learning process. Learning in biological systems

involves adjustments to synaptic connections that exist between the neurones. This is also

valid for ANNs.

Neural Networks, with their remarkable ability to drive meaning from complicated or

imprecise data, can be used to extract patterns and detect trends that are too complex to be

noticed by humans or other computer techniques. A trained neural network can be thought of

as an expert in the category of information to what it was given to analyse. Other advantages

that ANNs have are:

10

Adaptative learning (an ability to learn how to do tasked based on the data given); Self

Organization (can create its own organisation or representation of the information it receives

during leaning time); Real time operation (ANN computations may be carried out in parallel);

Fault tolerance via Redundant Information Coding (Partial destruction of a neural network

leads to the corresponding degradation of performance. However, some networks

capabilities may be retained even with major network damage. While conventional

computers use an algorithmic approach, i.e. the computer follows a set of instructions in

order to solve a problem. They cannot solve a problem that the specific steps are unknown.

ANN and conventional algorithmic computers are not in competition but complement

each other. There are tasks more suited to an algorithmic approach like arithmetic operations

and tasks more suited to neural networks. Even more, there are a large number of tasks that

required the combination of the two approaches.

A neural network is a directed graph consisting of nodes with interconnecting synaptic

and activation links [15]. It is characterized by four properties:

 Each neuron is represented by a set of linear synaptic links, an externally

applied bias, and a possibly nonlinear activation link. The bias is represented by

a synaptic link connected to an input fixed at +1.

The synaptic links of a neuron weight their respective input signals.

 The weighted sum of the input signals defines the inducted local field of the

neuron in question.

 The activation link squashes the induced local field of the neuron to produce an

output.

The issue of knowledge representation in a neural network is directly related to that of

network architecture. Unfortunately, there is no well-developed theory for optimizing the

architecture of a neural network required to interact with an environment of interest, or for

evaluating the way in which changes in the network architecture affect the representation of

knowledge inside the network. Indeed, satisfactory answers to these issues are usually found

through an exhaustive experimental study for a specific application of interest, with the

designer of the neural network becoming an essential part of the structural learning loop.

The learning process can be categorized by two simple characteristics: learning with a

teacher (also referred to as supervised learning); and learning without a teacher. These

different forms of learning are also performed by ANN.

11

From the various types of ANN the author gives some special attention to feed forward

neural networks (which can return back the output to the input, thereby giving rise to an

iteration process) because of its similarity (in this case) to the system to which this

technology could be applied.

To finalise, ANN are one of the best machine learning technologies to identify patterns

or trends in data, they are well suited for prediction or forecasting needs including sales

forecasting, industrial process control, customer research, data validation, risk management,

etc.

2.2.3. Conclusions

The presented learning techniques fit in different applications. Fuzzy Logic is widely

used in systems control due to its human mimic in decision make. In contrast, ANN is based

on the thinking process of human brain. Its learning process involves learning algorithms and

training data.

There are no fuzzy elements in the dissertation proposed architecture, thus it is not

applied. By other side, due to ANN learning properties, it could have been used in the

architecture as algorithm to find the highest semantic similarities between concepts.

2.3. Ontologies

The human reasoning organizes his knowledge of the world in a tree structure. This is

the base‘s principle of an ontology. They support the interoperability between systems,

improving the organisation of information, its control and understanding [16][17].

―An ontology is a formal, explicit specification of a shared conceptualisation.‖ [18]. It

provides a vocabulary that describes a domain of interest and a specification of the meaning

of terms used in the vocabulary [19]. In other words, they represents a knowledge

representation used to capture information and knowledge about a subject, generally within

the structure of a semantic network, consisting of a diagram composed of nodes and arcs

[20]. We can define a class hierarchical ontology representing concepts, objects or entities

characterized by their properties [21].

By defining shared and common domain theories, ontologies help both people and

machines to communicate concisely, supporting the exchange of semantics and not only

syntax [22]. Unfortunately, there is no universal solution to build an ontology and designers of

ontologies themselves apply different views of the same domain during ontology

12

development. This yields semantic heterogeneity at ontology level, which is one of main

obstacles to semantic interoperability [23].

Ontology matching is a promising solution to the semantic heterogeneity problem [24].

Its main purpose is to find correspondences among entities from different ontologies.

Ontology matching has emerged as a crucial step when information sources are being

integrated, such as when companies are being merged and their corresponding knowledge

bases are to be united [25].

Ontology maintenance pertains to how to organise, search, and update existing

ontologies [27]. The enormous number of semantic Web pages and ontologies makes

manual ontology maintenance a daunting task. As a result, automated solutions should be

explored for ontology integrations and mapping. Ontology learning appears to be an

attractive approach to this goal [27].

2.3.1. Ontology Learning

Ontology learning seeks to discover ontological knowledge from various forms of data

automatically or semi-automatically [27]. It provides the ability to not only discover ontological

knowledge at a larger scale and a faster pace, but also mitigate human-introduced biases

and inconsistencies. Moreover, ontology learning can support refining and expanding

existing ontologies by incorporate new knowledge [27].

To facilitate ontology construction and discover ontological knowledge, machine

learning is commonly used [27][28]. The majority of ontology learning techniques are

unsupervised because training data annotated with ontological knowledge are commonly not

available, resulting in a higher employment of statistical techniques [27].

2.3.2. Conclusions

To structure data in a way that machines can handle, ontologies can be used. Its

management can be assisted by knowledge acquisition together with machine-learning

techniques [27]. This association leads to the appearance of Ontology Learning which,

although it is not yet a full automatic machine knowledge acquisition, it still can be a powerful

tool to assist in the management of the ontologies.

2.4. Operations research methods

Operations research methods aim to aid in making decisions by providing the needed

13

quantitative information based on a scientific method of analysis [26][29].

Operations research is an interdisciplinary mathematical science, as it employs

techniques from other mathematical sciences, such as mathematical modelling, statistical

analysis, and mathematical optimization, or focuses on the effective use of technology by

organizations, providing solutions to complex decision-making problems [30]. A problem in

the real world is modelled, usually in mathematical terms, then mathematical techniques,

together with data analysis and computational algorithms are applied, looking for optimization

[31].

Born before World War II, its origin comes from military efforts. Nowadays, operational

research encompasses a wide range of problem-solving techniques and methods applied in

the pursuit of improved decision-making and efficiency [32]. Operations Research is well

adapted to such decision making in business. Applications into business management have

been discussed in different disciplines such as Management Science, Operations

Management, Logistics Management, Supply Chain Management, and Decision Sciences. It

set up and uses mathematical models, usually related to questions of planning in business,

industry, or management [33].

2.4.1. Markov Chains

Markov logic is a novel language that provides the capability of joining in the same

representation probabilistic graphic models (Markov networks) to handle uncertainty, and

first-order logic to handle complexity. By attaching weights to first-order logic formulas (the

higher the weight, the bigger is the difference between a world that satisfies the formula and

one that does not), a Markov Logic Network (MLN) can be built. This network can be used as

a template to construct Markov networks, providing the full expressiveness of probabilistic

graphical models and first-order logic [34].

Given a set of constants (i.e., individuals) of the domain and an interpretation, the

groundings of the formulas in an MLN can generate a Markov network by adding a variable

for each ground atom, an edge if two ground atoms appear in the same formula, and a

feature for each grounded formula. The probability distribution of the network is defined as

where F is the number of formulas in the MLN, ni(x) is the (binary) number of true

groundings of Fi in the world x, Wi is the weight of Fi, and Z is a normalizing constant.

http://en.wikipedia.org/wiki/Mathematical_science
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Mathematical_optimization

14

Formulas‘ weights can be learned generatively from example data by maximizing the

pseudo-log-likelihood [35] of that data, while efficient inference can be done using

approximate inference algorithms, such as the MC-SAT [35].

There are several areas where Markov Process has an important rule, such as in

statistic, marketing, genetic, computer vision, diagnostic and troubleshooting, software

debugging, speech recognition and understanding algorithms, internet, musical composition,

etc [36].

Even not knowing, everyday millions of internet users use Markov in some navigation

patterns and especially in Google ―RankPage‖. The PageRank of a webpage is the

probability to be at page i in the stationary distribution on the following Markov chain on all

(known) webpages [37]. If N is the number of known webpages, and a page i has ki links

then it has transition probability for all pages that are linked to and for

all pages that are not linked to. The parameter α is taken to be about 0.85. Markov models

have also been used to analyze web navigation behaviour of users. A user's web link

transition on a particular website can be modelled using first- or second-order Markov

models and can be used to make predictions regarding future navigation and to personalize

the web page for an individual user.

Another interesting application of Markov networks is about to build a probabilistic

scheme for ontology matching, called iMatch [38]. First, it uses undirected networks, which

better supports the non-causal nature of the dependencies. Second, it handles the high

computational complexity by doing approximate reasoning, rather than by ad-hoc pruning.

Third, the probabilities that it uses are learned from matched data. Finally, iMatch naturally

supports interactive semiautomatic matches. iMatch uses Markov Networks rather than

Bayesian Networks since there is no inherent causality in ontology matching .

2.4.2. Bayesian Networks

A Bayesian network (BN) is a directed acyclic graph with attached local probability

distributions [39]. Nodes in the graph represent random variables (corresponding to

attributes, features etc.). Each random variable has a mutually exclusive and exhaustive set

of values (states). Edges in the graph represent direct interdependences between two

random variables. Bayesian networks consist of two sort of knowledge:

 qualitative knowledge that describes interdependencies by means of directed

graph;

15

 quantitative knowledge that captures relations among random variables by

means of Conditional Probability Tables (CPTs). An advantage of BNs,

compared to other uncertainty representation formalisms, is the possibility to

model complicated mutually related phenomena in quite a tractable way.

Thus, BNs provide a means of capturing existing knowledge about a domain, learning

the stochastic properties of that domain and thereby adjusting its model. This adjust can be

related to the ontologies mapping establishment.

BNs are currently being exploited also for estimating effects of different types of

behaviour and as support for human or automated decision tasks. Some sample applications

include using BNs to reduce power consumption of machines with reference to user

behaviour [40], to diagnose faults in industrial processes [41] or to monitoring and

manipulating cause and effects for modelled systems as disparate as the weather, disease

and mobile telecommunications networks [42].

2.4.3. BayesOWL

BayesOWL is a framework which augments and supplements OWL for representing

and reasoning with uncertainty based on Bayesian networks [43][44]. This framework

consists of three key components: 1) a representation of probabilistic constraints as OWL

statements; 2) a set of structural translation rules and procedures that converts an OWL

taxonomy ontology into a BN directed acyclic graph (DAG); and 3) a method SD-IPFP based

on 'iterative proportional fitting procedure' (IPFP) that incorporates available probability

constraints into the conditional probability tables (CPTs) of the translated BN. The translated

BN, which preserves the semantics of the original ontology and is consistent with all the

given probability constraints, can support ontology reasoning, both within and cross

ontologies, as Bayesian inferences, with more accurate and more plausible results.

OWL is first augmented to allow additional probabilistic mark-ups so that probability

values can be attached to individual concepts in an ontology. Secondly, a set of structural

translation rules is defined to convert this probabilistically annotated OWL ontology taxonomy

into a directed acyclic graph (DAG) of a BN. Finally, the BN is completed by constructing

conditional probability tables (CPTs) for each node in the DAG.

For instance, in the Fenz et al. [45] research work, the objective of the Bayesian

network is to determine asset-specific threat probabilities by taking asset-specific influence

factors into account. The advantage of the proposed Bayesian threat probability

16

determination is that it gives the risk manager a methodology to determine the threat

probability in a structured and, by incorporating the security ontology, comprehensible way.

However, the high dependence on realistic input values requires further research on sound

methods to gather, store, and provide these crucial threat probability calculation components.

Although useful, the task of building the structure and assigning the probability

distributions of a Bayesian Network is complex and knowledge-intensive. Bayesian Networks

are notoriously difficult to build accurately and efficiently which has somewhat limited their

application to real world problems. It requires the identification of relevant statistical variables

in the application domain, the specification of dependency relations between these variables

and assignment of initial probability distributions.

2.4.4. Conclusions

After this research it is possible to see how and where these methods can be applied.

Bayesian Networks are a possible solution when it is needed to apply probabilistic to get a

conclusion especially when the cause and effects of a system are modelled. One example is

if there are no clouds in the sky then it can‘t rain.

For Markov chains nothing is invalid, just less probable. This is measured using

weights, as explained before. Another characteristic is that the next state depends not on the

previous states but only on the current one.

In the proposed architecture system knowledge is not represented as cause and effect,

because sometimes there is no modelled relation between some concepts and in additional it

could generate a cycle graph. Consequently, BN could not have been applied but Markov.

Like ANN, Markov could have been used in the architecture as algorithm to find the highest

semantic similarities between concepts. However, it was applied a simpler solution to

facilitate the prototype implementation.

2.5. Machine Learning

Machine learning is a scientific discipline concerned with the design and development

of algorithms that allow computers to evolve behaviours based on empirical data, such as

from sensor data or databases [46]. It studies computer learning algorithms to do stuff. This

learning must be automatically without human intervention or assistance. Machine learning

paradigm can be viewed as ―programming by example‖, learning to do better in the future,

based on what was experienced in the past [47].

17

Recent advances in machine learning make possible to design efficient prediction

algorithms for data sets with huge number of parameters. Machine learning procedure was

used to produce a small set of classification rules that made two-thirds of correct predictions.

Not only did these rules improve the success rate of the loan decisions, but the company

also found them attractive because they could be used to explain to applicants the reasons

behind the decision [48].

Machine learning market applications are endless. They can be applied to optical

character recognition, face detections, spam filtering, topic spotting, spoken language

understanding, medical diagnosis, fraud detection, weather prediction, etc.

There are some areas where machine learning techniques reached a level of

performance equal or even greater than human experts. For example in astronomy, machine

learning has been used to develop a fully automatic cataloguing system for celestial objects

that are too faint to be seen by visual inspection. In chemistry, it has been used to predict the

structure of certain organic compounds from magnetic resonance spectra [49].

Machine learning can be involved in ontology knowledge maintenance by applying its

learning techniques. There are four basically different styles of learning techniques in use:

Classification; Association; Clustering; and Numeric Prediction.

Classification

Classification learning, sometimes also called supervised, because, in a sense, the

method operates under supervision by being provided with the actual outcome for each of

the training examples [49]. Training data has to be specified what are trying to learn (the

classes) [50].

Association learning

Data can be mined to identify associations. Introduced in 1993 [51] the task association

rule mining has received a great deal of attention till nowadays where the meaning of such

rules is still one of the most popular pattern discovery methods in knowledge discovery data

[52]. Association rules differ from classification rules as they can predict not just the class but

any attribute and more than one attribute‘s value at a time [49]. This is the reason for the

higher existing number of association rules than classification rules. To avoid association

rules swamp, they are often limited to those that apply to a certain minimum number of

examples (say 80% of the dataset) and have greater than a certain minimum accuracy level

(say 95% accurate) [49]. Association rules usually involve only nonnumeric attributes [49].

Ontology learning focuses on association learning [27]. The generalized association-

rule-learning algorithm extends its baseline by aiming at descriptions at the appropriate

18

taxonomy level. For example, ―snacks are purchased together with drinks‖ [28].

Clustering

Clustering technique is an unsupervised learning task to learn a classification from the

data [50], usually applied to group items that seem to fall naturally together [49] instead of

requiring a predefined classification [50]. The challenge is to find these clusters and assign

the instances to them and to be able to assign new instances to the clusters as well [49].

Data items are grouped according to logical relationships or consumer preferences. For

example, data can be mined to identify market segments or consumer affinities. It is a

common technique for statistical data analysis [46].

Numeric Prediction

Numeric Prediction [49] is a variant of classification learning in which the outcome is a

numeric value rather than a category. Linear regression is a natural technique to be

considered. Its idea is to express the class (x) as a linear combination of the attributes (a1,

a2,…, ak), with predetermined weights (w0, w1, …, wk):

The weights are calculated from the training data.

Any regression technique, whether linear or non-linear can be used for classification.

The trick is to perform a regression for each class, setting the output equal to one for training

instances that belong to the class and zero for those that not. The result is a linear

expression for the class. Then, given a test example of unknown class, calculate the value of

each linear expression and choose the one that is largest [49].

Logistic regression attempts to produce accurate probability estimates by maximizing

the probability of the training data. If the data can be separated perfectly into two groups

using a hyperplane, it is said to be linearly separable and so there is a very simple algorithm

for finding a separating hyperplane [49]. The algorithm is called perceptron learning rule,

which is the grandfather of neural networks [49].

2.5.1. Instance-based learning

Instance-based learning is a kind of classification learning. In instance-based learning

training examples are stored verbatim, and a distance function is used to determine which

member of the training set is closest to an unknown test instance [49]. Once the nearest

training instance has been located, its class is predicted for the test instance. Some varieties

of instance-based learning deal only with ratio scales because they calculate the ―distance‖

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Data_analysis

19

between two instances based on the values of their attributes [49]. If the actual scale is

ordinal, a numeric distance function must be defined [49].

Deriving suitable attributes weights from the training set is a key problem in instance-

based learning [49].

Distance function

Although there are other possible choices, most instance-based learners use Euclidean

distance. The distance between an instance with attribute values a1
(1), a2

(1),. . . , ak
(1) (where k

is the number of attributes) and one with values a1
(2), a2

(2), . . . , ak
(2) is defined as

When comparing distances it is not necessary to perform the square root operation; the

sums of squares can be compared directly [49].

Nearest-Neighbour

In instance-based learning, each new instance is compared with existing ones using a

distance metric, and the closest existing instance is used to assign the class to the new one.

This is called the nearest-neighbour classification method. Sometimes more than one

nearest neighbour is used, and the majority class of the closest k neighbour‘s (or the

distance-weighted average, if the class is numeric) is assigned to the new instance. This is

termed the k-nearest-neighbour method [49].The nearest neighbour algorithm (KNN) belongs

to the class of pattern recognition statistical methods. The method does not impose a priori

any assumptions about the distribution from which the modelling sample is drawn. It involves

a training set with both positive and negative values. A new sample is classified by

calculating the distance to the nearest neighbouring training case. The sign of that point will

determine the classification of the sample. The performance of the KNN algorithm is

influenced by three main factors: (1) the distance measure used to locate the nearest

neighbours; (2) the decision rule used to derive a classification from the k-nearest

neighbours; and (3) the number of neighbours used to classify the new sample [54].

KD-Tree

Nearest neighbours classification method can be found more efficiently by

representing the training set as a tree, although it is not quite obvious how [49].There are

many real-life problems which requires fast analyses and fast search in multidimensional

data. It has the advantage that is easy to build and has a simple algorithm for closest points

and ranged search. KD-tree works quite well for small dimensions however for N>10 KD-tree

may become too slow. Another drawback is that the basic KD-tree tree do not allows

http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

20

balancing. The entire tree must be reorder periodically to improve it balancing, which is not

convenient for changing data and large datasets [55].

Dijkstra

Dijkstra‘s algorithm, published in 1959 [59], is a graph search algorithm to produce

the shortest path in a graph with nonnegative edge path costs.

For the first iteration the current intersection will be the starting point and the distance

to it (the intersection's label) will be zero. For subsequent iterations (after the first) the current

intersection will be the closest unvisited intersection to the starting point—this will be easy to

find. From the current intersection, update the distance to every unvisited intersection that is

directly connected to it. This is done by determining the sum of the distance between an

unvisited intersection and the value of the current intersection, and relabeling the unvisited

intersection with this value if it is less than its current value. Nodes marked as visited are

labelled with the shortest path from the starting point to it and will not be revisited or returned

to. Once you have marked the destination as visited you have determined the shortest path

to it, from the starting point. This algorithm consideration in determining the next "current"

intersection is its distance from the starting point. In some sense, this algorithm "expands

outward" from the starting point, iteratively considering every node that is closer in terms of

shortest path distance until it reaches the destination. When understood in this way, it is clear

how the algorithm necessarily finds the shortest path, however it may also reveal one of the

algorithm's weaknesses: its relative slowness in some topologies [60].

2.5.2. Data Mining

Data mining is the process of discovering meaningful correlations, patterns and trends

by sifting through large amounts of data stored in repositories. Data mining employs pattern

recognition technologies, as well as statistical and mathematical techniques [56]. Such

patterns are called structural because they capture the decision structure in an explicit way.

In other words, they help to explain something about the data [57].

While large-scale information technology has been evolving separate transaction and

analytical systems, data mining provides the link between the two. Data mining software

analyzes relationships and patterns in stored transaction data based on open-ended user

queries. Several types of analytical software are available: statistical, machine learning, and

neural networks [58].

In [49] data mining is separated in five major elements: 1) Extract, transform, and load

transaction data onto the data warehouse system; 2) Store and manage the data in a

http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/Graph_labeling

21

multidimensional database system; 3) Provide data access to business analysts and

information technology professionals; 4) Analyze the data by application software; 5) Present

the data in a useful format, such as a graph or table.

Data mining is frequently used to gain knowledge, not just predictions [49]. Its

applications are extremely vast, in economics, statistics, forecasting, to find, identify,

validate, to use patterns, are some of the example areas.

Some of the data mining algorithms able to be used on the knowledge maintenance

process are described in the next section.

K-means

The classic clustering technique is called k-means. All instances are assigned to their

closest cluster centre according to the ordinary Euclidean distance metric. The k-means

clustering algorithm usually requires several iterations, each involving finding the distance of

k cluster centres from every instance to determine its cluster [49]. It remains the most widely

used partitional clustering algorithm in practice. The algorithm is simple, easily

understandable and reasonably scalable, and can be easily modified to deal with streaming

data. Note that each iteration needs N × k comparisons, which determines the time

complexity of one iteration. The number of iterations required for convergence varies and

may depend on N, but as a first cut, this algorithm can be considered linear in the dataset

size. One issue to resolve is how to quantify closest in the assignment step. The default

measure of closeness is the Euclidean distance, in which case one can readily show that the

non-negative cost function will decrease whenever there is a change in the assignment or

the relocation steps, and hence convergence is guaranteed in a finite number of iterations

[53].

Support vector machines

 It offers one of the most robust and accurate methods among all well-known

algorithms. It has a sound theoretical foundation, requires only a dozen examples for

training, and is insensitive to the number of dimensions. In addition, efficient methods for

training SVM are also being developed at a fast pace. In a two-class learning task, the aim of

SVM is to find the best classification function to distinguish between members of the two

classes in the training data. The metric for the concept of the best classification function can

be realized geometrically. For a linearly separable dataset, a linear classification function

corresponds to a separating hyperplane f(x) that passes through the middle of the two

classes, xn can be classified by simply testing the sign of the function f(x): xn belongs to the

positive class if f(x)>0. Because there are many such linear hyperplanes, what SVM

22

additionally guarantee is that the best such function is found by maximizing the margin

between the two classes. Intuitively, the margin is defined as the amount of space, or

separation between the two classes as defined by the hyperplane. Geometrically, the margin

corresponds to the shortest distance between the closest data points to a point on the

hyperplane. Having this geometric definition allows us to explore how to maximize the

margin, so that even though there are an infinite number of hyperplanes, only a few qualify

as the solution to SVM. The reason why SVM insists on finding the maximum margin

hyperplanes is that it offers the best generalization ability. It allows not only the best

classification performance (e.g., accuracy) on the training data, but also leaves much room

for the correct classification of the future data [53].

Apriori

 Apriori is a seminal algorithm for finding frequent itemsets using candidate generation

[]. It is characterized as a level-wise complete search algorithm using anti-monotonicity of

itemsets, if an itemset is not frequent, any of its superset is never frequent. By convention,

Apriori assumes that items within a transaction or itemset are sorted in lexicographic order.

The introduction of this technique boosted data mining research and its impact is

tremendous. The algorithm is quite simple and easy to implement [53].

EM

 Finite mixture distributions provide a flexible and mathematical-based approach to the

modelling and clustering of data observed on random phenomena. We focus here on the use

of normal mixture models, which can be used to cluster continuous data and to estimate the

underlying density function. These mixture models can be fitted by maximum likelihood via

the EM (Expectation–Maximization) algorithm [53].

PageRank

It is a search ranking algorithm using hyperlinks on the Web. PageRank produces a

static ranking of Web pages in the sense that a PageRank value is computed for each page

off-line and it does not depend on search queries. The algorithm relies on the democratic

nature of the Web by using its vast link structure as an indicator of an individual page‗s

quality. In essence, PageRank interprets a hyperlink from page x to page y as a vote, by

page x, for page y. However, PageRank looks at more than just the sheer number of votes,

or links that a page receives. It also analyzes the page that casts the vote. Votes casted by

23

pages that are themselves important weigh more heavily and help to make other pages more

important [53].

AdaBoost

Is one of the most important ensemble methods, since it has solid theoretical

foundation, very accurate prediction, great simplicity (Schapire said it needs only just 10 lines

of code), and wide and successful applications. Ensemble learning deals with methods which

employ multiple learners to solve a problem. The generalization ability of an ensemble is

usually significantly better than that of a single learner, so ensemble methods are very

attractive. First it assigns equal weights to all the training examples. Denote the distribution

of the weights at the t-th learning round as Dt. From the training set and Dt the algorithm

generates a weak or base learner ht. Then, it uses the training examples to test ht, and the

weights of the incorrectly classified examples will be increased. Thus, an updated weight

distribution Dt+1 is obtained. Such a process is repeated for T rounds, and the final model is

derived by weighted majority voting of the T weak learners, where the weights of the learners

are determined during the training process. It is evident that AdaBoost was born with

theoretical significance. AdaBoost has given rise to abundant research on theoretical aspects

of ensemble methods, which can be easily found in machine learning and statistics literature

[53].

Bayes

The Bayesian algorithm is a set of rules for using evidence (data) to change your

beliefs. Bayesian econometrics is the systematic use of a result from elementary probability,

Bayes‗theorem. It is very easy to construct, not needing any complicated iterative parameter

estimation schemes. This means it may be readily applied to huge data sets. It is easy to

interpret, so users unskilled in classifier technology can understand why it is making the

classification it makes. And finally, it often does surprisingly well: it may not be the best

possible classifier in any particular application, but it can usually be relied on to be robust

and to do quite well [53].

2.5.3. Conclusions

This research will help the author to identify existing works which can be some how

linked together in order to respond to the author‘s research questions.

Brain analyses intend to understand and represent human‘s conceptual knowledge into

24

ontologies, providing them the ability for knowledge maintenance and learning. The key idea

is to associate machine learning techniques together with operational research methods in a

way to facilitate the enrichment of ontologies with capabilities of learn.

The use of machine learning systems in certain tasks may improve or even exceed

human‘s performance in their daily tasks. Diagnosis area is one of the main applications of

expert systems [49]. Machine learning can be useful in situations in which producing rules

manually is too labour intensive [49]. Also, it can be applied to preventative maintenance of

electromechanical devices, as it can measure unusual changes in the devices which a

human hardly could. There are other areas of machine learning application returning

successful results. For example in a loan application, where it not only improved the success

rate but also the company could use it to explain to applicants the reasons behind the

decision [49]. Domains in which companies possesses massive volumes of precisely data

may use machine learning to get profit of it. For example in marketing and sales areas, an

automated analysis of checkout data may uncover the fact that customers who buy beer also

buy chips, a discovery that can be significant from the supermarket operator‘s point of view

[49].

Data mining can be applied not only for predictions but also to gain knowledge,

applying patterns recognition, statistical and mathematics technologies discovering

meaningful relationships. The goal of the presented data mining algorithms was to find an

algorithm able to somehow measure products importance (for example calculating the weight

of its semantic similarity).

In the architecture the applied machine learning technique follows a classification

learning type, more specifically the instance-based learning. The instance-based learning

deals with ratio scales because it calculates the ―distance‖ between two instances based on

the values of their attributes. In the proposed architecture this distance represents the

semantic similarities between two concepts (weights). Dijkstra was the ―distance‖ method

chosen to retrieve the closest path between two concepts, this means the path with highest

semantic similarities. Dijkstra was chosen because of its simplicity and web abundance

implementations in JAVA language. To prepare this algorithm to deal with weights, it was

only a matter of transforming weights in distances. This is done by inverting its value in order

to have the highest weight with the smallest value.

25

3. KNOWLEDGE BASED METHODOLOGY FOR SEMANTIC

INTEROPERABILITY

Nowadays, enterprises are demanded to collaborate and establish partnerships to

reach global business and markets [61]. Moreover, several examples of agile and virtual

enterprises are proven to be efficient and competitive enough to equal big companies

response. The electronic business (e-business) also approached clients and suppliers, with

computational systems greatly aiding manufacturing companies in such task.

However, enterprises are facing some difficulties concerning the lack of interoperability

of systems and software applications to manage and to increase their collaborative business

[62][63]. Multiple organizations operating in the same business domain may have different

views of the same ―subject‖. When they want to describe their knowledge in an electronic

way it will probably lead to different conceptual/computational models. Consequently it might

conduct to interoperability problems when systems intend to share information between each

other. The need of having complete and fully integrated systems, that seamlessly

communicate and understand each other, requires meaning support of the data within

probable multiple domains involved [64].

Interoperability can be described as the ability of two or more systems or components

to exchange information and to use the information that has been exchanged [65]. Also it can

be described using the Levels of Conceptual Interoperability Model (LCIM), i.e. a model that

shows the different levels of interoperability that may exist between systems, from technical

interoperability through conceptual interoperability [66][67] (Figure 3.2).

3.1. Knowledge Representation Model for Systems Interoperability

Knowledge may be defined as facts, information, and skills acquired by a person,

through experience or education; the theoretical or practical understanding of a subject. It is

the awareness or familiarity gained by experience of a fact or situation [68]. Knowledge is

also used to mean the confident understanding of a subject with the ability to use it for a

specific purpose if appropriate.

Thus, knowledge is the appropriate collection of information, gained through a

deterministic process and which intent is to be useful. When someone memorizes

information, then they have accumulated knowledge. This knowledge has useful meaning to

them, but it does not provide for, in and of itself, an integration such as would infer further

knowledge [69]. Knowledge pursues the gathering of new knowledge in a kind of never

26

ending cycle. Knowledge acquisition is the action beyond such process. Its main objective is

to transform tacit in explicit knowledge, and effectively to improve the approach to elicit

knowledge from domain experts, towards interoperable intelligent systems [70]. Tacit

knowledge is knowledge that people carry in their minds, which provides context for people,

places, ideas, and experiences [71]. Explicit knowledge is knowledge that has been or can

be articulated, codified, and stored in certain media [71].

Figure 3.1: Knowledge Representation Elements

Knowledge representation studies the formalisation of knowledge and its processing

within machines. Techniques of automated reasoning allow a computer system to draw

conclusions from knowledge represented in a machine-interpretable form. A Knowledge

Representation Element (KRE) can make the formal representation of knowledge in a

specific domain become easier. Figure 3.1 illustrates the KRE‘s that should be defined in the

path to build a domain‘s knowledge base. It represents the distinct level of conceptualization

that each one has, showing an increase of its presence from Terminology to the Knowledge

Base [72].

Glossary is a specialized vocabulary with corresponding annotations/definitions as a

domain dictionary. This vocabulary includes a terminology that is unique and/or has special

meaning in the field of interest. Its purpose is to unify the knowledge sharing in information

systems communications. Thesaurus represents a structure (taxonomy) of associated

meanings supplied by the glossary, establishing the lexicon in the domain. Ontology

represents the knowledge related to the domain. It aggregates the lexicon represented by the

thesaurus accomplished with rules to represent some specific knowledge (e.g. products).

The knowledge Base represents the knowledge in a domain combined with explicit

representations of real individuals (e.g. instances of products).

27

The Knowledge Representation Requirements Model (KRRM) is a model proposed by

Turnitsa and Tolk that shows the needs for greater ability to represent knowledge, and also

gives the levels of conceptual interoperability that may be reached if the requirements are

met [67].

Figure 3.2: Knowledge Representation Requirements Model [67]

Nowadays, the increase of obstacles to systems‘ interoperability (both in number and

complexity) is especially due to the rapid enterprises business developments in network

technology and services. A whole continuous stream of newly shared information has

instigated the improvement of the information systems interoperability solutions and

alternatives. A consequence of the dynamic nature of these new distributed information

environments is the introduction of uncertainty about the available information [71].

A low level of intelligence is required to deal only with data as well as a low level of

interoperability. This is represented in Figure 3.2, in the lowest layer. Thus, the level of

intelligence is directly proportional to the interoperability level, and to solve uncertainties on

knowledge representations, it is needed to jump from the static levels of interoperability to

the dynamic ones (see interoperability levels at right part Figure 3.2).

 For this it is needed, as identified by the Turnitsa and Tolk‘s model, to reach the

awareness intelligence level of systems by having its knowledge in time-sensitive context.

Such objective could be reached by knowledge maintenance abilities from external

knowledge system actors‘ feedback. Such knowledge maintenance should be able to lively

track the knowledge evolution and update itself accordingly to the systems outputs

interactions.

28

3.2. Extending mentor methodology to a dynamic level

Systems that possess knowledge and are capable of decision making and reasoning

are regarded as ‗intelligent‘ [72][73]. Some recognised techniques, such as fuzzy logic,

artificial neural networks, machine learning and evolutionary algorithms can contribute to the

increase of the system‘s ‗machine intelligence quotient‘ [74]. The rationale behind the

intelligent label of those techniques is their ability to represent and deal with knowledge [75].

Consequently, the feedback given by the users‘ interaction with an ontology-based system

could be used to get some patterns. These patterns through appropriate analysis could be

used to improve the knowledge/ontologies. Such objective can be reached through the use

of the most appropriate technologies (e.g. machine learning algorithms), which associated to

ontologies could provide a statistical result, facilitating to reach a ―Learning Ontology (LO)‖.

As mentioned by Brewster [76], the evaluation of the output of ontology learning

systems remains a major challenge. The usual approaches to ontology evaluation have

largely been based on quality control of the ontology building process and ensuring the

ontology abides by certain principles [77][78]. But, on this case it is intended to provide

another kind of LO, which intends to learn from its usability from users (e.g. customers) in

order to constantly improve the semantics interoperability between systems and to maintain

its represented knowledge. Knowledge maintenance can be a facilitator to the dynamic

information systems interoperability and consequently as a main actor to the increase of

systems interoperability.

In [79], authors proposed the use of MENTOR methodology, to organize the knowledge

and then as a facilitator to the knowledge maintenance processes implementation. MENTOR

– Methodology for Enterprise Reference Ontology Development [79], is a collaborative

methodology developed with the idea of helping a group of people, or enterprises, sharing

their knowledge with the other in the network, and provides several steps as semantic

comparisons, basic lexicon establishment, ontology mappings and some other operations to

build a domain‘s reference ontology. It aims to combine the knowledge described by different

formalisms in a semantic interoperable way [80]. This methodology is composed by two

phases and each phase has three steps, which can be seen on Figure 3.3.

The Lexicon Settlement, or Phase 1, represents the knowledge acquisition by getting a

collection of terms and related definitions from all participants. This phase is divided into

three steps: Terminology Gathering, Glossary Building, and Thesaurus Building. The first

step is a very simple one, and it represents the knowledge gathering from all actors in the

collaborative network in a form of a list of terms. In the Glossary Building step, a glossary is

built after serial discussions about the terms that every participant contributed to the network

29

on the previous step. These discussions are followed by a voting process, with all

participants deciding which corresponding terms and definitions compose the glossary.

Beyond the glossary, the semantic mismatches record is another output that results from this

step. The last step of this phase is composed by a cycle where the knowledge engineers

define a taxonomic structure with the glossary terms. If there is an agreement in both

structure and classified terms, the thesaurus is defined. If not, the cycle starts again for

another iteration. In this first phase, it could be valuable to have a multi-language dictionary

for situations where a common language is not shared by all participants.

Figure 3.3: MENTOR Methodology

The Reference Ontology Building, or Phase 2, is the phase where the reference

ontology is built, and the semantic mappings between participant‘s ontologies and the

reference ontology are established. This phase, just like the first phase, is divided into three

steps: Ontologies Gathering, Ontologies Harmonization, and Ontologies mapping. The first

step comprehends the acquisition of ontologies in the defined domain. In Ontologies

Harmonization step, it is needed to proceed to two harmonization types: taxonomic

no

1.1 Domain related
terms collection

0. Domain
defined

Te
rm

in
o

lo
gy

G

at
h

er
in

g

2.1 Annotations
attribution to the

terms

G
lo

ss
ar

y
B

u
ild

in
g

2.2 Terms revision

yes

no

3.1 Taxonomic
structure definition

Th
es

au
ru

s
B

u
ild

in
g

3.2 Terms
classification in the
defined structure

3.3 Agreement
yes

O1 - Semantic
Mismatches

Outputs

2.3 Agreement

no

4.1 Collect the
Ontologies or other
type of knowledge

representationO
n

to
lo

gi
es

G

at
h

er
in

g
5.1 Harmonize the

focus of the
taxonomies

O
n

to
lo

gi
es

 H

ar
m

o
n

iz
at

io
n

yes

no

5.3 Harmonize the
contents of the

ontologies

5.4 Agreement
yes

5.2 Agreement

6.1 Ontologies
Mapping

establishment

Outputs

O2 - Glossary

O3 -
Thesaurus

O4 -
Reference
Ontology’s
Taxonomy

O5 -
Reference
Ontology

O6 -
Mapping

Tables

Lexicon Settlement Phase Reference Ontology Building Phase

1

2

3

4

5

6

O
n

to
lo

gi
es

M

ap
p

in
g

30

harmonization and contents harmonization. First, a discussion and voting process about the

reference ontology structure takes place where the common classes are defined by

unanimity. This process of discussing and voting is then repeated for the contents

harmonization. The final step of this phase, the Ontology Mapping, attempts to relate the

vocabulary of two ontologies that share the same domain. In this case, the idea is to

establish mappings between each participant‘s ontology and the reference ontology defined

on the previous step [79].

The extension of MENTOR methodology capabilities to a dynamic level is obtained as

a third phase of the methodology. This phase implements the feedback mechanisms for a

sustainable evolutional learning of the dynamic ontological system. Such phase represents

the encircling of the lexicon settlement and reference ontology building phases of MENTOR‘s

methodology. It will provide a continuous LO (Figure 3.4).

Figure 3.4: Changes to MENTOR methodology [80].

3.3. Knowledge based methodology.

Manufacturing industry has been widely populated with internet services geared to

support parts and components evaluation such as e-procurement of mechanical parts. This

was the scenario chosen to explore knowledge maintenance techniques in a reference

ontology created in a collaborative environment using MENTOR methodology.

In the following it is presented an overview of the MENTOR tool architecture

accomplished with its maintenance plug-in, called oLEARCH. The concept was inspired from

the concept LEARCH defined by Ratliff et al. [81] that means ―LEArning to seaRCH‖. Such

concept represents algorithms for imitation learning in robotics with the main purpose to

search something. Thus, author found appropriated to define ―oLEARCH - Ontologies LEArn

Lexicon Settlement Phase
Reference Ontology

Building Phase

Reference
Ontology Learning Phase

ENCIRCLING

31

by seaRCHing‖, as a new concept related to ontologies able to change/adapt their

knowledge (to learn) through their users‘ patterns of searching/reasoning [83].

The proposed knowledge-based methodology architecture (Figure 3.5) is composed by

three main components: 1) information models able to represent knowledge; 2) java libraries

acting as ontology handlers, machine learning functions, and web services; and 3) user

interfaces able to provide MENTOR and its maintenance plug-in functions. All of these

components are supported by the Protégé tools namely: Jena API; Protégé server and its

MetaProject Ontology plus the Collaborative Protégé plugin.

Protégé is a free, open source ontology editor and knowledge-base framework that

supports two main ways of modeling ontologies via the Protégé-Frames and Protégé-OWL

[82]. Protégé also provides a set of libraries that enable a user to work with ontologies in

Java language [84].

Figure 3.5: Proposed architecture for knowledge-based methodology implementation.

Collaborative Protégé is an extension of the existing Protégé tool to support

collaborative ontology building [85]. With Collaborative Protégé users are able to join a

project through a server, and if they have permission, they can edit ontology classes and

properties through desktop or web Protégé clients. All changes made are synchronically

32

shared with all the participants through associated annotations and in additional users are

able to track the changes and notes.

With this architecture users through the MENTOR part, are able to create knowledge-

based projects or connect to existing ones, and run the entire six MENTOR‘s collaborative

ontology building steps to the definition of glossary, thesaurus and reference ontology

respectively of a specific domain. Other operations have been also developed to provide

management operations to the process. The Metaproject is a frame-based ontology that

comes with Protégé. Its key role is to represent the information about hosted knowledge

projects with their users and access permissions [85]. The original Metaproject was

accomplished with specific MENTOR requirements to keep track of the MENTOR steps and

their status, like for instance, to know the name of users that finished the operations of a

current step.

oLEARCH is responsible to provide knowledge maintenance abilities to the proposed

architecture. It uses a machine learning technique, which main purpose is to find and

describe structural patterns in data [49]. This is made through a product search tool in

mechanical area. When users search a specific product they introduce concepts that will

provide an increase of the lexicon associated to that specific product. Such process is

reached through reasoning, using introduced concepts over the reference ontology to find

the desired products classified on that ontology. The machine learning process starts by

clustering the introduced concepts with the reference ones (from reference ontology) and,

how much times a concept is used, more it gains importance (weight) on decision for the

output results. The output is ruled by an instance-based learning approach, which distance is

inversely related to the ―weight‖ that the concepts have. This means that the result product is

found through a distance function that determines which product is closest in (semantics)

relation to the concepts introduced.

After several utilizations, patterns are obtained. One example is related to the

proposition of new concepts to a specific object. Thus, with proper patterns knowledge is

able to be adapted & maintained to new nomenclatures used by the community. This will be

able to be accomplished by a right connection between oLEARCH and MENTOR.

As a final remark, Web Services are useful in this architecture as they are responsible

for giving to worldwide users the opportunity to use these services, facilitating them the

building of their own user interfaces to use MENTOR and oLEARCH functionalities.

33

3.4. Conclusions

The methodology proposed has been implemented and tested in an industrial furniture

environment. The methodology for collaborative enterprise reference ontology building was

tested using an example about bolt suppliers to validate it. The validation addressed the

process of choosing a bolt supplier by a mechanical engineer or designer, which quite often

brings interoperability issues. This interoperability, in this case, is related to semantics, to the

nomenclature and definition of a bolt. Suppliers usually define proprietary nomenclatures for

their products and its associated knowledge representation. Problems persist although

standardization bodies developed and proposed several standards focused in bolt

specifications. Thus, the need to align product data and knowledge emerged as a priority to

solve the dilemma. By using the proposed extended MENTOR methodology these

interoperability problems were worked out.

After reference ontology agreement, the second stage addresses the upgrade and

enrichment that reference ontology may suffer. The dynamic evolution of systems and

manufacturing environments contribute to decrease the interoperability level over time, thus,

they need to be updated and maintained. This is covered with oLEARCH, which validation is

currently carried out in an e-procurement scenario between manufacturing companies. On-

going validations focused on economic aspects will contribute to completeness of current

work.

34

35

4. REFERENCE TOOLS & MODELS FOR ONTOLOGY

MANAGEMENT

This chapter presents reference tools and models for ontology management. It

presents the oLEARCH architecture used technologies and ontologies. These ontologies

were used to represent a domain business knowledge and semantic mappings.

4.1. Used Technologies

The oLEARCH application was implemented in NetBeans 6.9.1, which is an open-

source Integrated Development Environment (IDE) supporting development of Java

applications, JavaScript, WebServices, C++, etc, owned by Sun Microsystems Company.

4.1.1. Java

In oLEARCH there are sixteen java classes inside five packages. The main used

classes and functions can be seen in Appendix 1. Java is a programming language that

allows developers to write programs, such as utilities, games, and business applications.

This software is platform-independent and can be developed to run in almost every system

just using a Web browser. One of the biggest advantages of Java language is being object

oriented which permit to reuse implemented code by other developers [86].

The implemented code of some main functions is presented in Appendix 2. An example

of the implemented code is shown below. The presented function receives a graph with

respective weights and returns a graph with all weights inverted. The smallest weight will be

one as it uses the formula (biggest weight +1 – current graph weight).

36

Figure 4.1: Java code implemented to transform a concept weight in distance.

4.1.2. Web Services

Web Services big advantage is that it provides the possibility to share the application

functions on the internet. Basically it converts an application into Web applications, simply

publishing the services. Using this technology it is possible to access the oLEARCH

application anywhere in the world without need to install any software, only using an internet

browser [87]. Another relevant Web Services property is that they are a good solution for

interoperability as they provide the communication between different operating systems,

different programming languages, or even different network platforms. Their functional logic

is calling a library using received parameters and returning values.

public List transformWeightInDistance(List graph){

int maxWeight = 0;

List graphList = new ArrayList();

for (Iterator i = graph.iterator(); i.hasNext();){

int auxWeight = 0;

Graph myGraph = (Graph) i.next();

auxWeight = myGraph.getWeight();

if (auxWeight > maxWeight){

maxWeight = auxWeight;

}

}

for (Iterator j = graph.iterator(); j.hasNext();){

int graphWeight= 0;

Graph finalGraph = (Graph) j.next();

graphWeight= finalGraph.getWeight();

finalGraph.setWeight(maxWeight + 1 - graphWeight);

graphList.add(finalGraph);

}

return graphList;

}

37

Figure 4.2: Implemented code to invoke oLEARCH web services.

In oLEARCH there are two web services available. One is responsible to search and

return the desired products and the other one provides the ability to increment a concept

weight in the reference ontology.

In the Figure 4.2 it is displayed the oLEARCH web services invocation code.

AJAX (Asynchronous JavaScript and XML)

Ajax is a set of tools used to build a fast and dynamic web site. Using Ajax it‘s possible

to save resources as it can selectively modify a part of a page without reloading the all

document. Ajax provides Web application‘s functions sharing using asynchronous XML

messaging [88]. In oLEARCH, it is used to invoke SOAP Web services, enabling data

exchange in order to access oLEARCH application through internet.

The example shown in Figure 4.3 is the used one by oLEARCH when increase weight

service is called, which sends to the server the product name to have its weight increased.

This is parameterized using type ―POST‖. Parameter ‗url‘ is the URL to which the request is

sent, ‗dataType‘ is the type of data expected from the server, ‗data‘ has the map that is sent

to the server with the request and ‗contentType‘ the type of content.

Figure 4.3: Ajax implemented invocation.

try {

olearchws.OLearchServiceService service = new olearchws.OLearchServiceService();

olearchws.OLearchService port = service.getOLearchServicePort();

// TODO initialize WS operation arguments here

// TODO process result here

} catch (Exception ex) {

}

var jqxhr = $.ajax({

type: "POST",

url: webMethod,

dataType: "xml",

data: soap,

contentType:"text/xml;

charset=utf-8",

38

jQuery

jQuery is a library with javascripts functions able to work with AJAX technology. It

permits to assign events, to define effects and animations, to create and/or change HTML

elements, etc [89]. In oLEARCH GUI (web page) such library was used. The following code

show how such library was inserted to oLEARCH web page to facilitate soap messages

handling using ajax.

Figure 4.4: Code to insert jQuery library into a web page.

Soap

Soap is a protocol XML-based for accessing a WebService. It provides the ability to

communicate between applications running on different operating systems, with different

technologies and programming languages through HTTP which is supported by all Internet

browsers and servers [90].

 Figure 4.5 shows the used SOAP request to call the responsible function to increase

a product weight. It just sends to oLEARCH server the user selected product name.

Figure 4.5: Soap request.

JavaServer Pages

JavaServer Pages programming language (JSP) was used to design oLEARCH web

application. This technology provides a simplified, fast way to create dynamic web content

<script language="javascript" type="text/javascript" src="jquery-1.5.js"></script>

//Create a new SOAP Request

var soap = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>"+

"<S:Envelope xmlns:S=\"http://schemas.xmlsoap.org/soap/envelope/\">"+

"<S:Header/>"+

"<S:Body>"+

"<ns2:updateWeight xmlns:ns2=\"http://oLearchWS/\">"+

"<prodName>"+valor+"</prodName>"+

"</ns2:updateWeight>"+

"</S:Body>"+

"</S:Envelope>"

39

platform-independent. JSP is stored in its textual form in the web application. When a JSP

page is first called the file is compiled into Java Servlets1 class and stored in the server

memory providing fast responses when called again as it don‘t need to be recompiled [91].

In JSP it is possible to use JAVA code, it just needs to be between two symbols like

<% %>. Figure 4.6 show the code of the first oLEARCH JSP page and its result.

Figure 4.6: oLEARCH JSP code and web page resulting.

4.1.3. Protégé

Protégé is a free, open source ontology editor and knowledge-base framework that

supports two main ways of modelling ontologies via the Protégé-Frames and Protégé-OWL

[82].

Protégé-OWL api - Jena

One of the most used Java APIs for RDF and OWL is JENA, which provides functions

to help programmers dealing with OWL data models.

Figure 4.7 presents a code example in JAVA about how to read an ontology

1
 A servlet is a Java programming language class used to extend Web services applications Error! Reference

ource not found..

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>oLearch</title>

</head>

<body>

<form action="oLearch.jsp" target="_self">

<table border="0" cellpadding="2" align="center">

<tr>

<td>

<input type="text" name="keyword">

<input type="submit" value="Search">

</td>

</tr>

</table>

</form>

</body>

</html>

40

(refOntology) from a URI an ontology into a Jena OWL model.

Figure 4.7: Read an ontology into variable owlModel.

This code is used in oLEARCH to access the reference ontology shown in Figure 5.4.

All the instances, classes and properties information is gathered in ‗owlModel‘ variable.

Protégé-OWL to Java classes

Protégé also provides an open source Java library to work with ontologies in Java

language [84]. This technology provides classes and methods to manipulate OWL data

models in a simple and faster way.

OLearch interacts with the MEDIATOR ontology by using these java classes. Figure

4.8 shows an example of one of these referred Java classes, which is a method to get a

model element.

Figure 4.8: Example of reading a model element using protégé-OWL to java classes.

SPARQL Query

SPARQL is a standard query language for the semantic web which can be used to

public static JenaOWLModel owlModel;

String uri = "file:///C:/";

fileName = ―refOntology.owl";

owlModel = ProtegeOWL.createJenaOWLModelFromURI(uri + fileName);

public ModelElement getModelElement(String name) {

RDFResource res =

owlModel.getRDFResource(OWLUtil.getInternalFullName(owlModel, name));

if (res == null) {

return null;

}

if (res instanceof ModelElement) {

return (ModelElement) res;

} else if (res.hasProtegeType(getModelElementClass())) {

return new DefaultModelElement(owlModel, res.getFrameID());

}

return null;

}

41

query an RDF schema or an OWL model [92]. It is very useful to filter out individuals

(instances) with some specific characteristics, however it is not that simple and easy to work

as other protégé technologies mentioned before.

Figure 4.9 shows a SPARQL function implemented in oLEARCH to get the product with

the entered name.

Figure 4.9: SPARQL java code exemple.

The elected SPARQL editor was ―TopBraid Composer‖. This is a graphical

development environment for modelling data, connecting data sources, and designing

queries, rules and semantic data processing chains [93].

4.1.4. Conclusions

All the presented technologies were used for the oLEARCH implementation. Java is a

powerful programming language that easily interacts with other technologies, as the used

ones in oLEARCH. Adding web services to oLEARCH was the way to provide its access to

users at any part of the world. For a better interaction with ontologies, protégé is a good

solution, not only because of all existing documentation but also because of all the available

tools. However protégé to java classes must be improved because it still has some bugs, and

SPARQL technology is not that simple to work with, but still be useful to filter individuals, as

commented before.

4.2. Reference Ontology

Ontologies represent knowledge through the use of elements with its properties, rules,

facts and relations. OLearch uses an ontology to represent the knowledge of a domain, thus

it has instance products classified on it. This ontology is shown in Figure 4.10.

String prefixMO = "PREFIX MO:<" + OWLUtil.getActiveOntology(owlModel).getURI() +

">";

String queryString = prefixMO +

"SELECT ?Name ?Product_Name " +

"WHERE { " +

"?Name " +

":Product_Name \"" + product_name + "\"; " +

"}";

QueryResults results = owlModel.executeSPARQLQuery(queryString);

42

Figure 4.10: Reference Ontology classes and instances.

By other side, Figure 4.11 shows an example of a reference ontology instance, in this

case representing a bolt, with its properties. (e.g. ―product name‖ property, which in this case

is ―Metric bolts‖).

Figure 4.11: Reference Ontology instance with its properties.

All the concepts used in this ontology could have a respective weight to measure its

importance, representing its appearance frequency in users searching processes. This

43

weight is applied into the reference ontology‘s classes and instances in rdfs comment

property, as presented in middle upper of Figure 4.11. The ones used by the other concepts

properties can also have its own weights but represented in the mediator ontology. When a

reference ontology concept is searched then its weight is increased and the concept is

returned to oLEARCH. If a user selects one of the searched results then oLEARCH will

communicate back to the reference ontology the user choice in order to increment such

selected concept weight. These interactions are made through Web Services, and then

JENA, SPARQL and Protégé-to-class.

4.3. Mediator Ontology

The Mediator ontology (MO) has been built up as an extension to the Model

Traceability Ontology defined in [94], which addresses traceability as the ability to

chronologically interrelate the uniquely identifiable objects in a way that can be processed by

a human or a system [95]. Thus it is used to represent mapping through tupple approach.

The mapping tuple is defined accordingly to [96], consequently, its expression is of the form:

<ID, MElems, KMType, MatchClass, Exp>, where ID is an identifier; MElems is the pair (a,b)

that indicates the mapped elements; KMType represents the Knowledge Mapping Type (e.g.

Conceptual; Semantics; and Instantiable Data); MatchClass stands for Match/Mismatch

Classification depending on the KMType, where some of its possible values are ―Equal‖,

―MoreGeneral‖, ―Disjoint‖ etc.; finally Exp represents the formal expression that relates

the mapping elements [97]. The structure of the mediator is presented in Figure 4.12 and

described as follows.

The Mediator has two main classes: Object and Morphism. The Object represents any

InformationModel (IM) which is the model/ontology itself and ModelElements (also belonging

to the IM) that can either be classes, properties or instances. The Morphism basically

represents the Mapping Tuple described before: it associates a pair of Objects (related and

relating – Melems in MapT), and classifies their relationship with a MorphismType,

KnowledgeMappingType (if the morphism is a mapping), and Match/Mismatch class

(MatchClass in MapT). The Morphism is also prepared to store transformation oriented

ExecutableCode that will be written in the Atlas Transformation Language (ATL) and can be

used by several organizations to automatically execute the mapping, transforming and

exchanging data with their business partners as envisaged in [98].[95]

In oLEARCH it is used only to represent mappings of conceptual types. Its main

purpose is to record new relations between new concepts and/or between existing reference

44

ontology concepts and manage their weights.

Figure 4.12: Mediator‘s model.

The association of MO with the reference ontology helps on the searching task

because of the mappings (relations) it contains.

When a user searches for more than one concept, oLEARCH assumes that they are

somehow connected and so it creates relations between them and records it in the

MEDIATOR ontology. Figure 4.13 contains an example of how a relation is stored into MO.

In this case is a relation between a ―bolt‖ and a ―parafuso‖ concept. Looking carefully to the

example it is possible to see that such conceptual mapping has already a weight of four. This

means that such concepts were searched together already four time, or after introduced

together once the concept that is not present at a reference ontology was already searched

three times. It is possible that one new concept in the MO can have a higher weight that the

existing concept in the reference ontology but semantically equal. This can be viewed as a

new concept due to be more often used than the one presented in the reference ontology.

45

Figure 4.13: Mediator Instance representing a relation between ‗bolt‘ and ‗parafuso‘.

If it‘s just one searched concept and it doesn‘t exist in the reference ontology it will be

also recorded in MEDIATOR ontology, with a potential of being a new product that users just

started to look for.

All these relations have an interesting result, as they may be crucial for a user to find

the desired product. A simple application of this property is for example a user that wants to

find ―couches.

If the reference ontology doesn‘t have such concept the result will be null. However if

there is a search that relates ―couches‖ with ―sofas‖, Mediator will establish a relation

between them. Next time a user searches for ―sofas‖ or ―couches‖ the result will be the same.

As mentioned before, MEDIATOR is also responsible to provide the administrator some user

searching patterns as for possible new products and new concepts. This functionality is

exclusive of the Admin GUI.

46

47

5. OLEARCH ARCHITECTURE

To implement oLEARCH the author applied different technologies able to seamless

communicate between each other. The developed oLEARCH architecture is presented in

Figure 5.1. It has represented both ontologies and oLEARCH GUI. OLearch can be

accessed by any user through oLEARCH Web application or by an administrator using

oLEARCH Administrator application in local machine. OLearch GUIs interacts with the

knowledge base, represented in the referred picture by the two ontologies, MEDIATOR and

the reference ontology.

Figure 5.1: Project Architecture

“oLEARCH - Ontologies LEArn by seaRCHing‖ is a search engine application

available to users at any part of the world by internet. This system learns from user‘s

searched concepts improving the knowledge base. This knowledge base is consisted by two

ontologies, MEDIATOR and a reference ontology.

5.1. OLearch Services

There are two oLEARCH services, one to get products and another one to update a

product weight. These services are available to final users through web services and locally

Users

Administrator

oLearch GUI

Reference Ontology

Mediator Ontology

oLearch server
oLearch Admin GUI

Web Services

Access

Access
Interacts

Employ

C
o

m
m

u
n

ic
a

te

Communicate

48

to the administrator.

5.1.1. Get products service

This service is activated when a user searches for a single or multiple concepts. This

service is represented by two main functions, one to take care of the searching concepts and

another to filter and return the related products found. Each concept is handled accordingly

if, in the knowledge base, it is a class, instance or a property.

The first thing oLEARCH does is to split all the entered concepts and check if they exist

in the knowledge base adding them, if positive, to the respective global list to be processed

later. These lists are used later in the program to build the correct graph. This check starts to

search in overall MEDIATOR for existing relations with the entered concepts. Then each

concept is compared with the existing ones in the reference ontology in order to see if they

are an existing class, instance or property increasing its weight when found, except when it is

a property; in these cases, the increased weight will be the corresponding class weight. Also,

each concept will be compared with MEDIATOR ontology to check if they are an existing

model element. In case the user enters more than one searched concept and the handled

concept is not a model element, or if it has not other classification (class, instance or

property), then a model element in the MEDIATOR ontology is created to add this new

concept.

Next step in oLEARCH is to start joining all the entered concepts, two by two. For

example, if a user enters the ―A B C‖ sequence, then this function will return a list with ―AB‖,

―AC‖ and ―BC‖. This list is then compared with MEDIATOR ontology elements to search for

existing relations. To find these relations, oLEARCH verifies if the first concept is related with

the second concept and increases its weight if positive. It also checks for the opposite,

changing the position of the first concept with the second one. If no relation exists between

these concepts, then oLEARCH will create it, except when just one searched concept is

entered and that already exists in the reference ontology. These relations between two

model elements are created as morphism of conceptual type.

The second function of this service is, as mentioned before, where the selected

products are handled and returned to the user ordered by products importance (products

with higher weights will come first). It‘s in this step where the referred global lists are used,

starting to remove all child classes existing in the class list to avoid having duplicate results.

For each concept (node) a label is created with ID, name, type (Classe, Instance or

MEDIATOR element) and URI. Also, graphs are created, with origin, destiny, weight and if it

is or not an instance (product) properties. There are three kinds of global lists, one with

reference instances, another one with reference classes and a last one with MEDIATOR

49

model elements. The logic here is if it‘s an instance (product) then it will be connected from

―_inic‖ (origin) to ―_out‖ (destiny). If it‘s a class, then the algorithm will search for each child

classes and its instances to create all the possible connections. Regarding MEDIATOR

elements, these will be separated as if they are related to a reference class or instance and

then handled accordingly. Only instances are connected to the destiny ―_out‖. The Figure 5.2

presents a possible graph with some mentioned connections.

Figure 5.2: Graph representation

Note that properties are not represented because, as mentioned before, oLEARCH

returns their classes instead. It is also possible to see that only instances can be connected

to element ―_out‖. This is because oLEARCH will only return instances (products).

The returned results are presented by its weight order, using Dijkstra algorithm for this

decision. Usually Dijkstra is used in graphs to find the closest way. What oLEARCH does is

to invert weights in order to have the biggest one with lower value. This will make the higher

weights will come first than lower ones. This weight‘s transformation in distance basically

consists in inverting all existing weights using the following formula:

Figure 5.3 demonstrates the resulting scenario after this weight transformation be

applied to the scenario shown in Figure 5.2.

50

Figure 5.3: Graph representation after weight transformation

It is now possible to apply Dijkstra algorithm to the existing graph. It will be applied as

many times as the value settled in the administrator GUI, Figure 5.9, returning each times a

different product.

Next slides represent a practical example of the explained theory used in oLEARCH.

Figure 5.5 presents part of the connections established when searching for ―Chairs‖ starting

in the initial oLEARCH state which is shown in Figure 5.4.

Figure 5.4: Mediator ontology and reference ontology.

51

Figure 5.5: Graph created when user searched for ―Chairs‖.

Then, Figure 5.6 shows graph result when the user searches for ―Couch‖, which

doesn‘t exist in the knowledge base.

Figure 5.6: Graph created when user searched for ―Couch‖.

Finally, after the user create a relation, searching for ―Couch + Sofas‖, Figure 5.7

scenario represents a ―Couch + Chairs‖ search. It is possible not only to see the new

relations that are created but also the respective weights increasing.

52

Figure 5.7: Graph created when user searched for ―Couch + Chairs‖.

After this process the weight transformation in distances is applied and the result is

displayed in Figure 5.8.

Figure 5.8: Graph after weight transformation.

After transformation Dijkstra algorithm is applied, returning all the products, till

maximum products settings, starting first from the one with lower weight. From the example

of Figure 5.8 the first products returning are the chairs because they all have weight sum,

from ―_inic‖ till ―_out‖, equal to 5 (less than Sofas which have weight sum equal to 7).

5.1.2. Increase weight service

After the searched products are returned to the user, he might select the desired one.

53

This selection activates the second service which is used to increment the product weight

that he had chosen. It searches for the concept in the reference ontology and increases its

weight. With this action, the selected product importance will grow which makes it appear

first in future searches. This option can also be manually used in the oLEARCH administrator

tool for testing purposes.

5.2. OLearch Administrator GUI

The oLEARCH Administrator GUI, Figure 5.9, is the administrator tool where it is

possible to set some parameters such as the number of results to be displayed on the

regular oLEARCH GUI, set the minimum value for a searching concept be considered as a

possible new product or as a possible new concept and also to increase manually a concept

weight. This tool has a display to show this possible new products and concepts.

This application also provides the possibility to search for an element, by pressing

―Search‖ button.

Figure 5.9: oLEARCH Administration application

There is other administrator functionality related to the button called ―Prepare

RefOntology‖ which prepares the reference ontology to be used in oLEARCH. Basically, it

adds a property called ―weight‖, with value equal to one, to all classes and instances of the

ontology. This weight is added in the comment property as shown in Figure 4.11. Also, in the

mediator ontology it will create two new Information Models related to the chosen reference

ontology data (PatternsInfoModel and refOntology shown in Figure 5.10), to prepare MO to

receive information about searched terms,

54

Figure 5.10: Information Models in Mediator.

5.2.1. New products

Possible new products are the concepts searched by users which don‘t exist in the

reference ontology and which were not related to existing concepts. This will search in

MEDIATOR for concepts that don‘t exist in the reference ontology and that were searched

more than the minimum settled in the Administrator GUI.

If this value is defined for two, this means that when a word is searched more than two

times without semantic relation to an existing one, it is probably a new product.

5.2.2. New concepts

New concepts are the concepts searched by users which have semantic equivalent in

the reference ontology but are not the same. Using Figure 5.8 example, ―Couch‖ has a

relation with ―Sofas‖ it is more used than ―sofas‖, ―couch‖ will become a new concept for

sofas. OLearch implement this by getting all existing relations where one of the concepts

doesn‘t exist in the reference ontology.

If administrator define one as a threshold for this functionality means that for a concept

55

be considered a new concept it just needs to be searched more than one time or have its

weight bigger by one in the relation to the related concept of the reference ontology.

5.3. OLearch GUI

This application is a search engine built in JSP technology and using web services

where users, with internet, can access it.

This GUI application is presented in Figure 5.11.

Figure 5.11: oLEARCH GUI.

This tool is the main oLEARCH application output. It returns from the reference

ontology products related with the searched concepts.

The only function available is to search for a product. When the ―SEARCH‖ button is

pressed oLEARCH will compare the entered concepts with the knowledge base using the get

products service explained before. When a result product is selected its weight is increased

automatically.

A demonstration of this tool use is deeply described in the following chapter.

5.4. Conclusions

OLearch follow the classification learning thought the application of the instance-based

learning. However due to its use of active statistics on the classification it can be also

associated to other classification variant of the numeric prediction. As explained before in this

dissertation, the decision to use Dijkstra‘s algorithm was due to its simplicity, easy

implementation in JAVA language, reliable and especially because it provides the desired

results. There were just a few complications regarding some used technologies, specifically

protégé-to java classes where it was found some issues already reported to protégé and

SOAP which was a good challenge to implement in order to have the communication

between JAVA language and web services.

56

57

6. DEMONSTRATOR TESTING AND HYPOTHESIS VALIDATION

OLearch aims to be an intelligent system able to record user‘s actions in order to

collect data for knowledge management. This chapter describes the validation scenario for

the architecture presented in the previous chapter, using an industrial case.

6.1. Search functionality and relation’s creation.

Knowledge maintenance is related to advanced users that browse within a product

family, requesting some specific aspects not available or visible to general public. Thus

identifying key aspects that products should deploy but whose configuration or function was

not a key point from design or manufacturer‘s point of view. As an example, choosing from a

chair catalogue, only the items whose screw drive trade is a Philips or Umbraco driving

feature is a promising enhancement. In oLEARCH when a user searches for a product

and/or its properties it returns all the searched products matched and all the products using

the entered properties. This is because if there‘s a product without those properties, the

company should show also other products that might be interesting for the user.

Another example could be the attempt to identify the list of affected items when e.g. an

M8 (kind of a bolt) should be present in some elements of furniture. Some of these points of

view may sound strange to designer‘s perspective or manufacturer‘s commercial staff but

have implicit knowledge that an intelligent system may track. This intelligent assistance could

help on costumer‘s request optimisation; for example, some properties may be avoided or

promoted according to customer needs when browsing product‘s catalogue, giving the

feedback based in previous users‘ interaction, reducing selection time for customers and

helping suppliers employees engaged in costumer assistance. In the following is described

how oLEARCH deals with the results of the search functionality and relations creation.

To test the creation of relations between products, the author first searches for a

product and then, to create a relation, he will search for two products at the same time. The

first search keyword is ―Chairs‖. This search returns all the Chairs existing in the Ontology,

Figure 6.1.

58

Figure 6.1: Search results for keyword ―Chairs‖.

Then, the search keyword is ―Chairs+Mats‖ which returns all Chairs and Mats in the

Ontology, as presented in Figure 6.2. The reason why chairs are displayed before the mats it

is due to last search, which had increase ―Chairs‖ weight. In the Mediator, we have now a

new relation between ―Chairs‖ and ―Mats‖.

59

Figure 6.2: Search results for keywords ―Chairs+Mats‖.

Repeating the search using keyword ―Chairs‖, the result is the expected one that

oLEARCH returned in Figure 6.3, not only chairs but also mats.

Figure 6.3: Search results for keyword ―Chairs‖.

60

This result is due to the relation that was created in the mediator, by the previous

search, where ―Chairs‖ was connected to ―Mats‖. In this scenario if ―Mats‖ gains importance

(weight) till it‘s higher than ―Chairs‖, then it will appear first in the search result, even if the

user searches only for ―Chairs‖.

Figure 6.4 and Figure 6.5 show two extra tests. The first one is that searching, for

example, ―Mats‖ and/or for ―Chair-Pad‖ several times will increase its weight. This weight

increase will cause a change position when displaying the results. So searching again for

―Chairs‖ the result will have a chair-pad product before some chairs.

Figure 6.4: Search results for keyword ―Chair-Pad‖ after searched several times.

Clicking on the product ―Junior-chair‖ will lead to the second extra test which shows

that searching again for the same keyword, the product ―Junior-chair‖ is shown first than it

was. This is presented in Figure 6.5.

61

Figure 6.5: Search result for keyword ―Junior-chair‖ after selected from the last search result.

This happens because of the searching frequency. It could be also explained as the

following. Imagine that the weight of product A is three, weight of product B is two and weight

of product C is one. They are all related to each other. Searching for A, the result will be A

then B then C. After this search, product A has weight equal to four. If product C is searched

two times, its weight will be equal to three. Now, when searching again for product A, the

result will be A (with weight equal to five), C (with weight equal to three) and B (with weight

equal to two).

6.2. New concepts Functionality

Considering that a client not familiar with the webservice starts browsing the furniture

domain database, using terms not existent in reference ontology. Those terms may be

considered either a mismatch or a different jargon that such client habitually uses. The track

of such behaviour may induce the system to react ignoring repeatedly the entry or wisely

understand that the term is new for the reference ontology but could be the new term to be

used in near future. This case represents time and money saved since it avoids domain

engineers meet constantly with knowledge engineers to discuss enterprise‘s knowledge

update as for new terms inclusion in the reference ontology. With this procedure, errors will

be also reduced since the system could dynamically learn that a new term introduced by

62

users could initially be considered similar/equal in semantics to an existent one.

The used reference ontology has some sofas, although if search key word is ―Couch‖,

oLEARCH won‘t return any product. Searching for ―Couch+Sofas‖ it will return all the sofas.

Then if other users search for ―couch‖ more than for ―sofas‖ will result in a ―couch‖ weight

higher than ―sofas‖ weight. Thus, if the ―new concepts‖ threshold is set to five ―couch‖ will be

considered a new concept if it has a positive difference to ―sofas‖ related weight of at least 6.

Figure 6.6: oLEARCH Administration Application result for ―New Concepts‖ button.

6.3. New products functionality

Finally, another scenario is the search using a term for an inexistent product, moreover

with combined specifications or others details. It is expected that the system intelligently

react and suggest MENTOR managers that some kind of new product has been requested

(and design teams should be aware). In this case, the added value is more related to the

time saved that could also represent money saved, because if there is any new product on

the market, enterprises aim to react promptly. This system is able to warn design teams for a

possible new product appetence, anticipating precious market information to the company.

63

For this test scenario, ‗New Products‘ weight is set to 10, as shown in last picture. This

means that if a concept is searched more than ten times and it doesn‘t exist on the ontology

it is probably a new product.

Figure 6.7 presents a possible new product. As product ―Couch‖ doesn‘t exist, simply

searching for it ten times and then clicking on ‗New Products‘ button it will return it as a

possible new product.

Figure 6.7: oLEARCH Administration Application result for ―New Products‖ button.

6.4. Dissemination Executed and Hypothesis Validation

As defined in the first dissertation hypothesis, oLEARCH makes use of ontologies with

some statistics associated to its concept and operational research methods. This facilitates

to acquire knowledge from users in the sense that their introduced concepts received a

statistic number related to its use frequency. Such process helped oLEARCH to propose new

products and concepts, thus it results in an increase of the intelligence of its information

system management.

Following the second dissertation hypothesis, oLEARCH also used mapping between

reference ontology and Mediator ontology. It worked as a solution to facilitate further

64

knowledge evolution. A mapping between a ―reference‖ concept and a ―new‖ concept

introduced by a user is used to propose MENTOR administrators a reconsideration of the

reference concept. This results in a knowledge evolution. Ontology mapping confirmed to be

a suitable solution for ontology enhancement. The presented methodology might be applied

in any enterprise no matter its domain, as oLEARCH is able to interact between MEDIATOR

and any reference ontology.

For intentional purposes of the research results of this dissertation, a scientific

publication was accepted in the ASME International Mechanical Engineering Congress and

Exposition, from 11th to 17th of November 2011 in Denver – United Stated of America, and it

was published on the proceedings of the conference:

 Sarraipa J., Jardim-Gonçalves R., Mendonça da Silva J., Cavaco F., Knowledge

Based Methodology Supporting Interoperability Increase in Manufacture Domain,

Accepted In: ASME International Mechanical Engineering Congress and

Exposition. Nov 11-17, Denver, United States of America, (2011).

.

65

7. CONCLUSIONS AND FUTURE WORK

To better respond to the requirements of the market, enterprises are changing the way

they do business. SMEs started to realize that the small markets do not bring big benefits for

them and do not allow them to grow as fast as they wish. To compete with large enterprises,

SMEs must seek for collaboration between each other, e.g. using virtual enterprises

organisations.

Interoperability is the keyword for success in such enterprise collaboration

environments. When working together, enterprises need to communicate to understand each

one‘s information. But most of the time these communications are not well succeeded due to

semantic interoperability problems.

Tacit knowledge acquisition process isn‘t easy and clear. Furthermore, the knowledge

maintenance stage should focus on the improvement of the knowledge base in order to be

alive and updated accordingly to the knowledge evolution to which the system could be

related to. This dissertation propose a knowledge maintenance stage to MENTOR in order to

improve the management of the knowledge base along product life cycle in order to be

adapted accordingly to the knowledge evolution of the system. Knowledge maintenance is

ruled by the analysis of the users‘ interactions feedback, which works as the main trigger to

the learning process on which such knowledge-based system is based on.

The knowledge maintenance is assuming a key role to dynamically update reference

ontology, since enterprises environments and company‘s alliances are changing fast in

today‘s competitive market. Based in knowledge database user‘s interaction, as an intelligent

response to knowledge management and update, good results are expected to a major

update of reference ontology within its specific domain.

OLEARCH tool is then the solution found by the author to tackle these problems. With

this tool companies can easily monitor the constantly evolving concepts as well as monitor

the trend of new products, getting thereby a better usability of the available resources. It is

important to state again that all these dynamic behaviours handled by this knowledge

maintenance solution results in an automatic contribution to reference ontology refinement

and knowledge management enhancement.

OLEARCH development contributed to answer this dissertation research questions

proving at the same time its proposed hypothesis. Knowledge acquisition from information

system‘s users was enhanced due to the oLEARCH integration on the presented knowledge

based methodology for semantic interoperability. It acts directly with users saving their

introduced knowledge in a formal way in the Mediator ontology and integrating it with

66

previous existent knowledge of the system, which is formal represented in the reference

ontology. Moreover, oLEARCH is able to learn through the users‘ feedback/interactions,

representing in this way, an enhanced system able to acquire and learn from the users

introduced knowledge. OLEARCH is also integrated with a specific algorithm that acts as an

operational research method because it uses a statistical approach based on users‘ patterns,

which is used for decision making related to the choice of the best product considering the

knowledge inserted by the users. This process provides oLEARCH with a machine learning

ability, not only able to return better search results, but as well as to propose new concepts

and new products that contributes to the knowledge maintenance of the system. These

learning abilities assist the system intelligence increase.

OLEARCH manages the knowledge by establishing mappings between concepts, for

instance a ―reference‖ existent concept and a ―new‖ concept introduced by a user. This is

used to make equivalences in reasoning related products from the reference ontology. It is

also used in some patterns analysis like related to concepts use frequency. A higher use

frequency of a ―new‖ concept in comparison to a ―reference‖ concept, will propose MENTOR

administrators a reconsideration of the ―reference‖ concept. Thus, it could be concluded that

the reference ontology mapping with MEDIATOR ontology works as a facilitator to enhance

knowledge re-use and adaptation, facilitating also its system intelligence improvement.

7.1. Future Work

As for future work, a few things regarding the implementation of the solution may be

introduced. Starting with the Administrator GUI, it might have more functionalities related to

the users patterns analysis, which could result in more knowledge management solutions for

administrators. For example, if it has a registration procedure able to record personal data

from users, then oLEARCH could have access to the top requested products by age, by city,

etc. This could take enterprises to another level of performance regarding customer‘s

requests analysis. The integration MENTOR-oLEARCH is other point that should be

improved to better integrate knowledge changes/adaptation in the reference ontology

resulted from the oLEARCH patterns analysis.

With actual technologic development and specially the fast grow of mobile devices it

could be good to provide them the access to oLEARCH. Another future implementation is

regarding to some basic knowledge base management, as creation or deletion of products. It

would avoid wasting system memory with non-existing products (for example semantic

mistakes) or to create new ones automatically. Also relevant could be provide a functionality

that after a user selects a product, he would be redirected to the closest shop or the product

would be sent to his address.

67

8. REFERENCES

[1] Camarinha-Matos L.: Scientific Research Methodologies and Techniques - Unit 2: Scientific
Method, PhD Program in Electrical and Cumputer Engineering (2010).

[2] Sarraipa, J.: Uma solução para a Interoperabilidade Semantica em ambientes globais de
negócios. Master Thesis, (2004).

[3] Stuart J. Russell; and Peter Norvig (1995). Artificial Intelligence: A Modern Approach, Prentice
Hall, Englewood Cliffs, NJ (1995).

[4] Terrence J. Sejnowski; Christof Koch; Patricia S. Churchland (1988). Computational
Neuroscience, Science, New Series, Vol. 241, No. 4871. (Sep. 9, 1988), pp. 1299-1306,
(1988).

[5] D. Purves, G. J. Augustine, D. Fitzpatrick, et al., Neuroscience, Sinauer Associates,
Sunderland, Mass, USA, 3rd edition, 2004.

[6] CNSORG, 2011. Retrieved from the web at June 2011: http://www.cnsorg.org/computational-
neuroscience.

[7] Tulving, E. in Organisation of Memory (eds Tulving, E. & Donaldson, W.) 381-403 (Academic,
New York, 1972).

[8] Patterson, K.; Nestor, P. J.; and Rogers, T. T. (2007). Where do you know what you know?
The representation of semantic knowledge in the human brain. In: Nature Reviews
Neuroscience 8, 976-987 (December 2007).

[9] Koch C. 1999. Biophysics of Computation. Information Processing in Single Neurons. Oxford,
UK: Oxford Univ. Press. 562 pp.

[10] Rolls ET, Treves A. 1998. Neural Networks and Brain Function. Oxford, UK: Oxford Univ.
Press. 418 pp.

[11] Rolls ET. (2000). Memory systems in the brain. In: Annu Rev Psychol. 2000; 51:599-630
[12] Wikipedia, 2011. Retrieved from the web: http://en.wikipedia.org/wiki/Hebbian_theory, at June

2011.
[13] V. Bombardier, C. Mazaud, P. Lhoste and R. Vogrig, ―Contribution of fuzzy reasoning method

to knowledge integration in a defect recognition system,‖ Computer in Industry, In Press,
2006.

[14] Christos Stergiou and Dimitrios Siganos. ―Neural Networks” , Imperial College of London,
Computer Department; http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
02-05-2010

[15] Simon S. Haykin (2008). In the book: Neural networks and learning machines, 2008.
[16] Sarraipa, J.: Uma solução para a Interoperabilidade Semantica em ambientes globais de

negócios. Master Thesis, (2004).
[17] Sarraipa, J.; Jardim-Gonçalves, R.: Semantic Adaptability for Systems Interoperability.
[18] Gruber, T.: Toward Principles for the Design of Ontologies Used for Knowledge Sharing.

Originally in N. Guarino and R. Poli, (Eds.), International Workshop on Formal Ontology,
Padova, Italy. Revised August 1993. Published in International Journal of Human-Computer
Studies, Volume 43, Issue 5-6 Nov/Dec. 1995, pp 907-928, (1993).

[19] INTEROP NoE. Deliverable MoMo.2 - TG MoMo Roadmap. InterOP, 2005.
[20] Fishwick, P.; Miller, J., Ontologies for Modeling and Simulation: Issues and Approaches,

Proceedings of the 2004 Winter Simulation Conference, 2004.
[21] Saias, J., Uma Metodologia para a construção automática de Ontologias e a sua aplicação

em Sistemas de Recuperação de Informação, 2003
[22] Maedche, Alexander; Staab, Steffen (2001). "Ontology Learning for the Semantic Web," IEEE

Intelligent Systems, vol. 16, no. 2, pp. 72-79, March/April, 2001.
[23] Sváb, O.; Svátek, V. (2007).Ontology Mapping enhanced using Bayesian Networks. Retrieved

from the web at August 2010: http://nb.vse.cz/~svatek/znal07.pdf
[24] Ontology Matching (2011). Retrieved from the web: http://www.ontologymatching.org/, at June

2011.
[25] Albagli, S.; Ben-Eliyahu-Zohary, R.; Shimony, S., Markov Network based Ontology Matching,

In Proceedings of the Twenty-First International Conference on Artificial Intelligence, 2009.
[26] Morse, P. M.; and G. E. Kimball: ―Methods of Operations Research‖, John Wiley & Sons, Inc.,

New York, 1951.
[27] L. Zhou, "Ontology learning: state of the art and open issues," Information Technology and

Management, published unline 24 March 2007.

http://www.ontologymatching.org/

68

[28] Alexander Maedche, Steffen Staab, "Ontology Learning for the Semantic Web," IEEE
Intelligent Systems, vol. 16, no. 2, pp. 72-79, March/April, 2001.

[29] Lanchester, Frederick William: Mathematics in Warfare, in J. B. Newman, ―The World of
Mathematics‖, vol. 4, Simon and Schuster, Inc., New York, 1956.

[30] Wikipedia, 2011. Retrieved from the web: http://en.wikipedia.org/wiki/Operations_research, at
June 2011.

[31] Craven, B. D. and Islam, SMN, Operations Research Methods – Related Production,
Distribution and Inventory Management Applications, The Icfai University Press, Hyderabad,
(2006).

[32] Bls, 2011. Retrieved from the web: http://www.bls.gov/oco/ocos044.htm, at July 2011.
[33] Labyrinth, 2011. Retrieved from the web: http://www.labyrinth.net.au/~bdc/ORMfirst.pdf, at

July 2011.
[34] Oliveira, P.; and Gomes, P. (2009). Probabilistic Reasoning in the Semantic Web using

Markov Logic. MSc Thesis - Knowledge and Intelligent Systems Laboratory - Cognitive and
Media Systems Group - Centre for Informatics and Systems of the University of Coimbra.

[35] P. Domingos, S. Kok, D. Lowd, H. Poon, M. Richardson, and P. Singla, ―Markov Logic,‖
Probabilistic Inductive Logic Programming, 2008, pp. 92-117.

[36] Mollinari, M., Aplicações das Cadeias de Markov na Genética, Seminários em Genética e
Melhoramento de Plantas – LGN 5799, 2007.

[37] Page, Lawrence and Brin, Sergey and Motwani, Rajeev and Winograd, Terry (1999). The
PageRank Citation Ranking: Bringing Order to the Web. Technical Report

[38] Albagli, S.; Ben-Eliyahu-Zohary, R.; and Shimony, S. E. (2009). Markov network based
ontology matching. In: Proceedings of the 21st international Joint Conference On Artificial
Intelligence - Pasadena, California, USA

[39] Vojtěch Svátek, Ontology Mapping enhanced using Bayesian Networks, 2006.
[40] Colin Harris and Vinny Cahill. Power management for stationary machines in a pervasive

computing environment. In Proceedings of the Hawaii International Conference on System
Sciences, 2005.

[41] Gustavo Arroyo-Figueroa and Luis Sucar. A temporal bayesian network for diagnosis and
prediction. In Proceedings of the 15th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-99), pages 13–20, San Francisco, CA, 1999. Morgan Kaufmann Publishers.

[42] Ann Devitt, Boris Danev and Katarina Matusikova, Ontology-driven Automatic Construction of
Bayesian Networks for Telecommunication Network Management, 2006.

[43] Ding, Z.; Peng, Y.; and Pan, R. November 2004. A Bayesian Approach to Uncertainty
Modeling in OWL Ontology. In Proceedings of 2004 International Conference on Advances in
Intelligent Systems - Theory and Applications (AISTA2004). Luxembourg- Kirchberg,
Luxembourg.

[44] Ding, Z.; and Peng, Y. January 2004. A Probabilistic Extension to Ontology Language OWL.
In Proceedings of the 37th Hawaii International Conference on System Sciences (HICSS-37).
Big Island, Hawaii.

[45] Fenz, S.; and Neubauer, T. (2009). "How to Determine Threat Probabilities Using Ontologies
and Bayesian Networks". Talk: 5th Annual Workshop on Cyber Security and Information
Intelligence Research, Knoxville, TN; 04-13-2009 – 04-15-2009; in: "CSIIRW ‗09: Proceedings
of the 5th Annual Workshop on Cyber Security and Information Intelligence Research", ACM
New York, Ny, Usa (2009), ISBN: 978-1-60558-518-5; 1 – 11.

[46] Wikipedia, 2011. Retrieved from the web: http://en.wikipedia.org/wiki/Machine_learning, at
August 2011.

[47] Rob Schapire (2009). Princeton: Retrieved from the web at June 2011:
http://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe_notes/0204.pdf

[48] A. Gammerman and V. Vovk. Hedging predictions in machine learning: The second
computer journal lecture. The Computer Journal, 50(2):151--163, 2007.

[49] I. H. Witten; and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques
(2nd edition), Morgan Kaufmann, San Francisco, 2005.

[50] Frank Keller. Connectionist and Statistical Language Processing (Lecture Slides).
Computerlinguistik, Universitat des Saarlandes, Saarbrucken, 2001.

[51] R. Agrawal, T. Imielinski, and A. N. Swami. Mining Association Rules between Sets of Items in
Large Databases. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data
(SIGMOD‘93), 1993.

[52] J. Hipp, U. Gu¨ ntzer, and G. Nakhaeizadeh, ―Algorithms for Association Rule Mining—A
General Survey and Comparison,‖ SIGKDD Explorations, vol. 2, no. 1, pp. 58-64, July 2000.

http://en.wikipedia.org/wiki/Operations_research
http://www.bls.gov/oco/ocos044.htm
http://www.labyrinth.net.au/~bdc/ORMfirst.pdf
http://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe_notes/0204.pdf

69

[53] X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan, A.F.M. Ng, B.
Liu, P.S. Yu, Z.-H. Zhou, M. Steinbach, D.J. Hand, and D. Steinberg, "Top 10 Algorithms in
Data Mining," Knowledge and Information Systems, vol. 14, no. 1, pp. 1-37, 2008.

[54] Nguyen, N., Guo, Y.: Metric Learning: A Support Vector Approach. Machine Learning and
Knowledge Discovery in Databases, 125–136 (2008).

[55] Anton Milev: KD Tree - Searching in N-dimensions, Part I. Retrieved from the web in January
2010: http://www.codeproject.com/KB/architecture/KDTree.aspx.

[56] Gartner, 2011. Retrieved from the web: http://www.gartner.com/technology/it-glossary/, at July
2011.

[57] Slidefinder, 2011. Retrieved from the web:
http://www.slidefinder.net/D/Data_Mining_Timo_Knuutila_Department/994490, at March 2011.

[58] Anderson.ucla, 2011. Retrieved from the web:
http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm,
at August 2011.

[59] Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs". Numerische
Mathematik 1: 269–271, 1959.

[60] Wikipedia, 2011. Retrieved from the web: http://en.wikipedia.org/wiki/Dijkstra's_algorithm, at
January 2011.

[61] Commission of the European Communities. Communication from the Commission to the
Council, The European Parliament, The European Economic and Social Committee and the
Committee of the Regions ―i2010 – A European Information Society for growth and
employment‖ - {SEC(2005) 717}; Brussels. (2005).

[62] Jardim-Goncalves, R., Grilo, A., & Steiger, A. (2006). Challenging the interoperability between
computers in industry with MDA and SOA. Computers in Industry, 57(8–9), 679–689.

[63] Panetto, H., Jardim-Gonçalves, R., & Pereira, C. (2006). EManufacturing and web-based
technology for intelligent manufacturing and networked enterprise. Journal of Intelligent
Manufacturing,17(6), 639–640.

[64] Agostinho, C.; Sarraipa, J., Goncalves, D., and Jardim-Goncalves, R. (2011). Tuple-based
semantic and structural mapping for a sustainable interoperability. In: DOCEIS‘11 2nd
Doctoral Conference on Computing, Electrical and Industrial Systems –Costa de Caparica,
Lisbon, February 2011.

[65] IEEE Standard Computer Dictionary (1990). In: A Compilation of IEEE Standard Computer
Glossaries; New York, NY: 1990.

[66] Tolk, A., S. Y. Diallo, C. Turnitsa, L. S. Winters. (2006). Composable M&S Web Services for
Net-centric Applications. Journal Defense Modeling and Simulation 3 (1): 27-44.

[67] Turnitsa, C.; Tolk, A. (2008). Knowledge Representation and the Dimensions of a Multi-Model
Relationship. In Proceedings of the 40th Winter Simulation Conference, 2008: 1148-1156.

[68] Oxford Dictionaries: http://oxforddictionaries.com/view/entry/m_en_gb0447820#m_en_gb044
7820.

[69] Bellinger, G., Castro, D., Mills, A. (2004). Data, Information, Knowledge and Wisdom,
Retrieved from the web http://www.systems-thinking.org/dikw/dikw.htm at August 2010.

[70] Ackoff, R. L. (1989). "From Data to Wisdom", Journal of Applies Systems Analysis, Volume
16, 1989 p 3-9.

[71] Velthausz, D. (1998). In the Telematica Instituut Fundamental Research Series: Cost-effective
network-based multimedia information retrieval. ISSN 1388-1795; Nº 003. ISBN 90-75176-16-
3. Telematica Instituut, The Netherlands - 1998.

[72] Meystel, A.M. and Albus, J.S., (2001). Intelligent systems: architecture, design, and control.
New York: John Wiley and Sons.

[73] Saridis, G.N. and Valavanis, K.P., (1988). Analytical design of intelligent machines.
Automatica, 24 (2), 123–133.

[74] Zadeh, L.A., 1994. Fuzzy logic, neural networks, and soft computing. Communications to the
ACM, 37 (3), 77–84. ISSN:0001-0782.

[75] Kasabov, N. and Filev, D., 2006. Evolving intelligent systems: methods, learning, &
applications, Proc. Int. Symposium on Evolving Fuzzy Systems, pp. 8–18.

[76] Brewster, C. (2010). Ontology Learning. In Ontogenesis - An Ontology Tutorial – retrieved
from the web at August 2010: http://ontogenesis.knowledgeblog.org/331.

[77] Gómez-Pérez, A. Staab, S. & Studer, R. (ed.) [Ontology Evaluation.] Handbook on Ontologies,
Springer, 2004, 251-274

http://www.codeproject.com/script/Membership/View.aspx?mid=3874872
http://www.gartner.com/technology/it-glossary/
http://www.slidefinder.net/D/Data_Mining_Timo_Knuutila_Department/994490
http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm
http://en.wikipedia.org/wiki/Dijkstra's_algorithm
http://www.systems-thinking.org/dikw/dikw.htm%20at%20August%202010

70

[78] Oltramari, A.; Gangemi, A.; Guarino, N. & Masolo, C. Restructuring WordNet‘s Top-Level: The
OntoClean approach Proceedings of the Workshop OntoLex‘2, Ontologies and Lexical
Knowledge Bases, 2002

[79] Sarraipa, J.; Silva, J. P.; Jardim-Gonçalves, R.; Monteiro, A.: MENTOR – Methodology for
Enterprise Reference Ontology Development. In: Intelligent Systems, 2008. (IS '08). 4th
International IEEE Conference, pp 6-32 - 6-40, (2008)

[80] Sarraipa, J., Jardim-Goncalves, R. and Steiger-Garcao, A. (2010). MENTOR: an enabler for
interoperable intelligent systems. International Journal of General Systems, Volume 39, Issue
5 July 2010 , pages 557 – 573.

[81] Ratliff, N.; Silver, D. (2009). Learning to Search: Functional Gradient Techniques for Imitation
Learning. In Journal Autonomous Robots; Publisher: Springer Netherlands; 2009-07-01; Issn:
0929-5593; Issue 1; Pages 25-53

[82] Protégé, 2010. Retrieved from the web: http://protege.stanford.edu/, on 22nd July 2010.
[83] Mendonça da Silva J.; Cavaco F.; Sarraipa J., Jardim-Gonçalves R.; Knowledge Based

Methodology Supporting Interoperability Increase in Manufacture Domain, Accepted In: ASME
International Mechanical Engineering Congress and Exposition. Nov 11-17, Denver, United
States of America, (2011).

[84] Protégé-OWL API Programmer‘s Guide, 2010. Retrieved from the web:
http://protegewiki.stanford.edu/wiki/ProtegeOWL_API_ Programmers_Guide, on 7th August
2010.

[85] Collaborative Protégé, 2010. Retrieved from the web:
http://protegewiki.stanford.edu/index.php/Collaborative_Protege, on December 2009.

[86] About Java Technology, available from http://www.sun.com/java/about/, accessed on 19th
July 2010.

[87] Introduction to Web Services, available from http://www.w3schools.com/webservices/
/ws_intro.asp, accessed on 21st July 2010.

[88] IBM, 2010. Retrieved from the web:
http://www.ibm.com/developerworks/webservices/library/ws-wsajax/, at November 2010.

[89] Escolacriatividade, 2010. Retrieved from the web: http://www.escolacriatividade.com/tutorial-
jquery-o-que-e-e-como-usar-o-jquery/, at November 2010.

[90] W3schools, 2010. Retrieved from the web: http://www.w3schools.com/SOAP/soap_intro.asp,
at November 2010.

[91] Java.sun, 2010. Retrieved from the web: http://java.sun.com/products/jsp/whitepaper.html, at
November 2010.

[92] Protégé, 2010. Retrieved from the web: http://protege.stanford.edu/doc/sparql/, at November
2010.

[93] Topquadrant: Retrieved from the web:
http://www.topquadrant.com/products/TB_Composer.html at November 2010.

[94] Sarraipa J., Zouggar N., Chen D and Jardim-Goncalves R., 2007, ―Annotation for enterprise
information management traceability,‖ Proceeding of ASME 2007 International Design
Engineering Technical Conferences & Computers and Information in Engineering Conference,
Las Vegas, NV.

[95] Agostinho, C.; Sarraipa, J.; Goncalves, D.; Jardim-Goncalves, R.; Beca, M. (2011). Tuple-
based Morphisms for E-Procurement Solutions. In the proceedings of IDETC/CIE ASME
(2011) – International design Engineering Technical Conference & Computers and Information
in Engineering Conference, 29-31 August 2011 – Washington, DC – USA.

[96] Agostinho, C.; Goncalves, D.; Jardim-Goncalves, R. (2011). Tuple-based semantic and
structural mapping for a sustainable interoperability. In the proceedings of DoCEIS‘11 – 2

nd

Doctoral Conference on Computing Electrical and Industrial Systems, 21-23 February 2011 –
Costa da Caparica, Lisbon – Portugal.

[97] Sarraipa, J.; Jardim-Goncalves, R.; (2011). Knowledge-based System for Semantics
Adaptability of Enterprises Information Systems. In the IWEI 2011 Third International IFIP
Working Conference, ―Interoperability and Future Internet for Next-Generation Enterprises.‖,
22-24 March 2011, Stockholm, Sweden.

[98] Agostinho, C. Correia, F. and Jardim-Goncalves, R., 2010, ―Interoperability of Complex
Business Networks by Language Independent Information Models‖,17th ISPE International
Conference on Concurrent Engineering (CE 2010), Sep 6-10, Krakow, Poland.

[99] Sarraipa, J.; Zouggar, N.; Chen, D; Jardim-Goncalves, R. (2007). Annotation for Enterprise
Information Management Traceability. In Proceedings of IDETC/CIE ASME (2007).

http://www.ibm.com/developerworks/webservices/library/ws-wsajax/
http://www.escolacriatividade.com/tutorial-jquery-o-que-e-e-como-usar-o-jquery/
http://www.escolacriatividade.com/tutorial-jquery-o-que-e-e-como-usar-o-jquery/
http://www.w3schools.com/SOAP/soap_intro.asp
http://java.sun.com/products/jsp/whitepaper.html
http://protege.stanford.edu/doc/sparql/
http://www.topquadrant.com/products/TB_Composer.html%20at%20November%202010

71

APPENDIX 1

mediator Vários Vários

ontoHandler OntologyHandler getElementsConceptualMappedWith(ElementA): LIST of Elements

ontoHandler OntologyHandler createModelElements (ListElements; InformationModel; type): void

ontoHandler OntologyHandler createMorphismOfConceptualType (ElementA; ElementB): void

ontoHandler OntologyHandler increaseConceptualMappingWeight (ElementA; ElementB): void

ontoHandler OntologyHandler isModelElementCreated(ElementA): boolean

ontoHandler RefOntoHandler prepareAllClassesAndIndividuals(OntologyRefURL):void

ontoHandler RefOntoHandler increaseWeightOfClass(ClassName):void

ontoHandler RefOntoHandler increaseWeightOfIndividual(ClassName):void

ontoHandler RefOntoHandler getPropertyDomains(NomedaPropriedade):ListofClasses

ontoHandler RefOntoHandler hasClassElement(name):boolean

ontoHandler RefOntoHandler hasInstanceElement(name):boolean

ontoHandler RefOntoHandler hasPropertyElement(name):boolean

ontoHandler RefOntoHandler cleanChildClassesFromRootClassesList(List of RootClasses):List of RootCLasses

machineLearning Dijkstra

machineLearning Weightedgraph

util Graph setOrigin(Origin:int):void

util Graph getOrigin(void):int

util Graph setDestiny(Destiny:int):void

util Graph getDestiny(void):int

util Graph setWeight(weight:int):void

util Graph getWeight(void):int

util Graph setAsInstance(void):void

util Graph isInstance(void):boolean

package class/java Main Functions

72

util Products setProductName

util Products setProductDescription

util Products setProductURL

util Products getProductName

util Products getProductDescription

util Products getProductURL

util MorphismElements setElementA(concept):void

util MorphismElements setElementB(concept):void

util MorphismElements getElementA():Concept

util MorphismElements getElementB():Concept

util Label setID(ID:int):void

util Label getID(void):int

util Label setName(Name:String):void

util Label getName(void):String

util Label setType(type:int):void

util Label getType(void):String

util Label setUri(uri:String):void

util Label getUri(void):String

util Util getIntroducedWords(input: String):List of Concepts

util Util createOwnGraph(ListOfRootClasses, ListOfRootInstances, ListOfRootMediatorClasses): (Vector of Labels) + (Vector of Graphs)

util Util inicConceptsToSearch(List of Concepts): List of "Morphisms"

util Util createDijkstraGraph(Vector of Labels, vector of Graphs): WeightedGraph

util Util transformWeightInDistance(VectorGraph: List of Graph):List of Graph

73

OntologyLearner OntoLearn getProductsRelatedWith(input:String; maxResults:int): List of (ProductName; ProductDescription; ProductURL)

OntologyLearner OntoLearn increaseWeightOfChosenProduct(ProductName):void

OntologyLearner OntoLearn showUsagePatterns(void):List of (List of Possible New Products)(List of Possible New Ref Concepts)

OntologyLearner KnowledgeHandler introductionOfSearchKnowledge(input:String):void

OntologyLearner KnowledgeHandler getSearchResults(maxResults): listOfProducts

OntologyLearner KnowledgeHandler setRootClasses(OwlNamedClass):void

OntologyLearner KnowledgeHandler setRootInstances(OwlNamedClass):void

OntologyLearner KnowledgeHandler setRootClassesFromMediator(Element):void

OntologyLearner KnowledgeHandler clearAllRootLists(void):void

OntologyLearner KnowledgeHandler searchOverallMediatorForRefClassesMappedWith(Concept):OwnGraphUntilRefClass -> Ref Class added to ListOfRoofClasses

OntologyLearner KnowledgeHandler searchRefClassMappedWith(Concept):OwnGraphUntilRefClass -> Ref Class added to ListOfRoofClasses

OntologyLearner KnowledgeHandler searchForProducts(WeightedGraph, maxResults): List of Products

74

75

APPENDIX 2

getElementsConceptualMappedWith(ElementA): LIST of Elements

[1] public List getElementsConceptualMappedWith(MyFactory mf, String ElementA){
[2]
[3] List lista = new ArrayList();
[4] ModelElement thisModelElement = mf.getModelElement(ElementA);
[5] if (thisModelElement != null){
[6] Collection thisMECollection = thisModelElement.getHasMorphismDomain();
[7] for (Iterator i = thisMECollection.iterator(); i.hasNext();){
[8] MorphismDomain thisMEMorphismDomain = (MorphismDomain) i.next();
[9] try{
[10] Collection thisMEMorphismCollection =

thisMEMorphismDomain.getAppliedMorphism();
[11] for (Iterator j = thisMEMorphismCollection.iterator(); j.hasNext();){
[12] ConceptualMapping thisMEConceptualMapping = (ConceptualMapping) j.next();
[13] mediator.Object relatedObj =

thisMEConceptualMapping.getRelating().getAssociatedObject();
[14] if (relatedObj != null){
[15] lista.add(relatedObj.getName());
[16] }
[17] }
[18] }catch (Exception e){
[19] System.out.println("getElementsConceptualMappedWith");
[20] }
[21] }
[22] }
[23] return lista;
[24] }

createModelElements (ListElements; InformationModel; type): void

[25] public MyFactory createModelElements(MyFactory mf, List ListmodElement, InformationModel
[26] infoModInd, int indType) throws OntologyLoadException {
[27]
[28] MorphismDomain myMF = null;
[29] OWLIndividual prod_name = null;
[30] RefOntoHandler refOntologyHandler = new RefOntoHandler();
[31]
[32] for (Iterator i = ListmodElement.iterator(); i.hasNext();) {
[33] String me = i.next().toString();
[34]
[35] //check if is a ref element, and if so create with its name
[36] try{
[37] prod_name = refOntologyHandler.getRefInd(me);
[38] }catch(Exception e){
[39] }
[40]
[41] if (prod_name != null){
[42] mf.createModelElement(me);
[43] }else{
[44] mf.createModelElement(me);
[45] }
[46] myMF = mf.createMorphismDomain(me+"_root");
[47] if (infoModInd.getName().contains(refInfoModel)){
[48] String domainRefPath = refOntologyHandler.getPath(me);
[49] myMF.setDomainPath(domainRefPath);

76

[50] }else{
[51] myMF.setDomainPath(domainPath+infoModInd.getPrefixedName());
[52] }
[53] }
[54] saveFile(mf);
[55] owlMediatorModel = readOntology("file:///C:/", fileName);
[56] OWLIndividual IM = owlMediatorModel.getOWLIndividual(infoModInd.getName());
[57] OWLIndividual ind = null;
[58]
[59] for (Iterator j = ListmodElement.iterator(); j.hasNext();) {
[60] String name = j.next().toString();
[61] ind = owlMediatorModel.getOWLIndividual(name);
[62] prod_name = null;
[63] try{
[64] prod_name = refOntologyHandler.getRefInd(name);
[65] }catch(Exception e){
[66] }
[67] ind.setPropertyValue(nameProperty, ind.getPrefixedName());
[68] if (indType == 1){
[69] ind.setPropertyValue(elementTypeProperty, elementTypeInstance);
[70] }else if (indType == 2){
[71] ind.setPropertyValue(elementTypeProperty, elementTypeMediator);
[72] }else if (indType == 0){
[73] ind.setPropertyValue(elementTypeProperty, elementTypeClass);
[74] }else if (indType == 3){
[75] ind.setPropertyValue(elementTypeProperty, elementTypeProp);
[76] }
[77]
[78] ind.setPropertyValue(hasPrimaryTypeProperty, false);
[79] ind.setPropertyValue(naturalLanguageProperty, naturalLanguage);
[80] ind.setPropertyValue(versionProperty, version);
[81] ind.setPropertyValue(isRootProperty, true);
[82] ind.setPropertyValue(belongsToProperty, IM);
[83] OWLIndividual morph = owlMediatorModel.getOWLIndividual(myMF.getName());
[84] ind.setPropertyValue(hasMorphismDomainProperty, morph);
[85]
[86] }
[87] owlMediatorModel.save(new File("C:/"+fileName).toURI(), FileUtils.langXMLAbbrev,

errors);
[88]
[89] mf = new MyFactory(owlMediatorModel);
[90] return mf;
[91] }

createMorphismOfConceptualType (ElementA; ElementB): void

[92] public void createMorphismOfConceptualType (MyFactory mf, String ElementA, String
ElementB){

[93]
[94] ModelElement IndA = mf.getModelElement(ElementA);
[95] Collection colA = IndA.getHasMorphismDomain();
[96] String CMname = ElementA +"_"+ ElementB;
[97] ConceptualMapping myCM = mf.getConceptualMapping(CMname);
[98] if (myCM == null){
[99] myCM = mf.createConceptualMapping(CMname);
[100] }
[101] if (colA.isEmpty() == false){
[102] MorphismDomain myMFA = (MorphismDomain) colA.iterator().next();
[103] myCM.setRelated(myMFA);

77

[104] }else{
[105] MorphismDomain myMFA = mf.createMorphismDomain(ElementA+"_root");
[106] myCM.setRelated(myMFA);
[107] }
[108]
[109] ModelElement IndB = mf.getModelElement(ElementB);
[110] Collection colB = IndB.getHasMorphismDomain();
[111] if (colB.isEmpty() == false){
[112] MorphismDomain myMFB = (MorphismDomain) colB.iterator().next();
[113] myCM.setRelating(myMFB);
[114] }else{
[115] MorphismDomain myMFB = mf.createMorphismDomain(ElementB+"_root");
[116] myCM.setRelating(myMFB);
[117] }
[118]
[119] myCM.setKMType("Conceptual");
[120] myCM.setAuthor(owner);
[121] myCM.setMorphismType(morphismType);
[122] myCM.setWeight(weightInic);
[123]
[124] saveFile(mf);
[125] }

increaseConceptualMappingWeight (ElementA; ElementB): void

[1] public void increaseConceptualMappingWeight (MyFactory mf, String ElementA, String
ElementB){

[2] //comparar o information model
[3]
[4] ConceptualMapping name = getConceptualMappingBetween2Elem(mf, ElementA,

ElementB);
[5]
[6] float weight;
[7] float f = (float) 1.0;
[8] if (name != null){
[9] try{
[10] weight = name.getWeight();
[11] float weight_value = weight + f;
[12] mf.getConceptualMapping(name.getName()).setWeight(weight_value);
[13] } catch (Exception e) {
[14] mf.getConceptualMapping(name.getName()).setWeight(f);
[15] }
[16] }
[17] saveFile(mf);
[18] }

isModelElementCreated(ElementA): boolean

[1] public boolean isModelElementCreated(MyFactory mf, String ElementA){
[2]
[3] boolean var_boolean = false;
[4] try{
[5] ModelElement results = mf.getModelElement(ElementA);
[6] if (results != null){
[7] var_boolean = true;
[8] }
[9] }catch (Exception e) {
[10] var_boolean = false;

78

[11] }
[12]
[13] return var_boolean;
[14] }

prepareAllClassesAndIndividuals(OntologyRefURL):void

[1] public void prepareAllClassesAndIndividuals(String uri) throws OntologyLoadException{
[2]
[3] init();
[4] startAllClasses(owlModel);
[5] startAllInstances(owlModel);
[6] saveFile();
[7]
[8] }

increaseWeightOfClass(ClassName):void

[1] public void increaseWeightOfClass(OWLNamedClass cls){
[2] OWLNamedClass thisClass = owlModel.getOWLNamedClass(cls.getPrefixedName());
[3] Collection commentCol = thisClass.getComments();
[4] for (Iterator ic = commentCol.iterator(); ic.hasNext();){
[5] String Weight = ic.next().toString();
[6] String comment_str = Weight;
[7] if (Weight.contains("<weight>") == true){
[8] Weight = Weight.replace("<weight>", "");
[9] Weight = Weight.replace("</weight>", "");
[10] int weight_value = Integer.parseInt(Weight);
[11] thisClass.removeComment(comment_str);
[12] weight_value = weight_value + 1;
[13] String final_weight = "<weight>"+weight_value+"</weight>";
[14] thisClass.addComment(final_weight);
[15] }
[16] }
[17] saveFile();
[18] }

increaseWeightOfIndividual(ClassName):void

[1] public void increaseWeightOfIndividual(OWLIndividual ind){
[2] OWLIndividual thisInd = owlModel.getOWLIndividual(ind.getPrefixedName());
[3] Collection commentCol = thisInd.getComments();
[4] for (Iterator ic = commentCol.iterator(); ic.hasNext();){
[5] String Weight = ic.next().toString();
[6] String comment_str = Weight;
[7] if (Weight.contains("<weight>") == true){
[8] Weight = Weight.replace("<weight>", "");
[9] Weight = Weight.replace("</weight>", "");
[10] int weight_value = Integer.parseInt(Weight);
[11] thisInd.removeComment(comment_str);
[12] weight_value = weight_value + 1;
[13] String final_weight = "<weight>"+weight_value+"</weight>";
[14] thisInd.addComment(final_weight);
[15] }
[16] }
[17] saveFile();
[18] }

79

getPropertyDomains(NomedaPropriedade):ListofClasses

[1] public List getPropertyDomains(String prop){
[2]
[3] boolean is_objprop = true;
[4] boolean is_datatype = true;
[5] List lst = new ArrayList();
[6] Collection col = null;
[7] Collection rangeCol = null;
[8]
[9] try{
[10] OWLDatatypeProperty DTprop = owlModel.getOWLDatatypeProperty(prop);
[11] col = DTprop.getUnionDomain();
[12] }
[13] catch (Exception e){
[14] is_datatype = false;}
[15] try{
[16] OWLObjectProperty ObjPro = owlModel.getOWLObjectProperty(prop);
[17] col = ObjPro.getUnionDomain();
[18] rangeCol = ObjPro.getRanges(false);
[19] }
[20] catch (Exception e){
[21] is_objprop = false; }
[22]
[23] if (is_datatype == true){
[24] for (Iterator i = col.iterator(); i.hasNext();){
[25] OWLNamedClass cls = (OWLNamedClass) i.next();
[26] lst.add(cls.getName()); //getPrefixedName());
[27] }
[28] }
[29]
[30] if (is_objprop == true){
[31] for (Iterator i = col.iterator(); i.hasNext();){
[32] OWLNamedClass cls = (OWLNamedClass) i.next();
[33] lst.add(cls.getName());//.getPrefixedName());
[34] }
[35] for (Iterator j = rangeCol.iterator(); j.hasNext();){
[36] OWLNamedClass cls = (OWLNamedClass) j.next();
[37] lst.add(cls.getName());//.getPrefixedName());
[38] }
[39] }
[40] return lst;
[41] }

hasClassElement(name):boolean

[1] public Boolean hasClassElement(String cls_name){
[2]
[3] boolean is_class = false;
[4] OWLNamedClass cls = null;
[5] try{
[6] cls = owlModel.getOWLNamedClass(cls_name);
[7] }catch (Exception e){}
[8]
[9] if (cls != null){
[10] is_class = true;
[11] }
[12]
[13] return is_class;

80

[14] }

hasInstanceElement(name):boolean

[1] public Boolean hasInstanceElement(String inst_name){
[2] boolean is_ind = false;
[3] OWLIndividual ind = null;
[4] String str = null;
[5]
[6] try{
[7] ind = owlModel.getOWLIndividual(inst_name);
[8] }catch (Exception e){}
[9]
[10] if (ind == null){
[11] try{
[12] //let see if is there any individual with this name
[13] str = getIndividualName(inst_name);
[14] ind = owlModel.getOWLIndividual(str);
[15] }catch (Exception e){}
[16] }
[17]
[18] if (ind != null){
[19] is_ind = true;
[20] }
[21]
[22] return is_ind;
[23] }
[24]

hasPropertyElement(name):boolean

[1] public Boolean hasPropertyElement(String prop_name){
[2] boolean is_objprop = false;
[3] boolean is_datatype = false;
[4] boolean is_prop = false;
[5]
[6] try{
[7] OWLDatatypeProperty DTprop = owlModel.getOWLDatatypeProperty(prop_name);
[8] if (DTprop != null){
[9] is_datatype = true;
[10] }
[11] }
[12] catch (Exception e){
[13] is_datatype = false;}
[14] try{
[15] OWLObjectProperty ObjPro = owlModel.getOWLObjectProperty(prop_name);
[16] if (ObjPro != null) {
[17] is_objprop = true;
[18] }
[19] }
[20] catch (Exception e){
[21] is_objprop = false; }
[22]
[23] if (is_objprop == true || is_datatype == true){
[24] is_prop = true;
[25] }
[26] return is_prop;
[27] }

81

cleanChildClassesFromRootClassesList(List of RootClasses):List of RootCLasses

[1] public List cleanChildClassesFromRootClassesList(List rootClasses){
[2] List lst = new ArrayList(rootClasses);
[3] List removedLst = new ArrayList();
[4] List bothLists = new ArrayList();
[5] Collections.copy(lst, rootClasses);
[6] List lstCompleted = lstWithAllSubclasses;
[7]
[8] for (Iterator i = rootClasses.iterator(); i.hasNext();){
[9] OWLNamedClass cls = (OWLNamedClass) i.next();
[10] if (cls != null){
[11] Collection col = getSubClass(cls);
[12] getCollectionClass(col);
[13]
[14] for (Iterator j = lstCompleted.iterator(); j.hasNext();){
[15] OWLNamedClass subcls = (OWLNamedClass) j.next();
[16] for (Iterator k = rootClasses.iterator(); k.hasNext();){
[17] OWLNamedClass clsMatch = (OWLNamedClass) k.next();
[18] if (clsMatch.toString().contentEquals(subcls.toString())){
[19] lst.remove(subcls);
[20] removedLst.add(subcls);
[21] }
[22] }
[23] }
[24] lstCompleted.clear();
[25] }
[26] }
[27] bothLists.add(lst);
[28] bothLists.add(removedLst);
[29] return bothLists;
[30] }

getProductsRelatedWith(input:String; maxResults:int): List of (ProductName; ProductDescription; ProductURL)

[1] public List getProductsRelatedWith(String str, int maxResults) throws OntologyLoadException{
[2] List productsList = new ArrayList();
[3] KnowledgeHandler kh = new KnowledgeHandler();
[4]
[5] kh.ModelElementList = new ArrayList();
[6] kh.owlIndividualList = new ArrayList();
[7] kh.owlNamedClassList = new ArrayList();
[8]
[9] if (str.isEmpty() == false){
[10] //Here all data is prepared
[11] kh.introductionOfSearchKnowledge(str);
[12]
[13] //After data is prepared, the graph is buid and it return maxResults products
[14] productsList = kh.getSearchResults(maxResults);
[15]
[16] return productsList;
[17] }else{
[18] productsList.add("No search keyword");
[19] return productsList;
[20] }
[21] }

showUsagePatterns(void):List of (List of Possible New Products)(List of Possible New Ref Concepts)

[1] public List showUsagePatterns() throws OntologyLoadException{

82

[2] List possibleNewProd = new ArrayList();
[3] List possibleNewRefConcepts = new ArrayList();
[4] List finalList = new ArrayList();
[5]
[6] RefOntoHandler refOntoHandler = new RefOntoHandler();
[7] RefOntoHandler.init();
[8] OntologyHandler ontologyHandler = new OntologyHandler();
[9] MyFactory myF = ontologyHandler.initOWL();
[10] Collection indCol = myF.getAllModelElementInstances();
[11]
[12] //new prod
[13] for (Iterator i = indCol.iterator(); i.hasNext();){
[14] try{
[15] ModelElement me1 = (ModelElement) i.next();
[16] boolean me1IsClass = refOntoHandler.hasClassElement(me1.getName());
[17] boolean me1IsInstance = refOntoHandler.hasInstanceElement(me1.getName());
[18] boolean me1IsProp = refOntoHandler.hasPropertyElement(me1.getName());
[19] if ((me1IsClass == false) && (me1IsInstance == false) && (me1IsProp == false)){
[20] Collection hasMorphCol = me1.getHasMorphismDomain();
[21] for (Iterator j = hasMorphCol.iterator(); j.hasNext();){
[22] MorphismDomain md1 = (MorphismDomain) j.next();
[23] Collection morphCol = md1.getAppliedMorphism();
[24] for (Iterator k = morphCol.iterator(); k.hasNext();){
[25] ConceptualMapping cm1 = (ConceptualMapping) k.next();
[26] float conceptualWeight = cm1.getWeight();
[27] if (conceptualWeight > Integer.parseInt(Form.oLearch.newObj.getText())){
[28] mediator.Object me2 = cm1.getRelating().getAssociatedObject();
[29]
[30] boolean isClass = refOntoHandler.hasClassElement(me2.getName());
[31] boolean isInstance = refOntoHandler.hasInstanceElement(me2.getName());
[32] boolean isProp = refOntoHandler.hasPropertyElement(me2.getName());
[33]
[34] if ((isClass == false) && (isInstance == false) && (isProp == false)){
[35] if (me1.getName().contentEquals(me2.getName())== true){
[36] possibleNewProd.add(me1.getName()+ " has weight "+conceptualWeight+" so maybe it's a new product.");
[37] }else{
[38] //if already exists, do not add again. If exists but with high weight, then replace
[39] List auxPatterns = new ArrayList();
[40] auxPatterns = possibleNewProd;
[41] boolean addedNewProd = false;
[42] for(Iterator x = auxPatterns.iterator(); x.hasNext();){
[43] String member = (String) x.next();
[44] if (member.contains(me2.getName() + " and "+ me1.getName()) == true){
[45] addedNewProd = true;
[46] String aux = member;
[47] aux = aux.replace(me2.getName() + " and "+ me1.getName()+ " searched ", "");
[48] aux = aux.replace(" times.", "");
[49] float weight = new Float (aux);
[50] if (weight < conceptualWeight){
[51] possibleNewProd.remove(member);
[52] possibleNewProd.add(me1.getName() + " and "+ me2.getName()+ " has weight "+conceptualWeight+"

so maybe it's a new product.");
[53] }
[54] }
[55] }
[56] if (addedNewProd == false){
[57] possibleNewProd.add(me1.getName() + " and "+ me2.getName()+ " has weight "+conceptualWeight+" so

maybe it's a new product.");
[58] }
[59] }

83

[60] }
[61] }
[62] }
[63] }
[64] }
[65] }catch (Exception e){
[66] System.out.println("line 152 OntoLearn");}
[67] }
[68]
[69] //ref concepts
[70] for (Iterator i = indCol.iterator(); i.hasNext();){
[71] try{
[72] ModelElement me1 = (ModelElement) i.next();
[73] Collection hasMorphCol = me1.getHasMorphismDomain();
[74] for (Iterator j = hasMorphCol.iterator(); j.hasNext();){
[75] MorphismDomain md1 = (MorphismDomain) j.next();
[76] Collection morphCol = md1.getAppliedMorphism();
[77]
[78] //get concept weight of own relation
[79] float compareWeight = 0;
[80] for (Iterator z = morphCol.iterator(); z.hasNext();){
[81] ConceptualMapping cm = (ConceptualMapping) z.next();
[82] mediator.Object obj2 = cm.getRelating().getAssociatedObject();
[83] if ((me1.getName().contentEquals(obj2.getName()) == true)){
[84] compareWeight = cm.getWeight();
[85]
[86]
[87] //get relating weight
[88] for (Iterator k = morphCol.iterator(); k.hasNext();){
[89] ConceptualMapping cm1 = (ConceptualMapping) k.next();
[90] if (compareWeight > Integer.parseInt(Form.oLearch.newConcept.getText())){
[91] mediator.Object me2 = cm1.getRelating().getAssociatedObject();
[92]
[93] boolean isClass = refOntoHandler.hasClassElement(me2.getName());
[94] boolean isInstance = refOntoHandler.hasInstanceElement(me2.getName());
[95] boolean isProp = refOntoHandler.hasPropertyElement(me2.getName());
[96] int weight_value = 0;
[97] if (isClass == true){
[98] OWLNamedClass refCls = refOntoHandler.getRefClass(me2.getName());
[99] weight_value = refOntoHandler.getClassesWeight(refCls);
[100] if ((compareWeight > weight_value) && (me1.getName().contentEquals(me2.getName()) ==

false)){
[101] possibleNewRefConcepts.add(me1.getName() + " is relating "+ me2.getName()+" and was

searched "+compareWeight+" times.");
[102] }
[103]
[104] }
[105] if (isInstance == true){
[106] OWLIndividual refInd = refOntoHandler.getRefInd(me2.getName());
[107] weight_value = refOntoHandler.getInstancesWeight(refInd);
[108] if ((compareWeight > weight_value) && (me1.getName().contentEquals(me2.getName()) ==

false)){
[109] possibleNewRefConcepts.add(me1.getName() + " is relating "+ me2.getName()+" and was

searched "+compareWeight+" times.");
[110] }
[111] }
[112] if(isProp == true){
[113] }
[114]
[115] }

84

[116] }
[117] }
[118] }
[119] }
[120] }catch (Exception e){
[121] System.out.println("line 235 OntoLearn");}
[122] }
[123]
[124] finalList.add(possibleNewProd);
[125] finalList.add(possibleNewRefConcepts);
[126]
[127] return finalList;
[128]
[129] }
[130] }

introductionOfSearchKnowledge(input:String):void

[1] public void introductionOfSearchKnowledge(String str) throws OntologyLoadException{
[2]
[3] List wordslst = new ArrayList();
[4] List listOfConcepts = new ArrayList();
[5] Util util = new Util();
[6] boolean isClass = false;
[7] boolean isPropertyElement = false;
[8] boolean isInstanceElement = false;
[9]
[10] RefOntoHandler refOntoHandler = new RefOntoHandler();
[11] RefOntoHandler.init();
[12] OntologyHandler ontologyHandler = new OntologyHandler();
[13] mediator.MyFactory myF = ontologyHandler.initOWL();
[14]
[15] //from String to list
[16] wordslst = util.getIntroducedWords(str);
[17] //search for ref elements related with mediator elements.
[18] //Data will be inserted in a table with related obj, object and weight.
[19] for (Iterator medElem = wordslst.iterator(); medElem.hasNext();){
[20] String compareString = (String) medElem.next();
[21] searchOverallMediatorForRefClassesMappedWith(compareString);
[22] }
[23] listOfConcepts = util.inicConceptsToSearch(wordslst);
[24]
[25] //sequence diagram 1
[26] for (Iterator i = wordslst.iterator(); i.hasNext();){
[27] String concept = (String) i.next();
[28] isClass = refOntoHandler.hasClassElement(concept);
[29] if (isClass == true){
[30] OWLNamedClass cls = refOntoHandler.getRefClass(concept);
[31] refOntoHandler.increaseWeightOfClass(cls);
[32] addRootClasses(cls);
[33] }else if (isClass == false){
[34] isPropertyElement = refOntoHandler.hasPropertyElement(concept);
[35] if (isPropertyElement == true){
[36] List propDomainList = refOntoHandler.getPropertyDomains(concept);
[37]
[38] for (Iterator j = propDomainList.iterator(); j.hasNext();){
[39] String propName = (String) j.next();
[40] try{
[41] OWLNamedClass clsName = refOntoHandler.getRefClass(propName);

85

[42] refOntoHandler.increaseWeightOfClass(clsName);
[43] addRootClasses(clsName);
[44] }catch (Exception e){
[45] }
[46] }
[47] }
[48] }
[49] isInstanceElement = refOntoHandler.hasInstanceElement(concept);
[50] if (isInstanceElement == true){
[51] OWLIndividual indName = refOntoHandler.getRefInd(concept);
[52] refOntoHandler.increaseWeightOfIndividual(indName);
[53] addRootInstances(indName);
[54] }
[55] boolean isModelElement = ontologyHandler.isModelElementCreated(myF, concept);
[56] if (isModelElement == true){
[57] ModelElement me = myF.getModelElement(concept);
[58] addRootClassesFromMediator(me);
[59] }else if ((isModelElement == false) && ((wordslst.size() > 1) || ((isModelElement == false) &&(isInstanceElement ==

false) && (isPropertyElement == false) && (isClass == false)))){
[60] List auxList = new ArrayList();
[61] auxList.add(concept);
[62] InformationModel myIM;
[63] if ((isInstanceElement == false) && (isClass == false) && (isPropertyElement == false)){
[64] myIM = myF.getInformationModel(infoModel);
[65] }else{
[66] myIM = myF.getInformationModel(refOntology);
[67] }
[68] if (isInstanceElement == true){
[69] myF = ontologyHandler.createModelElements(myF, auxList, myIM, 1);
[70] }
[71] else if(isClass == true)
[72] {
[73] myF = ontologyHandler.createModelElements(myF, auxList, myIM, 0);
[74] }
[75] else if(isPropertyElement == true)
[76] {
[77] myF = ontologyHandler.createModelElements(myF, auxList, myIM, 3);
[78] }
[79] else
[80] {
[81] myF = ontologyHandler.createModelElements(myF, auxList, myIM, 2);
[82] }
[83] }
[84] }
[85] //sequence diagram 2
[86] boolean conceptAconceptBincreased = false;
[87] boolean conceptBconceptAincreased = false;
[88] String concept1;
[89] String concept2;
[90] boolean oneElement = false;
[91] for (Iterator i = listOfConcepts.iterator(); i.hasNext();){
[92] List firstConcepts = (List) i.next();
[93] if (firstConcepts.size() == 1){
[94] concept1 = firstConcepts.get(0).toString();
[95] firstConcepts.add(concept1);
[96] oneElement = true;
[97] }
[98]
[99] for (Iterator j = firstConcepts.iterator(); j.hasNext();){
[100] concept1 = (String) j.next();

86

[101] concept2 = (String) j.next();
[102] // concept1 relating concept2
[103] List listOfElementsMappedWith = ontologyHandler.getElementsConceptualMappedWith(myF,

concept1);
[104] for (Iterator k = listOfElementsMappedWith.iterator(); k.hasNext();){
[105] String relatingObj = k.next().toString();
[106] //if related obj is concept2...
[107] if (relatingObj.contentEquals(concept2)){
[108] ontologyHandler.increaseConceptualMappingWeight(myF, concept1, concept2);
[109] conceptAconceptBincreased = true;
[110] }
[111] }
[112]
[113] // concept2 relating concept 1
[114] List listOfElementsMappedWith2 =

ontologyHandler.getElementsConceptualMappedWith(myF,concept2);
[115] for (Iterator k = listOfElementsMappedWith2.iterator(); k.hasNext();){
[116] String relatingObj = k.next().toString();
[117] //if related obj is concept1 and cocnept1 is not equal concept2...
[118] if ((relatingObj.contentEquals(concept1) == true) && (concept1.contentEquals(concept2)== false)){
[119] ontologyHandler.increaseConceptualMappingWeight(myF, concept2, concept1);
[120] conceptBconceptAincreased = true;
[121] }
[122] }
[123]
[124] //if conceptAconceptBincreased = false, so these concepts may not have relation
[125] if (conceptAconceptBincreased == false){
[126] //confirmar concept1 e concept2 sao ModelElements
[127] ModelElement concept1ME = myF.getModelElement(concept1);
[128] ModelElement concept2ME = myF.getModelElement(concept2);
[129] if (((concept1ME != null) || (concept2ME != null))){
[130] if ((oneElement == true) && (wordslst.size() <= 1) && ((isInstanceElement == true) || (isClass ==

true))){
[131] //vem um elemento da ref sozinho, nao deve criar relaçao entre ele proprio.
[132] }else{
[133] ontologyHandler.createMorphismOfConceptualType(myF, concept1, concept2);
[134] }}else if ((concept1ME == null) && (oneElement == false)){
[135] List aList = new ArrayList();
[136] aList.add(concept1);
[137] InformationModel myIM = myF.getInformationModel(refOntology);
[138] boolean isModelElement = ontologyHandler.isModelElementCreated(myF, concept1);
[139] isClass = refOntoHandler.hasClassElement(concept1);
[140] isPropertyElement = refOntoHandler.hasPropertyElement(concept1);
[141] if (isModelElement == true){
[142] myF = ontologyHandler.createModelElements(myF, aList, myIM, 1);
[143] }
[144] else if(isClass == true)
[145] {
[146] myF = ontologyHandler.createModelElements(myF, aList, myIM, 0);
[147] }
[148] else if(isPropertyElement == true)
[149] {
[150] myF = ontologyHandler.createModelElements(myF, aList, myIM, 3);
[151] }
[152] else
[153] {
[154] myF = ontologyHandler.createModelElements(myF, aList, myIM, 2);
[155] }
[156] //else if concept2 is not mediator element and has search word
[157] }else if ((concept2ME == null) && (oneElement == false)){

87

[158] List aList = new ArrayList();
[159] aList.add(concept2);
[160] InformationModel myIM = myF.getInformationModel(refOntology);
[161] boolean isModelElement = ontologyHandler.isModelElementCreated(myF, concept2);
[162] isClass = refOntoHandler.hasClassElement(concept2);
[163] if (isModelElement == true){
[164] myF = ontologyHandler.createModelElements(myF, aList, myIM, 1);
[165] }
[166] else if(isClass == true)
[167] {
[168] myF = ontologyHandler.createModelElements(myF, aList, myIM, 0);
[169] }
[170] else
[171] {
[172] myF = ontologyHandler.createModelElements(myF, aList, myIM, 2);
[173] }
[174] }
[175]
[176] if (conceptBconceptAincreased == false){
[177] // check that we're handling with 2 different ModelElements
[178] if (concept1.contentEquals(concept2) == false){
[179] ontologyHandler.createMorphismOfConceptualType(myF, concept2, concept1);
[180] }
[181] }
[182] }
[183] }
[184] }
[185] ontologyHandler.saveFile(myF);
[186] }

getSearchResults(maxResults): listOfProducts

[1] public List getSearchResults(int maxResults) throws OntologyLoadException{
[2]
[3] List auxProductsList = new ArrayList();
[4] finalProductsList = searchForProducts(owlNamedClassList, owlIndividualList, medRefClsPlusWeightList,

medRefIndPlusWeightList, maxResults);
[5]
[6] if (maxResults > finalProductsList.size()){
[7] maxResults = finalProductsList.size();
[8] }
[9]
[10] for (int i = 0; i < maxResults;){
[11] Products prod = (Products) finalProductsList.get(i);
[12] auxProductsList.add(prod);
[13] i = i + 1;
[14] }
[15] return auxProductsList;
[16] }

searchOverallMediatorForRefClassesMappedWith(Concept):OwnGraphUntilRefClass

[1] public void searchOverallMediatorForRefClassesMappedWith(String concept) throws OntologyLoadException{
[2]
[3] RefOntoHandler ontoHandlerRef = new RefOntoHandler();
[4] OntologyHandler ontologyHandler = new OntologyHandler();
[5] RefClassInMediator mediatorRefClass = new RefClassInMediator();
[6] RefIndividualInMediator mediatorRefInd = new RefIndividualInMediator();

88

[7] MediatorRefClassPlusWeight mediatorRefClsPlusWeight = new MediatorRefClassPlusWeight();
[8] MediatorRefIndPlusWeight mediatorRefIndPlusWeight = new MediatorRefIndPlusWeight();
[9] MyFactory mf;
[10] String compareConcept;
[11]
[12] mf = ontologyHandler.initOWL();
[13] List mappedWithList = new ArrayList();
[14] List clsList = new ArrayList();
[15] List indList = new ArrayList();
[16] mappedWithList = ontologyHandler.getElementsConceptualMappedWith(mf, concept);
[17] for (Iterator i = mappedWithList.iterator(); i.hasNext();){
[18] compareConcept = i.next().toString();
[19]
[20] boolean isClassElem = ontoHandlerRef.hasClassElement(compareConcept);
[21] if (isClassElem == true){
[22] OWLNamedClass cls = ontoHandlerRef.getRefClass(compareConcept);
[23] mediatorRefClass.setMediatorRefClass(cls.getName());
[24] //get relation weight
[25] ConceptualMapping cm = ontologyHandler.getConceptualMappingBetween2Elem(mf, concept,

compareConcept);
[26] String auxWeight = Float.toString(cm.getWeight());
[27] auxWeight = auxWeight.replace(".0", "");
[28] int clsWeight = Integer.parseInt(auxWeight);
[29] //ontoHandlerRef.getClassesWeight(cls);
[30] mediatorRefClass.setMediatorRefClassWeight(clsWeight);
[31] clsList.add(mediatorRefClass);
[32] }
[33] boolean isInstElem = ontoHandlerRef.hasInstanceElement(compareConcept);
[34] if (isInstElem == true){
[35] OWLIndividual ind = ontoHandlerRef.getRefInd(compareConcept);
[36] mediatorRefInd.setMediatorRefInd(ind.getName());
[37] //get relation weight
[38] ConceptualMapping cm = ontologyHandler.getConceptualMappingBetween2Elem(mf, concept,

compareConcept);
[39] String auxWeight = Float.toString(cm.getWeight());
[40] auxWeight = auxWeight.replace(".0", "");
[41] int indWeight = Integer.parseInt(auxWeight);
[42] //int indWeight = ontoHandlerRef.getInstancesWeight(ind);
[43] mediatorRefInd.setMediatorRefIndWeight(indWeight);
[44] indList.add(mediatorRefInd);
[45] }
[46]
[47] //add objects to list
[48] if ((clsList.size() > 0) && (isClassElem == true)){
[49] ConceptualMapping thisConceptMap = ontologyHandler.getConceptualMappingBetween2Elem(mf, concept,

concept);//.getMediatorWeight(thisModelElement);
[50] float clsWeight = (float) 1.0;
[51] if (thisConceptMap != null){
[52] clsWeight = thisConceptMap.getWeight();
[53] }
[54] String auxWeight = Float.toString(clsWeight);
[55] auxWeight = auxWeight.replace(".0", "");
[56] int weight = Integer.parseInt(auxWeight);
[57] mediatorRefClsPlusWeight.setMediatorRefClassWeight(weight);
[58] mediatorRefClsPlusWeight.setRefClassInMediator(clsList);
[59] mediatorRefClsPlusWeight.setMediatorRefCls(concept);
[60] }
[61]
[62] if ((indList.size() > 0) && (isInstElem == true)){
[63] ConceptualMapping thisConceptMap = ontologyHandler.getConceptualMappingBetween2Elem(mf, concept,

89

concept);
[64] float indWeight = (float) 1.0;
[65] if (thisConceptMap != null){
[66] indWeight = thisConceptMap.getWeight();
[67] }
[68] String auxWeight = Float.toString(indWeight);
[69] auxWeight = auxWeight.replace(".0", "");
[70] int weight = Integer.parseInt(auxWeight);
[71] mediatorRefIndPlusWeight.setMediatorRefIndWeight(weight);
[72] mediatorRefIndPlusWeight.setRefIndInMediator(indList);
[73] mediatorRefIndPlusWeight.setMediatorRefInd(concept);
[74] }
[75]
[76] }
[77]
[78] medRefClsPlusWeightList.add(mediatorRefClsPlusWeight);
[79] medRefIndPlusWeightList.add(mediatorRefIndPlusWeight);
[80] }

 searchForProducts(List of (Classes, Individuals, ReferenceCls, MediatorCls, maxResults): List of Products

[81] public List searchForProducts(List namedClassList, List individualList, List modelRefCls, List
modelRefInd, int maxResults) throws OntologyLoadException{

[82] final java.util.ArrayList path = new java.util.ArrayList();
[83] List productsList = new ArrayList();
[84] List labelsList = new ArrayList();
[85] List graphList = new ArrayList();
[86] List ownGraphList = new ArrayList();
[87] //list with only root classes
[88] List rootClasses = new ArrayList();
[89]
[90] int source = 0;
[91] Util util = new Util();
[92] RefOntoHandler refOntoHandler = new RefOntoHandler();
[93] RefOntoHandler.init();
[94] rootClasses =

refOntoHandler.cleanChildClassesFromRootClassesList(namedClassList);
[95] List rootCls = (List) rootClasses.get(0);
[96] List removedCls = (List) rootClasses.get(1);
[97]
[98] ownGraphList = util.createOwnGraph(rootCls, individualList, removedCls,

modelRefCls, modelRefInd);
[99]
[100] //get graph list
[101] List auxGraph = new ArrayList();
[102] auxGraph.add(ownGraphList.get(1));
[103] for (Iterator j = auxGraph.iterator(); j.hasNext();){
[104] List lst_1 = (List) j.next();
[105] for (Iterator i = lst_1.iterator(); i.hasNext();){
[106] graphList.add(i.next());
[107] }
[108] }
[109]
[110] //Transform weight in distance
[111] List transformedWeight = util.transformWeightInDistance(graphList);
[112] ownGraphList.remove(1);
[113] ownGraphList.add(1, transformedWeight);
[114]

90

[115] //get label list
[116] List auxLabel = new ArrayList();
[117] auxLabel.add(ownGraphList.get(0));
[118] for (Iterator j = auxLabel.iterator(); j.hasNext();){
[119] List lst_1 = (List) j.next();
[120] for (Iterator i = lst_1.iterator(); i.hasNext();){
[121] labelsList.add(i.next());
[122] }
[123] }
[124]
[125] while (maxResults > 0){
[126] int intSize = labelsList.size();
[127] WeightedGraph wg = new WeightedGraph(intSize);
[128] wg = util.createDijkstraGraph(labelsList, graphList);
[129] boolean noMoreOut = checkOut(graphList);
[130] if ((graphList.isEmpty() == true) || (noMoreOut == true)){
[131] break;
[132] }
[133] final int [] pred = Dijkstra.dijkstra (wg, source);
[134] for (int n=0; n<2; n++) {
[135] Dijkstra.printPath (wg, pred, 0, n);
[136] }
[137] productsList = Dijkstra.globalList;
[138] int prodListSize = productsList.size();
[139] try{
[140] OWLIndividual product = null;
[141] System.out.println(productsList.get(prodListSize - 1).toString());
[142] if (productsList.get(prodListSize - 1).toString().contentEquals("_out")){
[143] product = refOntoHandler.getRefInd(productsList.get(prodListSize -

2).toString());
[144] }else{
[145]
[146] }
[147] //Set product
[148] OWLDatatypeProperty descProperty =

refOntoHandler.owlModel.getOWLDatatypeProperty(description);
[149] OWLDatatypeProperty URLProperty =

refOntoHandler.owlModel.getOWLDatatypeProperty(URL);
[150] OWLDatatypeProperty nameProperty =

refOntoHandler.owlModel.getOWLDatatypeProperty(prod_name);
[151] Products products = new

util.Products(product.getPropertyValue(nameProperty).toString(),
product.getPropertyValue(descProperty).toString(),
product.getPropertyValue(URLProperty).toString(), product.getName());

[152] //Add to final list only if it's not yet added
[153] String prodName = products.getProductRefURL();
[154] boolean addProd = true;
[155] for (Iterator cp = path.iterator(); cp.hasNext();){
[156] Products addedProdName = (Products) cp.next();
[157] if (addedProdName.getProductRefURL().contentEquals(prodName)){
[158] addProd = false;
[159] }
[160] }
[161] if (addProd == true){
[162] path.add(products);
[163] } else{
[164] maxResults = maxResults + 1;
[165] }
[166] }catch (Exception e) {
[167] System.out.println("erro: "+ e.getMessage().toString());

91

[168] }
[169] //remove product from graph
[170] for(Iterator lab = labelsList.iterator(); lab.hasNext();){
[171] Label prodLabel = (Label) lab.next();
[172] if (prodLabel.getName().contentEquals(productsList.get(prodListSize -

2).toString())){
[173] int prodID = prodLabel.getID();
[174] List auxGraphList = new ArrayList(graphList);
[175] Collections.copy(auxGraphList, graphList);
[176] for (Iterator gra = auxGraphList.iterator(); gra.hasNext();){
[177] Graph prodGraph = (Graph) gra.next();
[178] if((prodGraph.getDestiny() == 1) && (prodGraph.getOrigin() ==

prodID)){
[179] graphList.remove(prodGraph);
[180] }
[181] }
[182] }
[183] }
[184]
[185]
[186] maxResults = maxResults - 1;
[187] }
[188] //finalProductsList = path;
[189] return path;
[190] }
[191]

}

