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ABSTRACT 

The carbon key-properties (structure and surface chemistry) for microcystin-LR (MC-LR) 

adsorption onto activated carbon were investigated. Waters with an inorganic background 

matrix approaching that of the soft natural water (2.5 mM ionic strength) were used. Also, 

model waters with controlled ionic make-up and NOM surrogate with similar size of MC-LR 

(tannic acid - TA) with MC-LR extracts were tested with activated carbon NORIT 0.8 SUPRA. 

For this AC, two particle sizes, 125-180 µm and 63-90 µm were tested. The surface chemistry 

of NOR 125-180 µm was modified by thermal treatment and was also preloaded with TA. The 

integrated analysis of carbon’s chemical and textural characterization and of kinetic and 

isotherm modeling using non-linear models allowed concluding that: i) the heating method is an 

efficient and simple process for reducing a relatively hydrophilic activated carbon and thereby 

enhancing its MC-LR adsorption capacity; ii) from a combination of the modification of the 

carbon surface chemistry and the carbon structure, it is demonstrates that both properties play an 

important role in the adsorption process, although  carbon surface chemistry seems to be more 

important than its porous structure – MC-LR adsorption correlated with meso and macroporous 

volume and particularly well with carbon hydrophobicity (inverse of oxygen content); iii) the 

smaller the particle size, the more important is external mass transfer over intraparticle 

diffusion; iv) similar sized NOM strongly competes with MC-LR for the same AC sites; v) 

direct competition governs the simultaneous MC-LR and NOM adsorption; vi) the preloading 

phenomena reduces significantly the performance of activated carbon adsorption. 

 

Key-words: Activated carbon adsorption, drinking water treatment, microcystin-LR, natural 

organic matter competition, activated carbon structure, activated carbon surface chemistry 
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RESUMO 

As propriedades-chave (estrutura e química de superfície) para a adsorção em carvão activado 

de microcistina-LR (MC-LR) foram investigadas. Foram usadas águas com uma matriz 

inorgânica que se aproxima da água natural macia (2.5 mM de força iónica). Além disso, águas 

modelo em condições controladas de pH e força iónica, mas com NOM com tamanho similar ao 

de MC-LR (ácido tânico) e com extractos de MC-LR foram testadas com o carvão activado 

NORIT 0.8 SUPRA. Para este carvão, duas granulometrias foram usadas: 125-180 µm e 63-90 

µm. A química de superfície do carvão NOR 125-180 µm foi modificada por tratamento 

térmico e foi também carregado (preloaded) com ácido tânico. A análise integrada da 

caracterização química e textural do carvão, assim como a modelação de cinéticas e isotérmicas 

de equilíbrio utilizando modelos não-lineares permitiu concluir que: i) o método de tratamento 

térmico é um processo simples e eficiente para modificar a superfície do carvão tornando-o mais 

básico e reforçando assim a adsorção de MC-LR; ii) a partir da combinação da modificação 

química da superfície do carvão e da sua estrutura, demonstrou-se que ambas as propriedades 

têm um papel importante na adsorção, embora a química de superfície do carvão pareça ser mais 

importante do que a sua estrutura porosa – a adsorção de MC-LR correlacionada com o volume 

de meso e macroporos é particularmente bem relacionada com a hidrofobicidade do carvão 

(inverso do teor de oxigénio); iii) quanto mais pequena a granulometria, mais importante se 

torna a transferência de massa externa ao longo da difusão dentro da partícula; iv) NOM de 

tamanho similar ao da MC-LR compete fortemente com MC-LR pelos mesmos locais de 

adsorção; v) a competição directa governa a adsorção simultânea de MC-LR e NOM; vi) o 

fenómeno de preloading reduz significativamente o desempenho da adsorção em carvão 

activado.  

 

Palavras-chave: Adsorção, Carvão activado, Tratamento de água, Microcistina-LR, 

Competição com matéria orgânica natural, Estrutura do carvão, Química de superfície  
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1. INTRODUCTION 

1.1. BACKGROUND 

 

Eutrophication of freshwater resources has been studied worldwide and its consequences are of 

concern especially in waters used for recreation or human consumption (Vasconcelos, 2006). 

The occurrence of cyanobacteria blooms in surface water used for water catchment for human 

consumption is now the most important problem associated to the growing attendance 

conditions od eutrophication in surface waters (Menaia and Rosa, 2006). Cyanobacterial blooms 

seasonally challenge drinking water treatment due to the massive input of cells and also the 

release of algogenic organic matter (AOM) into the water, causing poor settling, filter clogging, 

tastes and odors, disinfectant consumption and production of disinfection by – products 

(Campinas, 2009). But the greatest concern is the ability of several cyanobacteria strains to 

produce and release (during “cell death” – lysis) potent toxins as secondary metabolites, 

cyanotoxins, including cyclic peptide hepatotoxins (e.g. Microcystins). 

 

Microcystins-LR are the most frequently occurring cyanotoxins and may cause both severe and 

chronic effects (liver damage and tumor promoting). Furthermore, microcystins (MCs) are the 

only ones for which the World Health Organization (WHO) derived a drinking water 

provisional guideline value (1 μg/L for daily exposure to the microcystin-LR (MC-LR)), 

adopted as a national standard for drinking water quality (DL 306/2007). Additionally, these 

toxins where found in water reservoirs in Portugal (Vasconcelos, 2006; Osswald, 2007) which 

increases the importance of developing knowledge related to their removal (and to promote its 

dissemination) at national level. 

 

For cyanotoxins, the removal in treatment processes is difficult by the fact that the toxins may 

be contained inside the intact cell (intracellular), and may be dissolved (extracellular). The 

microcystins are formed inside cyanobacterial cells. Cyanobacteria lysis releases the 

microcystins into the water. Once released from the cell, the toxins, being highly soluble, will 

exist in dissolved form (Drikas et al., 2001). An optimal water treatment requires the removal of 

intact cyanobacterial cells.  

 

Conventional treatment (coagulation, flocculation, sedimentation and filtration) is considered 

ineffective (Drikas et al., 2001) for the removal of dissolved toxins, so advanced treatment 

processes must be implemented. The development of technologies that may adequately remove 
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these toxins from water is presently a major challenge and concern for the water management 

authorities and the water industry. 

 

Activated carbon has been widely used for many years as an adsorbent in the drinking water and 

wastewater treatment, in the food, beverage, pharmaceutical and chemical industries and is the 

adsorbent of choice in most commercial adsorption separation processes due to its performance 

relative to its cost (Pendleton et al., 2001). It is also proven to be particularly effective on the 

removal of cyanotoxins from water, either in powdered (PAC) or granular (GAC) form 

(Lambert et al., 1996; Pendleton et al., 2001). The use of PAC has been mostly limited to a 

seasonal period when episodes of high levels of cyanotoxins occur. On the other hand, GAC is 

generally applied in water treatment plants when a permanent and safe barrier is required, not 

just for cyanotoxins (and other micropollutants) control, but also for the removal of the 

cyanobacterial cells (Hrudey et al., 1999). Also, several studies have been published showing 

the removal potential of MC-LR by activated carbon treatment (Falconer et al., 1989; Donati et 

al., 1994; Lambert et al., 1996; Drikas et al., 2001; Campinas, 2009; Costa, 2010). 

 

However, AC performance depends on the type of water, carbon properties and raw water 

characteristics (inorganic and organic background matrices). Regarding the carbon properties 

most affecting the adsorption of microcystins, a broad consensus has not been obtained. Some 

authors’ show that the removal efficiency depends upon the physical properties of activated 

carbon and the water background matrix, while surface chemistry characteristics do not affect 

the adsorption of microcystin-LR (Donati et al., 1994). However Huang and Cheng (2007) 

showed that both physical and chemical properties simultaneously affect the adsorption process. 

This thesis search for answers about these properties, looking for “key properties” of AC that 

lead to a better adsorption rate and capacity. 

 

All drinking water treatment processes involve competitive adsorption between the adsorbate of 

interest and many other dissolved species, e.g. humic substances and dissolved organic matter 

(Pendleton et al., 2001). Several studies have demonstrated the impact of natural organic matter 

(NOM) on the adsorption kinetics and/or adsorption capacity for micropollutants, which adsorb 

in pores that NOM cannot access. However, microcystin-LR is hydrophobic and carries a 

negative net charge at pH 5-9 (Antoniou et al., 2005). Its molar mass (994 g/mol) is close to the 

NOM fraction of intermediate molar mass, which may change the competition mechanisms and 

the overall impact of NOM. The organic constituents compete with the target toxins for the AC 

adsorption sites and the inorganic compounds alter the electrostatic interactions between the 

adsorbate and the activated carbon. The presence of NOM has a harmful effect on activated 



Carbon key-properties for microcystin adsorption in drinking water treatment: Structure or surface chemistry? 

 

3 

 

carbon adsorption because is usually present in much higher concentrations (mg/L levels) than 

toxins (µg/L levels) and compete directly for adsorption sites or by blocking pores. 

 

The focus of this thesis was on MC-LR removal by AC adsorption. The impact of several 

carbon properties was evaluated and, with the aim of being able to understand and predict the 

process efficiency in real waters, an inorganic  matrix was used and the competing mechanisms 

with NOM was studied. The NOM surrogate used for this study is tannic acid (TA). Tannic acid 

was selected as a representative of hydrophobic organics with a molecular weight of 

approximately 1700 g/mol. It contains phenolic groups and is expected to have a high 

competitive adsorption with MC-LR due to their similar molecular weight and charge 

(Campinas and Rosa, 2006).  

 

It is within this context that arises the development of this thesis, focusing on the main questions 

involving the adsorption and the properties of the activated carbon for the adsorption of MC-

LR, TA and for the competitive adsorption between MC-LR and TA. 

 

1.2. OBJECTIVES 

 

The present work attempts to contribute to the knowledge of MC-LR adsorption by AC’s by 

investigating the effects of adsorbent surface chemistry and structure as well as the water 

background matrix, making the main objective to study the key properties of activated carbons, 

trying to reveal which has more importance: the structure of AC or its surface chemistry on the 

adsorption of microcystins in drinking water treatment. Recent studies indicate that not only the 

mesoporosity of an AC is important, but also its surface chemistry (Costa, 2010). This question 

and consequently, this thesis arise with the problematic suggested by Costa, 2010.  

For this purpose, this general objective comprehends: 

 

 Modify activated carbon (NOR 0.8 SUPRA) in order to modify its surface chemistry: 

reducing the oxygen content making it more basic; 

 Studying mechanisms of competitive adsorption with natural organic matter with 

similar characteristics to those of MC-LR (tannic acid) in waters with similar 

characteristics of those of “blooms” occur, soft natural water (2.5 mM IS electrolyte: 1 

mM KCl + 1.5 mM CaCl2); 

 Tests with TA-preloaded activated carbon, as well as its textural characterization, in 

order to study the predominant effects of competition (pore blocking or direct 

competition); 
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 Non-linear modeling of kinetic and isotherm adsorption models. 

 

1.3. STRUCTURE OF THESIS 

 

The thesis is divided in six chapters: (1) Introduction; (2) Literature review; (3) Materials and 

methods; (4) Results and discussion; (5) Conclusions and future work and (6) References.  

 

The first chapter is introductory. This first chapter is also a brief presentation of the problem and 

“how to deal with the problem”, the relevance of this study and the objectives of the thesis.  

 

Chapter 2 includes a literature review to introduce the fundamentals and principles, and to 

characterize the state of the art of the main themes of this thesis. Chapter 2 presents a review 

regarding the main aspects of cyanobacteria and cyanotoxins, mainly the microcystin-LR, and a 

review of relevant legislation and guidelines for their presence in drinking water. The different 

treatment options for the removal of cyanobacteria and cyanotoxins (including MC-LR) are 

described.  In particular, the activated carbon adsorption and the methodologies for the 

evaluation of the activated carbon performance are detailed (including the activated carbon 

properties, water matrix and the competitive mechanisms).  

Chapter 3 includes the research strategy and describes the materials, methods and procedures 

used in the experiments to achieve the results presented in chapter 4, along with discussion.  

Chapter 4 is divided in four sections. The first one describes the carbons used and their 

characterization. The second section presents and discusses the kinetic and isotherm studies 

with MC-LR and different activated carbons, discussing the effects of the surface chemistry and 

structure of activated carbon, and the models applied. The subchapter 4.3 presents and discusses 

the kinetic and isotherm studies with tannic acid onto different activated carbons, discussing 

also the effects of the surface chemistry and structure of activated carbons. The competitive 

adsorption between MC-LR and TA with different activated carbons is addressed in section 4.4. 

The MC-LR adsorption onto preloaded carbon is discussed on section 4.5. An integrated 

analysis of the results is made and the performances of the different types of activated carbon in 

similar conditions are compared.  

Chapter 5 presents the main achievements of the work and suggestions for future research. 
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2. LITERATURE REVIEW 

2.1. CYANOBACTERIA 

 

Cyanobacteria, more commonly known as blue-green algae, are found worldwide in various 

aquatic environments as well as in water distribution systems (Antoniou et al., 2005). They are 

known as blue-green algae because these organisms have characteristics of both algae and 

bacteria. This is the only prokaryote group of algae and they have the distinction of being the 

oldest known fossils, more than 3500 million years old. 

Cyanobacteria occur in a wide variety of habitats and partly because of their ability to fix 

atmospheric nitrogen, act as “primary colonizers” of terrestrial habitats in which few other 

organisms can multiply. They are able to carry out photosynthesis with the production of 

oxygen and their presence in large numbers in surface waters may reduce the potability of the 

water and may pose a risk to the health of those ingesting or having skin contact with the water 

(Mara and Horan 2003). 

These bacteria are omnipresent in soil and surface waters, where, in the absence of 

eutrophication, are imperceptible to the naked eye. However, in the presence of conditions that 

promote eutrophication of water, lush blooms are formed and are predominantly composed of 

cyanobacteria. Sunlight is the energy source that cyanobacteria use to multiply, hence its 

importance for the formation of blooms (Menaia and Rosa, 2006). 

Freshwater cyanobacteria may accumulate in surface waters as “blooms” and may concentrate 

on the surface as blue-green scum (Guidelines of Canadian Drinking Water, 2002). 

The growth of cyanobacteria and the formation of blooms are influenced by a variety of 

physical, chemical and biological factors. Cyanobacteria blooms persist in water supplies when 

adequate levels of nutrients, especially phosphorus and nitrogen, are coupled with favorable 

environmental conditions: water temperatures generally between 15 and 30°C and a pH between 

6 and 9 (Lambert et al., 1994). Timing and duration of the cyanobacterial bloom season depend 

largely on the climatic conditions of the region. In temperate zones, cyanobacterial blooms are 

most prominent during the late summer and early autumn and may last for 2-4 months. In 

warmer climates, like the ones of Portugal and Spain, blooms may occur for up to 6 months or 

longer (Sivonen and Jones, 1999).  

These blooms report color, odor, and taste problems in water. More importantly, such blooms 

produce and release toxic compounds (during “cell death” - lysis) that intensely prejudice the 

quality of water bodies (Antoniou et al., 2005). Up to 50% of the recorded blooms can be 

expected to contain toxins (Carmichael, 1992). These compounds have severe and sometimes 
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irreversible effects on mammalian health. Exposure to cyanobacterial toxins can affect the 

number and diversity of wild animal populations, cause bioaccumulation of toxins in the tissues 

of fish and shellfish, and indirectly affect other organisms through the food chain. Moreover, the 

presence of cyanobacterial toxins in sources of drinking water supply has raised major concerns 

(Antoniou et al., 2005).  Microcystis species are the most common toxic bloom-forming 

cyanobacteria in Europe, with M. aeruginosa, M. viridis and M. weisenbergii (Premazzi and 

Volterra, 1993). 

 

Figure 2.1. Some countries (●) where cyanobacteria water blooms producing cyanotoxins have been documented 

(adapted from Carmichael, 2007). 
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2.2. CYANOBACTERIAL TOXINS 

2.2.1. General 

 

A toxin is a substance which has specific functional groups arranged on the molecule resulting 

in a strong physiological toxicity. When compared against other biological toxins, algal toxins 

rank more toxic than plant, fungal and somewhat less toxic than most bacterial toxins (Premazzi 

and Volterra, 1993). 

As previously stated, cyanobacterial toxins are toxins produced by cyanobacteria. They include 

neurotoxins which affect the nervous system (e.g. anatoxins), hepatotoxins (e.g. microcystins), 

dermatotoxins, which cause irritations of the skin and other organs. About 50 species of 

cyanobacteria are known to produce toxins, but not all compounds produced during 

cyanobacterial blooms are toxic to humans and animals (Antoniou et al., 2005). Cyanobacterial 

toxins can also be grouped based on structure: cyclic peptides (hepatotoxins), alkaloids 

(neurotoxins) and lipopolysaccharides (LPSs).  The hepatotoxins and neurotoxins are produced 

by cyanobacteria commonly found in surface water supplies and therefore appear to be of most 

relevance to water supplies at present (Guidelines for Canadian Drinking Water, 2002).  

Microcystins (MC) have a molecular weight of 900-1100 Da (Vesterkvist e Meriluoto, 2003). 

Structurally, they are monocyclic heptapeptides that contain two variable L-amino acids and 

two novel D-amino acids. The two novel D-amino acids in microcystins are N-methyl 

dehydroalanine (Mdha), which hydrolyses to methylamine, and a unique non-polar-linked 

amino acid 3-amino-9-methoxy-2, 6, 8-trimethyl-10-phenyldeca-4, 6-dienoic acid, also known 

as Adda. The key component for biological activity appears to be linked with the Adda side 

chain, as cleavage of the Adda side chain from the cyclic peptide renders both components non-

toxic (Dawson, 1998; Guidelines for Canadian Drinking Water, 2002). 

Microcystins are amphiphatic molecules containing some hydrophilic functions such as the 

carboxyl groups and the guanidine group in the frequently present arginine residue, and some 

hydrophobic parts such as the Adda residue (which contains two conjugated double bonds).  

Microcystin-LR, produced as a secondary metabolite by Microcystis aeruginosa and other blue-

green algal species, appears to be the most commonly occurring microcystin (Carmichael, 1992) 

and has been the focus of most researchers dealing with such problems around the world. 
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2.2.2.  Microcystin-LR 

 

Microcystins are named according to their variable L-amino acids, so microcystin-LR (MC-LR) 

contains leucine (L) and arginine (R) (Dawson, 1998). MC-LR is a hydrophobic compound with 

a molecular mass of 994 g/mol. MC-LR was found to have a half-life of three to four days in 

aquatic systems under laboratory conditions. Even so, some studies have reported persistence of 

MC-LR for up to nine days in concentrations as high as 1300-1800 µg/L before any significant 

degradation occurred (Antoniou et al., 2005). 

 

Figure 2.2. Structural formula (C49H74N10O12) of microcystin-LR (adapted from Antoniou, Cruz and Dionysiou, 

2005). 

 

Health related episodes in humans and animals caused by MC-LR contamination have been 

reported in several countries, including the United States, Australia, China, Great Britain and 

Brazil (Carmichael, 2005). After the first human fatal incident ocurred in Brazil in 1996, the 

World Health Organization (WHO) set the provisional concentration limit of MC-LR in potable 

water to 1µg/L (WHO, 2008). The guideline value is the concentration at which, over a lifetime 

of exposure, a “tolerable risk to the health of the consumer” is not exceeded (WHO, 2008). 

Although toxicological evidence is missing to support regulation of many cyanotoxin 

compounds, several countries have or are in the process of considering the establishment of 

guidelines and/or regulations for the limitation of cyanobacterial toxins in drinking water 

supplies. At least 14 countries have set standards to limit toxin concentrations in drinking water 

(Burch, 2007). Many of the countries have followed the legislation of the WHO (Table 2.1). 

The guideline value is calculated assuming a body weight, fraction of the intake allotted to 
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water consumption, and the amount of water ingested (based on 60 kg, 80%, and 2L/day, 

respectively).  

Table 2.1. Guidelines or legislation for MC-LR in drinking waters (adapted from Antoniou et al., 2005, Burch 2007 

and WHO 2008). 

COUNTRY GUIDELINE VALUE/STANDARD 

Argentina 
1.3 µg/L total Microcystins, expressed as 

toxicity equivalents of MC-LR 

Brazil 1.0 µg/L for microcystins 

Canada 1.5 µg/L cyanobacterial toxins as MC-LR 

Czech Republic 1 µg/L for MC-LR 

China 1 µg/L for MC-LR 

France 1 µg/L for MC-LR 

Italy 0.85 µg/L for total microcystins 

Japan 1 µg/L for MC-LR 

Korea 1 µg/L for MC-LR 

New Zealand 1.0 µg/L for MC-LR 

Norway 1 µg/L for MC-LR 

Poland 1 µg/L for MC-LR 

Portugal 1 µg/L for MC-LR 

South Africa 0-0.8 µg/L for MC-LR 

Spain 1 µg/L for total microcystins 

Thailand No guideline currently 

United States of America No guideline currently 

Uruguay Under review 

 

In Portugal, the Decree-Law Nº306/2007 establishes the value of 1µg/L for total (extra and 

intracellular) MC-LR in drinking water analyzed at the water treatment plant exit whenever the 

raw surface water is suspected of eutrophication.  

MC-LR exerts their toxic effect by interfering with a major cellular signal transduction 

mechanism, i.e., reversible phosphorylation. Reversible phosphorylation is like a switch that 

turns biological processes on and off. This is used to control a wide variety of cellular processes 

as diverse as muscle contraction, cell division, metabolism, and memory. MC-LR inhibits 

reversible phosphorylation by inhibiting the function of protein phosphatases and has been 

shown to significantly inhibit the catalytic subunits of only two specific types of protein 

phosphatases, protein phosphatase 1 (PP-1c) and protein phosphatase 2A, which leads to 

contraction of hepatocytes (liver cells) (Lambert et al., 1994). The cells start to separate, and the 

blood retained between them leads to local hepatocellular damage and shock (Falconer, 1996). 

Lethal doses lead to death within a few hours; however the intake of small doses leads to 

chronic disorder of the digestive system and liver. The lethal dose resulting in 50 per cent deaths 

(LD50) is in range 25-150 µg/kg body weight in mice (intra-peritoneal) (a value of 50 or 60 

µg/kg body is commonly accepted (Kuiper-Goodman and Fitzgerald, 1999). 
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Human intoxications can occur when cyanobacteria toxin enter human organism orally, by 

inhalation or through the skin. Depending on the way of entrance and the dominant species in 

the bloom, intoxications can be divided into gastrointestinal, respiratory and dermatological 

(Premazzi and Volterra, 1993). Genera Microcystis is responsible practically for gastrointestinal 

intoxications. 

MC-LR is believed to absorb into the intestinal cells and parenchymal cells via bile acid 

transporters. MC-LR may be excreted into the bile duct and excreted back into the intestine. The 

kidney removes MC-LR from blood by filtration in the glomerulus or possibly by active 

transport in the proximal tubules, as we can see in Figure 2.4 (Lambert et al., 1994).  

When MC-LR is solvated in water, the solvated volume is 2.63 nm
3
 and the solvated area is 1.8 

nm
2
. The longest molecular length in MC-LR, shown in Figure 2.3, is approximately 1.9 nm 

(Pendleton et al., 2001). MC-LR has an estimated diameter between 1.2 – 2.6 nm (Antoniou et 

al., 2005). 

 

Figure 2.3. Typical structural dimensions of microcystin-LR (adapted from Pendleton et al., 2001). 

The acid-base chemistry of MC-LR is controlled by three amino acids (Antoniou et al., 2005). 

D-methylaspartic acid and the D-glutamic acid have free carboxylic groups. The pKa for both is 

around 3.0 (2.09 and 2.19). L-arginine has two quanidino groups (basic group, pKa=12.48). 

With increasing pH, MC-LR loses two protons from the carboxylic groups, making the overall 

charge -1. This applies for most of the pH range (3 < pH < 12). At extremely basic pH, MC-LR 

loses the proton from the protonated basic group and the overall charge is -2. Thus, the overall 

charge transition (dissociation) of MC-LR in an aqueous medium can be summarized as 

(Antoniou et al., 2005): 
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The graphical representation of the fractional concentration of the species in solution and the 

overall charge is presented below (Figure 2.4). MC-LR carryies a -1 net charge at pH 6-9, which 

is the common pH range in water treatment. 

 

Figure 2.4. MC-LR species fraction and MC-LR net charge graph. 

 

 

2.3. WATER TREATMENT OPTIONS FOR CYANOTOXINS 

 

Soluble and particulate contaminant removal used in the by drinking water treatment: physical 

operations, chemical processes and biological processes (Table 2.2). 

These operations may work singularly or in combination with each other to succeed 

contaminant reduction, which could be done through the ways of removal, degradation, and/or a 

reduction or inactivation of toxicity of the target compound. For cyanotoxins, the efficiency of 

removal in treatment processes is complicated by the fact that the toxins exist in two main 

forms: contained inside the intact cell (intracellular), and dissolved (extracellular). The 

microcystins are formed inside cyanobacterial cells. Dying and lysis of cyanobacteria release 

the microcystins into the water. Once released from the cell, the toxins, being highly soluble, 

will exist in dissolved form. The removal of intact cells is an effective way to prevent high 
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microcystin concentration in the treated water. Physical removal processes would therefore 

likely be the best form of treatment, although a toxin residual will be always released to water 

and dissolved toxins may require some additional treatment (Drikas et al., 2001). 

Processes are considered with respect to their ability to remove both cyanobacterial cells and 

dissolved cyanotoxins, consequently evaluating total toxin removal capability. Physical and 

biological processes are often evaluated together. 

 

Table 2.2. Cyanotoxin removal in drinking water treatment processes. 

CHEMICAL PHYSICAL/BIOLOGICAL 

Oxidation 

Chlorine 

Chloramines 

Chlorine dioxide 

Potassium 

Permanganate 

Ozone 

Coagulation 

Sedimentation 

Flotation 

Filtration 

Rapid rate 

Slow sand 

Membrane 

Advanced oxidation Adsorption Activated carbon 

 

In addition to the form of cyanotoxin in water, the types of toxin and water matrix composition 

are important for consideration in treatment process evaluation. The chemical composition, 

structure, and molecular weight and charge vary between toxin types. Water quality parameters, 

such as pH and temperature, will impact chemical and biological reaction rates and the 

performance of physical treatment. Background contaminants, such as natural organic matter 

(NOM), may also impact the efficiency of some processes. 

Chemical processes for cyanotoxins removal mainly involve the use of oxidants to break the 

organic molecules which cause toxicity. Oxidants may also cause damage to cyanobacterial cell 

membranes, which may result in cell lysis and subsequent toxin release. Thus the application of 

chemical processes for cyanotoxin removal must therefore be approached with caution, 

especially when used during the first stages of treatment.  

Conventional water treatment processes by coagulation/flocculation/sedimentation/filtration can 

remove cyanobacterial cells, but not the dissolved toxins (Falconer et al., 1989). These 

processes have generally proven ineffective at removing microcystin toxins in drinking water 

(Himberg et al., 1989 and Lambert et al., 1994).  

Ribau Teixeira and Rosa (2006) showed no significant removal of several dissolved microcystin 

variants in air flotation experiments. Therefore, flotation may be a good choice for toxin 
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removal if the toxins are still contained within the cell, but should most likely be used in 

combination with another process (es) if dissolved toxin removal is required. 

Some treatment technologies have been developed to effectively remove the dissolved  

cyanotoxins. These technologies include oxidation and biological processes, membrane 

filtration and activated carbon adsorption. With respect to chemical removal, further studies are 

still needed for different cyanotoxins since they would respond differently to oxidation. For 

instance, permanganate, chlorine and ozone can effectively oxidize MC-LR (Arnette, 2009).  

Micro-filtration (MF) and Ultra-filtration (UF) are used for particulate (i.e. cyanobacterial cell) 

removal and nanofiltration (NF) and reverse osmosis (RO) would be applicable for dissolved 

toxin removal, based on size exclusion. Nanofiltration has proved to be effective in the removal 

of cyanotoxins and cyanobacteria cells (Ribau Teixeira and Rosa, 2006). 

Adsorption onto activated carbon (AC) is another technology that has proven to be mostly 

effective on the removal of cyanotoxins from water, although the efficiency of the removal 

depends on the type of water, carbon and type of toxin (Falconer et al., 1989 and Lambert et al., 

1996; Campinas, 2009; Costa, 2010). 

 

A summary of techniques described above can be seen in Table 2.3.  
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Table 2.3. Summary of techniques for treatment of cyanobacterial toxins (adapted from Newcombe and Nicholson, 

2004). 

Treatment 

Process 
Cyanobacteria/Toxin Treatment Efficiency 

Intact cells 

Coagulation 

Sedimentation 
Cyanobacterial cells 

 

Very effective for the removal of intracellular 

toxins  

 

Rapid filtration Cyanobacterial cells 

Very effective for the removal of intracellular 

toxins  

 

Slow sand 

filtration 
Cyanobacterial cells 

As for rapid sand filtration, with additional 

possibility of biological degradation of dissolved 

toxins 

 

Combined 

coagulation/ 

sedimentation/fi

ltration 

Cyanobacterial cells 

Extremely effective for the removal of intracellular 

toxins  

 

Membrane 

processes 
Cyanobacterial cells 

Very effective for the removal of intracellular 

toxins  

 

Dissolved Air 

Flotation (DAF) 
Cyanobacterial cells 

Very effective for the removal of intracellular 

toxins  

 

Oxidation 

processes 
Cyanobacterial cells 

Not recommended as a treatment for cyanobacterial 

cells as this process can lead to cell damage and 

lysis and consequent increase in dissolved toxin 

levels 

Dissolved Toxins 

 

ADSORPTION 
  

 

Adsorption-

powdered 

activated carbon 

(PAC) 

Microcystins 

 

Very effective. Doses required vary with water 

quality.  

 

Adsorption-

granular activated 

carbon (GAC) 

All dissolved toxins 

Very effective Depending on the type of toxin and 

the water quality 

 

Biological 

filtration 
All dissolved toxins 

 

When functioning at the optimum this process can 

be very effective for the removal of most toxins. 

However, factors affecting the removal such as 

biofilm mass and composition, acclimation periods, 

temperature and water quality cannot be easily 

controlled 
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Treatment 

Process 
Cyanobacteria/Toxin Treatment Efficiency 

Dissolved toxins 

 

OXIDATION 
  

Ozonation All dissolved toxins 

 

Ozonation is effective for all dissolved toxins 

except the saxitoxins. Doses will depend on water 

quality 

 

Chlorination All dissolved toxins 

 

 

Most microcystins and cylindrospemopsin should 

be destroyed. 

 

Chloramination All dissolved toxins 

 

Ineffective 

 

Chlorine dioxide All dissolved toxins 

 

Not effective with doses used in drinking water 

treatment 

 

Potassium 

permanganate 
All dissolved toxins 

 

Effective for microcystin, limited or no data for 

other toxins 

 

Hydrogen 

peroxide 
All dissolved toxins 

 

Not effective on its own 

 

UV radiation All dissolved toxins 

Capable of degrading microcystin-LR and 

cylindrospermopsin, but only at impractically high 

doses or in the presence of a catalyst 

 

EXCLUSION 
  

 

Membrane 

processes 

 

All dissolved toxins Depends on membrane pore size distribution 
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2.4. FUNDAMENTALS OF ADSORPTION 

2.4.1. General  

 

Adsorption is the phenomenon of accumulating substances that are in solution on a suitable 

interface. Adsorption is a mass transfer operation in that a constituent in the liquid phase is 

transferred to the solid phase. The adsorbate is the substance that is being removed from the 

liquid phase at the interface (e.g. pollutant). The adsorbent (e.g. activated carbon) is the solid, 

liquid, or gas phase onto which the adsorbate accumulates (Metcalf and Eddy, 2003).  

Adsorbates are held on the surface by various types of chemical forces such as hydrogen bonds, 

dipole-dipole interactions, and van der Walls forces. If the reaction is reversible, as it is for 

many compounds adsorbed to activated carbon, molecules continue to accumulate on the 

surface until the rate of the forward reaction (adsorption) equals the rate of the reverse reaction 

(desorption). When this condition exists, equilibrium has been reached and no further 

accumulation will occur (Snoeyink and Summers, 1999). 

When the process involves only van der Walls forces and there is no chemical change of 

adsorbed molecules, this is called physical adsorption (Figueiredo and Ribeiro, 2007). 

The adsorption is chemical when established chemical bonds may be with the surface active 

centers, leading to the formation of a chemical surface compound or a complex of adsorption 

(Figueiredo and Ribeiro, 2007).  

Adsorbents of interest in water treatment include activated carbon, ion exchange resins; 

adsorbent resins; metal oxides, hydroxides, and carbonates; activated alumina; clays; and other 

solids that are suspended in or in contact with water (Snoeyink and Summers,1999).  

Activated carbon (AC) adsorption is considered one of the best available technologies for 

advanced drinking water treatment, including for controlling dissolved microcystins. 
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2.4.2.  Production, physical and chemical characteristics of activated carbon 

 

Activated carbon can be used to adsorb specific organic molecules that cause taste and odor, 

mutagenicity, and toxicity, as well as natural organic matter (NOM) that causes color and that 

can react with chlorine to form disinfection byproducts (DPBs) (Snoeyink and Summers, 1999). 

Activated carbon is prepared by first making a char from organic materials such as almond, 

coconut, walnut hulls and other materials including woods, bone, and coal (Metcalf and Eddy, 

2003). Wood, peat, lignite, subbituminous coal, and bituminous coal are the substances 

predominately used for drinking water treatment carbons (Snoeyink and Summers, 1999).   

Both the physical and chemical manufacturing processes involve carbonization. The char is 

produced by heating the base material to a red heat (less than about 700°C) in a retort to drive 

off the hydrocarbons, but with an insufficient supply of oxygen to sustain combustion. The 

carbonization or char-producing process is essentially a pyrolysis process. The char particle is 

then activated by exposure to oxidizing gases such as steam and CO2 at high temperatures, in 

the range from 800 to 900°C. These gases develop a porous structure in the carbon (Figure 2.5), 

and thus create a large internal surface area (Metcalf and Eddy, 2003). The resulting pore sizes 

are defined as macropores (> 500Å), mesopores (20Å - 500Å) and micropores, these can be 

divided into primary micropores (< 8Å) and secondary micropores (8Å - 20Å) (IUPAC, 

2001). 

The surface properties that result are a function of both the initial material used and the 

preparation procedure, so that many variations are possible. The type of base material from 

which the activated carbon is derived may also affect the pore-size distribution and the 

regeneration characteristics (Metcalf and Eddy, 2003). 

 

Figure 2.5. Macropore, mesopore, micropore and submicropore adsorption sites on activated carbon (adapted from 

Metcalf and Eddy, 2003). 
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After activation, the carbon can be separated into, or prepared in, different particle sizes with 

different adsorption capacities. The Figure 2.6 shows the two particle size classifications: 

powdered activated carbon (PAC), which typically has a diameter of less than 0.074 nm (200 

sieve), and granular activated carbon (GAC), which has a diameter greater than 0.1 nm (~140 

sieve) (Metcalf and Eddy, 2003). The correct selection of AC (PAC or GAC) is crucial for 

determining the efficiency and cost of the process (Table 2.4). 

 

Figure 2.6. Granular (a) and powdered (b) activated carbon (adapted from Xinhui Carbon Co., 2010). 

 

The common methods for the selection of AC are the molass test, the methylene blue number, 

the phenol test, the alkylbenzene sulphonate test, the iodine number and the dechlorination 

column test (Summers and Cummings, 1992). The values of these numbers give useful 

information about the abilities of various activated carbons to adsorb different types of organics. 

However, even though these tests can give some information of the behaviour of AC, they do 

not evaluate the kinetics and the capacity to adsorb a specific micropollutant (Snoeyink and 

Summers, 1999).  

Table 2.4. Comparison of granular and powdered activated carbon (adapted from Metcalf and Eddy, 2003). 

Parameter Unit 

Type of Activated Carbon 
(a)

 

GAC PAC 

Total surface area 

(BET) 
m

2
/g 700-1300 800-1800 

Bulk density kg/m
3
 400-500 360-740 

Particle density, wetted 

in water 
(b)

 
kg/L 1.0-1.5 1.3-1.4 

Particle size range mm (µm) 0.1-2.36 (5-50) 

Effective size mm 0.6-0.9 - 

Iodine number  600-1100 800-1200 

Ash % ≤ 8 ≤ 6 

Moisture as packed % 2-8 3-10 
(a) Specific values will depend on the source material used for the production of the activated carbon 
(b) The particle density wetted in water is the mass of solid activated carbon plus the mass of water required to 

fill the internal pores per unit volume of particle (Metcalf and Eddy, 2003). 

The particle size is the main characteristic of PAC that differentiates it from GAC. The main 

advantages of using PAC are the low capital investment costs and the ability to change the PAC 
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dose as the water quality changes (Table 2.5). This advantage is especially important for 

systems that do not require an adsorbent for much of the year (Snoeyink and Summers, 1999). 

The disadvantages (Table 2.5), according to Snoeyink and Summers (1999), are the high 

operating costs if high PAC doses are required for long periods of time, the inability to 

regenerate, the low TOC removal, the increased difficulty of sludge disposal, and the difficulty 

of completely removing the PAC particles from the water. GAC therefore becomes a more 

economical choice in larger systems or where taste and odor must be controlled continuously. 

Table 2.5. Advantages (+) and disadvantages (-) of the PAC and GAC systems (Cecílio et al., 2007). 

CHARACTERISTIC PAC GAC 

Easy adaptation to existing water treatment plants + - 

Variation of dosage with the water quality + - 

Removal capacity of AC on the downstream treatment - + 

Larger volume of sludge and holding costs - + 

Lower initial costs of  investment + - 

Higher adsorption capacity and better process control - + 

Lifetime of AC (increased by biodegradation) - + 

 

The point of PAC addition in the water treatment plant can occur in the rapid mix, in the 

flocculation stepor at the filter influent, not requiring any additional investment or special 

equipment, and being possible to use at any time. This is one of the major advantages of PAC. 

The major cost is related to the amount of PAC required, as it depends, not only on the 

micropollutant concentration, but also on the characteristics of the raw water. If the removal of 

microcystins from water is considered, doses above 20 mg/L of PAC are often required (Hrudey 

et al., 1999). Moreover, since PAC is not reutilized the amount of sludge produced is very high, 

and the cost of the treatment can be very high, especially if PAC is needed on a continuous 

basis.  

 

When a micropollutant becomes a frequent and long-term problem, GAC adsorbers can be an 

efficient and a more sustainable alternative to PAC. GAC is used in columns or beds that allow 

higher adsorptive capacities to be achieved and easier process control than is possible with 

PAC, and it can be removed from the columns for reactivation when necessary (Snoeyink and 

Summers, 1999). These advantages normally tend to justify the high cost of the GAC system 

relatively to PAC. Furthermore, GAC removes both the cyanobacteria and the extracelular 

toxins (Hrudey et al., 1999). 
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Although the elemental composition of activated carbons can vary substantially, typical average 

elemental composition of activated carbon is approximately 88% C, 6-7% O, 1% S, 0.5% N, 

and 0.5% H, with the remainder being mineral matter (i.e., ash) (Edzwald, 1999).  

 

Because of its abundance and significant effects on activated carbon hydrophilicity and surface 

charge, oxygen is generally the most important heteroatom of activated carbon surface 

chemistry. Oxygen commonly occurs in the form of carboxylic acid groups (–COOH), phenolic 

hydroxyl groups (–OH), and quinone carbonyl groups (>C=O). The activated carbon acidity is 

explained primarily by the formation of carboxylic acid and phenolic hydroxyl groups. The 

heteroatoms are important in determining the acidity/basicity of the AC surfaces in aqueous 

dispersion. Oxidation of activated carbon surfaces also occurs during the exposure of activated 

carbon to common oxidants used in water treatment, such as chlorine, permanganate, and ozone 

(Edzwald, 1999). Activated carbon can acquire an acidic character when exposed to oxygen 

between 473K and 973K or to oxidants such as air, water vapor, nitric acid, a mixture of nitric 

and sulfuric acids, and hydrogen peroxide, and acquire a basic character upon high-temperature 

(> 973K) treatment (Campinas, 2009). 

 

2.4.3. Adsorption properties 

 

Both physical and chemical characteristics of activated carbon affect its performance. Important 

adsorbent characteristics that affect adsorption include surface area, pore size distribution, 

and surface chemistry (Snoeyink and Summers, 1999).  

 

The manufacturer provides typical data that usually include the BET surface area. This 

parameter is determined by measuring the adsorption isotherm for nitrogen gas molecules and 

then analyzing the data using the Brunauer-Emmett-Teller (BET) isotherm equation to 

determine the amount of nitrogen required to form a complete monolayer of nitrogen molecules 

on the carbon surface (Edzwald, 1999). 

 

As one of the most important properties which influence the adsorption process, the pore size 

distribution (PSD) determines the fraction of the total pore volume that can be accessed by an 

adsorbate of a given size (Snoeyink and Summers, 1999). This influence occurs in two ways: (i) 

the adsorption strength increases with decreasing pore size because contact points between the 

adsorbate and the adsorbent surface increase (Newcombe et al., 1997) and (ii) adsorption 

potentials between opposing pore walls begin to overlap once the micropore width is less than 

about twice the adsorbate diameter (Sing, 1995). If pores are too small, size exclusion limits the 
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adsorption of contaminants. In aqueous systems, size exclusion is observed when the pore width 

is smaller than about 1.7 times the second largest dimension of the adsorbate (Li et al., 2002). 

 

Hereupon, compounds are preferentially adsorbed in a pore of approximately its size, where 

there will be greater number of contact points and more promising adsorption energy 

(Newcombe et al., 1997) and they are size excluded if pores are too small compared to their size 

and shape. Consequently a correct pore size distribution provides not only the adsorption sites, 

but also the appropriate channels to transport, as a high volume of large transport pores (macro 

and mesopores), favors rapid diffusion to adsorption sites. 

 

The chemical surface of the AC is heterogeneous due to the presence of atoms such as oxygen, 

nitrogen, hydrogen, sulphur and phosphorus. The acidic character of an AC is related to the 

oxygen contents. Functional groups such as carboxyl, phenol, lactones, lactol and quinones have 

been described as sources of surface acidity (Boehm, 1994). Hydrophobic adsorbents (i.e. 

activated carbons with low oxygen content) exhibit larger adsorption capacities for organic 

micropollutants than hydrophilic adsorbents (i.e. activated carbons with high oxygen content) 

with similar physical characteristics (Edzwald, 1999).  

 

The carbon surface charge will change from positive to negative by increasing the pH of the 

wetting solution. This feature makes the point of zero charge (pHpzc) a very common and 

important property of activated carbons. The point of zero charge (pzc) represents a pH 

condition where the surface ionic groups are neutralized to give an effectively uncharged 

surface (Pendleton et al., 2001).  Below the pHpzc carbons will carry a net positive charge, 

whereas they will be negatively charged above this point. 

 

The electrostatic interactions between the carbon surface and the adsorbate molecules play an 

important part in the adsorption process. This means that a positive surface will attract a 

negatively charged molecule (Figure 2.7a) while a negatively charged surface will repel a 

negatively charged molecule (Figure 2.7b) (Newcombe et al., 1997). 

 

Figure 2.7. Electroestatic interactions between the carbon surface and the adsorbate molecules. 
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The mechanism and extent of adsorption have been shown to depend on: i) adsorbate structure 

(section 2.2.2);  ii) AC characteristics (above mentioned); iii) solution chemistry and presence 

of competing compounds (section 2.4.4).  

 

Both surface chemistry and pore volume distribution of AC play an important part in the 

adsorption, however, its relative importance will vary depending on the adsorbates and carbons. 

For example, for NOM, at pH 7, there is a strong evidence that electroestatic effects are 

determinant for adsorption (Newcombe and Drikas, 1997; Bjelopavlic et al., 1999). On the other 

hand, for microcystins, Pendleton et al., (2001) concluded about the major influence of the pore 

volume distribution (with a positive correlation with the volume of secondary micropores and 

mesopores) while Donati et al., (1994) showed no significant effect of the carbon surface 

chemistry. 

 

The experimental techniques used to evaluate the AC properties include: 

 Elemental analysis, employed in most studies as a quantitative and qualitative 

measurement for changes in carbon chemistry as a result of chemical modifications; 

 Surface titration, which include Boehm titration (Boehm, 1994) and mass titration, to 

determine the pHpzc (Bjelopavlic et al., 1999 and Moreno-Castilla et al., 2000); 

 Temperature-programmed desorption (TPD), for the characterization of the solid 

surfaces, namely surface oxygen groups on carbon materials decompose upon heating 

by releasing CO and CO2 at different temperatures, producing distinct peaks 

(Figueiredo and Ribeiro, 2007); 

 Infrared spectroscopy (IR), for the determination of surface groups, namely by 

Fourier Transform IR (FTIR) (Moreno-Castilla et al., 2000); 

 X-ray photoelectron spectroscopy (XPS), based on the photoelectric effect, where the 

concept of photons impinging a surface is used to describe the resulting ejection of 

electrons from that surface. It is highly surface-specific due to the short range of the 

photoelectrons that are excited from the solid. The peak areas can be used to determine 

the chemical composition of the surface (Figueiredo and Ribeiro, 2007). 
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2.4.4.  Solution chemistry 

 

Besides the characteristics of the target adsorbate (e.g. molecular size, hydrophobicity, 

functional groups) and the adsorbent (e.g. AC surface area, pore size distribution, functional 

groups) which determine the adsorbent - adsorbate interactions and the adsorbate access to the 

adsorbent pores, the characteristics of the solution (e.g. temperature, pH, ionic strength, NOM) 

also influence the adsorption. 

 

Although the greatest concern is the ability for several strains of cyanobacteria to produce 

potent toxins as secondary metabolites, the cyanotoxins, cyanobacterial blooms seasonally 

challenge drinking water treatment due to the massive input of cells and also the release of 

algogenic organic matter (AOM) into the water, causing poor settling, filter blockage, tastes 

and odors, disinfectant consumption and production of disinfection by-products. These organic 

substances include a wide range of compounds, such as oligo and polyssaccharides, proteins, 

peptides, amino acids and also traces of other organic acids (Pivokonsky et al., 2006). 

2.4.4.1. Natural Organic Matter (NOM) 

 

Natural organic matter (NOM) is present in all drinking water sources and is a complex mixture 

of compounds formed from the breakdown of plant and animal material in the environment 

(Bjelopavlic et al., 1999). Although strongly dependent on the nature of the local environment, 

NOM includes a wide range of compounds, from small, low molecular weight species (such as 

carboxylic and amino acids), to larger, high molecular weight (from 500 to 30000 Da) humic 

and fulvic acids and proteins. 

Most of the compounds present in NOM carry a negative charge, generally attributed to 

carboxylic acid and phenolic groups, meaning that the larger compounds behave as 

polyelectrolytes in aqueous solution (Newcombe and Drikas, 1997). 

The presence of NOM has been shown to impact upon all drinking water treatment processes, 

from alum coagulation (the removal of particulate and colloidal matter using aluminium 

sulphate) to chlorine disinfection. It has also a harmful effect on activated carbon adsorption as 

NOM is usually present in much higher concentrations (mg/L levels) than the target 

microcontaminants (µg/L levels) pesticides and algal toxins, and nanocontaminants (ng/L 

levels) taste and odor compounds, and competes directly for the adsorption sites or by blocking 

pores. When using activated carbon to remove microcontaminants, such as cyanotoxins, it is 

therefore essential to consider the NOM competition. (Bjelopavlic et al., 1999). Besides, NOM 

may change the surface properties of a carbon filter, resulting in reduced adsorption capacity. 
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This process is known as “carbon fouling” and is of special concern in water treatment plants 

(Newcombe and Drikas, 1997).  

 

Carbon-adsorbate interactions are mainly of hydrophobic or electrostatic nature. In case of 

electrostatic interactions, the water ionic matrix plays an important role. Ionic strength may 

reduce or enhance AC adsorption of NOM (Newcombe and Drikas, 1997) and microcystins 

(Campinas and Rosa, 2006). Whenever the electrostatic interactions between the carbon surface 

and the adsorbate are attractive and the adsorbate’s concentration on the carbon surface (surface 

concentration) is low, an ionic strength increase will lessen adsorption (Newcombe and Drikas, 

1997). Converse, if electrostatic interactions are repulsive or high concentrations occurs (which 

lead to lateral repulsion between adsorbed molecules), non-electrostatic forces govern 

adsorption and an ionic strength increase will enhance adsorption (Newcombe and Drikas, 

1997; Campinas and Rosa, 2006) due to electrostatic shielding effects. 

 

For both NOM (Newcombe and Drikas, 1997) and microcystins (Campinas and Rosa, 2006), 

such different ionic strength effects may be due to the prevailing type of adsorbate-adsorbent 

interactions (which depend upon the carbon and the adsorbent net charges and hydrophobicity), 

the cation charge (mono or divalent), and the adsorbate’s surface concentration and molecular 

size. 

 

2.4.5.  Adsorption mechanisms and models 

 

The adsorption capacity of adsorbents is one of the most important criterions to assess the 

performance of the adsorbents. The most convenient and direct way to investigate the 

adsorption capacity for an adsorbent to an adsorbate is to conduct an equilibrium isotherm study 

(Ip et al., 2010). When the amount of solute being adsorbed onto the adsorbent is equal to the 

amount being desorbed, equilibrium is achieved and the capacity of the carbon has been reached 

(Metcalf and Eddy, 2003).  

 

Adsorption, as illustrated on Figure 2.8, takes place in four (more or less defined) steps, being 

the slowest step called the rate-limiting step, which will control the rate of removal (Metcalf and 

Eddy, 2003). 
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Figure 2.8. Definition sketch for the adsorption of an organic constituent with activated carbon (adapted from 

Metcalf and Eddy, 2003). 

 

Bulk solution transport involves the movement of the material to be adsorbed through the bulk 

liquid to the boundary layer of fixed film of liquid surrounding the adsorbent, typically by 

convection and dispersion in carbon contactors. Film diffusion transport involves the transport 

by diffusion of the material through the stagnant liquid film to the entrance of the pores of the 

adsorbent. Pore transport involves the transport of the material to be adsorbed through the pores 

by a combination of molecular diffusion through the pore liquid and/or by diffusion along the 

surface of the adsorbent. Adsorption involves the attachment of the material to be adsorbed to 

the adsorbent at an available adsorption site (Snoeyink and Summers, 1999). 

These steps are influenced by a range of factors. Step (1) (bulk solution transport) is affected by 

the molecular dimensions and shape of the adsorbate, but proper mixing may minimize these 

effects. In step (2) (film diffusion transport), diffusion depends on flow rate (the higher the flow, 

the shorter the distance), and on adsorbate dimensions and shape, although it is generally 

considered to be fast under proper mixing. Step (3) (Pore transport) is affected by pore 

structure (both external and internal), and molecular dimensions and shape of the adsorbate. In 

practical situations, step (3) is most likely to be rate limiting (Newcombe and Cook, 2004). Step 

(4) (adsorption) is very rapid for physical adsorption and, in that case, one of the preceding 

diffusion steps controls the adsorption rate. When chemical adsorption occurs, step (4) may be 

slower than the diffusion steps and may therefore control the rate of compound uptake 

(Snoeyink and Summers, 1999). 

Kinetic and isotherm modeling is essential to design and optimize the water treatment. 
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2.4.5.1. Isotherm models 

 

One of the most important characteristics of an adsorbent is the quantity of adsorbate it can 

accumulate. The constant-temperature equilibrium relationship between the quantity of 

adsorbate per unit of adsorbent qe and its equilibrium solution concentration Ce is called the 

adsorption isotherm (Snoeyink and Summers, 1999). The equilibrium adsorption capacity, qe 

(e.g. µg/mg), at different adsorbate concentrations is determined by a mass balance (equation 

2.1).  

   
(     ) 

 
        [2.1] 

where C0 (µg/L) is the initial concentration, Ce (µg/L) is the equilibrium concentration in the 

liquid phase, V is the volume of liquid phase (L), and m is the mass of adsorbent (mg).  

Plotting the solid phase concentration against the liquid phase concentration graphically depicts 

the equilibrium isotherm. The theoretical adsorption capacity of a carbon for a particular 

contaminant can be determined by developing the adsorption isotherm as described below.  

The common equations for single-solute adsorption are the Freundlich and the Langmuir 

equations. The Freundlich equation is an empirical equation that is very useful because it 

accurately describes much adsorption data. This equation has the form  

      
          [2.2] 

and can be linearized as follows: 

           
 

 
         [2.3] 

The parameters qe (with units of mass adsorbate/mass adsorbent, or mole adsorbate/mass 

adsorbent) and Ce (with units of mass/volume, or moles/volume) are the equilibrium surface and 

solution concentrations, respectively. The terms K and 1/n are constants for a given system; 1/n 

is dimensionless, and the units of K are determined by the units of qe and Ce. 

 

The parameter K in the Freundlich equation is related primarily to the capacity of the adsorbent 

for the adsorbate, and 1/n is a function of the strength of adsorption. For fixed values of Ce and 

1/n, the larger the value of K, the larger the capacity qe. For fixed values of K and Ce, the 

smaller the value of 1/n, the stronger is the adsorption bond. As 1/n becomes very small, the 

capacity tends to be independent of Ce, and the isotherm plot approaches the horizontal level; 

the value of qe is then essentially constant, and the isotherm is termed irreversible. If the value 

of 1/n is large, the adsorption bond is weak, and the value of qe changes markedly with small 

changes in Ce (Snoeyink and Summers, 1999). 
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The Freundlich equation cannot be applied to all values of Ce, however. As Ce increases, for 

example, qe increases (in accordance with Equation 2.2) only until the adsorbent approaches 

saturation. At saturation, qe is constant, independent of further increases in Ce, and the 

Freundlich equation no longer applies. Also, no assurance exists that adsorption data will 

conform to the Freundlich equation over all concentrations below saturation, so care must be 

exercised in extending the equation to concentration ranges that have not been tested (Snoeyink 

and Summers, 1999). 

 

The Langmuir equation, is as follows 

   
       

     
      [2.4] 

whose linear form is 

  

  
 

 

     
 

  

    
    [2.5] 

 

where b (volume/mass adsorbate) and qmax (mass adsorbate/mass adsorbent) are the Langmuir 

constants. The constant qmax corresponds to the surface concentration at monolayer coverage and 

represents the maximum value of qe that can be achieved as Ce is increased. The constant b is 

related to the energy of adsorption and increases as the strength of the adsorption bond 

increases. The Langmuir equation often does not describe adsorption data as precisely as the 

Freundlich equation. 

2.4.5.2. Kinetic models 

 

In order to investigate the mechanism of adsorption and potential rate controlling steps such as 

chemical reaction, diffusion control and mass transport processes, kinetic models have been 

used to test experimental data (Ip et al., 2010). Some kinetic models are commonly employed, 

namely the pseudo first-order kinetic model, the pseudo second-order kinetic model, the 

intraparticle diffusion model and the homogeneous surface diffusion model (HSDM).  

 

Both the pseudo first-order and pseudo second-order models assume that the difference 

between the surface concentration at equilibrium and the average surface concentration is the 

driving force for adsorption. They generally represent well experimental kinetic data where the 

adsorbate interactions are expected to be negligible. The diffusional mass transport models, in 

particular, the intraparticle diffusion model, are important in processes where ion exchange 

and ionic bonding are not as prevalent as in chemisorption processes. The intraparticle mass 
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transport model accounts for the adsorption mechanism in many well stirred adsorption systems 

(Yang and Al-Duri, 2005). 

 

Recently, the linear forms of the pseudo-first order and the pseudo-second order equations were 

widely used due to the simplicity in estimation. When using the linear form, experimental 

adsorption kinetics should be linearized for the least-squares regression to estimate the model 

parameters. It has been reported that transformation of non-linear equations to linear forms 

implicity alter their error structure in the measurement of model parameters. As a result, one 

may obtain different kinetic parameters when using different forms of model equations for a 

given adsorption phenomenon (Junxiong and Wang, 2009). 

 

There are, however, few studies comparing the linear and non-linear forms of pseudo-first order 

and pseudo-second order models estimating the kinetic parameters  for the adsorption of MC-

LR on activated carbon. Junxiong et al.,(2009) detailed a comparative analysis between the 

linear and non-linear method in determining the kinetic parameters. This study shows that the 

best fitting non-linear forms of pseudo-first order and pseudo-second order kinetic models were 

superior to the linear forms. Subramanyam and Das (2009) also concluded that it is always 

better to find the isotherm coefficients by non-linear method, as far as practicable. In case of 

linearized models application, at least, the results must be accepted as approximate, not exact.  

 

Consequently, in this thesis the non-linear forms of pseudo-first order and pseudo-second order 

kinetic models will be used. 

 

Lagergreen (1898) proposed a rate equation for the sorption of a solute from a liquid solution 

based on the adsorption capacity. The Lagergreen equation is the most widely used rate 

equation in liquid phase sorption and this kinetic model is expressed as: 

   

  
   (     )    [2.6] 

Integrating the above equation for the boundary conditions t = 0 to t = t and qt = qt gives: 

 

   (     )                [2.7] 

Where qe (μg/mg) is the surface concentration at equilibrium, qt (μg/mg) is the average surface 

concentration at time t. The pseudo-first order rate constant k1 (h
-1

) can be determined by 

plotting ln (qe - qt) against t (linear form of the model).  
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However, as what is measured experimentally is the concentration that is in water, it seems to 

be more correct to analyze the kinetics in terms of concentration of liquid phase. For that 

purpose, equation 2.1 may be substituted in equation 2.6: 

 

  

  
  

   

 
(     )     [

 

 
   (    )]  [2.8] 

 

Ho and McKay (1999) developed a second-order equation based on adsorption capacity. This 

kinetic model can be written as: 

   

  
    (     )

       [2.9] 

Integrating the above equation for the boundary conditions t = 0 to t = t and qt = 0 to qt = qt 

gives: 

 

     
 

 

  
                      [2.10] 

Where k2 (mg/(μg.h) is the pseudo-second order rate constant of sorption. A linear form of this 

equation was shown as: 

 

  
 

 

    
  

 

  
      [2.11] 

The applications of this model are widely used in fitting the kinetic data for various systems (Ip 

et al., 2010). The pseudo-second-order equation is in agreement with chemisorption being the 

rate controlling step (Badmus et al.,2007).  

 

In order to concentration of liquid phase we obtain: 

  

  
 
    (     )

 

 
 
    (   (    )

 

 
) 

 
    [2.12]  

 

For using this methodology, a fixed qe must be known. This qe must be the one that best defines 

the equilibrium isotherm. Since the equilibrium equations are non-linear and are complex, it is 

not possible to calculate qe analytically. It has therefore to be calculated numerically. It is 

necessary to solve the following system of equations: 

{
   

       

     

      
   

 

      [2.13] 

 

Table 2.6 presents all linear and non-linear forms of pseudo-first order and pseudo-second order 

equations. 
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Table 2.6. Linear and non-linear forms of pseudo-first order and pseudo-second order equations. 

Kinetic model Linear equation Non-linear equations 

Pseudo-first order   (     )    (  )      

     (   
    ) 

   
  

   (     ) 

  

  
  

   
 
(   

 

 
(    )) 

Pseudo-second order 
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Weber and Morris presented the intraparticle diffusion equation as follows: 

 

      
        [2.14] 

where kp (µg/(mg.h
1/2

)) is the intraparticle diffusion rate constant and qt (µg/mg) is the amount 

adsorbed at time t (min). Equation 2.14 can be represented in a plot of qt vs. t
1/2

, and a straight 

line passing through the origin should indicate that the adsorption process follows the 

intraparticle diffusion model. The slope of the straight line is kp, the rate constant. 

If this plot is linear but does not pass through the origin (equation 2.15), the external mass 

transfer may not be neglected and the constant C is proportional to the boundary layer thickness, 

the larger the intercept the greater the contribution of the surface sorption to the rate limiting 

step. 

      
         [2.15] 

 

Such plots may present a number of linear portions implying that two or more steps occur. The 

first sharper portion is the external surface adsorption stage, indicating the boundary layer 

effect, while the second linear portion is defined as the intraparticle diffusion or pore diffusion. 

The third portion is the final equilibrium stage (Choy and Porter, 2004). The slope of the second 

line has been defined as the intraparticle diffusion parameter kp (µg/(mg.h)). If the intra-particle 

diffusion is the rate limiting step of adsorption, the line will pass through the origin, otherwise, 

external mass transfer resistance may not be neglected. 
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The kinetic data could be additionally analyzed using the kinetics expressions derived by Boyd, 

Adamson and Myers (Reichenberg, 1953). 

  
 

  
   

 

  
 ∑

 

  
    

     
        [2.16] 

where B (1/s, if t is in s) is given by 

  
     

  
      [2.17] 

and Di (cm
2
/s) is the effective diffusion coefficient and r (cm) is the particle radius, assuming 

spherical particles. 

 

According to Reichenberg (1953), for values of F < 0.85, equation 2.16 can be simplified to: 

                             (          )
 

    [2.18] 

If the Bt versus t plot is a straight line passing through the origin, the intraparticle transport is 

the rate-limiting step. If the plot does not pass through the origin, external mass transport is rate-

limiting (Kumar et al., 2005). 

 

These kinetic models were applied to a high number of compounds. With respect to cyanotoxins 

Huang and Cheng (2007) and Costa (2010) applied the kinetic intraparticle diffusion model to 

the adsorption of MC-LR onto AC, and the results indicated that pore diffusion might not be the 

only rate-controlling step in the removal of MC-LR. 

 

Along with the previous models, the homogeneous surface diffusion model (HSDM) is often 

used. In this model, porous diffusion is neglected, so that internal mass transfer is only due to 

surface diffusion. It predicts the diffusion of a molecule from the external surface of the 

adsorbent particle through the pore surface, to the adsorption site. The other three mass transfer 

steps taking place during adsorption, transfer from bulk liquid to surface film surrounding the 

particle, transfer through this surface film, and the adsorption step, are not considered rate-

limiting in this model. The AC particles are considered to be spherical and of homogeneous 

structure, and Fick’s first law of diffusion is applied for the calculation of the adsorbent surface 

concentration as a function of the radial position within the particle. The change in bulk liquid 

phase concentration with time is then calculated using a mathematical model, appropriate for the 

configuration of the system (Newcombe et al., 2003). 

Although with some limitations, the HSDM model has been used to predict the dosages of PAC 

to use in full-scale systems, including the removal of microcystins (Newcombe et al., 2003). 
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2.4.6.  Competitive adsorption 

 

Background water NOM strongly affects the adsorption of other organic microcontaminants, 

specifically through competition mechanisms. The greatest competition is expected to be 

between compounds of similar molecular size (Jain and Snoeyink ,1973; Costa, 2010).  

NOM competition was found for trichloroethylene (TCE), atrazine, 2-methylsoborneol (MIB) 

and MC-LR (Donati et al., 1994; Lambert et al., 1996). 

 

The Langmuir and Freundlich equations are often used to determine the AC adsorption capacity 

in single-solute solutions, namely organic compounds at very low concentrations. 

However, AC performance for microcontaminant removal is greatly affected by NOM 

competitive adsorption. This competition reduces the adsorption sites and the adsorption 

capacity for the target compounds with direct site competition and pore blockage considered 

the most likely competing mechanisms.  

 

Direct competition is responsible for a reduction in the adsorption capacity for the target 

compound (Snoeyink and Summers, 1999) and occurs when i) the competing compounds are 

able to access the same sites (when the target and the competing compounds have similar size), 

or ii) the target compound adsorbs in a larger pore (with lower adsorption energy) and the larger 

competing compound (with higher adsorption energy) is able to displace it (Newcombe et al., 

2002).  

 

Sometimes, competing molecules may not adsorb on the same sites as the target compound, 

because pores are too small, but are capable of constricting or blocking pores and disturb the 

target compound transport to final adsorption sites, reducing its rate of adsorption (Snoeyink 

and Summers, 1999). The NOM fraction larger than the target compound may reduce/block the 

pores entrance. 

 

Several authors concluded that an increase of AC pore size distribution could reduce, and even 

avoid pore blockage by NOM (Donati et al., 1994; Newcombe et al., 1997; Li et al., 2002). 

Other studies have showed that the smaller NOM compounds may also participate in pore 

constriction/blockage (Newcomb et al., 2002). As suggested by Kilduff et al. (1998), these two 

mechanisms become indistinguishable as the competing and target compounds become closer in 

size. 
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The subsequent reduction of the carbon capacity for the target contaminant is reflected by 

reduced Langmuir (qmax) and Freundlich (K) parameters. The comparison of the 1/n values in 

single-solute and in competition conditions provides insight on the leading competition 

mechanism (Pelekani and Snoeyink, 1999). If 1/n does not vary (i.e. there is no change in site 

heterogeneity) target compound is adsorbed on the same porous range and therefore its 

adsorption capacity decreases proportionally to the number of pores blocked/constricted by the 

larger competing NOM fraction. On the other hand, if 1/n increases the adsorption is taking 

place in a wider range of pore sizes and direct site competition between the target compound 

and the NOM fraction of similar size is most probably the dominant mechanism (Pelekani and 

Snoeyink, 1999). In most cases these models may not be applicable.  

 

The application of kinetic models is used for single-solute data. However, for practical 

purposes, it is interesting to apply these models to natural waters in order to find variation in the 

kinetic parameters due to the competition mechanisms. Direct competition for sites should have 

no effect on adsorption kinetics (diffusion rates) if competing molecules have approximately the 

same size, but pore constriction/blockage should significantly change adsorption diffusivity if 

the competitive molecules have different sizes. To elucidate the competitive mechanism an 

integrated approach with kinetic and isotherm models should be undertaken.  

 

Furthermore, during use, NOM preloads AC, which significantly inhibits microcontaminant 

adsorption by blocking the pores’ access and or by adsorbing onto the sites to be used by the 

microcontaminants, in both cases reducing the number of available adsorption sites (Pelekani 

and Snoeyink, 1999; Newcombe et al., 2002). 
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2.5. ACTIVATED CARBON APPLICATION FOR MICROCYSTIN-LR CONTROL 

 

The equilibrium between the solution phase and carbon-adsorbed MC-LR is described below 

(Pendleton et al., 2001): 

 

      (        )            (        )     

 

Published studies on MC-LR adsorption onto activated carbon show that the removal efficiency 

depends upon the type of activated carbon and the water background matrix (Donati et al., 

1994). 

 

Table 2.7. Maximum capacity of some AC for removing MC-LR from ultrapure water. 

AC type C0 (µg/L) 
Maximum capacity, qe 

(µg/mg) 
Literature 

Coconut-based 2500 20-40 (Donati et al., 1994) 

Wood-based 2500 220-280 (Donati et al., 1994) 

Wood-based 300000 177±12 (Pendleton et al., 2001) 

Extruded Peat 116 6.04 (Costa, 2010) 

 

The wood-based carbons tested by Donati et al., (1994) (Table 2.7) seemed to be more effective 

for the removal of MC-LR than the coal or the coconut-based carbons. The same authors 

indicate the carbon mesopore (2–50 nm) volume to be responsible for the MC-LR adsorption. 

Newcombe and Nicholson (2004) obtained a linear relationship between the pore volume of AC 

and the MC-LR adsorption, finding poor influence of the surface chemistry of the carbons.  

Between the numerous types of AC investigated, Falconer et al., (1989) and Costa (2010) found 

the peat-based NORIT 0.8 SUPRA carbon very efficient for the removal of MC-LR. 

Consequently, NORIT 0.8 SUPRA was the carbon selected for the present study.  

PAC addition is a common option used in drinking water treatment due to the simplicity of 

operation and efficiency (as discussed in section 2.4.2). PAC and GAC efficiency depends in 

both cases on the AC and the target contaminant, as well as on water background matrix, 

namely, NOM content, pH and ionic make-up.  

The literature reports limited lifetime of the GAC for the removal of microcystins, as for other 

microcontaminants. However, this parameter can be increased by biodegradation, since in 

practice microorganisms colonize the filters (Newcombe and Nicholson, 2004). The 

biologically active carbon filters (BAC) are promising for the removal of cyanotoxins (Mesquita 

et al., 2006; Mesquita, 2011). 
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The first consideration in the design of any activated carbon system is the carbon selection. 

Selection depends on the ability of a given carbon to remove the contaminants of concern and to 

meet other system requirements related to pressure drop, carbon transport, and reactivation. A 

number of granular activated carbons are commercially available, and the most appropriate type 

for a given application is usually determined by laboratory and pilot testing based on isotherms 

(Clark and Lykins, 1989). 

For MC-LR adsorption it is important to take into consideration first that MC-LR is a relatively 

large molecule (section 2.2; Figure 2.3) and second that it is a complex aggregate of amino acids 

rendering hydrophobic character to its aqueous solution properties (Pendleton et al., 2001). 

Consequently, the correct selection of an AC for MC-LR removal from an aqueous solution, 

prior to any adsorption measurements, requires an appreciation of these two properties 

combined with a detailed knowledge of the adsorbent’s physical and surface chemical 

properties. 

Four types of commercial activated carbons were considered for selection based on literature: 

Filtrasorb 400 (from Calgon Corporation), Filtrasorb 200 (from Calgon Corporation), Norit 

Row 0.8 Supra (from NORIT) and Norit GAC 1240 (from NORIT). 

Henceforth, these coals will be called: F200, F400, NOR 0.8 and NOR 1240. The properties of 

the screened ACs that were found in literature are summarized in Table 2.8 and Table 2.9. 

Table 2.8. Properties of the studied AC based on literature (Rivera-Utrilla and Sánchez-Polo, 2002; Sánchez-Polo et 

al., 2006; Lyubchik et al., 2008; Costa 2010; Sze e McKay, 2010). 

 F400 F200 NOR 0.8 NOR 1240 

Material Bituminous coal Bituminous coal Extruded-peat Bituminous coal 

SBET (m
2
/g) 825 714 900 770 

Vmicro (cm
3
/g) 0.387 0.32 0.38 0.39 

Vmeso (cm
3
/g) 0.104 0.14 0.25 0.25 

Vtotal (cm
3
/g) 0.491 0.48 0.66 0.4 

Smicro (m
2
/g) 768 631 747 729 

Smeso (m
2
/g) 57 83 153 41 

pHpzc 7.91 7.1 9.5 6.92 

 

NOR 0.8 is the activated carbon selected for the present study. As discussed previously in 

section 2.5, this carbon was selected due to its efficiency for MC-LR removal (Falconer et al., 

1989; Donati et al., 1994; Lambert et al., 1996; Costa, 2010). 
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Table 2.9. Elemental analysis (wt %) of the NOR 0.8 (Costa, 2010). 

N (%) C (%) H (%) S (%) O (%) Ash (%) 

0.5 87.2 0.4 0.5 11.5 6.0 

 

According to the manufacturer (Table 2.10), NOR 0.8 is an extruded carbon, suitable for a wide 

range of applications in the food, chemical and bulk pharmaceutical industries. Its structure 

makes it suitable for the removal of compounds that give color and smell to water, organic 

microcontaminants and other dissolved organic compounds and for the removal of chlorine 

and ozone (NORIT, 2007). 

Table 2.10. Product specifications given by manufacturer (NORIT, 2007). 

Product specifications for NORIT 0.8 SUPRA 

Iodine Number (mg/g) 1100 

Particle size (average) (µm) 600 

Methylene blue adsorption (g/100g) 24 

Surface area, BET (m
2
/g) 1300 

Apparent density (g/mL) 0.40 

Ash (%) 7 
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3. MATERIALS AND METHODS 

3.1. RESEARCH STRATEGY 

 

In order to achieve the central objective of this thesis (defined in section 1.2), the adsorption of 

MC-LR onto different types of activated carbon was studied and interpreted. The research 

strategy (Figure 3.1) developed for the study of MC-LR adsorption, TA adsorption and their 

competitive adsorption onto different types of activated carbon includes: 

 Carbon selection (based on literature review); 

 

 Treatment of the studied activated carbon including: 

- Carbon preparation: Grinding (two different particle sizes: 125-180 µm and 63-90 

µm with the aim of studying the adsorption kinetics), sieving and washing the 

selected activated carbon; 

- Carbon modification: modification of the surface chemistry making it more basic 

(decreasing oxygen content); 

- Carbon preloading with tannic acid, a NOM surrogate with similar characteristics 

(similar size, charge and hydrophobicity), i.e. a strong competitor with MC-LR. 

 

 Chemical (elemental analysis, ash content, surface charge by carbon titration) and 

textural (porous structure and distribution) characterization of the studied carbons 

(virgin: two particle sizes, modified and after TA-preloading); 

 

 Batch adsorption tests – kinetic and isotherm experiments and respective evaluation 

with kinetic and isotherm models, to study the influence of the structure and surface 

chemistry of activated carbon on the adsorption of microcystins, and on its competitive 

adsorption in the presence of NOM, in controlled conditions of temperature, pH and 

ionic strength (soft natural water: 2.5 mM IS electrolyte – 1 mM IS KCl + 1.5 mM 

CaCl2). 

 

 Non-linear models for kinetic and isotherm adsorption modeling were used  due to its 

better fit and lower associated errors. 
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Figure 3.1. Strategy of the thesis. 
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3.2. ACTIVATED CARBON 

3.2.1. Carbon preparation 

 

NOR 0.8 was used in this study in four forms: two particle sizes: G1 (125–180 µm) and G2 

(63–90 µm); modified G1 (125–180 µm): F; preloaded G1 (125–180 µm): PL. 

NOR 0.8 was obtained from suppliers in extruded form with dimensions bigger than 

those intended. To obtain the AC in the form of granules with the size to be used in 

the experiments (125-180 µm and 63-90 µm), it was subjected to prior preparation which 

consists of grinding, sieving, washing and drying the activated carbon. 

NOR 0.8 was crushed in a ceramic Ball Mill (The Pascall Enginerering Co, Ltd) for 10 min at 

30 rpm, and sequentially sifted through 180 µm and 125 µm sieves (Retsh, ASTM E-11), 

until the desired particle size. A fraction of NOR carbon sifted through 90 µm and 63 µm sieves 

was also obtained and was treated identically until a reasonable amount was produced. 

 

Figure 3.2. Retsh Sieves (ASTM E-11)(a); Ceramic Ball Mill (The Pascall Enginerering Co, Ltd) (b); and Ceramic 

Ball Mill holder (c) (Chemistry Department of the Faculty of Sciences and Technology – New University of Lisbon). 

 

Afterwards, the AC was washed with ultrapure water (Milli-Q
®
 water) to remove fines.  

For this purpose, the amount of activated carbon sieved to 125-180 µm G1 (34.8 g)  or to 63-90 

µm G2 (17.8 g) was placed in Erlenmeyer flasks of 500 mL with140 mL and 70 mL, 

respectively, of Milli Q
® 

water, corresponding to a ratio of coal: water of 1:4. The mixture was 

subjected to manual stirring for a few seconds, the carbon allowed to sediment and the washing 

water discarded. The washing was repeated until the conductivity of the washing water 

presented a constant value and was not visually noticeable particles in suspension. This 

procedure ensured that any residual, physically adsorbed, activating chemicals were removed 

prior to use, providing a reproducible surface for adsorption studies (Pendleton et al., 2002). 

After washing, the carbons were dried in an oven at 100°C for 24h, and were stored in a 

desiccator until use.  

a) b) c) 
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3.2.2. Carbon surface chemistry modification 

General 

To examine the influence of carbon surface chemistry on MC-LR adsorption, it is desirable to 

develop methods to modify functional groups with no significant effect on the textural 

properties. Heating is a direct way to remove carbon-oxygen structures from a carbon 

(Considine et al., 2001). Carbon dioxide, carbon monoxide, water and hydrogen are the main 

products released during heating. Surface chemical groups, such as carboxylic acid or lactone, 

which involve CO2, are less stable and decompose at temperatures as low as 300°C. Phenol or 

quinone-like structures are more stable and involve CO2 at temperatures > 500°C. Bansal and 

Dhami (1977) demonstrate that heating in a vacuum or in nitrogen atmosphere (as in the present 

study) is superior to heating in a CO2 atmosphere since the surface oxide reduction occurs to in 

the former atmosphere.  

Heating in N2 atmosphere 

A mass of 3.00 grams of NOR 0.8 was put into a tubular reactor with a porous plate and this 

reactor was then placed in a tubular oven at 800°C for 3 h under a nitrogen flow rate of 80 

mL/min. The final mass of AC was weighted, being the recovered mass 2.75 g. 

 

Figure 3.3. Tubular oven used in the experiment (Chemistry Department of the Faculty of Sciences and Technology 

– New University of Lisbon). 

 

3.2.3. Carbon preloading 

A mass of 5.00 grams of activated carbon was put into a brown stoppered glass flask with 2 L of 

a solution of tannic acid (1 g/L with 2.5 mM ionic strength). Preloading carbon with tannic acid 

was carried out during 20 days until all activated carbon is saturated. 

The preloaded AC was dried at 100ºC for 24 h and stored in a desiccator until use. 
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3.3. ADSORBATES 

3.3.1. Microcystin-LR 

 

Microcystin-LR was previously extracted from a culture of Microcystis aeruginosa and 

maintained in laboratory. The solubility of microcystin-LR in water is higher than 1 g/L 

(Rivasseau et al., 1998). The general characteristics of the studied microcystin are present in 

Table 3.4. 

 

Table 3.1. Characteristics of the microcystin MC-LR used in this study (Antoniou et al., 2005 and Ho et al., 2011). 

Characteristic MC-LR 

Amino acids (X | Y) Leucine | Arginine 

Molecular weight (g/mol) 995 

Diameter (nm) 3 

Net charge, 6 < pH < 8.5 -1 

LD50 (µg/kg body weight) 50 

Hydrophobicity Hydrophobic 

 

3.3.1.1. Preparing aqueous solutions of microcystin-LR 

Aqueous solutions prepared from methanol extracts of biomass Microcystis aeruginosa, and 

stored at -18ºC were used in study. 

For the removal of cellular waste, the methanolic suspensions were centrifuged twice for 10 

minutes at 4000 rpm (Sigma 3K30 centrifuge, rotor 12157), in vials of 10 mL, discarding the 

sediment. The final supernatant was further filtered through glass microfiber filters GF/F, 47 

mm (Whatman), transferred to glass flasks and stored at -18°C. 

The concentration of MC-LR in methanol solution (75%) was determined by HPLC/PDA (High 

Performance Liquid Chromatography/Photodiode Array Detector). 

All experimental tests with MC-LR were performed with the toxin in aqueous solution. Its 

preparation from solutions of MC-LR in methanol involved the evaporation of the solvent and 

dissolving the residue (MC-LR) in the electrolyte solution. The elimination of methanol was 

carried out by air sparging. 

  



Carbon key-properties for microcystin adsorption in drinking water treatment: Structure or surface chemistry? 

42 

 

3.3.2. Tannic acid 

 

Tannic acid (Sigma Chemicals) was selected as NOM surrogate, being representative of 

hydrophobic organics with a molecular weight of approximately 1700 g/mol. It contains 

phenolic groups and is expected to have a stronger competitive adsorption with MC-LR due to 

their similar molecular weight and charge (Campinas and Rosa, 2006). TA has an estimated 

diameter of 5.7 nm (between 3 - 8.4 nm) (Muhlpford, 1982), and carries a negative net charge at 

the pH range of the experiments (Bjelopavlic et al., 1999). Its chemical structure is represented 

in Figure 3.4. 

 

Figure 3.4. Chemical structure of tannic acid (adapted from Gülçin et al., 2010).  
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3.4. ASSAYED WATERS 

 

The assayed waters in this study have a constant pH and ionic strength. The electrolyte solution 

was prepared to give conductivity similar to the soft natural waters, less than 60 mg/L CaCO3. 

Electrolyte solution characteristics are described in Table 3.2. 

This solution is prepared with ultrapure water and salts of KCl and CaCl2. Ultrapure water   

(UPW) (i.e. Milli-Q
® 

water), was obtained from a Millipore system with a resistivity of 

18.2MΩ.cm at 25°C and a total organic carbon (TOC) not exceeding 10 ppb.  

The NOM model water was prepared with tannic acid to give a DOC concentration of 

approximately 3 mgC/L. 

Table 3.2. Characteristics of electrolyte solution used in all experiments. 

Electrolyte (2.5 mM IS – 1mM IS KCl + 1.5 mM IS CaCl2) 

CaCl2 KCl 

mM mg/L mM mg/L 

0,5 55.5 1 74.6 

 

Table 3.3. General characteristics of the assayed waters before spiking with MC-LR. 

Water type pH EC (µS/cm) 

Electrolyte solution 5-6 250-290 

TA solution 

(TA + electrolyte solution) 
5.5-6.5 230-280 

 

 

3.5.  METHODS FOR WATER ANALYSIS 

3.5.1.  pH and conductivity 

 

The pH and the electrical conductivity (EC) were measured with a Consort C863 multi-

parameter analyzer at 20°C and 25°C using standard methods of analysis (Eaton et al., 2005). 

3.5.2. Quantification of microcystin-LR 

3.5.2.1. Sample concentration (Solid phase extraction) 

 

Prior to analysis, microcystin samples were concentrated by solid phase extraction (Figure 3.5) 

in isolute C18 cartridges (1 g in a 6 mL reservoir, from Argonaut Technologies) according to 
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the standard operation procedure developed by Meriluoto and Spoof (2005) with the adaptation 

introduced by Ribau Teixeira and Rosa (2005), as follows. The cartridges were first conditioned 

with 10 mL methanol followed by 10 mL of water at a flow rate not exceeding 10 mL/min, 

without letting it dry during conditioning. The cartridge was then washed with 4 mL methanol 

20% (v/v) and dried during 2 min. The microcystins were recovered from the C18 cartridges 

with 4 mL of acetonitrile containing 0.05% trifluoracetic acid (v/v). The eluate was evaporated 

by air sparging. 

 

Figure 3.5. Solid phase extraction apparatus used in the experiments (Sanitary Engineering Laboratory (LABES) of 

the Urban Water Division (NES) of LNEC´s Hydraulics and Environment Department (DHA)). 

 

3.5.2.2. High performance liquid chromatography (HPLC-PDA) 

 

Reversed-phase HPLC on C18 phases is a common choice for separating small peptides, and the 

mobile phases for peptides often consist of acetonitrile gradients in the presence of 

perfluorinated alkyl carboxylic acids, usually trifluoroacetic acid (TFA). Microcystins make no 

exception, they chromatograph perfectly under these conditions. Neutral ammonium acetate – 

acetonitrile based effluents commonly used in preparative toxin separations. Using retention 

time and spectrum match, the major microcystins variants, such as LR, RR, and YR are 

practically and easy to identify by HPLC combined with photodiode array detection (Meriluoto 

and Spoof, 2003).  

Microcystins analysis by high performance liquid chromatography with photodiode-array 

detection (HPLC/PDA) followed Meriluoto and Spoof (2005) is method with adaptation 

introduced by Ribau Teixeira and Rosa (2005). 

 

A Dionex Summit HPLC-PDA system was used. A C18 column (Merck Purospher STAR RP-

18 endcapped, 3-μm particles, LiChro-CART 55 × 4 mm) was used and the mobile 

phase consisted of a gradient of two eluents designated as A and B (Table 3.4): TFA (Uvasol, 

Merck) 0.05% (v/v) in Milli-Q water (eluent A) and TFA (Uvasol, Merck) 0.05% (v/v) in 

acetonitrile (Lichrosolv, Merck) (eluent B) (Table 3.6). 
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The flow of the mobile phase and the oven temperature was kept at 1 mL/min and 40ºC, 

respectively. The microcystin was identified based on retention time and UV absorbance 

spectrum. 

Table 3.4. Gradient program of mobile phase for analysis of MC-LR. 

Time (min) Eluent A (%) Eluent B (%) 

0 75 25 

5 30 70 

6 30 70 

6.1 75 25 

9 STOP  

 

 

Chromatograms were analyzed between 180 and 900 nm, with a main detection at 238 nm for 

the typical microcystin´s spectrum (Meriluoto and Spoof,  2005).  

 

3.5.2.3. Preparation of standard solutions of MC-LR for HPLC calibration 

 

The calibration curve was prepared with standard MC-LR extract of Microcystis (provided by 

DHI Laboratory). Standard solutions were prepared in methanol 75% (v/v) by successive 

dilution of a solution 11.5 µg MC-LR/mL. Standard solutions of MC-LR were prepared to 

cover the range of concentrations of 0.3 and 5 µg MC-LR/mL and were analyzed in duplicate. 

 

Calibration of HPLC systems with microcystin-LR is based on the spectrophotometric 

determination of microcystin-LR concentration. Chromatograms were analysed between 180-

900 nm with a main detection at 238 nm for the typical microcystins spectra and calibration 

curve was established according to Meriluoto and Spoof (2003) (Annex I).  

 

3.5.3. Quantification of tannic acid 

 

3.5.3.1. UV spectrophotometry 

 

For the quantification of tannic acid, its UV absorbance was measured using a Hitachi 2000 

UV/Vis spectrophotometer at 215 nm (UV215). 

The absorption spectrum of tannic acid in 2.5 mM IS electrolyte solution with an ionic strength 

of 2.5 mM and the calibration curve between UV absorbance and TA concentration were 

performed (Annex II).  
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3.6. CHEMICAL AND TEXTURAL CHARACTERIZATION OF THE ACTIVATED 

CARBONS 

3.6.1. Surface charge characterization  

 

Surface charge titration gives an important indication of how the (surface) ionizable groups 

respond to pH changes. The point of zero charge (pHpzc) represents the pH condition where the 

surface ionic groups are neutralized, to give an effectively uncharged surface (Pendleton et al., 

2001). The surface charge of NOR 0.8 (125-180) is determined by direct pH measurements 

according to Moreno-Castilla et al. (2000). 

 

One gram of carbon was weighted and placed in a glass flask, and 10 mL of ultrapure water was 

added. The carbon suspension in N2 atmosphere was stirred (Edmund-Bühler orbital shaker) for 

48 h (at 200 rpm, after which the stirring was stopped and the pH of the solution was measured 

at 20ºC in a Crison GLP22 pH meter. The carbon suspension was immersed in nitrogen 

atmosphere to purge the solution of dissolved CO2 and to prevent further dissolution of CO2. 

The value obtained was taken as the pH of the point of zero charge, pHpzc (Moreno-Castilla et 

al., 2000). The procedure was repeated three times to obtain an average value. 

 

3.6.2. Characterization of the surface functional groups 

 

Elemental analysis of nitrogen, carbon, hydrogen and sulphur was carried out on an Eager 300 

micro elemental analyzer. The ash content of the activated carbons was determined by the mass 

of the residue obtained after combustion of samples to air, according to the procedure adapted 

from the Spanish Standard UNE 32 111 October 1995. A furnace was used (Lenton Thermal 

designs, Ltd.) for carbonization of the samples and the mass loss of samples was determined on 

an analytical balance (AE Adam equipment WP 250) with 0.001g accuracy.  

 

The activated carbon was dried overnight in an oven at 100°C, then one gram of activated 

carbon was put in a vessel and the sample was introduced into the furnace for complete 

combustion of the carbonaceous matrix. The heating method used was as follows: the first 10 

minutes the temperature increased up to to 500 °C and was maintained for the next 30 minutes; 

then was again increased to 800 ºC for 15 minutes and maintained for 2.5 h.  

After cooling to a temperature near 150 °C, the sample was removed from the furnace and 

stored in a desiccator to reach room temperature and then weighed again. The ash content is 
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determined based on the dry weight of activated carbon and the mass of residue after air 

combustion. The ash content value was calculated as the average of three results.  

 

3.6.3. Textural characterization 

 

The analytical determination of the activated carbons’ porous structure was performed by 

Professor Isabel Fonseca’s research group from the Chemistry Department of FCT/UNL.  

 

The physical characteristics of the activated carbons, which included the specific surface area, 

the micropore area, the total pore volume, the micropore volume and the pore size distribution, 

were measured by N2 adsorption in a ASAP 2010 Pore Structure Analyser (Micromeritrics, 

USA), at 77 K with liquid N2 (Costa, 2010). 
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3.7. BATCH STUDIES OF ACTIVATED CARBON ADSORPTION 

3.7.1. General procedure 

 

The apparatus used in the kinetic and isotherm batch experiments was an Edmund-Bühler KM–

2 orbital shaker (Figure 3.6). The stirring speed used in all the experiments was 200 rpm, a 

value previously found to be satisfactory to prevent settling and loss of carbon in the bottle 

surface. The temperature was kept constant at 24°C. 

 

 

Figure 3.6. Apparatus used in the kinetic and isotherm batch experiments (Edmund-Bühler orbital shaker). 

 

The glass flasks had 100, 250 or 500 mL capacity. The 250 and 500 mL flasks were used in 

order to detect lower toxin concentration.  

The general experimental procedure for the kinetic and isotherm assays was as follows: a 

predetermined amount of AC was accurately weighted into the glass flasks (duplicates of each 

experimental condition were always performed), and the water sample spiked with toxin, tannic 

acid or both (toxin and tannic acid) was added to the flasks. The flasks were sealed with plastic 

paraffin film - Parafilm or stoppered and placed in the shaker at 24°C and 200 rpm. Flasks were 

collected at predetermined time intervals. 

 

In the isotherm tests, flasks were sealed and stirred at constant temperature for the necessary 

period to reach equilibrium. The equilibrium time was determined in preliminary experiments. 

For kinetics tests, flasks were sealed and stirred at a constant temperature and samples were 

taken at predetermined time (30 min, 1 h, 2 h, 4 h, 6 h, 8 h, 10 h and 24 h). 

The clarified volume was filtered through a 0.7 µm glass fiber filter (GF-C Whatman), and the 

filtrate was passed through a SPE cartridge to extract the toxin for analysis by HPLC/PDA. TA 

quantification was performed by UV215nm. 

 



Carbon key-properties for microcystin adsorption in drinking water treatment: Structure or surface chemistry? 

 

49 

 

Blanks, consisting of glass bottles containing no AC but treated identically to the samples 

containing AC, were also tested during the same period of the equilibrium experiments to check 

for possible toxin degradation.  

Summary of the experimental conditions were represented in Table 3.5. 

 

Table 3.5. Summary of the experimental conditions tested. 

  
Assay 

Activated 

carbons 
a
 

Volume of 

assayed water 

(mL) 

NORIT range 
Solution  (mg) (mg/L) 

S
T

U
D

IE
S

 

K
IN

E
T

IC
 

MC-LR extract 

(C0 = 100 µg/L) 

G1, G2,  

F, PL 
200 6.4 32 

Electrolyte 

(2.5 mM) 

 

(1mM IS 

KCl + 1.5 

mM IS 

CaCl2) 
b
 

 

 

Tannic Acid 

(C0 = 5.6 mg/L) 
G1, F 80 2.6 32 

MC-LR extract 

(C0 = 100 µg/L) 

+ 

Tannic Acid 

(C0 = 5.6 mg/L) 

G1, F, PL 200 6.4 32 

IS
O

T
H

E
R

M
 

MC-LR extract 

(C0 = 100 µg/L) 

G1, G2,  

F, PL 

200 

200 

500 

500 

500 

2.5 

5.0 

15 

20 

25 

12.5 

25 

30 

40 

50 

Tannic Acid 

(C0 = 5.6 mg/L) 

G1, G2,  

F, PL 

200 

200 

200 

200 

200 

2.5 

5.0 

6.0 

8.0 

10 

12.5 

25 

30 

40 

50 

MC-LR extract 

(C0 = 100 µg/L) 

+ 

Tannic Acid 

(C0 = 5.6 mg/L) 

G1, G2,  

F, PL 

200 

200 

500 

500 

500 

2.5 

5.0 

15 

20 

25 

12.5 

25 

30 

40 

50 

a
 G1: 125-180 µm, G2: 63-90 µm; F: modified G1; PL: Preloaded G1 ; b 55.5 mg/L CaCl2 + 74.6 mg/L KCl
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3.7.2. Studies for determining the MC-LR equilibrium time 

 

Equilibrium time for MC-LR adsorption was tested for NOR carbon (G1: 125-180 µm) in 

electrolyte solution (2.5 mM IS) spiked with MC-LR. The experimental conditions used are 

presented in Table 3.6. 

Amounts of the same mass of AC were weighted into 100 mL glass flasks. Then, 80 mL of 

electrolyte solution spiked with 36 µg MC-LR/L were added (Table 3.6). The flasks were sealed 

and stirred as previously described.  

After a predetermined time-interval of shaking, the correspondent flask was withdrawn and the 

sample was filtered through a 0.7 µm glass fiber filter (GF-C Whatman) for AC particles 

retention and the filtrate was passed through a SPE cartridge to extract the toxin for MC-LR 

quantification by HPLC-PDA. 

Equilibrium was assumed to occur when the concentration no longer changed with time (no 

more than 10% variation). 

Table 3.6. Characteristics of activated carbon and assayed water used in the MC-LR adsorption kinetic for 

determining the MC-LR equilibrium time. 

Electrolyte solution 

 (2.5 mM IS) 

C0 (µg MC-LR/L) EC (µS/cm) pH 

36 276 6.1 

NOR 0.8 (125-180 µm) 
mNOR (mg) Vassayed water (mL) C (mgNOR/L) 

1 80 12.5 

Time-intervals for 

sampling 
30 min, 2 h, 4 h, 7 h, 24 h, 48 h, 52 h, 120h 

 

3.7.3. Adsorption kinetic studies of MC-LR  

 

The MC-LR adsorption kinetic studies were performed with NOR 0.8 two size grades (G1 and 

G2), modified (F) and preloaded (PL) activated carbons, using the experimental conditions 

presented in Table 3.7 and Table 3.8. 

 

Table 3.7. Characteristics of the assayed water used in the MC-LR adsorption kinetic studies. 

AC Electrolyte solution  (2.5 mM IS) 

C0 (µg MC-LR/L) EC (µS/cm) pH 

NOR 125-180  104 280 6.0 

NOR 63-90  85.0 240 5.8 

Modified NOR 

125-180 
99.8 270 6.2 

TA-preloaded 

NOR 125-180 
90.0 210 5.5 
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Table 3.8. Characteristics of the activated carbon used in the MC-LR adsorption kinetic studies. 

AC Vassayed water (mL) mNOR (mg) C (mgNOR/L) 

G1, G2, F and PL 200 6.4 32 

Time-intervals for 

sampling 
1 h, 2 h, 4 h, 6 h, 8 h, 24 h 

 

3.7.4. Adsorption kinetic studies of TA  

 

TA adsorption kinetic studies were performed with the NOR 0.8 grade G1 and with modified 

(F) activated carbons, using the experimental conditions presented in Table 3.9 and Table 3.10. 

 

Table 3.9. Characteristics of the assayed water used in the TA adsorption kinetic studies. 

AC Electrolyte solution (2.5 mM IS) 

C0 (mg TA/L) EC (µS/cm) pH 

NOR 125-180  5.3 234 5.5 

Modified NOR 

125-180 
5.5 238 5.7 

 

Table 3.10. Characteristics of the activated carbon used in the TA adsorption kinetic studies. 

AC Vassayed water (mL) mNOR (mg) C (mgNOR/L) 

G1 and F 80 2.6 32 

Time-intervals for 

sampling 
30 min, 1 h, 2 h, 4 h, 6 h, 8 h, 24 h 

 

3.7.5. Kinetic studies of competitive adsorption between MC-LR and TA 

 

Kinetic studies of competitive adsorption were performed with NOR 0.8 grade G1, modified (F) 

and preloaded (PL) activated carbon, using the experimental conditions presented in Table 3.11 

and Table 3.12. 

  

Table 3.11. Characteristics of the assayed water used in the kinetic studies for competitive adsorption of MC-LR and 

TA. 

AC Electrolyte solution (2.5 mM IS) 

C0 (µg MC-LR/L) C0 (mg TA/L) EC (µS/cm) pH 

NOR 125-180 78.0 5.1 221 5.5 

Modified NOR 125-180 104 5.8 215 5.4 

TA-preloaded NOR 

125-180 
96.3 5.2 213 5.3 
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Table 3.12. Characteristics of the activated carbon used in the kinetic studies for competitive adsorption of MC-LR 

and TA. 

AC Vassayed water (mL) mNOR (mg) C (mgNOR/L) 

G1, F and PL 200 6.4 32 

Time-intervals for 

sampling 
30 min, 1 h, 2 h, 4 h, 6 h, 8 h, 24 h 

 

3.7.6. Isotherm studies for MC-LR adsorption  

 

The MC-LR adsorption isotherm studies were performed with NOR 0.8 two size grades (G1 and 

G2), modified (F) and preloaded (PL) activated carbons, using the experimental conditions 

presented in Table 3.13 and Table 3.14. 

 

Table 3.13. Characteristics of the assayed water used in the MC-LR adsorption isotherm studies. 

AC Electrolyte solution (2.5 mM IS) 

C0 (µg MC-LR/L) EC (µS/cm) pH 

NOR 125-180  104 272 6.3 

NOR 63-90  87.3 245 6.5 

Modified NOR 

125-180  
97.3 272 6.2 

TA-preloaded 

NOR 125-180  
78.4 216 5.5 

 

Table 3.14. Characteristics of the activated carbon used in the MC-LR adsorption isotherm studies. 

AC Vassayed water (mL) mNOR (mg) C (mgNOR/L) 

G1, G2, F and PL 

200 2.5 12.5 

200 5.0 25 

500 15 30 

500 20 40 

500 25 50 

Time-intervals for 

sampling 
120 h 
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3.7.7. Isotherm studies for TA adsorption 

 

The TA adsorption isotherm studies were performed with NOR 0.8 two size grades (G1 and 

G2), modified (F) and preloaded (PL) activated carbons, using the experimental conditions 

presented in Table 3.15 and Table 3.16. 

 

Table 3.15. Characteristics of the assayed water used in the TA adsorption isotherm studies. 

AC Electrolyte solution (2.5 mM IS) 

C0 (mg TA/L) EC (µS/cm) pH 

G1, G2, F and PL 4.7 281 5.8 

 

Table 3.16. Characteristics of the activated carbon used in the TA adsorption isotherm studies. 

AC Vassayed water (mL) mNOR (mg) C (mgNOR/L) 

G1, G2, F and PL 

200 2.5 12.5 

200 5.0 25 

200 6.0 30 

200 8.0 40 

200 10 50 

Time-intervals for 

sampling 
72 h 

 

3.7.8. Isotherm studies of competitive adsorption between MC-LR and TA 

 

Isotherm studies of competitive adsorption were performed with NOR 0.8 two size grades (G1 

and G2), modified (F) and preloaded (PL) activated carbons, using the experimental conditions 

presented in Table 3.17 and Table 3.18. 

 

Table 3.17. Characteristics of the assayed water used in the competitive adsorption isotherm studies of MC-LR and 

TA. 

AC Electrolyte solution (2.5 mM IS) 

C0 (µg MC-LR/L) C0 (mg TA/L) EC (µS/cm) pH 

NOR 125-180  103 5.1 221 5.5 

NOR 63-90  42.0 5.0 220 5.3 

Modified NOR 125-180  90.0 5.2 215 5.4 

TA-preloaded NOR 

125-180  
96.0 5.0 213 5.3 
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Table 3.18. Characteristics of the activated carbon used in the competitive adsorption isotherm studies of MC-LR 

and TA. 

AC Vassayed water (mL) mNOR (mg) C (mgNOR/L) 

G1, G2 F and PL 

200 2.5 12.5 

200 5.0 25 

500 15 30 

500 20 40 

500 25 50 

Time-intervals for 

sampling 
120 h 

 

3.7.9. Calculation methods 

 

The software package Scientist 
TM

 from MicroMath
R
 was used to perform the non-linear fitting 

calculations. This software allies the capability of performing non-linear fittings and solving 

both integral and differential equations. The least squares and the simplex algorithms were used. 
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4. RESULTS AND DISCUSSION 

4.1. CHEMICAL AND PHYSICAL CHARACTERIZATION OF THE 

ADSORBENT 

 

The efficiency of a carbon for removing a given pollutant depends on both its adsorption 

capacity and its surface chemistry (Considine et al., 2001). The relatively large adsorption 

capacity of an AC is usually attributed to its internal pore volume (Donati et al., 1994; Huang 

and Cheng, 2007). A carbon containing numerous pores in the size range of the contaminant is 

expected to be efficient due to the enhancement of the adsorption potential for such conditions 

(Gregg and Sing, 1982).  

In drinking water treatment the effect of the adsorbent surface chemistry is also important, since 

adsorption proceeds via the displacement of the existing water covered surface by the dissolved 

contaminant molecules (Considine et al., 2001). 

In this study, the characterization of the AC intended to understand the role of pore size 

distribution and of specific surface properties (point of zero charge, type of surface functional 

groups) of the AC’s on the adsorption of MC-LR. 

For this purpose, NOR carbon of two particle sizes, 125-180 μm (G1) and 63-90 μm (G2) were 

tested. The surface chemistry of carbon NOR 125-180 was modified by careful thermal 

treatment (as described in section 3.2.3) in order to obtain different surface properties with 

minimal changes in PSD. This AC (NOR 125-180) was also preloaded with tannic acid.  

 

4.1.1. Surface charge of the activated carbon 

 

The surface charge of the tested activated carbons was determined by direct pH measurement 

(described in section 3.6.1). The results are presented in Table 4.1. 

Table 4.1. Point of zero charge of the studied carbons. 

pHpzc measured by 

pHpzc 

NOR 125-180 

(G1) 

Modified NOR 

125-180 (F) 

NOR 63-90 

(G2) 

Moreno-Castilla et al. (2000) method 9.1 12.1 9.1 

Literature (Costa, 2010) 9.5 ± 0.40 - - 

 

The results for NOR 125-180 carbon agree with those determined recently by Costa (2010). 

Results presented in Table 4.1 show that the pHpzc, i.e,. the basicity (Pendleton et al., 2002) of 

the carbons varies in the order F > (G1, G2). As it was previously observed, carbon surfaces 
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acquire a basic character upon high – temperature (> 973K) treatment (Menendez et al., 1996), 

so the results obtained for the modified carbon, which is treated with N2 at 1073 K, is in 

agreement with what was predicted.  

As expected, crushing the AC to obtain a smaller particle size does not affect its pHpzc. 

This also indicates that at the pH of the tested waters (5-7) the carbon’s surface charge is always 

positive. As a positively charged carbon favors the adsorption of negatively charged molecules 

and hinders the adsorption of positively charged adsorbates, this means that all studied carbons 

show a good potential for the adsorption of microcystins, since at the tested pH values (5-7), it 

always carry a net positive charge whereas the microcystin-LR is negatively charged. 

 

4.1.2.  Functional Groups 

 

The results of the elemental analysis of the activated carbons (G1, G2 and F) are presented in 

Table 4.2. The oxygen content of the AC samples was calculated by difference: 

  ( )  *    , ( )   ( )   ( )   ( )-+ [4.1] 

The ash content value indicated in Table 4.2 was obtained by the method described in section 

3.6.2. 

Table 4.2. Elemental analysis (wt%) of the studied activated carbons. 

 N (%) C (%) H (%) S (%) O (%) 
(a)

 Ash (%) 

NOR 125-180 1.14 79.6 0.340 0.550 18.4 5.50 

Literature (Costa, 2010) 0.500 87.2 0.400 0.500 11.5 6.00 

NOR 63-90 0.410 84.1 0 0.570 15.0 - 

Modified NOR 125-180 0.450 89.6 0 0 9.90 - 
(a) obtained from subtraction of total C, N, H, S.  

 

The three carbons have relatively different surface chemistries, i.e. they differ on the type and 

amount of surface groups, as shown by their oxygen and nitrogen contents. The oxygen content 

of NOR 125-180 is attributed to carbonyl and lactone groups (Costa, 2010). A portion of 

oxygen was also attributed to N-containing groups, which had the highest content of nitrogen 

(Table 4.2).  

The heat-treated AC shows a decrease in oxygen content. Oxygen is the most frequently 

encountered and important element, forming various functional groups on the AC surface.  

The acidic character as well as the hydrophobicity of an AC is related to the oxygen contents. 

The higher the oxygen content of an activated carbon the stronger is its acidic character (Li et 
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al., 2002), so the lower oxygen content the stronger is its basic character. As it seen in Table 

4.2, the heat-treated carbon (F) has the lowest oxygen content, so it is the more basic carbon, 

which agrees with the pHpzc presented in Table 4.1.  

Reducing the oxygen content of NOR 125-180 carbon increases its hydrophobic character 

(Pendleton et al., 2002) and its basic character (Li et al., 2002). 

According with Considine et al. (2001), Pendleton et al. (2002), Huang and Cheng, (2007) and 

taking into account only the surface chemistry of AC, it is expected that this heat-treated carbon, 

with the larger amount of basic surface groups, higher pHpzc and stronger hydrophobicity have 

the higher MC-LR adsorption capacity.  

 

4.1.3. Textural Characterization 

 

The textural characterization of the studied activated carbons included pore size distribution, 

apparent surface area, total microporous volume, specific external area, total volume of 

pores, specific microporous surface area and volume of macropores and mesopores 

(performed using a Micromeritrics ASAP 2010 instrument) (Costa, 2010).  

 

The pore size distribution was determined by the Density Functional Theory (DFT) (data 

presented in Annex III). The apparent surface area was calculated by the BET method (ABET). 

The total microporous volume and the external area (i.e. the mesoporous surface area, Aext) 

were determined by the t-plot. The total volume of pores was determined by the Gurvitsch rule. 

The specific microporous surface area was computed by subtracting the external surface area 

to the BET surface area. All the previously mentioned parameters are specific areas and 

volumes, i.e. per unit mass weight. The calculations for ABET (valid for 0.05 < P/P0 < 0.30), 

microporous volume, Aext and total volume of pores (for saturation, i.e. P/P0 = 0.98) (methods 

presented in Annex IV). The volume of macropores and mesopores was calculated from the 

BJH method. The data are presented in Figure 4.1, Figure 4.2 and Table 4.3. 

 
Since higher and stronger adsorption can be expected within pores of dimensions similar to the 

molecular dimension of the MC-LR (Huang and Cheng, 2007), carbon pore size distributions 

were examined. 
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Figure 4.1. Pore size distribution (microporous structure) of  NOR 125-180 virgin, modified and preloaded. 

 

 

Figure 4.2. Pore size distribution (mesoporous structure) of the studied activated carbons. 

 

Figure 4.1 shows that the three carbons are essentially microporous in nature but Figure 4.2 

shows the mesoporous structure of the activated carbons, being this one the most important in 

the MC-LR adsorption. 
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Table 4.3. Textural properties of the studied NOR carbons. 

Property Method G1 G2 F PL 

Apparent surface area (ABET) (m
2
/g) BET 1035 1083 1191 464 

Total microporous volume (cm
3
/g) t-plot 0.35 0.36 0.39 0.14 

External area (mesopores) (Aext) (m
2
/g) t-plot 301.7 346.4 374.9 175.8 

Total volume of pores (cm
3
/g) Gurvitsch rule 0.66 0.74 0.77 0.36 

Microporous surface area (m
2
/g) ABET – Aext 734 737 816 288 

Volume of macropores and mesopores (cm
3
/g) BJH 0.34 0.4 0.4 0.23 

 
 

Most suppliers claim that a high specific surface area available for adsorption is important for 

the removal of a particular adsorptive. But a recent study (Considine et al., 2001) on 2-

methylisoborneol (MIB) adsorption analysis suggests that this assumption must be made with 

caution, having no conclusion about this.  

  

As it is seen in Table 4.3, the heat-treated AC shows a modified porous structure, with an 

increase in the volume of micro and mesopores. Due to this, this heat-treated activated carbon 

was then called modified NOR 125-180. According to the literature (Donati et al., 1994; 

Pendleton et al., 2002; Newcombe and Cook, 2004) this increase in carbon’s mesoporosity may 

be advantageous for MC-LR adsorption. From the data presented in Table 4.3, among the three 

studied carbons, modified NOR 125-180 has the highest surface area and (together with G2) the 

highest BJH adsorption cumulative pore volume, i.e. has the largest number of mesopores and 

macropores. These results, together with those from the surface charge characterization, suggest 

that this carbon should be very adequate for the removal of microcystins.  

 

NOR 125-180 and NOR 63-90 present quite similar characteristics although NOR 63-90 with a 

slightly higher pore volume, and therefore may present a higher adsorption capacity. 

 

Regarding the TA-preloaded NOR 125-180, the specific surface area is lower when compared 

with AC source (NOR 125-180). That was expected, since when loading with tannic acid, the 

pores are blocked, making the AC less porous particularly, less microporous). This AC will later 

be used for competition studies.  
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4.2. ADSORPTION OF MICROCYSTIN-LR ONTO ACTIVATED CARBON 

4.2.1. Equilibrium time for MC-LR adsorption 

 

The objective of this experimental study (experimental conditions detailed in section 3.7.2) was 

to evaluate the time needed for MC-LR adsorption to reach the equilibrium, in order to ensure 

that the equilibrium is reached in all isotherm adsorption experiments.  

NOR carbons exhibit fast kinetics in early stages (first hours of the run), as expected taking into 

account AC characteristics. Figure 4.3 shows that the equilibrium is reached after approximately 

48h contact for NOR 125-180 µm (G1), but based on other studies and similar conditions 

(Costa, 2010) it was expected a higher adsorption of MC-LR.  

 

 

Figure 4.3. Adsorption kinetics of MC-LR (extract) in 2.5 mM IS electrolyte (1 mM IS KCl + 1.5 mM IS CaCl2) 

onto NOR 125-180 for determining the MC-LR adsorption equilibrium time. 

 

 

Figure 4.4. Comparison between the adsorption kinetic of MC-LR (extract in 2.5 mM IS electrolyte (♦)) and pure 

MC-LR in ultrapure water (◊) (results from Costa, 2010). 
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Microcystins were produced and extracted from Microcystis aeruginosa laboratory grown 

culture. As these extracts were not purified, they must have some algogenic organic matter 

(AOM) and other types of microcystins, which may be affecting the adsorption of MC-LR, 

competing with it. The TOC analysis justifies the presence of AOM (2.1 mg C/L). The literature 

regarding the cyanotoxin adsorption by AC suggests that different toxins have distinct removal 

efficiencies (Campinas and Rosa, 2006). The microcystin variants detected in HPLC 

chromatograms (Figure 4.5) were MC-LR, MC-LY, MC-LW and MC-LF based on retention 

times, but the dominant microcystin variant was MC-LR (main peak), which leads to the 

conclusion that other types of microcystins are present in all experiments in this thesis. 

 

 

Figure 4.5. HPLC chromatogram of MC-LR (extract of Microcystis aeruginosa) result of this first experiment. 

 

Some properties of the most common MC are summarized in Table 4.4. 

 

Table 4.4. Properties of microcystin variants (adapted from Campinas and Rosa, 2006). 

 MC-LR MC-LY MC-LW MC-LF 

Amino acids (X and Z) Leucine, arginine Leucine, tyrosine 
Leucine, 

trytophane 

Leucine, 

phenylalanine 

Molecular Weight 994 1001 1024 985 

Net charge, pH 7 -1 -2 -2 -2 

Increasing Hydrophobicity 

 

So, in this work, the extracts used in all kinetic and isotherm adsorption experiments contained a 

mixture of microcystin variants, and not pure microcystin-LR, fact that was not ignored during 

analysis/discussion of the results. 
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4.2.2. Adsorption of MC-LR onto NOR 125-180 

 

Equilibrium isotherms onto NOR 125-180 carbon were performed with 104 µg/L MC-LR initial 

concentration in 2.5 mM IS electrolyte (1 mM IS KCl + 1.5 mM IS CaCl2) and AC 

concentrations between 12.5-50 mg/L during five days (experiments detailed in section 3.7.6). 

The fitting of adsorption isotherm curve is illustrated in Figure 4.6 and Table 4.5 presents the 

isotherm parameters. 

 

Figure 4.6. Langmuir isotherm fitting for MC-LR adsorption onto NOR 125-180 (2.5 mM IS electrolyte). 

 

For MC-LR adsorption, only the Langmuir model was applied. The isotherm shows a plateau 

(qe became constant regardless of additional increases of Ce), and therefore the Freundlich 

equation does not apply (Snoeyink and Summers, 1999). This indicates the adsorption of a 

complete monolayer. 

 

Table 4.5. Langmuir isotherm parameters with 95% confidence interval for NOR 125-180 adsorption of MC-LR 

from 2.5 mM IS electrolyte solution. 

qmax (µg/mg) b (L/µg) R
2
 

2.47 ± 0.14 6.38 ± 4.60 0.770 

 

 

The objective of the kinetic experiments was to evaluate the limiting steps of the MC-LR 

adsorption. Three kinetic models were used to study these processes and to investigate the 

mechanisms and the potential rate-controlling step(s) of MC-LR adsorption, such as mass 

transport (intraparticle diffusion model) and chemical reaction (pseudo-first and pseudo-

second order models). 
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The pseudo-first order and pseudo-second order kinetic model fittings are presented in Figure 

4.7 and Table 4.6. 

 

Figure 4.7. Pseudo-first order and pseudo-second order adsorption kinetic models for MC-LR adsorption onto NOR 

125-180 (2.5 mM IS electrolyte). 

 

Table 4.6. Adsorption kinetics constants with 95% confidence interval for pseudo-first order and pseudo-second 

order models for MC-LR adsorption onto NOR 125-180 (2.5 mM IS electrolyte). 

 Pseudo-first order model Pseudo-second order model 

qe_calc (µg/mg) k1 (h
-1

) R
2
  k2 (mg/(µg/h)) R

2
 

2.47 0.17 ± 0.02 0.990  0.064 ± 0.008 0.996 

 

For the full range of contact time studied, the experimental kinetic data of NOR 125-180 carbon 

is best described by the pseudo-second order model, with very good correlation (R
2
=0.996). The 

pseudo-first order model also describes the MC-LR adsorption kinetics onto NOR 125-180 µm 

data in the full range of contact time, but does not have a so good correlation (R
2
=0.990). In 

most cases published in literature, the pseudo-first order model does not fit well the data in the 

full range of contact time, and is often applicable only in the first period of the sorption process 

(Ho and McKay, 1999). As the MC-LR adsorption kinetic data are best fitted by the pseudo-

second order model, this indicates the chemisorption as the adsorption mechanism, which is 

consistent with adsorption well-described by the Langmuir model. 

The pseudo-second order adsorption kinetic model fitting of C (µg/L) and q (µg/mg) for MC-LR 

adsorption onto NOR 125-180 is shown in Figure 4.8. 
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Figure 4.8. Pseudo-second order adsorption kinetic model fitting of C (µg/L) and q(µg/mg) for MC-LR adsorption 

onto NOR 125-180 (2.5 mM IS electrolyte). 

 

With respect to diffusion models, according to numerous studies (Wang and Li, 2007; Ip et al., 

2010) external mass transfer (film diffusion) or intraparticle diffusion (particle diffusion) are 

often the rate-limiting steps in the sorption process.  

A classic approach to analyze if an adsorption process is controlled by intraparticle diffusion is 

to plot the amount adsorbed versus the square root of time, t
1/2

 (Figure 4.9a). If the plot is linear 

and passes through the origin, the intraparticle diffusion is controlling the rate of adsorption. 

Some authors (Hameed and Daud, 2008; Khaled et al., 2009) have shown that if there is an 

initial external mass transfer or chemical reaction, then the plot will still be linear but it will not 

pass through the origin.  

The intraparticle diffusion model approach is shown in Figure 4.9 and Table 4.7. 

 

Figure 4.9. Intraparticle diffusion model (a), and Boyd plot (diffusion coefficient) (b), for MC-LR adsorption onto 

NOR 125-180 (2.5 mM IS electrolyte). 
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The associated error for the C parameter is high (C=0.098 ± 0.154), so it is assumed that this 

equation passes the origin. So, neglecting this value, it is forced that this equation passes the 

origin. The same goes for the Boyd plot (b=0.03 ± 0.03). 

 

Table 4.7. Parameters for intraparticle diffusion model and Boyd plot for MC-LR adsorption onto NOR 125-180. 

Intraparticle diffusion model Boyd et al. (1947) equation 

kp (µg/mg.h
1/2

) R
2
 

rAC 

(µm) 
Equation Di (cm

2
/s) R

2
 

0.446 ± 0.026 0.977 76.25 Bt = (0.056 ± 0.003) t   9.16x10
-11

 0.996 

 

 

NOR 125-180 carbon exhibits only one linear portion. The linear portion passes through the 

origin indicating that the intraparticle diffusion is the rate controlling step for the adsorption.  

In order to confirm this analysis, the data were also analyzed by the kinetic expressions given by 

Boyd et al., 1947. 

The calculated Bt values were plotted against time t and are shown in Figure 4.9b. The linearity 

of this plot is used to distinguish which transport mechanism, external transport or intraparticle, 

controls the adsorption rate. The plot presented in Figure 4.9b is linear and pass through the 

origin. These results validate the previous conclusion based on the intraparticle diffusion model 

consequently demonstrating that the rate-limiting step is the intraparticle diffusion for NOR 

125-180 carbon. 

The diffusion coefficients of MC-LR through studied carbons were determined by equation 

2.17, assuming spherical particles.  
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4.2.3. Adsorption of MC-LR onto NOR 63-90 

 

Equilibrium isotherms onto NOR 63-90 carbon were performed with 87.3 µg/L MC-LR initial 

concentration in 2.5 mM IS electrolyte (1 mM IS KCl + 1.5 mM IS CaCl2) and AC 

concentrations between 12.5-50 mg/L during five days (experiments detailed in section 3.7.6). 

The fitting of adsorption isotherm curve is illustrated in Figure 4.10 and Table 4.8 presents the 

Langmuir parameters. 

 

Figure 4.10. Langmuir isotherm fitting for MC-LR adsorption onto NOR 63-90 (2.5 mM IS electrolyte). 

 

The Freundlich model was not applied since the experimental data are out of the range of model 

applicability (Snoeyink and Summers, 1999). So, the Langmuir equation were applied to this 

experiment with a good correlation coefficient (R
2
=0.992) indicating the adsorption of a 

complete monolayer, as it was previously found for NOR 125-180. 

 

Table 4.8. Langmuir isotherm parameters with 95% confidence interval for MC-LR adsorption onto NOR 63-90 (2.5 

mM IS electrolyte). 

qmax (µg/mg) b (L/µg) R
2
 

3.33 ± 0.08 6.13 ± 0.70 0,992 

 

NOR 63-90 has a higher adsorption capacity (3.33 ± 0.08 vs 2.47 ± 0.14) when compared with 

NOR 125-180. 

The pseudo-first order and pseudo-second order kinetic model fittings are presented in Figure 

4.11 and the results are presented in Table 4.9. 
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Figure 4.11. Pseudo-first order and pseudo-second order adsorption kinetic models for MC-LR adsorption onto NOR 

63-90 (2.5 mM IS electrolyte). 

 

Table 4.9. Adsorption kinetics constants with 95% confidence interval for pseudo-first order and pseudo-second 

order models for MC-LR adsorption onto NOR 63-90 (2.5 mM IS electrolyte). 

 Pseudo-first order model Pseudo-second order model 

qe_calc (µg/mg) k1 (h
-1

) R
2
  k2 (mg/(µg/h)) R

2
 

3.33 1.24 ± 0.170 0.987  0.852 ± 0.091 0.998 

 

For the full range of contact time studied, the experimental kinetic data of NOR 63-90 carbon is 

best described by the pseudo-second order model, with very good correlation (R
2
=0.998), much 

better than the pseudo-first order model, that does not describe the MC-LR adsorption kinetics 

in the full range of contact time. Like in most cases published in literature, the pseudo-first 

order model is applicable only in the first period of the sorption process (Ho and McKay, 1999), 

in this case, in the first 2 h. As the MC-LR adsorption kinetic data are best fitted by the pseudo-

second order model, this indicates that the chemisorption is the adsorption mechanism, which is 

consistent, as it was seen previously for NOR 125-180, with adsorption well-described by the 

Langmuir model. 

The pseudo-second order adsorption kinetic model fitting of C (µg/L) and q (µg/mg) for MC-

LR adsorption onto NOR 63-90 is shown in Figure 4.12. 
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Figure 4.12. Pseudo-second order adsorption kinetic model fitting of C (µg/L) and q(µg/mg) for MC-LR adsorption 

onto NOR 63-90 (2.5 mM IS electrolyte). 

 

NOR 63-90 carbon shows faster kinetics than NOR 125-180 carbon, as expected. In addition to 

a shorter intraparticle path, crushing the carbon apparently opens pores a little bit (Table 4.3), 

which causes the faster adsorption of microcystin-LR. The intraparticle diffusion model 

approach is shown in Figure 4.13 and Table 4.10. 

 

The plot of qt versus t
1/2

 may present multi-linearity (Ip et al., 2010), which indicates that two or 

more rate controlling steps occur in the adsorption processes (the external mass diffusion, the 

intraparticle diffusion and the equilibrium). 

The slope of the second linear plot characterizes the rate parameter corresponding to the 

intraparticle diffusion (kp) while the intercept C is proportional to the boundary layer thickness, 

i.e. the larger the value of the intercept of the second linear plot, the greater is the boundary 

layer effect on the adsorption kinetics. 

  

Figure 4.13. Intraparticle diffusion model for MC-LR adsorption (a) and Boyd plot (diffusion coefficient) (b) onto 

NOR 63-90 (2.5 mM IS electrolyte). 
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Table 4.10. Parameters for intraparticle diffusion model and Boyd plot for MC-LR adsorption onto NOR 63-90 (2.5 

mM IS electrolyte). 

Intraparticle diffusion model Boyd et al. (1947) equation 

kp (µg/mg.h
1/2

) C (µg/mg) R
2
 rAC (µm) Equation Di (cm

2
/s) R

2
 

0.242 ± 0.047 1.85 ± 0.102 0.989 38.25 
Bt = (0.054 ± 0.013) t + 

(0.508 ± 0.072)   
2.22x10

-11
 0.983 

 

In this case, three segments can be observed and the second linear segment has a significant 

intercept (C=1.85 ± 0.102 µg/mg, (Figure 4.13a)) which represents the boundary layer 

thickness. The multilinearity analysis of qt versus t
1/2

 plot then indicates a significant 

contribution of the external mass transfer to the MC-LR adsorption kinetics onto NOR 63-90 

µm carbon. 

These conclusions agree with the carbons’ particle grade. The smaller the particle size the 

greater the importance of the external mass transfer over intraparticle diffusion.  This is, the 

MC-LR adsorbate may easily diffuse through the internal pores of the small particles of NOR 

63-90 µm, and external diffusion becomes the rate-limiting step for this AC. MC-LR has to 

travel a shorter path through the NOR 63-90 µm particles compared to the 125-180 µm 

particles, and the external film diffusion is thus more relevant to the overall kinetics than the 

intraparticle diffusion. These results are in accordance with Mohan et al., (2004) and with Costa 

(2010), concluding that the external transport is the rate-limiting step in systems where the 

particle sizes are smaller, which is the case of NOR 63-90 µm carbon. 

Consequently, it does not make sense to apply the Boyd model to the adsorption data of NOR 

63-90 µm. 

 

4.2.4. Adsorption of MC-LR onto modified NOR 125-180 

 

Equilibrium isotherms onto modified NOR 125-180 carbon were performed with 97.3 µg/L 

MC-LR initial concentration in 2.5 mM IS electrolyte (1 mM IS KCl + 1.5 mM IS CaCl2) and 

AC concentrations between 12.5-50 mg/L during five days (experiments detailed in section 

3.7.6). The fitting of adsorption isotherm curve is illustrated in Figure 4.14 and Table 4.11 

presents the Langmuir parameters. 
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Figure 4.14. Langmuir isotherm fitting for MC-LR adsorption onto modified NOR 125-180 (2.5 mM IS electrolyte). 

 

The curve fitting was obtained with the Langmuir equation (R
2
=0.951). The Freundlich model 

was not applied once more, since the experimental data are out of the range of model 

applicability (Snoeyink and Summers, 1999).  

 

Table 4.11. Langmuir isotherm parameters with 95% confidence interval for MC-LR adsorption onto modified NOR 

125-180 (2.5 mM IS electrolyte). 

qmax (µg/mg) b (L/µg) R
2
 

3.79 ± 0.350 0.64 ± 0.20 0.951 

 

The pseudo-first order and pseudo-second order kinetic models fittings are presented in Figure 

4.15 and the results are presented in Table 4.12. 

 

 

Figure 4.15. Pseudo-first order and pseudo-second order adsorption kinetic models for MC-LR adsorption onto 

modified NOR 125-180 (2.5 mM IS electrolyte). 
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Table 4.12. Adsorption kinetic constants with 95% confidence interval for pseudo-first order and pseudo-second 

order models for MC-LR adsorption onto modified NOR 125-180 (2.5 mM IS electrolyte). 

 Pseudo-first order model Pseudo-second order model 

qe_calc 

(µg/mg) 
k1 (h

-1
) R

2
  k2 (mg/(µg/h)) R

2
 

3.77 0.265 ± 0.020 0.997  0.089 ± 0.020 0.994 

 

For this carbon, both the pseudo-first and -second order models fit the kinetic data.  

The pseudo-second order adsorption kinetic model fitting of C (µg/L) and q (µg/mg) for MC-LR 

adsorption onto modified NOR 125-180 is shown in Figure 4.16. 

 

Figure 4.16. Pseudo-second order adsorption kinetic model fitting of C (µg/L) and q(µg/mg) for MC-LR adsorption 

onto modified NOR 125-180 (2.5 mM IS electrolyte). 

 

The intraparticle diffusion and Boyd’s models approach is shown in Figure 4.17 and Table 4.13. 

 

  

Figure 4.17. Intraparticle diffusion model (a), and Boyd plot (diffusion coefficient) (b), for MC-LR adsorption onto 

modified NOR 125-180 (2.5 mM IS electrolyte). 
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Table 4.13. Parameters for intraparticle diffusion model and Boyd plot for MC-LR adsorption onto modified NOR 

125-180 (2.5 mM IS electrolyte). 

Intraparticle diffusion Boyd et al. (1947) equation 

kp (µg/mg.h
1/2

) C (µg/mg) R
2
 rAC (µm) Equation Di (cm

2
/s) R

2
 

0.27 ± 0.06 0.35 ± 0.18 0.985 76.25 
Bt = (0.08 ± 0.015) t + 

(0.015 ± 0.032) 
1.35x10

-11
 0.969 

 

Modified NOR 125-180 carbon exhibits only one linear portion. The linear portions do not pass 

through the origin indicating that the intraparticle diffusion is not the only rate controlling step 

for the adsorption. This conclusion is confirmed by Boyd’s analysis. 

 

4.2.5. Comparative analysis of the three NOR carbons for MC-LR 

adsorption 

 

In this section, the difference of adsorption kinetics and capacities are described and related to 

the characteristics of the ACs. The adsorbed capacity by each carbon is represented and 

summarized in Figure 4.18 and Table 4.14. 

 

 

Figure 4.18. Langmuir isotherm fitting for adsorption of MC-LR onto the studied ACs. 

 

Table 4.14. Langmuir isotherm parameters with 95% confidence interval for adsorption of MC-LR onto the studied 

ACs. 

AC 
Langmuir fitting 

qmax (µg/mg) b (L/µg) R
2
 

NOR (125-180 µm) (♦) 2.47 ± 0.14 6.38 ± 4.60 0.770 

NOR (63-90 µm) (▪) 3.33 ± 0.08 6.13 ± 0.70 0.992 

Modified NOR (125-180 µm) (▲) 3.79 ± 0.35 0.64 ± 0.20 0.951 
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The isotherms were reasonably well fitted using the Langmuir adsorption model. Figure 4.18 

shows how the NOR 63-90 and the modified NOR 125-180 carbons exhibit a higher affinity for 

MC-LR (during adsorption from 2.5 mM IS electrolyte solution) than NOR 125-180. 

Comparing the results for the three activated carbon (Table 4.14) and taking into account the 

characteristics of the different activated carbons, modified NOR 125-180 is clearly the most 

effective adsorbent, adsorbing a maximum of 3.79 µg/mg carbon, as indicated by the plateau of 

the adsorption isotherm, followed by NOR 63-90 which adsorbs a maximum of 3.33 µg/mg 

carbon. 

Table 4.15 summarizes relevant chemical and textural properties of the three activated carbons. 

Table 4.15. Summary of activated carbon properties. 

AC 
Micropore 

volume (cm
3
/g) 

BJH volume (cm
3
/g) 

(macro + mesopores) 
pHpzc 

Oxygen 

content, % 

NOR 125-180 0.35 0.34 9.10 18 

NOR 63-90 0.36 0.40 9.10 15 

Modified NOR 125-180 0.39 0.40 12.1 9.9 

 

The surface created by crushing NOR 125-180 apparently causes an increase in the capacity of 

NOR 63-90 carbon. Donati et al. (1994) proposes that MC-LR maximum adsorption for the 

AC’s is directly related to the pore volume in the mesopore region and the most effective MC-

LR adsorbent bears the largest mesopore volume. 

The size and the shape of MC-LR molecule, which is dependent on the overall configuration of 

the hepto-peptide ring and side-chains (Lanaras et al., 1991), is important when considering the 

relevance of the above correlation. With the assistance of molecular models (Lanaras et al., 

1991), the diameter of the molecule was estimated to be between 1.2 and 2.6 nm. For the 

removal of microcystin-LR, literature indicates that the mesopore structure (2-50 nm) is 

consistent with the microcystin size (1.2-2.6 nm) (Donatiet al., 1994, Newcombe and 

Nicholson, 2004), so a high MC-LR adsorption capacity would require a high mesopore 

volume. The present results corroborate this. Figure 4.19 shows the correlation between the 

maximum adsorption of MC-LR onto the studied ACs and their BJH (a) and micropore (b) 

volumes.  
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Figure 4.19. Correlation of the qmax of the MC-LR adsorbed with the mesopore and macropore volumes (BJH) and 

with micropore volume. 

 

The amount adsorbed by each AC is directly proportional to the BJH volume, whereas there is 

no correlation with the micropore volume. This result suggests the importance of mesopores in 

the adsorption of MC-LR (with a reasonably correlation coefficient of 0.88). 

This observation is consistent with those previously made for MIB adsorption by AC 

(Newcombe et al., 1997) and for surfactant adsorption (Pendleton et al., 2002) by AC. The 

micropores (< 1nm) in carbon offer only a nominal internal surface for adsorption (Huang and 

Cheng, 2007). 

 

However, Figure 4.19a shows that the same BJH volume may be associated to different 

adsorption capacities, other factors must therefore be contributing to the higher adsorption 

capacity shown by the modified carbon. Actually the isotherms show a trend of increasing 

affinity with decreasing the oxygen content (Figure 4.20), which is also in agreement with 

results of Considine et al. (2001); Pendleton et al. (2002) and Costa, 2010. 

 

Figure 4.20. Correlation between the amounts of MC-LR adsorbed with oxygen content on AC´s (2.5 mM IS 

electrolyte). 
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A good linear correlation between MC-LR adsorption capacity and the oxygen content (Figure 

4.20) of the activated carbons is also an interesting finding – the higher the AC oxygen content, 

the lower the capacity for adsorbing MC-LR. Wu and Pendleton (2001) observed this type of 

trend for the adsorption of a relatively hydrophobic low molecular weight anionic surfactant on 

different activated carbons. They found a linear decrease of the adsorption capacity with 

increasing oxygen content of the carbonaceous adsorbent. Also Considine et al., (2001) shows 

that increasing surface oxygen content at a constant pore volume leads to a decrease in the 

amount adsorbed of MIB.  

The pHpzc is a good indicator of the carbon surface charge and therefore of its basicity. All the 

three carbons presented high pHpzc, in the order NOR 125-180 = NOR 63-90 < modified NOR 

(9.1, 9.1 and 12.1, respectively) i.e. they were positively charged in all experiments (pH 5-7). At 

the pH of the experiences, microcystin-LR was negatively charged, with a -1 net charge, 

carrying two net negative charges (COO
-
) and one net positive charge (NH2

+
). 

When modified/functionalized, pHpzc of NOR 125-180 increased (9.1 to 12.1), making this 

modified AC more alkaline and thus increasing the adsorption capacity.  

From these observations, it is reasonable to conclude that the adsorption of MC-LR by AC from 

aqueous solution will be influenced not only by porosity, but also by the adsorbent surface 

chemistry. 

A controlled increase or decrease in the oxygen content will lead to a controlled modification of 

the adsorbent surface chemistry (Considine et al., 2001). From these results, the heating method 

used in this work is an excellent and simple process for increasing the basicity and 

hydrophobicity of an AC and thereby enhancing the MC-LR adsorption capacity of the carbon. 

Regarding the adsorption kinetics, the comparison is shown Figure 4.21 and in Table 4.16. 

 

Figure 4.21. Adsorption kinetics for adsorption of MC-LR onto the studied ACs. 
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Table 4.16. Adsorption kinetic parameters with 95% confidence interval for adsorption of MC-LR onto the studied 

ACs (2.5 mM IS electrolyte). 

AC 
Pseudo-second order model 

qe_calc (µg/mg) k2 (mg/(µg/h)) R
2
 

NOR (125-180 µm) (♦) 2.47 0.064 ± 0.01 0.996 

NOR (63-90 µm) (▪) 3.33 0.852 ± 0.09 0.998 

Modified NOR (125-180 µm) (▲) 3.77 0.089 ± 0.02 0.994 

 

The higher k2 correspond to the NOR 63-90, demonstrating a faster adsorption of MC-LR, 

followed by modified NOR 125-180. 

The kinetic data show an excellent agreement with the pseudo-second order model (R
2 
> 0.99). 

These results corroborate those obtained in the isotherms. The adsorption kinetics was described 

by the pseudo-second order model, which is consistent with adsorption by chemisorption, and 

therefore well described by the Langmuir isotherm model. 

Crushing carbon (NOR 63-90) has also a double effect. On one hand, the resistance to transport 

is lower because of the smaller particle size, and on the other hand apparently the crushing 

opens the pores, which facilities the adsorption.   

The intraparticle diffusion and Boyd’s models approach is shown in Figure 4.22 and Table 4.17. 

 

Figure 4.22. Intraparticle diffusion model for MC-LR adsorption onto the studied activated carbons (2.5 mM IS 

electrolyte). 
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Table 4.17. Intraparticle diffusion model parameters for MC-LR adsorption onto the studied activated carbons (2.5 

mM IS electrolyte). 

AC 
Intraparticle diffusion model 

kp (µg/mg.h
1/2

) C (µg/mg) R
2
 

NOR 125-180 (♦) 0.446 ± 0.026 - 0.977 

NOR 63-90 (♦) 0.242 ± 0.047 1.85 ± 0.102 0.989 

Modified NOR 125-180 (♦) 0.270 ± 0.060 0.35 ± 0.18 0.985 

 

In the case of MC-LR adsorption onto NOR 63-90 carbon the three linear segments above 

exposed can be notable and the second linear segment has a significant intercept (C=1.85 ± 

0.102 µg/mg, Figure 4.22). The multilinearity analysis of qt versus t
1/2

 plot for the NOR 63-90 

indicates a significant contribution of the external mass transfer to the MC-LR adsorption 

kinetics onto this carbon. NOR 125-180 carbon exhibits only one linear portion. The linear 

portion passes through the origin indicating that the intraparticle diffusion is the rate controlling 

step for the adsorption. Modified NOR 125-180 carbon exhibits only one linear portion, but this 

linear portion do not pass through the origin indicating that the intraparticle diffusion is not the 

only rate controlling step for the adsorption. 

These conclusions agree with the carbons’ particle grade. The smaller particle size, the greater is 

the importance of the external mass transfer over the intraparticle diffusion.  This is, the MC-LR 

adsorbate may easily diffuse through the internal pores of the small particles of NOR 63-90 µm, 

and external diffusion becomes the rate-limiting step for this AC. MC-LR has to travel a shorter 

path through the NOR 63-90 µm particles compared to the 125-180 µm particles, and the 

external film diffusion is thus more relevant to the overall kinetics than the intraparticle 

diffusion. These results are in accordance with Mohan et al., (2004) and with Costa (2010), 

concluding that the external transport is the rate-limiting step in systems where the particle sizes 

of the adsorbate are smaller, which is the case of NOR 63-90 µm carbon. 

 

Figure 4.23. Diffusion coefficients of MC-LR through the studied ACs. 
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Table 4.18. Boyd’s  model parameters for MC-LR adsorption onto the studied activated carbons. 

AC 
Boyd et al. (1947) equation 

rAC (µm) Equation Di (cm
2
/s) R

2
 

NOR 125-180 (♦) 76.25 Bt = (0.056 ± 0.003) t   9.16x10
-11

 0.996 

NOR 63-90 (♦) 38.25 
Bt = (0.054 ± 0.013) t 

+ (0.508 ± 0.072)   
2.22x10

-11
 0.983 

Modified NOR 125-180 (♦) 76.25 
Bt = (0.08 ± 0.015) t 

+ (0.015 ± 0.032) 
1.35x10

-11
 0.969 

 

Boyd plots confirm the results obtained by intraparticle diffusion model. 

The integrated analysis of the results of the chemical and textural characterization of the 

activated carbons shows that the carbon which presents the highest surface area (ABET), external 

area (Aext), pHpzc value and the lowest oxygen content (and hence hydrophobicity), the modified 

NOR 125-180, has a higher capacity for adsorption of MC-LR. These characteristics explain the 

higher capacity for modified NOR 125-180 when compared with NOR 125-180.  

The results showed that both physical and chemical properties simultaneously affect the 

adsorption process. In such a complex system the adsorption of MC-LR cannot be explained by 

structure of AC or surface chemistry effects alone. 

 

 

4.3. ADSORPTION OF TANNIC ACID ONTO ACTIVATED CARBON 

4.3.1. Comparative analysis of the MC-LR adsorption and TA adsorption 

as single-solutes 

 

The single solute isotherms were conducted with MC-LR and TA dissolved in 2.5 mM IS 

electrolyte solution. The initial concentrations were 104 µg MC-LR/L for microcystins and 5 

mg TA/L for NOM model compound.  

Is important to note again, that the MC-LR isotherm cannot be called single-solute, since an 

extract was used. Figure 4.24 represents single-solute isotherms of MC-LR and TA adsorption 

onto NOR 125-180. 
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Figure 4.24. Single-solute isotherms (Langmuir plot) of MC-LR and TA adsorption onto NOR 125-180 (2.5 mM IS 

background electrolyte). 

 

Table 4.19. Single-solute isotherms (Langmuir parameters) of MC-LR and TA adsorption onto NOR 125-180 (2.5 

mM IS background electrolyte). 

 qmax (µg/mg) b (L/µg) R
2
 

MC-LR 2.5 ± 0.14 6.4 ± 4.6 0.770 

TA 117.4 ± 17.2 0.003 ± 0.002 0.908 

 

Parameters of TA adsorption were not comparable to those of MC-LR. According to Campinas 

and Rosa (2006) and Campinas (2009), the parameters relative to tannic acid adsorption onto 

PAC SA-UF should be comparable to those of microcystins, with a slightly lower adsorption 

capacity and intensity, and these results provided good evidence of a similar access to a range of 

adsorption sites for both MC-LR and TA.  

Regardind the kinetic study, no major differences were observed in the velocity profile between 

MC-LR and TA adsorption (Figure 4.25), although it was expected a faster adsorption of MC-

LR. 

 

Figure 4.25. Single-solute adsorption kinetics of MC-LR and TA adsorption in the presence of 2.5 mM IS 

background onto NOR 125-180 µm. 
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Table 4.20. Single-solute adsorption kinetics of MC-LR and TA adsorption in the presence of 2.5 mM IS background 

onto NOR 125-180 µm. 

 k2 (mg/(µg/h)) R
2
 

MC-LR + IS 0.064 ± 0.008 0.996 

TA + IS 0.002 ± 0.001 0.975 

 

It is then expected competition between both solutes and consequently a lower adsorption 

capacity in the competitive adsorption tests (presented in section 4.4). 

 

4.3.2. Comparative analysis of the three NOR carbons for TA adsorption 

 

Equilibrium isotherms and kinetic studies of tannic acid onto the studied ACs were detailed in 

sections 3.7.4 and 3.7.7.  The fittings of the adsorption isotherm curves are illustrated in Figure 

4.26 and Table 4.21 presents Langmuir parameters for the three NOR carbons. For NOR 125-

180 and for NOR 63-90, the isotherms show a reasonably plateau, thus the Freundlich equation 

does not apply. For the modified NOR 125-180 both isotherm models were tested but the 

Langmuir still produces the best fitting, and consequently only the Langmuir isotherm fitting is 

presented. 

 

 

Figure 4.26. Langmuir isotherm fitting for adsorption of TA onto the studied ACs (2.5 mM IS electrolyte). 
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Table 4.21. Langmuir isotherm parameters with 95% confidence interval for adsorption of TA onto the studied ACs 

(2.5 mM IS electrolyte). 

AC 
Langmuir fitting 

qmax (µg/mg) b (L/µg) R
2
 

NOR (125-180 µm) (●) 117 ± 17 0.003 ± 0.002 0.908 

NOR (63-90 µm) (●) 184 ± 19 0.004 ± 0.001 0.982 

Modified NOR (125-180 µm) (●) 190 ± 63 0.001 ± 0.0007 0.941 

 

 

Figure 4.26 and Table 4.21 shows that TA adsorption increases approximately with increasing 

the available pore volume (mesopore and macropore): NOR 125-180 < NOR 63-90 < modified 

NOR 125-180. These results were consistent with the findings of Bjelopavlic et al. (1999). 

Again, available pore volume is not the only factor influencing adsorption. Chemical factors 

must therefore be involved in the adsorption mechanisms, probably associated to the surface 

chemistry and associated functional groups of the ACs. 

The factors influencing adsorption seems to be the same for MC-LR and for TA. TA is 

negatively charged at pH of the experiments and electrostatic interactions became significant. 

 

  

Figure 4.27. Correlation of the qmax of the TA adsorbed with the mesopore and macropore volumes (BJH) and with 

micropore volume. 

 

 

Figure 4.28. Correlation between the amounts of TA adsorbed with oxygen content on AC´s (2.5 mM IS electrolyte). 
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As observed in Figure 4.27 and Figure 4.28, make sense to say that just changing the oxygen 

content of an AC keeping its structure, MC-LR adsorption can be increased when in the 

presence of TA, making this a factor of selectivity. 

  

Modified NOR 125-180 displays significantly higher adsorption than NOR 125-180 and has 

much higher positive surface charge than NOR 125-180 at the pH of the experiments. The 

adsorption of TA appears to be attributable, as adsorption of MC-LR, to a number of factors.  

 

As for adsorption of MC-LR, the objective of the kinetic studies for TA adsorption was to 

evaluate the limiting steps of the TA adsorption. The same kinetic models were used to study 

these processes and to investigate the mechanisms and the potential rate-controlling step(s) of 

TA adsorption, such as mass transport (intraparticle diffusion model) and chemical reaction 

(pseudo first and second order models). It was observed that the pseudo-first order model 

fitting shows poor correlation, consequently, it is not presented here (Figure 4.29). As the TA 

adsorption kinetic data are best fitted by the pseudo-second order model, this indicates the 

chemisorption as the adsorption mechanism. 

   

 

Figure 4.29. Pseudo-second order adsorption kinetics fitting for adsorption of TA onto NOR 125-180 and modified 

125-180 (2.5 mM IS electrolyte). 

 

The pseudo-second order adsorption kinetics model fitting of C (µg/L) and q (µg/mg) for TA 

adsorption onto NOR 125-180 and modified NOR 125-180 are shown in Figure 4.30. 
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Figure 4.30. Pseudo-second order fitting of C (µg/L) and q(µg/mg) for NOR 125-180 (●) and for modified NOR 

125-180 (●) adsorption of TA (2.5 mM IS electrolyte). 

 

Table 4.22. Adsorption kinetics parameters with 95% confidence interval for adsorption of TA onto NOR 125-180 

and modified NOR 125-180 (2.5 mM IS electrolyte). 

AC 
Pseudo-second order model 

qe_calc (µg/mg) k2 (mg/(µg/h)) R
2
 

NOR (125-180 µm) (●) 122 ± 14 0.0020 ± 0.00070 0.971 

Modified NOR (125-180 µm) (●) 130 ± 17 0.0010 ± 0.00050 0.975 

 

TA is present in much higher concentration than MC-LR (5 mg/L vs 100 µg/L, i.e. 50 times 

higher) and has a strong negative surface charge at the studied pH values (Moreno-Castilla et 

al., 2004), leading to strong TA-AC electrostatic attraction.  

The intraparticle diffusion and Boyd’s models approach is shown in Figure 4.31 and Table 4.23. 

 

Figure 4.31. Intraparticle diffusion model (a), and Boyd plot (diffusion coefficient) (b), for TA adsorption onto NOR 

125-180 (●) and modified NOR 125-180 (●) (2.5 mM IS electrolyte). 
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Table 4.23. Intraparticle diffusion and Boyd’s parameters for TA adsorption onto NOR 125-180 and modified NOR 

125-180 (2.5 mM IS electrolyte). 

AC 

Intraparticle diffusion model Boyd et al. (1947) equation 

kp 

(µg/mg.h
1/2

) 
C (µg/mg) R

2
 

rAC 

(µm) 
Equation Di (cm

2
/s) R

2
 

NOR 125-180 

(●) 
23.4 ± 5.79 5.2 ± 17.6 0.982 76.25 

Bt = (0.03±0.05) t 

+ (0.05±0.22)  
5.4x10

-11
 0.986 

Modified 

NOR 125-180 

(●) 

21.8 ± 3.96 2.6 ± 8.2 0.991 76.25 
Bt = (0.04±0.01) t 

– (0.012±0.05)  
6.2 x 10

-11
 0.982 

 

The experimental data for TA adsorption show the same tendency as the results for MC-LR 

adsorption. Modified NOR 125-180 proved to be more effective in TA adsorption. 

Considering the intraparticle diffusion model for TA adsorption, NOR 125-180 carbon exhibits 

only one linear portion. The linear portions do not pass through the origin indicating that the 

intraparticle diffusion is not the only rate controlling step for the adsorption (Table 4.23). 

In the case of TA adsorption onto modified NOR 125-180 carbon also one linear segment can 

be observed. But the errors associated with the parameters are so high, that we cannot guarantee 

that the intercepts is not zero, thus controlling the intraparticle diffusion (Table 4.23). 

In order to get a perceptive of the step that controls the TA adsorption kinetics; the data were 

also analyzed by the kinetic expressions given by Boyd et al. (1947). 

The calculated Bt values were plotted against time t and are shown in Figure 4.31b. The 

linearity of this plot is used to distinguish which transport mechanism, external transport or 

intraparticle, controls the adsorption rate. The plot presented in Figure 4.31b is linear but do not 

pass through the origin. These results validate the previous conclusion based on the intraparticle 

diffusion model consequently demonstrating that the rate-limiting step can be the intraparticle 

diffusion for TA adsorption onto NOR 125-180 carbon and modified NOR 125-180. 

The diffusion coefficients of TA through studied carbons were determined by equation 2.17, 

assuming spherical particles.  
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4.4. COMPETITIVE ADSORPTION BETWEEN MC-LR AND TA 

4.4.1. Competitive adsorption between MC-LR and TA onto NOR 125-

180 

 

Figure 4.32 presents the competitive adsorption isotherms of extract of MC-LR (103 µg/L in 2.5 

mM IS (1 mM IS KCl + 1.5 mM IS CaCl2) background electrolyte) and tannic acid (5 mg TA/L) 

onto NOR 125-180. The experimental conditions were detailed in section 3.7.8. 

For easier analysis of the effect of TA competition, previous data relative to NOR adsorption of 

MC-LR from 2.5 mM electrolyte (single solute isotherm, Figure 4.6) are also shown in Figure 

4.32. 

 

Figure 4.32. Competitive and single-solute adsorption isotherms of MC-LR onto NOR 125-180 (2.5 mM IS 

electrolyte) 

 

The competitive adsorption isotherm of MC-LR onto NOR 125-180 in the presence of tannic 

acid presents a negative slope, and consequently the Freundlich and Langmuir models did not fit 

the experimental data. 

Only a 48% MC-LR removal was achieved, in contrast with the 98% removal found in “single 

solute” conditions.  

Pelekani and Soeyink (2000) identified this phenomenom in a study where the presence of 

methylene blue strongly affected atrazine adsorption to activated carbon fiber, resulting in a 

negative slope in the adsorption isotherm of atrazine. They atributed this to direct competition 

for the same adsorption sites in the micropore region. 
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In this case, the competition is in the mesopores region, which has the adequate size for these 

molecules (TA is 1700 g/mol and MC-LR is 994 g/mol). TA is present in much higher 

concentration than MC-LR (5 mg/L vs 100 µg/L, i.e. 50 times higher) and has a strong negative 

surface charge at the studied pH values (Moreno-Castilla et al., 2004), leading to strong TA-AC 

electrostatic attraction.  

Considering this and by observing the Figure 4.32 it is believed that there was no adsorption of 

MC-LR, due to the presence of TA and consequently strong competition. 

These results show that tannic acid has a strong influence on the MC-LR adsorption onto NOR 

125-180 carbon. As both TA and MC-LR molecules have similar molecular weights and carry 

net negative charges at the pH of the experience, these similar characteristics point to the fact 

that there would be competition for the positively charged activated carbon. The shape of the 

MC-LR isotherm (Figure 4.32) with a negative slope is indicative of the strongly competing 

effects between the two adsorbates (Pelekani and Snoeyink, 2000).  

TA molecules are small enough to access small mesopores and may therefore directly compete 

with MC-LR for the same adsorption sites. However, TA molecules may block the MC-LR 

access to even small mesopores where MC-LR can fit whereas TA is size-excluded.  

When pore blockage by TA is a dominant effect, both adsorption kinetics and adsorption 

equilibrium will be affected (Matsui et al., 2003).  

Kinetic tests were then performed (Figure 4.33). As can be seen in Figure 4.33a), when in 

competition, although a reducing AC capacity for MC-LR and for TA had been previously 

observed they have similar kinetics, so direct competition seems to be the dominant effect.   

 

   

Figure 4.33. Single-solute adsorption kinetics of MC-LR and TA (a), Competitive adsorption kinetics of MC-LR in 

the presence of TA (b), and competitive adsorption kinetics of TA in the presence of MC-LR (c) onto NOR 125-180.  
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Visibly, direct competition can only occur when the competing compounds are able to access 

the same sites. This situation will arise when the compounds are of the same size and compete 

for the same pores, or when the target compound adsorbs in a larger pore (with lower adsorption 

energy) and the larger competing compound (with a higher adsorption energy) is able to 

displace it (Newcombe et al., 2002). As suggested by Kilduff et al., (1998), direct competition 

and pore blockage become indistinguishable as the competing and target compounds become 

closer in size.  

 

4.4.2. Competitive adsorption between MC-LR and TA onto NOR 63-90 

 

Figure 4.34 presents the competitive adsorption isotherms of extract of MC-LR (42 µg/L in 2.5 

mM IS (1 mM IS KCl + 1.5 mM IS CaCl2) background electrolyte) and tannic acid (5 mg 

TA/L) onto NOR 63-90. The experimental conditions were detailed in section 3.7.8. 

For easier analysis of the effect of TA competition, previous data relative to NOR 63-90 

adsorption of MC-LR from 2.5 mM electrolyte (single solute isotherm, Figure 4.10) are also 

shown in Figure 4.34. 

   

Figure 4.34. Competitive and single-solute adsorption isotherms of MC-LR onto NOR 63-90 carbon from electrolyte 

solution. 
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For comparison purposes with NOR 125-180, isotherms were both represented on the same 

graph (Figure 4.35). 
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Figure 4.35. Comparison between NOR 125-180 and NOR 63-90 carbons in the adsorption of MC-LR in the 

competitive adsorption between MC-LR and TA. 

 

As can be observed and expected, NOR 63-90 has a higher adsorption capacity than NOR 125-

180, even in competitive adsorption.  

 

4.4.3. Competitive adsorption between MC-LR and TA onto modified 

NOR 125-180 

 

Figure 4.36 presents the competitive adsorption isotherms of extract of MC-LR (90 µg/L in 2.5 

mM IS (1 mM IS KCl + 1.5 mM IS CaCl2) background electrolyte) and tannic acid (5 mg 

TA/L) onto modified NOR 125-180. The experimental conditions were detailed in section 3.7.8. 

For easier analysis of the effect of TA competition, previous data relative to modified NOR 

125-180 adsorption of MC-LR from 2.5 mM electrolyte (single solute isotherm, Figure 4.14) 

are also shown in Figure 4.36. 

  

Figure 4.36. Competitive and single solute adsorption isotherms of MC-LR onto modified NOR 125-180 carbon. 
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Again, for comparison purposes with NOR 125-180 isotherms were both represented on the 

same graph (Figure 4.37). When in presence of TA, equilibrium capacity decreases. 

 

Figure 4.37. Comparison between NOR 125-180 and modified NOR 125-180 carbons in adsorption of MC-LR in the 

competitive adsorption between MC-LR and TA. 

 

As can be observed and expected once more, modified NOR 125-180 has a higher adsorption 

capacity than NOR 125-180, even in competitive adsorption.  

Kinetic tests were then performed and are shown in Figure 4.38. 

 

Figure 4.38. Single solute adsorption kinetics of MC-LR and TA (a), Competitive adsorption kinetics of MC-LR in 

the presence of TA (b), and competitive adsorption kinetics of TA in the presence of MC-LR (c) onto modified NOR 

125-180 µm. 

 

Single-solute adsorption kinetics of MC-LR and TA (Figure 4.38a) are very similar. When in 

competition, although a reducing AC capacity for MC-LR and for TA had previously observed, 

they have similar kinetics, so direct competition seems to be the dominant effect. 
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4.5. COMPETITIVE ADSORPTION BETWEEN MC-LR AND TA ONTO 

PRELOADED NOR 125-180 

4.5.1. General  

 

Adsorption isotherms with preloaded NOR 125-180 were performed to evaluate the competitive 

adsorption of MC-LR in the presence of background NOM on preloaded carbon. For that 

purpose, the NOM surrogate TA dissolved in an inorganic background matrix approaching that 

of soft-moderately hard natural water (2.5 mM IS (1 mM IS KCl + 1.5 mM IS CaCl2)) was 

investigated. The organic matrix (TA) concentration was always 50 times higher compared to 

MC-LR initial concentration. The conditions were detailed in sections 3.2.4 and 3.7.8. 

Preloading carbon with tannic acid was carried out during 20 days until all activated carbon is 

saturated. 

 

4.5.2. Adsorption of MC-LR onto TA-preloaded NOR 125-180 carbon  

 

The adsorption isotherm of extract of MC-LR (96 µg/L) in electrolyte solution (2.5 mM IS (1 

mM IS KCl + 1.5 mM IS CaCl2)) onto TA-preloaded NOR 125-180 is depicted in Figure 4.39. 

  

Figure 4.39. Single solute adsorption isotherm of MC-LR onto TA-preloaded NOR 125-180. 

 

Similarly to competitive adsorption of MC-LR onto NOR 125-180 in the presence of TA, the 

adsorption isotherm of MC-LR onto TA-preloaded NOR carbon presents a negative slope and 

consequently the Freundlich and Langmuir models do not fit the experimental data. 

As discussed earlier in section 4.4, the negative slope of the competitive adsorption isotherms of 

MC-LR onto both NOR 125-180 (G1 and PL) is indicative of a very strong direct site 

competition between TA and MC-LR (Pelekani and Snoeyink, 2000). 
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With preloading, the surface of the activated carbon can become more polar. This change may 

also alter the microcystin removal mechanism (Lambert et al.,1996). 

Desorption, however, is generally “activated”. Most small compounds might be expected to 

adsorb and desorb, practically instantaneously at the microscale (Pignatello and Xing, 1996). 

Carter et al., (1992) studied the effect of preloading of NOM on the adsorption of 

trichloroethylene (TCE). Association between MC-LR and TA (micropollutant and NOM) 

molecules possibly will decrease adsorption (Carter et al., 1992). 

Figure 4.40 shows a comparison between single solute isotherms of MC-LR onto NOR 125-180 

and TA-preloaded NOR 125-180. 

 

Figure 4.40. Single solute adsorption of MC-LR onto NOR 125-180 (∆) and TA-preloaded NOR 125-180 (▲). 

 

It is clearly in Figure 4.40, the effect of preloading NOR 125-180. AC capacity for MC-LR 

adsorption decreases, and it seems correlated with desorption phenomenon (negative slope of 

isotherm). Pores were already taken by TA, as it can be seen in Table 4.3 (preloaded NOR 

characterization). 

Pore blockage and direct site competition are generally considered the most likely mechanisms 

affecting activated carbon adsorption in the presence of NOM (Newcombe et al., 2002). Using 

the data from a suite of preload and simultaneous adsorption experiments, Pelekani and 

Snoeyink (1999) concluded that the competitive mechanism depends strongly on the pore size 

distribution of the carbon, as well as the relative sizes of the target and competing compounds. 

They found that a wider pore size distribution in the adsorbent resulted in less pore blockage 

and consequently less evidence of competition. 
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The comparison between single solute adsorption kinetics of MC-LR onto NOR 125-180 and 

TA-preloaded NOR 125-180 is presented in Figure 4.41. 

 

Figure 4.41. Single solute adsorption kinetics of MC-LR onto NOR 125-180 and TA-preloaded NOR 125-180. 

 

As can be seen in Figure 4.41, when in TA-preloaded NOR 125-180, although a reducing AC 

capacity for MC-LR and for TA had been previously observed in Figure 4.40, they have similar 

kinetics, so direct competition seems to be the dominant effect also in preloaded AC. 

 

4.5.3. Competitive adsorption between MC-LR and TA onto TA-

preloaded NOR 125-180 

 

The adsorption isotherms of MC-LR (extract) in 2.5mM IS (1 mM IS KCl + 1.5 mM IS CaCl2) 

electrolyte with TA onto TA-preloaded NOR 125-180 are depicted in Figure 4.42. For 

comparison purposes, analogous data found with NOR 125-180 (originally presented in Figure 

4.32) are also shown.  

 

Figure 4.42. Competitive adsorption of MC-LR onto NOR 125-180 (◊) and TA-preloaded NOR 125-180 (♦) 

carbons. 
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The presence of NOM reduce significantly the efficiency of activated carbon, by competing 

with target MC-LR for adsorption sites, and thus reducing MC-LR uptake and rate of 

adsorption. It has been showed that the preloading phenomenon can significantly reduce the 

performance of activated carbon adsorption (Kilduff and Karanfil, 2002).  

Both isotherms present a negative slope, which is indicative of a strong competition. The 

apparent displacement to the left of the curve with TA-preloaded NOR 125-180 means that the 

capacity of the AC decreased. 

As can be observed, and as expected, the preloading of the carbon reduces its capacity to adsorb 

MC-LR. 
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5. CONCLUSIONS AND FUTURE DEVELOPMENTS 

5.1. CONCLUSIONS 

 

Cyanobacteria are common participants of the freshwater phytoplankton community in surface 

waters. They are of concern in drinking water because of their ability to produce toxins - 

cyanotoxins, tastes and odors which can significantly impair water quality. Excessive growth of 

cyanobacteria (blue-green algae) in drinking water reservoirs is an increasingly common 

problem associated with eutrophication. This poses an additional problem to our water treatment 

plants to the already challenge of converting water from various sources to good quality 

drinking water.   

The presence of this risk posing cyanotoxins in surface waters used for drinking water 

production led several countries to develop specific guidelines and regulations for drinking 

water, including Portugal (DL 306/2007), motivating research into helpful water treatments 

addressing the removal of these pollutants.  

It is possible that the treatment process may cause lysis and release the intracellular metabolites 

comprising toxins and taste and odor compounds. The present work aimed to understand the 

phenomena responsible for the activated carbon adsorption in removing the most frequently 

occurring cyanotoxins - microcystin-LR (MC-LR) from drinking water, by investigating the 

effects of activated surface chemistry and structure as well as the water background matrix 

making the main objective to study the key properties of activated carbon (trying to reveal 

which has more importance: the structure of AC or its surface chemistry) on the adsorption of 

MC-LR in drinking water treatment. 

For MC-LR adsorption it is important to consider that first MC-LR is a large molecule (larger 

than most microcontaminants studied), and second that it is a complex aggregate of amino acids 

rendering hydrophobic character to its aqueous solution properties. Consequently, the correct 

selection of an AC for MC-LR removal from an aqueous solution, prior to any adsorption 

measurements, requires an appreciation of its properties combined with a detailed knowledge of 

the adsorbent’s physical and chemical properties. Recent studies indicate that not only the 

mesoporosity of an AC is important, but also its surface chemistry (Costa, 2010). This question 

and consequently, this thesis arise with the problematic suggested by Costa, 2010.  

For this purpose, this general objective comprehends: 

 

 Modify activated carbon (NOR 0.8 SUPRA) in order to modify its surface chemistry: 

reducing the oxygen content making it more basic; 
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 Studying mechanisms of competitive adsorption with natural organic matter with 

similar characteristics to those of MC-LR (tannic acid) in waters with similar 

characteristics of those of “blooms” occur, soft natural water (2.5 mM IS electrolyte: 1 

mM KCl + 1.5 mM CaCl2); 

 Tests with TA-preloaded activated carbon, as well as its textural characterization, in 

order to study the predominant effects of competition (pore blocking or direct 

competition); 

 Non-linear modeling of kinetic and isotherm adsorption models. 

 

To achieve these goals, a methodology was developed to evaluate activated carbon performance 

concerning the adsorption capacity for microcystin. The methodology included: 

 

 Carbon selection (based on literature review); 

 

 Treatment of the studied activated carbon including: 

- Carbon preparation: Grinding (two different particle sizes: 125-180 µm and 63-90 

µm with the aim of studying the adsorption kinetics), sieving and washing the 

selected activated carbon; 

- Carbon modification: modification of the surface chemistry making it more basic 

(decreasing oxygen content); 

- Carbon preloading with tannic acid, a NOM surrogate with similar characteristics 

(similar size, charge and hydrophobicity), i.e. a strong competitor with MC-LR. 

 

 Chemical (elemental analysis, ash content, surface charge by carbon titration) and 

textural (porous structure and distribution) characterization of the studied carbons 

(virgin: two particle sizes, modified and after TA-preloading); 

 

 Batch adsorption tests – kinetic and isotherm experiments and respective evaluation 

with kinetic and isotherm models, to study the influence of the structure and surface 

chemistry of activated carbon on the adsorption of microcystins, and on its competitive 

adsorption in the presence of NOM, in controlled conditions of temperature, pH and 

ionic strength (soft natural water: 2.5 mM IS electrolyte – 1 mM IS KCl + 1.5 mM 

CaCl2). 

 

 Non-linear models for kinetic and isotherm adsorption modeling were used due to its 

better fit and lower associated errors. 



Carbon key-properties for microcystin adsorption in drinking water treatment: Structure or surface chemistry? 

 

97 

 

The main conclusions regarding the objectives and subsequent research work are sequentially 

presented below. 

The selection of the activated carbons used in this study was based on a literature review on 

microcystin adsorption. This study evaluated the MC-LR removal from water using commercial 

NORIT 0.8 SUPRA milled GAC. A large number of activated carbons are available in the 

market, but its evaluation in full-scale is relatively expensive and, with cyanotoxins it is an 

impossible mission, since these toxins are commercially very expensive. 

The literature review indicated the peat based NORIT 0.8 SUPRA (NOR) granular carbon to be 

very effective for MC-LR removal. For NOR carbon, two different carbon sizes were tested, 

125-180 μm (G1) and 63-90 μm (G2). The surface chemistry of carbon NOR 125-180 was 

modified by careful thermal treatment in order to obtain different surface properties. This AC 

(NOR 125-180) was also preloaded with tannic acid.  

These activated carbons were characterized in terms of the key properties for toxin adsorption, 

i.e. surface chemistry and porous structure (textural characterization). 

The chemical characterization revealed that the studied activated carbons are basic in nature 

(since the point of zero charge was always above seven), in the order NOR 125-180 = NOR 63-

90 (pHpzc 9.1) < modified NOR 125-180 (pHpzc 12.1). The pH of the studied solutions ranged 

from five to seven, meaning that all carbons were carrying a net positive charge. In addition, the 

heteroatom content was also determined, since surface chemistry of activated carbons mainly 

depends on their surface oxygen content.  As expected, crushing the AC to obtain a smaller 

particle size does not affect its pHpzc. 

The oxygen content of NOR 125-180 was mainly attributed to carbonyl and lactone groups and 

to carboxylic and phenolic groups. 

The AC textural characterization indicated similarity in the pore size distribution of these 

carbons, composed mostly of mesopores and macropores (BJH volume), but also composed by 

a significant number of micropores.  

The AC was also modified by heat treatment (changing its porous structure and increasing the 

volume of micro and mesopores). From the data, among the three studied carbons, modified 

NOR 125-180 has the highest surface area and the highest BJH adsorption cumulative pore 

volume, i.e., has the largest number of mesopores and macropores.  

The preloaded AC was analyzed for surface area and pore volume distribution remaining after 

preloading with TA. When loading NOR 125-180, the pores congest, making it less porous and 
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consequently all pore volumes and surface areas show a decrease when compared with 

NOR125-180.  

The BJH volume of these carbons correlated well with the carbon adsorption capacity for MC-

LR adsorption, suggesting the importance of these pores in the adsorption of MC-LR. In 

addition, a major finding was the great correlation obtained between the amount of MC-LR 

adsorbed at equilibrium (qmax Langmuir parameter) and the oxygen content of the activated 

carbons.  

The carbon characterization and its correlation to MC-LR adsorption showed that the surface 

chemistry of the carbons has a better influence on MC-LR adsorption than the carbon’s porous 

structure usually referred in the literature as the dominant carbon property. However, we cannot 

say that a property is more important than another, because when changed the surface 

chemistry, porous structure also changed. To be able to say which of the two properties would 

have more importance, we should have considered separate variables, i.e., maintaining the 

porous structure constant and only changing the surface chemistry of AC or vice versa.  

All experiments were made with an inorganic background matrix approaching that of soft-

moderately hard natural water (2.5 mM). The impact of the water background matrix in terms of 

natural organic matter (NOM) content was assessed through kinetic and isotherm tests with 

model water (the NOM surrogate tannic acid dissolved in electrolyte solution with 2.5 mM) 

which allowed the evaluation of the carbons’ performance. 

An integrated analysis of kinetic and isotherm studies (based on Freundlich and Langmuir 

models) was used to investigate the effects of carbon physical and chemical properties on MC-

LR adsorption, as well as the competitive adsorption of the MC-LR and NOM, both in 

simultaneous competition or in preloaded carbon conditions.  

 

The MC-LR adsorption kinetics onto the activated carbons was studied using three kinetic 

models: pseudo-first order, pseud-second order and intraparticle diffusion models. The MC-LR 

adsorption from electrolyte solution is best described by the pseudo-second order model for all 

the studied forms of NOR 0.8. The TA adsorption onto the activated carbons was also studied 

using the same models, but TA adsorption is best described by the intraparticle diffusion model.  

 

Another issue investigated was the influence of the natural organic matter with the same 

characteristics of MC-LR (TA) on the adsorption of MC-LR onto activated carbon. The results 

found for the studied carbons revealed a reduced MC-LR adsorption, as expected. 
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The competition mechanisms between the water background NOM and MC-LR were studied in 

detail. The results showed that similar sized NOM (represented by TA) strongly competes with 

MC-LR by direct site competition (isotherms with negative slope for NOR 125-180 were 

observed). The integrated analysis of adsorption kinetics and isotherms indicated that MC-LR 

adsorption is mostly influenced by a direct site competition mechanism with NOM, while the 

kinetic were not significantly affected.  

In summary, the following important conclusions can be taken for the adsorption of MC-LR 

onto activated carbon: 

 

 The surface chemistry of activated carbons is very important on their adsorption 

capacity for MC-LR, since a good correlation between adsorption capacity and surface 

oxygen content (inversely related to carbon hydrophobicity) was determined; 

 

 The porous structure of activated carbons is not as important as surface chemistry in the 

MC-LR adsorption, although some correlation was found between the adsorption 

capacity and BJH (meso and macropore) volume; 

 

 Modified NOR 125-180 was found to be more efficient on MC-LR removal, due to its 

high basicity (less oxygen content when compared with the other studied ACs) but also 

given its higher surface area and larger number of mesopores; 

 

 From the results, the heating method used in this work is an efficient and simple process 

for reducing a relatively hydrophilic activated carbon and thereby enhancing the MC-

LR adsorption capacity of the carbon; 

 

 Crushing the carbon into a size range of 63-90 µm in addition to reducing the 

diffusional path contributed to pore opening facility the adsorption and consequently 

causing the faster adsorption of microcystin-LR. Furthermore, NOR 63-90 also shows 

to have higher adsorption capacity when compared with NOR 125-180. Apparently, the 

surface created by crushing NOR 125-180 causes an increase in the capacity of NOR 

63-90 carbon;  

 

 The intraparticle diffusion model showed that the smaller the particle size (i.e. for NOR 

63-90), the greater is the importance of external mass transfer over intraparticle 

diffusion;  
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 Chemisorption was the adsorption mechanism for MC-LR adsorption for all the studied 

carbons, as expressed by the best fitting being the pseudo-second order kinetic model 

and for the Langmuir isotherm model, with the intraparticle diffusion being the rate-

limiting step;  

 

 NOR carbon, in all three forms (doses ranging from 12.5 to 50 mg/L) achieved very 

high removal efficiencies of microcystins (> 90%), ensuring the agreement with the 

Portuguese and the WHO drinking water guideline value for MC-LR (1 µg/L);  

 

 Even in competition, modified NOR 125-180 and NOR 63-90 showed a better 

adsorption capacity for MC-LR removal;  

 

 It has been shown that the preloading phenomenon can significantly reduce the 

performance of activated carbon adsorption. Since the quantification of TA in solution 

after the preloading was not performed, it was not possible to quantify it’s desorption. 

 

Table 5.1. Summary of removal percentage in the adsorption of MC-LR and TA onto the studied AC’s. 

AC 

Single solute Competition 

MC-LR 

C0= 85 -104 µg/L 

TA 

C0=5 mg/L 

MC-LR 

C0= 42-90 µg/L 

TA 

C0=5 mg/L 

NOR 125-180 µm > 90% 80% 48% 70% 

NOR 63-90 µm > 90% 90% > 90% > 90% 

Modified NOR 125-180 µm > 90% 80% 90% 85% 

Preloaded NOR 125-180 µm 60% 50% 30% 80% 

 

Considering these results, it is believed that the methodology developed in this work contributed 

to understand the phenomena responsible for activated carbon adsorption of MC-LR from 

drinking water. Also, it may be successfully used for studying other pollutants. The adequate 

choice of the activated carbon is an important factor to improve adsorption of 

microcontaminants and may also be evaluated with the proposed methodology. The main 

conclusion to be drawn is that although the two key properties to consider when choosing a 

carbon (structure and surface chemistry) are complementary, surface chemistry showed a better 

relationship with the amount adsorbed. Therefore, it is implicit that a fast, inexpensive and 

efficient way to enhance the rate of MC-LR removal is to modify the commercial activated 

carbon, making it more basic and/or more porous. Furthermore, crushing the carbon also 

demonstrated to be an effective form to improve MC-LR adsorption. From a combination of a 

careful modification of a carbon’s surface chemistry and the carbon’s structure, it is demonstrate 

that both properties play an important role in the adsorption process. Analyzing these results it 
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is appropriated to suggest that, although porous structure (mesoporosity) is a necessary 

condition (size exclusion) for MC-LR adsorption, the surface chemistry is very important 

property (more for MC-LR adsorption than for TA adsorption).  

 

 

5.2. FUTURE DEVELOPMENTS 

 

The research work presented in this dissertation contributed to an advance in the state of the art 

concerning the MC-LR removal from drinking water with activated carbon, although there are 

still some aspects that require additional investigation. 

To be able to conclude what property has more influence in the choice of an activated carbon 

and to gain a better understanding of the influence of these properties to MC-LR adsorption, it is 

necessary to study which of the two properties would have more importance as two separable 

variables. Therefore, the development of a method that includes modification of a commercial 

AC, maintaining a constant property and studying separately the two would give more precise 

insight. 

Complementary research for study the effect of AOM in adsorption of MC-LR onto activated 

carbon was also an interesting development. 

The computer modeling of the kinetics of adsorption using the homogeneous surface diffusion 

model (HSDM) would be useful to predict the dosages of AC to use in full scale systems. It is 

interesting to explore this model, since it is already widely used for the prediction of adsorption 

kinetics of a range of microcontaminants and taste and odor compounds. 
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ANNEXES  

ANNEX I. CALIBRATION CURVE FOR HPLC CALIBRATION 

 

 

Figure AI. 1. Calibration curve between peak area and microcystin-LR concentration for HPLC calibration. 
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ANNEX II. QUANTIFICATION OF TANNIC ACID 

 

 

Figure AII. 1. Absorption spectra of tannic acid at 215 nm in electrolyte solution with a ionic strength of 2.5 mM. 

 

 

Figure AII. 2. Calibration curve between absorbance at 215 nm and tannic acid concentration for spectrophotometer 

calibration. 
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ANNEX III. PORE SIZE DISTRIBUTION OF ACTIVATED CARBONS 

 

Porosity distribution by original Density Function Theory 

Model N2 at 77 K on carbon, slit pores 

Method: Non-negative regularization; No Smoothing 

 

NOR 125-180 

Volume in Pores < 5.00 Å 0.00000 cm
3
/g 

Total volume in Pores <= 931.26 Å 0.43021 cm
3
/g 

Area in Pores > 931.26 Å 53.024 m
2
/g 

Total Area in Pores >= 5.00 Å 904.371 m
2
/g 

Modified NOR 125-180 

Volume in Pores < 5.00 Å 0.00000 cm
3
/g 

Total volume in Pores <= 27.34 Å 0.42836 cm
3
/g 

Area in Pores > 27.34 Å 74.697 m
2
/g 

Total Area in Pores >= 5.00 Å 1049.670 m
2
/g 

Preloaded NOR 125-180 

Volume in Pores < 5.00 Å 0.00000 cm
3
/g 

Total volume in Pores <= 1172.33 Å 0.22036 cm
3
/g 

Area in Pores > 1172.33 Å 33.956 m
2
/g 

Total Area in Pores >= 5.00 Å 387.436 m
2
/g 

 

Pore size Table 

NOR 125-180 Modified NOR 125-180 Preloaded NOR 125-180 

Pore Width 

(Å) 

Incremental 

Pore Volume 

(cm³/g) 

Pore Width 

(Å) 

Incremental 

Pore Volume 

(cm³/g) 

Pore Width 

(Å) 

Incremental 

Pore 

Volume 

(cm³/g) 

5.003867552 0 5.003867552 0 5.003867552 0 

5.36128664 0 5.36128664 0 5.36128664 0 

5.897415219 0 5.897415219 0 5.897415219 0 

6.433544011 0 6.433544011 0.102349 6.433544011 0 

6.790962992 0 6.790962992 0 6.790962992 0 

7.327091571 0.169387882 7.327091571 0.098469 7.327091571 0.070715 

8.04192996 0.059848293 8.04192996 0.034585 8.04192996 0.019283 

8.578058539 0.020322566 8.578058539 0.034461 8.578058539 0 

9.292896928 0 9.292896928 0 9.292896928 0 

10.00773489 0 10.00773489 0 10.00773489 0 

10.90128266 0.00756421 10.90128266 0.013782 10.90128266 0 

11.79483044 0.027549388 11.79483044 0.03293 11.79483044 0.026686 

12.68837821 0.018230045 12.68837821 0.023835 12.68837821 0.000769 

13.58192598 0.012771442 13.58192598 0.01362 13.58192598 0.0105 

14.83289338 0.015204322 14.83289338 0.019201 14.83289338 0.009141 

15.90515054 0.012316042 15.90515054 0.014525 15.90515054 0.005746 

17.15611708 0.007096866 17.15611708 0.008619 17.15611708 0.004489 

18.585793 0.005917972 18.585793 0.006723 18.585793 0.002605 

20.01546978 0.003557423 20.01546978 0.005182 20.01546978 0.001393 

21.6238568 0.002713214 21.6238568 0.003993 21.6238568 0.001093 

23.41095234 0.00298597 23.41095234 0.004168 23.41095234 0.001616 

25.19804789 0.004343335 25.19804789 0.005239 25.19804789 0.002556 
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27.34256221 0.005523546 27.34256221 0.006682 27.34256221 0.003554 

29.48707652 0.004546279   29.48707652 0.002996 

31.81030107 0.00380296   31.81030107 0.002298 

34.31223586 0.003448521   34.31223586 0.002022 

36.99287918 0.002076446   36.99287918 0.001439 

40.03093956 0.00209902   40.03093956 0.001523 

43.24771359 0.002574546   43.24771359 0.001816 

46.64319445 0.002832159   46.64319445 0.002179 

50.39609578 0.002722624   50.39609578 0.002191 

54.32770394 0.002418896   54.32770394 0.00201 

58.79544281 0.002053938   58.79544281 0.001832 

63.44189191 0.001469959   63.44189191 0.001497 

68.44575808 0.001269866   68.44575808 0.001419 

73.98575836 0.001103459   73.98575836 0.001253 

79.8831723 0.001094296   79.8831723 0.001258 

86.31671354 0.001131021   86.31671354 0.001391 

93.10767526 0.000817361   93.10767526 0.001136 

100.6134779 0.000534778   100.6134779 0.000826 

108.6554079 0.000304091   108.6554079 0.000681 

117.2334651 5.34271E-05   117.2334651 0.000518 

126.5263702 1.94888E-05   126.5263702 0.000497 

136.7128093 0.000353411   136.7128093 0.000794 

147.6140894 0.00047805   147.6140894 0.000913 

159.4089173 0.000347157   159.4089173 0.000802 

172.0973066 0.000407784   172.0973066 0.000788 

185.8579369 0.000575049   185.8579369 0.000919 

200.6908354 0.000380639   200.6908354 0.000797 

216.5959748 0.000446912   216.5959748 0.00079 

233.9307962 0.001006199   233.9307962 0.001288 

252.5166062 0.001242078   252.5166062 0.001522 

272.7107913 0.001128086   272.7107913 0.001437 

294.5133516 0.000598196   294.5133516 0.00088 

317.9242869 0.000325434   317.9242869 0.000576 

343.3010654 0.000368871   343.3010654 0.000658 

370.6436055 0.000655208   370.6436055 0.00091 

400.3094025 0.001261304   400.3094025 0.001462 

432.2984018 0.001371157   432.2984018 0.001495 

466.7893786 0.001713355   466.7893786 0.001843 

503.9609442 0.002424306   503.9609442 0.002782 

544.170594 0.001732377   544.170594 0.002546 

587.5969939 0.000869071   587.5969939 0.001557 

634.4189191 0.000528642   634.4189191 0.00126 

684.9937012 0.000293786   684.9937012 0.001431 

739.6788359 0   739.6788359 0.000907 

798.6529889 0   798.6529889 0.000699 

862.4523218 0   862.4523218 0.00038 

931.2554458 0   931.2554458 0 

10000 0   1005.598686 0 

    1085.660545 0 

    1172.334679 0 
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ANNEX IV. TEXTURAL PROPERTIES OF THE ACTIVATED CARBONS 

 

AIV.1 Volume adsorbed obtained in the t-plot report for activated carbons 

 

NOR 125-180 Modified NOR 125-180 

 

P/P0 Vads (cm
3
/g) P/P0 Vads (cm

3
/g) 

0.000005942 20.1942 0.000005942 20.1942 

0.000007601 40.3917 0.000007601 40.3917 

0.000008392 60.5884 0.000008392 60.5884 

0.000009862 80.7859 0.000009862 80.7859 

0.000014576 100.9824 0.000014576 100.9824 

0.000025865 121.1784 0.000025865 121.1784 

0.000050198 141.3707 0.000050198 141.3707 

0.000105004 161.5502 0.000105004 161.5502 

0.000105004 181.7002 0.000246719 181.7002 

0.000670459 201.7597 0.000670459 201.7597 

0.001996249 221.5148 0.001996249 221.5148 

0.005699602 240.4443 0.005699602 240.4443 

0.014293970 257.7693 0.014293970 257.7693 

0.029537125 272.4063 0.02953712 272.4063 

0.050231822 283.3051 0.050231822 283.3051 

0.074406731 291.4002 0.074406731 291.4002 

0.103686889 298.1680 0.103686889 298.1680 

0.129997255 302.8616 0.129997255 302.8616 

0.157073053 306.8051 0.157073053 306.8051 

0.181845568 310.2000 0.181845568 310.2002 

0.205742610 313.0993 0.205742610 313.0993 

0.229481009 315.8451 0.229481009 315.8451 

0.253391403 318.4692 0.253391403 318.4692 

0.278088403 321.0248 0.278088403 321.0248 

0.302877914 323.4818 0.302877914 323.4818 

0.401087964 332.2223 0.401087964 332.2223 

0.499869296 340.2045 0.499869296 340.2045 

0.598545679 348.3992 0.598545679 348.3992 

0.699529991 357.3852 0.699529991 357.3852 

0.799233024 367.4008 0.799233024 367.4008 

0.859741252 374.8312 0.859741252 374.8312 

0.899602408 381.4146 0.899602408 381.4146 

0.924625154 387.5113 0.924625154 387.5113 

0.948292009 396.6891 0.948292009 396.6891 

0.971271748 412.6427   

0.986083079 431.1248   

0.888819732 397.6386   

0.800997501 386.3593   

0.696675406 377.5045   

0.606061456 370.5778   

0.502524990 362.1192   

0.405119820 333.2219   

0.296534034 323.1109   

0.200852266 312.5714   

0.104172263 298.3250   

  



Carbon key-properties for microcystin adsorption in drinking water treatment: Structure or surface chemistry? 

116 

 

AIV.II Determination of ABET, Aext, micropore volume and single point total volume for 

NOR 125-180 

 

Determination of specific area using BET method 

With this method, the monolayer capacity is obtained from the physical adsorption isotherm, 

experimentally determined. Adsorption with nitrogen at 77 K is recommended. Usually a type II 

or IV isotherm is obtained and the BET equation (I.1) is applied. 

 

  

     (  
 

  
)
 

 

  
   
 

   

  
   
 

 

  
 [I. 1] 

where, P and P0 are respectively the equilibrium pressure and the pressure of saturation (at the 

temperature used).      is the amount adsorbed at pressure p,   
  (mol/g) the amount adsorbed 

on the monolayer and c the is BET constant. 

Plotting the BET equation, number of moles adsorbed in the monolayer (  
 ) and the BET 

constant (c), through values of the slop and origin interception. 

BET area (m
2
/g) was determined from the following equation: 

         
     [I. 2] 

where N is the Avogadro number (6.02x10
23

 mol
-1

) and am is the area occupied by one molecule 

of the absorbate (for N2 is 16.2x10
-20

 m
2
). 

 

Determination of microporous volume (Vmicro) and external area (Aext) 

T-plot method was used to calculate the microporous volume and the external area of the AC, 

by plotting Vads vs t. The intercept will give the Vmicro and the slop the value of Aext, just needing 

a conversion with the density factor (that for N2 is 0.001547 = 34.7 cm
3
/mol/22.4x10

3
 

mol.cm
3
/mol). 

Determination of the single point total pore volume 

The total pore volume is obtained from the Gurvitsh rule as follows: 

       
    

  [I. 3] 

where     
  (mol/g) is the adsorbed amount at saturation and   

  is the molar volume adsorbed in 

the liquid stage. 
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ANNEX V. ADSORPTION/DESORPTION ISOTHERM PLOTS 

 

NOR 125-180 

 

Analysis adsorptive: N2 

Analysis Bath: 77.35 K 

 

 

Figure AV. 1. Adsorption/desorption isotherm plots for NOR 125-180. 
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NOR 63-90 

 

Analysis adsorptive: N2 

Analysis Bath: 77.35 K 

 

 
Figure AV. 2. Adsorption/desorption isotherm plots for NOR 63-90. 

  



Carbon key-properties for microcystin adsorption in drinking water treatment: Structure or surface chemistry? 

 

119 

 

Modified NOR 125-180 

 

Analysis adsorptive: N2 

Analysis Bath: 77.35 K 

 

 

 

Figure AV. 3. Adsorption/desorption isotherm plots for modified NOR 125-180. 
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Preloaded NOR 125-180 

 

Analysis adsorptive: N2 

Analysis Bath: 77.35 K 

 

 

Figure AV. 4. Adsorption/desorption isotherm plots for preloaded NOR 125-180. 

 




