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Resumo 

Os mecanismos reguladores da transcrição permitem aos organismos uma rápida adaptação 

a mudanças no meio ambiente e actuam frequentemente na iniciação da transcrição. Nesta Tese é 

proposto um modelo estocástico da iniciação da transcrição ao nível dos nucleotídos para estudar a 

dinâmica da produção de ácidos ribonucleicos (RNAs) em promotores com um curto espaçamento 

e os seus mecanismos de regulação. 

Neste estudo analisa-se como diferentes disposições (convergente e divergente), distância 

entre os locais de iniciação da transcrição (TSS) e diferentes parâmetros cinéticos afectam a 

dinâmica da produção de RNAs e como diferentes passos na iniciação da transcrição podem ser 

regulados variando os locais de ligação do repressor. 

Através dos resultados, observa-se que os passos que limitam a produção podem ter uma 

grande influência na cinética da produção de RNAs nas duas disposições. Descobre-se que uma 

maior interferência entre as RNA polimerases nos promotores divergentes com sobreposição e nos 

convergentes, aumentam a média e desvio padrão da distribuição dos intervalos de tempo entre 

produção de RNAs, provocando uma maior oscilação nos níveis de RNA. 

Observa-se também que pequenas mudanças na distância entre os TSS podem provocar 

transições abruptas na dinâmica da produção de RNAs, principalmente na transição entre 

promotores com e sem sobreposição. 

Dos estudos da correlação mostra-se que através da afinação das distâncias entre os TSS 

nas diversas disposições se pode obter tanto uma correlação negativa como positiva, quer na 

direccionalidade de RNAs consecutivos como nas séries temporais. Também se mostra que 

mecanismos de repressão distintos do início da transcrição, em tais passos como a formação dos 

complexos fechados e abertos e a libertação do promotor, têm diferentes efeitos na dinâmica da 

produção de RNAs. 

Este tipo de modelos podem ajudar a explicar como os circuitos genéticos evoluíram, 

podendo ainda ajudar a produzir circuitos genéticos com propriedades específicas. 

 

Palavras-chave: simulação estocástica, iniciação da transcrição, expressão genética em 

procariontes, mecanismos de regulação, disposição dos promotores 
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Abstract 

The regulatory mechanisms of transcription allow organisms to quickly adapt to changes in 

their environment and often act during transcription initiation. Here, a stochastic model of 

transcription initiation at the nucleotide level is proposed to study the dynamics of RNA production 

in closely spaced promoters and their regulatory mechanisms. 

We study how different arrangements (convergent e divergent), distance between 

transcription start sites (TSS), and various kinetic parameters affect the dynamics of RNA 

production. Further, we analyze how the kinetics of various steps in transcription initiation can be 

regulated by varying locations of repressor binding sites. 

From the results, we observe that the rate limiting steps have strong influence in the 

kinetics of RNA production. We find that interferences between RNA polymerases in divergent 

overlapped and convergent geometries causes the distribution of time intervals between the 

production of consecutive RNA molecules from each TSS to increase in mean and standard 

deviation, which leads to stronger fluctuations in the temporal levels of RNA molecules. 

We observe that small changes in the distance between TSSs can lead to abrupt transitions 

in the dynamics of RNA production, particularly when this change changes the geometry from 

overlapped to non-overlapped promoters. 

From the study of the correlation in the choices of directionality and on the time series of 

RNA productions we show that by tuning the distances and directions of the two TSS one can 

obtain both negative and positive correlations. We further show that distinct repression 

mechanisms of transcription initiation in steps such as the open and closed complex formation and 

promoter escape have different effects on the dynamics of RNA production. 

The study of these models will help the study of how genetic circuits have evolved and 

assist in designing artificial genetic circuits with desired dynamics. 

 

 

Keywords: stochastic simulation, transcription initiation, prokaryotic gene expression, 

regulation mechanisms, promoter arrangements 
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Abbreviations and Symbols 

 

λ phage Lambda bacteriophage 

  ( ) Propensity function 

APR Abortive to productive ratio 

bp Base pairs 

CME Chemical master equation 

CV Coefficient of variation 

DNA Deoxyribonucleic acid 

EC Elongation complex 

E. coli Escherichia coli 

FF Fano Factor 

FRET Förster resonance energy transfer 

In vivo Latin for “within the living” 

In vitro Latin for “within glass” 

ITC Initial transcribing complex 

  ( ) Possible reactant combinations in the reaction volume 

ODE Ordinary Differential Equation 

RNA  Ribonucleic acid 

RNAp  Ribonucleic acid polymerase 

RPc Closed complex of RNA polymerase and the DNA 

RPi Isomerized complex of RNA polymerase and the DNA 

RPo Open complex of RNA polymerase and the DNA 

RRE Reaction Rate Equation 

SSA Stochastic simulation algorithm 

TFBS Transcription factor binding site 

TSS Transcriptional start site 

UV Ultraviolet 

  Vector of the current concentrations of all the molecules 
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Chapter 1. Introduction 

The objective of this work is to design a stochastic model of transcription initiation at the 

nucleotide level and use it to study the dynamics of RNA production in Escherichia coli (E. coli). 

We study the dynamics between pairs of closely spaced promoters and also single unidirectional 

promoters for a comparison. 

Cells are able to respond to environmental changes using regulatory mechanisms 

connected to their genetic circuits. This regulation often takes place at the stage of transcription 

initiation [1], which is the first step of transcription. Transcription is the process of synthesizing a 

Ribonucleic acid (RNA) transcript using the information contained in a determined region of the 

Deoxyribonucleic acid (DNA). This process is executed by the RNA polymerase (RNAp) and is 

present in both eukaryotes and prokaryotes, such as our model organism: E. coli. 

The stochastic nature of gene expression leads to cell to cell variability in the number of 

RNA and protein molecules in monoclonal cell populations [2]. Fluctuations in the RNA and 

protein numbers over time have been observed at the single cell level [3, 4]. These fluctuations 

were detected in transcription using single-cell experiments [5] and have an important effect in the 

behavior of the cell. 

Researchers have recently developed tools to model and simulate biological processes at 

the single event level using the stochastic simulation algorithm (SSA) [6]. These models [7, 8] have 

shown the ability to predict the statistics of such processes that have a stochastic nature, which 

would not be possible using deterministic kinetics.  

The first stochastic model [7] of gene expression considered transcription to be an 

instantaneous process as a first approximation, but the execution of this process by the RNAp can 

take some time. To account for this, time delays were added to the model of transcription [9]. A 

delayed stochastic model of transcription at the single nucleotide level [8] was then proposed, 

which included dynamically pertinent events in elongation such as transcriptional pauses, error 

correction, arrests, premature termination and collisions between elongating RNAps. In that model 

transcription initiation was modeled as a delayed event whose duration followed a Gaussian 

distribution, to account for the rate-limiting steps inherent to this process [10].  

In this work, using E. coli as a model organism, we follow the same strategy to model 

transcription initiation for bacteria [9]. This model includes explicitly the steps of promoter search 

[11, 12, 13, 14], transition of the RNAp and DNA to a closed complex, isomerization of the closed 

complex, which leads to the open complex formation [15, 16, 17]. When attempting to start a 

productive elongation process, the model accounts for the occurrence of abortive initiation events 

[18, 19, 20]. In this process, the RNAp releases a small and incomplete transcript and then cycles 
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back to the open complex state. Also, it is noted that in this event the RNAp does not move but 

rather stays in the same position and “scrunches” the DNA [21, 22]. When the energy accumulated 

inside the RNAp is enough to break the promoter bond, the RNAp escapes the promoter and starts 

the elongation process. 

Our model of transcription initiation at the nucleotide level, which includes all the 

reactions described earlier, has a great ability to study the dynamics of RNA production in 

promoters that are closely spaced, one event at a time. Further, we can use it to test the effects of 

varying the distance between transcription start sites (TSSs) or the influence of the directions of 

transcription of each promoter.  

These closely spaced promoters can be organized with regard to the direction of 

transcription (which we will describe as “promoter arrangement”). In terms of arrangement, 

promoters can be tandem, convergent or divergent [1]. Closely spaced tandem promoters are 

oriented in the same direction, as they usually transcribe the same gene or operon. Convergent 

promoters are arranged in a face to face fashion and, thus, have a common region of elongation. 

Finally, divergent promoters have a common binding region for the RNAp and transcribe in 

opposite directions.  

Closely spaced promoters have been found to be abundant in all simple organisms, ranging 

from viruses to chloroplasts and bacteria [23]. On the other hand, the eukaryotic genomes are 

generally less dense and less organized than prokaryotes, so the finding of such promoters in this 

organisms, as for example in the human PCNA locus [24], was less expected. It is now known that 

bidirectional promoters are also a common gene organization in higher order organisms, including 

humans [25, 26].  

The use of a model at the nucleotide level enables the study transcription regulation at that 

level and the investigation of how the location of such regulators can affect the dynamics of RNA 

production [1, 27]. Using different transcription factor binding sites (TFBSs), it is possible to study 

the mechanisms of transcription regulation at various levels of transcription initiation [28]. Due to 

the interference between colliding RNAps we expect that closely spaced promoters have more 

complex gene expression patterns [29] and so can have a more complex regulation and so to 

understand such a complex system, using a detailed at a single nucleotide level is the best 

approach. 

With this model, it is possible to simulate all possible arrangements in these types of 

promoters, it is also possible to modify the number of nucleotides in the binding region, the 

nucleotides between TSSs, among other parameters and study how the dynamics of RNA 

production changes as a function of these parameters. It is achievable to modify the features of the 

repression mechanism, such as size and location of the TFBS. Finally, it is also possible to modify 
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the kinetic constants of the rate limiting steps for both promoters independently, such as the open 

complex formation, in an independent fashion.  

Using all this different parameters we investigated how asymmetric features affect the 

relative expression levels of both genes separately. To study the dynamics of RNA production, we 

characterized it in terms of mean and noise in RNA numbers, distribution of time intervals between 

consecutive production events, the correlation between choices of direction of consecutive 

elongation events and correlation between time series of RNA numbers. 

In Figure 1.1 it is presented a scheme with the location where this work was done (TUT in 

Finland). This work was done in collaboration with the LBD group, who studies the dynamics of 

prokaryotic gene expression and gene regulatory network. This work appeared because in previous 

models, transcription initiation was modeled as a single delayed event. 

 

Figure 1.1 – Scheme with the objectives of this work (left side), the motivation behind this work 

(right side) and the location where this work was done (green box). 

 

This thesis is divided in 5 more Chapters. Chapter 2 introduces a few notions behind the 

main topics of this thesis: stochastic simulation of chemical reactions, the execution of transcription 

initiation by the RNAp and regulation mechanisms of closely spaced promoters and we also present 

a distribution of the distance between the TSSs of such promoters. In Chapter 3 we present a 

description of the stochastic model of transcription initiation at the nucleotide level, including all 

the reactions that we used and their description but also their standard kinetic parameters used for 

this study. Chapter 4 contains the results on the study on the dynamics of RNA production as a 

function of different parameters, the study on the dynamics of RNA production in different types of 

arrangements and as a function of the distance between TSSs and the dynamics of RNA production 

of different repression mechanisms. Chapter 5 presents the conclusions of this work and also the 

future developments perspectives. Finally, Chapter 6 contains all the references used for this work. 
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Chapter 2. Theoretical framework 

In this chapter we give a theoretical description of the framework behind the main topics of 

this work. Particularly we give some insights on how stochastic simulations appeared and evolved 

throughout the years and why this type of simulations is considered to be very useful in studies of 

biological processes such as gene expression. Then we describe the steps involved in transcription 

initiation, including a structural description of the existing RNAps and their interactions with the 

DNA during these steps. Finally we also have a topic on closely spaced promoters and how they 

can be organized in different arrangements and their influence in gene regulatory mechanisms. 

2.1.  Stochastic Simulation Algorithm 

Modelling is an approach to characterize the state of the elements inside a system and the 

interactions between those elements. Models using the present knowledge of a system can help in 

testing if our understanding of that particular system match the data obtained in experimental 

procedures.  

From the point of view of classical mechanics, systems of chemical reactions are 

considered as deterministic, because it is possible to predict the evolution of the system. The 

deterministic approach has slight problems in explaining such processes that have a stochastic 

nature, for example gene expression and their regulatory mechanism [3, 4, 5]. Thanks to the 

impossibility of calculating the exact moment that an event takes place, although we can estimate 

that probability. 

Solving a system of coupled ordinary differential equations (ODEs) is the most 

conventional way of describing and simulating (using the deterministic approach) the behavior of 

molecules reacting in a homogeneous and thermally equilibrated mixture. This system has one 

equation for each of N active chemical species in the volume, where each equation describe 

changing rate of the concentration Xi of each chemical species Si taking in consideration the 

concentration of the other species, stoichiometry and reaction constants of the R channels through 

which they interact. This set of equations forms the reaction rate equation (RRE) [30]: 

   ∑    ( )  

 

   

 (2.1) 

Here    is the vector that describes the stoichiometry of reaction    and    is considered as 

the mean ‘rate’ at which the same reaction occurs as a function of the vector of the current 

concentrations of all the molecules   (  ( )     ( )). 
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As stated before, some biological systems have a stochastic nature and so due to this reason 

a new approach is needed. The stochastic approach instead of calculating the exact moment that an 

event takes place, it is involved in estimating the probability  (         ) of having the given 

concentration   in the reaction volume at time   after the initial concentrations of all the 

molecules and the initial time of reactions:     and    respectively. Using the probability that the 

molecules   in the volume at time t react in the next infinitesimal time interval (t+dt) via 

reaction   , which is defined as the propensity function or   ( ). 

The stochastic approach can be expressed as a partial-differential equation also known as 

the chemical master equation (CME) [31], which is also known as the Kolmogorov forward 

equation for a stochastic kinetic process [32]: 

  (         )

  
 ∑ [  (    ) (      |     )    ( ) (         )]

 
     (2.1) 

Here    also corresponds to the absolute number of all the reactants that change when the 

reaction    occurs. 

This propensity function can be written as   ( )    ( )  , where   ( ) is the number 

of possible reactant combinations in the reaction volume and   is a kinetic constant such that      

gives the probability that in the next infinitesimal time dt a determined molecule will spontaneously 

react via   . Different types of reactions can have different   ( ) as can be seen in table 2.1. 

Table 2.1 – Various values of   ( ) as a function of the type of reaction. Taken from [33] 

Type of reactions   ( ) 

→           1 

  →              

     →                

   →         
  (    )

 
 

∑ (   )  
    

→         ∏∏
      

 

 (   )

       

 

 

Numerical simulations of complex systems is an easier way to describe the time evolution 

of such systems, where solving analytically the CME or RREs is a very a very difficult task, so this 
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is way analytical simulators started to be more utilized. The Stochastic Simulation Algorithm 

(SSA) [34] is a Monte Carlo method that simulates numerically the time evolution of well stirred 

reaction systems. The time goes forward in discrete steps and in each step a reaction is explicitly 

executed and the effect on the number of each molecule is settled. Probability distributions are used 

to determine the time of the next reaction. 

The SSA produces in a single run one of the possible exact temporal trajectories of the 

CME and can be represented by the following steps: 

1. Initialization: Define R reactions rates (k1,…,kR) and the initial molecule number   

( 1,…,  N) and then set time t = 0 and reaction counter n=0.  

2. Calculate R propensities using the current population of molecules, p1=k1•h1,…, 

pR=kR•hR  where h is the number of all possible distinct molecular interactions in the 

current state(see table 2.1 for different types of h). Calculate    ∑   
 
  and store all 

the propensity values. 

3. Calculate the pair (τ, µ) using two random numbers r1 and r2 (from a U(0,1) uniform 

distribution, using     (   ⁄ )  (   ⁄ ) and µ has to satisfy the following: ∑    
   
 

      ∑   
 
  

4. Calculate the actual value of t using the pair (τ, µ) and adjust the reaction counter by 

one. 

a. If t + τ ≥ tstop , end the simulation.  

b. If t + τ < tstop then set t = t + τ, and update the molecular numbers according to 

the type of reaction that occurred using       . 

5. Go back to step 2. 

Note that the procedure in step 3 is done by one of the original formulations of the SSA, 

the Direct Method [34] which is computationally less intensive then the other formulation: the First 

Reaction Method. For large systems, these methods can be computationally heavy and so other 

methods started to appear in order to that improve the computational performance without affecting 

its exactness, and so the Next Reaction Method [35] and the Logarithmic Direct Method [36] were 

proposed. The First Family Method [30] is a generalization of the above methods and has the 

advantage of being able to choose either the Direct Method or the First Reaction Method on step 3 

of the SSA based on the total propensities of the reactions (which are grouped into “families”). 

Finally as previously described, the need to account with the duration of processes that take 

non-negligible to complete, such as transcription, led to the modification of the SSA [35], where 

time delays started to be added to account for those durations. These delays can be implemented 

using a “wait list” or modifying step 4 of the SSA to account for the time of the release while 

updating the new molecular numbers. 
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The delayed SSA was used to model transcription at the nucleotide level [9] and was 

shown to match [37] the dynamics of RNA and protein production at the single RNA and protein 

level [38, 39]. 

2.2.  RNA polymerase and the execution of transcription initiation 

Transcription initiation is the first step in transcription and is executed by an important 

enzyme: the RNAp. Due to this, the structure of the RNAp and how that structure affects its 

function in the transcription process is an important feature to understand in this process. 

Different organisms have different types of RNAps, which can be divided into single-unit 

multi-subunit RNAps. The single-unit RNAp is normally associated to virus and one of the most 

studied examples of this type comes from the T7 bacteriophage RNAp. Multi-subunit RNAps are 

associated to eukaryotes, bacteria and archaea, although there are major differences in the RNAps 

within those domains, even though there is evidence of a correspondence between structure and 

function of various subunits found in archaea and eukaryotes compared to bacteria [40, 41]. In this 

case, one of the most studied examples comes from the E. coli RNAp. 

Both the T7 and E. coli RNAp have been the focus of single-cell studies both structurally 

and functionally. The core structure of the E. coli RNAp (formed by five subunits: two α, β, β’ and 

ω) and its relevance to transcription initiation were studied at a resolution of 15 Å using cryo-

electron microscopy and image processing of helical crystals [42]. 

Other bacterial organisms have been used to gather information on E. coli RNAp using 

higher resolutions, such as the Thermus aquaticus [43, 44] or the Thermus thermophilus [45]. On 

the other hand T7 structure has been studied at a resolution of 3.3 Å [46] and despite the structural 

differences, evidence of a similar functional mechanism of the RNAp was found in both organisms 

using structural and functional studies [47, 48, 49], making T7 RNAp also suitable for mechanistic 

comparisons with the E. coli RNAp in the process of transcription.  

Transcription initiation in bacteria starts with the localization of the promoter-specific 

region (also known as promoter search) [11, 12, 13, 14], which in bacteria requires the binding a 

polypeptide (called σ factor) [50] to the core enzyme, forming the holoenzyme, reducing the 

affinity of the RNAp for nonspecific DNA and increasing the affinity to various promoters. T7 

RNAp also locates promoters using a similar mechanism but doesn’t need the binding of additional 

polypeptides due to its high affinity to specific T7 promoters [51]. 

The housekeeping sigma factor (σ
70

), which is considered to be the most important σ 

factor, recognizes the core bacterial promoter. The core bacterial promoter has two hexameric 

motifs, normally centered close to the -10 and -35 positions (or at those positions) relative to the 

TSS [1]. In addition to these motifs, some promoters also have a sequence enriched with adenine 
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and thymine, upstream of the -35 element (that is normally addressed as the “UP element”) [52] . 

The “UP” element is recognized by both α subunits [53]. 

Other σ factors, which are normally related to genes that respond to stress situations like 

UV radiation or heat shock, recognize less common promoter motifs, as they are only needed in 

special conditions [50]. In figure 2.1 we show the interaction between the various subunits of 

RNAp and the promoter motifs.  

 

Figure 2.1 – The interaction between the subunits of RNAp and the core promoter. The consensus 

sequences for the -10 and -35 promoter motifs and the “UP element” are also shown. The contacts between 

RNAp and the promoter are shown in solid lines. Figure taken from [54]. 

 

Eukaryotes have several types of RNAps, depending on the type of the synthesized RNA. 

The RNAp II is the most studied one and as other eukaryotic RNAps, RNAp II alone doesn’t 

recognize the eukaryotic promoter motifs, namely, TATA box, CCAAT-box and GC-box and 

others [55]. Due to this the binding of initiation factors is required before transcription initiation 

starts, which leads to a high level of control over transcription [56]. This control is also associated 

with the binding of other accessory factors, transcriptional activators and co-activators that regulate 

the rate of RNA production from each gene in response to different conditions [56]. Since in this 

paper we focus on bacterial transcription initiation, we will not enter into a detailed vision of the 

eukaryotic mechanisms. 

The localization of the promoter in prokaryotes results in conformational changes in the 

DNA and the RNAp, which leads to the formation of a closed complex (RPc). These changes 

include the DNA bending to wrap of upstream DNA and loading the downstream DNA in the 

active site of the RNAp [57, 58]. This mechanism proceeds with the RNAp loading of the template 

and non-template DNA positioned at the TSS, the unwinding of the double stranded DNA, the 

assembly and tightening of the RNAp clamp [58]. This stage is called isomerization and can be 

simplified into just one single isomerized complex (RPi). This step can also be considered a rate 

limiting step, as observed in studies of the lacUV5 promoter of the in vitro kinetics of transcription 
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[15]. A real-characterization of these isomers in the T7A1 promoter, using E. coli RNAP [59] 

showed that the transition between the various intermediates is very fast, supporting this 

simplification. This mechanism finally proceeds with the formation of the open complex (RPo). 

Before starting elongation and escaping the promoter (which is the last step of transcription 

initiation) the initial transcribing complex (ITC) is involved in a repetitive cycling of the RNAp 

back to the open complex, and releasing short abortive RNA transcripts (that normally range from 

2 to 16 nucleotides, but sometimes it is observed aborted transcripts up to 20 nucleotides) [60, 61], 

this process is called abortive initiation. Recent studies showed this process is involves a 

“Scrunching” mechanism [21, 22], where the RNAp doesn´t move forward, but “scrunches” the 

downstream duplex DNA in a through formed by subunit β′ and enclosed on top by the subunit β. 

This process accumulates energy, necessary to break the bond between the RNAp and the promoter 

leading the RNAp to escape the promoter and turning into an elongation complex (EC), capable of 

producing a full RNA transcript after termination of the transcription and the promoter available to 

receive another RNAp and starting the initiation process all over again. 

 In a recent study [62], abortive initiation was also detected in vivo using the bacteriophage 

T5 N25 promoter using the E. coli RNAP, which was an important find because until that, this 

process was only observable in vitro. 

Note that the sigma factor has also an important role in abortive initiation [63], so after the 

RNAp starts elongating, the σ factor is released stochastically [64] and can bind to other RNAps 

helping in the location of  other promoters (defined as the σ cycle). Mooney and colleagues found 

that sometimes the sigma factor is not released until termination and that it can be used as an 

elongation regulator [65]. We decided to not include specifically the σ action into our model due to 

the complexity associated with using all the different observations of the previous models. 

To model transcription initiation we need not only spatial information about the process, 

but also temporal. The duration of some of the steps previously described can vary widely between 

different promoters [11], even when their sequences only differ by one or two nucleotides [66]. It 

has also been studied that for example just one change in the nucleotides base in the spacer region 

between both promoter motifs can also change dramatically the promoter activity [67]. For 

example the abortive initiation and promoter escape durations are dependent on the promoter 

interactions (and in this case, the stronger the promoter the slower is this process) but can also vary 

due to small changes in the downstream region (initial transcribing sequence) [60, 61]. 

Temperature can also affect the duration of these steps [15, 68] as well as the concentration of Mg
2+

 

[68, 69] or the concentration of K
+ 

[68].  

In figure 2.2 we show a representation of several steps that take place during transcription 

initiation. 
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Figure 2.2 – The RNAp can bind nonspecifically to DNA and searches for the promoter. The σ
70

 

subunit recognizes to the -35 and -10 promoter motifs and forms a closed-promoter complex. The RNAp then 

unwinds DNA around the initiation site forming an open complex. Then transcription is initiated followed by 

the release of sigma and the elongation of the RNA chain. Figure taken from [70]. 

 

We note that in figure 2.2 the “UP element” and its interaction with subunits α (which we 

note that some promoters actually don’t have) is not represented and also some steps of 

transcription initiation like the abortive initiation are not included. 

2.3.  Closely spaced promoters and regulation mechanisms 

In the previous section we talked about how transcription initiation starts with the 

localization of promoters and how the interaction between the RNAp and those promoters affect 

this process. In this section we will emphasize on the actual location of such promoters in the DNA 

template, as this location can also play an important role in regulatory mechanisms [1]. 

The compilation of several promoters in E. coli [71, 72] led to an organization of closely 

spaced promoters in terms of arrangement (direction of transcription), and as it was mentioned, 

there are three types of arrangements: tandem, convergent or divergent promoters [1]. The last two 

types of arrangements can also be designated as bidirectional promoters, since transcription is done 
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in two different directions. In figure 2.3 we exhibit the three possible arrangements of closely 

spaced promoters. Note that in some cases, the promoters P1 and P2 can be overlapped. 

 

 

Figure 2.3 – Possible types of closely spaced promoter arrangements. There are three types of 

arrangements: tandem (A), divergent (B), convergent (C) promoters. 

 

The first divergent promoters to be discovered were the promoters PR and PRM, in the 

lambda bacteriophage (λ phage) [73]. These promoters are one of the most studied cases of gene 

regulatory network [74, 75] and since the in the decision between two different paths in this 

network involves a random process, they were also the reason why stochastic models started to be 

used in such studies [7]. The studies in λ phage lead to the discovery of other divergent promoters 

present in E. coli, for example the arginine gene (argE and argCBH promoters) [76] or the PC and 

PBAD promoters of the L-arabinose operon, which have been extensively studied by Schleif and 

colleagues for more than 30 years [77, 78]. 

A compilation of closely spaced promoters found several promoters in various simple 

organisms such as bacteria and their viruses (for example the phages), mitochondria, chloroplasts 

and viruses of eukaryotes [23] showed that these types of promoters represent a general type of 

gene organization in this type of organisms. We should mention that Beck and colleague [23] used 

a different notation for the promoter arrangement, as they address the convergent arrangement as 

“face-to-face” promoters and divides the divergent promoters into “back-to-back” and 

“overlapping” promoters. 

With the completion of the genome sequencing in E. coli K-12 (one of the most used 

strains) [79] most promoters and their functions were identified. The location of such promoters 

have a regulatory role in transcription, as a recent statistical analysis [80] revealed that both 

operons that regulate each other and operons that are co regulated tend to be in close distance of 

each other and showed a tendency of divergent promoters in this type of regulation. 

The genome in simple organisms is considered to be highly organized and dense, as for an 

instance the E. coli genome with a 4.6 Mbp sequence has around 4000 genes [79]. With an average 
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distance of 118 bp between genes, the genome is made mostly of coding DNA. The human gene, 

which is less dense then the E. coli genome, contains a 2.9 Gbp sequence with an estimation of 

around 39000 genes [81]. This means that for a mean spacing of around 75 kbp for each human 

gene there is an average gene size of 27 kbp. 

This implies that there is a large amount of noncoding DNA present in the sequence. Since 

the eukaryotic genome isn’t considered to be as organized as in bacteria, it was a surprising 

discovery when Adachi and Lieber identified bidirectional genes in the human chromosomes 21 

and 22 [25]. A subsequent study [26] showed a prevalence of bidirectional genes in the human 

genome and among mouse orthologs, which means that this prevalence is often conserved along 

the species evolution. 

We should notice again, that another notation for the promoter arrangement was used by 

Adachi and Lieber [25]. They address tandem orientation as “head-to-tail”, convergent as “tail-to-

tail” and divergent as “head-to-head”. To avoid the confusion of having various notations, we 

decided to use the “tandem, convergent and divergent” notation in the rest of the work, and also use 

divergent overlap, when the distance between TSS only allows one RNAp to transcribe at a given 

time, which we consider to be of 110 or less nucleotides This is because we consider the size of the 

RNAp as 55 nucleotides when in diffusion process (note that we use a different size for elongation, 

which will be focused on more detail in the model section) based on footprint studies [52, 82, 83, 

84, 85], where the RNAp protects around 50 to 60 nucleotides of the DNA template in the 

upstream region (there is also a protection of the downstream region with the opening of the DNA 

strand leading to the open complex formation). 

In this thesis we focus on E. coli bidirectional promoters, considering both the divergent 

and convergent arrangements, hence we extracted 897 known and 4010 predicted promoters 

(specifically recognized by σ
70

)in E. coli from RegulonDB database (version 7.0) [86]. 

From the predicted promoters, there were several promoters of the same gene so we 

counted only the first promoter (p1 in the database) of each gene to avoid repetition of the same 

genes. From this, 1671 predicted promoters were extracted for this study, for a total of 2568 

promoters. Using this number of promoter we found 258 pairs of divergent promoters and 186 pairs 

of convergent promoters with a distance between their TSSs lower than 800 nucleotides. 

The distributions of nucleotide distance between the TSSs for both geometries are shown 

in figure 2.4. We observe that the bulk of the distribution of distance between adjacent TSSs is 

below 200 nucleotides (88.8% for convergent and 61.8% for divergent). The mean distance (in 

nucleotides) for convergent is 108.4 and 225.7 for divergent, therefore, this range of was used as a 

reference for our models. 

We can also see from figure 2.4, that there is a good match between measured and 

predicted lengths distributions. 
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Figure 2.4 – Numbers of promoters pairs with a given number of nucleotides between the TSSs for 

(A) divergent promoters, and (B) convergent promoters. Gray bars are used for the known promoters and 

black bars are used for the predicted promoters. 

 
This type of promoters can also be classified depending on the function of the gene 

products. Beck and colleague [23] classifies them as S-S if both transcripts determine structural 

polypeptides, R-S if one transcript determines a regulatory molecule and the other a structural 

polypeptide, or R-R where both transcripts determine regulatory molecules. These regulatory 

mechanisms [27] can be positive (activation), negative (repression), or depending on the 

circumstance can be of both types. 

In this work we focus on repression mechanisms, as repressing the gene expression at the 

transcription level is probably the most used method of controlling the RNA production. Steric 

occlusion is probably the most common and simple method of repression, as in this method the 

repression molecule binds to the DNA and prevents the RNAp to start transcription [87, 88]. This 

repression can prevent specific steps in transcription depending on their TFBSs and size (such as 

the binding to the promoter, the transition from closed to open complex, or the promoter escape) 

[28].  

It has been shown that the most common TFBS position is near the TSS (both in 

downstream and upstream regions) [88]. Our model allows us to choose the TFBS location and 

repressor size to be able to study the effect of repressor location and repression of specific steps, 

not only in single promoters but also in bidirectional promoters. Multiple TFBSs on the same DNA 

template are also allowed. 
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Chapter 3. Materials and Methods 

In this section we present the description of the reactions used to create our model, the 

respective kinetic rate constants and delays. The calculations used to characterize RNA production 

is also presented in this section. 

3.1.  Creating the model 

Modeling transcription initiation traditionally consist of three overall steps: binding of 

RNAp to promoter, open complex formation and the promoter escape [1]. Some of those steps 

present in that type of model are undoubtedly oversimplified as the numerous small steps involved 

in each of them are integrated into single reaction.  

We use the proposed strategy [9] to model the dynamics of transcription initiation in 

bidirectional genes, considering both convergent and divergent promoters [1]. In figure 3.1 we 

show two model representations of bidirectional promoters and some of the reactions that used in 

this model. Locations within the promoter region are designated by the position relative to the TSS 

at the right side. The position of this TSS is set to be +1, positions to the left are negative and to the 

right are positive (note that by convention in Biology the first upstream nucleotide before the TSS 

is at position -1 and the TSS is the position +1, meaning that there is no position 0). 

 

Figure 3.1 – Structure of (A) divergent promoters, and (B) convergent promoters, where binding 

region is gray, elongation region is black and the angled arrows presents transcriptional start sites (TSSs). 

Harpoons represent the binding and unbinding of RNAps and repressor molecules, the x-axis represents the 

nucleotide position in relation to the TSS of the “right” promoter. 
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In figure 3.1 the regions of elongation (which the RNAp can also percolate by diffusion) 

are represented in black, while regions where only diffusion can take place are represented in gray. 

Elongating RNAps are represented with an elongating RNA chain, which are not present in 

diffusing RNAps. RNAps bound to the DNA template have an arrow that represents the current 

direction of movement. 

 If a repressor is bound to the DNA template (at the TFBS), it blocks the movement of both 

diffusing and elongating RNAps. In figure 3.1 (A) the TFBS is represented between position -140 

and -120 on the template. A bound repressor also prevents the binding of RNAps to that region, 

and that region alone. This repression is represented using a cross over the movement arrows of the 

RNAp. 

In figure 3.1 (A), it is illustrated two divergent promoters, whose TSSs are located at -151 

and +1. The “left” gene can only be transcribed by RNAps diffusing in that direction and the gene 

to the right can only be transcribed by RNAps diffusing to the corresponding direction. In figure 

3.1 (B) it is illustrated two convergent promoters, whose TSSs are located at +152 and +1 and also 

differs from figure 3.1 (A) since it contains an overlapping elongation region. . The elongating 

RNAp removes the diffusing RNAps and RNAps bound to TSS. In case of two elongating RNAps 

colliding in the overlapped region, either one of them randomly dissociates or both dissociate. 

The reactions, the standard rate constants and delays used to model transcription initiation 

are presented in table 3.1. In this table we present the binding and unbinding of the RNAp to the 

DNA template, the search for the promoter using linear diffusion, the closed and open complex 

formation, isomerization, and collisions between diffusing RNAps.  

Note that in the reactions presented in tables 3.1, 3.2 and 3.3 we don’t express specifically 

the differences between different promoters present in our model. This means that we don´t specify 

if the reactions are from the left or the right side (see figure 3.1) or even if they are from 

convergent or from divergent promoters. The only difference between these situations will be on 

the indexes, so because of this we decided to only include one reaction for each event, which is 

much clearer. 

Most reactions in the model are instantaneous, that is, once the two reacting molecules 

meet and react, the product is produced instantaneously and its amount updated. Instantaneous 

reactions are exemplified as:    
       
→       . In this reaction, when both A and B meet according 

to the rules of the SSA [6], molecule C is instantaneously produced. The expected time for A and B 

to meet is determined by the propensity of this reaction at each moment function (as described in 

section 2.1). Looking at table 2.1 (see third reaction) we can see that the propensity function of this 

reaction is calculated by the product of k with the molecular concentrations of A and B [6]. 
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Some reactions need to account for the time that the processes take to occur, once initiated. 

Such delays in the release of products are exemplified as follows:    
       
→       ( ). When this 

reaction occurs, molecule C is placed on a waitlist and is only made available for reactions, after  

seconds have elapsed. We can generate  randomly from any desired distribution each time the 

reaction is chosen to occur. Such delayed events are only introduced when the time that the process 

takes to occur is sufficiently long to affect the kinetics of the system. Substrates that are not 

consumed in the reaction are indicated with (*). 

Table 3.1 - Chemical reactions, rate constants (in s
-1

), and time delays (in s) used to model 

transcription initiation. 

Identifier Reaction 
Rate constants 

and delays 
Ref. 

(1) 
b

D D

k

[n-Δ , n+Δ ] n
RNAp + U O

 
kb = 0.000075 [12] 

(2) f

D D ]

k

[n-Δ , n+Δn
O RNAp + U

 
kf = 0.3 [12] 

(3) m

D Dn+Δ +1 n-Δn n+1

k
+ U + UO O

 
km = 660 [12] 

(4) 
D

c
TSS+Δ c

k
O   RP

 
kc = 0.5 [12] 

(5) ik
c [TSS+1, TSS+19] iRP + U RP

 
ki = 0.095 [15] 

(6) o
i o

k
RP RP  

 
ko = 2 [15] 

(7) D

D D

n+2Δ 1 n

[n-Δ , n+Δ ]

*O + O

U + RNAp

mk
 

 

km = 660 [12, 101] 

 

In the reactions presented in table 3.1 RNAp stands for the RNA polymerase, Un stand for 

the nth unoccupied nucleotide. Ranges of nucleotides are denoted such as U[start, end], denoting a 

stretch of unoccupied nucleotides from indexes start to end. As reported in footprint studies [52, 

82, 83, 84, 85] the bound RNAp protects around 50 nucleotides on the template. In our model each 

RNAp occupies 55 nucleotides, and we name it as On, to account only for the active center (this 

means that the diffusing RNAp is occupying the range [n-ΔD, n+ΔD], where ΔD = 27). Here RPc, 

RPi and RPo correspond respectively to the closed complex, the isomerization complex and the 

open complex, which are all just conformation changes of the bonds between the RNAp and the 

DNA template. 
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The reactions used to model the steps that occur after the open complex formation, such as 

the abortive initiation, promoter clearance, the initial transcribing complex, the elongation complex 

formation and the collision between the elongation complexes and different RNAps at various steps 

is presented in table 3.2.  

Table 3.2 - Chemical reactions, rate constants (in s
-1

), and time delays (in s)  used to model the steps 

that occur after the open complex formation. 

Identifier Reaction 
Rate constants 

and delays 
Ref. 

 (8) E

D

2Δ 1 n

[ Δ , Δ ]

*E + O

U RNAp

m

D

n

n n

k
 

 




 

km = 660 [12, 101] 

 (9) 

el

E

E E

n+2Δ +1 n

[n-Δ , n+Δ ]

k
*E + E

U + RNAp



 

kel = 42 [101] 

 (10) 

el

E D

el

E D

TSS-Δ c [TSS, TSS-2Δ ]

TSS i o TSS-12

[TSS+Δ , TSS-2Δ ]

k
*E + RP U

k
*E + RP /RP /E

U





 

kel = 42 [101] 

 (11) el
o TSS

k
RP E

 
kel =42 [21, 22, 61] 

 (12) el/4
TSS+n TSS+n+1

k
E E

 

kel = 42 

n≤12 
[21, 22, 61] 

 (13) a

TSS+n o
k

E  RP
 

ka = 4.2 [21, 22, 61] 

 (14) 

el

E

D

TSS+12 TSS+Δ 12

TSS+13 [TSS+12, TSS+2Δ +12]

k
E +U  

E +U

 

 

kel = 42 [21, 22, 61] 

(15) el

E En n+Δ n+1 n-Δ
k

E +U E +U
 

kel = 42 

n≥13 
[100] 

 (16) 

el

last

last E last

n

el el [n -2Δ , n ]

k
E

RNA(τ ) + RNAp(τ ) + U



 

kel = 42 

el ~ G(k, 1/kel) 
[100] 

 (17) dk
RNA   

kd = 0.006 [105] 

 

In the reactions presented in table 3.2, the Ribonucleic acid is designed as RNA for and En 

stands for Elongation Complex (EC) and so during elongation the EC occupies normally around 30 
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to 23 nucleotides [83], we decided to use 25 nucleotides as it is also reported by [89], so because of 

this it occupies the range [n-ΔE, n+ ΔE], where ΔE=12. 

The reactions used for repression mechanism, as the mechanism of transcription regulation 

used for this model is presented in table 3.3. 

 

Table 3.3 - Chemical reactions, rate constants (in s
-1

), and time delays (in s) used to model 

repression and dissociation of repressor. 

Identifier Reaction 
Rate constants 

and delays 
Ref. 

(18) r

rep rep[n-Δ , n+Δ ] n
k

Rep + U R
 

kr = 0.0167 [113] 

 (19) 
u

rep rep

k
n [n-Δ , n+Δ ]R Rep + U

 
ku = 0.004 [113] 

 

In the reactions presented in table 3.3, a repressor not bound to the DNA template is 

designed as Rep and the repressor bound to the DNA template is designed as Rn and occupies the 

range [n-Δrep, n+Δrep]. Each different repressor molecule can occupy a different number of 

nucleotides. In this work we use a standard value of Δrep = 10 as it is the value for the principal 

binding site of the lac repressor [87], which is one of the most studied repressors in E. coli, and it is 

also close to other repressor footprints measured in E. coli [90]. We also varied the values of 

repressor size to study its effects in transcription regulation. 

A description of the specific reactions used in our model is given below (using the 

respective identifiers from tables 3.1, 3.2 and 3.3). Parameter values used in the reactions were 

obtained from measurements in E. coli, directly or indirectly from the respective references 

column. 

Once the RNAp binds to the template via reaction (1) it diffuses linearly (also known as 

“sliding”) [12, 91] on the DNA template (3). We point out that the binding of RNAp happens to 

one strand at a time thus the direction chosen by the RNAp can´t change during the sliding unless 

the RNAp unbinds. We didn´t include the three-dimensional diffusion in solution and intersegment 

transfer [92] as they are mostly means to make long transfers in the DNA template. If the RNAp is 

blocked by another RNAp or by a repressor, and doesn´t find a TSS, the RNAp eventually 

dissociates from the DNA strand (2) [12]. In our simulations we used a value for the initial 

concentration of free RNAp to be 28 molecules per cell [93]. 

If the RNAp finds the specific TSS (in theory the RNAp should find the promoter motifs, 

but in our model we don´t use specific nucleobases, so we use the TSS for this search), we use a set 

of non-delayed, consecutive, chained reactions [1, 14] to model the closed complex formation (4). 



Leonardo Pedro Donas-Boto de Vilhena Martins 2011 

 

  
Page 20 

 

  

We note that when referring to closed complex formation, we define it as the conformational 

changes that occurs after the finding of the TSS [12, 14], and not as all steps including finding of 

the promoter and diffusion [1]. 

As stated before, because of the size occupied by the RNAp, we consider promoters with a 

distance between TSS of 110 or less as divergent overlap so we consider that for this case, only one 

RNAp can transcribe at a given time and that once it starts transcription in one direction it cannot 

be redirected to the other direction [94].  We point out that we don’t consider special cases that 

have been studied in λ phage [95], where the interference between the occupancy of an RNAp at 

one of the promoters (PR) and the other promoter (PRM) was studied. It was found that for a very 

specific distance between the TSSs this interference was greatly diminished, allowing RNAps at 

both promoter sites to start transcription at the same time. 

The next step in this process is isomerization (5), where the RNAp structure changes, and 

occupies around 20 more nucleotides (from +1 to +20) as reported by DNA footprints [82, 83, 84, 

85] and finally the formation of the open complex is done (6). At this step the RNAp occupies 

around 75 nucleotides (from -55 to +20). 

We didn’t included the reverse reactions in the open complex formation because on strong 

promoters, open complexes are much more energetically favorable, and the transition from closed 

to open complex is essentially irreversible [85], but we point out that these reactions can be easily 

added to our model if we actually needed. There are also other models of transcription initiation 

that don´t use the reverse reactions after the formation of the closed complex [96] 

Following the formation of the ITC via reaction (11), the RNAp doesn´t move forward, but 

“scrunches” the DNA (12) [21, 22]. This process continues until the energy inside the RNAp is 

enough for it to be able to break the bonds with the promoter (14). We added the abortive path (13) 

which competes with the scrunching path (12), returning to the state of open complex.  

A model of the abortive initiation step in transcription initiation steps, which includes the 

abortive path, scrunching path but also an escape path was proposed by Xue and colleagues [97]. 

This is a detailed model, where for every different path at different positions have specific kinetic 

parameters. Unfortunately the kinetic parameters were calculated for T5N25 and T7A1 

(bacteriophage) promoters, which are considered to be much faster initiators then for example the 

lacUV5 promoters [18] even though the interaction with such different promoters share similar 

mechanisms in the abortive initiation [19]. For simplicity we used the same kinetic parameters at 

every nucleotide and we only allow the escape after the scrunching of the 12th nucleotide. 

Note that in this model we don´t include a path for unproductive ITC´s, where the RNAp 

escapes the promoter very slowly, if at all. This process was observed in few cases, thus it doesn’t 

have a profound effect to the RNA production. [97, 98] 
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We tested an abortive rate ranging from 1 to 10.5 s
-1

 and decided to use 4.2 s
-1

 as our 

standard value, which have a value of Abortive to Productive (APR) ratio that was within the 

values reported in abortive initiation studies [61]. With this value, the promoter can also be 

considered a rate limiting step (as it takes an average of 20 s for the RNAp to escape the promoter). 

This complies with observations made with the lacUV5 promoter [15, 99]. These results are 

presented in Chapter 4, section 4.2. 

Note that as soon as the RNAp escapes the promoters and starts the elongation (15), 

another free RNAps in the cell may occupy that promoter and start a new cycle of transcription 

initiation. 

We add a final reaction for the elongation (16), where the elongation complex exits our 

region of interest. We add a delay for the release of the RNAp and the mRNA using a Gamma 

Distribution (the function G in the reaction), where k equals to the number nucleotides that still 

needs to be elongated the respective gene and θ equals to 1/42 s (coming from the elongation rate) 

[100]. 

Considering that we wanted to mainly study the effects of the transcription initiation on the 

production of RNA and since interference is done in our zone of interest, normally we use a value 

of k equal to 150 nucleotides. This means that the elongation region is normally the same as the 

binding region, but we sometimes change this value to account for the increase in the binding 

region. We point out that since the elongation rate is so high, that changes up to 200 nucleotides, 

just makes an average increase of 5 s to the production time. 

We include in our model collisions between ECs (9), where one of the two colliding 

RNAps is released from the template (randomly chosen among the two), or both of them are 

released from the template. 

We also use the same system as in (9) to model collisions between 2 diffusing RNAps (7), 

where one of the RNAps or both of them randomly dissociates from the template. 

 In convergent promoters, it is possible for elongating and diffusing RNAps (8) to collide, 

and since the binding between an elongating RNAp and the template is so strong that it can remove 

a complex at a promoter [101], these can force, when collisions occur, diffusing RNAps, which 

have a weaker binding affinity then complexes at a promoter [102]. This means that the EC 

remains in the template and the diffusing RNAp dissociates from the template. 

We also add the “Sitting duck” mechanism as reported by [101] where an EC collide with 

promoter complexes (closed, isomerization, open or ITC) at a converging promoter (10). 

Degradation of mRNA via reaction (17) is modeled as a single step reaction. 

Repression is modeled via reaction (18) as competition for the RNAp binding or blocking 

the RNAp movement and dissociation of the repressor molecule from the template (19). As said 
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before the repressor footprint occupies the range [n-Δrep, n+Δrep], and as a standard value we used 

Δrep = 10.  

With our model, we can easily modify the distance between TSSs and the binding region to 

study dynamics of RNA production, the repressor size and its TFBSs can also be changed. This 

together with the variability of kinetic constants extracted from in vitro and in vivo single-cell 

studies in E. coli allows us to study the dynamics of transcription initiation in various conditions. 

We also have to use in vitro studies to choose our parameters as for some steps, the in vivo kinetics 

of the steps described before still remain unknown. These simulations can be used for comparison 

with the measurements in single-cell studies that have been done in the last years [14]. 

All simulations in this work were executed with SGNS Simulator [103]. 

3.2.  Calculations 

Unless stated otherwise, we normally use 50 independent simulations with duration of 10
5
 

s each, sampled at every 10 s for every value that we want to simulate. We do this to save more 

time, because we can run multiple simulations in parallel and since the simulations can take some 

time to be obtained, which can range from just a few seconds up to almost an hour (depending rates 

and the conditions used for the simulation), this proved to be a very useful technique.  

To have a better temporal resolution we calculate the distribution of time intervals between 

productions we use a sampling of 1 s. To calculate the mean and noise in RNA numbers, we 

concatenate all the simulated time series. On the other hand for time intervals we calculate the 

values for each independent simulation and for each promoter and then we concatenate all the 

values to make the histogram. 

 Note that for the calculation of time intervals, using the time series of RNA levels we can´t 

discern the case where at the same second there was a production event and a degradation event on 

the same side of productions, because if this happens the RNA numbers on that side doesn´t 

change. This can be avoided using a counter just for the production events, but this special case is 

very rare, so it doesn´t influence if we use enough simulations to have a significant sample of 

values. 

To calculate the correlation between consecutive choices of production, we first produced a 

vector collecting the data from which side produced the next RNAp. Then we used MATLAB® 

corr function to compute Pearson's linear autocorrelation coefficient for that vector at different 

lags.  

For the calculation of correlation between two unidirectional independent promoters, we 

put the corresponding time series side by side, and we produce the same vector of choices. There 

can be an event at the same second (due to the sampling) where both promoters produced a RNA 

transcript and for this we created a special case that consider as well that there was a change in 
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choice of production. To calculate the correlation between time series, we do the same procedure 

but with a vector containing the time series of RNA numbers. 

We calculate the Fano Factor (FF), the noise (CV
2
) in RNA production using the equation 

(3.1) using the time series of RNA production we can calculate the variance and the mean. We can 

use this value to compare with the Fano Factor of a Poisson process (which is equal to 1) 

            
   (   )

〈   〉
 (3.1) 

We also calculate the noise (CV
2
) in RNA production using the equation (3.2) but using the 

value of the squared mean. 

    
   (   )

〈   〉 
 (3.2) 
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Chapter 4. Results and Discussion 

We study the dynamics of transcription initiation as a function of the binding affinity, 

arrangements of the promoters, distance between TSSs and the effects of repression. In all models 

of bidirectional promoters, regardless of the arrangement, unless stated otherwise, the two TSSs 

and the dynamics of the rate limiting steps are in all identical, thus, unless there is some external 

factor causing an asymmetry (for example a repressor molecule bound close to one of the TSS), the 

mean RNA numbers expressed by the two promoters will be in all identical, provided a sufficiently 

large sampling. 

4.1.  Dynamics of RNA production as function of the binding affinity 

In this section we first analyze the mean RNA numbers as a function of the binding affinity 

of the RNAp to the promoter region in divergent, convergent promoter with of 150 nucleotides 

between TSSs. We also use and unidirectional promoters and for all the arrangements we set the 

binding region with a length of 200 nucleotides for both genes. As said before, for these 

simulations we performed 50 independent simulations, 10
5
 s each, sampled every 10 s for each 

different value of kbind and promoter arrangement, and used all the values that were reported in 

table 3.1 and 3.2. Specifically we used the values for the closed complex formation to 0.5 s
-1 

[12], 

kopen to 2 s
-1

 and kisom to 0.095 s
-1

 [15]. 

Given those parameter values, and knowing that there are genome wide measurements for 

the number of RNA molecules at steady state of most genes [104] and using a value for the RNA 

degradation rate to 0.36 min
-1 

(corresponding to a half-life ~2 min) [105], it is possible to test what 

intervals of values for the rate of binding to the DNA template (kbind) in the model leads to realistic 

mean RNA numbers at near-equilibrium [104]. We will then compare them with the value of kbind 

extracted from the simulations to the one measured by indirect means [12]. Note that we used a 

value for the rate of dissociation (kunbind) that value by Singer and colleagues by the same indirect 

means. 

In figure 4.1 we exhibit the values for the RNA mean numbers over time for each value of 

kbind and each arrangement. In figure 4.2 we exhibit the square of coefficient of variation (CV
2
) of 

RNA numbers over time. For the calculation of the mean and CV
2
 we concatenated the 50 times 

series for each value of kbind and for each arrangement. Given the length of the time series, while we 

initialize the simulated with no RNA molecules, the time to reach near-equilibrium is negligible for 

the calculations of mean and CV
2 
of the RNA numbers. 
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Figure 4.1 – Mean RNA numbers as a function of kbind rate. Here we represent (○) for unidirectional 

promoters, (x) for divergent promoters and (□) for convergent promoters. 

 

Figure 4.2 – CV
2
 of the RNA numbers as a function of the binding affinity (kbind) rate over time (at 

near-equilibrium). Here we represent (○) for unidirectional promoters, (x) for divergent promoters and (□) for 

convergent promoters. 

 

The measurements in vitro from Singer and colleagues [12] suggest that the RNAp can 

bind to any nucleotide in template and that the binding rate to the promoter region is higher than for 

other regions, so we use the model to first investigate what is the saturation rate for kbind (namely, 

the rate for which further increases will not increase mean RNA levels).  
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From the figure 4.1, we observe that for all promoter structures, the resulting mean RNA 

numbers at near-equilibrium are within realistic intervals for the entire interval of values of kbind 

used for this simulation [104]. Lower values correspond to weakly expressed genes, while higher 

values correspond to more strongly expressed genes. 

 However, we note that the genes are not subject to repression in this specific simulation 

(we will use the repression mechanisms in later sections), while in E. coli, weakly expressing genes 

usually have such behavior due to the presence of repressor molecules. Due to this, we consider the 

most realistic interval of values of kbind to be the ones above 10
-5

 s
-1

. Also, we can observe that the 

rate of “saturation” is approximately kbind ~ 10
-4

 s
-1

, given the kinetics of the closed and open 

complex formation. Thus, realistic values for this case are likely between 10
-5

 and 10
-4

 s
-1

. 

Singer and co-workers [12] estimated the in vitro rate of non-specific association of RNAp 

to circular DNA to be 4.6 × 10
4
M

-1
s

-1
 (per nucleotide). From this, it is possible to estimate the 

corresponding value for kbind in this case by dividing the measured value by the expected volume of 

the E. coli (10
-15

L, taken from the CyberCell Database [106]) and the Avogadro constant. This 

results in a value for kbind of 0.75 × 10
-4

 s
-1

 per nucleotide, which is within the interval resulting 

from our estimation. Due to this, here onwards we set the value of kbind to 0.75 × 10
-4

 s
-1

. 

Interestingly, according to the results in Figure 4.1, this value for kbind, for all the promoter 

arrangements with 150 nucleotides between their TSSs, is close to the saturating rate of RNA 

production. 

 As said before there are differences in the dynamics of RNA production between different 

promoter arrangements due to the collisions between RNAps in different states which can cause 

interference in those dynamics. Because of this the unidirectional naturally has the highest 

production rate while both the divergent and convergent cases the RNA production rate is 

considerable lower. At the saturation level, the resulting near-equilibrium mean RNA numbers for 

the unidirectional case is ~6, while for the divergent and convergent case is ~4 which is well within 

realistic intervals for strongly expressing genes [104] 

In the divergent arrangement we observe that the mean value doesn´t saturate but starts 

decreasing in production as the kbind rate go higher. This can be explained by the increase in traffic 

in the DNA template by the diffusing RNAps. On the other hand, in the convergent arrangement, 

the converging elongating RNAp can remove the diffusing RNAps, which partly helps the traffic 

problem.  

From figure 4.2 we can see that for values of kbind above 10
-5

 s
-1

 the CV
2 

remains constant 

and within the same range for all the arrangements. From this and with the increase of the mean 

observed in figure 4.1 we can see that the that with the increase of the kbind the production of RNA 

approximates to a Poisson process, as can be seen in table 4.1 where we present the values of the 

Fano Factor (as calculated by equation 3.1) for all the simulated values of kbind. 
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Table 4.1 - The Fano factor of RNA production for different arrangements as a function of the 

isomerization rate. 

kbind /s
-1

 Unidirectional Divergent Convergent 

7,5 × 10-7 0,95 0,94 0,95 

1,5 × 10-6 0,93 0,90 0,92 

3,8 × 10-6 0,85 0,85 0,89 

7,5 × 10-6 0,78 0,79 0,87 

1,5 × 10-5 0,72 0,75 0,88 

3,8 × 10-5 0,68 0,72 0,91 

5,3 × 10-5 0,67 0,71 0,92 

7,5 × 10-5 0,68 0,71 0,92 

1,5 × 10-4 0,70 0,70 0,92 

3,8 × 10-4 0,71 0,72 0,91 

7,5 × 10-4 0,71 0,75 0,91 

1,5 × 10-3 0,72 0,81 0,90 

3,8 × 10-3 0,72 0,99 0,91 

 

Comparing the values with a pure Poisson process, which has a Fano Factor of 1, we can 

observe that all our processes have an inferior value then 1. This could mean that delays in 

chemical reactions have less variance than a pure Poissonian process and due to that can act as 

noise filters. The values closer to a Poissonian process are for the lowest values of kbind and also for 

the highest values. The values with the lowest Fano Factor are the ones near the 10
-5

 s
-1

 order of 

magnitude. Interestingly, according to the results in table 4.1, this range of values for kbind (which 

are in the interval of the ones estimated by Singer and co-workers [12]) are the ones that reduce the 

noise in the production of RNA. This is an example of a noise regulation mechanism in gene 

expression. [4]. 

4.2. Dynamics of RNA production as function of the abortive ratio 

In the last section we studied the dynamics of transcription initiation as a function of the 

binding parameter, now in this section we study the effects of changing the abortive ratio on the 

RNA production. For this we calculate the abortive to productive ratio (APR), the noise (CV
2
) and 

the Fano Factor. For these simulations we maintained a mean RNA number of around 5.5 for all 

the simulations and do this we had to change the RNA degradation rate [105] (a higher abortive 

rate leads to a higher smaller degradation rate, or a higher RNA half-life) in order to tune the mean. 

The values of APR and Fano Factor are presented in Table 4.2 for each of the values of the 

chosen kabort. The noise (CV
2
) and the mean RNA numbers (in the inset graphic) for the RNA 
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production is presented in figure 4.3. These simulations were done for the divergent arrangement 

using promoters with a distance of 200 nucleotides between the TSS. 

 

Table 4.2 - Fano factor of RNA production and Abortive to Productive ratio (APR) as a function of 

the abortive ratio (kabort). 

kabort 

(s-1) 
1 1.9 2.3 2.6 3 3.5 4.2 5.3 7 10.5 

Fano 

Factor 
0.72 0.71 0.70 0.69 0.68 0.68 0.69 0.75 0.87 1.04 

APR 2 7 10 14 19 31 55 128 445 4108 

 

 

Figure 4.3 – The CV
2
 of RNA production as a function of the abortive ratio (kabort). As can be seen 

in the inset graphic we maintained the RNA number constant around 5.5 varying the degradation rate. These 

simulations were all done on a divergent promoter with a distance of 200 nucleotides between the TSS. 

 

From the results in table 4.2 we observed an APR ranging from 2 to 4108 using a range of 

abortive ratio respectively from 1 to 10.5 s
-1

. We also observe that the lower Fano Factor values 

were obtained in the range from 2.3 to 4.2 s
-1

. At 10 s
-1

 the process has a noise higher than a pure 

Poissonian process (Fano Factor is higher than 1). 

  Studies using the same promoter sequence but with different initial transcribing sequence 

(the downstream region) have observed values of APR ranging from around 13 to 386 [61]. 

Another study observed values ranging from around 6 to 100 [107]. These values are within the 

values that we obtained with range of kabort used in the simulations. This means that the value used 

for our standard parameter should be in this range, so we decided to use 4.2 s
-1

 as a standard 
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parameter in the rest of the work (with an APR = 55), which is a value in the middle of that specific 

range. 

From the figure 4.3 we observed that kabort also allows regulating noise in RNA for values 

higher than 5.3 s
-1

. In all cases the mean RNA number was maintained at around 5.5 (see inset 

graphic from figure 4.3) to remove the influence of the mean in the noise values. 

From the studies using the E. coli RNAp interacting with T7 promoters [97] and from a 

recent study [108] used a single-molecule Förster resonance energy transfer (FRET) and stopped-

flow FRET to monitor T7 RNAp transition from initiation to elongation we can see that in the 

process of abortive initiation, each path of “scrunching”, “abort” or “escape” can have their own 

kinetic parameters depending on the position of the nucleotide regarding the TSS and depending on 

the DNA sequence. As said before we assume, for simplicity proposes, a uniform value of the 

abortive ratio for every nucleotide and we also only allow the escape at exactly the 12th nucleotide 

(meaning that we don’t have an escape path for every nucleotide) [97]. We also decided to 

maintain this simple mechanism because there are still no studies using the E. coli RNAp on 

regular E. coli promoters and as we said in the theoretical framework, although the mechanisms in 

T7 promoters and the T7 RNAps are similar, their kinetic parameters are considered to be much 

different.  

We should note that we already constructed a model that includes an escape path and with 

all the different kinetic parameters for each nucleotide. Since with this modification we allow that 

for every abortive initiation, the RNAp escapes the promoter at a different position leading to 

different values for the maximum size of abortive transcripts, which in this work is always 12, but 

with this modification could go up to 20 as reported in abortive initiation studies [60,61]. This 

modification leads to process that is more random process, however we decided not to include it in 

this work due to lack of kinetic parameters and the complexity of studying the effects of each 

value.  

This modification in our model could also be included in a future work, where new 

information from single-cell studies [14] could give valuable information about the kinetic 

parameters. 

4.3.  Time Series of RNA production of different promoter arrangements 

Using the standard values defined in the previous sections we now present a time series of 

the RNA production for each of the different promoter arrangements. For this time series we used 

just one simulation of 10
6
 s sampled every 1 s (for a better temporal resolution) and extracted the 

first 5000 s for each arrangement. In figure 4.4 we present the time series for the divergent (with a 

distance of 150 nucleotides between the TSSs) case and in figure 4.5 we present the time series for 

the convergent (also with a distance of 150 nucleotides) case. In figure 4.6 we also present the time 
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series for a divergent arrangement with overlapped promoters (with a distance of 65 nucleotides 

between the TSSs). In this section the binding region has 300 nucleotides for all the arrangements. 

The line in red present in figures 4.4, 4.5 and 4.6 corresponds to the right promoter (the one with 

the TSS at position +1) for all the arrangements (see figure 3.1) 

 

Figure 4.4 – Time series of RNA production for the divergent case. 

 

 

Figure 4.5 – Time series of RNA production for the convergent case. 
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Figure 4.6 – Time series of RNA production for the divergent overlap case. 

 

From the figures 4.4, 4.5 and 4.6 we can observe that all the three cases presented here 

have a different behavior in the production of RNA, but we can observe that in all of them, there 

are some big fluctuations caused by the stochasticity of this processes.  

As expected we observe from figure 4.4 that in the divergent arrangement both promoters 

can transcribe at the same time, but due to the stochasticity of the gene expression, there are times 

where one promoter is producing and the other isn´t, or times where both genes are producing 

RNAs. From figure 4.5 we can see that in the convergent case when one promoter is producing 

RNAs, the promoter can´t produce any RNA. From figure 4.6 we observe that in the divergent 

overlap, this situation is even more visible and we can see that in this case the time where one 

promoter is actively producing a RNA transcript is bigger than in the convergent arrangement.  

This could mean that process of producing one RNA transcript can influence production of 

the next RNA transcript. We will study these effects in a latter section using correlation studies of 

directionality and time series. 

4.4.  Asymmetric rate limiting steps in different promoter arrangements 

For these simulations we use the same arrangements as in the previous section, so the 

divergent promoters have a distance of 300 nucleotides between the TSSs, the convergent 
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In this section we study the effects of introducing asymmetric rate limiting steps in 

different promoter arrangements. These asymmetric rates can be achieved for example with an 

activator that can affect various steps in transcription initiation. For example in the lac gene, the 

CRP protein can active the binding step, while at the gal gene the CRP protein affects the 

isomerization steps In the repression case, we can have the LacR protein repressing the binding 

step or the Arc protein can repress the isomerization step [54]. . In this section we don´t use a 

specific activators or repressors, but we change directly the rate constants of the chemical reactions 

to see the effect of asymmetry on such parameters. 

In table 4.3 we present the mean, CV
2
 and Fano Factor of RNA production for different 

promoter arrangements as a function of the isomerization rate. Note that this rate was only changed 

on the promoter with the TSS at +1 (see figure 3.1), which we call the “right” promoter. 

 

Table 4.3 - The mean and CV
2
 of RNA production for different arrangements as a function of the 

isomerization rate. This rate was changed on the “right” promoter. Here kisom stands for the standard 

isomerization rate used in this work: 0.095 s
-1

. 

  
Mean CV2 Fano Factor 

Left Right Left Right Left Right 

Convergent 

kisom 3.76 3.69 0.26 0.27 0.98 1.00 

kisom/2 4.41 2.29 0.21 0.44 0.93 1.01 

kisom/5 5.15 1.04 0.16 0.97 0.82 1.01 

kisom/10 5.44 0.54 0.14 1.85 0.76 1.00 

Divergent overlap 

kisom 1.92 1.94 0.88 0.88 1.69 1.71 

kisom/2 1.46 1.45 1.41 0.88 2.06 1.28 

kisom/5 0.86 0.85 2.96 1.21 2.55 1.03 

kisom/10 0.52 0.49 5.53 1.96 2.88 0.96 

Divergent 

kisom 5.60 5.57 0.13 0.12 0.73 0.67 

kisom/2 5.57 4.15 0.13 0.18 0.72 0.75 

kisom/5 5.56 2.32 0.12 0.35 0.67 0.81 

kisom/10 5.53 1.33 0.13 0.66 0.72 0.88 

 

In the case of UV5 isomerization is the strongest rate limiting step leading to the open 

complex formation [15], so it is natural that we change this value in this study.  

From the results in table 4.3 we observe that in the convergent arrangement, the promoter 

with a higher kisom has an increase in the mean RNA numbers (and decrease in the CV
2
) while the 

other promoter has a decrease in the mean RNA numbers (and decrease in the CV
2
). This is 

because the increase in the the number of ECs (firing rate) that are produced by one promoter leads 
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to a higher number of collisions between those ECs and the ones produced by the other promoter 

and also between the ECs and complexes at the slower promoter (slower firing rate). Sneppen and 

colleagues [109] saw the interference due to collisions from 2 convergent promoters and observed 

that if both promoters had the same strength (the normalized case), they had a logarithmic 

interference with the increase of distance between TSSs. If one promoter was stronger and one was 

weaker (then the normalized case), then the stronger suffers less interference (lines lower than the 

K
A
/K

S
) and the weaker suffers a higher interference (lines higher than the K

A
/K

S
). We also 

observed a similar pattern, which means that our model is in accordance with their model of 

interference.  

Looking at the “sitting duck” interference is not that simple, because with a slower 

promoter, the aspect ratio goes higher, but the K
A
/K

S
 also goes higher, so we might not see an 

increase in this type of interference. 

In the divergent overlapped promoters, it is observed that with one weaker promoter, at 

both promoters the mean RNA production decreases within the same order of magnitude. 

Interestingly the CV
2
 is higher for the promoter with a slower isomerization. As we can see from 

figure 4.6, when one promoter is producing an RNA, it stays producing for some time and only 

then it changes to the other side (we will study this effect in a latter section using correlation 

between production choices). So this results means that the isomerization step doesn´t affect this 

choice of production (because the mean is equal on both sides), and only affects the duration of the 

production. But since this production is alternate we will have around the same number of RNA´s 

produced at each side but with a slower production with the slower isomerization, which leads to a 

higher noise. 

In the divergent case we can observe that only the affected promoter has a significant 

change in the RNA production (the other promoter has a 1.2% decrease in the mean value, while 

the affected promoter has 76% decrease with a 10 times decrease on the isomerization rate). This is 

because when one promoter is producing, the other promoter can still produce but has a smaller 

binding region (less available nucleotides), so he gets a small decrease in promoter activity, thus a 

lower mean RNA levels.  

From the values of the Fano Factor (FF) we can observe that on the convergent case, the 

affected promoter (lower isomerization) has the same noise as a Poisson process (FF =1), while the 

other promoter has a reduction on the noise (FF < 1). In the divergent overlap case, both promoters 

start with a higher noise than a Poisson process (FF > 1) but the affected promoter starts to lower 

the noise until it is less than 1, while the other promoter actually grows the noise (FF >>1). In the 

divergent case, both promoters have a noise lower than a Poisson process, but the affected 

promoter has an increase in noise with the decrease in isomerization. 
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In table 4.4 we present the mean, CV
2
 and Fano Factor of RNA production for different 

promoter arrangements as a function of the binding rate. In this case we actually changed the 

binding rate of some nucleotides in order to achieve asymmetry.  

In the convergent promoter, all the binding region of the “right” promoter (see gray region 

in figure 3.1) was affected, while in the divergent promoters, we divided the binding region in half, 

and only one half was affected. So we affected with the binding rate a region from +1 to -150 (note 

that here the distance between the TSSs is 300 nucleotides, so the other promoter is at position -

301. On the divergent overlapped promoters, we had to make a decision on where to divide the 

binding region: one that included both TSSs and one that would affect mainly just one TSS (so the 

affected region would be at the middle or at the end of the binding region respectively). We 

simulated both cases, and saw that when we affected just the middle, the mean, CV
2
 and FF stayed 

almost unchanged for both promoters (less than 1% change). Because of this we only show the 

values for the other simulation in table 4.4. 

 

Table 4.4 - The mean and CV
2
 of RNA production for different arrangements as a function of the 

binding rate. This rate was changed in a particular region of the template. Here kbind stands for the standard 

binding rate used in this work: 0.000075 s
-1

. 

 
Mean CV2 Fano Factor 

Left Right Left Right Left Right 

Convergent 

kbind 3.71 3.71 0.27 0.27 1.00 1.00 

kbind/2 3.93 3.22 0.25 0.31 0.98 1.00 

kbind/5 4.45 2.21 0.20 0.46 0.89 1.02 

kbind/10 4.93 1.35 0.17 0.75 0.84 1.01 

Divergent overlap 

kbind 1.92 1.92 0.88 0.88 1.69 1.69 

kbind/2 2.73 1.48 0.53 1.13 1.45 1.67 

kbind/5 3.34 1.18 0.38 1.32 1.27 1.56 

kbind/10 3.55 1.09 0.34 1.41 1.21 1.54 

Divergent 

kbind 5.56 5.59 0.12 0.12 0.67 0.67 

kbind/2 5.49 5.33 0.13 0.13 0.71 0.69 

kbind/5 5.46 5.08 0.13 0.14 0.71 0.71 

kbind/10 5.40 4.94 0.13 0.14 0.70 0.69 

 

From the results in table 4.4, we can observe the same effect as the previous simulation on 

the convergent case, where the mean of the affected promoter (lower binding rate) decreased, while 

the other increases the mean. In this case, the CV
2
 of the affected promoter increased by almost 3 
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times, while the other promoter had a reduction on the CV
2
. We also observe that the affected 

promoter also has a noise similar to a Poisson process (FF =1), while the other decreases the noise. 

In this case we are reducing the amount of RNAps that bind to the DNA template on the region of 

the affect promoter, so the promoter will have less converging EC´s to collide into, so it means that 

they can clean the converging region of the diffusing and “sitting ducks”, so it has less interference 

than the case where both promoter have the same binding affinity. 

On the divergent overlap case, we can see the same effect, that the affected promoter has a 

reduction on the mean, while the other increases. We can see an increase of 60% on the CV
2
 of the 

affected promoter and a decrease in 61% on the other promoter and from the Fano Factor we can 

see that while both promoters have a FF higher than 1, and both promoters have a reduction on the 

FF, the affected promoter have a smaller reduction than the other promoter (9% compared to 28% 

respectively). 

Finally on the divergent case, we can see that both promoters have a slight decrease on the 

mean (the affected promoter has a decrease of 12% and the other of 3%). Both the CV
2
 and the 

Fano Factor have very small variations (they seem to have a tendency of increasing both values at 

both promoters, but there are some values that had a small decrease). This is because both 

promoters share a big binding region, so even if we divide in half the binding affinity, the other half 

still has lots of RNAps binding in both directions, so this effect is less pronounced in the divergent 

case than in the other cases. 

With these results we observed the various effects on the mean, CV
2
 and Fano Factor using 

asymmetric rate constants, on chemical reactions before and after the binding of the RNAp on the 

different arrangements.  

4.5.  Binding kinetics of RNA polymerases to promoter regions 

In this section we first study the binding kinetics of RNAps to the DNA template using 

divergent promoters with a distance between TSSs of 200 nucleotides. For this simulation we 

measured from 50 independent simulations each 10
5
 s long the number of times each nucleotide on 

the DNA template is bound by an RNAp. In figure 4.7 we show the distribution of probabilities 

with shows the fraction of times that each of the nucleotides was the one to which the center of the 

RNAp first binds to in the template, thus, there is no recorded binding in the first and in the last 27 

nucleotides of the binding region.  

We also tested the effect of varying the binding affinity (kbind), which was first set to the 

standard value of 0.75.10
-4

 s
-1

 [12] and then changed to 10 and 100 times smaller. Note that when 

the formation of the closed complex take place at the TSSs, the RNAp occupies 55 nucleotides, 

which means that they occupy the position +1 to -54 (“right” promoters) or -147 to -201 (“left” 

promoter), since for this simulations the promoters had a distance of 200 nucleotides between their 

TSSs. 
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Figure 4.7 – Probabilities for each nucleotide that an RNAp will bind to the DNA template of two 

divergent promoters. The binding region is located between both TSSs with 200 nucleotides between them. 

We tested three different values of kbind (standard value, 10 and 100 smaller values than the standard).  

 

In figure 4.7 we show the distributions of the probability that each nucleotide which was 

bound by an RNAp for different values of kbind. We should also note again that that since in 

Biology there is no position 0 we had to shift one position in the x-axis (from figures 4.7 and 4.8), 

so that although there are 200 nucleotides between the TSS, their positions are at +1 and -201. 

In figure 4.7 we can observe that the spatial distributions of binding probabilities are not 

uniform, except for the case kbind/100. This is due to the rate limiting steps that occur at the TSSs, 

namely, the closed complex formation, isomerization and the open complex formation. For lacUV5 

the step of RPi formation through RPc is the slowest of the three (see table 3.1 for the values used) 

[15]. Since the duration of those steps, along with the abortive initiation [18, 19] is not negligible, 

this means that RNAps primarily occupy the regions the TSSs. After, the regions more occupied 

are those just adjacent to the first ones as diffusing RNAps wait for the TSS to be cleared. The non-

negligible nature of the size of the RNAp compared to the promoter length cause the distributions 

to be discontinuous. 

To verify this, we did a new simulation where kbind is set to its standard value (see table 

3.1), but the rates of the four rate limiting steps are set so that they no longer were rate limiting 

steps of the RNAp movement along the DNA template. Specifically, kclose, kisom, kopen and kelong are 

set equal to kmove and kabort = 0. When doing so, the distribution became identical to the one for 

kbind/100 (red line in figure 4.7) as observed in figure 4.8. 
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Figure 4.8 – Probabilities for each nucleotide that an RNAp will bind to the DNA template of two 

divergent promoters. The binding region is located between both TSSs with 200 nucleotides between them. 

For this simulation we set the rate constants so that they are no longer rate limiting of the RNAp movement 

along the DNA template. 

 

From figure 4.8 it is possible to see that the distribution became uniform and identical to 

the one for kbind/100 because there were no rate limiting steps of RNAp movement in this 

simulation. We note that this simulation has less noise, because it has more samples (since the rates 

were much faster, there were more binding events). Since there are 148 available nucleotide 

positions that the reading head of the RNAp can bind to, the value at the y-axis is ~0.68. 

It is of interest to note that all these four steps have similar effects on the distribution 

because all those steps take place in the same positions (although they may differ in other effects 

such as noise in RNA levels). 

As each of those will cause the distribution to become non uniform similarly to what is 

shown in figure 4.7 for the standard kbind case. The slower the rates of the chemical reactions (that 

take place at the TSS), the more non-uniform will be the distribution.  

The shape of the distribution shown in figure 4.7 is expected to be dependent on the 

distance between TSSs. To study the effect we show distributions of binding probability for 

divergent promoters with different distances between TSSs in figure 4.9. For these simulations, we 

only use the standard value of kbind (see table 3.1) to see what is the effect on the non-uniform 

distribution. Note that for the simulations in figure 4.9 we had to do just 1 simulation 10
6
 s 

duration, because it was simpler to just count the binding events in 1 simulation, and this duration 

is enough to understand the shape of the distribution. 

-201 -160 -120 -80 -40 1
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Binding position

B
in

d
in

g
 p

ro
b
a
b
il
it
y

(Nucleotides) 



Leonardo Pedro Donas-Boto de Vilhena Martins 2011 

 

  
Page 39 

 

  

 

Figure 4.9 – Probabilities for each nucleotide that an RNAp will bind to the DNA template of two 

divergent promoters. The binding region is located between both TSSs differing in number of nucleotides (N) 

between both TSSs. (A) N=100 (B) N=125 (C) N=150 (D) N=175 (E) N=200 (F) N=250 (G) N=300 (H) 

N=350 (I) N=400. In the y-axis we have the binding probability and in the x-axis we have the binding 

position. 
 

From figure 4.9 it is possible to conclude that the shapes of the of the positions where the 

binding occurs depend on the ratio between the number of nucleotides that an RNAp occupies 

when diffusing on the template and the size of the binding region  

This distribution will only be spatially uniform in two cases. First, as shown in figure 4.8 

(A), the distribution is uniform if the distance between TSSs region is too small to have more than 

one RNAp bound to it at any moment (divergent overlapping promoters). The second case would 

be for a distance between TSSs so large that the number of free RNAps in the cell would not be 

sufficient to fully occupy it (with 28 free RNAps, each occupying 55 nucleotides we would need a 

sequence with 1540 nucleotides). This can be inferred from observing how the distribution changes 

(and how the spikes become less pronounced) with increasing distance. 

In figure 4.10 we present the results of the study of the binding kinetics of RNAps to the 

DNA template using convergent promoters with a distance between TSSs of 150 nucleotides and a 

binding region of 150 nucleotides for both promoters. 
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Figure 4.10 – Probabilities for each nucleotide that an RNAp will bind to it, when binding to the 

promoter region. This simulation was done with convergent promoters with a binding region of 150 

nucleotides and a distance between TSSs of 150 nucleotides.  

 

From figure 4.10 we can observe that the convergent promoter behaves similarly in case of 

the distribution shape but the binding regions are not overlapping. It is possible to get the 

distribution of convergent promoter by taking the half distribution of the overlapping area, turning 

it around and separating the space with the distance between TSSs. 

4.6.  Dynamics of RNA production in different arrangements 

We next investigate how the geometry of a promoter affects the dynamics of RNA 

production. We compare the distributions of intervals between the productions of consecutive 

RNAs from one TSS (since this distribution is identical for both TSSs in all models, we just join 

the values obtained separately for each TSS into a single vector to make the distribution). For these 

simulations we used the same 50 simulations with 10
5
s each, but with a sampling of 1s for a better 

temporal resolution. 

In all models, the binding region behind each the TSS is 200 nucleotides long which 

implies that differences in the means of the distributions are solely due to the differences in 

geometry and not, for example, due to different rates of binding of RNAps to the templates. The 

tails of the distributions are shown in inset for each case (except F, where it is within the range of 

120 s) and differ significantly in length. 

Models A to C are divergent promoters, differing in the distance between both TSSs. In A 

the distance is 200, in B is 150 and C is 65 (divergent overlapped promoters). As this distance 
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decreases, the mean of the intervals decreases, and so does the standard deviation because of the 

decrease in number of collisions between elongating and diffusing RNAps, and thus the width of 

the distribution decreases. 

Model D is also a divergent promoter, identical in structure to A, but without the rate 

limiting steps at both TSSs. Due to that, in comparison to A, the mean of the intervals is much 

smaller and the distribution becomes exponential-like, given the absence of the rate limiting steps 

[110]. 

Model E is a convergent promoter with 100 nucleotides between both TSSs. As expected, 

in comparison to model A, the kinetics of RNA production is reduced and noisier. Namely, the 

distribution of intervals between production events increases in mean and standard deviation due to 

the interference between elongating RNAps from different TSSs.  

Finally, model F, a unidirectional promoter, behaves similarly to a divergent promoter 

where there are no collisions between elongating and diffusing RNAps (similarly to model C). 

We present the mean and standard deviation of those time intervals in table 4.5. In figure 

4.11 we also present the distributions of time intervals between the productions of consecutive 

RNAs, using 6 different models described in this section.  

 

Table 4.5 - The mean and the standard deviation of the time intervals between the productions of 

consecutive RNAs from just one promoter. We joined the data obtained separately for each promoter to have 

more samples. 

 

Models Mean /s σ /s 

A 34.30 20.11 

B 41.06 25.17 

C 88.75 176.84 

D 5.12 4.58 

E 46.70 42.84 

F 34.51 19.97 
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Figure 4.11 – Probability distribution of time intervals between the productions of consecutive 

RNAs on one side. The models vary in their distance between the TSSs (in nucleotides) but all of them have 

a binding region of 200 nucleotides and were previously described. The figures were cut from 120 s and the 

long tail is presented in small subfigure. The x-axis is divided in bins of 3 s while the y-axis represents the 

probability that the production events occurs within the bin duration. 

 
In general, the kinetics of transcript production is similar in all bidirectional promoters, 

giving rise to distributions of similar shape. The steps that most contribute to the shape of the 

distributions are the rate limiting steps at both TSSs. However, the results show that mean and 

standard deviation of the distribution of intervals between productions of consecutive RNA 

molecules can be tuned, to some extent, by the relative positions of both TSSs and by the geometry 

of the promoter. 

  Divergent promoters with binding region between TSSs (figure 4.11 A) has 

approximately the same mean time between consequent produced RNAs on one side as the single 

unidirectional promoter (figure 4.11 F) and also the standard deviation is almost the same. 

However the other divergent promoters (with binding region of 50 nucleotides outside of the TSSs 

– see figure 4.11 B) has a slower production rate and slightly higher standard deviation than the 

other divergent model (figure 4.11 A). 

The overlapping divergent promoters (figure 4.11 C) has a time interval distribution with a 

long tail that emerges from the interference between occluding RNAps and thus more than double 

the mean production time while the standard deviation is almost 9 times higher than the divergent 

promoter in model A. This mean production value is explained because only one RNAp is able to 

initiate at a time and the elongating RNAp removes the diffusing RNAps from the other side 

completely.  
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Convergent promoter (figure 4.11 E) has only slightly higher mean production time than 

divergent and unidirectional ones but the interference causes the standard deviation to become 

higher (two times the value from model A) and the time distribution to have a long tail as well. For 

example, in a convergent promoter, when an RNAp starts the elongation process, it will, generally, 

encounter one to a few diffusing RNAps in the opposite direction. When it does so, and according 

to reaction (8) in table 3.2, it will cause the diffusing RNAp to be released from the DNA template. 

Consequently, it is more likely that the next diffusing RNAp that will successfully reach the TSS 

and begin the elongation process will be one travelling in the same direction as the previous 

elongating RNAp, than one diffusing in the opposite direction. 

If the above is true, than one should expect that the bidirectional promoters with distinct 

arrangements differ in dynamics of production of the two types of RNA, specifically, they should 

to differ in the degree of correlation of choices between the production of one or the other RNA. If 

the autocorrelation is null, there is no effect of the interferences between RNAps on the production 

of transcripts. If the autocorrelation is positive, it implies that once one of both types of RNAs are 

produced, the promoter is biased by the interferences to produce the same type of RNA in the next 

event. If the autocorrelation is negative, the opposite is more likely. However, there may be 

additional sources of correlation, aside geometry.  

In figure 4.12 we present the correlation (this calculations are explained in the Materials 

and Methods section) of these choices for several lags for the models described before. For the F 

model we constructed a vector of two, non-interacting, unidirectional promoters and also calculate 

the degree of correlation between them. 

 

Figure 4.12 – The Pearson correlation between sequences of choices of elongation directions. All the 

models are the same as in figure 4.11. Here, Choice Lag does not have units, since we use vectors of choices 

(0 for the “left” promoter and 1 for the “right” promoter”). 
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Results from figure 4.12 confirm that the dynamics of RNA production from both TSSs are 

dynamically correlated because of the interference between the RNAps at various levels, and add to 

this, the role that the rate limiting steps play on the correlation between the kinetics of RNA 

production by both promoters. 

First, we can observe in figure 4.12 A, that there is negative correlation between 

consecutive production events, but this correlation is not propagated for longer lags. This 

correlation arises from the existence of rate limiting steps, as seen by comparing with figure 4.12 

D, whose model has no rate limiting steps. When a TSS is occupied by RNAp, it will remain in that 

state for a period of time (whose duration is determined mostly by the open complex formation). 

Due to that, it is more likely that the next RNA produced will be from the other TSS, since for a 

production event to occur in the first TSS, it is necessary to wait not only for the clearance of the 

promoter, but also for the start and completion of the next open formation event. It is also due to 

this, that there is a small positive correlation between choices for lag of 2. 

Decreasing the nucleotide distance between both TSSs of a divergent promoter weakens 

this correlation and as this distance decreases, the “loading capacity” of the promoter also 

decreases, that is, the number of RNAps that can be bound to it at any moment is smaller. It is this 

loading capacity that allows one successful transcription event at one TSS to be followed by 

another at the other TSS in a correlated fashion.  

By further decreasing the distance between both TSSs, there is an abrupt change in the 

kinetics of transcription, which might not be very clear in figure 4.11 C, but is clear in figure 4.12 

C. This can be explained because if one of both TSSs is loaded with RNAp, going through the open 

complex formation. The other one is likely to not be loaded by an RNAp, since the region between 

both TSSs is smaller and because the RNAp at the TSS impedes diffusing RNAps to reach the TSS. 

Once the open complex formation is completed, the RNAp moves along the template, and as it 

does so, it collides to any RNAp diffusing in the opposite direction, therefore not allowing them to 

reach the other TSS.  

Only RNAps diffusing in the same direction can reach a TSS, specifically, the one from 

which the elongating RNAp departed from. Due to that, a very strong positive correlation of 

consecutive choices emerges in the divergent overlapped arrangement (see figure 4.12 C).  

In figure 4.12 E, we observe a similar phenomenon. Due to the convergent arrangement, it 

is more likely that one elongation event from one TSS is followed by another elongation from the 

same TSS than from the other. The effect is not as strong as in the previous case because in this 

case, there is a strong possibility that while one RNAp is elongating, another elongating event can 

still start at the other TSS, and when two elongating RNAps collide, they have identical 

probabilities of being removed from the DNA template, which prevents the RNA production from 
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that fallen RNAp. Note that the probability of two elongating events from each of the TSS 

occurring simultaneously in the previous case is dependable on the distance between TSS (as will 

be confirmed in the next section).  

Finally, in figure 4.12 F we show the correlations between consecutive transcripts 

production from two independent unidirectional promoters. The similarity between this figure and 

Figure 7A also confirms shows how negative correlation emerges due to the rate limiting steps. 

This is similar to the toggle switch. In that case, the positive correlation is due to the 

protein levels not decaying instantaneously. In general it stays in the same state but since there is a 

probability of each moment of switching, as the lag increases, the correlation decreases, implying 

that for some lag, they are no longer correlated. 

The correlation choosing a direction of transcription is also depending on the noise levels 

of promoter, for example how much variance is inherent in transcription initiation. Open complex 

formation, isomerization, closed complex formation and promoter escape being inefficient causes 

the time interval distribution to have larger mean and variance. This in turn reduces the occlusion 

or interference inherent correlation. Less noisy process can be coordinated more efficiently in 

accordance to time interval distributions and from there on to correlation distances.  

In the next section, we show how the distance between both TSSs affects both the 

correlation between choices and the mean RNA levels for divergent and convergent promoters.  

 

 

4.7.  Dynamics of RNA production as a function of the distance between 

TSSs 

In this section we study the effects of changing the distance between TSSs to dynamics of 

RNA production in the sense of correlation between the directions choosing of the promoters and 

of mean RNA levels. In order to do so we simulated divergent and convergent promoter dynamics 

as a function of the distance between TSSs. The binding region of both promoters in these 

simulations is set to 300 nucleotides. 

For these simulations we did 50 independent simulations with 10
5
s each, and calculated the 

Pearson correlation just for lag 1. Using lag 1, we can observe how the distance between TSSs 

affect exactly the next choice of production. In figure 4.13 we present the results from those 

simulations for convergent (○) and divergent (□) promoters. 

 



Leonardo Pedro Donas-Boto de Vilhena Martins 2011 

 

  
Page 46 

 

  

 

Figure 4.13 – Pearson correlation at lag 1 between the choices of directionality of consecutive RNAs 

as a function of the distance between both TSSs for convergent (○) and divergent (□) promoters. 

 

From figure 4.13, we can observe that the distance between both TSSs is a critical variable 

in the degree of correlation of consecutive choices of direction of transcription (especially in 

divergent promoters). For distances smaller than ~110 nucleotides there is strong positive 

correlation between consecutive choices. At this point, as the distance is increased, there is an 

abrupt change, and the choices become anti-correlated. This transition corresponds to the change in 

the structure from overlapping to not overlapping promoters. When overlapping (<110 

nucleotides), the RNAp at a TSS, when elongating, clears the other side from any diffusing RNAp, 

making it more likely that the next elongation event will be from the same TSS as the previous. 

When this distance is larger, the correlation becomes negative because of the rate limiting steps at 

the TSS and because the activity at one TSS is less affected by the activity at the other TSS (as can 

be seen by the increase in the mean RNA levels in figure 4.14). 

In the case of convergent promoters, there is interference between the activities of both 

promoters for all distances, as elongating RNAps clear the other promoter from any RNAp. This 

interference increases with distance because the longer is the time that it takes for the elongating 

RNAp to pass by the other TSS, the longer will be the time interval during which no successful 

transcription event can arise from this other TSS. The small peak at the 35 nucleotides between 

TSSs is due to the fact that at such a distance, the RNAp at one TSS impedes even the formation of 

an open complex at the other TSS. Once the distance is larger, the correlation suffers a decrease as 

the other TSS can also form an open complex simultaneously, and (while rarely) this complex can 

end up firing before and thus clear the first TSS as well. 

The temporal correlations shown in figure 4.13 have a significant effect on the mean RNA 

numbers at near equilibrium shown in figure 4.14. In divergent promoters, in general, the stronger 
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is the positive correlation, the smaller is the mean number of RNA at near-equilibrium. In the case 

of convergent promoters, the relationship between correlation and mean RNA numbers is the 

opposite. In both geometries, the stronger is kbind, the stronger are these correlations (both the 

positive and the negative ones). Finally, note that, beyond a certain distance between TSSs, further 

increases in distances no longer change the mean RNA levels significantly. This is due to other rate 

limiting steps, such as the open complex formation, that limit further increases in the rate of RNA 

production.  

In convergent promoters, as the distances between the two TSSs increase, first there is 

strong increase in mean RNA numbers, as the distance becomes large enough for having both TSSs 

simultaneously occupied in the downstream region by an RNAp (same point as the decrease in 

correlation in figure 4.13). After that, further increases in the distance leads to a decrease in mean 

RNA numbers as the number of interferences and collisions between elongating RNAps increase 

(as show in figure 4.14). 

 

Figure 4.14 –Mean RNA numbers in the (A) divergent (B) convergent promoters as a function of the 

distance between the TSSs. In these models, both genes are identical and, thus, so are their mean RNA levels. 

The standard kbind is represented in (□), kbind / 10 is represented in (○) and kbind / 100 is represented in ( ). 

 

In figure 4.14 we show how the mean RNA levels change as a function of the distance 

between TSSs with 3 different kbind values. Overall increment of the distance between TSSs 

decreases the occlusion and collisions between elongating and diffusing RNAps in the divergent 

promoter (see figure 4.14 A). The consequences to the mean RNA number is more tangible in the 

regime where TSSs are partly overlapped, that is, RNAp binding and initiating transcription causes 

occlusion in the other TSSs. The low rate of kbind does not seem to significantly have a change in 
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RNA numbers as promoter region changes. This is mainly because of non saturated RNAp binding 

rate as in opposition the standard kbind rate has dramatic effects as the promoter region expands. 

Beyond a certain length, further increases in length no longer increase significantly the 

mean RNA level. This is due to other rate limiting steps such as abortive initiation, open and closed 

complex formations, limiting further increases in the rate of RNA production. The size of the 

length for which further increases in length no longer cause an increase in RNA production rate 

depends on the kinetic parameters of these various rate limiting steps.  

The convergent promoter dynamics (see figure 4.14 B) in other hand follows a different 

trend when it comes to mean RNA levels. The mean levels at overlapping TSSs (distance 1) are 

very close to divergent case but the mean level then increases very quickly reaching the optimal 

distance for RNA production at 50 nucleotides between TSSs. After this the mean starts to slowly 

decrease as the distance between TSSs grows and the traffic increases. With two higher binding 

rates this trend is clearly visible but as before the slowest binding rate produces nearly uniform 

production rate with all distances between TSSs. This can be seen as a consequence of having low 

population of diffusing RNAps.  

4.8.  Repression dynamics 

4.8.1. Size of the repressor and the binding kinetics of a repressor 

In this section we also used 50 simulations each with 10
5
 s of duration on a divergent 

promoter with a distance of 200 nucleotides between the TSSs and a binding region of 200 

nucleotides. 

For these simulations we used just one repressor with a kinetic constant for its binding of 

krep = 0.01 s
-1

 and of its dissociation of kunrep = 0.01 s
-1

. The repressor also has a reading head in the 

center, so that’s why it is easier to choose an odd number of occupied nucleotides (where they have 

the same amount of nucleotides divided in both halves). If we needed to have an even repressor, we 

would just need to choose one of the sides to remove occupied nucleotides until we reached the 

amount that we wanted. The center of the repressor was always at the position -100. 

In table 4.6 we show the effects of varying the repressor size from 10 nucleotides to 100 

nucleotides in the dynamics of RNA production: mean RNA levels, CV
2
 and Fano Factor. We also 

test this effect with a lower binding affinity (100 times lower than the standard value [12]). 
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Table 4.6 - The mean, CV2 and Fano Factor with the variation of the repressor size. For these 

simulations we used two binding kinetics of the RNAp (the standard value and 100 smaller). 

 

kbind  
Mean CV

2
 Fano Factor 

Right Left Right Left Right Left 

Size 11 4.36 4.39 0.16 0.16 0.70 0.70 

Size 51 3.97 4.03 0.18 0.18 0.71 0.73 

Size 101 4.91 4.90 0.15 0.15 0.74 0.74 

kbind/100  
Mean CV

2
 Fano Factor 

Right Left Right Right Left Right 

Size 11 0,32 0,33 2,99 2,92 0.96 0.96 

Size 51 0,27 0,27 3,63 3,64 0.98 0.98 

Size 101 0,22 0,22 4,63 4,65 1.02 1.02 

 

The repressor size can vary from small molecules to large distances (looping the DNA) 

[90,111,112] to gain different effects on the promoter dynamics. DNA looping is one way of 

achieving longer repression distances by preventing the RNAp binding to DNA at that region. 

Single molecules can also bind directly to TSS to prevent the transcription initiation.  

From the results in table 4.6 we can see that the most effective size, with the same 

repression kinetic would around 50 nucleotides, which is around the same size of the RNAp. This 

is because the repressor competes with the RNAp in the binding to the DNA template, so if the size 

is bigger than the RNAp, the RNAp will have a bigger propensity to bind to the DNA than the 

repressor. If the repressor size is smaller than the RNAp then when bound the repressor occupies 

less nucleotides, which means that the RNAp will have more space to bind to. This is only true for 

a kbind of the RNAp on the standard value, because with 100 times smaller, the RNAp will not bind 

enough times to be able to compete with the repressor, so the bigger the size, the smaller the mean. 

In the standard value, we don´t observe significant changes in the CV
2
 and the Fano Factor, while 

with the value 100 times smaller both the CV
2
 (with a 50% increase with the higher size) and and 

Fano Factor increases (the FF goes higher than 1). 

In table 4.7 we exhibit the effects of varying the dissociation kinetic constant in the 

dynamics of RNA production: mean RNA levels, CV
2
 and Fano Factor. For this simulation we 

used a repressor with 101 nucleotides and the standard binding value for the RNAp. 
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Table 4.7 - The mean, CV2 and Fano Factor with the variation of the dissociation kinetic constant. 

For these we used a repressor with 101 nucleotides and the standard value for the RNAp binding. 

 

kunrep 
Mean CV

2 
Fano Factor 

Right Left Right Left Right Left 

kunrep 4.93 4.91 0.15 0.15 0.74 0.74 

kunrep /5 4.50 4.49 0.23 0.24 1.04 1.08 

kunrep /10 4.13 4.10 0.35 0.35 1.45 1.44 

kunrep /15 3.75 3.77 0.47 0.47 1.76 1.77 

kunrep /20 3.48 3.49 0.58 0.58 2.02 2.02 

 

From table 4.6 we saw that for the standard value, the repressor with 101 nucleotides could 

not compete with the binding of the RNAP, but lowering the dissociation constant, we were able to 

repress the production (with the constant 20 times smaller, we obtained a decrease in the mean 

RNA levels up to 29%). The CV
2
 and the Fano Factor increased with the decrease of the constant, 

and we were able to observe a higher noise then a pure Poisson process with the addition of the 

repressor. 

In the next section we will study how different binding positions can affect different 

mechanisms, and how the repression affects the correlation between Time series of RNA 

production. 

4.8.2. Different repression mechanisms 

The most common mechanism of repression of transcription is steric occlusion, where the 

repressor blocks the access of the RNAp to a specific region of the promoter [1]. Depending on 

where the binding site is located, the blocking can affect different steps in transcription initiation, 

going from the binding to the DNA template to the closed complex formation, open complex 

formation or preventing the promoter escape [87, 88].  

This mechanism allows, in theory, to block transcription completely since, provided a very 

large number of repressor molecules, the expected time for a repressor to bind to the DNA is 

virtually zero, hampering any transcription event. The only case where repression would not be 

complete is if there was sufficient space between the region occupied by the repressor and the TSS 

for an RNAp to bind. In this scenario, as the number of repressor molecules increase, the rate of 

RNA production would decrease until reaching a plateau of minimum expression rate that could 

not be further decreased.  

Here we first investigate the kinetics of transcription of a unidirectional promoter subject to 

a repressor as a function of the number of repressor molecules and the position of their binding site. 
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Namely, we model promoters with the binding site for the repressor centered at positions +1, +12, 

and +37. In all cases, the repressor occupies 10 nucleotides in each side of this position.  

To model repression we need to introduce in the model realistic rate constants controlling 

the binding and the dissociation of the repressor molecules to the DNA template. The ratio between 

these rates has been estimated for several genes and repressor molecules [113]. On average, one 

repressor molecule is bound to its binding site approximately 80% of the time. We set the rate 

constants of binding and unbinding such that the ratio between them is 4.167 (see table 3.3). For all 

the simulations in this section the rates of binding and dissociation of the repressors are always 

identical. 

It is noted that the model assumes that RNAps cannot, by collision or other means, 

dislodge the repressors from their binding sites, but stays paused at the same place [114]. If an 

RNAp is occupying the binding region of the repressor, then the repressor molecule cannot bind to 

the DNA, which means that the kinetics of dissociation of the repressor from the DNA template 

only depends on the kinetic rate of dissociation.  

 

Table 4.8 - Repression of unidirectional promoter at various steps of transcription initiation. Mean 

RNA levels as a function of the number of repressors present. 

Number of 

repressors 

Repressor of 

promoter 

escape 

Repressor of 

open complex 

formation 

Repressor of 

closed complex 

formation 

1 4.26 4.88 5.78 

2 3.47 4.25 5.71 

3 2.85 3.72 5.64 

5 2.23 2.99 5.56 

7 1.85 2.52 5.41 

10 1.54 2.01 5.30 

20 1.07 1.2 4.86 

50 0.76 0.57 3.98 

100 0.66 0.31 3.14 

200 0.62 0.17 2.40 

500 0.59 0.07 1.73 

1000 0.57 0.03 1.45 

10000 0.43 0.003 1.14 

50000 0.21 0.0007 1.01 

 

Finally, to assess the strength of repression we define a “repression factor” as the ratio 

between mean RNA numbers at near-equilibrium when no repressors are present (equal to 5.85) 
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and the mean RNA numbers when a certain number of repressors are present. In figure 4.15 we 

present how this quantity varies with the position of the binding site and with the number of 

repressors in the cell. 

 
 

Figure 4.15 – Repression of unidirectional promoter at various steps of transcription initiation. Y-

axis is the repression factor and x-axis is the number of repressor molecules. The repressed steps are, closed 

complex formation ( ), open complex formation (○) and is the promoter escape (□). 
 

To repress specific steps in transcription initiation we have to take a look at the RNAp 

footprint: so the RNAp is diffusing it occupies 55 nucleotides, but as the rate limiting leading to 

open complex step are taking place at the TSS the footprint of the RNAp increases to 75 in the 

downstream direction (during isomerization) implying that it now occupies the 20 nucleotides 

following the TSS. Following the promoter escape, the release of the sigma factor reduces the 

RNAp footprint to 25 nucleotides.  

Using this information we used three different binding sites for the repressors such that at 

+1 it blocks the closed complex formation, at +12 it allows the closed complex but it blocks the 

open complex formation, and at +37, it allows initiation to be completed, but it blocks elongation. 

Note that in the section we are using a repressor with a size of 21 nucleotides as it is the value for 

the principal binding site of the lac repressor [87]. 

From figure 4.15 we can observe that in all cases the increase in the repressors numbers 

increased the repression factor, which also depends on the location of the binding site. A binding 

site at the TSS of right after it (at +12 and +37) provides equally efficient repression for small 

number of repressors. For large number of repressors, the efficiencies of these positions differ. 

Repression is stronger if the repressor blocks the open complex formation (at +12). Repressing the 
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closed complex formation is the least efficient repression since binding and diffusing of RNAps on 

the template is a fast process, and thus able to compete with the kinetics of binding and unbinding 

of repressors. It of interest to note also that, for small number of repressors, blocking elongation is 

the most efficient mechanism since only elongating RNAps or repressors occupy this region (less 

competition than in the regions of diffusing RNAps).  

When blocking the open complex formation at +12, repressors only compete with 

isomerization (thus also the open complex since they form very rapidly after isomerization), thus 

increasing the number of repressors causes linear increases on the rate of RNA production. On the 

other hand, increasing the number of repressors blocking elongation causes non linear changes in 

RNA production kinetics. At first, repressors only delay the movement of elongating RNAps but do 

not actually prevent elongation. This only has a limited effect in decreasing RNA production as for 

a certain range further increases in number of repressors cause little effect. Only when the speed of 

binding of repressors overcomes the speed of elongation do further increases in repressors numbers 

lead to additional decreases in the production of RNA molecules. In this regime, RNAps are 

prevented from leaving the TSS as the template is virtually always occupied by a repressor. Our 

results are in good agreement with the model made by Sanchez and colleagues [87] and his 

observations of the repression mechanisms.  

In bidirectional promoters, the location of the repressor binding site, aside from affecting 

the overall production of RNA, it can also bias the kinetics of production of both RNA molecules. 

We tested different positions for the binding site in convergent and divergent promoters. Results 

are shown in tables 4.9 and 4.10 respectively for the convergent and divergent promoters. 

Table 4.9 - Repression mechanism for convergent arrangement with 150 nucleotides between TSSs. 

Binding regions is consisted of 300 nucleotides. The repressor size is 21 nucleotides. 

 

Convergent Right Left Total 

No 

repressor 
3.56 3.54 7.1 

-35 
2.21 

(closed) 

3.37 

(elongation) 
5.58 

+1 
2.15 

(closed) 

3.15 

(elongation) 
5.3 

+15 
0.89 

(open) 

2.78 

(elongation) 
3.67 

+36 
0.59 

(escape) 

1.94 

(elongation) 
2.53 

+75 
0.92 

(elongation) 

0.93 

(elongation) 
1.85 
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Table 4.10 - Repression mechanism for the divergent arrangement with 150 nucleotides between 

TSSs. Binding regions is consisted of 300 nucleotides. The repressor size is 21 nucleotides. 

 

Divergent Right Left Total 

No 

repressor 
3.12 3.12 6.24 

+36 
1.15 

(escape) 

2.48 

(diffusion) 
3.63 

+15 
1.21 

(open) 

2.51 

(diffusion) 
3.72 

-35 
2.05 

(closed) 

2.88 

(diffusion) 
4.93 

-50 
2.04 

(closed) 

2.76 

(diffusion) 
4.8 

-75 
1.72 

(diffusion) 

1.75 

(diffusion) 
3.47 

-35, -115 
1.20 

(closed) 

1.22 

(closed) 
2.42 

 

From the table 4.9, we can observe that the kinetics of RNA production from both TSSs 

can be biased in the convergent arrangement. The bias is a function of the relative positions of 

repressor binding site and TSSs. For example, placing a repressor at -65 in a convergent promoter 

(TSSs at +1 and +150) will affect only the expression of the TSS at +1 (right), thus biasing the 

otherwise unbiased production from both TSSs. (see table 4.9).  

For example, placing the repressor at +36 in convergent promoters or at -35 in divergent 

promoters decreases the overall expression rate by approximately 60% and by 40%, respectively. 

Decreasing the overall expression without biasing the production of both TSSs is also possible for 

both arrangements (see tables 4.9 and 4.10), and to make it possible we need the repressor binding 

site to be located at the middle position between both TSSs, and using two repressors placed at 

symmetric positions from one another (see table 4.10). 

It has been suggested that the relatively small distance between TSSs may facilitate the co-

regulation of gene expression in both directions [1]. This would imply, for example, facilitating the 

simultaneous repression or activation of transcription from both genes. Due to this, we now study 

how repression may correlate the time series of RNA production from both TSSs. 

We first used model with two identical unidirectional genes in the same cell and under the 

control of a repressor molecule with the same chemical kinetics. Aside this, they are independent 

from one another since the number of repressor molecules in this simulation is set to 100. In this 

case, the correlation was found to be null for all lags (this data is not shown), and so this model can 
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be used as a null model of possible correlations between time series of RNA production. It is noted 

that if the number of repressor molecules was very small (from 1 to a few) a spurious anti 

correlation would be possible, as the repression of one of the genes would diminish the change of 

repression of the other. 

We present in figures 4.16, 4.17 and 4.18 the correlation of the time series of RNA 

production at different lags for different arrangements with and without a repressor mechanism (the 

values in red are without repression and the values in black are with repression). In figure 4.16 we 

present a divergent overlapped promoter with a repressor molecule in the middle position between 

their TSSs, which blocks both promoters at the same time. In figure 4.17 we present two divergent 

promoters with 150 nucleotides between their TSSs and a repressor molecule also in the middle. 

This repressor only blocks the diffusion. We also use another repression mechanism, where there 

are two binding sites, and one binding sites blocks the other and blocks the production from the 

nearest TSS, this is represented in figure 4.17 with the filled balls. In figure 4.18 we present two 

convergent promoters also with a distance of 150 nucleotides and also a repressor in the middle of 

them. 

To make this correlation studies, we compiled vectors of RNA time series (like the ones in 

figures 4.4, 4.5 and 4.6) and then we applied the correlation function as explained in the Materials 

and Methods chapter. 

 
 

 

Figure 4.16 – Correlation of RNA production in time at different lags for different geometries: (○) 

divergent with 65 nucleotides between TSSs. The values in red correspond to the correlation without 

repression and the values in black to the correlation with repression.  
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Figure 4.17 – Correlation of RNA production in time at different lags for different geometries: (□) 

divergent with 150 nucleotides between TSSs. Values in red correspond to correlation without repression and 

the values in black to correlation with repression, we also did a divergent promoter (•) in the same 

arrangement but with two repressor binding sites where one repressor site blocks the other and allows just 

one side to produce. 

 

 
 

Figure 4.18 – Correlation of RNAp production in time at different lags for different geometries: (x) 

convergent with 150 nucleotides between TSSs. The values in red correspond to correlation without 

repression and the values in black to correlation with repression.  

 

From figures 4.16, 4.17 and 4.18 and comparing the models with and without repressors 
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between TSSs), the mutual repression mechanism correlates, in a positively the time series of RNA 

production productions of RNAs. With the addition of a repression mechanism in the convergent 

promoters (figure 4.18) the correlation goes from negative to a slight positive (almost null), while 

in overlapping divergent (figure 4.16) promoters it changes the inherent negative correlation 

between time series to far weaker negative correlation.  

In the case of non-overlapped divergent promoters (figure 4.17) the repression went from 

almost null to a strong positive correlation. But in this promoter we can also make the correlation 

between the time series of the two genes more negative (filled balls in figure 4.17). This is possible 

if there are two binding sites and two distinct repressors (one for each TSS), and if the binding sites 

overlap, causing the repression of one of the two genes to hamper the repression of the other. This 

example suggests that complex repression mechanisms may allow correlations of any nature, 

positive or negative, and with any desired strength. 

In figure 4.19 we exhibit a RNA time series and the time series of repression binding and 

dissociation in a convergent arrangement using the same model as the one described for figure 

4.18, but using just 1 repressor. 

 

Figure 4.19 – Time series of RNA production for the convergent case (red and black line) and the 

time series of repression binding and dissociation (blue line) 

 

From figure 4.19, we can observe that when the repressor value goes to 0 (the repressor is 

bound to the DNA template) the RNA numbers eventually go down, since the RNAps are blocked 

by the repressor. When the value goes to 1 (and this is because we only used 1 repressor), the 

repressor dissociates and allows to go back to a normal state of RNA production.  
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Chapter 5. Conclusions and future work 

5.1.  Conclusions 

We studied the dynamics of expression of pairs of genes driven by closely spaced 

promoters within realistic intervals of parameter values for E. coli. For that, we proposed a new 

model for mimicking the process of transcription initiation, one RNA polymerase and one 

nucleotide at a time, whose dynamics is driven by the delayed stochastic simulation algorithm.  

This model includes the binding of RNAp to the DNA template, the promoter search, the 

steps leading to open complex formation, abortive initiation and the transcription elongation. This 

model is the first to model the promoter region explicitly combining the traditional model of 

transcription initiation [1] with the nonspecific binding [12], studies of diffusion [92], abortive 

initiation [19] and collisions between RNAps at different stages [109]. We can use this model to 

study the dynamics of RNA production as a function of the arrangement, binding region, distance 

between both TSSs, chemical constants and repressor dynamics as these properties allow the 

promoters to have diverse kinetics of RNA production, not easily achievable by individual genes, 

or by genes that interact via transcription factors. 

From the simulations of the dynamics RNA production as a function of the binding affinity 

we found that the value estimated by Singer and colleagues [12] is close to the saturating rate of 

RNA production. We also found that all the arrangements tested were less noisy then a pure 

Poisson process (FF < 1) and the values with the lowest Fano Factor are the ones closed to the 

value estimated by Singer and colleagues [12]. 

From the simulations with the abortive ratio we also observed that the lowest values of 

Fano Factor corresponded to the middle values of the abortive ratio that are able to reproduce the 

most observed values of Abortive to Productive Ratio in experimental studies [61]. 

We then studied the effects of changing asymmetrically the chemical constants of some of 

the steps in transcription initiation, namely, the binding of the RNAp and the isomerization. Using 

different arrangements we showed how highly diverse kinetics of RNA production have different 

degree of fluctuations in RNA numbers. We also showed how this diversity in RNA numbers may 

range from sub- to supra-Poissonian as a function of the dynamics of production, or even have the 

same noise as a pure Poisson process. 

We then studied how the binding affinity and distance between TSSs affected the 

probabilities of binding of the RNAp to the DNA template. We found that using the standard value 

the binding probability was not uniform, however with a lower binding the distribution of 

probabilities turns uniform. With varying the distance between TSS we concluded that with a 

standard binding rate, there would be two cases where the distribution would also be uniform, the 
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first is for a distance between TSSs so small to have more than one RNAp bound to it at any 

moment (divergent overlapping promoters). The second case would be for a distance between TSSs 

so large that the number of free RNAps in the cell would not be sufficient to fully occupy it. 

Also from the same study we observed a discrete nature of the probabilities of binding of 

the RNAp to the DNA template. This discrete nature is a result of the length of DNA occupied by a 

RNAp being only one order of magnitude smaller than the distances between TSSs, and suggests 

that the placing of binding sites for repressors and activators relative to the TSSs is likely to be far 

from random, as they can alter in a different nature the overall probabilities of freely diffusing 

RNAps to reach either TSS. 

We observed a great range of variability in the distributions of intervals between the 

productions of consecutive RNA molecules as a function of the configuration of the promoter. 

Different arrangements have different inherent interferences, as for example in the convergent 

promotes, colliding RNAps can be removed from the template, or in the divergent overlap one 

RNAp at the TSS during the execution of the rate limiting steps (isomerization and open complex 

formation) can block the other TSS from the another RNAp to start a transcription event, this 

interference affects mainly the tail of the time interval distribution as the mode of the distribution is 

related to the rate limiting steps (as observed that all the models have almost the same type of time 

distribution in the 0 to 60 s interval, except the model where the rate limiting steps were removed). 

In terms of the correlation studies, this interference can lead to a positive correlation 

between consecutive choices of which of the two RNAs is transcribed next, as observed in the 

convergent and divergent overlapped cases. In the divergent case, it was observed a degree of anti-

correlation that is accounted to the rate limiting steps that take place at both TSSs, as when this 

were removed, the correlation moved to a null value. 

We also observed that the distance between TSSs can also have an effect both in the 

correlation between consecutive choices and mean RNA levels. In the divergent case, with a 

distance bellow 110 nucleotides there is a strong positive correlation between consecutive choices. 

Above this point, as the distance is increased, there is an abrupt change, and the choices become 

anti-correlated, due to the same reasons as before. In the convergent case, the correlation is always 

positive and has the tendency to grow as the distance is increased. The mean RNA levels have an 

opposite nature, as in the convergent case they decrease with the increase of the distance (due to the 

interference), and in the divergent case they increase with the increase of the distance until they 

saturate at around 300 nucleotides. 

The study of the effects of repressors showed that these may be a means to achieve more 

complex patterns of behaviors, not possible otherwise. First we studied how the size could affect 

the dynamics of RNA production and we observed that with the standard binding affinity of the 

RNAp a higher size of the repressor than the RNAP (55 nucleotides) does not reduce effectively 

the mean RNA levels, because the binding of the repressor competes with the binding of the 
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RNAp. But with a lower dissociation rate of the repressor, then a repressor with a higher size is 

able to stay in the template long enough to compete with the RNAp. 

First we used a unidirectional promoter to study the repression mechanisms at different 

steps of transcription. These mechanisms can either lead to similar as well as distinct kinetics of 

RNA numbers, depending on various factors including the number of repressor molecules in the 

cell. In general, for the same number of repressor molecules and same binding affinity to the TFBS, 

the effects on RNA production differ with the step of transcription that is repressed by the 

mechanism of repression. 

These results are in good agreement with experimental observations that studied this type 

of repressions mechanisms. Schlax and colleagues [115] concluded that the most probable 

repression mechanism is the inhibition of closed complex formation, however another study using 

the lacUV5 promoter stated that repression of that promoter is likely to be achieved by the 

repression of the open complex formation [87]. Using an E. coli database, Garcia and colleagues 

[88] showed a broad distribution of binding regions of the repressors (but note that the majority of 

them are very close to respective TSSs). This observation along with the diversity of gene 

regulation mechanisms suggest that in different genes, repression can occur at different stages, 

including the promoter escape. 

We then studied how the repression mechanisms affect bidirectional promoters, which have 

a more complex RNA production dynamics. We observed that repression in this type of promoters 

can lead to a bias on the mean RNA levels of both TSSs, but for example a symmetric location of 

the TFBS can also lead again to an unbiased production. We also observed that depending on 

various variables (such as the possibility of a double TFBS), repression by occlusion can either 

correlate or anti correlate the time series of RNA production. 

Finally, we hypothesize that the multitude of regulatory steps of the dynamics of RNA 

production not only explains in part the observed diversity of kinetic behavior of genes in E. coli, 

but also suggests that multiple structures may give rise to similar kinetics of RNA production, 

thereby providing the means for the emergence of neutral evolutionary pathways. 

5.2. Future work 

As it was mentioned before, this model has a great ability to study the dynamics of 

transcription of promoters who are closely spaced. The next objective is to use this model to 

simulate an existing bidirectional system: the L-arabinose operon.  

For this we might need to join this model with a previous model that couples transcription 

and translation [116] or using a simpler model of protein production like the one used in one of the 

groups previous models [9], since this system is positively and negatively regulated depending on 

the amount of arabinose present in the organism. But the system itself has a mechanism of 
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regulating the level of arabinose using the araBAD and araC promoters and their regulators [77, 

78]. For this model we will also add an activation system combined with the repressor systems 

already implemented. This next study will be supported by experimental single-molecule studies 

done by the LBD group in Tampere University. 

Single-molecule studies [14] can give a better insight in how transcription works at the 

various levels. New studies can lead to a greater knowledge of this process so this model can be 

modified as our knowledge of this process grows. 

Other types of bacterial operons can also be studied in the future using this model, like the 

bidirectional promoters: crp and yhfA [117]. This is an important system, because the crp gene 

encodes the cyclic AMP receptor protein, which is an important regulator of transcription initiation 

at various promoters in E. coli [118]. 
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