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Foreword 

This thesis dissertation is the result of more than four years of research at the Animal 

Cell Technology Unit of Instituto de Tecnologia Química e Biológica – Universidade Nova de 

Lisboa and Instituto de Biologia Experimental e Tecnológica (Oeiras, Portugal) under the 

supervision of Dr. Paula M. Alves and co-supervision of Prof. Ursula Sonnewald. 

This thesis aims at contributing with new metabolic flux analysis-based approaches to 

improve the investigation and understanding of neural cell metabolism in vitro, with 

particular emphasis on metabolic responses to pathological insults. Moreover, this thesis 

also contributes with a novel in vitro model to investigate brain ischemia. 
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Abstract 

Brain energy metabolism results from a complex group of pathways and trafficking 

mechanisms between all cellular components in the brain, and importantly provides the 

energy for sustaining most brain functions. In recent decades, 13C nuclear magnetic 

resonance (NMR) spectroscopy and metabolic modelling tools allowed quantifying the 

main cerebral metabolic fluxes in vitro and in vivo. These investigations contributed 

significantly to elucidate neuro-glial metabolic interactions, cerebral metabolic 

compartmentation and the individual contribution of neurons and astrocytes to brain 

energetics. However, many issues in this field remain unclear and/or under debate. 

Despite the valuable amount of data generated in cell culture studies involving 
13C-labelled substrates and NMR spectroscopy or mass spectrometry, only a few studies 

have employed modelling approaches to fully explore the results obtained. Thus, the 

main goal of this thesis was to implement novel Metabolic Flux Analysis (MFA) 

methodologies combined with information provided by isotopomers of key compounds 

derived from the metabolism of 13C-labelled precursors, allowing for a more 

comprehensive investigation of cell metabolism in cultured brain cells. In addition to 

providing a novel in vitro model of ischemia, this work was particularly aimed at 

quantifying metabolic fluxes in neurons and in astrocytes and investigating the metabolic 

responses of these cells to pathological conditions with high impact on human health, 

such as ischemia and hypoglycaemia, by analyzing the changes in the distribution of 

those fluxes.  

Chapter 1 starts by introducing the state of the art in the field of brain energy 

metabolism giving particular emphasis on the current topics relevant to the studies in 

this thesis and on the contribution of certain techniques, such as 13C-NMR spectroscopy 

and metabolic modelling, to the current knowledge in the field. A brief introduction on 

MFA methodologies and the advantages of this methodology for investigating brain cell 

metabolism is also provided. 
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The first application of MFA which aimed at investigating the effects of an 

ischemic episode on the metabolic fluxes of astrocytes is presented in Chapter 2. This 

work contributed, in first place, a new in vitro model to mimic ischemia, by cultivating 

rat astrocytes on Cytodex 3® microcarriers in small-scale bioreactors. The use of 

bioreactors technology is advantageous as it allows for a tight control and manipulation 

of dissolved oxygen levels, a parameter of extreme importance in these studies. By 

combining MFA and 13C NMR spectroscopy data, we were able to characterize in detail 

the metabolic response of astrocytes to oxygen and glucose deprivation. The fast and 

transient activation of most metabolic pathways and the parallel reestablishment of 

intracellular ATP levels after the insult demonstrate the remarkable capacity of metabolic 

adaptation by these cells.  

In order to explore the potential of MFA to investigate neuronal metabolism 

under different conditions, the work described in Chapter 3 was aimed at characterizing 

the effects of glucose deprivation (mimicking brain hypoglycaemia) on neuronal 

metabolic fluxes. This work provided new evidence on the capacity of neurons to change 

their metabolism in the absence of glucose and to metabolize other substrates. The 

results suggest that glutamine appears to be an important neuronal fuel during and after 

hypoglycaemia, and that the pyruvate recycling pathway might be significant for 

glutamine oxidation in cerebellar neurons, both under control conditions and, even 

more, after hypoglycaemia. These results challenge a number of in vitro studies which 

have mainly indicated a predominant astrocytic operation of pyruvate recycling, in 

contrast to what had been initially reported in vivo.  

Taking into account the complexity of cellular metabolism, and the increasing 

availability of techniques generating a larger amount of metabolomics data, more 

powerful methodologies have been recently developed. Thus, in Chapter 4, a new model 

based on the most recent version of MFA, 13C isotopic transient MFA, was implemented 

with the aim of estimating the metabolic fluxes in cultured astrocytes in greater detail. 

This methodology utilizes information provided by 13C-labelling time-courses of 
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intracellular metabolites to provide a detailed estimation of metabolic fluxes. A large 

number of fluxes were estimated with high accuracy, including those of parallel and 

reversible pathways. In particular, this work suggests that the glutamate/α-ketoglutarate 

exchange rate appears to be similar to the TCA cycle flux, a subject that has been highly 

controversial and had never been investigated in vitro. This work further allowed 

identifying and quantifying the contribution of substrates and metabolic pathways (e.g. 

pentose phosphate pathway and catabolism of branched-chain amino acids) to the 

isotopic dilution phenomenon typically observed in modelling studies both in vitro and 

in vivo, reinforcing their importance and the complexity of astrocytic metabolism, even 

under physiological conditions.  

Chapter 5 describes the work performed in a collaboration project with the 

Molecular Imaging Research Centre – Commissariat à L’Énergie Atomique (MIRCen-

CEA; France) which aimed at applying MFA to investigate the role of the glial glutamate 

transporters, GLAST and GLT-1, in energy metabolism. These studies are relevant not 

only to elucidate the role of these proteins in physiological conditions but also in the 

context of various neurodegenerative diseases involving glutamate excitotoxicity. 

Experiments were carried out with the aim of implementing a protocol to down-regulate 

the expression of GLAST or GLT-1 in cultured astrocytes. Lentiviral vectors carrying 

specific shRNA sequences as well as transfection methods (electroporation and 

lipofection) using plasmid DNA coding for the same sequences were tested but none was 

proven successful. Preliminary data suggests that the viral envelope used led to very low 

transduction efficiencies. Therefore, unfortunately, the main aim of this part of the work 

was not completed and additional studies will be required to generate a good lentiviral 

vector and infection protocols that will allow investigating the role of glutamate 

transporters in astrocytic metabolism.  

Finally, Chapter 6 provides an integrated overview and discussion of the main 

results of this thesis, highlighting the main findings and the contribution to current 

knowledge in the field and future perspectives. In summary, this thesis contributes new 
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knowledge on the metabolic responses of astrocytes to ischemia and of neurons to 

hypoglycaemia by taking advantage of the amount and specificity of the information 

provided by MFA methodologies. In addition, the novel modelling tools employed will 

be useful for in depth investigations of the responses of brain cells under physiological 

or pathological conditions as well as for determining the effect of drugs targeting 

metabolic pathways in the brain.  
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Resumo 

O metabolismo energético cerebral resulta de uma complexidade de vias metabólicas e 

mecanismos que interligam os diferentes componentes celulares cerebrais, sendo 

extremamente importante pois fornece a energia que suporta as diversas funções do 

cérebro. Nas últimas décadas, estudos de espectroscopia de ressonância magnética 

nuclear (RMN) de 13C e ferramentas de modelação metabólica permitiram quantificar os 

principais fluxos metabólicos cerebrais, tanto in vitro como in vivo. Estas investigações 

contribuíram significativamente para elucidar as interacções metabólicas entre neurónios 

e astrócitos, a compartimentação metabólica no cérebro e a contribuição individual de 

neurónios e astrócitos para o metabolismo cerebral. No entanto, existem ainda muitos 

aspectos controversos e/ou pouco compreendidos nesta área. 

Diversos estudos in vitro têm permitido obter uma grande e valiosa quantidade 

de informação a partir do uso de compostos marcados com 13C e espectroscopia de 

RMN e/ou espectrometria de massa. No entanto, poucos estudos utilizaram abordagens 

quantitativas que permitem uma caracterização mais aprofundada dos resultados 

obtidos. Assim, o principal objectivo desta tese foi implementar novas metodologias 

baseadas na Análise de Fluxos Metabólicos (AFM), em combinação com informação 

obtida através do uso de compostos marcados com 13C e, consequentemente, investigar 

com maior detalhe as vias metabólicas em culturas de células de cérebro. Para além da 

implementação de um novo modelo in vitro para mimetizar isquémia cerebral, esta tese 

pretendeu quantificar, em particular, os fluxos metabólicos de astrócitos e neurónios e 

investigar as respostas metabólicas destas células a condições patológicas com grande 

impacto na saúde humana, como a isquémia e a hipoglicémia, analisando as alterações 

na distribuição desses mesmos fluxos.  

O Capítulo 1 começa por introduzir o estado da arte na área do metabolismo 

cerebral, salientando os temas mais relevantes para os estudos desta tese e a contribuição 

fundamental de técnicas como a espectroscopia de RMN de 13C e a modelação 
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metabólica para o conhecimento actual. São ainda introduzidas as metodologias de AFM 

e as suas vantagens no âmbito dos estudos realizados nesta tese. 

No Capítulo 2 apresenta-se o primeiro estudo de AFM que pretendeu investigar 

os efeitos de um insulto de isquémia cerebral nos fluxos metabólicos de astrócitos. Em 

primeiro lugar, este trabalho contribuiu com um novo modelo in vitro para mimetizar 

isquémia, recorrendo ao uso de bioreactores de pequena escala. Estes permitem 

controlar e manipular com rigor os níveis de oxigénio dissolvido no meio de cultura, um 

parâmetro de extrema importância neste tipo de estudos. A combinação de AFM com 

dados de espectroscopia de  RMN de 13C permitiu caracterizar detalhadamente a 

resposta metabólica dos astrócitos à privação simultânea de oxigénio e glucose. Em 

particular, salienta-se uma rápida e transiente activação de diferentes vias e o 

restabelecimento simultâneo dos níveis de ATP intracelulares após o insulto, 

demonstrando uma grande resistência e capacidade de adaptação metabólica destas 

células.  

Com o objectivo de explorar o potencial da AFM na investigação do 

metabolismo neuronal em diferentes condições, o trabalho descrito no Capítulo 3 

pretendeu caracterizar os efeitos da privação da glucose (hipoglicémia) nos fluxos 

metabólicos de neurónios em culturas primárias. Este trabalho forneceu evidências 

importantes acerca da capacidade de adaptação metabólica destas células na ausência de 

glucose e da utilização de outros substratos. Os resultados sugerem que a glutamina é um 

substrato neuronal importante durante e após situações de hipoglicémia e que a via de 

reciclagem do piruvato será significativa para a oxidação de glutamina em neurónios, 

tanto em condições fisiológicas como, mais ainda, após um período de hipoglicémia. 

Estes resultados contradizem um largo número de estudos in vitro que têm apontado 

para uma operação predominante da via de reciclagem do piruvato em astrócitos, 

contrariamente ao que foi inicialmente sugerido in vivo.  
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Tendo em conta a complexidade do metabolismo celular e a crescente 

disponibilidade de técnicas que geram cada vez mais dados na área da metabolómica, 

novas e mais poderosas metodologias têm sido desenvolvidas. Assim, no Capítulo 4, um 

novo modelo baseado na versão mais recente da AFM, AFM transiente isotópica de 13C, 

foi implementado com o objectivo estimar com maior detalhe os fluxos metabólicos de 

astrócitos. Um grande número de fluxos foi estimado com elevada precisão, incluindo 

fluxos de vias paralelas e também de vias reversíveis. Em particular, este trabalho fornece, 

pela primeira vez, dados obtidos in vitro que apoiam a hipótese de que o fluxo da reacção 

de inter-conversão entre glutamato e -cetoglutarato é semelhante ao fluxo do ciclo dos 

ácidos tricarboxílicos (TCA), uma questão muito controversa nos estudos de modelação 

metabólica in vivo. Esta abordagem permitiu ainda identificar e quantificar a 

contribuição de substratos adicionais à glucose e vias metabólicas (ex. aminoácidos de 

cadeia ramificada e via das pentoses-fosfatadas) para as diluições isotópicas normalmente 

observadas nestes estudos, reforçando a sua importância e a complexidade do 

metabolismo destas células, mesmo em condições fisiológicas.  

O Capítulo 5 descreve o trabalho realizado num projecto de colaboração com o 

MIRCen-CEA (França) que teve como objectivo aplicar a AFM à investigação do papel 

dos dois transportadores de glutamato dos astrócitos, GLAST e GLT-1, no metabolismo 

energético. Estes estudos são relevantes, não só para elucidar o papel destas proteínas no 

metabolismo dos astrócitos em condições fisiológicas, mas também no contexto de 

diversas doenças neurodegenerativas que envolvem mecanismos de excitotoxicidade. 

Diferentes experiências foram realizadas com o objectivo de implementar um protocolo 

para reduzir a expressão do GLAST e GLT-1 em culturas de astrócitos. Vectores 

lentivirais com sequências específicas de shRNA e métodos de transfecção com DNA 

plasmídico para as mesmas sequências (electroporação e lipofecção) foram testados mas 

nenhum teve sucesso. Dados preliminares sugerem que o envelope viral utilizado terá 

sido a causa para a obtenção de baixas eficiências de transdução. Assim, o principal 

objectivo deste trabalho não foi atingido e estudos adicionais serão necessários para gerar 
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um bom vector lentiviral assim como protocolos de infecção que permitam investigar o 

papel dos transportadores de glutamato no metabolismo dos astrócitos. 

Finalmente, no Capítulo 6 é feita uma discussão integrada dos principais 

resultados da tese, salientando-se as principais conclusões, o contributo para o 

conhecimento actual e as perspectivas futuras do trabalho. Em suma, esta tese contribui 

com novos conhecimentos acerca das respostas metabólicas dos astrócitos a um insulto 

de isquémia e dos neurónios a um período de hipoglicémia, tirando partido da 

quantidade e especificidade da informação fornecida pelas metodologias de AFM. Estas 

novas ferramentas serão certamente vantajosas para investigar detalhadamente as 

respostas celulares a condições patológicas assim como o efeito de drogas que actuem ao 

nível de vias metabólicas no cérebro. 
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1 Introduction 

The brain is the most complex organ in mammals. It controls most vital functions 

although many of the mechanisms underlying its functioning are still unknown. 

Moreover, it accounts for only 2% of the body weight, but receives 15% of the cardiac 

output (Williams and Leggett 1989) which demonstrates its high energetic demand. 

Cerebral metabolism is crucial to provide the energy needed in the numerous processes 

sustaining brain activity and, consequently, the disruption of any metabolic-related 

mechanism will evidently compromise brain function.  

In addition to the profound metabolic alterations known to be associated with 

ischemic stroke and hypoglycaemia, it is currently known that many other brain 

pathologies, such as neurodegenerative diseases, including Huntington‘s, Alzheimer‘s 

and Parkinson‘s disease, and psychiatric disorders, like schizophrenia and depression 

have a metabolic component. Indeed, changes in metabolic signals detected by imaging 

techniques such as magnetic resonance imaging (MRI) and positron emission 

tomography (PET) are promising biomarkers for some of these pathologies (Andrews 

and Brooks 1998; Coimbra et al. 2006; Mueller et al. 2006; Liepelt et al. 2009).  

Research in the last decades has shown that brain energy metabolism is very 

complex and compartmentalized due to the highly specialized cellular and sub-cellular 

localization of transporters, enzymes and metabolic pathways (reviewed by McKenna et 

al. 2006a). Great advances in techniques and methodologies including nuclear magnetic 

resonance (NMR) spectroscopy and imaging, PET, mathematical modelling, molecular 

biology, microscopy, genomics, proteomics and many others, largely contributed to the 

current knowledge in the field. However, many issues remain unclear or under intense 

debate. Therefore, research in this field remains an exciting task towards elucidating the 

mechanisms underlying brain function under physiological and pathological conditions. 

This chapter summarizes the state of the art regarding research on brain energy 

metabolism, with a particular focus on the contribution of 13C NMR spectroscopy and 
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metabolic modelling tools. A general overview of the metabolic alterations associated 

with hypoglycaemia and ischemia in the brain is also provided, as these were the 

pathological conditions mimicked in some studies included in this thesis.  

2 The brain and its cellular populations 

The brain is constituted mainly by neurons and glial cells. Although presenting distinct 

morphologies and specific roles, they strongly depend on close functional interactions 

between them and with blood vessels (Figure 1.1).  

 

Figure 1.1 - Interactions between glial cells and neurons in the brain. Different types of glia interact with 
neurons and the surrounding blood vessels. Oligodendrocytes wrap myelin around axons to speed up 
neuronal transmission. Astrocytes extend processes that cover > 99% of the cerebrovascular surface and 
synapses. Microglia keep the brain under surveillance for damage or infection. Reproduced from Allen and 
Barres (2009) with permission of the publisher. 

 

The blood–brain barrier (BBB), constituted mainly by endothelial cells, enzymes and 

transporters, physically isolates the brain and maintains the necessary extracellular 
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environment of the central nervous system (CNS) (Abbott et al. 2006). In addition to 

neurons and glia, a new class of cells called pericytes has been recently described in the 

brain and is thought to be important in regulating the permeability functions of the BBB 

(Armulik et al. 2011). 

2.1 Neurons 

Neurons were, for more than a century, the only studied cell type in the brain due to 

their unique capacity of emitting electrical signals. They are highly specialized cells and 

the core components of the nervous system. The number of neurons in the brain varies 

dramatically from species to species. It is estimated that the human brain possesses about 

100 billion (1011) neurons and 100 trillion (1014) synapses (Williams and Herrup 1988). 

Neurons are electrically excitable cells which are able to process and transmit 

information using electrical (action potentials) and chemical (neurotransmitters) signals 

through a mechanism designated by synaptic transmission (Hof et al. 2004). The shape, 

size and neurochemistry determine their specific function. In this respect, three major 

classes of neurons can be considered: the inhibitory GABA ( -amino butyric acid)ergic 

interneurons that make local contacts, the local excitatory spiny stellate cells in the 

cerebral cortex, and the excitatory glutamatergic efferent neurons, such as the cortical 

pyramidal neurons (Hof et al. 2004). In addition, other types of neurons localized in 

more specialized areas include dopaminergic, cholinergic and serotoninergic neurons. 

Still, and despite the heterogeneous distribution among different brain regions, more 

than 90% of neurons in the brain are either glutamatergic or GABAergic, according to 

the neurotransmitter used for their signalling process, glutamate or GABA, respectively 

(Hof et al. 2004). Neurotransmitters play an important role linking energy metabolism of 

neurons and astrocytes. This will be further elucidated later in this chapter.  

2.2 Glial Cells 

Despite the large number of neurons, glial cells occupy the most part of the brain 

volume. The proportion of glial cells to neurons varies between animals and brain 
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regions but seems to be correlated with the animal‘s size as the mouse, human and 

elephant brain possess approximately 65%, 90% and 97% of glial cells, respectively 

(Allen and Barres 2009). Their initial designation of neuroglia (―Nervenkitt‖) was 

attributed to Rudolph Virchow in the late 19th century, who described these cells as the 

―brain glue‖. They were thought to be mostly connective tissue that filled up the 

extracellular space and worked as chemical and physical insulators to support the diverse 

neuronal functions (Kimelberg 2004). Only in the beginning of the 20th century did glia 

finally lose their passive identity and many crucial and active functions started being 

attributed to these cells. In mammals, glial cells are divided into three major groups, 

based on their morphology, function and localization in the nervous system: (1) 

Schwann cells and oligodendrocytes, the myelinating cells of the peripheral and CNS, 

respectively (Nave and Trapp 2008); (2) microglia, the immune cells of the CNS 

(Hanisch and Kettenmann 2007); and (3) astrocytes, a diverse cell population with 

variable morphology and numerous functions, contacting essentially with all other 

cellular elements in the brain (Agulhon et al. 2008; Wang and Bordey 2008) (Figure 

1.1). A fourth group, the nerve/glial antigen 2 - positive (NG2+) glia, has been more 

recently considered and includes oligodendrocyte and astrocyte progenitor cells as well as 

NG2+ cells that persist in the mature brain (Agulhon et al. 2008). Among the different 

types of glial cells, astrocytes were those studied in detail in this thesis due to their close 

relationship with neurons at the metabolic level, as described below. 

2.2.1 Astrocytes 

Astrocytes derive their name from the stellate morphology traditionally observed in 

histological preparations. However, they are quite heterogeneous among different brain 

regions, even at the transcriptome level (Bachoo et al. 2004). Astrocytes are found 

throughout the brain and spinal cord and, on the basis of number, surface area, and 

volume, are the predominant glial cell type. Protoplasmic astrocytes are the most 

common type of astrocytes (Agulhon et al. 2008). Individually, they occupy distinct, non-

overlapping domains and their fine processes are connected to other astrocytes via gap 
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junctions at their boundaries (Bushong et al. 2002). More than 99% of the 

cerebrovascular surface is ensheathed by astrocyte processes (Haydon and Carmignoto 

2006) and processes from a single astrocyte can envelop approximately 140 000 synapses, 

as in the CA1 region of the hippocampus (Bushong et al. 2002). 

Astrocytes have, thus, the unique role of dynamic coordination of cerebral 

functions. They participate in the regulation of water and ionic homeostasis (Simard and 

Nedergaard 2004) and in the maintenance of the BBB (Hawkins and Davis 2005). 

Moreover, even though astrocytes do not produce action potentials, they individually 

respond to synaptically released neurotransmitters through elevations in intracellular 

Ca2+ levels (Agulhon et al. 2008; Schummers et al. 2008). These Ca2+ transients induce 

the release of chemical transmitters (―gliotransmitters‖ – ATP, glutamate and D-serine) 

allowing them to communicate with neurons. In this way, astrocytes control synaptic 

transmission in a process called tripartite-synapse, and regulate local blood flow in 

situations of intense neuronal activity (neurovascular-coupling mechanism) (Haydon and 

Carmignoto 2006; Iadecola and Nedergaard 2007; Halassa et al. 2009). Nevertheless, it 

is still elusive how both excitatory and inhibitory signals provided by the same glial cell 

act in concert to regulate neuronal function. 

Finally, astrocytes play a key role in brain energy metabolism. They supply energy 

substrates to neurons, in a process essential for neurotransmission, and are responsible 

for neurotransmitter uptake and recycling, thereby preventing excitotoxicity and 

controlling synaptic signals (Hertz and Zielke 2004; Pellerin et al. 2007). Moreover, they 

synthesize the main antioxidant molecule in the brain, glutathione (Dringen and 

Hirrlinger 2003). The role of both astrocytes and neurons in brain energy metabolism, 

in physiological and pathological scenarios, is the basis for the work described in this 

thesis and, therefore, will be more thoroughly addressed in the subsequent sections of 

this chapter. 
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3 In vitro models for neuroscience research 

The high degree of complexity of the brain makes it difficult to investigate specific 

biochemical and cellular mechanisms using in vivo models and, therefore, simple 

research models are required. As illustrated in the following sections of this chapter, 

cultured brain cells have been crucial to elucidate many aspects of brain energy 

metabolism and are still widely used to investigate a number of research questions, 

including mechanisms of disease.  

In addition to their simplicity, in vitro models are advantageous compared to 

animal models since they possess high cellular specificity and are not influenced by the 

blood flow component, hormones, immune system, and temperature variations 

occurring in vivo (Meloni et al. 2001). The absence of these factors allows, for example, 

investigating cell-specific changes in gene/protein expression, determining the metabolic 

responses of a particular cell type under different conditions or determining the 

mechanism of action of a therapeutic agent (Meloni et al. 2001). In addition, it is easier 

and less expensive to perform molecular manipulations, such as antisense 

oligonucleotide and gene transfection experiments, in cultured cells. Also, in vitro 

models are valuable for drug-screening, enabling to select the most promising 

compounds to be tested in vivo, as well as to perform preliminary studies regarding novel 

research hypotheses, thereby reducing the number of animals used. This is actually a 

crucial aspect in current neuroscience research, due to the stricter rules and definitions 

of ethical impact underlying the use of animals, which need to be fully accomplished by 

researchers.  

One of the oldest in vitro models to study the brain is the organotypic brain slice 

culture from the CNS of young rodents (reviewed by Gahwiler et al. 1997). This 

preparation continues to differentiate in culture and preserves a level of cellular 

organization that closely resembles that observed in situ. Therefore, it has been 

particularly used to investigate mechanisms involved in synaptic transmission. However, 
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it is very technically demanding and its heterogeneous composition and complexity 

makes it difficult to investigate cell-specific mechanisms.  

Some of these aspects can be overcome by the use of monotypic neural cell 

cultures, including both tumour-derived cell lines and primary cultures, which are 

simpler models regarding both culture preparation/maintenance and the cellular 

features reproduced. Cell lines, such as glioma or neuroblastoma cells (Bouzier et al. 

1998; Rae et al. 2003), are much easier to cultivate but their immortalization properties 

limit their ability to model non-tumoural tissue. Dissociated primary neural cell cultures 

are prepared from neonatal rodent brain, are normally selectively enriched in one 

particular cell type and therefore are considered to represent mainly the features of that 

cell population (Hertz et al. 1998).  

Neural cells can be cultivated in the more classical two-dimensional (2D) 

monolayer systems, such as tissue-culture flasks or dishes, but also immobilized in 

microcarriers or in gel threads (Alves et al. 1996b; Alves et al. 2000a; Sa Santos et al. 

2005) and in the form of three-dimensional (3D) aggregates (Santos et al. 2007), 

depending on the purpose of the study. Monolayer 2D cultures have the advantage of 

being easily monitored and characterised using microscopy techniques. By cultivating 

more than one cell type (e.g. neurons and astrocytes) in the same dish, a 2D co-culture is 

obtained (e.g. Waagepetersen et al. 2002). However, these culture approaches are limited 

in respect to their spatial environment when compared to 3D aggregates. Aggregating 

neural cell cultures or neurospheres are able to reconstitute spontaneously a histotypic 

brain architecture to reproduce critical steps of brain development and to reach a high 

level of structural and functional maturity (reviewed by Honegger et al. 2011). Even so, 

in addition to being much more technically demanding, 3D cultures might have the 

possible drawback of nutrient and oxygen transport limitation and accumulation of toxic 

byproducts in the centre of aggregates with higher diameters, which might affect cell 

viability (Alves et al. 1996a). Both simple 2D co-cultures and 3D aggregates are 
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advantageous in vitro models to investigate metabolic interactions between different cell 

types since they retain some degree of complexity, including cell-cell interactions.  

Biotechnological advances in suspension culture systems adequate for neural 

cells, namely small scale bioreactors and low shear-stress impellers, have been 

advantageous for the implementation of novel in vitro models for neuroscience research, 

for example, using primary cultures (e.g. Sa Santos et al. 2005) and stem cells (e.g. Serra 

et al. 2009). These systems are hydrodynamically well characterized, allow for a better 

homogeneity of the cultures, easy-sampling, and reproducibility between experiments 

due to the tight control of culture variables (gas-composition of the culture medium, pH, 

temperature, stirring rate). Oxygen and nutrient delivery to the cells is also much more 

efficient in stirred systems, as well as its manipulation during culture time. Therefore, 

they are particularly well-suited to perform pathological challenges involving the 

manipulation of oxygen levels, such as hypoxia (Sa Santos et al. 2005), anoxia (Sa Santos 

et al. 2011) or ischemia (Amaral et al. 2010). The use of bioreactors is thus advantageous 

when compared to the use of hypoxic incubators/chambers (e.g. Almeida et al. 2002), 

that do not enable the tight monitoring of oxygen levels. 

Finally, although neural cell cultures have been mainly of rodent origin, human-

derived in vitro models, particularly those based on stem cells have been increasing in 

recent decades (reviewed by Gibbons and Dragunow 2010). These are very promising to 

investigate cellular, molecular or biochemical mechanisms of human cells in physiology 

and disease. While it is important to acknowledge that pre-clinical in vivo studies in 

rodents and primates will always be required to validate findings obtained in vitro, before 

their translation to humans, all the advances in in vitro neural cell models and culture 

systems will certainly continue to make them excellent and privileged models for many 

research purposes in future decades. 
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4 Brain Energy Metabolism: Nutrients and Metabolic Pathways 

4.1 Glucose - the main cerebral energy fuel 

Energy consuming processes in the adult brain account for 25% of the total body 

glucose utilization and for 20% of the total oxygen consumed (Magistretti 2004). 

However, glucose is not the main energy substrate in all stages of brain development. In 

fact, a transitory switch occurs from a combination of glucose, monocarboxylates, 

including lactate, and ketone bodies, such as acetoacetate and ß-hydroxybutyrate in the 

postnatal period to a predominance of glucose as main fuel in the mature brain (Nehlig 

1997; Vannucci and Simpson 2003). The uptake of metabolic substrates from the blood 

into the brain is mediated by specific facilitative transporter proteins in endothelial cells 

of the BBB and in brain cells. It is the differential developmental expression of glucose 

and monocarboxylate transporters (GLUTs and MCTs, respectively) that determines the 

maturational increase in glucose utilization (Rafiki et al. 2003; Vannucci and Simpson 

2003).  

Average cerebral concentrations of glucose range between 0.8–2.3 mM as 

estimated using several techniques and show a linear correlation with blood glucose 

levels (Gruetter et al. 1998a; Dienel and Cruz 2004; Barros et al. 2007). Although 

approximately 96% of endothelial cells are covered by astrocytic end feet, experimental 

evidence has shown that approximately equal proportions of glucose are taken up by 

neurons and astrocytes (Nehlig et al. 2004), even though this is still a matter of debate. 

As shown by autoradiography and PET, the rate of glucose consumption differs between 

brain regions, with higher values in grey matter, and also varies with time, with active 

areas capturing glucose more avidly (Raichle and Mintun 2006). Although it is 

established that oxidative metabolism predominates, as indicated by the cerebral 

respiratory coefficient (CO2 production/O2 consumption) of 0.97 (Clarke and Sokoloff 

1999), the exact contribution of neurons and astrocytes to this process also remains 

under debate. Moreover, it is known that lactate levels in the brain increase during 
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activation (e.g. Dienel and Cruz 2008) and that both cell types are able to oxidize lactate 

(Zielke et al. 2009). These issues have provided additional sources of discussion with 

regard to the main substrate supporting neuronal and astrocytic metabolic activity under 

activation and will be further addressed below. 

4.1.1 Glucose metabolism in the brain 

Cerebral glucose metabolism is similar to that in other tissues but, in the particular case 

of the brain, it is almost entirely oxidized to CO2 and water via glycolysis, the 

tricarboxylic acid (TCA) cycle and the associated oxidative phosphorylation (Magistretti 

2004). Under certain conditions, and depending on the cell type, glucose can be 

additionally metabolized in the pentose phosphate pathway (PPP) to a significant extent 

(Dringen et al. 2007). Finally, glucose can eventually be stored in astrocytes in the form 

of glycogen, the main cerebral energy store (Brown and Ransom 2007). These pathways 

are generally described in Figures 1.2 and 1.3 and below. 

4.1.1.1 Glycolysis, TCA cycle and Oxidative Phosphorylation 

Glycolysis is the pathway responsible for the initial steps of glucose metabolism as it 

enters the brain, and it converts glucose into two molecules of pyruvate (Figure 1.2). 

Glycolytic activity is thought to be much higher in astrocytes than in neurons (to be 

addressed below). This pathway generates a net amount of two ATP molecules. Four 

ATP molecules are formed in the two last steps leading to pyruvate formation, the 

reactions catalyzed by phosphoglycerate kinase (EC 2.7.2.3) and pyruvate kinase (EC 

2.7.1.40), whereas two ATPs are consumed to phosphorylate glucose to glucose-6-

phosphate (by hexokinase; EC 2.7.1.1) and fructose-6-phosphate to fructose-1,6-

bisphosphate (by phosphofructokinase; EC 2.7.1.11), respectively (Magistretti 2004). 

Hexokinase and phosphofructokinase both catalyze irreversible reactions, being 

important regulation points in carbohydrate metabolism in the brain (McKenna et al. 

2006a). This is one of the main reasons why brain cells have a reduced capacity of 

performing gluconeogenesis, and therefore they strongly depend on glucose supply from 
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the blood. Even so, some authors have provided evidence suggesting the operation of 

gluconeogenesis in astrocytes, which are able to produce glycogen from lactate (e.g. 

Dringen et al. 1993b; Schmoll et al. 1995; Bernard-Helary et al. 2002). 

Anaerobic glycolysis (glucose conversion into lactate) occurs when glucose 

utilization is higher than oxygen consumption and, consequently, the fraction of 

pyruvate produced from glucose exceeds that oxidized in the TCA cycle (Magistretti 

2004). This also represents one of the mechanisms allowing for the maintenance of an 

optimal cytoplasmic NAD+/NADH ratio, required for a continuous glycolytic activity 

(other mechanisms are described in sub-section 3.1.1.4).  

In order for glucose metabolism to proceed via oxidation, it is required that 

pyruvate formed in glycolysis is transported into the mitochondria and enters the TCA 

cycle. The TCA cycle involves not only the catabolism of energy-rich molecules but also 

provides precursors for many intermediates that are utilized in the overall cellular 

metabolism. Pyruvate is converted into acetyl-CoA in a reaction catalyzed by the pyruvate 

dehydrogenase (PDH) complex localized in the mitochondrial matrix (McKenna et al. 

2006a). Acetyl-CoA cannot leave the mitochondrion because of its large size; thus the 

PDH complex maintains a positive flow of carbon to the cycle, controlling the rate of 

oxidative glucose metabolism. 

The oxidation of pyruvate to CO2 in the TCA cycle generates energy-rich 

molecules such as GTP, NADH and FADH2. NADH and FADH2 transfer electrons to 

oxygen in the electron transport chain, leading to the production of ATP in a process 

called oxidative phosphorylation. The mitochondrial NAD+/NADH ratio constitutes 

one of the major regulators of the TCA cycle and its value is strongly affected by oxygen 

levels as a result of the electron transport/oxidative phosphorylation pathway.  
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Figure 1.2 - Main reactions of glycolysis and TCA cycle. When glucose enters brain cells it is 
phosphorylated to glucose-6-phosphate (G6P) by hexokinase and subsequently to fructose-1,6-bisphosphate 
(F1,6BP) via fructose-6-phosphate (F6P) and phosphofructokinase 1, the main regulating enzyme in brain 
glycolysis. In one of the following steps, NADH is produced in the conversion of glyceraldehyde-3-phosphate 
(GAP) to 1,3-bisphosphoglycerate (1,3BPG) catalyzed by phosphoglycerate kinase. The NADH produced is 
either oxidized by lactate dehydrogenase, reducing pyruvate (Pyr) to lactate (Lac), or the reducing equivalent 
from NADH is transferred to the mitochondria, via the malate-aspartate shuttle, and oxidized in the 
electron transport chain as part of the oxidative phosphorylation process. In astrocytes, glucose can also be 
stored in the form of glycogen that is subsequently degraded into glucose-1-phosphate (G1P) and enters 
glycolysis via G6P. Pyruvate (Pyr) formed in glycolysis is subsequently metabolized via the tricarboxylic acid 
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(TCA) cycle. Pyruvate is carried into the mitochondrial matrix for oxidative decarboxylation to acetyl-CoA 
via the pyruvate dehydrogenase complex (PDH) or for carboxylation to oxaloacetate (OAA) via pyruvate 
carboxylation (PC; only in astrocytes). Acetyl-CoA (ACoA) is condensed via citrate synthase (1) to citrate 
(Cit), which is converted to α-ketoglutarate (α-KG) via aconitase (2) and isocitrate dehydrogenase (3). α-
ketoglutarate is subsequently decarboxylated via the α-ketoglutarate dehydrogenase complex (4) to succinyl-
CoA (SucCoA). Succinate (Suc) is formed from succinyl-CoA via succinyl-CoA synthase (5). Succinate 
dehydrogenase (6) oxidizes succinate to fumarate (Fum), which is converted into malate (Mal) via fumarase 
(7). Malate is then oxidized to oxaloacetate via malate dehydrogenase (8) or it can be converted to pyruvate 
via malic enzyme (ME). NADH and FADH2 are oxidized in the electron transport chain that carries the 
electrons through different complexes to O2, which is reduced to H2O at the same time that ADP is 
phosphorylated into ATP, in a process called oxidative phosphorylation. Additional abbreviations: DHAP, 
dihydoxyacetone-phosphate, Isocit, isocitrate; OSuc, oxalosuccinate, PEP, phosphoenolpyruvate; Glu, 
glutamate; Gln, glutamine. 

 

Oxidation of glucose to CO2 provides the higher yield of ATP per glucose 

molecule (34 ATP) and, consequently, is fundamental to support energy-dependent 

brain functions. In particular, neurons require a large amount of ATP for recovery of the 

ion homeostasis dissipated by excitatory postsynaptic potentials (Attwell and Laughlin 

2001). Therefore, it is widely accepted that these cells contribute to a major fraction of 

the total brain oxidative metabolism and, consequently, to cerebral ATP synthesis, even 

though astrocytes also significantly oxidize glucose (Hertz et al. 2007). 

4.1.1.2 Pentose Phosphate Pathway (PPP) 

The PPP interconverts sugar phosphates in multiple reactions divided in two branches, 

the oxidative and the non-oxidative branch (Figure 1.3). The oxidative part of the PPP is 

linked to glycolysis at the level of glucose-6-phosphate and catalyzes its conversion into 

ribulose-5-phosphate and CO2. In addition, this branch is responsible for the reduction 

of NADP+ into NADPH, the major reducing compound. On the other hand, the non-

oxidative branch interconverts pentose phosphates and phosphorylated aldoses and 

ketoses and is connected to glycolysis by their common intermediates glyceraldehyde-3-

phosphate and fructose-6-phosphate. It also produces ribose-5-phosphates which are 

precursors for nucleotide synthesis (Dringen et al. 2007). 
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Figure 1.3 - Reactions of the PPP and their connection with glycolysis. For simplicity, only the part of 
glycolysis which has a link with the PPP is represented. Abbreviations: G6PD. Glucose-6-phosphate 
dehydrogenase; 6PGL, 6-phosphogluconolactonase; 6PGDH, 6-phosphogluconate dehydrogenase; R5PI, 
ribulose-5-phosphate isomerase; R5PE,ribolose-5-phosphate epimerase; TK, transketolase; TA, transaldolase; 
HPI, hexosephosphate isomerase; FBP, fructose-1,6-bisphosphatase; PFK, phosphofructokinase; TIM, 
triosephosphate isomerase.  

 

The activity of the non-oxidative branch of the PPP in the adult brain appears to 

be rather low, being mainly used to support active cellular proliferation during brain 

development (Bilger and Nehlig 1992) or for the growth of brain tumours (Spence et al. 

1997). Conversely, the oxidative branch predominates in brain cells because it provides 

the NADPH required for the regeneration of glutathione from its oxidized form, 

glutathione disulfide (GSSG) (Kletzien et al. 1994; Delgado-Esteban et al. 2000; Almeida 

et al. 2002). Nevertheless, the significance of the PPP in astrocytes and neurons differs.  

Recent findings indicating that the glycolytic enzyme 6-phosphofructo-2-

kinase/fructose2,6-bisphosphatase, isoform 3 (PFKFB3) is not active in suspensions of 

isolated rat cortical neurons suggested that these cells metabolize glucose mainly through 

the PPP (Herrero-Mendez et al. 2009). However, these results need to be confirmed in 
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cultured cells and in vivo. Different authors have shown that neurons use this pathway as 

a major antioxidant mechanism in the response to pro-oxidant compounds (Ben-Yoseph 

et al. 1996; Garcia-Nogales et al. 2003; Vaughn and Deshmukh 2008) or to stimulation 

of glutamate receptors (Delgado-Esteban et al. 2000). Moreover, the over-expression of 

PFKFB3 to redirect glucose metabolism from the PPP to glycolysis in these neurons 

resulted in depleted glutathione levels, apoptotic cell death and oxidative stress (Herrero-

Mendez et al. 2009), confirming the extreme importance of the PPP in neurons. Even so, 

whether neurons use the PPP to compensate for their antioxidant fragility and, at the 

same time, inhibit the bioenergetically favourable glycolysis (Bolanos and Almeida 2010), 

remains to be elucidated in vivo. Despite exhibiting a high glycolytic rate and a low PPP 

basal activity, cultured astrocytes up-regulate this pathway under different conditions. 

For example, when subjected to oxidative or nitrosative stress (Ben-Yoseph et al. 1996; 

Garcia-Nogales et al. 1999; Bolanos and Almeida 2006), after being exposed to oxygen 

and glucose deprivation (Almeida et al. 2002) and when treated with amyloid beta 

peptides (Allaman et al. 2010). With regard to the in vivo context, the PPP was shown to 

contribute to glucose metabolism after focal brain activation in rats (Cruz et al. 2007) 

and was up-regulated after traumatic brain injury in humans (Dusick et al. 2007). All 

these findings underline the present importance attributed to the PPP in the metabolic 

response of brain cells to a number of pathologies in addition to its physiological 

significance. 

4.1.1.3 Glycogen 

Glucose can additionally be stored in the form of glycogen, which is predominantly 

located in astrocytes (Cataldo and Broadwell 1986) and present in the brain at 

significant levels (3-6 µmol/g tissue) (Cruz and Dienel 2002; Oz et al. 2007; 

Morgenthaler et al. 2008). Glycogen is degraded into glucose-1-phosphate by glycogen 

phosphorylase (EC 2.4.1.1) and subsequently enters glycolysis, after being converted into 

glucose-6-phosphate (Brown and Ransom 2007) (Figure 1.2). It is thought to be 
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metabolized to lactate in astrocytes and subsequently exported to fuel neurons and axons 

(Dringen et al. 1993a; Wender et al. 2000; Brown et al. 2004; Sickmann et al. 2005; 

Tekkok et al. 2005; Pellerin et al. 2007).  

Based on its slow turnover under resting conditions (Oz et al. 2003; Oz et al. 

2007) and rapid mobilization during an energy crisis or under hypoglycaemia (Choi et al. 

2003; Oz et al. 2009), glycogen has been mainly considered an emergency fuel (Gruetter 

2003; Dienel et al. 2007 and references therein). Nevertheless, its physiological role has 

been progressively reinforced. For instance, glycogenolysis is triggered by neuronal 

stimulation, when glucose alone cannot meet the high transient increase in cellular 

energy requirements (Swanson et al. 1992; Cruz and Dienel 2002; Brown et al. 2004; 

Dienel et al. 2007). Moreover, a ―glycogen shunt‖, i.e., glucose metabolism via glycogen, 

is thought to operate in the brain and to contribute to lactate release during activation 

(Shulman et al. 2001). More recently, glycogen metabolism was shown to importantly 

contribute to long-term memory formation in rats through its conversion into lactate 

(Suzuki et al. 2011).  

4.1.1.4 Cellular redox balance and shuttling of NADH 

The continuous operation of glycolysis and the conversion of lactate into pyruvate via 

lactate dehydrogenase involve the reduction of NAD+ into NADH (see Figure 1.2). Thus, 

in order to coordinate glycolytic activity with that of the TCA cycle, a low redox state 

(NAD+/NADH) needs to be maintained (McKenna et al. 2000a). In addition to the 

reaction catalyzed by lactate dehydrogenase (LDH; EC 1.1.1.27) (Figure 1.2), this is 

mainly carried out by the malate-aspartate shuttle (MAS) in the brain (McKenna et al. 

2006b). Because NADH cannot enter mitochondria, malate is responsible for the 

transfer of reducing equivalents from the cytosol into the mitochondria (Berkich et al. 

2005; McKenna et al. 2006a). The MAS involves the concerted operation of important 

carriers [the aspartate-glutamate carrier (AGC) and the malate-α-ketoglutarate carrier] 

and enzymes (the cytosolic and mitochondrial isoforms of aspartate amino transferase 
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and malate dehydrogenase) (Palmieri et al. 2001). This shuttle additionally involves the 

irreversible electrogenic exchange of aspartate for glutamate and a proton via the AGC1 

carrier (Aralar1), favouring the efflux of aspartate from and entry of glutamate into the 

mitochondria (McKenna et al. 2000a).  

The real significance of the MAS in each brain cell type is not yet completely 

elucidated. Aralar1 and MAS activity appear to be much lower in astrocytes than in 

neurons (Ramos et al. 2003; Berkich et al. 2007; Xu et al. 2007) which is consistent with 

the enrichment of Aralar1 in neuronal mitochondria (Ramos et al. 2003; Pardo et al. 

2011). Despite the presence of Aralar1 mRNA has been demonstrated in acutely isolated 

astrocytes from adult mice (Lovatt et al. 2007), it was recently proposed in a quite 

controversial study using Aralar-knockout mice that astrocytes do not seem to rely on the 

MAS to transfer redox equivalents to mitochondria (Pardo et al. 2011). Rather, Pardo 

and colleagues suggested that a neuron-to-astrocyte aspartate efflux may provide a means 

to transfer NADH/NAD+ redox potential to astrocyte mitochondria (Pardo et al. 2011).  

Considering the lack of strong evidence supporting the existence of the MAS in 

astrocytes, the operation of the glycerol-3-phosphate shuttle has alternatively been 

proposed to play a similar role in these cells (McKenna et al. 2000a). This shuttle is 

based on the concerted action of cytosolic and mitochondrial isoforms of glycerol 3-

phosphate dehydrogenase, the former using NAD+/NADH as coenzyme and the latter 

using FAD/FADH2 for that purpose. Reducing equivalents are subsequently transferred 

to coenzyme Q in the respiratory chain. However, it yields less energy than the MAS due 

to the transport of electrons to FAD rather than NAD+ (McKenna et al. 2006b). 

Nonetheless, the operation of the glycerol-3-phosphate shuttle remains controversial. 

Despite the evidence of glycerol-3-phosphate shuttle activity in cultured astrocytes and 

cerebellar neurons (Cammer et al. 1982; McKenna et al. 1993; Atlante et al. 1999), the 

cytosolic and mitochondrial isoforms of glycerol-3-phosphate dehydrogenase appear to 

be localized in glial and neuronal cells, respectively (Leveille et al. 1980; Nguyen et al. 

2003).  
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4.1.1.5 Anaplerotic versus oxidative metabolism 

Anaplerosis fuels the TCA cycle with extra carbon units required to the synthesis and 

release of TCA cycle intermediates (Sonnewald and Rae 2010). Pyruvate carboxylase 

(PC) is the main cerebral anaplerotic enzyme (Patel 1974). It is an ATP-dependent 

enzyme which converts pyruvate into oxaloacetate (Wallace et al. 1998). PC was shown 

to be primarily, if not exclusively, expressed in astrocytes in vitro and in vivo (Yu et al. 

1983; Shank et al. 1985; Kaufman and Driscoll 1993; Shank et al. 1993; Cesar and 

Hamprecht 1995). Furthermore, using 13C NMR spectroscopy in monotypic cultures of 

astrocytes and neurons it was shown that this pathway occurs in astrocytes and not in 

neurons (Sonnewald et al. 1993b; Waagepetersen et al. 2001b). Although malic enzyme 

or the combined action of phosphoenolpyruvate carboxykinase (PEPCK, EC 4.1.1.31) 

and pyruvate kinase (PK, EC 2.7.1.40) can also fix CO2, their activity in the brain 

appears not to be significant (Patel 1974). Even so, Hassel and colleagues have provided 

some controversial evidence that neurons can carboxylate, claiming that it occurs 

probably via malic enzyme (Hassel 2000).   

PC activity is strongly associated with the synthesis and export of glutamine both 

in vivo and in vitro (Gamberino et al. 1997; Gruetter et al. 2001; Waagepetersen et al. 

2001a). Anaplerosis is important for neurotransmitter metabolism and ammonia 

detoxification as it is essential to replenish neuronal TCA cycle and neurotransmitter 

pools due to the continuous release of neurotransmitters (e.g. Hertz et al. 1999; Sibson 

et al. 2001; Oz et al. 2004; Xu et al. 2004; Zwingmann 2007). In addition, it is important 

to compensate for the loss of additional molecules that leave the brain, for example, 

lactate, which can occur via the pyruvate recycling pathway (Sonnewald et al, 

unpublished data). 

In vivo and in vitro estimations of the different contributions of fluxes through 

PC and PDH to the synthesis of different amino acids have been based on the distinct 

labelling patterns derived from the metabolism of [1-13C]glucose (Zwingmann and 
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Leibfritz 2007). However, these estimations might be limited by the appearance of the 

same isotopomers arising both through PC and PDH and further complicated by the 

equilibration of the label between oxaloacetate and fumarate due to backflow in the 

TCA cycle (Merle et al. 1996b, a). Therefore, the range of values reported is rather large 

(Table 1.1). The use of different formulas, labelled substrates, and incubation times has 

also contributed to this variability (see Zwingmann and Leibfritz 2007 for details). Using 
13C NMR spectroscopy and metabolic modelling, PC and PDH fluxes and their 

contribution to cerebral oxidative metabolism have been estimated in vivo (see subsection 

5.3). 

4.2 Glucose vs. Lactate supporting brain activity 

Cerebral oxidative metabolism supports brain activity both under resting and activated 

conditions. However, glycolytic flux is up-regulated even more than the simultaneous 

increase in oxygen consumption upon activation (reviewed by Dienel and Cruz 2004, 

2008). These changes suggest an increase in local lactate demand followed by a larger 

increase in local lactate production. Lactate transients and increased glucose utilization 

are actually the metabolic hallmarks of brain activation detected with functional brain 

imaging techniques (Bonvento et al. 2005). Hence, different groups have been trying to 

investigate the role of glucose and lactate as substrates supporting synaptic activity and, 

at the same time, elucidating the contribution of neurons and astrocytes to cerebral 

oxidative metabolism. The different theories proposed to explain these phenomena 

remain under a heated debate (Bonvento et al. 2005; Hertz et al. 2007; Simpson et al. 

2007; Dienel and Cruz 2008; Mangia et al. 2009; Pellerin 2010). The main controversy 

centres around the cellular origin and fate of the lactate produced under activation.  
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Table 1.1 - Variability of PC/PDH ratios calculated using different 13C-labelled substrates and formulas. 

Labelled substrate Formula Comments PC/PDH 

[1-13C]glucose (C2-C3)/C4 

 C2 in glutamine and glutamate are 
higher than C3 

 
 Does not assume malate-fumarate 

equilibration 

33%, 36% and 9.8% in 
glutamine after 15, 30 or 45 
min after glucose infusion in 
rats (Shank et al. 1993) 
58%, 41% and 0% in 
glutamine at 5, 15 and 30 
min after glucose injection 
in mice (Hassel and 
Sonnewald 1995) 
Cultured astrocytes 
54% in glutamine and 3% 
in glutamate (Merle et al. 
1996a, b) 
21% and 50% in glutamine 
in the presence or absence 
of glutamate, respectively 
(Teixeira et al. 2008) 

[2-13C]pyruvate 
[2-13C]glucose 

C3/C5 
(Glu/Gln) 
C4/C1 (GABA) 

 PC labels C2 or C3 whereas PDH 
labels C5 of glu/gln; C2 is only labelled 
through equilibration of the label 

31% in gln, 13% in glu and 
10% in GABA after 60 min 
glc infusion in rats 
(Kanamatsu and Tsukada 
1999) 
5.6, 13.5, 10% for 
glutamate, glutamine and 
GABA, respectively  (Taylor 
et al. 1996) 
26% in glutamine (Sibson et 
al. 2001) 

[1,2-13C]glucose  
 [2,3-13C]oxaloacetate, glutamate and 

glutamine are produced through PC 

PC = 38% of the TCA cycle 
flux after glucose infusion in 
rats (Kunnecke et al. 1993) 

[U-13C]glucose 

[2,3-13C2]-
[2,3,4,5-13C4]/ 
[4,5-13C2] in 
Glu/Gln  
 
 

 Unambiguous detection of 
incorporation of label into metabolites 
due to 13C-13C spin-spin coupling 
patterns. 

 Some overlapping labelling patterns in 
glu/gln isotopomers after multiple 
turns of the TCA cycle might influence 
estimations  

 Confirmed the exclusive operation of 
PC in astrocytes (Waagepetersen et al 
2001) 

34% in glutamine and 16% 
in glutamate (Lapidot and 
Gopher 1994) 
 
39% in glutamate (Qu et al. 
2001) 

 

4.2.1 The Astrocyte-Neuron Lactate Shuttle 

For many years, the prevailing classical view considered glucose as the primary substrate 

for both neurons and astrocytes during activation and lactate, produced in the process, 

being removed mainly after neural activity (Chih and Roberts Jr 2003). The metabolic 

coupling concept involving astrocytic glycolytic activation and neuronal synaptic activity 
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challenged this view. The astrocyte-neuron lactate shuttle (ANLS) hypothesis, proposed 

by Pellerin and Magistretti, stated that glutamate, released by neurons and subsequently 

taken-up by astrocytes via specific transporters, would stimulate glycolysis in these cells 

through a mechanism mediated by the activation of the Na+/K+ ATPase (Pellerin and 

Magistretti 1994; Pellerin et al. 1998; Magistretti and Pellerin 1999). The lactate 

produced in astrocytic glycolysis would then be released to meet the metabolic demands 

of neurons (Magistretti et al. 1999). The ANLS is consistent with the strategic position 

of astrocytes between neurons and blood vessels, their expression of high-affinity 

glutamate transporters and enrichment in MCT-1 and -4 lactate transporters (Magistretti 

and Pellerin 1999). Supporting this concept, a 1:1 ratio between oxidative glucose 

consumption and astrocytic glutamate cycling was reported for the rat brain (Sibson et 

al. 1998; Rothman et al. 1999). Moreover, several independent groups obtained further 

in vivo (Loaiza et al. 2003; Kasischke et al. 2004; Serres et al. 2004; Caesar et al. 2008) 

and in vitro evidence (reviewed by (Bouzier-Sore et al. 2003; Pellerin et al. 2007; Barros 

and Deitmer 2010) that lactate supports neuronal activity using different approaches. 

Further recent reviews on this theory can be found in (Magistretti 2009) and (Pellerin 

2010). 

4.2.2 Criticisms to the ANLS and alternative theories 

The ANLS theory originated an intense debate in the field and led to a number of 

criticisms enumerating contrasting data and claiming for insufficient experimental 

evidence (Chih et al. 2001; Dienel and Hertz 2001; Chih and Roberts Jr 2003; Dienel 

and Cruz 2003, 2004; Hertz 2004). Subsequently, the ANLS was reformulated 

acknowledging that astrocytic glycolysis was enhanced in response to glutamatergic 

activity despite the availability of oxygen to support oxidative phosphorylation and that lactate 

produced both by neurons or astrocytes could be used as energy fuel in neurons (Pellerin 

and Magistretti 2003). Furthermore, glycogenolysis was acknowledged to be a putative 
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additional astrocytic source of lactate to fuel intense neuronal activity (Pellerin et al. 

2007).  

Recent criticisms of the ANLS hypothesis have explored the significant oxidative 

capacity of astrocytes, the role of glucose supporting neuronal activity and the fate of 

lactate released during activation. Leif Hertz and colleagues emphasize that astrocytes are 

known to significantly oxidize glucose for energy production in addition to their high 

dependence on glycolysis and glycogenolysis to respond to increasing energy demands 

(Hertz et al. 2007). On the other hand, Bak and colleagues provided further evidence 

that neurons up-regulate glucose metabolism during neurotransmission, even in the 

presence of lactate (Bak et al. 2006b; Bak et al. 2009). Furthermore, other authors 

provided evidence in favour of a preferential fast transport-mediated lactate trafficking 

and release from the activated brain into the blood, compared to its local metabolism 

(Simpson et al. 2007; Contreras and Satrustegui 2009; Gandhi et al. 2009). Finally, 

metabolic modelling studies of glucose and lactate transport and utilization predicted 

that neurons should be responsible for most of glucose uptake and metabolism (Mangia 

et al. 2009; DiNuzzo et al. 2010). According to this hypothesis, the lactate transients 

observed during activation are generated by neurons, which then transfer it to astrocytes, 

in a totally opposite theory to the ANLS.  

Despite all the results obtained in vivo and in vitro, there are still no available 

measurements of glucose or lactate with cellular resolution in the brain in vivo. Thus, it is 

not yet possible to describe accurately which cell type is the lactate source or the lactate 

fate, and whether these roles may be region-specific or affected by activity. Therefore, 

further data will be required to elucidate this long-lasting debate. 

4.2.3 The Redox Switch/Redox Coupling Hypothesis 

With a different perspective, Cerdan and colleagues proposed an alternative 

interpretation of the neuroglial metabolic coupling, considering the contribution of 

lactate-pyruvate exchange shuttles linking glycolytic and oxidative domains of 
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heterogeneously activated cells (Cerdan et al. 2006). The redox-coupling hypothesis is 

based on intracellular compartmentation of pyruvate and lactate pools observed both in 

neurons and astrocytes (Sonnewald et al. 1993b; Cruz et al. 2001; Waagepetersen et al. 

2001a; Zwingmann et al. 2001; Schousboe et al. 2003) as well as in glioma cells (Bouzier 

et al. 1998). Two different pools of intracellular pyruvate were characterized; one derived 

from extracellular pyruvate, used mainly for lactate and alanine production and the 

other one derived from glucose and used primarily for oxidation (Cruz et al. 2001). This 

pyruvate compartmentation enables neurons and astrocytes to alternatively select 

between glucose and lactate, depending on their relative extracellular concentration. 

Herein, a redox switch using the cytosolic NAD+/NADH ratio is proposed to modulate 

glycolytic flux, controlling which one of the two pyruvate pools is metabolized in the 

TCA cycle (Cerdan et al. 2006). This could justify that part of the lactate consumed by 

neurons could be transferred back to the medium as part of a lactate recycling process, 

which is also valid for pyruvate (Cruz et al. 2001; Zwingmann et al. 2001; Rodrigues and 

Cerdan 2005, 2007). The redox-switch coupling hypothesis thus suggests a reversible 

exchange of reducing equivalents between neurons and astrocytes, driven by the 

transcellular redox gradient, rather than a simple vectorial transfer of lactate from 

astrocytes to neurons. This hypothesis, together with the concepts of intracellular 

compartmentation of glutamate and monocarboxylates, is consistent with a 

simultaneous operation of glial and neuronal TCA cycle activity during activation (Cruz 

et al. 2005; Dienel and Hertz 2005). 

4.3 Glutamate and glutamine metabolism 

Glutamate is a central molecule in the brain as it plays multiple roles. In addition to 

being the major excitatory neurotransmitter (see Danbolt 2001 for references), it is the 

direct precursor for the inhibitory neurotransmitter GABA in neurons and of glutamine 

in astrocytes (Schousboe et al. 1997). Furthermore, it can be incorporated into proteins 

or used to synthesize glutathione (Dringen 2000), it participates in the purine nucleotide 

cycle and is importantly involved in intermediary metabolism, being also used as energy 
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substrate (Bak et al. 2006a). All these functions make glutamate homeostasis very 

complex. In fact, glutamate excitotoxicity is associated with many brain pathologies, 

including ischemia, Huntington‘s disease, Parkinson‘s disease, among others (Maragakis 

and Rothstein 2004). Glial glutamate transporters are thought to be involved in this 

process, perhaps due to altered function (including the reversal of their operation or the 

inability of efficiently taking up glutamate) or decreased expression levels (Danbolt 2001; 

Shin et al. 2005; Camacho and Massieu 2006; Faideau et al. 2010). 

4.3.1 Glutamate-Glutamine cycle 

The differential cellular expression of the enzymes implicated in glutamate and 

glutamine metabolism makes it highly compartmentalized. The exclusive astrocytic 

localization of the enzymes glutamine synthethase (GS) (Martinez-Hernandez et al. 1977) 

and PC (Yu et al. 1983; Shank et al. 1985) determines that astrocytes are the only cell 

type in the brain able to perform de novo synthesis of glutamine. In addition, phosphate-

activated glutaminase (PAG), the enzyme transforming glutamine into glutamate, has a 

preferential neuronal expression (Kvamme et al. 2001). For this reason, neurons must 

rely on astrocytes through the so-called glutamate-glutamine cycle (Figure 1.4) to 

replenish their TCA cycle after the drain of carbon units resulting from 

neurotransmitter synthesis and release. This cycle has been proposed in the late 1960‘s 

based on the observation of different glutamate pools: a small pool (precursor for 

glutamine and attributed to the glial compartment) and a large pool with a slower 

turnover, attributed to the neuronal compartment (Berl et al. 1968; Clarke et al. 1970; 

van den Berg and Garfinkel 1971).  
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Figure 1.4 - The glutamate-glutamine cycle. After synaptic release of glutamate (GLU) by neurons, 
astrocytes are responsible for its uptake via specific high-affinity glutamate transporters (GLAST and GLT-1) 
to prevent neuronal excitotoxicity. Glutamate taken up by astrocytes is converted to glutamine (GLN) via 
glutamine synthetase (GS) at the expense of one ATP molecule. Glutamine is then transferred back to 
neurons where it is transformed into glutamate by phosphate-activated glutaminase (PAG), making it 
available again for neurotransmission and, this way, closing the cycle. The close association between 
glutamate and TCA cycle metabolism is indicated in both cells: glutamate can be additionally converted into 
α-ketoglutarate (α-KG) via either glutamate dehydrogenase (GDH) or aspartate amino transferase (AAT) and 
being subsequently oxidized.  

 

On the other hand, GABAergic neurons are responsible for a larger fraction of 

their neurotransmitter reuptake compared to glutamatergic neurons (Schousboe et al. 

2004). Still, a similar cycle also operates in these neurons and has quantitative 

significance for the replenishment of the neurotransmitter GABA pool (Sonnewald et al. 

1993a). In this context, the cycle can be extended to include a glutamate-glutamine-

GABA cycle (further details in Bak et al. 2006a).  
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The glutamate-glutamine cycle additionally generates an imbalance in ammonia 

homeostasis since a large amount of ammonia is produced in neurons through PAG and 

consumed in astrocytes for glutamine synthesis. This requires an efficient process to 

shuttle the excess nitrogen from neurons to astrocytes, which was, nevertheless, not 

taken into account in the classical proposal of the glutamate-glutamine cycle (Bak et al. 

2006a; Zwingmann and Leibfritz 2007). Shuttling mechanisms involving carrier 

molecules such as branched chain amino acids (BCAA) (Yudkoff et al. 1994; Yudkoff 

1997; Bixel et al. 2004), alanine (Waagepetersen et al. 2000; Zwingmann et al. 2000; 

Zwingmann et al. 2001; Rae et al. 2003) or aspartate (Bakken et al. 1997; Griffin et al. 

1998; Griffin et al. 2003) are likely candidates for this role. However, the extent to 

which each of the proposed shuttles is coupled to the glutamate-glutamine cycle in vivo 

remains to be clarified experimentally.  

4.3.2 Glutamate/Glutamine Oxidation and Pyruvate Recycling 

The glutamate-glutamine cycle is not closed or stoichiometric, since glutamate and 

glutamine can be formed from numerous metabolites and also be additionally 

metabolized by neurons and astrocytes for a number of purposes, depending on the 

cellular needs (McKenna 2007 and references therein). The pyruvate recycling pathway 

(Figure 1.5) mediates the oxidation of these amino acids in order to maintain sufficient 

energy metabolism when substrates such as glucose or monocarboxylates are low. The 

carbon skeleton of glutamate has to exit the TCA cycle at the level of malate or 

oxaloacetate and re-enter the cycle in the form of acetyl-CoA in order to be fully oxidized 

(Zwingmann and Leibfritz 2007). Pyruvate recycling can occur through two general 

pathways, one catalyzed by the NADP-linked malic enzyme (ME, EC 1.1.1.39), which 

converts malate into pyruvate, and the other catalyzed by PEPCK and PK, converting 

oxaloacetate to phosphoenolpyruvate (PEP) and pyruvate (Cruz et al. 1998).  
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Figure 1.5 - Pathways for pyruvate recycling in brain cells. Pyruvate recycling is a major pathway for the 
complete oxidation of glutamine and glutamate. It is mainly mediated by malic enzyme (ME), converting 
malate to pyruvate. Nevertheless, it might also occur, to some extent, via the combined activities of 
phosphoenolpyruvate carboxykinase (PEPCK), converting oxaloacetate to phosphoenolpyruvate (PEP), and 
pyruvate kinase (PK), converting PEP to pyruvate. Pyruvate can then re-enter the TCA cycle via pyruvate 
dehydrogenase (PDH) or pyruvate carboxylase (PC; only in astrocytes).  

 

Pyruvate recycling was known to occur in the liver due to its significant 

contribution to gluconeogenesis in this organ (Friedman et al. 1971). However, only in 

the 1990‘s Cerdan and colleagues provided metabolic evidence and described the 

localization of the enzymes required for this pathway to operate in the rat brain (Cerdan 

et al. 1990; Cruz et al. 1998). Although these authors used [1,2-13C]acetate, a specific 

substrate for astrocytes, they concluded that pyruvate recycling likely occurred in 

neurons based on the higher amount of [4-13C]glutamate compared to [4-13C]glutamine 

as detected by ex-vivo 13C NMR spectroscopy (Cerdan et al. 1990). Moreover, it was 

suggested that pyruvate recycling appeared to contribute with 17% of the total pyruvate 

metabolized via PDH in neurons (Kunnecke et al. 1993) and with approximately 30% of 

the acetyl-CoA entering the TCA cycle in the brain (Cerdan et al. 1990; Cruz et al. 1998; 

Haberg et al. 1998). However, many subsequent studies using 13C-labelled acetate and/or 
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glucose in cultured astrocytes (Sonnewald et al. 1993b; Hassel et al. 1994; Bakken et al. 

1997; Alves et al. 2000b; Waagepetersen et al. 2002) and in animal models (Hassel and 

Sonnewald 1995; Haberg et al. 1998; Chapa et al. 2000) provided evidence favouring a 

predominant operation of pyruvate recycling in astrocytes. These studies suggested that 

approximately 7% of the newly synthesized lactate in astrocytes was derived from this 

pathway and could account for 20% of the glial pool of lactate. Only more recently, 

glutamate and glutamine oxidation via pyruvate recycling has been reported again in 

cultured neurons (Olstad et al. 2007).  

Finally, the cellular localization of ME, PEPCK and PK provides additional 

information regarding the operation of this pathway in neurons and astrocytes. In fact, 

mitochondrial (mME) and cytosolic (cME) ME isoforms appear to have different cellular 

distributions in the brain, although their relative importance to pyruvate recycling has 

not been clarified. Vogel et al reported relative enzyme activities of mME and cME in 

brain homogenates of 55% and 45%, respectively (Vogel et al. 1998). Furthermore, 

mME appears to be only expressed in neurons (Cruz et al. 1998; McKenna et al. 2000b) 

whereas cME is thought to be mainly a glial enzyme, accounting for 95% of total ME 

activity in astrocytes (Kurz et al. 1993; McKenna et al. 2000b; Kimmich et al. 2002). The 

development of mME expression mainly after synaptogenesis in vivo (Cruz et al. 1998) 

and the immature stage of neuronal primary cultures prepared from neonatal brain 

could justify the reduced neuronal pyruvate recycling activity observed in vitro. 

Concerning PEPCK, it is thought to contribute to pyruvate recycling mainly in 

astrocytes, being selectively localized in the mitochondria (Alves et al. 1995; Schmoll et 

al. 1995; Bakken et al. 1997; Bakken et al. 1998).  

Although the significance and cellular operation of pyruvate recycling in the 

adult brain is still unclear, its enzymatic capacity is thought to be much higher than the 

measured metabolic fluxes in vivo (Cruz et al. 1998). This suggests that the associated 

enzymes might be up-regulated under pathological conditions that require oxidation of 

substrates other than glucose. However, cultured astrocytes subjected to glucose 
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deprivation or treated with iodoacetate (an inhibitor of glycolysis) did not increase the 

flux of [U-13C5]glutamate metabolism through pyruvate recycling (Bakken et al. 1998). 

5 Brain Metabolism in Neuropathologies 

5.1 Cerebral Ischemia and Metabolic Features 

Ischemic stroke is caused by the occlusion of a major cerebral artery either by an 

embolus or by local thrombosis, causing severe brain damage (Dirnagl et al. 1999). It is 

the third leading cause of death in industrialized countries and a major cause of adult 

disability (Nedergaard and Dirnagl 2005). However, despite extensive research in the 

field, most candidate drugs have proved unsuccessful and the most effective strategy to 

avoid a poor outcome continues to be the fast restoration of blood supply (Rossi et al. 

2007).  

Ischemic brain injury results from a complex sequence of pathophysiological 

events that evolve over time and space (after stroke the partially perfused brain area - 

‗penumbra‘ - may progress to cell death, increasing the area of infarction - ‗core‘ - or 

recover its function due to re-establishment of reperfusion by means of anti-coagulant 

treatment) (Dirnagl et al. 1999). The impairment of cerebral blood flow in stroke 

restricts the delivery of key substrates, particularly oxygen and glucose, reducing the 

energy required to maintain ionic gradients (Martin et al. 1994). Blood flow in the 

penumbral region might fall to 20% of its normal level (even lower in the core) and 

oxidative metabolism decreases sharply (Hertz 2008). The marked decrease in ATP 

synthesis favours the generation of reactive oxygen species and results in the loss of ion 

homeostasis across cell membranes, leading to membrane depolarization, which alters 

the glutamate uptake mechanisms and ultimately leads to excitotoxicity (Rossi et al. 

2007).  

The classical metabolic hallmarks of brain ischemia are thus the increase in the 

rate of anaerobic glycolysis, mainly by astrocytes, in order to deal with the fast decline in 

ATP supplies (Hertz 2008). Lactate accumulates to very high levels during hypoxia-
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ischemia and its accompanying acidosis has been considered one of the major 

contributors to selective neuronal damage (Lipton 1999). On the other hand, different 

authors provided evidence that lactate, possibly supplied by astrocytes, can be 

neuroprotective after ischemia, by functioning as neuronal energy substrate during 

reperfusion (Schurr 2002; Berthet et al. 2009). In addition, several metabolic alterations 

associated with ischemia have been reported. For instance, glucose metabolism was 

decreased after focal cerebral ischemia in rats whereas increased oxidation of glutamate 

and GABA in astrocytes and of glutamine (via pyruvate recycling) in neurons was 

observed (Pascual et al. 1998; Thoren et al. 2006) suggesting the importance of 

alternative substrates in the recovery from ischemia. In fact, astrocytic metabolism was 

shown to be essential for neuronal survival after ischemia in rats, by providing energy 

substrates such as glutamine (Haberg et al. 2001; Haberg et al. 2006). Nevertheless, 

pyruvate carboxylation was decreased in different animal models of ischemia (Haberg et 

al. 2006; Richards et al. 2007). The MAS also appears to be affected in this context due 

to an impairment of cytosolic-mitochondrial communication (Cheeseman and Clark 

1988; Lewandowski et al. 1997; Lu et al. 2008). Overall, metabolic alterations resulting 

from such energy failure are very complex because substrate limitations necessarily lead 

to profound changes in the fluxes of several pathways (reviewed by Dienel and Hertz 

2005; Hertz 2008). In general, astrocytes are more resistant than neurons to ischemic 

damage, likely due to their higher glycolytic capacity, glycogen content, higher 

glutathione levels and the ability of metabolising multiple substrates, as described earlier. 

Their vital functions in the brain are also implicated in ischemic brain damage, although 

their different protective or destructive roles remain unclear (Nedergaard and Dirnagl 

2005; Trendelenburg and Dirnagl 2005; Rossi et al. 2007). Therefore, ongoing research 

on this topic continues to further characterize metabolic alterations caused by cerebral 

ischemia, ultimately aiming for possible therapeutic targets. 
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5.2 Brain hypoglycaemia 

Hypoglycaemia occurs mainly in diabetic patients receiving insulin therapy but 

eventually also in normal subjects due to prolonged fasting (Suh et al. 2007a). Normal 

glucose concentrations range between 3.9 and 7.1 mM in the blood and between 0.8 

and 2.3 mM in the brain, showing a linear relationship (Gruetter et al. 1998a). When 

blood glucose levels fall below 2 mM, brain glucose concentration drops close to zero 

since blood glucose consumption exceeds transport capacity at reduced concentrations 

(Choi et al. 2001). Depending upon its severity, hypoglycaemia may cause irritability, 

impaired concentration, cognitive dysfunctions, focal neurological deficits or even 

seizures (Suh et al. 2007a), which highlights the importance of glucose to support brain 

functions.  

Metabolic alterations caused by hypoglycaemia are markedly different from those 

typical of ischemia due to the availability of oxygen, allowing cells to eventually oxidize 

alternative substrates to sustain ATP production. In fact, ATP levels fall more slowly 

during hypoglycaemia, when compared to ischemia-like conditions (Okada and Lipton 

2007). Even so, synaptic transmission is impaired well before the decline in ATP levels, 

even when non-glucose fuels like pyruvate or lactate are available (Okada and Lipton 

2007; Suh et al. 2007a and references therein). Based on these findings, different 

authors suggested that the ATP produced during glycolytic glucose metabolism seems to 

be essential to support synaptic transmission.  

Nevertheless, different substrates were shown to support brain function during 

or after hypoglycaemia, both in vitro and in vivo, including acetate (Criego et al. 2005), 

pyruvate (Suh et al. 2005; Mason et al. 2006) and glutamate and glutamine (Bakken et 

al. 1998; Rao et al. 2010). A significant mobilization of glycogen has also been observed 

under various degrees of hypoglycaemia both in humans and rats (Choi et al. 2003; Oz 

et al. 2009) and increased glycogen stores sustained neuronal activity under 

hypoglycaemia for up to 90 minutes longer than in rats with normal glycogen levels (Suh 

et al. 2007b). Further investigations on the metabolic adaptation of brain cells to 
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hypoglycaemia will not only bring new knowledge on the role of different substrates 

supporting brain function but will also ultimately lead to the development of better 

treatments for vulnerable patients. 

6 Tools to Investigate Brain Metabolism 

Early studies of brain metabolism have used radiolabelled tracers such as 14C-labelled 

glucose, to investigate fluxes through different pathways (Katz and Rognstad 1967). 

More recently, radioactive techniques such as autoradiography and PET together with 
14C or 18F-glucose have been used to measure regional cerebral glucose consumption 

(Spence et al. 1997; Nehlig et al. 2004; Thoren et al. 2006; Cruz et al. 2007). Both 

methods allow the determination of cerebral metabolic rates for glucose in different 

brain regions after appropriate modelling of the underlying tracer kinetics. However, 

these approaches are limited in resolution and chemical specificity, which do not make it 

possible to image single neural cells in the examined area, or to investigate the 

downstream metabolism of glucose below the phosphofructokinase step (Rodrigues and 

Cerdan 2007). On the other hand, imaging of NAD(P)H fluorescence transients has also 

been used with the aim of resolving in time the NADH balances occurring in neurons 

and astrocytes during glutamatergic activation (Kasischke et al. 2004). However, this 

technique is not cell specific and results might indicate increased oxidative or glycolytic 

metabolism, depending on interpretations (Kasischke et al. 2004; Brennan et al. 2006). 

The use of stable isotopes and the development/improvement of magnetic resonance 

techniques to detect them revolutionized the research in the field (Badar-Goffer et al. 

1990; Cerdan et al. 1990; Shank et al. 1993). Techniques exploring the information 

provided by 13C-labelled substrates such as 13C NMR spectroscopy and mass 

spectrometry (MS) were those employed in this thesis and will be described in more 

detail below.  
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6.1 13C NMR spectroscopy  

The use of 13C-labelled compounds and magnetic resonance spectroscopy is a powerful 

approach to investigate brain energy metabolism both in primary cultures, brain slices 

and in vivo (reviewed by Rodrigues et al. 2009). Its main advantages rely on the low 

natural abundance of 13C, the non-invasive character of NMR spectroscopy, in particular 

for in vivo studies, and its high chemical specificity, due to the capacity of distinguishing 

isotope incorporation, not only in different molecules but also in specific positions in 

the same molecule (13C isotopomers). However, its main disadvantage is the low 

sensitivity when compared to other conventional metabolic techniques including mass 

spectrometry, radioactive counting or spectrophotometric or fluorimetric methods 

(Rodrigues et al. 2009).  

NMR spectroscopy allows distinguishing specific nuclei surrounded by distinct 

chemical environments in a molecule, due to their characteristic chemical shifts. These 

correspond to the resonance frequencies of the different atoms, when exposed to a 

magnetic field, which originate the range of peaks observed in the NMR spectrum. Due 

to these properties, the fate of a labelled substrate can be followed directly through the 

different metabolic pathways of intermediary metabolism (Rodrigues et al. 2009). Figure 

1.6-A illustrates the labelling patterns of [1-13C]glucose in brain cells, the most commonly 

used substrate, as well as a typical 13C NMR spectrum of a brain extract after i.v. 

injection of a solution containing [1-13C]glucose (Figure 1.6-B). Further details about the 

labelling patterns of differently labelled substrates will be provided in each specific 

chapter of this thesis.  
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Figure 1.6 – A - Simplified scheme of labelling patterns in metabolites from [1-13C]glucose in neurons and 
astrocytes. [1-13C]glucose enters neurons and astrocytes and is transformed via glycolysis to [3-13C]pyruvate. 
The latter can be converted to [3-13C]lactate or [3-13C]alanine or be transported into mitochondria to enter 
the TCA cycle as [2-13C]acetyl-CoA, via pyruvate dehydrogenase (PDH). Condensation of [2-13C]acetylCoA 
with unlabelled oxaloacetate will, after several steps, lead to the formation of [4-13C]glutamate and glutamine 
and [2-13C]GABA in GABAergic neurons, in the first turn of the TCA cycle. However, if the label remains 
in the cycle and labelled oxaloacetate condenses with labelled acetyl-CoA, [2-13C]/[3-13C]glutamate and 
glutamine and [3-13C]/[4-13C]GABA will be formed. In astrocytes, [3-13C]pyruvate can also enter the TCA 
cycle via pyruvate carboxylase (PC), in the form of [3-13C]oxaloacetate. After several steps, [2-13C]glutamate 
and glutamine and [4-13C]GABA will be produced. B – Example of a typical 13C NMR spectra of a rat brain 
extract after i.v. injection of [1-13C]glucose. Peak assignment: 1 – Alanine C-3, 2 - Lactate C-3, 3 – N-acetyl 
aspartate, 4 – GABA C-3, 5 – Glutamine C-3, 6 – Glutamate C-3, 7 – Glutamine C-4, 8 – Glutamate C-4, 9 
– Succinate C-2/3, 10 – GABA C-2, 11 – Taurine C-2, 12 – GABA C-4, 13 – N-acetyl aspartate C-3, 14 – 
Taurine C-1, 15 – aspartate C-2, 16 - N-acetyl aspartate C-2, 17 – Glutamine C-2, 18 – Glutamate C-2. The 
NMR spectrum was gently provided by Linn Hege Nilsen (NTNU, Norway). 
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In the early 1990‘s, major technical improvements in NMR spectroscopy 

increased sensitivity and resolution of 13C NMR spectra. Labelled glutamine and 

glutamate could be detected for the first time following glucose administration in the 

human brain (Beckmann et al. 1991; Gruetter et al. 1994). These events opened the way 

for numerous studies on cerebral metabolic compartmentation (Bachelard 1998; Cruz 

and Cerdan 1999), the determination of metabolic fluxes in live animals (Henry et al. 

2002) and in humans (Gruetter et al. 1998b), and the characterization of metabolic 

responses related to brain activation (Patel et al. 2004) or pathological scenarios (Alves et 

al. 2000a), among others. Taking advantage of the fact that acetate is a glial-specific 

substrate (Waniewski and Martin 1998), the combined use of [1,2-13C]acetate and [1-
13C]glucose, which originate different 13C labelling patterns, importantly enabled to 

investigate metabolic interactions between neurons and astrocytes in multiple contexts 

(reviewed by Sonnewald and Kondziella 2003; Zwingmann and Leibfritz 2003). 

Furthermore, the indirect method [1H]-observed-[13C]-edited NMR spectroscopy was later 

developed and employed by some groups aiming to overcome the lower sensitivity when 

compared to direct observation of 13C resonances (de Graaf et al. 2003). More recently, 

Rodrigues et al developed a new (13C,2H) NMR spectroscopy method to investigate 

reactions involving the fast process of hydrogen turnover by following the exchange of 
1H by 2H in 13C-labelled metabolites when metabolism occurs in media containing 2H2O 

(Rodrigues et al. 2005).  

6.2 Mass Spectrometry 

MS techniques have also been widely employed in several cell culture studies of brain 

energy metabolism and in metabolomics studies in general, due to its high sensitivity 

(e.g. (Yudkoff et al. 1987; Waagepetersen et al. 2001a; Olstad et al. 2007; Mishur and 

Rea 2011). MS identifies the isotopomer composition of a compound or sample based 

on the mass-to-charge (m/z) ratio of charged particles, which are generated by chemical 

fragmentation inside the spectrometer. In order to analyze 13C or 15N enrichment in 

amino and organic acids, samples need to be derivatized (Mawhinney et al. 1986). 
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Compared to 13C NMR spectroscopy, MS techniques have a destructive character (the 

sample disintegrates during analysis), which confines its application to in vitro or ex-vivo 

studies. Moreover, it is less specific since the position of the label in the molecule cannot 

be disclosed, providing only the number of labelled atoms per molecule.  

6.3 Metabolic modelling and metabolic flux estimations 

Metabolic modelling of brain metabolism was first performed by van den Berg and 

Garfinkel more than 30 years ago, who developed multi-compartment models to 

elucidate apparent paradoxes of 14C labelling studies using radioisotopes (van den Berg 

and Garfinkel 1971). More recently, advances in NMR spectroscopy combined with the 

use of MS and the use of 13C labelled substrates allowed investigating brain metabolism 

based on isotopic labelling measurements and, consequently, estimating metabolic fluxes 

in vitro and in vivo. 

6.3.1 In vitro and ex-vivo studies 

In the early 90‘s, some authors reported the first estimations of metabolic ratios and 

fluxes in the brain using 13C-labelled acetate and glucose (Cerdan et al. 1990; Brand et 

al. 1992; Lapidot and Gopher 1994). The approach used consisted in calculating 

isotopomer population ratios based on homonuclear 13C-13C spin-coupling patterns of 

glutamine, glutamate and GABA isotopomers detected by ex-vivo 13C NMR spectroscopy 

at isotopic steady-state. In addition to demonstrating the existence of distinct metabolic 

compartments, these studies provided the first estimations of the relative fluxes through 

PDH and PC pathways in the brain. For instance, Lapidot and Gopher reported that PC 

accounted for 34% of glutamine synthesis and only 16% of glutamate and GABA 

synthesis in the rabbit brain (Lapidot and Gopher 1994).  

The first metabolic modelling studies involving 13C labelled substrates and NMR 

spectroscopy investigated the TCA cycle flux in perfused hearts or tissue extracts, based 

on glutamate fractional enrichment time-courses alone (Chance et al. 1983) or in 
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combination with isotopomer information (Malloy et al. 1987, 1988). In the latter study 

the flux through the anaplerotic pathway was also measured. Fluxes were estimated by 

fitting the experimental data (13C enrichment in C2, C3 and C4 of glutamate under 

metabolic and isotopic steady-state) using an equation that described the different 

isotopomer contributions as a function of the parameters to be determined. The model 

developed by Malloy and colleagues considered only one metabolic compartment (the 

heart) and was tentatively applied to estimate fluxes in primary cultures of cerebellar 

astrocytes or neurons - homogeneous (one compartment) systems - by analyzing 

glutamate isotopomers in neurons and of glutamine in astrocytes (Martin et al. 1993). 

Their main results were: (i) PC flux appeared to account for 15% of glial TCA cycle, (ii) 

cerebellar neurons presented higher PPP activity compared to astrocytes, and (iii) used 

glucose as main energy source, whereas (iv) astrocytes metabolized a large amount of 

additional sources, as indicated by a significantly lower acetyl-CoA enrichment compared 

to that of lactate C3 (Martin et al. 1993). However, the original model (which assumed 

equal C2 and C3 enrichments) appeared to be unsuitable for analyzing the enrichment 

in different glutamine isotopomers after [1-13C]glucose metabolism, due to PC activity. 

Thus, Merle et al performed some improvements (Merle et al. 1996b) and were able to 

additionally determine an oxaloacetate-malate backflow of 39 % in astrocytes and of 100 

% in granule cells (Merle et al. 1996a). More recent developments of this model include 

isotopomer analysis of complex metabolic pathways including substrate oxidation, 

multiple pyruvate cycles and gluconeogenesis (Sherry et al. 2004). 

6.3.2 In vivo 13C metabolic modelling 

In vivo metabolic models were first based in one compartment and estimated the cerebral 

TCA cycle flux and the glutamate-α-ketoglutarate exchange rate, Vx, based on the fitting 

of glutamate 13C time-courses after [1-13C]glucose infusion (Mason et al. 1992; Mason et 

al. 1995; Henry et al. 2002). Since most of the glutamate is located in neurons, these 

models mainly reflected the neuronal TCA cycle. The possibility of following also 

glutamine enrichment signals allowed the development of the two-compartment 
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(neurons and astrocytes) models to additionally estimate the glutamate-glutamine cycle 

flux (Sibson et al. 1998). Initially, these models did not include a full astrocytic 

compartment but they were soon expanded, enabling the separate estimation of 

neuronal and glial TCA cycle, pyruvate carboxylation and glutamate-glutamine cycle flux 

(e.g. Gruetter et al. 1998b; Shen et al. 1999; Gruetter et al. 2001). Figure 1.7 illustrates 

the structure of one- and two- compartment models. 

 

Figure 1.7 - A – One compartment model of brain metabolism describing the flow of 13C label from [1-
13C]glucose into glutamate. Glc, glucose; Pyr, pyruvate; Lac, lactate; aKG, a-ketoglutarate; Glu, glutamate; 
Gln, glutamine; OAA, oxaloacetate; Asp, aspartate; VGLY , rate of glycolysis; VDIL , rate of exchange between 
labelled and unlabelled lactate; VTCA, rate of TCA cycle; Vx, rate of exchange between a-ketoglutarate and 
glutamate; VGLN, rate of exchange between glutamate and glutamine. Numbers in subscript indicate the 
position of the labelled carbons in each metabolite. Figure taken from Henry et al (2002) with permission 
from the publisher. B - Model of compartmentalized brain metabolism describing the flow of 13C label 
from glucose into different metabolites of neurons and astrocytes. This two-compartment model includes 
glial (Vg) and neuronal (Vn

PDH) TCA cycle, glial anaplerosis (VPC), apparent glutamatergic neurotransmission 
(i.e., glutamate–glutamine cycle; VNT) and 2-oxoglutarate (OG)-glutamate (GLU) exchange in both 
compartments (VX

g and VX
n). The model additionally accounts for sources of label dilution in lactate (Lac), 

due to exchange with extra-cerebral lactate (Vout/Vin), and in the glial compartment at the level of acetyl-CoA 
(AcCoA) by glial specific substrates ( Vdil) and due to efflux glutamine loss from the metabolic system (Vefflux). 
CMRglc, cerebral metabolic rate of glucose; Tglc, glucose transport from blood. Figure taken from Duarte et al 
(2011) with permission from the authors, according to Frontiers Copyright statement. 

 

Aiming at more accurate estimations, models were improved by including 

additional fluxes (e.g. Vdil, Vex and Vin/Vout) to account for isotopic dilution in glutamine 

and lactate due to exchange with unlabelled metabolites in the blood (Oz et al. 2004; 

Shen et al. 2009). Even more complex models have been proposed (three-compartments - 
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astrocytes, glutamatergic and GABAergic neurons) to measure also the GABA-glutamine 

cycle (Patel et al. 2005). The major contributions and fluxes obtained in these studies are 

summarized in Table 1.2. Further details on the methodologies underlying in vivo 

metabolic modelling can be found in reviews by (Gruetter 2002; Mason and Rothman 

2004; Henry et al. 2006; Shestov et al. 2007). 

6.3.2.1 Modelling assumptions and related controversies 

Flux estimations are inherently affected by assumptions made in the modelling. Of 

critical importance is the mitochondrial-cytosolic compartmentation of the metabolism 

of most amino acids and the need for their transport across the mitochondrial 

membrane. In the brain, the MAS is involved in the exchange between glutamate/α-

ketoglutarate (Vx) and oxaloacetate/aspartate (see above). The magnitude of the Vx flux 

greatly influences TCA cycle flux estimations and has been under debate as it was first 

reported to be much higher than the TCA cycle rate (Mason et al. 1992; Mason et al. 

1995), whereas other authors provided data suggesting that these fluxes were comparable 

(Gruetter et al. 2001; Henry et al. 2002). The main reasons for such discrepancies are 

related to the pool size of the metabolites, as it was observed that glutamate 13C time-

courses provide a more accurate estimation of PDH flux than those of aspartate (smaller 

pool size) (Gruetter 2002). Additional studies confirmed that the use of glutamate C4 

time-courses alone is not sufficient for an accurate estimation of both VTCA and Vx 

(Henry et al. 2002). Recently, Duarte et al (2011) reported 13C enrichment time-courses 

of all aliphatic carbons of glutamate, glutamine and aspartate detected with high 

temporal resolution and sensitivity by in vivo 13C NMR spectroscopy at 14.1T, after [1,6-
13C]glucose infusion in rats. These authors showed that Vx is similar to the TCA cycle 

flux, both in neurons and astrocytes, and that information from TCA cycle 

intermediates pools is not required for accurate flux estimation (Duarte et al. 2011), as 

previously suggested by mathematical simulations (Uffmann and Gruetter 2007).  
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Table 1.2 - Summary of the main cerebral metabolic fluxes (µmol min-1g-1) estimated using metabolic 
modelling of in vivo 13C NMR data and key findings from these studies. 

Flux Rat Brain Human 
Brain 

Key findings/Conclusions 

Total Cerebral TCA cycle 
flux 

1.58a  

0.46c; 0.53d 0.71r  (α-chloralose)   

0.16d (pentobarbital) 

1.0 d (morphine) 

0.8e; 0.6f; 
0.84i; 0.73b 

 

Neuronal TCA cycle 

1.6a 

0.6c; 0.45r  (α-chloralose) 
1.16n (awake) 

0.41l ; 0.34p (pentobarbital) 
0.80o; 1.22p (halothane) 

0.8e; 0.6f; 

0.83g; 0.60h; 
0.70i; 0.72q 

 

Neuronal TCA cycle rate increases with 
neuronal activityg,h 

Glial TCA cycle 

0.32l  (pentobarbital) 
0.48n (awake)  
0.28r (α-chloralose) 

 

0.10e; 0.15f; 
0.14i,j 

 

Glial TCA cycle is significant in the 
human brainf and accounts for 14% 
(human) to 38% (rat) of total oxidative 
metabolismj,r 

Anaplerosis (VPC) 

0.04l (pentobarbital) 
0.18n (awake) 

0.04e,i; 0.09f ; 
0.02q 

 

- Anaplerosis via PC is significant and 
increases with neuronal activitym,p 

- PC contributes to 20% of the total 
turnover in the human TCA cyclef 

and for 6% of the glutamine 
synthesis in the human brainq and 
the majority of this flux is used for 
replacing glutamate lost due to glial 
oxidationq. 

- VPC is 25% of glial TCA cycle rate 

Glutamate-Glutamine cycle/ 
Glutamatergic 
Neurotransmission  
(VNT or Vcyc) 

0.21c ; 0.13d; 0.11q (α-
chloralose) 
0.4d (morphine) 
0.51n (awake) 

0d; 0.04l; 0.02p (pentobarbital) 
0.31o;  0.58p (halothane) 

0.32e; 0.17f; 
0.25h; 0.32j; 
0.34q 

 

- The glutamate-glutamine cycle is a 
major metabolic pathway in the 
brainc 

- 30% of the glutamine transferred to 
the neurons may be derived from 
astrocytic anaplerosisi,j 

Glutamate/α-ketoglutarate 
exchange (Vx) 

199a; 0.88q 
0.16 (glia) and 0.91 (neurons)h 

57b; 0.57f 

 
Vx >> VTCA

a,b
 

Vx ≈ VTCA 
f,m 

Glutamine Synthesis 

0.21c; 0.17d; 0.18q  

(α-chloralose) 

0.44 d (morphine) 
0.04 (pentobarbital)d  

0.47b; 0.26f 

 
 

Lactate Dilution 
0.42 (Vin), 0.28 (Vout)r  

(α-chloralose) 
0.05e; 0.41f Vout>Vin - not all glucose consumed 

follows complete oxidation (only 78% 
of glucose was oxidized in the rat brain)s 

Glutamine Efflux/Dilution 
 0.14e This flux needs to be taken into account 

for a precise and accurate estimation of 
the glutamate-glutamine cycle fluxe,r,s 

Glial acetyl-CoA dilution 

0.66q (α-chloralose)  This flux accounts for glial specific 
substrates or pathways fueling the TCA 
cycle (fatty acids, acetate, ketone bodies, 
pyruvate recycling)s 

References: a(Mason et al. 1992); b(Mason et al. 1995), c(Sibson et al. 1997); d (Sibson et al. 1998); e (Shen et al. 1999), f 
(Gruetter et al. 2001); g (Chen et al. 2001); h  (Chhina et al. 2001); i (Bluml et al. 2002); j (Lebon et al. 2002); l (Choi et al. 
2002); m (Henry et al. 2002); n (Oz et al. 2004); o (de Graaf et al. 2004); p (Patel et al. 2005); q (Mason et al. 2007); r (Shen 
et al. 2009); s (Duarte et al. 2011). 
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Nevertheless, strong debate still exists concerning the reliability of flux 

estimations using 13C-labelled glucose and two-compartment models, in addition to the 

need for improved methods to evaluate their robustness (Shestov et al. 2007). It has 

been suggested that information from isotopomer analysis and the use of 13C-labelled 

acetate should be used to complement glutamate and glutamine enrichment time-courses 

obtained after 13C-glucose metabolism (Shestov et al. 2007; Boumezbeur et al. 2010). 

Moreover, isotopic dilution in glutamine due to exchange with blood or resulting from 

other metabolic pathways (Broer et al. 2007; Dusick et al. 2007; Boumezbeur et al. 2010) 

was also shown to greatly influence flux estimations and therefore should be taken into 

account (Shen et al. 2009; Duarte et al. 2011). Duarte et al (2011) further included a 

glial dilution factor at the level of acetyl-CoA, accounting for additional pathways such as 

pyruvate recycling. 

6.3.3 Metabolic Flux Analysis  

Metabolic flux analysis (MFA) is a well established technique to estimate intracellular 

fluxes and to determine factors influencing its distribution in biochemical networks 

(Varma and Palsson 1994; Lee et al. 1999). It has been widely applied in the 

biotechnology and metabolic engineering fields to a number of biological systems such as 

bacteria, yeast, mammalian cell cultures and, more recently, insect cells (Vallino and 

Stephanopoulos 1993; Nielsen 1998; Bernal et al. 2009; Quek et al. 2010). In this 

context, MFA represents a powerful tool allowing for a better understanding of cellular 

physiology and to consequently define strategies to improve bioprocess yields. Advances 

introduced by MFA include the identification and manipulation of nutrient limitations, 

the toxic accumulation of metabolic products, the fluxes particularly influencing cell or 

viral productivities, or even to characterize responses of cancer cells to a given treatment 

(Bonarius et al. 1996; Nadeau et al. 2000; Forbes et al. 2006; Carinhas et al. 2010). MFA 

has also been recently employed to estimate metabolic fluxes of cultured astrocytes 

(Teixeira et al. 2008) and, consequently, constitutes a promising tool in the field of 
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neurosciences. Recent reviews on the application of MFA to investigate eukaryotic cell 

metabolism can be found in Niklas et al. (2010) and Quek et al. (2010). 

6.3.3.1 Classical or stoichiometric MFA 

Stoichiometric MFA is the original and simpler version of this methodology that was 

first applied in the early 1990‘s (Varma and Palsson 1994). MFA estimates unknown 

intracellular fluxes using a mathematical model constrained by the metabolic network‘s 

stoichiometry and biochemistry and the pseudo-steady-state hypothesis (Lee et al. 1999), 

using a minimum number of experimental data. The pseudo-steady-state hypothesis 

implies that the sum of the fluxes leading to the synthesis and consumption of each 

metabolite is equal to zero and, consequently, intracellular metabolite pools will be 

constant. It is also assumed that metabolic fluxes are constant in the time-interval 

considered, which is usually confirmed by observing the linearity of metabolite 

consumption/production curves determined experimentally. It is generally accepted that 

the pools of most metabolites have a very high turnover, especially those participating in 

central metabolism. Consequently, the concentrations of the different metabolite pools 

rapidly adjust to new levels even after large perturbations, which makes it suitable to 

apply MFA and the quasi-steady-state assumption to estimate metabolic fluxes under 

such conditions (Lee et al. 1999). The general steps required to estimate metabolic fluxes 

using MFA are described in Table 1.3 (see Quek et al. 2010 for details).  

The stoichiometry and biochemistry of intermediary metabolism of most 

organisms is quite well characterized and therefore network design is a relatively simple 

task. The number of reactions is usually high but can be reduced by combining reactions 

in linear pathways or removing those considered negligible based on literature 

information decreasing the number of fluxes to be estimated (Lee et al. 1999; Quek et al. 

2010). Still, the number of unknown fluxes is always higher than the number of 

metabolites, which means that some metabolic rates need to be experimentally 

determined so that the model is able to solve the system. 
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Table 1.3 - Steps involved in the implementation and execution of a classical MFA experiment  

Step Description 

Metabolic Network Design 
(Stoichiometric Matrix) 

The stoichiometric matrix (metabolites and biochemical pathways relevant for the cell 
population under study) is derived from biochemistry text books or genome scale 
models. 
Mass balance equations are defined for each metabolite, by considering all fluxes leading 
to its production or consumption. 

Measurements 

- Quantification of the exo-metabolome (extracellular metabolites). 
- Total amounts of metabolites of interest (glucose, lactate, amino acids and others) are 

quantified in cell supernatant samples collected at different time-points. 
- Quantification of the biomass amount and composition. 
- Total cell number and cell size/volume. 
- Cell constituents (total cell protein, DNA or RNA). 
- Metabolite consumption or production rates are determined. Specific rates are 

calculated considering the average protein amount or cell number during the 
experiment. 

- If cell growth occurred during the experiment (in the case of cell lines), cell growth 
rate also needs to be calculated. 

Data and Model Consistency 

The consistency of the measurements and of the model is tested using the so-called 
redundancy matrix. This matrix establishes a relationship between measured fluxes and 
balanced metabolites with the aim of proving that there are no gross errors in 
experimental values (no bias in measurements or use of relative errors close to the 
detection limits) and in the model itself (no substrates or products have been ignored). 

Flux Analysis 

Model inputs: 
Metabolite consumption/production rates  
Cell growth rate, if applicable. 

Constraints: 
Matrix stoichiometry; pseudo-steady-state hypothesis 

Model outputs: 
Unknown intracellular fluxes and their error-covariance matrix 

 

The simplicity of stoichiometric MFA reduces its power to estimate fluxes in 

more complex networks, particularly those of mammalian cells that, even though they 

lack many amino acid biosynthetic pathways, possess different cycles and anaplerotic 

reactions. These increase the number of fluxes that cannot be determined based only on 

uptake and excretion rates. The main weaknesses of stoichiometric MFA are summarized 

in Table 1.4 (details in Bonarius et al. 1997; Wiechert 2001). 

Table 1.4 - Drawbacks of Stoichiometric MFA  

Cannot resolve fluxes through: 
- parallel pathways, i.e. pathways that have a common product or substrate; 
- cyclic pathways, that are not coupled to any measurable fluxes 
- bidirectional/reversible reactions 

Requires balancing of energy metabolites such as ATP, NADH and NADPH, which is difficult to accomplish (their mass 
balances are normally closed by approximation or remain unclosed in stoichiometric MFA studies) 
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Based on these shortcomings, the simple experimental determination of 

transmembrane rates from cell supernatant data is not enough to solve all unknown 

fluxes in such complex and underdetermined systems. A good option is to use additional 

information provided by 13C-labelled substrates and 13C isotopomer data to distinguish 

fluxes through parallel pathways that contribute differently to label distribution. This has 

been performed to estimate fluxes through PC and PDH or glycolysis and PPP in 

cultured astrocytes (Amaral et al. 2010). Furthermore, by including data from 13C time-

courses into the model, a higher specificity and sensitivity in flux estimations can be 

obtained. Of particular interest to this work is the isotopic transient 13C MFA 

methodology, which is described in the next section. 

6.3.3.2 Isotopic transient 13C MFA 

Isotopic transient or instationary 13C MFA is a recent tool employed to estimate 

intracellular fluxes in short-time carbon-labelling experiments (Noh and Wiechert 2006). 

It is derived from stationary 13C MFA which has been widely applied to the 

characterization of microbial cell cultures, and overcomes its main disadvantage: the 

extensive culture time required for isotopic equilibrium to be attained in intracellular 

metabolites [detailed information in Wiechert 2001; Zamboni et al. 2009). As in 

stoichiometric MFA, metabolic steady-state is also assumed but the isotopic transient 

state (i.e., the time period during which the 13C label is being distributed by the different 

metabolite isotopomers until isotopic steady state is reached) in intracellular metabolites 

is considered. In this case, mass isotopomers are analyzed at different time points, 

normally using sensitive MS techniques, to follow the label incorporation immediately 

after incubating cells with a labelled substrate (Hofmann et al. 2008). Subsequently, 13C 

isotopomer time-courses obtained experimentally are translated into metabolic fluxes 

using a mathematical model (Noh et al. 2007). Since 13C isotopic transient MFA 

estimates metabolic fluxes based on 13C-time-courses, it additionally needs to take into 

account metabolite pool sizes since they determine the rate at which a metabolite 

becomes labelled. Thus, at least some metabolite pool sizes must be measured so that the 
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model can correctly describe the observed 13C time-courses. This approach does not 

allow lumping reactions in linear pathways when their metabolic intermediates have 

different pool sizes, which consequently increases the number of linear equations that 

constitute the model. Isotopic transient 13C MFA models thus combine balances of the 

total metabolite pools and of individual isotopomers, containing full information about 

the transition of the labelled carbons within metabolites (Wiechert and Noh 2005; Noh 

et al. 2007). When comparing to the classical MFA, this new methodology overcomes its 

major disadvantages (Table 1.5; further details in Wiechert and Noh 2005; Noh et al. 

2006). 

Table 1.5 - Advantages and Disadvantages of 13C Isotopic Transient MFA compared to Stoichiometric 
MFA  

Advantages Disadvantages 
- Doesn‘t rely on uncertain cofactor balances 
- The use of the transient phase of label distribution 

allows to perform short-time experiments and to reduce 
the amount of labelled substrates needed  

- The measurable information increases, enabling the 
quantification of parallel fluxes 

- A high definition of the intracellular fluxes can be 
obtained 

- Can be used to estimate intracellular metabolite 
concentrations that are not possible to measure, 
although in a limited number 

- Experimentally very demanding - requires a large 
number of measurements and sensitive and specific 
methods to quantify a large number of intracellular 
metabolites  

- Requires extensive computational work to solve a large 
number of differential equations 

 

Even so, the existence of metabolic compartments in eukaryotic cells, which 

likely yield compartment-specific 13C signatures, make it difficult to accurately estimate 

fluxes with good confidence without additional assumptions (Zamboni 2011). For 

example, some reactions can be removed from the model based on negligible activity or 

unique metabolite pools can be assumed based on hypothetical rapid equilibrium 

catalyzed by the continued action of transporters (Quek et al. 2010; Zamboni 2011). 

Despite the extensive experimental and computational work required, a few groups have 

already successfully used transient 13C MFA both to investigate bacterial (Schaub et al. 

2008; Noack et al. 2010) and mammalian cell metabolism (Maier et al. 2008; Lemons et 

al. 2010). Importantly, Maier et al have recently shown the power of this methodology to 

investigate drug action in metabolic fluxes and metabolite levels of primary hepatocytes 
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(Maier et al. 2009), opening the way for its application in drug screening and testing. 

Thus, isotopic transient 13C MFA is a valuable tool to investigate the complexity of 13C 

labelling time-courses derived from brain cell metabolism.  

7 Aims and scope of the thesis 

The main goal of this thesis was to investigate and characterize metabolic alterations 

typical of brain pathologies in cell culture models. Metabolic modelling approaches were 

employed to identify changes in metabolic fluxes of the main metabolic pathways of 

cerebral metabolism. Ischemia and hypoglycaemia were the pathological conditions 

chosen due to their huge impact on human health and the prevailing absence of 

effective therapies, particularly for ischemic stroke. In this context, as first aim of this 

thesis, it was implemented and characterized a novel in vitro model of ischemia using 

brain cells cultured in small scale bioreactors, allowing for a rigorous control of culture 

conditions. This provided a robust model to investigate metabolic responses of brain 

cells to ischemia in vitro. In addition, this thesis aimed at developing different metabolic 

modelling approaches, in combination with 13C labelling techniques, to comprehensively 

characterize cellular metabolism. These methodologies can be used to include a large 

number of pathways involved in brain energy metabolism and consequently increase the 

specificity of information obtained. Such studies were missing in the field of brain 

metabolism and will certainly contribute with ideas that will allow to better explore 

metabolic information obtained in in vitro studies.   

In Chapter 2, stoichiometric MFA was combined with information from 13C 

NMR spectroscopy data aiming to characterize astrocytic metabolic responses to oxygen 

and glucose deprivation. Then, in Chapter 3, MFA was used to elucidate the metabolic 

consequences of hypoglycaemia in cultured cerebellar neurons. 13C time-courses 

obtained by mass spectrometry were used to complement and reinforce MFA 

estimations. Subsequently, as a further step in the application of MFA tools to the study 

of brain energy metabolism, we integrated 13C time-courses measured by gas 
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chromatrography-mass spectrometry (GC-MS) in an MFA model (Isotopic Transient 13C 

MFA) to increase the specificity and sensitivity of flux estimations in astrocytes (Chapter 

4). This was the first time that a 13C isotopic transient model was applied to investigate 

brain cell metabolism and provided important knowledge concerning the main 

metabolic fluxes of astrocytes. Finally, Chapter 5 describes the work performed in a 

second project which aimed to investigate the role of GLAST and GLT-1 glial glutamate 

transporters in astrocytic metabolism, using MFA, after down-regulating each of the 

transporters in cultured astrocytes. In particular, the goal was to elucidate the effects of 

glutamate transport via GLAST or GLT-1 at the level of metabolic fluxes of astrocytes 

due to their importance in the concept of metabolic coupling. This has also important 

implications in a number of pathologies involving glutamate excitotoxicity, such as 

Huntington‘s Disease (HD), and therefore can contribute to the understanding of the 

underlying pathological mechanisms.  

8 References  

Abbott N. J., Ronnback L. and Hansson E. (2006) Astrocyte-endothelial interactions at the blood-brain 
barrier. Nat Rev Neurosci 7, 41-53. 

Agulhon C., Petravicz J., McMullen A. B., Sweger E. J., Minton S. K., Taves S. R., Casper K. B., Fiacco T. A. 
and McCarthy K. D. (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59, 
932-946. 

Allaman I., Gavillet M., Belanger M., Laroche T., Viertl D., Lashuel H. A. and Magistretti P. J. (2010) 
Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal 
viability. J Neurosci 30, 3326-3338. 

Allen N. J. and Barres B. A. (2009) Neuroscience: Glia - more than just brain glue. Nature 457, 675-677. 

Almeida A., Delgado-Esteban M., Bolanos J. P. and Medina J. M. (2002) Oxygen and glucose deprivation 
induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in 
primary culture. J Neurochem 81, 207-217. 

Alves P. M., McKenna M. C. and Sonnewald U. (1995) Lactate metabolism in mouse brain astrocytes 
studied by [13C]NMR spectroscopy. Neuroreport 6, 2201-2204. 

Alves P. M., Moreira J. L., Rodrigues J. M., Aunins J. G. and Carrondo M. J. (1996a) Two-dimensional 
versus three-dimensional culture systems: Effects on growth and productivity of BHK cells. 
Biotechnol Bioeng 52, 429-432. 

Alves P. M., Fonseca L. L., Peixoto C. C., Almeida A. C., Carrondo M. J. and Santos H. (2000a) NMR 
studies on energy metabolism of immobilized primary neurons and astrocytes during hypoxia, 
ischemia and hypoglycemia. NMR Biomed 13, 438-448. 



Chapter 1 

50 

Alves P. M., Flogel U., Brand A., Leibfritz D., Carrondo M. J., Santos H. and Sonnewald U. (1996b) 
Immobilization of primary astrocytes and neurons for online monitoring of biochemical processes 
by NMR. Dev Neurosci 18 478-483. 

Alves P. M., Nunes R., Zhang C., Maycock C. D., Sonnewald U., Carrondo M. J. and Santos H. (2000b) 
Metabolism of 3-(13)C-malate in primary cultures of mouse astrocytes. Dev Neurosci 22, 456-462. 

Amaral A. I., Teixeira A. P., Martens S., Bernal V., Sousa M. F. and Alves P. M. (2010) Metabolic alterations 
induced by ischemia in primary cultures of astrocytes: merging 13C NMR spectroscopy and 
metabolic flux analysis. J Neurochem 113, 735-748. 

Andrews T. C. and Brooks D. J. (1998) Advances in the understanding of early Huntington's disease using 
the functional imaging techniques of PET and SPET. Mol Med Today 4, 532-539. 

Armulik A., Genove G., Mae M., Nisancioglu M. H., Wallgard E., Niaudet C., He L., Norlin J., Lindblom 
P., Strittmatter K., Johansson B. R. and Betsholtz C. (2011) Pericytes regulate the blood-brain 
barrier. Nature 468, 557-561. 

Atlante A., Gagliardi S., Marra E., Calissano P. and Passarella S. (1999) Glutamate neurotoxicity in rat 
cerebellar granule cells involves cytochrome c release from mitochondria and mitochondrial 
shuttle impairment. J Neurochem 73, 237-246. 

Attwell D. and Laughlin S. B. (2001) An energy budget for signaling in the grey matter of the brain. J Cereb 
Blood Flow Metab 21, 1133-1145. 

Bachelard H. (1998) Landmarks in the application of 13C-magnetic resonance spectroscopy to studies of 
neuronal/glial relationships. Dev Neurosci 20, 277-288. 

Bachoo R. M., Kim R. S., Ligon K. L., Maher E. A., Brennan C., Billings N., Chan S., Li C., Rowitch D. H., 
Wong W. H. and DePinho R. A. (2004) Molecular diversity of astrocytes with implications for 
neurological disorders. Proc Natl Acad Sci U S A 101, 8384-8389. 

Badar-Goffer R. S., Bachelard H. S. and Morris P. G. (1990) Cerebral metabolism of acetate and glucose 
studied by 13C-n.m.r. spectroscopy. A technique for investigating metabolic compartmentation in 
the brain. Biochem J 266, 133-139. 

Bak L. K., Schousboe A. and Waagepetersen H. S. (2006a) The glutamate/GABA-glutamine cycle: aspects of 
transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98, 641-653. 

Bak L. K., Schousboe A., Sonnewald U. and Waagepetersen H. S. (2006b) Glucose is necessary to maintain 
neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J Cereb 
Blood Flow Metab. 

Bak L. K., Walls A. B., Schousboe A., Ring A., Sonnewald U. and Waagepetersen H. S. (2009) Neuronal 
glucose but not lactate utilization is positively correlated with NMDA-induced neurotransmission 
and fluctuations in cytosolic Ca2+ levels. J Neurochem 109 Suppl 1, 87-93. 

Bakken I. J., White L. R., Aasly J., Unsgard G. and Sonnewald U. (1997) Lactate formation from [U-
13C]aspartate in cultured astrocytes: compartmentation of pyruvate metabolism. Neurosci Lett 237, 
117-120. 

Bakken I. J., White L. R., Unsgard G., Aasly J. and Sonnewald U. (1998) [U-13C]glutamate metabolism in 
astrocytes during hypoglycemia and hypoxia. J Neurosci Res 51, 636-645. 

Barros L. F. and Deitmer J. W. (2010) Glucose and lactate supply to the synapse. Brain Res Rev 63, 149-159. 

Barros L. F., Bittner C. X., Loaiza A. and Porras O. H. (2007) A quantitative overview of glucose dynamics 
in the gliovascular unit. Glia 55, 1222-1237. 



   Introduction 

51 

Beckmann N., Turkalj I., Seelig J. and Keller U. (1991) 13C NMR for the assessment of human brain 
glucose metabolism in vivo. Biochemistry 30, 6362-6366. 

Ben-Yoseph O., Boxer P. A. and Ross B. D. (1996) Assessment of the role of the glutathione and pentose 
phosphate pathways in the protection of primary cerebrocortical cultures from oxidative stress. J 
Neurochem 66, 2329-2337. 

Berkich D. A., Xu Y., LaNoue K. F., Gruetter R. and Hutson S. M. (2005) Evaluation of brain 
mitochondrial glutamate and alpha-ketoglutarate transport under physiologic conditions. J 
Neurosci Res 79, 106-113. 

Berkich D. A., Ola M. S., Cole J., Sweatt A. J., Hutson S. M. and LaNoue K. F. (2007) Mitochondrial 
transport proteins of the brain. J Neurosci Res 85, 3367-3377. 

Berl S., Nicklas W. J. and Clarke D. D. (1968) Compartmentation of glutamic acid metabolism in brain 
slices. J Neurochem 15, 131-140. 

Bernal V., Carinhas N., Yokomizo A. Y., Carrondo M. J. and Alves P. M. (2009) Cell density effect in the 
baculovirus-insect cells system: a quantitative analysis of energetic metabolism. Biotechnol Bioeng 
104, 162-180. 

Bernard-Helary K., Ardourel M., Magistretti P., Hevor T. and Cloix J. F. (2002) Stable transfection of 
cDNAs targeting specific steps of glycogen metabolism supports the existence of active 
gluconeogenesis in mouse cultured astrocytes. Glia 37, 379-382. 

Berthet C., Lei H., Thevenet J., Gruetter R., Magistretti P. J. and Hirt L. (2009) Neuroprotective role of 
lactate after cerebral ischemia. J Cereb Blood Flow Metab 29, 1780-1789. 

Bilger A. and Nehlig A. (1992) Quantitative histochemical changes in enzymes involved in energy 
metabolism in the rat brain during postnatal development. II. Glucose-6-phosphate dehydrogenase 
and beta-hydroxybutyrate dehydrogenase. Int J Dev Neurosci 10, 143-152. 

Bixel M. G., Engelmann J., Willker W., Hamprecht B. and Leibfritz D. (2004) Metabolism of [U-
(13)C]leucine in cultured astroglial cells. Neurochem Res 29, 2057-2067. 

Bluml S., Moreno-Torres A., Shic F., Nguy C. H. and Ross B. D. (2002) Tricarboxylic acid cycle of glia in the 
in vivo human brain. NMR Biomed 15, 1-5. 

Bolanos J. P. and Almeida A. (2006) Modulation of astroglial energy metabolism by nitric oxide. Antioxid 
Redox Signal 8, 955-965. 

Bolanos J. P. and Almeida A. (2010) The pentose-phosphate pathway in neuronal survival against nitrosative 
stress. IUBMB Life 62, 14-18. 

Bonarius H. P., Hatzimanikatis V., Meesters K. P., de Gooijer C. D., Schmid G. and Tramper J. (1996) 
Metabolic flux analysis of hybridoma cells in different culture media using mass balances. 
Biotechnol Bioeng 50, 299-318. 

Bonarius H. P. J., Schmid G. and Tramper J. (1997) Flux analysis of underdetermined metabolic networks: 
the quest for the missing constraints. Trends in Biotechnology 15, 308-314. 

Bonvento G., Herard A. S. and Voutsinos-Porche B. (2005) The astrocyte--neuron lactate shuttle: a debated 
but still valuable hypothesis for brain imaging. J Cereb Blood Flow Metab 25, 1394-1399. 

Boumezbeur F., Petersen K. F., Cline G. W., Mason G. F., Behar K. L., Shulman G. I. and Rothman D. L. 
(2010) The contribution of blood lactate to brain energy metabolism in humans measured by 
dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci 30, 13983-13991. 



Chapter 1 

52 

Bouzier-Sore A. K., Serres S., Canioni P. and Merle M. (2003) Lactate involvement in neuron-glia metabolic 
interaction: (13)C-NMR spectroscopy contribution. Biochimie 85, 841-848. 

Bouzier A. K., Voisin P., Goodwin R., Canioni P. and Merle M. (1998) Glucose and lactate metabolism in 
C6 glioma cells: evidence for the preferential utilization of lactate for cell oxidative metabolism. 
Dev Neurosci 20, 331-338. 

Brand A., Engelmann J. and Leibfritz D. (1992) A 13C NMR study on fluxes into the TCA cycle of 
neuronal and glial tumor cell lines and primary cells. Biochimie 74, 941-948. 

Brennan A. M., Connor J. A. and Shuttleworth C. W. (2006) NAD(P)H fluorescence transients after 
synaptic activity in brain slices: predominant role of mitochondrial function. J Cereb Blood Flow 
Metab 26, 1389-1406. 

Broer S., Broer A., Hansen J. T., Bubb W. A., Balcar V. J., Nasrallah F. A., Garner B. and Rae C. (2007) 
Alanine metabolism, transport, and cycling in the brain. J Neurochem 102, 1758-1770. 

Brown A. M. and Ransom B. R. (2007) Astrocyte glycogen and brain energy metabolism. Glia 55, 1263-
1271. 

Brown A. M., Baltan Tekkok S. and Ransom B. R. (2004) Energy transfer from astrocytes to axons: the role 
of CNS glycogen. Neurochem Int 45, 529-536. 

Bushong E. A., Martone M. E., Jones Y. Z. and Ellisman M. H. (2002) Protoplasmic astrocytes in CA1 
stratum radiatum occupy separate anatomical domains. J Neurosci 22, 183-192. 

Caesar K., Hashemi P., Douhou A., Bonvento G., Boutelle M. G., Walls A. B. and Lauritzen M. (2008) 
Glutamate receptor-dependent increments in lactate, glucose and oxygen metabolism evoked in rat 
cerebellum in vivo. J Physiol 586, 1337-1349. 

Camacho A. and Massieu L. (2006) Role of glutamate transporters in the clearance and release of glutamate 
during ischemia and its relation to neuronal death. Arch Med Res 37, 11-18. 

Cammer W., Snyder D. S., Zimmerman T. R., Jr., Farooq M. and Norton W. T. (1982) Glycerol phosphate 
dehydrogenase, glucose-6-phosphate dehydrogenase, and lactate dehydrogenase: activities in 
oligodendrocytes, neurons, astrocytes, and myelin isolated from developing rat brains. J Neurochem 
38, 360-367. 

Carinhas N., Bernal V., Monteiro F., Carrondo M. J., Oliveira R. and Alves P. M. (2010) Improving 
baculovirus production at high cell density through manipulation of energy metabolism. Metab 
Eng 12, 39-52. 

Cataldo A. and Broadwell R. (1986) Cytochemical identification of cerebral glycogen and glucose-6-
phosphatase activity under normal and experimental conditions. I. Neurons and Glia. J Elect Micro 
Tech 3, 413-437. 

Cerdan S., Kunnecke B. and Seelig J. (1990) Cerebral metabolism of [1,2-13C2]acetate as detected by in vivo 
and in vitro 13C NMR. J Biol Chem 265, 12916-12926. 

Cerdan S., Rodrigues T. B., Sierra A., Benito M., Fonseca L. L., Fonseca C. P. and Garcia-Martin M. L. 
(2006) The redox switch/redox coupling hypothesis. Neurochem Int 48, 523-530. 

Cesar M. and Hamprecht B. (1995) Immunocytochemical examination of neural rat and mouse primary 
cultures using monoclonal antibodies raised against pyruvate carboxylase. J Neurochem 64, 2312-
2318. 



   Introduction 

53 

Chance E. M., Seeholzer S. H., Kobayashi K. and Williamson J. R. (1983) Mathematical analysis of isotope 
labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts. J Biol 
Chem 258, 13785-13794. 

Chapa F., Cruz F., Garcia-Martin M. L., Garcia-Espinosa M. A. and Cerdan S. (2000) Metabolism of (1-
(13)C) glucose and (2-(13)C, 2-(2)H(3)) acetate in the neuronal and glial compartments of the 
adult rat brain as detected by [(13)C, (2)H] NMR spectroscopy. Neurochem Int 37, 217-228. 

Cheeseman A. J. and Clark J. B. (1988) Influence of the malate-aspartate shuttle on oxidative metabolism in 
synaptosomes. J Neurochem 50, 1559-1565. 

Chen W., Zhu X. H., Gruetter R., Seaquist E. R., Adriany G. and Ugurbil K. (2001) Study of tricarboxylic 
acid cycle flux changes in human visual cortex during hemifield visual stimulation using (1)H-
[(13)C] MRS and fMRI. Magn Reson Med 45, 349-355. 

Chhina N., Kuestermann E., Halliday J., Simpson L. J., Macdonald I. A., Bachelard H. S. and Morris P. G. 
(2001) Measurement of human tricarboxylic acid cycle rates during visual activation by (13)C 
magnetic resonance spectroscopy. J Neurosci Res 66, 737-746. 

Chih C. P. and Roberts Jr E. L. (2003) Energy substrates for neurons during neural activity: a critical review 
of the astrocyte-neuron lactate shuttle hypothesis. J Cereb Blood Flow Metab 23, 1263-1281. 

Chih C. P., Lipton P. and Roberts E. L., Jr. (2001) Do active cerebral neurons really use lactate rather than 
glucose? Trends Neurosci 24, 573-578. 

Choi I. Y., Lei H. and Gruetter R. (2002) Effect of deep pentobarbital anesthesia on neurotransmitter 
metabolism in vivo: on the correlation of total glucose consumption with glutamatergic action. J 
Cereb Blood Flow Metab 22, 1343-1351. 

Choi I. Y., Seaquist E. R. and Gruetter R. (2003) Effect of hypoglycemia on brain glycogen metabolism in 
vivo. J Neurosci Res 72, 25-32. 

Choi I. Y., Lee S. P., Kim S. G. and Gruetter R. (2001) In vivo measurements of brain glucose transport 
using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood 
flow changes during hypoglycemia. J Cereb Blood Flow Metab 21, 653-663. 

Clarke D. D. and Sokoloff L. (1999) Circulation and Energy Metabolism, in Basic Neurochemistry: Molecular, 
Cellular and Medical Aspects, 6th Edition Edition (Siegel G. J., Agranoff B. W., Albers R. W., Fisher 
S. K. and Uhler M. D., eds), pp 638-669. Lippincott Williams and Wilkins, Philadelphia. 

Clarke D. D., Nicklas W. J. and Berl S. (1970) Tricarboxylic acid-cycle metabolism in brain. Effect of 
fluoroacetate and fluorocitrate on the labelling of glutamate, aspartate, glutamine and gamma-
aminobutyrate. Biochem J 120, 345-351. 

Coimbra A., Williams D. S. and Hostetler E. D. (2006) The role of MRI and PET/SPECT in Alzheimer's 
disease. Curr Top Med Chem 6, 629-647. 

Contreras L. and Satrustegui J. (2009) Calcium signaling in brain mitochondria: interplay of malate 
aspartate NADH shuttle and calcium uniporter/mitochondrial dehydrogenase pathways. J Biol 
Chem 284, 7091-7099. 

Criego A. B., Tkac I., Kumar A., Thomas W., Gruetter R. and Seaquist E. R. (2005) Brain glucose 
concentrations in patients with type 1 diabetes and hypoglycemia unawareness. J Neurosci Res 79, 
42-47. 

Cruz F. and Cerdan S. (1999) Quantitative 13C NMR studies of metabolic compartmentation in the adult 
mammalian brain. NMR Biomed 12, 451-462. 



Chapter 1 

54 

Cruz F., Scott S. R., Barroso I., Santisteban P. and Cerdan S. (1998) Ontogeny and cellular localization of 
the pyruvate recycling system in rat brain. J Neurochem 70, 2613-2619. 

Cruz F., Villalba M., Garcia-Espinosa M. A., Ballesteros P., Bogonez E., Satrustegui J. and Cerdan S. (2001) 
Intracellular compartmentation of pyruvate in primary cultures of cortical neurons as detected by 
(13)C NMR spectroscopy with multiple (13)C labels. J Neurosci Res 66, 771-781. 

Cruz N. F. and Dienel G. A. (2002) High glycogen levels in brains of rats with minimal environmental 
stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab 
22, 1476-1489. 

Cruz N. F., Ball K. K. and Dienel G. A. (2007) Functional imaging of focal brain activation in conscious 
rats: impact of [(14)C]glucose metabolite spreading and release. J Neurosci Res 85, 3254-3266. 

Cruz N. F., Lasater A., Zielke H. R. and Dienel G. A. (2005) Activation of astrocytes in brain of conscious 
rats during acoustic stimulation: acetate utilization in working brain. J Neurochem 92, 934-947. 

Danbolt N. C. (2001) Glutamate uptake. Prog Neurobiol 65, 1-105. 

de Graaf R. A., Mason G. F., Patel A. B., Behar K. L. and Rothman D. L. (2003) In vivo 1H-[13C]-NMR 
spectroscopy of cerebral metabolism. NMR Biomed 16, 339-357. 

de Graaf R. A., Mason G. F., Patel A. B., Rothman D. L. and Behar K. L. (2004) Regional glucose 
metabolism and glutamatergic neurotransmission in rat brain in vivo. Proc Natl Acad Sci U S A 
101, 12700-12705. 

Delgado-Esteban M., Almeida A. and Bolanos J. P. (2000) D-Glucose prevents glutathione oxidation and 
mitochondrial damage after glutamate receptor stimulation in rat cortical primary neurons. J 
Neurochem 75, 1618-1624. 

Dienel G. A. and Hertz L. (2001) Glucose and lactate metabolism during brain activation. J Neurosci Res 66, 
824-838. 

Dienel G. A. and Cruz N. F. (2003) Neighborly interactions of metabolically-activated astrocytes in vivo. 
Neurochem Int 43, 339-354. 

Dienel G. A. and Cruz N. F. (2004) Nutrition during brain activation: does cell-to-cell lactate shuttling 
contribute significantly to sweet and sour food for thought? Neurochem Int 45, 321-351. 

Dienel G. A. and Hertz L. (2005) Astrocytic contributions to bioenergetics of cerebral ischemia. Glia 50, 
362-388. 

Dienel G. A. and Cruz N. F. (2008) Imaging brain activation: simple pictures of complex biology. Ann N Y 
Acad Sci 1147, 139-170. 

Dienel G. A., Ball K. K. and Cruz N. F. (2007) A glycogen phosphorylase inhibitor selectively enhances local 
rates of glucose utilization in brain during sensory stimulation of conscious rats: implications for 
glycogen turnover. J Neurochem 102, 466-478. 

DiNuzzo M., Mangia S., Maraviglia B. and Giove F. (2010) Changes in glucose uptake rather than lactate 
shuttle take center stage in subserving neuroenergetics: evidence from mathematical modeling. J 
Cereb Blood Flow Metab 30, 586-602. 

Dirnagl U., Iadecola C. and Moskowitz M. A. (1999) Pathobiology of ischaemic stroke: an integrated view. 
Trends Neurosci 22, 391-397. 

Dringen R. (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62, 649-671. 

Dringen R. and Hirrlinger J. (2003) Glutathione pathways in the brain. Biol Chem 384, 505-516. 



   Introduction 

55 

Dringen R., Gebhardt R. and Hamprecht B. (1993a) Glycogen in astrocytes: possible function as lactate 
supply for neighboring cells. Brain Res 623, 208-214. 

Dringen R., Schmoll D., Cesar M. and Hamprecht B. (1993b) Incorporation of radioactivity from 
[14C]lactate into the glycogen of cultured mouse astroglial cells. Evidence for gluconeogenesis in 
brain cells. Biological chemistry Hoppe-Seyler 374, 343-347. 

Dringen R., Hoepken H. H., Minich T. and Ruedig C. (2007) Pentose Phospahte Pathway and NADPH 
Metabolism, in Brain Energetics. Integration of Molecular and Cellular Processes, 3rd edition Edition 
(Dienel G. and Gibson G., eds), pp 41-62. Springer, New York. 

Duarte J. M. N., Lanz B. and Gruetter R. (2011) Compartmentalized cerebral metabolism of [1,6-
13C]glucose determined by in vivo 13C NMR spectroscopy at 14.1 T. Frontiers in Neuroenergetics 3. 

Dusick J. R., Glenn T. C., Lee W. N., Vespa P. M., Kelly D. F., Lee S. M., Hovda D. A. and Martin N. A. 
(2007) Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1,2-
13C2]glucose labeling study in humans. J Cereb Blood Flow Metab 27, 1593-1602. 

Faideau M., Kim J., Cormier K., Gilmore R., Welch M., Auregan G., Dufour N., Guillermier M., Brouillet 
E., Hantraye P., Deglon N., Ferrante R. J. and Bonvento G. (2010) In vivo expression of 
polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a 
correlation with Huntington's disease subjects. Hum Mol Genet 19, 3053-3067. 

Forbes N. S., Meadows A. L., Clark D. S. and Blanch H. W. (2006) Estradiol stimulates the biosynthetic 
pathways of breast cancer cells: detection by metabolic flux analysis. Metab Eng 8, 639-652. 

Friedman B., Goodman E. H., Jr., Saunders H. L., Kostos V. and Weinhouse S. (1971) Estimation of 
pyruvate recycling during gluconeogenesis in perfused rat liver. Metabolism 20, 2-12. 

Gahwiler B. H., Capogna M., Debanne D., McKinney R. A. and Thompson S. M. (1997) Organotypic slice 
cultures: a technique has come of age. Trends Neurosci 20, 471-477. 

Gamberino W. C., Berkich D. A., Lynch C. J., Xu B. and LaNoue K. F. (1997) Role of pyruvate carboxylase 
in facilitation of synthesis of glutamate and glutamine in cultured astrocytes. J Neurochem 69, 2312-
2325. 

Gandhi G. K., Cruz N. F., Ball K. K. and Dienel G. A. (2009) Astrocytes are poised for lactate trafficking 
and release from activated brain and for supply of glucose to neurons. J Neurochem 111, 522-536. 

Garcia-Nogales P., Almeida A. and Bolanos J. P. (2003) Peroxynitrite protects neurons against nitric oxide-
mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection. 
J Biol Chem 278, 864-874. 

Garcia-Nogales P., Almeida A., Fernandez E., Medina J. M. and Bolanos J. P. (1999) Induction of glucose-6-
phosphate dehydrogenase by lipopolysaccharide contributes to preventing nitric oxide-mediated 
glutathione depletion in cultured rat astrocytes. J Neurochem 72, 1750-1758. 

Gibbons H. M. and Dragunow M. (2010) Adult human brain cell culture for neuroscience research. Int J 
Biochem Cell Biol 42, 844-856. 

Griffin J. L., Rae C., Dixon R. M., Radda G. K. and Matthews P. M. (1998) Excitatory amino acid synthesis 
in hypoxic brain slices: does alanine act as a substrate for glutamate production in hypoxia? J 
Neurochem 71, 2477-2486. 

Griffin J. L., Keun H., Richter C., Moskau D., Rae C. and Nicholson J. K. (2003) Compartmentation of 
metabolism probed by [2-13C]alanine: improved 13C NMR sensitivity using a CryoProbe detects 
evidence of a glial metabolon. Neurochem Int 42, 93-99. 



Chapter 1 

56 

Gruetter R. (2002) In vivo 13C NMR studies of compartmentalized cerebral carbohydrate metabolism. 
Neurochem Int 41, 143-154. 

Gruetter R. (2003) Glycogen: the forgotten cerebral energy store. J Neurosci Res 74, 179-183. 

Gruetter R., Ugurbil K. and Seaquist E. R. (1998a) Steady-state cerebral glucose concentrations and 
transport in the human brain. J Neurochem 70, 397-408. 

Gruetter R., Seaquist E. R. and Ugurbil K. (2001) A mathematical model of compartmentalized 
neurotransmitter metabolism in the human brain. Am J Physiol Endocrinol Metab 281, E100-112. 

Gruetter R., Seaquist E. R., Kim S. and Ugurbil K. (1998b) Localized in vivo 13C-NMR of glutamate 
metabolism in the human brain: initial results at 4 tesla. Dev Neurosci 20, 380-388. 

Gruetter R., Novotny E. J., Boulware S. D., Mason G. F., Rothman D. L., Shulman G. I., Prichard J. W. and 
Shulman R. G. (1994) Localized 13C NMR spectroscopy in the human brain of amino acid 
labeling from D-[1-13C]glucose. J Neurochem 63, 1377-1385. 

Haberg A., Qu H. and Sonnewald U. (2006) Glutamate and GABA metabolism in transient and permanent 
middle cerebral artery occlusion in rat: Importance of astrocytes for neuronal survival. Neurochem 
Int. 

Haberg A., Qu H., Saether O., Unsgard G., Haraldseth O. and Sonnewald U. (2001) Differences in 
neurotransmitter synthesis and intermediary metabolism between glutamatergic and GABAergic 
neurons during 4 hours of middle cerebral artery occlusion in the rat: the role of astrocytes in 
neuronal survival. J Cereb Blood Flow Metab 21, 1451-1463. 

Haberg A., Qu H., Bakken I. J., Sande L. M., White L. R., Haraldseth O., Unsgard G., Aasly J. and 
Sonnewald U. (1998) In vitro and ex vivo 13C-NMR spectroscopy studies of pyruvate recycling in 
brain. Dev Neurosci 20, 389-398. 

Halassa M. M., Florian C., Fellin T., Munoz J. R., Lee S. Y., Abel T., Haydon P. G. and Frank M. G. (2009) 
Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61, 
213-219. 

Hanisch U. K. and Kettenmann H. (2007) Microglia: active sensor and versatile effector cells in the normal 
and pathologic brain. Nat Neurosci 10, 1387-1394. 

Hassel B. (2000) Carboxylation and anaplerosis in neurons and glia. Mol Neurobiol 22, 21-40. 

Hassel B. and Sonnewald U. (1995) Glial formation of pyruvate and lactate from TCA cycle intermediates: 
implications for the inactivation of transmitter amino acids? J Neurochem 65, 2227-2234. 

Hassel B., Sonnewald U., Unsgard G. and Fonnum F. (1994) NMR spectroscopy of cultured astrocytes: 
effects of glutamine and the gliotoxin fluorocitrate. J Neurochem 62, 2187-2194. 

Hawkins B. T. and Davis T. P. (2005) The blood-brain barrier/neurovascular unit in health and disease. 
Pharmacol Rev 57, 173-185. 

Haydon P. G. and Carmignoto G. (2006) Astrocyte control of synaptic transmission and neurovascular 
coupling. Physiol Rev 86, 1009-1031. 

Henry P. G., Lebon V., Vaufrey F., Brouillet E., Hantraye P. and Bloch G. (2002) Decreased TCA cycle rate 
in the rat brain after acute 3-NP treatment measured by in vivo 1H-[13C] NMR spectroscopy. J 
Neurochem 82, 857-866. 

Henry P. G., Adriany G., Deelchand D., Gruetter R., Marjanska M., Oz G., Seaquist E. R., Shestov A. and 
Ugurbil K. (2006) In vivo 13C NMR spectroscopy and metabolic modeling in the brain: a 
practical perspective. Magn Reson Imaging 24, 527-539. 



   Introduction 

57 

Herrero-Mendez A., Almeida A., Fernandez E., Maestre C., Moncada S. and Bolanos J. P. (2009) The 
bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key 
glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11, 747-752. 

Hertz L. (2004) The astrocyte-neuron lactate shuttle: a challenge of a challenge. J Cereb Blood Flow Metab 24, 
1241-1248. 

Hertz L. (2008) Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology 55, 289-309. 

Hertz L. and Zielke H. R. (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. 
Trends Neurosci 27, 735-743. 

Hertz L., Peng L. and Dienel G. A. (2007) Energy metabolism in astrocytes: high rate of oxidative 
metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 
27, 219-249. 

Hertz L., Dringen R., Schousboe A. and Robinson S. R. (1999) Astrocytes: glutamate producers for neurons. 
J Neurosci Res 57, 417-428. 

Hof P., Trapp B., de Vellis J., Claudio L. and Colman D. (2004) Cellular Components of Nervous Tissue, in 
From molecules to Networks. An Introduction to Cellular and Molecular Neuroscience. (Byrne J. and 
Roberts J., eds), pp 1-22. Elsevier Academic Press, San Diego, CA, USA. 

Hofmann U., Maier K., Niebel A., Vacun G., Reuss M. and Mauch K. (2008) Identification of metabolic 
fluxes in hepatic cells from transient 13C-labeling experiments: Part I. Experimental observations. 
Biotechnol Bioeng 100, 344-354. 

Honegger P., Defaux A., Monnet-Tschudi F. and Zurich M. G. (2011) Preparation, Maintenance, and Use of 
Serum-Free Aggregating Brain Cell Cultures. Methods in molecular biology (Clifton, N.J 758, 81-97. 

Iadecola C. and Nedergaard M. (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10, 
1369-1376. 

Kanamatsu T. and Tsukada Y. (1999) Effects of ammonia on the anaplerotic pathway and amino acid 
metabolism in the brain: an ex vivo 13C NMR spectroscopic study of rats after administering [2-
13C]] glucose with or without ammonium acetate. Brain Res 841, 11-19. 

Kasischke K. A., Vishwasrao H. D., Fisher P. J., Zipfel W. R. and Webb W. W. (2004) Neural activity 
triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305, 99-103. 

Katz J. and Rognstad R. (1967) The labeling of pentose phosphate from glucose-14C and estimation of the 
rates of transaldolase, transketolase, the contribution of the pentose cycle, and ribose phosphate 
synthesis. Biochemistry 6, 2227-2247. 

Kaufman E. E. and Driscoll B. F. (1993) Evidence for cooperativity between neurons and astroglia in the 
regulation of CO2 fixation in vitro. Dev Neurosci 15, 299-305. 

Kimelberg H. K. (2004) The problem of astrocyte identity. Neurochem Int 45, 191-202. 

Kimmich G. A., Roussie J. A. and Randles J. (2002) Aspartate aminotransferase isotope exchange reactions: 
implications for glutamate/glutamine shuttle hypothesis. Am J Physiol Cell Physiol 282, C1404-
1413. 

Kletzien R. F., Harris P. K. and Foellmi L. A. (1994) Glucose-6-phosphate dehydrogenase: a "housekeeping" 
enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. Faseb J 8, 
174-181. 

Kunnecke B., Cerdan S. and Seelig J. (1993) Cerebral metabolism of [1,2-13C2]glucose and [U-13C4]3-
hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy. NMR Biomed 6, 264-277. 



Chapter 1 

58 

Kurz G. M., Wiesinger H. and Hamprecht B. (1993) Purification of cytosolic malic enzyme from bovine 
brain, generation of monoclonal antibodies, and immunocytochemical localization of the enzyme 
in glial cells of neural primary cultures. J Neurochem 60, 1467-1474. 

Kvamme E., Torgner I. A. and Roberg B. (2001) Kinetics and localization of brain phosphate activated 
glutaminase. J Neurosci Res 66, 951-958. 

Lapidot A. and Gopher A. (1994) Cerebral metabolic compartmentation. Estimation of glucose flux via 
pyruvate carboxylase/pyruvate dehydrogenase by 13C NMR isotopomer analysis of D-[U-
13C]glucose metabolites. J Biol Chem 269, 27198-27208. 

Lebon V., Petersen K. F., Cline G. W., Shen J., Mason G. F., Dufour S., Behar K. L., Shulman G. I. and 
Rothman D. L. (2002) Astroglial contribution to brain energy metabolism in humans revealed by 
13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for 
neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J 
Neurosci 22, 1523-1531. 

Lee K., Berthiaume F., Stephanopoulos G. N. and Yarmush M. L. (1999) Metabolic flux analysis: a powerful 
tool for monitoring tissue function. Tissue Eng 5, 347-368. 

Lemons J. M., Feng X. J., Bennett B. D., Legesse-Miller A., Johnson E. L., Raitman I., Pollina E. A., Rabitz 
H. A., Rabinowitz J. D. and Coller H. A. (2010) Quiescent fibroblasts exhibit high metabolic 
activity. PLoS Biol 8, e1000514. 

Leveille P. J., McGinnis J. F., Maxwell D. S. and de Vellis J. (1980) Immunocytochemical localization of 
glycerol-3-phosphate dehydrogenase in rat oligodendrocytes. Brain Res 196, 287-305. 

Lewandowski E. D., Yu X., LaNoue K. F., White L. T., Doumen C. and O'Donnell J. M. (1997) Altered 
metabolite exchange between subcellular compartments in intact postischemic rabbit hearts. Circ 
Res 81, 165-175. 

Liepelt I., Reimold M., Maetzler W., Godau J., Reischl G., Gaenslen A., Herbst H. and Berg D. (2009) 
Cortical hypometabolism assessed by a metabolic ratio in Parkinson's disease primarily reflects 
cognitive deterioration-[18F]FDG-PET. Mov Disord 24, 1504-1511. 

Lipton P. (1999) Ischemic cell death in brain neurons. Physiol Rev 79, 1431-1568. 

Loaiza A., Porras O. H. and Barros L. F. (2003) Glutamate triggers rapid glucose transport stimulation in 
astrocytes as evidenced by real-time confocal microscopy. J Neurosci 23, 7337-7342. 

Lovatt D., Sonnewald U., Waagepetersen H. S., Schousboe A., He W., Lin J. H., Han X., Takano T., Wang 
S., Sim F. J., Goldman S. A. and Nedergaard M. (2007) The transcriptome and metabolic gene 
signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27, 12255-12266. 

Lu M., Zhou L., Stanley W. C., Cabrera M. E., Saidel G. M. and Yu X. (2008) Role of the malate-aspartate 
shuttle on the metabolic response to myocardial ischemia. J Theor Biol 254, 466-475. 

Magistretti P. (2004) Brain Energy Metabolism, in From Molecules to Networks. An Introduction to Cellular and 
Molecular Neuroscience (Byrne J. and Roberts J., eds), pp 67-90. Elsevier Academic Press, San Diego, 
CA, USA. 

Magistretti P. J. (2009) Role of glutamate in neuron-glia metabolic coupling. Am J Clin Nutr 90, 875S-880S. 

Magistretti P. J. and Pellerin L. (1999) Cellular mechanisms of brain energy metabolism and their relevance 
to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 354, 1155-1163. 

Magistretti P. J., Pellerin L., Rothman D. L. and Shulman R. G. (1999) Energy on demand. Science 283, 496-
497. 



   Introduction 

59 

Maier K., Hofmann U., Reuss M. and Mauch K. (2008) Identification of metabolic fluxes in hepatic cells 
from transient 13C-labeling experiments: Part II. Flux estimation. Biotechnol Bioeng 100, 355-370. 

Maier K., Hofmann U., Bauer A., Niebel A., Vacun G., Reuss M. and Mauch K. (2009) Quantification of 
statin effects on hepatic cholesterol synthesis by transient (13)C-flux analysis. Metab Eng 11, 292-
309. 

Malloy C. R., Sherry A. D. and Jeffrey F. M. (1987) Carbon flux through citric acid cycle pathways in 
perfused heart by 13C NMR spectroscopy. FEBS Lett 212, 58-62. 

Malloy C. R., Sherry A. D. and Jeffrey F. M. (1988) Evaluation of carbon flux and substrate selection 
through alternate pathways involving the citric acid cycle of the heart by 13C NMR spectroscopy. J 
Biol Chem 263, 6964-6971. 

Mangia S., Simpson I. A., Vannucci S. J. and Carruthers A. (2009) The in vivo neuron-to-astrocyte lactate 
shuttle in human brain: evidence from modeling of measured lactate levels during visual 
stimulation. J Neurochem 109 Suppl 1, 55-62. 

Maragakis N. J. and Rothstein J. D. (2004) Glutamate transporters: animal models to neurologic disease. 
Neurobiol Dis 15, 461-473. 

Martin M., Portais J. C., Labouesse J., Canioni P. and Merle M. (1993) [1-13C]glucose metabolism in rat 
cerebellar granule cells and astrocytes in primary culture. Evaluation of flux parameters by 13C- 
and 1H-NMR spectroscopy. Eur J Biochem 217, 617-625. 

Martin R. L., Lloyd H. G. and Cowan A. I. (1994) The early events of oxygen and glucose deprivation: 
setting the scene for neuronal death? Trends Neurosci 17, 251-257. 

Martinez-Hernandez A., Bell K. P. and Norenberg M. D. (1977) Glutamine synthetase: glial localization in 
brain. Science 195, 1356-1358. 

Mason G. F. and Rothman D. L. (2004) Basic principles of metabolic modeling of NMR (13)C isotopic 
turnover to determine rates of brain metabolism in vivo. Metab Eng 6, 75-84. 

Mason G. F., Rothman D. L., Behar K. L. and Shulman R. G. (1992) NMR determination of the TCA cycle 
rate and alpha-ketoglutarate/glutamate exchange rate in rat brain. J Cereb Blood Flow Metab 12, 
434-447. 

Mason G. F., Petersen K. F., Lebon V., Rothman D. L. and Shulman G. I. (2006) Increased brain 
monocarboxylic acid transport and utilization in type 1 diabetes. Diabetes 55, 929-934. 

Mason G. F., Petersen K. F., de Graaf R. A., Shulman G. I. and Rothman D. L. (2007) Measurements of the 
anaplerotic rate in the human cerebral cortex using 13C magnetic resonance spectroscopy and [1-
13C] and [2-13C] glucose. J Neurochem 100, 73-86. 

Mason G. F., Gruetter R., Rothman D. L., Behar K. L., Shulman R. G. and Novotny E. J. (1995) 
Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-
ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood 
Flow Metab 15, 12-25. 

Mawhinney T., Robinett R., Atalay A. and Madson M. (1986) Analysis of amino acids as their tert-
butyldimethylsilyl derivatives by gas-liquid chromatography and mass spectrometry. Journal of 
Chromatography, 231-242. 

McKenna M., Gruetter R., Sonnewald U., Waagepetersen H. and Schousboe A. (2006a) Energy Metabolism 
of the Brain, in Basic Neurochemistry: Molecular, Cellular and Medical Aspects, Seventh Edition (Bazan 
N., ed.), pp 531-557. Elsevier Academic Press, New York. 



Chapter 1 

60 

McKenna M. C. (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J 
Neurosci Res 85, 3347-3358. 

McKenna M. C., Stevenson J. H., Huang X. and Hopkins I. B. (2000a) Differential distribution of the 
enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic 
mitochondria contributes to metabolic compartmentation in cortical synaptic terminals. 
Neurochem Int 37, 229-241. 

McKenna M. C., Waagepetersen H. S., Schousboe A. and Sonnewald U. (2006b) Neuronal and astrocytic 
shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence 
and pharmacological tools. Biochem Pharmacol 71, 399-407. 

McKenna M. C., Tildon J. T., Stevenson J. H., Boatright R. and Huang S. (1993) Regulation of energy 
metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using 
aminooxyacetate. Dev Neurosci 15, 320-329. 

McKenna M. C., Stevenson J. H., Huang X., Tildon J. T., Zielke C. L. and Hopkins I. B. (2000b) 
Mitochondrial malic enzyme activity is much higher in mitochondria from cortical synaptic 
terminals compared with mitochondria from primary cultures of cortical neurons or cerebellar 
granule cells. Neurochem Int 36, 451-459. 

Meloni B. P., Majda B. T. and Knuckey N. W. (2001) Establishment of neuronal in vitro models of ischemia 
in 96-well microtiter strip-plates that result in acute, progressive and delayed neuronal death. 
Neuroscience 108, 17-26. 

Merle M., Martin M., Villegier A. and Canioni P. (1996a) Mathematical modelling of the citric acid cycle for 
the analysis of glutamine isotopomers from cerebellar astrocytes incubated with [1(-13)C]glucose. 
Eur J Biochem 239, 742-751. 

Merle M., Martin M., Villegier A. and Canioni P. (1996b) [1-13C]glucose metabolism in brain cells: 
isotopomer analysis of glutamine from cerebellar astrocytes and glutamate from granule cells. Dev 
Neurosci 18, 460-468. 

Mishur R. J. and Rea S. L. (2011) Applications of mass spectrometry to metabolomics and metabonomics: 
Detection of biomarkers of aging and of age-related diseases. Mass Spectrom Rev. 

Morgenthaler F. D., van Heeswijk R. B., Xin L., Laus S., Frenkel H., Lei H. and Gruetter R. (2008) Non-
invasive quantification of brain glycogen absolute concentration. J Neurochem 107, 1414-1423. 

Mueller S. G., Schuff N. and Weiner M. W. (2006) Evaluation of treatment effects in Alzheimer's and other 
neurodegenerative diseases by MRI and MRS. NMR Biomed 19, 655-668. 

Nadeau I., Sabatie J., Koehl M., Perrier M. and Kamen A. (2000) Human 293 cell metabolism in low 
glutamine-supplied culture: interpretation of metabolic changes through metabolic flux analysis. 
Metab Eng 2, 277-292. 

Nave K. A. and Trapp B. D. (2008) Axon-glial signaling and the glial support of axon function. Annu Rev 
Neurosci 31, 535-561. 

Nedergaard M. and Dirnagl U. (2005) Role of glial cells in cerebral ischemia. Glia 50, 281-286. 

Nehlig A. (1997) Cerebral energy metabolism, glucose transport and blood flow: changes with maturation 
and adaptation to hypoglycaemia. Diabetes Metab 23, 18-29. 

Nehlig A., Wittendorp-Rechenmann E. and Lam C. D. (2004) Selective uptake of [14C]2-deoxyglucose by 
neurons and astrocytes: high-resolution microautoradiographic imaging by cellular 14C-
trajectography combined with immunohistochemistry. J Cereb Blood Flow Metab 24, 1004-1014. 



   Introduction 

61 

Nguyen N. H., Brathe A. and Hassel B. (2003) Neuronal uptake and metabolism of glycerol and the 
neuronal expression of mitochondrial glycerol-3-phosphate dehydrogenase. J Neurochem 85, 831-
842. 

Nielsen J. (1998) Metabolic engineering: techniques for analysis of targets for genetic manipulations. 
Biotechnol Bioeng 58, 125-132. 

Niklas J., Schneider K. and Heinzle E. (2010) Metabolic flux analysis in eukaryotes. Curr Opin Biotechnol 21, 
63-69. 

Noack S., Noh K., Moch M., Oldiges M. and Wiechert W. (2010) Stationary versus non-stationary (13)C-
MFA: A comparison using a consistent dataset. J Biotechnol. 

Noh K. and Wiechert W. (2006) Experimental design principles for isotopically instationary 13C labeling 
experiments. Biotechnol Bioeng 94, 234-251. 

Noh K., Wahl A. and Wiechert W. (2006) Computational tools for isotopically instationary 13C labeling 
experiments under metabolic steady state conditions. Metab Eng 8, 554-577. 

Noh K., Gronke K., Luo B., Takors R., Oldiges M. and Wiechert W. (2007) Metabolic flux analysis at ultra 
short time scale: isotopically non-stationary 13C labeling experiments. J Biotechnol 129, 249-267. 

Okada Y. and Lipton P. (2007) Glucose, Oxidative Energy Metabolism, and Neural Function in Brain 
Slices—Glycolysis Plays a Key Role in Neural Activity, in Brain Energetics. Integration of Molecular and 
Cellular Processes, 3rd edition Edition (Dienel G. and Gibson G., eds), pp 17-39. Springer, New 
York. 

Olstad E., Olsen G. M., Qu H. and Sonnewald U. (2007) Pyruvate recycling in cultured neurons from 
cerebellum. J Neurosci Res. 

Oz G., Henry P. G., Seaquist E. R. and Gruetter R. (2003) Direct, noninvasive measurement of brain 
glycogen metabolism in humans. Neurochem Int 43, 323-329. 

Oz G., Berkich D. A., Henry P. G., Xu Y., LaNoue K., Hutson S. M. and Gruetter R. (2004) Neuroglial 
metabolism in the awake rat brain: CO2 fixation increases with brain activity. J Neurosci 24, 11273-
11279. 

Oz G., Kumar A., Rao J. P., Kodl C. T., Chow L., Eberly L. E. and Seaquist E. R. (2009) Human brain 
glycogen metabolism during and after hypoglycemia. Diabetes 58, 1978-1985. 

Oz G., Seaquist E. R., Kumar A., Criego A. B., Benedict L. E., Rao J. P., Henry P. G., Van De Moortele P. 
F. and Gruetter R. (2007) Human brain glycogen content and metabolism: implications on its role 
in brain energy metabolism. Am J Physiol Endocrinol Metab 292, E946-951. 

Palmieri L., Pardo B., Lasorsa F. M., del Arco A., Kobayashi K., Iijima M., Runswick M. J., Walker J. E., 
Saheki T., Satrustegui J. and Palmieri F. (2001) Citrin and aralar1 are Ca(2+)-stimulated 
aspartate/glutamate transporters in mitochondria. Embo J 20, 5060-5069. 

Pardo B., Rodrigues T. B., Contreras L., Garzon M., Llorente-Folch I., Kobayashi K., Saheki T., Cerdan S. 
and Satrustegui J. (2011) Brain glutamine synthesis requires neuronal-born aspartate as amino 
donor for glial glutamate formation. J Cereb Blood Flow Metab 31, 90-101. 

Pascual J. M., Carceller F., Roda J. M. and Cerdan S. (1998) Glutamate, glutamine, and GABA as substrates 
for the neuronal and glial compartments after focal cerebral ischemia in rats. Stroke 29, 1048-1056; 
discussion 1056-1047. 



Chapter 1 

62 

Patel A. B., de Graaf R. A., Mason G. F., Rothman D. L., Shulman R. G. and Behar K. L. (2005) The 
contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in 
vivo. Proc Natl Acad Sci U S A 102, 5588-5593. 

Patel A. B., de Graaf R. A., Mason G. F., Kanamatsu T., Rothman D. L., Shulman R. G. and Behar K. L. 
(2004) Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during 
intense neuronal activation. J Cereb Blood Flow Metab 24, 972-985. 

Patel M. S. (1974) The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J 
Neurochem 22, 717-724. 

Pellerin L. (2010) Food for thought: the importance of glucose and other energy substrates for sustaining 
brain function under varying levels of activity. Diabetes Metab 36 Suppl 3, S59-63. 

Pellerin L. and Magistretti P. J. (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a 
mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91, 10625-
10629. 

Pellerin L. and Magistretti P. J. (2003) Food for thought: challenging the dogmas. J Cereb Blood Flow Metab 
23, 1282-1286. 

Pellerin L., Bouzier-Sore A. K., Aubert A., Serres S., Merle M., Costalat R. and Magistretti P. J. (2007) 
Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55, 1251-1262. 

Pellerin L., Pellegri G., Bittar P. G., Charnay Y., Bouras C., Martin J. L., Stella N. and Magistretti P. J. 
(1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. 
Dev Neurosci 20, 291-299. 

Qu H., Eloqayli H., Unsgard G. and Sonnewald U. (2001) Glutamate decreases pyruvate carboxylase activity 
and spares glucose as energy substrate in cultured cerebellar astrocytes. J Neurosci Res 66, 1127-
1132. 

Quek L. E., Dietmair S., Kromer J. O. and Nielsen L. K. (2010) Metabolic flux analysis in mammalian cell 
culture. Metab Eng 12, 161-171. 

Rae C., Hare N., Bubb W. A., McEwan S. R., Broer A., McQuillan J. A., Balcar V. J., Conigrave A. D. and 
Broer S. (2003) Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter 
pools: further evidence for metabolic compartmentation. J Neurochem 85, 503-514. 

Rafiki A., Boulland J. L., Halestrap A. P., Ottersen O. P. and Bergersen L. (2003) Highly differential 
expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. 
Neuroscience 122, 677-688. 

Raichle M. E. and Mintun M. A. (2006) Brain work and brain imaging. Annu Rev Neurosci 29, 449-476. 

Ramos M., del Arco A., Pardo B., Martinez-Serrano A., Martinez-Morales J. R., Kobayashi K., Yasuda T., 
Bogonez E., Bovolenta P., Saheki T. and Satrustegui J. (2003) Developmental changes in the Ca2+-
regulated mitochondrial aspartate-glutamate carrier aralar1 in brain and prominent expression in 
the spinal cord. Brain Res Dev Brain Res 143, 33-46. 

Rao R., Ennis K., Long J. D., Ugurbil K., Gruetter R. and Tkac I. (2010) Neurochemical changes in the 
developing rat hippocampus during prolonged hypoglycemia. J Neurochem 114, 728-738. 

Richards E. M., Fiskum G., Rosenthal R. E., Hopkins I. and McKenna M. C. (2007) Hyperoxic reperfusion 
after global ischemia decreases hippocampal energy metabolism. Stroke 38, 1578-1584. 

Rodrigues T. B. and Cerdan S. (2005) A fast and sensitive 1H NMR method to measure the turnover of the 
H2 hydrogen of lactate. Magn Reson Med 54, 1014-1019. 



   Introduction 

63 

Rodrigues T. B. and Cerdan S. (2007) The Cerebral Tricarboxylic Acid Cycles, in Brain Energetics. Integration 
of Molecular and Cellular Processes, 3rd edition Edition (Dienel G. and Gibson G., eds), pp 63-91. 
Springer, New York. 

Rodrigues T. B., Fonseca C. P., Castro M. M., Cerdan S. and Geraldes C. F. (2009) 13C NMR tracers in 
neurochemistry: implications for molecular imaging. Q J Nucl Med Mol Imaging 53, 631-645. 

Rodrigues T. B., Gray H. L., Benito M., Garrido S., Sierra A., Geraldes C. F., Ballesteros P. and Cerdan S. 
(2005) Futile cycling of lactate through the plasma membrane of C6 glioma cells as detected by 
(13C, 2H) NMR. J Neurosci Res 79, 119-127. 

Rossi D. J., Brady J. D. and Mohr C. (2007) Astrocyte metabolism and signaling during brain ischemia. Nat 
Neurosci 10, 1377-1386. 

Rothman D. L., Sibson N. R., Hyder F., Shen J., Behar K. L. and Shulman R. G. (1999) In vivo nuclear 
magnetic resonance spectroscopy studies of the relationship between the glutamate-glutamine 
neurotransmitter cycle and functional neuroenergetics. Philos Trans R Soc Lond B Biol Sci 354, 
1165-1177. 

Sa Santos S., Sonnewald U., Carrondo M. J. and Alves P. M. (2011) The role of glia in neuronal recovery 
following anoxia: In vitro evidence of neuronal adaptation. Neurochem Int 58, 665-675. 

Sa Santos S., Fonseca L. L., Monteiro M. A., Carrondo M. J. and Alves P. M. (2005) Culturing primary 
brain astrocytes under a fully controlled environment in a novel bioreactor. J Neurosci Res 79, 26-
32. 

Santos S. S., Leite S. B., Sonnewald U., Carrondo M. J. and Alves P. M. (2007) Stirred vessel cultures of rat 
brain cells aggregates: characterization of major metabolic pathways and cell population dynamics. 
J Neurosci Res 85, 3386-3397. 

Schaub J., Mauch K. and Reuss M. (2008) Metabolic flux analysis in Escherichia coli by integrating isotopic 
dynamic and isotopic stationary 13C labeling data. Biotechnol Bioeng 99, 1170-1185. 

Schmoll D., Fuhrmann E., Gebhardt R. and Hamprecht B. (1995) Significant amounts of glycogen are 
synthesized from 3-carbon compounds in astroglial primary cultures from mice with participation 
of the mitochondrial phosphoenolpyruvate carboxykinase isoenzyme. Eur J Biochem 227, 308-315. 

Schousboe A., Sonnewald U. and Waagepetersen H. S. (2003) Differential roles of alanine in GABAergic 
and glutamatergic neurons. Neurochem Int 43, 311-315. 

Schousboe A., Sarup A., Bak L. K., Waagepetersen H. S. and Larsson O. M. (2004) Role of astrocytic 
transport processes in glutamatergic and GABAergic neurotransmission. Neurochem Int 45, 521-
527. 

Schousboe A., Westergaard N., Waagepetersen H. S., Larsson O. M., Bakken I. J. and Sonnewald U. (1997) 
Trafficking between glia and neurons of TCA cycle intermediates and related metabolites. Glia 21, 
99-105. 

Schummers J., Yu H. and Sur M. (2008) Tuned responses of astrocytes and their influence on hemodynamic 
signals in the visual cortex. Science 320, 1638-1643. 

Schurr A. (2002) Lactate, glucose and energy metabolism in the ischemic brain (Review). Int J Mol Med 10, 
131-136. 

Serra M., Brito C., Costa E. M., Sousa M. F. and Alves P. M. (2009) Integrating human stem cell expansion 
and neuronal differentiation in bioreactors. BMC biotechnology 9, 82. 



Chapter 1 

64 

Serres S., Bezancon E., Franconi J. M. and Merle M. (2004) Ex vivo analysis of lactate and glucose 
metabolism in the rat brain under different states of depressed activity. J Biol Chem 279, 47881-
47889. 

Shank R. P., Leo G. C. and Zielke H. R. (1993) Cerebral metabolic compartmentation as revealed by 
nuclear magnetic resonance analysis of D-[1-13C]glucose metabolism. J Neurochem 61, 315-323. 

Shank R. P., Bennett G. S., Freytag S. O. and Campbell G. L. (1985) Pyruvate carboxylase: an astrocyte-
specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 
329, 364-367. 

Shen J., Rothman D. L., Behar K. L. and Xu S. (2009) Determination of the glutamate-glutamine cycling 
flux using two-compartment dynamic metabolic modeling is sensitive to astroglial dilution. J Cereb 
Blood Flow Metab 29, 108-118. 

Shen J., Petersen K. F., Behar K. L., Brown P., Nixon T. W., Mason G. F., Petroff O. A., Shulman G. I., 
Shulman R. G. and Rothman D. L. (1999) Determination of the rate of the glutamate/glutamine 
cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci U S A 96, 8235-8240. 

Sherry A. D., Jeffrey F. M. and Malloy C. R. (2004) Analytical solutions for (13)C isotopomer analysis of 
complex metabolic conditions: substrate oxidation, multiple pyruvate cycles, and gluconeogenesis. 
Metab Eng 6, 12-24. 

Shestov A. A., Valette J., Ugurbil K. and Henry P. G. (2007) On the reliability of (13)C metabolic modeling 
with two-compartment neuronal-glial models. J Neurosci Res 85, 3294-3303. 

Shin J. Y., Fang Z. H., Yu Z. X., Wang C. E., Li S. H. and Li X. J. (2005) Expression of mutant huntingtin in 
glial cells contributes to neuronal excitotoxicity. J Cell Biol 171, 1001-1012. 

Shulman R. G., Hyder F. and Rothman D. L. (2001) Cerebral energetics and the glycogen shunt: 
neurochemical basis of functional imaging. Proc Natl Acad Sci U S A 98, 6417-6422. 

Sibson N. R., Dhankhar A., Mason G. F., Behar K. L., Rothman D. L. and Shulman R. G. (1997) In vivo 
13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate-glutamine 
cycling. Proc Natl Acad Sci U S A 94, 2699-2704. 

Sibson N. R., Dhankhar A., Mason G. F., Rothman D. L., Behar K. L. and Shulman R. G. (1998) 
Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl 
Acad Sci U S A 95, 316-321. 

Sibson N. R., Mason G. F., Shen J., Cline G. W., Herskovits A. Z., Wall J. E., Behar K. L., Rothman D. L. 
and Shulman R. G. (2001) In vivo (13)C NMR measurement of neurotransmitter glutamate 
cycling, anaplerosis and TCA cycle flux in rat brain during. J Neurochem 76, 975-989. 

Sickmann H. M., Schousboe A., Fosgerau K. and Waagepetersen H. S. (2005) Compartmentation of lactate 
originating from glycogen and glucose in cultured astrocytes. Neurochem Res 30, 1295-1304. 

Simard M. and Nedergaard M. (2004) The neurobiology of glia in the context of water and ion homeostasis. 
Neuroscience 129, 877-896. 

Simpson I. A., Carruthers A. and Vannucci S. J. (2007) Supply and demand in cerebral energy metabolism: 
the role of nutrient transporters. J Cereb Blood Flow Metab 27, 1766-1791. 

Sonnewald U. and Kondziella D. (2003) Neuronal glial interaction in different neurological diseases studied 
by ex vivo 13C NMR spectroscopy. NMR Biomed 16, 424-429. 

Sonnewald U. and Rae C. (2010) Pyruvate carboxylation in different model systems studied by (13)C MRS. 
Neurochem Res 35, 1916-1921. 



   Introduction 

65 

Sonnewald U., Westergaard N., Schousboe A., Svendsen J. S., Unsgard G. and Petersen S. B. (1993a) Direct 
demonstration by [13C]NMR spectroscopy that glutamine from astrocytes is a precursor for 
GABA synthesis in neurons. Neurochem Int 22, 19-29. 

Sonnewald U., Westergaard N., Hassel B., Muller T. B., Unsgard G., Fonnum F., Hertz L., Schousboe A. 
and Petersen S. B. (1993b) NMR spectroscopic studies of 13C acetate and 13C glucose 
metabolism in neocortical astrocytes: evidence for mitochondrial heterogeneity. Dev Neurosci 15, 
351-358. 

Spence A. M., Graham M. M., Muzi M., Freeman S. D., Link J. M., Grierson J. R., O'Sullivan F., Stein D., 
Abbott G. L. and Krohn K. A. (1997) Feasibility of imaging pentose cycle glucose metabolism in 
gliomas with PET: studies in rat brain tumor models. J Nucl Med 38, 617-624. 

Suh S. W., Hamby A. M. and Swanson R. A. (2007a) Hypoglycemia, brain energetics, and hypoglycemic 
neuronal death. Glia 55, 1280-1286. 

Suh S. W., Aoyama K., Matsumori Y., Liu J. and Swanson R. A. (2005) Pyruvate administered after severe 
hypoglycemia reduces neuronal death and cognitive impairment. Diabetes 54, 1452-1458. 

Suh S. W., Bergher J. P., Anderson C. M., Treadway J. L., Fosgerau K. and Swanson R. A. (2007b) Astrocyte 
glycogen sustains neuronal activity during hypoglycemia:studies with the glycogen phosphorylase 
inhibitor CP-316,819. J Pharmacol Exp Ther. 

Suzuki A., Stern Sarah A., Bozdagi O., Huntley George W., Walker Ruth H., Magistretti Pierre J. and 
Alberini Cristina M. (2011) Astrocyte-Neuron Lactate Transport Is Required for Long-Term 
Memory Formation. Cell 144, 810-823. 

Swanson R. A., Morton M. M., Sagar S. M. and Sharp F. R. (1992) Sensory stimulation induces local 
cerebral glycogenolysis: demonstration by autoradiography. Neuroscience 51, 451-461. 

Taylor A., McLean M., Morris P. and Bachelard H. (1996) Approaches to studies on neuronal/glial 
relationships by 13C-MRS analysis. Dev Neurosci 18, 434-442. 

Teixeira A. P., Santos S. S., Carinhas N., Oliveira R. and Alves P. M. (2008) Combining metabolic flux 
analysis tools and 13C NMR to estimate intracellular fluxes of cultured astrocytes. Neurochem Int 
52, 478-486. 

Tekkok S. B., Brown A. M., Westenbroek R., Pellerin L. and Ransom B. R. (2005) Transfer of glycogen-
derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse 
optic nerve activity. J Neurosci Res 81, 644-652. 

Thoren A. E., Helps S. C., Nilsson M. and Sims N. R. (2006) The metabolism of C-glucose by neurons and 
astrocytes in brain subregions following focal cerebral ischemia in rats. J Neurochem 97, 968-978. 

Trendelenburg G. and Dirnagl U. (2005) Neuroprotective role of astrocytes in cerebral ischemia: focus on 
ischemic preconditioning. Glia 50, 307-320. 

Uffmann K. and Gruetter R. (2007) Mathematical modeling of (13)C label incorporation of the TCA cycle: 
the concept of composite precursor function. J Neurosci Res 85, 3304-3317. 

Vallino J. J. and Stephanopoulos G. (1993) Metabolic flux distributions in Corynebacterium glutamicum 
during growth and lysine overproduction. Biotechnol Bioeng 41, 633-646. 

van den Berg C. J. and Garfinkel D. (1971) A stimulation study of brain compartments. Metabolism of 
glutamate and related substances in mouse brain. Biochem J 123, 211-218. 

Vannucci S. J. and Simpson I. A. (2003) Developmental switch in brain nutrient transporter expression in 
the rat. Am J Physiol Endocrinol Metab 285, E1127-1134. 



Chapter 1 

66 

Varma A. and Palsson B. O. (1994) Stoichiometric flux balance models quantitatively predict growth and 
metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60, 
3724-3731. 

Vaughn A. E. and Deshmukh M. (2008) Glucose metabolism inhibits apoptosis in neurons and cancer cells 
by redox inactivation of cytochrome c. Nat Cell Biol 10, 1477-1483. 

Vogel R., Jennemann G., Seitz J., Wiesinger H. and Hamprecht B. (1998) Mitochondrial malic enzyme: 
purification from bovine brain, generation of an antiserum, and immunocytochemical localization 
in neurons of rat brain. J Neurochem 71, 844-852. 

Waagepetersen H. S., Sonnewald U., Larsson O. M. and Schousboe A. (2000) A possible role of alanine for 
ammonia transfer between astrocytes and glutamatergic neurons. J Neurochem 75, 471-479. 

Waagepetersen H. S., Sonnewald U., Larsson O. M. and Schousboe A. (2001a) Multiple compartments with 
different metabolic characteristics are involved in biosynthesis of intracellular and released 
glutamine and citrate in astrocytes. Glia 35, 246-252. 

Waagepetersen H. S., Qu H., Schousboe A. and Sonnewald U. (2001b) Elucidation of the quantitative 
significance of pyruvate carboxylation in cultured cerebellar neurons and astrocytes. J Neurosci Res 
66, 763-770. 

Waagepetersen H. S., Qu H., Hertz L., Sonnewald U. and Schousboe A. (2002) Demonstration of pyruvate 
recycling in primary cultures of neocortical astrocytes but not in neurons. Neurochem Res 27, 1431-
1437. 

Wallace J. C., Jitrapakdee S. and Chapman-Smith A. (1998) Pyruvate carboxylase. Int J Biochem Cell Biol 30, 
1-5. 

Wang D. D. and Bordey A. (2008) The astrocyte odyssey. Prog Neurobiol 86, 342-367. 

Waniewski R. A. and Martin D. L. (1998) Preferential utilization of acetate by astrocytes is attributable to 
transport. J Neurosci 18, 5225-5233. 

Wender R., Brown A. M., Fern R., Swanson R. A., Farrell K. and Ransom B. R. (2000) Astrocytic glycogen 
influences axon function and survival during glucose deprivation in central white matter. J 
Neurosci 20, 6804-6810. 

Wiechert W. (2001) 13C metabolic flux analysis. Metab Eng 3, 195-206. 

Wiechert W. and Noh K. (2005) From stationary to instationary metabolic flux analysis. Adv Biochem Eng 
Biotechnol 92, 145-172. 

Williams L. R. and Leggett R. W. (1989) Reference values for resting blood flow to organs of man. Clin Phys 
Physiol Meas 10, 187-217. 

Williams R. W. and Herrup K. (1988) The control of neuron number. Annu Rev Neurosci 11, 423-453. 

Xu Y., Oz G., LaNoue K. F., Keiger C. J., Berkich D. A., Gruetter R. and Hutson S. H. (2004) Whole-brain 
glutamate metabolism evaluated by steady-state kinetics using a double-isotope procedure: effects 
of gabapentin. J Neurochem 90, 1104-1116. 

Xu Y., Ola M. S., Berkich D. A., Gardner T. W., Barber A. J., Palmieri F., Hutson S. M. and LaNoue K. F. 
(2007) Energy sources for glutamate neurotransmission in the retina: absence of the 
aspartate/glutamate carrier produces reliance on glycolysis in glia. J Neurochem 101, 120-131. 

Yu A. C., Drejer J., Hertz L. and Schousboe A. (1983) Pyruvate carboxylase activity in primary cultures of 
astrocytes and neurons. J Neurochem 41, 1484-1487. 



   Introduction 

67 

Yudkoff M. (1997) Brain metabolism of branched-chain amino acids. Glia 21, 92-98. 

Yudkoff M., Nissim I. and Pleasure D. (1987) [15N]aspartate metabolism in cultured astrocytes. Studies with 
gas chromatography-mass spectrometry. Biochem J 241, 193-201. 

Yudkoff M., Daikhin Y., Lin Z. P., Nissim I., Stern J. and Pleasure D. (1994) Interrelationships of leucine 
and glutamate metabolism in cultured astrocytes. J Neurochem 62, 1192-1202. 

Zamboni N. (2011) 13C metabolic flux analysis in complex systems. Curr Opin Biotechnol 22, 103-108. 

Zamboni N., Fendt S. M., Ruhl M. and Sauer U. (2009) (13)C-based metabolic flux analysis. Nat Protoc 4, 
878-892. 

Zielke H. R., Zielke C. L. and Baab P. J. (2009) Direct measurement of oxidative metabolism in the living 
brain by microdialysis: a review. J Neurochem 109 Suppl 1, 24-29. 

Zwingmann C. (2007) The anaplerotic flux and ammonia detoxification in hepatic encephalopathy. Metab 
Brain Dis 22, 235-249. 

Zwingmann C. and Leibfritz D. (2003) Regulation of glial metabolism studied by 13C-NMR. NMR Biomed 
16, 370-399. 

Zwingmann C. and Leibfritz D. (2007) Glial-Neuronal Shuttle Systems, in Brain Energetics. Integration of 
Molecular and Cellular Processes, 3rd edition Edition (Dienel G. and Gibson G., eds), pp 197-238. 
Springer, New York. 

Zwingmann C., Richter-Landsberg C. and Leibfritz D. (2001) 13C isotopomer analysis of glucose and 
alanine metabolism reveals cytosolic pyruvate compartmentation as part of energy metabolism in 
astrocytes. Glia 34, 200-212. 

Zwingmann C., Richter-Landsberg C., Brand A. and Leibfritz D. (2000) NMR spectroscopic study on the 
metabolic fate of [3-(13)C]alanine in astrocytes, neurons, and cocultures: implications for glia-
neuron interactions in neurotransmitter metabolism. Glia 32, 286-303. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1 

68 

 



 

CHAPTER 2 
 

Metabolic Flux Analysis of Cultured 
Astrocytes: Effects of Ischemia  

 

 

 

Adapted from: 

Metabolic alterations induced by ischemia in primary cultures of astrocytes: merging 
13C NMR spectroscopy and metabolic flux analysis 

Ana I Amaral, Ana P Teixeira, Sanja Martens, Vicente Bernal, Marcos FQ Sousa and 
Paula M Alves (2010) J Neurochem 113(3):735-48 



Chapter 2 

 70 

Abstract  

Disruption of brain energy metabolism is the hallmark of cerebral ischemia, a major 

cause of death worldwide. Astrocytes play a key role in the regulation of brain 

metabolism and their vulnerability to ischemia has been described. Aiming to quantify 

the effects of an ischemic insult in astrocytic metabolism, primary cultures of astrocytes 

were subjected to 5 hours of oxygen and glucose deprivation in a bioreactor. Flux 

distributions, before and after ischemia, were estimated by metabolic flux analysis using 

isotopic information and the consumption/secretion rates of relevant extracellular 

metabolites as constraints. During ischemia and early recovery, 30% of cell death was 

observed; several metabolic alterations were also identified reflecting a metabolic 

response by the surviving cells. In the early recovery (approx. 10 h), astrocytes up-

regulated glucose utilization by 30% and increased the pentose phosphate pathway and 

TCA cycle fluxes by 3 and 2-fold, respectively. Additionally, a 2-5 fold enhancement in 

branched-chain amino acids catabolism suggested the importance of anaplerotic 

molecules to the fast recovery of the energetic state, which was corroborated by measured 

cellular ATP levels. Glycolytic metabolism was predominant in the late recovery. In 

summary, this work demonstrates that changes in fluxes of key metabolic pathways are 

implicated in the recovery from ischemia in astrocytes.  
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1 Introduction  

Brain ischemia is usually a consequence of blood flow reduction below a critical 

threshold due to the occlusion of a major brain artery (Dirnagl et al. 1999). It is among 

the leading causes of death and long-term disability in humans. However, despite the 

prevalence and severe consequences, no treatment is available and, currently, the best 

strategy to prevent severe consequences is the rapid restoration of blood supply (Rossi et 

al. 2007). Disruption of brain energy metabolism is the hallmark of this pathology due to 

the restricted delivery of oxygen and glucose, which slows or stops the synthesis of ATP 

required to maintain ionic gradients (Dirnagl et al. 1999). Ischemic brain deals with the 

fast decline in ATP supplies by increasing the rate of anaerobic glycolysis, leading to 

lactate accumulation, and consequently to acidosis, though the detrimental or beneficial 

effects of lactate are still under discussion (Schurr 2002; Dienel and Hertz 2005). 

Astrocytes are the most abundant cell type in the brain and play a key role in the 

regulation of cerebral energy metabolism (Hertz et al. 2007; Pellerin et al. 2007). They 

account for at least 15% of total oxidative metabolism in the human brain (Bluml et al. 

2002; Lebon et al. 2002). Even though some authors proposed that astrocytic oxidative 

metabolism is proportional to their relative volume in the brain (Hertz et al. 2007), a 

modelling study based on a large set of in vivo 13C NMR spectroscopy flux measurements 

suggested that neurons are responsible for at least 88% of the total oxidative ATP 

production, though astrocytes take up more than half of the glucose from the capillaries 

(Hyder et al. 2006). These findings are supported by numerous in vitro and in vivo studies 

on cerebral metabolism, showing that several metabolites, such as lactate, glutamine, 

alanine, and TCA cycle intermediates, are transferred from astrocytes to neurons, 

serving both as neuronal energy substrates and as neurotransmitter precursors (Riera et 

al. 2008). However, strong debate still exists regarding the “astrocyte-neuron lactate 

shuttle” hypothesis (Pellerin and Magistretti 1994; Pellerin et al. 2007) as recent studies 

suggested that most of the lactate released during activation is of neuronal origin (Bak et 

al. 2009; Contreras and Satrustegui 2009) and modelling studies reported a preferential 
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uptake of glucose by neurons and lactate shuttling from neurons to astrocytes (Mangia et 

al. 2009). In view of all these findings, it is not surprising that astrocytes also play a 

significant role on the bioenergetics of cerebral ischemia and, on the other hand, suffer 

its consequences (Hertz 2008). 

  Different studies have reported effects of ischemia on astrocytic metabolic fluxes. 

A decrease in glucose oxidation was observed after focal cerebral ischemia in rats, in a 

time-dependent manner, together with increased oxidative metabolism of neuronal 

GABA and glutamate and increased glutamine transfer to neurons (Pascual et al. 1998). 

In addition, other in vivo studies suggested a better preservation of astrocytic energy 

metabolism (Thoren et al. 2005; Haberg et al. 2006), when comparing to neurons, 

through increased acetate oxidation and conservation of glutamine synthesis. These 

findings corroborate the crucial role of astrocytic glutamate uptake for limiting neuronal 

death caused by the excitotoxic effect of glutamate (Danbolt 2001) through its 

metabolism to glutamine. Although strong evidence is still lacking, astrocytes may 

provide neurons with antioxidant substrates, such as glutathione, and it has been 

suggested that the lactate released by astrocytes in elevated amounts during ischemia may 

also serve as a neuronal fuel during recovery (Schurr 2002; Dienel and Hertz 2005). 

Even so, it has been found that astrocytes frequently undergo a slow ischemia-induced 

cell death process, mainly as a consequence of the impairment of glycolysis but also due 

to disruption of ionic homeostasis leading to mitochondrial calcium overload and 

depolarization (Swanson et al. 1997; Hertz 2008). Thus, further studies contributing to 

clarify the influence of ischemia in astrocytic metabolism are certainly required.   

 The aim of the present study was to characterize, using a quantitative approach, 

the alterations in astrocytic metabolic fluxes caused by an ischemic insult. Recently, our 

group demonstrated the suitability of MFA complemented with 13C NMR spectroscopy 

data to investigate astrocytic metabolism in primary cultures (Teixeira et al. 2008). This 

methodology was extended in this work to estimate metabolic fluxes before and after 

subjecting astrocyte cultures to five hours of oxygen and glucose deprivation. To allow 
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for a tight control of culture conditions, experiments were performed in small scale 

bioreactors (Sá Santos et al. 2005). This culture system enables the rigorous control of 

pH, temperature and oxygen content in the medium, and allows for easy and non-

invasive cell sampling, constituting therefore an advantageous system to cultivate brain 

cells and perform ischemia experiments in vitro. The vulnerability of astrocytes to 

ischemia was also investigated by assessing cell death and intracellular ATP changes, 

which were correlated with the metabolic results. 

2 Materials and Methods 

2.1 Materials 

Plastic tissue culture flasks were purchased from Nunc (Roskilde, Denmark). Spinner 

flasks were purchased from Wheaton (Techne, NJ); fetal bovine serum (FBS), penicillin–

streptomycin (Pen-Strep), and trypsin-EDTA (1x solution) were purchased from 

Invitrogen (Glasgow, UK). The culture media used were Dulbecco’s modified Eagle’s 

Medium (DMEM) from Invitrogen (Glasgow, UK), cat number 31885, to maintain cell 

cultures before the bioreactor experiments, and glucose-free DMEM from SIGMA-

Aldrich (Steinheim, Germany), cat number D-5030, for experiments involving 13C 

labeled glucose. D-[1-13C] glucose (99% enriched) was purchased from Cambridge 

Isotope Laboratories (Andover, MA); all other chemicals were purchased from SIGMA-

Aldrich (Steinheim, Germany). Non-porous microcarriers Cytodex 3® were purchased 

from GE-Healthcare (Amersham Biosciences, Uppsala, Sweden). Animals were 

purchased from Instituto de Higiene e Medicina Tropical (Lisbon, Portugal).  

2.2 Primary cultures of astrocytes  

Primary cultures of cortical astrocytes were obtained from 1-2-day-old rats and prepared 

as described previously (Richter-Landsberg and Besser 1994). Cells were cultured in 

DMEM containing 5 mM glucose and supplemented with Pen-Strep (100 U/ml) and 

20% (v/v) FBS, gradually reducing its concentration to 10%. Cells were kept in a 
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humidified atmosphere with 7% CO2 in air and 37ºC. After 3 weeks in culture, cells 

were transferred to spinner flasks with 125 ml culture volume, according with a protocol 

previously described (Sá Santos et al. 2005). Briefly, astrocytes were harvested from the 

T-flasks by mild trypsinisation, pelleted by centrifugation, re-suspended in a small 

volume of culture medium and immobilized in Cytodex3® microcarriers. Culture 

medium used in spinner cultures was DMEM supplemented with Pen-Strep (100 U/ml) 

and 10% (v/v) FBS and containing 10 mM glucose. The cell inoculum used was 

0.35x106 cells/ml. The spinners were maintained in an incubator with 7% CO2 in air 

and 37ºC, with stirring speed gradually increasing from 60 to 100 rpm throughout 

culture time. The cells were allowed to grow on the surface of the microcarriers and 

usually after one week the carriers were confluent. Samples were taken on a daily basis to 

monitor metabolite consumption/production and cell growth and viability. 50% of the 

culture volume was exchanged by fresh medium, usually twice a week, in order to ensure 

glucose availability and to prevent an excessive accumulation of lactate or other “toxic” 

products of cell metabolism.  

2.3 Bioreactors operation and ischemia experiments  

Ischemia experiments were carried out in small scale bioreactors with working volume of 

125 ml or 250 ml (Sartorius-AG, Goettingen, Germany; Figure 2.1). When cells were 

confluent on the microcarriers, they were harvested from the spinner flasks, washed with 

PBS and transferred to the bioreactor vessel. DMEM culture medium containing 2 mM 

[1-13C] glucose and without glutamine, supplemented with 1% FBS and 100 U/ml 

pen/strep was used. The pO2 (partial pressure of oxygen), pH and temperature were 

monitored with pH and oxygen electrodes (both from Mettler-Toledo, Urdorf, 

Switzerland) and a temperature sensor, respectively. The bioreactor was equipped with a 

3 blade impeller stirrer to ensure proper agitation. These components are connected to 

the control unit (Biostat® Q-Plus – Sartorius AG, Goettingen, Germany) which uses the 

software MFCS/Win 2.1 for data acquisition and to control the referred culture 

parameters. pH was kept at 7.2 by injection of CO2. pO2 was maintained constant at 
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30% of air saturation via surface aeration with a mixture of N2 and air. Temperature of 

37ºC was controlled through water recirculation in the vessel jacket. Stirring was set to 

100 rpm.  

 

Figure 2.1 - 250 ml bioreactor used for cultivating rat cortical astrocytes and mimicking ischemia-like 
conditions. 

The experimental setup is depicted in Figure 2.2. The ischemic insult was 

mimicked by allowing the cells to consume the glucose available until its concentration 

dropped below 0.2 mM. pO2  level was decreased below 1% by injection of N2. The 

duration of the insult was five hours. After this period, standard culture conditions 

regarding O2 and glucose were re-established; a medium exchange was performed using 

fresh DMEM culture medium containing 5 mM [1-13C] glucose and no glutamine, and 

supplemented with 1% FBS and 100 U/ml Pen-Strep. The culture was monitored 

during another 48-60 h after the end of the insult by collecting samples of cells and 

culture supernatant at several time-points. A membrane integrity assay was carried out to 

assess cell death (see details below). Cell suspensions were centrifuged at 200 g for 10 



MFA of Cultured Astrocytes: Effects of Ischemia 

 77 

minutes to separate cells and microcarriers from the supernatant. Cell pellets were either 

treated to determine the concentration of viable cells throughout the experiments or 

immediately frozen in liquid nitrogen and stored at -80ºC until later analysis of the ATP 

content. Cell supernatants were stored at -20ºC until further analysis. Four independent 

experiments were conducted. 

 

Figure 2.2 - Timeline of events in the experiments. The duration of each period is indicated inside square 
brackets. For details see the Materials and Methods section. 

2.4 Protein determination 

Protein was quantified in cell pellets collected at the time of inoculation of the spinner 

flasks in order to obtain a correlation between protein amount and the number of viable 

cells determined throughout the experiments. Cells were disrupted using 0.1 M NaOH 

and incubated overnight at 37ºC to ensure complete protein extraction. The 

bicinchoninic acid (BCA) protein assay from Pierce (Rockford, IL, USA) was used to 

determine total protein amounts using bovine serum albumin as standard.  

2.5 Determination of intracellular ATP concentration 

Cellular ATP concentrations were determined with the ATPlite 1-step assay system 

(Perkin Elmer, Zaventem, Belgium), according to manufacturer’s instructions. This assay 

is based on the emission of light as a result of the reaction of ATP with added luciferase 

and D-luciferin. The emitted light is proportional to the ATP concentration. A Modulus 

luminescence counter (Turner Biosystems, Sunnyvale, CA) was used to measure the 

luminescence signal of the samples in opaque 96-well plates. Cell samples were diluted 

in PBS in order to have 50 000 cells per well.  
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2.6 Cell viability assays 

To assess cell lysis, the activity of lactate dehydrogenase (LDH; EC 1.1.1.27) released to 

the culture supernatant was measured by following the rate of pyruvate reduction to 

lactate. This reaction is coupled with the oxidation of NADH to NAD+, which can be 

measured spectrophotometrically at 340 nm (Racher et al. 1990). A cell membrane 

integrity test using the enzyme substrate fluorescein diacetate and the DNA-dye ethidium 

bromide as described in Dankberg and Persidsky (1976) was also performed. Cell 

samples were diluted 1:1 in the staining solution containing 8 μg/ml fluorescein 

diacetate and 10 μg/ml ethidium bromide and images were acquired under an inverted 

fluorescence microscope (Leica DM IRB). Fluorescein diacetate and ethidium bromide 

staining were observed with green and red fluorescence, respectively.  

2.7 Analytical Methods 

Total cell number on the microcarriers was determined by counting cell nuclei using a 

Fuchs-Rosenthal hemacytometer after treatment with 0.1 M citric acid/1% (v/v) Triton 

X-100 / 0.1% (w/v) crystal violet. Total glucose and lactate concentrations in the culture 

supernatant were determined with automated enzymatic assays (YSI 7100 

Multiparameter Bioanalytical System; Dayton, Ohio, USA). Amino acids in cell 

supernatant samples were quantified by HPLC using a pre-column derivatisation method 

based on the Waters AccQ.Tag Amino Acid Analysis method as described previously 

(Carinhas et al. 2009). Briefly, both primary and secondary amino acid derivatives were 

generated by reaction with 6-aminoquinolyl N-hydroxysuccinimidyl-carbamate, allowing 

their separation in a reversed phase column (AccQ.Tag, Waters, Milford, MA). An 

internal standard (α-aminobutyric acid) was added to all the samples to ensure consistent 

measurements between runs. The separated amino acids were detected by fluorescence at 

395 nm and quantified by comparison to a calibration curve of standard solutions of 

amino acids.  
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2.8 13C NMR Spectroscopy  

Cell supernatant samples were lyophilized and re-dissolved in 99% D2O. Dioxane 10% 

(v/v) in D2O was then added as an internal standard to all samples after pH adjustment 

to values between 6.8 and 7. Proton decoupled 13C NMR spectra of these samples were 

acquired in a Bruker Avance 500 Mhz  spectrometer (Wissenbourg, France) operating at 

a frequency of 125.77 MHz, using the following parameters: 30º pulse angle, 30 kHz 

spectral width, 65-K data points, acquisition time of 1.048 s and a 0.76 s relaxation 

delay. The number of scans was typically 5120 and for data processing a line broadening 

of 2 Hz was used. Some spectra were also broad band decoupled only during acquisition 

and accompanied by a relaxation delay of 20 s, to achieve fully relaxed spectra without 

nuclear Overhauser effects. From several sets of spectra, correction factors were obtained 

and applied to the integrals of the individual peaks which were identified relatively to 

the chemical shift of the internal standard, dioxane, at 67.40 ppm. 

2.9 Metabolic Flux Analysis (MFA) and 13C NMR data 

MFA is a well established technique for the determination of fluxes distribution in 

metabolic networks (Lee et al. 1999). This technique relies on the assumption of 

metabolic pseudo-steady-state for intracellular metabolite concentrations, which means 

that their accumulation inside the cells is negligible and, thus, the sum of the fluxes of 

synthesis and consumption of any metabolite must be equal to zero. This approximation 

is generally accepted as reasonable and valid in a wide range of scenarios. The 

intracellular fluxes distribution is estimated on the basis of this steady-state assumption, 

on the network stoichiometry, and using the information from transmembrane rates of 

metabolites measured in the culture supernatant (Varma and Palsson 1994).  

The biochemical network considered in this work (Figure 2.3 and Appendix 1) 

is based on the network described before (Teixeira et al. 2008) with the addition of some 

extra reactions which are known to be more active under stress conditions such as the 

PPP (Bolanos et al. 2004).  
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Figure 2.3 - Simplified network to calculate astrocytic metabolic fluxes using MFA. Briefly, the network 
accounts for glycolysis, pentose phosphate pathway, TCA cycle, amino acid catabolism and oxidative 
phosphorylation. The splitting pathway of pyruvate conversion through PC and PDH is represented by 
reactions 9 and 10, respectively. Pyruvate recycling is represented in reaction 18. Reaction 21 represents 
both glutamine synthetase and glutaminase activities. OUR refers to oxygen uptake rate; CER to carbon 
dioxide excretion rate. (Dashed arrows indicate the measured consumption/production fluxes of membrane-
crossing compounds; full lined arrows refer to intracellular fluxes). 

MFA cannot calculate the fluxes through parallel pathways, providing only the 

sum of their fluxes. Therefore, to overcome this problem, 13C-labeled compounds can be 

used to determine the ratios between each of the pathways by analyzing the relative 

amounts of the produced labeled species. In this work, [1-13C] glucose was used to 

estimate the ratio between the fluxes of two groups of parallel pathways: (i) the glycolytic 

and the pentose phosphate pathways, which both convert glucose-6-phosphate into 

pyruvate; (ii) the reactions catalyzed by the PDH (EC 1.2.4.1) and by PC (EC 6.4.1.1) 

enzymes, which use pyruvate as common substrate and end up producing citrate in TCA 

cycle. PC is an anaplerotic astroglial enzyme (Yu et al. 1983), whose function is supplying 

the TCA cycle with intermediates, when metabolites such as α-ketoglutarate leave the 
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cycle, in the form of glutamate. PC/PDH ratio was estimated from the rates of 

formation of the different glutamine isotopomers produced from [1-13C] glucose in 

astrocytes (Shank et al. 1993), according to equation 1:  

(1) 
C4Gln 

C3Gln C2Gln 

C4

2CC2

PDH

PC (P DH)  

where C2 corresponds to glutamine labeled in position 2; C2(PDH) corresponds to 

glutamine labeled in position 2 (Gln C2) that comes from the second turn of the TCA 

cycle and consequently from the PDH pathway, which is theoretically equal to the 

synthesis of glutamine labeled in position 3 (Gln C3); C4 corresponds to glutamine 

labeled in position 4 (Gln C4). In order to estimate the fraction of glucose that was 

metabolized by the PPP, 13C enrichment in lactate was used. Through this pathway, the 

labeled carbon from [1-13C] glucose is lost and, thus, the metabolic products (fructose-6-

phosphate or glyceraldehyde-3-phosphate) re-entering glycolysis will dilute the label in 

lactate. The rates of glycolysis and PPP were calculated using equation 2, which compares 

the rates of synthesis of [3-13C] lactate (13C Lac) with the rate of production of total 

lactate (rLactotal). 
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In this equation, r 13C Lac is equal to the rate of glucose conversion into fructose-6-

phosphate through glycolysis (rGlyc), considering that only half of the lactate will be 

labeled from [1-13C] glucose through this pathway.  rLactotal is equal to two times rGlyc, 

since two molecules of pyruvate are produced per glucose consumed, plus 5/3 of the rate 

of glucose metabolism through the PPP (rPPP) (5 pyruvate molecules are produced for 

each 3 molecules of glucose-6-phosphate entering the PPP, which gives a stoichiometry of 

5/3 for lactate produced per glucose molecule).  In addition, taking into account that 

serine and cysteine might also be converted to pyruvate, an additional factor 

corresponding to the sum of their uptake rates (raas) was included in equation 2.  
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In the model hereby considered, the total number of reactions was 44, with 36 

internal (balanced) metabolites. 14 transmembrane rates - consumption or production 

rates - of different extracellular metabolites were experimentally determined based on 

their decrease or accumulation with time, in the culture supernatant. In order to 

determine specific rates (per milligram of protein) protein amounts were estimated by 

correlation with the average concentration of viable cells determined by counting in 

samples collected throughout the experiments. A value of 0.20 mg protein was found to 

correspond to 1x106 cells, after quantification of the total protein amount in different 

cell pellets of astrocytes at the time of inoculation of spinner flasks (see above). The rank 

of the resulting stoichiometric matrix was 32, and the resulting number of degrees of 

freedom of the system is 12. Since the number of experimentally determined fluxes is 

higher than the number of degrees of freedom, the system of mathematical equations is 

redundant. The redundant system at hand was solved by the variances weighted least-

squares method using the Penrose pseudo-inverse matrix. The balanceable rates, which 

arise from system redundancy, were used to calculate the consistency index, h, according 

to Wang and Stephanopoulos (1983). Comparison of h with the χ2-test function was 

done in order to evaluate the consistency of the experimental values along with the 

assumed biochemistry and the pseudo-steady-state assumption within the error dictated 

by measurement uncertainties. Carbon balances closed with values of 99%, in average, 

thus indicating that the stoichiometry of the network is correct and fits well with 

experimental data. The above-mentioned calculations were performed using the 

CellNetAnalyzer software (Klamt et al. 2007). 

2.10 Statistical Analysis 

Differences between results obtained in the periods before and after ischemia were 

determined using single-factor analysis of variance (ANOVA) followed by the Dunnet’s 

post hoc test. A level of P < 0.05 was considered statistically significant. 
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3 Results  

3.1 Effect of ischemia on astrocytic viability  

The effect of simulated ischemia on astrocytic metabolism and viability was studied in 

this work. To evaluate alterations in cell viability, cell death was assessed using different 

techniques. A five-hour period of oxygen and glucose deprivation resulted in an average 

of 30% cell death (Figure 2.4A). A decrease in the number of cells adherent to the 

microcarriers was observed during ischemia and until the first hours of the late recovery 

period. This pattern of loss of cell viability correlates with the observed increase in LDH 

activity measured in the culture supernatant during and after ischemia (Figure 2.4A). In 

addition, the membrane integrity test using fluoresceine diacetate and ethidium bromide 

(Figure 2.5), markers for cell viability and death, respectively, confirmed these results. 

Before the insult, the majority of cells attached to the microcarriers were stained bright 

green, indicating that most of the cells were viable (Figure 2.5A, 2.5B). However, after 

the end of the ischemic episode (early recovery), an increased number of cells with red 

nuclei was observed together with a decrease in the number of cells attached to the 

carriers (Figure 2.5C, 2.5D), comparing to the previous phase (Figure 2.5A, 2.5B). In the 

late recovery, the number of cells presenting red nuclei was reduced, suggesting a 

decreased cellular death rate for the remaining adherent cells (Figure 2.5E, 2.5F).  
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Figure 2.4 - Time-profiles of several culture parameters throughout the experiment: (A) concentration of 

viable cells (◇) and LDH activity (◆); (B) intracellular ATP concentration (●); (C) total glucose (×), lactate 

(°) and glutamine (△) concentrations in the culture supernatants; (D) dissolved oxygen in the culture 
medium. The ischemic insult is represented with a grey rectangle. The dashed vertical line delimitates the 
transition from the early recovery to the late recovery phase, after the ischemic insult. Data presented are 
from a representative experiment of a total of four independent experiments. 

3.2 Changes in intracellular ATP levels  

The pool of intracellular ATP was quantified in samples of cells collected along the 

experiments; the results are shown in Figure 2.4B. During ischemia, a 30% reduction of 

the ATP levels was observed. Nevertheless, in the first hours after the end of the insult 

(early recovery), an overshoot in the ATP concentration occurred, leading to a 70% 

increase, comparing to the end of ischemia. In the late recovery, ATP levels stabilized 

back to the concentrations observed before the insult.  
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Figure 2.5 - Effect of ischemia on cell viability. Cell samples were collected throughout the experiments 
(before ischemia/normoxia – A, B; early recovery – C, D; late recovery – E, F) and immediately stained with 
fluoresceine diacetate (green = viable; A, C, E) and ethidium bromide (red = dead; B, D, F). Scale bar = 100 
µm. 

3.3 Glucose, lactate and amino acids metabolism  

Glucose and lactate profiles are shown in Figure 2.4C and the corresponding specific 

consumption/production rates, in the different metabolic phases, are presented in Table 

2.2. The results indicate that, before ischemia, glucose metabolism was mainly glycolytic, 

with a lactate production rate over glucose consumption rate (Lac/Glc) ratio of 1.78 

(Table 2.2). A residual uptake of glucose was observed during ischemia together with a 

high lactate production rate, which consequently increased the Lac/Glc ratio to 7.14. In 

the early recovery, the significant enhancement of glucose uptake (~35%) together with a 

lower increment in lactate production (Lac/Glc = 1.57) suggests that oxidative glucose 

metabolism increased in this period. The use of [1-13C] glucose in the culture medium 

enabled to determine the 13C enrichment in extracellular lactate, alanine and glutamine 

(Table 2.2), which was calculated by comparing the rates of formation of the labeled 

pools, obtained from 13C NMR analysis, with the production rates of the total pools. 
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Table 2.2 – Effect of 5 hours of ischemia on different metabolic parameters of astrocytes.  

 
Before Ischemia 
[24 h] 

Ischemia 
[5 h] 

Early Recovery 
[5/10 h] 

Late Recovery 
[~36 h] 

Glucose uptakea  

(µmol mg protein-1 h-1) 1.17 ± 0.04 0.28 ± 0.07* 1.59 ± 0.05 1.79 ± 0.07* 

Lactate productiona   
(µmol mg protein-1 h-1) 2.08 ± 0.08 2.0 ± 1.4 2.5 ± 0.2 3.0 ± 0.1* 

Glycolysis fluxb  (Glucose → 
F6P) (µmol.mg protein-1 h-1) 

1.06 ± 0.03 n.d. 1.03 ± 0.05 1.73 ± 0.07* 

PPP fluxb  
(µmol.mg protein-1 h-1) 

0.12 ± 0.01 n.d. 0.56 ± 0.01* 0.053 ± 0.007 

ratio Lac/Glc 1.78 7.14 1.57 1.68 

PC/PDHc 0.1 n.d. 0 0 

13C % 
enrichmentd 

Lactate 45 ± 7 n.d. 34 ± 5 48 ± 7 

Alanine 45 ± 10 n.d. 35 ± 6 45 ± 9 

Glutamine 23 ± 4 n.d. 10 ± 7 11 ± 4 

Results presented are from a representative experiment of a total of 4 independent experiments. Values are rate ± error 
derived from rate calculation. n.d., not determined. Asterisks indicate a significant difference from values obtained before 
ischemia (ANOVA followed by Dunnet’s post-hoc test, P < 0.05).  
a Specific rates for glucose uptake and lactate production were determined from total amounts measured in the culture 
supernatant using enzymatic methods.  
b Glycolysis and PPP fluxes were determined using equation 2 described in the text.  
c PC/PDH ratio was determined from the rates of production of the different labelled species of glutamine quantified by 
13C NMR spectroscopy in samples of cell supernatant, according to equation 1 described in the text.  
d % 13C enrichment in extracellular lactate, alanine and glutamine was calculated from the rates of accumulation of 
labelled metabolite quantified by 13C-NMRS compared to the rate of accumulation of the total metabolite pool for each 
time-interval.  

 

Based on the 13C enrichment of lactate, the fraction of glucose metabolized through 

glycolysis could be distinguished from the fraction metabolized via PPP (see Materials 

and Methods for details), and the corresponding fluxes were calculated (Table 2.2). The 

results indicate that approximately one third of the glucose taken up during the early 

recovery entered the PPP and subsequently returned to the glycolytic pathway. In 

contrast, in the late recovery phase, the flux of the PPP was residual and similar to the 

values observed before ischemia (between 3 and 10% of the glucose uptake rate). 

Additionally, the increment in the Lac/Glc ratio in this phase suggests a return to a 

predominance of glucose glycolytic metabolism, even though with significantly elevated 

specific rates for glucose uptake and lactate production, 50% and 60%, respectively, 

comparing with the period before ischemia.  

Amino acid concentrations in the culture supernatant were measured in samples 

collected throughout the experiments and their specific consumption or production 
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rates were determined, based on their decrease or accumulation in the medium, 

respectively (Table 2.3). The specific rate of glutamine synthesis more than doubled in 

the early recovery (from 19.8 ± 0.2 to 49.0 ± 2.0 nmol mg prot-1 h-1) and was further 

increased in the late recovery, comparing with the initial phase of the experiments (Table 

2.3).  

Table 2.3 – Effect of 5 hours of ischemia on astrocytic amino acids metabolic rates. 

 Before ischemia  [24 h] Early recovery [5-10 h] Late recovery [~36 h] 

rSer -10 ± 1 -13 ± 3 -18 ± 3 

rGly 29 ± 6 30 ± 5 40 ± 6 

rGln 19.8 ± 0.2 49 ± 2 70 ± 20 

rAla 19 ± 5 45 ± 6 40 ± 10 

rCyst - 17 ± 1 - 14.3 ± 3 - 19.4 ± 3 

rVal -11 ± 2 -70 ± 10* -7.2 ± 0.8 

rMet -3.2 ± 0.8 0 0 

rIle -21 ± 2 -61 ± 8* -7.4 ± 0.8 

rLeu -19.4 ± 0.9 -40 ± 1* -4 ± 1 
Specific consumption/production rates of amino acids were determined from total amounts measured in the culture 
supernatant using HPLC (negative values refer to consumption rates). The units of all listed rates are nmol mg protein-1 h-

1. Results presented are from a representative experiment of a total of four independent experiments. Values are rate ± 
error derived from rate calculation. Asterisks indicate a significant difference from values obtained before ischemia 
(ANOVA followed by Dunnet’s post hoc test, p < 0.05).  Abbreviations: Ser (serine), Gly (glycine), Gln (glutamine), Ala 
(alanine), Cyst (cystine), Val (valine), Met (methionine), Ile (isoleucine), Leu (leucine). 

By comparing the rates of production of the different glutamine isotopomers ([2-
13C], [3-13C] and [4-13C] glutamine) to determine the PC/PDH ratio in the different 

metabolic phases considered, it was found that the pathway catalyzed by PC was only 

active before ischemia (PC/PDH=0.1), the calculated value for the PC/PDH ratio being 

zero in the recovery period (Table 2.2). In addition, 13C % enrichment in glutamine was 

low, comparing to that of lactate and alanine, and was even more decreased in the 

recovery period (Table 2.2).  

Concerning the remaining amino acids analyzed, in general, the main alterations 

were observed in the early recovery. The specific consumption of branched-chain amino 

acids (BCAAs) valine, leucine and isoleucine increased between two to five-fold, the 

major increment being observed for valine (from 11 ± 2 to 70 ± 10 nmol mg prot-1 h-1), 

whereas alanine production duplicated in the recovery period (Table 2.3). Together with 
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the contribution of the PPP, the BCAAs consumption rates can be used to predict a 

theoretical dilution on the enrichment in glutamine, as leucine and isoleucine can be 

transformed into acetyl-CoA (see Table 2.1). These calculations were done by comparing 

the flux through PDH (Pyr → ACoA - reaction 10) with the sum of fluxes leading to the 

production of acetyl-CoA (reactions 10, 24 and 25), multiplied by the enrichment in 

pyruvate (assumed to be the same of that of lactate – Table 2.2). The results obtained for 

the theoretical enrichment in glutamine were markedly higher than the ones determined 

experimentally, in particular for the periods after ischemia: 35% before ischemia, 27% 

in the early recovery and of 47% in the late recovery phase.  

Regarding glycine and serine, their respective production and consumption 

increased slightly along the recovery period, comparing to the period before ischemia. It 

is worth to note that the culture medium used in the experiments (DMEM) did not 

contain aspartate or glutamate in its composition and, therefore, no uptake rates are 

presented for these amino acids. 

3.4 Metabolic fluxes distribution  

The fluxes estimated using MFA for the three distinct metabolic phases (before ischemia, 

early recovery and late recovery) are shown in Figure 2.6. It should be mentioned that no 

fluxes were calculated for the period of simulated ischemia since it is expected that the 

pools of many metabolites are altered during this period and thus, pseudo steady-state 

hypothesis cannot be assumed. Regarding the consistency test, it gave positive results for 

all metabolic phases, meaning that the biochemical network’s stoichiometry and the 

metabolic steady-state assumption are consistent with the experimental data. The 

modeling results are consistent with the enhancement of the flux of glucose metabolism 

through the pentose phosphate pathway (G6P → R5P and R5P → F6P + GAP - Figure 

2.6A) in parallel with the increased glucose uptake rate observed in the early recovery. 

Additionally, the flux of reaction 2 (G6P → F6P) in glycolysis, after the branch point 

between glycolysis and the PPP (see Figure 2.3) did not change in the early recovery and 

only increased significantly in the subsequent phase (Figure 2.6A). Moreover, during the 
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early recovery, a significant 2-fold increase in the fluxes of TCA cycle reactions (from 

0.38 ± 0.03 to 0.78 ± 0.03 µmol mg prot-1 h-1, in average) was estimated (Figure 2.6B).  

 

Figure 2.6 - Effect of ischemia in astrocytic metabolic fluxes. A – Glycolysis and pentose phosphate 
pathway reactions; B – Oxidative metabolism (TCA cycle); C – Amino acids metabolism. Fluxes were 
calculated by MFA for the periods before ischemia (normoxia) (white bars), and after ischemia - early 
recovery (grey bars) and late recovery (black bars), corresponding to average periods of 10 h and 48 h (as 
indicated in Figure 1), respectively. Asterisks indicate a significant difference from values obtained before 
ischemia (ANOVA followed by Dunnet’s post hoc test, p < 0.05). Error bars indicate the errors associated 
with model estimations. Results shown are from a representative experiment of a total of four independent 
experiments.   

By comparing the estimated fluxes for pyruvate production via glycolysis (GAP → Pyr) 

with the flux through PDH one can estimate the individual energy contributions of 

glycolysis and oxidative metabolism. Before ischemia, oxidative glucose metabolism was 

about 10% that of glycolysis, whereas in the early and late recovery this percentage 
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increased to 20% and 14%, respectively. The pyruvate recycling flux (reaction 18, Mal → 

Pyr) was active only before ischemia and in the early recovery, but the values obtained 

are very low when comparing to the estimated TCA cycle fluxes (Figure 2.6B).  

Using only the metabolite balancing it is not possible to estimate the individual 

fluxes (forward and backwards) in bidirectional reactions as, for example, the case of the 

transamination between α-ketoglutarate (α-KG) and glutamate (reactions 19/20) Instead, 

the MFA results indicate only the net flux of reversible reactions. The conversion of 

glutamate into α-KG was favored before ischemia and significantly increased in the early 

recovery; on the other hand, glutamate synthesis from α-KG was predominant in the late 

recovery and, thus, the estimated flux is negative (Figure 2.6B). The same is applied for 

the reactions catalyzed by glutamine synthetase and glutaminase. In this case, the net flux 

favored glutamine synthesis, which is in agreement with the increased glutamine release 

along the experiments. In the early recovery, the fluxes of the BCAAs (valine, isoleucine, 

leucine) catabolism into acetyl-CoA and/or succinyl-CoA were also significantly 

increased by two to three-fold (Figure 2.6C), reflecting the measured consumption rates. 

In the late recovery, a decrease in the TCA cycle fluxes and the pronounced reduction in 

the utilization of BCAAs to values closer to the ones observed before ischemia were 

observed. 

4 Discussion 

In this work, the distribution of metabolic fluxes of the main pathways involved in 

astrocytic energy metabolism was estimated by MFA in combination with 13C NMR data, 

allowing for the quantitative characterization of the consequences of ischemia in 

astrocytic metabolism. This approach is advantageous since it enables to estimate fluxes 

related with the main metabolic nodes. Furthermore, through the use of isotopic 

information, other important fluxes, such as pyruvate carboxylation and the PPP, can be 

additionally calculated thus improving the quality of model estimations.  
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The experimental setup used consisted in a stirred culture of rat cortical astrocytes 

adherent onto Cytodex3® microcarriers in a bioreactor (Figure 2.1), which allows for 

tightly controlled temperature, pO2 and pH, and non-invasive sampling throughout 

experiment time, being suitable to mimic ischemia in vitro. In fact, our group has 

previously demonstrated the suitability of this system to cultivate brain cells and mimic 

brain insults, such as hypoxia (Sá Santos et al. 2005), due to the ability to readily alter 

the pO2 in the culture medium. Figure 2.4F illustrates how this system allowed to rapidly 

(approximately 30 minutes) change the pO2 without significant oscillations around the 

defined set-point. Furthermore, the use of this in vitro model is very advantageous 

compared to in vivo models since metabolic effects of ischemia in astrocytes can be 

studied in a “closed system”, allowing for the study of specific effects in the astrocyte 

compartment and eliminating the possibility of glucose metabolism by other organs and 

the influence of blood. Even so, this model also has limitations. The strategy chosen to 

mimic ischemia (to allow first for glucose levels to decrease down to 0.2 mM and then 

decreasing pO2 to below 1%) was conditioned by the technical complexity of the 

bioreactor system when comparing to monolayer cultures, where medium exchanges and 

washing steps are much easier to perform, and does not correspond exactly to the in vivo 

condition in which glucose levels are usually normal when blood supply is blocked. 

Therefore, it can not be excluded that in the last hour before the onset of the insult, an 

extracellular glucose concentration lower than 0.5 mM might have caused partial 

depletion of intracellular glucose and glycogen pools and possibly influenced the extent 

of glycogenolysis and lactate production during the ischemic period.  

4.1 Cell death and ATP levels 

Five hours of oxygen and glucose deprivation resulted in a substantial percentage of cell 

death (30%). Oxidative stress and impairment of mitochondrial activity are well 

described events contributing for astrocytic death under such conditions. Several lines of 

evidence suggest an increase in the generation of reactive oxygen species during ischemia 
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as well as during reperfusion, with the consequent oxidative stress being a major cause of 

cellular death (Juurlink 1997). Our results also confirm previous reports of the particular 

astrocytic vulnerability to ischemia, comparing with oxygen deprivation alone (Sochocka 

et al. 1994; Alves et al. 2000). Astrocytes present a higher glycolytic activity under 

anaerobic conditions, which is normally sufficient to maintain ATP stores (Hertz 2008); 

however, when the lack of oxygen is combined with substrate depletion, it has been 

observed that an adequate supply of ATP is no longer possible, thus contributing to 

astrocytic death (Sochocka et al. 1994). Actually, ischemic conditions induced a fast 

decline of 30% in cellular ATP levels (Figure 2.4B) that could nonetheless be rapidly 

restored in the recovery period. It has been reported that in severe or complete brain 

ischemia, ATP falls to 0-25% of that in normally perfused tissue whereas in the 

penumbra this fall reaches only 50–70% (Lipton 1999). Additionally, Yager et al (1994) 

demonstrated, in mouse astrocyte cultures, that cell death occurs only once a critically 

'low' threshold of ATP has been reached  (below 10% of control) (Yager et al. 1994). 

Considering that the measured values of ATP were relative to the viable cells present in 

the culture, the results indicate that a 30% decrease in ATP pools did not affect cell 

viability.  

4.2 Glycolytic metabolism 

Several metabolic alterations occurred after ischemia, reflecting a response of the 

surviving cells to the insult. A prominent increase in Lac/Glc ratio to 7.14 during 

ischemia (Table 2) was observed. This ratio provides information regarding glycolytic 

versus oxidative glucose metabolism, since a higher proportion of lactate production, 

comparing to glucose consumption, indicates that less glucose is oxidized. In non human 

primate brains, in vivo, this ratio was also increased by several fold during ischemia, 

returning to baseline levels with reperfusion in penumbral areas but remaining increased 

in severely affected regions (Frykholm et al. 2005). Our results suggest the use of 

alternative carbon sources as lactate precursors, since the maximum expected value for 

this ratio is 2, assuming that two molecules of lactate are originated from each glucose 
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consumed. The additional degradation of the cellular glucose and pyruvate pools and, 

particularly, the breakdown of astrocytic glycogen reservoirs (Dringen et al. 1993), which 

is not dependent on ATP availability, are likely explanations for this result. Although it 

has been suggested that astrocytes provide neurons glycogen-derived lactate to be 

oxidized in situations where glucose is limiting, mainly during hypoglycemia or during 

periods of increased energy demand (Tekkok et al. 2005; Brown and Ransom 2007), the 

role of glycogen in ischemia survival has not been yet elucidated. Nevertheless, the 

results support the classical concept that astrocytes up-regulate glycolysis to deal with the 

decline in ATP due to the inhibition of respiration caused by ischemia (Dienel and 

Hertz 2005).  

The high glycolytic rates observed in this work and, particularly during ischemia, 

might be conditioned by the large extracellular culture volume in the bioreactor when 

comparing to the intracellular volume, favoring the diffusion of high amounts of lactate 

and other compounds to the large pool of medium, where they are constantly diluted. 

This contrasts markedly with the cellular environment of mature brain in vivo, as it has 

been discussed in the literature (Dienel and Hertz 2001). Even so, the lactate production 

rates obtained in this work, in the presence of glucose, are in the range of values 

previously obtained in other cell culture systems (Dienel and Hertz 2001). In addition, 

enhanced lactate release by astrocytes is favored by the existence, both in vitro and in vivo, 

of an extracellular concentration gradient which favors the rapid elimination of lactate 

from the brain (Dienel and Hertz 2005), and helps to prevent the disruption of the 

redox state of activated cells by high levels of lactate (Dienel and Hertz 2001), which 

indicates that these phenomena are not exclusive of in vitro cell preparations and have 

physiological significance. In fact, it has been proposed that increased lactate levels are 

good markers of severe ischemia in vivo (Frykholm et al. 2005). Interestingly, the 

neuroprotective effect of lactate administered right after ischemia has recently been 

proposed, using both in vivo and in vitro models (Berthet et al. 2009), thus supporting the 
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role of lactate as main astrocytic contributor for neuronal energy metabolism in ischemic 

brain (Phillis et al. 2001).  

After the observed increase in oxidative metabolism in the early recovery period 

(to be discussed below) cell metabolism was characterized by an increased glycolytic 

activity during the late recovery (for, at least, 48h) suggesting a partial recovery from the 

insult, as cells remained in an activated metabolic status. These findings might be related 

with increased expression of hypoxia-inducible factor 1 (HIF-1) target genes as increased 

glucose transport and glycolysis have been observed as a result of HIF-1 activation by 

hypoxia in the peri-infarct penumbra of rats subjected to permanent middle cerebral 

artery occlusion (Bergeron et al. 1999). 

4.3 Pentose phosphate pathway and dilution in lactate enrichment 

Oxidative stress is typically increased in pathological situations such as ischemia, hypoxia 

or inflammation (Bolanos et al. 2004). In this context, it has been proposed that the up-

regulation of the PPP provides protection through production of NADPH (Kussmaul et 

al. 1999) which is necessary for the regeneration of glutathione, an important 

antioxidant molecule (Dringen 2000). Moreover, increased glucose utilization by 

astrocytes has been reported to confer self-protection against nitric oxide-mediated 

glutathione oxidation (Garcia-Nogales et al. 1999). Thus, the observed reduction in 13C 

enrichment in lactate in the early recovery phase comparing with the pre-ischemic 

period, was interpreted as a result of increased [1-13C] glucose metabolism through the 

PPP, which products (unlabeled fructose-6-phosphate and unlabeled glyceraldehyde-3-

phosphate) re-enter glycolysis, thus diluting the label in lactate C3. Even though it has 

been suggested that glycogenolysis plays an important role in astrocytic energy 

homeostasis under activation (Dienel et al. 2007; Walls et al. 2009), lactate derived from 

eventual glycogen degradation was not considered to contribute significantly to this label 

dilution, since (i) the glycogen pool was probably depleted during the ischemic period, 

which is supported by the large observed increased in the Lac/Glc ratio (Table 2.2) and, 

in fact, it was in the early recovery phase (immediately after ischemia) that a higher 
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dilution in lactate enrichment was observed; (ii) glycogen constitutes an insignificant 

proportion of the total lactate released in the presence of glucose (Dringen et al. 1993) 

and (iii) glycogenolysis is mainly thought to occur when the available glucose cannot 

meet the cellular energy requirements (Brown and Ransom 2007), which was not the 

case in the different phases in which MFA was applied. Furthermore, the estimated 

percentage of PPP flux for the periods before ischemia and late recovery (during which 

glycogen stores should be available and a higher contribution of glycogenolysis could be 

expected) were of 10% and 3%, respectively. These results correlate with values obtained 

for the rat brain in vivo (Ben-Yoseph et al. 1995) and therefore justify the assumption 

that dilution of lactate enrichment was mainly due to activation of the PPP. After 

ischemia, the PPP flux was increased to 35% of the glucose uptake rate, which is in 

accordance with previous observations of PPP flux up-regulation to ~67% in cultured 

astrocytes and up to ~36% in conscious rats, as a response to different oxidative stress 

conditions (Ben-Yoseph et al. 1994).  

Interestingly, the important contribution of the PPP to the dilution of lactate 

enrichment in the brain was recently discussed in the literature in the context of in vivo 

brain activation studies and estimations of important metabolic fluxes, such as the 

glutamate-glutamine cycle. Dilution in glutamine C4 was found to significantly influence 

the estimation of the glutamate-glutamine cycle fluxes in vivo as it has been based on the 

measurement of glutamine turnover from 13C-labeled glucose and acetate (Shen et al. 

2009). Though this “glutamine dilution” has been attributed to lactate and glutamine 

exchange between brain and blood, further studies have shown that other pathways such 

as the PPP, oxidation of fatty acids and of BCAAs must contribute substantially to this 

observation (Cruz et al. 2007; Dienel and Cruz 2009). Hence, our results corroborate 

the importance of the PPP during brain activation and in response to pathologies such 

as ischemia. 
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4.4 TCA cycle and metabolism of BCAAs 

Flux estimations provided by MFA (Figure 2.6) helped to explain the observed changes 

in glucose and lactate metabolic rates after ischemia and to understand its consequences. 

The reduction on the Lac/Glc ratio in the early recovery was indeed reflected into both 

an enhancement in the fluxes of the PPP and TCA cycle. In addition, the fraction of 

oxidative glucose metabolism was markedly increased in both recovery periods (from 

10% before ischemia to 20% and 14% in early and late recovery, respectively), which can 

be interpreted as a cellular mechanism to replenish intracellular ATP pools that were 

depleted during the insult, as confirmed by experimental measurements (Figure 2.4B). 

Increased ATP production through oxidative phosphorylation after ischemia might also 

be related with altered ion homeostasis as the response of brain cells to energy 

deprivation has been reported as being a complex function of their capacity to produce 

ATP and of the activities of various pathways which are involved in ion homeostasis 

(Silver et al. 1997).  

The catabolism of BCAAs was also increased in the early recovery phase. It is 

known that BCAAs are important brain energetic fuels in physiological conditions and 

also contribute to the maintenance of nitrogen homeostasis by providing amino groups 

to be used in glutamate and glutamine synthesis (Yudkoff 1997). For example, the 

catabolism of isoleucine results in the formation of both succinyl-CoA and acetyl-CoA, 

thus supplying both an anaplerotic substrate downstream of the α-ketoglutarate 

dehydrogenase step (if we consider that the pool of TCA cycle intermediates is 

approximately constant, the role of BCAAs generating succinyl-CoA should be related to 

anaplerosis, allowing to support the synthesis of biomass components and, especially, 

glutamine) as well as acetyl-CoA for synthesis of citrate. This has been shown to occur in 

cultures of astrocytes for isoleucine and valine (Johansen et al. 2007; Murin et al. 2009a, 

b). In addition, pyruvate recycling (reaction 18, Mal → Pyr), which might provide 

molecules to the glycolysis/gluconeogenesis, did not change appreciably during the 

experiments. This reinforces the idea that the BCAAs entering the TCA cycle were 
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either oxidized to CO2 or were used for the synthesis of glutamate/glutamine, leaving 

the TCA cycle through reactions 8, 19, 20, 21. To our knowledge, a possible role of 

BCAAs in supporting brain metabolism during/after ischemia has not yet been 

explored, although some evidence exists that BCAAs derived from muscle proteolysis 

function as energy substrates for heart muscle (Li and Gao 1999), and provide 

protection in myocardial ischemia (Szpetnar et al. 2004). Hence, our results suggest that 

BCAAs might represent alternative fuels to support astrocytic and neuronal survival 

from ischemia, for which this subject should be further explored. 

Still regarding MFA estimations, it is worth to mention that besides conversion 

into pyruvate (reaction 29) there are other known fates of cysteine in astrocytes, namely 

glutathione synthesis, for which cysteine is a limiting molecule (Kranich et al. 1996), and 

also taurine and hypotaurine synthesis, which was described to occur under physiological 

conditions (Brand et al. 1998). However, due to the difficulty in determining 

intracellular synthesis of these different compounds, this was not taken into account for 

the MFA calculations, and therefore the use of cysteine for pyruvate synthesis is certainly 

overestimated. Nevertheless, due to the low order of magnitude of the estimated flux for 

the reaction of conversion of cysteine to pyruvate (~20 nmol mg prot-1 h-1), comparing 

with the flux of pyruvate synthesis from glyceraldehyde-3-phosphate (2-3 µmol mg prot-1 

h-1), it does not have a significant influence on the estimated fluxes. 

4.5 Glutamine production and dilution in glutamine enrichment 

Regarding the PC/PDH ratios determined (Table 2.2) and the observed rates of 

glutamine synthesis (Table 2.3), even though the anaplerotic reaction catalyzed by PC is 

important for the de novo synthesis of glutamine (Shank et al. 1985), PC activity was only 

detected before ischemia, when glutamine production rate was lower. Furthermore, the 

predominant conversion of glutamate into α-KG over glutamate release from the TCA 

cycle, and its significant enhancement in the early recovery, indicates that some 

glutamate was also oxidized in this phase instead of being used for glutamine synthesis. 

These results imply that other precursors, namely BCAAs (given its role as anaplerotic 
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molecules), likely contributed to the maintenance of glutamine production. The 

decrease in 13C enrichment in extracellular glutamine, in the recovery period, also 

supports this hypothesis (Table 2.2). These results are particularly important since they 

suggest that PC was not a major contributor for de novo glutamine synthesis which 

might influence its estimation along with the astrocytic oxidation rate in other studies. 

Moreover, as discussed above regarding dilution in lactate enrichment, our results also 

indicate that utilization of unlabelled BCAAs as oxidative fuel significantly contributes 

to the “glutamine dilution” observed in many in vivo magnetic resonance studies. 

Nevertheless, a quantitative comparison of the PDH flux with metabolic rates of BCAAs 

catabolism, taking into account the contribution of the PPP to label dilution in pyruvate, 

shows that these pathways can not solely explain the observed dilution in glutamine 

enrichment in the present study. The distinct differences between theoretically estimated 

values and the ones determined experimentally suggest that activation of other pathways 

that were not taken into account in our metabolic network were likely to be active 

mainly after ischemia, such as fatty acids oxidation or even protein degradation, which 

have also been proposed to contribute to the “glutamine dilution” phenomenon 

observed in vivo (Shen et al. 2009). Even so, the increase in glutamine release after 

ischemia can be interpreted as an intrinsic glial mechanism aiming to support neuronal 

function under stress conditions. This finding is consistent with results obtained using 

rat models, indicating that astrocytes in the penumbra continue to produce glutamine 

even after 240 min of middle cerebral artery occlusion in rats, which demonstrated a 

good preservation of astrocytic metabolism in moderately ischemic tissue (Haberg et al. 

2001).  

4.6 Concluding remarks 

In summary, this work reinforces the suitability and robustness of MFA not only to 

calculate metabolic fluxes in brain cell cultures but, more importantly, to characterize 

the main metabolic effects of a given insult, such as ischemia. Overall, our results show 

that changes in fluxes of key energy metabolism pathways, such as the PPP and the TCA 
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cycle, are implicated in the recovery from ischemia in astrocytes. Herein, BCAAs seem to 

play a crucial role as anaplerotic molecules and therefore their use as a therapeutic tool 

after ischemia should be investigated. In addition, the activation of the PPP underlines 

the importance of this pathway for cell protection under increased oxidative stress and 

highlights the relevance of this pathway regarding the estimation of metabolic fluxes 

based on the analysis of isotopic enrichment from 13C-glucose metabolism. In general, 

this work provides valuable knowledge regarding ischemia-induced astrocytic metabolic 

alterations, which can help to understand findings obtained in vivo. In future studies we 

aim to address the significance of these alterations in the context of astrocytes-neurons 

interactions in more complex models of ischemia. 
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Abstract 

Although glucose is the primary cerebral fuel, the brain is able to metabolize other 

substrates under hypoglycaemia. Nevertheless, the metabolic consequences of this 

pathology at the cellular level remain largely unknown. Taking advantage of the 

metabolic flux analysis (MFA) methodology, this work aimed at investigating and 

quantifying the effects of hypoglycaemia on cerebellar neurons. After 12 h without 

glucose, primary cultures were incubated with medium containing [1,6-13C]glucose and 

unlabelled glutamine and metabolism was monitored for 30 h. Metabolic rates of 

glucose, lactate, and amino acids were determined based on cell supernatant analysis and 

used to estimate metabolic fluxes with MFA. Percent 13C enrichment time-profiles of 

different keto and amino acids were measured by mass spectrometry in cell extracts and 

compared to the MFA results. Hypoglycaemia decreased the glucose uptake rate and 

glycolytic metabolism by 35% whereas glutamine uptake was increased by 4-fold. Flux 

estimations fit well with data from 13C labelling dynamics, indicating a significant 

activation of the pyruvate recycling pathway, accounting for 43% of the total pyruvate 

synthesized in control conditions and up to 71% after hypoglycaemia. Increased 

pyruvate recycling appeared to be mainly due to increased glutamine oxidation given the 

higher label dilution observed in the hypoglycaemia group. In summary, this work 

provides new evidence for pyruvate recycling as an important pathway for glutamine 

oxidation in cerebellar neurons, particularly after glucose deprivation. 
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1 Introduction 

Hypoglycaemia is a condition characterized by decreased blood glucose levels and occurs 

frequently in diabetic patients undergoing insulin therapy (Suh et al. 2007). In addition 

to other symptoms, acute hypoglycaemia was shown to affect cognitive functions leading 

to impaired judgment and decreased memory function, which were suggested to be 

caused by alterations of brain energy metabolism (Warren and Frier 2005). Glucose is 

the major brain energy fuel and its concentration in blood (3.9 – 7.1 mM) and brain (0.8 

– 2.3 mM) shows a linear correlation (Gruetter et al. 1998). Thus, in the case of a 

hypoglycemic episode, where blood glucose concentrations decrease below 2 mM, brain 

glucose levels might easily approach zero, as consumption exceeds transport capacity 

(Suh et al. 2007). However, studies in subjects with type 1 diabetes and hypoglycaemia 

unawareness suggested that cerebral metabolism is able to adapt to the use of other 

substrates after repeated deprivation of glucose (Criego et al. 2005). For instance, 

(Mason et al. 2006) reported an increase in cerebral metabolism of acetate in those 

patients and (Suh et al. 2005) showed that pyruvate improved cognitive function in rats 

after insulin-induced hypoglycaemia by circumventing a sustained impairment of 

neuronal glucose metabolism. 

Brain metabolism depends on important neuronal-glial coupling mechanisms 

due to distinct enzymes and pathways occurring in each of these cell types (McKenna et 

al. 2006b) and controversy still exists regarding the cellular compartments where glucose 

or lactate are mainly metabolized under different conditions (Pellerin et al. 2007; Bak et 

al. 2009). Nevertheless, it has been proposed that neurons metabolize both substrates, 

depending on their relative concentrations under resting or activated conditions 

(Cerdan et al. 2006). Furthermore, the glutamate-glutamine cycle has been shown not to 

be stoichiometric, being able to provide glutamate or glutamine as energy substrates for 

neurons and astrocytes, depending on cellular requirements (McKenna 2007). These 

amino acids can only be oxidized in the tricarboxylic acid (TCA) cycle and for complete 

oxidation to occur a 4 carbon unit has to leave the cycle at the malate or oxaloacetate 
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nodes and re-enter afterwards as pyruvate (Cruz et al. 1998). This pathway, named 

“pyruvate recycling” was first reported in the brain by Cerdan and colleagues (Cerdan et 

al. 1990), who subsequently demonstrated that it should be mainly localized in neurons, 

contributing with 17% of the total pyruvate metabolized via pyruvate dehydrogenase 

(Kunnecke et al. 1993). However, contradicting data have been obtained regarding the 

cellular localization of this pathway. Later studies based on 13C nuclear magnetic 

resonance (NMR) spectroscopy analysis, either in animals or cell cultures, suggested that 

pyruvate recycling took place predominantly in astrocytes, accounting for a significant 

amount of the lactate produced in this compartment (Bakken et al. 1997; Haberg et al. 

1998; Alves et al. 2000; Waagepetersen et al. 2002). More recently, pyruvate recycling 

was shown to occur to a significant extent in cerebellar co-cultures (Bak et al. 2007) or 

monotypic cultures of cerebellar neurons (Olstad et al. 2007b). In principle, the presence 

of a pyruvate recycling pathway gives tissues the ability to continuously maintain 

sufficient energy metabolism when substrates such as glucose and ketone bodies are low. 

Thus, further investigation of the localization and importance of this pathway in the 

brain might provide important knowledge on the cellular responses to hypoglycaemia.  

The use of 13C-labelled compounds and mass spectrometry has enabled the 

investigation of different metabolic aspects using brain cell cultures in recent decades 

(Bak et al. 2007; Johansen et al. 2007; Olstad et al. 2007a). In this work, gas 

chromatography-mass spectrometry (GC-MS) was used to investigate the time-profiles of 
13C-glucose metabolism in astrocytes after a 12 h period of hypoglycaemia mimicked by 

glucose deprivation. Additionally, the Metabolic Flux Analysis (MFA) methodology 

(Teixeira et al. 2008; Amaral et al. 2010) was applied to estimate and quantify the effects 

of hypoglycaemia on intracellular metabolic fluxes of cerebellar neurons. The 

combination of data obtained using these different tools provided important knowledge 

regarding the role of glutamine and pyruvate recycling in neuronal metabolism both 

before and after hypoglycaemia.  
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2 Materials and Methods 

2.1 Materials 

Plastic tissue culture dishes (6-wells) were purchased from Nunc (Roskilde, Denmark); 

fetal calf serum from Seralab Ltd. (Sussex, UK); penicillin–streptomycin (Pen-Strep) 

solution was purchased from GIBCO, Invitrogen (Paisley, UK); Dulbecco’s modified 

Eagle’s Medium (DMEM), cat number D5030, was purchased from SIGMA-Aldrich 

(Steinheim, Germany), 13C-labelled glucose was purchased from Cambridge Isotope 

Laboratories (Andover, MA, USA); N–Methyl-N-(t-Butyldimethylsilyl) trifluoroacetamide 

(MTBSTFA)  +  1% t-butyldimethylchlorosilane (t-BDMS-Cl)  was purchased from Regis 

Technologies (Morton Grove, IL, USA); toluene and acetonitrile were purchased from 

LabScan (Gliwice, Poland); all other chemicals were purchased from SIGMA-Aldrich 

(Steinheim, Germany). 7-day-old mice (NMRI) were purchased from Møllegaard 

Breeding Center (Ejby, Denmark).  

2.2 Cerebellar neurons and culture conditions 

All animal procedures were conducted according to national regulations. Cerebella were 

dissected from 7-day-old mice and cells were isolated following a previously described 

protocol (Olstad et al. 2007a). Briefly, the brain tissue was trypsinized followed by 

trituration in a DNase solution (100 µg/ml) containing a trypsin inhibitor from 

soybeans. Cells were suspended (2.5 x 106 cells/ml) in a slightly modified DMEM, 

containing 31 mM glucose; 0.45 mM glutamine, 7.3 µM p-aminobenzoic acid, 4 µg/l 

insulin; 100 U/ml Pen-Strep and 10% (v/v) fetal calf serum and seeded in 6-wells 

culture dishes coated with poly-D-lysine (50 mg/l). 2 ml of medium were used per well. 

Cytosine arabinoside (20 µM) was added after 24–48 h to prevent the proliferation of 

astrocytes. This protocol yields a culture 90% enriched in cerebellar granule neurons 

with a maximum of 5% glial cells (Drejer et al. 1985; Drejer and Schousboe 1989). 

 



MFA of Cultured Cerebellar Neurons: Effects of Hypoglycaemia 

 111 

2.3 Hypoglycaemia in cerebellar neuronal cultures  

After 7 days in vitro, the cultures were divided in two groups and incubated with 2 ml of 

medium containing 2.5 mM glutamine, 1% fetal calf serum, 100 (U/ml) Pen-Strep, 3 

mM glucose (control group) or without glucose (hypoglycaemia group) after gently 

washing the cells with phosphate-buffered saline (PBS). After 12 h of incubation, the 

medium was again replaced by fresh medium with the composition described above, 

containing 3 mM [1,6-13C] glucose and 2 mM unlabelled glutamine. The period of 12 h 

of glucose deprivation mimics a prolonged fasting period that can occur either in normal 

or diabetic subjects, for example, overnight. During approximately 30 h samples were 

collected at several time points (0, 4, 8, 13.5, 23.5, 29.5 h). The cell supernatant was 

removed and centrifuged at 3000 x g for 5 min. Cells were washed twice with cold PBS 

and extracted with 70% (v/v) ethanol. Cells were scraped off the dishes and centrifuged 

at 20000 x g for 15 min to separate metabolites from insoluble proteins and other macro 

molecules. The resulting supernatants (cell extracts) were stored at -80 ºC until further 

analyses. The pellets (obtained after cell extraction) and supernatant samples were stored 

at -20ºC. 

2.4 Quantification of total glucose, lactate, and amino acids 

Glucose and lactate concentrations in cell supernatant samples were determined in a 

RAPIDLab 1265 blood gas analyzer (Siemens AG, Erlangen, Germany). Amino acids in 

cell supernatant samples and cell extracts were quantified by HPLC on a Hewlett 

Packard 1100 system (Agilent Technologies, Palo Alto, CA, USA). The amino acids were 

pre-column derivatized with o-phthaldialdehyde and subsequently separated on a 

ZORBAX SB-C18 (4.6 mm x 150 mm, 3.5 µm) column from Agilent using a phosphate 

buffer (50 mM, pH 5.9) and a solution of methanol (98.75%) and tetrahydrofurane 

(1.25%) as eluents as described before (Olstad et al. 2007a). Prior to derivatization, 

sample proteins were precipitated by adding an equal volume of acetonitrile and 

removed by centrifugation at 12,400×g for 15 min, at room temperature. An internal 
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standard (α-aminobutyric acid) was added to ensure consistent measurements between 

runs. The separated amino acids were detected by fluorescence and quantified by 

comparison to a standard curve of standard solutions of amino acids run after every 

twelve samples. The method’s detection limit was 1 µM. 

2.5 Determination of Protein Content 

The pellets obtained after cell extraction were freeze-dried to remove any rest of ethanol, 

suspended in 1 M NaOH and incubated at 37ºC to ensure complete dissolution of the 

protein. Since cells were carefully washed twice before extraction, protein content in the 

extracts corresponds only to viable cells, as possible dead cells in suspension were 

removed by the washing steps. The bicinchoninic acid (BCA) protein assay from Pierce 

(Rockford, IL, USA) was used to determine total protein amounts using bovine serum 

albumin as standard.  

2.6 Gas Chromatography-Mass Spectrometry 

The pH of the cell extracts in 70% ethanol was adjusted to pH < 2 with 6 M HCl and 

the samples were then dried under atmospheric air. The metabolites were extracted into 

an organic phase of ethanol and benzene and dried again under atmospheric air. N,N-

Dimethylformamide (DMF) was added before derivatization with MTBSTFA in the 

presence of 1% t-BDMS-Cl as described before (Olstad et al. 2007a). The samples were 

analyzed on an Agilent 6890 gas chromatograph with a capillary column (WCOT fused 

silica 25x 0.25 mm ID, CP-SIL 5CB-MS, Varian), connected to an Agilent 5975B mass 

spectrometer with electron impact ionization. Atom percent excess (13C) was determined 

after calibration using unlabelled standard solutions (Biemann 1962). 

2.7 Metabolic fate of [1,6-13C] glucose in cerebellar neurons 

Interpretation of the results obtained from GC-MS is based on the metabolic fate of [1,6-
13C]glucose which enters neurons and is transformed via glycolysis to [3-13C]pyruvate. 

The latter can be converted to [3-13C]lactate or [3-13C]alanine or be transported into 
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mitochondria to enter the TCA cycle as [2-13C]acetyl-CoA. Condensation of [2-
13C]acetylCoA with unlabelled oxaloacetate will, after several steps, lead to the formation 

of [4-13C]glutamate and to either [2-13C]- or [3-13C]aspartate after the scrambling of a 4-

carbon unit via the action of fumarase and malate dehydrogenase, at the succinate step. 

These compounds have one 13C atom and are thus detected as M+1 isotopomers in GC-

MS. If labelled oxaloacetate condenses with labelled acetyl-CoA, double labelled 

metabolites are formed and they will be detected as M+2 by GC-MS. 

2.8 Data Analysis 

Consumption or production rates of glucose, lactate and amino acids whose 

concentrations changed with time in the culture supernatant were calculated by 

performing a linear regression analysis to the different time points corresponding to 

samples collected throughout the experiments, followed by correction for the average 

amount of cellular protein (average values of 0.07 ± 0.01 mg and 0.09 ± 0.01 mg were 

obtained for control and hypoglycaemia groups, respectively). These experimentally 

determined metabolic rates were then used to feed the MFA model in order to estimate 

intracellular metabolic fluxes (see next section). Peaks from mass spectra were integrated, 

and atom percent excess (13C) of the selected metabolites was determined after 

calibration using unlabelled standard solutions (Biemann 1962). Alanine, glutamate, α-

ketoglutarate, malate, aspartate, and citrate were analyzed in cell extracts and lactate and 

alanine were analyzed in cell supernatant samples collected at the end of the incubation 

with [1,6-13C]glucose. Data from 13C enrichment time-courses in intracellular metabolites 

were not used for metabolic modelling purposes but only to help interpreting MFA 

results and to evaluate their validity. Results are presented as means ± s.d. Differences 

between groups were analyzed using two-tailed Student’s t-test, and p < 0.05 was 

considered statistically significant.  
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2.9 Metabolic Flux Analysis 

MFA is a well established technique for the determination of flux distribution in 

metabolic networks (Lee et al. 1999). This technique relies on the assumption of 

metabolic pseudo-steady-state for intracellular metabolite concentrations, which means 

that their accumulation inside the cells is negligible and, thus, the sum of the fluxes of 

synthesis and consumption of any metabolite is equal to zero. The pseudo-steady-state 

approximation is generally accepted as reasonable and valid in a wide range of scenarios 

due to the very high turnover of the pools of most metabolites, especially those 

participating in central metabolism (Lee et al. 1999). Consequently, the concentrations 

of the different metabolite pools rapidly adjust to new levels even after large 

perturbations in the environment experienced by the cells (Lee et al. 1999). Examples of 

applications of the steady-state approximation to similar culture systems (primary 

cultures) to that used in the present work are studies from (Chan et al. 2003; Teixeira et 

al. 2008). The intracellular flux distribution is estimated on the basis of this steady-state 

assumption, on the network stoichiometry, and using the information from 

transmembrane rates of metabolites measured in the culture supernatant (Lee et al. 

1999), which need to be linear, indicating that the fluxes are constant. The biochemical 

network considered to represent the metabolism of neurons is shown in Figure 3.1 and 

it includes the main reactions involved in central carbon metabolism, namely glycolysis, 

TCA cycle and amino acids metabolism. The complete list of reactions is presented in 

Appendix 2. The network considers 44 reactions, from which 13 are experimentally 

measured transmembrane rates (Table 3.1), and 34 internal (balanced) metabolites. The 

weighted least-squares method was used to calculate the unknown fluxes (Wang and 

Stephanopoulos 1983) (for further details in the calculation of metabolic fluxes see Lee 

et al, 1999 and Teixeira et al, 2008). The consistency index, h, was determined and 

compared with the 2-test function (degrees of freedom are equal to the number of 

redundant equations) to evaluate the consistency of the experimental values along with 

the assumed biochemistry and the pseudo-steady-state assumption (Wang and 
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Stephanopoulos 1983). The above-mentioned calculations were performed using the 

CellNetAnalyzer software (Klamt et al. 2007). 

 
Figure 3.1 - Schematic representation of the metabolic network used to estimate metabolic fluxes of 
cerebellar granule neurons by MFA. The detailed stoichiometry of the reactions considered is given in 
Appendix 2 (supplementary material). Abbreviations: GLC, glucose; G6P, glucose-6-phosphate; PYR, 
pyruvate; LAC, lactate; GLU, glutamate; ALA, alanine; α-KG, α-ketoglutarate; OAA, oxaloacetate; CIT, 
Citrate; SUCCoA, succinyl-coenzyme A; SUC, succinate; FUM, fumarate; MAL, malate; ASP, aspartate; 
GLN, glutamine; GLY, glycine; SER, serine; LEU, leucine; ILE, isoleucine; VAL, valine; PHE, 
phenylalanine;  TYR, Tyrosine; ARG, arginine; LYS, lysine.  

 

3 Results 

3.1 Glucose, lactate and amino acids metabolism 

To study the effect of hypoglycaemia on neuronal metabolism, primary cultures of 

cerebellar granule neurons were subjected to 12 h of glucose deprivation and 

subsequently incubated in medium containing 3 mM [1,6-13C]glucose and unlabelled 

glutamine for ~30 h. Protein content remained constant throughout the experiment. In 
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addition, cell inspection under an inverted microscope showed that cells remained 

attached to the culture dish surface, exhibiting a regular morphology, and no cells in 

suspension were observed, even at the end of the experiments (data not shown). Thus, it 

appears that no significant cell death occurred during the experiments.  

Metabolic rates obtained for glucose, lactate and amino acids are presented in 

Table 3.1. Neurons subjected to hypoglycaemia presented both decreased glucose 

consumption and lactate production rates and a lower lactate to glucose (Lac/Glc) ratio, 

when compared to the control group (1.4 vs. 2, respectively), suggesting a higher degree 

of glucose oxidation. Concerning metabolic rates of amino acids, glutamine 

consumption was significantly increased after hypoglycaemia. Leucine and valine 

consumption rates presented a slight although not significant decrease after 

hypoglycaemia, whereas glycine and lysine were only consumed in the control group and 

alanine synthesis was also unaffected by hypoglycaemia.  

Table 3.1 - Experimentally determined consumption/production rates (nmol.mg prot-1.h-1) of the main 
metabolites involved in neuronal metabolism. 

 Control Hypoglycaemia 

rGlc -296 ± 47 -190 ± 20* 

rLac 595 ± 31 260 ± 20* 

 Lac/Glc = 2 Lac/Glc = 1.4 

rAla 17 ± 5 28 ± 4 

rGln -170 ± 130 -700 ± 100* 

rArg -40 ± 10 -30 ± 10 

rSer -50 ± 10 -30 ± 10 

rGly -117 ± 32 0* 

rTyr 0 -30 ± 10* 

rLys -130 ± 60 0* 

rVal -150 ± 60 -80 ± 30 

rIle -140 ± 60 -110 ± 30 

rLeu -130 ± 50 -90 ± 30 

rPhe -40 ± 20 -40 ± 10 

Cerebellar granule neurons were incubated for 12 h in DMEM with or without (hypoglycaemia) 3 mM glucose and 
subsequently medium was changed to DMEM containing 3 mM [1,6-13C]glucose and unlabelled glutamine. Samples of 
culture supernatant were collected at different time points during ~30 h of incubation. Glucose, lactate and amino acid 
concentrations were later quantified and their specific consumption or production rates were determined (for details see 
Materials and Methods).  Negative values refer to consumption rates. Results are presented as means ± standard error of 
regression analysis performed with all time-points (n=4). p<0.05 was considered statistically significant (Student’s t-test). 
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*Different from control. Abbreviations: Glc (glucose), Lac (lactate), Ala (alanine), Gln (glutamine), Arg (arginine), Ser 
(serine), Gly (glycine), Tyr (Tyrosine), Lys (lysine), Val (valine), Ile (isoleucine), Leu (leucine), Phe (phenylalanine).  

 

Intracellular content of some amino acids was quantified by HPLC in cell extracts at 

different incubation times (see Materials and Methods); average values are presented in 

Table 3.2. Alanine and glutamine pools were higher in the control group. The values 

obtained for glutamine pools are much larger than those reported by Olstad et al (2007a) 

(between 57 and 84 nmol/mg protein in the presence of 0.5 mM glutamine), probably 

due to the higher concentration of glutamine in the culture medium (2 mM). Glutamate 

pool sizes were much lower than those observed for glutamine but in the range of values 

previously reported for incubations in medium without glutamate (Olstad et al. 2007a; 

Peng et al. 2007).  

Table 3.2- Cellular content (nmol/mg protein) of amino acids in cerebellar granule neurons. 

 Control Hypoglycaemia 

Alanine 119 ± 22 85 ± 21* 

Glutamate 126 ± 22 84 ± 47 

Glutamine 1092 ± 276 571 ±185* 

Cerebellar granule neurons were incubated for 12 h in DMEM with or without (hypoglycaemia) 3 mM glucose and 
subsequently medium was exchanged to DMEM containing 3 mM [1,6-13C]glucose and unlabelled glutamine. During ~30 
h of incubation, cell extracts were performed at different time-points and amino acids were later quantified as described in 
Materials and Methods. Results are presented as mean ± s. d of all time points as no significant changes were observed 
with time for each group (n=4). p<0.05 was considered statistically significant (Student’s t-test). * Different from control.   

3.2 13C enrichment in intracellular and extracellular metabolites 

13C enrichment (in atom percent excess) time-courses of some intracellular metabolites 

(citrate, glutamate, malate and aspartate) were followed by GC-MS and results are shown 

in Figure 3.2. Table 3.3 presents the values obtained for intra and extracellular 

metabolites at the end of the experiments. After 30 h of incubation with [1,6-
13C]glucose, only a maximum of 32% 13C enrichment (sum of M+1 and M+2) was 

achieved (citrate), which shows a slow rate of incorporation of label in TCA cycle 

intermediates of cerebellar neurons and also suggests the significant contribution of 

other (unlabelled) metabolites. As expected, slightly lower labelling rates were observed 

in the hypoglycaemia group (Figure 3.2 - filled symbols), as the uptake of glucose was 
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35% less compared to the control group. In hypoglycaemia group, 13C time-courses 

suggested that an intracellular labelling steady-state was reached, which was not observed 

for the control group. In both groups, percent 13C enrichment in glutamate (Figure 

3.2B) and α-ketoglutarate (data not shown) were comparable, although lower, than that 

observed for the other TCA cycle-related metabolites. Malate and aspartate labelling 

time-courses were also comparable (Figure 3.2C and 3.2D). In addition, intracellular 

alanine presented the highest enrichment in both groups (alanine M+1 ~65%; Table 

3.3). 

 
Figure 3.2- Effect of hypoglycaemia on percent 13C enrichment in citrate (A), glutamate (B), malate (C) 
and aspartate (D) as detected by GC/MS.  Cell extracts of cultured cerebellar neurons were performed at 
different time-points during incubation with [1,6-13C]glucose, as described in Materials and Methods. Filled 
symbols – cells previously subjected to 12h of hypoglycaemia; white symbols - control conditions. Squares 
refer to molecules labelled in one carbon (M+1) and triangles refer to molecules labelled in two carbon 
positions (M+2). Note: black lines in the graphics were drawn in order to illustrate better the tendency of the 
data and do not represent any model fitting. 

 

GC-MS analysis of the culture supernatant at the end of the experiments revealed 

significantly lower 13C enrichment in secreted metabolites from the hypoglycaemia group 

(Table 3.3). Extracellular alanine was less enriched than its intracellular pool and also 
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compared to extracellular lactate, in both cases significantly lower in the hypoglycaemia 

group (Table 3.3).  

Table 3.3- Percent 13C enrichment in metabolites from cell extracts and supernatants of cerebellar 
neuronal cultures. 

Cerebellar granule neurons were incubated for 12 h in DMEM with or without (hypoglycaemia) 3 mM glucose and 
subsequently medium was exchanged to DMEM containing 3 mM [1,6-13C]glucose. After ~30 h of incubation, % 13C 
enrichment in intra- and extracellular metabolites was analyzed by GC-MS. Extracellular concentration of lactate was 
measured using a blood gas analyzer and alanine was measured by HPLC, according to Materials and Methods. Results are 
presented as means ± s.d. in atom percent excess (n=4). *p<0.05 vs. control (Student’s t-test). 

3.3 Metabolic flux distributions 

To investigate in detail the main effects of 12 h of hypoglycaemia on the metabolism of 

cerebellar granule neurons, intracellular metabolic fluxes were estimated using MFA 

(Figure 3.3). A consistency test was performed (Wang and Stephanopoulos 1983) 

indicating that the biochemical network’s stoichiometry and the metabolic steady-state 

assumption are consistent with the experimental data. MFA results reflect the measured 

metabolic rates for glucose and lactate, showing that the rate of anaerobic glycolysis was 

higher in control conditions and, conversely, the PDH flux was increased by 

hypoglycaemia (Figure 3.3A). In general, the fluxes of the TCA cycle reactions were 

similar between groups (Figure 3.3B), except for the reaction of conversion of α-

ketoglutarate into succinyl-CoA, which was increased in the hypoglycaemia group. This 

can be explained by the higher flux of glutamine conversion into glutamate, meaning a 

higher carbon flux entering the TCA cycle at the α-ketoglutarate node. Additionally, 

the ratio between TCA cycle fluxes and glycolysis was higher in the hypoglycaemia group, 

Cell Extracts 
Control Hypoglycaemia 

M+1 M+2 M+1 M+2 

Citrate 25.4 ± 0.7 8.0 ± 0.4 18.2 ± 1.5 * 5.3 ± 0.5 * 

α-Ketoglutarate 10.7 ± 1.9 2.0 ± 1.5 7.0 ± 3.0 0.2 ± 0.3 * 

Glutamate 13.3 ± 0.4 4.3 ± 0.2 7.4 ± 0.4 * 1.7 ± 0.1 

Malate 24.3 ± 0.6 2.8 ± 0.4 16.3 ± 2.1 * 1.2 ± 0.3 * 

Aspartate 23.5 ± 1.0 3.1 ± 0.3 12.7 ± 1.3 * 1.3 ± 0.5 * 

Alanine 64.7 ± 2.5 0.39 ± 0.04 62 ± 8 0.8 ± 0.3 * 

Supernatant M+1 Concentration (mM) M+1 Concentration (mM) 

Alanine 47.9 ± 0.1 0.057 ± 0.002 43.6 ± 0.8 * 0.052 ± 0.007 

Lactate 70.7 ± 0.8 0.85 ± 0.06 64.3 ± 0.3 * 0.55 ± 0.06 
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indicating that oxidative metabolism was augmented, when comparing to glycolysis 

(Figure 3.3). Pyruvate recycling flux (malate to pyruvate flux) was also increased by 

hypoglycaemia, probably also due to increased glutamine metabolism through the TCA 

cycle (Figure 3.3B). Concerning amino acids metabolism (Figure 3.3C), MFA results 

showed no significant differences between groups regarding most of the amino acids 

considered.  

 
Figure 3.3 - Metabolic flux distributions estimated using MFA for the control group (white bars) and cells 
previously subjected to hypoglycaemia (grey bars). A – Reactions linked to glycolysis; B – TCA cycle-related 
reactions; C – Amino acids metabolism. Error bars correspond to standard deviations computed with the 
CellNetAnalyzer software by propagation of errors associated with rate estimations and experimental 
measurements. *p<0.05 vs. control (Student’s t-test).  

 

The careful analysis of key metabolic nodes of cellular metabolism offers valuable 

information on the fine-tuning of flux distributions in response to perturbations 

(Carinhas et al. 2010). Furthermore, the calculation of the partitioning coefficients 
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based on the MFA results allows to estimate values of 13C enrichment for key 

intracellular metabolites, taking into account that all the glucose present in the culture 

medium ([1,6-13C]glucose) was 99% enriched. Figure 3.4 schematizes the metabolic 

partitioning at the pyruvate (A), acetyl-CoA (B) and α-ketoglutarate (C) nodes in both 

scenarios analyzed by MFA, control and hypoglycaemia, as well as the calculated 

enrichments for the referred metabolites (see Appendix 3).  

 
Figure 3.4 - Metabolic partitioning coefficients at the pyruvate (A), Acetyl-CoA (B) and α-ketoglutarate (C) 
nodes and respective values of 13C enrichment estimated after metabolic node partitioning analysis based 
on MFA results. Coefficients were calculated based on all reaction rates leading to the formation or 
depletion of the metabolites in the centre of the node (see Appendix 3). Only the most representative 
pathways are included. Abbreviations: Glc, glucose, Ala, alanine; Lac, lactate; ACoA, acetyl-CoA; Ser, serine; 
Mal, malate; Pyr, pyruvate; Leu leucine; Ile, isoleucine; Cit, citrate; Tyr, tyrosine; Glu, glutamate; SucCoA, 
succinyl-CoA; -KG, -ketoglutarate; AAs, amino acids. 

 

The estimations showed a marked reduction from 48% to 27% on pyruvate enrichment 

after hypoglycaemia, which was largely due to increased flux of pyruvate recycling 

through the malic enzyme (malate conversion into pyruvate) (Figure 3.4A); the fraction 

of pyruvate coming from malate was 43% in the control group, increasing to 71% after 

hypoglycaemia (Figure 3.4A). However, at the acetyl-CoA node (Figure 3.4B), the 

difference in enrichment between groups was not that pronounced due to the higher 

contribution of leucine and isoleucine catabolism to acetyl-CoA formation in the control 
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group, thus contributing to the dilution of the label from 48% to 28%, whereas the 

estimated enrichment in acetyl-CoA was 20% for the hypoglycaemia group. Regarding α-

ketoglutarate, 13C enrichment was further decreased in both groups, mainly due to 

glutamate (originated from unlabelled extracellular glutamine) conversion into α-

ketoglutarate (Figure 3.4C). In addition, the results suggest that hypoglycaemia increased 

the fraction of α-ketoglutarate metabolized into succinyl-CoA (from 65% to 85%), 

compared to its conversion into glutamate, which is related to higher TCA cycle activity. 

4 Discussion 

4.1 General aspects of glucose, lactate and amino acids metabolism 

In this work, neuronal metabolism of 13C-labelled glucose was studied after a period of 

12h hypoglycaemia in the presence of unlabelled glutamine, mimicking the presence of 

the astrocyte-derived glutamine, implicated in the glutamate-glutamine cycle (McKenna 

2007). Our results suggest that after hypoglycaemia cerebellar neurons decrease their 

metabolic dependence on glucose, indicated by a 35% reduced glucose uptake rate, 

comparing to control conditions. In addition, the decreased Lac/Glc ratio and higher 

flux through PDH suggest a lower glycolytic activity and enhanced oxidative metabolism 

after hypoglycaemia. Although the rates obtained for glucose and lactate are within the 

ranges previously reported for cerebellar granule neurons (Schousboe et al. 1997; 

Waagepetersen et al. 2000; Dienel and Hertz 2001), the Lac/Glc ratio of 2 is not 

commonly observed in these cultures, being usually closer to 1 due to lower rates of 

lactate release (Schousboe et al. 1997). Eventually, in this case, the pyruvate recycling 

pathway (to be discussed below) might have contributed with additional lactate to be 

released.  

Glutamine consumption rates were also in the range of values reported for 

cerebellar neurons (Olstad et al. 2007a), and increased significantly in cells subjected to 

hypoglycaemia. Similar findings have been observed in primary cultures of cerebellar 

neurons together with a 60% increase in [14CO2] production measured during 1 h of 
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glucose deprivation in the presence of 0.2 mM [U-14C]glutamine (Peng et al. 2007). The 

same study also demonstrated that during hypoglycaemia, glutamine was able to 

maintain a significant rate of oxygen consumption, confirming that glutamine oxidation 

is an important energy source for cerebellar neurons. Hence, our results suggest that 

after hypoglycaemia, neuronal metabolism remained noticeably dependent on glutamine 

for at least 30 h. This will be further discussed below. 

4.2 Metabolic fluxes in cerebellar neurons and effects of hypoglycaemia 

The use of MFA allowed estimating intracellular fluxes of cerebellar neurons, providing 

also a detailed picture of the main metabolic alterations caused by 12 h of glucose 

deprivation. One can think that such a prolonged insult might have caused a transient 

change in the fluxes in the first hours after restoration of control conditions. In this 

context, flux estimation for the whole 30 h interval might lead to a loss of resolution 

regarding the metabolic changes caused by glucose deprivation. Nevertheless, the 

linearity exhibited by most of the extracellular metabolite time-courses during the 30 h 

period (data not shown) showed that there were no significant metabolic changes in 

those first hours. Thus, the adopted strategy seems to provide a reliable characterization 

of the metabolic response of cerebellar neurons to a prolonged period of hypoglycaemia. 

MFA results obtained in the recovery period (Figure 3.3) do not indicate major 

alterations in TCA cycle fluxes caused by hypoglycaemia; instead, the flux through 

glycolysis was significantly decreased in the group subjected to hypoglycaemia. The 

increase in the ratio between oxidative (TCA cycle) versus glycolytic fluxes after 

hypoglycaemia, compared to control, corroborates the importance of oxidative 

metabolism in neurons. In addition, it supports the concept that glutamine was the 

substrate responsible for the marked increase observed in the flux through PDH. On the 

other hand, higher brain glucose concentrations were observed in patients with type 1 

diabetes and hypoglycaemia unawareness compared to controls under the same 

conditions (Criego et al. 2005). Moreover, the TCA cycle fluxes in the occipital cortex of 

diabetic patients were found unchanged, when comparing to healthy controls (Henry et 
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al. 2010). These observations can be correlated with the present results, namely 

regarding the observed decrease in glucose utilization after hypoglycaemia, which could 

contribute to higher glucose brain levels, and a preferential increase in glutamine 

metabolism, which was not assessed in the cited study.  

 In a recent work by our group, cultured cortical astrocytes were shown to 

increase their TCA cycle fluxes after a period of 5 hours of oxygen and glucose 

deprivation (Amaral et al. 2010) but still to values below those observed here for 

cerebellar neurons. On the other hand, the present results indicate that glucose 

utilization and lactate production rates are notably lower in cerebellar neurons than in 

astrocytes, which is in agreement with previously published data (Zwingmann and 

Leibfritz 2003; Bouzier-Sore et al. 2006). Evidently, these results should be carefully 

extrapolated to the in vivo situation due to the limitations underlying the cell culture 

environment, in particular due to the absence of contact with astrocytes, which occupy a 

large fraction of the brain volume and significantly contribute to the overall metabolic 

fluxes quantified in the intact brain in vivo (Lebon et al. 2002; Hyder et al. 2006). 

Nevertheless, the data actually support previous modeling results from in vivo 

measurements in rats, suggesting that neurons are responsible for the major fraction of 

energy generated through oxidative metabolism (Hyder et al. 2006). This is especially 

interesting taking into account the significant contribution of other substrates, such as 

glutamine, known to support neuronal metabolism (Schousboe et al. 1997). Noteworthy, 
13C magnetic resonance measurements in humans have shown that astroglial glutamine 

contributes significantly to support brain glutamatergic activity (Lebon et al. 2002). 

4.3 Pyruvate recycling and hypoglycaemia 

MFA allows investigating cellular metabolism at key metabolic nodes and to 

subsequently estimate the expected 13C enrichment in those metabolites based on the 

calculated partitioning coefficients. Using this approach it was shown that MFA 

estimations fit well with experimental data obtained from GC-MS analyses. In fact, most 
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of the malate → pyruvate flux appears to be due to metabolism of unlabelled glutamine 

through the TCA cycle, which significantly dilutes the 13C percent enrichment in the 

mitochondrial pyruvate pool and subsequently formed metabolites (see discussion 

below). The suggested pathway is the following: glutamine taken up by the neurons is 

oxidized after conversion to glutamate and subsequently enters the TCA cycle as -

ketoglutarate. It should be noted that the carbon skeleton of glutamate has to exit the 

TCA cycle in the step of malate and then re-enter as acetyl-CoA from pyruvate to be 

completely oxidized (McKenna et al. 2006b). This is part of the pyruvate recycling 

pathway for complete oxidation of glutamate. Eventually, incomplete recycling can occur 

through conversion of pyruvate to lactate or alanine.  

The pyruvate recycling pathway was included in our model through the malic 

enzyme as this is thought to be the primary enzyme associated with pyruvate recycling in 

the brain, in particular its mitochondrial isozyme, highly present in synaptic terminals 

but also, to some extent, in cerebellar neurons (Cruz et al. 1998; Vogel et al. 1998; 

McKenna et al. 2000). Even so, many contradictory findings have been reported 

regarding the cellular localization of pyruvate recycling, since it was first described by 

Cerdan and colleagues (Cerdan et al. 1990; Kunnecke et al. 1993) (see introduction). 

The considerably higher pyruvate recycling flux estimated in the present work suggests 

that it might be more active in cerebellar neurons when a substantial amount of 

glutamine or glutamate is oxidized than when glucose or acetate are the main energy 

substrates. Pyruvate recycling also appears to be rather used for complete oxidation of 

glutamate and glutamine, thus leading to the release of labelled carbon atoms as CO2. 

This would explain the difficulty in observing labelling in glutamate and aspartate after 

metabolism through this pathway (Haberg et al. 1998). Noteworthy, (Pascual et al. 1998) 

also observed increased flux due to augmented glutamine oxidation in vivo 24h after 

focal ischemia. Hence, our results bring new evidence supporting the potentially 

neuroprotective role of pyruvate recycling in conditions involving a lack of glucose 

supply as it has been shown that malic enzyme activity contributes to increased NADPH 
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production, which could consequently play an important role in detoxifying reactive 

oxygen species through the reduction of oxidized mitochondrial glutathione (Bukato et 

al. 1995; Vogel et al. 1999). 

4.4 Metabolite enrichment, labelling dynamics and intracellular compartmentation 

The analysis of 13C enrichment of intracellular metabolites at several time-points 

provided detailed information on metabolite labelling dynamics from labelled glucose in 

cerebellar neurons. Apparently, labelling steady-state was achieved for most metabolites 

after 30 h in the hypoglycaemia group but not in the control. This could be related to 

lower pool sizes in the first group, observed at least for some metabolites (Table 3.2) 

which, together with higher PDH and TCA cycle fluxes and increased unlabelled 

glutamine metabolism, probably contributed to the faster achievement of this 

equilibrium.  

Another relevant aspect concerns the discrepancies between enrichment of intra 

and extracellular alanine pools, extracellular lactate enrichment (Table 3.3) and 

estimated pyruvate enrichment (Figure 3.4). The existence of different pyruvate pools 

should be considered to interpret these observations. After [1,6-13C]glucose metabolism 

through glycolysis, the cytosolic pool of pyruvate will be approximately 100% M+1 at 

labelling steady-state. This value can be slightly diluted due to some activity through the 

pentose phosphate pathway (PPP; not considered in our metabolic network), since the 

first carbon of glucose is lost as CO2 in this pathway. PPP is thought to be very active in 

cortical neurons (Herrero-Mendez et al. 2009); however, the activity of the rate-limiting 

enzyme of this pathway, glucose-6-phosphate dehydrogenase, was barely detectable in 

cerebellar neurons (Biagiotti et al. 2003), suggesting that PPP activity should not be 

significant in these neurons. Then, pyruvate is transported into the mitochondria where 

the pyruvate recycling pathway will markedly dilute the labelling in its mitochondrial 

pool (down to 48% in control group and to 27% in the hypoglycaemia group – Figure 

3.4). Some of this pyruvate might be transported back to the cytosol, where it will dilute 

the enrichment of the cytosolic pool and, subsequently, the intracellular lactate and 
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alanine pools and then, to some extent, their extracellular pools. In fact, studies on co-

cultures of cerebellar neurons and astrocytes suggested that alanine and lactate might 

actually be produced form different neuronal pyruvate pools (Bak et al. 2007). Pyruvate 

compartmentation has also been reported in cortical neuronal cultures (Cruz et al. 2001; 

Bouzier-Sore et al. 2003). It should, however, be noted that the unlabelled fraction of 

lactate and alanine initially present in the medium (in part, due to the contribution of 

serum) reduces the maximum enrichment of the extracellular pools (alanine initially 

present in the medium represents 18% of its final value in both groups, whereas for 

lactate this percentage is 22% in control group vs. 40% in the hypoglycaemia group). In 

addition, a slower rate of alanine release into the medium could have contributed to a 

slower attainment of a labelling steady-state of this pool, which probably did not occur 

after 30h of incubation.  

The estimated enrichments obtained after metabolic partitioning analysis on the 

acetyl-CoA and α-ketoglutarate nodes are also in good agreement with experimental 

values observed for citrate, malate and aspartate, supporting the assumption on the 

contribution of the pyruvate recycling flux (due to metabolism of unlabelled glutamine) 

to the dilution of pyruvate enrichment. The considerable label dilution estimated for 

glutamate and α-ketoglutarate, and confirmed by GC-MS, was observed in the same 

proportion in both groups, and therefore it does not seem to be related to 

hypoglycaemia. This can be explained taking into account the existence of mitochondrial 

and cytosolic glutamate pools and the fact that aspartate aminotransferase (AAT) 

catalyzes a transamination between α-ketoglutarate and glutamate in each of those 

compartments (see Hertz et al. 2000 for details). Hence, glutamate synthesized from 

glutamine in the mitochondria will be unlabelled and its contribution to the total 

glutamate pool will depend on the extent of the AAT activity (Hertz et al. 2000). The 

remaining fraction of α-ketoglutarate produced from glutamate will be metabolized in 

the TCA cycle and will be in equilibrium with α-ketoglutarate formed from isocitrate. 

It is important to note here that, since this methodology enables only the estimation of 



Chapter 3 

 128 

net fluxes and not of fluxes through parallel or reversible reactions, the model provides 

only the net flux of glutamate production, including both the flux through AAT 

(reaction 15 in Figure 3.1 and Appendix 3) and that through glutamate dehydrogenase 

(GDH; reaction 14). The similar labelling dynamics observed for malate and aspartate 

(Figure 2C and 2D) show that AAT was active, supporting the existence of the malate-

aspartate shuttle in these neurons (Ramos et al. 2003; McKenna et al. 2006a). 

Nevertheless, GDH should also be taken into account as it has been shown that 

cerebellar neurons have high GDH activity when compared to cortical neurons (Zaganas 

et al. 2001). Finally enrichment of TCA cycle metabolites downstream of α-

ketoglutarate, such as malate, resembles that of citrate, appearing not to be so much 

affected by the metabolism of unlabelled glutamine, also suggesting the existence of 

distinct malate pools in cerebellar neurons.  

4.5 Conclusion 

In conclusion, the application of MFA allowed to estimate metabolic fluxes in primary 

cultures of cerebellar neurons and to predict quantitatively the effect of hypoglycaemia 

in the different metabolic pathways of these cells. Our results confirm that glutamine is 

an important energy substrate for cerebellar neurons in the recovery from 

hypoglycaemia. Furthermore, we provide new evidence on the crucial role of the 

pyruvate recycling pathway in this process, corroborating that pyruvate recycling is 

indeed an important metabolic pathway in cerebellar neurons, particularly after glucose 

deprivation. 
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Abstract 

Metabolic models have been used to elucidate important aspects of brain metabolism in 

recent years. This work applies for the first time the concept of isotopic transient 13C 

metabolic flux analysis (MFA) to estimate intracellular fluxes in primary cultures of 

astrocytes. This methodology comprehensively explores the information provided by 13C 

labelling time-courses of intracellular metabolites. Cells were incubated with medium 

containing [1-13C]glucose for 24 h and samples of cell supernatant and extracts collected 

at different time-points were then analyzed by mass spectrometry and/or HPLC. 

Metabolic fluxes were estimated by fitting a carbon labelling network model to 

isotopomer profiles experimentally determined. Both the fast isotopic equilibrium of 

glycolytic metabolite pools and the slow labelling dynamics of TCA cycle intermediates 

are described well by the model. The large pools of glutamate and aspartate which are 

linked to the TCA cycle via reversible aminotransferase reactions are likely to be 

responsible for the observed delay in equilibration of TCA cycle intermediates. 

Furthermore, it was estimated that 11% of the glucose taken up by astrocytes was 

diverted to the pentose phosphate pathway. In addition, considerable fluxes through 

pyruvate carboxylase (PC) (PC/pyruvate dehydrogenase (PDH) ratio = 0.5), malic enzyme 

(5% of the total pyruvate production) and catabolism of branched-chained amino acids 

(contributing with ~40% to total acetyl-CoA produced) confirmed the significance of 

these pathways to astrocytic metabolism. Consistent with the need of maintaining 

cytosolic redox potential, the fluxes through the malate-aspartate shuttle and the PDH 

pathway were comparable. Finally, the estimated glutamate/α-ketoglutarate exchange 

rate (~0.7 µmol.mg prot-1.h-1) was similar to the TCA cycle flux. In conclusion, this work 

demonstrates the potential of isotopic transient MFA for a comprehensive analysis of 

energy metabolism. 
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1 Introduction 

Isotopic labelling experiments and 13C NMR spectroscopy have been extensively applied 

to investigate particular aspects of cerebral metabolism both in cell cultures (Merle et al. 

1996b; Waagepetersen et al. 2003; Sonnewald et al. 2004) and in vivo (Gruetter et al. 

2001; Garcia-Espinosa et al. 2004; Hyder et al. 2006) due to the highly specific metabolic 

information generated. The metabolism of a 13C labelled substrate through different 

pathways originates distinct labelling patterns and 13C time-courses. These data can then 

be translated into quantitative metabolic fluxes using mathematical models. In fact, 

metabolic modelling was crucial to show the existence of metabolic compartmentation 

(Gruetter et al. 2001) and to determine the contributions from astrocytes (Lebon et al. 

2002) and neurons (Hyder et al. 2006) to the overall oxidative metabolism of glucose in 

the brain. 

Simple mathematical models have been used to estimate the PDH and PC fluxes 

based on steady-state 13C fractional enrichment of glutamate or glutamine (Malloy et al. 

1988; Martin et al. 1993; Merle et al. 1996b). On the other hand, more sophisticated 

models consisting of mass and isotope balances have been used to fit glutamine and 

glutamate 13C time-courses from in vivo NMR experiments and estimate fluxes in 

relatively simple networks (Henry et al. 2006). These modelling studies have allowed 

estimating the main metabolic fluxes in the rodent and human brain: neuronal and glial 

TCA cycle, glial anaplerotic PC flux (VPC), glutamate-glutamine cycle flux (VNT) and 

glutamate/α-ketoglutarate exchange rate (Vx) (Henry et al. 2006 and references therein). 

In addition, Patel et al have developed a three compartment model (astrocytes, 

glutamatergic neurons and GABAergic neurons) to estimate the contribution of 

GABAergic activity to cerebral energetics (Patel et al. 2005). More recently, Jolivet et al 

reported a novel approach based on estimations of state-dependent brain energy budget 

for neurons and astrocytes using data sets of cerebral glucose and oxygen utilization 

during different brain activation states (Jolivet et al. 2009).  
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However, most current models do not consider flux routes that can contribute 

substantially to the observed isotopic labelling patterns. For instance, label dilution in 

glutamine and glutamate, usually attributed to metabolite exchange between brain and 

blood, could actually derive from the PPP or oxidation of fatty acids or of poorly labelled 

amino acids that might result from proteolysis (Dienel and Cruz 2009; Shen et al. 2009). 

These are usually not considered to avoid an increase in the complexity of the metabolic 

network. Consequently, a larger amount of data would be required to reliably identify all 

unknown fluxes, which is difficult when working in vivo. Therefore, many assumptions 

are generally used to determine metabolic fluxes in vivo. However, this issue has raised 

concern about the reliability of estimated fluxes based on isotopomers derived from 13C 

glucose metabolism (Shestov et al. 2007). 

In contrast to the metabolic modelling tools referred above, a more 

comprehensive metabolic picture can be provided by MFA, one of the first tools 

targeting systems level analysis of intracellular fluxes in microbial and animal cell 

cultures (Varma and Palsson 1994; Lee et al. 1999; Quek et al. 2010). This methodology 

requires the definition of material-balance equations for all metabolites included in the 

network. Then, by measuring a sufficient number of metabolite 

consumption/production rates in cell culture supernatants, intracellular fluxes can be 

estimated based on the network’s stoichiometry and assuming intracellular steady-state 

(Lee et al. 1999). This implies that the sum of the fluxes leading to the synthesis and 

consumption of each metabolite is equal to zero and, consequently, intracellular 

metabolite pools will be constant. Using a simple network, we have recently 

characterized the effects of hypoglycaemia on metabolic fluxes of cultured cerebellar 

neurons using MFA (Amaral et al. 2011).  

Still, MFA based on metabolite balancing alone does not allow well-resolved flux 

distributions, as the fluxes through parallel pathways or reversible reactions cannot be 

distinguished. To improve flux resolution, classical MFA has been complemented with 
13C labelling data collected at isotopic steady-state. This has been applied by our group to 



Chapter 4 

 138 

characterize the metabolism of astrocytic cultures under normal conditions and after an 

ischemic episode (Teixeira et al. 2008; Amaral et al. 2010). In these studies, the steady-

state label distribution in certain metabolites in the culture medium was analyzed and 

this information used to elucidate flux ratios in parallel routes that contribute differently 

to label distribution, such as the flux ratio of PC to PDH or the flux ratio of glycolysis to 

PPP.  

Recently, Wiechert and Noh (2005) introduced the concept of non-stationary 
13C-MFA. In this methodology the metabolic steady-state is also assumed but the isotopic 

transient state (i.e., the time period during which the 13C label is being distributed by the 

different metabolite isotopomers until isotopic steady state is reached) in intracellular 

metabolites is taken into consideration. In this case, mass isotopomers are analyzed at 

different time points, normally using sensitive MS techniques, to follow the label 

incorporation immediately after incubating cells with a labelled substrate (Hofmann et 

al. 2008). Current developments in MS enable a precise assessment of 13C labelling in 

several metabolites of the main pathways of carbon metabolism in a relatively small 

sample volume (Noh et al. 2007). Subsequently, to translate the time-series labelling data 

into metabolic fluxes, such mathematical models combine balances of the total 

metabolite pools and of individual isotopomers, containing full information about the 

transition of the labelled carbons within metabolites (Wiechert and Noh 2005; Noh et 

al. 2007). Model inputs are isotopomer 13C time-courses and some metabolite pools 

determined experimentally, in addition to the consumption or production rates of 

metabolites measured in cell supernatants. Isotopic transient MFA has been successfully 

applied to estimate fluxes in prokaryotic and mammalian cell systems (Schaub et al. 

2008; Metallo et al. 2009). When comparing to the classical MFA, it has as main 

advantages not relying on uncertain cofactor balances and allowing the estimation of 

fluxes through both parallel and cyclic pathways as well as through bidirectional 

reactions (Wiechert and Noh 2005). It is, however, experimentally and computationally 
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more demanding, requiring the solution of a large number of differential equations 

(Noh et al. 2006; Noh and Wiechert 2006). 

Hence, the main aim of this study was to apply for the first time the isotopic 

transient 13C MFA methodology to the study of astrocytic metabolism in order to obtain 

an integrated picture of their metabolic fluxes. This was achieved by fully exploring the 

isotopic transient information collected after [1-13C]glucose administration to primary 

cultures of astrocytes.  Quantification of the labelling time-courses was accomplished by 

GC-MS and metabolites pool sizes were measured by HPLC. A comprehensive metabolic 

network including glycolysis, PPP, TCA cycle and amino acids metabolism was 

considered to fit metabolite 13C time-courses and estimate metabolic fluxes. This 

approach allowed estimating important metabolic fluxes of astrocytes with high statistical 

quality and provided valuable information on the contribution of other sources than 

glucose to the main pathways of astrocytic energy metabolism. Thus, it represents a 

powerful and new tool to investigate still unclear aspects of brain metabolism or 

metabolic responses of cultured cells to pathological conditions, which can be further 

explored in vivo. 

2 Materials and Methods 

2.1 Materials 

Plastic tissue culture dishes were purchased from Nunc (Roskilde, Denmark); FBS, Pen-

Strep solution and DMEM were purchased from GIBCO, Invitrogen (Paisley, UK); 13C-

labelled glucose was purchased from Cambridge Isotope Laboratories (Andover, MA, 

USA); MTBSTFA + 1% t-BDMS-Cl  was purchased from Regis Technologies (Morton 

Grove, IL, USA); toluene and acetonitrile were purchased from LabScan (Gliwice, 

Poland); all other chemicals were purchased from Sigma-Aldrich (Munich, Germany). 

Animals were purchased from Instituto de Higiene e Medicina Tropical (Lisbon, 

Portugal). 
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2.2 Cell culture and metabolite extraction 

Primary cultures of cortical astrocytes were obtained from 1 to 2-day-old rats and 

prepared as described previously (Richter-Landsberg and Besser 1994). Cells were 

cultured in DMEM containing 5 mM glucose and supplemented with Pen-Strep (100 

U/mL) and 20% (v/v) FBS, gradually reducing its concentration to 10%. Cultures were 

kept in a humidified atmosphere with 7% CO2 in air and 37ºC. After 3 weeks in culture 

cells were trypsinised and seeded into 6-well plates at a cell density of 5x104 cells/cm2. 

Experiments were performed when cells reached confluence: the culture medium was 

removed, cells were washed with PBS and subsequently incubated with DMEM with 1% 

FBS containing 4 mM [1-13C]glucose (2 ml of culture medium per well). The transient 

period of label incorporation into intracellular metabolites was followed during 24h, 

using a shorter sampling time in the beginning. Samples of medium and cell content 

were collected at 0, 6, 12, 30 min, 1, 2, 4, 7, 10, 16 and 24 h after labelled glucose 

administration. Experiments were run in triplicate. The cell supernatant was collected, 

centrifuged at 200 x g for 10 minutes and stored at -20ºC until further analysis. Cell 

monolayers were washed with cold PBS to eliminate tracer amounts of extracellular 

metabolites, frozen in liquid nitrogen to rapidly stop metabolism and extracted with 

70% (v/v) ethanol, followed by centrifugation at 20 000 x g for 15 min. The resulting 

supernatants (cell extracts) were stored at -80 ºC until GC-MS or HPLC analysis. The 

pellets were stored at -20 ºC and were later used either for protein analysis. 

2.3 Quantification of extra- and intracellular metabolite concentrations 

Glucose and lactate concentrations in samples of cell supernatants were determined 

using an automated YSI 7100 Multiparameter Bioanalytical System (Dayton, Ohio, 

USA). Intra- and extracellular concentrations of amino acid were quantified by HPLC 

using a pre-column derivatisation method based on the Waters AccQ.Tag Amino Acid 

Analysis method as described elsewhere (Amaral et al. 2010). 
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2.4 Protein quantification  

The total cellular protein content was determined by dissolving the cell pellets in 0.1 M 

NaOH followed by incubation overnight at 37ºC, to ensure complete protein extraction. 

The BCA protein assay from Pierce (Rockford, IL, USA) was used to determine total 

protein amounts using bovine serum albumin as standard. 

2.5 Quantification of mass isotopomers by GC-MS 

For analysis of lactate, amino acids (alanine, aspartate, glutamate and glutamine) and 

TCA cycle intermediates (α-ketoglutarate, fumarate and malate), samples of cell extracts 

and cell supernatants were lyophilized and dissolved in 0.01 M HCl followed by pH 

adjustment to pH < 2 with 6 M HCl. The samples were then dried under atmospheric 

air (50ºC). The metabolites were extracted into an organic phase of ethanol and benzene 

and dried again under atmospheric air (50ºC). DMF was added before derivatisation 

with MTBSTFA in the presence of 1% t-BDMS-Cl  (Mawhinney et al. 1986). It was not 

possible to obtain consistent values for the enrichment of intracellular lactate.  

The protocol used for analysis of the glycolytic intermediates 

phosphoenolpyruvate (PEP) and 3-phosphoglycerate (3PG), was based on that described 

in Hofmann et al. (2008). Samples of cell extracts were lyophilized, dissolved in 

methanol and dried under atmospheric air (50ºC). The metabolites were then extracted 

with toluene and dried again under atmospheric air (50ºC). Derivatisation was 

performed using a mixture of N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) +  

1 % trimethylchlorosilane and acetonitrile.  

All samples were analyzed on an Agilent 6890 gas chromatograph with a 

capillary column (WCOT fused silica 25x 0.25 mm ID, 0.25 µm film thickness, VF-1ms, 

Varian), connected to an Agilent 5975B mass spectrometer with electron impact 

ionization. Atom percent excess (13C) in the different metabolites was determined after 

calibration using unlabelled standard solutions (Biemann 1962). Mass isotopomers differ 

by the number of labelled carbons; m represents the fraction of unlabelled compound in 
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the total compound pool, m+1 the fraction of compound labelled in one carbon and so 

on. All fractions of a metabolite sum up to 100%. 

2.6 Isotopic transient 13C Metabolic Flux Analysis 

i) Metabolic Network and metabolite balancing 

According to the main changes observed intracellularly and in the culture supernatant, a 

metabolic network was established to represent the metabolism of astrocytes (Figure 4.1). 

The network comprises the following metabolic pathways: glycolysis, PPP, TCA cycle, 

malate-aspartate shuttle (MAS), catabolism of some amino acids and synthesis of 

glutathione, glutamine, alanine and taurine/hypotaurine. It contains 32 balanced 

intracellular metabolites and a total of 47 fluxes, from which 3 were considered 

reversible.  

Isotopic transient MFA relies in both metabolite and mass isotopomers 

balancing. If the metabolic network has m metabolites and q reactions, the following 

steady-state material balances can be formulated (Equation 1):  

0Nr                         (1)                                                                                                     

with N being a m  q stoichiometric matrix, and r the vector of q metabolic rates.  
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Figure 4.1 - Network representing astrocytic metabolism (the stoichiometry of the reactions can be found 
in Appendix 4). Abbreviations: Glc, glucose; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; DHAP, 
Dihydroxy-acetone phosphate; GAP, glyceraldehyde-3-phosphate; BPG, 1:3-bis-phosphoglycerate; 3PG, 3-
phosphoglycerate, 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; 6PGL, 6-phospho-
gluconolactone; 6PG, 6-phosphogluconate; Ru5P, ribulose-5-phosphate; R5P, ribose-5-phosphate; Xu5P, 
xylulose-5-phosphate; S7P, sedoheptulose-7-phosphate; E4P, erythrose-4-phosphate; Lac, lactate; Glu, 
glutamate; ACoA, Acetyl-Coenzyme A; Cyst, cystine; Cys, cysteine; Gly, glycine; GSH, glutathione; Ala, 
alanine; α-KG, α-ketoglutarate; OAA, oxaloacetate; Cit, Citrate; Aco, cis-aconitate; Isocit, isocitrate; OSuc, 
oxalosuccinate; SucCoA, succinyl-coenzyme A; Succ, succinate; Fum, fumarate; Mal, malate; Aspm, aspartate 
– mitochondrial pool; Aspc, aspartate – cytosolic pool; Gln, glutamine; Leu, leucine; Ile, isoleucine; Val, 
valine; Lys, lysine; ext refers to metabolites taken up from/released to the medium.   

ii) Modelling of isotopomer 13C time-courses 

After administration of the labelled substrate, the mass isotopomer distribution of each 

metabolite changes over time depending on the flux distribution. To represent 

mathematically the system and estimate the unknown fluxes, a set of differential 

equations needs to be established for each isotopomer, fulfilling the stoichiometric 
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constraints of the metabolic network. Carbon transitions occurring in biochemical 

reactions are well established for the majority of metabolic pathways and documented in 

biochemical textbooks. Equations 2 and 3 represent the balances for the two mass 

isotopomers of glucose, when [1-13C]glucose is the labelled substrate:  

m

pool

m Glcr
Glcdt

dGlc
1

1
                                                                        (2)   

                                           

11

1
1

mGlc

pool

m Glcrr
Glcdt

dGlc
                    (3) 

where Glcm is the fraction of unlabelled glucose, Glcm+1 is the fraction of glucose 

labelled in one carbon, Glcpool is the intracellular glucose pool,  rGlc is the uptake rate of 

glucose and r1 is the flux through reaction 1. The equations for the remaining 

intracellular metabolites are listed in Appendix 5.  

[1-13C]glucose is taken up by astrocytes and subsequently metabolized either via 

PPP, where the labelled carbon is lost as CO2, or via glycolysis, labelling 3PG, PEP and 

pyruvate in carbon number 3. [3-13C]pyruvate can be converted to [3-13C]lactate or [3-
13C]alanine, be transported into mitochondria to enter the TCA cycle as [2-13C]acetyl-

CoA via pyruvate dehydrogenase or as [3-13C]oxaloacetate by anaplerosis through the 

pyruvate carboxylation pathway (Shank et al. 1985). Condensation of [2-13C]acetyl-CoA 

with unlabelled oxaloacetate will, after several steps, lead to the formation of [4-
13C]glutamate and to either [2-13C]- or [3-13C]aspartate after the symmetrical succinate 

step. These compounds have one 13C atom and are thus detected as m+1 isotopomers in 

GC-MS. If labelled oxaloacetate condenses with labelled acetyl-CoA, double labelled 

metabolites are formed and they will be detected as m+2 by GC-MS. Eventual cycling of 

the labelled compounds in the TCA cycle may lead to the synthesis of triple labelled 

metabolites (m+3) after condensation of double labelled oxaloacetate with [2-13C]acetyl-
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CoA. From the 13C-labelling time-courses experimentally observed by GC-MS analysis, 

we have considered two isotopomers for glycolysis and PPP intermediates (m and m+1), 

three isotopomers for pyruvate, lactate, alanine and acetyl-CoA (m, m+1 and m+2), and 4 

isotopomers (m, m+1, m+2 and m+3) for the TCA cycle intermediates and remaining 

amino acids. In total, the system is represented by 96 differential equations.  
13C-labelling time-courses are influenced by the pool sizes of the metabolites. If 

these pools are not measured then they must be considered as unknown parameters in 

the model. On the other hand, lumping reactions in linear pathways cannot be done if 

the involved metabolites have different pool sizes. As they take different times to reach 

isotopic steady-state, lumping such reactions can perturb the fitting to the experimental 

data and falsify flux estimations. It should be mentioned that no intracellular 

compartments were distinguished as it is still unfeasible to quantify separately metabolite 

concentrations in different compartments. Therefore, only one single pool was 

considered for each intracellular metabolite.  

iii) Parameter estimation 

For parameter identification, an optimization routine iteratively minimizes the function 

(F) represented in Equation 4, until an acceptable small value is achieved. F is a variance-

weighted difference between mass isotopomer measurements (Im) and model predictions 

(Ip). Mass isotopomer data, Im, from the different metabolites collected at the time-points 

indicated above (0, 6, 12, 30 min, 1, 2, 4, 7, 10, 16 and 24 h) were used for model 

fittings. As the various isotopomer profiles are measured with different accuracies, the 

errors must be weighted by the corresponding standard deviations: 
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where p is the vector of parameters, T is the number of measured time points, n is the 

number of mass isotopomers and 2

i
 the variances of the mass isotopomer 

measurements. The set of fluxes and unmeasured pools corresponding to the minimum 

value of Eq. 4 is the solution for the flux calculation problem. To solve this optimization 

problem a quasi-Newton optimizer was employed (fmincon function from MATLABTM). 

As gradient algorithms are prone to converge to local optima, the optimization was 

repeated systematically with different parameter starting values in order to increase the 

probability of reaching the global optimum. The initial parameter set was selected to be 

consistent with available primary literature on astrocytic metabolism. We then screened 

each initial parameter guess within a biologically relevant range, and chose the optimum 

parameter minimizing Eq. 4.  

Computationally, it is more efficient to work with a set of independent fluxes, 

also called free fluxes, rather than with all metabolic fluxes (Wiechert and de Graaf 

1997). From the 47 fluxes composing the metabolic network, 10 were experimentally 

measured (glucose, lactate, alanine, glutamine, leucine, isoleucine, valine, cystine 

production or consumption rates) or taken from literature (citrate and glutathione 

release rates) (see below – Tables 4.1 and 4.4). Since the rank of the stoichiometric 

matrix is 31, there are 6 free fluxes (37-31) that need to be estimated; the remaining 

fluxes are subsequently calculated through linear combinations of these independent 

fluxes. Several pool sizes could not be experimentally measured and it is not possible to 

estimate those for which experimental 13C time-courses are also not available. Since 

published data on absolute pool concentrations is still limited, the pools of acetyl-CoA 

and all glycolytic and PPP intermediates were considered equivalent and the average pool 

size (Glycolysis/PPP pool) was included in the group of parameters to be estimated. 

Regarding the TCA cycle intermediates for which mass isotopomer data was not 

available, an average pool size was tuned by trial-and-error and set equal to 0.03 

mol/mg protein. In total, 11 parameters (6 free fluxes and 5 pool sizes) were estimated 

by fitting the model to the experimentally observed labelling dynamics. 
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iv) Parameter confidence limits 

Since parameter estimation involves a variety of possible errors, including measurements, 

modelling, and numerical errors, uncertainty analysis of the optimized parameters 

constitutes an important part of this estimation. Parameter uncertainty is assessed by its 

covariance. Assuming that the solution converges to a global minimum, the Hessian 

matrix H can be approximated from the Jacobian matrix J as follows: 

H = JT J                   (5) 

The Jacobian matrix includes the partial derivatives of the model output with respect to 

the model parameters evaluated at each data point. The covariance matrix (cov) can then 

be estimated as 

1cov HRMSE               (6) 

with RMSE being the root mean squared error. 

The confidence interval for each parameter pi is obtained from the estimate of 

the standard deviation 
2/1

,cov iii as follows: 

pTiii tpCI ,975.0               (7) 

with t0.975,T-p being the t-student’s distribution for T-p (the number of measured data 

points minus the number of parameters) degrees of freedom and probability 0.975. 

v) Sensitivity analysis 

To investigate the possibility of accurately identifying each model parameter on the basis 

of the available experimental data, a sensitivity analysis must be performed. The 

sensitivity coefficient, Sensi, reveals how the objective function F (Equation 4) will be 

influenced by a differential change in the parameter pi.  
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The goal is to determine how “sensitive” the mathematical model is to changes 

in the value of its parameters. Small sensitivities, i.e., large changes in the parameter 

value resulting in small changes in the minimized sum of squared residuals, indicate that 

the parameter cannot be estimated accurately. Large sensitivities, on the other hand, 

indicate that the parameter can be estimated with high confidence. 

3 Results 

Primary cultures of astrocytes were incubated with [1-13C]glucose and, during 24 h, 

samples of culture supernatant and cell content were collected at different time points, 

in order to estimate astrocytic metabolic fluxes and characterize metabolite labelling 

dynamics. This time window was enough to ensure isotopic steady-state in almost all 

intracellular metabolites analyzed by GC-MS. 

3.1 Specific rates of consumption/production of glucose, lactate and amino acids 

Consumption or secretion rates of relevant compounds were determined based on the 

changes of their concentrations in the culture medium (Table 4.1). It is generally 

accepted that glucose is the main energy substrate for the brain and also for astrocytes 

under physiological conditions (Zwingmann and Leibfritz 2003). In agreement with 

previous studies, glucose was consumed at a constant rate of 1.06±0.05 mol.mg prot-1.h-

1, representing about 70% of the total carbon taken up by astrocytes. Amino acid 

analysis showed a decrease in the extracellular levels of the three BCAAs: isoleucine, 

leucine, and, to a lesser extent, valine. Consumption of these amino acids by astrocytes 

under physiological conditions has also been reported by other authors (Yudkoff et al. 

1996; Johansen et al. 2007; Murin et al. 2009). Furthermore, cystine levels decreased in 

the supernatant, with an uptake rate larger than that of BCAA. Cystine is the precursor 

for cysteine, and both amino acids can be used for the biosynthesis of glutathione, 

taurine and hypotaurine in astrocytes (Brand et al. 1998; Kranich et al. 1998).  
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Table 4.1 – Experimentally measured values for intracellular pools of some amino acids and 
transmembrane rates of glucose, lactate and amino acids whose concentration changed significantly 
during incubation time (negative values refer to consumption rates). 

Specific transmembrane rates 
( mol · mg protein-1 · h-1) 

rGlc -1.06 ± 0.05 

rLac 2.11 ± 0.10 

rGln 0.049 ± 0.005 

rAla 0.042 ± 0.004 

rVal -0.053 ± 0.005 

rIle -0.10 ± 0.05 

rLeu -0.11 ± 0.05 

rCyst -0.36 ± 0.04 

Intracellular pools 
mol · mg protein-1) 

Ala 0.18 ± 0.04 

Glu 0.18 ± 0.04 

Gln 0.08 ± 0.02 

Asp 0.15 ± 0.03 

Abbreviations: Ala, alanine; Asp, aspartate; Cyst, cystine; Glc, glucose; Gln, glutamine; Glu, glutamate; Ile, isoleucine; 
Lac, Lactate; Leu, leucine; Val, valine. 

Lactate, alanine and glutamine were steadily released by astrocytes during incubation. 

GC-MS analysis of the supernatant at the end of the experiment confirmed the release of 

these compounds, providing the fractional enrichment of each isotopomer (Table 4.2) 

(see next sub-section). Citrate secretion was also evident from the GC data. However, its 

release rate could not determined because the GC-MS method used in this work only 

provides the relative abundance of isotopomers, not the total concentrations. 

Consequently, the release rate of 0.025 µmol.mg prot-1.h-1, reported by (Westergaard et 

al. 1994) was used for modelling purposes. Intracellular amino acid pools were measured 

by HPLC and are listed in Table 4.1.  

Table 4.2 – Percent 13C enrichment in extracellular metabolites. 

Metabolite % 13C enrichment (m+1) 

Lactate 33.5 ± 0.7 

Alanine 24.1 ± 2.2 

Glutamine 28.84 ± 0.04 

Citrate 30.7 ± 0.3 
Primary cultures of cortical astrocytes were incubated with medium containing 4 mM [1-13C]glucose for 24 h. Percent 13C 
enrichment in different extracellular metabolites was analyzed by mass spectrometry in samples of culture medium 
collected at the end of the incubation period. Results are presented as means ± s.d. in atom percent excess (n=3).  
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Cellular growth was negligible during the time frame considered as indicated by the 

amount of protein measured in different cell samples (0.126 ± 0.009 mg protein/well).  

3.2 Experimental 13C labelling time-courses 

Samples of cell extracts were collected during the isotopic transient period in order to 

characterize labelling dynamics of intracellular metabolites of astrocytes using GC-MS. 

The metabolites analyzed include the glycolytic intermediates PEP and 3PG, the TCA 

cycle intermediates citrate, -ketoglutarate, fumarate, and malate, and the amino acids 

alanine, glutamine, glutamate and aspartate. Glycolytic intermediates reached isotopic 

steady-state much faster than TCA cycle intermediates (Figure 4.2). After addition of 

labelled glucose, the fraction of the unlabelled pools of PEP and 3PG decreased very fast, 

reaching isotopic steady-state within less than 30 minutes with an enrichment of 45% in 

m+1. Regarding alanine, it seems that isotopic steady-state was not reached within the 

24h of incubation. At this time, 31% of the pool was labelled in one carbon. Citrate, the 

first TCA cycle intermediate after acetyl-CoA condenses with oxaloacetate, reached 45% 

of isotopic enrichment (m+1 and m+2) whereas the enrichment in fumarate was about 

15% less (Figure 4.2). In addition, the labelled pools of malate and aspartate were very 

similar and slightly more enriched than that of fumarate. Furthermore, labelling time-

courses of α-ketoglutarate, glutamate and glutamine were comparable but slower than 

that of citrate. It is noteworthy that synthesis of m+2 and m+3 mass isotopomers was 

observed for most of the TCA cycle intermediates analyzed, representing up to 8% of the 

total pools, for citrate and glutamate. This suggests that some mass isotopomers are 

formed after condensation of 13C labelled acetyl-CoA with 13C labelled oxaloacetate.  
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Figure 4.2 - Mass isotopomers distribution after incubation of primary cultures of astrocytes with DMEM 
containing [1-13C]glucose. Diamonds – m; triangles – m+1; circles – m+2; squares m+3. Experimental data 
obtained for m+3 isotopomers of glutamine, fumarate, malate and aspartate were below 0.5% 13C 
enrichment and therefore are not presented. Symbols are average values of GC-MS analysis of cell extracts 
from 3 parallel cultures of astrocytes; error bars correspond to standard deviations; lines are model 
predictions. 

13C enrichment of extracellular metabolites was also analyzed at the end of the 

incubation time (Table 4.2). The difference between % 13C enrichment in lactate and 

alanine (34 vs. 24% m+1, respectively) can be surprising given their common origin – 

pyruvate, suggesting metabolic compartmentation (see discussion). Moreover, alanine 

enrichment in the culture medium differed significantly from its intracellular 

enrichment. Extracellular citrate was ~30% enriched in m+1, which is similar to the data 

obtained for its intracellular pool, the same being observed for glutamine.  
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3.3 Flux estimations by isotopic transient 13C MFA 

Intracellular flux estimations were obtained by minimizing the difference between model 

simulations and experimentally observed isotopomer profiles. The optimal fittings to the 
13C labelling time-courses of the 10 metabolites experimentally analyzed are shown in 

Figure 4.2. For some metabolites, the enrichment in heavy mass isotopomer fractions 

(m+2 and m+3) was detectable but with very low values (<1% above natural abundance) 

and with large associated standard deviations. Therefore, they were not considered in 

model fitting. Estimated parameters together with their 95% confidence intervals are 

presented on Table 4.3.  

Table 4.3 – Parameter values (fluxes and metabolite pools) which allowed the best fit to the 
mass isotopomer data. 

  
Fluxes 
(µmol.mg prot-1.h-1) 

95% Confidence Limit 

r2 (G6P → F6P) 0.940 0.001 

r32 (Mal → Pyr) 0.12 0.03 

r34 (Mal-Asp shuttle) 0.16 0.08 

r35a (α-ketoglutarate → glutamate) 0.32 0.06 

r36a (Glu → Gln) 0.052 0.002 

r38 (Cys → Taur+Hyptaur) 0.17 0.02 

 
Pool size  
(µmol.mg prot-1) 

95% Confidence Limit 

Citrate 0.05 0.02 

-Ketoglutarate 0.15 0.03 

Malate 0.05 0.06 

Fumarate 0.05 0.03 
Glycolysis/PPP intermediates 0.027 0.001 

The 6 free fluxes and 5 metabolite pools were estimated using an optimization routine (see Materials and Methods) that 
allowed finding the optimal values that better described the experimental data. 

 

The remaining intracellular fluxes were calculated from the estimated free fluxes and are 

shown in Table 4.4. Both the fast labelling dynamics of PEP and 3PG and the slow 

dynamics of TCA cycle related metabolites were well described by the model (Figure 

4.2).  
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Table 4.4 – Astrocytic metabolic fluxes estimated using the isotopic transient MFA methodology. 

Reaction Flux (µmol.mg prot-1. h-1) 

r1 (Glc → G6P) (=rGlc)1 1.06 ± 0.02 

r3 - r4 (F6P → 2GAP) 1.02 ± 0.03 

r5 – r9 (GAP → Pyr) 2.08 ± 0.03 

r10 (Pyr → Ala) (=rAla) 1 0.042 ± 0.004 

r11 (Pyr → Lac) (=rLac) 1 2.11 ± 0.04 

r12 - r14 (G6P → Ru5P) 0.12 ± 0.02 

r15 (Ru5P → R5P) 0.04 ± 0.02 

r16 (Ru5P → Xu5P) 0.08 ± 0.01 

r17 - r19 (R5P + 2 Xu5P → GAP + 2 F6P) 0.04 ± 0.01 

r20 (Cys → Pyr) 0.16 ± 0.01 

r21 (Pyr → OAA) (pyruvate carboxylase flux) 0.07 ± 0.02 

r22 (Pyr → AcoA) (pyruvate dehydrogenase flux) 0.14 ± 0.07 

r23 (ACoA+Oxa → Cit) 0.45 ± 0.08 

r24 - r27 (Cit → α-KG) 0.43 ± 0.08 

r28 (α-ketoglutarate →SucCoa) 0.35 ± 0.08 

r29 - r31 (SucCoa → Mal) 0.51 ± 0.08 

r33 (Mal → OAA) 0.39 ± 0.08 

r35b (Glu → α-KG) 0.46 ± 0.07 

r36b (Gln → Glu) 0.003 ± 0.003 

r37 (Cys → GSH) 2 0.030  

r39 (Ile → AcoA + SucCoA) (=rIle)1 -0.10 ± 0.05 

r40 (Leu → AcoA) (=rLeu)1 -0.11 ± 0.05 

r41 (Val → Suc) (=rVal)1 -0.053 ± 0.005 

Citrate release rate2 0.025 
The fluxes that are missing (r2, r32, r34, r35a, r36a, r38) correspond to the 6 free fluxes estimated through an optimization 
routine (see Materials and Methods) and are presented on Table 3. 
1 These rates correspond to those experimentally measured - see Table 1. 
2 Taken from the literature (O’Connor et al 1995; Westergaard et al 1994). 

 

However, the predicted labelling time-courses of alanine differed from experimental data 

to some extent. Different model structures were attempted to improve fittings for 

alanine; for instance, reaction r10 was turned reversible, but a null flux was identified for 

inverse reaction. These results suggest that labelling of the alanine pool is more complex 

than that described by our model and is probably related to the existence of different 

pyruvate pools (discussed below). The average error between measured and predicted 

mass isotopomer profiles of the remaining metabolites was below 3%. The reason for the 

small deviations between α-ketoglutarate time-courses and model predictions might be 
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worth to investigate further. According to the metabolic network adopted, α-

ketoglutarate and glutamate are constantly being inter-converted, implying that the 

different isotopomers of both metabolites reach the same steady-state values. However, 

the unlabelled pool of α-ketoglutarate seems to be systematically ~4% higher than that of 

glutamate, also at isotopic steady-state. This is probably due to cellular 

compartmentalization not taken into account by the metabolic network adopted.  

Concerning the estimated fluxes, astrocytes showed a high glycolytic flux, 

converting most of the glucose to lactate. In addition, the model estimated that 11% of 

the glucose flux was diverted to the PPP (r12). Some activity through the PPP could be 

anticipated based on the 45% enrichment in m+1 of PEP and 3PG at isotopic steady-

state, as further sources of label dilution in upper glycolytic metabolites (like glycogen 

degradation) were not considered in the model. In fact, [1-13C]glucose metabolism 

through the PPP leads to the loss of 13C as CO2 (r14). Subsequently formed metabolites 

might re-enter glycolysis at the 3-phosphate-glyceraldehyde node, consequently diluting 

the enrichment of downstream metabolites.  

Furthermore, 14% 13C enrichment for acetyl-CoA was predicted at isotopic 

steady-state (data not shown). Even though pyruvate was estimated to be 41% enriched, 

the synthesis of acetyl-CoA as a consequence of the metabolism of leucine and isoleucine 

(from incubation medium) dilutes the enrichment in this pool. Moreover, the model 

estimated the anaplerotic flux through PC as being 0.07 ± 0.02 µmol.mg prot-1.h-1 (Table 

4.4) and the flux through PDH as being 0.14 ± 0.07 µmol.mg prot-1.h-1 (Table 4.4), 

which gives a PC/PDH ratio of 0.5. The model also estimated the flux through the MAS 

(0.16 µmol.mg prot-1.h-1). Regarding the flux for the conversion of malate into pyruvate 

(r32 - malic enzyme), it was estimated as being 0.12 ± 0.03 µmol.mg prot-1.h-1 (Table 4.3). 

Furthermore, the experimentally measured uptake rate of cystine would significantly 

dilute the labelling dynamics of pyruvate and subsequently formed metabolites, if that 

would be its only metabolic fate. However, it is known that the major metabolic 

products of cystine/cysteine in astrocytes are taurine and hypotaurine (Brand et al. 
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1998), in addition to being a rate limiting substrate in the biosynthesis of glutathione 

(Dringen and Hirrlinger 2003). Thus, these different fates of cysteine were included in 

the model (reactions 37 and 38). Glutathione synthesis was set to 0.030 µmol.mg prot-

1.h-1, as reported in the literature for physiological conditions (O'Connor et al. 1995), 

and the model estimated a net rate of taurine and hypotaurine synthesis (r38 - 0.17 ± 0.02 

µmol.mg prot-1.h-1 – Table 4.3) as well as the fraction which is converted into pyruvate 

(r20 - 0.16 ± 0.01 µmol.mg prot-1.h-1 – Table 4.4) in order to have a cysteine to pyruvate 

rate that would fit better with the observed labelling dynamics.  

 

Figure 4.3 - Total metabolic fluxes at the glutamate/α-ketoglutarate node. The forward and reverse fluxes 
of α-ketoglutarate/glutamate exchange were calculated by summing up all fluxes of the reactions in which 
they are included. Values are µmol mg prot-1 h-1. a – The total flux α-ketoglutarate → glutamate is the sum of 
the fluxes r34, r35a, r39, r40 and r41. b - The total flux glutamate → α-ketoglutarate is the sum of the fluxes r35b, 
r34 and r10. Abbreviations: α-KG, α-ketoglutarate; Gln, glutamine; Glu, glutamate; GSH, glutathione; OSuc, 
oxalosuccinate; SucCoA, succinyl-Coenzyme A. 

This approach additionally enabled to estimate the fluxes of exchange between 

α-ketoglutarate and glutamate (Tables 4.2 and 4.3, Figure 4.3), which were similar to the 

TCA fluxes. Interestingly, a net flux favoring glutamate release from the TCA cycle was 

estimated. Regarding glutamine, the predicted isotopomer dynamics was a little slower 

than that experimentally observed. This might indicate a glutamine pool smaller than 

the measured value. The estimated flux through the reaction catalyzed by glutamine 
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synthetase (r36a) (Table 4.3) was slightly higher than the observed glutamine secretion 

rate, resulting in some flux through the inverse reaction (r36b) (Table 4.4). 

3.4 Statistical significance of estimated fluxes and pool sizes 

After estimation of the free fluxes, their statistical validity must be evaluated. Besides the 

confidence limits (Table 4.3), also the sensitivity coefficients were derived for each 

parameter. All free fluxes presented small confidence intervals showing low uncertainty. 

Moreover, sensitivity coefficients higher than 1 were obtained for all fluxes and pool 

sizes (data not shown). A sensitivity coefficient equal to 1 means that a variation of 10% 

in the corresponding parameter affects the function F (Eq. 4) in 10%. Thus, sensitivity 

coefficients higher than 1 mean that the model is sensitive to the parameter value, and 

indicate that the free fluxes were identified with good precision. Together with 

intracellular fluxes, intracellular pool sizes determine the isotopomer profiles of the 

various metabolites during incubation time; thus, the pool sizes which were not 

experimentally determined had to be estimated by model fitting to the experimental data 

(Table 4.3). The average pool for glycolytic and PPP intermediates was estimated as 0.027 

± 0.001 mol mg prot-1. The small confidence interval for this pool shows its statistical 

validity. The citrate and -ketoglutarate pools could also be estimated with reasonable 

statistical confidence. The same is not true for fumarate and malate pools, presenting 

wide confidence intervals.  

The fitting performance (defined by the objective function) is rather sensitive to 

the optimized parameters. Inversely, the proposed parameter set is quite robust to 

variations in the fitting performance, revealing that even if reaching only a sub-optimal 

solution within the biologically relevant parameter space, the optimal parameter set 

would be relatively closer to the sub-optimal one. This means that the deviations 

between model and experimental measurements have a small impact on flux estimations.  
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4 Discussion 

4.1 13C isotopic transient MFA vs. other modelling methodologies 

In this work, a state-of-the-art metabolic modelling tool, isotopic transient 13C MFA 

(Wiechert and Noh 2005), was applied for the first time to estimate intracellular fluxes 

of brain cells. This methodology uses all the information contained in the isotopic 

transient data and, thus, the quality of flux estimations is strongly improved when 

compared to the classical MFA. The latter provides only the net fluxes (not the separate 

fluxes) through parallel metabolic pathways and reversible reactions. Isotopic transient 
13C MFA allows the resolution of important branches of the metabolic network. This is 

the case for the fluxes of parallel pathways (glycolysis vs. PPP and PC vs. PDH), 

bidirectional reactions (the reversible exchange between α-ketoglutarate and glutamate 

and between glutamate and glutamine – see Figure 4.3) and cyclic pathways (MAS).  

Isotopic transient MFA constitutes an improved, although more complex, 

alternative to the model pioneered by Malloy, which was initially developed to 

investigate heart metabolism (Malloy et al. 1988) and later adapted to estimate fluxes 

based on isotopomer composition of glutamate in neurons or glutamine in astrocytes 

(Martin et al. 1993; Merle et al. 1996a). Nevertheless, both MFA/13C MFA and the 

Malloy model have only been applied to estimate fluxes in a single cellular compartment. 

A network describing metabolic interactions between astrocytes and neurons would 

include a much larger number of reactions and, consequently, of unknown fluxes. This 

would require a larger set of experimental data and, in particular, the separate 

measurement of specific metabolic rates and pools for astrocytes and neurons, in order 

for the system to be determined. Still, this could be performed in a co-culture system, in 

which neurons and astrocytes could be physically separated (for example, using cell 

culture inserts).  

The present methodology thus requires the use of sensitive techniques, such as 

MS, and considerable experimental work. 13C NMR spectroscopy can also be used, 

particularly when the labelled substrates yield more complex labelling patterns. However, 
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its low sensitivity compared to MS becomes a disadvantage when the goal is to have 

labelling time-courses for as many metabolites as possible. In the present study, mass 

isotopomer data and metabolite pools were still limited to a relatively small number. 

Actually, quantification of metabolite pools has been one of the major drawbacks of 

isotopic transient MFA. GC-MS provided only the relative isotopic enrichment of 

intracellular pools. To have absolute pool concentrations, difficult-to-obtain labelled 

standards would be required. Nevertheless, the number of quantifiable mass 

isotopomers and absolute pool concentrations is expected to increase as MS techniques 

continue to improve. In addition, the high specificity of 1H nuclear magnetic resonance 

spectroscopy widely used in the metabolomics field (Weljie et al. 2006) could also be a 

good tool to quantify metabolite pools.  

To investigate brain metabolism in the scope of larger (underdetermined) 

networks, another metabolite balancing approach called flux balance analysis (FBA) has 

been applied (Cakir et al. 2007; Lewis et al. 2010). FBA relies on linear programming to 

obtain a solution for the intracellular fluxes in underdetermined systems (Kauffman et 

al. 2003). However, it requires the definition of a metabolic objective which is 

maximized or minimized during flux calculations (Kauffman et al. 2003). This metabolic 

objective might be hard to define, particularly concerning the complex interactions 

between brain cells. (Cakir et al. 2007) reported recently the application of FBA to 

investigate the metabolic interactions between neurons and astrocytes using diverse 

metabolic objective functions. Comparing to literature findings the best flux prediction 

was achieved when the maximization of the glutamate-glutamine-GABA cycle flux was 

the objective function (Cakir et al. 2007). Also based on linear programming, Lewis et al 

(2010) have recently reported a large-scale in silico model, including genomic and 

proteomic data, to recapitulate metabolic interactions between astrocytes and different 

types of neurons. This model correlates flux changes with altered expression or activity of 

particular enzymes (Lewis et al. 2010), representing a major breakthrough in this field, 

although it goes much beyond the scope of isotopic transient MFA. 
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4.2 Estimation of fluxes in parallel pathways: PPP/glycolysis and PC/PDH branch 

points 

The PPP plays a key role in the maintenance of the cellular redox-balance by ensuring 

the recycling of the reducing cofactor NADPH, necessary for the regeneration of 

glutathione, the major antioxidant molecule in brain cells (Dringen 2000). In fact, the 

model takes some synthesis of glutathione from cysteine into account. Also based on the 

45% enrichment in PEP and 3PG at isotopic steady-state, the model estimated an 

89%:11% flux ratio between glycolysis and the PPP. Most of the available estimations of 

the PPP flux were carried out using data from in vitro studies. Fitting with the present 

results, using the classical MFA combined with 13C labelling data collected at isotopic 

steady-state, we have recently estimated that ~10% of the total glucose consumed was 

metabolized through the PPP in astrocytes cultured in stirred bioreactors (Amaral et al. 

2010). Previously, Ben-Yoseph et al. (1996) had reported a basal astrocytic PPP flux of 

~7% of the total lactate produced from glucose in cultured astrocytes, determined by a 

GC-MS method based on the differential labelling of released lactate following 

metabolism of [1,6-C2,6,6-2H2]glucose. This value increased to 67% during exposure to 

oxidative stress (Ben-Yoseph et al. 1996). A PPP flux of 7% has also been reported in 

healthy human subjects using [1,2-13C]glucose and 13C-NMR spectroscopy (Dusick et al. 

2007). The importance of considering the PPP in modelling studies and of providing 

better tools to estimate its flux is justified by its significant influence on estimations of 

the glutamate-glutamine cycle in vivo (Shen et al. 2009). In addition, experimental data 

obtained in the context of brain activation studies in rats provided further evidence that 

the PPP might contribute more than previously estimated to the “glutamine dilution” 

phenomenon (Cruz et al. 2007; Dienel and Cruz 2009).  

Still, we cannot exclude that minor glycogen degradation could also have 

influenced the observed enrichment in glycolytic intermediates. In fact, lactate released 

by astrocytes was shown to partially result from glycogen breakdown, even in the 

presence of glucose (Sickmann et al. 2005). Nevertheless, the role of glycogen as energy 
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fuel appears to be more significant in the context of brain activation (Dienel et al. 2007). 

Glycogenolysis was not included in the model due to the lack of experimental data 

enabling us to distinguish between the contribution from the glycogen shunt and the 

PPP to PEP and 3PG 13C time-courses. More isotopomer time-courses would be 

required, for example, those from glucose or glucose-6-phosphate and intermediates of 

the PPP. It was decided to include the PPP instead of the glycogen shunt since it is more 

likely that this pathway accounts for the label dilution observed in glycolysis. The PPP is 

required for maintaining the basal cellular redox balance (Dringen 2000), even when 

significant oxidative stress is not present.  

Pyruvate carboxylation is an important anaplerotic reaction in the brain and is 

thought to occur predominantly in astrocytes due to the specific glial localization of the 

PC enzyme (Shank et al. 1985). The PC/PDH ratio is usually estimated based on the 

different metabolite isotopomers, such as glutamate or glutamine, originating from 

[13C]glucose metabolism through each of these pathways. In this work, the PC/PDH 

ratio (0.5) was calculated directly from the estimated PC and PDH fluxes, based on total 

carbon fluxes and not only on the 13C fluxes coming from glucose. This PC/PDH ratio 

fits well with those determined in vitro (Hassel et al. 1995; Waagepetersen et al. 2001) 

and also in vivo (Gruetter et al. 2001; Merle et al. 2002; Oz et al. 2004) for the glial 

compartment. Interestingly, Merle et al. (1996b) estimated a PC/PDH ratio of 0.54 in 

cultured cerebellar astrocytes and a similar value was obtained by us (Teixeira et al. 2008) 

in cultured cortical astrocytes. Taking into account the measured rates of release of 

different metabolites, the present results confirm that PC significantly contributes to the 

release of citrate and glutamine from astrocytes (Waagepetersen et al. 2001). Moreover, 

the PC flux is known to be implicated in glutamine synthesis also in the resting human 

brain (Gruetter et al. 1998) and its contribution was estimated to be 35% by metabolic 

modelling (Gruetter et al. 2001). Also, Duarte et al very recently estimated a 25% 

contribution of PC to the glial TCA cycle rate in the rat brain and a PC/PDH ratio of 

30% for the glial compartment (Duarte et al. 2011). Even though the absence of 
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neurons might reduce the need of glutamine synthesis by a monotypic culture of 

astrocytes, our results suggest that PC also significantly contributes to glutamine 

synthesis in this context.  

4.3 TCA cycle Fluxes and BCAAs catabolism 

The TCA cycle fluxes estimated in this work are in the range of values previously 

estimated by us using the classic MFA methodology (Teixeira et al. 2008; Amaral et al. 

2010). The estimated reduction in 13C enrichment from 41% in pyruvate to 14% in 

acetyl-CoA corroborates a study by Merle et al. (1996b) in cerebellar astrocytes. These 

authors justified the label dilution of acetyl-CoA with the consumption of extracellular 

amino acids and fatty acid degradation (Merle et al. 1996a). Our model considers also 

the metabolism of BCAA as an additional source of acetyl-CoA and elevated uptake 

rates (when comparing to the flux obtained for PDH) were measured for these amino 

acids. Actually, 14% enrichment in glutamate isotopomers produced after one turn of 

the TCA cycle was observed after incubation of astrocytes with [U-13C]isoleucine (56% 

enriched in the medium) (Johansen et al. 2007) confirming that BCAAs are oxidized to 

a large extent.  

The role of BCAAs as energy fuels is also relevant in vivo. It has been suggested 

that these substrates are oxidized by astrocytes in the rat brain to a significant extent 

(Dienel and Cruz 2009). Additional findings indicate that BCAAs also contribute to the 

“glutamine dilution” phenomenon observed in 13C isotopomer studies (Cruz et al. 2007; 

Dienel and Cruz 2009). However, BCAAs taken up by astrocytes can also be metabolized 

into ketone bodies, which are subsequently released and can eventually be taken up by 

neurons (Bixel and Hamprecht 1995). Thus, we cannot exclude a slight overestimation 

of the TCA cycle fluxes as well as the fluxes through the reactions bridging glycolysis and 

TCA cycle. Experimental labelling time-courses of intracellular lactate and/or pyruvate 

(which were not possible to obtain in the present study) would enable more accurate 

estimations at this metabolic node.  
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Glycolytic metabolites reached isotopic steady-state much faster than TCA cycle-

related metabolites, which can be due to the large pools of glutamate and aspartate 

(Table 4.1). These are linked to the TCA cycle through reversible aminotransferase 

reactions, delaying the labelling time-courses of TCA cycle metabolites. This is clearly 

observed in the labelling time-course of the citrate pool, which is faster during the first 

30 min of incubation. Then, it becomes slower as it is more dependent on the labelling 

dynamics of the downstream metabolites and subsequent turns of the TCA cycle. The 

model could describe this phenomenon quite well. The lower enrichment observed for 

fumarate, when compared to citrate, can be explained by the funneling of BCAAs from 

the incubation medium into the TCA cycle at the succinyl-CoA node, which dilutes the 

labelled fraction of the downstream compounds. On the other hand, the higher 

enrichment in aspartate and malate compared to that of fumarate is explained by the 

flux through PC. PC converts pyruvate into oxaloacetate that, subsequently, might 

exchange 13C label with malate to a significant extent through “back-cycling” in the TCA 

cycle (Sonnewald et al. 1993; Merle et al. 1996a). Actually, we have evidence that 

extensive malate to fumarate back-flux occurs in cultured astrocytes (unpublished data). 

In addition, the MAS activity further explains the isotopomer distribution similarity 

between malate and aspartate pools.  

4.4 Malate-Aspartate Shuttle and Glutamate/α-Ketoglutarate exchange 

The link between oxidative glucose metabolism and glutamate labelling is established by 

an active exchange rate between α-ketoglutarate and glutamate pools (a flux normally 

represented by Vx), which is, together with the oxaloacetate/aspartate exchange, 

mediated by the MAS (Gruetter et al. 2003). NADH is produced in glycolysis at the same 

rate of pyruvate synthesis. In order to maintain the cytosolic redox balance required for 

the continuous operation of glycolysis it needs to be recycled back to NAD+ (McKenna et 

al. 2006). Thus, reducing equivalents from NADH are transported into the 

mitochondrion by the MAS and are oxidized at the same rate that pyruvate enters the 

TCA cycle (Gruetter et al. 2003). This justifies the role of the MAS in mediating the 
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exchange of label across the mitochondrial membrane (Gruetter et al. 2003). In fact, our 

results agree with this direct relationship between the pyruvate oxidation rate, i.e., the 

rate of pyruvate entry in the TCA cycle - PDH+PC (0.21 ± 0.08 µmol.mg prot-1. h-1) and 

the MAS (0.16 ± 0.08 µmol.mg prot-1. h-1) flux.  

Still, a large debate exists concerning the relative magnitude of the Vx and PDH 

fluxes in the brain. Whereas some authors provided evidence that Vx and PDH fluxes 

are in the same range (Gruetter et al. 2001; Choi et al. 2002; Henry et al. 2002), others 

have proposed that Vx rate should be much higher than PDH (Mason et al. 1992; 

Mason et al. 1995). A scheme describing all reactions linked to glutamate and α-

ketoglutarate pools and their corresponding estimated fluxes can be seen in Figure 4.3. 

Our approach allowed distinguishing between these reversible fluxes, taking into 

account all carbon sources involved in α-ketoglutarate and glutamate metabolism. The 

present work importantly provides new evidence that Vx is in the range of the TCA cycle 

fluxes and not several fold higher. It should be highlighted that most of the cited 

investigations refer to whole brain fluxes whereas this study is focused only on astrocytic 

metabolic fluxes, although obtained from primary cultures. Nevertheless, Duarte et al 

have recently reported new supporting evidence for this concept, using an improved 

model allowing to estimate Vx in both the neuronal and glial compartment in the rat 

brain in vivo (Duarte et al. 2011). Taken together, these findings support the importance 

of the present results as reflecting what could be happening in the astrocytic 

compartment in vivo. 

4.5 Pyruvate compartmentation and malic enzyme  

Different labelling time-courses between extracellular lactate and alanine can be 

interpreted based on the existence of distinct astrocytic pyruvate pools. Labelling of 

alanine from glucose was previously observed to be lower than that of lactate in astrocyte 

cultures (Brand et al. 1992; Brand et al. 1993), which corroborates our results. These 

observations can additionally explain the poor fitting of the model to alanine 
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experimental 13C time-courses, since the model does not take into account distinct 

metabolite pools.  

The decarboxylation reaction by malic enzyme was also included in the model 

and its flux represented about 5% of the fluxes leading to pyruvate synthesis.  Pyruvate 

formed via malic enzyme must re-enter the TCA cycle to be completely oxidized. This 

pathway is called pyruvate recycling and has been described both in vitro (Sonnewald et 

al. 1996; Bakken et al. 1997; Waagepetersen et al. 2002) and in vivo (Cerdan et al. 1990; 

Haberg et al. 1998). As discussed by Waagepetersen et al. (2002), this pathway is likely to 

be more active when cells need to dispose of glutamate and glutamine by oxidative 

degradation. The preferential release α-ketoglutarate via glutamate from the TCA cycle 

and subsequent production of glutamine observed in this work thus explains the low 

contribution of this flux to the total pyruvate production.  

Also related to pyruvate synthesis is the degradation of cysteine. There are not 

many published values for these rates. Beetsch and Olson (1998) reported a rate of 

[35S]taurine synthesis from [35S]cysteine in cultured rat astrocytes of 1.27 nmol.mg 

protein 1.h 1, which is much lower than that estimated in this work (0.17 µmol.mg 

protein 1.h 1). However, in the same study, the measured activity of the rate-limiting 

enzyme involved in cysteine degradation into taurine, cysteine dioxygenase, was 144 

nmol·mg protein 1·h 1, which fits well with the taurine/hypotaurine synthesis rate 

estimated by our model. These results are also supported by findings from Brand et al 

(1998) showing that cultured astrocytes mainly use cysteine for the synthesis of taurine 

and hypotaurine as observed by 13C NMR spectroscopy after incubation with [3-
13C]cysteine (Brand et al. 1998). Still, Beetsch and Olson (1998) observed that taurine 

synthesis from extracellular cysteine is also supported by a robust rate of cysteine 

accumulation, and thus we cannot exclude that this factor might have contributed to the 

overestimation of the rate, as some of the cysteine taken up could have been 

accumulated to later yield taurine/hypotaurine. Nevertheless, this would not have an 

impact on the remaining estimated fluxes. 
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4.6 Final remarks 

This work clearly shows the potential of 13C isotopic transient MFA to provide a reliable 

metabolic profile of cultured astrocytes in a variety of conditions. Important metabolic 

fluxes of astrocytes normally not easily accessible were estimated, namely the PPP, PC, 

PDH, TCA cycle, MAS and also the α-ketoglutarate/glutamate exchange fluxes. In 

addition to corroborating in vivo and in vitro findings reported in the literature, this work 

also sheds new light on the important contribution of non glucose carbon sources to the 

global carbon fluxes of astrocytic energy metabolism, even under resting conditions. In 

summary, 13C isotopic transient MFA allows for the integration of the high amount of 

metabolomics data being generated and for an increased resolution of estimated fluxes. 

Due to its flexibility, the structure of the model is easy to adapt to a neuronal metabolic 

network or even to a co-culture system in which the different cellular compartments can 

be separated. Depending on the choice of the 13C-labelled substrate(s), this tool will 

allow the in vitro investigation of relevant aspects of cerebral bioenergetics, including 

specific metabolic disease hallmarks, which can provide important clues to help 

understanding in vivo data. 
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Abstract 

One of the main functions of astrocytes is to take up glutamate released during 

neurotransmission, due to the specific glial localization of glutamate transporters 

GLAST and GLT-1. This process plays a key role in the regulation of glucose metabolism 

in addition to preventing neuronal excitotoxicity. However, the distinct function of 

GLAST and GLT-1 is not known. Moreover, impaired glial glutamate uptake, due to 

decreased expression of these transporters, appears to be involved in the pathophysiology 

of neurodegenerative diseases, such as Huntington’s disease (HD). Thus, the aim of this 

work was to investigate the role of GLAST and GLT-1 in astrocytic energy metabolism. The 

approach chosen was to down-regulate these transporters in cultured astrocytes using RNAi 

tools and subsequently quantify the changes in their metabolic fluxes using metabolic flux 

analysis. Different RNAi strategies were tested: transduction of cells with lentiviral vectors 

carrying shRNA sequences or cell transfections using plasmid DNA through lipofection or 

electroporation. Some results suggested that lentiviral vectors pseudo-typed with a mokola 

envelope were able to down-regulate glutamate transporters in cultured astrocytes, although 

to a low extent. This was indicated by the expression of the GFP-reporter gene measured by 

flow-cytometry and by the decrease in glutamate uptake rate and in protein expression levels, 

compared to non-infected cells. However, control vectors containing siRNA sequences 

targeting GFP or luciferase genes had similar or better effects than the vectors targeting 

glutamate transporters, thus proving not to be suitable control vectors and suggesting that 

results obtained with siGLAST and siGLT-1 vectors might not be specific. Further studies 

suggested that the inefficacy of the lentiviral vectors used could be due to the mokola 

envelope, as VSV-G pseudotyped vectors yielded better results concerning mRNA levels and 

protein expression of GFP in cultured astrocytes. Due to time constraints, it was not possible 

to test further the new viral constructs and clarify this issue. In summary, the down-

regulation of glutamate transporters was not successful and, consequently, metabolic 

studies could not be performed. Future studies on viral vector constructs and infection 

protocols are required to allow the successful accomplishment of this project. 
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1 Introduction 

Astrocytes are the most numerous cells in the brain and participate in a large and diverse 

variety of functions (Ransom et al. 2003). Besides providing neurons with nutrients, 

growth factors, and structural support, they also protect against excitotoxicity by clearing 

excess excitatory neurotransmitters from the extracellular space. Indeed, the glial 

glutamate transporters, GLAST and GLT-1, are responsible for the bulk of extracellular 

glutamate clearance (Danbolt 2001), and provide glutamate for crucial metabolic pathways, 

such as the synthesis of the main brain antioxidant glutathione and the production of 

energetic substrates for neurons (Voutsinos-Porche et al. 2003).  

Glucose consumption by astrocytes was shown to be directly linked to 

glutamatergic activity through glial glutamate uptake (Pellerin and Magistretti 1994; 

Sibson et al. 1998). According to the astrocyte-neuron lactate shuttle hypothesis this 

metabolic coupling implies the re-establishment of the Na+ gradient (altered due to the 

Na+ co-transport with glutamate via GLAST and GLT-1) by the Na+/K+ ATPase which 

consumes ATP provided by glycolysis. Glutamate transport stimulates glial glucose 

uptake (via the GLUT-1 transporter) and glycolytic activity, resulting in the production 

of lactate that is subsequently transferred to neurons, answering their energetic needs 

(Pellerin et al. 2007). In fact, it has been suggested that glial glutamate transporters 

mediate the metabolic cross-talk between neurons and astrocytes as this classical 

response to synaptic activation was decreased in either GLAST or GLT-1 knock-out mice 

(Voutsinos-Porche et al. 2003).  

The differential expression of GLAST and GLT-1 with development has been 

described, with GLAST being predominant in the cortex during the first postnatal week, 

while GLT-1 expression increases during the second week to become the major 

transporter thereafter (Furuta et al. 1997). In addition, a predominant expression of 

GLAST has been described in primary cultures of cortical astrocytes from neonatal mice 

(Voutsinos-Porche et al. 2003). These observations suggest that GLAST and GLT-1 
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might play distinct roles in astrocytic physiology and therefore their individual roles 

should be further investigated. 

Glial glutamate transporters are also thought to be involved in the pathologic 

processes underlying neurodegenerative diseases, including Huntington’s disease (HD) 

(Maragakis and Rothstein 2006). HD is an autosomal dominant neurological disorder 

caused by a trinucleotide (coding for glutamine) repeat expansion in the Huntingtin 

(Htt) gene. This expansion produces an altered form of the Htt protein, mutant Htt 

(mHtt), resulting in the progressive loss of medium-sized spiny neurons (MSNs) in the 

striatum (Walker 2007). The expression of an N-terminal fragment of mHtt in cultured 

astrocytes has been recently shown to decrease both GLT-1 level and function, and to 

attenuate their protection of cultured neurons from glutamate toxicity (Shin et al. 2005). 

Moreover, it has been shown that expression of the N-terminal mHtt with a large poly-

glutamine (poly-Q) repeat (160Q) in mouse brain astrocytes decreases the expression and 

function of GLT-1 and is sufficient to induce neurological symptoms in those mice 

(Bradford et al. 2009). These authors additionally observed that glial expression of mHtt 

exacerbates neurological symptoms in double transgenic mice expressing mHtt in both 

neuronal and glial cells, indicating that glial function might indeed be impaired in HD 

(Bradford et al. 2010).   

Using a different approach, another rat model of HD has been developed in 

which different forms of mHtt are expressed selectively in striatal neurons via lentiviral-

mediated delivery (de Almeida et al. 2002; Regulier et al. 2003). More recently, a gene 

transfer strategy that allows the selective expression of any transgene into astrocytes in 

vivo has been developed (Colin et al. 2009). This new approach relies on a lentiviral 

vector pseudotyped with mokola and includes a specific neuronal microRNA target 

sequence to eliminate residual expression of the transgene in neuronal cells. In addition, 

through RNA interference, these vectors can also be used to down-regulate specific 

proteins. Therefore, these experimental models provide the opportunity to selectively 

depict the functional consequences of mHtt expression in neurons and glia and also to 
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specifically study the role of GLAST and GLT-1 by manipulating their expression either 

in vivo or in vitro. Thanks to this new lentiviral vector, a mouse model expressing mHtt 

only in striatal astrocytes has also been developed and investigations in this model 

revealed a specific down-regulation of the expression and function of GLAST and GLT-1 

(Faideau et al. 2010). Furthermore, co-localization of mHtt in astrocytes was also found 

in brain samples from HD patients together with a grade-dependent decrease in striatal 

GLT-1 expression (Faideau et al. 2010), suggesting that expression of mHtt in astrocytes 

alters glial glutamate transport capacity and may indeed contribute to HD pathogenesis. 

Given all the findings described above, this work aimed to further investigate, at 

first, the physiological importance of the glial glutamate transporters GLAST and GLT-1 

in neuronal-astrocytic metabolic interactions and, later on, to evaluate their possible role 

in the pathophysiology of HD and how this might be related with the expression of the 

mHtt protein. The main goal was to apply metabolic modelling tools, previously 

developed by our group and already applied to study astrocytic metabolism in 

physiological conditions, and to characterize astrocytic metabolic alterations after an 

ischemic insult (Teixeira et al. 2008; Amaral et al. 2010). The MFA methodology allows 

estimating intracellular metabolic fluxes requiring only the measurement of some 

transmembrane rates in samples of cell culture medium. If desired, information 

provided by the use of 13C-labelled compounds can also be included in the model, 

extending the amount of information generated, since it allows distinguishing the fluxes 

through parallel pathways (Amaral et al. 2010). MFA is a powerful tool to investigate the 

metabolic role of glial glutamate transporters by depicting eventual alterations in the 

different metabolic fluxes after the down-regulation of those proteins. 

This work resulted from a collaboration project between the Animal Cell 

Technology Unit at IBET (Portugal) and the groups of Dr. Gilles Bonvento and Dr. 

Nicole Deglon at MIRCen, CEA (France) in the context of the FP6-funded CliniGene 

NoE. 
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2 Materials and Methods 

2.1 Experiments performed at IBET 

2.1.1 Primary cultures of astrocytes 

Primary cultures of astrocytes were prepared from 1-2 day-old rat pups as described in 

(Amaral et al. 2010). Briefly, prefrontal cortices were collected, the meninges were 

carefully removed and the tissue was mechanically disrupted with “up and down 

movements” using Pasteur pipettes. Cell suspensions were then centrifuged for 15 min 

at 200 g. The cell pellets were suspended in DMEM (Invitrogen) containing 6 mM 

glucose, 15% FBS and Pen-Strep (100 U/mL). Cells were plated in 175 cm2 tissue-

culture flasks (approximately 1.5 cortices per flask) and kept in a humidified atmosphere 

of 7% CO2 in air at 37ºC. Half of the culture medium was exchanged two days after the 

beginning of the culture and complete medium exchanges were performed twice a week 

thereafter, gradually reducing the percentage of FBS to 10%.  

2.1.2 Preliminary infections with lentiviral vectors 

After one week in culture, cells were trypsinized and plated into 24-well plates at a cell 

density of 1x105 cells/cm2. Some cells were plated on poly-D-lysine coated glass coverslips 

for immunostaining analysis. Two days later, astrocytes were infected with 50 or 100 ng 

p24/cm2 of lentivirus carrying sequences to over-express green fluorescent protein (GFP), 

GLAST or GLT-1 or to down-regulate GLAST or GLT-1 (siGLAST or siGLT-1 vectors, 

respectively). Lentiviral vectors description is presented in Table 5.1. The viral infection 

protocol followed was always the same: viral suspensions were diluted in culture medium 

and a complete medium exchange was performed with this suspension. Another 

medium exchange was subsequently performed two days after infection. In the following 

experiments, cells were plated at a cell density of 5x104 cells/cm2 and infections were 

performed two days later using a viral inoculum of 50 ng p24/cm2 of siGLAST or siLuc 

vectors (Table 5.1). The percentage of infected cells (GFP-positive, for cells infected with 

lentiviral vectors carrying the GFP reporter gene), was assessed 10 days after infection by 
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flow cytometry. Cells were trypsinised and suspended in culture medium followed by 

analysis in a Partec CyFlow® space equipment (Partec, Münster, Germany). Data were 

analyzed with the FloMax® software.  

Table 5.1 - Lentiviral vectors used in the infections of primary cultures of astrocytes 

Vector Abbreviation 

Mokola-SIN-cPPT-PGK-GFP-WHV-MIR7.8(2S) GFP 

Mokola-SIN-cPPT-PGK-mouseGLT1-HA-WHV-MIR7.8(2S) GLAST 

Mokola-SIN-cPPT-PGK-mouseGLAST-HA-WHV-MIR7.8(2S) GLT-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

VSV-SIN-PGK-GFP VSV-GFP 

Mokola-SIN-cPPT-PGK-GFP-WHV-MIR7.8(2S)-LTR-(TRE-H1-siGLAST) siGLAST 

Mokola-SIN-cPPT-PGK-GFP-WHV-MIR7.8(2S)-LTR-(TRE-H1-siGLT-1) siGLT-1 

Mokola-SIN-cPPT-PGK-nls-LacZ-WHV-MIR7.8(2S)LTR(N)-(TRE-H1-siGFP) siGFP 

Mokola-SIN-cPPT-PGK-GFP-WHV-MIR7.8(2S)-LTR-(TRE-H1-siLuc)  siLuc 

 

2.1.3 Transfection of astrocytes 

2.1.3.1 Transfection with lipofectamine 

Astrocytes were cultured for 3 weeks, as described above and then plated on 24-well 

plates at a cell density of 5 x 104 cells/cm2. Before transfection, culture medium was 

changed completely (DMEM medium with 10% FBS, as used for culture maintenance) 

using 500 µl total volume per well. The plasmid used in these tests was the siUNIV 

plasmid (SIN-CWP-GFP-LTR(N)-TRE-siUNIV), a universal siRNA control vector 

containing a GFP reporter gene (provided by the CEA partners). Plasmid DNA dilutions 

were prepared in Opti-MEM (Invitrogen) serum-free medium and PLUS reagent (diluted 

1/200), followed by incubation at room temperature for 10 minutes. Then, 

lipofectamine LTX (Invitrogen) was added to the DNA dilutions (two lipofectamine 

dilutions were tested: 0.15 µl /100 ng DNA and 0.6 µl /100 ng DNA) for a final volume 

of 100 µl, mixed gently and incubated for 30 min at room temperature. 100 µl of the 

DNA-lipid complex containing 500, 1000 or 2000 ng of DNA were added dropwise to 

the cells in 500 µl of growth medium followed by gentle mixing of the plates. Each 
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condition was performed in triplicate. GFP expression was quantified 48 hours after 

transfection by flow cytometry and/or fluorescence microscopy using a LEICA DMI6000 

microscope. For flow cytometry analysis, cells were trypsinised and suspended in culture 

medium containing 1 µg/ml propidium iodide (red fluorophore which binds the DNA 

of dead cells), followed by analysis in a Partec CyFlow® space equipment (Partec, 

Münster, Germany). Data were analyzed with the FloMax® software.  

2.1.3.2 Transfection by electroporation 

Astrocytes were cultured for 3 weeks as described above, detached from the T-flasks 

using trypsin and cell suspensions were prepared in electroporation buffer (Invitrogen) at 

a cell density of 1x106 cells/ml or 5x106 cells/ml. 1 ml of astrocyte culture medium (see 

above) was distributed by the wells of 24-well plates prior to transfections and placed in 

the incubator. 10 µl of the cell suspensions were electroporated using the NEON® 

Transfection System (Invitrogen) under different conditions (Table 5.2) and pipetted 

into each well of the cell culture plates. Each condition was performed in triplicate. 

Gene expression was assessed 48 hours after transfection by flow cytometry and/or 

fluorescence microscopy, as described for cells transfected with lipofectamine.  

Table 5.2 - Conditions tested in electroporation of astrocytes. 

Condition 
Cell inoculum 

(total cells/well) 
Pulse Voltage (V) Pulse Duration (ms) Number of pulses 

1 

1x105 

1600 20 1 
2 1650 20 1 
3 1300 20 2 
4 1700 10 2 
5 

5x105 

1300 20 2 
6 1400 20 2 
7 1400 30 1 
8 1700 20 1 
9 1700 10 2 

 

2.1.4 Glutamate uptake determination 

To assess the functional effect of the down-regulation of GLAST and GLT-1 proteins, 

glutamate uptake was determined by measuring the decrease of its concentration in the 



Down-regulation of glial glutamate transporters by RNAi 

 181 

culture supernatant with time. Cells were incubated with medium containing 300 µM 

glutamate (sodium salt) and samples of culture supernatant were collected at different 

time-points during 4h.  

2.1.5 Metabolic studies 

After one week in culture, cells were trypsinized and plated at a cell density of 5x104 

cells/cm2 in 75 cm2 flasks or 6-well plates and infection was performed two days later 

using a viral inoculum of 50 ng p24/cm2 of siGLAST or siLuc vectors. 10 days after 

infection, cells were incubated with DMEM culture medium (D5030, Sigma) containing 

3 mM glucose, 500 μm glutamate, 1% FBS, pen/strep (100 U/mL) and no glutamine. 

Cell supernatant samples were collected at several time points for later quantification of 

total glucose, lactate and glutamate. At the end of the incubations, cells were harvested 

by trypsinization and washed with PBS. Cell pellets were stored at -80ºC until further 

treatment for western blot analysis.  

2.1.6 Other analytical methods 

Glucose and lactate were analyzed by enzymatic methods (YSI 7100 Multiparameter 

Bioanalytical System; Dayton, Ohio, USA) in samples of cell supernatant. Glutamate was 

quantified by HPLC using a pre-column derivatisation method based on the AccQ.Tag 

method from Waters as described in (Amaral et al. 2010). Total protein amounts in cell 

pellets were determined using the BCA kit form Pierce using BSA as standard, after 

dissolution of the cell pellets with 0.1 M NaOH. 

2.1.7 Western Blot 

2.1.7.1  Sample preparation 

Cells were collected from the plates by trypsinization and pellets washed with PBS. 

Then, extraction was performed by resuspending pellets in lysis buffer containing 50 

mM Tris-HCl, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100 and protease inhibitors 

(100 µl of lysis buffer/1x106 cells) followed by incubation at 4ºC for 30 min. Extracts 
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were centrifuged at 15 000 g for 15 min at 4ºC and supernatants (extracts) were collected 

and stored at -80ºC.  

2.1.7.2 SDS-PAGE Electrophoresis and Immunoblots 

Samples were suspended in sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

(SDS-PAGE) sample buffer (Invitrogen) and heated for 10 min at 70ºC. Then, samples 

were loaded in a NuPAGE Bis-Tris Mini Gel (Invitrogen) and an SDS-PAGE 

electrophoresis was performed according to the manufacturer’s instructions. Proteins 

were then transferred to PVDF membranes which were subsequently blocked in tris-

buffered saline (Sigma) + 0.1% Tween 20 (TBST) and 5% (w/v) non-fat milk for 1 hour 

at RT. Membranes were subsequently incubated overnight with different primary 

antibodies: anti-GLAST (Frontier Science) (1:2000), anti-α-tubulin (Sigma) (1:5000) as a 

loading control, followed by incubation with horseradish peroxidase-conjugated 

secondary antibodies (GE-Healthcare) (1:5000) and developed with the ECL Kit 

(Amersham). Band intensities were quantified using the ImageJ software. Results 

obtained for GLAST were normalized with the values obtained for the α-tubulin bands. 

2.1.8 Immunostaining 

Cells were fixed with 4% paraformaldehyde (PFA) + 4% sucrose in PBS for 20 min 

followed by permeabilization with 0.1% TX-100 in PBS for 15 min at RT. Blocking of 

unspecific epitopes was performed using 0.2% fish skin gelatine in PBS for 30 min. Cells 

were then incubated with the primary antibodies anti-glial fibrillary acidic protein 

(GFAP) from mouse (Chemicon) (1/200), anti-GLAST and anti-GLT-1 from rabbit 

(1/1000) (FrontierScience), anti-hemagglutinin (HA) from mouse (Covance) (1/1000) 

diluted in 0.125% fish skin gelatine in PBS for 2h followed by incubation with the 

secondary antibodies AlexaFluor 488 anti-mouse or 594 anti-rabbit (Molecular Probes) 

(1/500) for 1h at RT. Preparations were mounted with ProLong Gold anti-fade reagent 

(Invitrogen) containing DAPI and allowed to dry overnight. Cells were observed under 
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an inverted fluorescence microscope (Leica DM IRB, Wetzlar, Germany).  

2.2 Experiments performed at MIRCen, CEA 

2.2.1 Transfection of 293T cells 

Human embryonic kidney (HEK) 293T cells were plated at a cell density of 8x105 

cells/well on 6-well plates and transfected 24 h later. Plasmids used in the transfections 

are listed in Table 5.3. The method used was the transient transfection method with 

calcium chloride (CaCl2). Plasmids were diluted in H2O and mixed with 50 µl of CaCl2 

0.5 M and 100 µl Hepes Buffered Saline (HBS; Fluka) 2X to a total volume of 200 µl. 

The DNA precipitates were then carefully pipetted onto each well by ensuring a 

homogeneous distribution on the cell monolayers. Two experiments were performed. A 

total amount of 5 µg of plasmid was used per well (5 µg for single transfections and 2.5 + 

2.5 µg for co-transfections) except in the second transfection, in which only 2.5 µg were 

used for single transfections (GLAST or GLT-1 plasmids alone). 5 h after transfection, 

the total volume was replaced by fresh culture medium [DMEM containing 10% FBS 

and 1% (v/v) Pen-Strep] and cells were kept at 37ºC in a humidified incubator with 5% 

CO2 in air for 48h until cell extraction. 

Table 5.3 - Plasmids used for transfections of 293T cells. 

Plasmids Abbreviation 

SIN-PGK-mouseGLAST-WHV GLAST 

SIN-PGK-mouseGLT-1-WHV GLT-1 

SIN-cPPT-PGK-nls-LacZ-WHV-mir78(2s)LTR(N)-(TRE-tight-siGLAST) siGLAST 

SIN-cPPT-PGK-nls-LacZ-WHV-mir78(2s)LTR(N)-(TRE-tight-siGLT-1) siGLT-1 

SIN-cPPT-PGK-nls-LacZ-WHV-mir78(2s)LTR(N)-(TRE-tight-siGFP) siGFP 

SIN-CWP-GFP-MIR7.8(2S)-LTR-TRE-siLuc siLuc 

 

2.2.2 Primary cultures of astrocytes and infection with siRNA lentiviral vectors 

Primary cultures of cerebral cortical astrocytes were prepared from newborn rats or mice 

(1–2 days old) following a protocol adapted from (Sorg and Magistretti 1992). Briefly, 
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forebrains were removed aseptically from the skulls, the meninges were carefully excised 

under a dissecting microscope, and the neocortex was dissected free of brainstem, 

thalamus, striatum, and hippocampus. The cells were dissociated by several passages 

through a 5 ml syringe without needle and subsequently using needles of decreasing 

gauge size. After centrifugation for 10 min at 200 g, the cell pellets were re-suspended in 

DMEM (ref. 31885, Invitrogen, Paisley, UK) supplemented with 10% FBS and 1% Pen-

Strep. Cells were seeded on 6-well plates (final volume of 2 ml/well) or on 24-well plates 

with poly-D-lysine-coated glass coverslips (final volume of 1 ml/well) and incubated at 

37°C in an atmosphere containing 5% CO2/95% air. Half of the culture medium was 

renewed 3–4 days after seeding and, subsequently, complete medium exchanges were 

performed twice a week with 2 ml. Before each complete medium exchange, plates were 

shaken by hand for some seconds to release oligodendrocytes and microglial cells.  

At 10 days in vitro (DIV), cells were infected with the lentiviral vectors siGLAST, 

siGLT-1, siLuc or siGFP (Table 5.2). Vector production was carried out by Noëlle 

Dufour and Gwennaelle Auregan at CEA-MIRCen. The viral inocula used was based on 

the amount of protein p24 (a protein localized on the viral capsid) quantified by ELISA, 

which corresponds to the total number of particles in a viral batch. Astrocytes on 6-well 

plates were infected with 200 or 400 ng p24/well whereas cells on 24-well plates were 

infected with 40 or 80 ng p24. Viral suspensions were diluted in culture medium and a 

complete medium exchange was performed. Cells in 6-well plates were extracted at 22 

DIV to analyze GLAST and GLT-1 mRNA and protein expression levels. Cells in 24-well 

plates were treated according with the immunostaining protocol described below. 

Further tests were performed aiming to compare the efficiency of infection using 

different viral envelopes, due to low efficiencies obtained in previous experiments. Cells 

were infected with VSV-SIN-PGK-GFP or with Mokola-SIN-PGK-GFP at 9 days in 

culture. 3 viral inocula were tested for each vector in 6-well and 24-well plates (Table 

5.4). Viral suspensions were first diluted in culture medium at 20 ng/µL (for infection in 

6-well plates) and at 1 ng/µL (for infection in 24-well plates) and after completely 
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changing the medium, cells were infected. Nine days after infection cells were extracted 

for posterior mRNA analysis by Reverse Transcriptase - quantitative Polimerase Chain 

Reaction (RT-qPCR; see details below). 

Table 5.4 - Viral inocula (ng of p24) of Mokola-GFP and VSV-GFP vectors used to compare the efficiency 
of infection using different envelopes. 

Vector Plate Viral inoculum (ng p24) 

VSV-SIN-PGK-GFP  
6 wells 100 ng 200 ng 400 ng 

24 wells 20 ng 40 ng 60 ng 

 Mokola-SIN-PGK-GFP 
6 wells 200 ng 400 ng 600 ng 

24 wells 40 ng 60 ng 80 ng 

 

2.2.3 Western Blot 

2.2.3.1  Sample preparation 

Medium was collected and discarded and cell monolayers carefully washed with PBS 

(only for astrocytes). Membrane proteins were extracted by quickly adding 300 µl of lysis 

buffer containing 50 mM Tris HCl, 100 mM NaCl and 1% (v/v) SDS) followed by 

scraping cells from the plates and harvesting the cell suspensions into microtubes. The 

viscous suspensions were sonicated for some seconds to help to dissolve precipitated 

DNA and samples were subsequently divided into two fractions. One was directly used 

to determine protein concentrations using the BCA kit from Pierce (Rockford, IL, USA) 

using bovine serum albumin as standard. The other fraction was diluted ¼ in loading 

buffer 4X (Tris base 0.25 M, 0.4 M DTT, 40% (w/v) glycerol, 8% (v/v) SDS, 

bromophenol blue) and stored at -20ºC until western blot analysis. 

2.2.3.2 SDS-Page electrophoresis and immunoblots 

Samples were diluted in loading buffer 1X in order to have the same protein 

concentration in all samples. Then, proteins were denatured by boiling for 5 min. 30 µg 

of protein were loaded per lane in a 12% acrylamide gel in Tris-SDS and allowed to 

migrate by electrophoresis. The proteins were subsequently transferred to a 
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nitrocellulose membrane using the iBlot® Gel Transfer System from Invitrogen. 

Membranes were blocked in TBST (Tris 25 mM pH 7.4, NaCl 150 mM and Tween 20 

0.1%) and 5% (w/v) non-fat milk for 1 hour at RT. Membranes were subsequently 

incubated overnight with different primary antibodies: anti-GLAST and anti-GLT-1 

(Frontier Science, Japan) (1/5000) or anti-actin (Sigma) as a loading control, followed by 

incubation with horseradish peroxidase-conjugated secondary antibodies (GE-

Healthcare) (1:5000) and developed with the chemiluminescence ECL Kit (Amersham). 

Band intensities were quantified using the ImageJ software. Results obtained for GLAST 

and GLT-1 were normalized with the values obtained for the actin bands. 

2.2.4 Reverse Transcriptase - quantitative Polimerase Chain Reaction (RT-qPCR) 

2.2.4.1  Extraction of Total RNA  

Medium was collected and discarded and cell monolayers carefully washed with PBS 

(only for astrocytes). RNA was extracted by adding 1 ml (6-well plates) or 250 µl (24-well 

plates) of TRIzol® reagent (Invitrogen). Cells were scraped from the plates and 

transferred into sterile microtubes. Chloroform was added to the samples and phase-

separation was induced by centrifugation at 12 000 g for 15 at 4ºC. The aqueous phase 

containing RNA was collected and mixed with isopropanol to precipitate the RNA. 

After centrifugation, the RNA pellets were washed with 75% ethanol and allowed to dry 

for some minutes at RT. Finally, pellets were suspended in RNAse free water (30-50 µl). 

2.2.4.2 RT reaction 

2 µg of RNA per sample were treated with RQ1 DNase for 30 min at 37ºC and the 

reaction stopped by addition of EGTA 20 mM followed by incubation at 65ºC for 10 

min. 200 ng of the final product was subjected to a reverse transcription reaction by 

treatment with the enzyme SuperScript® III (SuperScript III One-Step real-time PCR 

System with Platinum® Taq DNA Polymerase Kit, Invitrogen) followed by treatment 
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with RNase H. The cDNA obtained was diluted at 4 ng/µl in H2O/BSA 1%. 

2.2.4.3 Quantitative PCR 

Quantitative PCR was performed using the Platinum® SYBR® Green qPCR SuperMix-

UDG kit from Invitrogen. 3 ng of cDNA were amplified in triplicates by the polymerase 

Taq Platinum® and the PCR products quantified through the incorporated SYBR® green 

using the equipment of real-time PCR Mastercycler ep Realplex (Eppendorf). The 

oligonucleotides used are listed on Table 5.5. The values obtained for GLAST and GLT-

1 were normalized using those obtained for the housekeeping genes ß-actin (for 293T 

cells) or cyclophilin A (for astrocytes). 

Table 5.5 - Primer sequences used in the quantitative PCR reactions. 

Name Target Sequence 
mGLAST-F Mouse GLAST TCTCCAGTCTCGTCACAGGAATG 
mGLAST-R Mouse GLAST TGCCAATCACCACAGCAATG 
mGLT-1-F Mouse GLT-1 GGCAATCCCAAACTCAAGAAGC 
mGLT-1-R Mouse GLT-1 GTCACTGTCTGAATCTGCTGGAAAC 
rGLAST-F Rat GLAST GGATGGAAAGATTCCAGCAA 
rGLAST-R Rat GLAST ACCTCCCGGTAGCTCATTTT 
rGLT-1-F Rat GLT-1 CTGGGAAGAAGAACGACGAG 
rGLT-1-R Rat GLT-1 ACTGCCTTGGTTGTATTGGC 
GFP301F GFP GTGCAGTGCTTCAGCCGCTA 
GFP614R GFP TCGATGTTGTGGCGGATC 
ß-Actin-F Mouse ß-actin  TGAAGGTGACAGCAGTCGGTTG 
ß-Actin-R Mouse ß-actin GGCTTTTAGGATGGCAAGGGAC 
CYCLO-F Mouse, rat and human cyclophilin A ATGGCAAATGCTGGACCAAA 
CYCLO-R Mouse, rat and human cyclophilin A GCCTTCTTTCACCTTCCCAAA 

 

2.2.5 Immunostaining 

Cells were washed with PBS and fixed with 4% (w/v) PFA for 20 min at RT. After 

careful washing with PBS, coverslips were stored at 4ºC in 600 µl of PBS + 0.05% 

sodium azide until the rest of the protocol was performed. Cell permeabilization and 

blocking was performed with PBS + 0.2% Triton and 5% normal goat serum (NGS) for 

1h at RT. Cells were then incubated with the primary antibodies anti-GFAP-Cy3 from 

mouse (Sigma) (1/500), anti-Iba1 (Wako) (1/500) and anti-GFP (1/200) from rabbit 

(Invitrogen) diluted in PBS + 0.2% triton + 3% NGS + 0.1% sodium azide overnight at 
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4ºC followed by incubation with the secondary antibody Alexa A488 anti-rabbit 

(Invitrogen) (1/500) for 1h. Cells were then incubated for 5 min with DAPI (Invitrogen) 

(1/2000) in PBS and preparations were mounted with mounting medium Fluorsave™ 

reagent (Calbiochem) and allowed to dry overnight. Preparations were observed under 

an inverted fluorescence microscope (Carl Zeiss). 

3 Results 

3.1 Experiments performed at IBET 

3.1.1 Endogenous expression of GLAST and GLT-1 in primary cultures of rat 
astrocytes 

Primary cultures of astrocytes on glass coverslips were stained with anti-GLT-1 and anti-

GLAST antibodies to assess the endogenous expression of these transporters in the 

cultures. Both GLAST (Figure 5.1A) and GLT-1 (Figure 5.1B) expression was observed. 

However, GLAST expression appeared to be higher than that of GLT-1. When using the 

anti-GFAP antibody, specific of astrocytes, it was confirmed that most of the cells present 

in the culture were GFAP-positive and co-localized with GLAST and GLT-1 staining, 

confirming the glial expression of these transporters. No neurons or undifferentiated 

cells were found in the cultures (data not shown). Only a few oligodendrocytes, stained 

with O4, were observed (data not shown). 
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Figure 5.1 - Endogenous expression of GLAST and GLT-1 in primary cultures of astrocytes. A (I-IV): 
GLAST (red), GFAP (green), DAPI (blue); B (I-IV): GLT-1 (red), GFAP (green), nuclei (blue). Scale bar 50 
µm. 

 

3.1.2 Infection of astrocytes with lentiviral vectors  

With the aim of establishing infection protocols and testing the efficiency of the 

lentiviral vectors in primary cultures of astrocytes, some preliminary tests were performed 

with the lentiviral vectors provided by Dr. Nicole Deglon (CEA, France).  

3.1.2.1 Over-expression of GFP, GLAST and GLT-1 in astrocytes 

Astrocytes were infected with lentiviral vectors carrying the GFP, GLAST, or GLT-1 

genes (see Table 5.1) and the efficiency of infection in astrocytes was analyzed by flow-

cytometry and immunofluorescence microscopy. A maximum average value of 50% GFP-

positive cells was obtained by flow cytometry (Figure 5.2A) after infection with the GFP 

lentiviral vector. GFP expression in these cells was also observed by fluorescence 

microscopy (Figure 5.2B). The ability of the GLAST and GLT-1 lentiviral vectors to 

infect astrocytes was confirmed by immunostaining using an anti-HA antibody targeting 

a tag present in the transgene carried by the vector. As shown in Figure 5.2B, HA 

staining was observed by fluorescence microscopy after infection with both vectors, 

indicating the efficiency of infection. 
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Figure 5.2 – Assessment of infected astrocytes by flow cytometry and fluorescence microscopy. A – 
Percentage of GFP-positive cells (Q4) determined by flow cytometry analysis; B – Fluorescence microscopy 
images of cells expressing GFP, GLAST or GLT-1 (green), as indicated. GLAST and GLT-1 were detected by 
immunostaining of the HA tag present in the gene carried by the vectors. Scale bar, 50 µm. 

3.1.2.2 Down-regulation of GLAST and GLT-1 in astrocytes using lentiviral vectors 

After testing lentiviral vectors to over-express GLAST or GLT-1, siRNA lentiviral vectors 

carrying a GFP reporter gene were also tested for their ability to down-regulate these 

genes in primary cultures of astrocytes. The percentage of infected cells was assessed by 

flow-cytometry and 24% GFP-positive cells were observed in siGLAST cultures whereas 

siGLT-1 cultures had 40% GFP-positive cells (Table 5.6).  

Table 5.6 – GFP expression and glutamate uptake rate in astrocytes after infection with siRNA lentiviral 
vectors. 

Vector 
% GFP-positive 

cells 
Glutamate uptake rate 
(nmol. mg prot-1.min-1) 

% Decrease in 
glutamate uptake 

ratea 

(non-infected cells) - 23 - 
siGLAST 24 19 19 
siGLT-1 40 16 30 

a Relative to non-infected cells 

 

This value was much lower than the ones obtained with the regular GFP lentiviral 

vectors used before (non siRNA). In addition to evaluating the percentage of infected 
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cells, a functional consequence of down-regulating GLAST and GLT-1 expression in 

astrocytes was also assessed. Since these proteins are glutamate transporters, the 

glutamate uptake rate was analyzed in the different cultures by measuring the rate of 

glutamate disappearance in the medium immediately after its addition. The results 

showed a decrease in the glutamate uptake rate of 19% and 30% in cells infected with 

siGLAST and siGLT-1 vectors, respectively, further confirming that the glutamate 

transporters were down-regulated. These results suggest that the percentage of infected 

cells and the effect at the glutamate uptake level were somewhat correlated, even though 

the effect at the level of glutamate uptake was not as pronounced as it would be expected 

from the GFP expression results. Consequently, new experiments were carried out to 

evaluate the extent of down-regulation of GLAST by using western blot instead of flow 

cytometry to directly check alterations in protein expression. At the same time, a siRNA 

control vector (siLuc) was also used for the first time. Western blot analysis showed that 

GLAST was successfully down-regulated in primary cultures of astrocytes by siGLAST 

(Figure 5.3). GLT-1 expression was also assessed but protein levels were very low, 

although they did not seem to be affected by siGLAST (data not shown), and 

consequently did not allow drawing any conclusions regarding cross-reactivity of 

siGLAST and GLT-1. Down-regulation of GLAST was also observed in cells infected 

with the siLuc control vector (Figure 5.3). The glutamate uptake rate was decreased in 

both cases, when compared to non-infected astrocytes, supporting the hypothesis that 

siLuc interfered with GLAST expression (Figure 5.4A). Again, it appears that the effect 

observed at the level of glutamate uptake is not as pronounced as the decrease in protein 

expression levels. Other metabolic consequences of decreased glutamate uptake were 

also observed in infected cells.  

The increases of glucose uptake and lactate release, triggered by glutamate, that 

have been reported in the literature (Pellerin and Magistretti 1994) were reduced in cells 

infected with siGLAST but also with siLuc (Figure 5.4B and 5.4C). 
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Figure 5.3 – Down-regulation of GLAST in primary cultures of astrocytes using a siRNA lentiviral vector 
for GLAST. A – Immunoblot of GLAST and α-tubulin (loading control); B – Densitometry analysis of 
GLAST expression normalized to α-tubulin levels. 

 

These results from a preliminary experiment suggested that the siGLAST vector was able 

to down-regulate GLAST but a good control vector was still missing. Therefore, it was 

decided that future experiments would be performed at CEA (France) with the aims of 

defining a good siRNA control vector to be used in future studies and also validating the 

efficacy of the siRNA lentiviral vectors to down-regulate the GLAST and GLT-1 proteins in 

primary cultures of brain cells using well-established RT-qPCR and western blot protocols. 

 

 

Figure 5.4 – Effect of the down-regulation of GLAST in glutamate uptake rate (A), glucose uptake (B) and 
lactate release (C) in primary cultures of astrocytes. Error bars correspond to the error associated to the 
linear regression function used to calculate the metabolic rates from metabolite concentration values 
measured along time in culture supernatants (n=1). 
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3.1.3 Transfection of astrocytes with plasmid DNA 

Two different transfection methods (transfection with lipofectamine – lipofection - and 

electroporation) were additionally tested in alternative to the use of lentiviral vectors to 

perform RNA interference in primary cultures of astrocytes. These methods were chosen 

because they are described in the literature (Karra and Dahm 2010) as being suitable to 

transfect primary neuronal cells, which have similar characteristics to the cells used in 

this work. Lipofection is a conventional lipid-mediated gene delivery method based on 

cationic lipid molecules forming lipossomes that interact with negatively charged nucleic 

acids and facilitate the fusion of the lipid:DNA complexes with the negatively charged 

plasma membrane (Karra and Dahm 2010). Electroporation causes a temporary 

alteration of the plasma membrane properties by exposing cells to a voltage pulse and 

consequently allows charged extracellular material, e.g., plasmid DNA, to enter the cell, 

mainly to the cytoplasm (Karra and Dahm 2010). We have tested the NEON® 

electroporation system from Invitrogen, which is particularly indicated by the 

manufacturer to efficiently transfect sensitive cells, including primary cultures. A plasmid 

containing a universal siRNA control sequence and a GFP reporter gene was used to test 

these transfection methods.  

3.1.3.1 Transfections with lipofectamine 

Astrocytes were transfected with 500, 1000 and 2000 ng of DNA in 24 well plates using 

two lipofectamine/DNA dilutions per condition. Both non-transfected cells and controls 

to which only lipofectamine was added presented a regular morphology and were 

approximately 80% confluent 48h after transfection (approximately 50% confluent at 

transfection) (Figure 5.5). Cultures transfected with increasing amounts of DNA 

exhibited a very high percentage of dead cells and cell debris (>80% estimated by 

inspection under the microscope; Figure 5.5). In addition, attached cells presented a 

markedly altered morphology. These results were more evident in cultures transfected 

with 1000 and 2000 ng DNA/well and no differences were identified regarding the 

different lipofectamine/DNA ratios used. No green fluorescence was observed in the 
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cells that remained attached to the wells (data not shown) and, therefore, flow cytometry 

analysis was not performed. These results suggest that amounts higher than 500 ng of 

DNA are damaging the cells and that, above all, the conditions tested were not suitable 

to efficiently transfect these cells. 

 

Figure 5.5 - Phase contrast microscopy images of astrocytes transfected with lipofectamine and increasing 
DNA amounts. Images presented correspond to the highest lipofectamine concentration used, as described 
in Materials and Methods. Scale bar, 50 µm. 
 

3.1.3.2 Transfections by electroporation 

We started by testing electroporation at a cell density of 1x106 cells/ml. Very few cells 

were attached to the wells 48h after electroporation (data not shown). Furthermore, a 

very low percentage of GFP-positive cells was observed by fluorescence microscopy (data 

not shown). Flow cytometry results indicated low cell death (<15%) and only a 

maximum of 8.5% GFP-positive cells (data not shown). We concluded that such a low 

cell density would not be enough to evaluate transfection efficiency. Therefore, we 

decided to increase cell concentration to 5x106 cells/ml and test similar electroporation 

conditions. In these experiments an increase in cell death was evident, as observed by 

phase contrast microscopy, when compared to controls, and very few GFP-positive cells 

were observed using fluorescence microscopy in the few cells that were attached to the 
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wells (Figure 5.6). Flow cytometry analysis showed a very high percentage of cell debris, 

indicated by a large population outside of the gated region in Figure 5.7A. 

 

 

Figure 5.6 - Phase contrast and fluorescence microscopy images of astrocytes transfected by 
electroporation with a plasmid carrying a GFP-reporter gene. Cells were suspended in electroporation 
buffer at a cell concentration of 5x106 cells/ml and 10 µl were electroporated in triplicate and plated in 24-
well plates. 5 different conditions were tested, corresponding to different pulse voltages or pulse number, as 
described in the Materials and Methods. Transfection efficiency was evaluated 48 h after transfection. Scale 
bars, 50 µm. 

Cells in the gated region R1 were about 50% for controls versus less than 20% for 

electroporated cells (Figure 5.7A), which clearly indicates the high percentage of cell 

death. Thus, since the calculations performed by the software are based on the gated 
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cells, there is an underestimation of the percentage of cell death, as the maximum 

observed was ~18% for PI-positive non-transfected (GFP-) cells (Figure 5.7B-I, condition 

5). Furthermore, flow cytometry results indicated a very low efficiency of transfection 

with an average of only 2.5% of GFP-positive and viable cells (Figure 5.7B-II). In 

conclusion, electroporation conditions tested were too hard for the cells and appear not 

to be a good strategy to achieve a high efficiency of transfection in primary cultures of 

astrocytes. 

 

Figure 5.7 - Flow cytometry analysis of astrocytes transfected by electroporation with a plasmid containing 
a GFP-reporter gene. 48 h after transfection, cells were collected using trypsin, suspended in medium 
containing PI to label dead cells and analyzed by flow cytometry. A - Example of flow cytometry diagrams for 
control and transfected cells; R1 indicates the gated region based on which the calculations are performed; 
Q1 – PI+/GFP-; Q2 – PI+/GFP+; Q3 – PI-/GFP+; Q4 – PI-/GFP+. B – Relative percentage of the cell 
populations analyzed by flow cytometry for the different conditions tested. I – transfected cells (GFP+); II - 
non-transfected (GFP-) cells. Values are mean ± s.d. (n=3). 

3.2 Experiments performed at MIRCen, CEA 

3.2.1  Over-expression and down-regulation of GLAST and GLT-1 in 293T cells 

In order to test the efficiency of the siRNA plasmids used in the construction of 

lentiviral vectors, 293T cells were transfected with GLAST or GLT-1 plasmids alone or 
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in combination with siGLAST and siGLT-1. In addition, two siRNA control plasmids, 

siGFP and siLuc were tested as siRNA control vectors. The results are presented in 

Figure 5.8.  

 

Figure 5.8 – Over-expression and down-regulation of GLAST and GLT-1 after transfection of 293T cells. 
A – Immunoblot for GLT-1 (I) and respective quantification of band intensities, relative to actin levels (II); B 
and C – Relative GLAST and GLT-1 mRNA level, respectively, as quantified by RT-qPCR. Values are mean 
± s.d. (n=2). 

By western blot, it was observed that GLT-1 proteins were efficiently over-expressed in 

293T cells and subsequently down-regulated by siGLT-1, although not to 100%, whereas 

siGLAST had no effect on GLT-1 (Figure 5.8A). Regarding GLAST, only results for 

mRNA levels are presented (Figure 5.8B) as no GLAST bands could be detected by 

western blot in any of the samples of this experiment, possibly due to protein 

degradation during extraction. Nevertheless, analysis of mRNA levels confirmed that the 

siGLAST plasmid efficiently down-regulated GLAST, presenting low down-regulation of 

GLT-1. Results obtained for GLT-1 mRNA levels corroborated western blot results 
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(Figure 5.8C). The control vectors siGFP and siLuc also down-regulated GLAST and 

GLT-1 to some extent, in particular the siLuc vector, indicating that this is not a good 

siRNA control vector to be used in these experiments.  

3.2.2 Down-regulation of GLAST and GLT-1 in astrocytes 

After confirming the efficiency of the siRNA plasmids for their target genes in 293T 

cells, lentiviral vectors carrying the same siRNA sequences were used to infect primary 

cultures of rat astrocytes. siLuc and siGFP lentiviral vectors were also tested as siRNA 

controls. Two viral inocula were tested:  200 or 400 ng p24/well of 6-well plates. Using 

RT-qPCR, GLAST and GLT1 mRNA levels were quantified (Figure 5.9A and 5.9B). 

The results show that the GLAST mRNA levels are much higher than that of GLT-1, 

confirming previous reports indicating that GLT-1 starts being expressed in adulthood 

(Furuta et al. 1997). However, no differences were observed between controls and 

infected cells regarding GLAST and GLT-1 mRNA levels for all vectors and viral inocula 

tested, including the siRNA control vectors siLuc and siGFP (Figure 5.9A and 5.9B). In 

what concerns protein expression levels, the results were somewhat surprising as GLAST 

levels were more intense in infected cells, in some cases, when compared to non-infected 

cells suggesting an over-expression induced by infection rather than down-regulation 

(Figure 5.9C). Only the siLuc vector showed some silencing effect, a result previously 

observed by transfection of 293T cells. Regarding GLT-1, again, only siLuc was able to 

down-regulate this protein. The siGLT-1 vector had no apparent effect on GLT-1 

whereas the remaining vectors tested slightly increased the expression of GLT-1 (Figure 

5.9D).  
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Figure 5.9 – Down-regulation of GLAST and GLT-1 in primary cultures of astrocytes using siRNA 
lentiviral vectors. A – Relative GLAST mRNA level; B – Relative GLT-1 mRNA level; C and D - 
Densitometry analysis of the immunoblots for GLAST and GLT-1 expression, respectively, normalized to 
actin levels. Values are mean ± s.d. (n=2). 

 

 Since the western blot and RT-qPCR analyses suggested that maybe cells were 

not efficiently infected due to the lack of protein down-regulation, it was decided to 

perform immunostaining to assess GFP expression in the infected cultures, as these 

lentiviral vectors carry a GFP reporter gene. It was necessary to use an anti-GFP antibody 

as GFP fluorescence was very difficult to observe directly under the fluorescence 

microscope. Additional antibodies against GFAP (astroglial marker) and Iba1 (microglial 

marker) were additionally used to characterize the cellular populations in the primary 

cultures. Results are shown in Figure 5.10. In non-infected cultures, a high percentage of 

cells expressing GFAP was observed and some Iba1 positive cells were also found, 

indicating the presence of microglia (Figure 5.10A and 5.10B). There were also some 
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areas where only cell nuclei were stained but no GFAP or Iba1 staining was observed. 

Concerning GFP expression in infected cultures, a very low number of GFP-positive cells 

was observed for batch 1 infected with either siGLAST (Figure 5.10C) or siGLT-1 

(Figure 5.10D). Interestingly, GFP positive cells appeared not to co-localize with GFAP 

staining, which is more evident in Figure 5.10D and 5.10F. In cell batch 2, more GFP-

positive cells were observed but mainly for the siGLAST cultures (Figure 5.10E). 

 

Figure 5.10 – Characterization of cell populations and assessment of infected cells in primary cultures of 
astrocytes by immunostaining and fluorescence microscopy. A, B – Non-infected astrocytes were stained 
with anti-GFAP (red), Iba1 (green) and DAPI (blue); Astrocytes infected with siGLAST (culture batch I – C; 
culture batch II – E) or siGLT-1 (culture batch II – D; culture batch II – F) were stained with anti-GFP 
(green), anti-GFAP (red) and DAPI (blue); Scale bar, 50 µm. 

3.2.3 Effect of the viral envelope on the efficiency of infection by lentiviral vectors in 
primary cultures of astrocytes 

Since very low infection efficiencies were obtained in previous experiments using the 

mokola-pseudotyped lentiviral vectors, further tests were performed at CEA using two 

lentiviral vectors carrying a GFP reporter gene with two different envelopes: mokola (the 

one used in previous experiments, which has a preferential glial tropism in vivo) and VSV 

(which has a strong neuronal tropism in vivo). Primary cultures of astrocytes were 

infected with different amounts of viruses in 6- and 24-well plates and GFP mRNA levels 
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were analyzed by RT-qPCR 9 days post-infection. Infection of astrocytes was efficient for 

both vectors, as doubling the dose doubled the number of GFP transcripts (Figure 5.11), 

particularly using 6-well plates. However, infection efficiency was markedly reduced 

when using the mokola envelope compared to VSV-G (approx. 20 times less GFP 

mRNA was obtained for mokola-vector infected cells). Among the different conditions 

tested, infection with 60 ng of p24 in 24-well plates or 400 ng of p24 in 6-well plates 

appear to be the best, considering the GFP mRNA levels obtained. 

 

 

Figure 5.11 – GFP mRNA levels determined by RT-qPCR in primary cultures of astrocytes infected with 
VSV-G (black bars) or Mokola-pseudotyped (white bars) lentiviral vectors carrying a GFP-reporter gene. A) 
Infection was performed in 24 wells plates with 20, 40 or 60 ng of p24 for VSV-G vectors (n=2) and 40, 60 
or 80 ng p24 for mokola vectors (n=2). 0 ng of p24 correspond to non-infected cultures and were used as 
control (n=1). B) Infection was performed in 6-wells plates with 100, 200 or 400 ng of p24 for VSV-G 
vectors (n=2) and 200, 400 or 600 ng p24 for mokola vectors (n=3). 0 ng of p24 correspond to non-infected 
cultures and were used as control (n=2). Values are mean ± s.d. 

4 Discussion 

Viral vectors are widely used tools for gene transfer and genetic manipulation in animal 

cells and therefore are useful to investigate phenomena related with gene alterations in 

brain cells. In the present work, different lentiviral vectors produced at MIRCen - CEA, 

were evaluated for their capacity of inducing an over-expression or down-regulation of 

some genes in primary cultures of astrocytes, namely GFP, GLAST and GLT-1. These 
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vectors were pseudotyped with a mokola envelope, which has been shown to direct viral 

tropism towards astrocytes in vivo (Colin et al. 2009). In addition, a neuronal detargeting 

sequence was incorporated in the vectors in order to reduce transgene expression in 

neurons. The efficiency of these strategies was confirmed in vivo, by showing an astrocyte 

selective over-expression of the transgene in different mouse brain areas as well as its 

down-regulation, the latter by inserting a shRNA sequence in the vector (Colin et al. 

2009). These vectors were also able to over-express GLAST. Hence, in this work these 

vectors were used to manipulate the expression of glutamate transporters in primary 

cultures of astrocytes with the aim of investigating the metabolic consequences of these 

alterations at the level of astrocytic metabolic fluxes, in different conditions. The vectors 

(containing the mokola envelope and neuronal detargeting sequences) were used in 

experiments involving only monotypic cultures of astrocytes in order to utilize the same 

type of vectors in eventual later studies involving mixed primary cultures. 

Infections with GFP, GLAST and GLT-1 lentiviral vectors showed that these 

vectors were able to efficiently over-express the referred genes in astrocytes. However, we 

could not get over 60% of infected cells which might be eventually related to the viral 

inoculum used. When the siRNA vectors were tested, a marked decrease in the 

maximum number of infected cells was observed by flow cytometry (below 40%). This 

led to the hypothesis that GFP fluorescence from the siRNA vectors was much weaker 

than the GFP intensity from GFP-lentiviral vectors. In fact, it was difficult to directly 

observe GFP fluorescence under the fluorescence microscope. A possible explanation for 

this might be some interference of the different regions of the viral vector that lead to 

the reduction of the GFP promoter in infected cells. Nevertheless, the efficacy to down-

regulate GLAST in primary cultures of astrocytes was shown by western blot in 

experiments performed at IBET, in which cultures were infected at low cell density, 

resulting from a cell dilution step when cultures reached confluence. These results were 

also reflected at the metabolic level, as a decrease in the glutamate uptake rate was 

observed and glucose uptake and lactate release were not increased after stimulation with 
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glutamate.  

Regarding the two transfection methods tested in alternative to the use of 

lentiviral vectors to transduce cells, both methods revealed not to be efficient to transfect 

primary cultures of astrocytes, at least in the conditions used. These cultures were shown 

to be very sensitive to both methods as cell death rates were very high and very low 

transfection efficiencies were obtained. The DNA amounts used in these transfections 

compared to those performed in 293T cells at MIRCen were very similar regarding DNA 

amount/area of culture (0.5 µg/cm2 for 293T cells vs 0.2-1 µg/cm2 for astrocytes), 

suggesting that this issue is unlikely to be the cause behind the unsuccessful results. 

Nevertheless, the high cell death rates could eventually be related with the type of 

plasmid since the one used in transfections of astrocytes was different from those used 

with 293T cells. Also, perhaps astrocytes are definitely more sensitive to this process and 

it could be the case that the cultures used were particularly more sensitive for any given 

reason. Only a few tests were performed using these methods since infection with 

lentiviral vectors is, in principle, much more efficient to transduce non-dividing cells and 

introduces the gene of interest directly into the genome (Karra and Dahm 2010). 

Given the low transduction yields using siRNA lentiviral vectors plus the need 

for a good siRNA control vector, more experiments were carried out at MIRCen. In 

those experiments very low infection rates in astrocytes were again obtained. This was 

concluded from the following observations: no changes at the mRNA level or protein 

expression level were detected 10 days after infection and also a low number of GFP 

expressing cells was observed by fluorescence microscopy, although GFP fluorescence 

resulting from the reporter genes of siRNA lentiviral vectors appears not to be a good 

parameter to monitor infection. The unsuccessful down-regulation of GLAST or GLT-1 

in primary cultures using lentiviral vectors appears not to be related with the siRNA 

sequences chosen since this was confirmed by performing transfections in 293T cells. 

The only difference between these experiments was that, in 293T cells, mouse genes 

were over-expressed and down-regulated, whereas, in primary cultures, the genes were 
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from rat origin. Nevertheless, it was confirmed that the siRNA sequences used in the 

construction of the vectors were also 100% homologous to GLAST and GLT-1 rat genes. 

Other factor possibly affecting the low infection yields obtained at MIRCen could be the 

elevated confluence of the astrocyte cultures at the time of infection, even though it is 

known that lentiviral vectors are able to infect non-dividing cells. Apparently, the fact 

that these vectors were shown to work in vivo might not be directly extrapolated for 

primary cultures possibly because, in vivo, the vectors are directly delivered inside the 

tissue, which is a compact cellular environment, whereas in a cell culture the amount of 

medium might impair the fast access of the viruses to the cells. These viruses have a very 

low stability at 37ºC (Carmo et al. 2009) and therefore it is important that the infection 

process occurs as fast as possible. Also, the ratio of non-infectious/infectious particles in 

the viral batches used might be elevated, as only the total amount of particles given by 

the quantification of the p24 protein is known and, therefore, a lot of non-infectious 

viral particles with a probable toxic effect are used, eventually prejudicing the infection 

process. Perhaps the mokola-pseudotyped vectors used in these experiments had a lower 

percentage of infectious particles which could have been damaged during the 

centrifugation process used for vector purification. New viral batches with a lower ratio 

of non-infected/infected particles should be tested and possibly using nlsLacZ instead of 

GFP as a reporter gene. The nlsLacZ reporter gene was considered to be better to 

identify infected cells by the CEA partners due to its localization and concentration in 

the cell nuclei.  

After many inconclusive results regarding the efficiency of infection of these 

vectors in primary cultures of astrocytes, it was decided to test the effect of the viral 

envelope in this process. VSV-G-pseudotyped lentiviral vectors were tested in 

comparison with the mokola-pseudotyped vectors and actually showed a 20-fold increase 

in infection efficiency in cultured astrocytes. Even though these vectors were shown to 

successfully transduce astrocytes in vivo (Colin et al. 2009), the mokola envelope appears 

not to be a good option for in vitro studies, although the reasons for this remain unclear.  
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Despite the strong neuronal tropism of VSV-G enveloped vectors in vivo, this appears to 

be a better option for siRNA studies in monotypic cultures of astrocytes. Further studies 

are ongoing to evaluate if the use of the VSV-G envelope improves the efficacy of the 

siRNA vectors in cultured astrocytes. 

Regarding the siLuc and siGFP controls tested, these were shown to interfere 

with GLAST and GLT-1 expression both by transfection and infection, although mainly 

siLuc. This suggests that the siLuc vector is probably having some toxic effect on the cells 

and therefore it should not be used as a control. The siGFP has also originated bad 

results in other experiments at MIRCen and it appears also to interfere with GLAST and 

GLT-1. Recently, a lentiviral vector carrying a universal siRNA control was produced at 

MIRCen and this is a potential candidate to be used in further experiments. The use of 

these controls in experiments involving RNAi technology is extremely important since it 

has to be shown that the observed changes are not due to the activation of the siRNA 

pathway. 

Given all the results obtained until now, it was not possible to find the optimal 

vectors to perform the siRNA experiments required to achieve the aims of this project. 

Further studies regarding siRNA lentiviral vectors construction, batch variability and 

infection protocols for primary cultures of astrocytes will hopefully allow performing the 

metabolic studies aimed at addressing the role of glial glutamate transporters using MFA 

tools.  
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1 Discussion 

The availability of better characterized animal models and more reliable cell culture 

systems together with groundbreaking techniques and tools strongly contributed to the 

current knowledge on brain energy metabolism. However, there are still numerous 

elusive issues, including the selective importance of certain pathways and substrates in 

the different cellular compartments and the exact features and role of metabolic 

disturbances that have been implicated in many neurological disorders. In this context, 

there is a growing need of improved approaches to investigate metabolic aspects of brain 

cells and consequently help to answer these numerous research questions. As mentioned 

in earlier chapters, in vitro studies are still extremely relevant and will certainly continue 

to provide important findings in this field.  

The work developed in this thesis aimed at contributing with a novel in vitro 

model to investigate brain ischemia and also with original approaches based on 

metabolic flux analysis methodologies allowing for a detailed and quantitative 

investigation of neural metabolism using cultured cells.  

1.1 Mimicking ischemia in vitro using bioreactors 

Ischemic stroke is one of the most devastating disorders affecting the brain and for 

which no effective treatment is available. Taking into account the key role of astrocytes 

in metabolic trafficking with neurons, one of the aims of this thesis was to investigate in 

detail the metabolic alterations occurring in astrocytes under ischemic conditions 

(Chapter 2). For that we have taken advantage of the bioreactors technology available at 

the Animal Cell Technology Unit to implement a novel in vitro model to mimic ischemia 

using primary cultures of astrocytes.  

Historically, research on ischemia has relied both on animal and in vitro models. 

In vivo models involve procedures such as the transient or permanent occlusion of a 

major cerebral artery (e.g. Haberg et al. 2006), the induction of reproducible infarcts in 
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selected brain areas by means of artificially induced thrombosis (e.g. Watson et al. 2002) 

or even cardiac arrest in dogs or primates (e.g. Richards et al. 2007), which cause a high 

degree of discomfort to the animal. Although animal models more closely reproduce the 

characteristics of grey matter ischemic injury in humans, the patterns of pathology in the 

body resulting from ischemia in a particular brain region can differ substantially from 

those seen in humans. Moreover, the technical requirements and the underlying 

complexity of in vivo models render them disadvantageous compared to in vitro models to 

investigate mechanistic aspects of cerebral ischemia and isolated cellular events.   

In vitro models of ischemia overcome these disadvantages, where the 

contribution of blood components is eliminated and the temperature and extracellular 

environment can be standardized (Lipton 1999). In most of these models, ischemic 

conditions are mimicked by a combination of oxygen and glucose deprivation (OGD) 

using either an “artificial” (Liniger et al. 2001) or “ischemic” cerebrospinal fluid (Rytter 

et al. 2003) equilibrated in N2/CO2 followed by the placement of cultures in an 

anaerobic or hypoxic chamber. Whereas hippocampal brain slices (Liniger et al. 2001) 

and organotypic hippocampal slice cultures (Rytter et al. 2003) retain the tissue cell 

stoichiometry and regional connectivity, monotypic cultures of neurons (Goldberg and 

Choi 1993) or astrocytes (Hertz 2003) enable to investigate specific cellular events 

associated to ischemia. Depending on the intrinsic sensitivity of these models to 

ischemia, they require different exposure times to reproduce cell damage, including 

delayed cell death, the fall of ATP levels and the release of glutamate from neurons 

(Lipton 1999).  

It is noteworthy that cultured astrocytes require several hours of OGD until cell 

death and other cellular responses can be observed, compared to neurons or slices 

(Almeida et al. 2002; Hertz 2003), and cultures derived from the cortex are also much 

more resistant than those derived from the hippocampus (Zhao and Flavin 2000). This 

resistance was observed in the model implemented in this thesis (Chapter 2). To mimic 

ischemia, astrocytes immobilized in Cytodex3® were cultured in bioreactors and 
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deprived of oxygen and glucose for 5h: cells were allowed to consume all glucose from 

the culture medium followed by the replacement of oxygen by nitrogen using the control 

unit of the bioreactors. 5h of OGD led only to approximately 30% cell death in cortical 

astrocytes and a similar percentage of intracellular ATP depletion, which was rapidly 

replenished through a fast metabolic response.  

An important advantage of the present model is the rigorous control of 

dissolved oxygen in the culture medium and also its fast manipulation enabling to 

completely remove oxygen in approximately 30 min, while maintaining pH control. pH 

control is carried out through injection of a mixture of air, N2 and CO2 and it can 

efficiently operate simultaneously to the manual injection of N2 that was used to force 

oxygen to be completely removed from the medium. Therefore, pO2 is decreased to 0% 

while pH is continuously being monitored, ensuring that cellular damage will only be 

due to the absence of glucose and oxygen.  

These bioreactors are advantageous to perform different types of neural cell 

suspension cultures, including embryonic brain cell aggregates. These aggregates have 

been successfully cultured in bioreactors in our laboratory and were useful to elucidate 

neuronal-astrocytic metabolic interactions in the context of anoxia (Sa Santos et al. 

2011). Aggregating brain cell cultures in Erlenmeyer flasks have been validated as 

promising in vitro models of ischemia (Pardo and Honegger 1999; Honegger and Pardo 

2007), which is induced through the transient arrest of agitation during 1-2h. 

Nevertheless, oxygen levels have not been monitored in these studies, indicating that 

there is still space for improvement, which could be accomplished by taking advantage of 

the numerous features of bioreactors. 

Above all, bioreactors technology provides high culture homogeneity and 

reproducibility, due to all the parameters that are monitored and controlled. These 

aspects are very important considering the development of robust models to investigate, 

for example, mechanisms of disease and, even more, for drug screening purposes. In this 

context, efficient processes which allowed to improve hepatocyte functionality (Tostoes 
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et al. 2011) and expansion of human embryonic stem cells (Serra et al. 2010) under 

defined conditions are good examples of other bioreactor applications at our group.  

1.2 Application of Metabolic Flux Analysis tools to investigate neural cell metabolism 

Metabolic modelling studies of 13C NMR spectroscopy data obtained in vivo have 

generated important findings in this field (reviewed by Henry et al. 2006) but similar 

methodologies have not been as extensively employed in vitro. A major goal of this thesis 

was thus to explore the potential of MFA tools to estimate metabolic fluxes of neural 

cells in culture and increase the amount of information that can be obtained in these 

studies.  

MFA tools have been valuable in biotechnology and metabolic engineering to 

characterize the physiology of bacterial, yeast, and mammalian cells and consequently 

improve their productivities (reviewed by Lee et al. 1999; Quek et al. 2010) by estimating 

intracellular metabolic fluxes. Classical MFA models are relatively easy to implement and 

require a reduced number of experimental data (mostly analysis of cell culture 

supernatants) to estimate intracellular fluxes in a typical metabolic network including 

glycolysis, TCA cycle, and amino acid catabolism. MFA allows for a comprehensive 

investigation of cellular metabolism as it estimates metabolic fluxes based on the 

stoichiometry of the metabolic network and on metabolic steady-state and, therefore, all 

fluxes are estimated as part of a “global picture” which defines the metabolic phenotype 

of the cell at a given time-period. Three applications of MFA were accomplished in this 

thesis to estimate metabolic fluxes of neural cells and consequently help to elucidate 

important metabolic mechanisms in neurons and in astrocytes.  

1.2.1 MFA of astrocytic metabolism before and after ischemia 

This thesis started by expanding an MFA model previously developed in the group 

(Teixeira et al. 2008) to investigate and quantify the effects of an ischemic episode in the 

metabolic fluxes of cultured astrocytes (Chapter 2). The main improvements in the 



Discussion 

 

 

215 

model presented in Chapter 2 were the introduction of additional data provided by 13C-

NMR spectroscopy analysis of the cell culture supernatant. In particular, 13C % 

enrichment in lactate allowed estimating the fraction of glucose that was likely 

metabolised via the PPP versus that of glycolysis, by assuming that label dilution in 

lactate was derived from the loss of [13CO2] via the PPP. Consequently, this model 

provides a more reliable representation of astrocytic metabolism, taking into account the 

proven importance of the PPP in astrocytes in a variety of conditions involving the 

generation of reactive oxygen species or nitrosative stress (Ben-Yoseph et al. 1996; 

Garcia-Nogales et al. 1999; Bolanos and Almeida 2006; Allaman et al. 2010).  

Even so, there is still space for model improvement as it would still be important 

to include glycogen degradation in the model due to strong evidence supporting its 

significant role in astrocytic metabolism under activation (Cruz and Dienel 2002; Dienel 

et al. 2007) and for long-term memory formation (Suzuki et al. 2011) in rats. It is 

possible that glycogen degradation might have contributed to a partial label dilution in 

lactate, which was only likely to have happened before ischemia, since glycogen reserves 

should have been totally depleted during the insult and, therefore, were more likely to be 

replenished than degraded during recovery. A fixed rate of glycogen degradation could 

have been estimated in a separate experiment, by pre-enriching the glycogen pool using 

[U-13C6]glucose and comparing lactate enrichment in the presence or absence of 

isofagomine, a glycogen phosphorylase inhibitor (Sickmann et al. 2005), and later added 

to the model.  

This study was also used as a proof-of-concept that MFA is a valuable tool to 

investigate and characterize the metabolic response of astrocytes to pathological insults. 

MFA allowed simultaneously identifying and quantifying alterations induced by 

ischemia in glycolysis, TCA cycle and pentose phosphate pathway as well as determining 

how their fluxes changed during the recovery period. The importance of BCAAs as 

energy fuels after ischemia was shown and the usefulness of MFA to quantify the 

contribution of these substrates to the TCA cycle flux was demonstrated. In the MFA 
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model, fluxes of different reactions that constitute the TCA cycle are separately 

estimated and, hence, it is possible to depict the fuelling of carbons into the cycle 

through the increase in some of those fluxes at particular metabolic nodes, namely at the 

acetyl-CoA and succinyl-CoA nodes.  

Overall, the use of MFA provided an original method to characterize the 

metabolic responses of astrocytes to ischemia in vitro. This approach, associated with the 

use of a robust in vitro model of ischemia is valuable to investigate the effect of drugs 

targeting specific metabolic targets in astrocytes in the context of ischemia.   

1.2.2 MFA of cultured cerebellar neurons after hypoglycaemia 

After successfully applying MFA to estimate metabolic fluxes of astrocytes, the next step 

was its application to cultured cerebellar neurons (Chapter 3), which are also widely used 

models to investigate particular aspects of brain metabolism. A very simple metabolic 

network could be used to describe the metabolism of these neurons since they do not 

possess significant parallel pathways. This model could also be perfectly applied to a 

culture of cortical neurons, although it would require the use of 13C NMR data to 

determine the fraction of glucose metabolised through the PPP, similarly to what has 

been performed for astrocytes in Chapter 2. Extensive glucose metabolism through the 

PPP is thought to occur in cortical neurons (Herrero-Mendez et al. 2009), which appears 

not to be the case in cerebellar granule cells (Biagiotti et al. 2003). Even so, the study by 

Herrero-Mendez et al (2009) was performed in neurons in suspension after tripsinization 

of cells grown in a culture dish, which might lead to some controversy on the relevance 

of the metabolic results. In this context, the application of MFA would be valuable to 

confirm and estimate the extent of the PPP flux in a primary culture of cortical neurons.  

 The value of MFA to investigate the effects of a pathologic insult in metabolic 

fluxes of neurons was also shown in this work. In particular, the role of astrocytic-derived 

substrates (glutamine) as alternative fuels for cerebellar neurons exposed to a 

hypoglycaemic period was assessed. The characterization of the labelling dynamics of 
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neuronal metabolites from [1,6-13C2]glucose was also an original aspect of this work and 

provided important findings suggesting the existence cytosolic-mitochondrial 

compartmentation of different metabolites (e.g. pyruvate, alanine, glutamate, -

ketoglutarate and malate). In addition, the calculation of the flux partitioning 

coefficients at the pyruvate, acetyl-CoA and -ketoglutarate nodes provided an 

estimation of the label dilution caused by unlabelled glutamine metabolism. This 

approach was crucial to support the MFA results suggesting that glutamine was 

significantly oxidized through the pyruvate recycling pathway. This is one of the most 

important findings of this work since most in vitro studies have suggested a preferential 

operation of the pyruvate recycling pathway in astrocytes (e.g. Waagepetersen et al. 

2002), in contrast to what was initially described in vivo by Cerdan and colleagues 

(Cerdan et al. 1990). Therefore, this study reinforces the need to clarify the significance 

of this pathway in neurons. The proof of operation of pyruvate recycling in neurons 

might confirm their use of glutamine and/or glutamate as metabolic substrates. In 

addition, it might represent an important neuroprotective mechanism against oxidative 

stress, since malic enzyme activity contributes to increased NADPH production (Bukato 

et al. 1995; Vogel et al. 1999). 

1.2.3 Improving metabolic flux estimations in neural cells with isotopic transient 
MFA  

The work presented in Chapter 4 constituted a further challenge in the application of 

MFA tools to investigate astrocytic metabolism. 13C isotopic transient MFA is the most 

recent advance of MFA methodologies and had been employed in a few studies to 

estimate fluxes in microbial cultures and hepatocytes in short-time experiments (e.g. Noh 

et al. 2007; Maier et al. 2008; Noack et al. 2010). The main novelty of 13C isotopic 

transient MFA compared to classical MFA is the inclusion of 13C time-courses of 

different intracellular metabolites in the model, leading to the improved estimation of 

metabolic fluxes. This approach is also constrained by metabolic steady-state (i.e. 
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metabolite pools are assumed to be constant during the time-interval considered) and 

still requires the collection of data from cell culture supernatants. Again, all fluxes 

estimated provide a global picture of the metabolic status of the cell, with the additional 

advantage of distinguishing fluxes through parallel and reversible pathways (Noh et al. 

2007). However, the inclusion of 13C time-courses in the model requires that metabolite 

pool sizes are additionally measured since they determine the rate of metabolite 

enrichment. This is a crucial aspect of isotopic transient MFA. On the other hand, if 

sufficient experimental data is available, some metabolite pools difficult to measure can 

be estimated by the model. All these characteristics make isotopic transient MFA a very 

demanding approach regarding both experimental and computational effort. 

Nevertheless, it provides significant new information with respect to the fluxes 

identified, non-measurable pool sizes, data consistency, or large storage pools that can be 

derived from this novel kind of experimental data included in the model (Noh et al. 

2007).  

The application of isotopic transient MFA to estimate metabolic fluxes of 

cultured astrocytes has shown that very detailed metabolic flux information can be 

obtained in cell culture experiments by taking advantage of the use of 13C-labelled 

compounds, different analytical techniques and careful experimental planning. 

However, a few steps can still be improved. Metabolite quenching techniques are very 

important, particularly for metabolites with very small pool sizes, which become enriched 

very fast. This was the case of glycolytic intermediates which attained isotopic steady state 

within less than 30 min after the beginning of [1-13C]glucose supply. Therefore, the use 

of shorter sampling times and more efficient sampling and quenching methods (Noh 

and Wiechert 2006; Noh et al. 2007; Hofmann et al. 2008) should provide more 

detailed 13C enrichment time-courses for these metabolites. In addition, in this work, 

only a reduced number of metabolite pools could be determined using HPLC. The 

access to state of the art LC-MS techniques could enable to quantify a larger number of 

metabolite pools, particularly intermediates of glycolysis and of the PPP (very little 
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information could be obtained in this work for these metabolites), as well as their 13C 

enrichment time-courses. Progresses in these aspects would certainly lead to significant 

improvements of flux estimations. 

The isotopic transient MFA model implemented in this thesis has the potential to 

be applied to any type of monotypic neural cell culture, requiring only the change of 

particular fluxes that might be specific of a given cell type. Also, different labelled 

substrates can be used, either alone or combined (e.g Hofmann et al. 2008) to further 

improve flux estimation. Metallo et al (2009) have recently evaluated the suitability of 

isotopic tracers to probe different metabolic pathways. For example, [1-13C]glucose is a 

good choice to estimate glycolytic flux but [2-13C] or [1,2-13C2]glucose are better if the aim 

is to estimate the PPP flux (Metallo et al. 2009). These combined approaches require, 

however, additional work concerning the writing of all differential equations describing 

the mass isotopomer balances derived from each substrate into all metabolites included 

in the network. This will also add additional computational effort due to the larger 

number of equations in the model. 

Concerning the specific metabolic aspects of astrocytes that can be highlighted in 

this work, it was possible to estimate the glutamate/ -ketoglutarate exchange rate and 

the contribution of different pathways and substrates to astrocytic metabolism. The 

exchange between glutamate and -ketoglutarate rate has been a source of controversy in 

this field (Mason et al. 1992; Mason et al. 1995; Gruetter et al. 2001; Henry et al. 2002) 

and this work supported the view that this rate appears to be similar to the TCA cycle 

flux (Gruetter et al. 2001; Henry et al. 2002). In this context, this model could be useful 

to further investigate this issue, aiming to evaluate how the glutamate/ -ketoglutarate 

exchange rate might change under different conditions. Moreover, it was shown that the 

labelling dynamics in astrocytic metabolites is very complex, indicating the existence of 

several sources of label dilution, particularly BCAAs and the pentose phosphate 

pathway. These findings support recent studies that have justified the need to take into 
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account astrocytic sources of label dilution in metabolic modelling studies in vivo (Shen 

et al. 2009; Boumezbeur et al. 2010; Duarte et al. 2011).  

Finally, it is noteworthy that the findings provided by isotopic transient MFA 

corroborate the main metabolic aspects of astrocytes described in Chapter 2 using 

classical MFA, thus showing that more simple approaches also provide accurate flux 

estimations and can be employed if a very detailed metabolic picture is not required.    

In summary, isotopic transient MFA is a very experimentally and computationally 

demanding technique that can, however, generate extremely detailed metabolic data. 

Consequently, it is promising to investigate metabolic responses of neural cells under 

pathological conditions and the effect of drugs targeting specific metabolic pathways in 

these cells. This type of studies can be very useful to test different hypothesis in vitro 

before being translated to pre-clinical animal models of disease. 

2 Recent advances and future prospects 

A major challenge in this field will continue to be the investigation of the cellular 

responses under pathological conditions. Recently, a significant number of human stem-

cell-derived in vitro models has emerged as valuable models that faithfully recapitulate 

disease features (reviewed by Gibbons and Dragunow 2010; Han et al. 2011). These are 

likely to become more and more used compared to primary rodent brain cell cultures 

due to the easier translation of findings obtained in human cells concerning potential 

therapeutically relevant discoveries. 

 With regard to the investigation of energy metabolism, advances in NMR 

spectroscopy and the availability of higher magnetic fields will continue to contribute to 

increase temporal-resolution and sensitivity of in vitro and in vivo studies and to 

consequently improve the estimation of cerebral metabolic fluxes. In vivo metabolic 

modelling studies will continue to be crucial to confirm findings obtained in vitro. It is 

noteworthy the most recent breakthrough in 13C NMR spectroscopy - the use of 
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hyperpolarized 13C-labelled substrates which greatly enhance the sensitivity of the 

method through dynamic nuclear polarization (Witney and Brindle 2010). These 

substrates have a number of promising applications in magnetic resonance imaging of 

brain metabolism, including the measurement of pH in vivo (Gallagher et al. 2008) and 

the development of tools to improve the diagnosis and efficiently monitoring response 

to treatment in patients with brain tumours (Day et al. 2007). The Henry group 

published recently the first model estimating fluxes through PDH and LDH from 13C-

labelled lactate and bicarbonate time-courses after injection of different hyperpolarized 
13C-labelled pyruvate substrates (Marjanska et al. 2010). Although these authors could 

not detect glutamate or glutamine isotopomers with this technique, hyperpolarized 13C 

NMR spectroscopy is a promising tool for improved cerebral flux estimations in future 

studies. 

In a different perspective, the “omics” field is providing a large amount of data 

that can improve and extend the study of metabolism to new levels of understanding 

(Hellerstein 2004; Lovatt et al. 2007; Cahoy et al. 2008; Yanes et al. 2010). In this 

context it was recently shown that metabolism has indeed a crucial role in cell physiology 

as metabolic fluxes are thought to regulate cell signalling pathways in mammalian cells 

(Metallo and Vander Heiden 2010). Metabolomics is becoming too narrow with regard 

to the large amount of data being generated both by experimental and bioinformatics 

means at different cellular levels. Genomics, proteomics and transcriptomics data are 

being incorporated in large and complex models aiming to comprehensively investigate 

the causes behind metabolic disturbances and identify possible therapeutic targets (e.g. 

Moxley et al. 2009). A good example is a large scale in silico model recently reported by 

Lewis et al (2010) who have included genomic and proteomic data to recapitulate 

metabolic interactions between astrocytes and different types of neurons. This model 

correlates flux changes with altered expression or activity of particular enzymes and was 

used to identify key genes and pathways contributing to the pathology of Alzheimer’s 

Disease (Lewis et al. 2010).  
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In a broader context, the tools developed in this thesis have a tremendous 

potential of application in the field of neural stem cells. Different studies have shown 

that stem cells possess metabolic characteristics that differ from differentiated cells 

(reviewed by Rafalski and Brunet 2011). In particular, the transition from a neural 

stem/progenitor cell to its differentiated counterpart is associated with numerous 

transcriptional changes, including in genes associated with metabolism and energy 

sensing, due to the higher metabolic demands of differentiated cells (Rafalski and 

Brunet 2011). It is known that hypoxia favours the maintenance of pluripotency in 

embryonic stem cells (Ezashi et al. 2005; Forristal et al. 2010) due to their mitochondrial 

immaturity and predominance of glycolytic metabolism, in opposition to the high degree 

of oxidative phosphorylation in differentiated cells (Cho et al. 2006). A recent study 

interestingly suggested that human pluripotent stem cells inactivate PDH to maintain 

high glycolytic rates (Varum et al. 2011). These findings reinforce the potential of MFA-

based approaches to further elucidate the metabolic fingerprints of neural stem cells 

which might lead to the discovery of important targets to promote or inhibit stem cell 

differentiation, depending on the research purpose. Consequently, these approaches 

might represent a breakthrough in the development of novel neural stem cell models by 

better manipulating the pluripotent/differentiated state.  

In summary, a variety of cutting edge tools is now available to investigate brain 

energy metabolism either in vitro, in vivo, or in silico. These will not only be important to 

continue to elucidate the complexity of cerebral metabolism in physiological conditions 

but, above all, to better characterize the metabolic alterations known to be implicated in 

most neurological disorders. Thus, the identification of therapeutic targets with a 

metabolic origin and the consequent development of efficient therapies will continue to 

be a major goal in this field in upcoming years.  
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3 Conclusions 

In conclusion, this thesis shows that metabolic flux analysis-based models combined with 

the use of 13C-labelled compounds and 13C NMR spectroscopy or MS are valuable and 

powerful to investigate in detail neural cell metabolism. These methodologies have the 

potential to be employed in numerous in vitro brain cell culture models and even stem 

cells, and therefore have a tremendous range of applications in the field of 

neuroenergetics.  
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1 Detailed reactions included in the simplified biochemical network of 
astrocytes (Chapter 2). 

 

Central Metabolism 

01. Glc + ATP → ADP + G6P                                                                                                                                                                                    

02. G6P → F6P       

03. F6P + ATP → 2 GAP + ADP                                                                                                                                                                                   

04. GAP + NAD+ + 2 ADP → Pyr + 2 ATP + NADH 

05. G6P + 2 NADP+ → 2 NADPH + CO2 + R5P  

06. R5P → 2 F6P + GAP  

07. Pyr + NADH → Lac + NAD+                                                                                                                                                                                                                                                                                                                          

08. Pyr + Glu → Ala + α-KG                                                                                                                                                                                    

09. Pyr + CO2 + ATP → OAA + ADP 

10. Pyr + CoA + NAD+ → ACoA + NADH + CO2                                                                                                                                                                          

11. OAA + ACoA → Cit + CoA                                                                                                                                                                                   

12. Cit + NAD+ → α-KG + NADH + CO2   

13. α-KG + NAD+ + CoA → SuCoA + NADH + CO2                                                                                                                                                                        

14. SuCoA + ADP → Succ + CoA + ATP                                                                                                                                                                             

15. FAD + Succ → FADH2 + Fum                                                                                                                                                                                 

16. Fum → Mal                                                                                                                                                                                            

17. Mal + NAD+ → OAA + NADH                                                                                                                                                                                  

18. Mal + NADP+ → Pyr + CO2 + NADPH                                                                                                                                                                            

19. Glu + NAD+ → αKG + NADH + NH4
+                                                                                                                                                                              

20. OAA + Glu → Asp + αKG  

21. Glu + NH4
+ → Gln                                                                                                                                                                                        

Amino Acids Metabolism                                                                                                                                                                                    

21. 2 Gly + NAD+ → Ser + NH4
+ + CO2 + NADH                                                                                                                                                                          

23. Ser → Pyr + NH4
+                                                                                                                                                                                        

24. Leu + αKG + ATP + NAD+ + FAD + 2 CoA → 2 ACoA + Glu + CO2 + NADH + FADH2 + ADP                                                                                                                                             

25. Ile + αKG + 2 NAD+ + FAD + 2 CoA → SuCoA +ACoA + 2 NADH + FADH2 + Glu                                                                                                                                                  

26. Val + αKG + 3 NAD+ + FAD + CoA → SuCoA + Glu + 3 NADH + FADH2 + CO2                                                                                                                                                    

27. Met + Ser + ATP + NAD+ + CoA → Cys + SuCoA + NADH + NH4
+ + ADP + CO2                                                                                                                                                                                                                                                                                                                                

28. Cyst + NADH → 2 Cys + NAD+ 

29. Cys → Pyr + NH4
+   
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Oxidative Phosphorylation                                                                                                                                                                                    

30. 0.5 O2 + 3 ADP + NADH → 3 ATP + NAD+                                                                                                                                                                         

31. 0.5 O2 + 2 ADP + FADH2 → 2 ATP + FAD  

32. NADH + NADP+ → NAD+ + NADPH                                                                                                                                                                      

 
Abbreviations: Glc (glucose), G6P (glucose-6-phosphate), F6P (fructose-6-phosphate), GAP (glyceraldehyde-3- phosphate), 

Pyr (pyruvate), R5P (ribose5-phosphate), Lac (lactate), Glu (glutamate), Ala (alanine), αKG (α-ketoglutarate), OAA 
(oxaloacetate), Cit (Citrate), SuCoA (succinyl-coenzyme A), Succ (succinate), Fum (fumarate), Mal (malate), NH4+ 
(ammonium ion), Asp (aspartate), Gln (glutamine), Gly (glycine), Ser (serine), Leu (leucine), Ile (isoleucine), Val (valine), 
Met (methionine), Cyst (cystine), Cys (cysteine). 
 
 

2 Biochemical reactions included in the metabolic network of cerebellar 
granule neurons (Chapter 3) 

 

Central Metabolism 

01. Glc + ATP → ADP + G6P                                                                                                                                                                                    

02. G6P + 2 NAD+ + 3 ADP → 2 Pyr + 2 NADH + 3 ATP       

03. Pyr + NADH → Lac + NAD+                                                                                                                                                                                                                                                                                                                          

04. Pyr + Glu → Ala + α-KG                                                                                                                                                                                    

05. Pyr + CoA + NAD+ → ACoA + NADH + CO2                                                                                                                                                                          

06. OAA + ACoA → Cit + CoA                                                                                                                                                                                   

07. Cit + NAD+ → α-KG + NADH + CO2   

08. α-KG + NAD+ + CoA → SucCoA + NADH + CO2                                                                                                                                                                        

09. SucCoA + ADP → Suc + CoA + ATP                                                                                                                                                                             

10. FAD + Suc → FADH2 + Fum                                                                                                                                                                                 

11. Fum → Mal                                                                                                                                                                                            

12. Mal + NAD+ → OAA + NADH                                                                                                                                                                                  

13. Mal + NADP+ → Pyr + CO2 + NADPH                                                                                                                                                                            

14. Glu + NAD+ → α-KG + NADH + NH4
+                                                                                                                                                                              

15. OAA + Glu → Asp + α-KG 

16. Gln → Glu + NH4
+                                                                                                                                                                                        

Amino Acids Metabolism                                                                                                                                                                                    

17. 2 Gly + NAD+ → Ser + NH4
+ + CO2 + NADH                                                                                                                                                                          

18. Ser → Pyr + NH4
+                                                                                                                                                                                        

19. Leu + α-KG + ATP + NAD+ + FAD + 2 CoA → 2 ACoA + Glu + CO2 + NADH + FADH2 + ADP                                                                                                                                             

20. Ile + α-KG + 2 NAD+ + FAD + 2 CoA → SucCoA +ACoA + 2 NADH + FADH2 + Glu                                                                                                                                                  
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21. Val + α-KG + 3 NAD+ + FAD + CoA → SucCoA + Glu + 3 NADH + FADH2 + CO2                                                                                                                                                    

22. Phe + O2 + NADH → Tyr + NAD+ 

23. Tyr + α-KG + 2 O2 + CoA → Fum + ACoA + Glu + CO2                          

24. Arg + α-KG + NAD+ → 2 Glu + NADH                                    

25. Lys + 2 α-KG + 4 NAD+ + FAD + CoA + NADPH → 2 Glu + 2 CO2 + 4 NADH + FADH2 + NADP+ 

Oxidative Phosphorylation                                                                                                                                                                                    

26. 0.5 O2 + 3 ADP + NADH → 3 ATP + NAD+                                                                                                                                                                         

27. 0.5 O2 + 2 ADP + FADH2 → 2 ATP + FAD  

28. NADH + NADP+ → NAD+ + NADPH                                                                                                                                                                      

 

Abbreviations: Glc, glucose; G6P, glucose-6-phosphate; Pyr, pyruvate; Lac, lactate; Glu, glutamate; Ala alanine; α-KG, α-
ketoglutarate; OAA, oxaloacetate; Cit, Citrate; SucCoA, succinyl-coenzyme A; Suc, succinate; Fum, fumarate; Mal, malate; 
NH4

+, ammonium ion; Asp, aspartate; Gln, glutamine; Gly, glycine; Ser, serine; Leu, leucine; Ile, isoleucine; Val, valine; 
Phe, phenylalanine; Tyr, Tyrosine; Arg, arginine; Lys, lysine.  
 

3 Calculation of metabolic partitioning coefficients at the pyruvate, acetyl-
CoA and α-ketoglutarate nodes (Chapter 3) 

 

To analyze flux partitioning at the different nodes, i.e., to estimate the relative 

contributions of each flux to the synthesis and degradation of each metabolite, all 

intracellular fluxes leading to the formation or utilization of the metabolite in the center 

of the node were considered, as estimated with CellNetAnalyzer (Klamt et al., 2007).  

Pyruvate Node 

Incoming fluxes 

PEP  (glycolysis) Pyruvate kinase (PK)                                

SPTMEPK

PK






 

Malate Malic enzyme (ME)                                    

SPTMEPK

ME






 

Serine Serine-Pyruvate transaminase (SPT)        

SPTMEPK

SPT






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Outgoing fluxes 

Lactate Lactate dehydrogenase (LDH)                   

PDHAlaATLDH

LDH






 

Alanine Alanine aminotransferase (AlaAT)             

PDHAlaATLDH

AlaAT






 

Acetyl-CoA Pyruvate dehydrogenase (PDH)                  

PDHAlaATLDH

PDH






 

 

Acetyl-CoA node    

Incoming fluxes 

Pyruvate Pyruvate dehydrogenase (PDH)                   

AasTPDH

PDH






 

Amino acids (Leu, Ile, Tyr)    Amino acids transaminases (AasT)              

AasTPDH

AasT






 

Outgoing Fluxes       

Citrate Citrate synthase (CS)                                     

CS

CS




 

 

α-Ketoglutarate node 

Incoming fluxes 

Isocitrate  Isocitrate dehydrogenase (ICDH)               

AATGDHAlaATICDH

ICDH


 



 



Appendices 

 235 

Alanine Alanine aminotransferase (AlaAT) 

AATGDHAlaATICDH

AlaAT


 



 

Glutamate Glutamate dehydrogenase (GDH) + 
aspartate aminotransferase (AAT)             

AATGDHAlaATICDH

AATGDH





 



 

Outgoing fluxes 

Succinyl-CoA    α-Ketoglutarate dehydrogenase  

(α-KGDH) 

KGDHBCAAsTA

KGDH










 

Glutamate BCAAs transaminases  

(BCAAs TA)                                 

KGDHBCAAsTA

BCAAsTA







 

 

4 Stoichiometric matrix (metabolic reactions) of the Isotopic Transient MFA 
model describing astrocytic metabolism1 (Chapter 4).  

Glycolysis 
01. Glc → G6P                                                                                                                                                                                    

02. G6P → F6P       

03. F6P → FBP 

04. F6P → 2 GAP  

05. GAP → BPG 

06. BPG → 3PG 

07. 3PG → 2PG 

08. 2PG → PEP 

09. PEP → Pyr 

10. Pyr + Glu → Ala + α-KG                                                                                                                                                                                    

11. Pyr → Lac                                                                                                                                                                                                                                                                                                                          

Pentose Phosphate Pathway 
12. G6P → 6PGL 

13. 6PGL → 6PG 

14. 6PG → Ru5P + CO2 

15. Ru5P → R5P 

16. Ru5P → Xu5P 

17. R5P + Xu5P → GAP + S7P 

18. GAP + S7P → F6P + E4P 

19. Xu5P + E4P → GAP + F6P 

TCA cycle and related reactions 
21. Pyr + CO2  → OAAm  
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22. Pyr + CoA → ACoA + CO2                                                                                                                                                                          

23. OAAm + ACoA → Cit + CoA   

24. Cit → Aco 

25. Aco → Isocit 

26. Isocit → OSuc 

27. OSuc → α-KG + CO2   

28. α-KG + CoA → SuCoA + CO2                                                                                                                                                                        

29. SuCoA → Succ + CoA                                                                                                                                                                            

30. Succ → Fum                                                                                                                                                                                 

31. Fum → Mal                                                                                                                                                                                            

32. Mal → Pyr + CO2                                                                                                                                                                            

33. Mal → OAAm                                                                                                                                                                                 

34a. OAAm → Aspm 

34b. Aspm + Glu → Aspc + α-KG 

34c. ASpc + α-KG → OAAc + Glu 

34d. OAAc → Mal 

35a α-KG → Glu 

35b Glu → α-KG 

Amino Acids Metabolism                                                                                                                                                                                    
36a. Glu → Gln                                                                                                                                                                                        

36b. Gln → Glu                                                                                                                                                                                        

37. Glu + Cys + Gly → GSH 

38. Cys → Taur + Hyptaur 

39. Ile + α-KG + 2 CoA → SuCoA +ACoA + Glu                                                                                                                                                  

40. Leu + α-KG + 2 CoA → 2 ACoA + Glu + CO2  

41. Val + α-KG + CoA → SuCoA + Glu + CO2                                                                                                                                                    

20. Cys → Pyr 

Transport reactions from cell supernatant  
Glcext → Glc 

Ala → Alaext 

Lac → Lacext 

Cit → Citext 

Cystext → 2 Cys 

Gln → Glnext 

Ileext → Ile 

Leuext → Leu 

Valext → Val 
1Only carbon stoichiometry is considered since 13C isotopic transient MFA does not require balancing of cofactors or ATP 
to estimate metabolic fluxes. Abbreviations: Glc, glucose; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; DHAP, 
Dihydroxy-acetone phosphate; GAP, glyceraldehyde-3-phosphate; BPG, 1:3-bis-phosphoglycerate; 3PG, 3-
phosphoglycerate, 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; 6PGL, 6-phospho-
gluconolactone; 6PG, 6-phosphogluconate; Ru5P, ribulose-5-phosphate; R5P, ribose-5-phosphate; Xu5P, xylulose-5-
phosphate; S7P, sedoheptulose-7-phosphate; E4P, erythrose-4-phosphate; Lac, lactate; Glu, glutamate; ACoA, Acetyl-
Coenzyme A; Cyst, cystine; Cys, cysteine; Gly, glycine; GSH, glutathione; Ala, alanine; α-KG, α-ketoglutarate; OAAm, 
oxaloacetate – mitochondrial pool; OAAc, oxaloacetate – cytosolic pool; Cit, Citrate; Aco, cis-aconitate; Isocit, isocitrate; 
OSuc, oxalosuccinate; SucCoA, succinyl-coenzyme A; Succ, succinate; Fum, fumarate; Mal, malate; Aspm, aspartate – 
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mitochondrial pool; Aspc, aspartate – cytosolic pool; Gln, glutamine; Leu, leucine; Ile, isoleucine; Val, valine; Lys, lysine; 
ext refers to metabolites taken up from/released to the culture supernatant.   

 
 

5 Mass isotopomer balances of metabolites represented in the network 
describing astrocytic metabolism (Chapter 4). 
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