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Abstract

The popularity boost of mobile devices, as well as their technological advances, are foster-
ing the development of new application paradigms. One of which, designated as Participatory
Sensing, 1s embedded with a strong community philosophy, in the sense that it relies in users
sharing and contributing with data. By gathering, processing and sharing contextual data, new
and interesting applications are possible, such as the monitoring of vehicle traffic or road con-
servation. To enable these applications, it is important to have an underlying communication

infrastructure that allows users to exchange information efficiently.

Users of Participatory Sensing applications deal, most frequently, with information related
to their close physical surroundings. Based on this premise, this dissertation presents a decen-
tralized membership substrate that restrains node visibility to geographical neighborhoods as a
way to improve communication performance. To that end, the proposed algorithm divides the
user network into two hierarchical levels. The higher-level is managed by an existing one-hop
DHT and its participants are organized to exploit the partitioning of the physical space. The
lower-level is composed by the groups of nodes associated to each region. An experimental
evaluation has revealed that it is capable of achieving lower communication costs when com-

pared to a full-membership solution.

Keywords: Participatory Sensing, DHT, peer-to-peer network, membership algorithm
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Resumo

O aumento da popularidade dos dispositivos méveis, assim como os seus avancos tecnologi-
cos, estdo a alimentar o desenvolvimento de novos paradigmas aplicacionais. Um dos quais,
designado de Sensoriamento Participado, esta embutido de uma forte filosofia comunitéria,
no sentido de que se baseia na contribuicdo e partilha de dados por parte dos utilizadores.
Através da recolha, processamento e partilha de dados contextuais, novos e interessantes tipos
de aplicagdes sdo possiveis, tais como, monitorizacao do trafego rodoviario ou conservagao das
estradas. De forma a possibilitar estas aplicacdes, € importante que exista uma infra-estrutura

de comunicagdo que permita aos utilizadores trocar informacgao de forma eficiente.

Os utilizadores de aplicacOes inspiradas em Sensoriamento Participado lidam, com grande
frequéncia, com informacao relacionada com os arredores da sua localizacdo fisica. Tendo em
conta esta premissa, esta dissertacdo apresenta um substrato de filiagcdo descentralizado que
restringe a visibilidade dos nés a vizinhangas geograficas com o intuito de melhorar a perfor-
mances das comunicacdes. Nesse sentido, o algoritmo proposto divide a rede de utilizadores
em dois niveis hierdrquicos. O nivel superior é gerido por uma one-hop DHT existente e 0s seus
participantes estdo organizados de forma a explorar o particionamento do espaco fisico. O nivel
inferior € composto pelos grupos de nds associados a cada regido. Uma avaliacdo experimental
revelou que este € capaz de atingir custos de comunica¢do mais baixos quando comparado com

uma solugdo de visibilidade total.

Palavras-chave: Sensoriamento Participado, DHT, rede peer-to-peer, algoritmo de filiacao
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1. Introduction

1.1 Motivation and Context

The recent technological evolution of ubiquitous devices - PDAs, laptops, smartphones or even
vehicles - has undoubtedly promoted their growing adoption by the general population. Tech-
nical advances, such as longer autonomy, greater processing power or reduced communication
costs, together with the ability to gather contextual sensorial information, ranging from image

capture to geographical locating (GPS), have contributed to their popularity boost.

These ongoing improvements have encouraged an emerging and promising research area -
Farticipatory Sensing [2, 3, 22]]. Its leading concept is the collection, processing and sharing
of contextual sensorial data through the deployment of wide-area sensor networks composed
by personal mobile devices. The broad and continuous mobility of the users foresees a model
that provides real-time monitoring of the various aspects of the physical world, particularly in

densely populated areas.

Several interesting examples of applications that rely on this model have already been pro-
posed and are often designed to monitor sensorial data in cities for community benefit [[17, [19]].
The monitoring of air quality [18] or of traffic and road conditions [10} 16, I5] are just a few
specific aspects of its use. An alternative application domain has a more social connotation. For
instance, a system to monitor and share the experience of cyclists through the deployment of

sensors in bicycles [4] or even one to record, in detail, the daily routine of the user [14]].

Intuitively, the deployment of such wide-area networks is dependent on an underlying com-
munication infrastructure that spans its participants and enables data sharing. A potential so-
lution is the adoption of a centralized infrastructure where the sensor nodes store and retrieve
information by directly interacting with one or more "base stations". While benefiting on some
aspects, such as simple software implementation or easy data indexation, this approach suf-
fers from the usual drawbacks of centralized approaches: single point of failure and possible
communication bottlenecks. Moreover, the costs of deploying and maintaining such an infras-

tructure make it nearly unfeasible in the absence of a notorious funding entity.

A purely decentralized peer-to-peer model thus comes to mind. It avoids any kind of central-

ized component and relegates the entire system’s actions to the mobile sensors. This approach
1
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avoids the usual centralized drawbacks and the inherent costs of deploying dense sensing in-
frastructures. However, even though it’s technically possible to put this model into practice,
there is a crucial problem: the amount of work required from each sensor. Despite the ongoing
technical advances of ubiquitous devices, the current processing and energy capabilities are not

yet satisfactory to render this solution realistic.

A different kind of approach might still be considered, one that tries to combine the advan-
tages of centralized and purely decentralized architectures. Instead of the actual mobile devices,
it’s possible to consider fixed hardware as the infrastructure building blocks. The peer-to-peer
network is then composed by applications running on the users’ Personal Computers, which
share information and act as servers to the mobile devices, thus shifting most of the work from
the mobile to the fixed devices. On one hand, this approach solves the purely decentralized
problem related to the mobile devices’ limited resources. On the other hand, since the net-
work hardware components are supplied by the users themselves, it preserves the Participatory

Sensing’s community driven philosophy.

Having established a reasonable infrastructure model, the problem of inter-node visibility is
yet to be addressed. This has to consider the strong geographical correlation of the Participatory
Sensing application domain. For instance, a user in Lisbon is more likely to be interested in
sensorial data from its close vicinity than, say, from Porto or Madrid. Thus, participating nodes
need to have a more detailed knowledge of the peers located nearby. As distance grows, the
importance is likely to decrease in proportion and the accuracy of node visibility grows to be
progressively less relevant. This has to be taken into account when choosing the peer-to-peer

architecture.

In the matter of peer-to-peer architectures there are two main approaches to consider: un-
structured and structured overlays. An unstructured peer-to-peer overlay has an arbitrary net-
work topology where nodes are randomly connected to each other. Although these networks
are capable of accommodating large numbers of nodes, the lack of a well established organi-
zation leads to inefficient communications as nodes have no clear knowledge of the network
arrangement. The process of discovering the address of other nodes is not deterministic and
is usually performed by flooding the network, possibly causing its congestion. Obviously, the
unstructured architecture scheme is not an appropriate candidate as it performs poorly regarding

the need to have a detailed awareness of nodes in a geographical neighborhood.



Structured overlays [23} 21} 9, [1, [7, 8] are an alternative to unstructured overlays. Com-
monly known as Distributed Hash Tables (DHT) , these are mainly used as repositories of data
and provide similar, while distributed, lookup operations as usually found in hash table data
structures. For the purpose of inter-node coordination and overlay maintenance, each partic-
ipant features an identifier, derived from some unique attribute (e.g., ip address), and keeps
information regarding its peers. Most DHTs guarantee deterministic message exchange and
routing table sizes that grow logarithmically with the network size, thus favoring the potential
to accommodate large numbers of participants without compromising the correct behavior and

efficiency of the system (scalability).

The monitoring of large physical areas is reliant on large numbers of participating nodes.
Therefore applications based on the Participatory Sensing model need to carefully deal with the
scalability aspect. Moreover, they also require some degree of inter-node organization in order
to enable the participants to readily communicate with the relevant peers. For this reason, the
adoption of a DHT as the foundation for the underlying node architecture seems a reasonable
approach.

Although some DHT's handle the scalability problem quite well, there is an issue in adopting
a DHT. It is related with the nodes’ identifiers dispersal and their consequent lack of geograph-
ical correlation. There is no relationship between the identifier of a node and its coordinates in
space. In other words, two nodes with close identifier values might not be physically close to
each other. This poses a problem as every node should be able to differentiate others based on
their distance to itself. The generation of identifiers should obey a proximity metric that mapped
the coordinates of nodes in a way that physically close nodes are assigned close identifier values.

Unfortunately, the more mainstream DHTs do not readily provide such mapping.

Most of the DHTs known so far are able to perform node lookups in no more than O(log N)
hops (with N the number of nodes in the network) by storing routing information of, at most,
O(log N) other nodes in the network. To perform a lookup, several nodes in sequence need to
be contacted which might result in high latency. For this reason, a different approach might be
considered, one that offers the ability to lookup nodes in a single hop. Commonly designated as
"one-hop", these DHTs [7, 13] require the maintenance of full-membership information at each
node. While granting less effort on performing lookups, this approach is also conditioned by a
few shortcomings. Namely, limited scalability and high bandwidth consumption caused by the

maintenance of full membership information at each node.



The goal of this dissertation is then design of a membership substrate able to act as the
underlying peer-to-peer architecture for a network composed by the users’ Personal Comput-
ers. To preserve the Participatory Sensing premise that a node needs a detailed view of its
close geographical neighborhood, each node will feature a set of physical coordinates and full-
membership will be applied to geographically delimited areas. The physical space is to be
partitioned and a node that belongs to a specific partition will have complete knowledge of its
partition colleagues, allowing low latency message exchange, in a single hop. Since nodes do
not need to have the same level of knowledge when it comes to distant nodes, the full member-
ship notion will be relaxed to farther partitions, thus reducing membership maintenance costs

and increasing scalability.

1.2 Objective

The main endeavor is the design of a peer-to-peer network architecture to support applications
based on the Participatory Sensing model, where each node has complete knowledge of others

in a close geographical neighborhood and sparse awareness of nodes positioned farther away.

This dissertation thus presents a two-level, explicitly hierarchical network. The higher level
is to be composed by an independent full-membership network of super-nodes. It spans the
entire physical space and each super-node is responsible to manage a fraction of it. The man-

agement of the higher level is the responsibility of a pre-existing one-hop DHT: Catadupa [13].

Catadupa is a full-membership substrate designed to support peer-to-peer content-based
routing. The choice of this one-hop DHT is motivated by some of its interesting properties,
e.g. it constantly tries to balance the load throughout the nodes, taking bandwidth capacity into
account. It also comprises fault-tolerance mechanisms and deterministically assures accurate

membership information at each node.

The lower level of the proposed substrate is composed by sub-nodes who need to be aware
of all the peers located in the same geographical neighborhood. These must also be aware of, at
least one, super-node in their vicinity. This is motivated by the fact that, since super-nodes are
dispersed throughout the physical space and are all aware of each other, having at least one in

range allows sub-nodes, among others, to be able to communicate with farther peers.



1.3 Main Contributions

The main contributions expected from the elaboration of this thesis are:

* The design of a two-level geography-oriented membership substrate that provides its par-

ticipants with full knowledge of their closely surrounding peers.

* An evaluation study, taking several relevant metrics into account, in which the impact of

the configuration parameters is observed.

1.4 Document Structure

This document is composed by six chapters:

e Chapter 1: The current chapter. It establishes a common background and provides the

motivation for this thesis.

o Chapter 2: Provides a general description of peer-to-peer architectures complemented

with previous work on the area.

e Chapter 3: Presents the problem at hands and the challenges expected in the design of

the proposed algorithm, also iterating through the strategies adopted to solve them.

e Chapter 4: Describes the process of implementing the solutions proposed in chapter 3, in

a simulation environment.

e Chapter 5: Some metrics are defined and used to assess the algorithm’s behavior under

different configurations.

o Chapter 6: This chapter presents the final considerations and possible future improve-

ments to the algorithm.






2. Related Work

This chapter presents a general overview of this dissertation’s relevant state-of-the-art by pre-

senting some of its previously accomplished studies.

2.1 Overlay Networks

A peer-to-peer overlay network can be perceived as a logical organization of nodes built on top
of an existing network. Participating nodes exchange information through virtual links whose
path might consist of several hops in the underlying network. These are commonly implemented
to provide an abstraction to the developers of applications and to enlarge the set of services

provided by the underlying network, namely, the ability to efficiently discover information.

There are two main approaches to consider in the matter of peer-to-peer overlay networks:
unstructured and structured overlays. The former follows an approach where the network mem-
bership information at each node is minimized, thus requiring additional effort and resource
consumption to perform queries. Conversely, structured overlays attempt to maintain proper

membership information at each node in order to increase communication performance.

2.1.1 Unstructured overlays

An unstructured peer-to-peer overlay, like Gnutella or Kazaa, is a network that follows an ad-
hoc philosophy regarding its organizational rules. As illustrated in figure [2.1] the network
topology is usually arbitrary. This happens due to the random and constraint-free relationships
established between nodes. The absence of a centralized entity transfers the efforts of inter-node
discovery to the nodes themselves. Therefore, every time a node wants to send a message to an-
other, it has to discover its network address without the possibility of exploring a predetermined

path, relying only in the assistance of its peers.

Since inter-node links are arbitrary, the discovery process is not trivial and is usually per-
formed by probing, whether by flooding the network, possibly causing its congestion, or by

"Random Walks" where a random node is selected at each step of the path. The lack of hints

7
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Figure 2.1: Arbitrary topology of unstructured overlays.

that would lead the probing in the right direction causes the blind querying of a large fraction

of non useful nodes and render this solution nondeterministic in its ability to produce results.

However limiting the mentioned drawbacks might seem, unstructured networks also have
some strong points. Namely, the absence of a rigid topology, leading to low assembly and main-
tenance efforts. Also, the arbitrary nature of the links between nodes causes the load to usually
be distributed throughout the nodes and introduces path redundancy, endowing unstructured

overlays with high degrees of resilience against node failures.

2.1.2 Structured overlays

Structured overlays are a sub-class of the overlay network concept and have been intensely
targeted by researchers in the recent past. This interest was motivated by the growing need to
share information and by the lack of capacity revealed by unstructured overlays (section [2.1.1)
in fulfilling this necessity. This has led to the design of several structured overlays, each one
with its own distinctive features regarding some key aspects. Namely, the topological rules
defining the organization of nodes in the network and which peers they communicate with;
scalability, the potential to accommodate large numbers of nodes without compromising the
correct behavior and efficiency of the system; fault-tolerance, the ability to keep operating
correctly in the presence of node failures; performance, conceptually perceived as the trade-off
between the amount of work performed and the resources consumed in the process; security,
which comprises the procedures carried out to defend the network and its resources against

illicit access.
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Structured overlays are often used as data repositories and provide similar, while distributed,
lookup operations as found in hash table data structures. This led structured overlays to be intu-
itively designated as Distributed Hash Tables (DHTs). In this kind of overlay, node organization
follows a set of common rules. Usually, each node is assigned an identifier obtained by apply-
ing a uniform hash function to some unique attribute (e.g., ip-address). To determine the node
responsible for some data, the same hash function is applied to the data identifier. From this
process results an identifier which can then be compared by some proximity metric to the iden-
tifiers of the nodes in order to find the appropriate one to store/get the data. This ability to map

data into nodes allows queries to be deterministically routed to their correct destination.

As an example of a DHT network architecture, figure [2.2]illustrates the topology of Chord
[23]], in which nodes are organized in an identifier ring. The figure shows a Chord ring composed
by three nodes - 0, 1 and 3 - and three pieces of data with the values 1, 2 and 6 as their respective
keys. The nodes responsible for some data are called its successors and are the ones that actually
store it. In this case, node 1 is the successor of key 1, node 3 is the successor of key 2 and node

0 is the successor of key 6.

successor(1) =1

successor(2)= 3

successor(6) = 0

Figure 2.2: Topology of a structured overlay - Chord[23]].

Unlike unstructured overlays, these invest most of their work in maintaining correct mem-
bership information at each node as a way to increase query performance. This scheme can
follow several directions regarding optimization. For instance, on the subject of scalability,
DHTs can be conceptually assembled into three groups. The first group [23| 21]] directs its
efforts into reducing the routing information kept at each node. By maintaining tables with
logarithmical dimension (considering the total size of the network) they manage to achieve log-

arithmical lookups. Following the tendency to minimize the information kept at each node, the
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second group [[12, [11] attempts to keep constant routing table sizes and still allow communica-
tions to be performed with logarithmical complexity. Finally, the third group [7, 8} 9, 13]] takes
its optimization attempts in the opposite direction. That is, routing tables have their dimensions
increased in the attempt to minimize query complexity and latency. However, the large amount
of information maintained at each node reveals scalability issues as it is bound to increase with

the size and dynamism of the network.

2.2 Significant Projects

In this section several projects are described as a means to provide an insight into the work
previously done in the area of network overlays. These were selected due to their possible

usefulness in solving the problem at hand or simply due to historical and background reasons.

2.2.1 Chord

Chord [23] is a fully decentralized peer-to-peer protocol that considers networks with high rates
of membership changes. Communication costs, as well as the amount of information kept at the
nodes, grow logarithmically with the number of nodes in the system. That is, each node stores
routing information of about O(log N) nodes and takes O(log N) hops to perform lookups,

rendering Chord able to support large systems, with reasonable performance measures.

Chord’s structure is based on an identifier ring, where each node is assigned a key. Such
assignment is performed by applying a hash function (typically SHA-1) to the node’s ip-address.
Data is then associated to chord nodes by applying the same hash function to the data identifier.
From this process results a key, k, that is assigned to the node whose own key equals or follows

k in the identifier ring. The chosen node is referred to as the successor of k.

In its membership information, each node maintains a table with at most m entries (with m
being the identifiers’ bit size), designated as the finger table. At node n, the first entry contains
its own successor. The i entry stores information about the first node, n’, that follows n by, at
least, 2/~ ! in the identifier space. In addition, a chord node also keeps a pointer to its immediate

predecessor, allowing counter-clockwise navigation in the ring.
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When node 7 needs to find the node responsible for a key k, it searches its finger table for a
node whose identifier most precedes k. That node, n’, will have a clearer view of the identifier
space in which k resides. Node n can now ask n’ to do the same and return an even closer node

to k. By applying this procedure repeatedly, n will eventually reach the successor of k.

To join the system, # initiates its fingers and its predecessor. Other nodes update their infor-
mation accordingly and the successor of n is contacted to resolve the keys n will be responsible
for. When several nodes join concurrently, it is hard to maintain every finger table updated. A
“stabilization” protocol is thus introduced to help keep the successor pointers updated, which is

enough to preserve the accuracy of lookups and, in time, to correct the finger tables.

To deal with failures, each node also keeps a list of its closest successors in the ring. When
a node detects that its immediate successor failed, the next live node in the successors list is
selected to replace it. The “stabilization” mechanism is then responsible for correcting finger

table entries, as well as successors lists.

2.2.2 Pastry

Pastry[21] is a fully decentralized, fault tolerant, scalable, reliable and self-organizing peer-
to-peer overlay. It adapts well to failures and is efficient and scalable in networks with up to
100,000 nodes. Unlike most DHTs, it tries to minimize communication latency by considering

network locality and proximity metrics provided by the application level (e.g. number of hops).

Pastry’s structure is based on an identifier ring. The identifier space ranges from 0 to 2128 — 1
and each node is assigned an identifier (nodelD) by applying a cryptographic hash function to
its public key or ip-address.

Pastry nodes keep a routing table, a neighborhood set and a leaf set. The n'" row of the
routing table contains nodes whose 7 first identifier digits equal the table owners’. The neigh-
borhood set is used to maintain locality properties and contains information concerning close
nodes. The leaf set is used in message routing and contains a set of nodes whose identifier range

has the local nodelD as its mid-point.

A message is directly sent to its destination if its key is contained in the leaf set. Otherwise,
the routing table is consulted to obtain the node whose identifier has the same prefix as the

message’s by, at least, one more digit. This way, the messages are always sent to a node closer
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to the final destination, while traveling the minimum possible distance in the proximity space.

The expected routing cost is O(log,»N), with b a configuration parameter with typical value 4.

To join the overlay, a node X asks a known Pastry node - A - to send a request to the node
with the closest identifier to X’s - Z. All the nodes in the path from A to Z send their tables to
Xso that it can initialize its own state tables and contact the nodes that need to be aware of its

arrival. The total number of messages spent in a join is O(log,»N).

When a node fails, the state tables need updating. To replace an entry in the routing table,
another node in the same row is asked for its entry on the failed position. A failed node in the
leaf set is replaced by contacting the node with the highest nodelD on the side of the failed node.
Finally, to replace a node in the neighborhood set, other members of that set are contacted.

2.2.3 Self Correcting Broadcast in DHTs

In [6]], two algorithms are presented to perform broadcasts in a DKS [[1] network. Both pro-
vide coverage of all nodes in the network, without message duplicates, even when membership
changes are frequent and routing information is outdated. The following paragraphs will focus

on the DKS system and then present a brief summary of the algorithms.

DKS(N, k, f) [1] 1s an infrastructure for designing fully decentralized peer-to-peer appli-
cations. The parameters N (maximum number of nodes in the network), k (search arity) and
f (fault-tolerance degree) characterize the overlay network. As an example, Chord [23]] can be
derived, to some extent, by DKS with k = 2.

Most DHTs rely on concurrent procedures to maintain routing information up to date -
active-correction. This leads to unnecessary bandwidth consumption when lookups and in-
sertions occur more frequently than membership changes. To minimize this drawback, DKS
adopts a more passive approach - correction-on-use - by embedding information on lookup/in-
sertion messages to allow detection and correction of outdated routing entries along their path.

Intuitively, more useful traffic leads to more accurate routing tables.

When in the presence of frequent membership changes, other measures need to be consid-
ered. For instance, correction-on-change, which notifies all relevant nodes upon membership

changes.



13

Like in Chord, both nodes and data are mapped to the identifier space using a hash function.
Data is stored at its immediate successor on the identifier ring. In each lookup hop the identifier

space is split into k equal parts, thus leading lookups to be resolved in no more than /og;N hops.

Joins and leaves are similar as, in both cases, the node’s successor needs to be contacted.
Either to accommodate a new node or to process the exit of the departing one. Fault tolerance is
achieved through replication and by maintaining, at each node, a list of its f+1 successors. This

way, f nodes may fail without compromising the system’s correct behavior.

Each node maintains a routing table containing (k-1)logi(N) entries and a pointer to its
immediate predecessor in the identifier space. The table is divided in logy(N) levels, which, in
turn, are divided into k equal intervals. Level one represents the whole identifier space. Each of
the following levels represent only a k' of the previous level. A representative node is assigned

to each interval and it is the one contacted to resolve a key that falls in that interval’s key range.

To broadcast a message using the first algorithm presented in [6], a node sends the message
to the responsible nodes of every interval in its routing table. The iteration starts at the first
level and, at each level, it is performed counter-clockwise. Each message contains the level and
interval the sender is currently iterating through, and also a limit. These are used by the receiver
to establish its own search range. The second algorithm can be perceived as an extension of the

first. It additionally uses a self-correction technique in order to increase routing table correction.

2.2.4 Symphony

Symphony [12] is a DHT protocol that organizes nodes in a ring and provides each one with
long distance links. It is stable, scalable, flexible and promises low latency lookups and cheap

maintenance costs under network churn.

The overlay network is organized in a circular ring with key interval I = [0, 1]. Each node
manages a sub-interval of I ranging from its own id to the id of its immediate predecessor and
keeps two short links to its immediate neighbors. Unlike Chord [23]] and others [21} 20, 25]],

there is no relationship between the number of links and the number of bits of the identifiers.

Each node also maintains k > 1 long distance links. Each targeting the node responsible for
the point whose distance is x - random number belonging to / and drawn from a harmonic prob-

ability distribution function. Tests show that low latency routing in large networks is possible
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with only four long distance links. Every node has a maximum of 2k incoming links. To draw
x, a node needs to know N, the size of the network. Thus, an Estimation Protocol is executed to

provide, at runtime, the knowledge of n to the nodes.

Lookups can be performed bi-directionally in the ring with average latency of O(%logzN).
To do so, a node routes an incoming message to the incoming or outgoing link that minimizes

the distance to the destination.

To join the network, a node chooses a random uniform number x € [ as its id and contacts the
node responsible for the sub-range that contains it. It obtains the size of the network from the
Estimation Protocol and establishes its k long distance links. When a node leaves the network,
its incoming and outgoing links are broken. Nodes that had outgoing links to the leaving node
replace them with links to other nodes. On average, k incoming links need to be re-established.
Since the establishment of each one of the k links takes O(%logzN) messages, both node joins

and leaves have total average cost of O(log>N).

Nodes also maintain a lookahead list containing the identifiers of their neighbor’s neighbors,
allowing the reduction of the average lookup latency by half. Symphony tolerates failures of up
to f nodes by keeping f additional links per node. Both unidirectional and bidirectional routing
are possible and present an average lookup latency of O(%logzN). Symphony also provides run-
time tuning of the number of links per node, enabling the regulation of the trade-off between

the number of links and average lookup latency.

2.2.5 Structured Superpeers

This paper [15]] describes a structured peer-to-peer system able to perform O(1) lookups. In
fully distributed lookup systems, routing information is distributed uniformly among its peers,
leading to high network latency as nodes have different processing and bandwidth capacities.
This issue is addressed by exploring node heterogeneity, forming a hierarchical network with
superpeers and choosing them based on their capabilities. This approach combines the advan-

tages of centralized (lower lookup costs) and decentralized systems (scalability and reliability).

Nodes in this network are organized in a circular ring - the outer ring. Some of these nodes
are selected to be superpeers, forming a smaller network - the inner ring. Superpeers maintain

full knowledge of each other and each one is responsible for a fraction of the outer ring.
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A node performs a lookup by contacting the superpeer responsible for its partition. If the
query directs to a node in the same partition, the superpeer returns the result, if not, it forwards
the request to the superpeer responsible for the partition containing the identifier. This scheme

reveals constant lookup costs as, in the worst case, two nodes are contacted to resolve a lookup.

To join the network, a node contacts another already in the network in order to discover the
superpeer responsible for its partition. After being contacted by the joining node, the superpeer
updates its routing table with the new node. When a node from the outer-ring fails, the superpeer
simply removes it from its table. If a super-peer fails, its partition might be assigned to others
in the inner-ring or other node might be assigned to manage it. Failures are identified by other

peers in the same ring, through the exchange of keep-alive messages.

Even though superpeers are selected taking their capabilities into account, they still have a
limit. Therefore, when a node detects that its maximum capacity has been reached, it may share

its load with another superpeer, or even with a node from its partition.

2.2.6 One-Hop Lookups

This project [7] presents a full-membership peer-to-peer lookup network. Other peer-to-peer
structured overlays, try to maintain small routing tables at each node because they expect fre-
quent membership changes. However, lookups have high latency as they require contacting
several nodes in sequence. This system considers that maintaining full routing tables is viable,

even in the presence of large networks with frequent membership changes.

Nodes in this overlay are arranged in an identifier ring and each one is assigned an uni-
formly distributed 128-bit identifier. The ring is divided into k equal adjacent intervals - slices.
Each slice is similarly divided into units. Both these subdivisions have a leader: the mid-point
successor of the range they cover. Each node has a predecessor and a successor, to whom they,
periodically, send keep-alive messages. This approach has the disadvantage of possibly over-
loading the slice leaders. It’s a drawback that could be minimized if slice leaders are chosen

taking their bandwidth capacity into account.

In order to supply every node with full-membership, when a nodes detects a membership
change it notifies its slice leader which, in turn, warns the other leaders about recent changes.

The slice leaders aggregate received messages for a while and then dispatch a message to their
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unit leaders. Finally, the unit leaders piggyback the notifications on their keep-alive messages to
their successor and predecessor, in a way that the information flows from the unit leader to the
boundaries of the unit, thus avoiding duplicates. This, together with an aggregation mechanism

that minimizes the dispatch of small messages, leads to the efficient use of bandwidth.

2.2.7 Two-Hop Lookups

The peer-to-peer lookup protocol presented in [8] is able to route in two-hops. It is based on the

structure of the one-hop scheme presented in [7] and summarized in section

The one-hop scheme works well for systems as large as a few million nodes. However,
for networks of larger sizes, the bandwidth requirements may become too large. Therefore, a
scheme that scales to a larger network size is presented, one that lowers the bandwidth con-

sumption by keeping only a fraction of the membership information at each node.

As in the one-hop scheme, nodes are organized in an identifier ring and each node is assigned
an uniform 128-bit identifier. The network is also formed by slices, units and their respective
leaders. The particularity of this approach lies in the fact that every slice leader chooses / nodes

from its partition for every other slice in the system (leading to k-1 sets).

The slice leader sends routing information about one group to exactly one other slice leader.
This information is then disseminated to all members of that slice like in the one-hop scheme:
from slice leaders to unit leaders and from these to the remaining nodes. This way, every node
maintains routing information about exactly / nodes in every other slice. On top of this, each

node also has routing information about every node in its own slice.

Node failures are handled similarly to the one-hop scheme, the only difference occurs in the
information that a slice leader sends to the other slice leaders. In the one-hop scheme, each slice
leader sends membership changes regarding every node in its slice. In the two-hop scheme, the

message it sends to other slice leaders concerns only the / nodes “assigned” to the target leader.

Each node maintains a table with the closest nodes to every other slice, based on their
network distance to itself (e.g., number of hops). To perform a query, the initiating node sends a
lookup request to the closest node it knows from of the sl/ice containing the key, thus minimizing

the first hop latency. The chosen node then forwards the request to its destination.
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2.2.8 Content-Addressable Network (CAN)

CAN [20] is a fully-distributed, scalable, robust and self-organizing distributed hash table. It

provides a means to store, retrieve and delete data with low-latency communications.

The CAN architecture considers a virtual d-dimensional Cartesian coordinate space divided
amongst its participants. Nodes are organized in an overlay, in a way that a given node only

knows its immediate neighbors, i.e., responsible for the coordinate zones adjacent to its own.

For a node to join CAN, it generates a random point in the coordinate space and routes a
join request to the node responsible for the zone that encompasses it. That node then divides
its own zone in half and assigns one piece to the new node. The routing tables at the new node,
the old node and the surrounding neighbors are updated accordingly. This process only affects

O(d) nodes and is independent of the network size.

In the event of a node departure or failure, its zone is merged with the zone of one of its
neighbors. If merging is not possible then the neighbor with the smallest zone temporarily takes
over it. A zone-reassignment algorithm is then responsible for stabilizing the fragmentation of
space. In order to enable failure detection, every node periodically sends keep-alive messages

to its neighbors.

To store or lookup a piece of data, that data’s key is mapped onto a point in the overall space
and the node responsible for the zone that comprises it is selected. Routing is performed at
each node by forwarding messages to the immediate neighbor that is closest to the destination,
taking O(dN 1/d ) hops, with N the total number of nodes. Note that, in case of node failure, it is

still possible to route messages to other neighbors.

Some design improvements are also proposed in [20]]. Such as, increasing the dimensions of
the coordinate space, which improves fault-tolerance (more next-hop alternatives) and reduces
path length at the expense of a small increase in the routing tables; consider multiple coordinate
spaces (realities) in a way that data is replicated in each one and nodes are assigned a zone in
each reality, thus contributing to an improved data availability, fault-tolerance and reduced path
length; tuning the routing metric to consider the IP-level topology, reducing path latency; assign
multiple nodes to each zone, improving fault-tolerance; using different hash functions to map
data to zones, in a way that the same information is stored at multiple sites; building the overlay

taking topological concerns into account, by measuring the R7T to several physical landmarks;
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caching and replication techniques in order to increase the availability of popular keys.

2.2.9 Kelips

Kelips [9] is a peer-to-peer DHT with constant lookup costs used to replicate file index infor-
mation. It uses a model that increases the memory used to maintain routing information at each
node - O(v/N). This aspect is motivated by the higher latency introduced by multi-hop routing,

especially when nodes with low bandwidth capacity are involved.

Nodes are arranged in clusters, designated by affinity groups. The routing information main-
tained at each node is divided into three types of records. The first two types consist of routing
information and some other data, like round trip times (RTT) or heartbeat counters, about nodes
that belong to the same group and nodes from foreign groups, respectively. A third record type
binds file names to their owners’ ip-addresses, but only for the owners that are a part of the same

affinity group. The owner of a file is designated by its homenode.

In order to keep a consistent system state, each piece of information stored has a heartbeat
counter associated. This counter needs to be updated before a provided timeout occurs, oth-
erwise the corresponding information is deleted. These updates are responsibility of the node

whom the information is about.

System changes are disseminated using a protocol based on gossip. A node that wants to
disseminate a message proceeds its execution in a series of rounds (at fixed time intervals).
In each of these rounds the node chooses a few other contacts (nodes from its own group and
from foreign groups) and forwards them the information. Target nodes are chosen by proximity,
using the RTT.

Both file lookup and insertion are done in a similar way with constant complexity - O(1).
The file name is first mapped into the corresponding affinity group using the same hash function
employed in node-to-group assignment. To insert a file, or to look it up, the querying node
contacts the closest node (smaller RTT) it knows from the target affinity group. This node

finally routes the request to the relevant node.
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2.2.10 Catadupa

Catadupa [[13] is a full membership substrate designed to support peer-to-peer content-based
routing. It focuses on the main premises of this particular routing problem - load balancing and

false positives/negatives avoidance - while keeping good performance in mind.

This solution lies on two components: Catadupa and Turmoil. The former is responsible for

the full membership/interests view maintenance while the later handles actual message delivery.

2128 where each node’s

Catadupa’s network structure is based on an identifier ring modulo
identifier is the hash of its ip and port. Like in some known DHTs [7, 8]], the identifier space
is partitioned into slices, each one with its own responsible node, designated here as the se-
quencer. It is the node with the smallest key in the slice and is responsible for broadcasting

arrivals of nodes whose keys fall in its slice range.

The broadcasts are performed every 30 seconds, period in which the sequencer aggregates
and tags join requests with a sequence number. The aggregation mechanism allows the re-
duction of the communication overhead and allows compression. Each message is broadcast
resorting to random-trees recursively built by subdividing, at every interior node, the identifier
space into a number of sub-ranges (independent from the number of slices). The whole key
space is considered initially and, for each sub-range, the node with the smallest key is chosen
to process it, until only leaf nodes remain. A node that left the system is detected locally and

only removed from the membership view of the node that tried to contact it.

Turmoil is the content-based routing layer. It is implemented on top of Catadupa and relies
on its full-membership information in order to find, for a given message, all the nodes interested
in its reception. To do so, Turmoil behaves similarly to Catadupa in the sense that the sender
initiates the creation of a random-tree for each message. The difference lies on the fact that, an
interior node, instead of choosing the node with the smallest key to handle each sub-range, it
chooses the first node it knows to be interested in the message. Therefore, only the interested

nodes will be part of the message dissemination tree.

As a backup measure, nodes periodically exchange view information, in an epidemic fash-
ion, to recover from possibly missed Catadupa or Turmoil messages (due to failure or concurrent
broadcasts). To allow this mechanism, nodes store the sequence numbers of the broadcasts they

have received, in a way that allows them to assert which ones were missed.
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Several other approaches for content-based routing have been proposed and, usually, nodes
with similar interests are organized into overlay networks. Their maintenance negatively affects,
among other properties, load balancing and low-latency dissemination. Therefore, instead of
organizing nodes into overlays, this paper proposes a solution where different random trees are
used in each message dissemination. This way, the load of finding other nodes with similar
interests, as well as message forwarding, is balanced throughout the nodes. Finally, since full-
membership view is required to support this solution, it is somewhat limited in terms of its
scalable capabilities. Moreover, while allowing for correct solutions, the scheme proposed does

not consider high network churn.



3. Design and Specification

The following chapter provides a contextualized and detailed description of the algorithm pro-
posed to manage a geography-oriented network of nodes with partial membership awareness.
In order to explicitly set the ground basis for this dissertation, section [3.I|describes the problem
at hand. The following section (3.2)) iterates through the various aspects of the solution adopted,

providing, where needed, the rational behind each design decision.

3.1 Preamble

3.1.1 Context

The main goal of Participatory Sensing [2, 3, [22]] inspired applications is to provide its users
with a means to collect and share sensorial data from their physical surroundings. The moni-
toring of air quality [[18]] or of traffic and road conditions [[10} 16} 5] are examples that illustrate

this model’s wide range of possibilities.

The main idea to retain from this application domain is that users are mainly interested in
sensorial information from physically close locations and, therefore, are expected to mostly
need to contact peers located nearby. It would then be interesting that applications based on
these ideals could be supported by a communication middleware that offers low latency com-

munications in physically delimited areas.

3.1.2 Problem

Considering a population of geographically referenced nodes, this dissertation addresses the
challenge of how to allow each user to be made aware of the peers that lie within a certain

physical distance. With decentralization, fault-tolerance and scalability as the main guidelines.

Motivated by this requisite, the notion of neighborhood is defined. It is a circular area
centered at a node’s geographical coordinates (latitude and longitude) encompassing the active

peers whom that node is interested in knowing - its neighbors. These are stored at each node

21
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in a local database, designated as the neighborhood database. Note that the priority is to store
nodes that are, or have recently been, alive. The monitoring of dead neighbors can, conversely,
be given less relevance. This is motivated by the fact that the usage expectations render the

management of departed nodes to have little impact on the system’s correction.

3.2 Solution Design

3.2.1 Overview

We propose an algorithm to manage an overlay network that reflects a strong geographical
correlation between its participants, where each one features a physical location and is interested

in knowing the active peers located up to a certain physical distance to itself.

To that end, the overlay network is defined over a two-dimensional plane where the location
of each peer is determined by its latitude and longitude on the Earth’s globe. The entire physical
space is to be divided into smaller partitions so that the efforts of managing the entire network
can be reduced to smaller, individual problems. Each partition is then managed by the peer that

first joins in the area it encompasses.

Once a partition has a dedicated manager, desig- /_,-—-"/‘/'/' "'\\ /.,.,-—\-\-\\-\\
nated as a super-node, it can then start to accommodate I_,"A / /.2‘\"{,\ l\'\,\
new arrivals. These new nodes are assigned as sub- ' - : X % b‘,?* ~ \’\_I
nodes and need to be introduced to the peers that pre- R / {‘// \’_i' ' \ ;
viously populated the area. To do so, the super-node ‘s"\"f\,\ a'\\‘ji\,}&/i ) //c ‘,-'!\‘\
responsible for that partition announces the new arrival \ R J‘{\/ l\'f,ei“‘\\_ _.,/'/ /

\ - y
to the relevant peers. \\ / >< /

Figure [3.1] illustrates the general overview of the o
Figure 3.1: Network layout.

network layout. Nodes X and Y act as super-nodes and

have their neighborhood boundaries represented by a dash-dot line. Sub-nodes a, b and ¢ are

also illustrated and a continuous line illustrates their neighborhoods.

The announcement of new arrivals is not perfect and might fail to inform every interested

peer. A background repair mechanism is thus introduced, leading peers to periodically perform
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pairwise exchanges of information in the attempt to recover from missed announcements. It
also allows new nodes to acknowledge the peers that were, prior to their arrival, already in the
vicinity.

Finally, a promotion mechanism was also adopted as part of the solution. Its purpose is to
select and promote sub-nodes as replacements for super-nodes that leave the system. This stems
from the fact that every space partition requires a managing super-node in order to maintain the
network’s correct behavior. Note that the handling of departed sub-nodes is somewhat less

relevant, the network eventually "forgets" them.

3.2.1.1 Challenges

The maintenance of the proposed layout is not trivial, specially in a dynamic network with high
churn rates [24]], i.e., frequent membership changes. Several issues need to be carefully consid-
ered if the hierarchical node arrangement is to remain consistent through time. The following

subsections iterate through these challenges, providing a general description for each one.

3.2.1.1.1 Spatial Coverage.

The proposed algorithm aims to be suitable for a network of nodes that, ultimately, covers
the surface of the planet. Users are expected to be located at any point in the Earth’s sphere,
even considering that most of the planet’s surface is inhospitable (seas, deserts, forests, etc.)
and that it is unrealistic to assume that the network would fully operate on these locations.
Moreover, the population density is not uniform, some regions (e.g. large cities) are likely

to have higher participant densities.

This heterogenic population distribution mainly affects the choice of how to partition
the physical space. As mentioned before, this is a way to reduce the efforts of managing
the entire network. This division could be implicit and performed "a priori", or it could be

done dynamically, as the network is being assembled.

In the first, "a priori", alternative, one can consider a fixed grid composed by regular
shaped partitions (e.g. rectangular, hexagonal) that would fit the Earth’s surface. This
approach has the advantage of enabling a disjoint coverage of the space, thereby avoiding

any issues resulting from overlapping partitions (as will be mentioned later). However,
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since the population density is not uniform, unnecessary efforts would be employed when
pre-establishing the grid, specially for deserted areas. Moreover, a regular shaped division
would also difficult the representation of the nodes’ neighborhoods. Finally, the size and
arrangement of the partitions should reflect population density in order to achieve a suitable

and balanced coverage of the participants.

Partitioning can also be dynamic, performed as the network is being assembled. A
new partition is created every time a node joins the network in an orphan location, i.e., a
location that is not comprised by any existing partition. Its management is then delivered

to the joining node, thereafter designated as super-node.

Super-nodes also have their area of interest (neighborhood). Therefore, it seems appro-
priate to match each partition with the neighborhood of the super-node managing it. Both
are assigned circular shapes as these are the most intuitive to represent distances from a
given point in space. Again, population density is not uniform, which should influence the
size of the neighborhoods. In an attempt to balance their number of nodes, areas of higher
density should expect smaller sized neighborhoods. Conversely, in less populated regions,

larger neighborhoods should be considered.

The fact that partitions share the same shape as the neighborhoods of their managing
super-nodes leads to a coverage issue. One that is related to the fact that it is not possible to,
using circular shapes, completely cover an area without overlapping. This results in some
loss of efficiency as the number of super-nodes needed to cover the network’s entire area
is higher than if the partitions were disjoint. Refer back to figure [3.1] for an illustration of
this scenario. Note that the neighborhoods of super-nodes X and Y intersect and also that

sub-node b has both of them in range.

In fact, any loss of efficiency resultant from this "super-node redundancy" results in an
increased fault-tolerance. That is, considering an area of intersection, covered by more than
one super-node, if one should fail, the sub-nodes lying there still remain with, at least, one
super-node in range. This could be taken even further by increasing the minimum number
of super-nodes that must be in range of each sub-node. Still, this matter is not extensively
addressed in this dissertation and the imposed requisite is that every sub-node must, at least,

have one super-node in range.
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3.2.1.1.2  Super-node Concurrency.

Two or more super-node arrivals are deemed concurrent if they occur approximately at
the same time and the nodes involved belong to each other’s neighborhoods. Referring
back to the issue of "super-node redundancy" mentioned in section "super-node
concurrency" can be perceived as two, or more, super-nodes having such a large partition

intersection that they are actually in range of each other.

When a node is joining the network, it needs to know which role it will play in the
network - super-node or sub-node. That decision is dependant on whether or not there is
a super-node already managing its location. The ability to correctly perform this decision
determines the degree of super-node concurrency in the network.

A simple way to prevent super-node concurrency would be to centralize the information
related to the spatial super-node coverage. This way, a single entity would monitor such in-
formation and there would be no inconsistencies as its privileged knowledge would always
produce the correct decision. The problem with this approach is that it does not follow the

decentralization mentality this dissertation strives to pursue.

On the other hand, for a fully distributed solution to achieve the correction level of
a centralized solution, it would require the adoption of distributed consensus techniques,

which are too complex and expensive in terms of bandwidth consumption.

Like "super-node redundancy", the fact is that "super-node concurrency" does not com-
promise the effectiveness of the network. This way, a possible solution is to mitigate the
problem and accept that some node assignments might be based in an incorrect view of
the super-node coverage and that "super-node concurrency" might actually occur. It con-
sists in providing full-membership to super-nodes, enabling them to assert, to some degree,

whether or not any given physical location is already being covered by one of its peers.

3.2.1.1.3 Membership Announcement.

As users join the network, the neighborhood databases at each node should converge to
an accurate membership view. To that end, one can endow the closest super-node with the
responsibility of directly notifying every single interested peer. The problem is that such

burden would probably prove to be too demanding in terms of bandwidth consumption.
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This drawback requires a decentralized announcement solution that balances the load and

minimizes the efforts of the super-node managing the new node’s partition.

In order to further decrease the bandwidth consumed during the announcement process,
it is necessary to avoid duplicates and false positives. Every node should only be notified of
arrival events in its own neighborhood, and only once. On the other hand, it is also necessary

to deal with announcement messages that might not reach their destination - false negatives.

Even though it would only provide probabilistic guarantees, one can also consider the
adoption of an epidemic repair mechanism to solely deal with the membership dissemina-
tion or simply to fill in the gaps left the announcement process. Running in the background,

it would consist in the periodic and pairwise exchange of information between peers.

Finally, considering that closely located users are expected to gather similar data, usu-
ally from the same locations, it is reasonable to assume, in many cases, high levels of
redundancy. For this reason, a membership dissemination mechanism that would provide,
at all times, a perfect knowledge of the peers lying in the vicinity is not mandatory and a

"best-effort" approach might be sufficient to meet the requirements of most users.

3.2.1.1.4 Fault Tolerance.

A node departure, voluntarily or not, has to be reflected in the system. The leaving
node needs to be removed from the neighborhood databases to prevent these from growing

unlimitedly. Therefore, a criteria that defines when and how to do it has to be adopted.

In the case of a leaving sub-node, the problem is confined as these only need to be
removed from their neighbors’ databases. Note that if a sub-node remains in its neighbors’

databases some time after its death, no correctional issues affect the algorithm.

On the contrary, super-nodes require constant monitoring. The fact that super-nodes are
responsible to handle arrival events in their partition introduces the need to quickly detect
their failures and replace them with a suitable candidate. The selection of the replacement

node should be achieved with minimal coordination overhead.
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3.2.2 Architecture

The geography-driven partial membership algorithm proposed in this dissertation, denominated
as Geodupa, divides a network of georeferenced nodes into two hierarchical levels. Nodes
assigned to the higher level are designated as super-nodes and each one has the responsibility
to independently manage a partition of the space - typically its own neighborhood. A joining
node is assigned as super-node if its location is not already being managed by another super-
node. Conversely, nodes that join the network in a super-node’s neighborhood are assigned as

sub-nodes and compose the lower level.

Neighborhoods are a crucial logical component of a Geodupa network. The neighborhood
of node A is a circular geographical area whose center is located at its coordinates. The radius of
the neighborhood is a fixed parameter, measured in kilometers, whose value is common to every
node and subject of consideration in section If node B belongs to the neighborhood of
node A, i.e. is in its range, then Geodupa’s efforts will eventually lead them to know each other.

The super-nodes that compose the higher-level form an independent network managed by
Catadupa [13]], a one-hop DHT described in section[2.2.10, This full-membership DHT ensures
that all super-nodes know each other, providing them with full visibility over the spatial super-

node coverage. Super-nodes also know every sub-node in their own neighborhood.

Sub-nodes form the lower-level of Geodupa. Unlike super-nodes, who have full knowledge

of their peers in the higher-level, these only know the nodes that lie in their own neighborhoods.

Figure [3.2] illustrates the general overview of the S T -
node arrangement in Geodupa. Nodes X, Y and Z are e | > A
the super-nodes and have their neighborhood bound- Y v
aries represented by a dash-dot line. Sub-nodes a to . A I i
e are, as expected, all in range of at least one super- ) RN d, o 7
node. It is clear that, for instance, nodes a and d be- o ; N '*\g-’
long to X’s neighborhood. The neighborhoods of the | i .z !
sub-nodes are not illustrated in the figure due to clarity k . i
reasons. However, the same kind of illustration used N o

'''''''''

to represent the super-nodes’ neighborhoods could be

adopted. Figure 3.2: Node arrangement.
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Ideally, every sub-node should have, at least, one super-node in range. This is important
if they are to receive new arrival announcements and is also the ground basis to endow sub-
nodes the possibility to reach nodes located beyond their neighborhoods. Actually, distant
communication was not evaluated. Still, it could be achieved by, for instance, sending messages

through the higher level, in which case super-nodes would act as routers.

Rational

The first impulse, when defining the network architecture, would be to design a solution
where participating nodes all knew each other, enabling one-hop lookups throughout the entire
network. The problem with this approach lies with the costs of maintaining full-membership
databases at each node. These are expected to increase with the churn [24] and size of the

network, leading to the scalability issues often associated with one-hop DHTs.

The solution adopted was designed with this problem in mind. Considering the Participa-
tory Sensing premise that important information is closer, the network was divided into two
levels and the membership scope at each node was reduced. Sub-nodes only know their neigh-
bors, super-nodes know these plus every other peer in the higher-level. The size of each database
is thus significantly reduced and any given node in the lower-level has no bandwidth overhead

caused by membership changes outside its neighborhood.

3.2.3 Joins

For a node to join Geodupa it first sends a join request to its broker - a random super-node
obtained through some external source. The broker is then responsible to determine to which
level of the network the new node will connect itself to. It will be assigned as a super-node if
its location does not belong to the neighborhood of any super-node. On the other hand, if the

new node lies in the neighborhood of at least one super-node, it will join as a sub-node.

3.2.3.1 Sub-Nodes
If the broker determines that the new node has, at least, one super-node in range, it replies
with the contact information of the closest one. The joining node then contacts the super-

node received - its host - and waits for a reply containing its closest neighbor, which will
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act as a seed for the first epidemic repair (section [3.2.5). Finally, to complete the joining
process, the host triggers an announcement mechanism, known as geographical multicast
(section [3.2.4)), in order to disseminate the new node to its neighbors.

To ensure the awareness between sub-nodes attended by different super-nodes, the final
step is to disseminate the new node to all the super-nodes whose neighborhood intersects
the new node’s. That is, all the super-nodes whose neighborhood might contain sub-nodes
interested in the new one. Super-nodes contacted this way proceed to send the new node to

the neighbor that is closest to it.

Figure 3.3: Sub-node n joining Geodupa

Figure illustrates the joining process of a sub-node. The network is composed by
super-nodes H and B and sub-nodes a to f. Again, due to clarity reasons, only H, B and n

have their neighborhood boundaries illustrated.

The joining node - n - first sends a join request (1) to B, its broker, which determines
that n has super-node H in range, thus replying with its contact information (2). The host is
contacted (3) and replies with the contact information of b (4), to whom n can now resort

to perform its first epidemic repair.

Since there is a super-node whose neighborhood intersects the neighborhood of the new
node (in this case, the broker itself), H notifies it (5). B then notifies d (6), the closest it
knows to n, thus enabling the interconnection between both super-nodes’ neighborhoods as

n) can now be aware of d and e.
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3.2.3.2  Super-Nodes

If, on the other hand, the broker detects that the new node has no super-nodes in range, the
reply informs the joiner to connect itself as a super-node. That is, the new node triggers the

process of joining Catadupa - the DHT responsible for managing Geodupa’s higher-level.
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Figure 3.4: Super-node N joining Geodupa

Figure [3.4]illustrates the joining process of a super-node. The network is composed by
super-nodes H and B and sub-nodes a to f. The joining node - N - first sends a join request
(1) to B, the broker. In turn, it determines that N has no super-nodes in range. Therefore,

its reply (2) induces the N into joining the higher-level, i.e., Catadupa.

When a new super-node joins the network, some sub-nodes could already exist that
need to me made aware of it. For this reason, whenever an older super-node knows the
new one, it checks if their neighborhoods intersect. If they do, then its neighborhood might
contain some sub-nodes in range of the new super-node. It thus triggers the announcement
of the new super-node to the lower-level, using the same multicast mechanism adopted to

announce new sub-nodes, described in section[3.2.4]

Referring back to figure when H and B receive the confirmation that N joined
Catadupa, they determine that their neighborhoods intersect and both trigger the announce-

ment mechanism that will eventually notify nodes ¢, d and e.

Discussion
The future role of a joining node depends on the broker’s knowledge of the super-node cov-
erage. The broker selects the super-node it knows that is closest to the new one. If they are in

range of each other, the new node will connect as a sub-node. If not, it will be a super-node.
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The fact is that the broker’s database, due to the consistency issues involved in maintaining
the full-membership, might not accurately reflect the super-node spatial coverage. This intro-
duces a drawback to the criteria adopted. That is, upon the receival of a join request, the broker
might not yet be aware that a super-node exists in the neighborhood of the joining node. Its
answer to would then lead the joining node into connecting as a super-node, thus resulting in

"super-node concurrency", i.e., two super-nodes coexisting in each other’s neighborhood.

Some changes to the joining process were considered in order to minimize this phenomenon.
Namely, instead of basing its decision solely on its own view of the higher-level, the broker

could contact other super-nodes in order to receive their input regarding super-node coverage.

Another way to minimize "super-node concurrency" would be not to accept the broker’s
response unconditionally. Instead, the new node could send a new join request to the super-
node that the broker recommended. This would lead to an iterative process that would end

when the join request reached a super-node that considered itself as the closest.

Finally, a third alternative was considered. When a super-node joins, it obtains the member-
ship information of its peers in the higher-level. With this knowledge, it could check if its own
neighborhood contains any of the others. It it does, a demotion mechanism could be introduced

so that one, or more, concurrent super-nodes would be relegated to sub-nodes.

Although it would be possible to reduce "super-node concurrency", these changes would
lead to an increased complexity and traffic overhead. The fact is that this issue can be mit-
igated. That is, in terms of efficiency, it is in fact an undesirable problem. Since partitions
overlap, the number of super-nodes required to cover the entire physical space is higher than
if concurrency was excluded. However, it has no impact in the algorithm’s correctness and, as
mentioned before, can even be seen as a way to increase fault-tolerance. Besides, considering
that Catadupa’s membership management is quite effective in providing super-nodes with an
accurate and updated knowledge of their peers, the result is a somewhat insignificant percent-
age of new nodes being erroneously assigned as super-nodes (as observed in section[5.2.3). For
these reasons, the mentioned modifications were not adopted and the joining process was kept

as simple as possible.
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3.2.4 Announcement

For super-nodes to announce other nodes into the lower level, a geographical multicast is used.
It is performed through the creation of distributed random trees composed by the neighbors of
the node being announced.

To perform it, the super-node starts by dividing, into four quadrants, the square that bounds
the entire neighborhood of the target node. For each quadrant, it selects one random node from
its own database and delivers it the responsibility to continue the multicast in that quadrant. Note

that the nodes selected must also belong to the neighborhood of the node being announced.

Each selected node also subdivides its entrusted quadrant into four sub-quadrants, selecting
a node it knows for each one. This recursive subdivision ends when an intermediate node
determines that the nodes left to notify in its quadrant are less than a parameterizable fanout

(typically equal to 4). In which case the remaining nodes are notified directly.

Figure [3.5]illustrates the multicast process. The network is composed by super-node H and
sub-nodes a to i. Sub-node n is being announced. For illustrative purposes, the fanout used
in this example is equal to 2, meaning that the intermediate nodes will subdivide the quadrants

until the number of remaining nodes is 1 or 0.

To start the multicast process, in step 1, H slices n’s neighborhood into four quadrants and,
for each one, selects a random node (b, e, g and /) and delivers them the responsibility to
process their corresponding quadrants. In step 2, g and /& do not know any other nodes in the
quadrants they were entrusted. The subdivision ends. Node b actually knows two nodes that
lie in its quadrant - H and a. However, they are not eligible to receive the announcement: H
already knows n and a is not in n’s neighborhood. Finally, node e determines that there are
four eligible nodes in its assigned quadrant and proceeds with its subdivision. Nodes ¢ and i
are selected. In step 3, while i does not take any further action (zero nodes left in the assigned
quadrant), node ¢ determines that f and d still need to be informed. ¢ subdivides the quadrant
and randomly selects d to deal with the remaining space. Finally, in step 4, d computes the pool
of eligible target nodes and realizes that only f is left. Since the fanout was set to 2, d simply

notifies f directly and the multicast ends.
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X - node X is not aware of n

X - node x is aware of »

Figure 3.5: Announcement of node n using the geographical multicast (fanout = 2).

Optimization

The effectiveness of the geographical multicast is dependent on the knowledge that the initi-
ating super-node has from the neighborhood of the node being announced. For instance, if the
announced lies near the neighborhood border of the super-node, then the first step of the mul-
ticast would probably fail to inform every relevant quadrant. Figure [3.6] illustrates such case.
Super-node H triggers n’s announcement and is responsible to inform one node for each quad-
rant of its neighborhood. However, since their belonging nodes lie outside H’s neighborhood,

it would not be able to reach the two rightmost quadrants, i.e., nodes e, f and g.
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Figure 3.6: Example of the multicast need for optimization.

To minimize the occurrence of such event, the initiating super-node does not start the mul-
ticast process right away. It consults its database and selects the neighbor closest to the node
to announce, relegating the multicast responsibilities to it. This is motivated by the fact that
closer nodes have larger neighborhood intersections. In figure H would contact b to start

the multicast. Nodes e, f and g are thus more likely to be included in the multicast tree.

Due to the limitation described above, as well as the constant membership changes in the
network, this mechanism is not 100% accurate. That is, some nodes might not be notified. To
address this problem, section [3.2.5] introduces a background epidemic repair mechanism that

allows nodes to recover from missed announcements.

3.2.5 Epidemic Repair

The goal of the epidemic repair mechanism is to fill in the gaps possibly left by the announce-
ment of new nodes (section [3.2.4). It also serves for newly joined nodes to acknowledge the

membership status of their neighborhoods before their arrival.

At fixed time intervals, each node (super-node or sub-node) selects a random neighbor from
its database and sends it the set of neighbors in its range. The selected node then replies with
a similar set of nodes. However, this one does not contain the nodes that the requester initially
sent, i.e., nodes that both previously knew. When this 2-way interaction ends, both participants

are left with a similar membership view of their neighborhoods’ intersection.

An example of this process is illustrated in figure Super-nodes X and Y form the higher-
level while sub-nodes a to g compose the lower-level. In an effort to maximize the clarity of the

figure, only nodes X, Y, a and b have their neighborhood boundaries illustrated.
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The epidemic repair is performed between sub-nodes a and b. Before their interaction, a
knows Y, b, d and c. b is aware of X, f, ¢ and e. To initiate the process, a sends b a message (1)
containing ¢ and d. Since node b already knew c, it only adds d to its database. Note that b was
not aware of a and thus also stores it in the database. To complete the repair process, b replies
(2) with a set of its own neighbors in range of a (that were not in message 1). Only one node
satisfies these conditions: e. The epidemic repair finishes, leaving the databases of the nodes a

and b with the same knowledge of their neighborhoods’ intersection.

Neighborhood Databases
a b
Y X
b | el | f
d 2:{e} €
C €

e Id

b = = —

I a
L — =

Figure 3.7: Nodes a and b epidemically repairing their databases.

Clock Synchronization

In Geodupa, each participant tags each neighbor with a time-stamp marking the last
moment in time it believes that node was active. This way, each node is able to remove old
entries from its neighborhood database by periodically checking their freshness. Neighbors

whose time-stamp is older than a given time threshold are thus removed.

The management of the time-stamps is performed locally, in the sense that each par-
ticipant maintains its own set (one for each neighbor) stored in its neighborhood database.

Still, these can be influenced by other nodes.

Initially, when a node joins the network, its host tags it with a time-stamp marking
the time of arrival. Every node that receives its announcement stores it with the time-
stamp provided by the host. Thereafter, other peers locally update that node’s time-stamp
whenever they directly contact it or whenever they receive a more recent time-stamp for

that node, during the epidemic repair.
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The fact that nodes exchange time-stamps introduces the issue of clock synchroniza-
tion, often associated with distributed systems. Keeping the clocks at every node perfectly
synchronized is a difficult and complex task. The fact is that there is no strict need that
motivates the adoption of mechanisms that pursue a synchronization with, say, millisecond
precision. Note that if clocks are allowed to deviate even by a few minutes, in the worst

case scenario, some neighbors are removed slightly sooner, or later, than they should.

As mentioned in section [3.2.1.1] (under "Membership Announcement"), the expected
redundant nature of the information allows us to consider a "best-effort" approach when
dealing with management of the neighborhood databases. That is, a node does not require
to know, at every moment, exactly which active peers lie in its neighborhood or which ones
have already departed. Therefore, the issue of clock synchronization was mitigated. Nodes

are only expected to be connected to the Web and synchronized with the "Internet Time".

3.2.6 Departures

When a node fails to communicate with one of its peers, it proceeds to remove the unresponsive
node from its neighborhood database. No further actions are performed, thus resulting in the
absence of overhead when dealing with node departures. The drawback of this approach is that
a node might persist in several databases long after its departure, only being removed when
an attempt to contact it is made. To address this problem, each node locally maintains, as
mentioned in section[3.2.5] a time-stamp associated with each one of its neighbors. This enables
every node to, periodically, discard the neighbors that are thought to be inactive for a certain

amount of time - the neighbor TTL.

Discussion

As an alternative to this simplistic solution, a more proactive behavior could be adopted. For
instance, failure events could be disseminated throughout the network so that others could also
remove the failed node from their databases. This way, ideally, no one would ever try to contact

the departed node again. This would seem a suitable approach.

However, besides the obvious traffic overhead, another, more fastidious problem, would

have to be addressed. It is related to the inability to assert if an unresponsive peer has actually
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left the system or is simply suffering from connection problems. This uncertainty could thus
lead to the incorrect announcement of departed nodes. The complexity and intricacies of this
issue turned the balance in favor of a deferred handling of failures, where each node eventually

"forgets" its dead neighbors.

3.2.7 Promotions

When a super-node leaves the network, the region it previously occupied and the sub-nodes that
lie there are possibly left orphan of super-nodes. A promotion mechanism is thus presented. It

detects the departure of super-nodes and replaces them with suitable sub-nodes.

Every sub-node in the network periodically receives evidence that a super-node exists in its
neighborhood. It might be direct evidence, when communicating with a super-node, or indirect,
during the epidemic repairs or when node announcements triggered by super-nodes in range are
received. Whenever such evidence is received, the moment in time it occurred is recorded. This
allows every sub-node to periodically check how long it has been since the last time it "heard"
from a super-node in its range. If this time interval is greater than a parameterizable threshold -

the suspicion timeout, the node suspects that there are no super-nodes in its neighborhood.

One of the possible evidences, the announcement, is triggered when a new node joins. Con-
sequently, in the absence of new arrivals, there are no announcements, thus significantly re-
ducing the evidence flow. This might cause some sub-nodes to be unaware of one or more
super-nodes in the area, eventually leading to erroneous promotions. Therefore, in order to pre-
vent super-nodes from being idle for long periods of time, each one announces itself if it has

not performed any announcement for a pre-established period - heart-beat timeout.

When a sub-node becomes suspicious, it triggers a process that will eventually lead one of
its neighbors (or even itself) to replace the last super-node it knew. Intuitively, the best candidate
would be the sub-node closest to the failed super-node, simply because its neighborhood would

cover most of the region left orphan.

The first step of the promotion process is to compile the set of promotion candidates. To
do so, the suspecting node consults its database and selects the neighbors closer than itself
to the last super-node it "heard" from, ordering them taking into account their distance to the

departed super-node. Then the suspecting node sends a promotion request to the first candidate
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(the closest). If it rejects the request, the suspecting node skips to the next candidate. This
iterative process terminates when one of the candidates accepts to be promoted, is promoting or
has already been promoted to super-node. If none of the candidates answers successfully, the

suspecting node attempts to promote itself.

A node that receives a promotion request will only accept to promote if it also suspects it
was left orphan. If not, it denies the promotion request. Possibly, there are several nodes exe-
cuting the promotion protocol. This eventually results in the same node being contacted several
times by different suspecting nodes. Thus, a node might be promoting or already promoted
when a promotion request arrives, in which case its response would lead the requesting node to

acknowledge it as a super-node and to cancel its side of the promotion protocol.

When a node decides to promote, i.e., join the higher-level (Catadupa), it does not do so
right away, it only promotes after a certain period of time - promotion tolerance. It is a way
of preventing concurrent promotions as, during this interval, a promoting node will cancel its
intentions if evidence of an active super-node arrives. Note that also the nodes that are trying to

promote a neighbor will also stop doing so if super-node evidence is received.

Figure [3.§] illustrates the promotion process. Figure [3.8a] presents a network composed by
super-nodes X and Y and sub-nodes a to g. In figure [3.8b Y leaves the network and sub-
nodes a, ¢, d and f become orphan. The first one to detect it is sub-node a. It thus triggers
the promotion protocol and selects b, ¢, and d as the possible candidates. Note that these are
ordered considering their distance to Y. The first promotion request is sent to b, the closest. It
is denied because b is not suspicious, it knows an active super-node in range - X. Sub-node a
skips to c¢. Since it has also meanwhile detected that it was left orphan, the reply is positive and
it joins Catadupa. The final layout of the network is illustrated in figure

Motivation
One of Geodupa’s premises is that every sub-node should contain, at least, one super-node in
its neighborhood. This is motivated by the fact that super-nodes are the means to reach farther

nodes and because they are responsible to attend and announce new arrivals in the network.

When a super-node leaves the network, the partition it previously managed is possibly left
orphan of super-nodes, and so will the sub-nodes that lie there. In order to cover that region

again, it would be possible to simply wait for a node to join in an orphan location as it would
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be assigned as a super-node. While this solution would eventually solve the problem, there are
no guarantees as to when. That is, node arrival is probabilistic and, therefore, the time a region
is left orphan might be significant jeopardize the algorithm’s behavior. This problem was thus

solved using sub-node promotion, a more proactive approach.

(c) C is promoted to super-node

Figure 3.8: Node ¢ promoting to super-node.






4 . Implementation

The following chapter presents and describes the implementation process for the solutions pro-
posed in chapter[3] First, we state this chapter’s objectives (section 4.1]) and provide a general
description of the platform used to simulate and evaluate the algorithm (section 4.2). The fol-
lowing section (4.3)) briefly presents the implementation of Catadupa and section .4 finally

describes the implementation of Geodupa in detail.

4.1 Objectives

In order to determine that Geodupa achieves the proposed objectives for this dissertation, it is

necessary to evaluate its operating behavior under conditions as realistic as possible.

Ideally, Geodupa would be implemented in a "real-life" scenario, where each node would
actually represent a Personal Computer. This would allow a realistic evaluation as network
conditions would be genuine, e.g., churn rates, network problems, bandwidth capacity, commu-
nication latency, geographic constraints, user behavior, etc. However, evaluating Geodupa in

such a scenario is not feasible in the available time frame.

To get around this problem, we resorted to a platform that enables the simulation of a net-
work of nodes, as well as its inherent conditions and variables, on a single physical computer.
The main objective of this chapter is then to describe the adopted simulation environment and

the way the algorithm’s design was translated to suit it.

4.2 Simulation Platform

In the scope of this dissertation, a simulation platform is a programming environment in which it
is possible to emulate a "real-life" operation process, over time, of a network of several nodes,
with a good degree of fine control. It provides a means to analyze and collect statistics of
distributed coordination algorithm’s, such as Geodupa, by enabling the representation of nodes

and their behavior, as well as the communication channels used by nodes to exchange messages.

41
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There two main execution models used in simulation environments for distributed systems,

one based in cycles and the other in discrete events.

In the cycle-based model, time elapses in a constant manner and is divided into equally
sized slots. At every slot change, every node executes its pending tasks, which translates into
high concurrency and synchronization. Conversely, this leads to the existence of idle cycles,
in which no actions are performed. The fact that nodes often perform their actions at the same
simulation time leads to the absence of a certain amount of lag that would be desirable to allow
the actions of nodes to intercalate. The main advantage of this simulation model is that it easily
accommodates very large quantities of nodes as it does not require the constant re-ordering of

the event priority queue (as does the discrete-event model, mentioned next).

In the discrete-event model, the network has its operation reflected in a sequence of distinct
chronological events used to model internal node tasks and network packets. This sequence is
represented as a priority queue, shared by all entities in the system, in which the events are
ordered by their starting time. The simulation unwinds by constantly removing and executing
the first event in the priority queue. This requires the reordering of the priority queue whenever
a new task is added. Being a computationally heavy operation, this restrains the simulation of
very large numbers of nodes. In this model, time elapses at irregular hops as the simulation
clock skips to the scheduled start time of the next event. Moreover, the execution of an event is

an atomic operation, i.e., it is instantaneous from the simulation’s point of view.

The simulation platform adopted to model and evaluate Geodupa, designated as SimSim,
follows a discrete-event model. It is more suitable to simulate concurrent events as tasks from
different nodes are intercalated in an event priority-queue. Considering the temporal ordering
of node tasks, this allows a finer evaluation of highly distributed systems composed by several

nodes executing concurrently as it maximizes the diversity of node behavior.

SimSim operates over a Java Virtual Machine and acts
as a middle-agent between it and Geodupa (figure {.T)). It
allows the simulation of several thousands of nodes, each
one with its own independent behavior. The modeling of a
node’s behavior is achieved by its ability to execute small Figure 4.1: Execution model.
tasks. These can be scheduled to execute only once or periodically, at fixed time intervals. A

task is always associated with its owner, a piece of code and a scheduled time of execution.
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Coordination between nodes is achieved by their ability to send and receive asynchronous
messages. In fact, a synchronous mode of communication is made available by SimSim but
it was not exploited as it relies on threading capabilities, which would limit the size of the

simulated network.

SimSim allows the usage of two distinct network models: Orbis and Euclidean, with the

main difference between them being the way communication latency is dealt with.

Orbis relies on a core graph of nodes that conceptually represents a simplification of the
Internet. Simulation nodes are connected to the outer nodes of this graph (perceived as ISP
routers) and feature a pre-established discrete communication cost (e.g., Sms, 10ms). Latency
between two peers is computed by summing up the cost to reach their corresponding router
nodes, plus the cost of the shortest path between both routers inside the core graph. Orbis is

then more suitable to simulate classical P2P algorithms, with no geographical relation.

Conversely, in the Euclidean model, communication latency between peers is calculated
taking their position into account. To that end, every node features 2-dimensional coordinates,
defined a priori, and latency is proportional to the geometrical distance that separates them. In
our case, the Euclidean model is obviously more suitable as Geodupa addresses group com-
munication in an geography-oriented environment. Therefore, SimSim was parameterized to
operate under its conditions and the geometrical coordinates of each node were matched with
their geographical coordinates (latitude and longitude). This way, latency is, as expected, higher

between farther nodes and lower between closer nodes.

4.2.1 Overview of the Simulation Environment

Figure [4.2] presents a class diagram composed by the fundamental components of SimSim. It is

only intended to provide a global overview, not a formal and exhaustive description.

To perform a simulation, a Simulation object is instantiated. It is the simulation’s "control
center" as it can monitor and control the execution process and, from it, new nodes are created.
Moreover, some of the key entities belong to it: the Network is an abstract class extended by
the network type classes (Euclidean or Orbis); the Scheduler is responsible for managing the
simulation time and the event priority queue; Traffic, a communication statistics collector; and

Random, responsible for introducing the necessary unpredictability of "real-life" scenarios.
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Figure 4.2: SimSim’s general class diagram.

Actions in SimSim are implemented as tasks. These might be executed only once (Zask) or
periodically (PeriodicTask). They may be used by nodes to schedule the execution of some task
(e.g., message dispatch) or by other entities to, for instance, gather statistics.

AbstractNode is an abstract class meant to be extended by simulation nodes. In order to
communicate with others, each one contains a NetAddress (perceived as the node’s IP address).
Messages are represented by class Message and their exchange is done resorting to the End-

Point class, representing generic transport endpoints by associating the NetAddress to a port.

Actual message reception and delivery is done separately by two distinct methods. The
drawback of this approach is that, on request-reply scenarios, the code that dispatches the re-
quest is separated from the reply handling. Moreover, it is necessary to implement a receiver
method for each possible reply. Even if just a layout problem, this intuitively decreases code

simplicity and readability, specially when dealing with highly complex algorithms.

To address this inconvenient, SimSim provides an alternative higher-level communication

construction that easily associates each request with the handling of its possible replies and the
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measures to take in the event of a dispatch failure. This way, the method that deals with the
reception of messages - onReceive( Message m) - is only exploited to handle actual requests,
not replies. Procedure (1| presents the behavior adopted by both sides (requester and replier) in

pseudo-code.

Procedure 1 SimSim - Request/Reply procedure.

1 send RequestMessage(...) to other
2 LyonFailure

3 /I deal with delivery failure

4 LsonReply( ReplyMessage)

5 /I process ReplyMessage|

6

7 LsonReply( ReplyMessage,)

8 /I process ReplyMessage,

1 LyonReceive( RequestMessage(...))
2 /I process RequestMessage

3 reply ReplyMessage

4.3 Catadupa

Geodupa relies on a one-hop full-membership DHT, Catadupa [13] section 2.2.10] to manage
the super-nodes in the higher-level. This section provides a general overview of its given im-
plementation on SimSim. Figure .3] presents its simplified class diagram. The goal is not to

formalize the implementation of Catadupa in detail but only to provide a general idea.

4.3.1 Entities
4.3.1.1 CatadupaDB
The CatadupaDB class stores every node in the Catadupa network. These are internally ar-

ranged in different data structures, depending on whether they are online or offline. Live

nodes are kept in a List<CatadupaNode>, dead nodes in a Set<CatadupaNode> and, finally,
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—r—_————— e — — —
SimSim
CatadupaDB | l
[ AbstractNode |
store(n: CatadupaNode): void L - - - " - - - —
dispose(n: CatadupaNode): void extends
liveNodes(): Collection<CatadupaNode> CatadupaNode
deadNodes(): Collection<CatadupaNode>
allNodes(): Collection<CatadupaNode> 1 key: long
. pos: XY
ggrbagg(tiollector(). void sessionBegin: double
Szedy sessionEnd: double
« | keys: Set<Long>
joins: Set<Integer>
lastReceivedBroadcast: double
lastSequencerRun: double
DB
init(): void
view: View 1 shutdown(): void
knownNodes: SlidingBitSet oinEatad o
deadNodes: SlidingBitSet joinCatadupa(): void
S repairCatadupa): void
oadedindRaints hoded db_DownloadEndPoint(): void
isEmpty(): boolean initSequencerTask(): void
store(arrivals: NewArrivals): void 1 | isSequencer(): boolean
accountDeadNode(n: CatadupaNode): void . . .
randomNode(): CatadupaNode onSendFailure(dst: EndPoint, m: Message): void
randomSucessor(max: int): CatadupaNode .
sequencerFor(key: long): CatadupaNode onReceive(Message)
nodes(L: long, H: long): lterable<CatadupaNode> .
onReceive(Messagen)

Figure 4.3: Catadupa’s entity class diagram.

a Map<key: Long, value: CatadupaNode> stores every node and is used as a way to easily

obtain a node (live or dead) using its key.

When a node leaves the network, it is thereafter treated as a dead node. It is only actually
removed from the database when all other nodes mark it as dead. This "garbage collection" is

implemented in a PeriodicTask, thus executing at fixed time intervals.

4.3.1.2 CatadupaNode

Nodes in the Catadupa network are represented by class CatadupaNode. At creation time, each
one is stored in the CatadupaDB ({.3.1.1) being assigned a unique long key. Its state variables
are then initialized, in particular, its own local database, represented by class DB (4.3.1.3)).

The several different actions performed by a CatadupaNode are implemented using Sim-
Sim’s ability to schedule and perform tasks. For instance, to join Catadupa, a new node first

executes a PeriodicTlask that requests other Catadupa nodes for their membership databases,
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until one replies successfully. It then instantiates another PeriodicTask to actually send join
requests to the relevant sequencer. It executes until the joining node receives an announcement

broadcast containing itself, confirming its successful connection to Catadupa.

43.1.3 DB

Class representing the individual node databases. It keeps track of the broadcasts already seen

(view), the nodes believed to be active (knownNodes) and the ones presumed dead (deadNodes).

Since Catadupa provides full-membership, there is a problem in representing the informa-
tion at each node. That is, the fact that every node must maintain the membership information

of all its peers might stem performance issues and constrain the size of the simulated network.

As a way to minimize the load, Catadupa only maintains a global membership database
(CatadupaDB) and uses bit masks (SlidingBitSet) to reflect inter-node membership awareness.
This way the awareness a node has from a given peer is encoded in a single bit (1 - aware, O - not
aware). Note that, overtime, the masks at each node are progressively being filled as Catadupa
drives all its participants to know each other. This way, it is possible to compress the past using

a counter that represents the total of bits set to 1 before the first O.

This membership management allows nodes to maintain only a small fraction of informa-

tion, compared to what they would if CatadupaNode object references were to be used.

4.4 Geodupa

Figure [4.4] illustrates the class diagram for Geodupa’s implementation on SimSim. Note that
the class GeodupaNode extends the CatadupaNode in a way that the later was kept unchanged,
preserving code extensibility. Whenever a new node is created, it is instantiated as a GeodupaN-
ode. Variables and methods from its superclass (CatadupaNode) are only exploited when, and
if, it becomes a super-node, in which case it is also stored in the CatadupaDB. This is motivated
by the desire to minimize the modifications to the provided Catadupa implementation as it is
intended as an independent block of Geodupa. Super-nodes are thus stored in the GlobalDB (as
Geodupa nodes) and in the CatadupaDB (as Catadupa nodes).
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GlobalDB GeodupaNode o
extends
t_birth: double —_——_———_———— —
i t_death: double Catadu
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el S ot CrsdmAle setTimestamp(timestamp: double): void

Figure 4.4: Geodupa’s entity class diagram.

4.4.1 Entities
44.1.1 GlobalDB

This class serves to store every node in the system, regardless of its level (super-node or sub-
node). Nodes are kept in a static HashMap<key: long, value: GeodupaNode>, made publicly
accessible in order to facilitate the gathering and processing of statistics. Like in Catadupa,

every GeodupaNode is assigned a unique long key when it is stored in the GlobalDB.

4.4.1.2 GeodupaNode

Class containing the behavior specification of every node in Geodupa. It extends the class

CatadupaNode thus inheriting the ability to behave as a Catadupa node, 1.e., as a super-node.

When a new node is created, an empty NeighborhoodDB (section 4.4.1.4) is initialized and
the node is stored in the GlobalDB (4.4.1.1)). The following step is to generate the geographic

coordinates (latitude-longitude) that would, in "real-life" scenarios, be obtained by GPS or some
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other external source. To do so, a set of cartesian coordinates (X, y, z) is first randomly gener-
ating on the Earth’s surface, modeled as a uniform sphere with radius equal to 6371 Km. These
coordinates are actually used to calculate (Euclidean) distances between nodes. Once the set of

cartesian coordinates has been generated, they are then converted to geographic coordinates.

Since the Earth’s surface is mostly covered by water, it makes no sense to generate nodes in
its total. Therefore, the coordinates that represent a water location are rejected and a new set is
generated, until it falls on land. To do so, a third set of coordinates is created for each node. It
is obtained by projecting its geographic coordinates in a 2-dimensional plane, which results in
a set of display coordinates (X, y). These are then placed on top of figure If they lie on the

green zone (land), they are accepted. They are otherwise rejected.

The projection adopted was the Sinusoidal
Projection, an "equal-area" projection that main-
tains the relation between areas proportional to
the reality. Note that the process of verifying
whether or not a node is located on land is only

approximate. It is not based on any formal mea-

surements and is only intended as a way to reduce
the number of nodes in the network (to amore re-  Figure 4.5: Earth’s Sinusoidal Projection.

alistic number) in a somewhat illustrative way.

The representation of a node’s circular neighborhood is done by defining a point - the center
- and a line segment - the radius. The center is matched with the geographical coordinates of the
node and the radius is measured from the center of the neighborhood up to a certain distance, a

double common to all nodes and subject of observation in section [5.2.4.1]

Finally, as mentioned in 4.2] communication between nodes is achieved through the asyn-
chronous exchange of messages. To that end, GeodupaNode implements the interface Geodu-
paSocketHandler (in annex, listings [A.T)) that defines which messages a node must be prepared
to receive. Again, when sending a message, it is possible to easily define a handler to deal with
the possible replies. To that end, the handler must extend the class GeodupaReplyHandler (in

annex, listings[A.2), overriding the methods relevant to each distinct interaction.
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4.4.1.3 Neighbor

A Neighbor object represents a node in the neighborhood database. It contains a reference to the
corresponding GeodupaNode and a time-stamp (double) marking the last time that the database
owner presumes it was active. The main method this class provides is the setTimeStamp(double
timestamp) invoked to update the time-stamp of a Neighbor whenever the storage of some

previously know node is attempted and the time-stamp received is more recent.

4.4.1.4 NeighborhoodDB

This class represents the neighborhood database present at each node. It stores neighbors and
provides methods to manage them. Actual storage is done in a TreeMap<key: long, value:

Neighbor>. The key of a given Neighbor is equal to the key of the GeodupaNode it represents.

When storing a previously unknown GeodupaNode, a new Neighbor is created and tagged
with the received time-stamp. On the other hand, if the GeodupaNode to store is already in the
database, the Neighbor that represents it has its time-stamp updated if the one received is more

recent. Procedure 2] describes this in pseudo-code.

Procedure 2 Storing a new neighbor.

—store( timestamp, node)
if node € NeighborhoodDB
neighbor < getNeighbor( node )
if timestamp > neighbor.ts
neighbor.ts < timestamp
else
new_neighbor «— Neighbor< timestamp, node >

save new_neighbor

To prevent the unlimited growth of the databases, a PeriodicTask executes the method
garbageCollector. Every neighbor’s time-stamp is then periodically analyzed and if it rep-
resents a moment in time older than a given time threshold (double: Neighbor TTL), the cor-
responding Neighbor is removed from the database. Finally, the exchange of Neighbor sets

during epidemic repairs is done resorting to method neighborslnRangeOf.
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4.4.2 Protocol

This subsection iterates through the several distinct node interactions of Geodupa, presenting
the entities involved in each one and their behavior. The messages exchanged and their data
members are listed in annex

442.1 Joins

The process of joining a new node to Geodupa involves three instances of the GeodupaNode
class - a joiner, a broker, and a host - each one playing a different role. The communication
scheme of this process is illustrated in figure [4.6] Remember that the joiner only contacts its

host when it is designated as a sub-node.

The joiner first sends a JoinGeodupaRequest GeodupaNode

message to the broker containing a reference to Gt e

itself. The reply (message JoinGeodupaReply)

Joiner

informs the joiner which level of Geodupa to

| ——y
join. If it is to be a sub-node, the message also \\\ \3@‘(@@
contains a reference to its host. The process of ;"jéz\o\ \?@S’%@&, e
joining Geodupa is shown in pseudo-code in Pro- %@g@ ~_ \H///GeodugaNode\\\‘
cedure [3|and implemented in a PeriodicTask that ” "ﬂ\\ Host  /
executes until the node joins the network (either L Jomerss assignedas submode. e
as a sub-node or as a super-node). Figure 4.6: Join process.

If the new node is assigned as a super-node, it triggers the process that will eventually con-
nect it to Catadupa. Nodes that already occupied its neighborhood need to be notified. To
that end, the class CatadupaNode was slightly modified in a way that, whenever a super-node
receives a Catadupa membership broadcast, it stores (in a List) the new arrivals whose neighbor-
hood intersects its own. A PeriodicTask is then responsible to announce these new super-nodes

to the lower level, clearing the List at each execution to avoid repeated announcements.

On the other hand, if the joiner is assigned as a sub-node it sends a JoinLowerLevelRequest
to the host suggested by the broker. The reply (message JoinLowerLevelReply) contains a

reference to a seed node with whom the new node can perform its first epidemic repair.
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Procedure 3 Joining Geodupa.

/* JOINER */
—joinGeodupa()
repeat
seed « CatadupaDB.randomSeedNode()
send JoinGeodupaRequest<self> to seed
LyonFailure()
continue
LsonReply( JoinGeodupaReply<level, +host> )
if level equals "higher"
join Catadupa
if level equals "lower"
joinLowerLevel(host)
sleep 45 seconds

until Joined

/* BROKER */
LyonReceive( JoinGeodupaRequest <joiner> )
closest «— DB.getClosestSuperNode( joiner )
if inRange(closest, joiner)
reply JoinGeodupaReply<"lower"> to joiner
else

reply JoinGeodupaReply<"higher", closest> to joiner

Using message SeedDispatch, the host then notifies every super-node it knows (if any)
whose neighborhood intersects the new node’s. These in turn notify the neighbor that is closest
to the new node, using a NeighborArrival message (section 4.4.2.2)). Finally, the host triggers
the multicast mechanism to announce the joiner to its neighbors. Procedure [ describes the

behaviors of the joiner and the host, in pseudo-code.

4.4.2.2 Announcements

To announce a node, several instances of the class GeodupaNode are involved. Namely, a root
node that starts the process; inner nodes that receive, process and forward announcements and,

finally, the leaf nodes which are notified directly and have no further responsibilities.
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Procedure 4 Joining the lower level (as sub-node).

/* JOINER */
—joinLowerLevel( host )
send JoinLowerLevel Request<self> to host
LyonFailure()
rejoin Geodupa
LyonReply( JoinLowerLevelReply<seed> )
initAsSubNode( seed )

/*HOST */

L,onReceive( JoinLowerLevel Request <joiner> )
seed < NeighborhoodDB.getSeedNode( joiner )
reply JoinLowerLevelReply<seed> to joiner
foreach super_node in SuperNodeDB

if areasintersect(super_node, joiner)
send SeedDispatch<joiner> to super_node

multicast joiner

Figure illustrates an example of the dis-
tributed tree generated while announcing a new
node. The root dispatches the announcement
to four different nodes (one for each quadrant).
While the three leftmost inner nodes continue
with the subdivision of their assigned quadrants,
the rightmost only knows two nodes in its as-
signed quadrant. It thus treats them as leaf nodes

by notifying them directly.

Depending on the destination node (inner or
leaf), the message types involved are different.
A NeighborArrival is used to directly dispatch

the announcement to leaf nodes. It contains ref-

GeodupaNode GeodupaNode GeodupaNode \ / GeodupaNode

Inner Node / \ Inner Node

GeodupaNode GeodupaNode

Leaf Node Leaf Node

Figure 4.7: Announcement process.

erences to the host and to the node being announced, along with the time-stamp marking the

beginning of the announcement process. The NeighborCast contains the information necessary

to assemble the distributed tree. Namely, a level, a quad and a path. It also encapsulates a

NeighborArrival, which enables inner nodes to acknowledge the node being announced.
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The level represents the actual level of the distributed tree and it is incremented before
a NeighborCast is dispatched. The path is the list of nodes already notified, i.e., where the
message has already passed. It helps to avoid false-positives as the message is never forwarded
to a node contained in the path. Finally, the quad is an instance of class Quad, which remits

this discussion to the introduction of two auxiliary classes: Quad and NeighborRange.

Class Quad represents a rectangle in the physical space. It resorts to the Rectangle2D.Double

Java object to perform the necessary geometric operations (e.g., divide(), containsNode()).

An instance of the class NeighborRange represents an interval in the node identifier ring
defined by a random pair of boundaries - low (L) and high (H). It can be perceived as a mask
from which the NeighborhoodDB can produce a set of nodes. The random nature of these
boundaries allows the representation of a different set every time this class is instantiated, thus

contributing to the randomness of the distributed tree.

Procedure E] presents, in pseudo-code, the multicast process. A inner node that receives
a NeighborCast first processes the NeighborArrival within in order to add the node being an-
nounced to its NeighborhoodDB. The Quad, representing the region the inner node is respon-
sible for, is then dealt with. First, the neighbors left to notify are computed by creating a new
NeighborRange. It provides the method nodeList that returns the set of nodes whose physical
location is contained in a given Quad. From this set, nodes that have already been notified

(contained in path) are removed.

If the number of nodes left to notify is greater or equal to 4, the Quad is subdivided into 4
equally sized subquads. Like before, a set of candidates is computed for each one Quad and,
from each set, a node is randomly selected to deal with it. Next, a NeighborCast is created for
each subquad. The level of the received NeighborCast is incremented by one and associated to
each new message. The current inner node is appended to the path and the messages are finally

dispatched. Each receiving node then recursively handles the Quad it was entrusted.

Conversely, if the number of nodes left to notify in the current Quad is less than 4, they are
treated as leaf nodes and directly notified by dispatching of a NeighborArrival message to each

one. This message is processed by attempting the storage of the host and the announced node.
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Procedure 5 Geographical multicast in Geodupa.

LsonReceive NeighborCast( quad, path, level, NeighborArrival<host, timestamp, node>)
1 send NeighborArrival<host, timestamp, node> to self

2 nodes_left « NeighborRange.nodelList( quad )

3 remove path from nodes_|eft

4 if nodes_left 5,0 = 4

5 subquads . 4 < quad.divide()

6 foreach subquad in { subquad; 4 }

7 candidates «— NeighborRange.nodeList( subquad )

8 foreach n in candidates

9 if n # node \\ inRange(n, node) A\ n ¢ path

10 send NeighborCast< subquad, pathusel f, level+1, NeighborArrival<host, timestamp, node> > to n
11 Ly onFailure

12 continue

13 Ls onSuccess

14 break

15 else

16 foreach n in nodes_left
17 if n # node \\ inRange(n, node)

18 send NeighborArrival<host, timestamp, newnode> to n

LsonReceive( NeighborArrival<host, timestamp, node> )

1 NeighborhoodDB.store( host unode, timestamp )

4.4.2.3 Epidemic Repair

The epidemic repair process is implemented in RepairRequest

a PeriodicTusk and involves two instances of

GeodupaNode GeodupaNode

GeodupaNode: the requester and the replier.

Requester Replier

The exchange of information is performed by RepairReply
encapsulating sets of the class Neighbor in two

messages - RepairRequest and RepairReply. Figure 4.8: Epidemic Repair process.

Geodupa nodes are periodically taking the initiative to execute the epidemic repair process.
Figure [4.§]illustrates this process. The requester obtains, from its NeighborhoodDB, the set of

neighbors in range of the replier and dispatches it in message RepairRequest. The replier then
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compiles the set of nodes in range of the requester, that were not contained in the request, and
sends it in message RepairReply. The behaviors of both nodes are described in procedure [6]
Note that the requester side is implemented in a PeriodicTask.

Procedure 6 Epidemic repair process.

/* REQUESTER */
—repairGeodupa()
onTimer( REPAIR_PERIOD)
other «— NeighborhoodDB.getRandomNeighbor()
Neighbor[]4 <— NeighborhoodDB.neighborsinRangeOf( other)
send RepairRequest< sel f, Neighbor|[]a > to other
LsonFailure()
continue
LyonReply( RepairReply<Neighbor[|p>)
NeighborhoodDB.store(Neighbor|] g)

/* REPLIER */
L,onReceive( RepairReply< requester, Neighbor|[|s >)
foreach neighbor € Neighbor[]a
NeighborhoodDB.store(neighbor)
Neighbor[]g «— NeighborhoodDB.neighborsinRangeOf( other)
remove Neighbor[] o from Neighbor|]s
reply RepairReply<Neighbor[|g> to requester

4.4.2.4 Departures

As mentioned in section the departure of nodes is dealt in a simple, while effective, way.
Departed nodes are removed from a given node’s NeighborhoodDB when that node attempts to
directly contact them. Additionally, nodes are also removed from a node’s NeighborhoodDB
when their time-stamps are older than a given time threshold. This behavior is implemented in
a PeriodicTask and, at each run, this task resorts to the method garbageCollector provided by

the NeighborhoodDB. Procedure /| presents the contents of this method in pseudo-code.

Procedure 7 Neighborhood garbage collector.

—garbageCollector()
foreach neighbor
if currentTime — neighbor.timestamp > NEIGHBOR_TTL

discard neighbor
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4.42.5 Promotions

Whenever a super-node leaves the network, the promotion mechanism comes into play in order
to readily find a suitable replacement. It is triggered by a sub-node that does not receive evidence
of super-nodes in its range for a certain period of time. Figure[4.9]illustrates the instances of the
GeodupaNode class involved in this procedure and the messages exchanged. Note that several

candidates may be contacted until one accepts to promote itself.

A node is able to suspect that no super-nodes

cover its location by keeping reference to the last

. . GeodupaNode
super-node in range it "heard" from and a double

. . Candidat
(lastAnnouncementReceived) with the last mo- andiate

ment in time it did. It is updated during the epi-

GeodupaNode

demic repair or whenever a NeighborCast initi- ,
Suspecting

ated by a super-node in range is received.

GeodupaNode

Every super-node periodically checks when
was the last moment in time it sent an announce- Candidate
ment (lastAnnouncementSent). If it occurred
before a given time threshold then it simply an- Figure 4.9: Promotion process.
nounces itself so that other nodes acknowledge

its presence and delay their suspicion.

Procedure [§] presents the pseudo-code of the PeriodicTusks implementing both behaviors.
Super-nodes checking when was the last moment in time they sent an announcement. Sub-

nodes checking for the last time they received one.

The actual promotion process is presented in procedure0] The suspecting node compiles the
set of candidates to be promoted - nodes closer to the last "seen" super-node - and sends a Pro-
motionRequest to the first one. If it replies unsuccessfully, the next candidate is contacted. This
continues until one candidate accepts to be promoted or there are no more candidates, in which
case the suspecting node promotes itself. Nodes that receive the request only accept to promote
if they are also suspecting. In order to minimize super-node concurrency, the promoting node
does not readily join Catadupa. Instead, it schedules a Task to execute after a pre-determined
time delay - the promotion tolerance. This allows it to stop promoting if, meanwhile, it receives

evidence of a super-node in the vicinity.
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Procedure 8 Promotion mechanism - announcement checking.

/* SUPER-NODES */
—checkLastAnnouncementSent()
ConTimer( HEART_BEAT_TIMEOUT)
if currentTime — lastAnnouncementSent > HEART BEAT TIMEOUT

announce self

/* SUB-NODES */
—checkLastAnnouncementReceived()
ConTimer( SUSPITION_TIMEOUT)
if currentTime — lastAnnouncementReceived > SUSPITION_TIMEOUT

start promotion process

Procedure 9 Promotion protocol.

—promotionRequest()
candidates «— NeighborhoodDB.getPromotionCandidates( lastSuperNodeAcknowledged)
loop
if candidates isEmpty
join Catadupa
stop
else
node <« candidates.removeFirst()
send PromotionRequest<> to node
LyonFailure()
continue
L, onReply( PromotionReply<answer> )
if answer equals "ACCEPTED"
lastAnnouncementReceived < currentTime
lastSuperNodeAcknowledged <— node
stop
else

continue

LyonReceive( PromotionRequest <> )
if currentTime — lastAnnouncementReceived > SUSPITION_TIMEOUT
reply PromotionReply< "ACCEPTED" >
wait PROMOTION_TOLERANCE
join Catadupa
else

reply PromotionReply< "REJECTED" >




5. Experimental Evaluation

This chapter describes the procedures involved in the validation of Geodupa. The goal is to

experimentally perceive its behavior under different parameter configurations.

We first present, in section[5.1], the network configurations that will enable the experimental
study of Geodupa. Next, in section [5.2] the algorithm’s behavior is observed by defining and

evaluating some relevant metrics .

5.1 Preamble

This section establishes the ground basis for the evaluation of Geodupa. Namely, the simula-
tion area on which the network will be assembled (section [5.1.1)); the network global size and
the influence of the neighborhood radius on the number of super-nodes necessary to cover the
physical space (section [5.1.2); finally, in section we establish the network configuration
adopted to validate Geodupa, considering the several relevant metrics presented in section [5.2]

5.1.1 Simulation Area

Ideally, the area of simulation would comprise the entire land surface of planet Earth which, as
one would expect, would involve large numbers of nodes. The fact is that the computational
power available is unable to support simulations of this nature in an acceptable time frame. For
this reason, Geodupa is only evaluated on a sample area, designated as the simulation area, so

that the network size can be significatively reduced.

The creation of new Geodupa nodes was then restricted to a rectangle on the Earth’s surface
whose area equals 25.000 km? (approximately a quarter of the area of Portugal). The process
of assigning coordinates to nodes was thus inverted. That is, a random set of geographical co-
ordinates (latitude, longitude) is first generated in the simulation area. These are then converted

to the cartesian coordinates (X, y, z) used to calculate distances between nodes.

59
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5.1.2 Network Size

The global size of the network is closely related to the network churn [24], a phenomenon
characterized by the recurring arrival and departure of nodes. The churn model of Geodupa
is defined by two probabilistic distributions, one Exponential distribution to model the delay
between node arrivals (arrival rate), and one Weibull distribution (shape = 1,8) to obtain the

session duration of each node, with a maximum of 8 hours.

Various simulations were then run in order to observe the impact of these variables on the
overall network size. Two session durations and three arrival rates were considered. The results
are presented in table [5.T]and show that either increasing the arrival rate or the session duration

results in an approximately proportional increase of the network’s size.

Session Duration (h) Arrival Rate (nodes/s) || Network Size (avg. # of nodes)
Mean ‘ Max.
0.1 656
2 4 0.5 3284
1 6606
0.1 1309
4 8 0.5 6567
1 13220

Table 5.1: Geodupa’s global network size.

5.1.2.1 Super-node coverage

Previously, we observed the churn influence on the global network size. Now the focus shifts
to the radius of the neighborhoods and how it influences the number of super-nodes necessary
to completely cover the simulation area. To do so, the churn model is set to the configuration
presented in table [5.2] producing a network of about 10.560 nodes, and the simulation area is
adjusted to 25.000 Km? (as described in section .

Several simulation runs were then performed in order to determine the impact of the neigh-
borhood radius on the size of the higher level. The experimental results are presented in table[5.3|
and clearly show that, as the neighborhood radius increases, the amount of super-nodes needed

to cover the simulation area decreases. The remaining nodes are then assigned as sub-nodes.
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Session Duration (s)
Mean ‘ Max

| 4] 8 \ 0.8 | 10560 |

Arrival Rate (nodes/s) || Network Size (avg. # of nodes)

Table 5.2: Churn model adopted to validate Geodupa.

Neighborhood | Neighborhood Super-Nodes (#)
Radius (km) Area (km?) | Optimal | Observed
2,5 19.6 1273.2 1970
5 78.5 318.3 714
10 314.2 79.6 197
20 1256.6 19.9 64
40 5026.5 5.0 21

Table 5.3: Impact of the neighborhood radius on a 25.000 Km? area.

The optimal number of super-nodes is the minimum amount necessary to completely cover
the space. It is obtained by dividing the total simulation area by the area of a single neighbor-
hood: I%, with A,eion. = nr?. However, the number of super-nodes observed is higher than
the optimal. Moreover, since the area of the neighborhoods quadruple by doubling the radius,
it would be expectable that the number of super-nodes also decreased by a factor of 4. We
observed that these only decrease by an average factor of 3. Both these results suggest a loss of

efficiency in covering the physical space, which can be justified by the following reasons:

* It is not possible to completely cover a rectangular area with circles without overlapping.
* Super-node concurrency also contributes, to some extent, to neighborhood overlapping.

* Neighborhoods that intersect the boundaries of the simulation area do not contribute with

their entire areas to the coverage of the space.

In order to obtain an approximate number for the super-nodes necessary to completely cover
the simulation area, we derived an empirical expression (presented in [5.1) that returns values
with a 10% margin of error, based only on the values experimentally obtained (table [5.3)). The
constants presented were introduced and adjusted in order to approximate the number of super-
nodes returned to the number of super-nodes experimentally observed. Note that it was only
tested and remains valid for a radius interval ranging from 2,5 to 40 Km and for an area of

25.000 Km?. For other configurations, these constants would have to be readjusted.
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Atatal
#SuperNodes = P x 1.2 (5.1

5.1.3 Setting the configuration

Ideally, Geodupa would be evaluated under several network conditions as it would be interesting
to obtain its behavior under various neighborhood sizes (by varying the churn model or the
neighborhood radius). The fact is that the time frame available does not allow it and, from now

on, the process of validating Geodupa considers only one network configuration.

The churn model has already been established in table [5.2] It is defined by an arrival rate of
0,8 nodes/sec and an average session duration of 4 hours (8 hours max.). The result is a network

composed by about 10560 nodes, on average.

The simulation area, mentioned in section [5.1.1, has 25.000 Km? and the neighborhood
radius equals 10 Km. These, in combination with the churn model adopted, result in a network
with about 197 super-nodes and, consequently, about 10363 sub-nodes. Through simulation,

we observed that each neighborhood contains, on average, 125 nodes.

From now on, the collection of statistics is performed by executing simulation runs that
last for 16 hours, a sufficient amount of time for the metric values to stabilize. The goal is to
evaluate the behavior of Geodupa in stable conditions, therefore, the collection of statistics is

not performed during the first 8 hours (warmup period) of simulation.

5.2 Evaluation Metrics

We now iterate through the various aspects related to the behavior Geodupa. The membership
dissemination mechanisms are evaluated in subsection[5.2.1] The excess of entries in the neigh-
borhood databases is observed in Section discusses super-node concurrency and
how to minimize it. Finally, section [5.2.4] considers Geodupa’s bandwidth requirements.
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5.2.1 Membership Dissemination

This section evaluates the usefulness of the mechanisms used to disseminate membership in-
formation: the geographical multicast, used to announce new nodes (section [5.2.1.1)), and the
epidemic repairs (5.2.1.2)). Section[5.2.1.3|finally presents the motivation to combine both.

5.2.1.1 Announcements (geographical multicast)

The dissemination of a new arrival is performed by readily multicasting it to the relevant peers.
The problem with this approach is that it is not 100% accurate, i.e., not all the interested peers
receive the announcements they should. Besides, taking the neighborhoods’ management into
account, namely the need to constantly revalidate the knowledge of the surrounding peers (re-
member the time-stamp based philosophy from section [3.2.5]), this mechanism is not expected

to alone provide Geodupa nodes with an accurate and updated view of their neighborhoods.

The simulation runs performed using only the multicast mechanism to disseminate mem-
bership information show that, on average, each node only knows 20% of its active neighbors.
Moreover, since the membership view is so inaccurate, we observe an average multicast error

of 64 % , meaning that each node announcement only reaches about one third of the target peers.

These results render the multicast not suitable to alone be responsible for the membership
management of Geodupa. The fact is that the its main contribution is the rapid announcement of
new nodes (as will be observed in section[5.2.1.3)). Also, it does not enable them to acknowledge
previously existing neighbors, leading the neighborhood database of a node to only contain

neighbors that joined Geodupa subsequently.

5.2.1.2 Epidemic Repair

Previously, we evaluated the neighborhood accuracy of Geodupa nodes using only the multicast
mechanism. The same notion is now applied and the epidemic repair mechanism’s ability to

alone manage the membership information is questioned.

Remember, from section [3.2.3] that the multicast mechanism is used to perform two distinct

tasks when announcing new nodes. First, there is the announcement of a new sub-node to the
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lower level, triggered by its host. Second, new super-nodes are announced by other super-nodes
when their neighborhoods intersect. Disabling these will expectably result in a longer delay
for new sub-nodes and super-nodes to be respectively acknowledged by their neighbors. Note
that the multicast mechanism is still used by super-nodes to announce themselves (heart-beats).
This instance of the multicast was not disabled as it relates to the promotion process and doing

so would lead to a significant increase in the percentage of concurrent promotions.

The simulation performed considered a 2 minute epidemic repair period and revealed a
neighborhood accuracy of around 95% . This result suggests that Geodupa could in fact operate
resorting only to epidemic repairs. However, we expect that it would be slow to disseminate
new nodes. To support this assumption, figure[5.1] presents the time necessary for a new node to
be progressively acknowledged by its neighbors (5.1a). For future comparison, it also presents

the opposite, i.e., the delay verified for a new node to know its neighborhood (5.1b).
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(a) New node. (b) Neighborhood.

Figure 5.1: Membership dissemination delay (Epidemic repairs only).

As expected, the time necessary for a new node to be disseminated is high. It takes, on aver-
age, almost 900 seconds (15 minutes) for a node to be known by its entire neighborhood. Even
if increasing the epidemic rate would result in a faster dissemination, these results suggest that
combining the epidemic repair with the multicast mechanisms seems an approach to consider.
The following section (5.2.1.3)) addresses this.
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5.2.1.3 Multicast and Epidemic Repair

We previously determined that both the multicast and the epidemic repair mechanism are not
quite suitable to correctly and efficiently manage the membership dissemination. This section
thus evaluates Geodupa using both mechanisms. The multicast was enabled in all the procedures

it is involved in and every node performs an epidemic repair every 2 minutes.

We observed an average neighborhood accuracy of about 98%. The multicast correctness
also improved when comparing to the multicast-only approach. Its error decreased to around
25% , meaning that about three quarters of the relevant nodes are immediately notified whenever
a new neighbor arrives. This is justified by the fact that the epidemic repair mechanism’s ability
to recover the past and missed announcements results in a more accurate neighborhood view,

which in turn leads to the ability to build multicast trees that span more nodes.

Figure [5.2] presents the membership dissemination time delays. As expected, the most vis-
ible improvements reside in the new node dissemination delay (5.2a). Moreover, since new
nodes are readily announced, their notified neighbors will select them to repair their databases
in a shorter time delay, allowing the new node to progressively acknowledge its neighborhood

more rapidly (5.2b) than in an epidemic-only approach (5.1b)).
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Figure 5.2: Membership dissemination delay (Multicast and Epidemic repairs).
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We thus conclude that combining the multicast mechanism with epidemic repairs is a suit-

able approach to endow Geodupa nodes with an accurate and fresh view of their neighborhoods.

Finally, note that one could still increase the rate at which nodes perform the epidemic re-
pairs in order to obtain even better results. Due to time restrictions, this matter was not properly
evaluated, however, its consequences are somewhat obvious: better results at the expense of

higher bandwidth consumption.

Moreover, even if not implemented, there are actually a few other ways that could enhance
the epidemic repairs, specially to allow new nodes to know their previously existing neighbors
in a quicker way. For instance, once a new node joined, it could perform epidemic repairs more
frequently in order to rapidly acknowledge its neighborhood. As time elapsed, these could be
executed with progressively larger intervals until a stable rate was reached. Another way would
be to also consider the physical distance as a way to influence the selection of the repair partner.
That is, a node could choose closer neighbors more frequently as their neighborhoods are more

alike and would thus provide a better contribution.

5.2.2 Database Excess

The neighborhood database management leads to the appearance of some excess nodes. Re-
member, from [3.2.6] that a neighbor is only discarded whenever it is unsuccessfully contacted
or when its time-stamp is older that a given time-threshold - the neighbor TTL. This results in

the existence of some database entries corresponding to neighbors that have already departed.

Table [5.4] presents the nodes’ neighborhood status for three different values for the neighbor
TTL: 40min., 20min. and 5Smin. The average neighborhood accuracy is presented and the size
of the nodes’ databases is compared with the real number of nodes in each neighborhood. This

way it is possible to determine which neighbor TTL brings them closer together.

Neighborhood || Neighborhood | Neighborhood Size (#)
TTL (min.) Accuracy (%) Databases\ Real

40 99.5 149 (+16%)
20 98.4 134 (+7%) 125
5 58 72 (-42%)

Table 5.4: Impact of varying the neighbor TTL.
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The neighbor TTL clearly influences the size of the neighborhood databases. For a TTL of
40 min., we verify an excess of nodes of about 16%, meaning that only 84% of the database
entries represent active neighbors. In order to reduce the excess, the neighbor TTL was reduced
to 20 min. so that old entries are removed faster. This leads the excess to drop to 7%. Finally,
for a neighbor TTL of 5 min., the databases are smaller than the real neighborhoods, meaning

that the neighbors are being removed too fast. In fact, 42% of the active neighbors are absent.

Clearly, reducing the neighbor TTL contributes to reduce the excess of nodes. However, if
it is set too low, the neighborhood accuracy is negatively affected as some active neighbors are
removed prematurely. Under the network conditions set in our recommendation for the
neighbor TTL, of the ones considered, is 20 min. It minimizes the excess and still allows nodes

to maintain a high neighborhood view accuracy.

5.2.3 Super-node concurrency

Super-node concurrency is a phenomenon that may occur due to one of two situations: when
a new node is incorrectly assigned to the higher level by the joining process, or when a node
erroneously promotes itself. While the first is dependant on the awareness that super-nodes have
from each other, i.e. Catadupa’s membership management, the second one essentially depends

on three parameters: promotion tolerance, heart-beat timeout and suspicion timeout.

Promotion tolerance is the time it takes for a node to actually promote itself, from the
moment it decided it was going to. Heart-beat timeout is the maximum amount of time that a
super-node, in the absence of new arrival events to announce, waits before it announces itself to
the lower level. Finally, the suspicion timeout is the maximum amount of time that a sub-node

waits for evidences of active super-nodes in range before triggering the promotion mechanism.

In order to evaluate the impact of these variables on super-node concurrency, we decided
to establish a fixed suspicion timeout of 6 minutes as it is a reasonable amount of time for
a sub-node to be without super-nodes in range. The values for the heart-beat timeout and
promotion tolerance, as well as the simulation results, are presented in table @ Note that all

these parameter values are somewhat arbitrary and were chosen experimentally.
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Heart-beat Promotion Concurrency (%)

Timeout (min.) | Tolerance (sec.) || Promotions ‘ Joins ‘ Total

3 60 45.7 45 | 348
120 27.3 3.1 | 165
) 60 11.0 39 8.5
120 3.8 5.1 5.8

Table 5.5: Super-node Concurrency.

The first result to highlight is the fact that the percentage of concurrent joins, of Catadupa’s
responsibility, remains somewhat constant around 4%. An acceptable result, showing that

Catadupa effectively endows its participants with an accurate membership view.

As for the concurrency resulting from the promotion mechanism, note that the heart-beat
timeout plays a sensitive role. Changing from 3 to 2 minutes produces a substantial drop in
the percentage of concurrent promotions. Since super-nodes announce themselves more fre-
quently, their surrounding sub-nodes are more likely to receive at least one announcement every
6 minutes (suspicion timeout). One can thus tune the heart-beat timeout in order to obtain an

even lower concurrency, at the expense of an increased bandwidth consumption.

Increasing the promotion tolerance also leads to a concurrency reduction. However, it also
leads to a significant reduction in the overall number of promotions. This is caused by the
fact that, while sub-nodes are waiting to promote, they are more likely to have their promotion
plans canceled by new super-nodes joining the orphan area. Although this is not a correctional
problem, it goes against the main motivation of the promotion mechanism: avoid the necessity

to wait for new nodes to cover orphan areas.

In conclusion, the values obtained suggest that it is possible to manipulate the percentage
of super-node concurrency by tuning the mentioned parameters. Note that, due to time limita-
tions, this evaluation considered only one value for the suspicion timeout. Still, we expect that
increasing this parameter will result in less concurrent promotions, as long as the other parame-
ters are adjusted accordingly. However, like increasing the promotion tolerance, this also leads

to a reduction in the overall number of promotions.
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5.2.4 Bandwidth Consumption

This section presents some considerations on the bandwidth required from Geodupa nodes. In
section [5.2.4.1] we first present an empirical study determining the impact of the neighborhood
radius on the overall expected bandwidth. Section [5.2.4.2] then confirms the expectations by

presenting the overall bandwidth consumptions considering different values for the radius.

5.2.4.1 Influence of the neighborhood radius

This dissertation strived to design an algorithm that, by restricting node visibility to geograph-
ical neighborhoods, reduces the cost of full-membership solutions. To assert if the solution
proposed actually succeeds, we must first determine the influence of the neighborhoods’ size in

the overall bandwidth consumption, as a way to obtain the one that minimizes it.

The bandwidth required from each node is closely related to the amount of peers they need
to know. It is thus related to the churn phenomenon, particularly with the arrival rate. A node
that monitors many arrivals consumes more bandwidth than one who monitors less. To that end,
we start by defining the percentage of the total arrival rate (77 = 0,8 nodes/s) that concerns each
node. This percentage has to be derived for both levels of Geodupa.

Since nodes in the higher-level need to be aware of every other peer in that level, their cost

#Nodessyper )

is related to the fraction of the global arrivals related to new super-nodes: Ty = T7 (5, desy

In turn, nodes belonging to the lower-level only need to monitor arrival events occurring in

their neighborhoods, leading to a fraction of the arrival rate equal to the area percentage that

Areaneighb. )

each neighborhood represents in the total area: 77, = Tr (—5 ¢

After establishing the arrival rate concerning each level, it is necessary to multiply it by
the cost of disseminating a new node - U. Obtaining this value is not trivial as node dissemi-
nation involves several procedures (announcements, epidemic repairs), leading to its variation.
Moreover, there is still the uncertainty introduced by communication overhead (packet headers,

handshakes, acknowledgements).

The goal of this section is not to obtain the cost itself, but to obtain an idea of how the
neighborhood radius influences the total cost. We thus consider only the cost of disseminating a

node in an optimal way. Any kind of dissemination redundancy or communication overhead is
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not considered. The cost (U) is therefore set to 22 Bytes: 6 for the endpoint (ip + port) plus 16
for the geographical coordinates (latitude + longitude). Note that in this evaluation we present

only the upload cost as the download is quite similarﬂ

The total average upload cost demanded from each Geodupa node is thus obtained by ex-
pression Tt is the total arrival rate (0,8 nodes/s); U, the minimal upload cost (22 Bytes).

#Nodesg,per Areapeigh.
U = [ ZEESHpery o, (L esR U 5.2
total [\T( #Nodest +Tr( Arear x (5-2)
Ty T,

From section [5.1.2.1] the number of super-nodes can be obtained, with a 10% margin of
error, by an empirical expression derived by observing the size of the higher-level as a function
of the radius. Since it was only tested for values between 2,5 Km and 40 Km, only this range is

considered when obtaining the overall cost of Geodupa. Figure [5.3|presents the results.

Idealized bandwidth consumption
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Figure 5.3: Behavior of the overall cost in function of the neighborhood radius.

For a smaller radius, there are many super-nodes maintaining full-membership. This re-
sults in a high overall cost composed mainly by the cost of maintaining the higher-level. Since
neighborhoods are composed only by a few sub-nodes, the bandwidth necessary to maintain
them is lower. Ultimately, the radius would be so small that the network would only be com-
posed by super-nodes, in which case the overall cost would be similar to the cost of maintaining

a Catadupa network.

'The multicast balances the upload/download ratio by the usage of random trees. In the epidemic repairs, the
bandwidth that a given node uses to upload information, is the same that other node uses to download it.
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As the radius increases, the number of super-nodes decreases and so does the cost of main-
taining the higher-level. Conversely, since each node has progressively more neighbors, the cost

of maintaining full-membership neighborhoods in the lower-level increases.

For a larger radius, since the number of super-nodes is low, the higher-level contributes less
to the overall cost. On the other hand, larger neighborhoods lead to a higher lower-level cost
and to its predominance in the overall cost. Ultimately, the neighborhood radius would be big
enough so that only one super-node existed. In which case the cost of the higher-level would

tend to zero and the lower-level would eventually reach a full-membership scenario.

We thus conclude, by observing figure that the neighborhood radius that minimizes the
overall cost of Geodupa, for the network configuration considered (section [5.1.3) and under

optimal dissemination conditions, equals approximately 10 Km.

5.2.4.2 Overall bandwidth consumption

The previous section (5.2.4.1)), determined the influence of the neighborhood radius in the over-
all expected cost and established an approximate one that expectably minimizes Geodupa’s
overall cost. We now confirm it experimentally by approximately considering communication

overhead (packet headers, handshakes, acknowledgements) in message exchange.

Three simulation runs were performed in which only the traffic accounted by nodes that
joined after the warmup period (8 hours) was considered. Table [5.6] presents the upload av-
erage bandwidth consumption categorized by level. For the lower-level we further distinguish
between multicast announcements and epidemic repairs. The join and promotion protocols are
not presented as their cost is insignificant (always lower than 0,15 B/s and 0.01 B/s, respec-

tively). They are, however, accounted in the lower-level total.

Neighborhood . Lower-Level
Higher-Level Total
Radius (Km) Multicast | Repairs || Total
2.5 40.1 3.22 3.38 6.7 | 46.8
10 10.9 6.32 21.65 || 28.1 | 39.0
20 7.2 13.01 7895 || 92.1 | 99.3

Table 5.6: Geodupa’s average upload consumption (Bytes/s).
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From the three values considered, it is clear that the 10 Km neighborhood radius actually
represents a minimum for the total cost of Geodupa. As expected, the cost for a 20 Km radius
is mainly introduced by the lower-level. Conversely, for a 2,5 Km radius, the cost to maintain

the higher-level prevails.

Note, however, that the total cost for the 20 Km radius was expected to be lower than the
one for the 2,5 Km (from figure [5.3). In fact, we also expected a steeper drop when changing
from 2,5 Km to 10 Km. Such expectations are not observed due to the rapid growth verified in
the cost of the lower-level. While the cost of the higher-level decreases almost proportionally
with the radius, the cost of the lower-level increases exponentially. This is mainly caused by the
inefficiency of the epidemic repairs and suggests that the best radius is actually smaller. Through
experimental evaluation, we in fact determined that the radius that minimizes the overall cost of

Geodupa is around 7 Km. It results in an average upload consumption of about 34 B/s.

The repair inefficiency is caused by the fact that, at each interaction, both repair partici-
pants exchange every single neighbor they know in each other’s neighborhoods. This leads the
cost to grow rapidly with the neighborhoods’ size. These results suggest that, besides the im-
provements suggested before (section [5.2.1.3), the epidemic repair mechanism should also be
enhanced in a way that the amount of information exchanged could be reduced. For instance,
instead of sending every single neighbor in range of the repair partner, each node could send

only a subset, in which newer and/or closer neighbors could be given priority.

To conclude this section, we finally consider the overall cost of a Catadupa network oper-
ating under the same network conditions set in section[5.1.3] It can be perceived as a Geodupa
network composed only by super-nodes with no notion of geographical neighborhoods and all
aware of each other. The overall upload cost observed is about 65 B/s, confirming that main-
taining full-membership for 10560 nodes (on average) results in a higher average bandwidth
consumption than the one verified for Geodupa with a 7 Km neighborhood radius - 34 B/s.
The reduction verified (approximately 48 %) is expected to become even more significant for
larger networks. The results obtained clearly show that it is possible to use Geodupa in order to
achieve less bandwidth requirements than a full-membership solution, as long as the neighbor-

hood radius minimizes the overall cost.



6. Conclusion

In a world where mobile devices play an ever increasingly important role, a new application
domain has been gaining more notoriety. Designated as Participatory Sensing, it relies on
the technological evolution of mobile devices, and their increasing ability to collect sensorial
information, as a way to form wide-area user networks that monitor the physical world. These
networks need an underlying infrastructure so that users can access and share the collected

information.

Despite the ongoing breakthroughs on mobile technology, processing and energy capabil-
ities are still relatively limited to support a network composed solely by mobile devices that
independently collect and share information. For this reason, we considered a network of Per-
sonal Computers to act as servers to the mobile devices and share the information collected by
them. It is a way to solve the resource limitation problem while also maintaining the Participa-

tory Sensing community driven philosophy.

This dissertation thus presented an algorithm to act as the underlying substrate for a network
of Participatory Sensing driven applications, running on the user’s Personal Computers. Desig-
nated as Geodupa, it divides the network into two hierarchical levels composed by super-nodes
(higher level) and sub-nodes (lower level). While super-nodes know every peer in the higher

level, every sub-node is only concerned with the ones in its close surroundings.

Every node has the ability to perform one-hop lookups in its neighborhood as they are all
aware of its neighbors. Such awareness is provided by the announcement of new arrivals and an
epidemic repair mechanism. Through simulation we observed that these mechanisms perform

effectively, even if their assurances are only probabilistic.

By restricting node visibility to geographical neighborhoods it is not only possible to achieve
low latency communication between closely located nodes, but also to reduce the costs of mem-

bership dissemination as a new node arrival only generates traffic in a fraction of the network.

The ability to reach farther nodes was not discarded as each sub-node must have at least one
super-node in range. Since super-nodes are connected in a full-membership network (managed
by Catadupa) spanning the entire network physical area, the communication between nodes

located far away is still possible, even if not in a single hop.
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6.1 Main Contributions

* A partial membership algorithm designed to manage a network of georeferenced nodes

that supports applications based on the premise that important information is closer.

* An implementation of the proposed algorithm, on a simulation environment, in order to

enable its experimental evaluation and future work assessment.

* A behavior appraisal through experimental evaluation, taking several relevant metrics into

account.

6.2 Future work

Even though the main objective of this dissertation was fulfilled, the fact is that some work is

still in need of consideration. Namely:

* Introduction of new features to the algorithm proposed. For instance, the ability to oper-
ate with variable neighborhood radiuses or provide nodes with some awareness of their

distant peers to enable lower latency distant lookups.

» Updating existing features as a way to improve the algorithms’s efficiency in terms of its

bandwidth requirements. Namely, the epidemic repair mechanism.

* A performance evaluation concerning both the introduction of new features and the im-

pact of the enhancements to the existing ones.
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Annex

A.1 Message Handlers

interface GeodupaSocketHandler {

void onReceive(Socket call, JoinGeodupaRequest m) ;
void onReceive(Socket call , JoinLowerLevelRequest m) ;
void onReceive(Socket call , SeedDispatch m) ;
void onReceive(Socket call, NeighborsRepairRequest m) ;
void onReceive(Socket call, NeighborCast m);
void onReceive(Socket call, NeighborArrival m);
void onReceive(Socket call , PromotionRequest m);
}
Listing A.1: Handler for received messages.

class GeodupaReplyHandler {

public

void onFailure () {}

public void onReply(Message m) {}

public void onReply(Socket call, Message m) {}

public void onReply(JoinGeodupaReply m) {}

public void onReply(JoinLowerLevelReply m) {}

public void onReply(NeighborsRepairReply m) {}

public void onReply(PromotionReply m) {}

Listing A.2: Handler for message replies.
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A.2 Geodupa Messages

Message Type Data Members
JoinGeodupaRequest GeodupaNode requester;
. boolean supernode;
JoinGeodupaReply

GeodupaNode host;

JoinLowerLevelRequest

GeodupaNode requester;

boolean accept;

JoinLowerLevelReply
GeodupaNode seed;
SeedDispatch GeodupaNode seed;
int level;
NeighborCast Quad quad;
List<GeodupaNode> path;
NeighborArrival payload;
GeodupaNode host;
NeighborArrival GeodupaNode node;

double timestamp;

NeighborsRepairRequest

GeodupaNode requester;

Set<Neighbor> neighbors;

NeighborsRepairReply Set<Neighbor> neighbors;
PromotionRequest - EMPTY -
PromotionReply boolean accept;

Table A.1: Messages used in Geodupa.
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