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Abstract 

 

Autosomal recessive juvenile Parkinson disease (AR-JP) is mainly caused by mutations in 

PARK2. AR-JP presents with rigidity, bradykinesia and resting tremor, usually before age 40 years. 

Large PARK2 deletions account for 50% of the mutations identified in patients with AR-JP of 

Portuguese origin. The PARK2 gene encodes parkin, an E3 ubiquitin ligase, an important part of the 

cellular machinery that covalently tags target proteins with ubiquitin for degradation by the ubiquitin-

proteasome system (UPS), the main cellular protein degradation system responsible for targeted 

degradation of damaged and misfolded proteins. 

This project aims were: determine the breakpoints of the deletion found in Portuguese patients in 

order to identify the genomic mechanisms underlying these gene rearrangements and to explore the 

pathogenic mechanisms of parkin mutations by assessing the dynamics of formation and degradation 

of aggregates by UPS and also by determining its effects in the UPS degradation capacity and its 

relation with neuronal death.  

A successful approach was developed to narrow the deletion breakpoint intronic position. Cellular 

models expressing wild-type and mutant parkin were developed and characterized regarding mRNA 

and protein expression, as well as, aggregate formation, cell viability and proteasome activity.  

Our data show that the different studied mutations do not have an impact on cell viability, 

although resulted in differences in the number of cell with aggregates for the cells expressing 

N52MfsX29, L358RfsX77 and R275W mutants as well as in the number of aggregates present in each 

cell. We were also able to show that proteasome inhibition has as impact both in cell viability and in 

aggregate formation, resulting in decreased viability and increased aggregate formation.  

The study of the cellular mechanisms resulting in neuronal dysfunction is crucial for the 

identification of potential therapeutic targets for Parkinson disease. 

 

 

Keywords: AR-JP; Parkin; Ubiquitin-proteasome system; protein aggregation; neuronal death. 
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Sumário  

 

A doença de Parkinson juvenil com transmissão autossómica recessiva é maioritariamente causada 

por mutações no gene PARK2. Esta doença caracteriza-se pela presença de rigidez, bradicinésia e 

tremor de repouso, geralmente antes dos 40 anos. 

Grandes deleções no gene PARK2 são responsáveis por 50% das mutações identificadas em 

doentes com Parkinson juvenil na população portuguesa. Este gene codifica a proteína parkina, uma 

E3 ubiquitina ligase, que faz parte da maquinaria celular que adiciona ubiquitinas às proteínas-alvo 

para degradação pelo sistema ubiquitina-proteossoma (UPS), o mais importante sistema de degradação 

de proteínas responsável pela degradação de proteínas danificadas ou com uma conformação errada.  

Os objectivos deste trabalho foram: determinar os breakpoints das deleções encontradas em 

doentes portugueses de modo a identificar os mecanismos genómicos subjacentes aos rearranjos 

génicos, explorar os mecanismos patogénicos das mutações da parkina, avaliando a dinâmica de 

formação e degradação de agregados pelo UPS e determinar os efeitos das mutações na capacidade de 

degradação do UPS e sua relação com a morte neuronal.  

Foi desenvolvida com sucesso uma abordagem para delimitar a posição intrónica dos breakpoints 

das deleções. Foram criados modelos celulares que expressam a proteína wild-type e mutante e foi 

realizada a sua caracterização ao nível do mRNA e da proteína, assim como, a formação de agregados, 

viabilidade celular e actividade do proteossoma. 

Os nossos resultados demonstram que as diferentes mutações estudadas não afectam a 

viabilidade celular, resultando no entanto, em diferenças no número de células com agregados nos 

mutantes N52MfsX29, L358RfsX77 e R275W, assim como, no número de agregados em cada célula. 

Demonstramos também que a inibição do proteossoma tem efeito tanto na diminuição da viabilidade 

celular como no aumento da formação de agregados. 

O estudo dos mecanismos celulares que resultam na disfunção neuronal é crucial para a 

identificação de potenciais alvos terapêuticos para a doença de Parkinson. 

 

 

Termos-chave: Doença de Parkinson juvenil com transmissão autossómica recessiva; parkina; sistema 

ubiquitina-proteossoma; agregação de proteínas; morte neuronal. 
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1. Introduction 

 

Neurodegenerative diseases are a large group of heterogeneous disorders characterized by slowly 

progressive loss of neurons in the central nervous system (CNS), which leads to deficits in specific 

brain functions (e.g. memory, movement, cognition) and results in heterogeneous clinical and 

pathological expression  (Przedborski et al., 2003). Neurodegenerative diseases are a major cause of 

morbidity, disability and mortality, being a fundamental issue for both medical care and research for 

the 21
st
 century. These disorders are becoming more common, largely as a result of increased life 

expectancy and changing in population demographics (Skovronsky et al., 2006). Neurodegeneration 

may precede clinical manifestations by many years and the mechanism that drives chronic progression 

of neurodegenerative diseases remains largely elusive. The major pathological lesion and a common 

hallmark of neurodegenerative disorders is protein misfolding and subsequent aggregate and inclusion 

formation in patients’ affected tissues. Most cases of neurodegenerative disorders are sporadic, 

although some genetic forms have also been described. This group of neurodegenerative diseases 

includes, among others, Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral 

sclerosis (ALS), multiple sclerosis (MS) and Huntington’s disease (HD) (Ross and Poirier, 2004).  

 

 

1.1 Parkinson disease  

 

Parkinson disease (PD) is the most common neurodegenerative movement disorder and the second 

most common neurodegenerative disease after AD, with a prevalence that increases with age from 

approximately 1% in population older than 65 years to about 4% over 85 years-old (de Lau and 

Breteler, 2006). 

The aetiology of the disease is an interaction of genetic susceptibility factors and environmental 

risk factors. Among the environmental risk factors, ageing is the most important factor associated with 

others like being a male, having European ancestry, exposition to pesticides or drugs like methyl-

phenyl-tetrahydropyridine (MPTP). Cigarette smoking and coffee consumption have been shown to 

reduce the risk of PD (de Lau and Breteler, 2006; Gasser, 2009). The importance of the role of genetic 

factors in PD development has only been recognized with the identification of genes responsible for 

monogenic forms of the disease. Until now, sixteen Parkinson disease loci have been identified and, at 

least, six disease-causing genes together with numerous putative genetic risk factors (Crosiers et al., 

2011; Gasser, 2009) were already found; this numbers continue to grow with the increase of linkage 

analysis studies and genome-wide association studies (GWAS). The familial forms of PD account for 

about 10% of all PD patients while idiopathic PD corresponds to 80% of the PD cases. Several genes 
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were by now identified as responsible for autosomal dominant and recessive PD forms. Among the 

autosomal-dominant forms of PD there are two major genes - SNCA (PARK1) and LRRK2 (PARK8), 

and for the recessive forms four genes were identified – PARK2 (PARK2), PINK1 (PARK6), DJ-1 

(PARK7) and ATP13A2 (PARK9) (Crosiers et al., 2011; Gasser, 2009). The mutations on PARK2 and 

PINK1 are the most frequent causes for autosomal recessive juvenile Parkinsonism (AR-JP). This 

thesis focuses in this form of Parkinsonism caused by PARK2 mutations. 

 

 

1.2 Autosomal recessive juvenile Parkinsonism 

1.2.1 Pathophysiology 

 

Autosomal recessive juvenile Parkinsonism (AR-JP) is an early-onset form of Parkinsonism that is 

usually clinically indistinguishable from idiopathic PD forms. The main clinical manifestations 

include bradykinesia (slowed movements), rigidity, resting tremor, postural instability and gait 

impairment. Other clinical manifestations are sensory symptoms like pain and tingling, hyposmia 

(impaired olfaction), abnormal executive and working memory-related functions and neuropsychiatric 

symptoms (being the most common sleep alterations, depression and anxiety) (Rodriguez-Oroz et al., 

2009; Shulman et al., 2011). However, AR-JP is defined has a distinct clinical entity because diverges 

from idiopathic PD in the early age-at-onset, mostly in parkin-associated AR-JP. Some authors divide 

early-onset forms of the disease in AR-JP when age-at-onset is inferior to 20 years and early-onset 

parkinsonism (EOP) when age-at-onset occurs between 20 and 45 years (Cookson et al., 2003). Other 

authors classify all the cases with age-at-onset below 40 years as EOP (Hedrich et al., 2001). 

Nevertheless, most of the early-onset cases with age-at-onset inferior to 40 years are denominated AR-

JP (von Coelln et al., 2004). In the context of this thesis, we will use the latter terminology. This 

disease is also characterized for a very good response to levodopa, however treatment side-effects 

include the development of early and severe levodopa–induced motor-fluctuations and dyskinesias. 

AR-JP patients show PD atypical clinical features as early prominent dystonia, symmetric onset of 

motor symptoms, diurnal fluctuations of symptoms and reflex changes. Also, the disease seems to 

progress slowly and loss of olfaction or late cognitive decline and dementia, that are characteristic 

non-motor manifestations of PD, are not found. Another feature is the absence, with a few exceptions, 

of Lewy bodies (LB), the pathological hallmark of PD, on the neuropathological analysis of AR-JP 

patients’ brains (Gasser, 2009; Shulman et al., 2011).  

These motor manifestations present in PD are attributable to the progressive loss of dopaminergic 

neurons in the substantia nigra pars compacta (SNc). As shown in figure 1.1, the reduction of 

dopaminergic input to the putamen (Pu), which corresponds to the motor region of the striatum, leads 

to a decrease in the excitation of the direct pathway that functions to facilitate movements. In this 
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direct pathway, the Pu inhibits the globus pallidus interna (GPi), which inhibits the thalamus (Th). 

Thalamus is responsible for the excitatory input to the motor cortex. Also, the indirect pathway that 

functions to repress movements and is inhibited by the dopaminergic input is enhanced in PD patients. 

 

 

Figure 1.1: Schematic representation of the neurodegenerative processes affected in PD. Adapted from 

(Shulman et al., 2011). 

 

When PD motor symptoms are clinically recognized, already 60% of dopaminergic neurons are 

lost, which results in an 80% depletion of striatal dopamine. This explains why motor symptoms 

respond well to dopamine replacement therapy and to the direct modulation of basal ganglia activity 

via the implantation of deep brain stimulators in the subthalamic nucleus. These PD therapies are only 

effective in controlling the symptoms, delaying disability and extending life expectancy. The non-

motor symptoms, however, are not responsive or show a weak response to dopamine replacement, 

thus contributing to overall patients’ disability. Currently, the impact of PD neurodegeneration in other 

brain systems is still unclear (Shulman et al., 2011). 
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1.2.2 Genetics 

1.2.2.1 PARK2 gene  

 

The Park2 locus was mapped in 1997 to chromosome 6q25.2-q27 (Matsumine et al., 1997). Later, 

the gene was identified by positional cloning and its encoded protein was named parkin. Parkin 

encoding gene has only 12 exons but these are surrounded by large intronic regions spanning more 

than 500 kilobases. The coding sequence with a 1,395-base-pair open reading frame is deposited in the 

GenBank database (accession number AB009973) (Kitada et al., 1998; von Coelln et al., 2004).    

 

 

1.2.2.2 Parkin  

 

The PARK2 gene encodes a 465-amino-acid protein with a molecular weight of 51,652 daltons, 

named parkin. This protein is ubiquitously expressed, with abundant expression in various brain 

regions, including the substantia nigra. In a cell, the majority of parkin protein is localized in the 

cytosol and Golgi fractions and a small amount in the microsomal fraction (Kitada et al., 1998; 

Shimura et al., 1999).  

Parkin belongs to the RBR (ring between ring) protein family, characterized by the presence of 

two RING (really interesting new gene) domains, RING1 and RING2, that flank an IBR (in-between 

RINGs) domain (Marin et al., 2004). Besides these domains, parkin contains an Ubiquitin-like (UBL) 

domain in the protein N-terminal, from the residues 1 to 76 (figure 1.2). This UBL domain shares 62% 

homology with ubiquitin (Ub) and may be involved in substrate recognition (Dev et al., 2003). Also, 

structural information reveals that it binds to the Rpn10 subunit of the 19S regulatory subcomplex in 

the 26S proteasome. The central domain of  the parkin, from residue 145 to 232, has an yet unknown 

function, however in this region, and additional RING domain was recently recognized, from residue 

150 to 215, and named RING0 as it is located upstream of RING1. This RING0 was identified by 

classic proteolytic biochemistry and apparently has two parts separated by a 26 amino acid linker 

region. RING0, like the other RINGs present in the RBR domain (residues 238 to 449) and located in 

protein C-terminal, are cysteine-rich zinc fingers implicated in substrate recognition and binding to E2 

enzymes. Parkin also contains a PDZ binding motif that is responsible for interaction with proteins 

containing PDZ domains like CASK (calcium/calmodulin-dependent serine protein kinase) (Rankin et 

al., 2011). The parkin promoter has been found to be a bidirectional promoter, also regulating the 

transcription of parkin co-regulated gene (PACRG) that is upstream of PARK2 and in an antisense 

direction (von Coelln et al., 2004). 
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Figure 1.2: Schematic representation of the most relevant parkin domains. 

 

Similar to other RING finger proteins, parkin is an E3 ubiquitin ligase (Shimura et al., 2000). E3 

ligases are an important part of the cellular machinery that covalently tags target proteins with 

ubiquitin for degradation by the ubiquitin-proteasome system (UPS). E3 ligases usually confer 

substrate specificity to the ubiquitination process (which will be further explored in the next section) 

by bringing the substrate protein into juxtaposition for direct ubiquitination by an E2 Ub-conjugating 

enzyme (Dev et al., 2003; Moore et al., 2005).    

An impaired E3 ligase function may lead to an accumulation of parkin substrates because these 

proteins cannot be properly degraded and this accumulation contributes to neurotoxicity. This is the 

reason why, the identification of parkin substrates on the basis of in vitro and cell culture experiments, 

has been highly relevant (von Coelln et al., 2004). The first parkin substrate identified was CDCrel-1 

(cell division control related protein) which interacts with RING2 domain. CDCrel-1 is a synaptic 

vesicle-enriched septin GTPase, predominantly expressed in the nervous system and implicated in 

regulating neurotransmitter release through the inhibition of exocytosis by interacting with syntaxin. 

Overexpression of CDCrel-1 in SNc neurons of rats by virus-mediated gene transfer induces 

dopamine-dependent neurodegeneration. Other substrate is Synphilin-1, a protein with unknown 

function that interacts with α-synuclein (mutations in which are responsible for a dominant form of 

PD). Synphilin-1 is a component of LBs in PD and in related synucleinopathies. This protein interacts 

with RING2 domain of parkin and when overexpressed in cultured cells, results in protein inclusions. 

These protein inclusions also occur when α-synuclein, the major component of LBs, is overexpressed. 

An O-glycosylated form of α-synuclein (αSp22) is ubiquitinated by parkin and seems to accumulate in 

AR-JP patients brains; however its relevance for the pathogenesis needs further elucidation. Parkin-

associated endothelin receptor-like (Pael-R), p38 and Synaptotagmin XI are other parkin substrates. 

Pael-R is a putative G-protein-coupled transmembrane protein that plays a role in dopaminergic 

signaling and interacts with parkin by the C-terminal region (residues 217 to 465). This protein is 

ubiquitously expressed throughout the brain and its overexpression in Drosophila has been shown to 

cause a selective loss in dopaminergic neurons. Moreover, overexpression of Pael-R produced 

insoluble, ubiquitinated proteins and leads to an increase in cell death. The protein p38 is a subunit of 

the aminoacyl-tRNA synthetase complex involved in protein biosynthesis that is present in LBs. 

Overexpression of this protein results in aggresome-like inclusion body formation and/or cell death, 

depending on the cell type. Synaptotagmin XI is a protein involved in the maintenance of synaptic 

function, which is present in the core of LBs in PD. Other parkin putative substrates are cyclin E, a 
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regulatory subunit of cyclin-dependent kinase 2 protein, SIM2 that is a transcription factor present in 

the nucleus, and others like α/β tubulin and poly-(Q)-expanded huntingtin. Parkin substrates are 

diverse, widely distributed and appear to have little in common. Moreover, none of the putative parkin 

substrates have been reported to accumulate in the brains of parkin knockout mice. These results have 

questioned the authenticity of these substrates as well as the contribution of parkin to their degradation 

by the UPS (Moore et al., 2005; Rankin et al., 2011; von Coelln et al., 2004). 

In addition to substrate binding, parkin also interacts with E2 enzymes and other proteins, which 

indicate that parkin may function as a part of a multi-protein complex. Parkin interacts with E2 

enzymes through its RING domains. Generally, one RING finger is sufficient for E2 binding, 

however, the two parkin RING fingers may work in combination and provide a molecular mechanism 

that allows for the close association of E2 enzymes and the substrate. The ubiquitin-conjugating 

enzymes interacting with parkin are UbcH7, UbcH8 and the UbcH13/Uev1a E2 heterodimer that is 

thought to be responsible for the catalysis of K63-linked ubiquitin chains as well as with the 

endoplasmic reticulum-associated E2s, Ubc6 and Ubc7. AR-JP mutations in parkin gene impair the 

interaction with E2 enzymes, reducing or abolishing its ubiquitin ligase activity (Chaugule et al., 2011; 

Dev et al., 2003).   

Parkin can be auto-ubiquitinated and in cell–free in vitro assays has been shown to be capable of 

multiple mono-ubiquitination. Also, it is capable of K48-linked poly-ubiquitination and K63-linked 

poly-ubiquitination (Rankin et al., 2011). Recently, it was discovered that the Ubl domain of parkin 

may function to inhibit its intrinsic auto-ubiquitination activity being the mutations located in this 

domain responsible for relieving auto-inhibition and leading to a rapid degradation of these proteins by 

the proteasome (Chaugule et al., 2011). Parkin is degraded by the proteasomal complex (Choi et al., 

2000) and has been shown that is a substrate of Nrdp1, also an E3 ubiquitin ligase. Nrdp1 interacts 

with the N-terminus (first 76 amino acids) of parkin and is responsible for its ubiquitination, thus 

promoting parkin degradation. This interaction influences the production of reactive oxygen species 

(ROS), what suggest a potential involvement of Nrdp1 in PD pathogenesis, being a possible new 

candidate causative factor (Yu and Zhou, 2008). However, a study in a Chinese population did not 

found any sequence variation in this gene, although further research is necessary (Mo et al., 2010). 

 

 

1.2.2.3 Parkin mutations and juvenile Parkinson disease 

 

Mutations in PARK2 are the most common cause of Parkinsonism with early-onset. In a European 

study, parkin mutations were identified in about 50% of the familial cases and in approximately 10% 

of sporadic early-onset PD patients. The frequency is much higher (around 77%) if only patients with 

disease onset at 20 years or younger were considered (Lucking et al., 2000). 
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All type of mutations have been described in PD patients, from point mutations resulting in amino 

acid exchanges (missense mutations) and  premature  stop codons (nonsense mutations) to deletions 

and insertions of nucleotides, often resulting in frameshift mutations. Splice site mutations and gene 

rearrangements involving the deletion of multiple exons, duplications or triplications were also found 

(von Coelln et al., 2004). Moreover, mutations are found throughout the entire gene including changes 

in each of its twelve exons. Regardless of their heterogeneity, there are no discernable differences in 

the clinical manifestations among patients carrying different parkin mutations, although differences in 

age-at-onset were described for patients with R275W mutation (Lohmann et al., 2003). Gene 

rearrangements represent 50% of the identified mutations and, when present in the heterozygous state, 

are not detectable by conventional screening methods like sequencing (Hedrich et al., 2001).   

AR-JP caused by mutations in parkin gene is an autosomal-recessive disorder with high 

penetrance and with patients showing either homozygous or compound heterozygous mutations that 

result in parkin loss of function (Gasser, 2009). However, in Parkinsonism the distinction between 

dominant and recessive forms is unclear. There are several descriptions of families in which parkin 

mutations and disease segregation are incompatible with a recessive inheritance mode. The role of 

heterozygous parkin mutations is still not clear: it is a matter of debate if they may cause or increase 

the susceptibility to late-onset PD. This could be mediated by three mechanisms. One is 

haploinsufficiency, if half of the wild-type (WT) protein dosage is not enough to preserve normal 

function. In this case, because it is thought that parkin has a neuroprotective effect, it is possible that 

this 50% reduction can increase the susceptibility of neurons to toxicity such as oxidative stress. Other 

possibility is a dominant-negative effect, if the mutant variant reduces the function of the WT protein, 

for example, if the mutant protein forms a heteromeric complex with the normal molecule, knocking 

out the activity of the entire complex. The third mechanism is the acquisition of a dominant toxic gain-

of-function effect, if the mutant protein acquires a novel and different function (Bossy-Wetzel et al., 

2004). Some arguments are in favor for a pathogenic role of the heterozygous parkin mutations: these 

mutations are more common in patients than in controls, although the frequency of heterozygous 

mutations in healthy individuals is still unknown and the case-control studies, so far, have variable 

results; also, the heterozygous mutations are more common in patients than mathematically expected 

and the mean age-at-onset in heterozygous carriers is between that of patients with homozygous or 

compounds heterozygous mutations and that of patients without mutations. Also, neuroimaging 

studies show preclinical changes in heterozygous mutations carriers. On the contrary, the arguments 

against this theory are that heterozygous mutations are found in controls, however they have not all 

been neurological examined and there is no clinical follow-up. Moreover, not all heterozygous 

relatives in affected families show signs of parkinsonism (Klein et al., 2007).  

The heterozygous mutations might have different effects depending on the sequence variation 

within the gene. If the alteration causes more severe consequences on structure and function of the 

protein, this mutation might show a more pathogenic effect. For example, mutations like the R275W 
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substitution in the RING1 domain and mutations that cause the formation of aggresome-like inclusions 

upon overexpression have been pointed out as possibly having a dominant-negative effect. However, 

this hypothesis has not yet been supported by parkinsonism mouse models and further studies are 

required (Klein et al., 2007).   

 

 

1.2.3 The ubiquitin proteasome system 

 

The ubiquitin proteasome system (UPS) is the main cellular protein degradation system and is 

capable of targeted degradation of mutant, damaged, toxic or misfolded intracellular proteins, as well 

as short-lived key regulatory proteins that mediate a number of cellular events such as cell cycling, 

signal transduction, transcription, neurotransmission, receptor endocytosis, metabolism and the 

immune response. (Moore et al., 2003) The UPS is responsible for the rapid degradation of 30% or 

more of newly produced proteins within the cell. This process requests the ligation of ubiquitin, a 

small covalent modifier that forms a poly-ubiquitin chain on the target protein, becoming a signal for 

degradation by the 26S proteasome (Tanaka et al., 2004).  

Poly-ubiquitination of substrates is the priming event for proteasome-mediated degradation. In this 

process, the small and highly conserved protein tag, ubiquitin, consisting of 76 amino acid residues, is 

covalently attached to the target protein through an ATP-dependent enzymatic pathway that occurs by 

sequential steps catalyzed by three enzymes. First, the ubiquitin is activated by an ubiquitin-activating 

enzyme (E1), which forms a thiol ester bond between a cysteine residue and a carboxy-terminal 

glycine of ubiquitin in an ATP-dependent manner. Then, the activated ubiquitin is transferred to one 

of the several ubiquitin-conjugating enzymes (E2) through the formation of another thiol bond. In the 

last step, ubiquitin is ligated to the substrate by an interaction of C-terminal glycine residue of 

ubiquitin with ε-amino groups on side chains of lysine residues of the target protein that is bound to an 

E3 ligase, like parkin. The E3 ubiquitin ligases bind both the E2 and a specific protein target to which 

the ubiquitin is covalently attached, transferring the ubiquitin from the E2 to the substrate. Each step 

of this process becomes more restricted in its substrate, being the E3 ligases determinants to confer 

specificity to substrate recognition (Betarbet et al., 2005; Moore et al., 2003). It is the successive 

repetition of this process that links additional ubiquitin molecules into the previously attached 

ubiquitin resulting in the formation of poly-ubiquitin chain that is the degradation signal recognized by 

the proteasome, requiring a chain of, at least, four ubiquitin molecules (Berke and Paulson, 2003). In 

1999, Koegl et al. identified and described one protein that could be a novel ubiquitination factor, 

named E4 (Koegl et al., 1999). These E4 ubiquitin ligases, also known as U-box E3, can be described 

as ubiquitin chain elongation factors, possibly being responsible for adding ubiquitin molecules to 

form these poly-ubiquitin chains. This process is common to all known ubiquitination reactions, 
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independently of whether the substrate-bound ubiquitin will signal for proteasomal proteolysis, 

endocytosis or other fate. So, additional factors are necessary, like the subcellular localization of the 

substrate or the number and topology of the substrate-conjugated ubiquitins. There are a total of seven 

lysine residues on ubiquitin (at positions 6, 11, 27, 29, 33, 48 and 63) and the poly-ubiquitination 

could occur through alternative lysine residues (Dawson, 2006). There are at least three ways to 

ubiquitinate a protein: if substrates are destined for the proteasome, they generally are conjugated to a 

poly-ubiquitin chain in which successive ubiquitins are linked through an internal lysine residue (K48) 

to the terminal residue (G76) of a new ubiquitin monomer by isopeptide bonds forming a K48-G76-

linked poly-ubiquitination chain. However, when this ubiquitin molecules chain is linked through 

lysine 63 by K63-G76 bonds, the destination could be probably non-proteolytic, like clearance by 

autophagy (Tan et al., 2008). Other ubiquitination process is multi-mono-ubiquitination, where occurs 

the attachment of multiple molecules per protein but only one ubiquitin per lysine residue, being 

responsible for regulating transcription, translation, protein trafficking, DNA repair and other cellular 

functions. The specificity in signaling is mediated by the ubiquitination process. The recognition of 

substrates for ubiquitination is governed by the presence and accessibility of primary sequence or 

structural motifs in the substrate, known as ubiquitination signals, recognized by the E3s (Pickart, 

2001). The E3s are central determinants of specificity because they play an important role in the 

selection of target proteins for degradation by binding the substrate with a degree of selectivity for 

ubiquitination in a temporally and spatially regulated fashion (Tanaka et al., 2004). The E3s are 

classified in several groups: one share the HECT domain that harbors a 350-residue region with a 

strictly conserved cysteine residue forming an essential thio-ester bond for binding ubiquitin (Pickart, 

2001). The major group of E3s, designed RING-type E3, share a RING finger domain capable of 

binding Zn
2+

 of approximately 70 residues consisting in a cysteine-rich consensus sequence flanked by 

one or two histidine residues. There are typical and atypical forms of this RING-finger motif, dividing 

the typical in three classes with small differences in their structure: RING-HC (C3HC4), RING-H2 

(C3H2C3) and RING-IBR-RING where parkin belongs. The third group of E3s shares a U-box 

domain whose tertiary structures are similar of the RING-finger domain but do not show a binding 

potency to Zn
2+

 that is probably necessary for keep the domain structure in RING-type E3s. The last 

group consists of very unique E3s that have no sequence homology to known E3 enzymes (Tanaka et 

al., 2004).  

After the labeling of unwanted/damaged proteins with chains of activated ubiquitin molecules, the 

ubiquitinated proteins are transported to the proteasome by chaperone molecules like heat shock 

proteins (HSP) and then are recognized and unfolded by proteasome regulators, followed by an ATP-

dependent degradation of unwanted proteins by  the proteasome (Olanow and McNaught, 2006). 

The 26S proteasome is a eukaryotic ATP-dependent protease of over 2.5 megadaltons. This multi-

subunit proteolytic complex is composed by a 700-kilodaltons central catalytic core particle (CP), the 

20S proteasome and two terminal regulatory particles (RPs) also designated PA700 or 19S complex 
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(Finley, 2009). CP is a barrel-like structure made up of 28 subunits arranged into four hetero-

heptameric rings, two inner rings and two outer rings, each one made up of seven structurally similar 

α- and β-subunits associated in the following order, αββα (Betarbet et al., 2005; Tanaka et al., 2004). 

Each inner ring is formed by β-type subunits, three of which have catalytically active threonine 

residues at their N-terminus being proteolytic active sites (β1, β2 and β5) that can cleave a broad range 

of peptide sequences. β1 prefer to cleave on the C-terminal side of acidic residues, β2 after tryptic 

residues and β5 after hydrophobic residues, being the site specificities generally classified as caspase-

like, trypsin-like and chymotrypsin-like activities. These three different catalytic sites of the 

proteasome reside on the inner surface of the inner rings, thus preventing unselective degradation of 

proteins (Finley, 2009). The two outer rings containing the α-subunits serve to anchor the two RPs 

(Moore et al., 2003) which are attached to both ends of the central core in opposite orientations to 

form the enzymatically active 26 proteasomal complex (Tanaka et al., 2004). It is in this hollow 

cylindrical structure with an interior space whose largest dimensions are approximately 100Å axially 

and 60Å along the orthogonal symmetry axis that proteolysis occurs. The 19S regulatory complex 

consists of two sub-complexes known as the base and the lid which correspond to the portions 

proximal and distal to 20S proteasome. The base is composed by six paralogous ATPases (Rpt 1 - 6), 

which are critical for the 19S-20S complex formation, and four non-ATP subunits, the scaffolding 

proteins Rpn1 and Rpn2 and the ubiquitin receptors Rpn10 and Rpn13. The base of the 19S complex 

has three ATP-dependent functions: recognize the poly-ubiquitin chain, which is removed and cleaved 

into monomers by deubiquitinating enzymes (DUBs), unfolds the target proteins and translocates them 

through the opened channel of the 20S proteasome. The lid of the 19S is a 400-kDa complex made up 

of multiple non-ATPases subunits like Rpn3 that can be released from the proteasome or rebind under 

certain conditions. The role of the lid is still unclear but it is necessary for proper degradation of the 

target proteins (Glickman and Ciechanover, 2002). Considering the nine lid subunits, only Rpn11 has 

a known function, being a DUB. Besides the 19S complex, the most studied proteasome activator of 

the 20S core is the 11S regulator (PA28), a heteromeric complex of 28-kDa subunits.  PA28 activator 

is a complex of two alternating subunits, PA28α and PA28β, which associate with the α-subunits of 

20S proteasome at both or either ends and opens the channel of the 20S core but via an ATP-

independent process. Beyond the lack of ATPase activity, PA28 also lacks the ability to bind ubiquitin 

conjugates. The 11S-20S proteasomal complex has been suggested to mediate the degradation of non-

ubiquitinated short peptides including oxidized proteins. PA28 is also known to modulate proteasome-

catalyzed production of antigenic peptides presented to the immune system on MHC class I molecules 

(Betarbet et al., 2005; Finley, 2009). 

The degradation products of proteasomal catalysis are short peptides that are released to the 

cytosol, and once there, are processed by other cytoplasmatic peptidases to generate single amino 

acids, which are then recycled to produce new proteins. The same happens to the poly-ubiquitin chains 

that, after the release from the target proteins, are recycled back into the ubiquitin pathway. Prior to 
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entry into the proteasome, ubiquitin chains are detached from proteins and cleaved into monomers by 

deubiquitinating enzymes such as ubiquitin C-terminal hydrolase L1 (UCH-L1) that has also been 

associated with familial PD. When this deubiquitination process is blocked, degradation is inhibited 

and ubiquitinated substrates accumulate leading to cell death (Betarbet et al., 2005; Finley, 2009). A 

simplified scheme of the sequential steps needed for the targeted degradation of proteins by the UPS is 

presented in figure 1.3. 

 

 

Figure 1.3: Schematic representation of the steps involved in the targeted degradation of proteins by 

the UPS. Adapted from (von Coelln et al., 2004). 

 

Since proteasomes are present in the cytoplasm (associated with centrosomes, cytoskeletal 

networks and the outer surface of the endoplasmatic reticulum), in perinuclear regions and nuclei of all 

eukaryotic cells (Betarbet et al., 2005), these are the locations where aggregates of proteasomes 

accumulate when the proteolytic pathway is impaired.  

 

 

1.3 Molecular pathways of neurodegeneration in PD  

1.3.1 The relationship between UPS and Parkinson disease  

 

The ability of the UPS to recognize and selectively degrade misfolded and damaged proteins 

enable it to protect cells against the toxic effects of protein aggregation. The presence of these 
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ubiquitin-positive protein aggregates is a common ultra-structural feature of many neurodegenerative 

diseases like PD (Um et al., 2010). These diseases caused by aggregate-prone proteins are known as 

proteinopathies (Rubinsztein, 2006). Initial protein aggregation could lead to an accumulation of these 

aggregates by a chronic imbalance between the generation and clearance of misfolded proteins that 

could happen if the UPS function is impaired (Bence et al., 2001; Chin et al., 2010). Protein 

aggregates are thought to impair cell function and viability through a variety of mechanisms, including 

pore formation, proteasome inhibition and disruption of intracellular transport (Chin et al., 2010). 

Thus, it is thought that the protein quality control system (composed by the cellular machinery that 

monitors the quality and levels of the proteins in the cell) plays a critical role in neuronal function and 

survival, being the UPS one major arm of this quality control (Berke and Paulson, 2003). Also, it is 

known that proteasome inhibitors increase the frequency of ubiquitin-positive intracellular inclusions 

in neurodegenerative disorder cell models (Tanaka et al., 2004). 

Protein aggregates are oligomeric complexes of non-native conformers originated from non-native 

interactions between intermediates in protein folding or assembly (Kopito, 2000).  Protein misfolding 

can occur as a result of genetic mutations (causing alterations in primary structure), environmental 

factors or oxidative stress (causing partial unfolding). When the production of these misfolded 

proteins, that are often prone to aggregation into oligomers and aggregates, exceeds the capacity of the 

molecular chaperone system (an additional regulatory mechanism by HSPs that contribute to the 

removal of misfolded proteins by promoting their refolding or facilitating their degradation, reducing 

aggregates formation) and of the UPS, aggregated proteins are actively sequestered in a microscopic 

pericentriolar structure called aggresome which is degraded by autophagy (Chin et al., 2010; Moore et 

al., 2003). Inclusion bodies also contain proteins that, although not being aggregation-prone, are 

recruited, concentrated or trapped within inclusions (Berke and Paulson, 2003). These aggressomes 

are called microtubule-dependent inclusion bodies because the aggregated proteins are specifically 

delivered to inclusion bodies by dynein-dependent retrograde transport on microtubules (Kopito, 

2000). In PD, these aggressomes over time develop to LBs, the pathological hallmark of PD. LBs are 

cytoplasmatic inclusions consisting of a heterogeneous mixture of protein and lipids. Lipids form the 

core of the inclusions while the peripheral filamentous elements include proteins like α-synuclein, 

ubiquitin, synphilin-1, parkin, UCH-L1, proteasomal components, HSPs, other UPS-related proteins 

and neurofilaments (Moore et al., 2003). The mechanism by which LBs are formed and their role in 

degeneration remains largely unknown (Imai and Takahashi, 2004). Also, it is unclear if the protein 

aggregates themselves are pathogenic or are the consequence of an underlying molecular lesion, being 

possible that a loss of UPS function could be responsible for generating protein aggregates or protein 

aggregates themselves could impair the protein degradation machinery. Other possibility is that 

impaired UPS and protein aggregation could participate in a feed-forward cycle where one could 

affect the other (Betarbet et al., 2005).  
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Protein inclusions, such as aggressomes, can be experimentally induced by proteasomal inhibition 

in neuronal and non-neuronal cells. Immunocytochemical analyses have reported that parkin is present 

in the cellular inclusions after exposure of cells to proteasome inhibitor. However, AR-JP is not 

accompanied by obvious LBs formation (Imai and Takahashi, 2004). Thus, it was suggested that 

parkin may promote the formation of LB inclusions being this, one mechanism to detoxify proteins 

such as α-synuclein or that parkin-mediated neurodegeneration may occur by mechanisms distinct 

from those that happens in PD with LBs (Dawson and Dawson, 2003; Feany and Pallanck, 2003).  

In addition to cytoplasmatic inclusions, further clues that associate a dysfunction of UPS to PD 

pathogenesis is that, in sporadic PD, levels of 20/26S proteasomes and proteasome activity are reduced 

in vulnerable regions (Rubinsztein, 2006). But, the major proof is the presence of genetic mutations 

directly associated with UPS. These occur in parkin and UCH-L1. Since parkin is an E3, the ubiquitin 

pathway is directly linked to the cause of AR-JP. It is known that mutants of parkin alter the solubility 

of parkin, increasing its tendency to aggregate (Rogers et al., 2010). In 2008, a study of pathogenic 

mutations revealed that misfolding and aggregation is characteristic for C-terminal deletion mutants, 

but alterations in the solubility and formation of parkin aggregates has also been reported for various 

parkin missense mutations. However, even wild-type parkin is prone to misfolding under severe 

oxidative stress (Schlehe et al., 2008).  

It is thought that a lack of parkin function lead to a toxic accumulation of substrate proteins or 

parkin itself. Parkin targets a number of substrates that have intrinsic toxic and aggregation properties 

in vivo such as the O-glycosylated form of α-synuclein and α-synucleinP22. Parkin also supresses the 

toxicity of Pael-R (which when overexpressed elicits a marked ER stress response), of mutated α-

synuclein A53T and of a poly(Q)-expanded mutant of ataxin-3 (Khandelwal and Moussa, 2010). Other 

substrates ubiquitinated by parkin that may exert a direct cytotoxic effect on accumulation includes 

α/β-tubulins, which in the free, monomeric form are toxic (Kahle and Haass, 2004; Ren et al., 2003), 

and cyclin E which might force postmitotic neurons into abortive cell cycling, promoting apoptosis. 

Overexpression of parkin decreases sensitivity to proteasome inhibitors on an E3 ligase activity-

dependent manner and also, the knockdown of parkin increases sensitivity to proteasome inhibitors 

(Petrucelli et al., 2002). Parkin is thus considered a broad neuro-protective agent against a wide range 

of toxic injuries from proteasomal dysfunction to substrate toxicity (Feany and Pallanck, 2003). 

 

 

1.3.2 Mitochondrial impairment and oxidative stress in PD 

 

Other mechanisms that could be involved in PD pathogenesis are mitochondrial dysfunction and 

oxidative stress. Mitochondria are key regulators of cell survival and death and play a central role in 

ageing, the principal risk factor for PD. This contribution to ageing occurs through the accumulation 

of mitochondrial DNA (mtDNA) mutations and net production of reactive oxygen species. Also, 
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mitochondria have been found to interact with many specific proteins implicated in genetic forms of 

neurodegenerative diseases. They were first implicated in PD because of MPTP whose metabolite, 

MPP
+
, inhibits complex I of the mitochondrial electron-transport chain, causing parkinsonism (Lin and 

Beal, 2006). Impaired complex I activity leads to free radical stress and makes neurons vulnerable to 

glutamate excitotoxicity. One proof that mitochondrial impairment may be central to the pathogenesis 

of PD is the fact that defects in complex I as well as three complex I inhibitors cause dopaminergic 

cell death and induce the formation of LB-like filamentous inclusions containing α-synuclein (Dawson 

and Dawson, 2003). The mechanism of toxicity in these complex I inhibition models probably 

involves oxidative stress. Complex I inhibition and oxidative stress are factors contributing to ageing 

and were shown to be relevant to PD when complex I deficiency and glutathione depletion were found 

in the substantia nigra of patients with idiopathic or with pre-symptomatic PD (Lin and Beal, 2006). 

Parkin has been shown to be located, in part, in mitochondria. It is though that this protein acts directly 

at the mitochondria through its ubiquitination activity, confirmed by a study in 2010 (Fitzgerald and 

Plun-Favreau, 2008; Lee et al., 2010).  

Parkin is thought to be also related to oxidative stress. This protein is up-regulated in response to 

unfolded protein stress and supresses unfolded protein stress-induced cell death via its E3 activity 

(Imai et al., 2000). This oxidative stress damages lipids, proteins and DNA and can directly impair 

protein ubiquitination and degradation systems. Moreover, the toxic products of oxidative damage 

induce cell-death mechanisms (Fitzgerald and Plun-Favreau, 2008). Parkin mutations lead to oxidative 

stress, however, wild-type parkin can be associated with the outer mitochondrial membrane and 

prevent mitochondrial swelling, cytochrome c release and caspase activation (Lin and Beal, 2006). In 

addition to these mechanisms, induction of protein folding stress in cells, reduced parkin 

phosphorylation and unphosphorylated parkin had slight but relevantly elevated auto-ubiquitination 

activity. Thus, regulation of the phosphorylation state of parkin may contribute to the unfolded protein 

response in stressed cells (Yamamoto et al., 2005). Also, the phosphorylation of parkin by CDK5 

(cyclin-dependant kinase 5) may regulate its ubiquitin-ligase activity and so, contribute to the 

accumulation of toxic parkin substrates and decreased ability of dopaminergic cells to handle with 

toxic insults in PD (Fitzgerald and Plun-Favreau, 2008). 
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1.4 Aims  

 

Large PARK2 deletions account for 50% of the mutations identified in patients with AR-JP of 

Portuguese origin. Thus, the first aim of this study was to determine the breakpoints of the deletions 

found in Portuguese patients in order to identify the genomic mechanism underlying these gene 

rearrangements. 

Secondly, through the development of cellular models with point and frameshift mutations, also 

found in Portuguese families with AR-JP molecular diagnosis, we intended to explore the pathogenic 

mechanisms of these parkin mutations by assessing the dynamics of formation and degradation of 

aggregates in AR-JP and the effect of these mutations in the UPS protein degradation capacity. 

Finally, we aimed to study the role of the UPS in the clearance of parkin aggregates and the effect of 

UPS impairment in aggregate accumulation. 
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2 Materials and Methods  

2.1 Large deletions breakpoint determination 

 

 
Large PARK2 deletions are responsible for about 50% of the Parkinson disease mutations. We 

have previously characterized a sample of Portuguese patients showing Parkinson disease symptoms 

regarding PARK2 mutations and were able to identify several large deletions through multiplex 

dependent ligation probe amplification (MLPA). PARK2 gene presents very large introns which makes 

the determination of deletion breakpoints a hard task. In order to overcome this difficulty several 

strategies were applied as outlined below. 

 

2.1.1 Subjects 

 

Fifteen patients showed large gene rearrangements and at least eight different deletions were 

found either in homozygosity (present in the two alelles) or in heterozygosity (only in one allele) as 

shown in table 2.1. 

 

Table 2.1: List of patients with respective deletions in study. 

Patient Deletion Homozygozity/Heterozygosity 

1 E2 Heterozygozity 

2 E3 Heterozygozity 

3 E3-E6 Homozygosity 

4 E3-E6 Homozygosity 

5 E3-E6 Heterozygozity 

6 E3-E6 Heterozygozity 

7 E3-E6 Heterozygozity 

8 E4 Homozygosity 

9 E4 Homozygosity 

10 E4 Heterozygozity 

11 E4 Heterozygozity 

12 E4-E7 Homozygosity 

13 E5-E6 Homozygosity 

14 E7-E9 Heterozygozity 

15 E10 Homozygosity 
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2.1.2 Approach 1: Verification of breakpoints already described 

2.1.2.1 Primer design 

 

Some of the deletions identified in Portuguese patients have been already identified in other 

patient’s populations and their breakpoints characterized. In order to verify the presence of these 

breakpoints among Portuguese patients, primers at approximately 0.5Kb distance of the deletion 

breakpoints (of the same exons in study) described in three previously published papers (Asakawa et 

al., 2009; Clarimon et al., 2005; Mitsui et al., 2010) were designed using IDT PrimerQuest 

(http://eu.idtdna.com/Scitools/Applications/Primerquest/) with the following settings: optimum primer 

size of 24nt ± 6nt; optimum primer TM of 60ºC ± 5°C and optimum primer GC% of 50% ± 15%. The 

list of primers designed is presented in table 2.2. 

 

Table 2.2:  List of primers designed for the breakpoints described. 

Deletion Forward Reverse 

E2 TTTGTGGCTGTTTGGTGTGATGGG AGTTGTGTGACCACAGGAGCATCA 

E3_1 AACACACCTGGACACACTGGTGAT CTCACTTCATCAAACACAGCGGCA 

E3_2 AGAGGCTCCACCTCTTCATGCAAT AGGACACCTTGCTTTGGAGCCTTA 

E3_3 AAGAGAGATGGGTGAGGGAACTTG CATACACAACTGGGAAGGAGCCTA 

E3_4 TATGTATGAATGGCAGCCAGCCCA TGGCAAATGCATTCTCACCATCCC 

E3_5 CTGGCCTCTGCTTTCAGGCAATTT TGCGTCCAAATCCCAGTGAAGAGT 

E3_6 TGAATGTAGCCAGCCACCTCACTT TAGGTGGTGCTAAGTGAAGCCACA 

E3_7 AGTTGCTCTTAGCTCTGCCTCGTT TCACTTCATCAAACACAGCGGCAC 

E3_8 ATCTGCTTAAAGCCAGGTGCAGTG TCCTCTAACCATGTGAGGCAGCAA 

E3_9 CGGCCACATCGATTTACTGAGAGA CCACCACCACTTAACCACAAAGTG 

E4_1 ACCTTCAGGTAGAGGTCAAGCACA ATGTCTGCAGTAGGTGCACACGAA 

E4_2 TCAGGCAAGCATCAGATGGAGACA AGCTCCCTTGGGACCTCTTGAAAT 

E4_3 ATGTGGCTTCACTTAGCACCACCT TACACACACTGCTTTCCAGACCCA 

E4_4 AAGAGGTTGGGCTTCTGTTACGGT ACCTCTCAGCCAAGCCTTACTGTT 

E4_5 TCATGCCAGCAGCTCCTTATCAGT TGCCAGACATGCATTGTGTTCTGC 

E4_6 TGGGTCTGGAAAGCAGTGTGTGTA TGCCTACCAAGCTCTGAAACACCA 

E4_7 TTCTGTGTCCATGTGGAGTTCCGT TTGGAACTGACCAGGAAGGAGCAT 

E3-6 ATGCTCAGGACATAGGAGGCGAAT TCCCACAGTGATACCTGTCATGGA 

 

 

 
2.1.2.2 Polymerase chain reaction  

 

Polymerase chain reaction (PCR) amplification was performed with a mix of: 6.25 µL HotStar 

Master Mix (Qiagen), 1.5 µL of each primer (forward and reverse), 2 µL of DNA sample and 1.25 µL 

of ddH2O in a final reaction volume of 12.5 µL. PCR amplification parameters are presented in table 

2.3 with annealing temperature varying depending on the optimization for each primer pair. All the 

reactions presented in this work were performed using a Biometra Uno II thermocycler or a Biometra 

Tgradient thermocycler. 

 

 

http://eu.idtdna.com/Scitools/Applications/Primerquest/Help.aspx?topic=primer_opt_size
http://eu.idtdna.com/Scitools/Applications/Primerquest/Help.aspx?topic=primer_opt_size
http://eu.idtdna.com/Scitools/Applications/Primerquest/Help.aspx?topic=primer_opt_tm
http://eu.idtdna.com/Scitools/Applications/Primerquest/Help.aspx?topic=primer_opt_gc_percent
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Table 2.3: PCR protocol for fragment amplification. 

Cycles Time Temperature 

1 x 15min 95ºC 

 45s 95ºC 

35 x 1min 30s  50ºC-60ºC 

 1 min 72ºC 

1 x 10min 72ºC 

 

After PCR reaction, the products and a blank control were checked for fragment amplification and 

for the presence of possible contamination, respectively, by electrophoretic separation in a 2% agarose 

gel in 1x TAE buffer and 0.5 µg/ml Ethidium Bromide. A GeneRuler 100 bp DNA Ladder 

(Fermentas) was used to define the size of the fragment. Loading dye was added to the DNA samples 

and gels were run at 120 V.   

 

 

2.1.3 Approach 2:  Range of primers that cover the introns 

2.1.3.1 Primer design and PCR amplification 

 

To determine the extension of the deletions present in homozygosity we designed a set of 45 

primer pairs covering the two introns surrounding the deleted exons. These primer pairs, which are 

shown in table 2.4, were designed to amplify a region of between 214 and 632bp and each amplicon 

was design with approximately 30 Kb of distance from each other. 

 PCR amplification and fragment analysis was performed as described in 2.1.2.2. 

 

Table 2.4: List of primers designed to cover the relevant introns. 

Int Fw Sequence Rv Sequence Product 

Size 

1.1 TCTTTCAGGAAACCGCAGCAAAGC TTGGCTCAACAACCCTGGAAGAGA 339 

1.2 TTGCAGAGGCTCCCTGAACTTGTA TCTCAAGGTTGGTTGCTCACAGGA 378 

1.3 AGTGTCAGTCTCTGTGGCCTTGAT ATCTTGCACTGGGAGAACAAGGGA 307 

1.4 TTTGGGCAGCCTGGGAAATCAAAG TCCTACTGGGCCAGGATTATGACT 368 

1.5 AGGAGCCCTGCATTTCTTGAAGGT GAAAGCTTAGATTCTCCTGGCGCT 216 

1.6 TGTCAGCAGATTCAGGACGGGTTT GGCTTGGGCTTTATTCTTTGGGCA 408 

1.7 ACTTGTTAATGTGGCCTTGGGCAG AGACCGACAAGCAAGACGCATAGT 632 

1.8 AGTCAAAGCCTAGGAGGCTGGTTT AAATCAGGCAGCAATGAGCCAAGG 497 

1.9 AACAAGGCGAATCCCGTCTGTACT ACAGCTTGCTGGCTCTGTGAGTAA 432 

2.1 TTTGTGTACATGTGCTGTCCACGC ACAAGGTGGGTGATGTGAAATGCC 275 

2.2 AAAGGCTCTGTGTGGTCTCCATGA TCACTTCCAGGCTCCTTTCACACA 569 

2.3 ACGTCATGCAGAAGAGCACCACTA ACTGCCCACCTAGTTGATGGCTAA 533 

2.4 TGAGACCCGAAGTCAGATGGTGTT CTGGAGCTGATAGCCAGTGCAATA 560 

2.5 TTTCTCCTGCCCTTGATGATCCCA TTAAGGCCCAGCCTAATGACCACA 567 

3.1 ACCTCCACCACACATTTGGAGCTA GCACAATGAACACCCACTTGCTGA 415 

3.2 TTGCTGCCTCACATGGTTAGAGGA AAGAAATACTGGACGTGTCCGCCA 214 

3.3 AGAATGTGGGAGTTTGGAGGCTCA ACCTTGAGTCAGACGGTGGACTTT 527 

4.1 TTCAAAGAACAGCGTTGGAGCCAC ACCAACCCTGGTGATAAGCTCAGT 308 
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4.2 TATGCTTGCTGTCTCTGACGCTGA TGCAGCATTTGGTTAATCCCTGGC 396 

4.3 TCGTCTTGTTGGCCCGATTACTGA CACTGGTTGATGCAGCATGTGGTT 264 

4.4 TCCACTCACCCACTTGAAGCAGAA CCAAGGCAGAGCCAGTGTTTGTTT 420 

4.5 TGAAAGGGCAGACACAGAAGTGGA ATCATCCCAGCAAGATGGACCCTT 355 

6.1 TTATGCCAACGCCCTCACTAACCA TACCGTGGACCTGCAATCACTGTT 393 

6.2 AACCCATGCCCAGGAGATAACTGT TGATGTGGTTAAATGCCAGCAGCC 444 

6.3 AGACAGCTTGGAAGCGGATCTGAA TTACATGCCTTGCCTCTGAGTGGA 397 

6.4 GAGCTTTGTGCTGTCCAACTGCAA TGTTACTATTGCCTCAGCCACCCT 240 

6.5 TTTGAGAGGCCTCACTTGTGCCTA TGAGGTGGCATTGGAGATATGCCT 272 

6.6 TGCATTGGAGTGTTCCGTCCTACA TATCGCACACAGGAACAGCACTCA 373 

7.1 TCCTCATTGGGTTGAGGGATGTGT TCTGAAGCAGTTGAGGACGTTGGA 274 

7.2 ATAGGGAAAGCCCACCTGTTCCTT ACCTGTGACTTCCTGCCTCAGTTT 475 

7.3 GGGAATGAAAGTGGGCTGCAATGT TAAAGTTCCCAGTGAGGCACCTGT 416 

7.4 TTCCAGCCTGGTCTCCAAACAGAT TCTGGAAACTGGGAAAGGGTTCCA 264 

7.5 AGTCTGTCAACTCAAGCCTGGTCA GCAGCTGCTTATGCTTAGCTGTGT 224 

7.6 ATGCTGTACACAACATGTGCCTGC AAACCTGGCATTCGGGACAATGTG 378 

7.7 CACAAACTTGTGAGCACGGCATGA AAAGATTCCCGGCAGCATCTCTGA 373 

8.1 AGTTCCAGGTGAGCCCTTCAGAAA ATGCTCTTCTGCCCACTCCCATAA 385 

8.2 GGCTTAAACTGTCCATCTGCGCTT AACCTCTGCAGGGAAGGTGAGAAA 433 

9.1 AAGCTGCAGAGAGCTCAGAACAGT AACCTGGATTGCATGACCCGTACT 514 

9.2 AAACTGCCTCCCTGAAACATGCAC ACTGGGCTTATTGAGAGGCACACA 386 

9.3 AAGGCAGCTCTGTGAGGTGCTAAT TCTGACCATCAGGGACAGGCAAAT 282 

9.4 TTACACCTGGGACCTGCTGCATTA AATGCATGGGTCATGTGGAAACCG 491 

9.5 AGCCAGGAGATTGTGAGGGTCATT ACTGCCAAGTCTATGCCTGTTCCT 271 

10.1 AGCAGGATGGTGTGGTAAAGGACA AAGGAGTCTGCAGTGAGCCAAGAT 275 

10.2 AACAGGCAAGAGGGAATCGAAGGA ACCCATCACAGCTAGGCTGAAACT 588 

10.3 CAAGGGTGTTTCCTTTGTGCCCAT AATCTGGTACACAGCAGGCGATCA 310 

 

 

2.1.3.2 Long-range PCR  

 

After reducing the possible extent of these deletions, the pair of primers closest to the deletion was 

used for PCR amplification. As the amplicons were probably greater than 2 Kb, the enzyme used was 

Expand
TM

 Long Template PCR System (Roche). PCR amplification was performed with a mix of: 

0.75 µL of Long polymerase, 5 µL of buffer 3, 1.75 µL of dNTP’s (10mM), 6 µL of each primer 

(forward and reverse), 4 µL of DNA sample and 26.5 µL of ddH2O to make a final reaction volume of 

50 µL. PCR amplification parameters are presented in table 2.5, and are different from those used for 

HotStar Master Mix enzyme for fragments under 2Kb. 

 

Table 2.5: PCR protocol for the amplification of fragments larger than 2 Kb. 

Cycles Time Temperature 

1 x 2 min 94ºC 

 10 s 94ºC 

10 x 30 s 50ºC-60ºC 

 20 min 68ºC 

 15 s 94ºC 

20 x 30 s 50ºC-60ºC 

 20 min + 20 s 68ºC 

1 x 7 min 68ºC 
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DNA fragments and the control blank were checked by electrophoretic separation in a 0.8% 

agarose gel in 1x TAE buffer and 0.5 µg/ml Ethidium Bromide. Two size markers were used to define 

the size of the fragment, the 1Kb DNA Extension Ladder (Invitrogen) and the GeneRuler 1kb DNA 

ladder (Fermentas). 50 µL of DNA samples with loading dye were applied in 200mL gels that run at 

120 V.   

 

 

2.1.3.3 Isolation and purification of DNA fragments from agarose gels 

 

After electrophoretic separation, DNA fragments of interest were excised from the agarose gel on 

a Transilluminator and purified with the Illustra™ GFX™ PCR DNA and Gel Band Purification Kit 

(GE Healthcare) according to the manufacturer’s instructions. 

 

 

2.1.3.4 Sequencing 

 

In order to determine the deletion breakpoints at the nucleotide level, isolated and purified 

fragments were sequenced. When samples were obtained directly from PCR amplification (and not 

from purified fragments removed from agarose gels), an additional step of purification before 

sequencing was required. To purify these products, 1 µL of PCR product was added to 0.5 µL of 

ExoSAP (USB Corporation). The mixture was exposed to a temperature of 37ºC for 15 minutes and 

then, at 85ºC for 15 minutes, resulting in a maximized enzyme activity followed by its inactivation.      

Direct sequencing reactions of both strands were performed with BigDye Terminator v1.1 Cycle 

Sequencing Kit (Applied Biosystems) using 2 µL of BigDye, 0.5 µL of primer (forward or reverse), 

1.5 µL of purified DNA fragment and 6 µL of ddH2O to a final reaction volume of 10 µL. Forward 

and reverse sequencing are separated reactions. The sequencing reaction parameters are shown in table 

2.6. 

 

Table 2.6: Sequencing Protocol. 

Cycles Time Temperature 

1x 5 min 95ºC 

 10 s 96ºC 

35x 5 s 50ºC 

 4 min 60ºC 
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Sequencing products were purified with the DyeEx Spin Kit (Qiagen) according to the 

manufacturer’s instructions and the fragment sequencing was done by capillary electrophoresis in an 

ABI-PRISM 3130 XL automatic sequencer (Applied Biosystems). 

 

 

2.1.4 Approach 3: Single nucleotide polymorphism (SNP) analysis  

2.1.4.1 SNP selection  

 

Another approach to narrow the extension of the deletions (in homozygosity and heterozigosity) 

was the design of a SNP assay. SNP genotype data for parkin gene was obtained through the HapMap 

Genome Browser (release#24 - phase1&2 full dataset) (Frazer et al., 2007). This data was analyzed 

with Haploview v4.1 software (Barrett, 2009). 114 SNPs, localized in the introns of interest, were 

selected taking in account the higher MAF (minor allele frequency) of SNPs and the distance to the 

previous SNP selected (approximately 10Kb). For each intron several SNPs were selected as shown in 

table 2.7.  

 

Table 2.7: List of selected SNPs.  

Introns SNPs Introns SNPs Introns SNPs 

Intron 1 

rs1893116 

Intron 4 

  

Intron 7 

rs3765474 

rs1893114 rs13191078 rs910177 

rs6934419 rs9295182 rs9458315 

rs2846507 rs2156267 rs12210797 

rs13206396 rs4412175 rs1024189 

rs9365465 rs1893551 rs10945764 

rs2846546 rs1954926 rs12210817 

rs1893119 rs1954925 rs9355922 

rs2846510 rs9347590 rs9346876 

rs2803097 rs3892751 rs13220282 

rs2803087 rs9347591 rs1018462 

rs2023037 rs6455801 rs11755949 

Intron 2 

rs7744798 rs9365375 rs9365323 

rs11964364 rs6904579 rs10945778 

rs4235935 rs713054 

Intron 9 

  

rs952388 rs9365377 rs4574609 

rs4709595 rs9456748 rs9365285 

rs7771045 rs2023078 rs4708909 

rs4708953 rs4709579 rs13211741 

rs9347623 rs9295184 rs4709526 

rs6935149 rs12529283 rs12154057 

rs10945815   rs1886237 

rs12205305 

Intron 6 

rs3016551 rs4709531 

rs962900 rs7739802 rs12175609 

rs12192200 rs6455775 rs9458289 

rs9364652 rs6913813  
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Intron 2 

rs4709605 

Intron 6 

rs6922518 

Intron 9 

rs577876 

rs6937352 rs12528179 rs517010 

rs2205624 rs2155486 rs12209107 

rs9356016 rs6937081 rs506428 

rs6923741 rs9456721 rs12198566 

Intron 3 

rs10945803 rs9355368   

rs2023074 rs9355371 

Intron 

10 

  

rs4546464 rs9347562   

rs957374 rs9364627 rs6942109 

rs7766877 rs9458419 rs7766508 

rs6935521 rs7746164 rs6907632 

rs2096982 rs1790022 rs9347502 

rs1954939 rs1784597 rs3890730 

rs9365393 rs1626020   

rs9355994 rs1784588   

 

2.1.4.2 SNP genotyping  

 

For genotyping we have used the SNaPshot assay (Applied Biosystems), which was applied for 

the genotyping of the SNPs located in introns 2, 3, 4 and 6. For the remaining introns, and since the 

number of samples to be tested was small, SNPs were genotyped by PCR amplification and 

sequencing (as described in 2.1.2.2 and 2.1.3.4).  

SNaPshot is a technique specifically used for determining SNP variants and includes a multiplex 

PCR amplification of the regions containing the SNPs, a purification of the PCR products, a single-

base extension (SBE) of the 3’end of unlabeled primers located immediately upstream of the SNPs 

site, using four fluorescently-labelled dideoxynucleotide triphosphates (ddNTPs) which will emit a 

specific fluorescence for each ddNTP (Bardien et al., 2009). Finally, the last step is a final purification 

before products are separated by capillary electrophoresis in an automatic sequencer that records the 

fluorescence emitted by the ddNTPs.  

  

 

2.1.4.2.1 Amplification primers and SBE-primer design 

 

Since multiple SNPs can be interrogated in a single SNaPshot reaction, the amplification primers 

were design for each intron using Primer3 Plus (Untergasser et al., 2007) and then, analyzed with 

AutoDimer software (Vallone and Butler, 2004) to search for primer-dimers interactions and self-

interacting hairpins. The settings used for primer design were:  an optimum primer length of 20 bases, 

an optimum melting temperature of 60ºC and an optimum G/C percentage of 50%. For AutoDimer 

software, the settings were: minimum score requirement of 6; temperature for dG calculation = 55ºC, 

Na
+ 

(Molar) = 0.085 and total strand concentration = 1. All primers with interactions predicted by this 



23 

 

software were excluded and new oligos were designed. Another control was done to the primers by the 

search in GenomeTester 1.3 (http://bioinfo.ut.ee/genometester/) for primer binding sites, being the 

settings for exclusion: more than 200 binding sites in the genome and/or more than one amplification 

product predicted.   

SBE-primers were designed as described in literature (Sanchez et al., 2006). To allow a larger 

separation in fluorescence recording and therefore a better peak profile, primers were modified in 

order to create a sufficient difference in electrophoretic motility. So, the first primer was 36 bases long 

and the following primers were created with size intervals of four nucleotides longer. The lengths of 

the SBE- primers were increased at their 5´end with nucleotides of a “neutral” 40 bp-sequence and 

with a poly-cytosine tail when more nucleotides were needed. The lengths of the SBE primers were 

between 35 and 96 nucleotides. When the variants of two SNPs were different (e.g., SNP1: C/T and 

SNP2: A/G), SBE-primers were designed with the same length to narrow the SBE-primer range, since 

signal detection would not suffer interference. Amplification primer and SBE-primer sequences for 

each SNP are presented in appendix 6.1.  

 

2.1.4.2.2 Multiplex PCR and SNaPshot 

 

SNPs from the same intron were simultaneously amplified in a multiplex PCR. All the SNPs 

located in the four introns were amplified with the same reagents mix consisting of 5 µL of Multiplex 

PCR Master Mix (Qiagen), 1 µL of an optimized primer mix, 1 µL of DNA samples and 3 µL of 

ddH2O. Primer mixes consisted of forward and reverse primers of the SNPs which, after an initial trial 

at a concentration of 2 µM, were altered to the adequate concentrations for amplification. The PCR 

amplification protocol is presented in table 2.8. 

 

Table 2.8: PCR Multiplex protocol. 

Cycles Time Temperature 

1x 15 min 95ºC 

 30 s 94ºC 

30x 1min 30s 55ºC 

 1min 30s 72ºC 

1x 10 min 72ºC 

 

After amplification the PCR products were checked and a control blank was tested using a 

QIAxcel multicapillary electrophoresis system (Qiagen). Then, products were purified with ExoSAP 

as described previously.   

For single base extension reactions, the mixes used for each assay consist of 1.5 µL of purified 

product, 1 µL of SNaPshot Multiplex Mix (Applied Biosystems) containing the fluorescent ddNTPs, 1 
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µL of SBE-primer mix (optimized as in primer mix) and 1.5 µL of ddH2O to a final reaction volume 

of 5 µL. The SNaPshot reaction was performed with the protocol presented in table 2.9. 

 

Table 2.9: SNaPshot reaction protocol. 

Cycles Time Temperature 

 10 s 96ºC 

25x 5 s 50ºC 

 30 s 60ºC 

 

After SBE a final product purification was performed with 1 µL of SAP (USB Corporation). 

In this purification protocol, the products with SAP were subjected to a 37ºC temperature for 1 hour 

and 30 minutes, followed by a 15 minutes step at 85ºC.  

The reactions were then loaded to the ABI-PRISM 3130 XL genetic analyzer (Applied 

Biosystems) along with 0.15 µL of GeneScan 120 LIZ Size Standard (Applied Biosystems) and 8.85 

µL of formamide. The capillary electrophoresis was performed according to the manufacturer’s 

instructions for a SNaPshot assay. 

Results are analyzed with the GeneMapper Software Version 4.0 allowing visualization of the 

peak profiles. One example is presented in figure 2.1. Given the small number of samples, each SNP's 

genotype was determined manually taking into account both the position (size) of the peak as well as 

the color of the emitted fluorescence (green for A, blue for G, black for C and red for T). In this work 

we searched for the SNP missing in the peak profile of the patients with homozygous mutations and in 

the patients with heterozygous mutations we analyze the presence/absence of heterozygosity of the 

genotyped SNPs. 

 

Figure 2.1: Peak profile of a sample from the intron 6 assay generated with GeneMapper Software. 
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2.1.4.3 PCR Long-range amplification and Sequencing  

 

After SNaPshot analysis, for the deletions in homozygosity, the primers of the SNPs closest to the 

absent SNaPshot SNPs (forward or reverse according to the desired direction) were used for long 

range amplification. For the deletions detected in heterozygosity the primers of the first SNPs showing 

heterozygosity closest to the exon missing (forward or reverse according to the desired direction) were 

used for PCR amplification. Long range amplification using the Expand Long Template PCR System 

(Roche) referred above, with the same mix and protocol was used as the amplification product could 

yet have more than 2 Kb. All steps, from PCR amplification to sequencing were performed as 

described above in 2.1.3.2 to 2.1.3.4. 

 

 

2.2 Characterization of point mutations and small scale rearrangements 

 

To explore the pathogenic mechanisms of parkin mutations we selected seven common 

mutations found in Portuguese Parkinson’s patients. These mutations, detailed in table 2.10, are 

mainly point mutations, resulting in amino acid changes. Also, two small rearrangements were 

selected, one base pair deletion and an insertion/deletion, both resulting in frameshifts and 

premature STOP codons. The selected mutations are spread throughout the gene with one 

mutation in almost every parkin domain (as we can see in fig. 2.2). 

 

Table 2.10:  PARK2 mutations selected. 

Region cDNA  Protein   

Exon 2 c.125G>C p.R42P 

Exon 2 c.del155delA p.N52MfsX29 

Exon 7 c.823C>T p.R275W 

Exon 9 
c.1072_1073delCT 

c.1072insA 
p.L358RfsX77 

Exon 11 c.1204C>T p.R402C 

Exon 11 c.1244C>A p.T415N 

Exon 12 c.1289G>A p.G430D 
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Figure 2.2: Schematic representation of parkin domains with chosen mutations indicated below. 

 

 

2.2.1 Expression constructs 

 

An N-terminal green fluorescent protein (GFP) tagged wild-type human parkin cDNA cloned in a 

pEGFP-C1 plasmid was kindly provided by Dr. Sumihiro Kawajiri from Juntendo University 

School of Medicine, Tokyo, Japan. 

This construct was then inserted in DH5α Escherichia coli by thermal shock with the following 

procedure: 25 µL of Library Efficiency DH5α Competent Cells (Invitrogen) were thawed on ice, 

mixed gently with 1 µL of plasmid DNA (pDNA) and incubated for 30 minutes on ice. After a heat 

shock at 42°C for 45 seconds, cells were incubated on ice for 2 minutes; 500 µL of S.O.C. medium 

were added and, incubated for 1 hour at 37°C with shaking. This mix was centrifuged for 5 minutes, 

the supernatant was discarded and the pellet resuspended in the remaining medium. Then, bacteria 

were plated on Luria Bertani (LB) agar plates, containing kanamycin to select positive clones, and 

incubated at 37°C overnight. 

To confirm if the construct was correctly inserted and without mutations, the cDNA construct was 

extracted from bacteria (as described below) and then, confirmed by sequencing with the primers 

presented in table 2.11. pDNA extracted was directly sequenced with a mix slightly different of that 

described in 2.1.3.4 but with the same protocol. The mix consists of 2 µL of BigDye Terminator v1.1 

Cycle Sequencing Kit (Applied Biosystems), 0.5 µL of primer (forward or reverse), only 1 µL of 

purified DNA fragment and 6.5 µL of ddH2O. 

      

Table 2.11: Primers designed for cDNA sequencing. 

Primer Sequence 

PARK2_F1 CTGGATCAGCAGAGCATTGTTCAC 

PARK2_F2 TCCAAACCGGATGAGTGGTGAATG 

PARK2_F3 AGTATGGTGCAGAGGAGTGTGT 

PARK2_R1 GTCGCCTCCAGTTGCATTCATTTC 

 

 



27 

 

2.2.2 DNA extraction 

 
In order to extract pDNA, isolated colonies were grown in liquid LB medium with kanamycin 

overnight at 37°C with agitation. At this point, it was important to store glycerol stocks for each 

isolated colony for clone preservation. Liquid cultures were then centrifuged for 10 minutes at 3000 

rpm, the supernatant was discarded and the DNA was extracted with the QIAprep Spin Miniprep Kit 

(QIAGEN) according to the manufacturer’s instructions. DNA concentration was determined in a 

NanoDrop 2000 Spectrophotometer (Thermo Scientific). 

 

 

2.2.3 Site-directed mutagenesis 

 

For parkin mutant creation, the GFP-tagged wild-type parkin was modified with QuikChange Site-

Directed Mutagenesis Kit (Stratagene) according to manufacturer´s instructions. This technique allows 

substitution, deletion or insertion of single or multiple amino acids in a protein sequence by using two 

oligonucleotide primers containing the desired mutation. Primer pairs, presented in table 2.12, were 

design according to the manufacturer’s guidelines with QuikChange Primer Design Program (Agilent 

Technologies).   

With site-directed mutagenesis, the oligonucleotide primers, complementary to opposite strands of 

the vector, were extended during temperature cycling by Pfu Turbo DNA polymerase. Then, the 

mutated plasmid containing staggered nicks was treated with Dpn I to digest the parental DNA of E. 

coli strains and to select for mutation-containing synthesized DNA (Weiner and Costa, 1994).  

 

Table 2.12: Primers for site-directed mutagenesis. 

Mutation Forward Sequence Reverse Sequence 

R42P 
CGGCTGACCAGTTGCCTGTGATTTT

CGCAGG 

CCTGCGAAAATCACAGGCAACTGGTCA

GCCG 

N52MfsX29 
GGGAAGGAGCTGAGGATGACTGGA

CTGTGC 

GCACAGTCCAGTCATCCTCAGCTCCTT

CCC 

R275W 
CTGTGTGACAAGACTCAATGATTGG

CAGTTTGTTCACG 

CGTGAACAAACTGCCAATCATTGAGTC

TTGTCACACAG 

L358RfsX77 
CGAAGGGGGCAATGGCAGGGCTGT

GG 

CCACAGCCCTGCCATTGCCCCCTTCG 

R402C 
CGCCGAGCAGGCTTGTTGGGAAGCA

GC 

GCTGCTTCCCAACAAGCCTGCTCGGCG 

T415N 
ACCATCAAGAAAACCAACAAGCCCT

GTCCCCG 

CGGGGACAGGGCTTGTTGGTTTTCTTG

ATGGT 

G430D 
CAGTGGAAAAAAATGGAGACTGCA

TGCACATGAAGTG 

CACTTCATGTGCATGCAGTCTCCATTTT

TTTCCACTG 
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After mutagenesis, the DNA vector containing the desired mutations was then transformed 

into XL1-Blue supercompetent cells following manufacturer´s instructions. The transformation is 

similar to the transformation of DH5α competent cells described above. Some of the isolated colonies 

of each mutant that grown on LB agar plates containing kanamycin were picked up, grown in LB 

liquid medium and after DNA extraction were sequenced for confirmation of the inserted mutation. 

The entire cDNA was sequenced in order to confirm the absence of additional mutations. 

 

 

2.2.4 Cell cultures 

 

For parkin mutants characterization, a SH-SY5Y human neuroblastoma cell line (DSMZ –Nr. 

ACC 209) was used as dopaminergic neurons cell model (Xie et al., 2010).  

Cells were maintained in 1:1 DMEM (Dulbecco's Modified Eagle Medium) with Glutamax 

(Invitrogen) and Ham’s F-12 Nutrient Mixture with Glutamax (Invitrogen), 10% of fetal bovine serum 

(FBS) (Invitrogen) and 1% Antibiotic-Antimycotic (Invitrogen) on 25 or 75 cm
2
 tissue culture flasks. 

Cells were cultured in a humidified 5% CO2 atmosphere at 37ºC.  

Upon confluency, cells were trypsinised and passaged to new flasks until passage 4. Cells from all 

passages were frozen and stored in vials with DMSO. For transfection, cells were counted and plated 

at 500 000 cells/well on 12-well plates (used for Western blot, Real-time PCR and 

Immunocytochemistry), or 39 500 cells in 96-wells plates used for cell viability and proteasome 

activity assays. All conditions of every test were performed at least three times. 

 

 

2.2.5 Transfections 

 

SH-SY5Y cells in the adequate concentration were plated in wells 24h before transfection. An 

initial test using Lipofectamine 2000 (Invitrogen) and FuGENE HD (Roche) showed a better 

transfection efficiency with FuGENE. So, for transfection, 1.5 µg DNA of each construct (WT, the 

seven mutants and the vector alone) were mixed with 4.5 µL FuGENE and added to cells in medium 

without antibiotics according to the manufacturer’s protocol. Transfection mixture and cells were 

incubated for at least 24 hours before proceeding for each specific experiment. 
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2.2.6 Real-Time quantitative reverse transcription PCR  

 

RNA was extracted from wells at 24h, 48h and 72h after transfection with TRIzol Reagent (Life 

technologies). TRIzol maintains RNA integrity while disrupt cells and dissolve cells components 

(Chomczynski, 1993). After homogenization with TRIzol Reagent, chloroform was added and after 

centrifugation, the supernatant (with the RNA) was removed and precipitated with isopropanol. 

Precipitated RNA was washed with ethanol and resuspended in DEPC-treated ddH2O. RNA 

concentrations were determined in a NanoDrop 2000 Spectrophotometer (Thermo Scientific). 

After RNA isolation, cDNA was synthesized by reverse transcription of 1 µg total RNA with 

Oligo(dT) using SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen) according to 

manufacturer’s instructions. The primers for Real-Time PCR (table 2.13) were designed using Beacon 

designer (Premier Biosoft), taking into account that each pair of primers amplify through exon-exon 

junctions assuring that results do not reflect genomic DNA amplification.   

 

Table 2.13: Primers used for real time quantification of PARK2 and ACTB mRNA levels.  

Gene Primer Sequence Amplicon Size 

PARK2 
Fw 5’-CAGCCTCCAAAGAAACCATCAAG-3’ 

149 
Rv 5’-GTTCCACTCGCAGCCACAG-3’ 

ACTB 
Fw 5’-GCACTCTTCCAGCCTTCCTTC-3’ 

176 
Rv 5’-GTGATCTCCTTCTGCATCCTGTC-3’ 

 

Quantitative Real-time PCR was performed to measure PARK2 and ACTB mRNA levels in the 

transfected cells with 10 µL of iQ SYBR Green Supermix (Bio-Rad), 0.25 µL of primer forward and 

0.25 µL of primer Reverse, 1 µL of cDNA at 0.1 µg/ µL (10-fold dilution of the cDNA synthesis 

reaction) and 8.5 µL of ddH2O to a 20 µL final reaction volume. PCR amplification (parameters 

shown in table 2.14) was performed in an iQ5 Real-Time PCR detection system (Bio-Rad). The 

amount of double-stranded PCR product synthesized in each cycle was measured by the SYBR Green 

I dye, being the fluorescence measured at the end of the annealing step of each cycle to monitor 

amplification. Real-time PCR amplification of each sample was performed in triplicate. The results 

were analyzed with the IQ5 Optical System Software (Bio-Rad) where the average threshold cycle of 

PARK2 and ACTB were determined.  

  

Table 2.14: Real-time PCR amplification parameters. 

Cycles Time Temperature 

1 x 3 min 95ºC 

 30 s 94ºC 

40 x 30 s  57ºC 

 30 s 72ºC 
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2.2.7 Western blot analysis 

 

For protein expression analysis, cells were collected on ice at 24h, 48h and 72h after transfection 

and lysed in RIPA buffer (Sigma) with protease inhibitors (complete, EDTA-free tablets, Roche). 

Samples were then sonicated and centrifuged at 12 000 rpm for 10 min at 4°C. Supernatant and pellet 

fraction were separated and only supernatants were used.   

Protein concentration was determined using a colorimetric assay (DC Protein Assay, Bio-Rad) in 

microplates according to the manufacturer’s instructions.  

Lysates were resuspended in Laemmli loading buffer with β-mercaptoethanol (responsible for the 

reduction of disulfide bonds) and denatured at 95ºC for 5 minutes. Samples were loaded on a 10% 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel (Bio-Rad), being the 

proteins separated according to their molecular weight, and then transferred to a polyvinylidene 

fluoride (PVDF) membrane (Millipore). After blotting, PVDF-membranes were blocked with 3% non-

fat dry milk in PBS containing 1% Tween-20 (PBS-T) for 1 h with agitation. Membranes were probed 

with the primary antibody mouse monoclonal anti-GFP (Abcam and Rockland) or mouse monoclonal 

anti-parkin antibody (Cell Signaling) in blocking solution overnight with agitation at 4°C. As a 

loading control we have used β-actin and thus membranes were also incubated with monoclonal anti 

β-actin antibody (Sigma) for one hour with agitation at 4ºC. After washing with PBS-T, membranes 

were incubated with anti-mouse (Santa Cruz) secondary antibody. After three washes with PBS-T, the 

proteins were detected with FemtoMax Chemiluminescent Substrate Kit (Rockland) for western 

blotting. 

   

 

2.2.8 Fluorescence microscopy assays  

 

To detect aggregates, SH-SY5Y cells were grown on glass coverslips washed and coated with 

collagen (Stemcell) and transfected 24 hours after seeding with the wild-type parkin, the parkin 

mutants or the GFP tagged vector. 

After 24h, 48h or 72h of expression, cells were fixed in 4% paraformaldehyde/sucrose in PBS for 

20 minutes at room temperature. Nuclei were stained with 100 µL Hoechst 33258 (Invitrogen) at 

1µg/µL and finally, cells were embedded in 5 µL Prolong Gold (Invitrogen) mounting medium and 

sealed with nail polish. Images were obtained on a Zeiss Axio Imager Z1 with a coupled device 

camera, using 20X or 100X (oil) objectives. Images were acquired in the AxioVision release 4.8. The 

presence and quantification of aggregates was analyzed using open source ImageJ in at least 20 cells 

per experiment in three different glass coverslips. 
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2.2.9 Proteasome inhibition 

 

To assess the UPS in the presence of parkin overexpression, cells were incubated with 5µM 

MG132 (N-CBZ-Leu-Leu-Leu-Al) (Calbiochem), a proteasome inhibitor, diluted in dimethyl 

sulfoxide (DMSO). MG132 was added to the cells cultured in glass coverslips 24h after transfection. 

Cells were incubated 12h with the proteasome inhibitor before fixation, nuclei coloration, mounting 

and aggregate analysis were performed as described in 5.2.8. A control with cells incubated 12h with 

only DMSO was included in all tests in which MG132 was used. 

 

 

2.2.10 Proteasome activity assay 

 

To the measure of proteasome activity the Proteasome-Glo Chymotrypsin-Like, Trypsin-Like and 

Caspase-Like Cell-Based Assays (Promega) were used. These luminescent assays measure the three 

major proteolytic activities, described as chymotrypsin-like, trypsin-like and post-glutamyl peptide 

hydrolytic or caspase-like, which are contained in the 20S core. Each assay contains a specific 

luminogenic proteasome substrate in a buffer optimized for cell permeabilization, proteasome activity 

and luciferase activity. These fluorogenic substrates are Suc-LLVY-aminoluciferin (Succinyl-leucine-

leucine-valine-tyrosine-aminoluciferin), Z-LRR-aminoluciferin (Z-leucine-arginine-arginine-

aminoluciferin), and Z-nLPnLD-aminoluciferin (Z-norleucin-proline-norleucine-aspartate-

aminoluciferin) for the chymotrypsin-like, trypsin-like and caspase-like activities. In this assay, 

proteasome cleavage of each substrate result in the generation of a luminescent signal produced by a 

luciferase reaction, that is proportional to the amount of proteasome activity in cells. This 

luminescence was read, 10 minutes after adding the substrate, in a Synergy 2 SL luminescence 

Microplate Reader (Biotek) at 175nm. These assays were performed in 96-well plates (one plate for 

assay) and in addition to the samples transfected with the different constructs, several controls were 

also included: transfected samples incubated for 12h (24h after transfection) with the proteasome 

inhibitor MG132, transfected samples incubated for the same time with DMSO, cells without 

transfection and wells with medium only. These assays were read 36h after transfection of all samples. 

All tests were done in duplicate in each plate, in a total of three plates for assay.  
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2.2.11 Viability assays 

 

As for assessing proteasome activity, the measure of the cell viability in the presence of the 

different constructs was performed with a luminescent assay from Promega, the CellTiter-Glo 

Luminescent Cell Viability Assay. This assay allows the determination of the number of viable cells in 

culture by the quantification of the luminescent signal proportional to the amount of ATP present 

(indicating the presence of metabolically active cells). In this assay it is only needed the addition of a 

single reagent (CellTiter-Glo Reagent) directly to the cells in DMEM/FBS medium. The luminescence 

was also read, 10 minutes after adding the reagent, in a Synergy 2 SL luminescence Microplate Reader 

(Biotek) at 175 nm. 

Two different tests were done, one to analyze cell viability in the presence of the different 

constructs at 24h, 48h or 72h after transfection. In this test only transfected samples and the controls 

(non-transfected cells and medium only) were tested. In a second assay were tested samples 

expressing the different constructs for 24h and after 12h with the proteasome inhibitor MG132, as well 

as, the controls: transfected samples incubated for the same time with DMSO, cells without 

transfection and wells with medium only. These assays were read 36h after transfection of all samples. 

All tests were done in duplicate in each plate, in a total of three plates for each assay. 

 

 

2.2.12 Statistical analysis 

 

All experiments were performed in triplicates (N=3) and in some tests duplicates or triplicates 

were performed for each experiment. Cell viability, proteasome activity, RNA expression and 

aggregate quantification data are expressed as mean ± standard error (SE). Comparison of MG132 

effect on the studied mutants was done using one-way ANOVA with a Bonferroni post-hoc test for 

multiple comparisons. Number of cells with and without aggregates between wild type and mutant 

cells was compared by χ
2
 test. Nonparametric tests were used when homogeneity of the variances was 

not observed. Differences were considered to be significant when p<0.05. Statistical analysis was 

performed using PASW Statistics 18.  
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3 Results  

 

During this project we have developed an efficient strategy to narrow the intronic position of the 

large PARK2 deletions frequently identified in patients with Parkinson disease. Also we have created 

and characterized cellular models overexpressing mutant parkin with seven different mutations found 

in patients with juvenile Parkinson disease. We have selected mutations located in different parkin 

domains in order to have a broader insight into the effect of the diverse mutations. We were able to 

demonstrate the existence of two different groups of GFP-positive cells showing high and low parkin 

expression. Our data show that the different studied mutations do not have an impact on cell viability, 

although resulted in differences in the number of cells showing parkin aggregates and in the number of 

aggregates present in each cell. We were also able to show that inhibition of proteasome activity by 

incubation with MG132 has an impact both in cell viability and in aggregate formation, resulting in 

decreased viability and increased aggregate formation in cells with inhibited proteasome function. 

Finally, during this thesis project we have created SH-SY5Y transgenic cell lines permanently 

expressing wild-type and mutant parkin that will allow further exploring the mechanisms involved in 

Parkinson disease pathogenesis. 

 

 

3.1 Large PARK2 deletion breakpoint determination 

 

The mapping of the large deletions identified in Portuguese patients proved to be an extremely 

difficult task probably due to the large size of the introns in which the deletions under study are 

located. In fact, the first two approaches applied in the context of this project failed in the 

determination of the deletion breakpoints. In the first approach no amplification product was obtained 

probably meaning that the deletion breakpoints present in the Portuguese patients are different from 

the previously described. 

 In the second approach, some amplification fragments were obtained as expected, however, the 

breakpoint detection at the nucleotide level, by sequencing, was not achieved. A possible explanation 

for this is the reduced amount of amplification product isolated from the agarose gel to be afterwards 

used in the sequencing reaction. Also, additional optimization of the PCR reactions with these sets of 

primers was not possible due to the presence of several unspecific fragments.  

In order to overcome these difficulties we proceeded to the SNP approach to narrow the region 

where the different deletions are located, allowing to reduce the size of the fragments to be amplified 

and sequenced. 
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After SNaPshot and sequencing analysis, the SNPs closest to the breakpoint sites (table 3.1) were 

determined. With this approach we were able to narrow the position for all the studied deletions. The 

forward primers of the SNPs upstream and the reverse primers of the SNPs downstream to the 

narrowed breakpoint were used for amplify the fragments. When none of the SNPs within introns in 

study were present (in patients with homozygous deletions) or when all of SNPs were in 

homozygosity (in patients with heterozygous deletions), it was necessary to use the primers of the 

closest exons. 

 

 

Table 3.1: List of the SNPs/exons closest to the breakpoint of each patient. 

Patient Deletion upstream SNP downstream SNP 

1 2 rs9365465 rs6935149 

2 3 rs4235935 rs957374 

3 3-6 rs962900 rs9347562 

4 3-6 rs962900 rs9347562 

5 3-6 E2 rs9355371 

6 3-6 rs4235935 rs9364627 

7 3-6 rs4235935 rs9364627 

8 4 rs2023074 rs9456748 

9 4 rs6935521 rs2023078 

10 4 rs9355994 rs713054 

11 4 rs9355994 rs713054 

12 4-7 rs957374 rs13220282 

13 5-6 E4 rs9458419 

14 7-9 rs6937081 rs9458289 

15 10 rs9365285 rs3890730 

 

These primer pairs combinations were used for PCR amplification with the Expand
TM

 Long 

Template PCR System (Roche) and the obtained fragments are presented in figure 3.1.  
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Figure 3.1: Image of an agarose gel showing the fragments amplified with the primer combinations 

presented in table 3.1. Note that in this experiment, patients 4, 7 and 11 were not tested since it is 

probable that these patients have the same deletion breakpoint as patients 3, 6 and 10.  

 

Further optimization of the PCR conditions allowed the almost complete reduction of 

unspecific fragments in the samples of patients 3, 9, 13 and 15 as we can see in figure 3.2. These 

fragments will now be sequenced in order to confirm the presence of the deletion breakpoint. For the 

remaining deletions the changes introduced in the PCR conditions resulted in no amplification as can 

be seen by the presence of genomic DNA smear, and further optimization is required. 
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Figure 3.2: Image of the agarose gel after further optimization of fragments obtained for patients 3, 9, 

13 and 15.  

 

 

3.2 Functional characterization of PARK2 point mutations and small rearrangements 

 

In order to perform a full characterization of the obtained cell lines, parkin expression was 

assessed at the protein level through florescence microscopy and western-blot, and at the RNA level 

through real-time PCR. The impact of wild-type and mutant parkin expression on cell survival was 

also assessed as well as aggregate formation characterization. Proteasome activity in the presence of 

wild-type and mutant parkin was also assessed. 

 

3.2.1 Parkin expression in SH-SY5Y cells 

 

Neuroblastoma cells have proved to be a difficult cell line to transfect, nonetheless, we have 

optimized the transfection protocol up to an estimated transfection efficiency of 50%. 

Analysis of transfected cells under an optic fluorescent microscope allowed us to observe in our GPF 

positive cells two different cell populations: cells with low GFP expression and cells with high GFP 
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expression (e.g. figure 3.3 and figure 3.4), in which the high expression population is estimatted to 

account for 10% of the GFP positive cells.   

 

 

Figure 3.3: Representative image obtained with a 20X objective on a Zeiss Axio Imager Z1 of the 

pEGFP wild-type protein 48h after transfection. Note that we can see two different GFP positive cell 

population: high (HE) or low (LE) GFP expression. 

 

 

    

Figure 3.4: Images obtained with a 100X oil objective on a Zeiss Axio Imager Z1 of the WT parkin at 

72h after transfection. It is notable the difference in GFP expression between this two cells. 

 

Quantitative analysis of GFP-parkin protein levels, by western-blot, in SH-SY5Y cells has 

been also a challenging task. Western blot was performed with two different anti-GFP antibodies but 

HE 

LE 

100µm 

10µm 
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despite the many attempts, and the easy detection of the housekeeping gene β-actin (ACTB), GFP-

parkin could not be observed.  

Recently we have performed an additional attempt using an anti-parkin antibody and were 

able to detect parkin by this method. However, the epitope of this monoclonal antibody is located in 

the carboxy terminus of the protein, thus not allowing the detection of the mutants resulting from 

frameshift mutations where this part of the protein is not present due to a premature STOP codon 

(figure 3.5).  

 

 

Figure 3.5: Immunoblotting of the soluble fraction of SH-SY5Y cells extracted 48h (A) and 72h (B) 

after transfection, probed with antibodies against parkin and β-actin. Both GFP-parkin fusion protein 

(with approximately 79 kDa) and β-actin (with approximately 42 kDa) are at the correct weight. The 

proteins resulting from the expression of the constructs harboring the frameshift mutations, 

N52MfsX29 and L358RfsX77 were not detected by the anti-parkin antibody. 

 

The expression levels from wild-type and the different parkin mutants still need to be 

quantified in order to assess possible differences in the amount of soluble protein. Also, a new anti-

EGFP antibody will be used in order to observe and quantify the protein levels for all mutants. 

Quantitative analysis of parkin expression in our model system was performed, and PARK2 

mRNA expression was normalized towards ACTB levels. Total mRNA was extracted at 24h, 48h and 

72h after transfection, cDNA was synthesized and real-time PCR was optimized to 100% efficiency. 

The mRNA expression results of three independent experiments are represented in figure 3.6, showing 

that relative expression of normal and all mutant parkin do not significantly differ at each time point. 

A 

B 



39 

 

Thus, we can infer that transfection efficiency of the different construct does not present significant 

variation allowing us to proceed with mutants’ characterization and comparison. 

 

 

Figure 3.6: Quantitative analysis of parkin mRNA levels at 24h, 48h and 72h after transfection. Data is 

expressed as arbitrary units (a.u.) ± SE. Note that the empty vector is not represented in this chart due 

to its low level, coming up with more than 15 CTs of difference from PARK2. 

 

3.2.2 Wild-type and mutant parkin aggregate formation 

 
Mutant protein aggregation is a common hallmark in several neurodegenerative disorders. 

Parkin aggregate formation was characterized by analyzing the images obtained by fluorescence 

microscopy of the coverslips. All images were analyzed with ImageJ for aggregate quantification. 

Representative images of parkin are displayed in figure 3.7, randomly selected from each condition at 

a given time point.  
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Figure 3.7: Representative images of wild-type and mutant GFP-parkin aggregation in SH-SY5Y cells 

at 24h, 48h and 72 hours after transfection. Aggregate formation was mostly noticed in the frameshift 

parkin mutants (N52MfsX29 and L358RfsX77) and in the R275W  mutant. The cells’ nucleus were 

counterstained with Hoescht (blue). These images were obtained with 100X oil objectives on a Zeiss 

Axio Imager Z1. Note that we can see two different aggregate types: small dot-like inclusions (e.g. 

image N52MfsX29/24h) and larger massive aggregates (e.g. image R275W/24h).  
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The number of transfected cells with or without aggregates was quantified for two separate 

experiments and for the three different time points (24h, 48h and 72h). At least 20 cells were analyzed 

for each condition in each separate experiment and the relative number of  cells with or without 

aggregates is shown (fig. 3.8). Results indicate a significant difference in the number of cells with 

aggregates at 24h transfection for the N52MfsX29 (P < 0.001), R275W (P = 0.003) and L358RfsX77 

(P < 0.001) mutants; at 48h for the R42P (P = 0.003), N52MfsX29 (P < 0.001), R275W (P = 0.001), 

L358RfsX77 (P < 0.001) and G430D (P = 0.048) mutants; and at 72h for only the frameshift mutants 

N52MfsX29 (P < 0.001) and L358RfsX77 (P = 0.003).  

 

 

 

Figure 3.8: Quantitative analysis of aggregate formation of wild-type and mutant parkin at 24h, 48h 

and 72h after transfection. These results correspond to the analysis of 20 cells per condition in each 

independent experiment. P-values are as follows: * P < 0.05 and ** P < 0.001.  

 

Regarding the average number of aggregates per cell with parkin aggregates at 24h, 48h and 

72h after transfection (represented in figure 3.9), statistical analysis indicates that the distribution of 

aggregate number at the three transfection time points is different when comparing wild-type with 
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mutant parkin. Once again, the observed differences are probably caused by an increase in the mean 

number of aggregate in cells expressing N52MfsX29, R275W and L358RfsX77 mutants.  

 

 

Figure 3.9: Mean number of aggregates per cell with parkin aggregates. Results are presented as mean 

± SE. These results correspond to the analysis of 20 cells per condition in each independent 

experiment. P-value is ** P < 0.001. 

 

We still need to determine the influence of the different expression levels in aggregate 

formation since apparently, cells with higher expression present more aggregates than cells with lower 

expression (figure 3.10). 

 

   

Figure 3.10: Images obtained with a 100X oil objective on a Zeiss Axio Imager Z1 of the R275W 

mutant at 72h after transfection. It is remarkable the difference in aggregate formation between this 

two cell populations. 
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3.2.3 Cell survival in wild-type and mutant parkin cell lines  

 
In order to assess cell viability in the presence of wild-type and mutant parkin over-

expression, we have used the CellTiter-Glo kit that correlates total ATP with the amount of viable 

cells. In figure 3.11 we present the results of three independent experiments regarding cell survival at 

24h, 48h and 72h after tranfection. Our results show that the different parkin mutants do not have a 

significant impact on cell viability at each time point. 

 

 

Figure 3.11: Levels of cell viability at the three transfection time points in cells transfected with wild-

type and the different parkin mutants, as well as, with the empty vector. Results are expressed in 

relative fluorescence units (r.f.u.) and correspond to the analysis of 3 independent experiments. A 

control for cells without transfection was also included in the assay. 

 

 

3.2.4 Ubiquitin proteasome system and parkin aggregate formation   

 

In order to assess the role of the UPS in parkin aggregation we induced UPS impairment by 

treating with MG132, a proteasome inhibitor, to the cell culture medium 24h after cell transfection. 

The cells, growing in coverslips, were incubated for 12h with this inhibitor at 5µM before fixation and 

preparation for fluorescence microscopy analysis (figure 3.12). 
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Figure 3.12: Representative images of wild-type and mutant GFP-parkin aggregation in SH-SY5Y 

cells after UPS inhibition. Aggregate formation was identified in all transfected cells after 12h 

incubation with 5µM of  MG132. These images were obtained with 100X oil objectives on a Zeiss 

Axio Imager Z1. Note that we can see two different aggregate types: small dot-like inclusions (e.g. 

image G430D) and larger massive aggregates (e.g. image R275W).  

 

The number of transfected cells with or without aggregates was quantified for one experiment 

after proteasome inhibition. The number of cells with aggregates (figure 3.13) are presented, as well as 

the mean number of aggregates per cells with aggregates (figure 3.14). No statistically significant 

results were found in aggregate formation between wild-type and parkin mutants. Analysis of the 

mean number of aggregates per cell indicates that the distribution of aggregate number is different 

between wild-type and parkin mutants, probably due to the impact of two particular mutants, 

N52MfsX29 and R275W. 
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Figure 3.13: Quantitative analysis of aggregate formation of wild-type and mutant parkin after 12 

hours of proteasome inhibition with 5µM of MG132. These results correspond to the analysis of 20 

cells per condition in one experiment. 

 

Figure 3.14: Mean number of aggregates per cell with parkin aggregates parkin after 12 hours of 

proteasome inhibition with 5µM of MG132. Results are presented as mean ± SE. These results 

correspond to the analysis of 20 cells per condition in one experiment. P-value is ** P < 0.001. 

 

 

3.2.5 Proteasome activity under parkin overexpression 

 

In order to characterize the effect of the studied mutations in the proteasome degradation 

capacity, all three proteasome activities (caspase-like, trypsin-like and chymotrypsin-like) were 

measured. However, our results show that none of the mutants has a direct impact in any of the 

proteasome activities (figure 3.15). Nevertheless, proteasome inhibition with 5µM of MG132 for 12h 

resulted in a significant decrease in all proteasome activities. 
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Figure 3.15: Proteasome activity quantification. Representation of all proteasome activities: caspase, 

trypsin, chymotrypsin in cells transfected with wild-type, parkin mutants or GFP empty vector in the 

presence or absence of 5µM MG132 (12h incubation). Results are expressed in relative fluorescence 

units (r.f.u.), and correspond to the analysis of three independent experiments for each proteasomal 

activity. Note that a control comprising untransfected cells was also used. * P < 0.05 and ** P < 0.001. 

 

 

3.2.6 Impact of proteasome inhibition on cell viability 

 

Cell viability of each mutant was also evaluated after proteasome inhibition through a 12h 

incubation with MG132 (figure 3.16). In line with what we have seen before regarding the mutant 

behavior versus wild-type parkin, proteasome inhibition did not affect the mutant viability when 

compared to normal parkin. However, very significant results were obtained regarding proteasome 

inhibition in general, with a decrease in cell viability after 12h incubation with 5µM of MG132. 
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Figure 3.16: Representation of cell viability in cells transfected with wild-type, parkin mutants or 

empty GFP vector, with and without 12h incubation with MG132 (5µM). Results are expressed in 

relative fluorescence units (r.f.u.), corresponding to the analysis of three independent experiments. 

Note that a control comprising untransfected cells was also used. 
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4 Discussion  

Parkinson disease is the second most common progressive neurodegenerative disorder that affects 

almost 2% of population above 65 years old. Aging and increased lifespan transformed 

neurodegenerative diseases in an ever-growing social and economic burden for society (Nuytemans et 

al., 2010). Mutations in the parkin encoding gene are the main cause of monogenic forms of recessive 

PD (Wang et al., 2005) with a 50% frequency in familial patients (Nuytemans et al., 2009). The study 

of these mutations is therefore of the most importance for understanding the pathogenesis of this 

disease.    

 

 

4.1 PARK2 deletion breakpoint determination  

 

Gross deletions account for 50 to 60% of causative germline mutations found in PARK2 (Mitsui et 

al., 2010). The high frequency of this type of mutation may be explained, in part, by the extremely 

large introns present in this gene (with intron 1, 2, 6 and 7 representing > 180Kb in size) (Hedrich et 

al., 2004) spanning a total of 1.4Mb (Mitsui et al., 2010). Another possible explanation is the genomic 

context of PARK2. This gene is located within the third largest observed human fragile site, FRA6E, 

which spans for approximately 3.6Mb and contains eight different genes (Clarimon et al., 2005).  

Common fragile sites, like FRA6E, are chromosomal regions sensitive to certain forms of replication 

stress that replicate late during the S phase. These regions are susceptible to form gaps, breaks and 

rearrangements in tumors and in cells exposed to particular culture conditions, like when exposed to a 

DNA replication inhibitor. Interestingly, the majority of deletions and duplications documented in 

PARK2 are located between exons 3 and 8, which comprise the FRA6E center, of which the most 

unstable regions are exons 3 and 4 representing deletion hotspots (Clarimon et al., 2005; Mitsui et al., 

2010). This high frequency of repetitive elements and instability allows for repeated and independent 

deletion events to occur, especially in the large PARK2 introns where this propensity is higher 

(Hedrich et al., 2004). 

Due to the giant introns of the PARK2 gene, the determination of the exact breakpoint sites for the 

different deletions proved to be an extremely laborious and hard task, mainly when we applied 

conventional methods, such as PCR-based genome walking. After this attempt, we used a SNP 

approach, a powerful technique for identifying genome rearrangements, deletions and duplications 

(Bayrakli et al., 2007) that allowed us to narrow the extension of the deletions. However, it was not yet 

possible to determine the precise positions of breakpoints, as it is still necessary to analyze the 

junction-sequences in detail to explore its causative mechanism. It remains unclear if the same exon 

deletion is a consequence of a similar rearrangement or if these are the result of different mechanisms, 

produced by independent events. The current hypothesis is that rearrangements are independent and 
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recurrent events (Periquet et al., 2001). This theory is supported by the results that rearrangements 

reoccurring in the same breakpoint are less frequent that non-reocurring rearrangements (Mitsui et al., 

2010). To date, only a small number of breakpoints in PARK2 have been determined. The largest 

study of these breakpoints used a custom-designed high-density array for comparative genomic 

hybridization (array CGH) system (Mitsui et al., 2010), a successful, although expensive method.   

To identify the mechanisms that originate breakpoints, we will first need to analyze the sequences 

flanking the breakpoints to search for junction-sequence signatures such as the presence of 

microhomologies. There are various mechanisms of genomic rearrangements, to which 

microhomology regions often contribute to, and therefore we can expect to find them at the identified 

junctions, such as happens for non-homologous end joining (NHEJ). The NHEJ is the major pathway 

for repairing double-strand breaks in chromosomal DNA, which has the potential to fuse any double-

strand break end, without the requirement of an extended homology (Asakawa et al., 2009; Mitsui et 

al., 2010). The NHEJ is thus a highly flexible process that results in diverse breakpoint junctions, 

either showing short microhomologies (generally 1-4 bp) or inserted sequences without homology. It 

was also shown that the formation of key components of the NHEJ pathway occurs during replication 

stress conditions (Mitsui et al., 2010). This reparation mechanism has already been involved in parkin 

deletions in a previous study (Asakawa et al., 2009). Another mechanism, possibly implicated in 

PARK2 deletion formation, is the association of breakpoints with interspersed repetitive sequences, 

such as Alu elements, which are transposable sequences involved in recombination events (Periquet et 

al., 2001). These elements are commonly associated with breakpoints, and  are reported to originate 

genomic deletions by promoting recombinational instability (de Smith et al., 2008). Transposable 

elements are abundant in the genome, although Alu element density in the first 130 Kb of intron 2 of 

parkin gene is of 1 Alu per 2.5 Kb. This could help explain the high frequency of deletions of exons 2 

and 3 (Periquet et al., 2001).  

   

 

4.2 Functional characterization of PARK2 point mutations and small rearrangements 

4.2.1 Parkin aggregate formation and cell viability in SH-SY5Y cells 

 

Different types of mutations spreading throughout the entire PARK2 gene have been found. This 

large spectrum of parkin mutations, differ in their predicted consequences on the function of the 

protein, depending on the type of sequence variation found within the gene. Also, it is thought that the 

different location of the mutations within the gene result in different phenotypes. In 2003, a study 

showed that mutations in functional domains resulted in onset of the disease approximately 9 years 

earlier than mutations in domains not known to be essential for parkin function (Lohmann et al., 

2003).    
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In this project and in order to further characterize the pathophysiological mechanisms leading to 

parkin dysfunction, we have selected seven mutations, missense and frameshift mutations (caused by a 

small deletion or by a novel indel mutation) found in Portuguese patients that are scattered along the 

protein, covering almost all parkin domains.  

The identification of parkin’s role in the ubiquitin proteasome system as an E3 ubiquitin ligase 

suggests that proteasome dysfunction is central to neuronal loss in AR-JP. Also, there are evidences 

linking UPS dysfunction with neurodegenerative diseases, including PD (Ciechanover and Brundin, 

2003). Many neurodegenerative diseases, also called proteinopathies, are characterized by the 

presence of intra or extracellular inclusions resulting from conformational changes of specific proteins 

(aggregation-prone proteins) that acquire an misfolded conformation (with an increase in β sheet 

conformation that tend to self-aggregate), accumulate and aggregate into insoluble fibrils (Vekrellis 

and Stefanis, 2006). Several links between protein aggregation and UPS have already been found, and 

it has been shown that one can influence the other. Some studies support that protein aggregation can 

lead to UPS dysfunction (Vekrellis and Stefanis, 2006) and others that UPS impairment leads to 

further protein aggregation and inclusion formation in neuronal cells (Ardley et al., 2003; Rideout and 

Stefanis, 2002). It is also known that in the apoptosis process, resulting in neuronal death, UPS 

function is compromised, probably due to caspase cleavage of proteasomal subunits (Canu et al., 

2000). A reciprocal complicated relationship between UPS dysfunction, protein aggregation and 

neuronal death exists, as UPS dysfunction leads to neuronal death (Lang-Rollin and Stefanis, 2006) 

and protein aggregation also has this same ability by other UPS dysfunction independent mechanisms 

(Lansbury and Lashuel, 2006). 

However, and despite the importance of parkin in this system, few studies exist concerning the 

effects of mutant parkin in UPS function and neuronal death.  

In this thesis context we aimed at exploring aggregate formation mediated by a wide range of 

parkin mutations and explored the mutations effects in parkin clearance by the 26S proteasome and the 

effect of UPS impairment in aggregate accumulation. In order to accomplish this we used an N-

terminal GFP-tag to visualize wild-type and mutant protein in cells, allowing us to monitor the protein 

aggregation process without the need for immunostaining (Shen et al., 2011) in an dopaminergic 

neuronal-like cell line, SH-SY5Y. 

It is known that parkin is prone to misfolding. In 2003, a study by Winklhofer and colleagues 

showed that in physiological conditions parkin was found almost exclusively in the detergent-soluble 

fraction, and that the majority of wild-type parkin is converted into a detergent-insoluble conformation 

upon oxidative or thermal stress (although not aggregating in general). Nigral dopaminergic neurons 

are particularly exposed to oxidative-stress since the metabolism of dopamine produces various 

reactive oxygen and nitrogen species (Winklhofer et al., 2003). Interestingly, parkin seems to be 

uniquely sensitive to dopamine-induced inactivation when compared with other RBR proteins (Wong 

et al., 2007).     
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Our results show that wild-type parkin is homogenously expressed in the cytoplasm of SH-

SY5Y cells and that occasional parkin aggregates are found, as previously described (Cookson et al., 

2003; Henn et al., 2005; Sriram et al., 2005).  

Regarding the mutants we studied, the R42P mutation shows a distribution similar to wild-

type parkin, with a predominantly homogenous cytosolic distribution corroborating previous results 

(Henn et al., 2005), and rarely showing some aggregates. Although we have a statistically significant 

result regarding aggregate formation at 48h after transfection, consistent with what has been described 

in other studies at this time point (Kyratzi et al., 2007; Sriram et al., 2005; Wang et al., 2005) we 

believe that this is not a highly aggregate prone mutant and as we increase the analyzed samples, we 

will lose the significant value. This, may be the result of a particular low number of aggregates found 

for wild-type parkin at this time point. These results are in agreement with other studies that described 

this mutant as behaving similarly to normal parkin, only rarely forming aggregates in transfected cells 

(Ardley et al., 2003; Hampe et al., 2006; Schlehe et al., 2008). Nevertheless, previously published data 

regarding this mutant are contraditory. It is known that the R42P mutation is located within the 

binding site of Rpn10 subunit of the 26 proteasome, that includes position 42 of the parkin UBL 

domain (figure 4.1) (Sakata et al., 2003). This mutation is described by an NMR study to alter the 

position of the β3 strand and completely unfold the UBL domain, probably impairing its interaction 

with the 26S proteasome. These poorly folded protein structures are sensitive to degradation and/or 

aggregation (Safadi et al., 2011; Safadi and Shaw, 2007), which was confirmed by Henn and 

collaborators, by showing that this mutation decreases parkin stability, being rapidly degraded by the 

proteasome. This mutation, was found not to affect parkin membrane association, contrary to what has 

been described for C-terminal deletion mutants (Henn et al., 2005).  

 

 

Figure 4.1: Schematic representation of parkin domains with analyzed mutations indicated below. 

Proteins that have been shown to interact with parkin are depicted above: the 26S proteasome binds to 

the Ubl domain; and both substrate and E2 enzymes have been shown to interact with many locations 

within the RBR domain.   
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Interestingly, the majority of missense mutations are located in the C-terminal RBR domain 

(Mata et al., 2004), which has been implicated in the binding of parkin substrates and the recruitment 

of E2 ubiquitin-conjugating enzymes. These three domains together represent the critical zone of the 

E3 ubiquitin-ligase activity of the parkin protein (Sironi et al., 2008). 

In this study we found that the two frameshift mutations are highly prone to aggregation at all 

studied time points. Also, we can propose that the mutant N52MfsX29 might have a more pathogenic 

effect probably due to massive aggregation, present in almost all cells. This makes sense because this 

mutation causes a deletion of the entire RBR domain. These results are in agreement with several 

studies where it has been described that C-terminal deletion mutants are inactivated by rapid parkin 

misfolding and formation of protein aggregates. This leads to a significantly altered cellular 

localization from a homogenous cytosolic distribution, in the case of the wild-type protein, to scattered 

aggregates (Kyratzi et al., 2007; Sriram et al., 2005; Wang et al., 2005; Winklhofer et al., 2003). In a 

study of Henn and collaborators it is also described that these mutations fail to interact with cellular 

membranes, probably due to parkin sequestration in aggregates, leading to the absence of parkin at 

other membrane compartments (Henn et al., 2005).  

Interestingly, we have found that the R275W mutation, located in the RING1 domain, also 

shows a different cellular localization, forming intracellular inclusions, according to what has been 

described (Cookson et al., 2003; Hampe et al., 2006; Sriram et al., 2005; Wang et al., 2005) indicating 

that aggregation is not restricted to C-terminal deletion mutants. Also, we did not observe a 

statistically significant result for aggregation of this mutant 72h after transfection, which we believe, 

may partially result from cell death and to the marked presence of low GFP expressing cells found that 

we will further discuss below. 

A patient with a compound heterozygous mutation in parkin gene (a R275W mutation and a 

deletion of 40bp in exon 3) has been found to present Lewy body pathology (Farrer et al., 2001). Also, 

patients carrying the R275W mutation tend for an earlier age at onset than those with two truncating 

mutations (Lohmann et al., 2003). Furthermore, this mutation has been proposed to be responsible for 

Parkinson disease in the heterozygous state. This suggests that the R275W mutation may have a 

unique effect, such as a dominant negative, that distinguishes it from other parkin mutations.   

Regarding the remaining mutations analyzed in our study, R402C, T415N and G430D, all 

showed a similar homogenous cellular localization, similar to wild-type parkin, occasionally 

presenting aggregates, in a small population of transfected cells. Although the R402C mutant has not 

been characterized before, the other two behave as already described (Sriram et al., 2005; Wang et al., 

2005). The pathogenic mechanism of the T415N mutant is probably related to its inability to bind E2 

ligases, as this mutation along with T240R, has been described by Zhang and colleages as responsible 

for abolishing UbcH7 and UbcH8 binding (Zhang et al., 2000).       
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Other mutations were also found to be aggregation-prone such as T240R (Kyratzi et al., 

2007), R256C and C431F (Sriram et al., 2005), C289G, C418R and C441R (Gu et al., 2003; Hampe et 

al., 2006), and all are located in RING domains. Nevertheless, the G430D mutant within the RING2 

domain is apparently not prone to aggregation. However, these differences between the formation of 

aggregates could be due to the relative importance of the mutated residues, since the majority we 

describe above target cysteines. These residues define the structure and function of the RING finger 

domains and mutations in these residues are thought to alter the RING conformation (Zheng et al., 

2000). The high cysteine content found in the RBR domain seems to predispose parkin to oxidative 

stress-induced inactivation and misfolding (Wong et al., 2007).   

These findings suggest that only C-terminal mutations, in RING domains, replacing essential 

amino acids, like the highly conserved cysteines, are critical for the maintenance of the native 

structure of parkin; or truncating mutations that lead to C-terminal deletions are prone to aggregation. 

Wang and collaborators, however, described that many mutations that do not reside within parkin 

RING fingers produce alterations in protein solubility and result in aggregation (Wang et al., 2005). 

Still, analyzing the mutants described by them that have a tendency to form inclusions, we observe 

that besides the R42P mutation, that has contradictory results, only two mutations are not located 

within RING domains. Concerning these mutations, one is in the IBR domain (R334C) that is also 

important for parkin function, and the other (C212Y) is within the new RING0 domain that has a 

similar structure to other RING domains. Additionally, it was shown that truncating mutations 

exceeding three amino acids produced insoluble parkin (Rankin et al., 2011). 

Several parkin mutants have been found to have a detergent-insoluble conformation, with a 

higher propensity to be sequestered into aggressome-like structures (Sriram et al., 2005) Mainly, the 

mutants found with a detergent-insoluble conformation tended to form visible aggregates when 

overexpressed (such as R275W, several C-terminal deletion mutants and point mutations in RING 

domains), but mutations like R42P need to be further characterized as contradictory results have been 

found. This could be due to differences in the cell types used or different epitope tags. However, all 

results in literature highlight the importance of RING and Ubl domains for the correct folding of 

parkin.     

Additionally, we have found statistically significant differences in the number of aggregates 

present in cells expressing mutant parkin, when compared to wild-type. These differences are due to 

the two frameshift mutations and the R275W point mutation. However, these results could be slanted 

because we observe that in some cases, mostly in R275W transfected cells, aggregates tend to 

concentrate in a single massive aggregate. This could be similar to the masses described by Wang et 

al., that appear to resemble aggressomes, a centriole-associated structure, where it was found that these 

major perinuclear aggregates colocalized with γ-tubulin (a centrosome marker) and were also enriched 

in ubiquitin (Wang et al., 2005). This mutation is also described by Cookson et al. as being able to 

form aggressome-like structures, that in many cells accumulate in a single, large perinuclear aggregate 
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(Cookson et al., 2003). This structure could be a precursor of LB, thus explaining the presence of 

Lewy bodies in a patient with this mutation. In addition, we observed that in the N52MfsX29 mutant 

that causes deletion of the entire RBR domain, the aggregates were so many and scattered throughout 

the cytoplasm that ended up being too close together and could not be analyzed as separate entities. 

Another interesting finding is that our cells grown in coverslips showed two different populations of 

GFP expressing cells: cells with low GFP expression and cells with high GFP expression. We 

observed that possibly, different levels of expression are related to differences in the presence and 

number of aggregates, which can skew the results. This phenomenon may be responsible, for example, 

for the absence of a statistically significant result for the R275W mutant at 72 h after transfection. 

We have also found that cells with low expression tend to survive longer; the R275W mutant, 

at 72h after transfection, showed increased cell death, and we could almost only find cells with low 

expression. This means that, although the images obtained and subsequently analyzed are mostly of 

cells with high expression, in cases with high levels of cell death, it was difficult to gather enough 

cells with high expression and thus some cells with low expression levels, which show fewer 

aggregates, were also analyzed. 

Regarding cell viability we did not find an effect of the expression of the different parkin 

mutants with the assay applied. These results are not consistent with our observations by fluorescence 

microscopy or with the results published by Kyratzi et al. where it was shown that apoptotic death 

occurred with mutant parkin overexpression. This study described that both R42P mutation and C-

terminal deletions induced apoptosis and showed that there is a correlation between the ability of these 

mutants to induce death and their ability to aggregate (Kyratzi et al., 2007). 

 These negative results could be due to the presence of epithelial cells and non-transfected cells 

in our samples or due to the assay used, which measures the ATP present in the sample. It was shown 

that cells die with increased cytosolic ATP levels, as ATP is a requisite to the apoptotic cell death 

process (Zamaraeva et al., 2005), which may have influenced our results. So, we need to test neuronal 

death of mutants by other methods such the counting of transfected cells with apoptotic nuclei that was 

used by Kyratzi et al. in order to confirm the cell death results. 

 

 

4.2.2 Proteasome Activity in parkin expressing cells 

 

To analyse the effect of mutants on the proteasome degradation capacity, we assessed the 

three types of proteasome activity in order to evaluate the state of the proteasome in the presence of 

the parkin mutants. Our results show that mutant parkin expression does not result in a significant 

impairment of any of the proteasomal activities. Although in the chymotrypsin assay, considered 

representative of the activity of the proteasome, we have observed highly discordant results between 
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experiments as shown by the large standard error, which will be repeated for confirmation. There were 

no outcome indicators of the effect of any particular mutant in these activities. We noticed however a 

small decrease in two proteasome activities of cells with mutant parkin relative to wild-type: caspase 

and chymotrypsin-like. So, it is likely that the mutants do not affect the ability of the proteasome to 

bind substrates, however, mutant parkin substrates no longer can be degraded by this pathway, 

aggravating the pool of proteins susceptible to aggregation, thus justifying the observation of no 

statistically significant results between mutants. 

These results contradict the findings of Kyratzi where significant results were found for the 

R42P mutant and a C-terminal deletion mutant. Also, analysis of GFPu (an artificial proteasome 

substrate) accumulation in cells showed a small decrease in all mutants as well as in wild-type parkin 

(Kyratzi et al., 2007). This difference can be due to the presence of epithelial cells and non-transfected 

neuroblastomas in our samples. It would therefore be interesting to repeat this experiment in cells 

permanently and stably expressing these constructs, which we already created.  

 

 

4.2.3 Effect of ubiquitin proteasome system inhibition in parkin expressing cells  

 

In order to assess the effect of proteasome inhibition in cells expressing wild-type and mutant 

parkin we have incubated cells with MG132, a peptide aldehyde that can enter the cell and selectively 

inhibit the degradative pathway of the proteasome, since it is a substrate analogue and a potent 

transition-state inhibitor primarily of the chymiotrypsin-like activity of the proteasome (Lee and 

Goldberg, 1998). Our results show that proteasome inhibition resulted in an increase in aggregate 

formation in cells expressing wild-type, as well as, for all the mutants. This similar high levels of 

aggregate presence observed in all mutant and wild-type parkin cells reinforces the importance of UPS 

in the clearing of protein and preventing aggregation, which is probably related to the amount of cell 

death that we observed in these cells. These results are consistent with those seen in several studies 

that show that even wild-type parkin can accumulate into aggregates (with aggressome-like properties) 

under conditions where proteasome activity is diminished (Ardley et al., 2003; Junn et al., 2002). Also 

consistent with previous descriptions, we found that aggregates are located preferentially at the nuclear 

periphery rather than within the nuclei. Ardley et al. found that addition of MG132 increased the 

amount of monomeric and high-molecular-weight species of insoluble parkin, that probably represent 

ubiquitinated parkin (Ardley et al., 2003).  

Nevertheless and despite the number of cells with aggregates being similar in all parkin 

expressing cells, a statistically significant difference was found in the number of aggregates between 

transfected cells. This was probably due to the large number of aggregates found in the R275W 

mutant, which could indicate a major pathogenic effect for this mutation. 



57 

 

In addition, we observed massive cell death on the coverslips after a 12h incubation period 

with 5µM MG132. This vulnerability of dopaminergic neurons to the toxicity of proteasome inhibitors 

was also confirmed by other studies (Biasini et al., 2004; Nakaso et al., 2004). As expected, all 

proteasome activities showed a huge reduction with the addition of the proteasome inhibitor MG132. 

 

 

4.2.4 Parkin mutants and pathogenic mechanism 

 

The great diversity and number of mutations found in parkin suggests that some should share 

a dysfunction mechanism. In this search for pathogenic mechanisms, some studies focused in the 

characterization of the ubiquitination properties of parkin mutants and its effect when interacting with 

substrates. Less ubiquitinated proteins were found in cell lysates in the presence of some mutants, 

which could indicate a reduced E3 ligase activity (Henn et al., 2005).  

As evidence indicates, misfolding and aggregation of parkin are probably the major 

mechanisms of parkin inactivation. Aggregation of parkin or its mutants, spontaneously or under stress 

conditions, leads to mislocalization and/or dysfunction of the protein. These aggregates could also be 

responsible for the compartmentalization of parkin away from its normal cytoplasmic distribution, 

probably depleting it from essential sites of action, leading to an apparent loss of function (Hampe et 

al., 2006; Sriram et al., 2005). Besides, aggregation-prone parkin mutants could be responsible for the 

UPS impairment, by “clogging” the system, where these proteins are targeted for degradation and, 

because of their conformation, are poorly degraded by the proteasome, inhibiting the access of other 

substrates or recruiting the proteasome during an attempt to degrade the misfolded proteins, which 

ultimately leads to depletion of proteasomal units and other UPS components from their usual sites of 

action (Bence et al., 2001; Vekrellis and Stefanis, 2006) culminating in the accumulation of substrates. 

Even a slowing down of the degradation process can lead to significant effects on the accumulation of 

UPS substrates. Note that it is not the inclusions, but the less mature forms of aggregates (low order 

oligomers) that are associated with UPS impairment, because well-defined inclusions are unlikely to 

interact with the proteasome as substrates (Vekrellis and Stefanis, 2006).  

It is also probable, that a correlation between agreggate formation, proteasomal activity and 

neuronal death exists.  

The role of aggregates in cells is still a matter of debate regarding their role as protective or 

damaging. These aggregates probably result from a detoxification protecting mechanism, which 

attempts to clear intermediate species by storing them in an inert form. However, a toxic effect could 

appear if these aggregates would act as a physical barrier to normal intracellular traffic, which 

becomes increasingly important when we look at this in a neuronal context, as blockage of axonal and 

vesicular transport or sequestration of vital cellular components such as ubiquitin, ubiquitin-binding 
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proteins, HSPs or even the proteasome itself (leading to UPS dysfunction) could severely impair 

cellular homeostasis (Vekrellis and Stefanis, 2006). Despite this many possibilities, it remains to be 

clarified if it is UPS dysfunction that causes aggregate formation or vice-versa. Although, by the 

evidence, we think that it is probable that protein misfolding and aggregation are the primary event. 

However the mechanisms responsible for the pathogenic effects of mutants that seem to have a 

preserved stability, subcellular distribution, protein interactions and parkin enzymatic activity remain 

to be elucidated. One possibility is that these mutants could have an increased predisposition to stress-

induced alterations as described in a 2005 study, where two soluble Parkin mutants are more prone to 

rotenone-induced changes in solubility than wild-type parkin (Wang et al., 2005a).  

As functional parkin has been shown to have multiple neuroprotective effects, such as 

protecting cells against damage induced by mutant α-synuclein and other agents (Feany and Pallanck, 

2003; Petrucelli et al., 2002), its cellular depletion, as a result of aggregation or loss of its E3 function, 

would probably lead to an increased predisposition to apoptosis under stress conditions, causing 

neuronal cell loss. Furthermore, parkin is a tumor suppressor gene, that has already been linked to 

cancer, autism, type II diabetes and Alzheimer disease (Cesari et al., 2003; Kay et al., 2010).   

 

 

4.3 Conclusions  

 

The main aims proposed at the beginning of this thesis’ work were accomplished. Despite the 

large size of the PARK2 introns we were able to develop an efficient strategy to narrow down the 

location of the breakpoints for the deletions found in Portuguese patients and are now close to the 

determination, at the nucleotide level, of these breakpoints. Also, a cellular model for juvenile 

Parkinson disease (PARK2) was successfully created, through efficient transient expression of both 

wild-type and mutant parkin, and validated through mRNA expression and fluorescence microscopy. 

Stable expression of these constructs was also achieved, providing a good platform for future 

confirmation of some of the obtained results and to further explore the mechanisms involved in parkin 

aggregate formation and clearance.  

We have described, for the first time the aggregation-prone characteristics of N52MfsX29 and 

L358RfsX77 mutants, as well as for the R275W mutant, reinforcing the role of protein aggregation in 

Parkinson disease associated neuronal dysfunction. However, for the other four mutations studied no 

aggregation was found and the mechanisms of action of these mutants still need to be further explored. 

In this study we have also proposed to characterize the mutants interaction with the ubiquitin-

proteasome system through the biochemical characterization of a representative subset of parkin 

mutations, observing its effects on proteasome activity, cell viability and also in aggregate formation. 

We were able to show that proteasome inhibition, confirmed by the quantification of all three 
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proteasome activities, has an impact in aggregate formation, resulting in increased aggregation and in 

a reduction of cell viability, although no major differences were found between the studied mutants.   

Our results show that different parkin disease-causing mutations have diverse impacts in the 

cell and it is therefore very important to search for the different pathogenic mechanisms resulting in 

neurodegeneration as a starting point to find a way to treat or perhaps reverse the effect of these 

mutations in patients with AR-JP. This can only be possible by the knowledge of the biochemical 

processes that occur in these mutant cells. Characterization of large deletions in this gene is also an 

important for the understanding of the genomic mechanisms involved in deletion formation. 

 

 

4.4 Future Perspectives 

 

In light of the results obtained until now it is important to pursue some lines of research. First, 

in the near future we would like to determine the deletion breakpoints for the large PARK2 

rearrangements that will provide insight into the genomic mechanisms responsible for its origin. 

Parkin protein levels quantification by western-blot, with an anti-Parkin antibody will allow to 

characterize the protein levels of different mutants in the soluble and insoluble fraction. 

SH-SY5Y cells expressing mutant parkin did not show differences from wild-type in the assay 

used to infer cell viability, however, cell death was observed by fluorescence microscopy, and 

therefore, other methodology will have to be used in order to clarify mutant parkin impact in cell 

survival. 

Also, it will be important to confirm the effect of the different parkin mutations in the 

proteasome activities, either by repeating the experiments performed in order to reduce variability 

or applying a different assay. 

Finally, it would be important to expand the study of the UPS in parkin expressing cells, by 

assessing the effect of a proteasome activator (PA28γ) in aggregate formation and cell viability, in 

order to explore if enhancing proteasome activity could be a potential therapeutic target for 

Parkinson disease. 
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6 Appendices 

6.1 Tables with the amplification primers and SBE-primers designed  

 
Table 6.1: List of amplification primers designed for the SNPs selected. 

Intron SNP Fw Sequence Rv  Sequence 

1 

rs1893119 TGGCATGTGCATTGCATCAG TCAGCAGTATACCTGCTATG 

rs2023037 TCTAGGAGGAGTGGATTCAG TGGTGATGAGCAAAGTGTGG 

rs9365465 CATGCCTTCAGCTACAAAAC CTGATTATTAATCCCCTGGC 

rs13206396 AAAGGGTATCCTCCACAGGA CCTAATAACCCTCCGAATGC 

rs6934419 AAGGCTGCCCCATCTTATAG GCTAGGTCCAGTGAAATGTG 

rs2803097 TGCAGAAACAAGCCTCCAAC GTGGAAGACCCTCCATATTG 

rs1893114 TTAAACCACGTGTGGCATCC TCCTTTGAGGTCAGAAGTAG 

rs1893116 AAAGGTCAGGGCAGTCTTTG AGTTCCTGACACTGTCTATC 

rs2846510 CATCAAAGCTCTGCCTGAAG ATCCCAGTGCTTTCTCCAAG 

rs2846507 GCTTAGCGATTTAACCGATG ATTAAATGCAGCCCCACGAG 

rs2846546 CATGAATTGAGATCCATTGG ACCCCTTTGGAAGAGTAGTC 

rs2803087 AGATCGCACCACTGCATTCT GCATGTGTTTACTTGTCATC 

2 

rs12192200 GGCTGTTTCATCTACACTGA GCCAAGACCTGATTCAGACA 

rs4235935 AGTTCATTGGCATCGTCTAC AAAGTGGCATGATTCCTGCG 

rs4709605 TCCATAAAGTCCTGGTGGTG GCCACCACATCGGCTAATTT 

rs4708953 CTTTATTAGTGCTAGAGCCC AAGAAAGCATTTGGCAACCC 

rs9364652 AGAAGAACTGAAGGCCCTTG GCTGGGCGATTCTTGATTTG 

rs6937352 GCACAGAACTTACTGCTCCA CACCTGTAGACAATGATGCC 

rs7744798 GCTGATCCAGGTCACAATTC TGTCTACCGTGTGTAGTGTG 

rs952388 GTGTCCACTTAGGGCCAAAA GGCCAGGTAATACTTCCGTT 

rs7771045 TGTCCCCATCCAAATCTCAC TCTTACATGGAGACAGGCAG 

rs2205624 ACTCCCTGTCATTGTGTGTG AATACAGTTGGCCTTCCTCC 

rs962900 TTATTCACACAAGGGTGCGG TCCTCTTCAGCTCTTCATTC 

rs10945815 AACATTCATCTCAGGGACCC GGACCAACAAGACTCCTGTA 

rs6935149 AAAGCTAGCCAGGTGTGATG TACATGATCTCAGTAGATGC 

rs6923741 TTGTGTACTCTGACCCAGGA TAGAGACCCGTCCTTTGTTG 

rs9347623 CTTCAGCATTTGTACTTCCC TTAGGAAAACTGGCCTCCAC 

rs4709595 CTGATCGATGAAATGCAGCC CCCTGCAAGCATTGAATACC 

rs9356016 AACAGGTAAACTGAGGAAGC GGGTCTGTGTGTTTGCATTC 

rs12205305 CACCCCAATAGAAACTTGCC TTATAGAGGCGGGGTTTCTC 

rs11964364 ACCATCTGTACCCCAATAAC TGCCAAGATTGTTCAGCACA 

3 

rs2023074 AGTGTAGAGTCTCCTTAGAG CTTCACTCCAAACCTTGTCC 

rs7766877 AGAGAGACGTGTTTCAACTG TACGTGTGGTTGACCAACTG 

rs4546464 TGAGAATGCTGCAGAGTCAC GCCATCTAGGTGTGTGTAAG 

rs957374 AAAAGGAGATACCCTGGGTC GTTGCTTTCAGCTCCTTGAG 

rs9355994 GCCAGATGCACTAGGAAATG GGAGACCTATCTACTAGTTC 

rs9365393 AAAGAGCTAGACCCTGCTTC AGAGCACGTATCCCATTCAC 

rs6935521 GGAGATACGAATGGACATGC CTATGATTCTGAGCTGCATC 
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3 

rs2096982 TGCCGGTTGGGATTATTGAC GTTGGCTTCAGTCTGTGTTC 

rs1954939 ACATTTCACACAACGGAGGC AAATCATATGCCCACTGGGG 

rs10945803 ATCACAGTTTGCTGGGCTTC TGGTGTTTGCCTAGGTAGAG 

4 

rs713054 GGACAACAACAGTGAAAAGG TTCACCTGAGACGAATCCTG 

rs4709579 AACGGGACAAGGGAAGGTAA TCTTTCCCTGATTCTCCCCA 

rs13191078 ATTGACAGAGCTTCCAGGAG ATCTGCTACAAAGTGCCAGG 

rs2156267 GCCCCCATGATTCTATTACC TGTTTCAGTTTAGGTACGTG 

rs9365377 CAGTGGTGCAATGTTAGCTC TCTGCTGATGCTCAAGTTCC 

rs9295184 CTGGTCCTACTTAAGAGCAC TTCCTAGGGCTTTCCTTCTG 

rs12529283 AAGAAAATGGCAGTAGCAGC CCAAAAGAGCCAGGTTAAGG 

rs9456748 ATGTACACCCACAGACATGC TTGGACACTTGAGTGTTTGG 

rs9347591 TGAGAAGGAAAAGGCAGACG CCCACTTTCTAAGACTTCCC 

rs3892751 CACACAAGGCTGTTTGAAGG ATGACAGAGCAAGACCCTAC 

rs1893551 GAAGAGCTGCTAGCATTCTC CAACAGATAAACCCACAGCC 

rs6904579 AGCCTTGTAGATTCTGTGCC ACGAGGGTCAAACTCATCAG 

rs6455801 CAACTGGGAATAACACAGAG AGACCCAGTCTGTAAAAGCC 

rs1954926 TACCAAACCATTCCTGCACC GCTTGGAGCTGACTAGAATG 

rs1954925 TCTGTGCTGCCACAGTATTG ACCAAGCAGTTGAAATAACC 

rs4412175 ATTCCATAAACCTTTGGGTC GGGATACAACTGAACAAGTG 

rs9365375 TCAGAGGGTTGCCAAATGAC TACAGTCTTCCTGTGCTACC 

rs9347590 CTCAGAGAACTGATTCACCG AATTGTAGCCTCTGCTCAGC 

rs9295182 GAGATAGGTCTTGACAGAGG AGATCAACGTGTGTCAGCAG 

rs2023078 GCTCCCATACATTAGGTAGG CGGAGACCTTGATAATCGAC 

6 

rs3016551 TCTGACACCTCCCACTTTTG TGACTGATCCCCTCTACCAT 

rs7739802 TTAGCTTGTGGGAGGAAGTG GAAGGAGAAGGAAACTCAGC 

rs6455775 GCCAGTGACATAAACGtACC GAGTGAACCCATTTTGCCAG 

rs6913813 AGGCTGCAGTCAATAGGAAG CCAGCTCAATCAGAAAAGGG 

rs6922518 GACAGTTTCAGCGGATTGAG AATACAGTAGCAGGCTGTCC 

rs12528179 ATGGGCTCTGATAGAATGTG TATTGAAACTGTAGCCGCAC 

rs2155486 GATGATGGTGTTACTGACCG CTTCTGTGAAGCACCTCCAT 

rs6937081 TTGCATATGGGACACACCAC AAGTCGCTGCTCAGTGAAGA 

rs9456721 GATACTCTGAAAACACACTG TGGCATGCTGTTGCTAAGTG 

rs9355368 GACACAGAGCTTCCCAAGAT AGCATCCACCTTTTCTCCAG 

rs9355371 CAGGTGAGATGTGAACGTGT CAGGCTCATGTGTTATTGGC 

rs9347562 TCTTTTCTCTGCCCTTATGG ACCCTTGACGATTTTGCCTT 

rs9364627 CTGCTGTTAACCACAATGGG ATATGTATGTCCTCCCCACC 

rs9458419 GATCACACCCTGCCTCAATA GGCACTAAACAATTAGGGGG 

rs7746164 CTGCCTACAGAGCAGAGATT TGGTGATTTTCCAGGGCCAT 

rs1790022 GTTTCTCTCCTCTCCTACAG AACAGCCCTTTTTCTCAGCC 

rs1784597 ATGTGAACTCCTGGCCTTTC CTCTGTACAACCAGACTCAG 

rs1626020 AGACCCTTGCTAGAACTTTG CACTAAAAAGTGTCCCAGCA 

rs1784588 CTGCTCTAGTTCTGATCTGG GTTTCACATTGTTCTCTCAC 

7 

rs12210817 AACTCTTTCCTTCTCCCTCC AAAGCCAACCCAAGCCACTC 

rs9458315 TGTTGCATAGGGCCTGTTAG GAGCAATCACTTGATGCTGG 

rs1018462 CTCTCTTTACTCTTTTGGAG ACAGTTTCCTAACCAGGATG 
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7 

rs11755949 GCCTGGACTTGGTTTCTATC GTTATCAGAGTGAGGCCTTC 

rs13220282 CATGGTCCAAATTCTGATAG CTAGATGGTATAATATCCCC 

rs12210797 TCTAATGCTGAGCCCAGTTC AAAGTAAGACACGAGTGCGG 

rs910177 ACAGAAGCCCTCTTTTGCAG ACTCCAGGGACAAGAAATTC 

rs9346876 GAGTGTTGGGTGAGTCAAAC CCACAAATCGGCAAACTCAG 

rs9355922 GGCAAAAAGTAGAAAAGCTC ATCTTATGGGCCTGTGGTTC 

rs3765474 TCTCCCAGAATCCTGAAGTG TTCAGGTACACGTCTGTGTC 

rs9365323 AGCATTACCTTCAACGCCTG TGGAAGTCAGATGCTGGAAG 

rs10945778 ACTAGGCTTTTCTGAGGTGC ACAGGCTAGGGTATGAGATG 

rs1024189 CTGCTCTCTGACATTGGTGC GACTGTAGAAAGTATCTGGG 

rs10945764 AATAGCATCTCGTCGACAGG AATTGACTGAGCTGTGGTGG 

9 

rs9365285 TATGCTCTCGGTCCCTAATC TCCTACCTTAGCCTTTGGGA 

rs13211741 TTCAGGGAGAGATGGTGTAG GGTGATGAGGCACCTTTATC 

rs4574609 AAGAAATGGGTGGCTATGGG TAGAGGGCATTGGTTCCTTG 

rs12175609 TGTGAGCCAAGGCAAGGAAG GGTCTACAAAATGGTGAAGG 

rs4708909 AAGAGGAGACTGTGGAAAGG AAATGACACCAGTACCCTGC 

rs577876 GCCATGTGAGAAGGAATACC TAAGCATGTGCAGTGCATGG 

rs12198566 TGTTCTTTCTGATGTCTCCC GGACCTTGGAAAGAGAAAAC 

rs9458289 GCTATGGCTCATAGTTGTCC GTTTACATCTCAGGTGCCAG 

rs4709526 TGCCATTATCCCAGGCTAAC CCTTGGAGAGGATGTTGTTC 

rs517010 GCAACTAGGATCTCAGGAAC AAAGAGTCCTTGCCCAGTTG 

rs4709531 CTAAATCGTTCTGTATGCCG AGGATACATACCCACACTTG 

rs12209107 AAGCCCAGTGACATCGTATC TACAGGCTAGTGTTAGGAGG 

rs12154057 TTAGAGGAACTGGGAGATGC CTCAGCCATCACAAACATCC 

rs1886237 CCCTCCTTGATTTTGGACAG AAGTTTCAGTCCATGGGAAC 

rs506428 TCGCAAGTTTTAGGGTTCAC AGACTCAGACACACACACTC 

10 

rs9347502 ATAAGGCCCTTCATTTCCTG TTGAGACCTACAGGGATGAG 

rs3890730 GGAAAAGCTGATTGGGACTC TCAGCCCTCTTCACACTTTC 

rs69421090 GCTTTGTTCTGTCCAGGAAG GTTACATCCAGAGCCGTTTG 

rs77665080 AATGGGGGAAATGGAACAAC AAAAGGTAGGCTCTGTGGTC 

rs69076320 ATCTCCCAATACTGGGACTG AGAGTTACAGTCCAGGAGAG 
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Table 6.2: List of SBE-primers designed for the SNPs selected. 

Intron SNP Sequence 

2 

rs12192200 AACTGACTAAACTAGGGATGGCTTCTCTCCTTCAAC 

rs6937352 AACTGACTAAACCAATGATGCCTTGTCCTAACAGCC 

rs9364652 AACTGACTAAACTAGGTGTTAAGTCTTCAGATGAATGTAG 

rs952388 AACTGACTAAACTAGAGATCGAATTTATTCACACACATGC 

rs7744798 AACTGACTAAACTAGGTGCGAAATGCGAGATAGAGTTTAACTTG 

rs7771045 AACTGACTAAACTAGGTCACCTTGAATTGTAATAATCCTCTCAC 

rs962900 AACTGACTAAACTAGGTGCCGAGGCAAATCCTGTTGTCACTGCCTCCT 

rs6923741 AACTGACTAAACTAGGTCGTTTCGTCTTTCTTGCATTCACAAAGAATA 

rs9347623 AACTGACTAAACTAGGTGCCTTAAGGTTCTGGAAGAATAAATTCCAACTATT 

rs9356016 AACTGACTAAACTAGGTGCCACGTCGTGAAAGACTTCAGAACCTGCTAAAGT 

rs12205305 AACTGACTAAACTAGGTGCCACGTCGTGAAAGGTTTCTTTGATCATACCTATAAAG 

rs11964364 AACTGACTAAACTAGGTGCCACGTCGTGATTTTTATTTGGATTTTTAATAGACTAC 

rs4709605 
AACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACGTAGGTCTTCCCTATCCTAA

TA 

rs2205624 
AACTGACTAAACTAGGTGCCACGTCGTGAAAGCCTTCCCTTTTCCTCTTTCATTTTTTA

T 

rs4235935 
CCCCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAAGAGGCTTGTTCCAG

GCAATC 

rs4709595 
AACTGACTAAACTAGGTGCCACGTCGTGAAATTGAATACCTCTTCATCAATCTTTTATT

CCAAC 

rs4708953 
CCCCCCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAATAACCAGCCAA

ATGGAGTGTTA 

rs10945815 
CCCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAAATAATTTACATTTGA

GTTTTTGTCAAATA 

rs6935149 
CCCCCCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAAAAACGTATCAA

ACTAGAAATAGAGGACTTT 

3 

rs7766877 AACTGACTAAACTAGTCATAAGGGCTGTGGAATTG 

rs4546464 AACTGACTAAACTAGTCACAGGCCGGCATGTATTC 

rs957374 AACTGACTAAACTAGGTAGATCTTGTGGAAACGAAGATA 

rs6935521 AACTGACTAAACTAAAAAATAAATATGTGATTTTGACAC 

rs2023074 AACTGACTAAACTAGGTGCCACGAACTGCCTGTTCCATGCTTT 

rs2096982 AACTGACTAAACTAGGTGTGTTCACAAGTTATCTTCCTAATAT 

rs9355994 AACTGACTAAACTAGGTGCCACGTGAATCCTGTTGTGTACATATTCA 

rs9365393 AACTGACTAAACTAGGTGCCACGTCGGACCTAATCACCTCCAAATTTCTTA 

rs1954939 AACTGACTAAACTAGGTGCCACGTCGTGAAGAAGATAGAGAATCACAAAAATGTA 

rs10945803 
AACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGCACATAGCTGCTTGGTCTCTGA

A 

4 

rs713054 AACTGACTAAACTAGGAAGGCCCCCAAACTCAGACA 

rs2023078 AACTGACTAAACTATTGTTCTAGTCTATCAGTTTCC 

rs9365377 AACTGACTAAACTAGGTAAATTGTATTAGGTAATCCAGAG 

rs9295184 AACTGACTAAACTAGTCCCTTTTTAATGCTTGAATCGTAA 

rs4709579 AACTGACTAAACTAGGTGCCACGTTGGACAAATATTGATACAGT 

rs9347591 AACTGACTAAACTAGGcAAGTAACCTTCGGGACCATCCATGTTT 

rs3892751 AACTGACTAAACTAGGTGCCGTAACATTTTGGATGTTATTTTCTGCAA 

rs9347590 AACTGACTAAACTAGGTGCCACGTCGTGGTTACATGAGGCACAGCTTC 

rs9365375 AACTGACTAAACTAGGTGCCACGTCGTGAAAGAATATTCCTGACCCAATCCA 

rs9295182 AACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTTTTCACATGGCCTTTCGTCTG 
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4 

rs13191078 
AACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACcgGAGTCCTAACCTTCTGCCT

T 

rs2156267 
CAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAAATATTTGAACACTTCCT

TGGAGT 

rs12529283 
CCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAAcATGGTTTCGATCAAC

CGTCTTTAAG 

rs9456748 
CCCCCCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAAaAGGATATAAAA

TTTAGGAATCTGGC 

rs1893551 
CCCCCCCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAAGTCCTTTTCAA

CCTGCTCAACCACATTTT 

rs6904579 
CCCCCCCCCCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAAAGCACATT

CTCTACTTATAGATAAATTTTT 

rs6455801 
CCCCCCCCCCCCCCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAAATTT

TTAGGGAATAATAAAATATTAGTTTT 

rs1954926 
CCCCCCCCCCCCCCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAAGTAA

TAATGTAATGAATTTTATATTTTTACATCT 

rs1954925 
CCCCCCCCCCCCCCCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAATAG

ATACTTCTTCATTTTACTTAGGAGGAGAGCAGCA 

rs4412175 
CCCCCCCCCCCCCCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAACCAT

AAACCTTTGGGTCTTTTATGTTAACAGCTCAAACTGGC 

6 

rs7739802 AACTGACTAAACTAGGTGAGTCCCCCTTTGCCCAAC 

rs12528179 AACTGACTAAAATTGAAACTGTAGCCGCACTAGTCC 

rs3016551 AACTGACTAAACTAGGTGCGTCACTCCCCTGTTGAAGATA 

rs9355368 AACTGACTAAACTATCCACCTTTTCTCCAGCATTCCCCCA 

rs6913813 AACTGACTAAACTAGGTGCCACGACCATCTCTTAGAGCGGGCTC 

rs9355371 AACTGACTAAACTAGGAGCAGCAGCATCAGGAAACAAGACATGG 

rs9364627 AACTGACTAAACTAGGTGCCACGTCGGCTTCGCTGATCATGTCACCCT 

rs9347562 AACTGACTAAACTAGAACAGTGAAGTTTCTTGTAAACCAGTGAAATTC 

rs1784588 AACTGACTAAACTAGGTGCCACGTCGTGAAAGAAGCCAGTGAGAAATTCTTG 

rs6937081 AACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGCACGAGGACGTGAACGGCTC 

rs9458419 
AACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGAGTATTGTTATTGTTGCTATGT

AG 

rs6922518 
AACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAGATCGCCTGTCATACATAG

CACTCC 

rs2155486 
CCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAAGGGCTGTGATGAGGC

AACGGTGTCCA 

rs6455775 
CCCCCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAAGAGTGAACCCATT

TTGCCAGAGCTAAC 

rs1790022 
CCCCCCCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAAGTTAACTTTTA

CTGTATCACAGTGGCCTA 

rs1784597 
CCCCCCCCCCCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAAAAGGAA

GGAAGAAAAACTGGCTGAGCCAA 

rs7746164 
CCCCCCCCCCCCCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAATTATG

CTTGTATTTTAAATATATGTTGTTAC 

rs9456721 
CCCCCCCCCCCCCCCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAAAGT

GTATTTTAAAGCTTTTCTTTTTTGTTTCAG 

rs1626020 
CCCCCCCCCCCCCCCAACTGACTAAACTAGGTGCCACGTCGTGAAAGTCTGACAATTC

TAATGGCAATTTTATCCTTATAATTAGCAATTTG 
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