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RESUMO 
 

Na presente Tese é descrita a determinação da estrutura tridimensional de duas enzimas dependentes 

de molibdénio, assim como a sua interpretação funcional. No Capítulo 1 é dada uma introdução geral 

acerca da utilização do molibdénio pelos sistemas biológicos, em particular a sua incorporação no 

centro activo de diversas enzimas. No mesmo capítulo, é também apresentada uma visão geral sobre 

a técnica de cristalografia de raios-X de proteínas, assim como alguns princípios básicos da mesma. 

 

As aldeído oxidases são proteínas homodiméricas pertencentes à família da xantina oxidase (XO) de 

enzimas de molibdénio. A estrutura tridimensional da proteína aldeído oxidase homóloga1 (mAOH1) 

de rato encontra-se descrita no Capítulo 2, constituindo a primeira estrutura existente para uma 

aldeído oxidase. A proteína foi simultaneamente extraída de fígado de rato e expressa num sistema 

bacteriano (E.coli). A proteína recombinante permitiu determinar condições favoráveis de 

cristalização. Estas condições foram utilizadas na proteína nativa e levaram à obtenção de bons 

cristais, que possibilitaram a determinação da estrutura a uma resolução de 2.9Å. A estrutura foi 

resolvida por substituição molecular, usando como modelo a xantina oxidase de leite bovino, 

pertencente à mesma família que a mAOH1. No geral as duas proteínas são muito semelhantes, mas 

no entanto, as reações que catalisam são bastante diferentes. A análise da estrutura da mAOH1 e a 

comparação com a estrutura da XO permitiram chegar a importantes correlações entre a estrutura e a 

função, que explicam algumas das diferentes especificidades das duas enzimas. Estes estudos 

contribuem ainda para melhor compreender o papel das aldeído oxidases na saúde humana. Esta 

enzima tem sido objecto de estudo de diversas empresas farmacêuticas, na medida em que está 

envolvida em processos de detoxificação de várias drogas e xenobióticos, assumindo particular 

importância em estudos de “drug design”. 

 

A nitrato reductase periplasmática da bactéria Cupriavidus necator (Cn NapAB) é uma proteína 

heterodimérica, pertencente à família das proteínas de molibdénio DMSO reductase. A estrutura 

tridimensional da Cn NapAB foi obtida a 1.5Å de resolução, a partir de cristais obtidos num robot de 

cristalização. Estudos estruturais, funcionais e espectroscópicos da Cn NapAB encontram-se 

descritos no Capítulo 3. A elevada resolução do modelo permitiu identificar a verdadeira natureza de 

todos os ligandos do molibdénio. Comprovou-se que o 6º elemento de ligação ao metal é um átomo 

de enxofre, e não oxigénio como estava estabelecido desde a elucidação da primeira estrutura de uma 

nitrato reductase (NapA de Desulfovibrio desulfuricans). Pensa-se que esta seja uma característica 

comum a todas as nitrato reductases, o que conduziu a diversas revisões do mecanismo reacional. 
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Para melhor caracterizar a proteína, foram ainda efectuados estudos espectroscópicos e 

electroquímicos, que demonstraram algumas características inesperadas, tal como o potencial redox 

dos dois hemos do tipo-c presentes na enzima. 

 

Uma forma parcialmente reduzida da enzima NapAB de C.necator foi também obtida, e encontra-se 

descrita nos Capítulos 3 e 4. Esta forma foi obtida através da utilização de compostos recentemente 

descritos, e denominados Líquidos Iónicos (IL). Diversos estudos cristalográficos realizados 

utilizando IL como agentes de cristalização, têm-se revelado uma alternativa muito atraente para 

optimização de cristais de proteínas. No caso específico da proteína NapAB de C.necator, estes 

compostos revelaram-se fundamentais para reproduzir em maior escala os micro cristais inicialmente 

obtidos pelo robot de cristalização, e também para a obtenção de cristais da enzima parcialmente 

reduzida, que apresentou características inesperadas no centro activo. 

 

Algumas conclusões gerais do presente trabalho, bem como perspectivas futuras encontram-se 

descritas no Capítulo 5.  
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ABSTRACT 
 
 
This Thesis reports the determination of the crystal structure of two molybdenum-dependent 

enzymes, as well as its functional interpretation. In Chapter 1 is given a general introduction on the 

use of molybdenum in biological systems, particularly its incorporation into the active site of several 

enzymes. In the same chapter is also included an overview on X-ray protein crystallography, briefly 

describing its main basic principles. 

 

Aldehyde oxidases are homodimeric proteins belonging to the xanthine oxidase (XO) family of 

molybdenum containing enzymes. The three-dimensional structure of mouse aldehyde oxidase 

homologue1 (mAOH1) is here reported and described (Chapter 2). This constitutes the first crystal 

structure ever obtained for an aldehyde oxidase. The mAOH1 protein was extracted from rat liver, 

and heterologously expressed in E.coli. The recombinant protein allowed determining suitable 

crystallization conditions, which were reproduced using the native enzyme from mouse liver. 

Suitable crystals were obtained, allowing to solve the protein structure at 2.9Å resolution, using 

bovine milk xanthine oxidase as a search model. Both proteins belong to the XO family of Mo 

proteins and are very similar, although catalyzing different reactions. The structure of mAOH1 and 

its comparison with the XO structure allowed drawing important structure and function correlations, 

and to explain the different enzyme specificities. These studies have also contributed to better 

understand the role of aldehyde oxidase in human health. The enzyme has received considerable 

attention from several pharmaceutical companies, as it is involved in the detoxification of several 

drugs and xenobiotics, assuming particular relevance in human health and drug design studies. 

 

Periplasmic nitrate reductase from the Cupriavidus necator bacterium (Cn NapAB) is a 

heterodimeric protein, and belongs to the DMSO reductase family of molybdenum containing 

enzymes. The three-dimensional structure of the C.necator NapAB was solved at 1.5Å resolution 

using crystals obtained from a crystallization robot. Structural, spectroscopic and functional studies 

of this protein are reported in Chapter 3. The high resolution of the model, allowed identifying the 

true nature of all Mo ligands. In the first reported nitrate reductase crystal structure (NapA from 

Desulfovibrio desulfuricans), the 6th Mo ligand had been identified as an oxygen, but in Cn NapAB, 

a sulfur atom could be unambiguously assigned to this position. It is believed that this is a general 

feature of all nitrate reductases, which has led to the necessary revisions on the reaction mechanism 

for this family of enzymes. To further characterize C.necator NapAB, spectroscopic and 
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electrochemical studies have also been performed, and have shown unexpected features, particularly 

regarding the potential of the two c-type hemes. 

 

A partially reduced form of C.necator NapAB was also obtained, and is described in Chapters 3 and 

4. This form was obtained using some recently described compounds named Ionic Liquids (IL). 

Crystallographic studies performed using Ionic Liquids as crystallization agents, have proved to be 

an attractive alternative for optimizing protein crystals. In the specific case of C.necator NapAB, 

these compounds were fundamental to scale up the initially nano-crystals obtained from the 

crystallization robot, and also in obtaining crystals of the partially reduced enzyme that provided 

unexpected structural features on the protein active site. 

 

Some general conclusions from this work are summarized, and some future perspectives are outlined 

in Chapter 5. 
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Abbreviations 

  
AO aldehyde oxidase 
AOH1 aldehyde oxidase homologue1 
AOH2 aldehyde oxidase homologue2 
AOH3 aldehyde oxidase homologue3 
Cn Cupriavidus necator 
COdh carbon monoxide dehydrogenase   
Dd Desulfovibrio desulfuricans 
Dg Desulfovibrio gigas 
DMSO dimethylsulfoxide 
DTT Dithiothreitol 
Ec Escherichia coli 
EDTA ehtylenediamine tetra-acetic acid 
EPR electron paramagnetic resonance 
FAD flavin adenine dinucleotide 
Fdh formate dehydrogenase 
Hi Haemophilus influenza 
IL Ionic liquids 
mAOH1 mouse aldehyde oxidase homologue1 
mARC mitochondrial amidoxime reducing component  
MCD 
MCSF 

molybdopterin cytosine dinucleotide 
moco sulfurase 

MFEs molybdoflavoenzymes 
MGD molybdopterin guanine dinucleotide 
MoCo molybdenum cofactor 
MOP     Desulfovibrio gigas aldehyde oxidoreductase 
MPT molybopterin monophosphate form 
NAD+ nicotinamide adenine dinucleotide 
Nap periplasmic nitrate reductase 
Nar respiratory nitrate reductase 
Nas assimilatory nitrate reductase 
NO2

- nitrite 
NO3

- nitrate 
PDB Protein Data Bank 
PEG polyethylene glycol 
PFV protein film voltammetry 
PGEh homemade pyrolytic graphite electrode 
rmsd root mean square deviation 
Rs Rhodobacter sphaeroides 
SDH sulfite dehydrogenase 
SO sulfite oxidase 
UTGEh commercial ultra-trace graphite electrode 
XDH xanthine dehydrogenase 
XO  xanthine oxidase 
XOR xanthine oxidoreductases 
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1.1 MOLYBDENUM ENZYMES 

1.1.1 Why Molybdenum? 

Molybdenum is part of life, and part of our lives, and it has long been known that this element is an 

essential nutrient for plants, animals and microorganisms. Molybdenum is the only second row-

transition metal in the periodic table, that is required by the majority of living organisms, and the few 

species that do not require molybdenum use tungsten, which lies immediately below Mo in the 6th 

group (and has similar characteristics).  Molybdenum can be considered a trace element, meaning 

that small amounts are necessary, but higher ones can be toxic or even lethal. Both molybdenum and 

tungsten possess an extraordinary chemical versatility that is useful for biological systems: in the 

case of Mo, its oxidation state varies from +2 to +6, and it can be coordinated to 4 or up to 8 ligands. 

Due to molybdate anion (MoO4
2-) solubility in water, molybdenum is easily available to the 

biological systems. In soils, for instance, the MoO4
2- anion is the only form of molybdenum available 

to plants and bacteria [1, 2]. 

 

Although a minor constituent of the earth’s crust, molybdenum is the most abundant transition metal 

in seawater, which resembles the primitive initial soup from where life emanated. So it is not 

surprising that it has been incorporated in a diverse range of biological systems such as nitrogenases 

and molybdopterin-dependent enzymes. Molybdenum itself is inactive, and in order to gain 

biological activity, it has to be complexed by a pterin compound forming the molybdenum cofactor 

(pyranopterin - MoCo), which is part of the catalytic center of nearly all molybdenum containing 

enzymes. This can be considered the most important use of molybdenum in living organisms [1, 2]. 

 

1.1.2 Molybdenum Cofactor 

The majority of MoCo dependent enzymes catalyze redox reactions. These proteins take advantage 

of the chemical versatility of the metal, which is controlled by the cofactor itself and the enzyme 

environment. Two very different systems have developed in nature to control this redox state and 

catalytic power of molybdenum, which has the ability to function as a catalyst in oxygen transfer 

reactions. With the exception of the multinuclear MoFe7 cluster present in bacterial nitrogenases, all 

other molybdenum dependent enzymes use the metal in a mononuclear form, with an organic 

tricyclic pyranopterin cofactor coordinated to it. Only in the case of carbon monoxide dehydrogenase 

(CODH), Mo has been found in a dinuclear Mo-S-Cu form [3]. The cofactor was originally thought 
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to be present only in Mo enzymes, so it was initially named MoCo. It was later discovered that this 

cofactor is also present in tungsten enzymes, and its designation was changed to pyranopterin to 

avoid confusion. The cofactor coordinates to the metal via its dithiolene function, and although 

representing an integral component of the active center of these enzymes, it does not seem to 

participate directly in catalysis. The pterin can be present in either its dinucleotide or monophosphate 

form. While in eukaryotes the pyranopterin is in the simplest monophosphate form (MPT), in 

prokaryotes it can also be conjugated to nucleosides, usually cytidine (MCD) or guanosine (MGD) 

(Figure I. 1). The cofactor is responsible for the correct positioning of molybdenum in the active 

center, for the control of its redox behavior, and also participates in the electron transfer that occurs 

to and from the metal. Molybdenum containing enzymes are found in all aerobic organisms, whereas 

tungsten enzymes occur essentially in obligate anaerobes (typically thermophilic) [1, 4-6]. 

 

Figure I. 1 - The mononuclear Mo and W enzymes pyranopterin cofactor (MoCo) structure:  in blue, the monophosphate 
form (MPT); in yellow and green, respectively, guanosine (MGD) and cytidine (MCD) dinucleotide form. 

 

The mononuclear molybdenum enzymes are widely distributed in nature, dispersed in a variety of 

organisms from all different kingdoms. Although catalyzing a wide diversity of reactions in the 

metabolism of nitrogen, sulfur and carbonyl compounds, the MoCo cofactor is synthesized by a 
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conserved pathway. Using several biochemical, genetic, and structural approaches, MoCo 

biosynthesis in E.coli has been extensively studied. These studies have identified at least 17 different 

genes involved in the biosynthesis of this complex cofactor. The biosynthetic pathway can be briefly 

divided in four main steps, according to its intermediates: (i) formation of cyclic pyranopterin 

monophosphate (cPMP); (ii) conversion of cPMP to metal-binding pterin (MPT); (iii) insertion of 

molybdenum to form MoCo; and (iii) additional modification of MoCo by the attachment of 

different nucleotides to form the cytosine or the guanosine cofactors (MCD and MGD, respectively) 

(Figure I. 2). The first three steps are similar for all molybdenum containing proteins for all 

microorganisms, but the final modification step varies between different proteins and organisms, 

occurring only in prokaryotes. Mutational block of the cofactor biosynthesis, results in loss of 

essential metabolic functions [4, 6, 7]. 

 
Figure I. 2 – General scheme of the three main steps involved in the biosynthetic pathway of the pyranopterin-based Mo 
cofactors. (Adapted from [6]) 
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1.1.3 Molybdenum Containing Enzymes 

More than 50 different MoCo containing enzymes have been described to date, which have been 

classified on the basis of the Mo active site coordination characteristics [5]. The majority of Mo 

dependent proteins catalyze oxo-transfer reactions, coupled to electron transport between substrate 

and other cofactors, namely iron-sulfur centers, hemes or flavins. In the catalytic center, 

molybdenum is coordinated to the cis-dithiolene group of one or two pyranopterins. Coordination is 

completed by the side chain of a cysteine, seleno-cysteine, serine or aspartate residue, and/or by 

coordination of a oxygen or sulfur atom in the oxo or sulfide group forms. These coordinating 

elements have such a large diversity that, based on X-ray structural data, primary sequence 

alignments and biochemical characterization, pyranopterin containing enzymes have been divided in 

to three large families, summarized in Table I. 1: the xanthine oxidase (XO) family, with one MCD 

or MPT; the sulfite oxidase (SO) (and assimilatory nitrate reductase) family, with one MPT; and the 

DMSO reductase (DMSOR) family, containing two MGD cofactors [5, 6, 8]. 

 

All eukaryotic molybdenum enzymes belong exclusively to either the sulfite oxidase or the xanthine 

oxidase family. They differ in the nature of the third Mo-S ligand, which is either provided by a 

terminal sulfido ligand (XO) or an enzyme-derived cysteine (SO).  Members of the DMSOR family 

are very diverse in terms of reaction, function and structure, and the majority of them work under 

anaerobic conditions, whereby their respective cofactors serve as terminal electron acceptors in 

respiratory metabolism. Some tungsten containing enzymes, such as Desulfovibrio gigas formate 

dehydrogenase (Fdh), belong to the DMSO reductase family, and have high homology with the 

corresponding molybdenum enzymes. A new protein catalyzing the oxidative hydroxylation of 

amine substrates has been recently described, in both humans and plants. Mitochondrial amidoxime 

reducing component (mARC), appears to contain a distinct molybdenum coordination sphere, and 

could represent a new family of eukaryotic molybdenum enzymes [5, 6, 9, 10].  

 

The study of molybdenum enzymes has become increasingly facilitated in recent years, mainly due 

to the possibility of heterologous protein expression in prokaryotic systems. The expression of 

molybdoenzymes is however an extremely complex process, controlled by the transportation of Mo 

into the cell, by the cofactor biosynthesis and apo-protein expression transcriptional regulation [8]. In 

recent decades, crystal structures for several members of the XO, SO and DMSO reductase families 

have provided considerable insight into how active site architecture is implicated in substrate 



 

7 
 

specificity, and enabled reaction mechanism determination. Crystallographic studies of 

molybdoenzymes have revealed that MoCo is deeply buried within the enzyme, and usually in close 

proximity to the iron/sulfur centers. A more detailed characterization of representative enzymes of 

each family is given below. 

 

 

Table I. 1 - Representative pyranopterin dependent enzymes and respective families. 

 

1.1.4 Xanthine Oxidase Family 

Enzymes of the xanthine oxidase (XO) family are the best characterized mononuclear molybdenum 

containing enzymes, and in general catalyze the oxidative hydroxylation of a diverse range of 

aldehyde and aromatic heterocycles. The chemical reaction involves the cleavage of a C-H bond, and 

the formation of a new C-O bond: 

RH + H2O  !  ROH  +  2H+  +  2e- 

This reaction occurs after substrate interaction with the Mo center, which is later reduced from Mo 

(VI) to Mo (IV). The two resulting reducing equivalents are transferred to a protein external 

acceptor: NAD+ in the case of xanthine dehydrogenase (XDH), or O2 in xanthine oxidase, along an 

electron transfer pathway. This process occurs through the protein cofactors, which mediates the 

electronic exchange between substrate and the electron acceptor. Molybdenum enzymes of the 

xanthine oxidase family catalyze hydroxylation of carbon centers, and use water as oxygen atom 

source, rather than O2 that is later incorporated into the product [11, 12].  
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Members of this family are broadly distributed in eukaryotes, prokaryotes and archaea, and comprise 

xanthine oxidoreductases (XOR), aldehyde oxidases (AO) and carbon monoxide dehydrogenases 

(CODH).  Xanthine oxidoreductases have been isolated from a wide range of organisms, and are the 

most well studied enzymes of the XO family of molybdenum proteins, since its crystal structure was 

solved in 2000, by Nishino and co-workers [13]. These mammalian proteins constitute the key 

enzymes in the catabolism of purines, oxidizing hypoxanthine to xanthine, and xanthine into the 

terminal catabolite uric acid. They are synthesized in the dehydrogenase form (XDH) and exist 

mostly as such in the cell. By oxidation of sulfhydryl residues or by proteolysis, XDH can be 

converted into oxidase form (XO), which fails to react with NAD+ and exclusively uses dioxygen as 

electron acceptor. This results in the formation of reactive oxygen species, namely superoxide anion 

and hydrogen peroxide [5, 13].   

 

Eukaryotic xanthine oxidoreductases usually exist as homodimers, and each monomer can be divided 

into three distinct domains, according to cofactor localization. The N-terminal domain harbors a pair 

of spectroscopic distinct [2Fe-2S] centers, followed by a FAD containing domain, and a C-terminal 

domain containing the molybdenum center and cofactor. In the case of prokaryotic enzymes a 

different and more complex structure can be found. XDH from Rhodobacter capsulatus is a dimer of 

dimers, combining a fusion of the FAD and [2Fe-2S] domains into one subunit (XdhA), and the 

molybdenum-binding portion into another (XdhB). The catalytic Mo active site possesses a distorted 

square pyramidal coordination geometry. The apical position is occupied by a Mo=O group, and the 

four equatorial ligands are: two sulfurs from the pyranopterin cofactor, a terminal Mo=S group, and a 

Mo-OH ligand. Generally, electron transfer pathway proceeds from Mo to the nearest iron/sulfur 

center, and from this (usually Fe/SII) to the next iron/sulfur center, until the electrons reach FAD. In 

a different variation, prokaryotic aldehyde oxidoreductase from Desulfovibrio gigas (MOP) does not 

contain the FAD cofactor, and electrons are passed through a complex of several subunits and redox 

centers [11, 12, 14]. 

 

MoCo-dependent enzymes from the XO family that also contain the FAD cofactor have been 

classified in a sub-family named molybdo-flavoenzymes (MFEs) [15]. The most representative 

enzymes are the eukaryotic aldehyde oxidases, and the xanthine oxidoreductases.  
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Unlike xanthine oxidoreductases, which have been studied for more than a century, information on 

the physiological role of aldehyde oxidase in vertebrates, mammals and humans in particular, is still 

vague, in spite of the emerging amount of data on their primary structure. Despite the tremendous 

level of similarity, aldehyde oxidase and xanthine oxidoreductases have different substrate and 

inhibitor specificities, as well as biochemical functions. XOR recognize xanthine and hypoxanthine 

as substrates, but neither of them is a good substrate for the aldehyde oxidase proteins purified so far 

(including the homologues, explained in detail in Chapter 2). AO has relaxed substrate specificity, 

meaning that the protein can accommodate various types of compounds, generally characterized by 

aldehyde functionality (an aromatic or heterocyclic structure). It is also interesting to point out that 

allopurinol and oxipurinol, strong inhibitors of XOR, can inhibit AO to a lesser extent [13, 16, 17]. 

 

There is an urgent need to determine the “missing” three-dimensional structure of an aldehyde 

oxidase. This will allow for the identification of the structural determinants that form the basis of the 

different substrate specificities between AO and XOR. New structural and spectroscopic studies can 

also help to elucidate the exact nature of the molecular processes that occurs during catalysis. This 

would also improve our understanding in the evolution of these proteins [11, 12, 16, 18]. 

 

1.1.5 Sulfite Oxidase Family 

The sulfite oxidase family comprises plant assimilatory nitrate reductases and sulfite oxidizing 

enzymes. The sulfite oxidizing enzymes can be separated in two groups according to their ability to 

transfer electrons to molecular oxygen: the sulfite oxidase (SO) found in animals and plants; and the 

sulfite dehydrogenases (SDH) encountered in bacteria. In animals, SO enzymes catalyze the 

oxidation of sulfite to sulfate, using ferricytochrome c as the physiological electron acceptor: 

SO3
2-  +  H2O  +  2 (cyt c)ox  !  SO4

2-  +  2 (cyt c)red  +  2H+ 

This constitutes the final step in the oxidative degradation of sulfur containing amino acid residues 

cysteine and methionine. SO also plays an important role in detoxifying the excess of sulfite and 

sulfur dioxide, exogenously supplied [5, 19]. 

 

In the oxidized (Mo VI) state of the enzyme, the molybdenum atom is in a distorted square 

pyramidal coordination geometry connected by five ligands: two from the dithiolene group of 

molybdopterin (MPT), the side chain of a strictly conserved cysteine, and two non-peptide oxygen 
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atoms (Table I. 1). Animal sulfite oxidase is a homodimer, located in the mitochondrial 

intermembrane space. Each subunit contains three distinct domains: a Mo cofactor domain, a 

dimerization domain and a smaller heme containing domain. The X-ray structure of human SO is not 

yet available, but the structure of the highly homologous chicken liver was solved in 1997 by Kisker 

and co-workers [20]. Also the crystal structures from plant Arabidopsis thaliana sulfite oxidase, 

which is the smallest eukaryotic Mo enzyme (lacking the heme domain), and the soil bacteria 

Starkeya novella sulfite dehydrogenase (SDH) were determined some years later [21, 22]. Unlike 

animal SO, the plant enzyme is localized in peroxisomes, and does not react with cyt c, but uses 

oxygen instead as the terminal electron acceptor. It is also important to note that, all the other 

families of molybdenum containing enzymes contain [Fe-S] clusters, or interact with iron/sulfur 

subunits, while members of the SO family do not [8, 19]. 

 

In humans, sulfite oxidase deficiency is an inherited sulfur metabolic disorder, resulting in deep birth 

defects, severe neonatal neurological problems and early death. Schwarz and co-workers may be 

close to a treatment (unpublished results), but to date no effective therapies are known. This 

deficiency can be caused by mutations in the SO gene, or due to defects in the MoCo biosynthetic 

pathway, as mentioned in section 1.1.2. Mutations in the genes can be divided into three groups: 

mutations causing conformational changes in the protein active site; mutations affecting dimerization 

contacts; and mutation of residues coordinating MoCo [19, 23]. 

 

1.1.6 DMSO Reductase Family 

The dimethyl sulfoxide (DMSO) reductase family of molybdenum enzymes is the largest and 

displays a greater diversity. With the exception of formate dehydrogenases (Fdh), the members of 

this family catalyze in general the transfer of an oxygen atom, to or from the substrate. The first 

crystal structure reported for this family was the DMSO reductase from Rhodobacter sphaeroides, by 

Schindelin and co-workers [24]. Nevertheless, our knowledge about this family was greatly 

increased with further studies on nitrate reductases and formate dehydrogenases. Interestingly, all 

crystal structures determined to date from the DMSO reductase family of proteins possess high 

degree of similarity and overall fold, and considerable variations in metal coordination and active 

site amino acid residues. In the active site, the metal is coordinated by two pterin cofactors in the 

dinucleotide form (MGD) and different types of ligands. These differences account for the high 

diversity of functions performed by the enzymes of this family [5, 25]. 
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Nitrate Reductases 

Nitrogen is essential for biomolecules, such as proteins and nucleic acids. The nitrogen cycle 

involves a number of redox reactions in which prokaryotes have an important role, since only they 

possess the enzymatic machinery necessary to carry out the process. The dissimilatory reactions 

involve conversion of nitrate into dinitrogen (respiration), or into ammonia (respiration 

/ammonification). The assimilatory ones (which also involve conversion of nitrate to ammonia), start 

with the reduction of nitrate in the cytoplasm. All the reductive steps of the nitrogen cycle are started 

by nitrate reductases (NR), with release of one water molecule: 

NO3
-  +  2H+  +  2e-  !  NO2

-  +  H2O 

With the exception of eukaryotic assimilatory nitrate reductase from the SO family, all other nitrate 

reductases belong to the DMSO reductase family. There are three kinds of nitrate reductase that can 

be used to initiate the respiratory denitrification, or ammonification processes in prokaryotes. All of 

them bind a Mo-bis-molybdopterin guanine dinucleotide cofactor and at least one [4Fe-4S] center. 

Nitrate reductases are divided according to their cellular localization: Nar is a complex protein 

anchored to the membrane, Nap is located in the periplasmic compartment and Nas can be found in 

the cytoplasm [26, 27] (Figure I. 3). 

  

Respiratory nitrate reductases (Nar) in bacteria have been extensively studied. All the Nar proteins 

isolated to date are composed of three different subunits (NarGHI): NarG which contains the MoCo 

active site plus a [4Fe-4S] center; NarH which has three additional [4Fe-4S] centers, and a [3Fe-4S] 

center; and NarI, which is an integral membrane protein with two b type hemes. NarG and NarH are 

in the cytoplasm, anchored to the membrane by NarI. Crystal structures for NarGHI, and NarGH 

were reported some years ago by Bertero and Jormakka, and co-workers respectively [28, 29]. These 

structures revealed interesting aspects, such as the presence of an aspartate side chain as a 

molybdenum ligand. Nar receives electrons from quinol, usually ubiquinol in denitrifiers, and is 

therefore linked to respiratory electron transfer [5, 27]. The periplasmic dissimilatory nitrate 

reductases (Nap) are also linked to quinol oxidation, but do not transduce the free energy from the 

quinol/nitrate couple into H+ motive force. In Nap, electrons from quinol are usually transferred 

through one or two cytochrome containing proteins (NapC or NapB) to the catalytic subunit NapA, 

which contains the MoCo cofactor and a [4Fe-4S] center [27]. The first crystal structure of a 

dissimilatory nitrate reductase was solved in 1999, by Dias and co-workers [30]. This nitrate 

reductase isolated from Desulfovibrio desulfuricans (Dd) is a monomeric NapA protein, while the 
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majority of Nap enzymes purified from other organisms, such as Rhodobacter sphaeroides (Rs), 

reveals the presence of a small NapB subunit, containing two c-type hemes [31]. In the oxidized 

form, molybdenum is coordinated by four sulfurs from the dithiolene moiety (bis-MGD), a cysteinyl 

ligand from the polypeptide chain, and a recently established sulfur ligand, in a distorted hexa-

coordinated MoVI geometry. The enzymatic mechanism of this group of proteins, have been recently 

revised and discussed, based on new structural evidences found in the Dd NapA, and corroborated 

with the recent crystal structure of Cupriavidus necator NapAB [32, 33]. The high resolution (1.5Å) 

crystal structure of C.necator NapAB is discussed in detail in Chapter 3 of this Thesis. 

 

 

Figure I. 3 - Nitrate reductases localization: NarGHI is membrane anchored, NapAB in the periplasm, and NasA in the 
cytoplasm. (Adapted from [27, 34]) 

 

The assimilatory nitrate reductases (Nas) from different organisms have in common the presence of 

the Mo-bis-MGD cofactor, but differ largely in the number and type of electron transfer centers. No 

crystal structure has been reported for this sub-group of proteins, but monomeric Nas from 
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cyanobateria are closely related to Dd NapA, indicating that Nas proteins are more related with Nap, 

than with Nar [35]. 

 

Formate Dehydrogenases 

The few examples of enzymes capable of incorporating molybdenum or tungsten in their catalytic 

active site belong to the DMSO reductase family. Formate dehydrogenase (Fdh) is one of them, and 

it catalyzes the oxidation of formate to carbon dioxide: 

HCOO-  !  CO2  +  H+  +  2e-   

The two Fdh proteins from E.coli (Fdh-H and Fdh-N, from the formate lyase complex and membrane 

bound, respectively) contain molybdenum in the catalytic center, while Fdh from D.gigas has 

tungsten. In spite of some heterogeneity in the protein assembly (E.coli Fdh-H is a monomer, while 

Fdh-N a heterotrimer and Dg Fdh is a heterodimer), the three known crystal structures of formate 

dehydrogenases exhibit very similar active site geometries. The Mo/W metal adopts a distorted 

trigonal prismatic geometry and is coordinated to four dithiolene sulfur atoms (from the two MGD 

cofactors) by a selenium atom from a conserved SeCys residue and by a sixth oxygen or sulfur 

ligand. Also the overall three dimensional structure and cofactor arrangement is very similar in the 

three enzymes [5, 25]. 

 

Given all the above and considering that the first three-dimensional crystal structure of a Mo enzyme 

was determined only 16 years ago (MOP protein, in 1995 by Romão and co-workers), the 

achievements made for this family of enzymes in such a small period of time are remarkable. This 

was possible mainly due to the information obtained from X-ray protein crystallography, 

complemented by spectroscopic and functional studies. The importance of X-ray protein 

crystallography is explained next. 
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1.2 BIOMOLECULAR CRYSTALLOGRAPHY 

X-ray crystallography of important biological molecules started with Dorothy Hodgkin (1910-1994), 

who solved the structure of small molecules such as cholesterol, vitamin B12 and penicillin [36]. In 

1950, the first protein crystal structure of sperm whale myoglobin was solved by Max Perutz (1914-

2002) and Sir John Kendrew (1917-1997). D. Hodgkin was also able to solve the structure of a 

protein (insulin), but only in 1969, after more than thirty years of working on it. These were great 

achievements that were awarded the Nobel Prize in Chemistry, to D. Hodgkin in 1964, and to 

Perutz/Kendrew in 1962. All of this happened no more than 60 years ago, and this year (July 2011), 

there were over 74400 structures deposited in the protein data bank (PDB). Although some of them 

were obtained by other techniques, namely Nuclear Magnetic Resonance (NMR) and Cryoelectron 

Microscopy (cryoEM), the majority (>85%) of the structures were determined by X-ray 

crystallography. How can the great success of this technique be explained? 

 

1.2.1 From X-rays to Crystal Structure 

The determination of molecular structures by crystallography became possible with the discovery of 

X-rays, by Wilhelm Röntgen in the late 19th century. The name X-rays was due to the fact that this 

was an unknown type of radiation at the time, but in Germanic language it is still called Röntgen 

radiation. X-rays are a high-energy electromagnetic radiation and thus part of the electromagnetic 

spectrum, with wavelength between ultraviolet (UV) and gamma (") rays. The major advantages of 

X-rays are its high energy and short wavelength, similar to the inter-atomic bond distances, 

approximately 1Å. X-rays can be obtained by shooting a metal target (usually Cu or Mo, to obtain 

higher or shorter wavelength, respectively) with electrons produced by a heated filament and 

accelerated by an electric field. Due to their wave behavior, X-rays can be diffracted by the 

periodically arrangement of atoms in a crystal. Once obtained, a diffraction pattern from the X-ray 

scattering in the crystal can be used to construct electron density maps. However, additional phase 

information is first needed to overcome the phase problem in crystallography. It often needs 

acquisition of new diffraction data with added information from anomalous scatterers or heavy 

atoms, when estimates of the phases cannot be obtained from homologous structures. Once the phase 

is solved, the preliminary model can be built into the experimental electron density map, which must 

be progressively completed and refined. Validation is also necessary prior to deposition of the 

coordinates in the PDB [37-39]. X-ray crystallography can be viewed as a super microscope: we use 
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the “lens” to focus the diffraction pattern obtained when we pass X-rays through the orderly packed 

molecules in the crystal, and the similarity in magnitude between X-rays and inter-atomic bond 

lengths gives us the possibility to actually see the internal arrangement of atoms in our protein. This 

process is a pipeline, from crystal to structure, which is summarized in Figure I. 4 and will be 

explained below. 

 

Figure I. 4 - The crystal to structure pipeline: most important steps in X-ray protein Crystallography. 

 

1.2.2 Protein Crystallization and Crystal Symmetry 

In order to determine the three-dimensional crystal structure of a macromolecule such as a protein, 

we must start by its expression (in the case of recombinant sources), isolation and purification. The 

diversity of protein purification and characterization techniques existing nowadays, such as 

chromatographic methodologies, has made crucial contributions in making our life easier. All 

crystallographers are nowadays familiar with the protein they are studying, since it’s 

“crystallizability” can be determined a priori by some intrinsic properties. Obtaining crystals from a 

protein is still considered the rate-limiting step in X-ray crystallography. Due to the difficulty in 

predicting the ideal crystallization conditions, many initial crystallization screens with different 

precipitants, concentrations, pHs and temperatures, must be performed. In the most popular manual 

way for growing protein crystals - the vapor diffusion technique - a protein/precipitant mixture is 

allowed to equilibrate over a reservoir, containing larger amounts of the aqueous precipitant solution. 

A siliconized glass slide covers and seals the reservoir, and water is slowly exchanged by controlled 

evaporation. To setup the crystallization process, the protein/precipitant solution can be placed in the 

cover slip itself, or in a support inside the crystallization reservoir - hanging and sitting-drop, 

respectively (Figure I. 5-a). The concentration of protein and precipitant in the drop slowly increases 
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by water transference to the more concentrated solution in the reservoir. When protein solubility 

limit is reached, the system reaches equilibrium and the exchange of water ceases. The final 

concentration of precipitant in the protein solution is supersaturated, and equal to the reservoir. If our 

crystallization conditions are within the supersaturating zone (Figure I. 5-b), nucleation can occur 

and the formation of crystalline nuclei may lead to a protein crystal, which should be an orderly 

three-dimensional array of molecules. Protein crystals have a high solvent content (# 20 - 80%) and 

therefore are very fragile. They must be harvested in mother liquid solution with higher precipitant 

concentration, and transferred to a suitable cryoprotectant solution, usually glycerol, before data 

collection experiments. This procedure prevents crystal dissolution /degradation, as well as radiation 

damage by the intense X-rays, respectively [37, 38, 40]. 

 

Figure I. 5 – (a) Vapor diffusion techniques: Left hanging-drop, right sitting-drop. Hanging-drop is commonly used in 
manual setups, while sitting-drop is preferred for robotic setups; (b) Solubility phase diagram: between the solubility line 
(blue) and the decomposition line (red), lies the metastable region representing the supersaturated protein solution, where 
the formation of crystals will eventually occur. 

 

Nowadays the use of crystallization robots for automated crystallization setup is becoming popular. 

Most of the proteins that are difficult to crystallize are also those that are difficult to produce. The 

most significant advantage of robotic systems is the ability to miniaturize the crystallization drops 

(usually to the nanodrop scale), which allows a considerable increase in the number of conditions 

tested for the smaller amount of protein available [38]. 

 

A crystal is an orderly repetition in the three dimensional space of identical blocks, called unit cells. 

Each unit cell is characterized by its unit cell constants: the lengths of its three edges (a, b and c), and 

the angles between them ($, % and "). The crystal unit cell contains one or more asymmetric units, 
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related by crystallographic symmetry. An asymmetric unit is the smallest unit of volume which 

contains all the structural information. Application of symmetry operations to the asymmetric unit 

generates the unit cell, while lattice translations of the unit cell generate the entire crystal. There are 

4 different types of possible unit cells (P, C, I and F, Table I. 2), which combined with the 7 different 

existing crystal classes, leads to the 14 Bravais lattice. If we imagine a set of constructs dividing 

space in regular units, we can fit the content of our crystal in one of 230 different space groups 

generated by the allowed rotation and translation symmetry operations of the asymmetric unit (all of 

them described in The International Tables for Crystallography, Volume A, http://it.iucr.org/). 

However, as biological molecules are inherently chiral, neither mirror planes nor inversion centers 

are allowed, which reduces the number of possible space groups for proteins to 65 (Table I. 2). 

 

 

Table I. 2 - Crystal systems and allowed space groups for protein molecules. Four types of unit cell: Primitive (P); 
Centered in the side (C), in the body (I), or in the face (F). The spheres in the Bravais Lattice represent the lattice points. 
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Crystals are necessary in an X-ray experiment because an amorphous aggregate of molecules would 

disperse the incoming X-rays, and no diffraction would be produced. The molecules need to be 

arranged regularly forming a crystal, in such a way that the waves diffracted by each molecule can be 

summed, yielding a diffraction pattern. 

 

1.2.3 How to obtain Data from Crystals? 

1.2.3.1 Bragg’s Law and Diffraction 

In 1913, William L. Bragg and his son, William H. Bragg, formulated a physical model to explain 

conditions were diffraction was observed. They considered that in a crystal lattice, regularly spaced 

parallel planes (characterized by h,k,l - the Miller indices) could be drawn through equivalent points. 

If the planes were populated by atoms or molecules, they would reflect X-rays like mirrors. Since X-

rays penetrate the crystals, reflections from successive lattice planes were extinguished by 

interference, unless the reflected rays were in phase with each other. Considering & as the wavelength 

of the X-rays, d as the perpendicular distance between the successive planes, ' as the angle between 

the planes and the incident or reflected X-ray, and n as an integer, then reinforcement of waves 

occurs only when equation in Figure I. 6 is obeyed [41]: 

 

 
Figure I. 6 - Bragg diffraction equation (left) and geometric construction (right): If two beams with identical wavelength 
and phase approach a crystalline solid and are scattered, constructive interference occurs when the length 2dhkl sin' is 
equal to an integer multiple of the wavelength of the radiation (Adapted from [37]).  

 

This is known as the Bragg’s law. If the scattered waves from X-rays are in phase, they interfere 

constructively and Bragg’s Law is obeyed leading to a diffraction pattern. However, if the waves are 
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out of phase, they are canceled out by destructive interference, and there is no diffraction. Usually, 

the families of planes that divide the crystal unit cell edges in integer fractions are the ones that allow 

constructive interference. This model also helps to have an idea about data collection geometry, since 

the number of measurable reflections depends on the information present in the unit cell of the 

crystal. Large cells contain more atoms and more information in the diffraction pattern [37].  

 

The periodicity of molecules in the crystal amplifies the diffracted source beam into many distinct 

beams, each of which produces a distinct reflection (currently named spot) on the detector. With 

monochromatic X-rays and a stationary crystal, Bragg’s law would be met for only a few sets of 

planes, but rotation of the crystal makes reflections from different sets of planes to become visible, 

one by one. Each reflection can be treated like a wave, and its phase and intensity contains the 

information necessary to determine the molecular structure of the protein. There is an inverse 

relationship between the space of unit cells in the crystal (crystal lattice), and the spacing of 

reflections in the detector (reciprocal lattice). In the crystal (real space), the position of an atom in 

the unit cell (lattice point) can be specified by a set of spatial Cartesian coordinates (x,y,z) 

considering one of the vertices of the cell as the origin, but in the diffraction pattern (reciprocal 

space), a reflection position is given by the (h,k,l) indices and the central reflection is taken as the 

origin (Figure I. 7) [37, 41]: 

 

Figure I. 7 - Representation of a basic X-ray diffraction experiment: the crystal when exposed to X-rays produces 
individual reflections in the detector. Diffraction images are a transformation (FT) of the crystal real space (real lattice) 
into reciprocal space (reciprocal lattice) and vice-versa. 
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At the end of a diffraction experiment, or even after obtaining just a few diffraction images, we can 

calculate the space group and the unit cell parameters of the crystal. Also, the number of molecules 

present in the asymmetric unit and its volume can be determined. Protein crystals are composed not 

only of the repeating motif of the asymmetric unit, but also of solvent channels containing the 

compounds present in the crystallization solution and in the protein stock solution. Solvent content 

analysis was first calculated by Matthews in the 60s, [42] who plotted the volume of the asymmetric 

unit (V) against the molecular weight of the protein (Z x Mp). Z is the number of asymmetric units 

present in the unit cell, and is determined by the space group. The ratio of these two values is known 

as the Matthews coefficient, and is defined as VM with dimensions Å3Da-1. In general, protein 

structures have a solvent content of 30-70%, and crystals that diffract at higher resolution, usually 

possess lower solvent content [38]: 

VM = V/ (Z x Mp) 

 

We should be aware that when multiple copies of the same molecule are present in the asymmetric 

unit, they are related by local non-crystallography symmetry (NCS).  This should not be confused 

with the crystallographic symmetry operations of the asymmetric unit, which generates the 

crystal.The direct results of a diffraction experiment are now held by the crystallographer: space 

group and crystal unit cell parameters have been determined, solvent content was calculated, and 

intensity data from the individual reflection points can now be indexed, to improve consistency and 

maximize accuracy. However, the real purpose of the crystallographer research remains: the location 

of atoms inside the unit cell is still unknown. 

 

1.2.3.2 Electron Density and the Phase Problem 

To obtain the structure of the individual diffracting motif, or the distribution of electrons in the 

asymmetric part of the crystal, it is necessary to calculate the Fourier transform of the so-called 

structure factors, or F values (F(h,k,l)), for all Miller indices (h,k,l). A structure factor describes one 

diffracted X-ray, which produces one reflection received at the detector. The Fourier transform 

describes the mathematical relationship between an object and its inverse; it maps objects and 

functions from one space or domain into its reciprocal one and vice versa.  Electron density (() in the 

reciprocal space, can be given by a Fourier transform of the sum of periodic functions describing the 

atoms positions (x,y,z) in the real space (crystal) (Figure I. 8): 
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Figure I. 8 - The Phase Problem in Crystallography: to reconstruct the electron density map, the structure factor 
amplitude and the phase angle for each reflection, must be supplied. Fhkl is obtained experimentally but $hkl is not, and 
must be acquired from additional phasing experiments. V is the volume of the unit cell. (Adapted from [38]). 

 

This means that if we know the amplitudes (F) and the phase angle ($) of the diffracted waves, we 

can calculate the electron density map (( (x,y,z)). When the reflections from the diffraction 

experiment are indexed, a long list of intensities (Ihkl) and associated errors ()hkl) are obtained, for 

each single reflection acquired. The intensities are proportional to the square of the amplitudes, and 

so F(h,k,l) can be obtained from *I(h,k,l). However, in the diffraction experiment there is no information 

available regarding the phase angle that reaches the detector, which enables us to calculate the 

electron density map directly from the equation. To overcome this phase problem, several methods 

have been developed in protein crystallography to obtain the missing phases. Some of them require 

additional diffraction information which must be acquired from new experiments. The initial electron 

density map obtained will still need to be improved in an iterative way [38, 39]. 

 

1.2.3.3 Phase Determination and Model Building 

Due to the lack of phase information in the diffraction patterns, direct reconstruction of the electron 

density map via Fourier transforms is not possible from the intensity data alone. Obtaining the 

phases, or solving the structure, is the most challenging part of the process following crystal growth. 
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In protein crystallography there are two major methods to achieve this: molecular replacement and 

multiple isomorphous (heavy atom or anomalous scatterer) replacement.  

 

Molecular Replacement (MR) 

If a similar model of our protein exists and has been already determined, it can be used to calculate 

the initial missing phases. The correct position of the search model in the crystal needs to be found, 

and therefore this method is called molecular replacement (MR), in the sense of repositioning but not 

substituting the search model. Although easily applicable, this method needs to be used carefully. 

Phase bias is introduced due to phase domination above the intensities during electron density 

reconstruction. The initial structure may largely reflect the features of the search model and not the 

features of the real one, therefore it is necessary to use procedures which remove phase bias to obtain 

a model as accurate as possible. The importance of this method is visible in the protein data bank 

statistics since more than 70% of the deposited structures were solved by molecular replacement. 

The work reported in this thesis is not an exception. The two crystal structures described here were 

solved using molecular replacement, with similar proteins as search models. 

 

Multiple Isomorphous Replacement (MIR) 

In the absence of a suitable similar model with known structure, the phases must be determined using 

a separate diffraction experiment. These alternative methods depend on the determination of a 

marker atom substructure, using the intensity differences between isomorphous data sets, which are 

usually very weak. Traditionally, these differences are found between native and derivative crystals, 

containing a heavy atom (e.g. mercury, platinum, or gold), soaked into the crystal without 

significantly altering its unit cell dimensions or positions of the protein atoms. From two or more 

such derivatives it is often possible to obtain enough phases to solve the native data set by multiple 

isomorphous replacement (MIR). The heavy atom substructure provides the initial phase estimates 

required to reconstruct the electron density. Another method now more commonly applied uses 

anomalous dispersion differences instead, whereby multiple data is collected from the same crystal 

containing an anomalous scatterer, but at different wavelengths. One example of this method is 

replacing the amino acid methionine, by selenomethionine through overexpressing the protein in a 

suitable system. The Se atom provides a proper site source for anomalous phasing signal. The choice 

of wavelengths above and below absorption edges is possible nowadays because of the availability of 
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tunable synchrotron radiation, which provides maximum differences in anomalous dispersion effects. 

This method is called MAD; multi wavelength anomalous dispersion method [38]. 

 

The above methods allow obtaining an estimate of the phase information. In almost every case, the 

initial model of the protein structure obtained is further enhanced by various density modification 

techniques, providing substantially improved electron density maps into which the protein structure 

model can be built. The model building is carried out using computer graphic programs that display 

the electron density, allowing assignment and manipulation of protein backbone and amino acid 

residues. Several electron fitting and geometry refinement tools, as well as automated model building 

programs, greatly accelerate the process. Model building constitutes the most intense involvement of 

the crystallographer since chemical knowledge and previous experience on the field, are an 

advantage. Good phases and high resolution play a particularly decisive role in this important task 

[38, 43]. 

 

1.2.4 Resolution, Refinement and Validation 

There are a number of reliable indicators used to determine the accuracy of the atomic coordinates 

prior to publication in structural databases. Some come from the process of solving the structure and 

reflect the experimental data itself, others are derived from the obtained coordinates. The first simple 

indicator is the resolution of a structure, defined as the limit in diffraction angle, up to which X-rays 

diffracted by a crystal can be detected. Simplifying, the resolution is a measure of how much data 

were collected: the more data, the greater the ratio of the number of observations to the number of 

atomic coordinates to be determined, and usually the more accurate the results. The higher the 

resolution, the more detailed the electron density map. The average number of measurements per 

individual, symmetrically unique reflections is called redundancy or multiplicity. Since every 

reflection is measured with a certain degree of error, the higher the redundancy, the more accurate 

the final estimation of the averaged reflection intensity. After model building, the atomic model is 

“refined” by varying all model parameters to achieve the best agreement between the observed 

reflection amplitudes (Fobs) and those calculated from the model (Fcalc). Refinement is the adjustment 

of model parameters so that the calculated structure factors match the observations as nearly as 

possible, and this agreement is judged by the crystallographic “R-factor”. Every reported X-ray 

structure determination must include the statistical value R-factor (or R-work), which is simply a 

measure of how well the coordinates reproduce the experimental data. Also, the R-free parameter is 
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used to measure the agreement between the final model and the subset of experimental data retained 

for refinement. It corresponds to a little fraction of data (usually 5-10%), which is not used for the 

refinement process. This gives an unbiased measure of agreement. In good quality data the Rwork/ 

Rfree ratio should be around 20%. Another important parameter for crystallographers to judge their 

model is the B factor, which is related to the thermal vibration of an atom around its position. Thus, 

the higher the B factor the less defined (or more flexible) is that particular atom. The B factor 

parameter may be somewhat intuitive, but the most important criteria is that it should be within the 

same range of values for neighboring residues, revealing data consistency [38, 39, 43]. 

 

When analyzing a protein crystal structure, chemical parameters must also make sense, and must be 

in accordance with chemical constraints. Molecular chirality and stereochemistry must be obeyed, 

and deviations must make biological sense. The Ramachandran map provided by the graphic 

programs is a good guide for checking the conformations of + and , angles, the dihedral angles for 

the two degrees of freedom around the C$ atom of the amino acid residues, which define the fold for 

polypeptide chains. 

 

1.2.5 Synchrotron Radiation 

Although the majority of crystallographer’s all around the world possess an in-house X-ray machine, 

the introduction of synchrotron radiation (SR) facilities for routine use, constitutes a remarkable 

revolution in X-ray macromolecular crystallography. The basic fundamental function of a 

synchrotron is that it works as a storage ring, where electrons move around in a circle, almost at the 

speed of light through existing magnetic fields, generating intense X-rays, which can then be used 

for diffraction experiments. The common use of synchrotrons helps to explain the impressive high 

number of structures deposited each day in the PDB. The very slow process of data-collection in 

house, taking usually many days to conclude has been immensely shortened to a few hours or even 

less. Not only the speed of data collection, but also the data quality itself has been dramatically 

improved. Another important feature, due to the intensity and collimation of the beam in the 

synchrotron, is the possible use of ever-smaller crystals in the experiments. This is particularly 

important in the case of crystals that are hard to improve. We have regular access to SR by using 

some of the macromolecular crystallography beamlines available at the European Synchrotron 

Radiation Facility (ESRF) in Grenoble, France, namely ID14 and ID23 (Figure I. 9). This is one of 

the three largest and most powerful synchrotrons in the world (the other two are APS in USA and 
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Spring-8 in Japan). The crystal structures described in this Thesis were obtained from data collected 

at ESRF. 

 

 

Figure I. 9 – ESRF general overview (left), and schematic representation (right). 

 

With all the tools available nowadays, particularly the use of synchrotron radiation facilities, the 

available dispensing crystallizations robots for unlimited screening conditions and the emergence of 

more sophisticated equipment, such as fast X-ray detectors and computer processors, it is expected 

that protein crystallographers are tempted to “attack” proteins that have still remained a taboo for a 

long time. This will allow the number of macromolecular structures obtained by X-ray 

crystallography and deposited in the data bank to grow even more.  
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2  CHAPTER 2  
mouse Aldehyde Oxidase Homologue1 

 

 

 

 

 

 

 

Part of the work described in this chapter, was the subject of the following publication: 

 

M. Mahro*, C. Coelho*, J. Trincão, D. Rodrigues, M. Terao, E. Garattini, M. Saggu, F. Lendzian, P. 

Hildebrandt, M. J. Romão and S. Leimkühler (2011) “Characterization and crystallization of mouse 

Aldehyde Oxidase 3 (mAOX3): from mouse liver to E.coli heterologous protein expression”, Drug 

Metabolism and Disposition, published online ahead of printing. 

 

 



 

  

 

 

 



 

29 
 

2.1 INTRODUCTION 

Aldehyde oxidases (AO or AOX1, EC 1.2.3.1) are a small group of evolutionary conserved enzymes. 

Contrary to xanthine oxidoreductase (XOR), which constitutes the key enzyme in the catabolism of 

purines, converting hypoxanthine to xanthine and xanthine to uric acid, the physiological function of 

aldehyde oxidases is still largely unknown. However, the enzyme is known to play an important role 

in the metabolism of compounds with medicinal and toxicological interest [16, 18].  

 

Aldehyde oxidases oxidize R-H substrates using H2O and O2, which is the final acceptor of the 

reducing equivalents generated. Together with the resulting hydroxylation product (R-OH), 

superoxide anion radical is also produced (O2
.-), which dismutates to form hydrogen peroxide (H2O2) 

(equation below). Both molecules can be potentially toxic for the cell, but can also be involved as 

defensive pathogenic agents. 

 

Typical AO substrates are compounds containing aromatic heterocycles (usually N-heterocycles) or 

aromatic aldehydes, which are oxidized into the corresponding carboxylic acid. From the main 

proposed substrates [16, 44], benzaldehyde, retinaldehyde (vitamin A precursor) and pyridoxal are 

among the most relevant ones (Table II. 1). AO is also known to catalyze the oxidation of 

intermediate products of cytochrome P450 (CYP), and there is evidence in the literature that liver 

AO can be considered as the CYP cytosolic equivalent [45]. There is a possibility that both enzymes 

act in concert, activating or inactivating various types of drugs and compounds with toxicological 

interest. The increasing importance of AO as a drug-metabolizing enzyme has been the subject of 

several publications, where an extensive list of compounds (particularly substrates and inhibitors) 

has also been theoretically tested [45, 46]. These studies have demonstrated that the most powerful 

AO inhibitor is raloxifene, a selective estrogen receptor modulator. Menadione is also reported as a 

specific inhibitor for aldehyde oxidase, and an interesting feature is that both compounds are 

ineffective in terms of XOR inhibition (Table II. 1) [45, 46].  
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Benzaldehyde 

 

Substrate 
 

 

Retinaldehyde 

 

Substrate  

 

Pyridoxal 

 

Substrate 
 

 

Allopurinol 

 

Substrate 
 

 

Acridine 

carboxamide  

(DACA) 

 

Substrate 

 

 

Menadione 

 

Inhibitor 

 

 

 

Raloxifene 

 

 

Inhibitor 

 

 

7-hydroxy acridine 

carboxamide 

 

 

Inhibitor 

 

Table II. 1 – Relevant aldehyde oxidase substrates and inhibitors.  
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Xanthine oxidoreductases and aldehyde oxidases possess similar primary structures in various 

animal species, with 40% amino acid identity. They also share similar tertiary and quaternary 

structures, as the catalytically active forms are homodimers composed of two identical subunits with 

approximately 150 kDa each. The main physiological difference between the two enzymes is that 

XOR can exist in two interconvertible forms (XO and XDH), while AO exists only in the oxidase 

form. There is another difference regarding enzymatic function, since AO utilizes only molecular 

oxygen as electron acceptor, while XOR are able to transfer electrons not only to oxygen but also to 

nicotinamide adenine dinucleotide (NAD+) [16, 18, 47].  

 

It was known that in humans XOR and AO resulted from the expression of distinct genes residing on 

chromosome 2. A similar situation was thought to be true in the case of other vertebrates, but a few 

years ago the identification and characterization of novel murine genes, coding for different forms of 

aldehyde oxidase has changed this assumption [48]. While humans possess a single AO active gene, 

rodents have developed over three different genes (through a series of gene duplication events), 

coding for aldehyde oxidase homologue 1, 2 and 3 (mAOH1, mAOH2 and mAOH3), respectively. 

These aldehyde oxidase isoenzymatic forms are located on mice and rat chromosomes 1 and 9, 

respectively. Human and rodents aldehyde oxidases share 85% sequence identity, while 60% identity 

is found between the isoenzymatic forms and the human protein (Figure II. 1). One interesting 

feature is that the orthologous proteins from different organisms possess higher similarity than the 

homologous ones, present in the same organism. This may suggest that the gene duplication events 

occurred before species divergence [16, 17, 49].  

 

 

Figure II. 1 - General schematic representation of molybdo-flavoenzyme genes in vertebrates (Adapted from [50]). 
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Aldehyde oxidase homologues 1, 2 and 3 are expressed in different cell tissues, and the purpose of 

their existence is still puzzling. In rodents, the richest source of AOX1 and AOH1 is the hepatocyte 

component of adult liver. Expression of the two proteins is overlapping, but they differ as to the time 

of appearance in the liver of the developing mouse. The AOH1 transcript is readily detectable in 

newborn mice, while AOX1 appears later and is only measurable in the fully developed animal. 

Biochemical experiments demonstrated that the major source of mAOH2 is the harderian gland, 

which is the most important exocrine gland located in the intra-orbital cavity of rodents and other 

vertebrates. The other isoform, the mAOH3 protein, could only be detected in the bowman’s gland, 

the principal exocrine gland located in the sub mucosal layer of the nasal cavities, representing 

almost 5% of total cytosolic proteins. It was also observed that in rodents the aldehyde oxidase and 

aldehyde oxidase homologue1 activities are influenced by the gender, since significantly higher 

amounts of enzyme are present in male. This suggests that estrogens may regulate AOX1 and AOH1 

expression at the translational level, while androgens could exert transcriptional control. It is possible 

that gender specific regulation of these proteins by androgens and estrogens is an indirect effect 

mediated by other hormones or growth factors, as for instance the circulating growth hormone (GH) 

[48, 49, 51]. 

 

There is an increasing need to elucidate the main features, which dictate the specificity for the 

various aldehyde oxidase isoforms. These studies can only be possible with the expression of 

recombinant protein in heterologous systems, particularly due to the limited amounts of protein 

available from the native sources, and also to enable mutagenic studies. The chemical structure of 

MoCo in prokaryotes is different from that found in eukaryotes, preventing assembly of the holo-

enzyme in engineered bacteria. With the introduction of genetic modifications in the host bacteria for 

eukaryotic MoCo synthesis, the authors Mahro and Schumann were able to express and purify 

recombinant mouse AOH1 and AOX1 proteins respectively [52, 53]. This breakthrough helped to 

produce sufficient amount of protein for biochemical and structural studies, which may be useful in 

providing some answers to the questions related with this family of proteins. Besides, it can also help 

to understand the possible importance and involvement of human aldehyde oxidase in the field of 

diseases such as obesity and cancer. Recent data support the idea that this enzyme plays a positive 

role in adipocyte differentiation. The specific tissue aldehyde oxidase expression could be explored 

to design novel anti-cancer drugs or even strategies to achieve organ and/or tumor selectivity [15, 

54]. 
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Until recently, and due to the absence of a three-dimensional structure for an aldehyde oxidase 

protein, in silico studies have been carried out based on model comparison with the XOR protein, 

whose crystal structure was reported in 2000 by Nishino and collaborators [13]. The system now 

available for producing enough quantity of the heterologous mAOH1 protein, allowed obtaining 

suitable crystallization conditions, which were later successfully reproduced with the native mouse 

protein [52]. The crystal structure of mAOH1 was solved by molecular replacement, and is the focus 

of this chapter. This constitutes the first three-dimensional structure for an aldehyde oxidase, and has 

been used for detailed comparisons with other enzymes of the xanthine oxidase family, providing the 

molecular details for the distinct specificities between the different enzymes (XORs and AOs). Also, 

comparison of the structural characteristics of the different forms within the same species (such as 

AOX1 and mAOH1) can help to predict if they metabolize the same or different substrates. The role 

of mammalian aldehyde oxidases in the activation or inactivation of foreign drug compounds can 

also be explained. Due to its unique distribution and substrate specificities, aldehyde oxidase has 

been recently recognized as an enzyme with an important role in the metabolism of drugs and 

xenobiotics, and has therefore high pharmacological relevance [15, 45]. 
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2.2 EXPERIMENTAL PROCEDURE  

2.2.1 Purification of AOH1 from Mouse Liver 

To purify the native mouse aldehyde oxidase homologue1, 135 CD-1 mice were purchased from 

Charles Liver Laboratory (Como, Italy) and kept at 25ºC with a 12h light/dark cycle in the “Mario 

Negri” Institute animal house facilities (Milan, Italy). Unless otherwise stated, all purification steps 

were carried out at 4ºC. The mouse livers (35-40 g) were homogenized in three volumes of 100 mM 

sodium phosphate buffer, pH 7.5 using an Ultraturrax homogenizer (Omni 2000-Waterbury, CT). 

Homogenates were centrifuged for 45 min at 100,000 x g to obtain the cytosolic extracts, which were 

later heated for 10 minutes at 55°C, and again centrifuged to remove precipitated proteins. An equal 

volume of saturated ammonium sulfate solution was added to the supernatant, and incubated 

overnight.  The resulting precipitate was collected by centrifugation and resuspended in 100 mM 

Tris-Glycine pH 9.0. The solubilized proteins were mixed with benzamidine Sepharose (Amersham 

Biosciences, Sweden) pre-equilibrated with sample buffer, and incubated for 2 hours. The resin was 

washed with 4 x 10 ml equilibrating buffer and the absorbed protein eluted using 5 mM 

benzamidine. After buffer exchange to 50 mM Tris-HCl pH 7.4, the sample was loaded on a 5/5 

FPLC Mono Q column (Amersham), and mAOH1 eluted with a linear gradient 0-1M NaCl. The 

protein was concentrated to 10 mg/ml in 50 mM Tris-HCl, pH 7.4, and stored at -80ºC. 

 

2.2.2 Expression and Purification of mAOH1 from E.coli  

The protein heterologous expression system was developed by Martin Mahro, at the “Institut für 

Biochemie and Biologie” (Potsdam, Germany). E.coli TP1000 (-mobAB) cells were used for the co-

expression of mAOH1 wild-type with mMCSF (pSS110), and the cultures were grown aerobically in 

LB medium at 30°C for 24h. The mAOH1 cDNA from mouse CD1 liver was cloned using primers 

designed to permit cloning into the NdeI and SalI sites of the expression vector pTrcHis. The 

resulting plasmid was designated pMMA1 and expresses mAOH1 as an N-terminal fusion protein 

with a His6-tag. pMMA1 and pSS110 were transformed into TP1000 cells. To express the 

recombinant protein, cells were grown in LB medium supplemented with 150 .g/ml ampicillin, 50 

.g/ml chloramphenicol, 1 mM molybdate, and 10 .M IPTG, at 30°C. After 24h the cells were 

harvested by centrifugation and resuspended in 50 mM sodium phosphate buffer pH 8.0, 300 mM 

NaCl. DNaseI and lysozyme (1 mg/L) were added to disrupt the cells at 12°C and 1.35 kbar 
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(Constant Cell Systems TS Benchtop Series). The cleared lysate was loaded onto a Ni2+ column (Ni-

NTA, Qiagen), and mAOH1 eluted with 250 mM imidazole. Buffer was exchanged to 50 mM 

potassium phosphate, pH 7.8, 0.1 mM EDTA using PD10 columns (GE Healthcare). To increase the 

activity of the enzyme, chemical sulfuration was performed [55, 56]. The purified enzyme was 

incubated with 500 .M sodium dithionite, 25 .M methylviologen and 2 mM sodium sulfide, for 1 

hour in an anaerobic chamber (Coy Lab Systems). After buffer exchange to 50 mM sodium 

phosphate, pH 8.0, 300 mM NaCl, the sample was loaded onto a Superose 6 column (GE 

Healthcare), and fractions containing dimeric mAOH1 were combined and stored in 100 mM 

potassium phosphate pH 7.4, at -80°C. 

 

To cleave the N-terminal His6-tag, mAOH1 was incubated with 50 mM Tris-HCl pH 8.0 and 1mM 

EDTA, at 4ºC for 12 hours. Thrombin cleavage site introduced by pTrc-His was used, and the 17 

residues His6-tag was cleaved after Arg17 [57]. The protein was loaded onto a HiLoad 26/60 

Superdex 200 column (GE Healthcare), equilibrated with 50 mM sodium phosphate pH 8.0, 300 mM 

NaCl. Fractions containing dimeric /His6-mAOH1 were combined and concentrated to 17.8 mg/ml, 

by ultrafiltration (Amicon). Protein aliquots were frozen in liquid nitrogen and stored at -80°C until 

usage, without loss of activity.  

 

Using PCR mutagenesis, the amino acid exchange Y885M was introduced into the mAOH1 

recombinant protein. The generated variant was expressed and purified using the same conditions as 

previously mentioned for the wild type form of the enzyme. After purification, the Y885M variant 

was concentrated to 17.8 mg/ml and stored in 100 mM potassium phosphate pH 7.4, at -80°C until 

necessary. 

 

2.2.3 Protein Crystallization 

The first crystallization trials were performed using the native mAOH1 purified from male mouse 

livers. Using this protein, more than 800 different conditions were tested, at three different 

temperatures (4, 15 and 20ºC) but no successful results were obtained. In addition, the limited 

amount of protein obtained (9.4 mg) restricted additional crystallization trials. The recombinant 

mAOH1 yielded larger amounts of pure protein that allowed pursuing the crystallization studies and 

including more variables, such as incubating the protein with DTT and using several additives. The 
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first crystals appeared using the recombinant protein incubated with a freshly prepared DTT solution, 

polyethylene glycol (PEG) 4000 and 8000 as precipitant and Tris-HCl as buffer, at 20ºC. Under these 

conditions long thin needles were obtained, but were unsuitable for diffraction experiments and 

needed to be improved (Figure II. 2-a). Several additives were tried in order to optimize the needle-

shaped crystals, using commercially available additives as well as some known mAOH1 inhibitors 

(e.g. menadione). Another less conventional approach using the ionic liquids [C4mim] Cl- (1-butyl-3-

methylimidazolium chloride) and [C4mim] MDEGSO4, (1-butyl-3-methylimidazolium 2(2-

methoxyethoxy) ethyl sulfate) 0.2, 0.4 and 0.6 M (final concentration in the protein solution) was 

also attempted. In a similar case of crystal optimization, this proved to be a very attractive alternative 

(Chapter 4 of this Thesis). Nevertheless, this approach did not improve the mAOH1 crystals. Further 

extensive trials included small variations in the initial conditions, such as changing the buffer and 

precipitate concentration. The best protein needles of recombinant mAOH1 were obtained using 12-

16% PEG 8000 as precipitant and 0.1M potassium phosphate pH 7.0 at 20ºC. Using the hanging drop 

vapor diffusion method, equal amounts of protein (17.8 mg/ml) and precipitant solution were mixed, 

after incubating the protein with fresh DTT at 4ºC for at least 1h (final DTT concentration in the 

protein solution was 8mM).  

 

In parallel, another strategy was followed in an attempt to try to improve the crystals of the 

recombinant protein that consisted in cleaving the protein His6-tag (which added 17 amino acids to 

the protein). His-tags usually have little effect on the native structure of a protein, but can have an 

impact in crystallization. We tested if this was the case for the recombinant mAOH1 [58]. Although 

crystals were also formed under similar conditions as the protein with the His6-tag (14% PEG 8000, 

0.1M potassium phosphate pH 7.00 and spermine tetra-HCl as additive) no significant improvement 

was achieved. The best diffraction obtained for crystals from the untagged recombinant protein, was 

around 6Å at PXI beamline at Swiss Light Source (SLS, Villigen, Switzerland), and the crystals were 

very difficult to reproduce. 

 

Using a remaining amount of native mAOH1 isolated from the mouse liver, similar crystallization 

conditions were tested. The buffer pH for the mouse protein was optimized to 6.5 (instead of 7.0), 

the protein concentration used was 10 mg/ml, and 2mM EDTA was added to the crystallization 

solution. Larger, two dimensional rectangular-shaped crystals (0.40 x 0.15 x 0.05 mm3, Figure II. 2-

b) of the native mAOH1 were reproducibly formed. These were the only crystals that allowed 
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collection of a usable diffraction data set. The same conditions were also used for crystallization of 

the variant Y885M, and nice crystals grew within 3 days (Figure II. 2-c). Although these crystals 

looked much better in terms of size and morphology than the native recombinant ones, diffraction 

was also poor. 

 

Figure II. 2 - Crystals of mAOH1 protein: (a) needles from the recombinant protein; (b) crystals from the native mouse 
liver protein; and (c) crystals from the Y885M variant. 

 

2.2.4 Data Collection, Processing and Structure Solution 

All tested crystals were flash-cooled directly in liquid nitrogen, using paratone oil as cryoprotectant, 

before transfer to a gaseous nitrogen stream for data collection. Several cryoprotectant solutions 

containing glycerol (30%) and higher PEG concentration (20%) were also tested. Some of the tested 

native mAOH1 crystals diffracted to ~6Å but, after annealing (using the beamline’s automated 

annealing procedure), diffraction improved considerably to a resolution beyond 3Å. A first data set 
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(mNAT-I) consisting of 180º of data was collected at ID14-1 from the European Synchrotron 

Radiation Facility (ESRF, Grenoble, France), at a wavelength of 0.934Å on an ADSC Q210 detector 

(Figure II. 3). The crystal belonged to space group P1, with unit cell dimensions a = 91.07 Å, b = 

135.02 Å, c = 147.48 Å, ! = 78.27º, " = 77.77º and # = 89.96º. The calculated Matthews coefficient 

was 2.89 Å3Da-1, corresponding to two dimers in the unit cell with a solvent content of 57.4 % 

(Table II. 2) [42]. Because the data were very anisotropic and the mosaicity was high, the initial data 

processing using imosflm 1.0.4 was incomplete (~89% complete to 2.9Å) [59]. The mosaicity value 

had to be maintained fixed because refinement during integration was unstable and led to crashing of 

the program. The same crystal was later measured at ID23-1 (&=0.9748Å), again at the ESRF. 

Although a full 360º of data were collected, only about 220º were useable (mNAT-II) because the 

crystal was very anisotropic. This data set was worse than the first one, and even though the 

multiplicity was higher, the completeness was very low (~60% to 3Å) (Table II. 2). The two data sets 

were merged together in order to increase the completeness and improve the multiplicity. This 

dataset presents a very high Rpim and is only ~80% complete to 2.9Å (NATmerged), but the overall 

redundancy improved to ~3.0. The structure of the mAOH1 was solved by molecular replacement 

using BALBES on the mNAT-I data set [60]. The bovine milk XDH structure with a covalently 

bound oxipurinol inhibitor (PDB code 3BDJ) was used as a search model [61]. Four monomers were 

found in the unit cell, yielding a Matthews coefficient of 2.89 Å3/Da-1, corresponding to a solvent 

content of 57.4%. 

 

 

Figure II. 3 - Diffraction pattern of the native mouse liver AOH1: (a) obtained at ID14-1 (in the upper left quadrant after 
re-annealing); (b) and at ID23-1 (ESRF). Resolution at the edge is 3.0Å. 
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Crystal Sample mNAT-I mNAT-II NATmerged 

X-ray source ID 14-1 ID 23-1 - 

Crystal system Triclinic 

 
Unit-cell parameters  

(Å, º) 

a = 91.07, b = 135.02,  

c = 147.48 

$ = 78.27, % = 77.77,  

" = 89.96 

a = 91.54, b = 135.83, 

 c = 147.84 

$ = 78.22, % = 77.89,  

" = 89.97 

 

 

- 

Maximum resolution (Å) 2.9 3.0 3.0 

Mosaicity (º) 1.0 1.0 1.0 

Molecules per ASU 4 

Matthews coefficient 
(Å3/Da) 

 

2.89 

 

2.93 

 

- 

Space group P1 

Wavelength (Å) 0.934 0.975 - 

No. observed reflections 219268 (20892) 223954 (24999) 338761 (41810) 

No. unique reflections 133319 (16784) 78529 (10857) 112209 (16428) 

Resolution limits (Å) 51.1 – 2.9 50.0 – 3.2 50.0 – 3.20 

Redundancy 1.6 (1.2) 2.8 (2.2) 3.0 (2.5) 

Completeness (%) 89.8 (77.3) 69.5 (65.1) 81.8 (81.7) 

Rpim (%) 5.6 (14.0) 14.3 (68.9) 17.5 (63.4) 

I / ) (I) 9.6 (3.6) 6.3 (1.4) 7.0 (4.2) 

Table II. 2 - X-ray crystallography data-collection statistics. (Values in parenthesis correspond to the highest resolution 
shell) 

 

2.2.5 Model Building and Refinement 

Initial protein model was manually built in Coot [62] and refined using phenix.refine [63]. Initial 

refinement cycles were carried out using simulated annealing. Because of the low resolution (2.9Å) 

and incomplete dataset (low data/parameter ratio), 4-fold NCS restraints, consisting of the 4 copies in 

the A.U., were imposed. Also, only one B-factor per residue was refined throughout the process. TLS 

was also used in the refinement, with the TLS groups automatically calculated by phenix. Currently, 

the Rfactor and Rfree values are 24.40% and 27.87% respectively, before addition of water molecules. 

Structure refinement data is present in Table II. 3. Final model included the following amino acid 

residues: Ser7 – Val1334. There are also some regions with no visible electron density, particularly: 

Pro169 - Thr199, Glu227 – Asn231, Gly399 – Ile404, Asp538 – Ile545, Leu558 – Gly563, Arg1290 

– Trp1296, and Gln1321 – Pro1329. 
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Crystal Sample mNAT-I 

Resolution limits (Å) 51.1 – 2.9 

Number of reflections 
 

133319 
 

Rwork (%) a 24.40 

Rfree (%) b 27.87 

RMSD from ideal geometry 

Bond lengths (Å) 

Bond angles (o) 

 

0.020 

1.82 

Average B-factor (Å 2) 41.10 

Ramachandran outliers (%) 0.3% 

Ramachandran favored (%) 93.6% 
 

 

Table II. 3 – Structure refinement data.  
aRwork = 0 ||Fcalc| - |Fobs||/ 0 |Fobs| x 100, where Fcalc and Fobs are the calculated and observed structure factor amplitudes, 
respectively. (bRfree is calculated for a randomly chosen 5% of the reflections). 
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2.3 RESULTS AND DISCUSSION 

The aldehyde oxidase homologue1 (mAOH1) was purified from mouse liver and from a 

heterologous expression system in Escherichia coli, and the resulting enzymes were compared. Both 

proteins show the same catalytic properties and characteristics, with the exception that the 

recombinant protein is only 30% active, while the native is 100%. Additionally, both proteins were 

crystallized and the best crystals were obtained from the native mAOH1 (Figure II. 2). These crystals 

diffracted beyond 2.9Å at the ESRF (Grenoble), and belong to space group P1 with two dimers 

present in the asymmetric unit (Table II. 2) [52].  

 

2.3.1 Overall Structure Description 

Mouse aldehyde oxidase homologue1 is a homodimer, composed of two identical subunits with 

approximately 150 kDa (Figure II. 4-a). Each monomer comprises 1335 residues and is divided in 

three main domains, classified according to their involvement in binding the distinct cofactors. 

Domain I is the N-terminal domain and the smallest one (20 kDa). It harbors the two 

spectroscopically different iron-sulfur clusters and comprises residues Met1-Pro169 (Figure II. 4-a, 

red). Domain II binds the FAD cofactor, has an approximate molecular size of 40 kDa, and includes 

residues Thr232-Leu534 (Figure II. 4-a, green). The C-terminal domain, is the largest one (90 kDa), 

encloses the MoCo (molybdopterin monophosphate, MPT) binding site and corresponds to residues 

Leu576-Val1335 (Domain III, Figure II. 4-a, blue). The Mo catalytic center is located at the bottom 

of a hydrophobic pocket accessible from the exterior trough a wide funnel ~15Å long. The distance 

from the pterin exocyclic NH2 to the nearest atom of [2Fe-2S] II center is 5.1Å (Figure II. 4-b). The 

cofactor disposition in the protein is related with the electron transfer pathway. When the oxidative 

hydroxylation occurs at the Mo catalytic center, the released electrons can pass consecutively 

through the two iron-sulfur-centers until they reach the FAD redox cofactor, and from there to the 

final electron acceptor, O2. The three domains are connected by two linkers: domain I and II by a 

poorly conserved linkerI region (Ser170 to Asn231), and domain II and III by linkerII (Lys535 to 

Pro575) (Figure II. 4). 
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The N-terminal Iron/Sulfur Domain 

The two iron–sulfur clusters are located in domain I, and are designated [2Fe-2S] I and II, according 

to their distinct EPR signals.  Domain I can be sub-divided in two subdomains, the N-terminal sub-

domain (residues Met1-Val92) which harbors the [2Fe-2S] II and has a typical plant-type ferredoxin 

like fold, with one $-helix and five stranded %-sheets [14]. Fe/S II is bound via a Cys47-X4- Cys52-

Gly-Ala-Cys55-X21-Cys77 motif. The second helical sub-domain (residues Glu93-Pro169) has a 

twofold symmetric arrangement, and binds the [2Fe-2S] I via the highly conserved Cys117-Gly-Phe-

Cys120-X31-Cys152-Arg-Cys154 motif [13, 14]. The nearest Fe atoms from the two different Fe/S 

centers are 12.4Å apart from each other. The closest distance between [2Fe-2S] II and the 

molybdopterin cofactor is 5.1Å, while [2Fe-2S] I is approximately 9Å away from the FAD cofactor 

(Figure II. 4-b). 

 

Figure II. 4 - (a) Ribbon representation of mAOH1 crystal structure. Monomer B in grey (left), and monomer A showing 
the different domains (right), colored as: domain I in red (residues Met1-Pro169); domain II in green (residues Thr232-
Leu534); and domain III in blue (residues Leu576-Val1335). The linker regions are represented in grey (linker I and II, 
respectively Ser170-Asn231, and Lys535-Pro575). The molybdopterin monophosphate (MPT), [2Fe-2S] and FAD 
cofactors are shown as sticks and colored by atom type. (b) Arrangement and distances between the different protein 
cofactors: MPT, the two distinct [2Fe-2S] centers, and FAD. 
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The FAD Domain 

The flavin adenine dinucleotide (FAD) cofactor is part of domain II, which can be subdivided in two 

different sub domains spanning from Thr232 to Arg419, and from Lys 420 to Lys534, respectively. 

The FAD cofactor is mainly coordinated by the first sub domain. Residues Pro263, Leu264, Asn268, 

Thr269, Tyr270, Ser354 and Leu411 make hydrogen bonds with the adenine dinucleotide region, 

while residues His358 and Asp367 contact the riboflavin ring. From all these residues, only the 

residues Thr269 and Asp367 are highly conserved among other XO family members (Figure II. 5). 

The second sub domain is in the MoCo domain side, and contains three long %-sheets and two $-

helices. The FAD molecule occupies a vast area within the protein, with the isoalloxazine ring in 

close proximity to the solvent area. The riboflavin ring is pointing towards Fe/S I center (Figure II. 

4-b).  

 

The C-terminal Catalytic Domain 

The C-terminal and largest domain (Domain III - 90 kDa) contains the MoCo binding site, which is 

located on the bottom of the substrate binding pocket. It can be structurally divided in four sub-

domains, classified as for MOP and XO [13, 14]. Each sub domain is constituted by non-continuous 

stretches of the polypeptide chain: sub domain III.1, comprises residues 576-698 and 745-843; sub 

domain III.2, residues 699-744, and 844-964; sub domain III.3 possess residues 965-1009, plus 

1160-1354; and finally, sub domain III.4 is constituted by residues 1010-1159. All these sub domains 

have a similar fold, with two central $-helices covered by three to five %-sheets, solvent exposed in 

the case of sub domains III.2 and III.3, and involved in dimerization contacts in sub domains III.1 

and III.4. The molybdopterin monophosphate cofactor is buried in the protein, and forms hydrogen 

bonds with residues Ala802, Arg917 (highly conserved among XO family members, Figure II. 5), 

Leu1043, Ser1085 and Gly1087. The molybdenum atom is found at the bottom of a wide funnel 

(20Å wide at the surface), dominated by the presence of hydrophobic residues, which leads to the 

active site (Figure II. 10).  

 

Figure II. 5 - Comparison of the amino acid sequence of mAOH1 with XOR from bovine milk, with XDH from 
R.capsulatus and MOP from D.gigas. The mAOH1 [2Fe-2S] I and II binding Cys residues are marked as (*) and (+) 
respectively. Black boxes indicate identical residues, and grey similar ones. Alignment results obtained with 
CLUSTALW multiple sequence alignment program at the EMBL-EBI web server, and the figure prepared using 
BOXSHADE from EMBnet server. 
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2.3.2 The Homodimer 

The overall topology of mAHO1 is similar to the mammalian xanthine dehydrogenase protein 

(XDH), a typical butterfly shape structure with approximate dimensions of 150Å x 90Å x 70Å 

(Figure II. 4). The two monomers are tightly bound, involving 23 hydrogen bonds (< 3.2Å) and 12 

salt bridges. The majority of these bonds are established by residues from domain III, the MoCo 

binding domain. Particularly residues: Lys759, Glu761 and 764, Lys789, Asn790 and 793, Lys797, 

Arg798 from sub-domain III.1, and residues Gln1021, Ile1028, Thr1030, Asp1031, Ser1033, 

Val1034, Asp1069 and Asn1078 from sub-domain III.4. The surface contact area between the two 

subunits is 2500Å2, approximately 5.3% of the total surface area of each monomer. The 

molybdenum atoms from the two different monomers are more than 50Å apart and the two subunits 

most likely act independent from each other. 

 

2.3.3 Comparison with Structurally Related Proteins 

The mAOH1 structure reported in this Thesis is the first crystal structure ever obtained for an 

aldehyde oxidase. However, several protein structures from the XO family have already been 

reported. The most interesting feature among these different proteins is the similar overall globular 

shape, while catalyzing different reactions with a wide range of substrates. The first crystal structure 

was reported in 1995, for the prokaryotic D.gigas aldehyde oxidoreductase (MOP) that was solved at 

2.25Å, and later refined to almost atomic resolution (1.28Å) [14, 64]. MOP oxidizes aldehydes to 

carboxylic acids, with little specificity for the nature of the side group. Despite the low 

correspondence in sequence identity (23%, Figure II. 5), the overall fold of MOP is similar to 

mAOH1, in domains I and III, since MOP lacks the FAD domain and has only 907 amino acid 

residues (Figure II. 6). Also, the two [2Fe-2S] centers are similarly positioned in both MOP and 

mAOH1, and many of the residues proximal to the clusters are either identical or type conserved. 

 

The crystal structures of bovine milk xanthine dehydrogenase (XDH) and its interconvertible form 

xanthine oxidase (XO) were first reported in 2000 [13]. The crystal structure of the XDH isolated 

from the purple bacterium Rhodobacter capsulatus (Rc) was also solved, and published in 2002 [65]. 

While the bovine XDH/XO is a homodimeric enzyme with ~1300 amino acid residues in a single 

polypeptide chain, the R.capsulatus XDH has an ($%)2 heterotetrameric structure, with molecular 

mass of 275 kDa. In the latter enzyme, the cofactors are located on different polypeptide chains, with 
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the two [2Fe-2S] clusters and the FAD bound to the XdhA subunit, and the MoCo cofactor located in 

the XdhB subunit. For an easier comparison, each mAOH1 monomer (that includes the three 

different cofactors) can be considered as equivalent to one Rc XDH heterodimer. The mAOH1 and 

the Rc XDH structures superimpose with an rms deviation of 1.09Å for 913 C$ atoms. Despite the 

different subunit composition, the overall fold as well as cofactors arrangement of mAOH1 and Rc 

XDH is similar, with both proteins sharing 32% sequence identity. However, there are some 

differences that can be noticed in the primary sequence alignment (Figure II. 5). The linker II region 

(residues 535 to 575, between the FAD and MoCo domains) present in AOH1 and XDH/XO is 

absent in the bacterial enzyme. Two other clear differences, easily seen in the structures 

superposition (Figure II. 6), result from the insertions of 20 and 19 amino acid residues, in the 

regions Arg953-Thr954 and Pro1114-Ser1115, respectively (mAOH1 numbering). These two 

regions are located at the MoCo binding domain and solvent exposed, and the Arg953-Thr954 

sequence is at the XDH heterotrimer interface. The two insertions protrude out of the globular 

protein surface (marked with arrows in Figure II. 6).  

 

The several cofactors are localized in similar positions in the four enzymes, and provide equivalent 

electron transfer pathways (Figure II. 6). 

 

Two important aspects must be addressed at this point. The XDH from R.capsulatus possess high 

reactivity towards NAD+, as in the case of bovine XDH, and does not undergo conversion to the 

oxidase form, as observed for the mammalian XDH/XO (explained below). The MoCo analysis of 

Rc XDH revealed the presence of the molybdopterin cofactor monophosphate form (MPT) as found 

in the eukaryotic MoCo containing enzymes (Figure II. 6). This was not expected, since the majority 

of MoCo containing bacterial enzymes (as MOP) have the MCD form (Figure II. 6), with an 

additional cytosine nucleotide covalently attached to the pterin [65]. 

 

 

 
Figure II. 6 - Comparison between mAOH1 (blue) and the different crystal structures obtained for the XO family: (a) 
aldehyde oxidoreductase from D.gigas (MOP monomer – yellow, PDB code: 1VLB), (b) xanthine dehydrogenase from 
R.capsulatus (Rc XDH - red, PDB code: 1JRO), (c) xanthine dehydrogenase from bovine milk (XDH milk - green, PDB 
code: 1FO4). Next to each structure comparison is the superposition of the cofactors involved in electron transfer 
(mAOH1 –atoms color coded, MOP in yellow, Rc XDH in red, and XDH milk in green). 
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2.3.3.1 Mammalian XOR Inter-conversion and mAOH1 

Mammalian xanthine oxidoreductases (XOR) are synthesized in the dehydrogenase form, but can be 

readily converted to the oxidase form by two different mechanisms: oxidation of sulfhydryl residues, 

and proteolysis [13]. The enzyme exists in two alternative forms (XDH and XO) of the same gene 

product. The global fold of both proteins remains essentially the same after the inter-conversion 

XDH!XO, with an rms deviation in C$ positions of 0.30Å for 1095 atoms. The general 

conservation of the structure is consistent with biochemical studies, and no major differences 

regarding binding and catalysis of substrates are observed at the molybdenum catalytic center in both 

protein forms. The main difference is the binding of the cofactor NAD+, which occurs in the XDH 

but not in the XO form. This has implications in structural terms, with differences between the two 

forms at a loop region (see below). In XO, molecular oxygen acts as the electron acceptor, as in the 

case of mAOH1.  

 

When comparing bovine milk XDH and mouse AOH1 crystal structures (Figure II. 6 - c), we can see 

that their global fold as well as cofactor arrangement is very similar (rms deviation of 1.26, for 2358 

C$). The major difference between the two proteins concerns important residues located not only at 

the active site (section 2.3.4), which explains the differences regarding substrate specificities, but 

also residues involved in the XOR mechanisms of inter-conversion. This kind of mechanisms has 

never been described for aldehyde oxidases. The reversible XDH !XO conversion mechanism 

involves the oxidation of two different cysteine residues (Cys535 and Cys992, bovine XDH 

numbering), and the formation of a new disulfide bond. These two cysteine residues are not 

conserved in mAOH1, corresponding to Tyr542 and Phe997 respectively. Tyr542 could not be 

assigned in the mAOH1 electron density map, but Phe997 locates in the protein surface, pointing 

towards the solvent.  

 

XDH can also be irreversibly converted to XO by proteolysis and in both cases (oxidative and 

proteolytic generation of XO) there is a structural rearrangement on a loop close to the FAD ring. 

This “moving loop” is constituted by residues Gln423-Lys433 (bovine XDH numbering), and its 

displacement causes partial blockage of the NAD+ molecule towards interaction with the FAD 

cofactor (Figure II. 7). As a result, the XO form does not bind NAD+ and uses oxygen as electron 

acceptor. As well as the “moving loop” displacement, there is the removal of a phenylalanine residue 

(Phe549, bovine XDH numbering) from a tightly packed amino acid cluster, causing major 
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reorientation of a tryptophan residue (Trp336 in bovine XDH) (Figure II. 7– a). This residue is 

located at the entrance of a tightly closed cavity leading to the FAD cofactor, and its movement 

opens the cavity causing FAD solvent exposure, particularly in the isoalloxazine ring (around C4-C6 

positions). As a result of these two different displacements (Gln423-Lys433 loop and Trp336, XDH 

numbering) there is a change in the FAD cofactor electrostatic environment, which accounts for the 

main differences between XDH and XO forms regarding nicotinamide adenine dinucleotide binding 

[13, 66].  

 
Figure II. 7 - Representation of the “moving loop” (residues Gln423-Lys433, in bovine XDH numbering) and important 
residues involved in the XDH/XO conversion. (a) Residues Phe549, Trp336 and the original loop position in bovine 
XDH (green). (b) Comparison between mAOH1 (blue) and bovine XDH (green), concerning the “moving loop” and 
Trp336 from XDH (which corresponds to Thr343 in mAOH1). The “moving loop” is mainly constituted by highly 
charged residues (QASRREDDIAK) in XDH, which are replaced by lesser-charged ones in mAOH1 (QAPRQQNAFAT) 
(the 4 conserved residues are underlined). (c) Differences observed in the loop and in residue Trp336 after the 
XDH!XO conversion (XDH in green, and XO in orange). (d) Same as in (c) but from a different perspective, outlining 
the differences between the “moving loop” from XO (in orange), and the mAOH1 and XDH structures (blue and green, 
respectively). All the FAD cofactors are represented color coded, and correspond to the mAOH1 structure.  
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In mAOH1, the corresponding “moving loop” is superimposable with the one observed in the XDH 

form, although only 4 out of 11 residues are conserved between the two proteins (Figure II. 7- b). 

However, as previously mentioned aldehyde oxidase does not bind the NAD+ cofactor, using oxygen 

as the electron acceptor. The mAOH1 protein should therefore be more similar to the XO form than 

to XDH, since they possess the same electron acceptor. Nevertheless, xanthine oxidoreductase 

naturally occurs in the dehydrogenase form, and in the absence of an inter-conversion form described 

for AO, it is not surprising that the protein shows higher similarity towards the natural XDH form. 

The inexistence of an AO inter-conversion form could be related with some of the differences 

described previously.  

 

XOR inter-conversion has been described by some authors to be connected with milk lipid secretion 

[67], but other opinions defend that it is involved in human ischemic-reperfusion injury defense 

mechanisms, due to the higher formation of radical oxygen species during the XO form catalytic 

reaction [67, 68]. 

 

2.3.4 mAOH1 Catalytic Active Site and Substrate Funnel 

At the present resolution (2.9Å) it is not possible to identify the chemical nature of all the atoms 

bound to molybdenum, based on electron density alone (Figure II. 8). Two of these ligands are the 

sulfur atoms from the dithiolene moiety, which in mAOH1 are located in Mo-distances ranging from 

2.4 to 2.7Å (for the 4 molecules in the a.u.). The exact nature of the three other ligands must be 

based on crystallographic data for the related XOR [13, 14, 69]. In the oxidized form of the active 

enzyme, the Mo coordination sphere should include an essential catalytic sulfur atom (=S), an apical 

oxygen atom (=O), and an equatorial OH group. This single bonded oxygen atom is pointing towards 

the active site funnel and is later transferred to the substrate. The five different ligands form a square 

pyramidal geometry. 

 

With the mAOH1 structure firstly reported here, we are able to take a closer look at the protein 

active site, and draw some conclusions regarding its broad range of substrates. Several 

pharmaceutical companies have given their attention to aldehyde oxidases in recent years. It has been 

recognized that through its unique structure, distribution and substrate recognition, this protein has a 

vital role in drug metabolism, despite the lack of knowledge regarding biochemical and physiological 
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function. It is imperative now to understand all these specificities, located mainly at the protein 

active site. 

 

Figure II. 8 - Close-up of the MPT and Mo coordination sphere, for the mAOH1 monomer A.  

(2mFo-DFc electron density map contoured at 1), blue). 

 

Typical aldehyde oxidase substrates are compounds containing an aldehyde function, nitro/nitroso 

compounds or N-heterocycles (Table II. 1), while hypoxanthine and xanthine are XOR elected 

substrates. When comparing mAOH1 and bovine milk XDH structures, the most important residues 

conserved at the active site are the ones located up and down relative to the Mo atom (Gln772 and 

Glu1266) and two Phe responsible for maintaining the XDH salicylate inhibitor in place (Phe914, 

and Phe 1009). In XDH, the aromatic ring of Phe914 is parallel to the inhibitor molecule, while 

Phe1009 has an edge-on interaction. The two Phe are conserved in mAOH1 (Phe919 and Phe1014), 

making the model interaction of bicyclic substrate also possible. The mAOH1 Glu1266 residue 

(Glu1261 in bovine XDH and totally conserved in all members of the XO family) is also included in 

these conserved residues, and is responsible for playing a fundamental role in the reaction 

mechanism, as explained below. 

 

Other important residues located at the catalytic core are in general not conserved between the two 

proteins, and this explains the differences regarding binding and catalysis. Particularly, residues 

Glu802, Arg880 and His884 (in bovine XDH numbering), which are replaced by Ala807, Tyr885 
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and Lys889 in mAOH1, respectively, are crucial for the different proteins specificities. Glu802 from 

bovine XDH is replaced by an aliphatic and smaller residue in mAOH1, Ala807 residue, which 

allows the active site to accommodate larger and bulkier substrates. Also the presence of a less 

charged residue contributes to the necessary environment for the binding of more charged 

compounds as seen in mAOH1. In bovine XDH another important residue, Arg880, is responsible 

for the correct positioning and maintenance of the salicylate and oxipurinol inhibitors (represented in 

Table II. 4 and Figure II. 9, respectively). This position is occupied by the aromatic ring of a tyrosine 

in mAOH1 (Tyr885) pointing outwards from the molybdenum atom and again increasing the 

mAOH1 active site availability for accommodating larger substrates. The mAOH1 Lys889 residue, 

although being almost 10Å away from the molybdenum center, makes also a decisive contribution in 

the protein catalytic core. This residue (conserved in other AOs) corresponds to His884 in bovine 

XDH, a bulky residue located in the active site funnel pathway, limiting the access of large substrates 

to the protein catalytic center. All these differences account for the binding of the distinct XOR and 

AOH1 substrates, particularly the substitution of smaller residues in the aldehyde oxidase protein 

(Figure II. 9). 

 
Figure II. 9 – Active site comparison between mAOH1 (yellow) and bovine XDH (gray). Outlined are the most 
important non-conserved residues, in mAOH1 numbering. Also present is the XDH inhibitor oxipurinol molecule (OXI), 
and the conserved XDH and mAOH1 residues Phe919, Phe1014 and Glu1266. 
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Interestingly, the Tyr885 residue from mAOH1 is also not conserved in other aldehyde oxidases, 

particularly in human and mouse, where a methionine can be found. Mahro and co-workers 

(unpublished data) have expressed and purified the mAOH1 Y885M variant, from which we were 

also able to obtain protein crystals. The resulting crystals had poor or non-existing diffraction. 

Biochemically the authors found out that the variant shows the same behavior towards benzaldehyde, 

but that allopurinol (the most studied mammalian XOR inhibitor) which is a substrate for the wild 

type enzyme cannot be metabolized by the variant. Two different xanthine oxidase mutational 

changes (E803V and R881M, XDH numbering), were also reported a few years ago by Yamaguchi 

and co-workers [70]. Although these residues are not conserved in mAOH1, they are conserved in 

AO and the aim was to understand the role of some active site residues in binding and activation of 

purine substrates. As a result, the two variants showed significant aldehyde oxidase activity, which 

also indicates that it is the chemical nature of residues responsible for the different substrate binding, 

and not only its location within the protein active site. After the mutations, the overall active site was 

similar and no structural changes could be assigned.  

 

All the important mAOH1 residues (conserved and non-conserved), and their respective equivalents 

in bovine XDH are summarized in Table II. 4. 

 

On the basis of the above discussion it is clear that mAOH1 is different from XOR, predominantly in 

the catalytic active site, which indicates substantial differences around the MoCo substrate-binding 

site. As AO and XOR are characterized by distinct substrates and inhibitors, it is also predicted that 

the tunnel leading to the active site is different between the two enzymes. The existence of substrates 

recognized by mAOH1, but not by mAOH2 (E.Garattini, unpublished data), as well the identification 

of better inhibitors of mAOH1 than AO, further suggests that the tunnel may vary even among the 

different AO isoenzymes [16].  

 

Several residues along the funnel, which leads to the protein active site, are also not conserved 

between XDH and mAOH1 (Table II. 4). This explains the differences observed in the funnel shape 

and width, which is much wider and anionic in mAOH1 than in XDH (Figure II. 10). In mAOH1 the 

funnel leading to the active site is ~20Å wide at the surface and becomes tighter towards the 

molybdenum catalytic center, where it is approximately 8Å wide. This is consistent with the entrance 

of larger and bulkier substrates, as the ones described to be catalyzed by aldehyde oxidases.  
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Active Site 

 

Ala807* 

 

Glu802 

 

Tyr885* 

 

Arg880 

 

Lys889* 

 

His884 

 

Pro1015 

 

Thr1010 

 

Tyr1019 

 

Asn1014 

 

 

Funnel 

Arg717 Leu712 

Asp878 Leu873 

Glu880 His875 

Leu881 Ser876 

Thr1081 Pro1076 

 

Table II. 4 – Comparison between mAOH1 and bovine XDH, concerning the main residues involved in substrate 
binding and catalysis. Non-conserved residues marked with an asterisk are mentioned above, due to their primary 
importance. 
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Figure II. 10 - Surface view of the funnel leading to the active site in mAOH1 (left) and bovine XDH (right). The Mo 
atom is seen at the end of the funnel as a green sphere. The entrance is much wider in the case of aldehyde oxidase, with 
a narrow constriction closer to the molybdenum active site. Electrostatic surface potentials were calculated using the 
program delphy [71] and represented in PyMOL [72], with the color of surface potentials in the scale range from -0.10V 
(negatively charged, in red) to +0.10V (positively charged, in blue). 

 

2.3.5 The Reaction Mechanism 

The initially proposed reaction mechanism for XDH/XO forms described by Nishino and co-workers 

has been the origin of some debate and controversy over the years regarding binding mode and 

substrate orientation [13, 73]. However, a similar reaction mechanism as the one described for XOR 

has been also proposed for aldehyde oxidases [16]. With the reported mAOH1 structure (2.9Å), it is 

still not possible to identify the chemical nature of the atoms bound to molybdenum based on 

electron density maps. Therefore, in the absence of further evidence for the oxidized form of the 

enzyme and owing to the presence of highly conserved residues at the catalytic center (particularly 

Glu1266, in mAOH1 numbering), we assume that the reaction mechanism for aldehyde oxidase is 

similar to the xanthine oxidase mechanism. The reaction starts with the activation of the equatorial 

OH group by the neighboring conserved glutamic acid residue (Glu1266). This oxygen is then 

transferred to the substrate and the resulting intermediate replaces the coordinated OH at the 

molybdenum. Simultaneously, a hydride transfer from the substrate to the equatorial sulfur atom 

completes the reaction intermediate. The product is afterward released from the reduced 

molybdenum center and the new available position is occupied by a water molecule (Figure II. 11).  
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Figure II. 11 – Proposed reaction mechanism for aldehyde oxidase (AO). Represented is the base-assisted nucleophilic 
attack of the Mo-OH on the substrate carbonyl, with concomitant hydride transfer to the Mo=S. (Adapted from [16, 74]). 

 

The glutamate contribution to catalysis has been confirmed by site-directed mutagenesis in the 

recombinant mouse aldehyde oxidase (mAOX1). The E1265Q variant was generated and purified, 

and was unable to metabolize any of the aldehyde or purine substrate tested. This is consistent with 

an essential catalytic role for this residue [53]. The Glu1261 from XDH and the Glu1266 from 

mAOH1 are totally superimposable in the crystal structure (Table II. 4). To further investigate the 

aldehyde oxidase reaction mechanism in detail and draw comparisons with XOR, two different 

approaches must be taken. From the structural point of view, different crystal soaking experiments 

with substrates and inhibitors must be performed, as soon as crystal quality and resolution can be 

improved. Biochemical experimental data based on mutagenic studies should also be done in 

parallel. 
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3 CHAPTER 3  
Periplasmic Nitrate Reductase from Cupriavidus necator 

 

 

 

 

 

 

The work described in this chapter was the subject of two publications: 

 

C. Coelho, P.J. González, J.J.G. Moura, I. Moura, J. Trincão and M.J. Romão, (2011) “The crystal 
structure of Cupriavidus necator Nitrate Reductase in oxidized and partially reduced states” Journal 
of Molecular Biology, 408, 932-948; 

 

C. Coelho, P.J. González, J. Trincão, A.L. Carvalho, S. Najmudin, I. Moura, J.J.G. Moura, T. 
Hettman, S. Dieckman and M.J. Romão, (2007) “Heterodimeric nitrate reductase (NapAB) from 
Cupriavidus necator H16: purification, crystallization and preliminary X-ray analysis” Acta Cryst., 
F63,516-519.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

61 
 

3.1 INTRODUCTION 

3.1.1 Cupriavidus necator 

Cupriavidus necator (Cn, formerly known as Ralstonia eutropha or Alcaligenes eutrophus), is a 

respiratory facultative "-proteobacterium. The Cn H16 strain is one of the best-studied model 

organisms for lithoautotrophic growth on molecular hydrogen and carbon dioxide, which are used as 

sole energy and carbon sources in the absence of organic substrates [75, 76]. Physiological and 

genetic studies revealed the presence of three different nitrate reductase activities in this strain [77]. 

The first activity corresponds to the cytoplasmic nitrate reductase protein (Nas), and was both 

repressed by ammonia and not sensitive to oxygen, suggesting a nitrate-assimilatory function. The 

second activity was only observed in the absence of oxygen and independent of ammonia 

suppression, representative of a nitrate respiratory function performed by the membrane bound 

nitrate reductase (Nar). The third activity occurred in the soluble fraction of cells, which were grown 

aerobically in the presence of ammonia during the stationary phase. This activity corresponds to the 

periplasmic nitrate reductase (Nap), whose expression, in contrast to Nas and Nar, did not require 

nitrate for induction. The genes for the three different nitrate reductases are mapped at different loci: 

Nas and Nar are chromosomally encoded, whereas Nap is located in a megaplasmid (pHG1) [27]. To 

elucidate the structure and function of C.necator periplasmic nitrate reductase, a homologous 

expression system was developed by Hettmann and collaborators [78]. A new C.necator strain 

(HF210) was used, together with the complete nap operon, and the protein was purified to near 

homogeneity. 

 

Several prokaryotic nitrate reductases from different organisms have been studied, and for some of 

them, the nap cluster has four genes in common: napDABC. The conservation of napA, napB and 

napC is expected, as they encode the terminal bis-MGD-containing moiety, the di-heme, and the 

tetra-heme components of the periplasmic electron transfer system respectively. The Tat (twin-

arginine transport) system is responsible for the translocation of folded proteins, across the 

cytoplasmatic membrane [79]. In E.coli, NapD is known to be a Tat signal peptide-binding 

chaperone involved in the biosynthesis of the Tat-dependent NapA.  After recognition of the twin 

arginine-containing motif in the signal sequences of the protein cofactor, insertion in NapA occurs in 

the cytoplasm, and the folded protein is then exported across the cytoplasmic membrane into the 

periplasmic compartment [27, 80].  
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3.1.2 Heterodimeric Periplasmic Nitrate Reductase (NapAB) 

Nitrate reductases depend on the bis-molybdopterin guanine dinucleotide (MGD) cofactor located in 

the active site, and belong to the DMSO reductase family of Mo proteins, described in section 1.1.6 

of this Thesis. The homologous expression of the periplasmic nitrate reductase from C.necator 

allowed biochemical and structural studies to be carried out, as well as elucidating its three 

dimensional architecture. Cn NapAB is a heterodimer composed of a large catalytic subunit (90 kDa) 

containing the molybdenum ion bound to two MGD cofactors plus a [4Fe-4S] cluster, and by a small 

di-heme c-type cytochrome subunit (17 kDa), involved in electron transfer. Different roles such as 

redox balancing and nitrate scavenging have been proposed for this protein. 

 

The first crystal structure for a nitrate reductase was solved by multiple-wavelength anomalous 

dispersion (MAD) in 1999 for the monomeric NapA from Desulfovibrio desulfuricans (Dd) at 1.9Å 

resolution [30]. In the following years, despite the extensive biochemical and spectroscopic 

characterization of several periplasmic nitrate reductases, few novel crystal structures were reported. 

In 2002, Brigé and co-workers published the structure of a proteolysed fragment of NapB subunit 

from Haemophilus influenzae (Hi) at atomic resolution (1.25Å), also with the help from MAD 

methods for deriving phase information [81]. One year later, the first crystal structure for a 

heterodimeric NapAB was obtained for the Rhodobacter sphaeroides (Rs) protein at 3.2Å resolution 

by Arnoux and collaborators [31]. The heterodimeric NapAB from E.coli was also studied in an 

attempt to determine its three dimensional structure, but due to heterodimer separation during 

purification protocols, the crystal structure could only be determined for the catalytic subunit at 2.5Å 

resolution [82]. In the oxidized form of these enzymes, the molybdenum atom is coordinated by two 

dithiolene ligands from the two MGD molecules, a S" atom from a Cys residue and a sixth ligand 

which was originally proposed to be a hydroxyl/water molecule. The sixth molybdenum ligand in the 

first crystal structure of NapA from D. desulfuricans was assigned as an OH/OH2 molecule (with 

Mo-O distance of approximately 2.1Å), but in recent studies obtained at higher resolution (1.8Å), 

and using improved refinement protocols, there was strong evidence that a heavier element (such as a 

non-protein sulfur ligand) is present at the sixth coordination position [33]. At the same time, crystals 

of the oxidized form of C.necator NapAB were obtained at high resolution (1.5Å) and the structure 

solved. The high resolution of the data provided atomic details of the protein active center and on 

molybdenum coordination sphere. The other Nap structures previously reported were solved to a 

resolution that was not enough to unequivocally identify the Mo ligands. The presence of sulfur as 
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the sixth molybdenum ligand implies that the formerly proposed reaction mechanisms simply based 

on the redox chemistry of Mo, could no longer be valid, and should also involve a sulfur-based redox 

mechanism. Three alternative reaction paths were proposed on the basis of the re-refined Dd NapA 

structure, and those have been the subject of theoretical and computational studies reported by 

different authors that provided similar results on the most favorable pathway of a putative 

mechanism [33, 83, 84]. 
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3.2 EXPERIMENTAL PROCEDURE 

3.2.1 Bacterial Expression and Growth Conditions 

Periplasmic nitrate reductase genes are not part of the Cupriavidus necator chromosome, but located 

in the 450 kb pHG1 megaplasmid. The protein was expressed in a megaplasmid-free strain (HF210) 

into which a broad host-range vector (pCM62) containing the complete Nap cluster was inserted 

[78]. The resulting strain was grown in mineral medium (Appendix – Table 1) at 30ºC until late 

death-phase [85]. The pre-culture was started by adding 20 .l of a C.necator (-pHG1-

H210/pNAP62-2 strain) glycerol stock solution into a nutrient broth agar plate and incubated 

overnight at 30ºC. Several colonies were afterwards chosen and resuspended, and again incubated 

overnight at 30ºC, 190 rpm. The resulting saturated cultures were used to inoculate 18 x 1L of 

mineral medium and incubated at 30ºC and 200 rpm until late death phase for almost 45 hours.  

 

This yielded enough protein for the initial robot crystallization trials (16 .l of 10 mg/ml NapAB), but 

not for the attempts to reproduce the robot conditions in-house. To overcome this problem, the 

bacteria were grown in a 10L pre-equilibrated reactor (BioStat B-Plus) inoculated with 200 ml of 

saturated cultures. The temperature was kept constant at 30ºC and the culture was continuously 

stirred between 200 and 400 rpm in order to maintain 20 % minimum oxygen level. After 49 h, the 

culture was centrifuged to isolate the periplasm. The protein obtained from the BioStat B-Plus 

reactor was used to scale-up the robot conditions, with the help from ionic liquids (Chapter 4), but 

was again insufficient to carry out the spectroscopic and electrochemical studies. To get such an 

enormous amount of protein, the bacteria were grown for the first time in a UD 300L Bioreactor at 

IBET (Oeiras, Portugal). To inoculate the industrial reactor, a pre-culture from a 10L ED 10 

Bioreactor grown at 30ºC for 24 h was used. All the conditions had to be optimized to such a large-

scale growth (Appendix - Table1). Temperature and pressure were kept constant at 30ºC and 100 

mbar, agitation varied between 100 rpm – 500 rpm in order to maintain 30% oxygen. Several 

aliquots were retrieved from the sample and immediate measurement of optical density at 600 nm 

was performed in order to monitor the growth rate. The fermentation was finished 48 hours after 

inoculation (Appendix – Figure 1). 
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3.2.2 Periplasm Isolation and Protein Purification 

For all the above growth experiments, periplasm had to be immediately isolated following the end of 

bacterial growth. In order to do this, the cultures were centrifuged at 5000g for 20 min and with a 

flow of 80L/h in a tubular centrifuge, respectively for the regular (10L) and industrial (300L) 

growths. The resulting pellets (16 g and 455 g respectively) were washed in 50 mM Tris-HCl pH 7.6 

and resuspended in 10 mM Tris-HCl pH 7.6 with 0.5 M sucrose (using 5 ml per gram of pellet). 

EDTA was added to a final concentration of 1 mM, and the cells were slowly agitated at 30ºC for 10 

min. Lysozyme was added to the sample (20 mg per gram of pellet) and the cells were vigorously 

stirred during 30 min at room temperature. The resulting suspension was centrifuged at 5000g for 20 

min and the supernatant which contained the periplasmic extract was clear, with a soft pink color 

very pronounced in the periplasm obtained from the cells grown in the 300L Bioreactor. 

 

The chromatographic purification protocol for the Nap protein comprised three main steps [86]. The 

sample was first dialyzed overnight against 10 mM MES pH 5.5 and loaded onto an S-Sepharose 

(GE-Amersham) column equilibrated with the same buffer. Cn NapAB was eluted between 200 and 

250 mM NaCl, and all the fractions containing the protein were pooled and concentrated by 

ultrafiltration in an Amicon system. The sample was afterward injected into a gel filtration Superdex 

200 column, equilibrated with 300 mM Tris-HCl pH 7.6. After buffer exchange by dialysis, the 

protein in 20 mM MES pH 5.5 was loaded onto a Mono-S (GE-Amersham) column and eluted with a 

NaCl gradient between 200 – 250 mM ionic strength. This final step was unnecessary in the 300L 

protein batch growth, possibly due to the higher amount of protein available. The protein was 

concentrated to 10 mg/ml (using the BCA procedure from Sigma) and stored in aliquots at -80ºC in 

10 mM Tris-HCl pH 7.6. 

 

3.2.3 Protein Crystallization and Data Collection 

Due to the initial limited amount of protein, the crystallization conditions were screened at the High 

Throughput Crystallization Laboratory in EMBL, Grenoble. The experiments were set up at 293K in 

a Cartesian PixSys 4200 crystallization robot (Genomic Solutions, UK) using the Index Screen from 

Hampton Research (96 conditions, Table 2-Appendix). Microcrystals were obtained under several 

conditions, using the sitting drop vapor diffusion method (Figure III. 1-a). The best crystals grew 

within one week to approximate dimensions of 0.13 x 0.09 x 0.04 mm3 using PEG 3350 as 
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precipitant, respectively at 25% (w/v) with 0.1 M bis-Tris propane pH 5.5; at 20%, with 0.2 M 

sodium formate pH 7.0, and at 15% with 0.1 M succinic acid pH 7.0 (conditions 42, 90 and 89). 

Equal volume of precipitant and protein solution (100 nl) were mixed and equilibrated over 90 .l 

reservoir solution. Crystals were flash-cooled directly in liquid nitrogen prior to transfer to a gaseous 

nitrogen stream (100K) using Paratone oil as a cryoprotectant. A 1.5Å high-resolution data set was 

obtained at beamline ID14-1 of the European Synchrotron Radiation Facility (ESRF - Grenoble, 

France) using an ADSC Quantum-4R CCD detector and a wavelength of 0.934Å (NATI dataset) for 

crystals from condition 42. They belong to space group C2, with unit cell parameters a = 142.2 Å, b 

= 82.4 Å, c = 96.8 Å, % = 100.7º and one NapAB heterodimer is present per asymmetric unit. 

 

 
Figure III. 1 - Crystals obtained using the crystallization robot at EMBL, Grenoble. (a) Microcrystals obtained for 
conditions number: 41, 65, 89, 82, 90, 43, 84, 93, 42 ,86, 47 and 71 from Hampton Index Screen (b) Enlargement of 
crystallization condition number 89; crystal dimensions 0.13 x 0.09 x 0.04 mm3. 
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Figure III. 2 - Diffraction pattern obtained at beamline ID14-1 (ESRF) for a NapAB crystal. Resolution at the edge is 
1.5Å. 

 

Several approaches were taken in order to reproduce the robot crystallization conditions in-house, 

including the use of water-soluble ionic liquids (IL) as additives (as explained in Chapter 4 of this 

Thesis). Another effective approach for crystallizing NapAB, after the 300L bacterial growth, was 

the streak seeding from a new robot plate setup using 25% PEG 3350 and 0.1 M bis-Tris pH 5.5 

(Hampton Research) in order to ensure reproducibility. This strategy also allowed growing suitable 

native crystals that diffracted beyond 1.7Å, which were used for soaking experiments. Statistics for 

data diffraction, processing and model refinement are presented in Table III. 1. 

 

The maximum resolution of the data was very much dependent not only on intrinsic crystal quality 

but also on crystal handling and cryo-cooling. For all conditions, several crystals had to be tested 

until a useful data set was obtained. These difficulties may explain the isolated case of one native 

crystal grown with the robot that diffracted to higher resolution (1.5Å). 
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Crystal sample 

(Approximate crystal size in mm) 

NATI 

Grown at HTX – EMBL 

(0.13 x 0.09 x 0.04) 

DIT-IL   (Grown with IL) 

Soak 20 mM Na dithionite 

(0.3 x 0.1 x 0.1) 

Beamline at ESRF ID14-1 ID14-2 

Wavelength (Å) 0.934 0.933 

Space group C2 C2 

Unit cell parameters (Å) a = 142.2, b = 82.4,  

c = 96.8, ! = 100.7º 

a = 119.4, b = 71.4,  

c = 128.4, ! = 121.0º 

Number of molecules in the AU 1 1 

Matthews coefficient (Å3/Da) 2.53 2.32 

Solvent content (%) 51.5 46.9 

Resolution limits  (Å) 43.23 - 1.50 28.34 - 1.72 

No. of observations 645330 363062 

No. of unique observations 170014 97895 

Multiplicity 3.8 (3.8) 3.7 (3.6) 

Completeness (%) 97.2 (95.2) 99.7 (99.1) 

Rmerge (%) 8.5 (53.7) 6.8 (17.7) 

I/$ (I) 8.5 (2.3) 16.8 (6.4) 

Resolution (Å) 37.90 - 1.50 27.63 - 1.72 

Nº reflections 170003 93004 

Rfree (%) 19.9 18.1 

Rfactor (%) 16.8 14.3 

Number of waters 670 787 

Number of other molecules - 19 formate ions 

1 chloride ion 

R.m.s. deviation from ideal geometry 

Bond lengths (Å) 

Bond angles (º) 

 

0.029 

2.324 

 

0.028 

2.31 

Average B factor for all atoms (Å2) 8.54 12.38 

Average B factor for waters (Å2) 16.31 21.67 

Ramachandran outliers (%) 0.67% 0.79% 

 

Table III. 1 - Statistics on data collection and structure refinement. Values in parenthesis correspond to the highest-
resolution shell. ¶ Rwork = 0 ||Fcalc| - |Fobs||/ 0 |Fobs| x 100, where Fcalc and Fobs are the calculated and observed structure 
factor amplitudes, respectively. (Rfree is calculated for a randomly chosen 5% of the reflections for each dataset). 
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3.2.4 NapAB Crystals and Soaking Experiments 

In order to clarify the Nap reaction mechanism, we have tried to obtain additional structural 

information on different forms of the enzyme. Crystals obtained either by seeding or with IL as 

additives were reproducible and used for soaking experiments with a harvesting solution containing a 

higher PEG 3350 concentration (30%). Crystals were incubated either with 20 mM potassium nitrate, 

10 and 20 mM sodium dithionite, or 20 mM potassium thyocianate (inhibitor of nitrate reductases). 

Incubations with mixtures of substrate/reducing agent as well as with hydrogen peroxide were also 

performed. More than 20 datasets were collected at ID14-1 and 2 at the ESRF at around 2Å 

resolution, which after refining revealed no major differences from the native form. After extensive 

attempts, one unique dataset could be collected from a crystal that diffracted to 1.7Å where changes 

were observed in comparison to the native structure (DIT-IL). This crystal was obtained using the 

ionic liquid (IL) [C4mim] Cl- (Chapter 4) and soaked with 20 mM sodium dithionite (DIT-IL 

dataset). Data-collection and processing statistics are presented in Table III. 1. 

 

Attempts were also made in order to crystallize Cn NapAB under controlled reducing conditions in 

an anaerobic chamber. The protein was introduced in the chamber and pre-incubated with 10 and 20 

mM sodium dithionite. Crystals were obtained at 293K for the same crystallization conditions and 

looked very similar to the ones obtained aerobically. However, initial attempts to flash-cool the 

crystals in liquid nitrogen inside the chamber to maintain reducing conditions were unsuccessful. The 

crystals were also retrieved from the chamber and frozen outside, but were destabilized and did not 

diffract. 

 

3.2.5 Processing 

Diffraction data for native (NATI) and dithionite-soaked crystals (DIT-IL) were collected at the 

ESRF, beamlines ID 14-1 and ID 14-2, respectively. Data were processed using MOSFLM v.6.2.5 

[59] and SCALA [87] from the CCP4 program package v.6.0 [88]. The calculated Matthews 

coefficients were 2.53 Å3Da-1 and 2.32 Å3Da-1, respectively, suggesting the presence of one NapAB 

heterodimer in the asymmetric unit for both crystal forms. The solvent content is 51.5% and 46.9% 

for NATI and DIT-IL data. Data-collection and processing statistics are presented in Table III. 1. 
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3.2.6 Structure Solution, Model Building and Refinement 

The C.necator NapAB structure was solved by molecular replacement, using the NATI dataset and 

the structure of the homologous enzyme NapA from D.desulfuricans (PDB accession code 2NAP) as 

a search model, with the program Phaser [63]. The complete NapA molecule was used, excluding the 

two MGD cofactors, the [4Fe-4S] cluster and the water molecules. The initial phases obtained by 

Phaser yielded a very good initial electron density map. These were used to run automated model 

building in ARP/wARP [89, 90]. The small NapB was positioned by superimposing the 

R.sphaeroides NapAB model (PDB accession code 1OGY) onto the solution, and using the NapB 

model as a starting point for rebuilding. After rigid body refinement, the overall model presented an 

Rfactor of 31.5% and an Rfree of 33.2%. Further model building was performed using COOT, and 

several refinement cycles of the experimental phases, using Refmac5 from the CCP4 program 

package v.6.0 were also done [62, 88]. After both chains were as complete as the density allowed, all 

cofactors were fitted into their respective electron density. Restrained refinement with TLS, using 

each of the four domains from NapA subunit treated as individual TLS entities, and three domains 

from the NapB subunit (total of 7 TLS groups), resulted in a final model with Rfactor and Rfree of 

16.8% and 19.9% respectively. Water molecules were automatically added with COOT.  

 

The 6th ligand of the Mo ion was initially omitted from the electron density map and a clear positive 

peak was obtained in an mFo-DFc map. This density was interpreted as either a hydroxyl/water 

molecule or as a sulfur ligand. When refined as oxygen, the difference between the relative B factors 

of the 6th ligand and the other Mo ligands was significant. This could be corrected when the 

refinement was carried out with a terminal sulfur ligand at the sixth coordination position. The same 

procedure used in the case of Dd Nap was followed [33]. No restraints were imposed on the sixth 

ligand for refinement. The B factor analysis is included in Table III. 2. 

 

The structure for the dithionite-soaked crystals (DIT-IL) was solved using the same procedure 

described for the native Cn NapAB. The native protein was used as model for molecular 

replacement. Water molecules were automatically added with COOT, electron density for formate 

molecules and one chloride ion was manually inspected and favorable contacts analyzed. The final 

Rfactor and Rfree for the DIT-IL structure were 14.3% and 18.1% respectively. No restrained 

refinement using TLS was used for this structure. Refinement statistics are presented in Table III. 1. 
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Dataset 

 
NATI 

 
DIT-IL 

Dd NapA[30] 
(PDB: 2NAP)  

 

EcNapA* [82] 
(PDB: 2NYA) 

 
Wilson B-factor  (Å2) 11.6 11.4 39.55 - 

S1 MetA346 6.71 6.07 28.1 21.2/21.0 
S12 MGD1803 10.45 5.56 32.2 20.2/21.4 
S13 MGD1803 9.19 5.76 28.1 19.2/22.3 
S12 MGD1804 9.43 6.03 25.2 21.1/24.4 
S13 MGD1804 9.23 5.37 29.8 13.3/21.4 

S1 MetA153 7.99 7.69 30.0 20.2/25.6 
S" CysA152 9.64 4.20  33.6 20.2/25.6 

Mo 9.60 5.96 29.6 20.3/24.4 
S900   13.24 8.91 25.3 - 

HOH (at S900 position) 2.0 2.0 7.51 5.86/2.0 

*The first value is for molecule A, the second for molecule F in 2NYA 

Table III. 2 - The Mo active site and B factor analysis.   

 
After some refinement steps of the DIT-IL structure using COOT and Refmac5, unmodeled positive 

electron density (>4)) was also found next to the sulfur atom of Cys784. The three clear blobs were 

interpreted as a modified cysteine sulfonic acid (OCS) and included in the final model. While water 

molecules were automatically added with COOT, electron density for formate molecules and one 

chloride ion was manually inspected and favorable contacts analyzed. The final Rfactor and Rfree for 

the DIT-IL structure were 14.3% and 18.1% respectively. No restrained refinement using TLS was 

used for this structure. The two final models included the following amino acid residues: For NATI, 

Val4-Val802 for the NapA subunit and Gly1-Lys124 for the NapB subunit; for DIT-IL, Lys11-

Val802 for NapA and Gly1-Leu123 for NapB. In both models, the di-heme NapB subunit has two 

short regions with no visible electron density: residues Lys27-Met37 and Thr65-Ala72. Refinement 

statistics are presented in Table III. 1. 

 

Coordinates and structure factors from both structures have been deposited in the Protein Data Bank, 

with the accession codes 3ML1 (NATI) and 3O5A (DIT-IL). 

 

3.2.7 EPR Spectroscopy 

In order to study the EPR properties of C.necator NapAB, continuous wave (CW) X-band spectra 

were recorded with a Bruker EMX spectrometer (model ER4116DM) equipped with a dual-mode 

cavity and an Oxford Instruments continuous flow cryostat. Simulations were performed using the 
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WIN-EPR Simfonia V1.2 software from Bruker Instruments. EPR samples were prepared in 100 

mM HEPES pH 7.0, with a NapAB concentration of 200 .M (# 21 mg/ml). All spectra were 

obtained in nonsaturating conditions: microwave power, 0.6 mW; modulation amplitude, 5 Gpp; 

modulation frequency, 100 kHz. Spin quantification of the Mo(V) and FeS signals were estimated by 

double integration and comparison with Cu-EDTA standards. 

 

3.2.8 Spectropotentiometric Redox Titrations 

UV-Vis and EPR mediated redox titrations were carried out in an anaerobic chamber at room 

temperature and oxygen concentration below 1 ppm. A platinum–silver/silver chloride combined 

electrode (Crison), calibrated with a saturated quinhydrone solution at pH 7.0 was used to determine 

the electrochemical potential of the solution.  

 

For UV-Vis, a total assay volume of 3.0 ml contained 100 mM HEPES pH 7.0 buffer and final 

protein concentration was ca. 3 mg/ml. Mediators, at 5 µM each, were: methyl viologen (-440 mV), 

neutral red (-325 mV), anthroquinone (-225 mV), fenazine (-125 mV), indigo tetrasulfonic acid (-46 

mV), duroquinone (5 mV), galocyanine (30 mV), fenazine etasulfate (55 mV), fenazine metasulfate 

(80 mV), 2,5-dimethyl benzoquinone (180 mV), and 2,6-dichlorophenolindophenol (217 mV). 

Sodium dithionite and potassium ferricyanide solutions were used as reducing and oxidant agents, 

respectively. Optical data were collected using a TIDAS diode array spectrophotometer. 

 

For EPR, the protein solution was incubated with the following mediator dyes, at 10 .M: benzyl 

viologen (-340 mV), di-hydroxy 1,4-naphtoquinone (-145 mV), indigo disulfate (-125 mV), resorufin 

(-51 mV), methylene blue (11 mV), phenazine metasulfate (80 mV), 1,2-naphtoquinone (180 mV), 

and 1,2-naphtoquinone sulfonic acid (217 mV). The electrochemical potential was dropped using a 

potassium ascorbate and sodium dithionite solution, dissolved in 100 mM HEPES pH 7.0. Samples 

for EPR spectroscopy (100 .l) were taken after equilibration at each potential and frozen in liquid 

nitrogen. Values of redox potentials are expressed relative to the standard hydrogen electrode (SHE). 
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3.2.9 Electrochemistry 

Voltammetric measurements were performed using an Autolab PSGTAT10 potentiostat /galvanostat 

from ECO Chemie (Utrecht, The Netherlands). The system was controlled and data analyzed with 

the GPES software package from ECO Chemie. Scan rate varied between 5 and 50 mVs-1. A three 

electrode configuration cell was utilized, with a platinum auxiliary electrode, and an Ag/AgCl 

reference electrode (205 mV vs standard hydrogen electrode, SHE). As working electrodes, graphite 

and gold disks were used. The latter was from BAS (MF-2014) with a nominal radius of 0.8 mm. As 

to the graphite electrodes, a homemade pyrolytic graphite (PGEh) and a commercial ultra-trace 

graphite (UTGEh) (Metrohm, ref. 6.1204.100) both with nominal radius of 0.1 mm, were used. 

Before each experiment the electrodes were polished by hand on a polishing cloth (Buehler 40-7212) 

using water/alumina (0.3 .m) slurry (Buehler 40-6365-006), sonicated for 1 min and then well rinsed 

with Milli-Q water. In most experiments with the graphite electrodes, a 2 µl drop of a mixture (1:1) 

of 93 .M NapAB (10 mg/ml) and 20 mM Neomycin, was deposited on the electrode surface and left 

to dry at room temperature for 30 min. In other experiments, a membrane electrode configuration 

was prepared (either graphite or gold) using a negatively charged Spectra/Por MWCO 3500 

membrane. 

 

The supporting electrolyte contained 10 mM Tris-HCl pH 7.6 and 0.1 M NaCl. In potassium nitrate 

assays, the final concentration in the electrolyte solution varied between 10 .M and 10 mM.  In the 

experiments with hydrogen peroxide, final concentration varied between 50 .M and 500 .M. 

Oxygen was removed by the action of a nitrogen stream for 20 min. Nitrogen continued to flow on 

the top of the solution during all experiments in order to maintain anaerobic conditions. All 

measurements were performed at least in duplicate in a temperature-controlled room at 20 ± 1 ºC. All 

potential values are referred to the standard hydrogen electrode SHE. 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Overall Structure Description 

The periplasmic nitrate reductase from Cupriavidus necator is a heterodimer (NapAB). The large 

catalytic subunit (NapA) comprises 802 amino acid residues and contains the Mo ion, bound to two 

MGD cofactors and a [4Fe-4S] cluster. The small subunit (NapB) is 134 residues long and harbors 

two low-spin c-type hemes, with two histidines as axial ligands (Figure III. 3). One of the histidine 

residues is preceded by a second Cys in the canonical CXXCH binding motif. NapB is responsible 

for transferring electrons from the physiological partner to NapA, where nitrate is reduced to nitrite. 

During purification and crystallization, the two subunits remained tightly bound, providing the 

complete heterodimeric form of the protein. This was also reported for the heterodimeric nitrate 

reductase from R.sphaeroides. Dissociation of the two subunits was observed in the E.coli NapAB in 

which case NapA and NapB have been purified independently [26, 31, 82]. 

 

The overall topology of the C.necator catalytic chain is very similar to the monomeric NapA from 

D.desulfuricans, with the exception of two loops (residues 267-297 and 543-596) that protrude from 

the globular structure in the Cn NapA structure. The overall globular shape of Cn NapAB has 

approximate dimensions of 65Å x 65Å x 58Å. The catalytic core is deeply buried in the protein with 

a substrate channel of ~15Å leading to it. The channel is oriented opposite to the heterodimer contact 

interface. The distance from Mo to the nearest Fe atom of the [4Fe-4S] cluster is 12Å, with a 

conserved Lys (K56) mediating electron transfer between the two cofactors. Cn NapA is divided into 

four main domains classified as defined for Dd NapA (Figure III. 3). The catalytic subunit NapA 

overall fold is formed by discontinuous stretches of the polypeptide chain. The N-terminal domain I 

(red) is composed of three segments (residues 4-68, 507-531 and 600-641) and contains the four Cys 

residues (Cys19, 22, 26 and 54) that coordinate the [4Fe-4S] center. Domains II and III share an 

overall $/%-fold very similar to each other (represented in green and yellow respectively), and each 

one harbors a MGD cofactor. Domain II is also composed by three non-contiguous chains of residues 

(69-148, 386-506 and 532-599) while domain III comprises residues 149-385. The C-terminal 

domain IV (blue) presents a typical %-barrel fold and is very solvent exposed (residues 642-802) 

[30]. 
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Figure III. 3 - A) Crystal structure of the C.necator NapAB (ribbon representation) showing the domains colored as 
follows: domain I in red (residues 4-68, 507-531 and 600-641); domain II in green (residues 69-148, 386-506 and 532-
599); domain III in yellow (residues 149-385); and domain IV in blue (residues 642-802). The Mo-bis-MGD cofactor is 
shown in sticks and colored by atom type, and the [4Fe-4S] as orange sticks. NapB is represented in grey ribbon and the 
2 hemes as sticks colored by atom type. B) Arrangement of the metal cofactors: Mo (MGD)2, [4Fe-4S] and di-heme c-
type cytochrome color-coded as atom types. Included are also two strictly conserved residues from NapA: Lys56A that 
mediates the contact between the pterin and the [4Fe-4S] cluster as well as Tyr58A, involved in intersubunit electron 
transfer between the [4Fe-4S] center and heme I. 

 

The NapB subunit is characterized by a low structural complexity. The polypeptide chain has a 

spread-out shape with extended N- and C-terminal segments and a small globular domain in the 

middle (Figure III. 3 and Figure III. 4). The last 10 residues, as well as two solvent exposed regions 

of Cn NapB had no visible electron density (residues 28-36 and 66-71). The globular domain has 

approximate dimensions of 30Å x 20Å x 20Å and is composed of three short $-helices (Arg57-

His62, Ile77-His79 and Cys98-Cys101) linked by large loops. The long N-terminus extended region 

(first 27 residues as random coil) in addition to the extended C-terminus (residues 103 to 124 that 

include a short $-helix, Val119-Leu124) resemble two arms that embrace NapA, spreading from 
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domain II all the way around domain IV. The stabilization of the NapAB complex is dominated by 

hydrogen bonds and salt bridges, involving mainly residues from both arms (Figure III. 4). The two 

c-type hemes in NapB are almost parallel to each other, in a stacked position with an iron-to-iron 

distance of 10.0Å, and at 14.7Å distance between the heme II iron atom, and the nearest iron from 

the [4Fe-4S] center. The side chain of Tyr58 from NapA lies between both centers at the intersubunit 

interface. Its hydroxyl group is 7.9Å and 7.6Å away from the nearest atom of the Fe/S cluster, and 

from the Fe atom of heme II, respectively (Figure III. 3). This tyrosine is conserved in all 

heterodimeric nitrate reductases but not in the monomeric Dd NapA, where is replaced by a serine 

residue. In the crystal structures of the heterodimeric nitrate reductases (Cn NapAB, Rs NapAB and 

Ec NapA(B)) Tyr58 adopts the same orientation, strongly suggesting its role in mediating electron 

transfer between NapA and NapB.  

 

The propionate side chains from both hemes are oriented towards the solvent. The stacked 

arrangement of both hemes, within van der Waals contact distances, is unusual and resembles the 

heme arrangement first reported for the split-Soret cytochrome c (SSC) from D.desulfuricans ATCC 

27774 [91]. However, there is no relationship between the fold of Dd SSC and NapB. The amino 

acid sequence of the NapB cytochrome shows two typical CXXCH motifs (Figure III. 5), with the N-

terminal heme-binding site located nearly halfway along the protein sequence. The Fe atom of each 

heme is coordinated by two strictly conserved axial histidine residues (His44B and His62B for heme 

I, and His79B and His102B for heme II) (Figure III. 5). No significant sequence homology to other 

c-type cytochromes was found. Based on this, and on its particular structural features, NapB can be 

considered as representing an unusual class of c-type cytochromes with short Fe-Fe distance and 

parallel arrangement of the hemes located on one side of the protein. The structural features of c-type 

cytochrome NapB as well as its orientation in relation to NapA may favor intermolecular electron 

transfer between NapA, NapB and NapC. 
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Figure III. 4 - Superposition of the NapB subunit from C.necator (red) with NapB from R.sphaeroides (green) and the 
segment of residues 38 to 105 from H.influenzae (blue). The Cn NapA is represented as a gray surface. 

 

3.3.2 The NapAB Heterodimer 

In C.necator, the catalytic subunit NapA is tightly bound to the subunit NapB, with a total buried 

surface area of 6005Å2. This interaction involves several hydrogen bonds and salt bridges. The 

majority of these bonds are established by residues mostly from NapA domains I, III and IV, that 

interact with residues from NapB. From a total of 24 hydrogen bonds (< 3.2Å) and 4 salt bridges 

between NapB and NapA residues, only 5 involve residues from the core domain of NapB. The other 

19 involve residues from the extended N-arm (Asp4B, Met6B, Arg7B, Asn14B, Glu15B, Ala18B, 

Pro19B and Glu25B) and C-arm (Gln105B, Ala106B, Thr108B, Gly113B, Asn114B and Asn115B) 

of NapB. The 4 salt bridges that mediate the complex interface involve residues Asp4B, Glu15B, 

Glu25B and Arg83B. The majority of the conserved residues in the NapB proteins are located in the 

proximity of the two heme groups in the small globular domain (residues 27 to 103) (Figure III. 5). 

The less conserved regions correspond to the two long arms and the differences may explain why in 

some organisms, such as E.coli or H.influenzae, dissociation between NapA and NapB occurs. 
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Figure III. 5 - a) Comparison of the amino acid sequence of NapA from C.necator with the other nitrate reductase 
catalytic subunits of know structures (R.sphaeroides, E.coli and D.desulfuricans). The [4Fe-4S] binding Cys residues are 
marked as (!) and the Mo ligand Cys152 as (*). b) Comparison of the amino acid sequence homology of NapB from 
C.necator, R.sphaeroides, H.influenzae and E.coli. Binding residues (H----CXXCH) for heme I are marked as (2) and for 
heme II as (3). Black boxes indicate identical residues, and grey indicate similar ones. Alignment results obtained with 
CLUSTALW multiple sequence alignment program at the EMBL-EBI web server, and the figure prepared using 
BOXSHADE from EMBnet server. 
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3.3.3 Comparison with Homologous Crystal Structures 

Several crystal structures of periplasmic nitrate reductases have been reported in the past few years. 

As mentioned before, the first was the monomeric NapA from D.desulfuricans at 1.9Å [30], while 

the NapAB from R.sphaeroides was the first structure of a heterodimeric Nap protein [31]. Crystal 

structures of the individual subunit NapA from E.coli [82], as well as of a proteolysed fragment of 

H.influenzae NapB were also reported, the later corresponding to a globular domain of Hi NapB [81] 

obtained by proteolysis of recombinant protein (a 8.5 kDa fragment, instead of the complete 15 kDa 

subunit). 

 

Comparing the two heterodimeric NapAB crystal structures (C.necator and R.sphaeroides) we can 

see that both proteins share a similar overall globular shape, folding and cofactor localization. The 

buried surface area as well as the number and type of intersubunit contacts found in both complexes 

are also very similar. The Cn NapA and Rs NapA subunits share 71% sequence identity and the same 

number of amino acid residues (802). Both structures superimpose with an rms deviation of 0.67Å 

for 780 C$ atoms. The monomeric NapA from D.desulfuricans shares only 36% sequence identity 

with Cn NapA but the two structures are also quite similar (rmsd of 0.9Å over 590 C$ 

superimposed). Structural comparisons with E.coli NapA also revealed no major differences. Both 

share 69% sequence identity with an rmsd of 0.51Å for 781 superimposed C$ positions. The main 

differences among all four NapA structures are the two exposed loops conserved in Cn, Rs and Ec 

NapA but absent in the Dd NapA structure (residues 267-297 and 543-596, Cn NapA numbering). 

 

In contrast to the catalytic subunit Cn NapA, the electron transfer subunit Cn NapB has a lower 

sequence identity (52%) with R.sphaeroides NapB and the two structures superimpose with an rmsd 

of 0.96Å (86 superimposed out of 134 C$ atoms). The structure of the Hi NapB proteolysed 

fragment superimposes onto Cn NapB with an rmsd of 0.78Å for 49 C$ atoms. These two proteins 

share only 37% sequence identity. The core domain of the three NapB structures is very similar with 

the exception of a short $-helix present in the Hi NapB (residues 65-72) (Figure III. 4). This 

corresponds to an exposed polypeptide that appears disordered in the Cn NapB structure (residues 

Arg66- Gln71) showing no continuous electron density. In Rs NapB this same region is unstructured 

and protrudes towards the solvent. 
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Comparing the electrostatic surface potential for the different enzymes, we can see that around the 

solvent exposed funnel (Figure III. 6-A) Cn NapAB is markedly positively charged, and similar to 

the surfaces of NapA from E.coli and from D.desulfuricans. In the case of the R. sphaeroides 

protein, the electrostatic surface potential is clearly more anionic. The similarity between the Cn 

NapA, Ec NapA and Dd NapA funnel surfaces may be explained by common evolution of the 

proteins in the different bacteria, possibly due to evolutionary conditions of adaptation, while the Rs 

NapA could have a distinct evolution. The electrostatic contact surface between NapA and NapB 

(Figure III. 6-B) is quite similar in both Cn and Rs heterodimeric proteins. The corresponding surface 

on Ec NapA at the NapB binding interface is apparently more positive than for Cn and Ec NapA. In 

spite of the observed differences, there is no clear pattern and it is hard to draw conclusions simply 

on the basis of the surface electrostatic potentials, regarding the stability of the NapAB complex, 

namely the lower dimerization affinity in Ec NapAB. 

 

 

 

Figure III. 6 - Electrostatic potentials of Nap structures surfaces. Electrostatic surface potentials were calculated using 
the program delphy [71] and represented in PyMOL [72], with the color of surface potentials in the scale range from -
0.10 V (negatively charged, in red) to +0.10 V (positively charged, in blue). A) View towards the substrate tunnel leading 
to the active site of Cn NapAB, Rs NapAB, Dd NapA and Ec NapA; B) NapA surface interaction with the small subunit 
NapB, from Cn, Rs and Ec (NapB from Cn), all in the same orientation. 
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Amino acid sequence alignment for the four NapB subunits (Figure III. 5-B) shows that the core 

globular domain sequence that binds the two hemes (residues 34 to 106), is highly conserved. In 

contrast, the N- and C-terminal arms differ in their primary structures, although these are the regions 

of NapB that mostly contribute to the complex stabilization. Most of the residues from NapA that 

form the dimer interface are from segments 47A to 67A and 706A to 777A, and are involved in 

hydrogen bonding interactions (direct or water mediated) and salt bridges. It is interesting to note 

that from these interface residues, some are conserved only in the proteins that purify as dimers (Cn 

and Rs) and not in Ec and Dd NapA: Glu47, Tyr712, Glu737, Arg748, Arg750, Arg750 and Ser772 

(all from subunit A). In a recent study of NapA from Shewanella gelidimarina, the authors proposed 

that only two of those residues (Glu47 and Ser772 using Cn numbering) should be crucial for the 

heterodimer stabilization [92]. However, when analyzing the structure interfaces of Cn NapAB and 

of Rs NapAB it appears more likely that the stability of the NapAB heterodimer, and therefore the 

preservation of its integrity upon purification, is due to a combination of multiple intersubunit 

interactions. Analyzing for the presence of some of these residues might help to predict whether a 

certain Nap protein is expected to isolate as a NapA monomer or as a NapAB heterodimer. 

 

3.3.4 The Molybdenum Catalytic Site 

The NapA active site is accessible from the solvent area, through a funnel-shaped cavity defined by 

residues from domains II and III (Figure III. 7). The entrance from the wider part of the funnel is 

coated with highly conserved and charged residues (Arg392, 400 and 150, Asp167 and Glu168). 

Arg392 and Asp167 form a salt bridge and are directed towards the active site, while Glu168 is a 

Ramachandran outlier in all Nap structures. Asp167 and Glu168 are located in an exposed loop at the 

mouth of the funnel. Mutation of Asp167 to Ala (in single and double mutants, D167A and D167A-

E168G, respectively) leads to total loss of nitrate reductase activity [93]. These observations suggest 

that the positioning of those conserved residues and the charged patch are essential for anchoring and 

orienting the substrate towards the Mo active site or are important for protein maturation and/or 

cofactor insertion [6, 94]. The NapA funnel cavity is lined with several ordered water molecules. In 

the DIT-IL structure, where formate is present in the crystallization buffer, three formate ions were 

found at mid height of the funnel. A total of 19 formate ions were modeled, with all other present on 

the solvent exposed surface of the heterodimer. The formate molecule (Fmt1) closest to the active 

site (13Å from the Mo) contacts the guanidinium group of Arg400. Fmt5 contacts Arg150, and Fmt7 

is stabilized through H-bonding interactions with Asp167, Glu168 and His616 (Figure III. 7). 
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Figure III. 7 – Stereo view of the substrate funnel with 3 formate ions and conserved charged residues involved in 
orienting the substrate into the Mo active site (DIT-IL structure). 

 

The molybdenum active site is found at the bottom of the solvent accessible funnel and in the native 

oxidized form, the Mo atom is coordinated by six sulfur ligands: four provided by the two dithiolene 

ligands (MGD1803 and MGD1804), one from the S" atom of Cys152, and a sixth terminal sulfur 

ligand. Although in the original Dd NapA structure the sixth ligand was assigned as an OH ligand 

[30]), recent studies on the same enzyme reacted with reducing agents, substrates and inhibitors, 

provided new evidence on molybdenum active site details, allowing to assess the sixth Mo ligand as 

a sulfur atom [33]. The structure of the NapAB from C.necator here described constitutes the first 

true atomic resolution structure of a nitrate reductase. A similar analysis for Cn NapAB with 1.5Å 

data (as performed for Dd NapA, [33]) confirmed the true nature of the molybdenum coordination 

sphere (Table III. 2). When refining the 6th Mo ligand as oxygen, positive electron density was 

obtained on a difference density map, which completely disappeared when assigning it a sulfur atom 

(Figure III. 8-A and Figure III. 8-B). Besides, the B-factor of an oxygen atom at this position is lower 

than 2 Å2, well below the average B-factor of the surrounding atoms (~9Å2). When considered as a 

sulfur atom, its B-factor refines to 11Å2 (Table III. 2). As in the Dd NapA structure, the two sulfur 

atoms form a partial disulfide bond (S--S, 2.55Å) (Figure III. 8-C). A unique coordination sphere of 

six sulfur ligands bound to molybdenum suggests that this is most likely a general feature for all 

periplasmic nitrate reductases. 
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Figure III. 8 - Close-up of the Mo coordination sphere for the native (A and B) and dithionite-reduced forms (C).  The 
2mFo-DFc electron density maps are contoured at 1) (blue) and the mFo-DFc map at 3) (red). A) Refining the sixth Mo 
ligand as an oxygen atom yielded positive electron density on an mFo-DFc map. This density completely disappeared 
when assigning it as a sulfur atom (B). C) In the partially dithionite-reduced form (DIT-IL) there is extra positive density 
at the C% atom of Cys152 that could be modeled as two alternate conformations with 88% and 12% occupancies. 

 

3.3.5 The Catalytic Site in Dithionite Reacted Crystals 

To further clarify Nap reaction mechanism, it was important to have additional structural information 

on the reduced form of the enzyme. Several strategies to prepare crystals of the reduced form of Cn 

NapAB by soaking reducing agents into previously obtained crystals were used. However, the 

majority of the reacted crystals was damaged and did not diffract at all or only to poor resolution. On 

the other hand, some dithionite treated crystals that did diffract revealed no significant changes at the 

active site. After extensive attempts, one unique dataset could finally be collected from a crystal that 

diffracted to 1.7Å. This crystal was obtained using the ionic liquid (IL) [C4mim] Cl-, and soaked with 

20 mM sodium dithionite (DIT-IL). Data analysis revealed interesting changes in the vicinity of the 

molybdenum active site. Of particular relevance was the presence of extra positive electron density 

close to the C%  of the coordinating Cys152, which suggested a possible movement of the 

corresponding side chain. Towards the end of the refinement, these modifications at the active site 
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were interpreted as two alternate conformations of Cys152, with 0.88 and 0.12 occupancies. In the 

final DIT-IL model all atoms for both conformations had B-factors within the same range as the 

surrounding atoms. Figure III. 8-C represents the final coordination geometry for the two 

conformers. However, due to the low occupancy (12%) of the displaced Cys conformation, one 

should be cautious when analyzing the corresponding bond distances. At this level of occupancy the 

uncertainty of the atomic positions is too large and one cannot claim if this conformation 

corresponds to an unbound form or not, although the shape of the electron density may suggest it. 

 

3.3.6 Reaction Mechanism 

The new coordination sphere of molybdenum, with a total of six sulfur ligands and no oxygen 

directly bound to the metal, was first revealed by the reanalysis of the Dd NapA crystal structure and 

confirmed with the Cn NapAB structure here described. In both active site structures, the sulfur atom 

from the coordinating Cys is making a partial disulfide bond with the terminal sulfido ligand (Figure 

III. 8-C). The new nitrate reductase active site definition required a revision of the reaction 

mechanism. Three alternatives were proposed, considering that substrate binding and reaction 

pathway must combine molybdenum and sulfur redox chemistry [33]. Two of the possible 

mechanisms involve direct binding of nitrate to the Mo atom (first coordination sphere) while the 

third one involves binding of nitrate to the terminal sulfur ligand, in the second coordination sphere 

of the metal. Subsequently, theoretical and computational studies were performed by different 

authors in order to investigate which of the alternative paths was energetically more favored [83, 84, 

105]. Interestingly they all came to the same conclusion that the most viable mechanism should 

involve a direct binding of nitrate to the Mo atom. In order to open free access to the metal center, 

the Cys ligand must disconnect from Mo, but remain bound to the sulfur ligand (fragment Mo-S-S" 

Cys).   

 

The alternate conformation of Cys152 found in the Cn NapAB structure of the partially reduced form 

here reported, reflects the redox interplay between Mo and the sulfur ligands, supporting a reaction 

mechanism, which involves rearrangement of the Cys152 coordinating position. 
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3.3.7 The Presence of Oxidized Cysteines 

As previously mentioned, during final refinement steps of the DIT-IL data, three positive electron 

density blobs were clearly visible (> 4)), near the sulfur atom of Cys784, close to the substrate 

funnel. This density was modeled as three oxygen atoms of cysteine sulfonic acid (-CH2SO3H). After 

refining this modified Cys784, B-factors for the three oxygen atoms were within the range of the 

surrounding atoms. In addition, Cys388 also revealed extra positive electron density but not as clear 

as for Cys784, and therefore it was left unmodified in the deposited model. The presence of oxidized 

cysteine residues was totally unexpected and was observed only in the data from Cn NapAB crystals 

treated with sodium dithionite (DIT-IL). The oxidation of cysteine residues has been reported in the 

literature as the result of peroxidation, and has been also related with the important role of cysteines 

as redox-sensitive regulatory switches [94, 98, 99]. As the soak experiments were performed in the 

presence of O2, there is a possibility that the free-thiol group of cysteines had reacted with hydrogen 

peroxide resulting from the reaction reduction of O2 by dithionite (according to the reaction: 

Na2S2O4+O2+2H2O ! 2NaHSO3 +H2O2). Although dithionite can also react with the formed 

peroxide, this reaction is much slower and H2O2 may accumulate in solution [100]. In order to test 

this hypothesis, native Cn NapAB crystals were treated with a hydrogen peroxide solution and 

datasets were collected (data not deposited). As expected, similar results were obtained for this 

crystals and clear electron density revealed the cysteine Cys784 oxidation (and of Cys388 to lower 

extent). It is important to note that in these peroxide soaked crystals no changes were observed in the 

active site, in particular at the Mo ligand Cys152. Both cysteine residues are solvent accessible, and 

located at (Cys388) or close (Cys784) to the substrate channel, although only Cys388 is strictly 

conserved among periplasmic nitrate reductases. The presence of oxidized cysteines in Cn NapAB is 

most probably irrelevant from the functionality point of view. Nevertheless, care must be taken when 

interpreting structural data where dithionite has been used as a reducing agent, as is often the case in 

crystal structures of reduced forms of metalloproteins [101, 102]. 

 

3.3.8 Spectroscopic Characterization 

The UV-visible spectrum of Cn NapAB exhibits typical features of a heme protein, with a Soret band 

centered at 409 nm (4= 200,000 M-1cm-1) and a protein band at 275 nm (4 = 240,000 M-1cm-1). The 

characteristic absorption features of the iron-sulfur cluster, usually found around 350-500 nm, are 

covered by the heme absorption bands and cannot be observed. Upon ascorbate or dithionite addition 

in anaerobic atmosphere, the Soret band shifts to 419 nm (4 = 280,000 M-1cm-1) and ! and " bands 
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can be observed at 550 nm (4 = 66,000 M-1cm-1) and 522 nm (4 = 41,000 M-1cm-1), respectively. The 

latter features are characteristic of c-type hemes with ferrous ion in a low electronic spin 

configuration. A UV-visible mediated redox titration in the +300 to -400 mV range, revealed that 

changes in the 550 nm absorption band can be observed in the range of +200 to 0 mV. Similar to 

what was observed for other periplasmic nitrate reductases, these changes are bi-phasic and can be 

fitted with a Nernstian curve of two independent hemes with n=1 and Em values of +50 mV and +160 

mV (Figure III. 9). As the Cn NapAB complex is very tight, it was impossible to dissociate both 

subunits to study their redox properties separately, as performed in Nap from R.sphaeroides and 

from E.coli [31, 82].  

 

 
Figure III. 9 - A) UV-Vis mediated potentiometric redox titration of the c-type hemes present in C.necator periplasmic 
nitrate reductase. The absorbance at 553 nm was normalized and plotted versus the redox potential of the solution E (at 
pH 7.00). Experimental data (circles) were fitted with a nonlinear regression (grey line) using the Nernst equation for two 
independent components with Em values of 160±5 mV and 50±2 mV (errors from oxidative and reductive titrations). B) 
EPR spectropotentiometric redox titration of the [4Fe-4S] cluster present in the large subunit of Cn NapAB. The area of 
the FeS EPR signal was normalized and plotted versus the redox potential of the solution E (at pH 7.00). Experimental 
data (circles) were fitted with a nonlinear regression (gray line) using the Nernst equation for one electron with an Em 
value of -15 mV. 

 

The midpoint redox potentials of the hemes of the Cn NapAB heterodimer, and those of other Nap 

proteins are reported in Table III. 3. The values obtained for Cn NapAB are higher (mainly for heme 

I) and in the positive limit of the redox potential range expected for c-type cytochromes with a bis-

histidinyl coordinated heme (-350 mV to +150mV) [104]. At present, there is no established 

correlation between the redox potential of a heme and the factors that tune such value, and no 

unusual features can be observed in the crystal structure. The continuous-wave X-band electron 
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paramagnetic resonance (EPR) spectrum of air-oxidized Cn NapAB recorded at 15 K (Figure III. 10) 

contains a low spin (S = 5) rhombic species with g-values of 2.935 (90 G), 2.275 (100 G) and 1.487 

(400 G) (line widths in parentheses). A feature at g~2 arising from a fraction (0.02-0.05 

spin/molecule) of the Mo ion present in the paramagnetic Mo (V) state (S=5) is also visible. The 

spin integration of the rhombic signal yields near 2 spin per NapAB heterodimer, indicating that both 

hemes contribute to this EPR signal. The g-values used for spectrum simulation yield crystal field 

parameters //&= 2.93 and V// = 0.63, which are characteristic of low spin hemes with bis-His 

coordination, in which the planes of the imidazole rings from the histidines are nearly parallel [103]. 

This is in agreement with the X-ray structure obtained for the oxidized crystal form.  

 

Sample 
 

heme I heme II [4Fe-4S] Reference 

Cn NapAB 
 

+50 +160 -15 This work 

Ec NapAB (NapA) 
 

-160 +10 -250 (+20) Jepson et al, 2007 [82] 

Rs NapAB (NapA or B) 
 

-210 -65 (-110) -70 (-250) Arnoux et al, 2003 [31] 

Pp NapAB 
 

-15 +80 +160 Berks et al, 1995 
Breton et al, 1994 

Dd NapA 
 

- - -390 González et al, 2006 [26] 

Se NarB 
 

- - -190 Jepson et al, 2004 

Hi NapB 
 

-170 -25 - Brigé et al, 2002 [81] 

 

Table III. 3 - Redox potential of the metal cofactors comprising the electron pathway connecting NapC to the Mo ion at 
the active site of periplasmic nitrate reductases. (Values between parentheses correspond to redox potential obtained in 
the titration performed on the monomer NapA or NapB. Values are given in mV with respect to the standard hydrogen 
electrode). Se, Synechococcus elongates and Pp, Paracoccus pantotrophus. 

 
When an as-prepared sample of Cn NapAB is incubated with 5 mM sodium dithionite anaerobically, 

the EPR signature of the hemes disappears, consistent with the reduction of the low spin ferric 

porphyrin iron to the ferrous state. Much of the Mo site is not EPR detectable (the intensity of the 

EPR signal at g~2, assigned to a minor Mo(V) species accounts to less than 0.01 spin per molecule). 

In this reduced state, a characteristic signal from [4Fe-4S]+1 (S= 1/2) cluster develops (Figure III. 10 

- A). This paramagnetic species recorded at 25K yields g-values gmax=2.047 (10), gmid=1.951 (8) and 

gmin=1.906-1.900 (10) (line shape parameter Lorentzian/Gaussian= 0.75). At low temperatures, the 

gmin region presents a complex structure that vanishes completely at 50K (inset, Figure III. 10 - B), 
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yielding the g-values gmax = 2.047 (16), gmid = 1.951 (20) and gmin = 1.904 (20) (line shape parameter 

Lorentzian/Gaussian= 0.10). The behavior of the gmin feature with temperature is difficult to interpret 

at this moment. For instance, the Mo-containing aldehyde oxidoreductase from Desulfovibrio gigas 

(MOP) presents a split of the gmax feature for one of the [2Fe-2S] clusters and in the three g-values of 

the Mo (V) species due to the magnetic coupling between the three paramagnetic (S= 1/2) redox 

cofactors present in the enzyme [82, 106, 107]. However, this explanation is difficult to apply in the 

present case since in the dithionite-reduced state, the only paramagnetic species present in the 

enzyme is the [4Fe-4S]+1 cluster.  

 

Another interesting aspect of Cn NapAB [4Fe-4S] cluster is that it can be partially reduced (deduced 

from spin quantification) by incubation with an excess of potassium ascorbate (20 mM). The FeS 

cluster EPR signal is identical to the one obtained with sodium dithionite. An EPR-mediated 

potentiometric titration of this paramagnetic species indicates that the redox potential of the metal 

cluster is -15 mV, which is relatively high for the [4Fe-4S]2+/1+ couple in a periplasmic nitrate 

reductase. A relatively high redox potential for this couple was also observed in the FeS cluster of 

the monomeric NapA from E.coli (+20 mV), but this potential turns negative (-250 mV) when the 

NapAB heterodimer is formed (Table III. 3). Jepson et al. proposed that the reduction potentials of 

the FeS clusters can be affected by the electrostatic surface potential, where a more negative surface 

potential would make the FeS cluster more difficult to reduce, i.e. have lower redox potentials [82].  

 

Figure III. 10 - - Electron paramagnetic resonance (EPR) spectra obtained for the periplasmic Cupriavidus necator 
nitrate reductase heterodimer NapAB. A) Sample as-prepared under aerobic atmosphere measured at 15 K. B) Sample as-
prepared reduced in anaerobic conditions (dioxygen concentration below 1 ppm) with 5 mM sodium dithionite measured 
at 25K. Inset of panel B shows the reduced sample measured at 25K (black) and 50K (gray). Arrows indicate the position 
of the main g-values for the heme and [4Fe-4S]+1 center 
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3.3.9 Electrochemical Characterization 

Non-turnover conditions 

The C.necator NapAB electrochemical behavior was investigated by protein film voltammetry, PFV, 

using graphite electrodes [108]. The heterodimeric periplasmic nitrate reductases from 

P.pantotrophus and R.sphaeroides form very stable films when adsorbed onto graphite electrodes 

[109], and this was experienced for the case of NapAB from C.necator. Cyclic voltammograms (CV) 

at the PGEh electrode in the potential range +160 mV to -600 mV vs SHE and scan rates (v) between 

5 - 50 mVs-1 revealed the presence of one cathodic peak, with an anodic counterpart (Figure III. 11). 

From the difference Ep-Ep/2 = (65-90) mV, it is reasonable to consider that n=1. Although the 

separation between the cathodic, Ep
c, and the anodic, Ep

a, peak potentials (/Ep= Ep
c - Ep

a) increased 

with v, the average (Ep
c + Ep

a)/2 remained almost constant for all scan rates. Therefore, a formal 

reduction potential E0´= (Ep
c + Ep

a)/2 = -161 mV vs SHE could be estimated at pH 7.6. In the CVs at 

the UTGEh electrode and in the same experimental conditions, the anodic peak is not easy to 

measure, but Ep
c compares with the values obtained with the PGEh. From the amount of charge 

consumed in the reduction process and taking into account the geometric areas of the electrodes, 

identical surface coverage areas 6 45 pmol/cm2 were estimated on both electrodes. No voltammetric 

signal was observed with the gold electrode either with the enzyme immobilized on the electrode 

surface (PFV) or using the membrane electrode configuration. 

 
Figure III. 11 – Cyclic voltammograms of C.necator NapAB adsorbed to the pyrolytic graphite electrode in non-
turnover conditions and10 mM Tris-HCl pH7.6 and 0.1M NaCl (scan rates: 5, 10, 15, 20, 30 and 50 mV s-1). 



 

90 
 

Turn-over conditions 

The catalytic activity of the oxidized Cn NapAB was investigated in the potential range 160 mV to -

600 mV vs SHE in the presence of increasing concentrations of potassium nitrate in the electrolyte 

solution (10mM Tris-HCl pH 7.6 and 0.1M NaCl). Several protein/electrode interfaces were tested. 

Most experiments were performed with the enzyme immobilized either on the UTPGEh and using a 

rotation speed of 3000 rpm or on the PGEh electrode with the electrolyte homogenized with a 

magnetic stirrer. In other experiments the enzyme was entrapped in a dialysis membrane and in this 

configuration a gold electrode was also tested. Some experiments were done with the enzyme freely 

diffusing in solution. The promoters polylysine (PLL), 4,4’-dipyridil and the surfactant 

didodecyldimethylammonium bromide (DDAB) were tested. The use of an ionic liquid as a promoter 

(0.4M [C4mim]Cl-, described in Chapter 4), was also investigated. Additionally, enzyme samples 

from different purification batches were tested.  

 

In all situations, the addition of nitrate to the voltammetric cell, in successive proportions of variable 

concentrations (ranging from 10 .M to 10 mM), produced no coherent and/or measurable alteration 

in the cyclic voltammograms. In some experiments with the graphite electrodes, and upon nitrate 

addition, a catalytic wave developed at a potential close to that of the non-turnover signal. However, 

once the solutions were well deaerated, no changes could be detected on the CVs upon nitrate 

addition. It was also observed that upon air or water addition a catalytic wave developed at the same 

potential. Therefore, the appearance of this wave can be attributed to the presence of dissolved 

oxygen in the nitrate solution. Since dissolved oxygen is readily reduced in the potential range 160 to 

-600 vs SHE according to: 

O2 (g)  +  2H+  +  2e-  !  H2O2 

H2O2  +  2H+  +  2e-  !  2H2O 

Increasing amounts of a well-deaerated solution of hydrogen peroxide were added to the 

voltammetric cell with the enzyme immobilized in the UTPGEh. 

 

In the presence of H2O2, a catalytic wave is observed on the cyclic voltammograms and the current 

increases with increasing H2O2 concentration in the range of 50 .M to 500 .M. For the highest 

concentrations the wave loses its peak shape and becomes sigmoidal with a half wave potential value 

E1/2 # -0.155 mV vs SHE, a value close to that of the non-turnover signal and therefore must 
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correspond to the same redox process (Figure III. 12). For each H2O2 concentration the catalytic 

current was measured at the peak potential and the data fitted to the Lineweaver-Burk plot. A 

Michaelis-Menten constant (Km) of 100 µM and a maximum catalytic current imax of 7.5 x1 0-7 Å 

were determined. With the amount of enzyme adsorbed this catalytic current was converted into the 

turnover number, kcat = 5.5 s-1. This catalytic activity was totally unexpected, certainly not related to 

the Mo catalytic site but probably connected to the hemes present in the NapB subunit. As described 

by Paes de Sousa and collaborators [110], altered forms of c-type cytochromes, with either Met-His 

or bis-His-coordination can be induced by interaction with pyrolytic graphite electrodes. This 

interaction promotes the displacement of one of the axial ligands and the altered forms display 

peroxidatic activity. Both E0´ and E1/2 values do not compare with the redox potentials of the heme 

cofactors displayed in Table III.3, which is in agreement with the formation of an altered form of the 

hemes. Moreover, the shape of the catalytic voltammograms and the turnover number estimated for 

the catalytic activity of NapAB towards H2O2 are similar to those reported by Paes de Sousa. The 

protein may be actually facing the electrode through the small di-heme c-type subunit NapB and 

electrons are being directly transferred between the hemes and the electrode. This transfer occurs 

most probably through the solvent exposed heme (Figure III. 3). 

 

 

Figure III. 12 - Cyclic voltammograms of C.necator NapAB adsorbed at a graphite electrode in the presence of 
increasing concentrations of H2O2, in 10 mM Tris-HCl pH 7.6 and 0.1 M NaCl (v = 20 mV s-1, 3000 rpm). 
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The results reported for C.necator NapAB are different from those observed for other nitrate 

reductases investigated by protein film voltammetry using graphite electrodes. In NapAB from 

R.sphaeroides non-turnover-signals are never observed, but the catalytic activity towards nitrate is 

always detected. This activity reaches a maximum at a given potential and then decreases again and 

depending on the experimental conditions (pH and T) the maximum occurs in the range of -100 mV 

to -200 mV vs SHE. In the case of Rs NapAB, the catalytic activity was also proven to be inhibited 

by high substrate concentrations, which constitutes an unprecedented fact for enzymes of the DMSO 

reductase family of Mo proteins. These results suggest that the large catalytic subunit NapA, where 

nitrate is reduced to nitrite, is involved in the voltammetric response [111-113]. 

 

The reason for the different voltammetric behavior between C.necator and R.sphaeroides NapAB 

when adsorbed on graphite electrodes cannot be explained on the basis of simple electrostatic 

electrode/protein interactions. The electrostatic surface potential around the exposed-funnel in the 

case of C.necator is markedly positively charged, as previously mentioned (Figure III. 6), but does 

not seem to interact with the negatively charged graphite surface. In the case of NapAB from 

R.sphaeroides, the electrostatic surface potential is clearly more anionic and neomycin has been 

shown to improve the voltammetric signal stability [113]. Therefore, a favorable electrostatic 

interaction must exist between the electrode surface and the negatively charged region through the 

NH3+ groups of neomycin, so that electrons are exchanged with the catalytic active site. In both 

enzymes, the NapB subunits are very similar and the electrostatic surface potential around the 

exposed heme(s) is positive.  Our voltammetric data suggest that in the case of C.necator NapAB, a 

domain for electron transfer was built up through interactions with the C-O functionalities of the 

graphite surface and the region around the exposed heme. However, this affected the enzyme 

properties and the peroxidatic activity displayed by C.necator NapAB does not, or may not, have 

biological relevance.  

 

C.necator NapAB is located on the periplasmic compartment of the cell, thus, exposition to different 

concentrations of nitrate substrate during natural biochemical processes (or in the culture medium) 

may explain some of its indifference towards the presence of nitrate in the electrolytic cell. The 

protein may have developed a protection mechanism, leading to a required protein pre-activation for 

nitrate consumption. New experiments are necessary to answer this question. 
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4 CHAPTER 4  
Protein Crystallization using Ionic Liquids 

 

 

 

 

 

 

 

 

 

The work described in this chapter was the subject of the following publication: 

 

C. Coelho, J. Trincão, and M. J. Romão (2010) “The use of ionic liquids as crystallization additives 

allowed to overcome nanodrop scaling up problems: A success case for producing diffraction-quality 

crystals of a nitrate reductase” Journal of Crystal Growth, 312, 714-719. 
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4.1 INTRODUCTION 

4.1.1 Limitations in Protein Crystallization 

Protein crystallization is a key step in determining a macromolecule three-dimensional structure. 

Many proteins are difficult to crystallize. The propensity to form, an orderly packed array of 

molecules or not in the form of a crystal can be related with some intrinsic properties. The protein 

molecular size might be important, since larger proteins are more likely to have segments of residues 

with limited mobility, which hinder crystallization. Another important feature is protein solubility, 

since the protein must be able to decrease its solubility in the precipitant to start nucleation. Protein 

crystallization can also be determined by chemical interaction between macromolecules, usually the 

larger the differences between various possible contacts, the easier it is to produce a good crystal. 

There are also external protein factors responsible for limitations in obtaining crystals. The most 

common is generally the limited amount of biomaterial available. Some proteins are very hard to 

produce and difficult to purify and the final yield can be very low, limiting the number of screens 

that can be setup by the crystallographer to achieve crystallization conditions. 

 

Recent advances in robotics and computer control, driven by some structural genomics initiatives 

around the world, have been developed in order to overcome some of these difficulties. The use of 

dispensing nanodrop crystallization robots is one of them and is becoming very popular. In the 

particular case of the nitrate reductase from C.necator, due to the limited amount of protein available 

initially, the High Throughput Crystallization Facility at EMBL Grenoble, which offers automated 

nanovolume crystallization screening on a service basis, was requested for the crystallization setups 

[86]. This facility has the particularity of performing the crystallization experiments, which can be 

followed up after by users, through automated imaging systems (through a real-time dedicated web 

interface). A total of 96 different crystallization conditions were tested, with the 16 .l of pure 

C.necator nitrate reductase available at 10 mg/ml. For common manual crystallization this reduced 

amount of protein would only be sufficient to setup one crystallization plate of 24 different 

conditions. The protein sent to the robot, successfully crystallized in several different conditions and 

two of them in particular gave crystals that were suitable for diffraction data collection. The native 

structure of NapAB could be solved at 1.5Å resolution, using data from one of these robot 

microcrystals (Chapter 3). This case illustrates the efficient and reliable possibilities of using a 

crystallization robot. 
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Very recently an Oryx8 protein crystallization robot (Douglas Instruments) was acquired by our 

research group (Crystallography group at Faculdade de Ciências e Tecnologia from Universidade 

Nova de Lisboa) and all the nanocrystallization setups can now be performed in-house. 

 

4.1.2 Limitations to Scale up Robot Conditions 

The C.necator NapAB crystal structure raised new questions that lead to the need of obtaining 

additional crystallographic data for other enzyme forms. Corroboration of the new mechanistic 

evidences related with the assignment of sulfur as the 6th molybdenum ligand and the pursuit of 

additional mechanistic studies were the main reasons for pursuing crystallographic studies on 

C.necator NapAB [32, 33]. New experiments should include crystallographic studies for different 

forms of the enzyme, namely reduced forms, as well as of complexes with substrates analogues and 

inhibitors. As an initial approach to obtain new data, the best robot crystallization conditions were 

reproduced using larger drop volumes, a procedure commonly referred as scale up. Despite being an 

empirical procedure, in practical terms it may become difficult to accomplish and no NapAB crystals 

could be obtained by simply using this approach. The change in equilibration kinetics, due to the 

larger surface area to volume ratio of the nanodrops is possibly one of the major causes for this 

specific problem, together with different evaporation rates. Other external causes may be related with 

variations among protein batches and aging samples, commercial versus homemade solutions or a 

mixed combination of several factors. 

 

Crystallographers are always searching for new and efficient crystallization protocols, which enable 

them to obtain better diffracting crystals. When there are no limitations, particularly concerning the 

amount of protein available, several different conditions are tested within the initial crystallization 

condition. This includes, besides screening the precipitant concentration, pH and buffers, the 

screening of different crystallization temperatures, and the use of different additives in the mixture. 

Some seeding techniques are also regularly performed, with the objective of introducing external 

crystallization nuclei in the protein solution to induce nucleation. For the scale up of nitrate reductase 

crystals, seeding experiments were also tested as well as several additives, particularly some with 

biological significance for the protein (substrate and inhibitors), but with no positive results. Only 

long thin needles were obtained, not suitable for diffraction experiments.  
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In the pursuit for new crystallization methodologies, some recently described compounds named 

ionic liquids (IL) were tested as crystallization additives. The results obtained were very promising, 

as explained below. 

 

4.1.3 Ionic Liquids and Proteins 

Room temperature ionic liquids (IL) are salts that do not crystallize at room temperature. They are 

composed of an organic cation (for example, 1-butyl-3-methylimidazolium or [C4mim]) and any of a 

variety of organic/inorganic counter-anions (Cl-, PF6
- or BF4

-, for example) (Figure IV. 1). Ionic 

liquids have been investigated as environmentally friendly replacements for organic solvents: due to 

their negligible vapor pressure they can be efficiently reused. They also possess high thermal and 

chemical stability and have been used in several areas of research such as green chemistry, 

enzymatic catalysis and electrochemistry, making the most of their excellent stability and unusual 

solvent properties. Depending on their structure, they can be immiscible or not with water. 

Biocatalytic reactions in ionic liquids have shown higher selectivity, faster rates and enhanced 

enzyme stability. Ionic liquids can be considered as “personalized solvents” because it’s easy to 

change their structure and thus their solvent properties. IL are more viscous than typical organic 

solvents, probably due to the strong intermolecular forces between solvent molecules. The charge to 

charge interactions is inherent in ionic liquids, but reducing van der Waals interactions by reducing 

the surface area of the molecule can slightly lower the viscosity. Ionic liquids with shorter alkyl 

chains are less viscous than those with longer ones. There are more than 1000 different ionic liquids 

described in the literature, from which 300 are already commercially available. They are much more 

expensive than organic solvents and the key to make their use more profitable will be to develop 

efficient recovery, isolation and reuse [114-116]. 

 

The interactions between ionic liquids and proteins have been investigated in recent years. Enzymes 

suspended in ionic liquids remain stable and catalytic active, even though they are not stable or 

active in conventional polar organic solvents. Ionic liquids have been demonstrated also to improve 

protein refolding following denaturation. This is particular relevant nowadays, due to the common 

expression of recombinant proteins in prokaryotic systems, which in the majority of the cases lack 

the proper refolding machinery. Due to their ionic nature, they may interact with charged groups of 

enzymes, either in the active site or in the surface, giving rise to protein structural changes. Unlike 

conventional organic solvents, ionic liquids possess no vapor pressure, and are able to dissolve many 
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compounds. These non-aqueous but polar solvents may also constitute a new and efficient media for 

enzyme catalysis. The possibility to tune ionic liquids properties, such as solubility, polarity or 

hydrophilicity, by selecting the appropriate combination anion/cation, makes them remarkably 

versatile for many applications [117-119]. 

 

 

Figure IV. 1 – Some common ionic liquids used in protein crystallography. 

 

4.1.4 Protein Crystallization and Ionic Liquids 

Despite the large number of studies relating ionic liquids and protein stabilization or renaturation, 

there were only a few reports on the use of IL in protein crystallization, when the scale up trials for 

the nitrate reductase crystals were started. The first study dates from 1999 and reports the use of 

ethyl ammonium nitrate in the crystallization of lysozyme [120]. In a subsequent study, Pusey and 

collaborators described crystal improvement of four different proteins (canavalin, %-lactoglobulin B, 

xylanase and glucose isomerase, respectively), with the use of three different IL [121]. However, all 

these studies were performed in model proteins, which posed no major crystallization problems. 

Furthermore, only crystal morphology was assessed, and no details from diffraction quality of the 

improved crystals were given. Recently, a third publication was available in which the authors 

performed similar experiments as Pusey and co-workers, for other model proteins (lysozyme, 
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catalase, myoglobin, trypsin, xylanase and glucose isomerase) and a monoclonal antibody Fab in 

complex with a peptide [122]. In this case, improvement of crystal size was only observed for 

lysozyme and trypsin. For every study the authors reported that all proteins retained their catalytic 

activity after incubation with ionic liquids, and that crystals were obtained at a number of conditions 

where they were absent from IL-free control experiments. This approach seemed very promising, 

and although limited by the reduced amount of protein available, two water-soluble ionic liquids 

were tested in an attempt to scale up the robot crystallization conditions for the C.necator nitrate 

reductase. 
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4.2 C.NECATOR NAPAB: A CASE STUDY 

4.2.1 Protein Expression and Purification 

C.necator periplasmic nitrate reductase was expressed and purified as mentioned in chapter 3 of this 

Thesis (sections 3.2.1 and 3.2.2).  The protein used to scale up the initial robot conditions was 

obtained from the 10L BioStat B-Plus reactor batch. Final protein concentration was 10 mg/ml in 10 

mM Tris-HCl pH 7.6 buffer. 

 

4.2.2 Crystallization 

Crystallization drops were setup at 20ºC, using the sitting-drop vapor diffusion method, as in the 

crystallization robot. Initial attempts were made using the same conditions for the best crystals 

obtained by the robot (condition 42: 0.1M Bis-Tris pH 5.5, 25% w/v PEG 3350 and condition 90: 

0.2M sodium formate, 20% w/v PEG 3350), but increasing ten times the drop volume (from 0.2.l in 

the robot, to 2.l in manual setup). Crystallization stock solutions number 42 and 90 from Index 

Crystallization Screen were purchased from Hampton research. As no crystals were obtained, a PEG 

3350 screen concentration was performed, which lead to the formation of micro needles and sea 

urchins, but no measurable crystals. Seeding experiments were also tested as well as additives (such 

as potassium nitrate, sodium azide, MPD, sodium malonate and sodium dithionite). Due to the 

continuous lack of results, we pursued a new approach, using water soluble ionic liquids (IL) that 

were tested as crystallization additives. Due to the small amount of protein available only two 

different IL were selected for the experiments: [C4mim] Cl- (1-butyl-3-methylimidazolium chloride) 

and [C4mim] [MDEGSO4] (1-butyl-3-methylimidazolium 2(2-methoxyethoxy) ethyl sulphate), both 

available from Fluka. The main objective of this choice was to maintain the cation ([C4mim]] while 

changing the anion. The protein was incubated either with 0.2M and 0.4M of [C4mim] Cl- and 

[C4mim] [MDEGSO4], for several minutes before setting up the crystallization drops. All values for 

ionic liquid concentration are in respect to final concentration in protein solution. Crystal for the 

nitrate reductase protein with overall dimensions of 0.3 x 0.1 x 0.1 mm3 were obtained within two 

days, using 0.2M sodium formate, 15% PEG 3350 and 0.4M [C4mim] Cl-. 

 

To ensure that manual crystallization conditions were as similar as possible to the robot, all scale up 

experiments (with or without ionic liquids) were performed using the same crystallization solutions, 
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at the same temperature (20ºC) and with the same protein batch purification. A sample from this 

batch (10L BioStat B-Plus reactor batch) was also sent to the crystallization robot facility in EMBL 

to prove that the differences from the two protein batches (robot-batch and 10L batch) were not the 

cause for reproducibility problems. 

 

4.2.3 Data Collection and Analysis 

The best crystals were harvested in a solution containing a higher precipitant concentration (25% 

PEG 3350, and 0.2M sodium formate) and allowed to stabilize for several minutes before cryo-

cooling with paratone oil as cryoprotectant. Crystals were flash cooled and stored in liquid nitrogen, 

and several datasets were collected at the ESRF (beamlines ID 14-1 and 14-2), using ADSC 

Quantum-4R CCD detectors. In general crystals diffracted in a range of 2 to 3.5Å, with some few 

crystals diffracting as well as the initial ones obtained at the robot (Table IV. 1). Subsequent soaking 

experiments, using 20 mM sodium dithionite were performed in some crystals obtained with the help 

of the ionic liquid, as previously mentioned in Chapter 3 (Table III. 1, dataset name DIT-IL). 

 

Dataset name DIT-IL (2007) Nap_IL (2008) Nap_IL (2009) 

Beamline (ESRF) ID14-2 ID 14-1 ID14-2 

Space Group C2 C2 C2 

 
Cell constants 

a = 119.4 Å, b = 71.4 Å, 
c = 128.4 Å and " = 

121.0º 

a = 135.5 Å, b = 71.8 
Å, c = 114.9 Å and " 

= 110.5º 

a = 121.7 Å, b = 71.2 Å, 
c = 121.7Å and " = 

115.0º 
Resolution (Å) 1.7 2.7 2.0 

Matthew’s coefficient 
(Å3/Da) 

2.32 2.45 2.23 

Solvent content (%) 46.90 49.75 44.95 

 
 

Crystallization 
conditions 

 
0.2M sodium formate 
15% PEG 3350 
0.4M [C4mim] Cl- 

20mM sodium dithionite 
 

 
0.2M sodium formate 
15% PEG 3350 
0.4M [C4mim] Cl- 

 

 
0.2M sodium formate 
15% PEG 3350 
0.4M [C4mim] Cl- 

20mM sodium dithionite 

 

Table IV. 1 – Crystal parameters and X-ray diffraction data statistics for the best diffracting crystals obtained using ionic 
liquids. 
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4.3 RESULTS AND DISCUSSION 

All attempts to reproduce in house the crystals obtained at the High Throughput crystallization robot, 

but using larger volume drops had failed. The only crystallization results obtained were precipitate, 

small urchins and thin needles (Figure IV. 2). To overcome this problem, two different ionic liquids 

([C4mim] Cl- and [C4mim] [MDEGSO4]) were tested as crystallization additives. In both cases 

decreased nucleation was observed, and with 0.4M of [C4mim] [MDEGSO4], the needles were larger 

although still very thin for diffraction experiments (Figure IV. 3). With 0.4M [C4mim] Cl- as 

crystallization additive in the protein solution, good results were achieved and large single crystals 

were obtained in a reproducible manner (Figure IV. 4). When using a lesser amount of this IL in the 

protein solution (0.2M), no good crystals were obtained (Figure IV. 3). The changes in the counter 

ion, as well as the ionic liquid concentration, were crucial for successful optimization of 

crystallization. 

 

 

Figure IV. 2 - Microdrop crystallization in the absence of ionic liquids: (a) condition 0.2M sodium formate and 15% 
PEG 3350, protein concentration 5 mg/ml; (b) sea urchins obtained using 0.2M sodium formate and 12.5% PEG 3350; 
(c) streak seeding from drop (b); (d) long but fine needles obtained in the same condition (a) but with protein 
concentration 10 mg/ml. 
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Figure IV. 3 - Microdrop crystallization in the presence of (a) 0.4M [C4mim] [MDEGSO4] (b) 0.2M [C4mim] 
[MDEGSO4] and (c) 0.2M [C4mim] Cl-. Crystallization conditions are 0.2M sodium formate, 15% PEG 3350. 

 

 
Figure IV. 4 - Microdrop crystals obtained in the presence of 0.4M [C4mim] Cl- revealing crystallization reproducibility. 
Crystallization conditions are 0.2M sodium formate and 15% PEG 3350. Approximate crystal dimensions 0.3 x 0.1 x 0.1 
mm3. 

 

The maximum resolution for each dataset was very dependent not only in intrinsic crystal quality but 

also on crystal handling and cryo-cooling. C.necator NapAB crystals were very sensitive, and typical 

diffraction observed ranged between 2-3Å, with only about 20% of the crystals diffracting 

isotropically to the same resolution as the ones obtained from the robot. Though the majority of the 

crystals seemed unique, diffraction data showed two lattices after data collection for some of the 

crystals, probably a consequence from crystal manipulation and cooling. To avoid overlaps during 

data collection, the X-ray detector was moved further away from the crystal to increase the distance 

and the ability to process data all the way to the detector corner (Figure IV. 5). 
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Figure IV. 5 - C.necator NapAB protein diffraction pattern of a crystal obtained in-house, using 0.4M [C4mim] Cl-. 
Resolution at edge is 2Å and dataset name Nap_IL (2009) from Table IV.1 

 
 
 
All crystals from C.necator nitrate reductase grown in the presence of the ionic liquid belong to the 

same space group C2 as the native crystal, obtained in the crystallization robot. Despite belonging to 

the same space group, differences can be observed in cell constants dimensions. Particularly for the 

case described in the previous Chapter 3 (dataset name DIT-IL), where differences in unit cell 

parameters account for a decrease of 16% and 13% in the a and b axes respectively, while the c axis 

showed an increase of 33% (Table IV. 1). This leads to a small decrease in unit cell volume (9%), 

but large differences in crystal packing (Figure IV. 6). The differences in cell dimensions are 

accompanied by differences in the relative positioning of the individual molecules in the crystal 

lattice, induced by the presence of the ionic liquid in the protein. These differences clearly 

demonstrate the interaction between the ionic liquids and the protein molecules, which in this 

particular case were probably necessary to hold the conformational changes that occurred in the 

soaking experiments, with the reducing agent sodium dithionite. 
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Figure IV. 6 - Changes in the crystal packing. Upper Left: crystal packing for the native protein, with unit cell constants 
a = 142.2Å, b = 82.4Å, c = 96.8Å and % = 100.7º (46.9% solvent); Upper Right: packing of crystals obtained with IL, 
unit cell constants a = 119.4Å, b = 71.4Å, c = 128.4Å and % = 121.0º (51.5% solvent content); Center: comparison of the 
two unit cells constants, projected along the b axis. With IL, a and b axes decrease respectively 16% and 13%, while c 
axis increased 33%. 

 

After careful inspection of the electron density map, no IL molecules could be clearly identified. 

Also in the recent work of Judge and co-workers [122], where crystals of two model proteins and a 

Fab complex were obtained in the presence of ionic liquids, no IL molecules could be assigned in the 

crystal structures. This might be due to some disorder in the crystal, to unspecific binding or even no 

binding of ionic liquid molecules to the protein. Although they could not be identified in the crystal 

structure, IL molecules must affect specific crystallization contacts within the crystal. This could 

explain the large differences observed in the cell constants for crystals grown in the presence of IL, 

resulting from changes in the relative packing of the molecules. The way ionic liquids affect protein 

crystallization cannot be explained by a single mechanism, but rather a combination of several 

different factors. Changes in growth kinetics and in solution properties might be important, but also 

variations in the vapor equilibration rate. The presence of ionic liquid can conduce a slower 



 

108 
 

evaporation rate, and consequently to different molecule packing. Ionic liquids can also be 

responsible for changes in protein solubility as previously mentioned. 

 

The difference encountered when changing from chloride (Cl-) to a larger anion such as 2(2-

methoxyethoxy) ethyl sulphate (MDEGSO4), might be explained by recent studies elucidating the 

differences among the structures of the [C4mim] with different anions. Ionic liquids have localized 

structures around each ion, constituted by pairs of ions and not dissociated ions as previously thought 

[123, 124]. Comparing the results obtained for the difficult case of the nitrate reductase, as well as 

those from model proteins using the cation [C4mim], it is easily observable that it has the largest 

success rate. 

 

It is important to note that due to the rather limited amount of protein (before the 300L industrial 

bacterial growth), and the successful results obtained with 0.4M [C4mim] Cl-, a more extensive 

screen was not performed. It is also important to mention that with the sample from the 10L batch 

that was sent again to the robot facility in EMBL, it was possible to reproduce the initial 

microcrystals obtained. This proves that the difference from the two protein batches was not the 

cause of reproducibility problems during scale up attempts. 
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4.4 CONCLUSIONS 

The use of dispensing robots is becoming a very common and popular practice in the protein 

crystallography community. These robots possess several impressive features, such as allowing for 

very fast screening of a wide range of conditions, in controlled environments, and using minimal 

amounts of protein. Although very powerful in the initial crystallization process, they are generally 

not used in the following crystallization optimization steps. In addition, the increasing need to scale 

up from nanodrops to regular drops is becoming quite problematic. Despite the several advances in 

protein crystallography it is still not possible to define general crystallization protocols, since each 

individual protein has its intrinsic properties and requirements for successful crystallization. The 

crystallization of C.necator NapAB constitutes the first reported case on the use of ionic liquids to 

solve a real difficult case scenario. The use of ionic liquid as a crystallization additive allowed 

overcoming the volume scale up problem. The reproducibility of good quality crystals will allow 

pursuing the mechanistic studies on the periplasmic nitrate reductase. The results here reported may 

define a strategy that can be applied to many other cases. These organic salts can also be used to 

optimize crystal properties, such as size and morphology, to improve data diffraction or enhance 

protein stability. Depending on the amount of pure protein available, when screening crystallization 

conditions using ionic liquids, one should try different cation/anion combinations, such as using 

larger versus smaller ones, while maintaining the same cation. The final concentration of IL in the 

protein solution should be between 0.2M and 0.6M, the most studied range of concentrations for 

protein-IL interactions. 

 

One clear remarkable sign of the importance and usefulness of ionic liquids in protein crystallization 

is the recent market launch of a screen of additives for protein crystallization, composed entirely of 

ionic liquids (Ionic Liquid Screen from Hampton Research). 

. 
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5  CHAPTER 5  
General Conclusions and Future Perspectives  
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5.1 GENERAL CONCLUSIONS 

Mouse aldehyde oxidase homologue1 (mAOH1) and C.necator periplasmic nitrate reductase (Cn 

NapAB) are two molybdopterin dependent enzymes. Due to the characteristics and specificities of 

their catalytic active sites the two proteins belong to different Mo containing enzymes families. 

mAOH1 is a protein homologue to aldehyde oxidase and belongs to the xanthine oxidase family, 

while Cn NapAB belongs to the DMSO reductase family. The three dimensional structure for the 

two proteins was determined by X-ray protein crystallography and studies regarding function, 

chemical behavior and structure specificities were performed for the nitrate reductase.  

 

The recombinant mAOH1 enzyme was used to optimize the crystallization conditions for the native 

enzyme from mouse liver. After extensive trials, a usable dataset was collected at 2.9Å resolution for 

the native protein crystals. The structure was solved by molecular replacement using the homologous 

protein xanthine oxidase (XO). This constitutes the first structure ever obtained for an aldehyde 

oxidase. It is known that human AO (AOX1) is involved in drug metabolizing processes, possibly 

through xenobiotic detoxification, and the recognition of its importance has been increasing in recent 

years. Several pharmaceutical companies have been studying the protein interaction with a large 

number of different drugs.  The range of substrates is much broader in aldehyde oxidase than in 

xanthine oxidase, despite their remarkable overall similarity. With the mAOH1 crystal structure, we 

were able to identify crucial residues in the protein active site responsible for the binding of different 

substrates, particularly large and bulky N-heterocycles. Also, the differences in the active site funnel, 

which leads to the molybdopterin cofactor, could be addressed. The mAOH1 funnel is much wider 

and able to accommodate some substrates that are unable to be metabolized by XOR. An inter-

conversion mechanism (XDH!XO) exists in mammalian xanthine oxidoreductases, which was 

never described for other XO family members, including mAOH1. Some important protein residues 

involved in this inter-conversion mechanism were assigned in mAOH1, and their comparison with 

bovine XOR helped to explain the lackof such mechanism in aldehyde oxidases. 

 

Several crystal structures from periplasmic nitrate reductases proteins have been solved in the last 

twelve years, both for monomeric and heterodimeric proteins. These structures were solved at a 

resolution that couldn’t unequivocally assign all the Mo ligands, and the 6th molybdenum position 

was believed to be occupied by an O/OH group. The heterodimeric nitrate reductase from C.necator 
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is homologous to the previous protein structures reported, but its structure could be solved at 1.5Å 

resolution, constituting the highest resolution structure obtained for a nitrate reductase so far. With 

high resolution, clear electron density was observed for an atom heavier than oxygen at the Mo 6th 

position. The B-factor analysis provided corroboration and the ligand could be unambiguously 

assigned as a sulfur atom. The same procedure was used for the monomeric nitrate reductase from 

D.desulfuricans in recent crystallographic studies, with the same result. It is likely that this 

constitutes a common feature for all periplasmic nitrate reductases. In addition, the partially reduced 

form of the enzyme could be obtained at 1.7Å, and has particular importance in explaining the 

protein reaction mechanism. This NapAB partially reduced form was obtained using ionic liquids as 

described in detail in the case study reported. These novel compounds have proven to be useful as 

crystallization additives. They were also decisive to achieve the partially reduced form of the enzyme 

in this specific case. The C.necator NapAB spectroscopic and electrochemical studies also revealed 

some unexpected features of the protein, particularly the different hemes potentials observed when 

comparing with the homologous heterodimeric NapAB from R.sphaeroides. Moreover, the lack of a 

catalytic voltammetric response towards the natural substrate nitrate was unexpected, since it was 

already described and reported for the homologous Rs NapAB. 

 

5.2 FUTURE PERSPECTIVES 

When solving a new protein three-dimensional structure, some answers can be given to the universe 

of pre-existing questions regarding that particular structure. Nevertheless, many more questions are 

raised afterwards. This becomes very clear, when a crystallographer is able to solve its first protein 

crystal structure. 

 

There are still many open and important questions directly related to what was explored in this 

Thesis, particularly regarding the mAOH1 protein. To answer some of these burning questions, one 

of the first steps is to try to improve the protein crystals, in order to extend diffraction. The main goal 

is to perform crystal soaking experiments, particularly with the important compounds that have been 

described to be metabolized by aldehyde oxidases, in particular those of pharmacological relevance. 

The ability to analyze where these compounds bind in the protein active site would be of great 

interest. With the now available coordinates, some substrate docking studies and molecular 

simulations can also be performed simultaneously, and the results compared afterwards. With the 
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increasing importance of aldehyde oxidase for the pharmaceutical companies, drug design studies 

should not be forgotten as an aim to our studies. 

 

Biochemical studies have shown different specificities among the different aldehyde oxidase 

isoforms, particularly between mAOH1 and mAOH2. It would also be of great value to solve the 

crystal structure for the mAOH2 isoform and perform structural comparisons. The amount of protein 

is very limited, but with the recently available and improved expression system it should be feasible. 

Also, the crystallization robot can be helpful in these particular cases. Ionic liquids should again be 

helpful in this task, not only as crystallization additives, but also as protein stabilizing agents, as has 

been described for several enzymes. 

 

Also for the nitrate reductase protein, there are still interesting experiments waiting to be done and 

several aspects needing to be solved. The complete reduced form of the enzyme would be very good 

to achieve and further experiments using the anaerobic chamber can be of special help in this case. 

The ionic liquids should also be useful. With the now available large Cn NapAB protein quantity, a 

broader ionic liquids screen can be performed, in the pursuit to better understand their particular 

properties and protein interactions in protein crystallization. Assigning ionic liquids in the electron 

density maps would also be very interesting and such experiments must be performed.  

 

Nevertheless, the main and more important accomplishment to be done in the near future is to be 

able to solve the crystal structure of the human Aldehyde oxidase, from which diffracting crystals 

were very recently obtained. This constitutes a very challenging project, and hopefully all the 

necessary conditions are met, so that this project can be pursued. 
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Table 1 - Mineral medium composition for C.necator growth under aerobic conditions 

Mediuma Final concentration Amounts 
10L Growth 

Amounts 
300L Growth 

MgSO4.7H2O 
 

0.02% 2 g 60 g 

CaCl2.2H2O 
 

0.001% 0.1 g 3 g 
 

NH4Cl 
 

0.2% 20 g 600 g 

FeCl3 

 

0.0005% 0.05 g 1.5 g 

Fructose 
 

0.4% 40 g 1200 g 

SL6 solutionb 
 

0.1% 50 ml 300 ml 

H16 buffer 
(Na2HPO4/ KH2PO4) 

 

-  
90 / 15 g 

 
2700 / 450 g 

Tetracycline 
 

10 mg/ml 0.1 g 3 g 

Antifoam 
(Simethicone) 

- 1 g 30 g 

a All solutions were autoclaved 20 min at 120ºC, except the FeCl3, the Fructose and Tetracycline solutions, that were 
sterilized using ultrafitration with 0.2 µm pore diameter. 

b SL6 solution corresponds to an oligoelement solution composed by: ZnSO4.7H2O; MnCl2.4H2O; H3BO3; CoCL2.6H2O; 
CuCl2.6H2O; NiCl2.6H2O; Na2MoO4. 

 

 

Figure 1 - Comparison between C.necator 300L and 10L growths 
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Table 2 - Index Formulation from Hampton Research (2008) 

H>!!!!O>H!&!*cdecf!gfch!i$!G>D:!E>O!&!,jjklcmj!nmopgdq!!!
E>!!!!O>H!&!2khcmj!gfqdgdq!decrshegdq!i$!?>D:!E>O!&!,jjklcmj!nmopgdq!
G>!!!!O>H!&!942"#-42!i$!D>D:!E>O!&!,jjklcmj!nmopgdq!!!!
?>!!!!O>H!&!942"#-42!i$!B>D:!E>O!&!,jjklcmj!nmopgdq!!!!!
D>!!!!O>H!&!$%3%2!i$!F>D:!E>O!&!,jjklcmj!nmopgdq!!!!!
B>!!!!O>H!&!#ecn!i$!L>D:!E>O!&!,jjklcmj!nmopgdq!!!!!
F>!!!!O>H!&!*cdecf!gfch!i$!G>D:!G>O!&!2khcmj!frokechq!!!!
L>!!!!O>H!&!2khcmj!gfqdgdq!decrshegdq!i$!?>D:!G>O!&!2khcmj!frokechq!!!!
M>!!!!O>H!&!942"#-42!i$!D>D:!G>O!&!2khcmj!frokechq!!!!
HO>!!!O>H!&!942"#-42!i$!B>D:!G>O!&!2khcmj!frokechq!!!
HH>!!!O>H!&!$%3%2!i$!F>D:!G>O!&!2khcmj!frokechq!!!!
HE>!!!O>H!&!#ecn!i$!L>D:!G>O!&!2khcmj!frokechq!!!!
HG>!!!O>H!&!942"#-42!i$!D>D:!O>G!&!&gtlqncmj!pkejgdq!hcrshegdq!!!!
H?>!!!O>H!&!942"#-42!i$!B>D:!O>D!&!&gtlqncmj!pkejgdq!hcrshegdq!!!!
HD>!!!O>H!&!$%3%2!i$!F>D:!O>D!&!&gtlqncmj!pkejgdq!hcrshegdq!!!!
HB>!!!O>H!&!#ecn!i$!L>D:!O>G!&!&gtlqncmj!pkejgdq!hcrshegdq!!!!
HF>!!!H>?!&!2khcmj!irknirgdq!jklkugncf!jklkrshegdqW3kdgnncmj!irknirgdq!hcugncf!i$!D>B!
HL>!!!H>?!&!2khcmj!irknirgdq!jklkugncf!jklkrshegdqW3kdgnncmj!irknirgdq!hcugncf!i$!B>M!
HM>!!!H>?!&!2khcmj!irknirgdq!jklkugncf!jklkrshegdqW3kdgnncmj!irknirgdq!hcugncf!i$!L>E!
EO>!!!O>H!&!$%3%2!i$!F>D:!H>?!&!2khcmj!fcdegdq!decugncf!hcrshegdq!
EH>!!!H>L!&!,jjklcmj!fcdegdq!decugncf!i$!F>O!!!!
EE>!!!O>L!&!2mffclcf!gfch!i$!F>O!!!!
EG>!!!E>H!&!.+"&gocf!gfch!i$!F>O!!!
E?>!!!E>L!&!2khcmj!gfqdgdq!decrshegdq!i$!F>O!!!!
ED>!!!G>D!&!2khcmj!pkejgdq!i$!F>O!!!!
EB>!!!H>H!&!,jjklcmj!dgedegdq!hcugncf!i$!F>O!!!!
EF>!!!E>?!&!2khcmj!jgoklgdq!i$!F>O!!!!
EL>!!!GD]!vWv!#gfncjgdq!i$!F>O!!!!
EM>!!!BO]!vWv!#gfncjgdq!i$!F>O!!!
GO>!!!O>H!&!2khcmj!frokechq:!O>H!&!942"#-42!i$!B>D:!H>D!&!,jjklcmj!nmopgdq!!!!
GH>!!!O>L!&!3kdgnncmj!nkhcmj!dgedegdq:!O>H!&!#ecn!i$!L>D:!O>D]!wWv!3kosqdrsoqlq!tosfko!jklkjqdrso!qdrqe!D:OOO!!!!
GE>!!!H>O!&!,jjklcmj!nmopgdq:!O>H!&!942"#-42!i$!D>D:!H]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
GG>!!!H>H!&!2khcmj!jgoklgdq!i$!F>O:!O>H!&!$%3%2!i$!F>O:!O>D]!vWv!Tqppgjclq!%."EOOH!i$!F>O!!!!
G?>!!!H>O!&!2mffclcf!gfch!i$!F>O:!O>H!&!$%3%2!i$!F>O:!H]!wWv!3kosqdrsoqlq!tosfko!jklkjqdrso!qdrqe!E:OOO!!!!
GD>!!!H>O!&!,jjklcmj!nmopgdq!:!O>H!&!$%3%2!i$!F>O:!O>D]!wWv!3kosqdrsoqlq!tosfko!L:OOO!!!
GB>!!!HD]!vWv!#gfncjgdq!i$!F>O:!O>H!&!$%3%2!i$!F>O:!E]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
GF>!!!ED]!wWv!3kosqdrsoqlq!tosfko!H:DOO!!!
GL>!!!O>H!&!$%3%2!i$!F>O:!GO]!vWv!Tqppgjclq!&"BOO!i$!F>O!!!!
GM>!!!O>H!&!$%3%2!i$!F>O:!GO]!vWv!Tqppgjclq!%."EOOH!i$!F>O!!!!
?O>!!!O>H!&!*cdecf!gfch!i$!G>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!
?H>!!!O>H!&!2khcmj!gfqdgdq!decrshegdq!i$!?>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
?E>!!!O>H!&!942"#-42!i$!D>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!
?G>!!!O>H!&!942"#-42!i$!B>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!
??>!!!O>H!&!$%3%2!i$!F>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!
?D>!!!O>H!&!#ecn!i$!L>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
?B>!!!O>H!&!942"#-42!i$!B>D:!EO]!wWv!3kosqdrsoqlq!tosfko!jklkjqdrso!qdrqe!D:OOO!!!!
?F>!!!O>H!&!942"#-42!i$!B>D:!EL]!wWv!3kosqdrsoqlq!tosfko!jklkjqdrso!qdrqe!E:OOO!!!!
?L>!!!O>E!&!*gofcmj!frokechq!hcrshegdq:!O>H!&!942"#-42!i$!D>D:!?D]!vWv!6SW"7"E"&qdrso"E:?"iqldglqhcko!!!!
?M>!!!O>E!&!*gofcmj!frokechq!hcrshegdq:!O>H!&!942"#-42!i$!B>D:!?D]!vWv!6SW"7"E"&qdrso"E:?"iqldglqhcko!!!!
DO>!!!O>E!&!,jjklcmj!gfqdgdq:!O>H!&!942"#-42!i$!D>D:!?D]!vWv!6SW"7"E"&qdrso"E:?"iqldglqhcko!!!
DH>!!!O>E!&!,jjklcmj!gfqdgdq:!O>H!&!942"#-42!i$!B>D:!?D]!vWv!6SW"7"E"&qdrso"E:?"iqldglqhcko!!!!
DE>!!!O>E!&!,jjklcmj!gfqdgdq:!O>H!&!$%3%2!i$!F>D:!?D]!vWv!6SW"7"E"&qdrso"E:?"iqldglqhcko!!!!
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DG>!!!O>E!&!,jjklcmj!gfqdgdq:!O>H!&!#ecn!i$!L>D:!?D]!vWv!6SW"7"E"&qdrso"E:?"iqldglqhcko!!!!
D?>!!!O>OD!&!*gofcmj!frokechq!hcrshegdq:!O>H!&!942"#-42!i$!B>D:!GO]!vWv!3kosqdrsoqlq!tosfko!jklkjqdrso!qdrqe!DDO!!!!
DD>!!!O>OD!&!&gtlqncmj!frokechq:!O>H!&!$%3%2!i$!F>D:!GO]!vWv!3kosqdrsoqlq!tosfko!jklkjqdrso!qdrqe!DDO!!!!
DB>!!!O>E!&!3kdgnncmj!frokechq:!O>OD!&!$%3%2!i$!F>D:!GD]!vWv!3qldgqesdrecdko!iekikxsogdq!6DW?!3'W'$7!!!
DF>!!!O>OD!&!,jjklcmj!nmopgdq!:!O>OD!&!942"#-42!i$!B>D:!GO]!vWv!3qldgqesdrecdko!qdrkxsogdq!6HDW?!%'W'$7!!!
DL>!!!O>H!&!942"#-42!i$!B>D:!?D]!vWv!3kosiekisoqlq!tosfko!3!?OO!!!
DM>!!!O>OE!&!&gtlqncmj!frokechq!rqxgrshegdq:!O>H!&!$%3%2!i$!F>D:!EE]!wWv!3kosgfesocf!gfch!nkhcmj!ngod!D:HOO!!!
BO>!!!O>OH!&!*kugod6447!frokechq!rqxgrshegdq:!O>H!&!#ecn!i$!L>D:!EO]!wWv!3kosvclsoiseekochklq!Q!HD!!
BH>!!!O>E!&!+"3ekoclq:!O>H!&!$%3%2!i$!F>D:!HO]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
BE>!!!O>E!&!#ecjqdrsogjclq!("kxchq:!O>H!&!#ecn!i$!L>D:!EO]!wWv!3kosqdrsoqlq!tosfko!jklkjqdrso!qdrqe!E:OOO!!!!
BG>!!!D]!vWv!#gfncjgdq!i$!F>O:!O>H!&!$%3%2!i$!F>O:!HO]!wWv!3kosqdrsoqlq!tosfko!jklkjqdrso!qdrqe!D:OOO!!!!
B?>!!!O>OOD!&!*kugod6447!frokechq!rqxgrshegdq:!O>OOD!&!(cfyqo6447!frokechq!rqxgrshegdq:!O>OOD!&!*ghjcmj!frokechq!
rshegdq:!O>OOD!&!&gtlqncmj!frokechq!rqxgrshegdq:!O>H!&!$%3%2!i$!F>D:!HE]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
BD>!!!O>H!&!,jjklcmj!gfqdgdq:!O>H!&!942"#-42!i$!D>D:!HF]!wWv!3kosqdrsoqlq!tosfko!HO:OOO!!!!
BB>!!!O>E!&!,jjklcmj!nmopgdq:!O>H!&!942"#-42!i$!D>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
BF>!!!O>E!&!,jjklcmj!nmopgdq:!O>H!&!942"#-42!i$!B>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
BL>!!!O>E!&!,jjklcmj!nmopgdq:!O>H!&!$%3%2!i$!F>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
BM>!!!O>E!&!,jjklcmj!nmopgdq:!O>H!&!#ecn!i$!L>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
FO>!!!O>E!&!2khcmj!frokechq:!O>H!&!942"#-42!i$!D>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!
FH>!!!O>E!&!2khcmj!frokechq:!O>H!&!942"#-42!i$!B>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
FE>!!!O>E!&!2khcmj!frokechq:!O>H!&!$%3%2!i$!F>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
FG>!!!O>E!&!2khcmj!frokechq:!O>H!&!#ecn!i$!L>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
F?>!!!O>E!&!+cdrcmj!nmopgdq!jklkrshegdq:!O>H!&!942"#-42!i$!D>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
FD>!!!O>E!&!+cdrcmj!nmopgdq!jklkrshegdq:!O>H!&!942"#-42!i$!B>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
FB>!!!O>E!&!+cdrcmj!nmopgdq!jklkrshegdq:!O>H!&!$%3%2!i$!F>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!
FF>!!!O>E!&!+cdrcmj!nmopgdq!jklkrshegdq:!O>H!&!#ecn!i$!L>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
FL>!!!O>E!&!,jjklcmj!gfqdgdq:!O>H!&!942"#-42!i$!D>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!
FM>!!!O>E!&!,jjklcmj!gfqdgdq:!O>H!&!942"#-42!i$!B>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
LO>!!!O>E!&!,jjklcmj!gfqdgdq:!O>H!&!$%3%2!i$!F>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
LH>!!!O>E!&!,jjklcmj!gfqdgdq:!O>H!&!#ecn!i$!L>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
LE>!!!O>E!&!&gtlqncmj!frokechq!rqxgrshegdq:!O>H!&!942"#-42!i$!D>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
LG>!!!O>E!&!&gtlqncmj!frokechq!rqxgrshegdq:!O>H!&!942"#-42!i$!B>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
L?>!!!O>E!&!&gtlqncmj!frokechq!rqxgrshegdq:!O>H!&!$%3%2!i$!F>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
LD>!!!O>E!&!&gtlqncmj!frokechq!rqxgrshegdq:!O>H!&!#ecn!i$!L>D:!ED]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
LB>!!!O>E!&!3kdgnncmj!nkhcmj!dgedegdq!dqdegrshegdq:!EO]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
LF>!!!O>E!&!2khcmj!jgoklgdq!i$!F>O:!EO]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
LL>!!!O>E!&!,jjklcmj!fcdegdq!decugncf!i$!F>O:!EO]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
LM>!!!O>H!&!2mffclcf!gfch!i$!F>O:!HD]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
MO>!!!O>E!&!2khcmj!pkejgdq:!EO]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!
MH>!!!O>HD!&!.+"&gocf!gfch!i$!F>O:!EO]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
ME>!!!O>H!&!&gtlqncmj!pkejgdq!hcrshegdq:!HD]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
MG>!!!O>OD!&!0clf!gfqdgdq!hcrshegdq:!EO]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
M?>!!!O>E!&!2khcmj!fcdegdq!decugncf!hcrshegdq:!EO]!wWv!3kosqdrsoqlq!tosfko!G:GDO!!!!
MD>!!!O>H!&!3kdgnncmj!drckfsglgdq:!GO]!wWv!3kosqdrsoqlq!tosfko!jklkjqdrso!qdrqe!E:OOO!!!!
MB>!!!O>HD!&!3kdgnncmj!uekjchq:!GO]!wWv!3kosqdrsoqlq!tosfko!jklkjqdrso!qdrqe!E:OOO!!!!
 


