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Resumo  

 

A desnitrificação ou redução dissimilativa do nitrato é uma via metabólica que se 

insere no ciclo do nitrogénio. Esta via metabólica envolve quatro reacções de redução: o 

nitrato é reduzido a nitrito, o nitrito a óxido nítrico (NO), este a óxido nitroso (N2O) e o 

último passo a dinitrogénio. Cada um destes passos envolve metaloenzimas específicas 

que catalizam as anteriores reacções, nomeadamente as reductases do nitrato, as 

reductases do nitrito, as reductases do óxido nítrico (NOR) e as reductases do óxido 

nitroso, respectivamente.  

A NOR é uma metaloenzima que realiza a redução do NO. Esta reacção envolve dois 

electrões e dois protões, tendo como produto o N2O e H2O. Esta proteína insere-se na 

super-família das oxidases terminais, pois são proteínas integrais de membrana com 12 

hélices α transmembranares, numa disposição altamente conservada. As cNORs são 

compostas por duas subunidades. A subunidade NorC, com uma massa molecular de 17 

kDa, que contém um hemo c de spin-baixo, ligado covalentemente à cadeia polipeptídica, 

com uma coordenação His/Met. A segunda subunidade, a NorB, também designada por 

subunidade catalítica, apresenta uma massa molecular de 56 kDa. Contém um centro 

hémico de spin-baixo (hemo b), um centro hémico de spin-alto (hemo b3) e um ferro não-

hémico (FeB). Estes dois últimos centros encontra-se acoplados antiferromagneticamente 

e ligados em ponte por um oxigénio/grupo hidroxilo, formando assim o centro catalítico 

da enzima. Recentemente, utilizando espectroscopia de Mössbauer, foi comprovado 

inequivocamente que o hemo catalítico é na verdade hexa-coordenado, quando o átomo 

de Fe se encontra no estado férrico ou ferroso. Estes resultados estão em concordância 

com a estrutura tridimensional da NOR isolada da bactéria Pseudomonas (Ps.) aeruginosa, que 

mostra a presença do ligando axial (His) e do ligando em ponte na forma como isolada.  

O mecanismo e redução do NO é um assunto controverso, existindo contudo duas 

hipóteses consideradas: o mecanismo cis que descreve a redução de duas moléculas de 

substrato, com a coordenação das mesmas a um único átomo de Fe do centro catalítico, e 

o mecanismo trans, onde ambos os átomos de Fe do coordenam uma molécula de 

substrato. Esta classe de enzimas não cataliza apenas a redução de NO a N2O, cataliza 

igualmente a redução de O2 a H2O, numa reacção que envolve quatro electrões e quatro 

protões. O mecanismo de redução do O2 é também um assunto pouco esclarecido, sendo 

provável o envolvimento do hemo catalítico b3, à semelhança das oxidases terminais.  
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O principal objectivo deste trabalho foi a purificação e caracterização da NOR de Ps. 

nautica, através da aplicação de diferentes técnicas bioquímicas, electroquímicas e 

espectroscopias, tais como a espectroscopia de ultra-violeta–visível e Ressonância 

Paramagnética Electrónica (RPE).  

Neste trabalho é apresentada a optimização do protocolo de purificação da forma 

nativa da NOR de Ps. nautica. As fracções purificadas evidenciam um elevado grau de 

pureza, a correcta estequiometria dos co-factores metálicos. 

 Os resultados espectroscópicos obtidos evidenciam novas características estruturais, 

nomeadamente:   

i) Os dados de UV-visível sugerem que o hemo b3 apresenta uma conformação 

de spin-baixo. 

ii) Os dados de RPE comprovam a existência de uma nova espécie de spin-

inteiro, espécie esta que provém do acoplamento antiferromagnético do hemo 

b3 com o Fe não-hémico, ambos no estado férrico (b3-FeIII-FeBIII). 

Foram ainda realizados ensaios de transferência electrónica, utilizando a enzima em 

estudo, imobilizada na superfície de um eléctrodo de grafite. Os dados obtidos mostram 

pela primeira vez, quatro processos de oxidação/redução (redox), correspondentes a cada 

um dos centros metálicos da NOR de Ps. nautica. A figura que se segue resume os valores 

obtidos para cada um dos centros de Fe da proteína em estudo.   

 

 
 

 

 
Figura – Valores de potencial redox obtidos para os centros metálicos da NOR de Pseudomonas nautica. A 
figura mostra uma representação esquemática da enzima e os valores referem-se aos potenciais obtidos 
para cada um dos co-factores da enzima (vs. ENH).  

 Hemo c Hemo b Hemo b3 FeB 

cNOR/Ps. nautica + 208 + 43 -162 -369 
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Os resultados obtidos através dos ensaios de resposta electroquímica directa 

utilizando a NOR de Ps. nautica são:  

 

i) O Fe não-hémico apresenta o potencial redox mais reduzido (-369 mV vs. 

ENH).  

ii) O potencial redox mais elevado pertence ao hemo do tipo c  (+ 208 mV vs. 

ENH). 

iii) Os resultados do potencial redox para cada um dos centros metálicos, obtidos 

com a dependência do pH, sugerem a existência de resíduos polares 

conservados, em redor dos grupos prostéticos da enzima, que podem 

estabilizar as cadeiras propiónicas destes. 

 

Paralelamente, a subunidade NorC recombinante foi imobilizada na superfície de um 

eléctrodo de grafite, sendo estudada a sua resposta electroquímica directa. Com os 

resultados obtidos foi comprovado inequivocamente o potencial redox do hemo c. A 

comparação deste valor com o resultado obtido para a proteína nativa, propõe a 

existência de alterações estruturais, em redor do centro hémico, provavelmente devido à 

inexistência da subunidade NorB.  

Durante a realização deste trabalho e através de técnicas electroquímicas, foi 

investigada a resposta catalítica da enzima na presença de NO e O2. Foi determinado o 

número de electrões necessários aos processes de redução de cada um dos substratos, 

sendo ainda comprovado que o produto da redução do O2 é a H2O, sem que ocorra a 

formação de H2O2. 

Ensaios cinéticos no estado estacionário, realizados com esta enzima, permitiram a 

dedução de modelos cinéticos e a determinação de constantes cinéticas para a redução de 

NO e O2. Estes ensaios foram obtidos utilizando o cit. c552 (isolado de Ps. nautica) 

previamente reduzido, ou a enzima imobilizada num eléctrodo rotativo de grafite, sendo 

os electrões necessários à reacção fornecidos pelo mesmo.  

Este é o primeiro caso onde são reportados ensaios cinéticos na presença de O2 

simultaneamente com o seu dador electrónico (cit. c552). Os ensaios cinéticos mostram: 

 

i) Uma elevada afinidade para o NO em detrimento do O2. 
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ii) Duas moléculas de NO a coordenarem-se consecutivamente à enzima, de 

forma a catalizar o substrato. 

iii)  A redução de O2 apresenta um perfil inibitório, pela presença do substrato. 

  

Ensaios cinéticos na presença de NO, com dependência do pH, evidenciam a 

presença de grupos ionizáveis acídicos, provavelmente Glu ou Asp, que podem pertencer 

ao conjunto de resíduos conservados de entrada de protões, para o centro catalítico. Um 

dos valores obtidos nunca tinha sido antes determinado (pKa1 = 3.27) e provavelmente 

refere-se a um dos resíduos da via anteriormente mencionada, com uma maior exposição 

ao solvente.  
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Abstract  

 

Denitrification is a metabolic pathway from the nitrogen cycle where nitrate is reduced 

to dinitrogen. This pathway involves four reduction steps: the nitrate reduction to nitrite, 

followed by the reduction to nitric oxide (NO), from this to nitrous oxide (N2O), and 

finally to dinitrogen. The enzymes involved in the mentioned steps are the nitrate 

reductases, the nitrite reductases, the nitric oxide reductases (NOR) and the nitrous oxide 

reductases, respectively.  

 The NORs perform the NO reduction to N2O, using two substrate molecules, two 

protons and two electrons with the consequent product formation and water. These 

enzymes belong to the heme copper oxidase superfamily, since they are integral 

membrane proteins, with 12 transmembrane α-helixes and a set of conserved residues. 

They are composed by two subunits. The NorC subunit with a molecular weight of 17 

kDa, comprises a low-spin heme c covalently bound to the polypeptide chain, with a 

His/Met coordination. The second subunit, NorB, also named the catalytic subunit, with 

a molecular weight of 56 kDa, harbouring two b-type hemes, one low-spin bis-His 

coordinated (heme b), a high-spin heme b (heme b3), His coordinated and a non-heme 

FeB. These last two iron centers are antiferromagnetic coupled and bridged by a µ-

oxo/hydroxo group, and together they compose the catalytic diiron center. Recently 

Mössbauer spectroscopy proved that the catalytic heme b3 is in fact low-spin in both 

ferric and ferrous states, indicating a six-coordination environment for this iron center in 

both redox states. The Pseudomonas (Ps.) aeruginosa NOR crystal structure shows the 

presence of the His ligand simultaneously with the µ-oxo bridge in the as-isolated form.  

The substrate reduction mechanism is an issue of intense discussion, with the cis and 

trans-mechanisms taken in consideration. The cis-mechanism descries that NO reduction 

occurs in the catalytic center and only one of the iron atoms is coordinating the substrate 

during catalysis. The trans-mechanism describes NO reduction with the binding of one 

substrate molecule to each one of the iron atoms of the catalytic center. Different isolated 

NORs have the ability of reducing O2 to H2O in a four electrons/four protons reaction. 

The mechanism for O2 reduction is unknown, but it is presumed that substrate binds to 

the catalytic heme b3, analogous to the terminal oxidases.  

The main objective of this work was to isolate and characterize the Ps. nautica NOR, 

using different biochemical, and spectroscopic techniques.  
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Here, it is presented the optimized protocol for the purification of the native Ps. 

nautica NOR. The achieved enzyme fractions were consistent, since they present high 

purity and the correct metal stoichiometry. 

The spectroscopic characterization made revealed new structural features:  

i) The UV-visible absorption spectra suggest a low-spin conformation for the 

catalytic heme b3. 

ii) The EPR spectroscopy results show the existence of a new integer-spin species 

rising from the heme b3-FeIII-FeBIII antiferromagnetic coupling. 

Direct electron transference between the immobilized Ps. nautica NOR and an 

electrode was accomplished. This is the first time four redox processes were distinguished 

using this approach and indexed to the four Fe centers. The following figure show a 

summary of the midpoint redox potentials determined for the Ps. nautica NOR.   

 

 

 

 

 

 

 

 

 
 

 Heme c Heme b Heme b3 FeB 

cNOR/Ps. nautica + 208 + 43 -162 -369 

 
Figure – Midpoint redox potentials for the NOR metal centers. Top, schematic representation of the 
NOR structure emphasising the four co-factors, with the correspondent ligands. Bottom, summary table 
of the midpoint redox potentials (vs. NHE), obtained in this work.  

 

 

 The results present in this work show: 

 

i) The non-heme FeB present the lowest redox potential (-369 mV vs. NHE). 

ii) The heme c presents the higher midpoint redox potential (-+ 208 mV vs. 

NHE). 
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iii) The results obtained for the midpoint redox potentials in pH dependence, for 

all the Fe centers, suggest the presence of a hydrogen bound network 

surrounding the heme propionate side chains.  

 

In parallel, the recombinant NorC subunit (rNorC) was immobilized in an electrode 

surface and used in direct electrochemical experiments. This is the first time that direct 

electron transfer is studied with this subunit, separately from the catalytic subunit NorB. 

The results show unequivocally that the heme c is the metal center with the higher 

positive redox potential. The comparison of the value for the rNorc with the obtained for 

the native enzyme suggests structural changes around the low-spin heme c, due to the 

subunit separation.  

In this work is reported the direct electrochemical measurements for the immobilized 

Ps. nautica NOR, under catalytic conditions, showing the electrocatalytic response for NO 

and O2. This is the first time the quantification of electrons involved in these reactions is 

performed, using an electrochemical method. The results here presented, show beyond 

doubt that O2 is reduce to H2O, without H2O2 formation.  

Steady-state kinetic assays were made in order to deduce kinetic mechanisms, and 

determine relevant kinetic parameters for the NO and O2 reduction. The experiments 

were done using the reduced Ps. nautica cyt.c552 or the immobilized Ps. nautica NOR to a 

graphite RDE, where the enzyme receives the electrons directly from the electrode. This 

is the first report on oxidoreductase activity measurements assayed with the enzyme’s 

physiological electron donor. Both electron donor systems show beyond doubt: 

i) A high affinity for NO rather than for O2.  

ii) Two NO molecules bind to the enzyme in a consecutive mechanism. 

iii)  The O2 reduction presents a substrate inhibitory pattern. 

  

The pH dependence experiments show the presence of a new protonable residue 

probably an acidic residue (Glu or Asp), belonging to the conserved proton pathway with 

a high exposure to the solvent, that has never been reported in pH dependence 

experiments (pKa1 = 3.27).   
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1. Introduction 

 

1.1. Nitric Oxide: Chemistry and Role in Biology  

 

Nitric oxide (NO) is a diatomic molecule among the simplest molecules. Its structure 

and reaction chemistry has been the subject of study by chemists for many years [1]. NO 

was long thought of as a poisonous, pungent-smelling gas, an unpleasant and dangerous 

product of the oxidation of ammonia and of the incomplete combustion of gasoline in 

motor vehicle exhausts.  

From the chemical point of view, the NO molecule is a stable free radical with the 

molecular orbital diagram showing an unpaired electron residing in a π* molecular orbital. 

This electronic configuration explains the high reactivity of the NO. Its oxidation leads to 

the nitrosoniumion (NO+) and its reduction to the nitroxide ion (NO−). Its reactivity 

reaches beyond the simple ionization and NO is extremely reactive with other simple 

molecules such as oxygen (O2) or halogens, and metals, like iron, and it is why it is used to 

reveal structural and mechanistic insights in metalloproteins  [2].  

Several N-oxides were identified by bacteria fermentation of plant material in the 

second half of the 19th century, and these microorganisms  were designated as denitrifiers 

[3]. In the 60’s decade, NO was suggested to play a role as an intermediate of this 

pathway, and at the same time, it was identified as a crucial biological intermediate of the 

denitrification processes by the marine bacterium Pseudomonas perfectomarinus [4]. Years 

after, in the 80’s, NO was discovered to be one of the most important physiological 

regulators [2]. Nitric oxide synthase (NOS) was found to synthesize this signalling and 

protective molecule that could be extremely helpful in different processes in mammals. 

NO was identified as an endothelium relaxing factor, as a key cytotoxic agent of the 

immune system, or even as a signalling molecule in the nervous system [4]. In bacteria, 

NO also play an important role. Not only is an intermediate of the nitrogen (N) cycle, as 

it is a signalling molecule, for example in bacterial biofilm dispear [5]. 

Nevertheless, above certain concentration levels, NO and its reactive species may 

prove to be toxic to cells, and this phenomenon is designated by nitrosative stress. Some 

microorganisms have the ability to produce NO. Others may also have specific metabolic 

pathways which allow them to resist to this kind of stress. They are able to reduce NO to 
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nitrous oxide (N2O) or to ammonia (NH4+), by the denitrification pathway or by other 

detoxification mechanisms. [3].  

 

 

1.2. The Nitrogen Cycle  

 

1.2.1. Overview of the Nitrogen Cycle  

 

 Nitrogen (N) is the fifth most abundant element in the solar system, and it is also well 

represented in essential biomolecules, being an important constituent of nucleic acids and 

proteins, the two most important polymers in life. The N-cycle is the process by which 

nitrogen is converted between in its different molecular forms (figure 1.1). The chemistry 

of this element is almost entirely dependent on reduction-oxidation (redox) reactions [6]. 

The chemical forms are transformed via specific enzymes, able to oxidize and reduce the 

N-compounds. In the cycle, nitrate (NO3
−) and ammonia (NH4+) present the higher (+5) 

and lower (-3) redox states for the N atom, respectively, and the other molecules of the 

cycle present different intermediate redox states (figure 1.1).  

 Earth’s earliest N-cycle was tightly controlled by a robust natural negative feedback 

mechanism between atmospheric reactions, slow geological and microbial processes. In 

the previous century, human intervention drastically disrupted the N-cycle by developing 

industrial processes to reduce dinitrogen (N2) to NH4+, by implementing new agricultural 

practices in order to boost crop yields, and by burning fossile fuels [6]. In particular there  

has been an abusive use of nitrogen fertilizers which does not translate to a higher yield in 

agricultural products, since only a part of the inorganic material is used to produce 

biomass. Fertilizers are mainly composed of NH4+, and aerobic nitrification can not be 

avoided, causing an accumulation of NO3
− and nitrite (NO2

−) at the Earth’s crust [6]. 

These particular reactions are controlled by three enzymes: the ammonium 

monooxygenase (Amo), the hydroxyalanine oxidoreductase (Hao) and the nitrite 

oxidoreductase (Nxr) (figure 1.1).  

 

 

 



Introduction 
_________________________________________________________________________________________________________________ 

 
________________________________________________________________________________________________________ 5

Figure 1.1 – The N-cycle schematic representation. Arrows describe the principle pathways and the 
enzymes involved in each reaction are in red. Nitrate reductase: Nas - cytoplamatic, prokaryote 
assimilatory pathway; euk-NR- cytoplamatic, eukaryote – assimilatory pathway; NarG- membrane bound, 
dissimilatory pathway; NapA – periplasmic, dissimilatory pathway; Nitrite reductase, Nir - various kinds, 
Nrf - associated with periplasmic NR’s (Nap); nitric oxide reductase, NOR; nitrous oxide reductase 
N2OR; nitrogenase, Nif; ammonium monooxygenase, Amo; hydroxylamine oxidoreductase, Hao; nitrite 
oxidoreductase, Nxr; hydrazine hydrolase, hh. Adapted from [6]. 
 

 

 As a compensatory mechanism for the human production of oxidized molecules, 

anaerobic microorganisms are able to reduce of the amount of NO3
− and NO2

− by three 

pathways: denitrification, dissimilatory nitrite reduction and anaerobic ammonium 

oxidation.  

 Denitrification is the pathway where NO3
− is reduced to N2. It is composed by four 

reduction steps, controlled by metalloenzymes: NO3
− is reduced to NO2

− via the nitrate 
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reductases (NRs); NO2
− is reduced to NO by the nitrite reductases; NO is reduced to 

N2O by nitric oxide reductase (NOR); and in a last step N2O is reduced to N2, by the 

nitrous oxide reductase (N2OR).  The denitrification pathway will be discussed in the 

following section.  

 Anaerobic ammonium oxidation, currently called anammox, describes the reduction 

of the N-oxides as NO3
− and NO2

− to NO, by nitrate reductases (NRs) and nitrite 

reductases (Nir), respectively, and further reduction to hydrazine (N2H4). Alternatively, it 

is also possible to oxidize NH4+ to N2H4, under the hydrazine hydrolase (hh) control. 

Subsequent N2H4 oxidation is possible, catalyzed by hydroxylamine oxidoreductase 

(Hao).  

 Direct NO2
− reduction to NH4+ can be accomplished by microorganisms that harbour 

the nitrite reductases (Nir or Nfr) coupled to the nitrite reductase system. This pathway is 

designated as dissimilatory nitrite reduction (DNR), or dissimilatory reduction of nitrite in  

anoxic conditions. As an example there is the penta-heme cytochromes c nitrate reductase 

(ccNir or Nrf), able to reduce NO2
−or NO directly to NH4+.  

 The N2 reduction to NH4+ is performed by nitrogenase (Nif), a multimeric enzyme 

that catalyzes this exergonic reaction, since this reduction consumes 16 molecules of ATP 

per reduced N2 molecule [6]. These enzymes are characteristic of the symbiotic 

connection between bacteria and plant roots.  

 

 

1.2.2. The Denitrification Pathway  

 

 Denitrification, or dissimilative nitrate reduction, is an anaerobic process used by 

some bacteria for energy generation. The study of this metabolic pathway is relevant, 

since NO3
− and NO2

− became one of the worst water pollutants, a major concern being 

the removal of NO3
− from the water before it can be supplied to costumers [7].   

 Reduction of NO3
− to nitrogen gas (N2) is done in four different steps: 

    NO3
−    +    2 e-    +    2 H+                          NO2

−    +    H2O   (eq. 1.1) 
 
    NO2

−   +      e-     +    2 H+                          NO      +    H2O   (eq. 1.2) 
 
  2 NO    +     2 e-    +    2 H+                           N2O    +    H2O   (eq. 1.3) 
                 
    N2O    +     2 e-    +    2 H+                             N2    +    H2O   (eq. 1.4) 
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NO3
− is reduced to NO2

− in a two electron reaction, followed by one electron reduction 

to NO, and by a two electron-two proton reduction to N2O, and a final two electron 

reduction to N2. Equations 1.1 to 1.4 show the electrons involved in each reaction 

process. These processes are catalyzed by different metalloenzymes as pointed in figure 

1.2.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 – The denitrification pathway. Different resolved structures for the metalloenzymes involved 
in this metabolic route: A- Cupriavidus necator Nar (PDB:3ML1) [8], B- Escherichia coli Nar (PDB:1Q16) [9], 
C- Achromobacter cycloclastes CuNir (PDB:2BW4) [10, 11], D- Paracoccus pantotrophus cyt. cd1 (PDB:1H9X)[12], 
E- Pseudomonas aeruginosa NOR (PDB: 3O0R) [13] and F- Pseudomonas nautica 617 N2OR (PDB: 1QNI) [14]. 
The PDB files were edited with Pymol software. 
  

NO3
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 The Nitrate reductases (NRs) catalyze the reduction of NO3
− to NO2

−and they are 

ubiquitous, from bacteria to eukaryotes. Organisms reduce NO3
− for three main reasons: 

i) incorporation of N into molecules (assimilatory ammonification), ii) to generate energy 

for cellular functions (respiration, denitrification) and iii) to eliminate energy excess 

generated by cell metabolism (dissimilatory ammonification) [15]. The NRs are mainly 

molybdenum (Mo)-containing enzymes. Additional to the catalytic Mo center, the 

enzymes carry redox co-factors such as iron-sulfur clusters or hemes that mediate the 

electron transfer. Classification of these proteins have been made according to different 

criteria, such as cell localization, protein structure, catalytic center molecular properties, 

metabolic routes and others. According to their localization, they are divided in four 

groups: the eukaryotic NO3
− reductases (euk-nar), the assimilatory NO3

− reductases (Nas), 

the respiratory NO3
− reductases (Nar) (figure 1.2 B) and the periplasmic (Nap) (figure 1.2 

A) [16]. All NRs present an active center which is similar to the center of dimethyl 

sulfoxide (DMSO) reductase family, with exception for the eukaryotic enzymes which are 

part of the sulfite oxidase family [7]. Eukaryiotic NRs and Nas are cytoplasmatic enzymes 

involved in the NO3
− assimilation, whereas Nars are periplasmic and are involved 

exclusively in the denitrification pathway.  

Focusing in the prokaryotic NRs, these enzymes are involved in generating a proton 

motive force across the membranes. They are constituted by three subunits: NarGHI 

(αβγ, respectively), narG subunit harbouring the Mo active center, and the remaining 

subunits maintaining the electron transfer centers. They can be isolated from different 

bacteria such as Escherichia coli [17], Ps. nautica [15] and Cupriavidus necator [18]. The isolated 

form can be a  trimeric or a dimeric form, since the anchored γ-subunit (NarI) can be 

isolated or not, depending on the purification procedure [7]. NarI is the small subunit, 

presenting a molecular weight of 19-26 kDa and comprising two heme b groups (bD and 

bP). Moreover, Pseudomonas  nautica 6171  revealed the presence of an unexpected c-type 

heme in this subunit [15]. The β subunit, has a molecular weight of 55-64 kDa, carries 

four iron-sulfur clusters: three [4Fe-4S] designated FS1 FS2 and FS3, and one [3Fe-4S] 

named FS4. The larger subunit NarG (118-150 kDa), harbours the Mo catalytic center, 

coordinated to a molybdopterin guanine dinucleotide (MGD) as observed typically in the 

                                                 
1 Is also known as Marinobacter hydrocarbonoclasticus 617 [19] . In this report the designation Pseudomonas 
nautica 617 will be adopted  
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DMSO mononuclear Mo enzymes. The other Mo ligands are from the protein peptide 

chain, normally sulfur ligands from Cys or selenocysteine (Se-Cys) residues. There is an 

additional electron transfer center in this subunit, a [4Fe-4S] cluster named FS0. All the 

redox cofactors are located along an electron transfer pathway 

(bD→bP→FS4→FS3→FS2→FS1→FS0→Mo) from which the nitrate receives the 

electrons provided by the quinol pool (figure 1.3) [7, 15].  

 
Figure 1.3 – Escherichia coli NarGHI complex (PDB:1Q16) [9]. Overall three-dimensional structure is 
presented. For better visualisation, the diagram of the enzyme electron transfer co-factors was shifted to 
the right. The PDB file was edited with Pymol software. 

 

 

The reaction mechanism suggested for nitrate reductases is still a matter of 

controversy. Originally a unique reaction mechanism was suggested for all nitrate 

reductases regardless of their subclassification. This reaction mechanism, which was 

mainly based on the crystal structure of the periplasmic nitrate reductase from Desulfovibrio 
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desulfuricans [20], implies the replacement of the sixth coordinating ligand to molybdenum 

(originally proposed to be a hydroxyl/water molecule) by nitrate, the transfer of two 

electrons from Mo(IV) to nitrate, and the release of nitrite. The presence of an Asp 

residue coordinated to molybdenum in a bidentate fashion in NarGHI from E. coli [9] 

suggests that this mechanism can be feasible only if the bidentate coordination is opened 

and an oxygenic species enters in the sixth coordinating position of the molybdenum 

atom, as was determined in the crystal structure of NarGH [21]. This hypothesis is also  

supported by the EPR results for both as-isolated and nitrate-reacted Pseudomonas nautica 

617 Nar that point to a molybdenum ion coordinated to a hydroxyl/water ligand, which 

could act as the labile group in a mechanism involving a direct nitrate–molybdenum 

interaction [15]. Most recently, theoretical and computational tools were used to revise 

the catalytic mechanism of NRs. The basis was the crystallographic data from the NapA 

isolated from Desulfovibrio desulfuricans (PDB: 2v3v). Results show that both Mo species 

have an active role on the mechanism but in different phases. The MoVI is required for 

the NO3
− reduction to NO2

− and the MoV is involved in the second part of the 

mechanism where one water molecule is formed and enzyme turnover occurs [22].  

 

The Nitrite reductases can be divided in two major groups, according the nature of 

their metal co-factor: there are the copper–containing nitrite reductases (Cu-Nir, figure 

1.2 C) and the heme or Fe containing nitrite reductases (Fe-Nir, figure 1.2 D), also known 

as cytochrome cd1. While the Fe-Nirs are more abundant in nature, Cu-Nirs are found in 

a greater variety of ecological systems and therefore demonstrate more physiological 

diversity. To date, no biological system has been shown to contain both Fe- and Cu-Nirs. 

Nirs catalyze the one electron reduction of NO2
− to NO [23]. 

 Cu-Nir enzymes have been isolated from several organisms, such as Achromobacter 

cycloclaste [10, 11], Ps. aureofaciens and Alcaligenes xylosodixans [7]. The enzyme presents a 

trimeric structure with six copper atoms, divided in two types: the T1Cu, buried inside the 

protein core and the T2Cu, the catalytic center, located in the interface of each two 

subunits. The enzymes can be divided in two groups, according to the spectroscopic 

properties of their T1Cu centers. The green reductases present an axially flattened 

tetrahedron with an axial EPR signal and characteristic visible band at 590 nm. The blue 

reductases present an axially distorted tetrahedron with a rhombic EPR signal and a 
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visible absorption spectra with different characteristic features (at 460 and 600 nm) [7, 

24].  

The electrons are donated by the physiological donor, presumably the cyt. c551 or 

pseudozurin, to the T1Cu center and then transferred to the catalytic T2Cu center 

through a chemical path involving conserved residues. The model for the catalytic 

mechanism of Cu-Nir supposes that NO2
− binds to the oxidized form of the T2Cu 

center, displacing a solvent molecule. After reduction of the T2Cu center with an electron 

from the T1Cu center, a intermediate compound,  O=N-O-H is formed, and 

consequently the product (NO) is released [7]. Figure 1.4, left side shows the proposed 

mechanism for the NO2
− reduction by the Cu-Nir. 

 

 
Figure 1.4 – Nitrite reduction mechanism proposed for the Cu-Nir (left side) and for the cytochrome cd1 
(right side), adapted from [7]. 
 

 

Cytochrome cd1 is a periplasmic soluble homodimer, with a molecular weight of 60 

kDa and two hemes, one heme c and one heme d1 per monomer. It was isolated from 

Pseudomonas strains like aeruginosa [25] and stutzeri, and Pa. denitrificans [7]. The heme c is 

located in the N-terminal region; it is six-coordinated with two His ligands and is involved 

in the electron transfer between the physiological donor and the catalytic heme d. The 

heme d is the site for NO2
− reduction, and presents specific spectroscopic features, 

namely distinct visible absorption spectra. EPR spectroscopy proves that heme d is also 

six-coordinated in the oxidized state, with a His/Tyr coordination, but reduction 
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produces the lost of the Tyr axial ligand. The putative catalytic mechanism for 

NO2
−reduction points for the binding of a NO2

− molecule to the ferrous heme d, in a 

high-spin conformation. Dehydration leads to the formation of a nitrosyl intermediate, 

and release of NO and concomitant intramolecular electron transfer from heme c to heme 

d, completing the mechanism cycle (figure 1.4) [7].  

  

 The Nitric oxide reductases (NOR) catalyze the third step in the denitrification 

pathway. Protein sequence alignment with members from this classe can be checked in 

the supporting information S1. They are divided in three different classes, according to 

their physiological electron donor: the cytochromes (cNOR), quinol (qNOR) and the 

copper quinol (qCuNOR) [7] (figure 1.5). These enzymes are integral membrane proteins, 

and they belong to the heme copper oxidase (HCuO) superfamily, sharing a high 

structural homology of the catalytic subunit. In this class of enzymes, there is variation in 

the type of electron transfer co-factors and in the number of subunits, but very well 

conserved is the unusual binuclear diiron center, composed by a b-type heme (heme b3) 

bridged to a non-heme FeB [26].  

 The cNORs present two subunits and receive electrons from soluble cytochromes or 

cupredoxin. The qNORs lack one electron transfer co-factor and are composed by a 

unique subunit, they receive electrons directly from the periplasmic quinol pool. The 

qCuNORs are composed by two subunits, one comprising a binuclear CuA center similar 

to the present in some HCuO members, and the other is the catalytic subunit. These last 

can accept electrons directly from menaquinol or from soluble cytochromes via the CuA 

center. 

 Mechanisms for NO reduction are issue in of intensive discussion. However, all the 

proposed models consider substrate reduction in the binuclear Fe center with electron 

transfer from the other metal co-factors to the binuclear cluster [7, 27]. Since the protein 

here studied is a cNOR, a detailed description of the cNORs follows in section 1.2.2.1.  
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Figure 1.5 – Schematic representation of the known NOR classes. Grey broken arrows represent the 
proposed electron transfer pathways from a periplasmic electron donor towards the active site, adapted 
from [7].  
 

 

 The Nitrous oxide reductase (N2OR) is the last enzyme of the denitrification 

pathway, catalyzing the N2O reduction to N2. It has been intensively characterized and 

isolated from different denitrifying organisms such as Ps. nautica [14], stutzeri [28, 29], Pa. 

denitrificans [30], Achromobacter cycloclastes [31] and Wolinella succinogenes [32, 33]. The isolated 

periplasmic enzymes are purified in a homodimeric form with approximately 65 kDa per 

monomer. Each subunit contains two Cu centers: a multi-copper catalytic center (CuZ) 

and a binuclear Cu site (CuA) similar to the ones observed in some members of the 

HCuO, involved in electron transfer [7, 34]. There are two exceptions: i) the N2OR 
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isolated from Wolinella, which presents an additional extension of approximately 200 

aminoacids with c-type heme motif in its C-terminal [7, 34], and ii) the enzyme from 

Flexibacter canadensis, which interacts with the cytoplasmatic membrane [7]. The 

homodimeric form presents a large dimerization interface, in such a way that the CuA 

center from one subunit is very close to the catalytic CuZ center from the other subunit 

(figure 1.6). In the CuA center, the two Cu atoms are bridged by two Cys ligands, the CuI 

metal presents an addition His and Met residue coordination, and CuII presents a His and 

a carbonyl group from a Trp residue. The catalytic CuZ center, is a µ4-sulfide bridged 

tetranuclear copper center, coordinated by His residues [7, 14].  

 

 

 

 
 
Figure 1.6 – The Pseudomonas nautica N2OR (PDB: 1QNI) [14] structure. Monomers are coloured in blue 
and grey. Pink and orange spheres are evidence the CuA and CuZ centers, respectively. The PDB files were 
edited with Pymol software.  

 

 

 

Several mechanisms for the N2O reduction have been proposed [7, 34-36]. The 

density functional theory (DFT) calculations suggested the binding of a N2O molecule 

between CuI and CuIV atoms from the CuZ center. The cycle seems to involve two 

sequential proton-electron transfer steps after N2 release, followed by the restoration of 

the enzyme active form by release of one H2O molecule. Recent reports describe a 

catalytic mechanism with emphasis in the interconversion between the active and inactive 

form of the enzyme, where relevant catalytic intermediate species were detected and 

characterized by spectroscopic methods [34, 35]. 
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1.2.2.1. The Nitric Oxide Reductase  

 

 The NOR belongs to the Heme copper oxidase superfamily (HCuO), because this 

type of enzymes presents a high structural homology, in means of their catalytic subunit, 

as well as in the ligands that coordinate the redos centers. The major difference between 

them is the catalytic center. In oxidases it is composed by a mixed cluster of Fe and Cu 

while in NOR is composed by a binuclear Fe center. Some authors believe that NOR was 

present in several ancestral organisms. During evolution, the disappearance of a reductive 

environment and appearance of an oxidative atmosphere, produced the insolubility of Fe, 

and induce species to replace Fe by Cu [3, 37].  

 

1.2.2.1.1. Heme Copper Oxidases Superfamily  

 

 Terminal oxidases of membrane-bound electron transfer chains catalyze the reduction 

of dioxygen (O2) to water, coupling the redox energy to proton translocation through the 

cytoplasmatic or mitochondrial/chloroplast membrane. Most of the terminal oxidases 

belong to the HCuO. This large family can present different electron donors, subunit 

composition, and heme type. Common to all the members is the presence of a catalytic 

subunit harbouring a six-coordinated low-spin heme and an unusual binuclear catalytic 

center, giving rise to its name, composed by a high-spin heme and a copper ion CuB.  

 The HCuO catalytic subunit or subunit I is composed, at least, by 12 transmembrane 

α-helices, carrying the binuclear active center and the immediate low-spin electron 

transfer heme. These three metal centers present six well conserved His residues ligands: 

two coordinate the low-spin heme, one coordinates the catalytic high-spin heme and the 

remaining three ligands support the catalytic CuB. Prokaryotic oxidases may contain quite 

diverse heme, such as heme a, b or o, commonly used to designate the enzymes. However, 

the type of heme does not correlate with the organisms’ phylogeny, the type of electron 

donor, nor with sequence similarities, and therefore it is inappropriate to classify the 

oxidase family based on the heme types [38].  A very simple way of illustrating all the 

HCuO was described by Garcia-Horsman [39], which separates the superfamily in the 

cytochromes c oxidases (CcO) , the ones that accept electrons from soluble cytochromes 
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and the quinol oxidases, where the physiological electron donor is the quinol molecule  

(figure 1.7). 

 
Figure 1.7 – Schematic illustration showing the similarities and differences between five subclasses of the 
heme-copper oxidase superfamily. Panels A-C, cytochromes c oxidases (CcO); panels D and E, quinol 
oxidases [39]. 
 

 

 The His ligands coordinating the co-factors in the HCuO catalytic subunit are 

extremely well conserved as it can be seen in figure 1.8. Sequence alignment show protein 

five sequences of HCuO members, including a NOR. The transmembrane α-helixes are 

dispersed in three type arches in a round disposition around the metal co-factors, where 
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these are inside the proposed pores created by the helixes special arrangement [23, 38]. A 

schematic representation of the helices disposition is illustrated in the inset of figure 1.8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  10        20        30        40        50        60   
                         ....|....|....|....|....|....|....|....|....|....|....|....| 
CcO aa3 Pa. denitrifans  -MSAQISDSIEEKRGFFTRWFMSTNHKDIGVLYLFTAGLAGLISVTLTVYMRMELQHPGV  
CcO cbb3 Ps. stutzeri    ---------------MSTAISETAYNYKVVRQFAIMTVVWGIIGMGLGVFIAAQLVWPSL  
CcO aa3 Rh. sphaeroides  MADAAIHGHEHDRRGFFTRWFMSTNHKDIGVLYLFTGGLVGLISVAFTVYMRMELMAPGV  
CcO aa3 B. taurus        --------------MFINRWLFSTNHKDIGTLYLLFGAWAGMVGTALSLLIRAELGQPGT  
cNOR Ps. nautica         ---------------------MKYESQRVAMPYFIFALILFAGQIVFGLILGLQYVVGDF  
 
                                  70        80        90       100       110       120 
                         ....|....|....|....|....|....|....|....|....|....|....|....| 
CcO aa3 Pa. denitrifans  QYMCLEGMR----------LVADAAAECTPNAHLWNVVVTYHGILMMFFVVIPALFGGFG  
CcO cbb3 Ps. stutzeri    NLD--------------------------LPWTSFGRLRPLHTNAVIFAFGGCALFATS-  
CcO aa3 Rh. sphaeroides  QFMCAEHLESGLVKGFFQSLWPSAVENCTPNGHLWNVMITGHGILMMFFVVIPALFGGFG  
CcO aa3 B. taurus        LLG---------------------------DDQIYNVVVTAHAFVMIFFMVMPIMIGGFG  
cNOR Ps. nautica         LFP----------------------------EIPFNVARMVHTNLLIVWLLFGFMGATY-  
 
                                 130       140       150       160       170       180   
                         ....|....|....|....|....|....|....|....|....|....|....|....| 
CcO aa3 Pa. denitrifans  NYFMPLHIGAPDMAFPRLNNLSYWLYVCGVSLAIASLLSPGGSDQPGAGVGWVLYPPLS-  
CcO cbb3 Ps. stutzeri    -YYVVQRTCQARLFSDGLAAFTFWGWQAVIVLAVITLP-----------MGYTSSKEYA-  
CcO aa3 Rh. sphaeroides  NYFMPLHIGAPDMAFPRMNNLSYWLYVAGTSLAVASLFAPGGNGQLGSGIGWVLYPPLS-  
CcO aa3 B. taurus        NWLVPLMIGAPDMAFPRMNNMSFWLLPPSFLLLLASSMVEAG-----AGTGWTVYPPLAG  
cNOR Ps. nautica         --YMVPEEAQTELHSPLLAWILFWVFAAAGTLTILGYL-------------FVDYATLA-  
 
                                 190       200       210       220       230       240  
                         ....|....|....|....|....|....|....|....|....|....|....|....| 
CcO aa3 Pa. denitrifans  -TTEAGYAMDLAIFAVHVSGATSILGAINIITTFLNMRAPGMTLFKVPLFAWAVFITAWM  
CcO cbb3 Ps. stutzeri    ---ELEWPIDILITLVWVSYIAVFFGTI-------------MKRKAKHIYVGNWFFGAFI  
CcO aa3 Rh. sphaeroides  -TSESGYSTDLAIFAVHLSGASSILGAINMITTFLNMRAPGMTMHKVPLFAWSIFVTAWL  
CcO aa3 B. taurus        NLAHAGASVDLTIFSLHLAGVSSILGAINFITTIINMKPPAMSQYQTPLFVWSVMITAVL  
cNOR Ps. nautica         ---EVTMNKLLPTMGREFLEQPTITKIG--------------IAVVVVAFLYNIAMTALK  
 
                                 250       260       270       280       290       300   
                         ....|....|....|....|....|....|....|....|....|....|....|....| 
CcO aa3 Pa. denitrifans  ILLSLPVLAGGITMLLMDRNFGTQFFDPAGGGDPVLYQHILWFFGHPEVYMLILPGFGII  
CcO cbb3 Ps. stutzeri    LVTAMLHIVN-------NLEIPVSLFKSYSIYAGATDAMVQWWYGHNAVGFFLTTGFLGM  
CcO aa3 Rh. sphaeroides  ILLALPVLAGAITMLLTDRNFGTTFFQPSGGGDPVLYQHILWFFGHPEVYIIVLPAFGIV  
CcO aa3 B. taurus        LLLSLPVLAAGITMLLTDRNLNTTFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMI  
cNOR Ps. nautica         GRKTVVNIVLITGLVGLAVLWLFSFYNPGNLATDKYFWWFVV~~~HLWVEGVWELIMGAI  
 
                                 310       320       330       340       350       360     
                         ....|....|....|....|....|....|....|....|....|....|....|....| 
CcO aa3 Pa. denitrifans  SHVISTFA-RKPIFGYLPMVLAMAAIAFL~GFIVWAHHMYTAGMSLTQQTYFQMATMTIA  
CcO cbb3 Ps. stutzeri    MYYFVPKQAERPVYSYRLSIVHFWALITL~YIWAGPHHLHYTALPDWAQSLGMVMSIILL  
CcO aa3 Rh. sphaeroides  SHVIATFA-KKPIFGYLPMVYAMVAIGVL~GFVVWAHHMYTAGLSLTQQSYFMMATMVIA  
CcO aa3 B. taurus        SHIVTYYSGKKEPFGYMGMVWAMMSIGFL~GFIVWAHHMFTVGMDVDTRAYFTSATMIIA  
cNOR Ps. nautica         LAYVLIKLTGVDREVIEKWLYVIIAMALITGIIGTGHHFFWIGPPEYWLWLGSVFSALEP  
 
                                 370       380       390       400       410       420   
                         ....|....|....|....|....|....|....|....|....|....|....|....| 
CcO aa3 Pa. denitrifans  VPTGIKVFSWIATMWGGSIEFKTP--MLWAL--AFLFTVGG-VTGVVIAQGSLDRVYHDT  
CcO cbb3 Ps. stutzeri    APSWGGMINGMMTLSGAWHKLRTDPILRFLVVSLAFYGMST-FEGPMMAIKTVNALSHYT  
CcO aa3 Rh. sphaeroides  VPTGIKIFSWIATMWGGSIELKTP--MLWALGFLFLFTVGG-VTGIVLSQASVDRYYHDT  
CcO aa3 B. taurus        IPTGVKVFSWLATLHGGNIKWSPA--MMWALGFIFLFTVGG-LTGIVLANSSLDIVLHDT  
cNOR Ps. nautica         LPFFMMVVFAFNMINRRRRNHPNKAAMLWAMGTTVMAFLGAGVWGFLHTLAPVNWYTHGS  
 
                                 430       440       450       460       470       480     
                         ....|....|....|....|....|....|....|....|....|....|....|....| 
CcO aa3 Pa. denitrifans  YYIVAHFHYVMSLGALFAIFAGTYYWIGKMSGRQYPEWAGQL--HFWMMFIGSNLIFFPQ  
CcO cbb3 Ps. stutzeri    DWTIGHVHAGALGWVAMITIGSMYHLIPKVFGREQMHSVGLINAHFWLATIGTVLYIASM  
CcO aa3 Rh. sphaeroides  YYVVAHFHYVMSLGAVFGIFAGIYFWIGKMSGRQYPEWAGKL--HFWMMFVGANLTFFPQ  
CcO aa3 B. taurus        YYVVAHFHYVLSMGAVFAIMGGFVHWFPLFSGYTLNDTWAKI--HFAVMFVGVNMTFFPQ  
cNOR Ps. nautica         QITAAHGHMAFYGAYVMIVLTIISYAMPIMRGRPYGNSNTAQIVEMWGFWLMTISMVFIT  
 



Chapter 1 
_________________________________________________________________________________________________________________ 

 
________________________________________________________________________________________________________ 18

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.8 – Sequence alignment for the catalytic subunit of five members from the HCuO superfamily. 
CcO aa3-type from Paracoccus denitrificans, cbb3 type from Pseudomonas stutzeri, aa3-type from Rhodobacter 
sphaeroides, aa3-type from Bos taurus and cNOR from Pseudomonas nautica 617. Bottom inset: schematic top 
view of the HCuO superfamily catalytic subunit; roman numerals indicate the helixes number and green 
circules indicate the helixes with the His ligands (adapted from [23]). 1 stands for the low-spin heme 
electron transfer center, 2 is the catalytic high-spin heme center and MB is either a Cu or a non-heme Fe. 
 

 

1.2.2.1.2. The Nitric Oxide Reductase Subclasses   

 

 The nitric oxide reductase (NOR) subclass is characterized by a diiron center. This is 

the major difference between NORs and other HCuO members that have a mixed 

binuclear center (Fe/Cu). The ligands that coordinate the metal centers are, nevertheless, 

conserved. The non-heme FeB prefers an six-coordination environment instead of the  

tetrahedic like Cu typical for the HCuO. For many years, assumptions were made for a 

possible ligand. Molecular modelling and sequence alignment predicted a Glu residue near 

the catalytic center to stabilize the FeB [3, 40]. The first crystal structure for a NOR was 

obtained only recently, confirming the existence of an extra Glu ligand to the non-heme 

FeB center [13]. Figure 1.9 (red rectangles) shows the sequence alignments with the Glu 

residue conserved in several NORs, extremely important for substrate reduction [40, 41]. 

 

 
   
 
                                 490       500       510       520       530       540  
                         ....|....|....|....|....|....|....|....|....|....|....|....| 
CcO aa3 Pa. denitrifans  HFLGR-QGMPRRYIDYPVEFSYWNNISSIGAYISFASFLFFIGIVFYTLFAGKPVNVPNY  
CcO cbb3 Ps. stutzeri    WVNGITQGLMWRAINEDGTLTYS----FVEALEASHPGFIVRAVGGAFFLAGMLLMAYNT  
CcO aa3 Rh. sphaeroides  HFLGR-QGMPRRYIDYPEAFATWNFVSSLGAFLSFASFLFFLGVIFYTLTRGARVTANNY  
CcO aa3 B. taurus        HFLGL-SGMPRRYSDYPDAYTMWNTISSMGSFISLTAVMLMVFIIWEAFASKREVLTVDL  
cNOR Ps. nautica         LFLTAAGVLQVWLQRIP---ESGEALSFMAGQDQIALFYWMRFVAGAFFMAGLVVYFGSF  
 
                                 550       560       570         
                         ....|....|....|....|....|....|....|.. 
CcO aa3 Pa. denitrifans  WNEHADTLEWTLPSPPPEHTFETLPKPEDWDRAQAHR  
CcO cbb3 Ps. stutzeri    WR------TVRAAKSAQYDTAAQIA------------  
CcO aa3 Rh. sphaeroides  WNEHADTLEWTLTSPPPEHTFEQLPKREDWERAPAH-  
CcO aa3 B. taurus        T---TTNLEWLNGCPPPYHTFEEP----TYVNLK---  
cNOR Ps. nautica         FIKGEASPAEEVRGPATADA-----------------  
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Figure 1.9 – Sequence alignment for the catalytic subunit (NorB) of cNOR from Pseudomonas nautica 617, 
Pseudomonas aeruginosa, Pseudomonas stutzeri and Paracoccus denitrificans. Rectangles enclose the iron co-factors’ 
ligands, blue dots are the conserved Arg residues and the black arrows indicate the conserved aminoacids 
for protons entrance towards the active site. Inset, schematic representation of the electron transfer heme 
and the catalytic binuclear Fe center, adapted from Pseudomonas aeruginosa NorB sbunit resolved structure 
(PDB: 3O0R) [13]. 

                            10        20        30        40        50        60        70          
                   ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Ps. nautica        -------MKYESQRVAMPYFIFALILFAGQIVFGLILGLQYVVGDFLFPEIPFNVARMVHTNLLIVWLLF  
Ps. aeruginosa     MMSPNGSLKFASQAVAKPYFVFALVLFVGQILFGLIMGLQYVVGDFLFPAIPFNVARMVHTNLLIVWLLF  
Ps. stutzeri       -SSFNPHLKFQSQAVAKPYFVFALILFVGQVLFGLIMGLQYVVGDFLFPLLPFNVARMVHTNLLIVWLLF  
Pa. denitrificans  -------MRYHSQRIAYAYFLVAMVLFAVQVTIGLIMGWIYVSPNFLSELLPFNIARMLHTNSLVVWLLL  

                                                                           • 
                            80        90       100       110       120       130       140         
                   ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Ps. nautica        GFMGATYYMVPEEAQTELHSPLLAWILFWVFAAAGTLTILGYLFVDYATLAEVTMNKLLPTMGREFLEQP  
Ps. aeruginosa     GFMGAAYYLVPEESDCELYSPRLAWILFWVFAAAGVLTVLGYLLVPYAGLARLTGNELWPTMGREFLEQP  
Ps. stutzeri       GFMGAAYYLIPEESDCELHSPKLAIILFWVFAAAGVLTILGYLFVPYAALAEMTRNDLLPTMGREFLEQP  
Pa. denitrificans  GFFGATYYILPEEAEREIHSPLLAWIQLGIFVLGTAGVVVTYLFDLFHG------HWLLGKEGREFLEQP  
                                                                                   ↑  ↑ 
                           150       160       170       180       190       200       210       
                   ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Ps. nautica        TITKIGIAVVVVAFLYNIAMTALKGRKTVVNIVLITGLVGLAVLWLFSFYNPGNLATDKYFWWFVVHLWV  
Ps. aeruginosa     TISKAGIVIVALGFLFNVGMTVLRGRKTAISMVLMTGLIGLALLFLFSFYNPENLTRDKFYWWWVVHLWV  
Ps. stutzeri       TITKIGIVVVALGFLYNIGMTMLKGRKTVVSTVMMTGLIGLAVFFLFAFYNPENLSRDKFYWWFVVHLWV  
Pa. denitrificans  KWVKLGIAVAAVIFMYNVSMTALKGRRTAVTNVLLMGLWGLVLLWLFAFYNPANLVLDKQYWWWVIHLWV  
                                                                            ↑ 
                           220       230       240       250       260       270       280       
                   ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Ps. nautica        EGVWELIMGAILAYVLIKLTGVDREVIEKWLYVIIAMALITGIIGTG-HHFFWIGPPEYWLWLGSVFSAL  
Ps. aeruginosa     EGVWELIMGAILAFVLVKITGVDREVIEKWLYVIIAMALISGIIGTG-HHYFWIGVPGYWLWLGSVFSAL  
Ps. stutzeri       EGVWELIMGAMLAFVLIKVTGVDREVIEKWLYVIIAMALITGIIGTG-HHFFWIGAPTVWLWVGSIFSAL  
Pa. denitrificans  EGVWELIMAAILAFLMLKLTGVDREVVEKWLYVIVATALFSGILGTG-HHYYWIGLPAYWQWIGSIFSSF  
                   ↑   ↑                                        ↑                     ↑ 
                           290       300       310       320       330       340       350       
                   ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Ps. nautica        EPLPFFMMVVFAFNMINRRRRNHPNKAAMLWAMGTTVMAFLGAGVWG-FLHTLAPVNWYTHGSQITAAHG  
Ps. aeruginosa     EPLPFFAMVLFAFNTINRRRRDYPNRAVALWAMGTTVMAFLGAGVWG-FMHTLAPVNYYTHGTQLTAAHG  
Ps. stutzeri       EPLPFFAMVLFALNMVNRRRREHPNKAASLWAIGTTVTAFLGAGVWG-FMHTLAPVNYYTHGSQLTAAHG 
Pa. denitrificans  EIVPFFAMMSFAFVMVWKGRRDHPNKAALVWSLGCTVLAFFGAGVWG-FLHTLHGVNYYTHGTQITAAHG  
                   ↑ 
                           360       370       380       390       400       410       420       
                   ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Ps. nautica        HMAFYGAYVMIVLTIISYAMPIMRGRPYGNSNTAQIVEMWGFWLMTISMVFITLFLTAAGVLQVWLQRIP  
Ps. aeruginosa     HMAFYGAYAMIVMTIISYAMPRLRGIGEAMDNRSQVLEMWGFWLMTVAMVFITLFLSAAGVLQVWLQRMP  
Ps. stutzeri       HLAFYGAYAMIVMTMISYAMPRLRGLGEAPDARAQRIEVWGFWLMTISMIAITLFLTAAGVVQIWLQRIP  
Pa. denitrificans  HLAFYGAYVCLVLALVTYCMPLMKNR----DPYNQVLNMASFWLMSSGMVFMTVTLTFAGTVQTHLQRVE  
 
                           430       440       450       460       470       480            
                   ....|....|....|....|....|....|....|....|....|....|....|....|....|... 
Ps. nautica        ESGEALSFMAGQDQIALFYWMRFVAGAFFMAGLVVYFGSFFIKGEASPAEEVRGPATADA--------  
Ps. aeruginosa     ADGAAMTFMATQDQLAIFYWLREGAGVVFLIGLVAYLLSFRR-----------GKAAA----------  
Ps. stutzeri       ADGAAMSFMNTADQLAIFFWLRFIAGVFFLIGLVCYLYSFRQ--RGRVPVVVAAPAAA----------  
Pa. denitrificans  GG----FFMDVQDGLALFYWMRFGSGVAVVLGALLFIYAVLFP---RREVVKAGPVQAHKDGHLEAAE  

                                                                                                • 
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cNOR (Cytochrome NOR)  

 

 Enzymes from the cNOR type have been extensively studied and characterized from 

different denitrifying bacteria such as Paracoccus denitrificans [42, 43], Halomonas 

halodenitrificans [44, 45], Pseudomonas stutzeri [46, 47], aeruginosa [48] and nautica [49]. These 

enzymes receive electrons from soluble cytochromes such as cyt. c551, c552 [3, 13, 50, 51], 

or from other soluble electron transfer proteins, such as pseudoazurin, which was 

identified as a possible electron donor in the cNOR isolated from Pa. denitrificans [51].  

 They are purified as heterodimers and the two subunits are non-covalently bound and 

known as NorB and NorC. 

 The large subunit, NorB, presents a molecular weight of 56 kDa, contains a bis-His 

low-spin heme b as the immediate electron transfer co-factor. The catalytic center, 

encompassed in this subunit, is composed by a high-spin heme b (heme b3), His-

coordinated and with a µ-oxo/hydroxo bridge coupled to a non-heme iron (FeB). Recent 

crystallographic data from the Ps. aeruginosa cNOR structure confirmed the presence of a 

His in the heme b3 axial position, in the as-purified state [13]. It was believed that the 

coordinating His residue could have a dynamic character, binding and unbinding the 

heme Fe in the different redox states and steps of the catalysis. The Ps. nautica cNOR 

spectroscopic characterization proved unequivocally that heme b3 is hexacoordinated in 

both ferric and ferrous states [49].  

 Sequence alignment for the NorB subunits from different isolated cNORs revealed, 

not only their high homology, but also the conserved His residues that coordinate the Fe 

co-factors in the HCuO superfamily (figure 1.9). As mentioned before, an additional Glu 

residue coordination the non-heme FeB is responsible for the trigonal bipyramid 

molecular  geometry [13]. 

 The small subunit, NorC, is anchored to the cytoplasmatic membrane, has a molecular 

weight of 17 kDa and harbours a c-type heme. Its primary sequence is equally conserved 

amoung the members of this type of NORs as it shown in the alignment present in figure 

1.10.  
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Figure 1.10 – Sequence alignment for the NorC subunit of cNOR from Pseudomonas nautica 617, 
Pseudomonas aeruginosa, Pseudomonas stutzeri and Paracoccus denitrificans. Rectangles enclose the heme c binding 
motif (CXXCH) and the axial Met ligand. Black arrows indicate the two conserved residues involved in 
the possible electron transfer between heme c and heme b. Inset shows NorC subunit structure, 
evidencing the heme c motif with its axial ligands His 65 and Met 112 (Ps. aeruginiosa numbering, PDB: 
3O0R) [13].  
 
 

 
 The protein sequence demonstrates a unique heme c binding motif, with the usual 

CXXCH sequence revealing the His ligand (His 65, aeruginosa numbering) as well as the 

two conserved Cys residues responsible for the prosthetic group covalent binding to the 

polypeptide chain (see figure 1.10). The sixth ligand of the heme iron is a methionine 

residue (Met 112, Ps. aeruginosa numbering) and the center exhibits a high anisotropic EPR 

signal [49, 52].  

 As mentioned previously, cNORs receive their electrons typically from cytochromes. 

Intermolecular electron transfer occurs, with electrons flowing from the electron donor to 

the low-spin heme c, and from this, to the low-spin heme b, until they reach the catalytic 

binuclear center. To conduct the electrons, two highly conserved residues are present in 

                            10        20        30        40        50        60     
                   ....|....|....|....|....|....|....|....|....|....|....|....| 
Ps. nautica        MAERFTKSMARNIYLGGSAFFVLLFLALTFDTQLRAMPERDNRDELTEQVVRGKHLWEEN  
Ps. aeruginosa     MSETFTKGMARNIYFGGSVFFILLFLALTYHTEK-TLPERTNEAAMSEAVVRGKLVWEQN  
Ps. stutzeri       MSETFTKGMARNIYFGGSVFFFLVFLGLTYHTEQ-TFPERTNASEMTEAVVRGKAVWENN  
Pa. denitrificans  MSEIMTKNMARNVFYGGSIFFILIFGALTVHSHIYARTKAVDESQLTPSVVEGKHIWERN  
 
                            70        80        90      100       110       120     
                   ....|....|....|....|....|....|....|....|....|....|....|....| 
Ps. nautica        NCVGCHSIRGEGAYFAPELANVFDRRGGGD--TEVFKAYMKAWMNAMPTNIPGRRQMPDF  
Ps. aeruginosa     NCVGCHTLLGEGAYFAPELGNVVGRRGG----EEGFNTFLQAWMKIQPLNVPGRRAMPQF  
Ps. stutzeri       NCIGCHSLLGEGAYFAPELGNVFVRRGG----EEAFKPFLHAWMKAQPLGAPGRRAMPQF  
Pa. denitrificans  ACIDCHTLLGEGAYFAPELGNVMKRWGVQDDPDSAFET-LKGWMESMPTGIEGRRQMPRF  
                              ↑↑ 
                           130       140       150   
                   ....|....|....|....|....|....|. 
Ps. nautica        NLSDSEVEDLAAFLEWTSKIDDNGWPPNIEG  
Ps. aeruginosa     HLSEGQVDDLAEFLKWSSKIDTNQWPPNKEG  
Ps. stutzeri       NLTEQQVDDMAEFLKWTSKIDTNNWPPNKEG  
Pa. denitrificans  DLTDEEFRALSDFLLWTGTINTQNWPPNDAG  
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the NorC subunit (Gly 71 and Ala 72, Ps. aeurginosa numbering), in the interface between 

NorC and NorB (marked in figure 1.10). It is postulated that electrons flow from the 

heme c, to the Ala residue, and from their, they can go to the low-spin heme b, and pass 

to heme b3 via a conserved Phe residue (Phe 352, Ps. aeurginosa numbering), or to the 

putative Ca atom bridging the two propionate side chains from the b-type hemes in the 

NorB subunit, and from there to the catalytic center. These electron routes were 

proposed with the achievement of the first NOR crystal structure and further 

experiments should be conducted to evaluate the importance of this residues and element 

(Ca) [13].  

 The first cNOR crystal structure points to the presence of one Ca2+ ion [13]. This 

element is postulated to be bridging the heme aliphatic chains of the prosthetic groups in 

the NorB subunit. Curiously, in CcO there are Arg residues that seem to be important in 

stabilizing the anionic form of the heme propionate side chains. Site directed mutants in 

which these residues have been modified, not only revealed a destabilization in the 

propionate anionic form, such as resulted in the loss of proton pumping [53]. 

[53]Recently the Ps. stutzeri cbb3 CcO shown the presence of these two conserved Arg 

residues, stabilizing their heme b side chains with one additional putative Ca atom [54]. 

The presence of these aminoacids in some cNORs primary sequences is highly conserved 

(figure 1.9) and molecular modelling predicted the exact same role for this Arg residues in 

NOR’s [40].  

The c-type NORs have been intensively isolated and characterized, using different 

biochemical and spectroscopic techniques [42-44, 55, 56]. Since these enzymes are hemic 

proteins, their UV-visible absorption spectra exhibit a Sortet band at 410 nm, and the α, 

β bands are centred at 550 nm. Since the protein carries different heme types, the 552 nm 

band was assigned to the heme c and the small shoulder developed at 558 nm was 

assigned to the low-spin electron transfer heme b. Some isolated NORs present a UV-

visible band around 595 nm [55, 57]. This band was addressed to the ligand-to-ligand 

metal charge transfer band associated with the high-spin ferric beme b3 without the 

proximal His ligand [58].  

The EPR spectra of different cNORs is reported in the literature [51, 55, 57, 59]. The 

as-isolated form presents two sets of low-spin signals: one indexed to the low-spin heme 

b, due to its bis-His coordination [59], and an other, where only the gmax has been 

detected, was assigned to the heme c [52]. The catalytic center was assumed to be EPR 
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silent due to the antiferromagnetical coupling of the two catalytic irons. The signals rising 

at g = 6 region and g = 4.3, where attributed to a small fraction of uncoupled heme b3 and 

to the non-heme FeB, respectively [55, 57]. Most recently, Mössbauer spectroscopy 

revealed new insights in the Ps. nautica NOR enzyme, suggesting a six-coordination for the 

catalytic heme b3 in both ferric and ferrous stares of the enzyme, claiming a new 

assignment for the g = 6 signals present in the EPR cNOR signature [56].  

The midpoint redox potentials for the  Pa. denitrificans NOR co-factors were reported 

by Grönberg and co-workers, using visible absorption titration (at pH 7.6) [60]. The 

results show a large positive potential for the heme c, heme b and the non-heme FeB, 310, 

345 and 320 mV (vs. NHE) respectively, with a much lower redox potential for the heme 

b3, 60 mV. The large redox potentials, around 300-350 mV were explained as a benefit for 

the rapid electron transfer from the physiological electron donor towards the active site 

[60]. The rather low potential for the heme b3, some 200 mV below the other potentials 

was attributed to a thermodynamic barrier to the complete reduction of the dinuclear 

center. Ps. nautica NOR visible oxidation/reduction titration point a heme c and heme b 

redox potential in the same magnitude as it was reported in the literature [56, 60]. To 

achieve the redox potential of the binuclear catalytic center, direct electrochemistry was 

applied in the Ps. nautica NOR and a lower redox potential value was indexed to the heme 

b3 [61]. 

The Ps. nautica NOR EPR characterization and direct electrochemical were major 

topics in this thesis and the results obtained are exposed in chapters 2 and 3. 

 

 

qNOR (quinol NOR ) 

 

A second class of NOR indicated in the previous figure 1.5,  is represented by the 

quinol NORs (qNORs). While presenting a similar primary structure to cNOR, qNORs 

are  single subunit enzymes with a molecular weight of 84.5 kDa, accepting electrons 

directly from quinols [7]. The primary sequence alignment with other NOR’s (supporting 

information S.1) presents a N-terminal extension of approximately 280 aminoacids 

residues, quite similar to the NorC subunit and a C-terminal similar to the NorB subunit 

[7]. The observed structure lead to the proposal that qNOR was formed by a gene fusion 

of NorC and NorB. In such case, during evolution, qNOR would have lost the heme c 



Chapter 1 
_________________________________________________________________________________________________________________ 

 
________________________________________________________________________________________________________ 24

center and gained a quinol-binding site [7]. These enzymes where isolated from Ralstonia 

eutropha [62], Pyrobaculum aerophilum [63] and were identified in the genome of several 

pathogenic strains [64, 65].  

In comparison with other NORs, these enzymes lack one electron transfer co-factor, 

either heme c or CuA; they only comprise the binuclear iron center and the low-spin heme 

b. In this case, electrons are directly transferred from quinol to the low-spin center (figure 

1.5 grey broken arrows), and from this to the catalytic center.   

 

 

qCuNOR (quinol-copper NOR)  

 

The third type of NORs is the quinol copper NOR (qCuNOR, figure 1.5), was 

isolated and characterized from Bacillus azotoformans [66, 67] and it is composed by two 

subunits. The large one maintains its similarity with the NorB subunit from cNORs and 

the HCuO subunit I, ubiquitous to all NORs. The small subunit lacks the c-type heme 

and contains instead a binuclear CuA center identical to the reported for several HCuO 

[39, 67].  

The qCuNORs can use menaquinol as an electron donor, as well as the soluble cyt 

c551. Kinetic assays with menaquinol demonstrate a 4-fold higher maximum activity as 

compared to those with cytochrome c551. Because of these, it was proposed that electron 

donation via menaquinol is used for NO detoxification [7]. 
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1.3. Nitric Oxide Reduction by Nitric Oxide Reductases  

 

 The catalytic mechanism for NO reduction is a hot topic under intense discussion. 

Since the catalytic center is composed by two iron atoms, the heme b3 and the non-heme 

FeB, connected by a µ-oxo/hydroxo bridge, different possibilities can be assumed for the 

substrate binding at the active center. They can be divided in two major groups: the trans-

mechanism describing the NO binding to each one of the Fe atoms of the diiron center 

[48, 55, 68] and the cis-mechanism, where both NO molecules bind to the same Fe atom. 

For this last mechanism, two possibilities were predicted: a cis-FeB mechanism with both 

substrate molecules binding the non-heme FeB [69], and a cis-b3 mechanism when they 

bind to the heme b3 iron [37, 70]. 

  

 

The trans-mechanism  

 

 The trans-mechanism (figure 1.11) describes one substrate molecule binding to each 

one of the catalytic irons. This model was first suggested by Girsch and co-workers [55], 

and it is supported by Raman [68] and EPR spectroscopies [26, 45, 48]. Substrate 

reduction is described by a first NO molecule binding the heme b3, leading to the 

protonation of the µ-oxo bridge, and a second NO molecule binding to the non-heme 

FeB [23, 27]. The formation of a hyponitrite intermediate is assumed. However, no 

catalytic intermediate of this reaction as ever been detected, which renders the N-N 

coupling speculative [71].  

 All the proposed mechanisms assume a high-spin heme b3 in the resting state of the 

enzyme (fully oxidized state). A recent study on Ps. nautica NOR proves that heme b3 is 

low-spin in both its ferric and ferrous states [56]. Other studies also proved that a six-

coordinated heme nitrosyl compound weakens the Fe-NO and the N-O bond, relatively 

to a five-coordinated species, which could somehow help to activate the NO molecule 

[71]. 
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Figure 1.11 – Possible modes for NO binding to the binuclear centre of NOR: Cis and Trans. A-Three 
different modes of accommodating two molecules of NO at the active site of NOR; B-Schematic 
representation of the trans-mechanism model (adapted from [27]). 
 

 

The cis-mechanism 

 

 The cis-mechanism is assumed when only one of the Fe atoms of the catalytic center 

binds the substrate, being the other iron atom responsible for giving the reducing 

equivalents.  

 The cis-heme b3 mechanism has only been predicted by theoretical models. Blomberg 

and co-workers shown a complete analysis for possible intermediate species in the NO 

reduction mechanism, considering the possibility of a second NO molecule interacting 

with a first one bound to the heme b3 (figure 1.11) [70]. 
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 The cis-FeB mechanism was proposed, based in the presence of one non-heme FeB per 

NOR molecule, because non-heme organometallic compounds suggest a reactive 

coupling with two NO molecules and the chemical conversion of NO to N2O [69]. 

Theoretical models assuming an octahedral coordination for the FeB with the three His 

and the Glu ligands were studied [70]. Nevertheless, up to date, there is no available 

information on any intermediates that can support this mechanism.  

 

 

Oxygen as an Alternative Substrate to Nitric Oxide  

 

 Oxygen (O2) is an alternative substrate to the NORs. This is a common mechanism to 

Ps. nautica and Pa denitrificans NOR enzymes, and possibly to other isolated NO-

reductases. Comparative studies of O2 steady-state reduction kinetics, between wild-type 

and mutants of Pa. denitrificans NOR have provided insight on both mechanistic and 

structural features of the enzyme [40, 41, 72, 73]. This alternative natural substrate has 

been greatly used in experimental protocols, since it mimics the NO molecule in catalysis 

and it is much easier to handle. Nevertheless, there is no information on the catalytic 

mechanism for O2 reduction, namely on the substrate binding to the catalytic diiron 

center and in the detection of relevant kinetic intermediates. Flow-flash experiments 

indicated that O2 binds to the heme b3 center, analogous to the HCuO mechanism [74-

76].  

 The steady-state kinetic features for O2 reduction by Ps. nautica NOR was a major 

focus of this thesis, and the results are presented in chapters 3 and 4. 

 

 

Proton Gateways are Necessary for Reduction   

 

Attention is mainly focused on NO and O2, but protons are an essential co-substrate 

for the reduction mechanism. Two protons are required for the NO reduction and 

subsequent N2O formation, while O2 reduction to water involves four protons. There is 

evidence that electrons come from physiological donors and enter to the catalytic site, via 

the electron transfer co-factor.  
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At first, NORs were postulated to pump protons across the membrane, as described 

for the terminal oxidases. These enzymes generate an electrical gradient by using electrons 

and protons derived from opposite sides of the cytoplasmatic membrane. Protons are 

transferred from the cytoplasmatic surface of the protein into the active site through the 

D and K- pathways [40].  

Latter on, NO and O2 reduction were proved to be non-electrogenic, i.e., not coupled 

to charge translocation across the membrane [40, 77]. Experiments using cNOR closed in 

vesicles indicated that substrate protons are taken from the periplasmic side of the 

membrane [40]. The protons seem to enter via a conserved set of protonable residues 

(figure 1.12) and putative water molecules. Site directed mutagenesis experiments shown 

that some of these residues, such as Glu 122 and Glu 125 (Pa. denitrificans numbering), are 

essential for substrate reduction, implicating these residues in proton channelling [41]. 

The protonable residues are also conserved in cNORs and qNORs as it can be seen in 

the support information S.1 and reported by Reimann et al. [40].  

 

 

 
Figure 1.12 – Pathway for protons on the NOR catalytic subunit. Paracoccus denitrificans NorB subunit 
molecular model evidencing the protonable residues for protons translocation towards the active site. 
Yellow and orange spheres represent the heme b  and non-heme FeB, respectively, adapted from [40].  
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1.4. NO Related Enzymes: NO Synthases and Reductases   

 

NO synthases  

 

 Nitric oxide synthases (NOSs) are highly regulated multidomain metalloenzymes that 

catalyze the oxidation of l-Arginine (Arg) to NO and L-citrulline (Cit), via a stable 

intermediate the, Nω-hydroxy-l-arginine (NOHA). These enzymes comprise a NOS 

oxygenase domain and a C-terminal flavoprotein reductase domain. The first domain 

contains the catalytic center, a c-type heme that binds the substrate (Arg) and the redox 

active co-factor 6R-tretrahydroviopterin (BH4). The second domain has binding sites for 

flavine and similar co-factors (FAD, FMN, and NADPH) that act as source of reducing 

equivalents. [4].   

 The NOS where primarily identified in mammalian cells, and present different 

regulations. The biochemical attempts to detect NO activity in various culture isolates 

lead to the discovery of bacterial NOS and NOS-like proteins. Bacterial NOSs produce 

NO in vivo, which function includes toxin biosynthesis, protection against oxidative 

damage and as a signal to regulate growth responses. Genome sequencing of prokaryotes 

revealed bacterial open reading frames (ORFs) coding for proteins with high sequence 

homology for the mammalian NOS oxygenase domain and with conserved catalytic 

motifs, suggesting that bacterial NOS would be involved in the NO synthesis. They are 

mostly found in gram positive bacteria, such as Deinococcus radioduras, and Bacilli species. 

Crystal structures revealed a strong resemblance with the mammalian NOS oxygenase 

domain with absence of the N-terminal domain [4]. 
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Cytochrome c Nir  

 
The penta-heme nitrite reductase, also known as cytochromes c nitrite reductase 

(ccNir or Nrf), is a periplasmic multi-hemic protein, that has been isolated and its X-ray 

structure resolved from E. coli [78], Wolinella succinogenes [79] and Desulfovibrio desulfuricans 

[80]. Due to their role in the denitrification pathway, these proteins were early included in 

the N-cycle (figure 1.1), where they catalyse the reduction of NO2
− to NO. Additionally, 

they are able to reduce NO2
− or NO to NH4+. 

The enzymes belonging to this class are oligomers with two subunits, one of which is 

anchored to the membrane. The complex harbours five c-type hemes. The catalytic heme 

(heme I) is easy to identify since it is the only heme with a Lys residue in its axial ligand, 

showing a new heme-binding motif CXXCK. The remaining four hemes exhibit a bis-His 

coordination and they are responsible for the electron transfer towards the active site [3, 

24, 78-80].  

Electrochemical response of the E. coli ccNir demonstrated a  higher affinity for NO 

than for NO2
− leading to the believe that this enzyme plays a significant role in NO 

detoxification [3, 81].  

 

Flavodiiron Proteins  

 

The flavodiiron proteins, originally called A-type flavoproteins, are enzymes which 

catalyze the two electron-two protons NO reduction to N2O. They are present in Archea, 

bacteria and some protozoan pathogens (mostly anaerobes), and they play an important 

role in the NO and O2 detoxification [82].  

These enzymes have a two domain structure: an N-terminal β-lactamase fold and a C-

terminal short-chain flavodoxin-like fold, and they receive electrons from the 

NADH:rubredoxin oxidoreductase [3, 82, 83].  

Flavorubredoxin seam to be the combination of the A-type flavoprotein and 

rubredoxin, and they have been are equally studied and isolated, as well as the as the 

flavodiiron proteins [84, 85].  

Primarily, it was thought that these proteins were O2-scavenging enzymes. Today, they 

where assigned to be deeply involved in the nitrosative and/or oxidative stress [82].   
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Fungal P450nor 

 

Fungal nitric oxide reductase cytochrome (P450nor) is a unique heme-thiolate protein 

involved in fungal denitrification by reducing NO to N2O [86].  

P450nor was originally isolated from the filamentous fungus Fusarium oxysporum [87], 

indicating for the first time that denitrification is not restricted to prokaryotes. As part of 

the whole denitrification procedure, fungal denitrification contains reduction steps of 

nitrogen sources, from nitrate to nitrous oxide. P450nor [87]. The enzyme seems to receive 

electrons directly from NADH to reduce NO, without any help from a flavoprotein.  

The finding of P450nor in a broad range of eukaryotes raised the attention of the 

scientific community working in NO3
−/ NO2

−- reduction pathways. Being analogous to 

ccNir and the flavodiiron, it is likely that P450nor plays a role in NO detoxification in 

certain organisms [86, 87].  

 

Heme Copper Oxidases  

 

 As mentioned before (section 1.2.2.1.1.) the HCuO are a superfamily of enzymes that 

comprise several terminal oxidases and the NORs. 

 Subject of discussion is the oxidoreductase activity of NOR (section 1.3). There are 

several HCuOs, such as the ba3 and caa3 oxidases from Thermus thermophilus and 

cytochrome cbb3 oxidase from Pseudomonas stutzeri, which displayed NO reactivity. 

Contrarily, other oxidases, such as CcO from bovine heart, show no NO reductase 

activity [88-91]. For the purified enzymes that are able to reduce NO there is no reference 

to their catalytic mechanism. Nevertheless, spectroscopic results suggest NO binding to 

the CuB atom in order to produce N2O [92].  

 Rational design of structural models for the cytochrome oxidase catalytic center was 

proformed, starting from the coding sequence of sperm whale myoglobin and using site 

direct mutagenesis [93]. The recombinant mutated protein obtained was fully 

characterized but only presented its functionality for NO reduction [94].  
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1.4.1. Model Compounds  

 

To understand the NOR catalytic mechanism, inorganic compounds where 

synthesized in order to mimic the unusual binuclear iron center.  This strategy has been 

applied to several other metalloenzymes. Unfortunately, it is difficult to exactly reproduce 

the chemical environment around the desired metal centers.  

For many years, synthetic compounds where synthesized to mimic the heme/non-

heme diiron compounds, but they missed the proximal His heme ligand, and the carboxyl 

group original from the conserved Glu in the native enzyme [95-97]. Some of artificial 

compounds exhibit reactivity with diatomic molecules like NO, O2 and CO. Collman et al. 

synthesized a novel NOR active site (figure 1.13), accounting for the proximal His heme 

ligand and the postulated non-heme FeB carboxyl ligand [98, 99]. This was the first report 

for a functional NOR model that was able to reduce NO to N2O stoichiometrically, 

apparently by a trans mechanism [100].  

 

 

 
Figure 1.13 – Representation of the functional model compound able to reduce NO to N2O, adapted 
from [100]. M and MB stand for the metal porphyrin (Fe) and for the non-heme metal (FeB).  
 
 

The same compound was tested for the O2 reduction, using electrochemical 

techniques. The diiron model compound was linked to a self assembled monolayer (SAM) 

and preformed an efficient four electron reduction of O2 to water [101], showing the 

versatility of the unusual NO catalytic center.  
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1.4.2. Rational Design in Alternative Proteins 

 

In silico design of proteins and enzymes has emerged as a powerful tool to design 

application-tailored proteins and catalysts for a wide range of applications. 

Several enzymes exploit the unique features of metal co-factors to achieve catalytic 

activity otherwise unattainable through the use of only natural amino acid residues [102]. 

As an alternative, insertion or construction of a catalytically competent moiety inside a 

polypeptide scaffold is reported in literature [102-104]. Unluckily, these constructions 

rarely rival the natural enzymes in terms of catalytic efficiency, but they often yield 

invaluable structural and mechanistic information [105].  

Using the myoglobin, Sigman et al. changed different aminoacids in the heme pocket 

of the protein, in order to obtain a chemical environment for Cu binding, aiming a soluble 

artificial enzyme harbouring the CcO catalytic center [93] Curiously, similar to other 

HCuO, this artificial enzyme presents NO reductase activity [94]. Similar work was done 

by Yeung et al., but in this case, the binuclear Fe center of the NOR was accomplished 

(figure 1.14) [106]. The introduction of a Glu ligand in the myoglobin heme pocket 

enhanced the Fe binding with a favourable geometry, and therefore, the unusual diiron 

center from NORs was available in a much smaller and soluble protein. Biochemical and 

spectroscopic characterization of this artificial enzyme revealed that heme and non-heme 

Fe are magnetically coupled and capable of reducing NO to N2O [106].  

 
Figure 1.14 – The sperm whale myoglobin rotational design three-dimensional structure (PDB: 3K9Z). In 
red is evidenced the polypeptide chain, in green the ligands coordinating the diiron center and in yellow 
the non-heme FeB. The PDB file was edited with Pymol software. 
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1.5. The State of the Art and Aims  

 

The NOR enzyme is an integral membrane protein purified from different denitrifying 

organisms. It is isolated as a heterodimer and it has been intensively characterized using 

biochemical and spectroscopic methods. In the end of 2010, new insights in this class of 

proteins were achieved. 

The first NOR X-ray crystal structure was determined (figure 1.15), the as isolated 

form, shows the catalytic heme b3 coordinated to its proximal His ligand (His 347, Ps. 

aeruginosa numbering), and to the µ-oxo bridge that connects to the non-heme FeB, 

suggesting a six-coordinated catalytic heme, contrarily to the reported in the literature 

[13].  

 
 

 
Figure 1.15 – The Pseudomonas aeruginosa NOR 2.7 Å crystal structure. On the left side is illustrated the two 
subunit interaction (NorC subunit in blue and NorB subunit in orange), with the helixes arrangement or 
with correspondent subunit surface. On the right side, is abstracted the polypeptide chain and is showed 
the co-factors disposition with the correspondent ligands. The PDB (3O0R) file was edited with Pymol 
.software. 
 

 

Mössbauer spectroscopic results were recently achieved for the first time in this class 

of enzymes. The 57Fe labelled Ps. nautica NOR was purified and characterized in our 

research group. The data show unequivocally that the catalytic heme b3, contrarily to the 

previously supposed, is in fact low-spin for both ferric and ferrous states. This called for a 
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reconsideration on the EPR signals previously described in the literature [56]. The EPR 

signals rising at low field (g = 6) were assigned to the uncoupled ferric heme b3. Since this 

is in fact a low-spin Fe center, the attribution of this signal to the catalytic heme center 

will be discussed further in this thesis (chapter 2). Careful analysis of the Mössbauer data, 

suggest a lower redox potential for both Fe atoms from the catalytic diiron center, since 

they are only reduced in the presence of a strong reducing agent, such as sodium 

dithionite (- 0.66 V, vs. NHE, at pH 7.0 [107]).  

Spectroelectrochemistry revealed the redox centers at the active site of Pa. denitrificans 

NOR are isopotential, (+ 80 mV), and after the electron transfer low-spin heme b 

reduction, the µ-oxo bridge opens, in a favourable process for substrate binding [108].  

These results were determined by a reappraisal of the values determined before by 

Gronberg et al. [60]. The midpoint redox potential of the metal co-factors in the NOR 

enzyme it is an issue of controversy. This subject will be elucidated in the chapter 3 of this 

thesis, with a detailed description of the Ps. nautica NOR midpoint redox potentials for 

the iron co-factors, assigned by direct electrochemical measurements.  

There are still many questions to answer in the biological NO reduction field. The 

mechanism for substrate reduction is still a subject under intense discussion. Currently 

two mechanisms are being considered, namely the cis and trans-mechanism. To both 

hypotheses there is no information on possible kinetic intermediates that can support one 

of the proposed mechanisms. The reduction mechanism for NO reduction and for 

secondary substrates such as O2 where investigated under steady-state conditions, an issue 

with low relevance in the literature, and the results are shown in chapter 4.   

The aim of this thesis was: 

i) to purify and characterize the Ps. nautica NOR; 

ii) to characterize biochemically and spectroscopically the purified enzyme; 

iii) to study the kinetics of this enzyme towards NO and O2. 

The achieved results were:  

i) the biochemical and spectroscopic characterization of the enzyme; 

ii) direct electrochemical response for the four Fe centers, using the immobilized 

enzyme; 

iii) quantification of the number of electron involved in NO and O2 reduction; 

iv) steady-state kinetic features for the NO and O2 reduction, using different 

electron donors.  
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2. Pseudomonas nautica NOR: Purification and Characterization 

 

2.1. Purification Strategy  

 

The target enzyme is an integral membrane protein. The primary step of this part of 

the work is to isolate the membrane fraction, of Pseudomonas nautica 6171 for further total 

protein extraction. To achieve this goal, it is imperative to use a surfactant, such as n-

dodecyl-β-D-maltoside (DDM) used here, able to mimic the cytoplasmatic membrane in 

order to avoid protein precipitation. The surfactant used will be present in the remaining 

purification steps.  

 

 

2.1.1. Preparation of  Pseudomonas nautica Membranes  

 

 After cell disruption, the homogenate is centrifuged at 8000 ×g, for 20-30 minutes, to 

separate cell debris and undisrupted cells. The supernatant is then centrifuged at 138 000 

×g, for 90 minutes to separate the soluble and membrane fractions. The pellets containing 

the membranes were pooled and ressuspended in 50 mM Tris–HCl  pH 8, 100 mM KCl 

to a final concentration of 10 mg/ml of total protein. Membranes were sonicated in a 500 

ml portion, in an ice bath, with a 200 watts sonicator, at 24 kHz ultrasonic frequency, 

equipped with a S7 tip (7 mm diameter). The sonicator amplitude was set to 60% and the 

pulse to 0.5 seconds. The sonication period was 10 minutes and this procedure was 

repeated twice. Afterwards the homogenate was centrifuged at 138 000 ×g, for 90 

minutes. The insoluble fraction containing the membranes was homogenized in 50 mM 

Tris-HCl pH 8, diluted to 10 mg/ml of total protein, and the last centrifugation step was 

repeated in order to wash to membranes and to remove the KCl. A scheme resuming 

these procedures is presented in figure 2.1.  

 

 

 

                                                 
1 The bacterial cultures were grown as described in reference [1]. 
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Figure 2.1 – Pseudomonas nautica membrane fraction isolation. The scheme shows the steps used in order 
to separate membrane fraction, containing the NOR. All steps were optimized for each particular 
preparation. 
 
 
 
 The sonication procedure and the treatment with KCl-based buffer were done in 

order to remove contaminating proteins that are weakly bound to the cell membrane.  

 



Pseudomonas nautica NOR: Purification and Characterization 
__________________________________________________________________________________________________________ 

 
________________________________________________________________________________________________________ 49

 

2.1.2. Purification of the NOR from the Membrane Extract 
 

 

 Washed membrane fractions were dosed in total protein amount content to proceed 

to the membrane protein extraction step. This extraction is obtained by incubation with 

0.8 % (w/v) n-dodecyl-β-D-maltoside (DDM), and 0.02 % (v/v) of S-(-)-phenylethanol 

(PE), at a final protein concentration of 10 mg/ml. Steering was maintained throughout 

the process, during 30 minutes at 4ºC. 

 The extracted fraction was separated by centrifugation (138 000×g, 90 minutes). The 

supernatant was applied to a DEAE bio-gel (Bio-Rad) column (Ø 50 × 350 mm), 

equilibrated with 50 mM Tris-HCl pH 8.0, 0.02 % (w/v) DDM, 0.01% (v/v) PE. After 

washing the column, a linear gradient of 2 litres was applied from 0 to 500 mM of NaCl 

in order to remove the adsorbed proteins.  Fractions were collected in test tubes and NO 

reductase activity was assayed using a NO-sensor, as described in the supporting 

information S.8.4. The tubes that exhibited NO reductase activity were pooled and 

concentrated in an ultrafiltration apparatus. The ionic strength was lowered to 50 mM 

Tris-HCl pH 8, 0.02 % (w/v) DDM, 0.01 % (v/v) PE, using the same device. The NOR 

rich fraction was loaded in a CHT type II (Bio-Rad) column (Ø 16 × 350 mm). Protein 

elution was done, with a linear gradient, using 1.5 M KPB pH 7.0, 0.02 % DDM, 0.01 % 

PE, as the second buffer. The presence of NOR in each fraction was analysed by tricine 

sodium dodecyl sulfate electrophoresis (SDS-PAGE), the fractions containing the enzyme 

were joined and the ionic strength adjusted to 100 mM KPB pH 7.0 0.02 % (w/v) DDM, 

0.01 % (v/v) PE by ultrafiltration. The NOR rich fraction, was loaded in a prepacked (20 

ml) CHT type I (Bio-Rad) column equilibrated with 100 mM KPB pH 7.0, 0.02 % (w/v) 

DDM, 0.01 % (v/v)PE. A linear gradient was applied from 100 mM up to 1.5 M KPB pH 

7, 0.02 % (w/v) DDM, 0.01 % (v/v) PE. The length of the gradient was optimized for 

each column, in order to achieve a better resolution. NOR fractions were eluted at an 

ionic strength close to 400-500 mM (≅ 40%). 

 The final fraction was concentrated and buffer exchanged to 100 mM KPB pH 7.0, 

0.02 % (w/v) DDM, 0.01 % (v/v) PE. Purity was evaluated by UV-Visible absorption 

spectra and tricine SDS-PAGE. Protein staining was preformed using the blue coomassie 
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staining protocol, and heme staining was accomplished in parallel (supporting information 

S.8). All the protein quantification was made using the BCA method (Sigma). A scheme 

resuming these procedures is presented in figure 2.2.  

 

 

 

 

 
Figure 2.2 – The Pseudomonas nautica NOR purification scheme. The diagram resumes the 
chromatographic steps used for the protein purification, starting from the solubilized membrane fraction.  
 

 

 

2.1.3. Purification Table 

 

 A purification table can be performed in order to obtain the purification yield and 

evaluate which was the best chromatographic step. Membranes were washed as described, 

but only half of the total washed membranes were used to continue in the downstream 

process, that is why the purification table (table 2.1) is separated in two parts (grey and 

white rows).  
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Table 2.1 - Purification table for the Pseudomonas nautica NOR. The table is separated in two parts, first 
part (grey) with the centrifugation and sonication steps for washing the membranes and the second part 
(white) starting from the detergent solubilized fraction.  
 

 

 

Volume 

(ml) 

C 

(mg/ml) 
Activitya

Total  

activityb

Specific 

activityc  

Yield 

(%) 

Purification 

fold 

Membrane 

fraction 2 
4550 10 0.02 - -   

Membrane 

fraction 3 
3400 10 0.07 - -   

Soluble 

fraction 
1756 10 0.05 87.8 2.84 100 1 

DEAE  

Bio-gel 
896 6.7 0.03 26.88 5.01 31 1.8 

CHT 

 (Type II/I) 
18 3.3 0.16 2.88 2700 3.28 952 

Units: 
a µM NO. sec-1 
b µM NO. sec-1.ml protein 
c µM NO. sec-1.mg protein-1 

  

 

 The chromatographic steps were grouped according to the used solid support. The 

DEAE biogel support and the CHT type II were used only once (for primary crude 

extracts), wile the CHT-type I (prepacked) was re-used in order to obtain the last fraction 

which came out of the column consistently with a higher purity, explaining the extreme 

high value for the purification fold when using this chromatographic support (see 

purification table). Moreover, this last procedure was repeated up to 8×. This makes the 

protein purification extremely time consuming, but it was previously known by our 

research group that this ceramic resin was the best chromatographic support for the 

protein purification, amongst others. Unfortunately, only approximately 3 % of the total 

solubilized proteins are obtained, and as it is showed, the specific activity increases with 

the purification steps, as expected.  
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2.2. Biochemical and Spectroscopic Characterization 

 

 Type-c NORs have been identified in the genome of several organisms [2, 3], however 

they have only been isolated and characterized from a few denitrifying bacteria, such as 

Pa. denitrificans [4, 5], Halomonas halodenitrificans [6, 7], and the Pseudomonas species, stutzeri [8, 

9], aeruginosa [10, 11] and nautica [12]. qNOR’s and qCuNOR’s here equally studied and 

isolated from Rastonia eutropha [13, 14], and Bacillus azotoformans [15]. 

 In the following sections, the detailed biochemical and spectroscopic characterization 

of the isolated Ps. nautica  617 NOR is presented.  

 

 

2.2.1. Tricine Sodium Dodecyl Sulfate Electrophoresis   

 

 Electrophoresis under denaturating conditions was performed constantly during 

purification steps, in order to evaluate the purity of the obtained fractions. Tricine SDS-

PAGE gels [16] were done, and stained for total protein and peroxidatic heme detection. 

Experimental details and methodologies are described in supporting information S.8.1.  

 As it is shown in figure 2.3, the isolated protein presents two subunits, non-covalently 

bound, with 17 and 56 kDa, corresponding to the NorC and NorB subunits, respectively. 

The above mentioned value for the NorB subunit molecular weight was determined 

according to the primary sequence.  

 In gel electrophoresis was observed a band with higher eletrophoretic mobility 

(between 35 and 40 kDa) due to the high hydrophobic character of this subunit (figure 

2.3). This result was already reported in different cNORs [7, 9, 17]. Heme staining 

presents a single band at 17 kDa, pointing the presence of a covalently bound c-type heme 

to the small subunit (NorC).  
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Figure 2.3 – Tricine SDS-PAGE gel (10 %) of the Pseudomonas nautica NOR purified fraction. Panel A: 
coomassie blue staining, showing the total protein content. Panel B: heme staining using the TMBZ 
method, which evidences the peroxidatic type hemes. Experimental details in supporting information S.8.  
 
 
 

2.2.2. Metal Quantification 

 

 In order to determine the metal content in the purified sample, different 

quantifications were performed. Heme iron was determined according to the pyridine-

hemocromogen method as described by Berry and Trumpower [18]. Total Fe and Ca 

were determined by plasma emission. Non–heme iron was determined by difference 

between total iron and heme iron. This calculation was adopted in replacement of the 

TPTZ method [19] since the quantifications in our research group revealed that the values 

obtained were similar (table 2.2) [12]. 

   

Table 2.2 - Metal quantification results obtained for the isolated NOR. 
 Fe / cNOR 

 Heme 

 c-type b-type  
Total Non-heme

Ca / cNOR 

cNOR 0.9 ± 0.1 1.7 ± 0.2 4 ± 0.8 1.2 ± 0.1 0.7 ± 0.2 

 

  

 The values point to the presence of a 1:2:1 stoichiometry for the heme c, b and non-

heme FeB respectively. This result is in agreement with previous values reported for other 

isolated cNORs e.g.[2, 20]. Ca determination reveals a substoichiometry value, although 
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one Ca atom per protein molecule was recently reported [10]. Comments to a possible Ca 

presence in the protein structure will be made further in this thesis (section 3.4).  

 

 

2.2.3. UV-Visible Absorption  

 

 The UV-visible absorption spectrum of the as-isolated NOR is presented in figure 2.4 

(blue line). The spectrum is typical of heme containing proteins and very similar to those 

of other purified cNORs [12, 21]. It shows a 280 nm peak, characteristic of all proteins, a 

Soret band at 411 nm, and a broad band at higher wavelengths, centered at 550 nm, with 

two small peaks at 558 and 528 nm, characteristic for the α and β regions, respectively. 

The appearance of the small absorption peaks in the as-isolated form of the enzyme 

indicate the presence of a small amount of reduced low spin heme, in agreement with the 

Mössbauer data reported in literature [12]. The absorbance ratio of the Soret band to the 

protein band (Abs 411/280) was determined to be 1.2. A molar extinction coefficient was 

previously determined for the as-isolated form and used to estimate protein concentration 

in all assays (ε411nm = 295 mM-1cm-1) [12]. Other isolated NOR exhibit an absorption band 

at 595 nm [17, 22], however such band is absent in the as-isolated form of the Ps. nautica 

NOR [12]. This band was suggested to be due to a ligand-to-metal charge transfer 

associated with a high-spin ferric heme b3 without the proximal His ligand [23]. The 

absence of an absorption band at 595 nm in the as-purified sample, suggests a different 

spin state and/or a different coordination environment for heme b3, most probably six-

coordinated, in agreement with the more recent reports  [10, 12]. 

 Ascorbate reduction of the sample red-shifts the Soret peak to 418 nm and sharpens 

the optical bands in the α β absorption region, revealing defined peaks at 523 nm and 552 

nm, with a shoulder at 558 nm (figure 2.4, orange line), consistent with the reduction of 

low-spin heme groups. The absorption band at 552 nm was assigned to heme c and 558 

nm indexed to the heme b [4, 24, 25]. Optical data, as well as EPR data (see bellow), 

indicate that heme b and heme c are reduced by ascorbate.  
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Figure 2.4 – The UV-visible absorption spectra of the purified Pseudomonas nautica NOR in different 
redox states: as-isolated form (blue line), sodium ascorbate reduced (orange line) and sodium dithionite 
reduced (green line). Complete reduction was accomplished by consecutive addiction of excess reducing 
agent. Spectra were done in 100 mM KPB pH 7.0, 0.02 % (w/v) DDM, 0.01 % (v/v) PE.  

 

 

Sodium dithionite reduction of the sample shifts the Soret maximum to 421 nm and 

the α β bands become more intense indicating heme groups reduction (figure 2.4 green 

line).  

Difference spectrum between the dithionite and ascorbate reduced forms of the 

enzyme (figure 2.5) suggests low-spin heme reduction, upon dithionite addiction. As 

showed, low-spin electron transfer hemes were reduced with ascorbate, This result is 

corroborated by Mössbauer results, since predicted a  ferric low-spin configuration for the  

heme b3 on the ascorbate reduced sample [12]. 
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Figure 2.5 – UV-visible difference spectrum between the sodium dithionite and sodium ascorbate 
reduced forms of the Pseudomonas nautica NOR. Spectra were acquired in 100 mM KPB pH 7, 0.02 % 
DDM, 0.01 % PE.  
 

 

2.2.4. Electron Paramagnetic Ressonance (EPR) 

 

 Similarly to the UV-visible absorption spectra, EPR spectra were acquired in the same 

three redox states: as-purified, sodium ascorbate and sodium dithionite reduced.  

 The as-purified Ps. nautica NOR exhibits an EPR spectrum quite similar to those 

reported for other isolated cNORs [17, 25, 26]. Two sets of low-spin heme signals were 

detected. One with g values of 2.99, 2.25 and 1.43, which have been attributed to the bis-

His low-spin heme b [26], and the extreme anisotropic set of signals, from which only the 

gmax value of 3.59 can be observed, which have been attributed to the heme c of the NorC 

subunit (figure 2.6-A) [27].  
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Figure 2.6 – EPR spectra at 9.653 GHz of the as-isolated (A), ascorbate-reduced (B) and dithionite 
reduced (C) Ps. nautica cNOR (265 μM in 100 mM KPB, pH 7.0, 0.02% (w/v) DDM, 0.01% (v/v) PE). 
Experimental conditions of spectra: temperature = 12 K, microwave power = 0.2 mW, modulation 
frequency = 100 kHz, modulation amplitude = 0.5 mT, receiver gain = 1×105, conversion time = 163.84 
ms and time constant = 81.92 ms.  
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Spin quantitation of these two low-spin ferric heme signals was done using the Aasa 

and Vanngard method [28] and modified according to De Vries et al. [29]. The spectrum 

simulation is shown in supporting information S.2. Approximately 0.9 and 0.7 

spin/molecule was determined for the heme b and heme c signals, respectively, indicating 

their presence in the analysed sample. 

The NOR catalytic center has been described as a high-spin heme b3 (S = 5/2), 

antiferromagnetically coupled to the high-spin ferric non–heme FeB (S = 5/2) [25, 27]. 

Therefore, the coupling of these two ferric centers would produce a diamagnetic specie (S 

= 0) ground state. No EPR signal was expected to arise from the oxidized catalytic 

binuclear center. In the analysed samples, the signals present at the  g = 6 region were 

assigned to a fraction of uncoupled heme b3 and the g = 4.3 signal  accounted to the 

uncoupled high-spin non-heme FeB [25, 27].  
Recent findings, revealed that heme b3 is a low-spin, in both ferric and ferrous states 

[12]. Thus, magnetic coupling of the low-spin heme b3 (S = 1/2) and the high-spin non-

heme FeB (S = 5/2) would produce a integer-spin ground state with S = 2 or S = 3 that 

may not be EPR silent [30].   

When the sample is reduced with sodium ascorbate, the electron transfer low-spin 

heme b and heme c signatures (g = 3.59, 2.99, 2.25 and 1.43) clearly disappear, while the 

signals around g = 6.30, 2.05, 2.01 and 1.60 are retained (figure 2.6 B). The disappearance 

of the ferric low-spin signals is consistent with the visible absorption spectroscopy results 

previously discussed (section 2.2.3), the published Mössbauer data [12] and the 

electrochemistry results discussed in further sections (section 3.3.). The remaining signals 

at the g = 6 region and a broad signal at 1.60 can be still observed. The signal at low field 

will be discussed further in the text (see below). The g = 2.05 and 1.60 signals are equally 

present in other purified cNOR’s, such as the isolated from Pa. denitrificans and Ps. 

aeruginosa [11, 21], and  not yet assigned.  

Dithionite addiction to the sample, reduces the intensity in the g = 6.34 signal, but not 

completely (figure 2.6, C).  

A comparative analysis of the three redox state samples can be made. The signal rising 

at the g = 6.34 position was previous attributed to the supposed high-spin heme b3. It 

should be noted that this signal is present in all the acquired spectrum (figure2.6). 

Additionally, one needs to keep in mind that: i) the Ps. nautica NOR heme b3 is a low spin, 

ii) this center reduction is only accomplished at low redox potential, and that by other 
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means only a strong reducing agent will be able to fully reduce it,  and iii) dithionite is not 

able to fully reduce both iron centers from the NORs active site, with Mössbauer 

determining 60 % reduction upon dithionite addition [12]. Therefore, this set of signals 

seems to arise from the catalytic diiron center and it corresponds to a heme-b3-FeIII 

species, combined with a ferric or ferrous FeB. The possibility of a mixed valence state for 

heme b3-FeIII-non-heme FeBII should be excluded, since this species signal would increase 

under more reductive conditions, and the low field g = 6.34 signal decreases its intensity. 

Both Mössbauer and EPR spectroscopy show equal population ratios, measured either by 

the ferric /non-heme FeB percentage or by the intensity ratio of the g = 6.34 signal 

respectively, as it can be seen by the values presented in table 2.3. So, it is most likely that 

this signal is due to an integer-spin state rising from the low-spin heme b3 - FeIII-non-

heme FeBIII  [12].   

 

 
Table 2.3 – Ratios determined with the Mössbuer and EPR results. The values where achieved by using 
the attributed percentage, or the intensity of the g = 6.34 signal, for Mössbauer and EPR, respectively [12].  
. 

 
Mössbauer % 

total % (relative %) 
Ratio 

 Heme b3 –FeIII FeB
III Mössbauer EPR 

As isolated 25  (100) 17  (68) 1 1 

Ascorbate reduced 25  (100) 14  (56) 0.82 0.82 

Dithionite reduced 10  (40) 10  (40) 0.59 0.59 

     

 

 

The temperature dependence of the assumed g = 6 integer spin signal was 

characterized, as illustrated in figure 2.7, showing the decrease of its intensity with the 

rising temperatures. This result is in accordance with a ground state species for the 

assumed heme b3-FeIII-FeBIII.  
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Figure 2.7 – Temperature dependence EPR spectra at 9.653 GHz of the dithionite reduced Pseudomonas 
nautica NOR (265 μM in 100 mM KPB, pH 7, 0.02% DDM, 0.01% PE). Experimental conditions of 
spectra: microwave power = 6.3 mW, modulation frequency = 100 kHz, modulation amplitude = 0.4 mT, 
receiver gain = 2×105, conversion time = 81.92 ms and time constant = 40.96 ms. Spectrum A was 
collected at 5.5 K, B at 7.0 K, C at 12 K, and spectrum D at 22.5 K. 
 

 

The possibility of g = 6.34 to be due a ground state integer-spin can be further 

investigated under parallel mode. Preliminary spectra of the Ps. nautica NOR were 

recorded in parallel mode for the as-isolated and dithionate reduced sample. The change 

in the field orientation should bring evidence a more intense signal (up to 3×), but no 

relevant signal was detected in the low field region. Integer-spin systems exhibit powder 

sub-spectra with a high valued effected gz, (spectral feature at low field) and two other 

low-valued effective gxy values (usually at fields beyond detection).  So the presence of a 

signal increase at low-field under parallel mode EPR should be followed by weaker and 

broader gxy signals at slightly higher field in perpendicular mode [31]. Literature reports 

only a few binuclear iron center integer-spin systems, most of them composed by high-

spin non-heme irons [32, 33]. Notably some exceptions exist, namely with the g = 12 

resonance in CcO, attributed to a weak antiferromagnetic coupled ferric heme (S = 5/2) 

and a cupric ion (S =1/2), in which the parallel to perpendicular signal intensity ratio is 

much more smaller than the expected [30].  
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2.2.5. Three-Dimensional Structure Prediction 

 

Nowadays it is possible to predict the three-dimensional structure of a certain protein 

based on its primary sequence. The SWISS-MODEL platform is a magnificent tool for 

this propose, since it is a fully automated protein structure homology-modelling server 

[34]. In this workspace is possible to submit a primary protein sequence, and in return, 

the program offers a three-dimensional model, based in homologue resolved structures.  

Similar bioinformatic tools were used by others to predict the three-dimensional 

structure of the NorB subunit [2, 3]. Recently, Ps. aeuruginosa NOR crystal structure was 

solved and since the enzyme studied in this work shows a high homology with this one 

(62 % and 75 % for the NorC and NorB subunits, respectively), the predicted model 

obtained was based in this known structure [10].  

Concerning the structure, the purpose of this section is to highlight once more the 

similarity between the Ps. nautica NOR and the other members of the HCuO superfamily, 

and in particular with the members of the cNOR subclass. The models achieved for the 

NorB and NorC subunits are presented in figure 2.8.  

 

 
Figure 2.8 – Three-dimensional structure, predicted for the Pseudomonas nautica cNOR subunits. A, C and 
D show NorB subunit side, top and bottom view respectively. C shows NorC subunit. Models were 
achieved using SWISS-MODEL platform, and the obtained files treated with Pymol software.  
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The NorB molecular model generated is very similar to the ones previous predicted 

for this subunit in Pa. denitrificans and Ps. stutzeri [2, 3], showing an extremely hydrophobic 

subunit containing 12 transmembrane α-helixes, in accordance with the homologues 

from the CcO superfamily. The helixes surround the two heme b centers as well as the 

non-heme FeB [10] (as can be seen in figure 2.8 panel C and D). The NorC subunit seems 

to contain an N-terminal transmembrane α-helix, non-covalently bound to the NorB 

subunit, as revealed by the biochemical characterization, (figure 2.3) .  

Steady-state kinetics assays using Ps. nautica NOR and its physiological electron donor 

(cyt. c552), in the presence and abcence of specific fragment antibodies, point to the 

existence of a unique docking area for the cyt. c552 [35]. Several algorithms can be used in 

the future to predict docking implantations between a cNOR solved structure (or 

molecular models) with potential electron donors.  
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2.3. Concluding Remarks  

 

The results described in this chapter show that the Ps. nautica NOR can be purified 

from the bacterial membrane fraction using DDM-based buffers. The purification yield is 

low, approximately only 3 % of the total protein extracted from the membrane. The 

purification protocol was optimized, in order to achieve reproducible samples, containing 

equal amount of co-factors, and purity, but still this task is extremely time consuming. 

The maximal purity coefficient obtained in this work was 1.2 (Abs 411/Abs 280) and the 

correct proportionality of the iron co-factors was accomplished. 

The UV-visible results, demonstrate that the purified NOR exhibits the characteristic 

spectroscopic features of the reported cNORs [12, 21]. However, the lacking of a 595 nm 

charge transfer band in the enzyme spectra, and the appearance of a low-spin heme signal  

upon dithionite reduction to the previous ascorbate reduced sample, leads to believe that 

the catalytic heme iron is in a low-spin conformation [12]. This issue was solved using the  

Mössbauer spectroscopy results obtained by our research group [12], combined with the 

EPR results presented in this thesis. Together, they confirm irrefutably that the Ps. nautica 

NOR heme b3 is six-coordinated, for both ferric and ferrous states.  

The EPR data show for the first time preliminary results on a possible integer-spin 

species, rising from the antiferromagnetic coupled diiron catalytic center. A complete 

study of this binuclear iron center could be accomplished with low temperature EPR in 

both perpendicular and parallel mode, with temperature dependence, in order to pursuit 

the integer-spin signature as well as the possible presence of mixed valence species. These 

experiments can also give clues to the signals at g = 2.05 and 1.6, not yet assigned.  
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3. Pseudomonas nautica NOR: Electrochemical Characterization 

 

3.1.  Applied Methods and Objectives 

 

Over the last years, electrochemistry has proven to be both, a useful means to 

understand the biochemistry of metalloproteins and enzymes, and a powerful method for 

the exploration of these proteins in biosensors and bioelectronics. The principles 

underlining electrochemical methods are well established and knowledge of the 

structure/function of metalloproteins is increasingly available [1]. 

When using proteins in direct electrochemical experiments, the main goal is to replace 

the protein’s electron donor for an electrode, and therefore study the electroactive or 

electrocatalytic response, in case of an enzyme. Many strategies have been used to 

enhance the electronic transfer from and through the proteins and electrodes. Different 

methods can go from a simple classic bulk solution, in the presence or absence of 

chemical mediators, to more complex methods such as the immobilization of the 

biological material at the electrode surface. For this propose there are several approaches 

that can depend on the electrode material, surface, and the biological sample’s nature. 

Examples of typical techniques used to immobilize proteins can be mentioned, such as: 

protein bound to gold electrodes via a specific residue, typically a Cys; protein anchored 

via a His-tag or a biotin-avidin group; the protein immobilization in a lipid layer 

membrane; protein adsorbed on a Self Assembled Monolayer (SAM) of alkanothiol 

groups; or the entrapment of the biological material in a layer-by-layer system. Several 

changes to these techniques are reported constantly in order to achieve a better 

electrochemical response [1-4].  

Protein immobilization has demonstrated to be an effective methodology for studying 

high electron transfer rates, conferring advantages since it is simple, easy to prepare, 

economic, and in some cases, simplification of the theoretical analysis can be done, since 

without diffusion, Laviron’s approximation can be applied [4-11]. 

Cyclic voltammetry (CV) is an electrochemical technique, in which the potential is 

ramped linearly versus time. When the potential reaches a set maximal value, the potential 

ramp is inverted. This inversion potential can be multiple and set according to the studied 

system. The current is plotted against the applied voltage to give the voltammogram trace 

[12]. Cyclic voltammetry is a useful method to apply in electrochemical studies and has 
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been used to study metalloproteins and their active sites for the passed decades [11].  This 

technique became a routine tool for determining formal potential of redox centers and it 

is also a powerful method to study the catalytic activity of a specific enzyme [13, 14]  

The NOR was purified from Ps. nautica membranes extracts, biochemical and 

spectroscopically characterized, as described in the chapter 2. The major aim of this part 

of the studies is the investigation of the direct electrochemical response of this protein, in 

the presence and absence of substrate, in order to:  

 

i) discriminate between the four redox processes associated to the different metal 

co-factors;  

ii) study the electrocatalytic response of the enzyme towards NO and O2;  

iii) quantify the number of electrons involved in the two catalytic processes.  
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3.2.  The NOR Redox Potentials Overview  

 

The Pa. denitrificans NOR formal redox potentials were reported by Grönberg and co-

workers, and their results show a large positive potential for the heme c, heme b and the 

non-heme FeB (310, 345 and 320 mV vs NHE, pH 7.6, respectively), and a much lower 

redox potential for the heme b3 (60 mV vs NHE, pH 7.6). The large difference of the 

redox potentials, between the heme b3 and the other centers was explained as a benefit for 

the rapid electron transfer from the physiological electron donor towards the active site 

and as a thermodynamic barrier to the complete reduction of the binuclear Fe center [15]. 

A reprisal of this values was performed recently confirming the previous reported, 

suggesting that the heme b3 and the non-heme FeB are isopotetntial [16].  

Ps. nautica NOR visible oxidation/reduction titration points toward a heme c and heme 

b redox potential in the same magnitude, separated from the heme b3 by approximately 

200 mV, confirming the values previously reported: + 232 mV (vs NHE, pH 7.0) for the 

heme c and b and -16 mV (vs NHE, pH 7.0) for the catalytic heme b3 [15, 17]. Direct 

electrochemistry was used to study the Ps. nautica NOR, the results show the presence of a 

redox process, highly scan rate dependent. This process presented a midpoint redox 

potential of -126 mV (vs NHE, pH 7.6) and was indexed to the catalytic diiron center, 

probably to the, until then, assumed high-spin heme b3 [6].  

 

   

3.3.  The Ps. nautica NOR: Direct Electron Transfer 

 

The Ps. nautica NOR electrochemical response was accomplished in this work, by 

adsorbing the enzyme to a pyrolytic graphite electrode. CV was used in order to 

investigate this enzyme redox processes on a graphite modified electrode.  

The enzyme was immobilized to the electrode surface using the cast away technique 

(experimental details). The electrode was immersed in a mixed buffer solution, chosen in 

agreement with previous experiments conducted in our research group [6]. The buffer 

ionic strength (20 mM) revealed to be appropriated to conduct all the experiments, since 

it is a mixed buffer, designed to a wide pH range. Also the system presented good 
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conductivity not showing ohmic drop issues and the buffer concentration is high enough 

to eliminate mass transfer due to migration.  

During these studies, different preparations were made. The achieved results were 

consistent, revealing the reproducibility of the studied system. It should be mentioned 

that the Ps. nautica NOR film at the electrode was stable, since it was possible to work in 

some cases, during 10 hours, performing more than 150 cyclic voltammograms and in the 

end, the electrochemical response obtained was comparable. The stability of the enzyme 

film can be due to the presence of detergent in the protein buffer, added to avoid protein 

loss of structure, as reported before [6].  

In the obtained results it is possible to distinguish four redox processes (figure 3.1). 

Two of them were observed at positive potential values, between 0 and 300 mV (vs. 

NHE), and they were attributed to the electron transfer heme centers, the hemes c and b 

(processes III and IV, section 3.3.1.). The remaining processes (I and II), are present at 

low potential values, between 0 and -400 mV (vs. NHE), and they are most likely rising 

from the catalytic center heme b3 and FeB (section 3.3.3.). 

Different scan rates were used to study the Ps. nautica NOR modified electrode (from 

5 to 5000 mVs-1), since different processes can only be observed at high scan rate 

(process I and II) and others processes (III and IV) are better observed at low scan rates 

(not higher than 500 mVs-1). 

The potential range used was chosen according to the experiments. Although this 

potential window was not increased further in the negative potential range, since at 

extreme negative potentials, H2 is formed due to solvent reduction. The potential was not 

gone further than 600 mV (vs. NHE), due to the possible formation of oxide species in 

the graphite surface.  

Figure 3.1 shows a set of cyclic voltammograms obtained with the immobilized Ps. 

nautica NOR. The presented insets show a detailed view of the anodic and cathodic waves 

(figure 3.1, panel B and C, respectively). The overlap of these voltammetric curves is 

intended to show the different dependence of each signal with the scan rate. To 

determine the peak redox potential for each one of the processes, every acquired 

voltammogram was analysed independently and with the correspondent control 

experiment, performed in the same electrolyte solution, at the same scan rate, without the 

immobilized enzyme, or in some cases, in the presence of equal amount (in volume) of 
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the enzyme’s buffer (since this buffer contains a surfactant, used to avoid the protein’s 

precipitation). 

 

 
 

Figure 3.1 – Plot of the Pseudomonas nautica NOR cyclic voltammograms at different scan rates. Arrows 
point the region where the processes I to IV are developed in the anodic and cathodic waves (panel A). 
Panel B and C show an detailed view of the anodic and cathodic waves, respectively. The current 
intensities for the voltammograms performed with scan rates larger than 5 mVs-1 were corrected with 
convenient correction factors, in order to make comparison easier. The voltammograms were obtained as 
described in experimental details and the electrolyte solution was a 20 mM mixture buffer equilibrated at 
pH 7.63. 
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When overlapping the voltammograms performed at different scan rates, process I is 

not distinguished. Moreover, several voltammograms will be shown in detail to elucidate 

the four redox processes. 

As studied before [6], process II shows a high scan rate dependence, increasing the 

current intensity with the scan rate increase. The same was observed for process I and an 

opposite effect in processes III and IV that became more evident when using scan rates 

not higher than 500 mVs-1. From this observation, qualitative information can be 

extracted. Since process I and II are more evident when using high scan rates, it is most 

likely that they present higher heterogeneous rate constants (ks) when compared with 

processes III and IV.  

Figure 3.2 shown one of the voltammograms obtained with the immobilized Ps. 

nautica NOR, performed at 500 mVs-1, with the correspondent control experiment, 

achieved with the same electrode, without the immobilized protein (panel A). This 

voltammogram were chosen from a typical set of experimental results obtained (for more 

examples check supporting information S.9.1), with the aim to elucidate the result analysis 

performed for the different scan rates studied (and pH values, section 3.4). A cautious 

analysis of the ΔEp (values presented in support information S.9.2) lead to believe that 

the process is reversible.  

  Observing these two voltammograms, the first process to be identified was the 

process II, due to the previously mentioned high scan rate dependence [6]. A closer 

observation of the negative potential region suggests the presence of a redox couple 

(process I), being this confirmed when a subtraction is performed between the referred 

voltammograms (panel B). Analogously, a careful observation of the positive potential 

region of the figure 3.2 (panel A), proposes the presence of the mentioned redox couples 

III and IV, and the subtraction (panel B) clearly shows them.  
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Figure 3.2 – Cyclic voltammogram of the immobilized Pseudomonas nautica NOR. Panel A shows the cyclic 
voltammogram at 500 mV.s-1 (black line) and the correspondent control experiment (without protein, 
dashed line). Panel B shows the previous voltammograms subtraction (black line minus dashed line). The 
arrows point towards the anodic and cathodic peaks for the identified redox processes. Experiments were 
conducted in 20 mM mixture buffer (experimental details) pH 7.15. 
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 To the redox processes I to IV it was attributed a one electron transfer process, 

suggested by the peak width at half height (experimental results presented in supporting 

information S.9.2). According to the equation 3.1, and assuming a reversible process, it is 

possible to estimate the number of electrons involved in each one of the identified redox 

couples.  

 

nF
RTEP 53.32/1, =Δ                                             (eq. 3.1) 

 

 In this equation the terms R, T and F stand for the ideal gas constant (8.31 J mol-1K-1), 

temperature (K), and the Faraday constant (96485 C mol-1), respectively, and n the 

number of electrons involved in the redox process. The achieved values for Epw.1/2 are 

resumed in supporting information S.9.2, as well as the number of electrons estimated for 

each redox process. In the present work the temperature was 20 ºC.  

Surface coverage (Γ) for each trial can be estimated using the process II, applying the 

following equation: 

nFA
Q

=Γ                          (eq. 3.2) 

 

where Q is the charge involved in the reaction process, n the number of electrons 

transferred, F the Faraday constant and A the electrode area  [6, 12]. In this case Γ can be 

used to normalize kinetic experiment results (chapter 4) since it determines the number of 

active enzyme molecules at the electrode surface, and can also be used to identify the 

presence of a protein multilayer layer at the electrode surface. Considering n = 1 and the 

electrode geometric area  (0.126 cm2), the average value attained was 1.72 ± 0.77 × 10 -11 

mol.cm-2 was and the maximum value attained was 2.37 ± 0.27 × 10 -11 mol.cm-2, from all 

the executed preparations. However it will be impossible to evaluate the presence of a 

multilayer, since only the X-ray structure of the Ps. aeruginosa NOR is available, as well as 

molecular models for other homologue proteins [18-20], like the one presented for the Ps. 

nautica NOR in the previous chapter. Using the information from the molecular models 

can lead to a wrong estimative for the presence of a multilayer at the electrode surface.  
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It is possible to assume the physical adsorption of the protein to the electrode surface, 

because:  

i) The voltammograms made without protein (control experiments) are clearly 

different from the obtained with the immobilized protein (figure 3.2, panel A). 

ii) All the redox processes present a small and constant separation between their 

potential peaks (ΔEp) with the scan rate variation.  

iii) The current intensity increases with the scan rate, and the ratio between the 

intensity of the cathodic and anodic peaks is close to one.  

 

These characteristics are common for a surface confined process [6, 7, 21]. Usually, 

for a reversible process the ΔEp should be zero, however for quasi-reversible processes 

the ΔEp is different from zero. The midpoint redox potentials for each process were 

determined by the average of the cathodic and anodic peak potentials ((Epc + Epa) / 2). 

[12]. 

The results obtained for the four redox processes will be further shown within this 

chapter.  
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3.3.1. The Electron Transfer Heme b and Heme c 

 

The processes III and IV, observed at higher redox potentials, were attributed to the 

electron transfer hemes, the low-spin heme b and heme c. These processes are more well 

defined when using scan rates not higher than 500 mVs-1.  

The identification of the redox processes within the window of potential used can be 

very difficult, because there is the possibility of oxide species formation at the graphite 

electrode surface, leading to misinterpretation of the voltammograms. The analysis of the 

results required the use of control experiments, file subtractions for the multiple scan rate 

voltammetric waves obtained. A difference between voltammograms is presented in 

figure 3.3 (panel D) and the processes highlighted by arrows. 

The spectroscopic studies done here (chapter 2) demonstrated that electron transfer 

hemes b and c are totally reduced in the presence of sodium ascorbate, suggesting a 

midpoint redox potential higher than 0 mV (vs. NHE) [16, 17, 22]. The processes 

exhibited 43 and 208 mV (vs. NHE) at pH 7.63 for III and IV, respectively. Process IV is 

indexed to the low-spin heme c unequivocally. It corresponds to the higher redox 

potential, since it is believed that NorC subunit interacts directly with the NOR’s 

physiological electron donor, the cyt. c552 and therefore it may be the co-factor responsible 

for the electrons entrance [23], and consequent transference to the next electron transfer 

co-factor (heme b). Additionally, electrochemical experiments performed with the 

recombinant NorC subunit (rNorC, described in section 3.3.2), show a redox potential in 

the same range  

The remaining process III is attributed to the heme b. It presents a lower midpoint 

redox potential, when compared with the heme c, favourable for the electron transfer 

between the two centers, a common feature in intramolecular redox processes already 

proposed for the NORs and other proteins such as the bacterial cytochrome c peroxidase 

[15, 24, 25].  

.  
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Figure 3.3 – Low–spin electron transfer heme redox processes. Panel A shows the low scan rate cyclic 
voltammogram (20 mV.s-1) of the immobilized Pseudomonas nautica NOR on a graphite electrode (black 
line) and control experiment (without protein, dashed line), panel D shows the previous voltammograms 
subtraction (black line minus dashed line), the arrows point the anodic and cathodic peaks for identified 
redox processes. Panel B and C present the plot of the peak current vs. scan rate for processes III and IV 
respectively. For an adsorbed process with no mass transfer limitations, the current intensity (I) is given by 
the expression: I = n2F2νAΓ/4RT. Experiments were conducted in 20 mM mixture buffer (experimental 
details) pH 7.63.  

D 
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The low-spin heme b and heme c redox potentials are lower than the previously 

described by visible titration [15, 17]. This fact can be due to protein immobilization, 

besides there are studies that show that the immobilization on a surface can lower the 

midpoint redox potential value of the proteins metallic centers [26, 27].  

Using the Laviron’s formulation (supporting information S.4) [8] it is possible to 

determine the ks for both redox centers. The values obtained for the heme c and heme b 

are similar, 47 and 46 s-1 respectively. This is in agreement with other electron transfer 

rates determined for heme proteins [28].   

Figure 3.3, panel B and C show the current peak intensity on scan rate dependence for 

both cathodic and anodic peaks. As it is shown, they increase proportionally and their 

ratio is close to one. Together with the previous mention facts (small peak potential 

separation and different line shapes for the assayed voltammograms and control 

experiments), it is assumed the Ps. nautica NOR immobilization.  

 

.  
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3.3.2. The Recombinant NorC Subunit  

 

To confirm the high redox potential attributed to the heme c co-factor, the direct 

electrochemical response of the purified recombinant NorC subunit (rNorC) was 

investigated.  

The open reading frame (ORF) containing the NorC coding sequence was cloned as it 

is described in supporting information S.3. Heterologous overexpression, purification, 

biochemical and spectroscopic characterization were done in our research group [29]. In 

summary, the sample was purified from E. coli extracts using specific fragment antibodies 

[23]. The use of biochemical and spectroscopic techniques, revealed that the purified 

sample contained a heme:protein ratio of 1.3, achieved by the pyridine-hemocromogen 

method. UV-visible and EPR data pointed heme c characteristic features in the isolated 

sample [29, 30] .  

The antibody-rNorC complex was immobilized in the pyrolytic graphite electrode, 

and cyclic voltammetry was used to investigate its direct electron transference. 

Analogously to the previous described for the native Ps. nautica NOR assays, control 

experiments were done in parallel without the adsorbed rNorC, but in the presence, (or 

without) of the protein’s buffer. The buffer used was a 100 mM KPB pH 7, 0.02 % (w/v) 

DDM, 0.01 % (v/v) PE,  equal to the one present in the native NOR, because the rNorC 

sample was buffer exchange to this same buffer (experimental details).  

Scan rate dependence was performed using the rNorC modified electrode, and the 

assays were done, as described previously for the experiments performed with the native 

NOR enzyme.  

One of the many performed cyclic voltammograms obtained with the antibody-rNorC 

complex immobilized on the electrode surface is presented in figure 3.4 (additional 

voltammograms and subtraction are present in supporting information S.9.3), as well as a 

linear baseline correction and a voltammogram subtraction. As it can be seen, the 

voltammogram trace for the control experiment is different from the assayed, indicating 

the physical adsorption of the protein.  
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Figure 3.4 – Cyclic voltammogram of the immobilized recombinant Pseudomonas nautica rNorC subunit. 
Panel A and B show the cyclic voltammogram (10 mV.s-1) and a linear corrected voltammogram (black 
lines) respectively, with the correspondent control experiment (without protein, dashed line). Panel C 
shows the difference voltammograms present in the panel A (black line minus dashed line). Experiments 
were conducted in 20 mM mixture buffer (experimental details) pH 7.63. 

 

 

The identification of the cathodic and anodic peaks was extremely difficult, not only 

they have a low current intensity, due to the low concentration of the sample, but also 

they can be misunderstood by the oxide species formation at the electrodes surface, at 

high potential.   

The analysis of the achieved voltammograms performed at different scan rates was 

done independently, in order to determine the midpoint redox potential, of the observed 

redox process (figure 3.4), which gave a value of 298 ± 19 mV.  

The recombinant subunit presents a slightly higher redox potential when compared to 

the previously assigned process IV (208 mV, vs. NHE). It should be noted that the rNorC 
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protein used forms a complex with the specific antibody, from which there is no 

information on the epitopes coordinates, nor on the surface interface in contact with the 

electrode. The unique information available is the high dissociation constant between this 

two proteins, and that the physiological electron donor is unable to interact with the 

native enzyme when the antibody is bound (VHH 03) [23]. The presence of the specific 

antibody fragment and the absence of the NorB subunit could lead to a higher midpoint 

redox potential, for the heme c in the rNorC. 

An increase in the heme redox potential can be due to other reasons. Literature 

suggests higher midpoint redox potential for heme proteins that are totally fold and that 

confine the heme cavity to a smaller solvent exposure [31]. It is unwise to say that the 

rNorC presents a smaller heme c exposure to the solvent, when dissociated from the 

NorB subunit and connected to the antibody. However, one should mention, the 

difference detected between the heme c midpoint redox potential determined in the wild-

type NOR and in the rNorC subunit, which is probably due to structural changes in the 

three-dimensional structure, near the heme center.  

The ks was not determined for the antibody–rNorC complex, since the peaks were 

poorly defined which could lead to a wrong estimated value, and also because the value 

would not be comparable to the one obtained using the heterodimeric NOR.   
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3.3.3. The Diiron Catalytic Center  

 

The remaining redox potentials (process I and II, figure 3.5) are attributable to the 

catalytic binuclear center. So far, the midpoint redox potential for the catalytic heme co-

factor has been suggested to be lower than the non-heme FeB (proposed to be close to 

the value determined for the other co-factors, heme b and c) [15]. Spectroscopic titrations 

point to a midpoint redox potential for the heme b3 of + 60 mV (vs. NHE) in the Pa. 

denitrificans NOR [15] and -38 mV (vs. NHE) in the Ps. nautica NOR [17]. More recently it 

was proposed that when the bridge between the two irons is cleaved and substrate 

connects to the low-spin heme b3, this value reaches the same magnitude of the electron 

transfer heme b [16]. However it should be noted that most of the reported experiments 

were done with spectroscopic techniques using the ligand-to-metal charge transfer band 

at 595 nm, associated with the high-spin ferric heme b3 without the proximal His ligand 

[15, 16, 32]. The studies performed in the Ps. nautica NOR by our group prove 

unequivocally that heme b3 is a low-spin and that the active site reduction is only possible 

in the presence of a strong reducing agent [17]. The direct electrochemical response of 

this enzyme was studied by cyclic voltammetry in the same research group, where it was 

characterized a well-defined redox couple with a midpoint redox potential of -126 mV (vs. 

NHE) and highly scan rate dependent [6]. 

The experiments done here show a low redox potential value for the catalytic 

binuclear center (figure 3.5, A). The process II was indexed to the low-spin heme b3 

center since a similar value of -162  ± 19 mV (vs. NHE) was determined [6]. The present 

results point to a non-heme FeB midpoint redox potential (process I) more negative than 

the determined for the heme b3.  

The lower midpoint redox potential achieved was -369 ± 14 mV (vs. NHE) and was 

indexed to the non-heme FeB (process I, figure 3.5). Until the publication of this thesis, 

only UV-visible titrations were able to determine this co-factor redox potential, and the 

value was similar to the electron transfer heme centers [15]. This work is the first evidence 

of a redox process occurring within the negative potential range, beyond the catalytic 

heme b3 midpoint redox potential. A lower redox potential for the catalytic diiron center 

is also suggested by biochemical and spectroscopic studies in the Ps. nautica NOR. This 

enzyme active form is the four electron reduced form, and Mössbauer spectroscopy 
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confirms that the catalytic center is not reduced in the presence of ascorbate, like the 

electron transfer hemes. Its reduction is only obtained with the use of a strong reducing 

agent (such as sodium dithionite, -0.66 mV at pH 7.0 [33]), suggesting a lower redox 

potential for the heme b3 and the FeB, since this reducing agent is only able to reduce 60% 

of the catalytic binuclear site [17].  

Here, the Ps. nautica NOR shows a difference of approximately 300 mV between the 

low-spin heme c and the heme b3 co-factors midpoint redox potentials. This is in 

agreement with other works which reported cNORs redox potential intervals of 200-300 

mV [15, 17]. Another common feature of the cNORs is the high heme c potential, 

coupled to the acceptance of electrons to the enzyme from the physiological electron 

donor, and its intramolecular transfer to the centers with lower redox potential. 

Interestingly, the value of the catalytic heme b3 redox potential varies between -162 

mV (found here with electrochemical analysis, and -126 mV ref. [6]) and -38 or + 60 mV 

done by visible titrations [15, 17]. This could be due to the different techniques applied, 

since the enzyme immobilization on a surface can lower the midpoint redox potential 

value of the proteins metallic centers [26, 27],  and/or to the experimental conditions, 

such as pH and ionic strength which varied between the different works. 

 In addition, spectroelectrochemistry applied to a rational designed myoglobin, that 

contained a NOR catalytic center, show that the heme b3 redox potential is of the same 

magnitude of the reported, but highly dependent on the metal that is in the other position 

of the catalytic center (the FeB site) [34, 35].  

The low midpoint redox potential of the heme b3, was suggested to be a 

thermodynamic barrier to the complete catalytic center reduction [15]. The results here 

presented seem to indicate that the non-heme FeB is the responsible for this barrier, since 

is the redox center with the lowest potential.   
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Figure 3.5 – The Pseudomonas nautica NOR binuclear active site redox processes. Panel A shows the cyclic 
voltammogram (200 mV.s-1) of the immobilized Pseudomonas nautica NOR on a graphite electrode (black 
line) and the correspondent control experiment (without protein, dash line). The arrows point to the 
anodic and cathodic peaks for the mentioned redox processes.  Panel B and C present the plot of peak 
current vs. scan rate for processes I and II respectively. For an adsorbed process with no mass transfer 
limitations, the current intensity (I) is given by the expression: I = n2F2νAΓ/4RT. Experiments were done 
in 20 mM mixture buffer (experimental details) pH 7.63. 
 

For both redox processes (I and II), the anodic and cathodic intensity current vs. scan 

rate plot show a straight relationship with their ratio is close to one (figure 3.5, panels B 

and C). A low difference between the cathodic and anodic peaks is observed (ΔEp). This 

value is kept constant with the scan rate variation. For the reference process II the ΔEp 

observed is never higher than 89 mV (see supporting information S.9.2). This strongly 

suggests the physical adsorption of the enzyme to the electrode surface. 

A ks was calculated, and the achieved values for the non-heme FeB (73 s-1) and for the 

low–spin heme b3 (129 s-1) are larger than the obtained for the previous co-factors. This 

had been predicted, since these two redox couples are highly scan rate dependent.  
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3.3.4. Remarks in the Ps. nautica NOR Direct Electron Transfer  

 

For the first time, the midpoint redox potential of the four iron centers present in the 

Ps. nautica NOR enzyme were determined, using direct electrochemical experiments (table 

3.1). The results show a surface confined process with the physical adsorption of the 

protein to the electrode surface. 

The ks values determined according Laviron’s formulation (for the case of ΔEp < 200 

mV and assumig α = 0.5), agree with the observation made before in the text (section 3.3, 

figure 3.1), when it was analysed the variation of the current intensity of each redox 

process with the scan rate (table 3.1). Comparison of the values suggests a favourable 

electron pathway from the catalytic center towards the electrode rather than for the 

electron transfer hemes (heme b and c). Since graphite is charged negatively, the protein 

molecules probably will be oriented with a region positively charged.  

 
Table 3.1 – The Pseudomonas nautica NOR midpoint redox potentials. The table shows the midpoint redox 
potentials and ks of the NOR iron centers, and the antibody-rNorC complex. 
 

Iron center E/ mV (vs. NHE) ks / s-1 

 at pH 7.6, 5 Vs-1 used for ks determination) 

Heme c 208 ± 12 47 

Heme b 43 ± 12 46 

Heme b3 -162 ± 19 129 

FeB -369 ± 14 73 

rNorC 298 ± 19 - 

 

By using bioinformatics tools and the Ps. aeruginosa crystal structure (PDB 30OR) or 

the models presented in the previous chapter for the Ps. nautica NOR subunits, it would 

be possible to elaborate charge surface models that can help to elucidate the orientation 

of the molecule towards the electrode. However the Ps. aeruginosa NOR has aproximantly 

70 % of homology with the studied enzyme and the structure was obtained with fragment 

antibodies, which are present in the structure. The models for the Ps. nautica NOR were 

determined separately (NorB and NorC) and the information of the co-factors position 

could only be made by the conserved coordinating ligands. Gathering all this information 
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and not forgetting that the enzyme is solubilized by detergent (DDM), charge surface 

diagrams were made using the mentioned structure and models, but no specific region 

could be unequivocally pointed  as region of adsorption to the electrode.  

The electron transfer centers, heme c and heme b, exhibited the higher midpoint redox 

potential values. The attained, results, well as the slightly lower value for the heme b, are 

in agreement with the electron transfer namely from heme c to heme b. The achieved 

values are also in agreement with the published results determined, using UV visible 

methods [17].  

The catalytic binuclear center presents a heme b3 redox potential similar to the 

predicted value, reported by others, using direct electrochemical and spectroscopic 

methods. [6, 15, 17]. Contrarily to the generally accepted, the non-heme FeB has a more 

negative midpoint redox potential than the catalytic heme b3. This result is in agreement 

with the Mössbauer data obtained by our research group, that determined a negative 

redox potential for the diiron center, instead of a non-heme FeB redox potential close to 

the value determined for the electron transfer hemes [17]. This result seems to show that 

for this particular enzyme, which was studied, the non-heme FeB presents the lower redox 

potential from all the iron co-factors of the enzyme.  

Mossbauer data indicates the presence of a small fraction of reduced non-heme FeB, 

in the as purified sample. This seams wired, since the iron center presents such negative 

midpoint redoox potential. However this can be due to a small fraction of uncoupling in 

the binuclear center [35, 36] or by the presence/absence of ligands stabilizing the first 

coordination sphere of the non-heme FeB [19, 37]. 

The possible presence of Ca2+ ion in the vicinity of the low-spin heme b centers can 

not be proved by the obtained results. As discussed previously, the Ps. nautica NOR 

presents a substoichiometric value for this element and the electrochemical experiments 

done could not give insights to its presence, since Ca has a strong reducing power, and it 

is no possible to input its reduction.  
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3.4.  Midpoint Redox Potential Titration of the Ps. nautica NOR 

 

The pH can change the strength of interaction between the protein metallic centres 

and the surrounding residues, enhancing electrochemical perturbations, due to 

protonation and deprotonation. With the resolved Ps. aeruginosa NOR crystallographic 

structure, the proposed models for the Ps. stutzeri, Pa denitrificans NOR [19, 20, 38], and 

the model presented in chapter 2 (section 2.2.5), it is possible to predict small 

conformational changes in the enzyme structure, specially in the neighbourhood of each 

metal center.  

In order to study the midpoint redox potential on a pH scale (2.5 < pH < 9.7), the Ps. 

nautica NOR modified pyrolytic graphite electrode was used in different pH buffered 

solutions (supporting information S.9.4). For each pH trial, the scan rate was varied 

(between 5 and 1000 mVs-1) in order to pursuit the four midpoint redox potentials, 

indexed to the four iron centers. Once more, the obtained results show a high 

reproducibility, since the immobilized enzyme maintained similar electrochemical 

response after intense electrochemical measurements and after extreme pH conditions. 

 The results obtained show the midpoint redox potentials, for the Ps. nautica NOR, on 

a pH scale (figure 3.6). The experimental data were simulated using the Nernst equation 

(eq. 3.3) [39] accordingly, and the best fit describing the data is presented in figure 3.6.  
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To each of the redox co-factors under study, the pKox and pKred values were determined 

(table 3.2). Previously, two pK values were accounted for the catalytic heme b3 redox 

process [6]. Equivalent values were achieved in this work, with an additional pK due to 

the existence of more experimental data.  

The acidic pKs determined for the heme groups (4.11/5.12, 3.88/5.16, and 3.55/3.94, 

check table 3.2) can be attributed to the propionic acid side chain ionization. These side 

chains normally show a pKox value near 6.2. Nevertheless, the variation in the heme 

propionate pKa value has not been adequately explained on a structural level but is 



Chapter 3 
______________________________________________________________________ 

 
________________________________________________________________________________________________________ 90

strongly affected by electrostatic interactions. When these side chains are exposed to the 

solvent, they tend to decrease the pK, but if they are buried inside the protein the 

opposite effect is observed, depending on the proximity to the protein surface, to other 

charges or groups. Addicionaly, the pKa of a propionic acid side chain can be lowered 

when a favourable hydrogen bounding network is present [19, 39-42].  

In the NorB subunit, there are two Arg residues (Arg 50 and 433 in Ps. nautica 

numbering figure 1.9 chapter 1), conserved in several NORs, that are pointed to stabilize 

the aliphatic side chains of the low-spin b-type hemes [20, 38]. In this same subunit, His 

332 and Asn 328 are also conserved and, like in the Ps. stutzeri NOR model  they could 

accomplish the H-bond for the propionate side chain of heme b3 [20].  The NOR 

structure from Ps. aeruginosa shows a strong H-bond network for the heme propionates of 

heme b and b3, but no relevance for the conserved Arg is made [19]. In its place it is 

shown the presence of a Ca atom, stabilizing the proprionic side chains. Ca atoms and/or 

conserved polar aminoacid residues near the heme propionate side chains are common in 

members of the CcO family and some of them are essential for activity [17, 43, 44] (and 

references therein). 

The Ps. aeruginosa NorC subunit crystal structure points to the presence of a conserved 

Arg residue in the heme c cavity, lying close to the propionic side chains. Curiously, this 

residue is conserved among NorC sequences and is contiguous to the Met axial ligand of 

the metal co-factor (see figure 1.10, Chapter 1). Based on what it already known from the 

literature and the similarities between the Ps. nautica NOR and the other c-type NORs, it is 

most likely that all the heme co-factors present in the Ps. nautica enzyme are stabilized by a 

H-bound network surrounding the propionic side chains and therefore, their pKs are 

more acidic than the predicted value of 6.2. However, several experiments should be 

conducted in order to determine the importance of these polar residues in both NOR 

subunits.  

The remaining pKs can be attributed to different aminoacids from the co-factors 

neighbourhood. Namely His that have a pK range of 5.9 – 7.0 because there is at least one 

coordinating each metal center, or a Glu residue, since this polar aminoacid was proved to 

have a pK range from 8.5 to 8.8 when buried inside protein cores [6, 45].  
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Figure 3.6 – pH dependence of the 
midpoint redox potential for the 
Pseudomonas nautica redox co-factors. 
Heme c,  heme b,  heme b3 and  non-
heme FeB. Experimental data were fitted 
using the Nernst equation.  
Experiments were done in 20 mM mixture 
buffer (experimental details, section 3.7) at 
different pH values. 

 pKox pKred 

Heme c 
4.11 ± 0.1 

7.23 ± 0.07 

5.12 ± 0.05 

8.24 ± 0.07 

Heme b 
3.88 ± 0.04 

7.12 ± 0.05 

5.16 ± 0.05 

8.39 ± 0.05 

Heme b3

3.45 ± 0.10 

5.27 ± 0.08 

7.94 ± 0.11 

3.94 ± 0.13 

6.30 ± 0.08 

9.07 ± 0.12 

FeB 
4.70 ± 0.02 

8.64 ± 0.03 

5.37 ± 0.02 

9.36 ± 0.06 

 

Table 3.2 - pKox and pKred of the Pseudomonas 
nautica NOR iron centers.  
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3.5.  Catalytic Activity Towards Nitric Oxide and Oxygen  

 

In this section, the Ps. nautica NOR activity towards NO and O2 was investigated to 

observe the different electrochemical features. 

Different NORs present catalytic activity towards NO and O2, with distinct constant 

rates [46-51]. Further discussion on the kinetic features for the NO and O2 reduction, and 

the assumed mechanism for its reduction, is present in the next chapter, where dynamic 

voltammetry was applied to characterize the immobilized Ps. nautica NOR. 

In this section it is only presented the electrochemical proof for the NO and O2 

reduction by the enzyme in study, as well as the quantification of the number of electrons 

involved in both reduction processes. For these last electrochemical experiments is 

imperative to use a rotative disk electrode (RDE). This is one of the few convective 

electrode systems for which the hydrodynamic equations and the convective-diffusion 

equation have been solved rigorously for the steady-state. The electrode construction is 

quite simple, consisting in a disk of the electrode material imbedded in a rod of an 

insulating material, connected to a motor able to input a rotation at a certain frequency (f) 

(ω = 2πf). The advantage of a hydrodynamic method is that a steady-state is attained 

rather fast, and measurements can be made with high precision. The simplest treatments 

of convective systems are based on a diffusion layer approach. In this model, it is 

assumed that the convective flow maintains the concentration of all species uniform, 

therefore the concentration of a certain specie at the electrode surface is equal to the bulk 

solution [12].  

The electrocatalytic response of the Ps. nautica NOR was studied elsewhere [6, 52] 

using a stationary pyrolytic graphite electrode. In this work both electrodes where used, 

the stationary and the rotative graphite electrodes, in order to confirm the obtained 

results.  

The use of a RDE required the optimization of the experimental conditions, 

performing dependence in parameters such as the scan rate, angular speed, protein 

amount and substrate concentration. The results shown in the following sections (ν  = 50 

mVs-1, ω = 5000 RPM and [O2] = 56 µM or [NO] = 20 µM) are used to elucidate the 

catalytic feature of the immobilized NOR towards both substrates, and they were chosen 
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from the set of experiments conducted to optimize the assays done for determine the 

number of electrons involved in both substrates reduction (section 3.5.1).  

 

Oxygen Reduction  

 

The Ps. nautica NOR oxidoreductase activity was assayed using the protein 

immobilized on a graphite electrode. The enzyme was adsorbed to the graphite RDE, and 

to a stationary pyrolytic graphite electrode, and the surface coverage was characterized by 

fast scan rate CV. The O2 reduction by both modified electrodes is shown in figure 3.7, 

with the correspondent control experiments. 

 

 
 
Figure 3.7 – Oxygen reduction using the Pseudomonas nautica NOR modified electrodes. Panels A and B 
show the obtained results using stationary graphite electrode or a rotative disk graphite electrode, 
respectively. Black and red line describe the electrochemical response of the NOR modified graphite 
electrodes, in the absence and presence of O2, respectively. The green line describes the control 
experiment (without protein) in the presence of O2. Electrolyte solution was a 20 mM mixture buffer 
(experimental details, section 3.7) pH 7.6, ν = 50 mV.s-1, (ω = 5000 RPM, RDE), [O2] = 56 µM. 

 

 

When O2 is added to the bulk solution, the shape of the voltammograms is modified. 

A reduction peak starts to develop near – 74 mV (vs. NHE) when the enzyme is adsorbed 

to the stationary electrode (figure 3.7, panel A, red trace), and when this is absent, the 

reduction peak is shifted to a lower potential (figure 3.7, panel A, green trace). The 

potential change with the presence of the protein demonstrates the catalytic reduction of 

O2 by the Ps. nautica NOR. This process was already reported and proved to be dependent 

upon O2 concentration [6, 52]. The switch for a dynamic regime (figure 3.7, panel B) 
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alters slightly the voltammogram shape. Instead of a cathodic peak, a limit current is 

detected beginning at a similar potential value (-66 mV, vs. NHE). The shift to higher 

redox potential values of this catalytic current upon NOR presence demonstrates O2 

reduction by the enzyme (figure 3.7, panel B, red and green trace). The developing of a 

limit current instead of a peak is due a dynamic system, since with this type of electrode, 

the concentration of the reduced specie in solution is maintained constant at the electrode 

surface.  

 

Nitric Oxide Reduction 

 

Similar to the previously described, the same modified electrodes were used to 

investigate the NO reduction. Figure 3.8 shows the corresponding results, as well as the 

control experiments. 

 

 
 
Figure 3.8 –Nitric oxide reduction using the Pseudomonas nautica NOR modified electrodes. Panels A and 
B show the obtained results using stationary graphite electrode or a rotative disk graphite electrode, 
respectively. Black and red line describe the electrochemical response of the NOR modified graphite 
electrodes, in the absence and presence of NO, respectively. The green line describes the control 
experiment (without protein) in the presence of NO. Electrolyte solution was a 20 mM mixture buffer 
(experimental details, section 3.7) pH 7.6, ν = 50 mV.s-1, (ω = 5000 RPM, RDE), [NO] = 20 µM. 
 

 

The results obtained are similar to the ones achieved for the O2 reduction (the 

behaviour of the cathodic waves). When NO is introduced into the system with the NOR 

modified stationary electrode, a catalytic peak is present, starting to develop at -518 ± 20 

mV (figure 3.8 panel A, red line). Equally, in the dynamic system and when using the 

equivalent rotative electrode, a limit current starts to be observed at -469 ± 23 mV (figure 

3.8, panel B, red line). The inexistence of enzyme adsorbed to the electrodes brings a 
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catalytic peak or a limit current development at more negative redox potentials for the 

stationary and rotative systems, respectively (figure 3.8, green line, panel A and B). The 

potential shift in the presence of Ps. nautica NOR, supports its participation in the NO 

reduction [6, 52] (more voltammograms can be seen in supporting information S.9.5). 

The limit current developed for the NO reduction is not so pronounced as the curve 

obtained for the NOR oxidoreductase activity (figure 3.7). Since limit current is 

proportional to the angular speed and to the concentration of the electroactive species 

(Levich equation, eq. 3.4), this observation may be due to: i) a lower substrate 

concentration (20 µM for NO and 56 µM for O2); ii) a higher NO diffusion in the protein 

hydrophobic core and/or adsorbed film, due to the proposed channels for NO diffusion 

in the protein structure [19]; and iii) the enzyme’s high turnover for the natural substrate.  

Literature reported a non functional inorganic Fe compound that mimics the FeB 

from the NOR catalytic center. This model compound shows a midpoint redox potential 

of about 200-250 mV (vs. NHE), when used in organic solvents. The nitrosyl form of this 

complex, exhibits a much lower redox potential (approximately -330 mV, vs. NHE). A 

low redox potential for the model complex could suggest the involvement of the Ps. 

nautica NOR non-heme FeB in the NO reduction mechanism. Nevertheless, the authors 

admit that further studies are required to the  complete characterization of the model 

compound specially in the redox potential adjustment for achieving a functional model 

[53]. 
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3.5.1. Electron Quantification for Both Substrates Under Catalytic 

Conditions  
 

The ultimate goal of the experiments described in this chapter is to determine the 

number of electrons involved in the O2 and NO reduction. In order to maintain a 

convective flow of the substrate towards the electrode is imperative to use a RDE. As 

previously mentioned, with this kind of electrode is possible to assume that the 

concentration of the dissolved species on the electrode surface is equal to the 

concentration in the bulk solution. Therefore is possible to use the Levich equation (eq. 

3.4): 

 

 2
1
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1

3
2

lim 62.0 ωCvnFADI it

−

=                                     (eq. 3.4) 

 

where n is the number of electrons involved in the process, F the Faraday constant 

(96485 C.mol-1), A the electrode area (cm2), D the diffusion constant of the electroactive 

specie (DNO= 2.07 × 10-5 cm2.s-1, DO2= 2.01 × 10-5 cm2.s-1), ν the water kinematic 

viscosity (8.90 × 10-7 m2.s-1), C the electroactive molar concentration (mol.cm-3) and ω the 

rotation frequency (s -1/2) [54-56]. 

The equation shows a limit current proportional to the electroactive species 

concentration and the angular speed square root. To determine the number of electrons 

involved in each substrate reduction, it is necessary to maintain the substrate 

concentration at a constant value, while changing switch angular speed in order to obtain 

a straight relation between ω1/2 and Ilimit. The other parameters of the equation are 

constants.  

The use of Levich equation, or a derivation of this equation (Koutechy-Levich 

equation), has been used before to determine the amount of electrons exchanged in an 

enzymatic catalytic process [57, 58].  

It is possible to use this equation, since the enzyme is adsorbed to the electrode 

surface and the catalytic center is buried in the polypeptide chain. Literature also shows 

redox and chemical catalysis in monolayer and multilayer coated electrodes, as well as the 

use of CV for the kinetic analysis of the catalytic systems [59]. Therefore, the catalytic 
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current observed when it is used the Ps. nautica NOR modified electrode, outcomes from 

the enzyme reduction and re-oxidation, in the presence of the substrate and can be used 

to estimate the number of electrons involved in each of the reduction reactions.  

Experimentally the catalytic reduction of NO seems to be extremely fast, which makes 

it difficult to maintain a constant substrate concentration in the system. Thereby CV 

assays were changed for normal linear sweep voltammetry and only one cycle was used in 

order to maintain the substrate concentration constant for the different angular speed 

values.  

Results obtained for both substrates are presented in figure 3.9, corresponding to 3.99 

± 0.50 and 1.67 ± 0.13 electrons for the O2 and NO reduction respectively.  

 

 

 
 
Figure 3.9 – Determination of the number of electrons involved in the NO and O2 reduction, by the 
Pseudomonas nautica NOR. Limit current vs. ω½ representation for (A) NO and (B) O2 reduction. Slopes: 
5.60 ± 0.27 × 10-7 and 4.24 ± 0.47 × 10-6 for NO and O2 reduction respectively. Experiments were done 
in a 20 mM mixture buffer (experimental details, section 3.7) pH 7.63, ν = 50 mV.s-1, [NO] = 16.67 µM 
and [O2] = 53.82 µM. 
 

 

The estimated values are in complete agreement with the literature that describe NO 

reduction as a two electron, two proton process and O2 reduction as a four electron 

process. However, it was investigated the possibility of O2  reduction to H2O2 [60]. Flock 

and co-workers demonstrated that O2 was reduced in a four electron process, using 

steady-state kinetic assays [60].   

To exclude the possibility of the reduction of O2 to H2O2 catalyzed by the Ps. nautica 

NOR, assays with combined enzymes (Ps. nautica NOR and a commercial peroxidase) 

A              B      
         NO          O2
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were made to search for possible H2O2 formation. The assays were conducted in aerobic 

environment and using TMPD as the chemical electron donor for both enzymes 

(supporting information S.5). The reaction was followed by absorbance changes at 520 

nm a specific wavelength for the chemical electron donor oxidation and the results are 

resumed in figure 3.10.  

 

 
 

Figure 3.10 – Oxidoreductase activity assays for the Pseudomonas nautica NOR combined with commercial 
peroxidase. The figure shows differences at the absorbance measured at 520 nm for the reactions in the 
presence of (A) – NOR (0.5 µM) , (B) – Peroxidase (0.5 µM) + H2O2 (2.5 µM), (C) – Peroxidase (0.5 µM ) 
+ NOR (0.5 µM), (D) – Peroxidase (0.5 µM), (E) – TMPD (1 mM) oxidation. Experimental details: 100 
mM KPB pH 6, 0.02 %; 1 mM TMPD. Reactions were done in a quartz cuvette in aerobic conditions.  

 

 

As a control to the experiment peroxidase activity was assayed separately (figure 3.10, 

curve B). Since both enzymes can use TMPD as the electron donor (supporting 

information S.7). A mixture of these two enzymes was used in aerobic conditions (curve 

C), and was similar to the obtained with the Ps. nautica NOR as single catalyst (curve A), 

showing that Ps. nautica NOR reduces O2 directly to H2O, without the formation of H2O2 

The TMPD self oxidation curve (trace E), and its oxidation in the presence of peroxidase 

(curve D) in the absence of H2O2 were used as control experiments.  
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3.6. Concluding Remarks 

 

The direct electrochemical experiments done with the immobilized Ps. nautica NOR 

revealed, for the first time, the four redox potentials for all the iron co-factors of this 

enzyme. 

The NO reduction mechanism has been intensively studied over the years, and rising 

controversy [61]. This work shows a highly negative redox potential for the non-heme 

FeB metal site. Since the Ps. nautica active form seems to be the full reduced state, this 

means that FeB must be reduced so that catalysis can start, suggesting the formation of a 

FeB-(di)nytrosyl as an intermediate of the NO reduction [17, 25]. However more 

experiments must be conducted in order to elucidate the catalytic mechanism.   

 pH dependence experiments on the midpoint redox potential suggest a possible 

hydrogen network surrounding the heme propionates, established by the response of 

conserved residues, near the heme co-factors. These results may claim for the design of 

specific experiments in order to elucidate the role of several residues in the electron 

transfer and catalytic activity.  

The enzyme under study is able to reduce NO to N2O and O2 to H2O, in processes 

that involve two and four electrons, respectively. This is the first time that the electrons 

involved in a NOR catalysis were analytically quantified for different substrate reactions. 

O2 reduction is accomplished by the Ps. nautica NOR and the reduction potential starts 

developing at -60 mV (vs. NHE). The NO reduction is shifted for much lower redox 

potentials (-330 mV vs. NHE), in agreement with recent experiments done using nitrosyl-

Fe model compounds, suggesting the involvement of the non-heme FeB in the NO 

reduction mechanism [53].   
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3.7. Experimental details  

 

Protein purification: Ps. nautica NOR purification was made as described in the chapter 

2, as well as its biochemical and spectroscopic characterization. Recombinant NorC was 

cloned as described in the supporting information S.3. Purification and characterization of 

this recombinant protein is reported elsewhere [29]. Purified rNorC was concentrated in 

an ultrafiltration apparatus and buffer exchanged to 100 mM KPB pH 7, 0.02 % (w/v), 

0.01 % (PE).  

 

Protein immobilization protein immobilization on graphite electrodes was 

accomplished by adsorption, using the solvent casting technique. Drops of 7 to 14 µL of 

a 45 or 265 µM pure protein sample equilibrated in 100 mM KPB pH 7, 0.02 % (v/v) 

DDM, 0.01 % (v/v) PE was used as the stock solution. The supporting electrolyte was a 

20 mM mixture of sodium citrate, MES, HEPES, AMPSO buffered at different pH 

values. 

 

Electrochemical methods and instrumentation: The experiments were conducted in a 

µAUTOLAB type II potentiostat, using a three electrode configuration in a one-

compartment electrochemical cell. The working electrode was a graphite rotative disk 

electrode (RDE) or a stationary pyrolytic graphite electrode. A platinum wire and a 

saturated calomel electrode (SCE) were used as counter and reference electrodes, 

respectively. Both graphite electrodes were previously treated trough immersion in a 

diluted nitric acid solution, rinsed in water, polished with 5.0, 1.0 and 0.3 µm alumina, 

briefly sonnicated and rinsed with deionized water. Cyclic voltammetry (CV) assays were 

preformed at different scan rates. O2 and NO dependence experiments were preformed 

by adding different volumes of water solutions containing the dissolved gas. Separated 

water gastight flasks were saturated with the gases and each concentration was estimated 

considering its solubility in water according to the literature [62, 63]. O2 saturation was 

made by direct bubbling. NO saturation was achieved by bubbling a 5 % NO / 95 % He 

mixture in 5M KOH solution, passing from this to a non buffered water solution pH 3, 

before deionized water saturation. This procedure was applied in order to remove 

possible NOx formation. Additions were made using a Hamilton gastight syringe. 
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The experiments were conducted at room temperature, in controlled atmosphere, 

using an anaerobic chamber. All the acquired data were analysed with GPES software. 

Unless mentioned, the presented voltammograms are always the second cycle experiment.  
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4. Nitric Oxide Reductase Kinetics: Nitric Oxide and Oxygen Activity 

 

4.1.  The Nitric Oxide Reductase Activity 

 

NO reduction has been studied for different NORs [1-6] and other members of the 

HCuO superfamily such as the cbb3, ba3 and bo3 type CcO in different buffers, electron 

donors and pH solutions [7-9]. 

Here, NO reduction by Ps. nautica NOR was studied. The reaction uses two electrons, 

as quantified using electrochemical techniques, (chapter 3, section 3.5.1) and two protons, 

with the formation of N2O and H2O, as described by the following equation: 

 

     (eq. 4.1) 

 

In addition NORs present oxidoreductase activity. The reduction of O2 seems to 

follow the same stoichiometry as the HCuOs, without proton translocation, since NORs 

do not pump protons against the gradient, for energy generation. During O2 reduction, 

the protons are up taken from the periplamatic space [2, 10]. The reaction catalysed by Ps. 

nautica NOR involves four electrons for the complete reduction to H2O (eq. 4.2), as it was 

demonstrated in the previous chapter (chapter 3, section 3.5.1). 

 

(eq. 4.2) 

 

This chapter of the thesis deals with the kinetic characterization of the enzyme under 

NO and O2 catalysis. The main goals of the kinetic experiments are:  

i) The kinetic characterization of the NO reduction and oxidoreductase activities 

of the Ps. nautica NOR, using two electron donors: the cyt. c552 and the direct 

electrochemical response of the immobilized enzyme in an electrode surface, in 

which, the electrode can deliver the electrons directly to the protein. 

ii) New insights into the structural and functional mechanism of NO and O2 

reduction, based on the pH dependence of the enzymatic activity.  

 

2 NO    +    2 e-    +    2 H+                         N2O    +    H2O        

 O2    +    4 e-    +    4 H+                        2 H2O     
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In order to establish a kinetic model for each of the substrates reduction, velocity 

equations were deduced for several kinetic hypotheses, followed by simulations that could 

fit the experimental data. For each model it was taken into account the enzyme/substrate 

stoichiometry, and two assumptions were made: 

i) initial rate conditions: when t=0, velocity and product concentration are both 

equal to zero; 

ii) the measurements are made under steady-state kinetic conditions: the catalytic 

reaction is irreversible and the intermediate species formed between the substrate 

and the enzyme have constant concentration during the reaction time. 

 

 Different models where assumed, such as the Michaelis-Menten, substrate inhibition, 

the non-productive binding and consecutive substrate binding.  

In same cases, the Lineweaver–Burk and Hanes-Woolf linearization were used to 

estimate the kinetic features, to use as a first approach in the fitting process.  

 

 

4.2.  Physiological Electron Donor  

 

4.2.1. The Pseudomonas nautica Cytochrome c552 

 

The cNORs seem to present two physiological electron donors, pseudoazurin or 

azurin, described in Pa. denitrificans and in Ps. aeruginosa or nautica, a soluble c-type 

cytochrome, such as the cyt. c551 or cyt. c552, respectively  [4, 11, 12]. Many chemical 

electron donors are reported in the literature, either used alone or in combination with 

ascorbate , PMS [1, 11], TMPD [13] or HH cyt. c combined with TMPD [2]. 

The interaction of Ps. nautica NOR with the cyt. c552 under NO reduction as been 

described previously [11]. It could be assumed that in the presence of O2, the enzyme 

would use the same redox partner. To confirm this assumption, several isolated 

cytochromes were tested as physiological electron donors. Figure 4.1 shows the re-

oxidation of c-type cytochromes in the presence of Ps. nautica NOR under aerobic 

conditions. For all the cytochromes tested, only the cyt. c552 was able to rapidly transfer 

electrons to the NOR, because its re-oxidation is observed immediately (red line in figure 

4.1). 
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Figure 4.1 – Oxygen reduction by Pseudomonas nautica NOR, using different c-type cytochromes used as 
electron donors, isolated from the same microorganism. The representation shows the decay in the α peak 
of each cytochrome.  
 
 

In order to conduct steady-state kinetics of the NOR with both substrates, it is 

imperative to search an optimal protein and electron donor concentration. In NO 

reduction, previous works point to a NOR concentration of 70 nM and 20 µM for the 

cyt. c552, creating a ratio of approximately 300 times (supporting information S.6) [14]. The 

same study was done for the O2 reduction, pointing a higher enzyme concentration, 0.5 

µM and a 600 times larger concentration (300 µM) of electron donor (supporting 

information S.7).  
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4.3.  Steady-Sate Kinetics Using Cytochrome c552  

 

Nitric oxide reduction 

 

 The available literature on steady-sate kinetics for cNORs presents an inhibitory 

pattern for the NO reduction when the substrate is present at high concentrations (in the 

low µM range). The substrate inhibition was justified by different interpretations: the first 

study which came out in 1997 [3] defends that NO binds to the reduced form of the 

enzyme consecutively, generating the N2O product. The binding of a substrate molecule 

to the oxidized form of the enzyme would generate a non-catalytic species. Two years 

later, a different research group claim that the deduced velocity equation previously 

deduced was inappropriate for the associated mechanism. A new mechanism was 

proposed based in the sequential binding of NO molecules, but the inhibitory species 

being a complex of the enzyme with three NO molecules [15]. Controversy around these 

mechanisms continued. Recently, in 2010, a different group based on flow-flash 

experiments in single turnover conditions proposed a new catalytic mechanism and 

substrate concentration inhibition. Their results showed an obligatory binding of NO to 

the non-heme FeB before ligation to heme b3, reducing NO trough a trans-mechanism and 

claiming this reaction to be highly inhibited by substrate [16]. In the same year, the first 

solved crystallographic structure at 2.7 Å, suggests that the catalytic center cavity undergoes 

structural rearrangements upon NO binding and reduction [4].  

 Work done in our group in Ps. nautica, demonstrated that the fully reduced state is 

the active form of the enzyme, and that the six-coordinated heme b3 prompts the 

possibility of the initial step for NO catalysis to be the binding of the substrate to the FeB 

site. In this case the presence of a six ligand would weaken the affinity of NO binding to 

heme b3 and promote the formation of an intermediate species at the FeB metal center 

[14].  

Here, to determine the kinetic features under steady-state conditions, NO reduction 

experiments were conducted using the Ps. nautica NOR and the reduced cyt. c552 as the 

electron donor. The experimental data shows an inhibitory pattern (figure 4.2) 

characteristic of the reported cNORs.  
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Figure 4.2 – Nitric oxide reduction by Pseudomonas nautica NOR, using reduced cyt. c552 as the electron 
donor. The plot exhibits the experimental data (blue dots) and the proposed fit (orange line, equation 
presented in figure 4.3) with the following kinetic parameters: kcat = 30.4 ± 1.7 s-1, K1 = 3.6 ± 0.8 µM, K2 
= 6.2 ± 0.7 µM, and Ki = 9.7 ± 0.4 µM 

 

 

 

The deduced kinetic model which could better describe the experimental data, is 

shown in figure 4.3.  

 

 

Figure 4.3 – Sequential binding mechanism for NO reduction. The scheme traduces the substrate binding 
and reaction steps, not showing the electrons and protons involved in the reaction. Rate equation is 
presented, as a function of substrate concentration and of the rate constants K1, K2, Ki and kcat.  
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The chosen model (figure 4.3) is a sequential NO binding mechanism, where the 

substrate molecules bind at the catalytic center one at a time. If the first NO molecule 

binds the catalytic center in a different conformation, or induces an enzyme conformation 

which does not allow the ligation of the second substrate molecule, and consequent 

catalysis, then an inhibitory species is formed and leads to a substrate inhibition scenario. 

This model can be supported by both cis and trans-mechanisms [17]. The model shown in 

figure 4.2 fits well the experimental data with the following kinetic parameters kcat = 30.4 

± 1.7 s-1 , K1 = 3.6 ± 0.8 µM, K2 = 6.2 ± 0.7 µM, and Ki = 9.7 ± 0.4 µM. The kinetic 

turnover obtained is in agreement with other values mentioned in the literature, from 

different denitrifying bacteria [2, 4, 5, 16].  

During the modulation process other mechanisms were tested. The simultaneous 

entrance of two NO molecules or the inhibitory effect from the incorrect binding of a 

second NO molecule, could not fit well the experimental data and were excluded.  

The three NO molecule inhibition complex hypothesis proposed by Koutny et al. [15] 

was also tested to fit the experimental data. However, X-ray data reveals not even enough 

space in the active site pocket to accommodate two NO molecules, explained by the short 

distance between the two catalytic irons (3.9 Å) and the presence of the Glu residue 

coordinating the non-heme Fe [4].  

An inevitable consequence in enzyme kinetics is the case of product inhibition. There 

is no reference in the literature for the reversibility in NO reduction. However product 

inhibition must be expected if the product formed is also bound to the enzyme, even if 

the reversible reaction is negligible, because it can block the binding of a new substrate 

molecule to the active site. The modulation of the present kinetic data is not adequate to 

investigate a product inhibition mechanism. To address this subject, this possible  

behaviour should be analyzed in steady-state kinetic experiments in the presence of 

controlled concentrations of the reaction product, with the reaction assays being started 

by the addition of substrate [18].  

 

Oxygen reduction 

 

To characterize the proton uptake, the O2 reduction by NORs has been intensively 

studied by flow-flash experiments in single turnover conditions, using the wild type and 

single mutant proteins [2, 19]. In CcO, studies are predominantly focused in the 
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characterization of relevant kinetic intermediates and in the proton pathways, since these 

oxidases are proton pumps [20].  

The O2 reduction by NOR has been reported for several isolated enzymes [2, 5]. 

However no detailed steady-state kinetic data is reported, with only some kinetic features 

using chemical electron donors being mentioned. In the oxidoreductase experiments, it is 

assumed that the active form is the fully reduced form, in analogy to the active form for 

NO reduction. Many authors assume that this reduced form can be obtained by 

incubation of the enzyme with ascorbate and mediators, such as HARC [19]. For the 

enzyme under study, it is reported that the incubation with ascorbate and PMS produces a 

reduced form equivalent to the reduced with dithionite, as characterized by spectroscopy 

[14].   

 In this section the O2 consumption by Ps. nautica NOR using the reduced cyt. c552 as 

the electron donor was investigated. Analogously to the NO reduction studies, the 

velocity vs. substrate dependence in the O2 reduction profile presents an inhibition pattern 

(figure 4.4).  

 

 
 

Figure 4.4 – Oxygen reduction by Pseudomonas nautica NOR, using reduced cyt. c552 as the electron donor. 
The plot exhibits the experimental data (blue dots) and the proposed fit (red line, equation presented in 
figure 4.5) with the following kinetic parameters: V’max = 26.9 ± 2.2 µM O2. minute-1, K’M= 49.1 ± 3.2 µM,  
Ki= 56.3 ± 2.8 µM. 
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For this situation, a simple kinetic mechanism is assumed, since only one substrate 

molecule binds to the catalytic center (figure 4.5). 

 

 
Figure 4.5 – Mechanism for oxygen reduction. The scheme traduces the substrate binding and reaction 
steps, not showing the electrons and protons involved in the reaction. Rate equation is presented, as a 
function of substrate concentration and of the kinetic parameters V’max, K’M, and Ki  

 

 

The Lineweaver-Burk and Hanes-Woolf linearization of this rate equation are not 

straight lines, but instead they describe a hyperbola and a parabola respectively. If the Ki is 

larger than K’M, it is possible to use the experimental data obtained at low substrate 

concentration to estimate the kinetic parameters: V’max and K’M [21]. These parameters 

were used as a first attempt to fit all the experimental data. The final fit is presented in 

figure 4.4 (red line) with the following rate constants kcat = 0.89 ± 0.07 s-1; K’M 49.1 ± 3.2 

µM; Ki = 56.3 ± 2.8 µM. The determined turnover rate is in agreement with the 

previously reported for other isolated cNOR [5], but lower when compared with a typical 

oxidoreductase activity from a CcO, as expected [22].  

In parallel, during the modulation process a non-productive binding mechanism was 

tested, but the fit was inadequate to describe the experimental data and was excluded. 

Mechanisms for O2 reduction by members of the HCuO superfamily point to the O2 

molecule binding to the ferrous heme iron, with the formation of a well characterized 

ferryl compound, which afterwards forms a series of reasonable known intermediates 

[20]. In NOR, it is assumed that O2 binds to the catalytic heme iron. However there is no 

evidence for a catalytic mechanism or the possible catalytic intermediates.  
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Remarks on NO and O2 Reduction Using Cyt. c552 as Electron Donor 

 

A summary of the information obtained for the steady-state kinetics using the NOR’s 

physiological electron donor, cyt. c552 is presented in table 4.1 for an easier comparison of 

the kinetic parameters.  

 
Table 4.1 – Kinetic parameters obtained for the Pseudomonas nautica NOR with NO or O2 as substrates. 
Pseudomonas nautica cyt.c552 was used as the electron donor. 
 

 NO reduction O2 reduction 

kcat (s-1) 30.4 ± 1.7 0.89 ± 0.07 

K1(µM) 3.6 ± 0.8 - 

K2 (µM) 6.2 ± 0.7 - 

K’M (µM) - 49.1 ± 3.2 

Ki(µM) 9.7 ± 0.4 56.3 ± 2.8 

 

 

The Ps. nautica NOR exhibits a higher affinity for NO than for O2, since the K’M value 

for the oxidoreductase activity is much higher than the kinetic dissociation constants K1 

and K2 determined for NO reduction. In addition, the high kcat value for NO reduction 

reveals the high turnover of this enzyme. All the kinetic parameters of the table 4.1 agree 

with those of others [5], obtained by different methodologies. However, this is the first 

time that oxidoreductase experiments were done in steady-state conditions and using the 

enzyme physiological electron donor. The cyt. c552 was able to interact with NOR in both 

substrate reductions. Moreover oxidoreductase conditions required a higher ratio between 

the reduced cyt. c552/NOR (600×) than when the enzyme was under NO reduction (≅ 

300×) demonstrating that oxidoreductase activity demands a higher amount of electron 

donor. This result is here reported for the first time. This is also in agreement with the 

electrochemical results (section 3.5.1) showing that O2 reduction requires four electrons 

wile NO reduction requires only two electrons.  
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4.4.  Steady-State Kinetics Using Immobilized NOR 

 

Electrochemistry can be used to study enzyme kinetics. Literature has an extensive 

series of examples for this approach [23-28], whereas electrode interacts directly with the 

protein giving rise to a catalytic response. 

In order to continue the kinetic studies for the Ps. nautica NOR, steady-state kinetic 

assays where performed electrochemically adsorbing the enzyme to a graphite electrode 

(as described in chapter 3). In this case the electrode will deliver the electrons directly to 

the enzyme and as shown in section 3.5, the electrons can be transferred immediately to 

the catalytic binuclear center, enhancing catalysis. The study of a different electron donor 

system helps to understand the possible mechanism for catalysis and since the enzyme is 

immobilized at the electrode surface, it is possible to switch the bulk solution and 

produce variation of different parameters such as the ionic strength or pH.  

The protein film preparations made on the electrode surface proved to be physically 

adsorbed, like the ones previously mentioned in chapter 3. However the produced 

enzyme films had different stability when they were in the presence of the different 

substrates. When NO was added, the protein kept immobilized and the preparation lasted 

for several assays (different scan rates and different pH values). The use of O2 as 

substrate, especially at high concentration, seems to enhance the loss of the protein film 

from the electrode surface. 

To conduct the kinetic assays, a RDE with a graphite surface was used. The choice of 

a rotative over a stationary electrode was done on purpose, because (as explained in 

section 3.5) in this system a convection flow is generated, that maintains the 

concentration of all the species in solution uniform and equal to the bulk solution, 

avowing the diffusion process existent in a stationary system. The use of a dynamic 

system will maintain the substrate concentration constant (substrate added to the bulk 

solution).  

Cyclic voltammetry at high scan rate ( 1-5 Vs-1) was used to estimate the electrode 

surface coverage (Γ), as described in section 3.3 of the previous chapter. To determine 

this value, it was used the well-define redox process II (section 3.3 and 3.3.3). The current 

measured in a normal linear sweep voltammetry assay was used to determine the catalytic 

current difference, at defined substrate concentrations. Figure 4.6 show an example of 
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two cathodic current increases, using the Ps. nautica NOR modified RDE, in the presence 

of NO and O2.  

 

 

 
 

Figure 4.6 – Cathodic current increase in the presence of NO and O2 obtained with the Ps. nautica NOR 
modified graphite RDE (ν = 50mVs-1, 2000 RPM, [NO] = 50 µM, [O2] = 27.5 µM). The experiments 
were conducted in 20 mM mixture buffer (experimental details), pH 6.85 and 7.63 for NO and O2 
reduction, respectively. 

 

 

 

All the kinetic assays were performed at a scan rate of 50 mVs-1, with an angular speed 

of 2000 RPM. The increase of the substrate concentration was traduced on an increase on 

the intensity of the catalytic current. Theses variations were determined taken, as it is 

exemplified in figure 4.6, and the values were transformed into velocities (µmol 

substrate.minute-1) using the Faqraday law and according to the following equations: 

(eq. 4.1) 

 

(eq. 4.2) 

 

 

If there is a limit current, the charge at a certain potential value is proportional to the limit 

current at that same potential for the time that was applied. It is known for a redox 

process, that the charge is directly proportional to the number of electrons involved in the 

process and the amount of transformed compound. Therefore, for NO reduction and O2 

reduction there are two and four electrons, respectively, as quantified in the chapter 3. 

electronsmol
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Combining the two equations (eq. 4.1 and 4.2) and applying correction factors it is 

possible to transform the limit current measured at a certain potential to a substrate 

consumption value (eq. 4.3). 

 

 

electronsnF
isubstratemolv

×
××

=
−

−
6

lim1 1060)min..(μ
                                  (eq. 4.3) 

The enzyme kinetics study could be performed using the data obtained, without 

transforming the Ilim in a rate of substrate consumption, since Ilim is proportional to the 

number of electrons involved in the reduction process (n) and the electrode surface 

coverage (Γ) - Ilim = n. F A Γkcat. However, this equation has some restrictions when 

used to study enzyme kinetics in substrate dependence. This equation can be applied 

when Ilim = Imax (the maximum catalytic current attained in a substrate concentration) and 

this is only possible when [S] >> KM (see following sections). In the rest of the cases, Ilim 

is different from Imax, therefore it was imperative the transformation of the kinetic data. 

The data were collected for different substrate concentrations at different pH values. 

The previously kinetic assumptions are equally assumed: the steady-state, the initial rates 

and the irreversibility of the catalytic reaction.   
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4.4.1. Experiments Preformed at pH = 7.6 

 

Nitric Oxide Reduction 

 

The Ps. nautica NOR was adsorbed to a rotative disk graphite electrode and kinetic 

features towards NO reduction were evaluated (figure 4.7).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7 – Nitric oxide reduction by Pseudomonas nautica NOR using the immobilized enzyme on a 
graphite RDE (ν= 50 mV.s-1, ω = 2000 RPM).  The plot exhibits the experimental data (blue dots) and 
the proposed fit (orange line) with the following kinetic parameters: V’max = 1.2 ± 0.1 × 10-2 µmol 
NO.minute-1, K1= 1.0 ± n.d. × 10-3 µM and K2= 2.2 ± 0.2 µM. 

 

 

The experimental data show (figure 4.7) that is a hyperbolic behaviour with no signs 

of substrate inhibition. In order to fit the experimental data, different kinetic models were 

tested in parallel. The two models seem to fit equally well the experimental data: a 

consecutive substrate binding with the formation of two intermediate species, and a 

second model with the simultaneous binding of two substrate molecules to the enzyme 

active site. Figure 4.8 shows the mechanism of consecutive binding. The kinetic 

(× 10-2) 
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parameters obtained were: V’max= 1.2 ± 0.1 × 10-2 µmol NO.minute-1, K1 = 1.0 ± n.d.1 × 

10-3 µM. and K2 =2.2 ± 0.2 µM. The error for the first dissociation constant was not 

determined, since the smaller this value became, better became the theoretical fit, without 

considerable changes in K2 or V’max value. Using the electrode coverage and the electrode 

area, it is possible to determine the amount of active enzyme adsorved to the electrode 

(Γ** = Γ × Electrode Area  Γ** = 2.71 × 10 -12 mol NOR), and determine the pseudo-

first-order rate constant, since V’max = kcat × [ET], and [ET] = Γ**, therefore kcat = 71.9 ± 

2.88 s-1. Unfortunately the initial part of the fit has a lack of experimental data (figure 4.7), 

this is due experimental limitations. As seen from the experimental kinetic features, NOR 

presents a high affinity for NO in its two binding steps, proved by the low values of the 

dissociation constants (K1 and K2). In addition, the high turnover can explain the 

limitations when working at low substrate concentrations.   

 

 

 
Figure 4.8 – Sequential binding mechanism for NO reduction. The scheme traduces the substrate binding 
and reaction steps, not showing the electrons and protons involved in the reaction. Rate equation is 
presented, as a function of substrate concentration and of the kinetic parameters V’max, K1 and K2 . 
 
   
 

Simulations of the simultaneous binding NO molecules rate equation resembled a 

characteristic Michaelis-Menten model for two substrate molecules binding (data not 

shown). The rate equation was deduced, fitted and the kinetic parameters achieved were 

KM=1.99 µM and V’max= 1.1 ± 0.1 × 10-2 µmol NO.minute-1. The values are close to the 

predicted for the first model, but this mechanism would not describe the possible subtract 

ligation to the binuclear catalytic center of the enzyme, since the active site presents a 

short Fe-Fe distance and it would be difficult to perform the binding of two NO 
                                                 
1 n.d.- not determinated  
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molecules to the same or to different Fe atom(s) (depending on the mechanism, cis or 

trans) [4, 17]. 

 

Oxygen reduction  

 

Oxidoreductase was measured under similar conditions using the Ps. nautica NOR 

adsorbed to the same graphite RDE. The results show a substrate inhibitory pattern 

(figure 4.5).  

 

 
Figure 4.9 – Oxygen reduction by Pseudomonas nautica NOR using the enzyme immobilized on a graphite 
RDE (ν= 50 mV.s-1, ω = 2000 RPM). The plot exhibits the experimental data (blue dots) and the 
proposed fit (red line) with the following kinetic parameters: V’max = 8.1 ± 0.1 × 10-3 µmol O2.minute-1, 
K’M= 32.4 ± 2.64 µM and Ki= 65.0 ± 5.6 µM 

 

 

The kinetic model chosen to fit the experimental data was the previously described for 

the assays in the presence of the enzyme physiological electron donor (figure 4.5). The 

kinetic parameters achieved were: V’max = 8.1 ± 0.5 × 10-3 µmol O2.minute -1, K’M= 32.4 

± 2.6 µM and Ki = 65.2 ± 5.6 µM. Analogous to the previous result analysis, using Γ**= 

[ET] = 5.83 × 10-13 mol, the kinetic constant kcat= 231.6 ±12.9 s-1 was determined, since 

V’max  = kcat × [ET].  
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Remarks in NO and O2 Reduction Using the immobilized Ps. nautica 

NOR at pH 7.6 

 

Possible diffusion limitations can occur when adsorbed enzymes are used to study 

enzyme kinetics by electrochemical techniques. To overcome this issue a RDE can be 

used, in order to insure that the substrate bulk concentration is the same as at the 

electrode surface. 

The results confirm that the Ps. nautica NOR has a higher affinity for NO than for O2. 

NO reduction seems to occur in a two step mechanism, where the substrate molecules 

bind consecutively and quickly to the active site. This is suggested by the extremely low 

dissociation constants (table 4.2). O2 is also reduced by NOR, but the enzyme presents a 

lower affinity for this substrate, exhibiting a higher dissociation constant (K’M).  

 
Table 4.2 – Kinetic parameters obtained for the immobilized Pseudomonas nautica NOR in the presence of 
NO and O2.  
 

 NO reduction O2 reduction 

V’max 1.2 ± 0.1 × 10-2 8.1 ± 0.1 × 10-3- 

kcat (s
-1) 71.9 ± 2.9 231.6 ± 12.9 

K1(µM) 1.0 ± n.d. × 10-3 - 

K2 (µM) 2.2 ± 0.2 - 

K’M (µM) - 32.4. ± 2.6 

Ki(µM) - 65.0 ± 5.6 

 
 

It is not possible to compare the pseudo-first order rate constants (in grey) between 

the two substrate reductions. The comparison of these values would require the study of 

the kinetics in function of the electrode surface coverage, as it was done for the previous 

electron donor system; in function of the protein concentration is solution.  

The low affinity for O2 and the presence of a substrate inhibition pattern can justify 

the instability of the protein film on the electrode surface, when O2 is present. During the 

assays, the O2 concentration was raised to values close to 100 µM. It is predicted that this 

enzyme has a low turnover for O2 and it will be possible the entrapment of O2 in the 
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protein film, since it has a percentage of detergent in its constitution that could enhance 

the protein film release.   

 

 

4.4.2. pH Dependence Experiments  

 

The study of the kinetic activity in a pH scale is not physiologically relevant, but it may 

give hints in the structural and functional motifs of the protein, and information in its 

active kinetic form. The main objective in these experiments is to determine the 

dissociation constant values, in order to index possible protonable residues, crucial to the 

NO and O2 reduction. Both substrate reductions were investigated by electrochemical 

assays with the Ps. nautica NOR adsorbed to the graphite RDE. 

 

 

Nitric oxide reduction  

 

Characterization of the NO reduction at pH 7.6 assumed a consecutive two substrate 

molecule binding mechanism, with the formation of two intermediate species. The K1 

value found was very small, and therefore, it is possible to assume that in the presence of 

NO the enzyme is in its form binding two NO molecules. The observed pattern at pH 7.6 

was similar for all pH values tested (2.5 < pH < 9.7). All literature data is situated 

between 5 < pH < 9 [2, 29], this is the first report on a wide range of pH.  

To perform the analysis of the data, the first step will be to estimate the number of 

protons involved in the kinetic mechanism, where a plot of V’’max vs. pH dependence is 

required. From now on, the velocity values obtained in the pH dependence are designated 

as V’’max in order to differentiate these values from the V’max obtained at pH 7.6 (V’max = 

1.2 ± 0.1 × 10-2 µmol NO. minute-1). To determine V’’max in all the investigated pH values 

is possible to assume that at substantially high substrate concentrations, similar to the 

Michaelis-Menten models, velocity is equal to V’’max. The results obtained are present in 

figure 4.10.  
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Figure 4.10 – pH dependence of the nitric oxide maximum reduction velocity. The plot exhibits the 
experimental data (blue dots) and the proposed fit (red line, eq. 4.4) with the following kinetic parameters: 
V’max = 1.3 ± 0.1 × 10-2 µmol NO.minute-1, pKa1 = 3.27 ± 0.03 and pKa2 = 7.92 ± 0.06.  
 

 

The plot of the V’’max decimal logarithmic in function of the pH produces a bell shape 

curve, typical for a pH dependence enzyme kinetics, showing a maximum activity 

between 4 and 6. This result agrees with those obtained for steady-state NO reduction by 

NOR, that revealed to be strongly pH dependent between pH 6 and 8 [2, 19, 29].  

The results are consistent with a two pK process. A complete diagram of the kinetic 

mechanism, presenting all the possible forms with only two protons, is showed in figure 

4.11. 

 
Figure 4.11 – Nitric oxide reduction mechanism assuming two protonable residues in the Pseudomonas 
nautica NOR. 
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Although it is possible to have a larger number of protonable residues. From the 

observation of the experimental results, it seems reasonable to assume the existence of 

only two major inflections in the graphic (two pKas).  

Besides the double protonation, the model assumes another restriction: only the single 

protonated form of the enzyme is able to catalyse the NO reduction. The assumption is 

reasonable since the activity approaches zero at high and low pH values. 

For the deduction of the velocity rate equation (eq. 4.4), it should be noted that [NO] 

>>> K1 and [NO] >> K2, with this observation, a last assumption must be applied to 

this model: the free form of the enzyme is inexistent, so the equilibriums will be 

dislocated towards the protonated forms that are binding two substrate molecules (figure 

4.11, written in black), and the remaining species will have a concentration near zero 

(figure 4.11, written in grey).  

A velocity equation can be written for the proposed mechanism, with the above 

applied constraints:  

 

 

 

 

 

 

 

     

  (eq. 4.4) 

          

 

 

Therefore, the velocity equation in function of the pH (eq. 4.4) is totally independent 

from the substrate concentration. Using the equation it is possible to determine pKa1 and 

pKa2 by fitting a theoretical line in the V’’max vs. pH plot (figure 4.10, red line). The values 

obtained where pKa1= 3.27 ± 0.03, pKa2= 7.92 ± 0.06 and V’max = 1.3 ± 0.1 × 10-2 µmol 

NO.minute-1.  

The only value obtained for a pK reported in the literature was 6.6 for the Pa. 

denitrificans NOR. This value was achieved in a pH dependence developed in a smaller pH 



Chapter 4 
________________________________________________________________________________________________________________ 

 
_______________________________________________________________________________________________________ 128 

range (between 5 < pH < 9) and under O2 reduction measurements, that were assumed to 

be similar for the NO reduction. The identity of the residue is unknown, but conserved 

Glu residues were proposed to be the responsible for this loss of activity [29]. 

The pKa2 = 7.92 determined here may correspond to a conserved Glu residue of the 

Ps. nautica enzyme. The higher value suggests that the aminoacid residue is buried inside 

the protein hydrophobic core, rising the pKa (to values close to 8.8) [30]. 

It is hypothesized here that the pKa1 = 3.27 can probably be due to a conserved acidic 

aminoacid residue, for instance the Glu 125 or 202, (Pa. denitrificans numbering), since 

these residues are conserved among cNORs, and they all belong to the conserved proton 

pathway [2, 31].  

 

 

Oxygen reduction  

 

The pH dependence analysis for O2 reduction proved more complicated. First, in all 

in the pH scale tested was noted a substrate inhibition effect, as it was described for pH 

7.6 (section 4.4.1) additionally, the basic part of the curve is not very well defined and 

more experiments should be conducted at extremer basic pH values.  The reason why 

these experiments were not done here was the choice to use the same combination of 

buffers for all the assays, with a maximum useful pH range around 9.75. A different 

component could be introduced to the mixture to increase the useful pH range, but that 

would lead to a new characterization of the enzyme kinetics for both substrates.  

The assumptions made for the analysis of the NO reduction results can not be applied 

to O2 reduction, since it exhibits an inhibitory pattern. For this reason v (velocity) ≠ 

V’’max and [O2] ≅ K’M, making the condition of substrate saturation not valid. From now 

on, and similarly to the NO reduction pH dependence analysis, the kinetic parameters 

obtained in this section are named V’’max, K’’M and K’i, in order to differentiate these 

values from the V’max, K’M and Ki obtained at pH 7.6. 

The unique way to extract information from the experimental data is to fit an 

inhibitory model, as done for pH=7.6, in all the pH experiments and therefore, plot the 

kinetic parameters in function of the pH. From the analysis of the shape of the curves, it 

is, in principle, possible to infer how many protons are involved in the kinetic mechanism. 

Experimental results are shown in figure 4.12.  
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Figure 4.12 – pH dependence of the oxygen maximum reduction velocity. The plots show the decimal 
logarithmic for: A - V’’max, B - V’’max/K’’M and C – V’’max/K’i. in function of the pH.  
 

 

The results obtained have to be considered with reservations since the required higher 

O2 concentrations destabilized the protein film. Although the experimental points could 

not be fitted by any predictable steady-state kinetic model, it is possible to make some 

qualitative considerations:  

i) log V’’max vs. pH suffered a shift of the optimal pH for higher values (when 

compared with NO), with an imperfect bell shape curve. This suggests the 

presence of at least one proton and if there is a second protonable residue, will 

have a smaller dissociation constant (higher pK). 

ii) log V’’max/K’’M and  log V’’max/K’’I vs. pH present a bell shape trend, suggesting 

at least the involvement of two protons in the kinetic mechanism.  

 

At this point it is not possible to make any further conclusions. A hypothetical 

working hypothesis which includes the involvement of two protons is presented in figure 

4.13.  
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Figure 4.13 – Working hypotheses for an oxygen reduction mechanism assuming two protonable residues 
in the Pseudomonas nautica NOR.  
 

 

The previous working model was assumed in order to fulfil the following assumptions:  

 

i) The binding of two protons. log V’’max vs. pH shows that the enzyme is 

extremely active at pH values higher than 5. Since the data do not present a 

define trend in the graphic basic region, it is possible to predict the presence of 

one or two protonable residues. The assumption of two protonable residues is 

supported by the log V’’max/K’’M and log V´´max /K’i vs. pH graphics.  

ii)  Unprotonated and single-protonated forms of the enzyme may catalyse O2. 

The relation log V’’max vs. pH also suggests the possibility of product formation 

by the unprotonated and single protonated forms.  

iii) The presence of all the putative enzyme species in solution. The K’M ≅ [O2] for 

all the analysed pH values, therefore the reaction for all the protonated and 

deprotonated forms are in equilibrium.  

 

This working hypothesis can be used as a platform for future works.  
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Remarks on the pH dependence of nitric oxide and oxygen reduction  

 

The main goal of the experiments was to search for enzymatic kinetics modifications 

that could reflect structural modifications, namely due to protonation/deprotonation of 

aminoacid residues.  

It is the first time that steady state kinetic experiments are described for a NOR using 

electrochemical techniques. The applied methods revealed to be excellent for studying the 

pH dependence of the enzyme kinetics. Not only was it possible to achieve reproducible 

experimental data, as well as the enzyme modified electrode could be immersed in 

different pH solutions, in order to quickly check the enzyme activity.  

Under NO reduction, the enzyme exhibits an optimal pH between 4 and 6, and under 

oxidoreductase activity this optimal pH is shifted towards higher pH values.  

NO reduction presents two pKas, 3.27 and 7.92, that can rise from different residues 

in the protein. It is most likely that they belong to the NOR proton pathway, since these 

residues are important for NO reduction performing the translocation of protons, 

towards the catalytic center or by coordinating the non-heme FeB (Glu residue 

coordinating the non-heme FeB is believed to be the last residue in the proton pathway).  

The pKa1 = 3.27 was determined here for the first time, predicting a protonable 

residue with high solvent exposure. The value of 7.92 corresponding to pKa2 is probably 

related to the protonation of a conserved Glu berried in the protein core. 

For elucidating the kinetic model and proton uptake that could explain NO and O2 

reduction the experiments must be extended to a broader range of pH with a grater 

sampling.  
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4.5. Experimental Details  

 

Protein purification and preparation: NOR was purified from Ps. nautica membrane 

extracts, and it was biochemically characterized as described in chapter 2. Cytochromes 

c552, c549, c4, c551 and c’ were purified from Ps. nautica extracts as described in the literature 

and quantified using the correspondent molar extinction coefficients [32-38]. Samples 

containing each of the purified cytochromes, or the horse heart cytochromes c (Sigma), 

were concentrated and reduced with excess of sodium ascorbate, briefly centrifuged and 

applied into a His-Trap column (Amersham), equilibrated in 100 mM KPB pH 7.0 The 

eluted fraction was immediately collected, closed in an anaerobic flask and the 

atmosphere was replaced by argon, in order to prevent re-oxidation. 

 

Electron donor assays: were performed in aerobic conditions, at room temperature, in 

100 mM KPB pH 7, 0.02 (v/v) % DDM, with a cytochrome/NOR molar ratio of 100. 

Spectroscopic changes were monitored using the wavelength of each cytochrome α-band.  

 

NO reduction assays: NO consumption was measured by an ISO-NO Mark II 

electrode, connected to Quad 16/EFA-400 and a computer. Data were collected and 

treated using DataTraxTM software (World Precision Instruments). The reaction was 

performed at room temperature, in anaerobic conditions, in 20 mM mixture buffer, 

(sodium citrate, MES, HEPES, AMPSO) pH 7.6, 0.02 (v/v) % DDM. The reduced cyt. 

c552 was used as the electron donor (20 µM), NO was dissolved in water and added to the 

solution with a gastight syringe, as described previously (chapter 3, experimental details), 

NOR was added in order to start the reaction (0.07 µM).  

 

Oxidoreductase assays: O2 consumption was measured by chronoamperometry, using 

an adapted Clarck electrode. Platinum was set as the working electrode, silver as the 

counter electrode and a SCE was introduced as the reference electrode. The potential was 

set to –0.7 V during the experiments. The three electrodes were connected to a 

µAUTOLAB type II potentiostat, and data acquired using GPES software. Assays were 

done in anaerobic environment, at room temperature, in 20 mM mixture buffer, (sodium 

citrate, MES, HEPES, AMPSO) pH 7.6, 0.02 (v/v) % DDM. Ascorbate reduced cyt. c552 
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was used as the electron donor, O2 dissolved in water was added to the anaerobic cell, 

with a gastight syringe and reaction started with NOR addiction (0.5  µM). 

 

pH dependence assays: protein was immobilized in a graphite RDE, using the solvent 

casting technique as described in chapter 3 and the support electrolyte solution was a 20 

mM mix buffer (sodium citrate, MES, HEPES, AMPSO), at different pH values. 

Substrate was added to the electrochemical cell, using different volumes of water 

solutions saturated with NO or O2 (experimental details, Chapter 3). Surface coverage 

was determined by CV at high scan rates and kinetic data acquired inputting a linear 

sweep voltammogram at a scan rate of 50 mV.s-1 and an ω of 2000 RPM. Experiments 

were made at room temperature, in anaerobic conditions.  
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5. Main Conclusions  

 

The Pseudomonas nautica NO reductase (NOR) is a metaloenzyme from the 

denitrification pathway, present in different denitrifying organisms and able to reduce NO 

to N2O, and O2 to H2O. This class of enzymes carries a unique binuclear Fe center 

composed by a heme/non-heme Fe cluster where the substrate is reduced. Studies on this 

particular class of enzymes can bring light to the functional relevance of this single diiron 

center. 

The main objective of this work was to isolate Ps. nautica NOR and characterize the 

enzyme metal co-factors, using different biochemical and spectroscopic techniques.  

The optimized protocol for the purification of the native enzyme was developed. This 

is an integral membrane protein, isolated as a heterodimer formed by the subunits NorC 

and NorB. This enzyme presents a high homology with other cNORs such as the ones 

isolated from Ps. stutzeri and aeruginosa. The achieved enzyme fractions presented high 

purity, a correct metal stoichiometry, and therefore reproducible results could be 

obtained.  

The NOR presents four iron centers. The low-spin heme c, covalently bound to the 

NorC subunit, a low-spin heme b and the catalytic diiron center, composed by a low-spin 

heme b3 and a non-heme FeB. 

The spectroscopic characterization made using different techniques revealed new 

structural features.  

The UV-visible absorption spectroscopy analysis suggests that the heme b3 is in a low-

spin conformation. Previously,  this catalytic heme center was thought to be high-spin [1]. 

The results obtained here are in agreement with a recent report which demonstrated 

unequivocally that it is in fact a low-spin center, for both ferric and ferrous states [2].   

 EPR spectroscopy proved the existence of a new integer-spin species rising from the 

diiron antiferromagnetic coupled center. This is the first time an integer-spin signal is 

detected in a NOR enzyme. The binuclear Fe center was believed to be EPR silent. 

However, the EPR results presented here and the Mössbauer data obtained in our 

research group [2] leads beyond doubt the presence of an integer-spin species, composed 

by a heme b3-FeIII-FeBIII.  
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The UV-visible absorption spectroscopy showed that the low-spin electron transfer 

heme c and heme b present a small reduced fraction in the as-isolated form of the enzyme, 

which is in agreement with Mössbauer spectroscopy analysis [2]. This was expected since 

the midpoint redox potential for these centers is believed to be highly positive [2, 3], a 

fact that was also demonstrated in this thesis.  

In order to study the midpoint redox potential of the enzyme iron co-factors, direct 

electron transference between the immobilized Ps. nautica NOR and a pyrolytic graphite 

electrode was accomplished. This was the first time that the four redox processes were 

distinguished using this approach (figure 5.1, in bold). Figure 5.1 shows a summary of the 

midpoint redox potentials reported in the literature, which were obtained by different 

techniques applied to NORs from different microorganisms.  

 
 

enzyme/organism Heme c Heme b Heme b3 FeB method /Ref. 

208 43 -162 - 369 DE / this work 

n.d. n.d. -126 n.d. DE / [4] cNOR/Ps. nautica 

215 n.d. -38 n.d. RT / [2] 

310 345 60 320 RT / [3] 
cNOR/Pa. denitrificans 

≅ 300 ≅ 300 80 80 RT / [5] 

Fe-myoglobin/ recombinant n.d. n.d. -158/-46 n.d. SE/ [6, 7] 

n.d. – not determined  

DE – Direct electrochemical measurements  

RT – Visible redox titration 

SE – Spectroelectrochemical measurements  
 
Figure 5.1 – Midpoint redox potentials for the NOR metal centers. Top, schematic representation of the 
NOR structure emphasising the four co-factors, with the correspondent ligands. Bottom, summary table 
of the midpoint redox potentials. The results obtained in this work are in bold.  
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 The results presented in this work show that: 

i) The non-heme FeB presents a very low midpoint redox potential. Previously it 

was believed that the catalytic heme b3 was the Fe center with the lowest redox 

potential, and therefore, responsible for the thermodynamic barrier between 

the low-spin heme electron transfer groups and the catalytic center. 

ii) The binuclear catalytic cluster presents a low redox potential. It was thought 

that only the catalytic heme b3 had a negative midpoint redox potential. The 

results presented here show that both catalytic iron atoms have low redox 

potentials. This is supported by the spectroscopic results published by our 

research group, showing the reduction of the NOR catalytic center only in the 

presence of strong reducing agents.    

iii) The higher midpoint redox potential of the protein is the low-spin heme c. This 

is in agreement with the literature [2, 3] (and rNorC subunit, below in the text), 

since this is metal center that is predicted to interact with the electron 

physiological donor, and to be responsible for the electrons entrance in the 

protein. The high redox potential of this center, when compared with the 

remaining metal irons, promotes the intramolecular electron transfer. 

iv) The results obtained for the midpoint redox potentials in a pH dependence, for 

all the Fe centers, suggest the presence of a hydrogen bond network 

surrounding the heme propionate side chains, most likely due to the presence 

of several conserved aminoacid residues in the NOR subclass. More 

experiments should be conducted in order to elucidate the relevance of these 

residues and confirm this hypothesis. 

 

In parallel to the native NOR, the rNorC subunit was used in direct electrochemical 

experiments. This was is the first time that direct electron transfer was studied with this 

subunit, separately from the catalytic subunit NorB. The results showed that:  

i) the heme c is unequivocally the metal center with the highest positive redox 

potential. The recombinant subunit presents a midpoint redox potential of the 

same magnitude of the one determined for the heme c present in the native 

protein.  
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ii) The 100 mV difference between the heme c potencial of the rNorC and the 

determined for the native enzyme can be justified by the subunit separation. 

This may suggest that the NOR subunits have strong interaction interface (also 

predicted by the determined x-ray crystal structure [8]. Moreover the separation 

of the subunits may produces severe structural changes on the heme c vicinity. 

 

The enzyme under study is capable of NO reduction in a two proton/two electron 

reaction, producing N2O and also presents oxidoreductase activity, reducing O2 in a four 

electron/four protons reaction. This result agrees with the literature [9]. 

In this work are reported direct electrochemical measurements for the immobilized Ps. 

nautica NOR, under catalytic conditions, showing the electrocatalytic response for both 

substrates. This approach was already described in literature [4]. However, in this work 

one of the goals was to use it to quantify the number of electrons involved in each 

substrate reduction. This is the first time that the quantification of electrons involved in 

these reactions was performed using an electrochemical method. Until now the 

mentioned electron/protons stoichiometry reported were achieved by the steady-state 

kinetics [9]. The results here presented, showed beyond doubt that O2 is reduced to H2O, 

without the formation of H2O2.  

Steady-state kinetic assays were made in order to deduce the kinetic mechanisms and 

to determine the kinetic parameters for the NO and O2 reduction. The experiments were 

done using the reduced Ps. nautica cyt.c552 or Ps. nautica NOR immobilized to a graphite 

RDE (where the enzyme receives the electrons directly from the electrode). This is the 

first report on oxidoreductase activity measurements assayed with the enzyme’s 

physiological electron donor.  

Both electron donor systems show beyond doubt: 

i) A higher affinity for NO than for O2. This can be concluded by the lower 

dissociation constant determined for the NO reduction assays.  

ii) Two NO molecules bind to the enzyme in a consecutive mechanism. This was 

expected, since the reaction requires two substrate molecules and the binding 

of two substrate molecules simultaneously to the catalytic center is not 

predicted by the proposed catalytic neither by the determined crystal structure 

[1, 8]. 
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iii) O2 reduction presents inhibitory pattern for the steady-state assays made with 

the cyt. c552 and the immobilized enzyme. This can be due to the inhibitory 

effect of the substrate. 

  

The pH dependence experiments of the immobilized Ps. nautica NOR show the 

presence of a protonable residue probably an acidic residue (Glu or Asp), that has never 

been reported before. This residue is probably a glutamate residues essential for the 

protons translocation [10, 11]. 

The information discussed in this thesis can be useful in future works, since it brings 

new insights to the catalytic binuclear center, in issues such as the heme b3 coordination 

and spin state, or the non-heme FeB redox potential value. The presented kinetic study on 

the secondary substrate, O2, for this enzyme can be seen as a platform for further kinetic 

experiments. Therefore, these results can be used to claim reconsiderations in the NO 

reduction mechanism, a subject under discussion during the last 20 years, and bring to 

light hypothesis on the alternative substrate reduction by this class of proteins. Moreover, 

applications can be developed in the biosensors area, in order to apply it in the different 

research fields such as bioremediation.  
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S.1  Primary Sequence Alignment   

 

 

 

                                         10        20        30        40        50   
                                ....|....|....|....|....|....|....|....|....|....| 
NOR B Ps. nautica               --------------------------------------------------  
NOR B Ps. aeruginosa            --------------------------------------------------  
NOR B Ps. stutzeri              --------------------------------------------------  
NOR B Pa. denitrificans         --------------------------------------------------  
qNOR Ralstonia eutropha H16     MGSYRRLWFLLIAVLAVTFSLLGYYGVEVYRQAPPMPAKVVTTEGRTLFT  
qNOR Achromobacter xylosoxidan  MGPYRKLWFTLIAVLAVTFALLGFYGGEVYRQAPPIPGQVVTADGKPLFG  
qNOR Neisseria gonorrhoeae      MGQYKKLWYLLFAVLAVCFTILGYMGSEVYKKAPPYPEQVVSASGKVLMT  
qNOR Haemophilus parainfluenza  MGQYKKFWYLLVAVLIGAFSILGYYGFEVYREAPPIPQQYVSESGEKVIT  
qNOR Pyrobaculum aerophilum     --MKNGWTYFVLAATVLVYVVYIAMAVWTFYNLPPIPERVVTKSGELLFT  
 
                                         60        70        80        90       100   
                                ....|....|....|....|....|....|....|....|....|....| 
NOR B Ps. nautica               --------------------------------------------------  
NOR B Ps. aeruginosa            --------------------------------------------------  
NOR B Ps. stutzeri              --------------------------------------------------  
NOR B Pa. denitrificans         --------------------------------------------------  
qNOR Ralstonia eutropha H16     GEEILDGQTAWQSVGGMQLGSIWGHGAYQAPDWTADWLHRELSAWLELAA  
qNOR Achromobacter xylosoxidan  RDDILDGQTAWQSVGGMQLGSVWGHGAYQAPDWTADWLHRELTAWLDLAA  
qNOR Neisseria gonorrhoeae      KDDILAGQSAWQSTGGMEVGSILGHGAYQAPDWTADWLHRELSAWLDLTA  
qNOR Haemophilus parainfluenza  HDDILHGQTAWQTTGGMQVGSVWGHGAYQAPDWTADWLHRELTNWLDITA  
qNOR Pyrobaculum aerophilum     AQDIIEGKTLAQKYGLLDYGSFLGFGGYFGIDYTAYTMKFFVDKIGQLKG  
 
                                        110       120       130       140       150   
                                ....|....|....|....|....|....|....|....|....|....| 
NOR B Ps. nautica               --------------------------------------------------  
NOR B Ps. aeruginosa            --------------------------------------------------  
NOR B Ps. stutzeri              --------------------------------------------------  
NOR B Pa. denitrificans         --------------------------------------------------  
qNOR Ralstonia eutropha H16     QDANGRPYAQLDAPAQAALREHVRTEYRGNATDPATNVLTVSKRRAQAIA  
qNOR Achromobacter xylosoxidan  REQHGQDYAQLDARAQAALRADLKAEYRANRSDAATDTLTVSPRRARAMA  
qNOR Neisseria gonorrhoeae      QQAYGKKFDEVSPEEQAVLKTRLADEYRNQSRIKEDGSVVISDTRVKAIE  
qNOR Haemophilus parainfluenza  NQEFGKNFADLNDEQQTLLKARLTKEYRGSK--VENGTVVLSNTRLAAME  
qNOR Pyrobaculum aerophilum     ---------TALASEIKHLMTPQFSAKTSSLFAPAAGVAVVSDEFGAAYK  
 
                                       160       170       180       190       200   
                                ....|....|....|....|....|....|....|....|....|....| 
NOR B Ps. nautica               --------------------------------------------------  
NOR B Ps. aeruginosa            --------------------------------------------------  
NOR B Ps. stutzeri              --------------------------------------------------  
NOR B Pa. denitrificans         --------------------------------------------------  
qNOR Ralstonia eutropha H16     DTAAYYDQLFSDAPALHTTREHYAMKENTLPSAERREQLTHFFFWTAWAA  
qNOR Achromobacter xylosoxidan  QTAAYYGQLFSDAPALHRSRENFAMKENTLPDAARRTQLTHFFFWTAWAA  
qNOR Neisseria gonorrhoeae      SILPYYHGVYGDDPKLQTTREHFAMKNNTLPSQEAREKLFDFFFWTSWSA  
qNOR Haemophilus parainfluenza  KTAQYYISLYGDDPATKVTREHFAMKDNTLPDLQARKDLAKFFFWTAWTA  
qNOR Pyrobaculum aerophilum     QAVDFYKQLFG------PKAEEIGLKPNLITDPEHVRKIVSFFTWGVMIA  
 
                                        210       220       230       240       250   
                                ....|....|....|....|....|....|....|....|....|....| 
NOR B Ps. nautica               --------------------------------------------------  
NOR B Ps. aeruginosa            --------------------------------------------------  
NOR B Ps. stutzeri              --------------------------------------------------  
NOR B Pa. denitrificans         --------------------------------------------------  
qNOR Ralstonia eutropha H16     STARPGHEATYTNNWPHEPLIGNQPTSENVVWSVISVVVLLAGVGFLVWA  
qNOR Achromobacter xylosoxidan  ATEREGKNVTYTNNWPHEPLIDNVPSAENVMWSIISVVVLLAGIGFLVWA  
qNOR Neisseria gonorrhoeae      STNRPGEVFTYTNNWPHEPLINNVPTTENYMWSFTSVVLLLMGIGLLMWG  
qNOR Haemophilus parainfluenza  SAERPNTHASYTNNWPHEPLINNVPTPENVVWSIASVVFLIAGIGFVVWI  
qNOR Pyrobaculum aerophilum     MAN-------YTNGFPYMPGILTPNIHVTVATWVTFFILLLVIMPLAGWI  
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                                        260       270       280       290       300   
                                ....|....|....|....|....|....|....|....|....|....| 
NOR B Ps. nautica               -----------------------MKYESQRVAMPYFIFALILFAGQIVFG  
NOR B Ps. aeruginosa            ----------------MMSPNGSLKFASQAVAKPYFVFALVLFVGQILFG  
NOR B Ps. stutzeri              -----------------SSFNPHLKFQSQAVAKPYFVFALILFVGQVLFG  
NOR B Pa. denitrificans         -----------------------MRYHSQRIAYAYFLVAMVLFAVQVTIG  
qNOR Ralstonia eutropha H16     WAFLRGKEDAPPQAPARDPLLAVALTPSQRALGKYLFLVVALFVFQVFLG  
qNOR Achromobacter xylosoxidan  WAFLRGKEEDEPPAPAKDPLTTFPLTPSQRALGKYLFLVVALFGFQVLLG  
qNOR Neisseria gonorrhoeae      YSFLTKHEEVE--VPSEDPISKIQLTPSQKALGKYVFLTVALFVVQVLLG  
qNOR Haemophilus parainfluenza  WSFKKREDEQDPPIPEVDPLTKLQLTPSQRALGKYLFTVLALFLLQVNLG  
qNOR Pyrobaculum aerophilum     IIKFIDYWKEPRITVDLPP-----PSKEQRLALLGFVLAVLGLSIQGLLG  
 
                                        310       320       330       340       350   
                                ....|....|....|....|....|....|....|....|....|....| 
NOR B Ps. nautica               LILGLQYVVGD-----------FLFPEIPFNVARMVHTNLLIVWLLFGFM  
NOR B Ps. aeruginosa            LIMGLQYVVGD-----------FLFPAIPFNVARMVHTNLLIVWLLFGFM  
NOR B Ps. stutzeri              LIMGLQYVVGD-----------FLFPLLPFNVARMVHTNLLIVWLLFGFM  
NOR B Pa. denitrificans         LIMGWIYVSPN-----------FLSELLPFNIARMLHTNSLVVWLLLGFF  
qNOR Ralstonia eutropha H16     GFTAHYTVEGQKFYGID------VSQWFPYALVRTWHIQSALFWIATGFL  
qNOR Achromobacter xylosoxidan  GFTAHYTVEGQKFYGID------VSQWFPYSLVRTWHIQSALFWIATGFL  
qNOR Neisseria gonorrhoeae      GLTAHYTVEGQGFYGIDEALGFEMSDWFPYALTRTWHIQSAIFWIATGFL  
qNOR Haemophilus parainfluenza  AIVAHYTVEGQEFYGID------ISQYLPYSLVRTWHIQAALFWIAMAFL  
qNOR Pyrobaculum aerophilum     GYLMHKYTEPSTLYGISG-----INNVLPFNVARALHYNLALLWIAVSWV  
                                                                   ↑ 
                                        360       370       380       390       400   
                                ....|....|....|....|....|....|....|....|....|....| 
NOR B Ps. nautica               GATYYMVPEE-AQTELHSPLLAWILFWVFAAAGTLTILGYLFVDYATLAE  
NOR B Ps. aeruginosa            GAAYYLVPEE-SDCELYSPRLAWILFWVFAAAGVLTVLGYLLVPYAGLAR  
NOR B Ps. stutzeri              GAAYYLIPEE-SDCELHSPKLAIILFWVFAAAGVLTILGYLFVPYAALAE  
NOR B Pa. denitrificans         GATYYILPEE-AEREIHSPLLAWIQLGIFVLGTAGVVVTYLFDLFHG---  
qNOR Ralstonia eutropha H16     AAGLFLAPLINGGKDPKYQRLGVEVLFWALVVVVVGSFTGNYLAIAQKLP  
qNOR Achromobacter xylosoxidan  AAGLFLAPLINGGRDPKFQKVGVDILFWALVLVVVGSFTGNYLAIAQIMP  
qNOR Neisseria gonorrhoeae      TAGLFLAPIVNGGKDPKFQRAGVNFLYIALFIVVGGSYAGNFFALTHILP  
qNOR Haemophilus parainfluenza  AGGLFLAPIINGGKDPKFQKLGVDVLFWALVVLVVGSFTGSYLAIAHILP  
qNOR Pyrobaculum aerophilum     SFALFVLPYL----GVKLSKGKVLAILGAGAFTALGILLGVWSSYLQLLP  
 
                                        410       420       430       440       450   
                                ....|....|....|....|....|....|....|....|....|....| 
NOR B Ps. nautica               VTMNKLLPTMGREFLEQPTITKIGIAVVVVAFLYNIAMTALKGRKTVVNI  
NOR B Ps. aeruginosa            LTGNELWPTMGREFLEQPTISKAGIVIVALGFLFNVGMTVLRGRKTAISM  
NOR B Ps. stutzeri              MTRNDLLPTMGREFLEQPTITKIGIVVVALGFLYNIGMTMLKGRKTVVST  
NOR B Pa. denitrificans         ---HWLLGKEGREFLEQPKWVKLGIAVAAVIFMYNVSMTALKGRRTAVTN  
qNOR Ralstonia eutropha H16     AHLNFWLGHQGYEYVDLGRLWQIGKFAGILIWLVLMMRGILPALRARGTD  
qNOR Achromobacter xylosoxidan  PDLNFWLGHQGYEYVDLGRLWQIGKFAGICFWLVLMLRGIVPALRTPGGD  
qNOR Neisseria gonorrhoeae      PEFNFWFGHQGYEYLDLGRFWQLLLMVGLLLWLFLMLRCTVSAFKEKGVD  
qNOR Haemophilus parainfluenza  EEWSFMFGHQGYEFIDLGRFWQAVKFAGILFWLVLMLRGTVNAFKQPG-D  
qNOR Pyrobaculum aerophilum     DPLWFIIGSQGRPVISQGTLWLL-LIAALLSYLSVTVWRASKTSPEPIQP  
                                               
                                        460       470       480       490       500   
                                ....|....|....|....|....|....|....|....|....|....| 
NOR B Ps. nautica               VLITGLVGLAVLWLFSFYNP-------GNLATDKYFWWFVVHLWVEGVWE  
NOR B Ps. aeruginosa            VLMTGLIGLALLFLFSFYNP-------ENLTRDKFYWWWVVHLWVEGVWE  
NOR B Ps. stutzeri              VMMTGLIGLAVFFLFAFYNP-------ENLSRDKFYWWFVVHLWVEGVWE  
NOR B Pa. denitrificans         VLLMGLWGLVLLWLFAFYNP-------ANLVLDKQYWWWVIHLWVEGVWE  
qNOR Ralstonia eutropha H16     RNLLALLTSSVVAIGLFYGAGLAYGERTSLTVMEYWRWWVVHLWVEGFFE  
qNOR Achromobacter xylosoxidan  KNLLALLTASVGAIGLFYGAGFFYGERTHLTVMEYWRWWIVHLWVEGFFE  
qNOR Neisseria gonorrhoeae      KNLLAIFVASMVGVGVFYAPGLFYGEKSPIAVMEYWRWWVVHLWVEGFFE  
qNOR Haemophilus parainfluenza  KNLLALFFASVIAIGLFYGPALFYGEHTHISVMEYWRWWVVHLWVEGFFE  
qNOR Pyrobaculum aerophilum     LVKILSIALAGTAFGAFMGALPVVTPWWHFTIDEYFRWIIIHSFVEGFWP  
                                                                        ↑   ↑    
                                        510       520       530       540       550   
                                ....|....|....|....|....|....|....|....|....|....| 
NOR B Ps. nautica               LIMGAILAYVLIKLTGVDREVIEKWLYVIIAMALITGIIGTG-HHFFWIG  
NOR B Ps. aeruginosa            LIMGAILAFVLVKITGVDREVIEKWLYVIIAMALISGIIGTG-HHYFWIG  
NOR B Ps. stutzeri              LIMGAMLAFVLIKVTGVDREVIEKWLYVIIAMALITGIIGTG-HHFFWIG  
NOR B Pa. denitrificans         LIMAAILAFLMLKLTGVDREVVEKWLYVIVATALFSGILGTG-HHYYWIG  
qNOR Ralstonia eutropha H16     VFATTALAFIFSTLGLVSRPMATAASLASASLFMLGGIPGTF-HHLYFAG  
qNOR Achromobacter xylosoxidan  VFATTALAFIFSTLGLVSRRMATTASLASASLFMLGGIPGTF-HHLYFAG  
qNOR Neisseria gonorrhoeae      VFATAAFAFVFYNMGFVRRSTATASTLAAAAIFMLGGVPGTL-HHLYFSG  
qNOR Haemophilus parainfluenza  VFSVAALSFIFVSLGLVSRRTATVATITEAALFLIGGIPGTF-HHLYFAG  
qNOR Pyrobaculum aerophilum     AIVIPILLILLVIAGMVPPKMAVAAAGLDATLEIVTGMIGTA-HHYYWGG  
                                                                          ↑↑ 
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Figure S.1 – Primary sequence alignment from different NOR catalytic subunits. The sequences 
presented are from Pseudomonas nautica, aeruginosa, stutzeri and Paracoccus denitrificans. qNOR from Ralstonia 
eutropha H16, Achromobacter xylosoxidan, Neisseria gonorrhoeae and Pyrobaculum aerophilum. Black arrows point 
the iron co-factors ligands,  show the conserved Arg residues and  indicate the conserved protonable 
residues proposed for proton translocation towards the active site.  

       
 
                                        560       570       580       590       600   
                                ....|....|....|....|....|....|....|....|....|....| 
NOR B Ps. nautica               PPEYWLWLGSVFSALEPLPFFMMVVFAFNMINRRRRN---HPNKAAMLWA  
NOR B Ps. aeruginosa            VPGYWLWLGSVFSALEPLPFFAMVLFAFNTINRRRRD---YPNRAVALWA  
NOR B Ps. stutzeri              APTVWLWVGSIFSALEPLPFFAMVLFALNMVNRRRRE---HPNKAASLWA  
NOR B Pa. denitrificans         LPAYWQWIGSIFSSFEIVPFFAMMSFAFVMVWKGRRD---HPNKAALVWS  
qNOR Ralstonia eutropha H16     TTTPVMAVGAAFSALEVVPLIVLGHEAWENWSLKRRAPWMADLKWPLMCF  
qNOR Achromobacter xylosoxidan  TTTPVMAIGASFSALEVVPLIVLGHEAWENWRLKTRAAWMDNLKWPLMCF  
qNOR Neisseria gonorrhoeae      STSASMAIGACFSALEVVPLVLLGREAYEHWSYQHLSDWAKRLRWPLMCF  
qNOR Haemophilus parainfluenza  ATTPIIAVGASFSALEVVPLVLLGHEAWEHWEMQQKTPWMERLKWPLYCF  
qNOR Pyrobaculum aerophilum     QPTLWMYVGAVMSTLEVLPIGFLIAYAVVLWKRGEYKT--ELQKTLLTFV  
                                               
                                        610       620       630       640       650   
                                ....|....|....|....|....|....|....|....|....|....| 
NOR B Ps. nautica               MGTTVMAFLGAGVWG-FLHTLAPVNWYTHGSQITAAHGHMAF---YGAYV  
NOR B Ps. aeruginosa            MGTTVMAFLGAGVWG-FMHTLAPVNYYTHGTQLTAAHGHMAF---YGAYA  
NOR B Ps. stutzeri              IGTTVTAFLGAGVWG-FMHTLAPVNYYTHGSQLTAAHGHLAF---YGAYA  
NOR B Pa. denitrificans         LGCTVLAFFGAGVWG-FLHTLHGVNYYTHGTQITAAHGHLAF---YGAYV  
qNOR Ralstonia eutropha H16     VAVAFWNMLGAGVFG-FMINPPIALYYIQGQNTTPVHAHAAL---FGVYG  
qNOR Achromobacter xylosoxidan  VAVAFWNMLGAGVFG-FMINPPVSLYYIQGLNTTPVHAHAAL---FGVYG  
qNOR Neisseria gonorrhoeae      VAVAFWNMIGAGVFG-FLINPPISLFYIQGLNTSAVHAHAAL---FGVYG  
qNOR Haemophilus parainfluenza  VAVAFWNMLGAGVFG-FLINPPISLYYIQGLNTTAVHAHAAL---FGVYG  
qNOR Pyrobaculum aerophilum     LVAAFGGAIGVVAFGAGLINMPVVNYYLHGSQATMVHAHLAMPMAYGVPT  
                                                                    ↑ ↑  
                                        660       670       680       690       700   
                                ....|....|....|....|....|....|....|....|....|....| 
NOR B Ps. nautica               MIVLTIISYAMPIMRGRPYGNSNTAQIVEMWGFWLMTISMVFITLF-LTA  
NOR B Ps. aeruginosa            MIVMTIISYAMPRLRGIGEAMDNRSQVLEMWGFWLMTVAMVFITLF-LSA  
NOR B Ps. stutzeri              MIVMTMISYAMPRLRGLGEAPDARAQRIEVWGFWLMTISMIAITLF-LTA  
NOR B Pa. denitrificans         CLVLALVTYCMPLMKNR----DPYNQVLNMASFWLMSSGMVFMTVT-LTF  
qNOR Ralstonia eutropha H16     FLALGFTLLVLRYVRPA----YRLSPTLMKTAFWGLNLGLVLMIGTSLLP  
qNOR Achromobacter xylosoxidan  FLALGFTLLVLRYIRPQ----YALSPGLMKLAFWGMNLGLALMIFTSLLP  
qNOR Neisseria gonorrhoeae      FLALGFVLLVARYLKPN----ARFDDKLMTWGFWLLNGGLVGMIAISLLP  
qNOR Haemophilus parainfluenza  FLALGFVFLIARYLRPD----TPFNDKLMKWGFWLLNGGLVLMIVSSLLP  
qNOR Pyrobaculum aerophilum     MLMWTVAFALAGAFGAVQLRRLRMAVVIMAVGFYLQVTLSLMLLMTNQFV  
 
                                        710       720       730       740       750   
                                ....|....|....|....|....|....|....|....|....|....| 
NOR B Ps. nautica               AGVLQVWLQRIPESGEA-LSFMAGQDQIALFYWMRFVAGAFFMAGLVVYF  
NOR B Ps. aeruginosa            AGVLQVWLQRMPADGAA-MTFMATQDQLAIFYWLREGAGVVFLIGLVAYL  
NOR B Ps. stutzeri              AGVVQIWLQRIPADGAA-MSFMNTADQLAIFFWLRFIAGVFFLIGLVCYL  
NOR B Pa. denitrificans         AGTVQTHLQRVEGG-----FFMDVQDGLALFYWMRFGSGVAVVLGALLFI  
qNOR Ralstonia eutropha H16     IGIIQFLASVEHGTWYARSEAFMQQPILQTLRWVRTFGDVVFIVGAVSFA  
qNOR Achromobacter xylosoxidan  IGLIQFHASVSEGMWYARSEAFMQQELLKNLRWGRTFGDVVFLLGALAIV  
qNOR Neisseria gonorrhoeae      VGVIQAYASITHGLWYARSEEFLQMEILDTLRWVRTAPDLIFIGGAICVA  
qNOR Haemophilus parainfluenza  IGIIQGYASISEGLWYARSEEFMQQPLFDTLRWVRLGGDVVFIFGALAFF  
qNOR Pyrobaculum aerophilum     TTTQVGYWASKAIFAPDGTPAFWSRQDIQMYVWLRMIGDVVAAVGIGTFL  
                                                                   
                                        760       770       780   
                                ....|....|....|....|....|....|. 
NOR B Ps. nautica               GSFFIKGEASPAEEVRGPATADA--------  
NOR B Ps. aeruginosa            LSFRR-----------GKAAA----------  
NOR B Ps. stutzeri              YSFRQ--RGRVPVVVAAPAAA----------  
NOR B Pa. denitrificans         YAVLFP---RREVVKAGPVQAHKDGHLEAAE  
qNOR Ralstonia eutropha H16     WQVVLGLANRTPLAADAVPAGMKPAAR----  
qNOR Achromobacter xylosoxidan  MQVILGLLSGKP--AQAEPRLQPKAARG---  
qNOR Neisseria gonorrhoeae      IQATKIVFGRDK-------------------  
qNOR Haemophilus parainfluenza  WQIFTMIFFKPKKTA----------------  
qNOR Pyrobaculum aerophilum     IYMLRGLPKVFKT------------------  
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S.2 Spin Quantitation 
 

The Pseudomonas nautica NOR heterodimeric complex, presents a low-spin heme c, two 

low-spin, the heme b and heme b3, and one non-heme FeB [1]. The highly anisotropic 

heme c signal is very complicated to simulate. However, the low spin heme b is bis-His 

coordinated and presents the g signals well defined, and therefore using specific software 

(WINEPR and SimFonia) it is possible to simulate the low-spin heme b signal present in 

the Ps. nautica NOR sample (figure S.2). 

 

 
Figure S.2 – Low-spin heme b simulation spectrum. A - Shows the EPR spectrum at 9.653 GHz of the 
as-isolated, Pseudomonas nautica NOR (265 μM in 100 mM KPB, pH 7, 0.02 % (w/v) DDM, 0.01 % (v/v) 
PE). B - is the low-spin heme b theoretical simulation using a gx = 2.9971, gy=2.2535 and gz = 1.4276. 
Experimental conditions of the acquired spectrum (spectrum A): temperature = 12 K, microwave power 
= 0.2 mW, modulation frequency = 100 kHz, modulation amplitude = 0.5 mT, receiver gain = 1×105.  
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Combining the simulated spectrum with other spectrum in which is known the spin 

amount (CuEDTA, figure S.3), the spin quantitation for the low-spin hemes b and c 

signals can be determined, using the method described by De Vries and Albracht [2]. This 

method is used to estimate the spin concentration of highly anisotropic low-spin heme 

EPR signals and is based on the mathematical expressions that account the 

proportionality factor reported by Aasa and Väanngård [3]. 

 

 

 

 

 

 

 Spin 

heme b 0.9 ± 0.18 

heme c 0.7 ± 0.14 

 

 

 

 

 

 

 

 

Figure S.3 – CuEDTA (3.076 mM) EPR spectrum at 9.653 
GHz. Experimental conditions of the acquired spectrum: 
temperature = 12 K, microwave power = 0.02\ mW, 
modulation frequency = 100 kHz, modulation amplitude = 
0.5 mT, receiver gain = 2×105.  
 

Table S.1 – Spin quantitation for the low-spin 
heme b and heme c.  
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S.3 Cloning the Pseudomonas nautica NorC subunit  

 

The NorC subunit coding sequence was amplified, by PCR. Using the Pseudomonas 

nautica 617, partially purified genomic DNA and the flowing forward and reverse primers: 

NORC_primer1 5´ATTGGATCCCATATGGCCGAGCGCTTTACC3’ and 

NORC_primer2 5TATAAGCTTCTCGAGTTACCCCTCGATGTTGGGTGGC3’, the 

450 bp fragment containing the protein sequence was amplified. The fragment was 

inserted into the pCRII-TOPO vector (Invitrogen), according the manufactures 

specifications [4]. The resultant plasmid was transformed in Escherichia coli competent cells 

as mention in the protocol [4] (alternative protocol for transformation of competent cells 

is described in the supporting information S.8.5). The transformation reaction was platted 

in solid LB/ampicillin/x-gal medium and incubated overnight at 37 ºC. This commercial 

cloning system permits the white/blue screening (positive/negative). Different white 

colonies were isolated through a plasmidic DNA purification kit (midiprep, Genomed) and 

further sequenced. One of the positive clones was used to double hydrolysis, using 

previously chosen restriction enzymes (NdeI and XhoI). The vector, pET-21-c was equally 

treated with the same restriction enzymes. The hydrolysis products were separated in an 

agarose gel 1.0 % (w/v) migrated by electrophoresis. The desired fragments were sliced 

from the agarose gel and purified with a DNA gel extraction kit (Genomed). The double-

hydrolysed vector and fragment containing the coding sequence of the NorC subunit, 

were quantified and ligated in a reaction mixture, using the T4 DNA ligase (Invitrogen), in 

order to achieve the pAD11 vector (figure S.4). The reaction product was transformed in 

E. coli competent cells (protocol described in supporting information S.8). Figure S.4 

show a schematic resume of the process done for cloning the NorC subunit coding 

sequence into the pET-21-c. For a detailed description of this cloning strategy, and 

proceedings check the reference [5].  
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Figure S.4 – Cloning the Pseudomonas nautica NorC subunit. The scheme represents the steps for cloning 
NorC subunit into pCRII-TOPO, subsequent hydrolysis with restriction enzymes and insertion into the 
pET-21-c vector, in order to achieve the pAD11 vector.  
 
 

Positive clones were isolated as described earlier in the text and sequenced. The results 

shown the correct ORF of the NorC subunit in the pAD11 vector, as it can be seen in the 

alignment present in figure S.5 [1, 6]. The overexpression optimization, the biochemical 

and spectroscopic characterization of the recombinant NorC subunit (rNorC) is described 

by Mesquita work [7]. 
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Figure S.5 – Nucleotide sequence alignment of the pAD11 vector with the Pseudomonas nautica NorC 
coding sequence. Under the nucleotide sequences it is shown the correspondent primary sequence [6].   

                     10        20        30        40        50        60           
                  ....|....|....|....|....|....|....|....|....|....|....|....| 
NorC Ps. nautica  ------------------ATGGCCGAGCGCTTTACCAAAAGCATGGCCAGGAACATATAT  
                                     M  A  E  R  F  T  K  S  M  A  R  N  I  Y  
pAD11             TAAGAAGGAGATATACATATGGCCGAGCGCTTTACCAAAAGCATGGCCAGGAACATATAT  
                                     M  A  E  R  F  T  K  S  M  A  R  N  I  Y  
 
                           70        80        90       100       110       120      
                  ....|....|....|....|....|....|....|....|....|....|....|....| 
NorC Ps. nautica  CTGGGGGGAAGTGCCTTCTTCGTCCTGCTGTTCCTGGCCCTGACTTTTGACACTCAGCTG  
                   L  G  G  S  A  F  F  V  L  L  F  L  A  L  T  F  D  T  Q  L  
pAD11             CTGGGGGGAAGTGCCTTCTTCGTCCTGCTGTTCCTGGCCCTGACTTTTGACACTCAGCTG  
                   L  G  G  S  A  F  F  V  L  L  F  L  A  L  T  F  D  T  Q  L  
 
                          130       140       150       160       170       180     
                  ....|....|....|....|....|....|....|....|....|....|....|....| 
NorC Ps. nautica  CGTGCTATGCCCGAGCGGGATAACCGCGACGAGCTCACCGAACAGGTGGTGCGCGGCAAA  
                   R  A  M  P  E  R  D  N  R  D  E  L  T  E  Q  V  V  R  G  K  
pAD11             CGTGCTATGCCCGAGCGGGATAACCGCGACGAGCTCACCGAACAGGTGGTGCGCGGCAAA  
                   R  A  M  P  E  R  D  N  R  D  E  L  T  E  Q  V  V  R  G  K  
 
                          190       200       210       220       230       240     
                  ....|....|....|....|....|....|....|....|....|....|....|....| 
NorC Ps. nautica  CATCTGTGGGAAGAGAACAACTGTGTCGGTTGTCATTCCATCAGGGGCGAAGGCGCTTAC  
                   H  L  W  E  E  N  N  C  V  G  C  H  S  I  R  G  E  G  A  Y  
pAD11             CATCTGTGGGAAGAGAACAACTGTGTCGGTTGTCATTCCATCATGGGCGAAGGCGCTTAC  
                   H  L  W  E  E  N  N  C  V  G  C  H  S  I  M  G  E  G  A  Y  
 
                          250       260       270       280       290       300     
                  ....|....|....|....|....|....|....|....|....|....|....|....| 
NorC Ps. nautica  TTCGCTCCCGAACTGGCCAACGTGTTTGACCGCCGTGGCGGCGGTGATACTGAGGTCTTC  
                   F  A  P  E  L  A  N  V  F  D  R  R  G  G  G  D  T  E  V  F  
pAD11             TTCGCTCCCGAACTGGCCAACGTGTTTGACCGCCGTGGCGGCGGTGATACTGAGGTCTTC  
                   F  A  P  E  L  A  N  V  F  D  R  R  G  G  G  D  T  E  V  F  
 
                          310       320       330       340       350       360     
                  ....|....|....|....|....|....|....|....|....|....|....|....| 
NorC Ps. nautica  AAGGCATACATGAAAGCCTGGATGAACGCCATGCCCACGAATATTCCGGGCCGGCGCCAG  
                   K  A  Y  M  K  A  W  M  N  A  M  P  T  N  I  P  G  R  R  Q  
pAD11             AAGGCATACATGAAAGCCTGGATGAACGCCATGCCCACGAATATTCCGGGCCGGCGCCAG  
                   K  A  Y  M  K  A  W  M  N  A  M  P  T  N  I  P  G  R  R  Q  
 
                          370       380       390       400       410       420     
                  ....|....|....|....|....|....|....|....|....|....|....|....| 
NorC Ps. nautica  ATGCCGGATTTCAATCTGAGTGATTCCGAGGTCGAAGACCTGGCCGCTTTCCTGGAGTGG  
                   M  P  D  F  N  L  S  D  S  E  V  E  D  L  A  A  F  L  E  W  
pAD11             ATGCCGGATTTCAATCTGAGTGATTCCGAGATCGAAGACCTGGCCGCTTTCCTGGAGTGG  
                   M  P  D  F  N  L  S  D  S  E  I  E  D  L  A  A  F  L  E  W  
 
                          430       440       450       460       470       480     
                  ....|....|....|....|....|....|....|....|....|....|....|....| 
NorC Ps. nautica  ACATCCAAGATCGACGACAACGGTTGGCCACCCAACATCGAGGGGTAA------------  
                   T  S  K  I  D  D  N  G  W  P  P  N  I  E  G  *              
pAD11             ACATCCAAGATCGACGACAACGGTTGGCCACCCAACATCGAGGGGTAACTCGAGAAGCTT  
                   T  S  K  I  D  D  N  G  W  P  P  N  I  E  G  *  L  E  K  L  
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S.4 Laviron’s Mathematical Approach 

 

The use of a layer diffusionless regime, allows the application of Laviron’s 

mathematical formulation, to determine kinetic parameters. In this section is presented a 

brief description of the mathematical approach to determine the heterogeneous rate 

constant ks.  

 When the reduced and oxidised species are strongly adsorbed to the electrode surface, 

the electrochemical reaction concerns exclusively the adsorbed molecules, thus: 

 

⎥⎦
⎤

⎢⎣
⎡ −−

Γ−⎥⎦
⎤

⎢⎣
⎡ −−

Γ=
RT

EEnF
RT

EEnFnFAki ROs
)º'()1(exp)º'(exp{ αα                       (eq. S.1) 

 

TRO Γ=Γ+Γ             (eq. S.2) 

dtnFAdi O /Γ−=                                                            (eq. S.3) 

 

 Where, ΓO and ΓR are the surface concentration of the oxidised and reduced species 

(mol.cm-2) respectively, ΓR the constant sum of the latest two, and A the electrode area 

(cm2). N, F, α, R, and T have the usual significance and the current is expressed in 

amperes (A).  

The current can be defined by the dimensionless function (eq. S.4): 

 

(eq. S.4) 

 

(eq. S.5) 

 

 When m ∞ (ν 0) the system tends to the reversibility and the peak width at mid 

height tends to 90.6 /n (mV). For m 0 (high scan rates), the system tends to 

irreversibility and in this total irreversible case, the width of the cathodic and anodic peaks 

are equal to 62.5/αn and 62.5/(1-α)n (mV) respectively.  

From the experimental difference between the anodic and cathodic peaks (ΔEp), and 

for a known α value, the Ks can be calculated. However, two cases can be considered 
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ΔEp> 200/n mV and ΔEp < 200/n mV. The obtained results were all in the second case 

(ΔEp < 200/n mV), so the determination of α can not be precise. For α values close to 

0.5 (between 0.3 and 0.7), the ks can still be determined with a negligible error. Using a 

theoretical curve of nΔEp as a function of 1/m, and from direct interpolation of the 

experimental ΔEp values, the ks can be estimated, according to equation S.5 [8].  

  

S.5 Oxidoreductase Activity Assays Using a Coupled Enzyme System   

 

In order to investigate the formation of H2O2 in the O2 reduction process developed 

by the Ps. nautica NOR, oxidoreductase activity assays were conducted in the presence of 

peroxidase (Sigma). 

Experiments were accomplished in 100 mM KPB buffer pH 6, 0.02 % (w/v) DDM, 

at room temperature, in an aerobic environment. TMPD (1mM) was used as the electron 

donor for both enzymes (NOR-0.5 µM and peroxidase-0.5 µM). The reaction was 

monitorized spectophotometrically, following the TMPD oxidation, recording the 

absorbance changes at 520 nm (ε520 nm = 6.1 mM-1 cm-1) [9].  The assays were performed 

in a quartz cuvette, and the reaction was started by the addiction of the Ps. nautica NOR. 

Control experiments were assayed in parallel to test TMPD self oxidation and peroxidase 

activity with this chemical electron donor, in the presence and absence of H2O2. 

 

S.6 The Pseudomonas nautica NOR Activity  

 

 Kinetic experiments using a NO sensor (ISO NO, World Precision Instruments) were 

accomplished in our research group for the Ps. nautica NOR. The detailed experimental 

procedures for these assays are described in the supporting information S.8.4.  

 The following unpublished data (figure S.6 and S.7) were kindly given by Carlos E. 

Martins, member of our research group. The results show the Ps. nautica NOR activity in 

the presence of NO, with different protein concentrations, using two electron donors: the 

sodium ascorbate/PMS (ASC/PMS) and the reduced Ps. nautica cyt.c552 (the enzyme’s 

physiological electron donor).  
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Chemical Electron Donors (ASC/PMS) 

 

 
Figure S.6 – The Pseudomonas nautica NOR activity (µM NO reduced.minite-1) using ASC (10 mM) /PMS 
(100 µM) as electron donor. The experimental details are described in the supporting information S.8.4. 
 
 

Physiologic Electron Donor (Ps. nautica cyt.c552)  

 

 
Figure S.7 – The Pseudomonas nautica NOR activity (µM NO reduced.minite-1) using reduced Pseudomonas 
nautica cyt.c552 (20 µM). The experimental details are described in the supporting information S.8.4.  
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S.7. The Pseudomonas nautica NOR Oxidoreductase Activity  

 

Chemical Electron Donor (TMPD) 

 

The NOR oxidoreductase activity was investigated using TMPD (1 mM) as the 

chemical electron donor. The assays were monitored by absorbance changes at 520 nm 

(ε520 nm= 6.1 mM-1 cm-1) [9].  The experiments were made in a quartz cuvette, in 100 mM 

KPB buffer pH 7, 0.02 % (w/v) DDM, at room temperature, in an anaerobic 

environment. O2 was inserted into the system by additions of different volumes of O2 

saturated water, maintained in a sealed flask and using a gastight syringe. Control 

experiments were assayed in parallel to test the TMPD self oxidation in the presence of 

O2. The reactions were initiated by the substrate addiction, in different enzyme 

concentrations. The results are shown in figure S.8.  

 
Figure S.8 – The Pseudomonas nautica NOR oxidoreductase specific activity (µmol TMPD.minite-1. mg 
NOR-1) using TMPD (1 mM) as the electron donor.  
 

 

Concentration Dependence of the Physiological Electron Donor  

 

The NOR oxidoreductase activity was investigated, using a modified Clarck type 

electrode. Platinum and silver were set as the working and counter electrodes respectively. 
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A SCE was inserted as the reference electrode, and the three electrodes were connected 

to a µAUTOLAB type II potentiostat with the potential set to – 0.7 V during the 

experiments. The data were acquired using the GPES software. Assays were done in an 

anaerobic environment, at room temperature, in 20 mM mixture buffer, (sodium citrate, 

MES, HEPES, AMPSO) pH 7.6, 0.02 % (v/v) DDM. The reduced Ps. nautica cyt. c552 was 

used as the electron donor. The substrate was dissolved in water and introduced in the 

reaction from a sealed flask using a gastight syringe.  

In order to determine the optimal concentration for the physiological electron donor, 

oxidoreductase was assayed in different concentrations of cyt. c552, maintaining the 

substrate and enzyme concentration constant. The achieved results are presented in figure 

S.9. 

 

 
Figure S.9 – The Pseudomonas nautica NOR oxidoreductase activity (µM O2 reduced.minite-1) using 
different concentration of reduced Pseudomonas nautica cyt. c552. 
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S.8 Methodologies and solutions 

 S.8.1 Tricine Sodium Dodecyl Sulfate Electrophoresis 

 

Table S.2 – Solutions for  tricine sodium dodecyl sufate gel electrophoresis [10].  

Solution Reagents Amount Notes  

I 

Acrylamide/bisacrylamide 

(49.5% T, 3 % C)1 

 

Acrylamide 

Bisacrylamide 

H2O 

48 g 

1.5 g  

up to 100 ml 

 

II 

Gel buffer 

 

 

Tris  

SDS 

H2O 

36.34 g  

0.3 g  

up to 100 ml 

Adjust the pH to 8.45  

III 

Ammonium persulfate 

 

 

Ammonium 

persulfate 

H2O 

 

0.1 g 

up to 100 ml 

 

IV 

Cathodic buffer 

Tris  

Tricine 

SDS 

H2O 

 

121,2 g 

179.2 g 

10 g 

up to 1000 ml 

Should be at pH 8.45 

(without adjustment) 

V 

Anodic buffer 

Tris  

H2O 

 

121,2 g 

up to 1000 ml 

Adjust the pH to 8.9 

VI 

Sample buffer 

SDS 

β-Mercaptoethanol 

Glycerol 

Coomassie blue 

Tris –HCl pH 7  

(1 M) 

1.2 g  

600 µl 

2.44 ml (3 g) 

5 mg 

up to 1.5 ml  

 

When using for heme 

staining, change β-

Mercaptoethanol for H2O. 

1 % T stands for the total percentage of acrylamide and bis- acrylamide, determined by the 

following equation: %T=a + b/V. %C stands for the bisacrylamide percentage, compared with the 

total amount, it is estimated by the equation: %C = a × 100/ (a + b). a, b and V stand for amount 

of acrylamide, bisacrylamide and the volume, respectively 
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Table S.3 – Volumes required for tricine sodium dodecyl sulfate gel preparation.  

 

 Running gel Stacking gel 

Stock solution 10 % T, 3 % C1 16 % T, 3 % C1 4 % 

I 1 ml 1.67 ml 166 µl 

II 1.67 ml 1.67 ml 500 µl 

Glycerol 400 µl 400 µl - 

H2O 1930 ml 1260 ml 1334 ml 

III 25 µl 25 µl 15 µl 

TEMED 2.5 µl 2.5 µl 1.5 µl 

 

 The tricine SDS-PAGE gels were done by mixing the solutions I, II and III with 

glycerol, TEMED (table S.3) and water in the proportions described in table S.3. After the 

running gel polymerization, the stacking gel was prepared as indicated in the previous 

table (table S.3) and polymerization was attended. Protein samples were prepared and 

diluted with sample buffer (table S.2) in a ratio 1:4. (v/v), and heated at 40 ºC during 30 

minutes. After applying the samples in the gel, these were submitted to a constant current 

(35 or 70 mA, if one or two gels) using a 1:10 dilution of the cathode and anode buffers 

(table S.2). After sample migration in the gel, these were stained properly.  

 

Coomassie staining: total protein was detected by immersion of the tricine SDS-PAGE 

gels in a 0.05 % (p/v) brilliant blue R250, 7.5 % (v/v) glacial acetic acid, 45 % (v/v) 

methanol solution during 30 minutes. Distaining was accomplished by switching the 

previous solution to a 7.5 % (v/v) glacial acetic acid, 45 % (v/v) methanol solution.  

 

Heme staining: peroxidatic heme detection was achieved by immersion of the tricine 

SDS-PAGE gels in a 30 % (p/v) TMBZ, 0.3 % (v/v) methanol, 1.75 mM sodium acetate, 

0.7 mM acetic acid solution (freshly prepared) during 30 minutes in the dark. Peroxidatic 

activity was initiated by addiction of 400 to 800 µl of a commercial 30 % H2O2 solution. 

Reaction was maintained in the dark until developing the blue bands, indicating the 

peroxidatic hemes presence. To inactivate the reaction, the gels were immersed in a 0.3 % 

(v/v) isopropanol, 1.75 mM sodium acetate, 0.7 mM acetic acid solution.  
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 S.8.2 Protein Quantification  

 

 Protein quantification was assayed using a commercial BCA kit (Sigma). The 

calibration curve was accomplished using bovine serum albumin (BSA) as a standard. 

After rigorous biochemical characterization, protein (Ps. nautica NOR) concentration was 

estimated through its molar extinction coefficient at 411 nm (295 mM-1cm-1) for the as-

isolated sample [1]. 

 

 S.8.3 Simultaneous Detection of Heme b and Heme c 

 

 Protein samples can harbour different heme types. Berry and Trumpower [11] 

developed a method to quantify independently different type hemes, when they are 

present in the same biological sample. The principle of the method consists in the 

complexation of the heme co-factor with pyridine in an alkaline medium. The addiction 

of sodium dithionite will enhance the heme-pryridine complex reduction, that can be 

distinguished by slightly changes in their molar extinction coefficients [11]. Gathering the 

difference spectrum of the complex pyridine-porphyrin (reduced menus oxidised) and the 

reported molar extinction coefficients at different wavelengths, it is possible to determine 

the total concentration of the different hemes present in the same sample. 

 From freshly prepared stock solutions, a 40% (v/v) pyridine, 200 mM NaOH, 0.6 mM 

K3[Fe(CN)6] solution was prepared. This solution was diluted 1:2 with a known amount 

of the biological sample to analyse. After obtaining the oxidised spectrum, the mixture is 

reduced by the addition of sodium dithionate. The mixture must be homogenized quickly 

and the spectra recorded for several minutes, until the soret band stops increasing.  

Calculations must be done using the spectrum with the maximum absorbance at the soret 

peak [11].  

 

 S.8.4 NO Activity Assays 

 

 Kinetic assays for NO reduction were performed using a ISO NO sensor (World 

Precision Instruments). Electrode calibration was performed using an acidic KI solution 
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(10 mM, 4.15 g KI, 1.4 ml H2SO4, H2O up 250 ml) and a standard NO2
−

 standard 

solution. According with the chemical reaction:  

 

 

 

 NO is formed and detected in the sensor. The addition of different NO2
−

 amounts 

can be made, in order to achieve a calibration curve.  

 

 
 

Figure S.10 – ISO NO (World Precision Instruments) sensor setup. The figure shows the specific 
chamber to install the NO sensor, the introduction of an argon flux in order to maintain the anaerobic 
environment for reaction.   
 
 
 Reactions where made in a specific chamber (figure S.10) where the electrode is 

inserted vertically. Oxygen was removed by a constant positive argon flux. Anaerobic 

solutions were added to the reaction chamber with the use of gastight syringes and the 

reaction was started with the addiction of the enzyme (Ps. nautica NOR) or the crude 

protein extract in study. Assays were done using combined chemical electron donors 

Asc/PMS (10 mM and 100 µM, respectively) or reduced Ps. nautica cyt. c552. Pure protein 

samples or crude extracts were quantified as mentioned and used in a concentration of 6 

mg/l concentration. ISO-NO Mark II electrode was connected to a Quad 16/EFA-400 

and computer. Data were collected and treated using DataTraxTM software (World 

Precision Instruments).  

 

2 KNO2    +   2 KI    +    H2SO4                           2 NO    +     I2    +    2 H2O    +    2 K2SO4 



Supporting Information  
_________________________________________________________________________________________________________________ 

 
________________________________________________________________________________________________________ 166

 S.8.5 Molecular biology  

 

Table S.4 – Reagents and correspondent amounts for Luria broth and S.O.C. solutions  

 Concentration (g/l) 

Reagent LB S.O.C. 

Bactotryptone 10 20 

Yeast extract 5 5 

NaCl 10 10 

KCl - 0.19 

MgCl2 - 2.0 

Glucose - 3.6 

agar 20 
only to use in solid LB 

- 

Adjust the pH to 7.2-7.6 

 

 Culture mediums were prepared by dissolving all the reagents in water and adjusting 

the pH according table S.4. Sterilization was done by heat, at 130 ºC during 30 minutes 

(autoclave). The desired antibiotics as ampicillin or any other chemical such as x-gal was 

incorporated in the medium by the addition of the correspondent volume taken from a 

sterile stock solution. Manipulations were taken in aseptic conditions.  

 

Transformation protocol 

 

1. Thaw competent cells gently on ice (if needed, aliquot the cells to pre-chilled tubes). 

2. Add to each tube the DNA for transformation, swirl gently and keep on ice 30 

minutes. The volumes used can go from 1-2 µl for a constructed plasmid 4-6 µl if is for 

transformation of a ligation product.   

3. Heat-shock the transformation reactions at 42 ºC for 45-90 seconds. 

4. Incubate the reaction on ice 2 minutes. 

5. Add 900 µl pre-heated S.O.C solution (37ºC).  

6. Incubate the mixture on an orbital shaker, 250 RPM, 37 ºC for 60 minutes.  

7. Plate different volumes of the incubated mixture in LB plates, containing the antibiotics 

for selection, or any other desired chemical.  

8. Incubate overnight at 37 ºC.  



 
_________________________________________________________________________________________________________________ 

 
________________________________________________________________________________________________________ 167

S.9 Voltammograms and Experimental Parameters  

 S.9.1 The Ps. nautica NOR Redox Potentials 

 

Several voltamograms will be presented in order to elucidate the presence of the four 

redox processes explained in chapter 3. It will be shown in the following figures the 

voltammograms obtained with and without a protein film adsorbed to the electrode, as 

well as the correspondent voltammogram subtraction. 

 

 

The electron transfer heme b and heme c 

 

 
 
Figure S.11 – Cyclic voltammogram of the immobilized Pseudomonas nautica NOR. Panel A shows a detail 
from the cyclic voltammogram performed at 50 mV.s-1 (black line) and the correspondent control 
experiment (without protein, dashed line). Panel B shows the previous voltammograms subtraction (black 
line minus dashed line). The arrows point towards the anodic and cathodic peaks for the identified redox 
processes. Experiments were conducted in 20 mM mixture buffer (experimental details) pH 6.85 
 

A                                                   B  
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The diiron catalytic center  

 

 

 

 

 
Figure S.12 – Cyclic voltammogram of the immobilized Pseudomonas nautica NOR. Panel A shows a detail 
from the cyclic voltammogram performed at 500 mV.s-1 (black line) and the correspondent control 
experiment (without protein, dashed line). Panel B shows the previous voltammograms subtraction (black 
line minus dashed line). The arrows point towards the anodic and cathodic peaks for the identified redox 
processes. Experiments were conducted in 20 mM mixture buffer (experimental details) pH 6.85 
 

 

A                                               B  
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 S.9.2 ΔEp and Epw ½ 

Table S.5 – Values determined for the ΔEp and Epw,1/2 from the anodic and cathodic peak, achieved 
from the analysis of several voltammograms. It is also the presented the number of electrons (n) estimated 
for the each redox processe.  
 

pH  
I 

FeB 

II 

Heme b3 

III 

Heme b 

IV 

Heme c 

ΔEp 58 ± 28 40 ± 20 75 ± 20 41 ± 20 

Epw,1/2 a 55 ± 6 201 ± 15 70 ± 30 88 ± 30 

Epw,1/2 c 42 ± 20 150 ± 80 80 ± 40 76 ± 20 
9.75 

n 1.8 ± 0.6 0.5 ± 0.1 1.2 ± 0.1 1.1 ± 0.1 

ΔEp 57 ± 21 57 ± 27 76 ± 26 60 ± 30 

Epw,1/2 a 57 ± 22 202 ± 35 69 ± 41 85 ± 40 

Epw,1/2 c 33 ± 16 122 ± 56 61 ± 32 68 ± 20 
7.63 

n 2.1 ± 0.8 0.6 ± 0.2 1.4 ± 0.2 1.2 ± 0.2 

ΔEp 83 ± 52 50 ± 18 89 ± 27 80 ± 10 

Epw,1/2 a 73 ± 30 214 ± 13 60 ± 12 74 ± 19 

Epw,1/2 c 35 ± 6 153 ± 60 67 ± 21 55 ± 13 
6.52 

n 1.9  ± 0.9 0.5 ± 0.1 1.4 ± 0.1 1.4 ± 0.3 

ΔEp 58 ± 27 69 ± 10 88 ± 15 46 ± 13 

Epw,1/2 a 58 ± 37 204 ± 13 60 ± 14 73 ± 10 

Epw,1/2 c 41 ± 21 169 ± 45 71 ± 27 53 ± 10 
5.44 

n 1.8 ± 0.5 0.5 ± 0.1 1.4 ± 0.2 1.5 ± 0.3 

ΔEp 17 ± 6 80 ± 14 78 ± 48 23 ± 6 

Epw,1/2 a 59 ± 10 171 ± 47 35 ± 13 33 ± 15 

Epw,1/2 c 45 ± 6 166 ± 24 55 ± 18 63 ± 38 
4.09 

n 1.7 ± 0.3 0.5 ± 0.1 2.0 ± 0.7 2.0 ± 0.9 

ΔEp 84 ± 50 65 ± 27 84 ± 20 67 ± 6 

Epw,1/2 a 47 ± 11 191 ± 25 76 ± 33 40 ± 19 

Epw,1/2 c 45 ± 7 106 ± 69 64 ± 26 81 ± 36 
2.54 

n 1.9 ± 0.4 0.7 ± 0.3 1.3 ± 0.2 1.6 ± 0.8 

 

n (number of electrons involved in each redox process) was estimated using the Epw,1/2  from the anodic and cathodic peak 

ΔEp, .  Epw,1/2 a, and Epw,1/2 c values are presented in mV 
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 S.9.3 Recombinant NorC Voltammograms 

 

 

 

Figure S.13 – Cyclic voltammogram of the immobilized recombinant NorC subuinit . Panel A show a 
cyclic voltammogram performed at 2.5 mV.s-1 (black line) and the correspondent control experiment 
(without protein, dashed line). Panel B presents a detail from the previous group of voltammograms. 
Panel C show the previous voltammograms subtraction (black line minus dashed line). The arrows point 
towards the anodic and cathodic peaks for the identified redox proces. Experiments were conducted in 20 
mM mixture buffer (experimental details) pH 7.63 
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 S.9.4 Behaviour with pH Dependence 

 

 

 

 
 
 
Figure S.14 – Plot of the Pseudomonas nautica NOR cyclic voltammograms performed at different pH 
values. The voltamogramms were obtained with a modified pyrolytic graphite electrode (with the Ps. 
nautica NOR adsorbed to the electrode surface) using a scan rate of 500 mVs-1.  
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 S.9.5 Electrochemical Response in the Presence of Substrate 

 

  

 

Figure S.15 –Nitric oxide reduction using the Pseudomonas nautica NOR modified graphite RDE. Panel A 
show the results obtained: black and red lines describe the electrochemical response of the NOR modified 
graphite electrode, in the absence and presence of NO, respectively. The green line describes the control 
experiment (without protein) in the presence of NO. Panel B is the subtraction of voltammograms 
performed with the modified electrode, in the presence or not of NO (red menus black), showing beyond 
dough the presence of a catalytic current. Electrolyte solution was a 20 mM mixture buffer (experimental 
details, section 3.7) pH 7.6, ν = 50 mV.s-1, (ω = 5000 RPM, RDE), [NO] = 20 µM. 
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Figure S.16 –Nitric oxide reduction using the Pseudomonas nautica NOR modified graphite RDE. The figure 
shows a detail from the previous figure S.15. Black and red lines describe the electrochemical response of 
the NOR modified graphite electrode, in the absence and presence of NO, respectively. The green line 
describes the control experiment (without protein), in the presence of NO. Electrolyte solution was a 20 
mM mixture buffer (experimental details, section 3.7) pH 7.6, ν = 50 mV.s-1, (ω = 5000 RPM, RDE), 
[NO] = 20 µM. 
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