
Pedro Ricardo Gomes Dias

Licenciado em Engenharia Informática

Recommending media content based on
machine learning methods

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientador : Prof. Doutor João Magalhães, Prof. Auxiliar Convidado,
FCT/UNL

Júri:

Presidente: Prof. Doutor Nuno Preguiça

Arguente: Prof. Doutor Francisco Revilla

Vogal: Prof. Doutor João Magalhães

Novembro, 2011

iii

Recommending media content based on machine learning methods

Copyright c© Pedro Ricardo Gomes Dias, Faculdade de Ciências e Tecnologia, Universi-
dade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

To Rieux, for staying alive

vi

Acknowledgements

Elaborating this thesis has been a long and fascinating journey through a path of dis-
cipline, hard work, discovery and rewarding sense of accomplishment. I did not walk
this path alone, which is why I owe those who supported me throughout this process a
sincere and grateful acknowledgement.

To my thesis advisor Prof. Dr. João Magalhães, for his confidence in my work, for his
guidance and knowledge sharing, for his flexibility and availability, and for his remark-
able ability to keep me highly motivated that made the elaboration of this thesis such a
pleasant and rewarding experience.

To my faculty Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, in
particular to the Informatics Department, for providing an exceptional environment for
making science and for leading a high-quality academic life.

To the Immersive TV project in which this thesis is inserted, for granting me a scholarship
that helped me carry on with my studies.

To my teachers and friends Prof. Dr. Christopher D. Auretta and Prof. Dr. Ruy Costa, for
being such a rich and inspiring example.

To all my university colleagues and friends, in particular Diogo Bernardino, Gustavo
Azevedo, João Santos, Márcia Silva, Pedro Ramos Afonso, Sofia Gomes and Tewodros A.
Beyene for their friendship and company along the way.

To all my long time friends, in particular André Macedo, Carla Ferreira, Filipe Macedo,
Hugo Aguiar and Sofia Canelas for always being there for me and for their unconditional
friendship, example and frequent laughters.

To my wonderful mother Judite Martins and sister Rita Gomes for loving me and shaping
me deeply in so many different ways.

vii

viii

To my father José Dias for supporting and loving me.

To everyone else in my wonderful and generous family for giving me a home.

To my beautiful and graceful girlfriend Agnieszka Kapral, for brightening up my days.

To all of you, thank you so much.

Abstract

Information is nowadays made available and consumed faster than ever before. This in-
formation technology generation has access to a tremendous deal of data and is left with
the heavy burden of choosing what is relevant. With the increasing growth of media
sources, the amount of content made available to users has become overwhelming and
in need to be managed. Recommender systems emerged with the purpose of providing
personalized and meaningful content recommendations based on users’ preferences and
usage history. Due to their utility and commercial potential, recommender systems inte-
grate many audiovisual content providers and represent one of their most important and
valuable services. The goal of this thesis is to develop a recommender system based on
matrix factorization methods, capable of providing meaningful and personalized prod-
uct recommendations to individual users and groups of users, by taking into account
users’ rating patterns and biased tendencies, as well as their fluctuations throughout
time.

Keywords: recommender systems, collaborative filtering, matrix factorization, group-
based recommendations, interactive TV

ix

x

Resumo

A informação é hoje em dia disponibilizada e consumida mais depressa do que nunca.
Esta geração das tecnologias da informação tem acesso a uma enorme quantidade de
diferentes conteúdos, competindo-lhe a árdua tarefa de seleccionar aqueles que são re-
levantes. Com o crescente aumento das fontes de informação, a quantidade de conteú-
dos disponibilizados aos utilizadores tornou-se avassaladora, surgindo a necessidade da
existência de meios que façam a sua gestão. Os sistemas de recomendação surgiram com
o propósito de oferecer sugestões de conteúdos personalizadas e pertinentes, baseadas
nas preferências dos utilizadores e no seu histórico. Devido à sua utilidade e potencial
comercial, os sistemas de recomendação integram diversos fornecedores de conteúdos
audiovisuais, representando um dos seus mais valiosos e importantes serviços. O objec-
tivo desta dissertação é desenvolver um sistema de recomendação baseado em métodos
de factorização de matrizes, capaz de fazer recomendações pertinentes e personalizadas
de produtos a utilizadores individuais e a grupos de utilizadores, tendo em conta os
seus padrões de rating e respectivos desvios individuais, bem como as suas flutuações ao
longo do tempo.

Palavras-chave: sistemas de recomendação, métodos colaborativos, factorização de ma-
trizes, recomendações de grupo, TV interactiva

xi

xii

Contents

1 Introduction 1
1.1 Recommender systems . 1
1.2 Media marketplaces and consumption . 2

1.2.1 Amazon video-on-demand (VoD) 2
1.2.2 Hulu . 3
1.2.3 Netflix . 4

1.3 Problem definition and thesis objective . 5
1.4 Contributions . 7
1.5 Organization . 8

2 Background and related work 9
2.1 Introduction . 9
2.2 Recommendation techniques . 9

2.2.1 Content-based filtering . 10
2.2.2 Collaborative filtering . 10

2.3 Similarity metrics . 13
2.3.1 Pearson correlation coefficient . 13
2.3.2 Cosine similarity . 13
2.3.3 Tanimoto coefficient . 14

2.4 Group recommendation . 14
2.4.1 Discovering groups . 15

2.5 Summary . 18

3 Recommendations by matrix factorization 19
3.1 Introduction . 19
3.2 Matrix factorization . 21

3.2.1 Matrix decomposition fundamentals 22
3.2.2 Singular Value Decomposition . 23
3.2.3 Low-rank dimensionality reduction 24

xiii

xiv CONTENTS

3.3 A matrix factorization model . 25

3.4 Learning the factorization model . 26

3.4.1 Iterative learning . 27

3.4.2 Regularization . 28

3.4.3 Stochastic gradient descent . 29

3.5 Implementation details . 31

3.5.1 Accuracy optimization . 31

3.5.2 Speeding up the algorithm . 32

3.5.3 Stochastic parallel optimization . 34

3.6 Evaluation . 35

3.6.1 Datasets . 36

3.6.2 Experiment design . 37

3.6.3 Results and discussion . 37

3.7 Summary . 44

4 Modelling biases and temporal fluctuations 45
4.1 Introduction . 45

4.2 The bias-SVD model . 46

4.2.1 Computation of the bias-SVD model 47

4.3 The temp-SVD model . 48

4.3.1 Computation of temp-SVD model 50

4.4 Implementation details . 51

4.4.1 Accuracy optimization . 54

4.4.2 Speeding up the algorithm . 54

4.5 Evaluation . 56

4.5.1 Datasets . 56

4.5.2 Experiment design . 56

4.5.3 Results and discussion . 57

4.6 Summary . 62

5 Group-based recommendations 63
5.1 Introduction . 63

5.2 Discovering groups of users . 65

5.2.1 Groups of users and leaders . 65

5.2.2 Implementation description . 66

5.2.3 Clustering tests . 67

5.3 Computing group-based preferences . 68

5.3.1 Combining preferences . 69

5.3.2 Finding recommendable products 71

5.4 Evaluation . 71

5.4.1 Datasets . 72

CONTENTS xv

5.4.2 Experiment design . 72
5.4.3 Results . 72

5.5 Summary . 76

6 Conclusions and future work 77
6.1 Contributions summary . 77
6.2 Potential applications . 78
6.3 Challenges and limitations . 78
6.4 Future work . 78

6.4.1 Implicit feedback . 79
6.4.2 Dynamic playlists with enthusiasm curves 79
6.4.3 Real-time feedback input . 80

7 Appendix: additional experiments on group recommendation 85

xvi CONTENTS

List of Figures

1.1 Amazon recommendations based on a user recent history and consump-
tion patterns of similar users. Fix this recommendation feature. 3

1.2 Amazon’s "Today’s recommendations", search and rate feature and like button. 3

1.3 Hulu’s rating scale, demographic data solicitation and Improve Your Rec-
ommendations feature. 4

1.4 Netflix’s search box from which preferences are inferred and Our best guess
feature. 5

2.1 User-user similarity matrix . 12

2.2 Hierarchical clustering algorithm iterations. Illustration taken from [35]. . 16

2.3 Dendrogram visualization of hierarchical clustering. Illustration taken from
[35]. 17

2.4 Iterations of K-means algorithm. Illustration taken from [35]. 17

3.1 Latent factor approach with 2 factors where both users and products are
represented under the same feature space. Illustration take from the work
of Koren et al. [22]. 20

3.2 Plain-SVD model learning behaviour over 120 steps with different num-
bers of latent factors . 38

3.3 Plain-SVD model learning behaviour over 120 steps with different num-
bers of latent factors (zoomed) . 38

3.4 Plain-SVD model performance with different learning rates 39

3.5 Performance comparison between adaptive and non-adaptive learning rates
for the plain-SVD model using 200 factors 40

3.6 Performance of plain-SVD model with different numbers of latent factors 41

3.7 CPU usage at 8-core parallel processing of the plain-SVD model 42

3.8 Performance of plain SVD model with different levels of parallelization . 43

4.1 Temporal concept drift in user rating patterns 46

xvii

xviii LIST OF FIGURES

4.2 Bias-SVD model with different learning rates 57
4.3 Temp-SVD model with different learning rates 57
4.4 Performance comparison between adaptive and non-adaptive learning rates

for the temp-SVD model using 200 factors 58
4.5 Comparison between plain-SVD, bias-SVD and temp-SVD models 59
4.6 CPU usage at 8-core parallel processing of the temp-SVD model 60
4.7 Performance of plain-SVD, bias-SVD and temp-SVD models with different

levels of parallelization . 61
4.8 RMSEs on the test and validation sets throughout the temp-SVD model

learning process . 62

5.1 Graph of the song playlist production process 64
5.2 Illustration of target users detection and preference combination with group

leaders . 66
5.3 K-means clustering with different numbers of latent factors 68
5.4 Results of single-group recommendation 73
5.5 Results of 2-group recommendation . 74
5.6 Results of 3-group recommendation . 74
5.7 Averaged results of all 3 groups of experiments 75

7.1 Results of group rec. with 2 factors, grouped by experiment 87
7.2 Results of group rec. with 2 factors, grouped by nr. of groups involved . . 87
7.3 Results of group rec. with 5 factors, grouped by experiment 88
7.4 Results of group rec. with 5 factors, grouped by nr. of groups involved . . 88
7.5 Results of group rec. with 2 factors grouped by experiment 89
7.6 Results of group rec. with 8 factors, grouped by nr. of groups involved . . 89
7.7 Results of group rec. with 10 factors, grouped by experiment 90
7.8 Results of group rec. with 10 factors, grouped by nr. of groups involved . 90
7.9 Results of group rec. with all k-means variants, grouped by nr. of factors . 91
7.10 Results of group rec. with standard deviation, grouped by k-means variant 91
7.11 Results of group rec. with standard deviation, grouped by nr. of groups

involved . 91

List of Tables

5.1 Statistics on group recommendation experiments 73

7.1 Statistics on group recommendation experiments 85

xix

xx LIST OF TABLES

1
Introduction

1.1 Recommender systems

This is an information era. Information is nowadays made available and consumed faster
than ever before. This information technology generation has access to a tremendous deal
of data and is left with the heavy burden of choosing what is relevant. With the increasing
growth of media sources, the amount of content made available to users has become
overwhelming and in need to be managed. The quality of user experience is thus defined
by how this phenomenon is dealt with. Because browsing the wide range of available
content is impractical on a user perspective, it becomes crucial to find ways of identifying
the small portion of relevant content by searching through all possibilities. The ability to
perform such filtering determines the quality and productivity of user experience when
interacting with information sources.
Recommender systems emerged with the purpose of providing personalized and mean-
ingful content recommendations based on user preferences and usage history. Relying
on the closest friends, family members or anyone else with whom one shares similari-
ties to give trustworthy and useful advices has always been a characteristic of human
behaviour, and different opinions weigh differently when it comes to making the final
choice. The limitation on receiving good opinions from other people starts with the fact
that, usually, one does not have many trustworthy or like-minded people to rely on for
getting advice, and those few people have very limited knowledge, considering every-
thing that exists and can be recommended, on a global scale point of view. Acknowledg-
ing this leads to wondering how to get suggestions with an acceptable degree of reliabil-
ity. Stated simple: How can I find peers with preferences similar to my own who would most
definitely suggest items I would like?

1

1. INTRODUCTION 1.2. Media marketplaces and consumption

1.2 Media marketplaces and consumption

Recommender systems are offered by the widest audiovisual content providers, such
as Amazon video-on-demand (VoD), Hulu or NetFlix, and represent one of their most
important and valuable services [11]. The amount of available data involved is enormous
due to the millions of users and the millions of products registered on their databases.
Most of these systems operate similarly: users are encouraged to give ratings to products
and based on those ratings and on any additional information about the users, such as
demographic data and search history, products are recommended.

1.2.1 Amazon video-on-demand (VoD)

Amazon is a worldwide online marketplace with millions of registered users and prod-
ucts. At Amazon’s VoD section one can easily notice the presence of a recommender
system after performing a few searches for content or just navigating through and visu-
alizing some of the available products. Recommendations based on this kind of search
and navigation history, referred to as implicit user feedback, are made to the user from the
first interactions with the system. Figure 1.1 shows an example of product recommenda-
tions based on the lists of products recently viewed by the user.

Additionally, the system provides hints about other users’ consumption patterns related
to products the target user might be interested in, as shown on Figure 1.1. To improve the
accuracy of recommendations, Amazon’s recommender system often offers their users
the possibility of providing explicit feedback by rating products in a 1 to 5 scale or toggling
a like button for a specific product. These possibilities are offered in many ways, an ex-
ample is the "Fix this recommendation" feature, also illustrated by Figure 1.1, that allows
for the user to provide a 1 to 5 rating to a product that has been recommended, thus fixing
the system’s rating prediction. The "Fix this recommendation" feature shows that the pre-
dictive model used by the system is constantly open to improvements. The system also
allows for the user to search for specific products to rate, under the promise of providing
better recommendations in the future, as shown on Figure 1.2.

2

1. INTRODUCTION 1.2. Media marketplaces and consumption

Figure 1.1: Amazon recommendations based on a user recent history and consumption
patterns of similar users. Fix this recommendation feature.

Figure 1.2: Amazon’s "Today’s recommendations", search and rate feature and like button.

1.2.2 Hulu

Hulu is a website that provides video streaming of TV shows and movies from a wide
panoply of TV networks and studios, having registered hundreds of thousands of streams

3

1. INTRODUCTION 1.2. Media marketplaces and consumption

viewed monthly during 2010. The recommender system integrated in Hulu website ap-
plies user feedback and profile characteristics to make recommend products. Upon regis-
tering, the user is asked to introduce some optional personal information such as marital
status, annual income or ethic background, as shown on Figure 1.3, that will be used
to set up a user profile, thus adding some content-based methodologies to the recom-
mendation algorithm used to make product suggestions. Like many other collaborative
filtering recommender systems, Hulu is based mostly on user feedback to compute pre-
dictions about what products the users will like. Users can give their explicit feedback by
giving ratings to products in a scale that ranges from 1 to 5. Additionally, users can ex-
plicitly inform the system about which videos they have already watched or which ones
they simply have no interest in, as Figure 1.3 illustrates, allowing for the system to know
more about users’ preferences. Moreover, on the user personal area there is a recommen-
dations tab on which the user gets the solicitation Improve Your Recommendations, being
then led to rate more products or manifest channel preferences, as shown on Figure 1.3.

Figure 1.3: Hulu’s rating scale, demographic data solicitation and Improve Your Recom-
mendations feature.

1.2.3 Netflix

Netflix is an online company that provides on-demand streaming video and dvd rental
by mail, counting more than 100,000 titles and above 10 million registered users. Like the
previously mentioned recommender systems, Netflix relies on user feedback and profile
to make recommendations. Users can rate products from 1 to 5 and search and naviga-
tion history are taken into account in the process of generating recommendations. When
prompted with product suggestions, upon consulting the recommended product’s de-
tails, Netflix’s recommender system shows its "best guess" rating prediction for that user,

4

1. INTRODUCTION 1.3. Problem definition and thesis objective

as illustrated on Figure 1.4.

Figure 1.4: Netflix’s search box from which preferences are inferred and Our best guess
feature.

1.2.3.1 Netflix prize

In 2006 Netflix held a contest offering 1 million dollars to anyone who could create a col-
laborative filtering recommendation algorithm that would surpass their own - by then
named Cinematch - in terms of prediction accuracy by at least 10%. Only 3 years later
the team BellKor’s Pragmatic Chaos, which was a fusion between several teams initially
competing for the prize individually, accomplished such deed. Every team had available
to train and test their algorithms around 100 million ratings given by more than 480,000
users to almost 18,000 movies. The fact that Netflix was willing to pay such amount of
money for a recommender algorithm stresses how valuable and important good recom-
mendations are for the success of this kind of business.

1.3 Problem definition and thesis objective

This project is inserted in an interactive TV (iTV) context where the iTV provider wants
to offer its customers suggestions on what they might enjoy watching. In this context,
the scope of possible recommendable products is within multimedia content, and sug-
gestions are meant to be as accurate as possible, thus maximizing user satisfaction. From
the iTV provider point of view the main challenge subsists, but the question is slightly
different: Which recommendations would get customers to consume the recommended products?
To answer this question some other aspects must be clarified beforehand. The first aspect
lies in understanding the surrounding environment. In this case, it is a TV environment,
therefore widely populated. Millions of people are TV content consumers and many dif-
ferent things can be watched on TV, as well. So, it is about:

5

1. INTRODUCTION 1.3. Problem definition and thesis objective

Millions of users ×Millions of products = Trillions of data to work on

Consumption patterns can be inferred from this information and users may share similar
consumption habits among each other. Simplified, if somehow users can be matched
according to consumption patterns and preference similarities they can be reliable advice-
givers to each other.
Once both users and products are conveniently characterized recommendations can be
made using different methods:

• Content-based methods, in which the characteristics inherent to products and users
are explored to assess similarities, and recommendations are made according to
those similarities;

• Collaborative methods, in which the users’ previous purchases and consumption
habits are explored, and recommendations are made based on that;

Within an interactive TV project, there is the need to assess each user’s individual prefer-
ences to provide a service as personalized as possible that fits their needs and, by doing
so, stimulate consumption. Providing such service involves making personalized prod-
uct recommendations with a good degree of accuracy.
The accuracy of the recommendation system depends on the available data to work on
and the methods used to combine this data so that recommendations can be then pro-
duced. To do so, several different methods involving content-based and/or collaborative
filtering must be experimented and analysed, and the extent to which these may be fit
for this specific problem and environment must be determined. This can only be done af-
ter achieving an understanding about the surrounding environment and its actors: users
and products.
Users are the main actors in the system, since they are the consumers and the data
providers. Users can be defined by two main classes of attributes:

• Demographic data, which includes every personal information such as age, gender,
nationality, area of residence, marital status, ethnic background, average income,
etc. This kind of data should be mapped onto numerical values so it can be pro-
cessed. As an example, MovieLens stores the ages of users in age groups identified
by a number(ex.: 1: 18-24; 2: 25-34). Not all this data is always provided by users
but, whenever available, it can be used to complement collaborative algorithms
with content-based features.

• Preferences, which can be explicitly expressed to the system through product ratings,
or inferred from history of visualized and/or searched products and from user’s
consumption habits.

Products are represented by their inherent characteristics. In this case, the products are
movies that can be characterized by title, genre, length, year of production, actors, di-
rector, etc. Depending on the method and process of generating recommendations, the

6

1. INTRODUCTION 1.4. Contributions

dimensions of the referential on which products are characterized may change. Products
will then be represented by the extent to which they fit in each of the referential dimen-
sions (ex.: how funny, how reflexive, how scary), mapped onto numerical values, like
coordinates on a map.
The relation between a user and a product is defined by the extent to which that user likes
that product. This relation can be easily determined when the user rated the product,
and its representation is simple: a value, usually between 1 and 5. However, most of the
times there are no ratings relating users to products. In this cases, the system shall try to
predict the rating a user would give to a product. By doing so, the system is then able to
recommend products that the user will probably like. The best techniques and methods
to achieve that may differ, but the latest studies show that the most successful approaches
to this kind of problem involve matrix factorization methods. Moreover, preferences
evolution over time and the ability to infer preferences through implicit feedback also
contribute to improve the quality of predictions.
Thus, the objective of this thesis is:

to develop a recommendation algorithm based on (i) the collaborative ratings of
products, (ii) the rating biases associated to users and products, (iii) the

temporal fluctuations of ratings and (iv) group preferences.

To accomplish this objective, a baseline matrix factorization model shall be implemented
based on the ratings given to products by users. This model must then be improved by
adding information accounting for user-related and product-related rating biases. The
baseline model shall be further improved by contemplating temporal fluctuations of rat-
ings, through inference of rating pattern changes over time. Finally, matrix factorization
methods will be combined with clustering methods to provide group-based recommen-
dations.

1.4 Contributions

The contributions of this thesis are:

• A software package implementing matrix factorization based collaborative filtering
techniques for recommender systems, using a Stochastic Gradient Descent (SGD)
learning algorithm with optional parallel computation. This implementation also
contemplates the use of rating biases and temporal fluctuations, inpired by Y. Ko-
ren’s work [20].

• A software package implementing a group-based recommendation framework. The
design and architecture of this framework was also proposed by me.

• A scientific paper submitted to the European Conference on Information Retrieval
(ECIR) 2012.

7

1. INTRODUCTION 1.5. Organization

The matrix factorization implementation described in this thesis produced results that
ranked me among the top 7% teams of the Yahoo! SIG-KDD CUP 2011.

1.5 Organization

The rest of this thesis is organized as follows:

• Chapter 2: Related work overview addressing the topics of data representation,
similarity metrics, group discovery and recommendation algorithms and techniques.

• Chapter 3: Matrix factorization methods and associated computational constraints,
implementation challenges and evaluation.

• Chapter 4: Embedding rating biases and temporal dynamics to the matrix factoriza-
tion methods and associated computational constraints, implementation challenges
and evaluation.

• Chapter 5: Group-based recommendations combining matrix factorization with
clustering techniques and respective evaluation.

• Chapter 6: Conclusions and future work, to be accomplished along the course of
the imTV project.

8

2
Background and related work

2.1 Introduction

Recommender systems emerged with the intent of tackling the problem of multimedia
content overload and provide meaningful recommendations. Recommender systems
have gained noticeable popularity for the past few years, partially due to the Netflix Prize
contest held by Netflix - an online DVD rental company - in 2007, awarding with $1M the
first team to outperform Cinematch (Netflix’s recommender system) with a 10% accuracy
improvement. It was not before 2 years later that the team Bellkor’s Pragmatic Chaos
finally achieved this goal. More recently, Yahoo held the recommender system contest
KDD Cup 2011 on which hundreds of contestants competed to reach the top scores, i.e.
to produce user rating predictions with the lowest possible error, stressing the value of
this research field.

2.2 Recommendation techniques

Recommender systems rely on two main categories of methods: Content-based filtering
and Collaborative filtering. The two mentioned categories of methods will be further ad-
dressed in 2.2.1 and 2.2.2, respectively. Additionally, there are Hybrid Approaches that
combine both the aforementioned methods in different ways:

• Producing content-based and collaborative recommendations separately and then
combining the individual results;

• Introducing some content-based filtering characteristics into collaborative filtering
methods, and vice-versa;

9

2. BACKGROUND AND RELATED WORK 2.2. Recommendation techniques

• Setting up a model which inherently incorporates both content-based filtering and
Collaborative Filtering methods.

All these categories of methods have been extensively explored and compared through-
out the years. G. Adomavicius et al. [1] and Melville et al. [27] presented useful surveys
on the matter, where they classified methods, compared approaches and pointed out lim-
itations.

2.2.1 Content-based filtering

Content-based filtering approaches aim at exploring users’ and products’ inherent char-
acteristics to produce recommendations. These approaches have their roots in text pro-
cessing applications [32] and information retrieval [2], where content is mostly textual.
When taking this approach towards recommender systems, users and products cannot be
seen as atomic elements. Instead, these need to have a more descriptive representation,
such as

ui = (ui1, ui2, · · · , uim) and pj = (pj1, pj2, · · · , pjn),

where ui represents user i and the elements from ui1 to uim represent the m characteris-
tics of user i. Similarly, pj represents product j and the elements from pj1 to pjn represent
the n characteristics of product j. These characteristics can be gender, nationality, age,
genres of music, names of directors, etc., depending on the context and purpose of the
recommender system, and can be interpreted as keywords to describe a user or a prod-
uct. Based on these characteristics, similarities between users or products can be assessed
and used to produce meaningful recommendations. Content-based approaches rely on
the assumption that similar users like the same products and that users that consumed
a given product will also like products similar to the one consumed. However, some
limitations exist when recommending products through content-based filtering, such as
the need for accurate - but general enough - descriptions of users and products, without
which realistic comparisons are difficult. Another limitation of this approach, referred to
as overspecialization in [1], lies in the fact that users are bound to only get recommenda-
tions of products with similar characteristics to those they have consumed before.

2.2.2 Collaborative filtering

Unlike content-based approaches, collaborative filtering methods do not take into ac-
count the inherent characteristics of users or products. Instead, this approach attempts to
infer user preferences by analysing the patterns and historic of consumption of all users
in the system, mining the relations between users and products based on their interac-
tions. The roots of collaborative filtering can be traced back to 1992, when Goldberg et
al. proposed an electronic mail filtering system [9] where users could contribute with
their feedback about the content they read, allowing for a collaborative effort of sorting

10

2. BACKGROUND AND RELATED WORK 2.2. Recommendation techniques

relevant from irrelevant e-mail messages. Another early application of collaborative fil-
tering was the open architecture GroupLens, implemented by Resnick et al. [30] with
a similar purpose, only this time aiming at filtering netnews based on ratings given by
users. This approach introduced the concept of user feedback, which is the input pro-
vided by users regarding products. User feedback can be provided explicitly by users
in the form of ratings (explicit feedback) or it can be extracted from user activity analy-
sis (implicit feedback). Although explicit feedback is more reliable because it reflects a
preference intentionally provided by the user, implicit feedback is an important source
of data to complement explicit feedback, especially when there are not many available
ratings. This often happens when new users or products are introduced in the system,
which in literature is commonly referred to as the "cold start" problem [27, 1]. Moreover,
implementations for exclusively implicit feedback datasets had already been proposed
back in 1998, when D.Oard et al. [28] explored the use of implicit data to produce rec-
ommendations. More recently, Y.Koren [12] presented a framework to rely exclusively
on this kind of input, refining it by associating implicit observations with varying confi-
dence levels. Additionally, other implementations were proposed [18, 15] incorporating
both kinds of input. Collaborative filtering can be divided in two broad types of models:
Neighborhood models and Latent factor models. In 2004, J.Herlocker et al. [10] conducted an
extensive empirical analysis of the most relevant collaborative filtering methods, evaluat-
ing and comparing them against each other. Since then, both these approaches have had
many developments [21], having attracted particular attention from the scientific com-
munity during the Netflix Prize [38, 19, 22, 40, 37] competition, standing nowadays as
state-of-the-art techniques for recommender systems.

11

2. BACKGROUND AND RELATED WORK 2.2. Recommendation techniques

2.2.2.1 Neighbourhood models

Neighbourhood models try to infer user preferences based on the preferences of like-
minded users. The most commonly applied neighbourhood method is the k-nearest-
neighbours (k-NN), which can be either user-oriented or item-oriented. On a user-oriented
approach rating predictions for a user are calculated as a weighted average of the ratings
given by the k users most similar to the target user. Similarities between users are calcu-
lated according to their product ratings and can be represented on a symmetric user-user
similarity matrix:

 1 · · · s1,m
... 1

...
sn,1 · · · 1

Figure 2.1: User-user similarity matrix

Each su1,u2 value on the user-user similarity matrix represents a similarity score between
users u1 and u2 for all m users in the system. Higher values correspond to higher sim-
ilarities and lower values correspond to lower similarities. The item-oriented approach
[33, 41] works analogously to the user-oriented approach: similarities between products
are measured and represented on an item-item similarity matrix. Then, rating predic-
tions are calculated as a weighted average of the ratings given by the target user to the k
products, within the set of products rated by the user, that are more similar to the target
product. This approach has been preferred by web-based companies such as Amazon[23]
for being more scalable and allowing for a better explanation of the obtained results, since
recommendations are made based on comparisons between products that the user knows
and consumed, instead of comparisons with users unknown to the target user. There are
several possible similarity metrics suggested in the literature [33, 37], which will be fur-
ther addressed in section 2.3. Once defined the similarity metric to be used within a k-NN
method, product rating predictions are given by

r̂ui =

∑
j∈Sk

(iu)
sij · ruj∑

j∈Sk
(iu)

sij
, (2.1)

where Sk(iu) is a set with the k products rated by user u that are more similar (i.e., have a
higher similarity score according to the adopted similarity metric) to product i, sij is the
similarity score between products i and j and ruj is the rating given by user u to product
j. Once computed all product rating predictions for a given user, the products with
higher rating prediction can be recommended to the target user. Additionally, Y.Koren et
al. [4] proposed a version of k-NN models enhanced by calculating interpolation weights
between products instead of computing each product weight separately.

12

2. BACKGROUND AND RELATED WORK 2.3. Similarity metrics

2.2.2.2 Latent factor models

Latent factor models emerge as an attempt to represent users and products under the
same feature space. Applications of such approach include neural networks [31], la-
tent dirichlet allocation [5] and Singular Value Decomposition (SVD) [34]. The principle
underlying latent factor approaches is that both users and products can be represented
under a common reduced dimensionality space of latent factors that are inferred from
the data and explain the rating patterns. Chapter 3 will provide a thorough clarifica-
tion of the latent factor approach. Individually, latent factor approaches have proven to
yield better results than any other methods in terms of predictive accuracy, as the liter-
ature produced during the Netflix Prize competition shows. Nevertheless, the winning
solution of the Netflix Prize [19] resulted from a combination of the output generated
by different collaborative filtering methods, obtained through well-established blending
techniques [13].

2.3 Similarity metrics

To determine similarity scores between users, a metric that returns a numerical value
to work with must be defined. The similarity metrics most commonly used to compare
users are addressed in this section.

2.3.1 Pearson correlation coefficient

The most widely used similarity metric is the Pearson correlation coefficient [36], which
measures the extent to which two variables are linearly dependent. In a context where
the goal is to find similarities between users based on their item ratings, it can be defined
by:

simab =

∑
j∈I

(raj − r̄a)(rbj − r̄b)√∑
j∈I

(raj − r̄a)2
∑
j∈I

(rbj − r̄b)2
(2.2)

where I is the set of items rated by both user a and user b, raj is the rating given by user
a to item j, rbj is the rating given by user b to item j and r̄u is the average rating given by
user u.

Pearson correlation coefficient has the advantage of dealing with the problem that comes
from different users having different rating scales, which could lead to misinterpretations
about user preferences similarities. This problem is addressed by subtracting the average
rating r̄u from each item rating ruj .

2.3.2 Cosine similarity

As an alternative, the ratings of each user can be treated as vectors and compared to other
users’ ratings by calculating the cosine of the angle between them, thus obtaining a cosine

13

2. BACKGROUND AND RELATED WORK 2.4. Group recommendation

similarity defined by:

simab = cos ~ra, ~rb =
~ra · ~rb

‖~ra‖2 × ‖~rb‖2
(2.3)

To calculate cosine similarity, there can be no negative ratings and items left unrated are
treated as having a rating of zero. This is not a problem when the set I contains only
items rated by both users being compared and the rating scale does not allow ratings
below zero. However, empirical studies have proven Pearson correlation coefficient to
usually have better results than cosine similarity [6].

2.3.3 Tanimoto coefficient

Tanimoto coefficient is a measure of similarity between two sets. It returns a ratio be-
tween the intersection and the union of two sets, thus showing how much two sets have
in common comparing to what they don’t. It is defined by:

sima,b =
|a ∩ b|
|a ∪ b|

=
|a ∩ b|

|a|+ |b| − |a ∩ b|
(2.4)

where |a| and |b| represent the number of elements in set a and in set b, respectively,
|a ∩ b| is the number of elements common to set a and set b and |a ∪ b| is the number
of elements within the union between set a and set b. The similarity score between two
sets obtained with Tanimoto coefficient ranges from 0 (no elements in common) to 1 (all
elements in common). This similarity metric is particularly useful when comparing two
users based on attributes with binary value. For example, if the feedback given by two
users about items within a set is limited to like/don’t like ratings, or if the comparison
between two users is based on whether they bought or didn’t buy items within a set,
then Tanimoto coefficient would be a good candidate for measuring similarities. The
real-world applications for this similarity metric are mostly group discovery methods.

2.4 Group recommendation

Although recommender systems have recently attracted a lot of attention from the sci-
entific community, group recommendation has not been widely addressed, since most
recommendation techniques are oriented to individual users and focus on maximizing
the accuracy of their preference predictions. A. Jameson et al. [14] conducted an enlight-
ening survey in 2007 presenting the most relevant works on the field of group recom-
mendation, as well as the most common issues addressed by the authors of the surveyed
group recommender systems.

The main challenges faced when providing group recommendations are (1) capturing
user preferences, (2) combining user preferences into a representation of group prefer-
ences, (3) defining criteria to assess the adequacy of recommendations, and (4) delivering
recommendations. Group recommender systems can be compared according to how they

14

2. BACKGROUND AND RELATED WORK 2.4. Group recommendation

deal with these challenges.

In 2002, the Flytrap system was proposed by A. Crossen et al. [7], presenting a simple
system designed to build a soundtrack that would please all users within a group in a tar-
get environment. In Flytrap system, user preferences were obtained by registering what
they listen to on their private computers, in an implicit fashion. Recommendations were
then computed by comparing songs within the system database to those listened to by
the group members based on artist and genre. Songs whose artist or genre are known to
please more users within the target group were then more eligible to be recommended
automatically, without the user having any control over what’s being recommended.
The content-based nature of recommendations provided by Flytrap is a constant in most
group recommender systems described in literature.

A similar approach was taken in the system CATS (Collaborative Advisory Travel Sys-
tem) by McCarthy et al. [26]. CATS is a system designed to recommend travel packages
to groups of users. It relies on a form of user feedback named critiquing, which consists
in having the group users give their real-time opinion about some features associated
with the recommended products in a more of this / less of that fashion. For example, when
presented with a travel package recommendation a user can let the system know about
his preference for a cheaper or shorter plan, without specifying price or duration values.
This user feedback is recorded and linearly combined between all users within the group
to be afterwards compared against the set of features that represent each travel package.
The CATS systems can then recommend the travel packages that suit better the groups’
critiques.

Another example of group recommender systems is the system Bluemusic proposed by
Mahato et al. [24]. In this system users are detected via bluetooth and the awareness of
their presence has direct influence on a playlist which is being played on a public place.
To be taken into account, a user must register his preferences beforehand. The concept
introduced by the Bluemusic system is very simple but introduces an interesting alter-
native for incorporating transient awareness of user presences into a real-time playlist
recommendation scenario.

2.4.1 Discovering groups

Discovering groups of users that are somehow related is a useful step to produce per-
sonalized recommendations. Finding means of identifying groups of users with similar
preferences narrows the scope of items to recommend, thus increasing the probability of
recommending items that users will like. Performing data clustering allows for discover-
ing groups and the two main methods used to achieve that are hierarchical clustering and
k-means method, which will both be addressed in this section.

15

2. BACKGROUND AND RELATED WORK 2.4. Group recommendation

2.4.1.1 Hierarchical clustering

Hierarchical clustering [35] consists on continuously merging the two most similar groups
until all groups are merged. A group can contain a single item and the algorithm starts
with each item belonging to a different group. Similarity between groups is measured
by the distance that separates them, which is calculated according to a given similar-
ity metric (see Section 2.3). The algorithm, illustrated with a 5-item example by Figure
2.2, stops its iterations when there is only one group left. Depending on the application,
hierarchical clustering can be applied to find groups of similar items or users.

Figure 2.2: Hierarchical clustering algorithm iterations. Illustration taken from [35].

As the example illustrated by fig. 2.2 shows, items A, B, C, D and E are initially placed
in a 2D space according to their characteristics and stand as individual groups. After the
first iteration of the hierarchical clustering algorithm, items A and B are merged into a
single group, since their proximity to each other was higher than the proximity between
any other pair of groups, which were single items, at that point. After the second itera-
tion, the group composed by items A and B is merged with the group containing item
C, following the same reasoning on the first iteration. This process continues until there
is only one group containing all items, as illustrated by the result of the final iteration on
fig. 2.2.

The results from hierarchical clustering can then be viewed in a graph called dendrogram,
where all merged groups are represented hierarchically in horizontal tree-form, in which
the distance that previously separated two items is represented by the distance between
the group node and the nodes of the two merged items. Figure 2.3 illustrates an example
of a dendrogram. However, the tree view obtained from a dendrogram doesn’t really break
the data into distinct groups without additional work and the hierarchical clustering al-
gorithm is computationally intensive, which can be a big disadvantage when dealing
with large sets of data.

16

2. BACKGROUND AND RELATED WORK 2.4. Group recommendation

Figure 2.3: Dendrogram visualization of hierarchical clustering. Illustration taken from
[35].

2.4.1.2 K-Means clustering

K-Means method [35] algorithm starts with a predefined number of clusters, which is
based on the structure of the data. K-Means algorithm begins with randomly placing
k centroids. A centroid is a point in space that represents the center of a cluster. After
placing all centroids, the items, that are also placed in space according to their attributes,
are assigned to the nearest centroid. All centroids then move to the average location of their
assigned items and the assignments are redone. This process repeats until all centroids
stop moving over iterations.

Figure 2.4: Iterations of K-means algorithm. Illustration taken from [35].

Fig. 2.4 illustrates an example of K-Means clustering with 5 items and 2 randomly placed
centroids. In this example, the items A, B, C, D and E are placed on a 2D space and 2
centroids, represented as small dark circles, are randomly placed in that same 2D space.
After the first iteration the items are assigned to their closest centroid, resulting in items
A and B being assigned to one centroid and items C, D and E being assigned to the other
one, as shown in the second of the 5 scenarios illustrated by fig. 2.4. Once all items are
assigned to the closest centroid, each centroid is moved to the average location of the items
assigned to it. The items are then reassigned to centroids according to the centroids’ new
location, resulting in items A, B and C being assigned to one centroid and items D and E
being assigned to the other one, as shown in the third scenario. As one can observe, item
C is now assigned to a centroid different from the one it was initially assigned to. This

17

2. BACKGROUND AND RELATED WORK 2.5. Summary

process continues until the centroids no longer change location.

2.5 Summary

In this chapter was discussed:

• how data must be represented, specifically users, products and ratings, so that it
can be dealt with while performing recommendation algorithms;

• what similarity metrics can be used to measure similarities between products or
users;

• what are the main algorithms for discovering groups of products or users;

• what are the main algorithms and techniques to produce product recommendations
to users.

18

3
Recommendations by matrix

factorization

3.1 Introduction

Matrix factorization is a class of linear algebra operations for decomposing matrices that
can be used in collaborative filtering. Within the context of recommender systems, matrix
factorization techniques are intended to be applied over a user-product ratings matrix
where ratings given by users to products are stored, as illustrated by matrix R in 3.1.

R =

r11 · · · r1i

...
. . .

...
ru1 · · · rui

 (3.1)

Here, each rui value in the matrix represents a rating given by user u to product i, ex-
pressed by a real value. Matrix factorization techniques have become attractive in the
last few years for its accuracy and scalability, and hold nowadays an indisputable place at
the top of the most successful techniques for recommender systems [19, 38, 3, 29, 22, 40].
A thorough explanation regarding the goal of applying matrix factorization to the user-
product ratings matrix, as well as the decomposition it pursues and methods for ob-
taining such decomposition, are within the scope of this chapter and will be further ad-
dressed from section 3.2 onwards. Before looking into matrix factorization with more
detail, let us revisit some important underlying concepts, introduced earlier in 2.2.2.2:
latent factor approaches.

Matrix factorization techniques applied to recommender systems fall in the category

19

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.1. Introduction

of latent factor approaches. Within collaborative filtering techniques, latent factor ap-
proaches are popular for their accuracy. The purpose of latent factor approaches is to
infer implicit latent factors from a dataset that help explaining user-product interactions
within the system. The goal of inferring these latent factors is to enable the mapping of
both users and products onto the same latent factor space, representing these as vectors
with k dimensions:

pu = (u1, u2, · · · , uk) (3.2)

qi = (i1, i2, · · · , ik) (3.3)

Here, pu is the user u factors vector, qi is the product i factors vector and k is the number of
latent factors (dimensions) upon which each user u and each product i are represented.
By representing users and products in such way, one can evaluate the extent to which
users and products share common characteristics by comparing their k factors against
each other. Koren et al. [22] presented a visual explanation for the motivation underlying
the latent factors approach applied to a context where products are movies, which is an
intuitive clarification of its intent, illustrated by fig. 3.1. On the example illustrated by

Figure 3.1: Latent factor approach with 2 factors where both users and products are rep-
resented under the same feature space. Illustration take from the work of Koren et al.
[22].

Fig. 3.1 both users and products are mapped onto a two-dimension factor space allow-
ing for an intuitive conclusion about their preferences towards the represented products.
Although the factors on this example suggest interpretable product characteristics, such
as the clear paradox between serious and escapist movies, latent factors do not always
have an intuitive meaning, often merely representing abstract features with no real-life

20

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.2. Matrix factorization

interpretation. The goal of such approach is to enable the assessment of user preferences
for products by calculating the dot product of their factor representations, as defined by
eq. 3.4:

rui = pu · qi, (3.4)

Here, rui is the preference of user u for product i, both represented as vectors as described
in 3.2 and 3.3. For example, by observing the placement of users and products on the
factors map in Fig. 3.1 let us assume that the user "Gus" is represented by

pGus = (GustoMales, Gusserious) = (4,−4) (3.5)

and the movie "Braveheart" is represented by

qBraveheart = (BravehearttoMales, Braveheartserious) = (4, 5) (3.6)

Although both user Gus and movie Braveheart score high on the "Geared toward males"
factor, their "Serious" factors set them apart in terms of compatibility. As can be observed,
Gus is very fond of "Escapist" (in opposition to "Serious") movies, as expressed by the
−4 value on the "Serious/Escapist" axis, while Braveheart is definitely a "Serious" movie,
since it scores 5 on the "Serious/Escapist" axis. This means that while the "Geared toward
males" factor of Gus and Braveheart suggests Gus will like Braveheart, the "Serious" factor
suggests precisely the opposite. Thus, according to Eq. 3.4, Gus preference for Braveheart
is:

rGus,Braveheart = pGus · qBraveheart = (4,−4) · (4, 5) = 4× 4 + (−4)× 5 = −4 (3.7)

Such prediction indicates that Braveheart would not be a good suggestion to present to
Gus, which is consistent with our intuition on Gus and Braveheart. This example shows
the utility of such vector representation of users and products. This chapter shall thus
pursue such representation through matrix factorization techniques.

3.2 Matrix factorization

Matrix factorization comes as an appealing choice for building predictive models in the
context of recommender systems, since it can be applied over the user-product ratings
matrix (see eq. 3.1) to infer the implicit latent factors needed to obtain the desired user
and product representations, as defined in 3.2 and 3.3, respectively. The application of
matrix factorization techniques to recommender systems is motivated by the desire of

21

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.2. Matrix factorization

decomposing the ratings matrix into a 2-matrices representation, as in eq. 3.8:

R = P ·QT ⇔

r1,1 · · · r1,n

...
. . .

...
rm,1 · · · rm,n

 =

u1,1 · · · u1,k

...
. . .

...
um,1 · · · um,k

 ·

p1,1 · · · p1,k

...
. . .

...
pn,1 · · · pn,k

T

(3.8)

Here, matrixR is the ratings matrix as defined in 3.1. Each vector (row) pu of P represents
a user u as in 3.2, and each vector (row) qi of Q represents a product i as in 3.3. Thus, the
decomposition suggested by 3.8 directly relates to the desired preference representation
defined in 3.4.

3.2.1 Matrix decomposition fundamentals

This subsection followed the discussion presented by Manning et al. in Introduction to
Information Retrieval, chapter 18 [25].

Before introducing the technique which will be the baseline for our final implementation,
let us review the fundamentals of matrix decomposition and linear algebra supporting
it. The matrix factorization technique on which our implementation is based is Singular
Value Decomposition (SVD) - an extension of symmetric diagonal decomposition. Before look-
ing into SVD, let us address two other matrix decomposition techniques named eigen
decomposition and symmetric diagonal decomposition, on which SVD is based. Both these
techniques apply to square real-valued matrices only and the latter applies to symmetric
matrices only. All three mentioned matrix decomposition techniques rely on the concepts
of eigenvalues and eigenvectors. Eigenvalues are the values of λ that satisfy

R~u = λ~u, (3.9)

where R is a M ×N matrix and ~u is a non-zero M -vector. Accordingly, the M -vectors ~u
satisfying 3.9 are called right eigenvectors of R and the M vectors ~v satisfying

~vTR = λ~vT (3.10)

are called the left eigenvectors ofR. IfR is a symmetric matrix, the eigenvectors correspond-
ing to distinct eigenvalues are orthogonal. The symmetric diagonal decomposition is defined
by theorem 1.

Theorem 1. Symmetric diagonalization: Let R be a square, symmetric real-valuedM×M matrix
with M linearly independent eigenvectors. Then, there exists a symmetric diagonal decompo-
sition R = QΛQT where the columns of Q are the orthogonal and normalized (unit length, real)
eigenvectors of R, and Λ is the diagonal matrix whose entries are the eigenvalues of R. Further,
all entries of Q are real and Q−1 = QT .

A schematic representation of such decomposition for a 3×3 matrix is exemplified by eq.

22

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.2. Matrix factorization

3.11. � � �

� � �

� � �

 =

� � �

� � �

� � �

 ·
λ λ

λ

 ·
� � �

� � �

� � �

 (3.11)

The Λ diagonal matrix containing the eigenvalues λ ofR is usually represented by omitting
its non-diagonal values - since these are all zeros - as adopted on eq. 3.11.

Definition: It is important to introduce the concept of rank. The rank of a matrix is the
number of linearly independent rows or columns in it. Thus, rank(R) ≤ min{M,N}.
Moreover, the number of non-zero eigenvalues of R is at most rank(R).

3.2.2 Singular Value Decomposition

The most popular and widely adopted latent factor approach for recommender systems
is Singular Value Decomposition (SVD), which is a method for performing matrix factor-
ization. SVD is an extension of the aforementioned matrix decomposition technique sym-
metric diagonal decomposition [25]. Unlike eigen decomposition and symmetric diagonal decom-
position, SVD can be applied to non-square matrices. As one can intuitively assume, if R
is a user-product ratings matrix, only in rare cases M = N , i.e., the number of users is
rarely equal to the number of products. The original SVD formulation is:

R = UΣV T =

u11 · · · u1m

...
. . .

...
um1 · · · umm

 ·

λ

. . .

λ

 ·

v11 · · · v1n

...
. . .

...
vn1 · · · vnn

T

(3.12)

Here, the λ1, · · · , λr eigenvalues of RRT are the same as the eigenvalues of RTR. The orig-
inal M × N matrix R is decomposed to be represented as the dot product between the
matrix U , the diagonal matrix Σ, and the transpose of matrix V . These matrices are:

• U : a M ×M matrix whose columns are the orthogonal eigenvectors of RRT ;

• V : a N ×N matrix whose columns are the orthogonal eigenvectors of RTR;

• Σ: a M × N matrix where the Σii positions contain all singular values σi =
√
λi for

i ∈ [1, r] with λi ≥ λi+1 and r = rank(R), and the remaining Σij positions with
i 6= j are zeros.

On a square matrix every row/column of Σ would contain a σi value but for a non-square
matrix this obviously does not happen. For example, if M > N , the Σ matrix would be

23

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.2. Matrix factorization

represented as expressed by eq. 3.13.

Σ =

σ1
. . .

σr

0 0 0

0 0 0

(3.13)

As mentioned above, the σi values are called singular values, the M columns contained
in U and the N columns contained in V are called left singular vectors and right singular
vectors, respectively. Eq. 3.14 exemplifies such decomposition for a 3× 4 matrix.

[
5 2 4 6

0 3 1 7

2 6 3 8

]
=

[
−0.544 −0.806 −0.234
−0.475 0.526 −0.705
−0.691 0.273 0.669

]
·

[
15.183 0.000 0.000 0.000

0.000 4.392 0.000 0.000

0.000 0.000 1.785 0.000

]
·

−0.270 −0.439 −0.311 −0.798
−0.793 0.365 −0.428 0.235

0.095 0.802 0.206 −0.553
−0.254 −0.467 −0.713 1.000

(3.14)

As observed, having r = rank(R), the N − r rightmost columns of matrix Σ containing
the singular values of R are filled with zeros. Again, this happens when the decomposed
matrix is not a square matrix. Similarly, if M would be greater than N , the bottom M −
r rows of Σ would be filled with zeros instead. For this reason, the Σ matrix is often
presented in a reduced or truncated r× r form, containing only the rows and columns that
are necessary to represent the singular values. Accordingly, any rows or columns in U

and V corresponding to the zero-valued rows or columns in Σ are also left out in the
reduced/truncated representation of SVD. Additionally, it is important to notice that since
σi ≥ σi+1, singular values are progressively less relevant to (i.e., have smaller impact on)
the result of the final matrix product. This is a key fact for the dimensionality reduction
discussion introduced in the next subsection.

3.2.3 Low-rank dimensionality reduction

In large-scale recommender systems, the ratings matrix can easily contain many millions
of entries which makes it a computationally expensive task to compute and even to store
its SVD representation. Thus, reducing the dimensionality of the ratings matrix is useful
to tackle this problem. Low-rank dimensionality reduction consists in pursuing an ap-
proximation of a matrix while reducing its rank. Given a M × N matrix R the goal is to
find an approximation Rk to matrix R whose rank is at most k.

Let us revisit the example introduced by eq. 3.14, now represented in its reduced/truncated
form:

R =

[
5 2 4 6

0 3 1 7

2 6 3 8

]
=

[
−0.544 −0.806 −0.234
−0.475 0.526 −0.705
−0.691 0.273 0.669

]
·

[
15.183 0.000 0.000

0.000 4.392 0.000

0.000 0.000 1.785

]
·

[
−0.270 −0.439 −0.311 −0.798
−0.793 0.365 −0.428 0.235

0.095 0.802 0.206 −0.553

]
(3.15)

If one would like to obtain a low-rank approximation of R, an option would be zeroing

24

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.3. A matrix factorization model

out the less relevant singular value of Σ, in this case the one with value 1.785, thus reducing
dimensionality from rank = 3 to rank = 2, leading to:

Rk=2 =

[
−0.544 −0.806 −0.234
−0.475 0.526 −0.705
−0.691 0.273 0.669

]
·

[
15.183 0.000 0.000

0.000 4.392 0.000

0.000 0.000 0.000

]
·

[
−0.270 −0.439 −0.311 −0.798
−0.793 0.365 −0.428 0.235

0.095 0.802 0.206 −0.553

]
(3.16)

As we can observe, the resulting matrix Rk=2 would be a reasonable approximation to R:

Rk=2 =

[
5.037 2.334 4.084 5.760

0.115 4.009 1.254 6.298

1.882 5.043 2.750 8.654

]
≈

[
5 2 4 6

0 3 1 7

2 6 3 8

]
= R (3.17)

A measure for assessing the quality of the obtained approximation is the Frobenius norm,
addressed in [25], defined as:

‖X‖F =

√√√√ M∑
i=1

N∑
j=1

X2
ij (3.18)

Here, X = R − Rk, where R is the original full matrix decomposition and Rk is a low-
rank approximation to R. The Frobenius norm of the low-rank approximation Rk=2 using
low-rank dimensionality reduction method would then be:

‖R−Rk=2‖F =

∥∥∥∥∥
[
−0.037 −0.334 −0.084 0.240

−0.115 −1.009 −0.254 0.702

0.118 0.957 0.250 −0.654

]∥∥∥∥∥
F

≈ 1.784 (3.19)

The Eckart-Young theorem, revisited in [25](Theorem 18.4), shows that this method of
dimensionality reduction results in the matrix of rank k with the lowest possible Frobenius
error.

3.3 A matrix factorization model

As explained in previous sections, SVD allows to obtain low-rank approximations to R
by zeroing out the less relevant singular values in matrix Σ and recalculating the product
U · Σ · V T with the new lower-rank matrix Σ. With the appropriate modifications, SVD
seems to be an appealing choice for pursuing the 2-matrices decomposition of the ratings
matrix defined by 3.8, leading to the pursued preference representation introduced by
3.4. However, it is vital to acknowledge that original SVD is designed to be performed
over a complete matrix. This raises an obstacle when applying the SVD technique to the
recommendation systems problem, since the ratings matrix is highly incomplete. Since
each user only rates a small portion of the whole set of available products, the ratings ma-
trix tends to be sparsely filled. In fact, the goal is precisely to predict the missing values of
the ratings matrix based on the known ones. This fact demands a new perspective over
the whole question, in particular over the application of the SVD technique. First of all,
the Frobenius norm is no longer suitable to assess the quality of an approximation to the

25

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.4. Learning the factorization model

ratings matrix, since there are many unknown values which cannot be treated as zeros.
Treating the unknown values as zeros would lead to severe inaccuracies, since assuming
ratings to be zero is merely blind guessing. Thus, the Frobenius norm is now modified
by taking into account only the known ratings, leading to eq. 3.20:

‖X‖F =

√∑
rui∈R

(rui − pu · qTi)2 (3.20)

The second question that must be addressed is related to the fact that, accordingly with
eq. 3.4 it is intended to obtain a 2-matrices decomposition of R instead of a 3-matrices
decomposition as provided by the original SVD technique. As mentioned in subsection
3.2.2, SVD is performed over a matrix R to obtain the decomposition R = UΣV T . Since
our goal is to obtain a decomposition that results in the product of a users matrix and a
products matrix, the need to obtain a R = P · QT decomposition leads to the factoriza-
tion of the Σ matrix into a product of its square roots, so that its square root values get
symmetrically blended into the U and V matrices to produce the pursued users P and
products Q matrices. Eq. 3.21 formalizes this transformation.

R = UΣV T = U
√

Σ ·
√

ΣV T = P ·QT (3.21)

Here, P = U ·
√

Σ and Q =
√

Σ · V .

Thus, the SVD analogy applied to recommender systems results in the decomposition
of the M × N ratings matrix in two matrices representing the M users and the N prod-
ucts, with dimensions M × k and N × k, respectively, where k is the desired number of
dimensions (rank) for low-rank reduction:

R =

r1,1 · · · r1,n

...
. . .

...
rm,1 · · · rm,n

 =

u1,1 · · · u1,k

...
. . .

...
um,1 · · · um,k

 ·

p1,1 · · · p1,k

...
. . .

...
pn,1 · · · pn,k

T

(3.22)

These k dimensions turn out to be implicit latent factors common to both users and prod-
ucts, allowing for preference estimation as described in eq. 3.4. This decomposition is
intended to be equivalent to original SVD, but having the singular values automatically
blended into the user and product matrices, allowing for a 2-matrices representation, and
pursuing a low-rank approximation by setting a maximum value of k, instead of aiming
for an exact decomposition.

3.4 Learning the factorization model

Simon Funk [8] suggested an efficient solution to learn the factorization model which has
been widely adopted by other researchers [22, 40, 29] and consists in decomposing the
ratings matrix by taking into account the set of known ratings only. Hence, the matrix

26

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.4. Learning the factorization model

decomposition process now pursues the minimization of the difference (henceforth re-
ferred to as error) between the known ratings present on the original ratings matrix and
their decomposed representation. This is done with the hope that by the end of the pro-
cess it will be possible to make predictions of unknown ratings by generalizing what has
been learned from processing the known ones. Thus, the goal of the learning process is
to solve the least-squares problem defined by eq. 3.23.

[P,Q] = arg min
pu,qi

∑
rui∈R

(rui − pu · qTi)2 (3.23)

In most recommender system implementations, as well as on the Netflix Prize and the Ya-
hoo KDD Cup 2011 competitions, the measure used to assess prediction error is the Root
Mean Squared Error (RMSE), which is an error measure that puts emphasis on higher
errors, rendering it as an ideal measure for applications where maximum accuracy is
pursued. The RMSE is closely related to the error measure previously suggested in eq.
3.20, and gathers all calculated errors as described by eq. 3.24:

RMSE =

√∑
rui∈R(rui − r̂ui)2

|R|
(3.24)

Here, rui is the real rating given by user u to product i within the set of ratings R and
r̂ui is its prediction, obtained through r̂ui = pu · qTi . Lower RMSE values correspond
to better predictive performance. When the learning process is finished, the user and
product factor matrices can be used to predict user ratings.

3.4.1 Iterative learning

The SVD-based model that is being discussed comprises the minimization of a least-
squares problem, previously introduced by eq. 3.23. Learning this model can be through
several different algorithms. However, due to the large amount of data involved there
is the need to choose a path that can produce results within a reasonable time. Alter-
nate Least Squares (ALS) and Stochastic Gradient Descent (SGD) are the most widely
adopted learning methods for recommender systems. S.Funk [8] suggested a SGD ap-
proach, where this minimization is obtained through an iterative process in which each
step gradually shapes the model. In that sense, the learning algorithm of user and prod-
uct factor vectors comprises looping through all known ratings several times, modifying
the factor vector values towards a perfect fit of the observed data (the set of known rat-
ings). Each loop through the entire ratings set will be henceforth referred to as step. The
more steps the algorithm takes, the closer the model will be to perfectly fitting the ob-
served data. Algorithm 3.4.1 describes in pseudo-code the idea of the iterative process
carried out to build a model that perfectly fits the training dataset.

However, a perfect fit is not desired, for it would lead to a situation that is referred to in

27

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.4. Learning the factorization model

Algorithm 3.4.1 Iterative learning process to a perfect fit
predictedTrainRatings← predict(trainingSet)
trainRmse← computeRMSE(predictedTrainRatings, realTrainRatings)
while trainRmse > 0 do
model← updateAccordingToError(model, trainRmse)
predictedTrainRatings← predict(trainingSet)
trainRmse← computeRMSE(predictedTrainRatings, realTrainRatings)

end while

literature as over-fitting. It is intended that the model captures users’ past rating patterns
with a good degree of precision, but there is the need to assure that the model preserves
enough generality to predict future ratings. Thus, arrangements are in need to determine
how many steps the algorithm should take until the model reaches its best predictive
potential.

Cross-validation: at the end of each step taken over the training set, a validation set con-
taining additional known ratings that have not been used to train the model is used to
control and evaluate the progress of the learning process. The systems tries to predict all
ratings contained in the validation set based on the predictive model built until that mo-
ment and calculates the RMSE of its predictions. This intermediate evaluation is repeated
at the end of each step to assess if the predictive accuracy of the model (evaluated over
the validation set) is improving or stabilizing. When the model’s predictive accuracy no
longer seems to improve, the learning process shall be interrupted and the model is ex-
pected to be at its best to predict new unknown ratings. The final tests are then performed
over a test set containing known ratings that have not been used neither for training nor
for validation. Ideally, the test set is used only once and the results obtained from testing
the model over this test set are final and reflect the quality of the model. The three men-
tioned sets - training set, validation set and test set - are obtained by splitting the initial
dataset into three subsets beforehand. The splitting portions may vary over algorithms
but, as an example, a reasonable split would be 75%-10%-15%. This method of splitting
the dataset in such way to train, validate and test the model is called cross-validation.

By using cross-validation, the iterative learning process would be modified into alg. 3.4.2
(modifications are highlighted in blue color).

3.4.2 Regularization

As the algorithm runs through the set of known ratings R only, the resulting factor vec-
tors will converge to a perfect fitting of the observed data, which results in an undesirable
outcome previously referred to as over-fitting. Again, over-fitting is undesirable because
the purpose of matrix factorization is to build a model that is able to predict the missing
rating values, while observing the known rating values. Therefore, while gradually fit-
ting the observed data, there is the need to preserve generality by avoiding over-fitting.

28

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.4. Learning the factorization model

Algorithm 3.4.2 Iterative learning process with cross-validation
predictedTrainRatings← predict(trainingSet)
trainRmse← computeRMSE(predictedTrainRatings, realTrainRatings)
previousV alidRmse←∞
predictedV alRatings← predict(validationSet)
currV alidRmse← computeRMSE(predictedV alidRatings, realV alidRatings)
while currV alidRmse < previousV alidRmse do
model← updateAccordingToError(model, trainRmse)
predictedTrainRatings← predict(trainingSet)
trainRmse← computeRMSE(predictedTrainRatings, realTrainRatings)
previousV alidRmse← currV alidRmse
predictedV alidRatings← predict(validationSet)
currV alidRmse← computeRMSE(predictedV alidRatings, realV alidRatings)

end while
predictedTestRatings← predict(testSet)
testRmse← computeRMSE(predictedTestRatings, realTestRatings)

Some solutions have been suggested to tackle this problem, mostly by adding a regular-
ization term to the function intended to minimize. These modifications lead to a modi-
fication to the least-squares problem previously introduced by eq. 3.23, now defined by
eq. 3.25.

[P,Q] = arg min
pu,qi

∑
rui∈R

(rui − pu · qTi)2 + λ · (‖pu‖2 + ‖qi‖2), (3.25)

where λ is a constant defining the extent of regularization, usually chosen by cross-
validation.

The goal of this regularization term is to penalize the magnitudes of large factor vector
values. This way, the algorithm does not strive recklessly to fit the observed data as if
this data would be the unequivocal and absolute source of all knowledge about the users
and products involved, thus introducing the necessary flexibility into the prediction of
what is unknown. Another regularization measure consists in having a control data set
against which the predictive ability of the model can be tested throughout all the steps.
Such control is provided by the cross-validation process introduced earlier, since what
the algorithm learns by observing the training set only is recurrently tested against the
validation set. What is expected to happen is that, while the prediction error for the
ratings on the training set will indefinitely decrease over the steps, the prediction error
for the ratings on the validation set will at some point stabilize, right before it starts
increasing into an over-fitting situation. Thus, the best moment to interrupt the learning
process it that when the validation error stabilizes, before it starts increasing.

3.4.3 Stochastic gradient descent

As mentioned previously, Simon Funk [8] popularized a method for learning the factor
vectors using stochastic gradient descent. This method comprises modifying the values of

29

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.4. Learning the factorization model

the factor vectors according to the associated prediction error, defined as

eui = rui − r̂ui (3.26)

where r̂ui is the rating prediction for user u to product i. Predictions r̂ui are calculated
according to the following rule:

r̂ui = pu · qTi (3.27)

Again, pu and qTi are the factor vectors associated with user u and product i, respectively.
The algorithm iterates through every known rating rui and updates the factor vectors
according to the following rules:

pu ← pu + γ · (eui · qi − λ · pu) (3.28)

qi ← qi + γ · (eui · pu − λ · qi)

The λ parameter is a regularization constant to control over-fitting and parameter γ is
the learning rate at which these modifications should occur. Both these parameters are
usually chosen by cross-validation. This algorithm involves processing each latent factor
separately, allowing for each factor to improve prediction accuracy after the previous
factors have given their best contribution. The implementation presented on this thesis
is inspired by Simon Funk’s suggestion, and its main learning loop can be described in
pseudo-code as expressed by alg. 3.4.3. The full sequence of steps to compute RMSE
values described in previous algorithms was now omitted for simplicity.

Algorithm 3.4.3 Stochastic gradient descent learning algorithm
while validation RMSE decreases do

for all latent factor k in K do
for all rui in trainingSet do
r̂ui ← 0
for all latent factor f in K do
r̂ui ← r̂ui + Puf ·Qif

end for
err ← rui − r̂ui
Puk ← Puk + γ · (err ·Qik − λ · Puk)
Qik ← Qik + γ · (err · Puk − λ ·Qik)

end for
end for
compute validation RMSE

end while

Here, K is the number of latent factors used by the algorithm, r̂ui is the rating prediction
for user u and product i, and P and Q are the user-factor and product-factor matrices,
respectively.

30

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.5. Implementation details

3.5 Implementation details

To implement the above described model, the first step is to define data structures to
store the involved variables. On this project, the implementation was carried on in C++
language, but generality will be preserved in the following structures and algorithm de-
scriptions:

• trainRatings: a structure to store the training set of ratings, positive and usually
integer values;

• valRatings: a structure to store the validation set of ratings, positive and usually
integer values;

• testRatings: a structure to store the test set of ratings, positive and usually integer
values;

• uSvd[k,u]: a 2-dimensional array to store all user factors, which are real values;

• pSvd[k,p]: a 2-dimensional array to store all product factors, which are real values;

• lrate{index}: real variables to store the different learning rates;

• lambda{index}: real variables to store the different normalization constants;

For the learning process, the factor vector values must not be initialized as zeros, as one
can easily infer from the learning rules definition (3.28), so a reasonable option is to ini-
tialize these with small values, such as 0.01.

3.5.1 Accuracy optimization

Maximizing the accuracy of predictions is an important issue within the scope of recom-
mender systems. To carry out such task one must take into account the context of the
system, as well as the available input data, and exhaustively tune the model to meet its
purpose. There are countless ways of gaining predictive accuracy, as the slightest change
in the algorithm may have a strong impact on the final outcome. A few simple accuracy
enhancing measures were taken and will be described in this section.

3.5.1.1 Clipping

Prediction accuracy can be further improved with some modifications to the algorithm.
A straightforward modification that can be done and that certainly contributes to better
results is clipping the final prediction to assure it always falls into the range of possible
rating values. So, if the rating scale ranges from 0 to 100, the new prediction function is
modified by returning a clipped result through an auxiliary clipping function that trun-
cates rating predictions that fall outside these limits. This improvement assures there will
only be produced rating predictions that make sense within the possible rating range.

31

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.5. Implementation details

3.5.1.2 Parameter tuning

Additionally, accuracy can be substantially improved by parameter tuning. Parameter
tuning consists in finding the combination of parameters that yields the best results in
terms of prediction accuracy. In the current model, parameters are the learning rates
for the factor vectors, as well as the normalization constants and the minimum learning
rate threshold. This is often a cumbersome task, especially when there are many free
parameters involved. However, to obtain optimal performance, parameters should be
exhaustively tuned according to the context and dataset to which the recommender sys-
tem is applied. For the Netflix Prize winner solution an Automatic Parameter Tuning (APT)
mechanism was implemented, as described in [39]. In our implementation a wide range
of learning rates was tested for all models to assess which were the values that yielded
the best results. All modifications suggested in this section will be further discussed in
the evaluation section.

3.5.2 Speeding up the algorithm

For large datasets, i.e. datasets containing many millions of ratings given by hundreds
of thousands of users to hundreds of thousands of products, the described algorithm can
become computationally expensive. Thus, when computational resources are limited,
arrangements need to be made to minimize the complexity of the algorithm.

3.5.2.1 Adaptive learning rate

Additional reduction of computation time and even some accuracy improvement can be
achieved by having an adaptive learning rate, represented by lrate in the pseudo-code
and γ in eq. (4.3), to the progress of the learning process, instead of having it static.
The goal of such modification is to have the algorithm updating the factor vectors with
smaller increments as the model gets closer to fitting the data. This would allow for
faster - and more greedy - learning at the beginning without losing precision, since the
learning rate gets smaller over iterations, allowing for a careful convergence towards the
final model. Ideally, this modification would lead to reducing the steps needed to obtain
a solution. A simple way of obtaining such effect is by scaling the learning rate by 0.9 at
each step, as suggested by Y. Koren [18]. This way, the lrate decay does not directly result
from the observed error decrease, but it sets on the assumption that the prediction error
decreases at each step, which is a fair assumption considering the nature of the model.
It is easy to observe that after some steps the learning rate will be very low, since it is
converging to zero. This is not ideal because after a while the factor vector values will
not be modified and convergence stops prematurely. To address this issue a threshold
was defined, setting the minimum learning rate to 0.0007. This means that once the
learning rate decays to 0.0007, its value will no longer be decreased throughout steps.
The value for the threshold was not exhaustively tested, but it is intended to be lower
than the smallest learning rate tested, which is 0.001, so that the algorithm is allowed

32

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.5. Implementation details

to take steps towards the solution that at some point are smaller than those taken if the
learning rate was not adaptive.

3.5.2.2 Storing factor residuals

By analysing the main learning loop described in alg. 3.4.3, one can easily identify the
bottleneck that results from having to iterate through all K factors to get each rating
prediction, which is done once per training rating, per factor, per step, associated to the
computation of rating predictions. This leads to a complexity of O(K2 × R) per step,
where R is the number of ratings on the training set. A way of minimizing the impact of
this bottleneck is by saving the sum of all calculated Puk ×Qik (with k ∈ K) factor prod-
ucts into a data structure trainResiduals so that when computing each factor, the sum of
all previously computed factors is available for immediate access, avoiding unnecessary
loops through all K factors. The computation of rating predictions described in alg. 3.4.3
is then improved, modifying each step of the learning loop into alg. 3.5.1.

Algorithm 3.5.1 Learning step of SGD with training residuals structure
for all latent factor k in K do

for all rui in trainingSet do
r̂ui ← trainResidualsui + Puk ·Qik
err ← rui − r̂ui
Puk ← Puk + γ · (err ·Qik − λ · Puk)
Qik ← Qik + γ · (err · Puk − λ ·Qik)

end for
end for

This improved way of computing rating predictions uses the new structure trainResid-
uals, which stores the sum of all factor products except the one being computed at the
moment. This solution involves updating the residuals before and after processing each
factor, which adds an extra complexity overhead. Before entering a new factor loop, the
trainResiduals structure must subtract from its saved values the contribution given by pre-
vious computations of the factor which will be processed on the new loop. This needs to
be done before the new loop starts because once inside the loop, the current factor values
will be constantly modified at each rating computation. Accordingly, after each factor
loop these residuals must be updated as well, by adding to its values the contributions
of the fresh computed factor. After this is done, the algorithm is ready to move on to the
next factor. The main learning loop of the algorithm is then modified into alg. 3.5.2.

Updating the residuals involves looping through all values in the residuals structure.
Since there is the need to store one residual value for each rating on the training set, this
represents looping through R values, according to the notation introduced in the com-
plexity discussion. Despite the overhead introduced by the residuals update operations,
this solution offers great improvement in terms of complexity reduction for most values

33

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.5. Implementation details

Algorithm 3.5.2 SGD main learning loop with training residuals structure
while validation RMSE decreases do

for all latent factor k in K do
for all rui in trainingSet do
trainResidualsui ← trainResidualsui − Puk ·Qik

end for
for all rui in trainingSet do
r̂ui ← trainResidualsui + Puk ·Qik
err ← rui − r̂ui
Puk ← Puk + γ · (err ·Qik − λ · Puk)
Qik ← Qik + γ · (err · Puk − λ ·Qik)

end for
for all rui in trainingSet do
trainResidualsui ← trainResidualsui + Puk ·Qik

end for
end for
compute validation RMSE

end while

of K. The complexity of this solution is O(K × (R + 2 × R)) ⇔ O(3K × R) which is
substantially lower than O(K2 × R) for K > 1. Moreover, the benefit brought by this
solution increases with the number of K factors.

3.5.3 Stochastic parallel optimization

Whenever multiple processors are available, parallelizing the algorithm can bring great
improvement in terms of processing speed. Usually, it is a better practice to use multi-
processor parallelization when the learning algorithm allows for independent computa-
tion of variables, such as the alternating least squares (ALS) algorithm. The main idea of
ALS is turning the prediction error minimization problem into a quadratic problem by al-
ternately fixing the user factors and the product factors, thus allowing for an independent
manipulation of each factor value. ALS has been applied in the context of recommender
systems in several implementations [12, 4], as it is more suitable for full matrices and
parallel processing than the Stochastic Gradient Descent algorithm. However, we did not
use ALS, and opted to use SGD for one main reason: SGD is simpler and usually faster
than ALS for highly sparsely filled matrices, which is the case when the algorithm learns
based on explicit feedback only. The problem associated with parallelizing a gradient
descent algorithm is that more than one modification to the same factor value may occur
simultaneously, leading to conflicting learning operations. As an example, let us con-
sider a training set where ratings are sequenced randomly, i.e, with no specific user nor
product order, 4 processors are available and the learning of users and products factor
values is parallelized by simply splitting the training set into 4 balanced portions and
assigning each to a different processor. What could happen in this case is exemplified by

34

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.6. Evaluation

Processor 1 Processor 2 Processor 3 Processor 4
r1,3 r1,7 r4,2 r7,6
r4,3 r3,3 r7,3 r8,1

the following scheme:

The above scheme intends to illustrate a situation where more than one modification to
the same factor values occur simultaneously. Let us assume that the factor being pro-
cessed is k = 5. Ratings rui on the same line of the scheme are processed in parallel
fashion by 4 processors. As described in alg. 3.4.3, whenever a training rating rui is
processed, the corresponding Puk and Qik values are modified for each factor k. In the
situation illustrated by the scheme, P1,5 is being modified by 2 processors at the same
time on the first line, and on the second line Q3,5 is being modified by 3 processors at
the same time. Whenever such situations happen, inconsistencies in the learning process
come as a consequence, which is undesirable. However, this problem can be partially
fixed by sorting the training set by users and making sure that all ratings given by the
same user are processed by the same processor. If instead of randomly splitting the train-
ing set into 4 portions, we split it by assigning 1/4 of the total users to each processor,
then simultaneous modifications to the same user factor values Puk would be avoided.
A more intelligent way of splitting the training set by users was implemented though,
pursuing a balanced division of ratings by processor, regardless of how many users are
assigned to each processor, thus maximizing efficiency. With this improvement, the ini-
tial problem is narrowed down to dealing with simultaneous modifications to product
factors Qik. However, one can intuitively come to the conclusion that if the probability of
a product being rated in common by 2 users is small enough, the risk of inconsistencies
is negligible and is often worth to trade-off for efficiency. The test session documented
on the next section can provide conclusive answers on this matter. Following the same
line of thought, parallelization can also be applied to update user and product biases.
Additionally, the update of factor residuals, as well as the computation RMSEs can be
parallelized with no risk of inconsistencies, since these operations do not modify any
model variables.

3.6 Evaluation

In this section, the previously introduced SVD-based model will be tested and analysed,
according to the described implementation. The proposed accuracy and speed-up en-
hancement measures will also be put to the test to assess their relevance. This model
comprising SVD-based matrix factorization will be henceforth referred to as plain-SVD.

35

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.6. Evaluation

3.6.1 Datasets

All tests were performed on the Yahoo! KDD Cup 2011 dataset. The dataset provided by
Yahoo! contains 262, 810, 175 ratings given by 1, 000, 990 users to 624, 961 products and
comes split into 3 subsets: training, validation and test. These subsets were provided
by Yahoo! so that contestants could train their prediction algorithms with the training
and validation sets, and then submit their predictions for the ratings contained in the test
set. During the Yahoo! KDD Cup 2011 competition the rating values for the test subset
were not revealed, since the goal was to predict these. When Yahoo! KDD Cup 2011
finally finished, these rating values were released and enabling us to use them for the
evaluation session and discussion presented on this thesis. The Yahoo! KDD Cup 2011
dataset statistics are:

• Total of ratings: 262, 810, 175 ratings

• Training set: 252, 800, 275 (96.19%) ratings

• Validation set: 4, 003, 960 (1.52%) ratings

• Test set: 6, 005, 940 (2.29%) ratings

• Nr. of users: 1, 000, 990

• Nr. of products: 624, 961

Products are musical items which can be of 4 different categories: genres, artists, albums
or tracks. There are additional files provided by Yahoo! establishing relations between
the products (linking tracks to the corresponding albums, artists and genres, for example)
which can be directly used to help building the model. However, we allowed the matrix
factorization algorithm to capture these relations on its own. Both training, validation
and test sets are ordered by users, which are unequivocally identified by a number and
sequenced starting from zero. Products are also identified by a number. The validation
set contains exactly 4 ratings per user, the test set contains exactly 6 ratings per user and
the training set contains at least 10 ratings per user. Set entries are grouped by user and
have the following format:

<UsedId>|<#UserRatings>\n

Each of the next <#UserRatings> lines describes a single rating by <UserId>, sorted
in chronological order. Rating line format is:

<ItemId>\t<Score>\t<Date>\t<Time>\n

Rating values range from 0 to 100 and are integer. However, for intermediate calcula-
tions, ratings were scaled down by a factor of 1

20 so that their range is reduced to [0, 5].
This scaling operation solved overflow problems that were detected during the learning

36

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.6. Evaluation

process. The final outcome is scaled back to it original [0, 100] range. The temporal infor-
mation provided for each rating was not used at this stage but will be addressed in the
next chapter.

3.6.2 Experiment design

Due to the magnitude of the Yahoo! dataset and the computational resources it demands
to process, only a portion of it was used at a time in each test, so that more results could
be presented within the available time for the test session. All experiments on the test
session were performed over a 35, 000-user portion of the dataset. For some of the ex-
periments, a 3-fold cross-validation evaluation was performed, meaning that 3 randomly
picked disjoint 35, 000-user portions of the dataset were used for 3 independent exper-
iments, and the presented results are an average of these 3 experiments. The choice of
splitting the dataset by users was made to assure that all available data about each user
is used to make predictions for that user, and because the Yahoo! dataset already comes
grouped by user, which simplifies the splitting process. In all tests, different numbers of
latent factors were used: 20, 50, 100 and 200, as well as 8-core parallelization by default.
The tests performed can be then divided as follows:

• Learning progress: For the plain-SVD model, the learning progress over the steps
was monitored and analysed to confirm that it meets the expected behaviour.

• Parameter tuning: For the plain-SVD model, tests were performed to find which is
the learning rate (the γ parameter in 3.28) that provides best results. In the litera-
ture several values were suggested for this parameter, ranging from 0.001 to 0.008.
Hence, tests were performed for the range of [0.001, 0.020] with 0.001 increments
between tested values. The regularization parameter λ was fixed at 0.015.

• Adaptive learning rate: The plain-SVD model was tested with and without using
adaptive learning rate and results were compared.

• Model performance: The plain-SVD model was tested with the best factor learning
rate previously assessed and its results were analysed.

• Parallelization: The learning process of the plain-SVD model was tested with dif-
ferent levels of parallelization (single-core, 2-core, 4-core and 8-core) and respective
performances were analysed and compared in terms of speed and accuracy.

3.6.3 Results and discussion

3.6.3.1 Learning progress

The chart presented by fig. 3.2 shows the behaviour of the learning process for the plain-
SVD model for different numbers of latent factors, using a 35, 000-user portion of the
dataset, a learning rate of 0.015 and a regularization parameter value of 0.015.

37

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.6. Evaluation

Figure 3.2: Plain-SVD model learning behaviour over 120 steps with different numbers
of latent factors

Figure 3.3: Plain-SVD model learning behaviour over 120 steps with different numbers
of latent factors (zoomed)

A high learning rate of 0.015 was chosen for all models in this experiment so that con-
vergence - and subsequent over-fitting - would occur sooner and learning behaviours
would be more easily compared across models with different numbers of latent factors.
The learning behaviour illustrated by fig. 3.2 shows that while the training error contin-
uously decreases over the steps, the validation error stabilizes after some point, which
occurs for all different numbers of factors tested at around step 55. Such behaviour meets
the expectations and the moment when the validation error stabilizes corresponds to the
moment when the model starts to over-fit the training data. A zoomed version of the
chart is also presented, illustrated by fig. 3.3, in which one can also observe that building
the model with a higher number of latent factors tends to yield better results, converging

38

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.6. Evaluation

after approximately the same number of steps.

3.6.3.2 Parameter tuning

After analysing the learning behaviour, tests were performed to assess which were the
best learning rates for the plain-SVD model. The results in terms of RMSE on the test set
are presented on fig. 3.4. It can be observed that the plain-SVD model provides different

Figure 3.4: Plain-SVD model performance with different learning rates

results for different learning rates. The optimality of learning rates depends not only on
the dataset but also on the number of latent factors and the model, as well as all other
free variables involved, such as the regularization parameters. In our case, a learning rate
of 0.003 seems to be the one yielding the best results for all different numbers of latent
factors.

3.6.3.3 Adaptive learning rate

The following chart, illustrated by fig. 3.5, shows the results of experiments made with
the plain-SVD model using adaptive and non-adaptive learning rates for several learning
rate values. The improvements we aimed to achieve by using an adaptive learning rate
were related mostly with computation time, but also with accuracy. We expected to find
the right combination between a learning rate and a progressive decay rate that would
allow the algorithm to have a fast learning at the beginning but a slower and more careful
learning when getting closer to the final solution.

For the plain-SVD model, this modification did not bring significant improvements, since
the best RMSE results obtained on the test set were 26.6851 using adaptive learning rate
with a learning rate of 0.003, and 26.6870 using non-adaptive learning rate with a learning
rate of 0.001. Moreover, the number of steps taken was 150 (the maximum allowed) in

39

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.6. Evaluation

Figure 3.5: Performance comparison between adaptive and non-adaptive learning rates
for the plain-SVD model using 200 factors

both cases, rendering both as similarly efficient options.

Although many different learning rates were tried, both the minimum learning rate set
for the adaptive learning rate approach (set to 0.0007) and the progressive decay rate (set
to 0.9) were not exhaustively tested. Additional experiments testing different combina-
tions of learning rate, min. learning rate and progressive decay rate would be useful to
further test this option. In future works, a more exhaustive experimentation session with
such intent shall be taken.

3.6.3.4 Model performance

Fig. 3.6 shows the performance of plain-SVD model trained with the best learning rates
discovered earlier, using different numbers of latent factors. The training algorithm was
allowed to run for 150 steps and the results presented are an average of a 3-fold experi-
ment with 3 disjoint 35, 000-user portions of the dataset. As a reference value, the lowest
RMSE I obtained in the Yahoo! KDD Cup 2011 competition was 24.5848. This result
ranked me 85th among 1287 active teams. It is important to add that this result was ob-
tained with my best model (one that extends the plain-SVD and will be presented in the
next chapter) using 200 latent factors while computing over the whole dataset (1, 000, 990

users) and by using both training and validation sets to train the model, while in the
evaluation and discussion presented in this thesis only a 35, 000-user portion was used
and the training was performed through cross-validation, i.e., using the training set to
train the model and the validation set only to validate and monitor its learning process.
Nonetheless, let us keep this 24.5848 RMSE value in mind as an accuracy reference. Ad-
ditionally, the lowest RMSE obtained by the winning team was 21.0147.

The results obtained from this experiment show that using a higher number of latent
factors increases the model’s predictive accuracy. Moreover, the best result presented,

40

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.6. Evaluation

Figure 3.6: Performance of plain-SVD model with different numbers of latent factors

obtained using 200 latent factors, corresponds to a 26.6851 RMSE which is an encouraging
value considering our 24.5848 RMSE reference.

3.6.3.5 Parallelization

Finally, tests were performed to compare the learning performances with four different
levels of paralellization: 1-core, 2-core, 4-core and 8-core. Before analysing the results
of such tests, is it important to verify whether splitting the training subset by groups of
users in the "intelligent way" suggested in 3.5.3 was a good option or not. To confirm
the viability of such option, one must verify if the available computational resources
are being efficiently used when the algorithm is running. The resources monitor of the
operative system was of great utility for this task, as fig. 3.7 shows.

Figure 3.7 shows that all available processors are being efficiently used, working at nearly
100% of their full capacity. From this observation, one can conclude that the split by users
as proposed is a viable option.

The parallelization tests to assess the plain-SVD model performance were performed
with a learning rate of 0.015 and the learning process was allowed to run for 30 steps
only. Such high learning rate value was used to amplify the eventual damage in terms
of predictive accuracy brought by parallelization-related inconsistencies, when these oc-
cur, and 30 learning steps are enough to compare model performances. Moreover, the
plain-SVD model was tested with 100 factors.

The results of parallelization tests are illustrated by fig. 3.8. As expected, the processing
time per step is lower when more processors are used. As for the RMSE values obtained,
these are somewhat surprising. The fact that there is no significant accuracy loss when

41

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.6. Evaluation

Figure 3.7: CPU usage at 8-core parallel processing of the plain-SVD model

parallelizing can be motivated by the theory presented earlier in 3.5.3, but observing that
the accuracy can even improve with a multi-core environment is intriguing. Fig. 3.8
tells us that the test RMSE values obtained with single-core (27.8977) and 2-core (27.8139)
are not as good as those obtained with 4-core (27.6465 - the best) and 8-core (27.6747).
However, it may have a simple explanation: at the moment, the algorithm is designed
to run through the ratings in the dataset by order of appearance. Since the dataset is
ordered by users, the algorithm inevitably follows that order when processing ratings.
This may introduce some bias to the learning process, as the model is iteratively learned
by recurrently fitting the data of some users before others, thus possibly leading to a loss
of impartiality and consequent loss of predictive accuracy. When parallelizing the al-
gorithm, although introducing some risk of inconsistency it also introduces randomness
in processing ratings, making the learning process more stochastic. For example, when
running through the dataset in a single-core fashion, by the time the ratings of user 2
start being processed the model already learned towards fitting all ratings of user 1. On
a multi-core alternative, ratings from different users are being processed simultaneously,
which introduces the bit of randomness in the processing of ratings that may eventually
improve accuracy. The 4-core alternative yielded the best results in this experiment but
it carries a higher processing time than the 8-core alternative (13.10 secs. vs 9.81 secs. per
step). Again, depending on the system requirements, a trade-off between accuracy and

42

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.6. Evaluation

Figure 3.8: Performance of plain SVD model with different levels of parallelization

time can be a reasonable option.

43

3. RECOMMENDATIONS BY MATRIX FACTORIZATION 3.7. Summary

3.7 Summary

In this chapter we discussed:

• The reasoning behind latent factor models and fundamentals of Singular Value De-
composition;

• Matrix factorization techniques and implementation challenges

• Parallelization of matrix factorization

• Analysis and evaluation of the implemented matrix factorization models

44

4
Modelling biases and temporal

fluctuations

4.1 Introduction

On the previous chapter a matrix factorization model was proposed to assess user prefer-
ences in a collaborative fashion, through a latent factor approach. This model has proven
to yield good results but it can be further improved by taking into account additional
elements that haven’t been explored before:

• User and product biases: users rate products differently and some products tend
to get higher ratings than other. Such tendencies can be captured to enhance the
matrix factorization model;

• Temporal dynamics: user preferences and product consumption trends drift over
time. Such temporal concept drifts can also be captured to assess what portion of
the rating patterns observed is associated with transitory trends and what portion
tends to be preserved over time.

By analysing the dataset, one can observe global concept drifts over time that seem to af-
fect all users, which suggests that time must be taken into account throughout the process
of analysing user ratings and inferring their preferences. Fig. 4.1 illustrates time-related
trends observed in the dataset. The rating patterns observed on fig. 4.1 show global
variations that are common across users, supporting the theory that users rate products
differently over time.

45

4. MODELLING BIASES AND TEMPORAL FLUCTUATIONS 4.2. The bias-SVD model

Figure 4.1: Temporal concept drift in user rating patterns

Let us now revisit the objective function established in the previous chapter, expressed
by equation 4.1.

[P,Q] = arg min
pu,qi

∑
rui∈R

(rui − pu · qTi)2 + λ · (‖pu‖2 + ‖qi‖2) (4.1)

Associated to our objective function is the rating prediction rule also established in the
previous chapter, expressed by eq. 4.2.

r̂ui = pu · qTi (4.2)

Now, both the objective function we intend to minimize and the rating prediction rule
will undergo modifications to incorporate biases and temporal dynamics. These modifi-
cations will be introduced and addressed in the following sections.

4.2 The bias-SVD model

Although the latent factor vectors inference widely captures rating tendencies, some im-
provements can be made to the model by defining baseline predictors. This would allow
for the factor vectors to simply swing the baseline predictions towards the real rating val-
ues instead of having to fully capture the rating patterns on their own. A straightforward
choice for a baseline predictor is the global average of the observed ratings. Additionally,
it is useful to account for the fact that some users tend to give higher ratings than others

46

4. MODELLING BIASES AND TEMPORAL FLUCTUATIONS 4.2. The bias-SVD model

and some products tend to get higher ratings than others, as well. Based on this premise,
arrangements can be made to capture these rating trends, regarded as user-related or
product-related deviations from the average rating, henceforth referred to as user and
product biases. For example, let us picture a scenario where there is a user u whose aver-
age rating to products is 4.3, a product i that tends to get an average rating of 3.7 and the
global rating average is 3.5. In such scenario, user u tends to give 0.8 more rating units
than the average user and product p tends to get 0.2 more rating units than the average
product, which makes r̂ui = 3.5 + 0.8 + 0.2 a reasonable baseline prediction for a rating
given by user u to product i. This reasoning leads to a new model where, by considering
the global rating average and biases, the prediction rule can be modified into eq. 4.3.

r̂ui = µ+ bu + bi + pu · qTi (4.3)

On the new prediction rule, the parameters µ, bu and bi represent the global rating aver-
age, the user bias and the product bias, respectively. Accordingly, the new least-squares
problem intended to solve, which is an extension of the regularized eq. 4.1, is defined by
eq. 4.4.

[P,Q] = arg min
pu,qi,bu,bi

∑
rui∈R

(rui − µ− bu − bi − pu · qTi)2 + λ · (‖pu‖2 + ‖qi‖2 + b2u + b2i) (4.4)

4.2.1 Computation of the bias-SVD model

Several ways of computing biases beforehand have been suggested [8, 19]. Both cited
suggestions for pre-computing biases take the same approach, which is statically assess-
ing the mean rating deviation from the global average for each user and for each product,
based on the training set. Additionally, regularization parameters are introduced in the
calculation so that when there are few ratings to rely on, the bias value is shrunk towards
zero. For example, if a given product was rated only once and got a rating of 5 in a 1 to 5
scale, it is not a fair assumption that its average rating is 5, since there is not enough data
to support it properly. Based on the cited suggestions, a simple way of estimating user
and product biases is:

bi =

∑
rui∈Ri

(rui − µ)

λ1 + |Ri|
(4.5)

Here, Ri is the set of ratings given to product i. Then, user biases can be estimated by:

bu =

∑
rui∈Ru

(rui − µ− bi)
λ2 + |Ru|

(4.6)

Like on the product bias estimate, Ru is the set of ratings given by user u. The regulariza-
tion parameters λ1 and λ2 should be determined by cross-validation. Estimating biases
beforehand reduces the computational cost of the following steps of the algorithm, since
no learning process is necessary to compute them. However, learning these biases along

47

4. MODELLING BIASES AND TEMPORAL FLUCTUATIONS 4.3. The temp-SVD model

with the factor vectors has shown to deliver better prediction accuracy [19]. Learning
biases iteratively avoids the instantaneous over-fitting brought by calculating them be-
forehand, since this previous calculation perfectly fits the ratings observed on the training
set, leaving no margin for generalization over future ratings. The learning rules applied
to learn the biases, defined by eq. 4.7, are similar to those applied to learn the factor
vectors.

bu ← bu + γ2 · (eui − λ2 · bu) (4.7)

bi ← bi + γ3 · (eui − λ3 · bi)

Here, the γ2, γ3, λ2 and λ3 parameters are constants that play the same role as those
involved in the factor vectors learning process but their values need not to be the same
as on previous rules. These should, as well, be determined by cross-validation. User and
product biases are updated upon processing each known rating and should be initialized
as zeros, as if every user and product had the same rating tendencies.

4.3 The temp-SVD model

Besides changing across users and products, rating tendencies also change with time. By
intuition, it would not be surprising that an overnight humour change would affect a
user’s rating behaviour, leading to inconsistencies if statically assessing this user’s bias.
Also, users tend to become more demanding with time or simply let go of the hype that
once drove them to give high ratings to a specific product or category of products. More-
over, product popularity is also expected to drift over time and along with it changes
in ratings given to these products occur. Such temporal drifts can be accounted for by
modifying the baseline predictors, making them time-dependent. Notice that the goal
of capturing temporal dynamics is not to predict future hypes for particular products
or future mood changes in users, since such phenomena are nearly unpredictable. In-
stead, the goal of capturing past temporal dynamics is to isolate the real core of rating
tendencies inherent to users and products from the noise introduced by transient hypes
and mood swings that would eventually have no influence under a different temporal
context. However, if periodic tendencies, i.e. tendencies that repeat over clearly defined
periods of time can be unequivocally identified, such as seasonal trends (ex.: Reggae
during the summer, "Home Alone" during Christmas), these could be introduced as in-
put for future behaviour prediction. Otherwise, past temporal drifts influence is simply
neutralized when predicting future ratings. Following these assumptions, Y. Koren [20]
proposed an effective way of introducing time awareness into baseline predictors, which
was fully adopted for this model. This solution comprises a modified definition of biases,
now considering the time variable, as defined by eq. 4.8.

bui(t) = bu(t) + bi(t) (4.8)

48

4. MODELLING BIASES AND TEMPORAL FLUCTUATIONS 4.3. The temp-SVD model

The function bui(t) represents the time-dependent version of bias for user u and prod-
uct i on day t. It is fair to assume that user rating behaviour can vary more frequently
than product rating tendencies. Therefore, user and product temporal biases should be
addressed differently. It is reasonable to mine user biases on a daily basis but for prod-
uct biases taking into account bias drifts throughout longer periods of time ought to be
enough. Thus, time bins spanning across all dataset days will be defined. The choice
of the number of bins depends on how many days should be considered for each time
period. In our implementation, nBins = 40 with daysPerBin = 85 each were used, but
the general Bin(t) function can be expressed as defined by eq. 4.9.

Bin(t) =

1 if 0 ≤ t < daysPerBin

2 if daysPerBin ≤ t < daysPerBin× 2

3 if daysPerBin× 2 ≤ t < daysPerBin× 3

· · ·
nBins if daysPerBin× (nBins− 1) ≤ t < daysPerBin× nBins

(4.9)

The bi(t) component of bui(t) is then defined by:

bi(t) = bi + bi,Bin(t) (4.10)

A stationary portion bi is preserved while adding a time-dependent portion bi,Bin(t) to
capture product rating deviations over time.

To capture user temporal drifts on rating behaviour a slightly different approach is taken,
as mentioned earlier. Gradual drifts in user behaviour can be modelled as a linear func-
tion based on the time deviation between the day of the rating attempted to predict and
the user’s mean day of rating. This deviation function can then be expressed as

devu(t) = sign(t− tu) · |t− tu|β, (4.11)

where |t− tu|measures the distance in terms of days between the day of the rating which
is being attempted to predict and the mean day of rating for user u. Additionally, the
distance |t − tu| is powered to a parameter β, which is determined by cross-validation.
By introducing one more user-specific parameter αu to scale the deviation function, we
get the following user bias rule:

bu(t) = bu + αu · devu(t) (4.12)

As in product bias, a stationary portion of user bias bu is preserved while adding a lin-
ear time deviation devu(t) scaled by αu. The parameter αu, as well as bu, needs to be
automatically learned from data.

49

4. MODELLING BIASES AND TEMPORAL FLUCTUATIONS 4.3. The temp-SVD model

Another parameter can be added to absorb day-specific variability for each user, account-
ing for daily drifts on user rating behaviour, which is a good complement to the current
user bias definition. This bu,t parameter will contain the fluctuations in user behaviour
for user u on day t and must also be automatically learned from data, leading the user
bias definition to:

bu(t) = bu + αu · devu(t) + bu,t (4.13)

By including time-awareness in the baseline predictors, the prediction rule for the model
becomes:

r̂ui(t) = µ + bu + αu · devu(t) + bu,t + bi + bi,Bin(t) + pu · qTi (4.14)

Additionally, users rating scale can also vary with time, directly influencing the rating
values given to products. Therefore, a time-dependent scaling factor cu(t) is added for
each user and for each day, scaling product biases accordingly, leading to:

r̂ui(t) = µ + bu + αu · devu(t) + bu,t + (bi + bi,Bin(t)) · cu(t) + pu · qTi (4.15)

Like user and product bias, the scaling factor cu(t) also results of the sum between a
stationary portion cu and a time-dependent portion cu,t. Moreover, unlike all other bias-
related variables, the cu values for every user u are initialized as 1, instead of zero. Ac-
cordingly, the least-squares problem to solve is modified into eq. 4.16.

[P,Q] = arg min
∑

rui(t)∈R

(rui(t)− µ− bu − αu · devu(t)− bu,t − bi − bi,Bin(t) − pu · qTi)2

(4.16)

+λ · (‖pu‖2 + ‖qi‖2 + b2u + α2
u + b2u,t + b2i + b2i,Bin(t))

4.3.1 Computation of temp-SVD model

The learning rules for all free variables introduced above are analogous to the static biases
learning rules previously described in subsection 4.7 and need different learning rates
and regularization constants, as well. A description of the temporal biases learning rules,
applied for each observed rating rui(t), follows:

bu,t ← bu,t + γ4 · (eui − λ4 · bu,t) (4.17)

αu ← αu + γ5 · (eui − λ5 · αu)

bi,Bin(t) ← bi,Bin(t) + γ6 · (eui − λ6 · bi,Bin(t))

cu ← cu + γ7 · (eui − λ7 · (cu − 1))

cu,t ← cu,t + γ8 · (eui − λ8 · cu,t)

50

4. MODELLING BIASES AND TEMPORAL FLUCTUATIONS 4.4. Implementation details

Parameter tuning is a cumbersome task, especially when so many variables are involved.
In this implementation, several different learning rates for the factor vectors were tested
to assess which were the ones that produce the best results. Other parameters used for the
time-dependent baseline predictors were adopted from Y. Koren’s previous works [19].
Whenever possible, for improved accuracy, parameters should be exhaustively tuned
according to the context and dataset to which the recommender system is applied.

4.4 Implementation details

To embed biases and temporal dynamics into the plain-SVD model some changes are
needed. Additional data structures were created to store the extra variables needed to
capture biases and temporal drifts, as designed in the model:

• meanAvg: a variable to store the ratings mean average, a real positive value;

• uBias[u]: an array to store all user biases, which are real values;

• pBias[p]: an array to store all product biases, which are real values;

• uBiasT[u,t]: a two-dimensional array to store all day-specific user temporal drifts,
which are real values;

• uAlpha[u]: an array to store allα parameters associated with user gradual temporal
drifts, which are real values;

• uAvgDay[u]: an array to store all users’ average rating days, which are integer
values;

• c[u]: an array to store the static portion of users’ scaling parameters, which are real
values;

• cT[u,t]: an array to store the day-specific portion of users’ scaling parameters,
which are real values;;

• pBiasT[u,t]: an array to store all day-bin related product temporal drifts, which are
real values;

The first improvement to be implemented was the embedding of non-temporal biases,
which resulted in the bias-SVD model. The bias-SVD model modified the original plain-
SVD model as described by alg. 4.4.1. For simplicity, the full description of the residuals
update operations were omitted.
In alg. 4.4.1 user and product biases are taken into account to produce recommendations.
The next improvement was to embed temporal fluctuations. Finally, the temporal infor-
mation contained in the dataset is used, leading to the temp-SVD model. The algorithm
to build the temp-SVD model works similarly to its previous bias-SVD version, only now

51

4. MODELLING BIASES AND TEMPORAL FLUCTUATIONS 4.4. Implementation details

Algorithm 4.4.1 SGD main learning loop for the bias-SVD model
while validation RMSE decreases do

for all latent factor k in K do
[subtract residuals]
for all rui in trainingSet do
r̂ui ← µ+ bu + bi + trainResidualsui + Puk ·Qik
err ← rui − r̂ui
Puk ← Puk + γ · (err ·Qik − λ · Puk)
Qik ← Qik + γ · (err · Puk − λ ·Qik)
{/*update bias only once per step*/}
if k == 0 then
bu ← bu + γ2 · (eui − λ2 · bu)
bi ← bi + γ3 · (eui − λ3 · bi)

end if
end for
[sum residuals]

end for
[compute validation RMSE]

end while

taking into account the temporal variable. These modifications are intended to improve
the models accuracy, while adding the least possible extra computational overhead. Alg.
4.4.2 describes the new temp-SVD algorithm.

52

4. MODELLING BIASES AND TEMPORAL FLUCTUATIONS 4.4. Implementation details

Algorithm 4.4.2 SGD main learning loop for the temp-SVD model
while validation RMSE decreases do

for all latent factor k in K do
[subtract residuals]
for all rui(t) in trainingSet do
bu(t)← bu + bu,t + αu ∗ devu(t)
bi(t)← (bi + bi,Bint) · (cu + cut)
r̂ui(t)← µ+ bu(t) + bi(t) + trainResidualsui + Puk ·Qik
err ← rui(t)− r̂ui(t)
Puk ← Puk + γ · (err ·Qik − λ · Puk)
Qik ← Qik + γ · (err · Puk − λ ·Qik)
{/*update bias only once per step*/}
if k == 0 then
bu ← bu + γ2 · (eui − λ2 · bu)
bi ← bi + γ3 · (eui − λ3 · bi)
bu,t ← bu,t + γ4 · (eui − λ4 · bu,t)
αu ← αu + γ5 · (eui − λ5 · αu)
bi,Bin(t) ← bi,Bin(t) + γ6 · (eui − λ6 · bi,Bin(t))
cu ← cu + γ7 · (eui − λ7 · (cu − 1))
cu,t ← cu,t + γ8 · (eui − λ8 · cu,t)

end if
end for
[sum residuals]

end for
[compute validation RMSE]

end while

53

4. MODELLING BIASES AND TEMPORAL FLUCTUATIONS 4.4. Implementation details

4.4.1 Accuracy optimization

Besides the measures that have been suggested in the previous chapter, additional ac-
curacy improvements can be made by adjusting the model’s parameters. As mentioned
before, no exhaustive parameter tuning was performed for the temporal-related learning
rates and regularization parameters, having adopted Y. Koren’s [20] values. However, it
is worth mentioning that other parameters can be tuned, such as the number of day bins
chosen to represent time for product temporal bias capture purposes. With larger bins,
i.e. bins that represent a wider day-span, the influence of each day on rating patterns is
generalized over a larger set of days. On the other hand, using smaller bins allows for a
finer resolution for capturing time-dependent trends, but there is the need to assure there
is a representative number of products rated within the time-span represented by the bin.
With few ratings inferred tendencies may be misleading, so it is important to mind this
balance when determining the ideal number of days per bin.

4.4.2 Speeding up the algorithm

All solutions presented in chapter 3 were applied to the new bias-SVD and temp-SVD
models, while adding a new biases storage measure, described in this section.

4.4.2.1 Storing biases residuals

Additional complexity reduction can be achieved by also storing the biases values. As
defined on the algorithm’s main loop, user and product biases values are updated only
once per step. This means that throughout the main learning loop biases values remain
unchanged. If the sums bu(t) + bi(t) for each rating on the training set would be stored,
it would only be necessary to access one variable instead of accessing two variables and
computing their sum, for all factors after the first one. This brings an obvious improve-
ment in terms of processing speed to the current algorithm. This observation led to the
creation of a new structure biasResiduals to store biases and adding an update operation
for bias residuals to the main loop, as described in alg. 4.4.3.
These modifications will bring extra overhead to the processing of the first factor but will
dramatically reduce computation time in processing the remaining factors.

54

4. MODELLING BIASES AND TEMPORAL FLUCTUATIONS 4.4. Implementation details

Algorithm 4.4.3 Temp-SVD model learning algorithm with bias residuals storage
while validation RMSE decreases do

for all latent factor k in K do
[subtract residuals]
for all rui(t) in trainingSet do

{/*use bias residuals only after updating the biasResiduals structure*/}
if k == 0 then
bu(t)← bu + bu,t + αu ∗ devu(t)
bi(t)← (bi + bi,Bint) · (cu + cut)
r̂ui(t)← µ+ bu(t) + bi(t) + trainResidualsui + Puk ·Qik

else
r̂ui(t)← µ+ biasResidualsui + trainResidualsui + Puk ·Qik

end if
err ← rui(t)− r̂ui(t)
Puk ← Puk + γ · (err ·Qik − λ · Puk)
Qik ← Qik + γ · (err · Puk − λ ·Qik)
{/*update bias only once per step*/}
if k == 0 then
bu ← bu + γ2 · (eui − λ2 · bu)
bi ← bi + γ3 · (eui − λ3 · bi)
bu,t ← bu,t + γ4 · (eui − λ4 · bu,t)
αu ← αu + γ5 · (eui − λ5 · αu)
bi,Bin(t) ← bi,Bin(t) + γ6 · (eui − λ6 · bi,Bin(t))
cu ← cu + γ7 · (eui − λ7 · (cu − 1))
cu,t ← cu,t + γ8 · (eui − λ8 · cu,t)

end if
end for
[sum residuals]
{/*update bias residuals only once per step*/}
if k == 0 then

for all rui(t) in trainingSet do
bu(t)← bu + bu,t + αu ∗ devu(t)
bi(t)← (bi + bi,Bint) · (cu + cut)
biasResidualsui ← bu(t) + bi(t)

end for
end if

end for
[compute validation RMSE]

end while

55

4. MODELLING BIASES AND TEMPORAL FLUCTUATIONS 4.5. Evaluation

4.5 Evaluation

4.5.1 Datasets

To test the bias-SVD and temp-SVD models and compare them against the previously
implemented plain-SVD model the same dataset (Yahoo! KDD Cup 2011 dataset) was
used. This time, information about days of rating was used. For more details on this
dataset refer to 3.6.1.

4.5.2 Experiment design

As in the previous chapter, only a portion of the dataset was used at a time in each test,
so that more results could be presented within the available time for the test session. All
experiments on the test session were performed over a 35, 000-user portion of the dataset.
For some of the experiments, a 3-fold cross-validation evaluation was performed, mean-
ing that 3 randomly picked disjoint 35, 000-user portions of the dataset were used for
3 independent experiments, and the presented results are an average of these 3 experi-
ments. The choice of splitting the dataset by users was made to assure that all available
data about each user is used to make predictions for that user, and because the Yahoo!
dataset already comes grouped by user, which simplifies the splitting process. In all tests,
different numbers of latent factors were used: 20, 50, 100 and 200, as well as 8-core paral-
lelization by default. The evaluation section is organized as follows:

• Parameter tuning: For the bias-SVD and temp-SVD models, tests were performed
to find which are the learning rates (the γ parameters in eq. 3.28) that provide
the best results. In the literature several values were suggested for these param-
eters, ranging from 0.001 to 0.008. Hence, tests were performed for the range of
[0.001, 0.020] with 0.001 increments between tested values. The regularization pa-
rameter λ was fixed at 0.015. Additionally, the learning rates and regularization
parameters used for learning biases were adopted from Y. Koren’s work [18].

• Adaptive learning rate: The time-SVD model was tested with and without using
adaptive learning rate and results were compared.

• Model comparison: The bias-SVD and the temp-SVD models were tested with
the best factor learning rates previously assessed and their results were compared
against the plain-SVD model.

• Parallelization: The learning process of bias-SVD and temp-SVD models were
tested with different levels of parallelization (single-core, 2-core, 4-core and 8-core)
and respective performances were analysed and compared in terms of speed and
accuracy.

• Model selection: An analysis over the complex issue of selecting the best model to
produce accurate recommendations was carried out.

56

4. MODELLING BIASES AND TEMPORAL FLUCTUATIONS 4.5. Evaluation

4.5.3 Results and discussion

4.5.3.1 Parameter tuning

For the bias-SVD and temp-SVD models, tests were also performed to assess which was
the best factors learning rate. The results are presented on figs. 4.2 and 4.3, respectively.

Figure 4.2: Bias-SVD model with different learning rates

Figure 4.3: Temp-SVD model with different learning rates

It can be observed that different learning rates provide different results. For the bias-
SVD model, 0.007 appears to be the best learning rate, while for the temp-SVD model
0.012 appears to be better.

57

4. MODELLING BIASES AND TEMPORAL FLUCTUATIONS 4.5. Evaluation

4.5.3.2 Adaptive learning rate

The following chart, illustrated by fig. 4.4, shows the results of experiments made with
the temp-SVD model using adaptive and non-adaptive learning rates for several learning
rate values. Again, the improvements we aimed to achieve by using an adaptive learning
rate were related mostly with computation time, but also with accuracy. We expected
to find the right combination between a learning rate and a progressive decay rate that
would allow the algorithm to have a fast learning at the beginning but a slower and more
careful learning when getting closer to the final solution.

Figure 4.4: Performance comparison between adaptive and non-adaptive learning rates
for the temp-SVD model using 200 factors

In chapter 3 we observed that using an adaptive learning rate for learning the plain-SVD
model did not produce better results than those obtained with a non-adaptive learn-
ing rate. Unlike with the plain-SVD model, for the temp-SVD model this modification
brought significant improvements in terms of accuracy and computation time, since the
best RMSE results obtained on the test set were 26.1777 using adaptive learning rate with
a learning rate of 0.012, and 26.4814 using non-adaptive learning rate with a learning
rate of 0.007. Moreover, the number of steps taken was 103 with the adaptive learning
rate and 28 with non-adaptive learning rate. Although the non-adaptive learning rate
scenario allowed for the model to take less steps, it also produced a much worse final test
RMSE result.

Although many different learning rates were tried, both the minimum learning rate set
for the adaptive learning rate approach (set to 0.0007) and the progressive decay rate (set
to 0.9) were not exhaustively tested. Additional experiments testing different combina-
tions of learning rate, min. learning rate and progressive decay rate would be useful to
further test this option. In future works, a more exhaustive experimentation session with
such intent shall be taken.

58

4. MODELLING BIASES AND TEMPORAL FLUCTUATIONS 4.5. Evaluation

4.5.3.3 Model performance comparison

Fig. 4.5 shows a comparison between all three models presented on this thesis (plain-
SVD, bias-SVD and temp-SVD), each of them trained with the best learning rates discov-
ered earlier. The embedding of biases to the plain-SVD model appears to improve the

Figure 4.5: Comparison between plain-SVD, bias-SVD and temp-SVD models

model’s accuracy for every tested number of latent factors. Additionally, the embedding
of temporal dynamics to the bias-SVD model appears to improve the model’s accuracy
for every tested number of latent factors.

4.5.3.4 Parallelization

Finally, tests were performed for all three models to compare the learning performances
with four different levels of paralellization: 1-core, 2-core, 4-core and 8-core. As with
the plain-SVD model, the parallelization of bias-SVD and temp-SVD algorithms made an
efficient use of all available processors, as fig. 4.6 shows. Parallelization tests with the
bias-SVD and temp-SVD models were also performed with a learning rate of 0.015 and
the learning process was allowed to run for 20 steps only. Similarly to what happened
in the previous chapter, such high learning rate value was used to amplify the eventual
damage in terms of predictive accuracy brought by parallelization-related inconsisten-
cies, when these occur. The overall results of parallelization tests are illustrated by fig.
4.7.
These tests bring us to similar conclusions to those taken after the previous chapter’s
tests session: as expected, the processing time per step is lower when more processors
are used. As for the RMSE values obtained, these are somewhat surprising. The fact that

59

4. MODELLING BIASES AND TEMPORAL FLUCTUATIONS 4.5. Evaluation

Figure 4.6: CPU usage at 8-core parallel processing of the temp-SVD model

there is no significant accuracy loss when parallelizing can be motivated by the theory
presented earlier in subsection 3.5.3, but observing that the accuracy can even improve
when adding processors is intriguing. However, it may have a simple explanation: at the
moment, the algorithm is designed to run through the ratings in the dataset by order of
appearance. Since the dataset is ordered by users, the algorithm inevitably follows that
order when processing ratings. This may introduce some bias to the learning process, as
the model is iteratively learned by recurrently fitting the data of some users before others,
thus possibly leading to a loss of impartiality and consequent loss of predictive accuracy.
When parallelizing the algorithm, although introducing some risk of inconsistency it also
introduces randomness in processing ratings. For example, when running through the
dataset in a 1-core fashion, by the time the ratings of user 2 start being processed the
model already learned towards fitting all ratings of user 1. On an 8-core alternative,
ratings from 8 different users are being processed simultaneously, which introduces the
bit of randomness in the processing of ratings that may eventually improve the accuracy.

4.5.3.5 Model selection

Although we rely on cross-validation to determine when to interrupt the learning pro-
cess, aiming to provoke that interruption in the moment when the model is at its best to
predict future ratings, it is always impossible to be certain about whether the algorithm

60

4. MODELLING BIASES AND TEMPORAL FLUCTUATIONS 4.5. Evaluation

Figure 4.7: Performance of plain-SVD, bias-SVD and temp-SVD models with different
levels of parallelization

finished the learning process in the right moment or not.

When we introduced the concept of cross-validation (subsection 3.4.1) it was mentioned
that, ideally, the test set would only be used once, to evaluate the accuracy of the model
after the algorithm converged, and the result from that evaluation would be final. The
reason why the test set should be used only once is that in a real-life scenario there is no
test set to help us quantify the accuracy of the model produced. We can never be sure
if the model would be better if the algorithm would have been interrupted at a different
stage.

Throughout these experiments, we tried to use the test set only at the end of the learn-
ing process to produce credible final results. In this subsection we will step out of this
use-it-once practice to assess if the cross-validation method really led us to the best pos-
sible model. To do so, we attempted to predict the ratings on the test set throughout the
whole learning process instead of only in the end it, regardless of whether the algorithm
had converged (according to the validation RMSE progress using the cross-validation
method) or not.

The experiment consisted in assessing the test RMSE throughout the learning process
at each 5 steps, for the temp-SVD model using the learning rate that yielded the best
results and 200 latent factors. The best test RMSE obtained with the temp-SVD model
was = 26.1777 at step 103 using a learning rate of 0.012 and 200 latent factors.

Fig. 4.8 shows the RMSEs progression for the temp-SVD model obtained at every 5 steps
of the learning process from step 30, using the aforementioned parameters.

According to the cross-validation method, the algorithm entered an over-fitting situation
at around step 105 - that was the moment when the train RMSE continued decreasing
but the validation RMSE stabilized. That should be the right moment to interrupt the

61

4. MODELLING BIASES AND TEMPORAL FLUCTUATIONS 4.6. Summary

Figure 4.8: RMSEs on the test and validation sets throughout the temp-SVD model learn-
ing process

learning process and consider the model as good as it can be to predict unknown rat-
ings. As fig. 4.8 shows, the best test RMSE obtained was at step 70, which illustrates the
challenge associated with model selection. Notice that the validation and test axis have
different RMSE scales, so that both progression curves could fit in the chart and be easily
visualized. Although our cross-validation method indicated that the model was at its
best at step 103, RMSE evaluation on the test set throughout the learning process showed
different. This is an unavoidable issue when selecting the best predictive model, which
is worth looking into in future works.

4.6 Summary

In this chapter we discussed:

• The introduction of user and product rating biases to enhance the matrix factoriza-
tion model.

• The introduction of temporal dynamics, enhancing the model to account for tem-
poral concept drifts.

• Computational constraints, efficiency and parallelization of the algorithm.

• Analysis and evaluation of all proposed models and solutions to the implementa-
tion challenges.

62

5
Group-based recommendations

5.1 Introduction

This chapter addresses an extension of the personalization problem where recommen-
dations must be produced for different users simultaneously, i.e., recommendations for
groups of users. When there is more than one user to please, recommendations must be
provided in a different way so that the whole group of people is satisfied. The real-life ex-
ample we will focus on to formulate the problem is a context where there are many people
gathered listening to music. Hence, the challenge we take on is sorting out a playlist of
songs to present to this group, based on the awareness of some context elements, namely
the presence of some individuals whose preferences are known. As before, an exten-
sive database with user preferences expressed by a user-product ratings matrix is used to
build a predictive model, which is afterwards combined with clustering techniques and
context awareness to produce a meaningful playlist of songs.
Group-based recommendations are recommendations geared towards not only a partic-
ular user but also to the surrounding context. Context is the term we adopt to name the
scope of elements within the environment of the target users, which can be somehow
captured and used to complement the recommendation system. By being aware of this
context we seek for not only taking into account the users’ explicit feedback on products,
but also the surrounding environment on which they will receive product recommen-
dations, and even consume them in this case, since songs on the playlist will just play
automatically. Elements like the number of people around, the presence of some users al-
ready profiled by the recommender system, the time of the day, the season of the year or
even the noise level can be useful to elaborate an appropriate playlist. Capturing such el-
ements can be done by using a webcam and a microphone connected to the computer, for

63

5. GROUP-BASED RECOMMENDATIONS 5.1. Introduction

example. Above all other elements, determining the group of people for whom recom-
mendations must be computed is a key step of the playlist creation process. This thesis
focuses mostly on the pre-processing stages which comprise matrix factorization tech-
niques to build a solid predictive model that serves as spinal cord to the system. Thus,
methods for capturing the aforementioned elements of the context were not explored
thoroughly.
In the next sections, each of the stages comprised in this process will be addressed with
more detail. Figure 5.1 presents a global overview of the proposed group recommenda-

Figure 5.1: Graph of the song playlist production process

tion framework, illustrating its main stages and action flow towards the final result. On
this figure, each labelled orange arrow represents one of the four main steps of the group
recommendation process:

• First step: decomposing the user-product ratings matrix into latent factor represen-
tation of users and products through SVD, producing a user-factor matrix and a
product-factor matrix;

• Second step: applying a clustering algorithm over the user-factor matrix, dividing
users into several groups based on their preferences;

• Third step: detecting useful elements from the surrounding context, namely the
identity of some of the users, and determine to which user groups they belong;

• Forth step: combining target users’ preferences with group preferences to produce
a list of recommendable products;

64

5. GROUP-BASED RECOMMENDATIONS 5.2. Discovering groups of users

On this thesis, context awareness is obtained by direct user input, i.e., the system relies
on users to manually identify some persons within the group which already had their
preferences stored and analysed on the pre-processing stages. This direct input will help
understanding the type of people present in the target environment. Once identified
these users, the system tries to associate them with some previously discovered user
groups within the database. The discovery of such groups will be addressed on section
5.2. With this information, the preferences of the detected users are combined with the
preferences of the group to assess which products - songs, in this case - will most please
these users as a crowd. The way these preferences are combined is further addressed on
subsection 5.2.1 and on section 5.3. Once these preferences are assessed, a set of songs can
be gathered accordingly. This set of songs can then be processed and adapted to build a
diverse playlist.

5.2 Discovering groups of users

The discovery of groups of users is performed after the matrix factorization stage, when
user-factor and product-factor matrices are already computed. One of the peculiarities
of our system is that clustering is performed in the latent factor space inferred during
the matrix factorization stage. The alternative would be performing clustering directly
over the user-product ratings matrix, using products as dimensions and ratings as coordi-
nates. However, such alternative would imply having a nearly 600K-dimensional space,
instead of a 200-dimensional (if using 200 latent factors). The reasoning behind the choice
of using latent factors as dimensions is not only the achieved dimensionality reduction
but also the confidence that the latent factor representation of users and products ob-
tained from matrix factorization truly captures user and product implicit characteristics,
allowing for representing them independently from each other.

5.2.1 Groups of users and leaders

The main goal of this chapter is setting up a method for providing group recommenda-
tions. To achieve this goal we need to determine to which group each target user belongs.
Knowing to which group each target user belongs helps pointing the systems’ predic-
tive power in the right direction, aiming for producing recommendations to the specific
groups involved.

Fig. 5.2 illustrates the process that occurs from the moment when users are detected
within the target context, represented as step 1, to the moment the detected users’ and
respective groups’ preferences are combined into a composite preferences vector, repre-
sented as step 4.

Step 2 represents the moment when a detected user is associated to a group according
to his latent factor vector. The system will consider that a user belongs to the cluster

65

5. GROUP-BASED RECOMMENDATIONS 5.2. Discovering groups of users

Figure 5.2: Illustration of target users detection and preference combination with group
leaders

that has its centroid closer to that user. Although detected users belong to an identi-
fied group, they may have preferences that diverge from many other users in the same
group, which can render these detected users as unsuitable sources for predicting the
rest of their groups’ preferences. This is more likely to happen for large groups where
preference diversity inevitably varies more, despite the expected similarities across users
within a group. For this reason, there is the need to find a representative user for each
group, to serve as a reference regarding its group’s preferences. We will henceforth refer
to this representative user as group leader. The group leader should be the one whose
preferences are closer to the average preferences of all other users within the group. The
process of identifying the group leader is represented as step 3. Once identified the group
leaders to which our detected target users belong, the preferences of all these actors are
combined to find some common ground across all users, putting some emphasis on the
detected users, though. Step 4 represents the process of combining detected users’ and
respective group leaders’ preferences. This step is the one that raises a more interesting
challenge, which is deciding how to combine these preferences. This issue will be further
addressed in section 5.3.

5.2.2 Implementation description

Group discovery for this project was performed with k-means algorithms, technique
which was addressed earlier in subsection 2.4.1.2. As we recall, in k-means clustering
we are given a set of n data points, the users in this case, in a d-dimensional space and

66

5. GROUP-BASED RECOMMENDATIONS 5.2. Discovering groups of users

number of clusters k. The problem is to estimate a set of k points, called centroids, so as
to minimize the mean squared distance from each data point to its nearest center, called
the average distortion. The k-means algorithm applied to this problem is described by
alg. 5.2.1.

Algorithm 5.2.1 K-means algorithm
for all ci in centroids C do
ci ← randomCoordinates(K)

end for
while any ci coordinates change do

for all pu in user-factor matrix P do
c← nearestCentroid(pu, C)
assignCentroid(pu, c)

end for
for all ci in centroids C do
ci ← meanCoordinates(assignedUsers)

end for
end while

This set of steps represents the typical k-means algorithm, also know as Lloyd’s algo-
rithm. However, the normal k-means algorithm can get stuck at local minima, far from
the optimal solution. For this reason it is common to consider heuristics based on lo-
cal search, in which centroids are randomly swapped in and out of an existing solution.
New solutions are accepted if they decrease the average distortion, and otherwise they
are ignored. It is also possible to combine these two approaches (normal k-means and
local search), producing a type of hybrid solution. In this thesis we used Mount’s [16, 17]
implementation of k-means. Besides standard k-means, we also experimented two other
variants of k-means, as listed below:

• Swap: A local search heuristic, which works by performing swaps between existing
centroids and a set of candidate centroids.

• Hybrid: A more complex hybrid of normal k-means and Swap, which performs
some number of swaps followed by some number of iterations of the k-means al-
gorithm.

The distance measure used on this implementation was the euclidean distance.

5.2.3 Clustering tests

Normal k-means, Swap and Hybrid variants were tested with 200 initial random cen-
troids and 34,000 users. Although the temp-SVD model was obtained using 200 latent
factors, we decided to use a small number of factors, relying only on the most significant
ones, i.e., the first ones, to perform the clustering. Clustering tests were performed us-
ing 2, 5, 8 and 10 factors. In the end of each algorithm, smaller clusters were eliminated

67

5. GROUP-BASED RECOMMENDATIONS 5.3. Computing group-based preferences

and the users then assigned to these were reassigned to the nearest cluster. The mini-
mum number of users per cluster was set to 150. We did not find significant differences
between these 3 k-means variants in terms of clustering performance. Thus, we will
henceforth focus our discussion in the normal k-means clustering algorithm. However,
all tests performed with the other 2 experimented variants of k-means are documented
in Appendix 7. Fig. 5.3 illustrates the results obtained for the k-means algorithm using 2,
5, 8 and 10 factors. Notice that the percentage axis is represented in log2 scale.

Figure 5.3: K-means clustering with different numbers of latent factors

We can observe that the most of the clustering results were good, in the sense that all
experiments produced a high number of different clusters, most of them with a similar
number of users. The experiment with 2 latent factors was the one that produced more
evenly distributed users per cluster, where the largest cluster contains 7.24% of all users,
while on the other experiments we can observe clusters containing 20%−40% of all users,
which may indicate a less efficient clustering performance.

5.3 Computing group-based preferences

Computing group-based preferences comprises combining all information available on
the target context in a way that allows for providing suitable recommendations. In this
case, the context element to work with is the presence of some users detected by the
system. If the system already possesses some knowledge regarding these detected users’
preferences, such knowledge, along with pre-discovered groups of users, shall be used
to produce a playlist.

Alg. 5.3.1 describes in pseudo-code the steps taken to produce group-based recommen-
dations.

68

5. GROUP-BASED RECOMMENDATIONS 5.3. Computing group-based preferences

Algorithm 5.3.1 Group-based recommendation global algorithm
Step 1:
[P,Q]← tempSV D(R)
Step 2:
C ← kMeans(P)
Step 3:
U ← detectUsers()
tGroups← getTargetGroups(U,C)
Step 4:
g ← combinePrefs(U, tGroups)
playlist← getRecommendations(g,Q)

Here, R is the user-product ratings matrix, C is the set of clusters resulting from perform-
ing clustering over the user-factor matrix P , U is the set of users detected, tGroups is the
set of target groups and g is the factor vector that results from combining the detected
users’ preferences and respective group preferences.

5.3.1 Combining preferences

Earlier on subsection 5.2.1 the concept of group leaders was introduced, as well as the
idea of combining the preferences of detected context users with the preferences of their
respective group leaders to somehow assess the global preferences of the target group.
This subsection intends to discuss ideas for this preference combination. First, let us ex-
plain how group leaders are determined: each group of users discovered corresponds to
a cluster obtained through the k-means algorithm. As mentioned earlier, each cluster is
composed by the users that are closer to its centroid (the central point of a cluster) than
to any other cluster centroid. Thus, for each cluster, one can state that the preferences
of a user that happens to be placed on the very same coordinates as its centroid are an
average of all other users’ preferences within that same group. Such user would then
be the perfect candidate for representing the whole group. For this reason, we define
that the user who is closer to the respective centroid is elected as the leader of the group,
representing its preferences. After detecting users and finding the respective group lead-
ers, their preferences must be combined to produce a playlist. Two main categories of
possible approaches to the users and leaders preference combination are:

• Early fusion: combining target users’ factor vectors with group leaders’ factor vec-
tors to obtain a resulting factor vector that represents their combined preferences.
Later on, use this factor vector to obtain a set of recommendable products;

• Late fusion: obtaining a set of recommendable products for each target user and for
each group leader, based on their individual factor vectors, and afterwards combine
all recommendations to obtain a resulting combined set.

Both these categories of approaches are expected to yield good but different results, as
long as the methods used for combining factor vector or recommendation sets are suitable

69

5. GROUP-BASED RECOMMENDATIONS 5.3. Computing group-based preferences

for this particular problem. In future works these two approaches shall be compared
against each other. For now, we focused on early fusion techniques.

5.3.1.1 Early fusion

An early fusion approach was taken, where the combination of target users latent-factor
vectors was performed through a linear weighted combination, assigning more weight
to more participative users, i.e., users that gave more ratings to products, as expressed by
eq. 5.1.

g =
n∑
i

(αui · ui) (5.1)

After detecting users and assessing to which groups these belong, the system identifies
the group leaders. For each group, the group leader is the user that is closer to the re-
spective cluster centroid, thus rendering this user as the most representative one. Group
leaders’ preferences are used to add diversity and smooth the group recommendations
by combining these with detected users’ preferences, extending eq. 5.1 into eq. 5.2:

g =
n∑
i

(αui · ui + αli · li) (5.2)

In eqs. 5.1 and 5.2, n is the number of target users and αui and αui are the weights as-
signed to the factor vectors of target user ui and group leader li. As mentioned earlier, the
weights assigned to each target user and group leader latent-factor vectors depend on the
relation between the number of ratings given to products by these users and leaders and
the total number of ratings given by all referred users and leaders αu = nRatingsu

totalGroupRatings .
Alg. 5.3.1 can then be described with more detail by alg. 5.3.2.

Algorithm 5.3.2 Group-based recommendation global algorithm
1: [P,Q]← tempSV D(R)
2: C ← kMeans(P)
3: U ← detectUsers(); tGroups← getTargetGroups(U,C)
Step 4:
g ← new vectorK(0)
for all u in U do
c← getGroup(u)
l← getLeader(c)
g ← g + αu · Pu + αl · Pl

end for
playlist← getRecommendations(g,Q)

Now we can take a more insightful look into the group recommendation global algorithm
described in alg. 5.3.1, by detailing the combinePrefs(U, tGroups) function in step 4, as
alg. 5.3.2 shows.

70

5. GROUP-BASED RECOMMENDATIONS 5.4. Evaluation

5.3.2 Finding recommendable products

As illustrated by 5.1 and described in the beginning of this chapter, the first step of the
group recommendation process is obtaining a latent factor representation of users and
products, which are stored in user-factor and product-factor matrices, respectively. Let us
revisit the matrix decomposition represented by eq. 5.3, that results from this reasoning:

R = P ·QT ⇔

r1,1 · · · r1,n

...
. . .

...
rm,1 · · · rm,n

 =

u1,1 · · · u1,k

...
. . .

...
um,1 · · · um,k

 ·

p1,1 · · · p1,k

...
. . .

...
pn,1 · · · pn,k

T

(5.3)

Here, matrix R is the ratings matrix, each vector (row) pu of P represents a user u, and
each vector (row) qi of Q represents a product i. These matrices contain all vectors repre-
senting users and products, on which the following steps rely. The intent of latent factor
representation is thoroughly described and explained in chapter 3. After obtaining this
user and product latent factor representation, we intend to assess users’ preferences for
products as eq. 5.4 shows:

rui = pu · qTi (5.4)

Again, rui is the preference of user u for product i, both represented as latent factor vec-
tors. This reasoning was applied before to assess individual users’ preferences. Now,
we intend to apply the same reasoning to groups of users, by using a latent factor vector
that represents the combination between detected users and group leaders instead of the
latent factor vector representing an individual user, as expressed by eq. 5.5.

rgi = g · qTi (5.5)

Here, g represents the combined preferences factor vector.
Once obtained this combined factor vector introduced in the previous subsection (5.3.1),
recommendations can be computed by calculating the dot product between the combined
factor vector and all product vectors contained in the product-factor matrix, thus assess-
ing which products are more likely to satisfy this group. As usual, higher values on this
vectors dot product indicate higher preference. After obtaining the group’s preference
scores for all products and listing them, the resulting list of products and preferences
must be ordered according to preference value and the N top products can be selected as
recommendable products, providing a song pool from which some songs can be chosen
to build a playlist.

5.4 Evaluation

In this section the quality of the produced playlists will be analysed and discussed, in
order to assess whether or not the ideas introduced in this chapter are pertinent and have
the potential to become interesting baselines for future applications.

71

5. GROUP-BASED RECOMMENDATIONS 5.4. Evaluation

5.4.1 Datasets

The dataset used for this experiment is the one provided by Yahoo! to contestants of
the KDD Cup 2011, as in previous chapters. The fact that all products contained in this
dataset are musical products makes it eligible for these tests. Also, the fact that this
dataset has been used in previous chapters was preponderant, since all matrix factor-
ization techniques implemented on previous chapters were developed to be used with
this particular dataset and oriented to suit its peculiarities. However, in further works it
would be important to try these procedures with different datasets, since the relevance
of these procedures could benefit from a more solid validation.

5.4.2 Experiment design

All the experiments conducted on this section used the same user-factor and product-
factor matrices, since the goal was not to evaluate the quality of the matrix factorization
model itself (this was done on previous chapters 3 and 4). These matrices were obtained
by processing the training dataset using the ratings of 35, 000 users regarding all 624, 961

products. The model employed to take on this task was the temp-SVD model described
in chapter 4 with 200 latent factors. After building the model, its resulting user-factor
and product-factor matrices were stored into files and recurrently used as baseline for
the following group recommendation process. From the 35, 000 users contemplated by
the model, a 34, 000-users portion was used to obtain the clusters (groups) and the re-
maining 1000-users portion was used to select random users to play in as users detected
by the system’s context awareness. Although we made experiments with all 3 previously
mentioned variants of k-means, the experiments documented in this section were all per-
formed using the normal k-means algorithm, since the clustering results produced with
the other 2 variants were not significantly different from those obtained with normal k-
means. Moreover, the group recommendation framework presented in this chapter may
use any clustering method. Nonetheless, the results from the experiments carried out
with all 3 k-means variants are documented in Appendix 7.
The evaluation criteria used to assess the quality of playlists was the percentage of pos-
itive ratings given to songs (on the test set only) by the users that belong to the target
groups, within the set of songs contained in the recommended playlists. A rating equal
to or higher than 3.5, on a scale from 0 to 5, is considered a positive rating.

5.4.3 Results

For each of experiment, random users were chosen and their groups were identified. To
improve the quality of this evaluation session, for each experiment we picked 4 users
belonging to 4 different groups, so that we could attempt to produce multi-group recom-
mendations. Groups are identified as g1, g2, g3 and g4. Table 5.4.3 presents the groups
involved in each of the 10 experiment setups and the number of users contained within
those groups.

72

5. GROUP-BASED RECOMMENDATIONS 5.4. Evaluation

2 factors 5 factors 8 factors 10 factors
#Exp Groups nr. of users nr. of users nr. of users nr. of users

1 g1 282 702 431 927
2 g2 507 753 792 639
3 g3 309 459 801 312
4 g4 745 292 261 359
5 g1+g2 789 1455 1223 1566
6 g2+g3 816 1212 1593 951
7 g3+g4 1054 751 1062 671
8 g4+g1 1027 994 692 1286
9 g1+g2+g3 1098 1914 2024 1878

10 g2+g3+g4 1561 1504 1854 1310

Table 5.1: Statistics on group recommendation experiments

The following charts illustrate the results obtained in each experiment, using k-means
clustering with different numbers of latent factors. The results are grouped by single-
group, 2-group and 3-group experiments, represented by figs. 5.4, 5.5 and 5.6, respec-
tively.

Figure 5.4: Results of single-group recommendation

In all of the single-group recommendation experiments the assessed satisfaction rates
were all above 53%, and the majority of them (12 out of 16) were above 70%, which is a
positive indicator.

73

5. GROUP-BASED RECOMMENDATIONS 5.4. Evaluation

Figure 5.5: Results of 2-group recommendation

In all of the 2-group recommendation experiments the assessed satisfaction rates were
all above 60% (better than the 53.33% minimum rate from the single-group experiments)
and the majority of them (9 out of 16) were above 70%. Moreover, the 2-group experi-
ment results present a smaller satisfaction rate fluctuation across experiments than the
previous single-group experiments. Overall, the 2-group recommendation experiment
results are encouraging.

Figure 5.6: Results of 3-group recommendation

In all of the 3-group recommendation experiments the assessed satisfaction rates were
all above 50% and the majority of them (5 out of 8) were above 70%, which is a positive
indicator.

Additionally, we present a chart, illustrated by fig. 5.7, that shows the average results for
each of the 3 groups of experiments documented above using different numbers of latent

74

5. GROUP-BASED RECOMMENDATIONS 5.4. Evaluation

factors for clustering, providing a more global overview of these experiments.

Figure 5.7: Averaged results of all 3 groups of experiments

The analysis of fig. 5.7 suggests that using the k-means algorithm with 8 latent factors for
performing clustering produces the best results in terms of group satisfaction rate, with
an average percentage of good recommendations above 80% for single-group, 2-group
and 3-group experiments. Using 5 latent factors produced results nearly as good as those
obtained with 8 factors, with an average percentage of good recommendations above
76% for single-group, 2-group and 3-group experiments.
It is my desire to perform more exhaustive experiments in future works, since the results
here obtained are encouraging and render the here proposed framework as a promising
baseline for future applications.

75

5. GROUP-BASED RECOMMENDATIONS 5.5. Summary

5.5 Summary

In this chapter we discussed:

• User clustering based on users’ latent factor vectors, using different k-means vari-
ants.

• Introduction of the concept of group leaders.

• Combination of detected users’ preferences with group leaders’ preferences to pro-
duce group-oriented recommendations.

• Evaluation of group-based recommendations.

76

6
Conclusions and future work

6.1 Contributions summary

The goal of this thesis was to develop a system capable of analysing a dataset containing
user feedback regarding products, from that feedback mine the relations between users
and products and finally provide personalized product recommendations to users.
To meet this goal, a matrix factorization model based on singular value decomposition
was implemented, exploring explicit user feedback in a collaborative fashion to infer user
preferences.
This matrix factorization model was further improved to account for user and product
rating biases, allowing for specific user-related and product-related rating tendencies to
be captured and properly dealt with, leading to a bias-aware matrix factorization model.
The bias-aware matrix factorization model was further improved to account for tempo-
ral fluctuations in rating patterns, allowing for the time variable to be considered and
embedded into the process of predicting user preferences for products, resulting in a
time-aware matrix factorization model.
Along the process of developing these predictive models, computational constraints and
efficiency challenges arose due to the implemented algorithm’s complexity and the large
dimension of the dataset. Such challenges led to the need for taking measures to opti-
mize the efficiency of the learning algorithms, and the efforts made in that sense resulted
in a parallel stochastic gradient descent implementation of the matrix factorization al-
gorithm, designed to make the best possible use of all available processors.
The initial goal of this thesis was accomplished and further extended to pursue group-
based recommendations, which combined the implemented matrix factorization models
with clustering techniques to produce a framework for recommending lists of products

77

6. CONCLUSIONS AND FUTURE WORK 6.2. Potential applications

to groups of users, instead of focusing exclusively on a particular user.
The process of reflecting, developing, testing, discussing and documenting all these com-
ponents into this thesis is my academic contribution to science, along with the promise
of giving continuity to the work here presented.

6.2 Potential applications

The potential applications of the frameworks implemented in this thesis are mainly ori-
ented towards any environments involving user consumption and evaluation of prod-
ucts. Every system that sells products to users and somehow collects their feedback
regarding those products would greatly benefit from having an accurate recommender
system mining its user-product interactions and making meaningful product recommen-
dations that would lead users to more easily find what they like and consume more prod-
ucts. Any wide on-line business whose service is providing multimedia content is a good
candidate to take the best advantage of an accurate - thus persuasive - recommender sys-
tem.

6.3 Challenges and limitations

The main challenges and limitations associated with the implemented frameworks lie on
their dependence on:

• reliable user feedback that truly captures users’ preference for specific products.
Such feedback is not always available or it is sometimes associated with low confi-
dence levels;

• massive amounts of user input, without which matrix factorization approaches
can’t produce reliable results;

• computational power to timely process massive amounts of data and retrieve re-
sults;

• conclusive evaluation methodologies to assess the algorithms’ quality. It is always a
difficult task to assess whether the recommendations produced by a recommender
system are good or not, before observing if the user actually consumed the recom-
mended product. There are methods for performing such evaluation but they de-
pend on the existence of great amounts of user feedback, otherwise the conclusions
from such evaluation may be dubious.

6.4 Future work

Due to time constraints, some ideas were left out of this thesis. Nonetheless, it is worth
to keep these ideas in mind for future works.

78

6. CONCLUSIONS AND FUTURE WORK

6.4.1 Implicit feedback

Implicit feedback, i.e., feedback inferred from all user-system interactions other than ex-
plicit ratings, can provide a valuable input for producing recommendations. Such input
can be particularly useful to overcome the scarcity of explicit feedback, which is in many
cases unavailable. Some implementations have been described in literature addressing
this question and the natural course of the work produced in this thesis is to evolve into
embedding implicit feedback to complement explicit feedback and provide a more solid
ground for assessing user preferences.

6.4.2 Dynamic playlists with enthusiasm curves

Regarding the framework for producing playlists oriented to groups, introduced in chap-
ter 5, an interesting extra feature when suggesting playlists would be to sort the songs
within these playlists in a meaningful way. An interesting idea would be taking into ac-
count the bpm’s (beats per minute) of songs to build a playlist that would suit the groups’
mood. For example, if our context awareness tells us there is a large group of people in
the target environment and there is a high level of noise and movement, perhaps songs
with more bpm’s would suit the groups’ preferences for the moment. The most cumber-
some step to fulfil such idea is gathering the bpm’s for all songs in the dataset. For this
project, we didn’t have such information available. However, a different idea could have
been explored to tackle the problem of sorting songs in a playlist. Assuming that within
the set of candidate songs some will have a higher preference prediction than others, one
can use such predictions to manage the enthusiasm brought by these songs to the group
of people. Again, if somehow our context awareness tells us the crowd needs to be more
stimulated, it would make sense to play in one of the most preferred songs and leave
others for later. This question introduces the concept of enthusiasm curve. The idea is to
design a curve to be followed by the playlist according to the level of predicted group
preference for each song. With such curve we intend to tune the group’s enthusiasm up
or down along the playlist, according to a pre-defined criteria. For example, starting the
playlist with enthusiastic songs (i.e., songs most highly preferred by the group), followed
by some less enthusiastic ones and ending the playlist with the most enthusiastic songs
could be a plan. We can easily relate such enthusiasm curve with several concerts or DJ
sets we’ve attended before.

Additionally, song genres can be combined in a way that makes the flow of songs smooth
and pleasant, avoiding abrupt changes of musical style in the environment. Song genres
can also be useful to rule out songs that don’t make sense within certain contexts. For
example, if our context awareness tells us there is a large group around, with high levels
of movement and noise and if its 11pm on a Summer evening, classical calm songs may
not be the best choice to entertain the group, even if the environment is packed with
Mozart fans.

79

6. CONCLUSIONS AND FUTURE WORK

6.4.3 Real-time feedback input

Within the playlist recommendation context, introduced in chapter 5, since recommenda-
tions are provided and products are consumed in real-time, it is only fair that these rec-
ommendations can adapt in real-time to the target users’ feedback. Hence, users ought
to be able to provide some feedback regarding the songs they are being given to listen
to. An interesting idea for capturing such feedback would be setting up a webcam to
track the group’s movements and from those movements attempt to assess the levels of
enthusiasm of that group. Such information could then be used to adapt the playlist
in real-time. For example, whenever a song would be regarded as being "liked" by the
users, its preference value would be increased to the top. Accordingly, whenever a song
would be explicitly "disliked" by the users, it would be excluded from the playlist and
some highly preferred songs would be set to play immediately after the current "dis-
liked" song, as a way of compensating this group. These are simple and straightforward
features idealized to provide a better user experience.

80

Bibliography

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible extensions.
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 17(6):734–
749, 2005.

[2] Nicholas J. Belkin and W. Bruce Croft. Information filtering and information re-
trieval: two sides of the same coin? Commun. ACM, 35:29–38, December 1992.

[3] Robert M. Bell, Jim Bennett, Yehuda Koren, and Chris Volinsky. The million dollar
programming prize. IEEE Spectr., 46:28–33, May 2009.

[4] Robert M. Bell and Yehuda Koren. Scalable collaborative filtering with jointly de-
rived neighborhood interpolation weights. In IEEE International Conference on Data
Mining (ICDM, 2007.

[5] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J.
Mach. Learn. Res., 3:993–1022, March 2003.

[6] John S. Breese, David Heckerman, and Carl Myers Kadie. Empirical analysis of
predictive algorithms for collaborative filtering. In UAI, pages 43–52, 1998.

[7] Andrew Crossen, Jay Budzik, and Kristian J. Hammond. Flytrap: intelligent group
music recommendation. In Proceedings of the 7th international conference on Intelligent
user interfaces, IUI ’02, pages 184–185, New York, NY, USA, 2002. ACM.

[8] Simon Funk. Netflix update: Try this at home.
http://sifter.org/∼simon/journal/20061211.html, 2006.

[9] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using collabora-
tive filtering to weave an information tapestry. Commun. ACM, 35:61–70, December
1992.

81

BIBLIOGRAPHY

[10] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl. Eval-
uating collaborative filtering recommender systems. ACM Trans. Inf. Syst., 22:5–53,
January 2004.

[11] Oliver Hinz and Jochen Eckert. The impact of search and recommendation systems
on sales in electronic commerce. Business & Information Systems Engineering, 2(2):67–
77, 2010.

[12] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In Proceedings of the 2008 Eighth IEEE International Conference on
Data Mining, pages 263–272, Washington, DC, USA, 2008. IEEE Computer Society.

[13] Michael Jahrer, Andreas Töscher, and Robert Legenstein. Combining predictions for
accurate recommender systems. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’10, pages 693–702, New York,
NY, USA, 2010. ACM.

[14] Anthony Jameson and Barry Smyth. The adaptive web. chapter Recommendation
to groups, pages 596–627. Springer-Verlag, Berlin, Heidelberg, 2007.

[15] Gawesh Jawaheer, Martin Szomszor, and Patty Kostkova. Comparison of implicit
and explicit feedback from an online music recommendation service. In Proceed-
ings of the 1st International Workshop on Information Heterogeneity and Fusion in Recom-
mender Systems, HetRec ’10, pages 47–51, New York, NY, USA, 2010. ACM.

[16] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth
Silverman, and Angela Y. Wu. An efficient k-means clustering algorithm: Analysis
and implementation. IEEE Trans. Pattern Anal. Mach. Intell., 24:881–892, July 2002.

[17] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth
Silverman, and Angela Y. Wu. A local search approximation algorithm for k-means
clustering. In Proceedings of the eighteenth annual symposium on Computational geome-
try, SCG ’02, pages 10–18, New York, NY, USA, 2002. ACM.

[18] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceeding of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’08, pages 426–434, New York, NY, USA,
2008. ACM.

[19] Yehuda Koren. The bellkor solution to the netflix grand prize, 2009.

[20] Yehuda Koren. Collaborative filtering with temporal dynamics. Commun. ACM,
53:89–97, April 2010.

[21] Yehuda Koren and Robert M. Bell. Advances in collaborative filtering. In Francesco
Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor, editors, Recommender Systems
Handbook, pages 145–186. Springer, 2011.

82

BIBLIOGRAPHY

[22] Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization techniques
for recommender systems. IEEE Computer, 42(8):30–37, 2009.

[23] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations: Item-
to-item collaborative filtering. IEEE Internet Computing, 7:76–80, 2003.

[24] Hema Mahato, Dagmar Kern, Paul Holleis, and Albrecht Schmidt. Implicit person-
alization of public environments using bluetooth. In CHI ’08 extended abstracts on
Human factors in computing systems, CHI EA ’08, pages 3093–3098, New York, NY,
USA, 2008. ACM.

[25] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Chapter 18 -
matrix decompositions and latent semantic indexing. In Introduction to Information
Retrieval, pages 403–419. Cambridge University Press, New York, NY, USA, 2008.

[26] Kevin McCarthy, Maria Salamó, Lorcan Coyle, Lorraine McGinty, Barry Smyth, and
Paddy Nixon. Cats: A synchronous approach to collaborative group recommen-
dation. In Geoff Sutcliffe and Randy Goebel, editors, Proceedings of the Nineteenth
International Florida Artificial Intelligence Research Society Conference, Melbourne Beach,
Florida, USA, May 11-13, 2006, pages 86–91. AAAI Press, May 2006.

[27] Prem Melville and Vikas Sindhwani. Recommender systems. 2010.

[28] Douglas Oard and Jinmook Kim. Implicit feedback for recommender systems. In in
Proceedings of the AAAI Workshop on Recommender Systems, pages 81–83, 1998.

[29] Arkadiusz Paterek. Improving regularized singular value decomposition for collab-
orative filtering. Proceedings of KDD Cup and Workshop, 2007.

[30] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl.
Grouplens: An open architecture for collaborative filtering of netnews. pages 175–
186. ACM Press, 1994.

[31] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann
machines for collaborative filtering. In Proceedings of the 24th international conference
on Machine learning, ICML ’07, pages 791–798, New York, NY, USA, 2007. ACM.

[32] Gerald Salton, editor. Automatic text processing. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1988.

[33] Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl. Item-based collab-
orative filtering recommendation algorithms. In Proceedings of the 10th international
conference on World Wide Web, WWW ’01, pages 285–295, New York, NY, USA, 2001.
ACM.

83

BIBLIOGRAPHY

[34] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John T. Riedl. Applica-
tion of dimensionality reduction in recommender system – a case study. In IN ACM
WEBKDD WORKSHOP, 2000.

[35] Toby Segaran. Programming Collective Intelligence: Building Smart Web 2.0 Applica-
tions. O’Reilly, Beijing, 2007.

[36] Upendra Shardanand and Pattie Maes. Social information filtering: Algorithms for
automating "word of mouth". pages 210–217. ACM Press, 1995.

[37] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Major com-
ponents of the gravity recommendation system. SIGKDD Explor. Newsl., 9:80–83,
December 2007.

[38] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Matrix factor-
ization and neighbor based algorithms for the netflix prize problem. In Proceedings
of the 2008 ACM conference on Recommender systems, RecSys ’08, pages 267–274, New
York, NY, USA, 2008. ACM.

[39] Andreas Töscher and Michael Jahrer. The bigchaos solution to the netflix prize 2008.
2008.

[40] Andreas Töscher, Michael Jahrer, and Robert M. Bell. The bigchaos solution to the
netflix grand prize. 2009.

[41] Andreas Töscher, Michael Jahrer, and Robert Legenstein. Improved neighborhood-
based algorithms for large-scale recommender systems. In Proceedings of the 2nd
KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition,
NETFLIX ’08, pages 4:1–4:6, New York, NY, USA, 2008. ACM.

84

7
Appendix: additional experiments on

group recommendation

Additional experiments were made using different variants of the k-means algorithm, as
mentioned in chapter 5.

The results here presented are organized according to the number of latent factors used
to perform the clustering: 2, 5, 8 or 10. We attempted to produce meaningful group
recommendations for single-group, 2-group and 3-group targets, using different the k-
means algorithm and different numbers of latent factors for clustering.

For each of these setups, random users were chosen and their groups were identified. To
improve the quality of this evaluation session, for each setup we picked 4 users belonging
to 4 different groups, so that we could attempt to produce multi-group recommendations.
Groups are identified as g1, g2, g3 and g4. Table 7 presents the groups involved in each
of the 10 experiment setups and the number of users contained within those groups.

2 factors 5 factors 8 factors 10 factors
k-means swap hybrid k-means swap hybrid k-means swap hybrid k-means swap hybrid

#Exp Groups number of users number of users number of users number of users

1 g1 282 751 287 702 345 393 431 422 388 927 955 673
2 g2 507 714 443 753 450 1450 792 212 676 639 503 289
3 g3 309 420 767 459 475 618 801 453 738 312 523 698
4 g4 745 416 899 292 5155 1285 261 1791 417 359 276 236
5 g1+g2 789 1465 730 1455 795 1843 1223 634 1064 1566 1458 962
6 g2+g3 816 1134 1210 1212 925 2068 1593 665 1414 951 1026 987
7 g3+g4 1054 836 1666 751 5630 1903 1062 2244 1155 671 799 934
8 g4+g1 1027 1167 1186 994 5500 1678 692 2213 805 1286 1231 909
9 g1+g2+g3 1098 1885 1497 1914 1270 2461 2024 1087 1802 1878 1981 1660
10 g2+g3+g4 1561 1550 2109 1504 6080 3353 1854 2456 1831 1310 1302 1223

Table 7.1: Statistics on group recommendation experiments

85

7. APPENDIX: ADDITIONAL EXPERIMENTS ON GROUP RECOMMENDATION

The next pages will contain charts illustrating the results of the experiments made, orga-
nized by number of latent factors used for clustering. Each page will thus present results
for a different number of latent factors, accordingly with the aforementioned content or-
ganization, and will contain 2 charts presenting results in different ways: (1) percentage
of good group recommendations for each experiment; (2) average percentage of good
group recommendations for single-group, 2-group and 3-group targets. Finally, the over-
all group recommendation results with different numbers of latent factors and k-means
variants will be illustrated by charts as well.

86

7. APPENDIX: ADDITIONAL EXPERIMENTS ON GROUP RECOMMENDATION

Clustering with 2 latent factors

Figure 7.1: Results of group rec. with 2 factors, grouped by experiment

Figure 7.2: Results of group rec. with 2 factors, grouped by nr. of groups involved

87

7. APPENDIX: ADDITIONAL EXPERIMENTS ON GROUP RECOMMENDATION

Clustering with 5 latent factors

Figure 7.3: Results of group rec. with 5 factors, grouped by experiment

Figure 7.4: Results of group rec. with 5 factors, grouped by nr. of groups involved

88

7. APPENDIX: ADDITIONAL EXPERIMENTS ON GROUP RECOMMENDATION

Clustering with 8 latent factors

Figure 7.5: Results of group rec. with 2 factors grouped by experiment

Figure 7.6: Results of group rec. with 8 factors, grouped by nr. of groups involved

89

7. APPENDIX: ADDITIONAL EXPERIMENTS ON GROUP RECOMMENDATION

Clustering with 10 latent factors

Figure 7.7: Results of group rec. with 10 factors, grouped by experiment

Figure 7.8: Results of group rec. with 10 factors, grouped by nr. of groups involved

90

7. APPENDIX: ADDITIONAL EXPERIMENTS ON GROUP RECOMMENDATION

Overall performance of the group recommendation framework

Figure 7.9: Results of group rec. with all k-means variants, grouped by nr. of factors

Figure 7.10: Results of group rec. with standard deviation, grouped by k-means variant

Figure 7.11: Results of group rec. with standard deviation, grouped by nr. of groups
involved

91

	Introduction
	Recommender systems
	Media marketplaces and consumption
	Amazon video-on-demand (VoD)
	Hulu
	Netflix

	Problem definition and thesis objective
	Contributions
	Organization

	Background and related work
	Introduction
	Recommendation techniques
	Content-based filtering
	Collaborative filtering

	Similarity metrics
	Pearson correlation coefficient
	Cosine similarity
	Tanimoto coefficient

	Group recommendation
	Discovering groups

	Summary

	Recommendations by matrix factorization
	Introduction
	Matrix factorization
	Matrix decomposition fundamentals
	Singular Value Decomposition
	Low-rank dimensionality reduction

	A matrix factorization model
	Learning the factorization model
	Iterative learning
	Regularization
	Stochastic gradient descent

	Implementation details
	Accuracy optimization
	Speeding up the algorithm
	Stochastic parallel optimization

	Evaluation
	Datasets
	Experiment design
	Results and discussion

	Summary

	Modelling biases and temporal fluctuations
	Introduction
	The bias-SVD model
	Computation of the bias-SVD model

	The temp-SVD model
	Computation of temp-SVD model

	Implementation details
	Accuracy optimization
	Speeding up the algorithm

	Evaluation
	Datasets
	Experiment design
	Results and discussion

	Summary

	Group-based recommendations
	Introduction
	Discovering groups of users
	Groups of users and leaders
	Implementation description
	Clustering tests

	Computing group-based preferences
	Combining preferences
	Finding recommendable products

	Evaluation
	Datasets
	Experiment design
	Results

	Summary

	Conclusions and future work
	Contributions summary
	Potential applications
	Challenges and limitations
	Future work
	Implicit feedback
	Dynamic playlists with enthusiasm curves
	Real-time feedback input

	Appendix: additional experiments on group recommendation

