
Ricardo Jorge de Aragão Vaz Alves

Licenciatura em Engenharia Informática

Database Repairs With Answer Set

Programming

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientador: Prof. Doutor João Alexandre C. Pinheiro

Leite, Prof. Auxiliar, Universidade Nova de

Lisboa

Júri:

Presidente: Prof. Doutor Adriano Martins Lopes

Arguentes: Profa. Doutora Maria Inês C. de Campos Lynce Faria

Vogais: Prof. Doutor João Alexandre C. Pinheiro Leite

Novembro, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157623646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

iii

Database Repairs With Answer Set Programming

Copyright c© Ricardo Jorge de Aragão Vaz Alves, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

To my parents

vi

Abstract

Integrity constraints play an important part in database design. They are what allow
databases to store accurate information, since they impose some properties that must
always hold. However, none of the existing Database Management Systems allows the
specification of new integrity constraints if the information stored is already violating
these new integrity constraints.

In this dissertation, we developed DRSys, an application that allows the user to spec-
ify integrity constraints that he wishes to enforce in the database. If the database becomes
inconsistent with respect to such integrity constraints, DRSys returns to the user possi-
ble ways to restore consistency, by inserting or deleting tuples into/from the original
database, creating a new consistent database, a database repair. Also, since we are deal-
ing with databases, we want to change as little information as possible, so DRSys offers
the user two distinct minimality criteria when repairing the database: minimality under
set inclusion or minimality under cardinality of operations.

We approached the database repairing problem by using the capacity of problem solv-
ing offered by Answer Set Programming (ASP), which benefits from the simple specifica-
tion of problems, and the existence of “Solvers” that solve those problems in an efficient
manner.

DRSys is a database repair application that was built on top of the database manage-
ment system PostgreSQL. Furthermore, we developed a graphical user interface, to aid
the user in the whole process of defining new integrity constraints and in the process of
database repairing.

We evaluate the performance and scalability of DRSys, by presenting several tests in
different situations, exploring particular features of it as well, in order to understand the
scalability of DRSys.

Keywords: answer set programming, relational databases, integrity constraints, incon-
sistency, repairs, minimality.

vii

viii

Resumo

Restrições de integridade desempenham um papel importantíssimo na implementa-
ção e desenho de uma base de dados. Elas permitem que as bases de dados contenham
informação mais “exacta”, visto que impõem certas propriedades que têm que ser res-
peitadas. Porém, nenhum dos actuais Sistemas de Gestão de Bases de Dados permite
a especificação de novas restrições de integridade se a informação guardada na base de
dados já estiver a violar estas novas restrições.

Nesta dissertação, desenvolvemos DRSys, uma aplicação que permite ao utilizador
a especificação de restrições de integridade que devem ser impostas na base de dados.
Se esta ficar inconsistente, de acordo com as restrições de integridade, DRSys retorna ao
utilizador possiveis formas de restaurar consistência, através da inserção e/ou remoção
de tuplos da base de dados original, gerando uma nova base de dados consistente, uma
reparação, . Visto que estamos a lidar com bases de dados, queremos alterar o mínimo de
informação possível. Desta forma, DRSys oferece ao utilizador dois critérios distintos de
minimalidade: minimalidade sob inclusão de conjuntos ou minimalidade sob cardinali-
dade de operações (inserções e/ou remoções).

Abordámos o problema da reparação de bases de dados usando a capacidade de reso-
lução de problemas oferecida pela Programação Por Conjuntos de Resposta, que benificia
da simples espeficicação de problemas, e da existência de “Solvers” que resolvem estes
problemas de uma maneira eficiente.

DRSys é uma aplicação de reparação de bases de dados que foi construído em cima do
sistema de gestão de bases de dados PostgreSQL. Desenvolvemos também uma interface
gráfica orientada ao utilizador, de forma a ajudar o utilizador no processo da especifica-
ção de restrições de integridade e reparação da base de dados.

Avaliamos a performance e escalabilidade de DRSys, mostrando diversos testes em
diversas situações, explorando funcionalidades particulares de DRSys, de forma a com-
preender melhor a sua escalabilidade.

ix

x

Palavras-chave: programação por conjuntos de resposta, bases de dados relacionais,
restrições de integridade, inconsistência, reparação, minimalidade.

Contents

1 Introduction 1

2 Preliminaries 7
2.1 First Order Logic . 7

2.1.1 FOL - Syntax . 7
2.1.2 FOL - Semantics . 9

2.2 Relational Databases . 10
2.2.1 Relational Model . 11
2.2.2 Integrity Constraints (IC’s) . 15

2.3 Answer Set Programming . 19
2.3.1 Syntax . 19
2.3.2 Semantics . 20

3 Database Repair 23
3.1 Inconsistency . 23
3.2 Repairs . 24

4 Related Work 29
4.1 Consistent Query Answering . 29
4.2 Database Repair . 33

5 Database Repair with Answer Set Programming 45
5.1 General Approach . 45
5.2 Minimality Statements . 57

5.2.1 Cardinality Distance . 58
5.2.2 Set Inclusion Distance . 59

6 Database Repair System - DRSys 63
6.1 Functionalities and Graphical User Interface 64

6.1.1 Database Connection Menu . 66

xi

xii CONTENTS

6.1.2 Main Menu . 66
6.1.3 Constraints Edition Menu . 67
6.1.4 Operations Menu . 68
6.1.5 Insertions Menu . 68
6.1.6 Deletions Menu . 70
6.1.7 Repair Menu . 70
6.1.8 Repair Choice Menu . 71

6.2 DRSys Architecture . 72

7 Experimental Evaluation 85
7.1 Experimental Results . 85

7.1.1 Influence of the Number of Irrelevant Relations Involved in the Re-
pair Process . 86

7.1.2 Influence of the Number of Integrity Constraints Involved in the
Repair Process . 88

7.1.3 Influence of the number of operations per relation and overall num-
ber of operations in the repair process 90

7.1.4 Influence of the Number of Irrelevant Integrity Constraints 92
7.1.5 Influence of the of Size of the Database in the Repair Process 94

7.2 Comparison . 95
7.2.1 Functionalities . 95
7.2.2 Quality . 97
7.2.3 Applicability . 97
7.2.4 Integrity Constraints Mapping into Logic Programs 97
7.2.5 Performance and Scalability . 98
7.2.6 Parametrization Requirements . 98

8 Conclusions and Future Work 101

List of Figures

2.1 Client relation . 12

4.1 ProbClean repair . 42

6.1 TCP-W database schema . 64
6.2 DRSys flowchart . 65
6.3 Database Connection . 66
6.4 Main Menu . 67
6.5 Edition Menu . 67
6.6 Operations Menu . 68
6.7 Insertions menu . 68
6.8 Extra Tuples . 69
6.9 Limit Insertions . 69
6.10 Deletions Menu . 70
6.11 Repair Menu . 70
6.12 Forbid Removals . 71
6.13 Repair Choice . 72
6.14 DRSys Architecture . 73
6.15 Dependencies Graph considering deletions 77
6.16 Dependencies Graph considering insertions 77

7.1 Influence of the number of relations involved in the repair process 87
7.2 Influence of the number of constraints involved in the repair process . . . 89
7.3 Influence of the number of user defined deletions in the repair process . . 91
7.4 Influence of the number irrelevant integrity constraints in the repair process 93
7.5 Influence of the size of the database in the repair process 95

xiii

xiv LIST OF FIGURES

List of Tables

1.1 Employees table . 3
1.2 Employees Repair . 4

2.1 Key constraint example . 16
2.2 Relations of the example . 17
2.3 The Employee relation . 18
2.4 The Movies relation . 19

3.1 Referential Integrity Problem . 24
3.2 Referential Integrity Problem Repair 1 . 25
3.3 Referential Integrity Problem Repair 2 . 25
3.4 The Customers auxiliary relation . 25
3.5 Referential Integrity Problem Repair 3 . 26
3.6 Referential Integrity Problem Other Possible Repairs 1 26
3.7 Referential Integrity Problem Other Possible Repairs 2 27

4.1 Annotation Constants . 32
4.2 Inconsistent Person Relation . 39

7.1 Inconsistent Database . 91
7.2 Extra tuples . 92
7.3 Account and Client relations . 92

8.1 Inclusion Dependency - Null Values . 102

xv

xvi LIST OF TABLES

1
Introduction

Has everyone noticed that all the letters of the word database are typed with the left hand? Now
the layout of the QWERTY typewriter keyboard was designed, among other things, to facilitate the
even use of both hands. It follows, therefore, that writing about databases is not only unnatural,
but a lot harder than it appears.

-Anonymous

Information, nowadays, is one of the most powerful assets available to human kind.
Every company must store information about its employees, every bank must hold records
for its customers and accounts and every school needs to keep data about its students.
Information must be stored somewhere, and it must be easily and quickly accessed and
retrieved. This growing need to deal with information led to the creation of database
management systems. A database management system (DBMS) is a collection of inter-
related data and a set of programs to access that data. The collection of data, usually
referred to as a database, contains the information relevant to an enterprise. The main
goal of a DBMS is to provide a way to store and retrieve information that is both conve-
nient and efficient [SKS05].

From the earliest days of computers, storing and manipulating data has been a ma-
jor application focus. The first general-purpose DBMS, designed by Charles Bachman
at General Electric in the early 1960s[Bac73], was called the Integrated Data Store, and
introduced the capability to link records in different files, later known as the “Network
Data Model”.

At this point, there was one “obvious” way to store the information, namely using
the operating system’s (OS) file system. But was it efficient? Imagine a bank, and the

1

1. INTRODUCTION

information it has to store about its customers, accounts and employees, and so on. With
the OS file system, we would need to create different files, one for each piece of infor-
mation we wanted to store, i.e., one file to store information about the customer, another
one to store information about the customer’s account, and many more. Now suppose
that, at first, we only wanted to consult the customer’s name and the respective account.
A programmer would need to write a program to answer this query. Then, if we realized
we needed more information, another program would have had to be written. Further-
more, if we we thought about adding some more information related to the customer,
we would need to re-write the customer’s file as well. As we can see, this is not a very
efficient manner to deal with this problem, which can also lead to some major problems,
such as:

• Data redundancy and inconsistency - Information may be duplicated in different
files, which may lead to inconsistency;

• Difficulty in accessing data - If further information is needed from the database,
we would have needed to re-write the program, since it did not supported this new
query;

• Integrity Problems - Data must, most of the time, satisfy certain types of consis-
tency constraints. This was achieved by explicitly adding them in the code. If a
posteriori we wanted to add a new one, we may have had to re-write, once more,
the entire code.

In 1970, Edgar Codd proposed a new data representation framework, called the rela-
tional data model [Cod70]. This proved to be a watershed in the development of database
systems [RG03]. Many of the database systems today are based on this concept. It clearly
revolutionized the DBMS industry. A database using the relational model (or simply re-
lational database) is, in a very summarized way, a set of relations with rows of tuples
(and their values) that store information, and that are related to each other.

The way of storing information also evolved. The file system was not directly used
any more. A new layer was developed to store and manage information more easily, pro-
viding the user a direct, easy and efficient way to implement a given data model, using
specialized algorithms/structures (hidden from most users). This layer also provided
means of ensuring correctness of the data.

The user was then allowed to define the database structure and required mechanisms
to manipulate the stored information. But storing and manipulating are two distinct
concepts. Therefore, some “language” had to be created to express what we want to store,
how we want to store it, and what information we want to get. For this purpose, specific
languages were created, the most widely used being SQL, which stands for Structured
Query Language.

As the needs for storing information grew, the needs to, in a way, “filter” information,
had to be developed as well. It is often the case that the user wants to store only some

2

1. INTRODUCTION

specific information, restricting its possible values. Consider a bank enterprise. Surely,
they don’t want to allow a customer to have two different birth dates. For this purpose,
integrity constraints were introduced. They represent an important source of information
about the real world. They are used to define constraints on data. They also have a
wide applicability in several contexts, such as semantic query optimization, cooperative
query answering, database integration and view updates [GGZ03]. However, imposing
these constraints can lead to costly computation. In this content, the most widely known
integrity constraints in the literature are[SKS05]:

• Functional Dependencies - They state that for some set of values of a set of at-
tributes of a relation, there can only be one, and only one, set of values of another
set of attributes of the same relation;

• Inclusion Dependencies - They state that the set of values of a set of attributes from
a relation, must exist as the set of values of a set of attributes from another relation
(possibly the same);

• Denial Constraints - They state that a certain general property must hold in the
database. The two most common denial constraints are:

– Domain Constraints - They state that the value of an attribute must belong to
a specific domain (a subset of the original domain of the attribute).

– Check Constraint - They state that the value of an attribute must obey some
condition.

The purpose of a database is to represent a “world” through a set of facts. Integrity
constraints are used to restrict specific representations of the “world”. The “world” we
wish to represent keeps changing, therefore, it is not that difficult to see that we may
have to implement further integrity constraints. But, by doing so, our existing data may
become inconsistent.

Consider the relation in Table 1.1. It contains information about the employee’s name
and their sources of income, which may be in the form of a pension or a salary. In this
case, consider John as being a doctor in a Hospital, for which he receives a salary, and he
also receives a pension from having been the Minister of Health.

Name Money From
John 123 Salary
John 456 Pension
Mary 789 Salary

Table 1.1: Employees table

At a certain point, a new law was approved, stating that a person can only have one
source of income, i.e., can only receive either a salary or a pension, but not both. We need

3

1. INTRODUCTION

to enforce this new integrity constraint in our database. The integrity constraint would
state that each person (value of attribute Name) can only be associated with one form
of payment (value of attribute Form). It is clear that this instance violates the integrity
constraint, since John has both sources of income.

How should we proceed? On the one hand, we need to enforce the integrity constraint
and restore consistency, while on the other hand, we do not want to throw away the entire
database.

There are two main approaches to deal with this problem. One is called Consistent
Query Answering, technique introduced in [ABC99]. Here, the objective is to keep the
database inconsistent and, despite it, to try to give consistent query answers. By consis-
tent query answers, we mean the values of attributes that are not violating the defined
integrity constraints. Going back to Table 1.1, suppose we wanted to know who has, as
source of income, a salary. In that situation, we would only get Mary. John would never
be returned, since it is inconsistent with respect to the integrity constraint.

The other approach is called Database Repairing, having been introduced in [ABC99],
and further developed in [ABC00]. This technique deals with the inconsistency created
by the introduction of a new integrity constraint by repairing the database, generat-
ing a new database that, when replacing the previous inconsistent one, restores consis-
tency. Going back to Table 1.1, using Database Repairing, two possible ways to repair the
database would be to delete either 〈John, 123, Salary〉 or 〈John, 456, Salary〉, generating
the following repairs:

Name Money From
John 456 Pension
Mary 789 Salary

Name Money From
John 123 Salary
Mary 789 Salary

Table 1.2: Employees Repair

We could also delete all tuples from the relation, being this still a possible repair. We
could also delete one tuple, where the name John appears as value of the attribute Name,
and add another tuple, like Employee(Richard, 456,Pension), being the resulting instance
still a possible repair. Actually, there may be infinite repairs (if we consider the possi-
ble insertion of new tuples). In order to cover this problem, the new database instance
should be minimally different from the original one, according to some notion of mini-
mality. Finding repairs is, in general, a problem that lies between the NP-hard and the Σp

2

complexity cases [CM05].

Consistent Query Answering and Database Repair also differ in the situations on
which they are more appropriately applicable. Consistent query answering is very use-
ful when we do not have permissions to alter the database, generally in a distributed
database system. Database repairing is very useful otherwise, generally in a centralized
database system, where the user usually has permissions to change the data.

4

1. INTRODUCTION

In this dissertation, we focused on the database repair problem. By using database
repairing, we want the user to be able to express new integrity constraints in an already
existing database. If the database becomes inconsistent with respect to the new integrity
constraints, we want to repair the database, by deleting or adding tuples, such that, the fi-
nal outcome, the repaired database, is consistent with respect to the integrity constraints.

Given the computational complexity of such technique, we want to explore this prob-
lem by using Answer Set Programming (ASP) [GL88, GL91]. Answer Set Programming
is a form of declarative programming oriented towards difficult, primarily NP-hard prob-
lems. Its main idea is to represent a given computational problem by an answer set
program (a kind of logic program) whose answer sets (solutions/models) correspond to
solutions of the real problem[Lif02]. Furthermore, the existence of “Answer Set Solvers”
(tools developed to compute answer set programs) allow us to solve such problems in an
efficient manner.

ASP is becoming a growing tool, and getting more and more powerful. Nowadays,
it has already been applied to several areas of science and technology, such as Automated
Product Configuration(Tiihonen et al. 2003), Decision Support For the Space Shuttle(Nogueira
et al. 2001) and Inferring Phylogenetic Tree(Brooks et al. 2007).

Despite ASP being oriented towards solving NP-hard problems, some solvers allow
the use of optimization statements that allow the solving of problems with higher com-
plexity, namely some in the Σp

2 complexity class. Therefore, the use of ASP is adequate to
address the database repairing problem.

In this dissertation, we implemented DRSys1, a practical solution that allows the user
to freely define new integrity constraints and, if necessary, computes repairs using An-
swer Set Programming. In DRSys, we allow the user to define new integrity constraints
that he wishes to enforce in the database, and, if they lead the database to an inconsistent
state, DRSys computes the possible database repairs according to the minimality criteria
chosen by the user - minimality under set inclusion or minimality under cardinality of
operations. Furthermore, DRSys also allows the user to input some knowledge that can
greatly increase its performance, by limiting the maximum number of tuples that can be
deleted, by limiting the maximum number of tuples that can be inserted, by limiting the
overall number of operations that can be performed and by restraining some specific tu-
ples from being deleted. Also, DRSys provides mechanisms to automatically create some
integrity constraints directly into answer set programming, allowing the user with no
knowledge on answer set programming to use DRSys. DRSys also allows the specifica-
tion of integrity constraints directly in SQL.

The main contributions and achievements described in this dissertation are:

• The definition of a transformation function, that maps the database repair problem
into a logic program;

1DRSys is available online and can be downloaded at http://sourceforge.net/projects/drsys/
files/drsys1.0/

5

http://sourceforge.net/projects/drsys/files/drsys1.0/
http://sourceforge.net/projects/drsys/files/drsys1.0/

1. INTRODUCTION

• The implementation of a practical solution of the database repair problem, as well
as the development of a graphical user interface, allowing the interaction between
the user and the application;

• The testing of the performance of our application, by discussing the results in dif-
ferent scenarios;

• The study of the related work and comparison of our work with others presented
in the database repair problem literature.

The plan of this document is as follows: in Chapter 2, we recall First Order Logic, the
Relational Model and Answer Set Programming. In Chapter 3, we formally introduce
the problem of database repair. In Chapter 4, we discuss related work. In Chapter 5, we
discuss our approach, database repairing using answer set programming. In Chapter 6,
we present the interface and architecture of the developed application. In Chapter 7, we
present experimental results of our application, comparing our application with others
developed in the literature. Finally, in Chapter 8, we present our conclusions and future
work.

6

2
Preliminaries

2.1 First Order Logic

First Order Logic (FOL) is a formal logical system used in mathematics, philosophy, lin-
guistics and computer science. In this section, we recall the main concepts and terminol-
ogy of FOL, by going through its syntax and semantics.

2.1.1 FOL - Syntax

Every first order language has some usual notations, being them the following[Fit96]:

• Propositional Connectives are the same as in propositional logic, where we have
the usual symbols ¬,⊂, ⊃ and the propositional constants >,⊥.

• Quantifiers

– ∀ (for all, the universal quantifier)

– ∃ (exists, the existential quantifier)

• Punctuation ’(’, ’)’, ’,’

• Variables x, y, z... They may also be used together with subscripts, as x1, x2, y1, y2,

z1, z2...

Definition 2.1 (First-Order Language). A first-order language is determined by specifying:

1. A finite setR of predicate symbols, p, q, ..., each of which having a positive integer associated
with it. If p ∈ R has the integer n associated with it, we say p is an n-place relation symbol.

7

2. PRELIMINARIES 2.1. First Order Logic

Also, consider the following special 2-placed relation symbols: = and 6=, where the first
stands for equality and the second for inequality, such that =∈ R and 6=∈ R.

2. A finite set F of function symbols, f, g, h, ..., each of which having a positive integer asso-
ciated with it. If f ∈ F has the integer n associated with it, we say f is an n-place function
symbol;

3. A finite setC of constant symbols, a, b, c, ... They may also be used together with subscripts,
as a1, a2, b1, b2, c1, c2, ...

We use the notation L(R,F,C) for the first-order language determined by R, F and
C. Having specified the basic elements of the syntax, the alphabet, we go on to more
complex constructions.

Definition 2.2 (Term). The family of terms of L(R,F,C) is the smallest set meeting the condi-
tions:

• Any variable is a term of L(R,F,C);

• Any constant symbol (member of C) is a term of L(R,F,C);

• If f is a n-place function symbol (member of F), and t1, ..., tn are terms of L(R,F,C), then
f(t1, ..., tn) is a term of L(R,F,C).

Definition 2.3 (Closed Term). A term is closed if it contains no variables.

Definition 2.4 (Atomic Formula). An atomic formula of L(R,F,C) is any expression of the
form p(t1, ..., tn), where p is an n-place relation symbol (member of R) and t1, ..., tn are terms of
L(R,F,C); also > and ⊥ are taken to be atomic formulas of L(R,F,C). Expressions of the form
= (t1, t2) (usually written t1 = t2) and , 6= (t1, t2) (usually written t1 6= t2) where t1 and t2 are
terms, are also taken to be atomic formulas of L(R,F,C).

Definition 2.5 (Formula). The family of formulas of L(R,F,C) is the smallest set meeting the
conditions:

• Any atomic formula of L(R,F,C) is a formula of L(R,F,C);

• If A is a formula of L(R,F,C), so is ¬A;

• If A and B are formulas, A ⊃ B is also a formula of L(R,F,C);

• If A is a formula of L(R,F,C) and x is a variable, then (∀x)A and (∃x)A are formulas of
L(R,F,C).

Note: There are also some other connectives in a first order language, which are only used as
short cuts, since they can be expressed using the previously defined connectives. We describe them
next:

8

2. PRELIMINARIES 2.1. First Order Logic

• If A and B are formulas, then A ⊂ B is also a formula of L(R,F,C), where A ⊂ B =

B ⊃ A ;

• If A and B are formulas, then A∨B is also a formula of L(R,F,C), where A∨B = ¬A ⊃
B;

• IfA andB are formulas, thenA∧B is also a formula of L(R,F,C), whereA∧B = ¬(A ⊃
¬B).

Definition 2.6 (Theory). A theory is a set of formulas of L(R,F,C).

We have now seen the syntax of FOL. Now, we can proceed to the semantics.

2.1.2 FOL - Semantics

The semantics of a first-order language gives meaning to a formula. In order to do so, we
define some important notions.

Definition 2.7 (Interpretation). An interpretation (structure) for the first order languageL(R,F,C)

is a pair M = 〈D, I〉, where:

• D is a non-empty set, called the domain of M ;

• I is a mapping, called the interpretation function, that associates:

– to every constant symbol c ∈ C some member cI ∈ D;

– to every n-place function symbol f ∈ F some n-ary function f I : Dn → D;

– to every n-place relation symbol p ∈ R some n-ary relation pI ⊆ Dn;

Definition 2.8 (Assignment). An assignment in an interpretation M = 〈D, I〉 is a mapping A
from the set of variables to the set D. We denote the image of the variable ν under an assignment
A by νA.

Suppose we have an interpretation and we have an assignment. We have now enough
information to calculate values for arbitrary terms.

Definition 2.9. Let M = 〈D, I〉 be an interpretation for the language L(R,F,C), and let A be
an assignment in this interpretation. To each term t of L(R,F,C), we associate a value tI,A in D
as follows:

1. For a constant symbol, c, cI,A = cI ;

2. For a variable ν, νI,A = νA;

3. For a function symbol f , [f(t1, ..., tn)]I,A = f I(tI,A1 , ..., tI,An).

Next, we want to associate a truth value with each formula of the language, with
respect to an interpretation and an assignment. Before introducing the truth valuation
function, let us introduce the notion of an x-variant.

9

2. PRELIMINARIES 2.2. Relational Databases

Definition 2.10 (x-variant). Let x be a variable. The assignments A and B in the interpretation
M are x-variants if A and B assign the same values to every variable, except possibly x.

Now we can define our truth valuation function like the following:

Definition 2.11 (Truth Valuation). Let M = 〈D, I〉 be an interpretation for the language
L(R,F,C) and let A be an assignment in this interpretation. To each formula Φ of L(R,F,C),
we associate a truth value ΦI,A (1 or 0), as follows:

1. For the atomic cases∗ :

• [p(t1, ..., tn)]I,A = 1⇐⇒ 〈tI,A1 , ..., tI,An 〉 ∈ pI ;

• >I,A = 1;

• ⊥I,A = 0;

• [t1 = t2]I,A =

{
1 if [t1]I,A = [t2]I,A

0 if otherwise

• [t1 6= t2]I,A =

{
0 if [t1]I,A = [t2]I,A

1 if otherwise

2. [¬X]I,A = 1− [XI,A];

3. [X ⊃ Y]I,A = 1⇐⇒ XI,A = 0 or Y I,A = 1;

4. [(∀x)Φ]I,A = 1⇐⇒ ΦI,B = 1 for every assignment B in M that is an x-variant of A;

5. [(∃x)Φ]I,A = 1⇐⇒ ΦI,B = 1 for some assignment B in M that is an x-variant of A;

Definition 2.12. A formula Φ of L(R,F,C) is true in the interpretation M = 〈D, I〉, denoted
M |= Φ, if ΦI,A = 1 for all assignments A. A theory S is satisfiable in M = 〈D, I〉, denoted
M |= S, if there is some assignment A such that ΦI,A = 1 for all Φ ∈ S.

Definition 2.13 (Model). Given an interpretation M = 〈D, I〉 and a theory S, M is a model of
S if S is satisfiable in M .

2.2 Relational Databases

In this section, we formally introduce the relational model, by introducing the struc-
ture of relational databases. Also, we formally present integrity constraints, focusing on
the most widely used in the database literature: key constraints, functional dependen-
cies, inclusion dependencies, and denial constraints, with emphasis on check constraints
and domain constraints. Furthermore, we introduce an alternative representation of the
database, by mapping the database into a first order logic theory.

∗Since we introduced first order logic with equality and inequality, to be completely formal, we should
have introduced the predicates>,<,≥,≤, for integers, and for Strings. As a question of simplicity, we opted
not to introduce them.

10

2. PRELIMINARIES 2.2. Relational Databases

2.2.1 Relational Model

Codd proposed the relational data model back in 1970. This model revolutionized the
database field and, nowadays, is the primary data model for commercial data-processing
applications, mainly because of its simplicity, elegance and expressiveness, easing the job
of the programmer, compared to earlier data models.

The main construct for representing data in the relational model is a relation. A re-
lation can be seen as a table, where the columns represent the attributes, and the rows
represent the information stored. For each attribute, there is a set of permitted values
called the domain of the attribute. Since relations are essentially tables, we can use the
terms relation and tuple in place of the terms table and row respectively.

A relation consists of a relation schema and a name. A relation schema is the logical
design of a relation. It contains the name and domain of each attribute, i.e., the set of
permitted values the attribute can take. The arity of a relation is the number of attributes
in it.

Let us define AT T as the set of all names for the attributes of all relations in a
database. By N , we mean the set of all names of relations in a database.

Throughout this section, we use κ, κ0, κ1, ..., κn and ε, ε0, ε1, ..., εm to denote names of
attributes, i.e., κi ∈ AT T and εj ∈ AT T .

Let us now formally introduce the definition of a relation schema.

Definition 2.14 (Relation Schema). A relation schema is a sequence of pairs of the form:

S = 〈〈κ0, D0〉, 〈κ1, D1〉, ..., 〈κn, Dn〉〉

where κ0, κ1, ..., κn are names of attributes such that, whenever i 6= j, κi 6= κj , and D0, D1, ...,

Dn are domains of the attributes κ0, κ1, ..., κn respectively.

Intuitively, a relation schema is a sequence of pairs of names of attributes and their
corresponding domains.

An important feature to acquire from the previous definition is that there cannot be
two distinct attributes with the same name belonging to the same relation schema.

It is important to establish the correct domain for the attributes. For instance, if we
have an attribute with name Birth Date, used to represent the birth dates of a customer in
a bank, we want the domain of that attribute to be of the Date type – we don’t want to
allow some birth date to be an arbitrary string.

We can now define what a relation is.

Definition 2.15 (Relation). A relation is a pair 〈N,S〉, where N stands for the name of the
relation, such that N ∈ N , and S = 〈〈κ0, D0〉, 〈κ1, D1〉, ..., 〈κn, Dn〉〉 stands for the relation
schema.

As we can see in the relation depicted in Figure 2.1, the attributes of this relation are
Id, Name and Birth Date, and the arity of the Client relation is three. Let D1, domain of

11

2. PRELIMINARIES 2.2. Relational Databases

Id Name Birth Date

123

456

789

John 1988-06-06

Peter 1974-07-03

Mark 1960-12-23

Attributes

Tuple

Figure 2.1: Client relation

the Id attribute, define the set of all identification numbers possible, D2, domain of the
Name attribute, the set of all possible names (or strings), and D3, domain of the Birth Date
attribute, the set of all dates. Then, any tuple of the Client relation must consist of a 3-
tuple 〈v1, v2, v3〉 where v1 is an identification number from the domain D1, v2 is a name
from the domain D2 and v3 is a birth date from the domain D3. In order to keep track of
the information stored in a relation, the concept of relation instance was developed. It is
a snapshot of a relation, at a given moment in time, i.e., it is a representation of a relation
at a given moment in time. Therefore, and following the previous example, the content
of the Client relation instance will contain only a subset of all possible combinations of
every domain in the relation. The content of the relation instance of the Client relation,
denoted here by Cclient, is then a subset of the Cartesian product of the domains, i.e.:

Cclient ⊆ D1 ×D2 ×D3

We can now formally define what a relation instance, with respect to a specific rela-
tion, is.

Definition 2.16 (Relation Instance). Given a relation R = 〈N,S〉, such that N is a relation
name, whereN ∈ N , and S is a relation schema, such that S = 〈〈κ0D0〉, 〈κ1, D1〉, ..., 〈κn, Dn〉〉,
a relation instance, with respect to relation R is a triple 〈N,C, S〉, where C, the content, is given
by:

C ⊆ D0 ×D1 ×D2...×Dn−1 ×Dn

Notice that, as a consequence of the previous definition, there are no duplicates in the
content of a relation instance, although, in many practical database management systems,
every schema is extended with one additional internal attribute, hidden from the user,
which is given an unique value for each tuple, hence allowing duplicate tuples if we only
consider the original schema.

From now on, we shall assume that the schema of every relation from a database
contains a special extra attribute, the Rowid attribute, that uniquely identifies a tuple

12

2. PRELIMINARIES 2.2. Relational Databases

within a database, allowing the distinction between seemingly duplicate tuples. Also, it
will be represented as the first attribute on a relation schema, being denoted as the κ0,
attribute whose domain is the set of all positive integers, denoted by D0. Also notice that
this extra attribute is not included in the arity of a relation.

If we want to address the value of a particular attribute X of a particular tuple t, we
can use the following notation t[X]. For instance, consider t being the first tuple of the
relation depicted in Figure 2.1. Then, t[Id] = 123, t[Name] = John and t[BirthDate] =

1988−06−06. Also, ifX is a sequence of attributes, t[X] represents the sequence of values
of X . For instance, let X = 〈Id,Name,BirthDate〉. Then, t[X] = 〈123, John, 1988− 06−
06〉.

One domain value that is, by default, a member of all possible domains is the NULL
value, which means that the value is unknown or does not exist. However, it is often
the case that the NULL value is removed from some domain, enforcing the value to
be known. In this dissertation, we did not consider the value NULL to be present in
the domain of any attribute. We made this choice since the ISO SQL implementation of
the NULL value is subject to criticism, debate and calls for change. There is no clear
semantics associated with the NULL value. It may represent an unknown value, or a
missing value. Codd suggested that the NULL value should be replace by two distinct
NULL-type markers, standing for “Missing but Applicable” and “Missing but Inappli-
cable”. Several other authors have also discussed the semantics of the NULL value, but,
ultimately, there is no global accepted meaning, thus the exclusion of it in our work.

A relational database is a collection of relations with distinct names. The relational
database schema is a collection of schemas for the relations in the database and the re-
lational database instance is the collection of instances for the relations in the database.
Also, it is often the case that we want to verify certain properties in a database, so that we
can have more accurate and consistent information stored, and also, to prevent acciden-
tal damage. For instance, we may not want the balance of a bank account to be below 0.
Integrity constraints are a way to ensure these properties. They represent an important
source of information about the real world[GGZ03]. They will be discussed in greater
detail in the next section. Therefore, a database instance may also have some integrity
constraints associated with it.

Definition 2.17 (Relational Database Instance). A relational database instance D is a pair of
a set of relation instances, together with a set of integrity constraints IC, i.e.:

D = 〈{〈N1, C1, S1〉, 〈N2, C2, S2〉, ..., 〈Nn, Cn, Sn〉}, IC〉

From this point on, we shall use the terms database instance and database inter-
changeably, as well as relation instance and relation. If ambiguity may arrive, we shall
use the exact terms.

It is important to have a way to know the names of the attributes of a relation, given
the name of the relation. In order to do that, we defined the following function:

13

2. PRELIMINARIES 2.2. Relational Databases

Definition 2.18 (Attributes Function). Let D = 〈I, IC〉 be a database. Then, let A be a func-
tion such that, for every N such that 〈N,S,C〉 ∈ I and S = 〈〈κ0, D0〉, 〈κ1, D1〉, ..., 〈κn, Dn〉〉,

A(N) = 〈κ0, κ1, ..., κn〉

Since the attributes of a relation must obey some order (follows from the definition
of a relation schema), it is often the case where we want to know the index of a specific
attribute, when given its name, from a given relation. This index will correspond to the
position of the attribute in a relation. We defined the following function for that purpose:

Definition 2.19 (Attribute Index Function). LetD = 〈I, IC〉 be a database. Then, let # be, for
every relation 〈N,C, S〉 ∈ I , where S = 〈〈κ0, D0〉, 〈κ1, D1〉, ..., 〈κn, Dn〉〉, given an attribute
name κ ∈ AT T and a relation name N ∈ N , defined as follows:

#N
κ =

{
undefined if @i∈{0,1,2,...,n}κ = κi

i if ∃i∈{0,1,2,...,n}κ = κi

For a set of names of attributes X = {ε1, ε2, ..., εn}, let #N
X be defined by:

#N
X = {#N

ε | ε ∈ X}

It is often the case that the arity of a specific relation must be known. For that purpose,
we defined the following function:

Definition 2.20 (Arity Function). Let R = 〈N,C, S〉 be a relation where S = 〈〈κ0, D0〉,
〈κ1, D1〉, ..., 〈κn, Dn〉〉. Then, let AR be a function such that, given a relation name N , returns
the arity of the relation with name N , defined as follows:

AR(N) = n

Up until now, we introduced the concepts of a relation and database as they are usu-
ally defined in the database literature. Since in this dissertation our objective is to use an-
swer set programming, which is a kind of a logic program, we also show how a database
can be represented as it is usually done in the logic programming literature. Therefore, it
is well known that a relational database can be expressed as a first order logic theory. We
now present a different representation of a database, where we view it as a set of logic
atoms, where each atom represents a tuple from a specific relation, such that each atom
is composed by a predicate name N , which is obtained from the name of the relation,
and by a sequence of terms ti, each of which corresponding to a value of an attribute of
a tuple belonging to the content of an instance of a relation N . The name of the relation
directly maps into the name of the predicate of the atom, and each value of an attribute
of a tuple directly maps into a value of a term of an atom.

In order to define this mapping, we defined two distinct functions. In the first one,
we define the mapping of a relation, and then, in the second one, we define the mapping

14

2. PRELIMINARIES 2.2. Relational Databases

of a database.

Definition 2.21 (Relation Mapping). Let R = 〈N,C, S〉 be a relation. Let βp be an operator
that maps a relation into a set of logic atoms, defined as:

βp(R) = {N(t0, t1, t2, ..., tn) | 〈t0, t1, t2, ..., tn〉 ∈ C}

Now, we can define our database mapping as simply the union of all relations map-
pings.

Definition 2.22 (Database Mapping). Let D = 〈I, IC〉, such that I = {R1, R2, ..., Rn} be a
database. Let βt be an operator that maps the entire database instance into a set of logic atoms, by
performing the following operation:

βt(D) =
⋃
R∈I

βp(R)

From the previous definitions, we have defined a way to map the whole database into
a set of logic atoms. We firstly defined the mapping of a single relation, and then, defined
the mapping of the whole database simply as the union of the mappings of all relations
belonging to the database.

Since a database is a pair of a set of relations and a set of integrity constraints, it is
important to understand what these integrity constraints are, also because they are at the
main core of this dissertation. We describe some of them next.

2.2.2 Integrity Constraints (IC’s)

In a database, we represent a certain "world", and our data must respect some properties.
These properties can be ensured by the use of integrity constraints. Integrity constraints
are widely used in database management systems, and have a lot of power and expres-
siveness.

Integrity constraints are closed first-order L-formulas, where L is a first-order lan-
guage defined in the standard way. In the sequel, we denote relation symbols byN,N1, ...,

Nm. We denote by x̄, ȳ, z̄, sequences of pairwise distinct variables with appropriate arity,
such that xi denotes the ith component of x̄. Also, we represent conjunctions of atomic
formulas referring to built-in predicates by ϕ.

We now describe several integrity constraints classes.

2.2.2.1 Keys and Functional Dependencies

Within a relation, we must have a way to distinguish tuples. This is expressed in terms
of the values of their attributes. We want the tuples to be uniquely identified by the set
of values of a set of attributes. Therefore, the key integrity constraint was developed. In
a relational database, they refer to a set of attributes of a relation for which it holds that
no two distinct tuples have the same values for those attributes. Therefore, given a key

15

2. PRELIMINARIES 2.2. Relational Databases

constraint, we have a set of one or more attributes that, taken collectively, allow us to
uniquely identify a tuple in a relation.

Definition 2.23 (Keys). Given a relation name N , and a set of names of attributes A (the ones
that form the key constraint), such that AR(N) = n, the key constraint, with respect to N and
A, expressed by SK(N,A), is defined as follows:

∀x̄,ȳ¬

N(x̄) ∧N(ȳ) ∧
∧
i∈#N

A

xi = yi ∧
∨

j∈{0,1,2,3,...,n}\#N
A

xj 6= yj

 (2.1)

Consider the Customers relation in Table 2.1 and the following integrity constraint:
SK(Customers, {Id})

Customers
Id Name
1 John
1 Peter
2 Michael

Table 2.1: Key constraint example

There is a clear violation of the key integrity constraint, since we have two distinct
tuples in relation Customers with the same value for the attribute Id.

Keys can be seen as a special case of a more general type of integrity constraints:
the functional dependencies. Given a relation R, a set of attributes X in R is said to
functionally determine another set of attributes Y , also in R, if each X value is associated
with precisely one Y value. This can also be expressed by X → Y .

The difference between key constraints and functional dependencies, is that, when-
ever we have a key constraint, a set of attributes functionally determines all the attributes,
while in the functional dependency, it may be the case where the attributes that are being
functionally determined are not all attributes, but only some of them.

Definition 2.24 (Functional Dependencies). Given a relation name N , two sets of names of
attributes A and B from relation N , such that A→ B, the functional dependency with respect to
N , A and B, expressed by FD(N,A,B), is defined as follows:

∀x̄,ȳ¬

N(x̄) ∧N(ȳ) ∧
∧
i∈#N

A

xi = yi ∧
∨

j∈#N
B

xj 6= yj

 (2.2)

Since key constraints are a special case of the functional dependencies, we can define
the first in terms of the second in the following way: given a relation N and the set A of
attributes that form the candidate key, and recalling that the sequence of attributes of a

16

2. PRELIMINARIES 2.2. Relational Databases

relation N , 〈κ0, κ1, ..., κn〉, is given by A(N):

SK(N,A) = FD(N,A, {κ0, κ1, ..., κn} \A)

Intuitively, we are saying that a set of attributes functionally determines the whole
rest of attributes existing the relation.

2.2.2.2 Inclusion Dependencies

Inclusion dependencies (INDs) state that the sequence of values of a sequence of at-
tributes of the tuples in a relation, must exist as the sequence of values of a sequence
of attributes of the tuples of another (possibly the same) relation.

Definition 2.25 (Inclusion Dependencies). Given two names of relations N1 and N2, two
sequences of names of attributes A = 〈κ1, κ2, ..., κk〉 and B = 〈ε1, ε2, ..., εk〉 from relation N1

and relationN2 respectively, let the inclusion dependency, with respect toN1, N2, A,B, expressed
by IND(N1, N2, A,B), where the values of the attributes in A must exist as the values of the
attributes in B, defined as:

∀x̄∃ȳ

[
¬N1(x̄) ∨ (N2(ȳ) ∧

k∧
i=1

x
#
N1
κi

= y
#
N2
εi

)

]
(2.3)

From the previous definition, we conclude that if a sequence of values for a sequence
of attributes exists in relation N1, the same sequence of values for another sequence of
attributes must exist in relation N2. If it doesn’t exist in N1, it may or may not exist in N2.

This is often written as N1[Y1] ⊆ N2[Y2] where Y1 (respectively Y2) is the sequence
of values of the sequence of attributes of N1 (respectively N2) corresponding to the at-
tributes that form the inclusion dependency [Cho07].

Accounts
Account Number Branch Name
111 Sete Rios
222 FCT
333 Coimbra

Branches
Branch Name Branch City
Sete Rios Lisboa
FCT Almada
Benfica Lisboa
Aliados Porto

Table 2.2: Relations of the example

Consider the following relations: Accounts and Branches, in Table 2.2. If we take
into consideration the inclusion dependency, represented by Accounts[Branch Name] ⊆
Branches [Branch Name], there is a clear violation of the integrity constraint, since Coimbra
does not exist as the value of the attribute Branch Name in relation Branches.

17

2. PRELIMINARIES 2.2. Relational Databases

2.2.2.3 Denial Constraints

Denial constraints (DCs) are a kind of integrity constraint that prevent a certain general
property to hold in a database. We present two special cases of the denial constraints,
the check constraints and the domain constraints. Afterwards, we formally introduce the
definition of a denial constraint.

Check constraints are a kind of integrity constraint that restrict the domain of a spe-
cific attribute, by imposing some mathematical restriction over the value of that attribute,
that must always be obeyed.

Definition 2.26 (Check Constraint). Given a relation name N , an attribute name κ, a mathe-
matical operator θ ∈ {>,<,≥,≤,=, 6=} and a value V of the domain of κ, let a check constraint,
with respect to N , κ, θ and V , expressed by CC(N,κ, θ, V), be defined as follows:

∀x̄¬[N(x̄) ∧ x#N
κ
θ V] (2.4)

Examples of check constraints may be: a person must be over 21 years old to be a
costumer in a bank, a bank account balance must be greater than 100, and so on. Consider
Table 2.3, representing the Employee relation, belonging to a database D:

Name Age
John 22
Peter 32
Paul 35

Table 2.3: The Employee relation

Now consider the check constraint constraint: CC(Employee,Age,<, 36). The rela-
tion would be inconsistent, since there are people younger than 36.

Domain constraints are a kind of integrity constraint that do not allow the value of a
certain attribute to be outside of a user specified set of values. We restrict the domain Do
of an attribute to a subset Do′ of Do.

Definition 2.27 (Domain Constraints). Given a relation name N , an attribute name κ and a
specific domain Do of the form Do = {val1, val2, ..., valk}, let a domain constraint, with respect
to N , κ and Do, expressed by DoC(N,κ,Do), be defined as follows:

∀x̄¬

[
N(x̄) ∧

k∧
i=1

x#N
κ
6= vali

]
(2.5)

Examples of domain constraints may be: the sex of a person must be either Male of
Female; a person’s civil state should be either single, married or divorced. Consider Table
2.4, where we have the Movies relation, where we specify informations about a movie.

18

2. PRELIMINARIES 2.3. Answer Set Programming

Movie Genre
M1 Action
M2 Action
M3 Drama
M4 Romance

Table 2.4: The Movies relation

Now consider the domain constraint: DoC(Movies,Genre, {Action,Drama, Comedy}).
The relation would be inconsistent, since we have a genre Romance.

Both of the previous integrity constraints are a special case of a more general integrity
constraint, the denial constraint.

Definition 2.28 (Denial Constraints). Given m names of relations, N1, N2, ..., Nm, where x̄i
is the sequence of variables of relation Ni, and some built in predicates ϕ(x̄1, ..., x̄m) describing
some general properties of the database that must never be true, let then a denial constraint be
defined as follows:

∀x̄1,...,x̄m .¬[N1(x̄1) ∧ ... ∧Nm(x̄m) ∧ ϕ(x̄1, ..., x̄m)] (2.6)

Integrity constraints are a powerful tool to express certain properties in a database.
These properties must be guaranteed by the database, in order to have consistent data.

2.3 Answer Set Programming

Answer Set Programming is a form of declarative programming oriented towards dif-
ficult, primarily NP-hard problems, built on the foundation of logic programming with
negation [Lif08]. As an outgrowth of research on the use of nonmonotonic reasoning in
knowledge representation, it is particularly useful in knowledge-intensive applications.
ASP is based on the stable model (answer set) semantics of logic programming[GL88].

In ASP, search problems are reduced to computing stable models, and answer set
solvers - programs for generating stable models - are used to perform search. The use of
answer set solvers for search was identified as a new programming paradigm in [MT98].

Throughout this chapter, we formally introduce the stable models, its syntax and af-
terwards, its semantics.

The most popular and widely used solvers are: smodels [smo, NS97], DLV [dlv,
ELM+98] and more recently, clasp[cla, GKNS07].

2.3.1 Syntax

In logic programming, much of the terminology is borrowed from first order logic. The
alphabet A of a logic programming language L is defined almost in the same way as the

19

2. PRELIMINARIES 2.3. Answer Set Programming

first order logic alphabet. We shall introduce new symbols to the alphabet as their use is
needed (predicate symbols, constants).

A term is defined in the same way as in first order logic. Atoms correspond to the
atomic formulas, and a formula is defined in the same way as well. From here on, we
shall introduce new properties and definitions.

Definition 2.29 (Default Literal). A default literal is an atom a, preceded by not, denoting
default negation.

Definition 2.30 (Literal). A literal is either an atom or a default literal.

Definition 2.31 (Ground). An atom, term, literal, is ground if it contains no variables.

Now that we have the basic definitions of logic programming, we are now able to
define what a rule formally is.

Definition 2.32 (Rule). A rule is an ordered pair 〈Head,Body〉 of the type:

p0 ← p1, ..., pm, not pm+1, ..., not pn

such that n ≥ m ≥ 0, where Head, also denoted by H(r) is the atom p0, and the body, denoted by
B(r) is the set: {p1, ..., pm, not pm+1, ..., not pn}. We denote by B+(r) the set {p1, ..., pm}, the
positive body of r, and by B−(r) the set {pm+1, ..., pn}, the negative body of r.

If the head is missing, the rule is called an integrity constraint. Also, if m = n = 0, the rule
is called a fact.

With this, we can now define what a logic program is.

Definition 2.33 (Logic Program). A logic program is a set of rules. Also, a program is called
definite if it has no default literals.

2.3.2 Semantics

Before we can formally introduce the semantics, there are some important notions that
need to be clarified.

The set of all ground terms of an alphabet A is called the Herbrand Universe. The set
of all ground atoms that can be formed from predicate symbols and terms in its Herbrand
Universe of an alphabet A is called the Herbrand Base. If we fix an alphabet A, then we
refer to the Herbrand Base of A by H. Also, by grounded version of a logic program P ,
denoted ground(P), we mean the (possibly infinite) set of grounded rules obtained from
P , by substituting in all possible ways each of the variables in P , by elements of the
Herbrand Universe.

We define the semantics of a logic program P by translating it into a closed first-order
formula as follows:

Definition 2.34. Let P be a logic program. The translation π with respect to a rule r and P is
done as follows, where ω is the vector of the free variables of r:

20

2. PRELIMINARIES 2.3. Answer Set Programming

• π(r) = ∀ω : (p0 ⊂ p1 ∧ ... ∧ pm ∧ ¬ pm+1 ∧ ... ∧ ¬ pn)

• π(P) =
∧
r∈P π(r)

A logic program P is satisfiable if and only if a model of π(P) exists. Given a model I of P ,
I |= P ⇔ I |= π(P), where |= stands for satisfaction.

We now define what an Herbrand Interpretation of a language L is. Formally:

Definition 2.35 (Herbrand Interpretation). An interpretation of a logic program P is any
subset of the Herbrand baseH of P .

A Herbrand Interpretation can also be seen as a First Order Interpretation, where all
terms are interpreted by themselves.

Proposition 2.36. Any interpretation I can equivalently been viewed as a function I : H → V ,
where V = {0, 1}, defined by:

I(A) =

{
0 if not A ∈ I
1 if A ∈ I

where A is an atom.

Definition 2.37 (Truth Valuation). If I is an interpretation, the truth valuation of Î correspond-
ing to I is a function Î : C → V where C is the set of all formulae of the language, recursively
defined as follows:

• if A is a ground atom, then Î(A) = I(A).

• if S is a formula then Î(not S) = 1− Î(S).

• if S and V are formulae then

– Î((S, V)) = min(Î(S), Î(V)).

– Î(V ← S) = 1 if Î(S) ≤ Î(V), and 0 otherwise.

We now have enough information to formally define a Herbrand Model.

Definition 2.38 (Herbrand Model). A Herbrand Interpretation is called a Herbrand Model of
a program P if for every ground instance of a program rule H ← B, we have Î(H ← B) = 1.

Intuitively, a Herbrand Interpretation is called a Herbrand Model of a program P if
all rules if P are satisfied in the Herbrand Interpretation.

From now on, we restrict ourselves to the Herbrand Interpretation and models, thus
dropping the qualification of Herbrand.

Definition 2.39 (Classical Ordering). If I is a collection of interpretations, then an interpreta-
tion I ∈ I is called minimal in I if there is no interpretation J ∈ I such that J ⊆ I and J 6= I .
An interpretation I is called least in I if I ⊆ J for all other interpretations J ∈ I. A model M
of a program P is called minimal (respectively least) if it is minimal (respectively least) among all
models of P .

21

2. PRELIMINARIES 2.3. Answer Set Programming

Definition 2.40 (Minimal Model). An interpretation M is a minimal model of a program P if
M is a model of P and is minimal among all other models of program P .

Definition 2.41 (Least Model). An interpretation M is a least model of a program P if M is a
model of P and is least among all other models of program P .

Proposition 2.42. Let P be a logic program. If P is a definite program, then it has a least model
M .

An atom A is true in program P , if and only if A belongs to its least model. Otherwise,
A is considered false in P .

Consider the following program P :

ableMathematician(X)← physicist(X).

physicist(einstein). president(cavaco).

One model of P could be: {president(cavaco), president(einstein), physicist(cavaco),

physicist(einstein), ableMathematician(cavaco), ableMathematician(einstein)}. How-
ever, this is not the correct meaning of the program. Since we lack the information that
cavaco is a physicist, we should considerate that he is not. Then, the least model of the
program is: {president(cavaco), physicist(einstein), ableMathematician(einstein)}.

Stable models were first introduced in[GL88]. Informally, the idea is that when one
assumes true some set of default literals, some consequences follow according to the se-
mantics of definite programs. If the consequences completely corroborate the hypothesis
made, then they form a stable model. Formally:

Definition 2.43 (Stable Model/Answer Set). Let I be a model of a logic program P . Let us
denote by ΓP (I) the least model of the reduct of P with respect to I , denoted Π

I , defined as:

Π

I
= {H(r)← B+(r) | r ∈ Π ∧B−(r) ∩ I = ∅},

where Π stands for ground(P).
Then, a model I of a logic program P is a stable model of P if and only if ΓP (I) = I .

We have now defined what a stable model is. However, there are also some properties
that should be taken into consideration, and we present them next.

Definition 2.44 (Support). Given a model I for a ground program P , we say that a ground atom
A is supported by P in I if there exists a rule r of ground(P) such that H(r) = A andB(r) ⊆ I .

Proposition 2.45. If I is an answer set of a program P , then all atoms in I are supported by P
in I . [MS89, LRS97, BG94].

22

3
Database Repair

Database repairing is a technique that allows consistency to be restored to a database
whenever the database becomes inconsistent. If, for instance, a new integrity constraint is
generated, leading the database to an inconsistent state, database repairing generates an
update of the database restoring the consistency, by deleting faulty tuples, and/or adding
new ones, creating a repaired instance, a database repair. In order for this technique to
be possible, we are not just considering inconsistency but we are also considering that the
database is incomplete.1

Throughout this chapter, we introduce the notion of inconsistency and formally de-
scribe the database repair problem, providing a few examples along as well.

3.1 Inconsistency

Inconsistency is a common phenomenon in the database world. There are many possible
ways for a database to become inconsistent. One of them is due to the data being drawn
from a variety of independent sources (as in data integration[Len02]). Another one, is
due to the creation of new integrity constraints, with some information already stored in
the database.

It is then important to formally introduce the concept of inconsistency, since it will be
one of the main topics of this dissertation as well.

Definition 3.1 (Inconsistency). Given a database D = 〈I, IC〉, we say that D is consistent

1Incompleteness here does not mean that the database contains indefinite information in the form of nulls or
disjunctions[CS98]. Rather, it means that Open World Assumption is adopted, i.e., the facts missing from the
database are not assumed to be false. Since the insertion of new tuples is possible, we must accept that the
facts missing from the database are not false, or else, it would not be possible.

23

3. DATABASE REPAIR 3.2. Repairs

with respect to IC, if D |= IC, such that D |= IC is true if and only if βt(I) |= IC; inconsistent
otherwise2.

Example 1. Suppose we have the Customers and Accounts relations, belonging to a database D,
represented in Table 3.1, and the inclusion dependency

ic : ∀AId,CId∃Name.[¬Accounts(AId,CId) ∨ Customers(CId,Name)]

Customers
CustomerId Name

111 John
222 Peter
333 Anna

Accounts
AccountId CustomerId

1 111
2 222
3 333
4 444
5 444
6 444

Table 3.1: Referential Integrity Problem

This database violates the integrity constraint defined, since D 6|= ic, since there is no tuple in
relation Customers that has, as value of the attribute CustomerId, the value 444. Therefore, D is
inconsistent with respect to ic.

Intuitively, a database is inconsistent if it does not satisfy the integrity constraints
defined over it.

Now that we have defined what inconsistency is, let us formally introduce the notion
of repair.

3.2 Repairs

To deal with inconsistency, database repairing proposes that a new database is created,
replacing the older one, leading the database to a new consistent state. This new instance
is called a repair. The new database generated will have the same name and schema of
the original one. Only the content of the database is altered. Therefore, a repair is a new
database, consistent with the integrity constraints defined over it.

Going back to Example 1 , we saw that the database was in an inconsistent state. A
possible repair, with respect to the original database, can be seen in Table 3.2.

As we can see, this new database is consistent with respect to the integrity constraints.
In order to obtain this repair, we only took into consideration deletions. However, we
may also use insertions. Consider the following database:

As we can see, the database presented in Table 3.3 is also a repair, since the integrity
constraints are satisfied as well. However, we introduce the value NULL, which we

2Note that βt(I) is a subset of the Herbrand Base, so, it is a Herbrand Interpretation, and thus, also a First
Order Logic Interpretation.

24

3. DATABASE REPAIR 3.2. Repairs

Customers
CustomerId Name

111 John
222 Peter
333 Anna

Accounts
AccountId CustomerId

1 111
2 222
3 333

Table 3.2: Referential Integrity Problem Repair 1

Customers
CustomerId Name

111 John
222 Peter
333 Anna
444 NULL

Accounts
AccountId CustomerId

1 111
2 222
3 333
4 444
5 444
6 444

Table 3.3: Referential Integrity Problem Repair 2

do not want to. Therefore, in order to allow insertions, an extra source of tuples (an
additional database) must be explicitly introduced by the user. This new database shares
the same schema of the original database, and does not have any integrity constraints
defined. This exta database can be seen as a set of tuples that can be inserted in the
original database in order to restore consistency. Going back to the previous example,
consider that the user introduced the extra tuples depicted in Table 3.4.

Customers auxiliary
CustomerId Name

444 Richard
555 Michael
666 Susan

Table 3.4: The Customers auxiliary relation

Then, according to this new source of information, consider the following database in
Table 3.5. We now have generated a new repair, with respect to the original problem, by
inserting tuples into the original database. This way, we avoid the use of NULL values,
although some additional effort is required, since extra tuples must be introduced in the
process.

The next step would be to actually store this information in the database, replacing
the previous instance with the new one, thus restoring consistency,

Let us formally define our database repair problem, and introduce the notion of a
repair. Take into consideration that a source of extra tuples needs to be introduced by the
user, in order to contemplate insertions.

25

3. DATABASE REPAIR 3.2. Repairs

Customers
CustomerId Name

111 John
222 Peter
333 Anna
444 Richard

Accounts
AccountId CustomerId

1 111
2 222
3 333
4 444
5 444
6 444

Table 3.5: Referential Integrity Problem Repair 3

Definition 3.2 (Database Repair Problem). A database repair problem is a triple 〈D,E, IC1〉
where D and E are databases, such that D = 〈ID, IC〉 is the main database and E = 〈IE , ∅〉 is
the source of new tuples, andD andE have the same database schema, and IC1 is a set of integrity
constraints, such that D 6|= IC ∪ IC1.

The database repair problem consists on an existing database, where we want to insert
new integrity constraints that leads the database to an inconsistent state. Therefore, since
the database becomes inconsistent, a repair must be generated. We define a repair as
follows:

Definition 3.3 (Repair). Given a database repair problem P = 〈D,E, IC1〉, such that D =

〈ID, IC〉 and E = 〈IE , ∅〉, a repair, with respect to P , is a new database of the form D′ =

〈I ′D, IC ∪ IC1〉 such that:

• βt(I ′D) ⊆ βt(ID) ∪ βt(IE)

• D′ |= IC ∪ IC1

Although we have seen some possible repairs in Example 1, many more repairs may
exist, besides the ones presented. Consider the following repairs, depicted in Tables 3.6
and 3.7. In the first one, we deleted all tuples from relation CustomerId. In the second
one, and considering as well the source of extra tuples in Table 3.4, we added the tuple
〈444, Richard〉, but also the tuple 〈555,Michael〉 to the relation Customers.

Customers
CustomerId Name

111 John
222 Peter
333 Anna

Accounts
AccountId CustomerId

Table 3.6: Referential Integrity Problem Other Possible Repairs 1

26

3. DATABASE REPAIR 3.2. Repairs

Customers
CustomerId Name

111 John
222 Peter
333 Anna
444 Richard
555 Michael

Accounts
AccountId CustomerId

1 111
2 222
3 333
4 444
5 444
6 444

Table 3.7: Referential Integrity Problem Other Possible Repairs 2

This way, we can come up with some more repairs. However, the interesting ones are
usually those that result from minimal change, i.e., where we change as little information
as possible, which are called minimal repairs. In order to define what a minimal repair
is, let us introduce some distance based measures, considering two distinct minimality
criteria: minimality under set inclusion and minimality under cardinality of operations,
where by operations, we mean deletions and/or insertions.

Definition 3.4 (Set Based Distance). Let D and D′ be two databases over the same schema,
such that D = 〈I, IC〉 and D′ = 〈I ′, IC〉. The set based distance between D and D′, denoted by
∆ (D,D′) is defined as:

∆
(
D,D′

)
= (βt(I) \ βt(I ′)) ∪ (βt(I

′) \ βt(I)).

Definition 3.5 (Set Based Closeness Relation). Let D, D′ and D′′ be three databases over the
same schema. We say that D′ is set closer to D than D′′, denoted by D′ ≺D∆ D′′, if ∆ (D,D′) ⊂
∆ (D,D′′).

Definition 3.6 (Cardinality Based Distance). Let D and D′ be two databases over the same
schema, such that D = 〈I, IC〉 and D′ = 〈I ′, IC〉. The cardinality based distance between D
and D′, denoted by | (D,D′) | is defined as

|
(
D,D′

)
| = |

(
βt(I) \ βt(I ′)

)
|+ |

(
βt(I

′) \ βt(I)
)
|

where |R| denotes the cardinality of set R.

Definition 3.7 (Cardinality Based Closeness Relation). Let D, D′ and D′′ be three databases
over the same schema. We say that D′ is cardinality closer to D than D′′, denoted by D′ ≺D|.| D

′′,
if | (D,D′) | < | (D,D′′) |.

We are now able to formally define what a minimal repair is.

Definition 3.8 (Minimal Repair). Let P = 〈D,E, IC1〉 be a database repair problem, and
ϑ ∈ {∆, |.|} a closeness relation. A repair D′ with respect to P is minimal with respect to ϑ if
there is no repair D′′ with respect to P such that D′′ ≺Dϑ D′

27

3. DATABASE REPAIR 3.2. Repairs

Two different minimality criteria were taken into account in the previous definition.
The minimality under set inclusion and the minimality under the cardinality of opera-
tions. In many of the cases, both of the minimality criteria will generate the same repairs.
However, there are times when this is not true. To illustrate this, let us go back to the
repairs previously shown. The repairs presented in Tables 3.2 and 3.5 are both minimal
under set inclusion. However, the first one is not minimal under cardinality, whilst the
second one is, since to obtain the first repair, we perform three operations, while we only
need one operation to obtain the second repair. Also, the repairs presented in Tables 3.6
and 3.7 are not minimal under set inclusion nor cardinality.

Generating repairs is not a trivial task, specially if we consider the generation of min-
imal ones. The complexity of database repairing lies between the NP-hard and the Σp

2

complexity classes[CM05]. Take into consideration that the study of the complexity of
database repair is out of the scope of this dissertation.

Having formally introduced the database repair problem, it is important to know the
origins of this problem, and what has been done to solve it. There has been a lot of
research along the years, and there are several approaches to similar problems, which
we shall discuss next, since they were of the most importance, in order to motivate our
solution, the use of answer set programming, to address this problem.

28

4
Related Work

In order to deal with inconsistency in databases, two distinct techniques have been pro-
posed: Consistent Query Answering and Database Repairing. In the first one, despite
having an inconsistent database, the objective is to, when given a query to the database,
return to the user only those tuples that are not in conflict with the defined integrity
constraints. In the second one, the objective is to restore consistency to the database, by
deleting and inserting tuples, or, in some cases, by updating values of attributes, if the
database is inconsistent.

In this chapter, we shall discuss what has been done in these areas, with more empha-
sis on the Database Repair area, motivating the reader to the use of answer set program-
ming to address the database repair problem.

We first discuss several approaches regarding Consistent Query Answering and, af-
terwards, Database Repairing.

4.1 Consistent Query Answering

Bry [Bry97], to the best of our knowledge, was the first author to consider the notion of
consistent query answer in inconsistent databases. Informally, consistent answers are the
result of a query posed to the database, that can be computed without using some data
involved in an integrity constraint violation. However, Bry’s approach is entirely proof-
theoretic, and does not suggest any method for computing consistent query answers, not
addressing as well the issues of the semantics associated with it, so it was not very clear
what were the real implications of this technique.

In [ABC99], the authors addressed the problem of consistent query answering once
more, formally introducing it, as well as introducing the notion of a repair (considering

29

4. RELATED WORK 4.1. Consistent Query Answering

only minimality under set inclusion). The authors defined consistent query answers as
follows:

Definition 4.1 (Consistent Query Answer). A tuple t̄ is a consistent answer to a query Q in a
database instance D with respect to a set of integrity constraints IC, if t̄ is an answer to the query
Q in every repair D′ of D with respect to the integrity constraints.

Intuitively, a consistent query answer to an initial query contains those tuples that
are true in every possible repair of the original database. The notion of repair was de-
fined in the same way as we did, but only considering deletions as a repair primitive and
minimality under set inclusion. Furthermore, in their work, the authors provide a logical
characterization of consistent query answers in relational databases that may be inconsis-
tent with the given integrity constraints. They state that a consistent answer to an initial
query on an inconsistent database D, should be the same as the answers obtained, to the
same query, from all possible repairs D′ of D. In addition to this, they provided the first
method for computing consistent answers, based on query modification. The authors
also focused on the soundness and completeness of the proposed method. Their method
works as follows: given a query Q, the method generates a modified query Tω(Q), based
on the notion of residue developed in the context of semantic query optimization, through
an iterative algorithm, such that, the answers of Tω(Q) are the same as the consistent an-
swers of Q. However, this approach works only for quantifier free conjunctive queries,
and only for a restricted set of integrity constraints, the universal constraints, where each
variable in an atomic formula must be universally quantified. Inclusion dependencies
were not possible to be considered using this approach. Based on this work, in [CB00],
the authors, addressed once again the consistent query answering problem, designing an
altered algorithm, QUECA(.), for “QUEry for Consistent Answers”, which, given a first
order query Q, it generates a new query QUECA(Q), whose answers are consistent with
the integrity constraints, but, as opposed to the previous algorithm, it guarantees termi-
nation, soundness and completeness for a larger set of integrity constraints. However,
this method was still not general enough, since they could only address a restricted class
of integrity constraints (inclusion dependencies, for instance, were not addressed). The
implementation of this algorithm was done using XSB[xsb].

The fact that the previous approach did not address inclusion dependencies showed
that a new line of reasoning needed to be taken. And that is precisely what was done in
[ABC00]. Here, with the topic of consistent query answer in mind, the authors proposed
the representation of database repairs in form of a logic program with disjunction, un-
der the stable models semantics[GL91, Prz91], such that, when given an initial query, an
inconsistent database D and a set of integrity constraints IC, a repair program is built,
such that there is a one-to-one correspondence between the stable models of the repair
program and the repairs of D. Their approach consists in the direct specification of the
database repairs in a logic programming formalism. They provide a mapping of the

30

4. RELATED WORK 4.1. Consistent Query Answering

database, along with the integrity constraints, into disjunctive logic programs with ex-
ceptions. The consistent query answers were given by performing the intersection of the
answer sets generated, taking into consideration the initial given query. However, not
all integrity constraints were covered in this approach, being the inclusion dependencies,
again, left out. However, no practical results were shown. A deeper study was made
in [ABC03] and [BB03], addressing the problem in more details, still using disjunctive
logic programs to represent the database repair problem. Here, the authors considered
inclusion dependencies, but still proposed further studies on that subject. Also, almost
only binary constraints, i.e., constraints involving two relations, were studied. However,
in all three of the previous works, the approach to CQA is based on the specification of
all repairs, where each of them completely restores the consistency of the database, inde-
pendently from the query that is posed and from the fact that it might have nothing to
do with some of the violated integrity constraints. Also, disjunction is used in the logic
programs, which, in the majority of the cases, increases the complexity of the problem.
Furthermore, according to the mapping of the integrity constraints provided, an expo-
nential number of rules may be created, increasing the size of the grounded program.
The computation of all answer sets and the intersection of them was needed to consis-
tently answer a query. It is that this is not desired, at all, since there may be a very large
number of repairs to a specific problem, according to the size of the database and the
integrity constraints defined, and the computation of all of them is not feasible in useful
time. Therefore, the authors also suggested that it would be useful to specify and com-
pute “repairs” that partially restored the consistency of the database, only with respect
to the integrity constraints that are relevant to the query. Possibly, grounding techniques
could be used in this case. Then, in order to reach such goal, other studies were made.

In [ABK00] and further on in [BBB01], the authors provide means to specify database
repairs, again, using disjunctive logic programs, but also with annotation arguments, un-
der the stable models semantics. These logic programs were based on a non classical
logic, Annotated Predicate Logic. The objective was to embed both the database instance
and the integrity constraints into a single theory where each predicate is replaced by a
new predicate with an extra argument, the annotation argument. The role of the anno-
tation argument is to enable the definition of atoms that can become true in the repairs
or false, in order to satisfy the integrity constraints. By specifying how a database vi-
olates the integrity constraints, and how the database can become consistent, with re-
spect to the integrity constraints, each atom can receive one of the constants depicted in
Table 4.1. The authors show how to annotate integrity constraints (including inclusion
dependencies), how to annotate queries and how to specify the repairs. The programs
obtained by using Annotated Predicate Logic are simpler than the programs introduced in
[ABC00, ABC03, BB03], in the sense that only one rule per integrity constraints is needed,
whereas in the previous ones, may lead to an exponential number of rules. Therefore, the
size of the ground program introduced here, is significantly reduced from the previous
one. However, disjunction was still used in the specification of integrity constraints. The

31

4. RELATED WORK 4.1. Consistent Query Answering

Annotation Atom The tuple P (c̄) is...
td P (c̄, td) P (c̄) is true in the database
ta P (c̄, ta) P (c̄) is advised to be made true
fa P (c̄, fa) P (c̄) is advised to be made false
t∗ P (c̄, t∗) P (c̄) is true or is made true
t∗∗ P (c̄, t∗∗) P (c̄) is true in the repair

Table 4.1: Annotation Constants

way to obtain consistent query answers was to run the repair program along with a query
program under the skeptical stable models semantics, that sanctions as true what is true
in all models.

Since the way to obtain consistent query answers still lied in the intersection of the
stable models, implementation issues, once more, arose, due to the high complexity of
the whole process. Then, the authors discussed some optimizations of repair programs,
examining certain program transformations that can lead to programs with lower com-
putational complexity. Also, the authors discussed optimizations that avoided the com-
putation of repairs when a query is to be answered. In fact, since the current approach
relied in finding the ground atoms that belonged to all stable models of a repair program,
the authors suggest that the problem of developing query evaluation mechanisms for
disjunctive logic programs that are guided by the query, most likely containing free vari-
ables and then expecting a set of answers, like magic sets deserved more attention from
the logic programming and database communities, which led to the following studies.

Work done in [MB05, MB07] explored the usage of magic sets in the computation of
the consistent query answers, still with the annotation semantics, as describe in [ABK00,
BBB01]. Here, the magic set techniques for logic programs with stable model semantics
take as input a logic program - in this case the repair program - and a query expressed
as a logic program that has to be evaluated against the repair program. The output is a
new logic program, the magic program, with its own stable models, that can be used to
answer the original query more efficiently. By using such techniques, there are less (and
smaller) generated stable models. A skeptical reasoning is still needed to answer the
queries, however, the process is now much more efficient. The authors extended magic
set techniques, in order to deal with disjunctions. All this work culminated in a PhD
thesis[Can07], where this approach was fully studied along with further optimizations
to the whole process. Notice that the purpose of these works is not the computation
of database repairing, but to provide consistent answers regarding a given query. In
[MB05, MB07, Can07], there was no need to compute all the repairs and then to perform
the intersection of all repairs. Those approaches introduced a more efficient way to reach
such goal.

So far, the database repair programs only considered, as repair primitives, deletions
and/or insertions. Nevertheless, there have also been some studies where updates were

32

4. RELATED WORK 4.2. Database Repair

considered. The motivation of this kind of repair primitive is that, whenever a tuple is vi-
olating an integrity constraint, it may contain information that is still correct and does not
necessarily need to be deleted (or must not be deleted at all). That way, by updating the
faulty values (substituting one constant by another constant/variable), we can maintain
the correct information. In [Wij03], tuple updates were inserted as a repair primitive, and
the notion of consistent query answering was adapted to this new method. In [Wij05],
this approach was studied more deeply, providing some complexity results of this new
approach. However, these updates considered the substitution of constants by variables,
which introduced ambiguity in the database, despite restoring consistency. Also, values
of attributes could by updated by the NULL value, which we, in our approach, do not
want to be present in the domain of any attribute.

As we could see, consistent query answering and database repair are usually two dis-
tinct problems that are, in a way, related. Usually, in order to perform CQA, a repair pro-
gram is generated (when dealing with answer set programming). However, specialized
algorithms have been developed in order to not have to compute the repairs to obtain the
consistent query answers. Also, in all of these works, database repairs have been defined
under a minimality criteria - minimality under set inclusion. However, in practical im-
plementations, it was not shown how to address this problem, which, in our approach,
we want to address. Furthermore, only minimality under set inclusion was explored. It
may not be the best minimality criteria to use in a real database environment.

Although answer set programming was used in some of the previous approaches,
disjunction was used in the logic programs created. Also, not all integrity constraints
were discussed in the mapping of the consistent query answering problem. Furthermore,
we think that a more effective mapping can be done. We also find that minimality under
cardinality of operations should be discussed in greater detail.

Since our main objective is the database repairing technique, let us drive away from
this path, and focus on this technique instead.

4.2 Database Repair

Unfortunately, there has been a lot more work and study in the consistent query answer-
ing part rather then in the database repair itself, thus more results are presented in this
area. However, there have been some studies in the the later as well, and we shall go
over them. Also, some applications have been developed to deal with real life database
repair problems, whose results we shall discuss as well.

A very interesting approach on database repair was proposed in [GGZ01] and further
developed in [GGZ03], where a framework for repairing databases was analysed in great
detail. There, the authors provide examples of mappings of the database repair problem
into logic programs (under the stable model semantics), focusing on the mapping of the
integrity constraints. Furthermore, the authors present a very interesting particularity,
the repair constraints property, which is the possibility to restrain the number of repairs.

33

4. RELATED WORK 4.2. Database Repair

They give preference to certain data with respect to others and define which repairs are
feasible. It gives the possibility to restrain deletions or insertions in a specific relation,
together with some additional properties that need to be verified. They also introduce
the notion of prioritized updates, which are rules which give the possibility of express-
ing preferences among deletions and insertions, and consequently, among repairs. For
instance, consider a relation that keeps the information about the employees of an en-
terprise. If a tuple of that relation has to be deleted due to a violation of an integrity
constraint, we may prefer to delete the tuple of an employer with higher salary. How-
ever, such prioritized rules increase the complexity of the repair process. The authors
also show that their approach is sound and complete.

The computation of the repairs is carried out by rewriting:

• integrity constraints into disjunctive rules,

• repair constraints into logic rules,

• prioritized update rule into logic rules.

In this dissertation, we did not want to address the problem using logic programs
with disjunction, which, generally, increases the complexity of the problem we wish to
address. Also, in their mapping of the database repair problem into a logic program,
the authors only considered universal integrity constraints. Although key constraints,
functional dependencies and denial constraints can be seen as universal constraints, there
could be a better mapping of the integrity constraints, such that the computational time
needed to reach the repairs is reduced.

Nevertheless, this work allowed to comprehend a little better the use of logic pro-
grams to aid the repair process, and introduced some very interesting particularities,
such as the repair constraints and the prioritized update rules. However, it was just a
theoretical study. No practical implementation of the framework was done. Also, it is
not said how to incorporate minimality under set inclusion in their work. Moreover,
they do not take into account that, for instance, key constraints, functional dependencies
are distinct classes of integrity constraints, since they can both be expressed through a
universally quantified constraint. If considered separately, a more efficient mapping can
be done. Also, and once more, disjunctions are used in the logic programs.

In [FPL+01], the authors show a real application of the database repair problem. To
repair the database, they only considered updates, where the attributes of a relation had a
finite domain, whose cardinality was relatively small. The authors suggested the applica-
tion of database repair in census data, which are in agreement with the recommendations
for the 2000 European censuses of population [fEotEC98]. These censuses data provide
valuable insights on the economic, social and demographic conditions and trends occur-
ring in a country. The collected information provides a statistical portrait of the country
and its people.

34

4. RELATED WORK 4.2. Database Repair

The idea behind the census is that each family completes a questionnaire, which in-
cludes the details of the head of the household (the householder) together with the other
people living in house (being them family related or not). However, when collecting the
questionnaires, some of them may be incomplete of have inconsistent information. Imag-
ine a married person who claims to be only 6 years old. Obviously, this is inconsistent. It
is easy to accept that the deletion of tuples is not wanted, since it would totally ruin the
statistical purpose of the census. Therefore, the authors propose a framework to correct
this errors by updating the values, by introducing a way to encode the problem into a
disjunctive logic programming language. The authors provide as well a small running
example while mapping the problem into a logic program.

In their work, a questionnaire isQ is defined as a pairQ = 〈r, E〉, where r is a relation
and E is a set of integrity constraints that must always be satisfied in r. An example of an
integrity constraint may be: any married person should be at least 16 years old. However,
this is not enough to perform updates, since there may exist some possible updates to a
repair that do not make sense, for instance: in the previous case of the married person
who is 6 years old, a possible repair would be to change the person’s age to 150, which
clearly does not make sense. The authors were only interested in the minimal repairs that
did not alter the statistical properties of the census. Therefore, they also introduced the
concept of preferred rules, which can be encoded through a set of first order formulas,
used for expressing some preferences over a repaired relation. An example of a preferred
rule may be: it is likely for a married person living in the household, whose relationship
with the householder is unknown, to be his/her spouse. This way, preference rules are
used to establish an ordering within the minimal repairs of a questionnaire. Intuitively,
when some value is changed in order to repair inconsistencies and/or to replace NULL
values, the repair should satisfy as many preferences rules as possible.

The encoding is shown not in a formal way, but accompanied by a small running
example. However, the authors describe how to address the minimality. The authors
performed several tests using the DLV solver, and that the results of such experiments
showed the feasibility of this approach with realistic data.

Once more, this work is based on logic programs with disjunctions, which we do not
wish to incorporate in our approach. Also, despite being a real practical application, this
application may mislead the users into believing that updates are the best way to perform
database repairs. The use of updates as a repair primitive, may introduce ambiguity in
the repairs, since many studies allow the insertion of variables or the NULL value. In
this case, updates are only possible since the domains of the attributes are relatively small,
being then possible to create rules to express how to repair a specific inconsistency. For
instance, if a person does not specify the gender, a rule can be expressed saying that the
value of that attribute is either male or female. However, if the domain of an attribute is
very big, such approach is not feasible. Notice as well, that, the authors do not consider
the most used integrity constraints in a database management system. They need to
introduce specific rules to every situation that they wish to cover. In this dissertation,

35

4. RELATED WORK 4.2. Database Repair

despite wanting to allow the user to freely specify new integrity constraints, we want to
focus in the integrity constraints provided directly by the database management system
as well.

The last approaches were all based on the representation of the database repair prob-
lem into logic programs. However, there have also been other approaches to database
repair without the use of logic programs, or together with some other methodologies.
We shall now go over some literature in database repair that relies on other technologies
to address this problem.

In [GL97], the authors propose one of the first methods for database repairing. This
was one of the initial works done in this area. Nevertheless, a very interesting approach,
based on model-diagnosis was done in this work. Here, the authors do not consider
only existing components in the database (positive facts), but also missing components
(negative facts), that are necessary to be inserted in order to satisfy, for example, inclu-
sion dependencies. Their approach allows the use of deletions and insertions, as repair
primitives. Then, the objective of their approach is:

• To determine reasons for the constraint violations in an inconsistent database by
computing the minimal sets of positive and negative facts that account for all vio-
lations in the database;

• To characterize schemas for possible repair actions that can be associated with such
facts.

In order to accomplish the previous, the authors present a sound and complete algo-
rithm for enumerating possible minimal repair transactions for an inconsistent database.
It performs an iteration of diagnosis and repair of a constraint violation in a breadth-first
search manner, through hypothetical databases (which represent hypothetical repaired
databases with respect to a particular integrity constraint).

Being one of the first approach to database repairing, there are several issues regard-
ing this approach. First, the authors consider a small fraction of integrity constraints.
They only consider integrity constraints that are defined by means of base predicates.
Also, denial constraints cannot be introduced in his approach, and these kind of con-
straints can be very powerful, so it would be interesting to allow such integrity con-
straints. Furthermore, if more than one dependency exists between two integrity con-
straints, the authors force the user to weight all possible ways to repair the database and
indicate which one he wishes to use. If another way to repair was chosen, the final repair
may be different. Therefore, this approach does not present all possible way to repair
the database to the user. An automatic way to compute all minimal repairs would be
interesting to develop.

Although the authors developed a real implementation of the algorithm, no results
have been presented. So, despite being a sound and complete algorithm, we cannot
infer about the scalability of such an approach. However, some particular aspects of
this approach are very useful and important, which are:

36

4. RELATED WORK 4.2. Database Repair

• Determination of facts as well as missing facts that contribute to the different con-
straint violations;

• Possibility for the user to choose a repair strategy, following a repair goal (repairs
minimal under set inclusion or repairs minimal under cardinality on the number of
operations).

More recently, in [KL09], the authors suggest an algorithm that approximates opti-
mum repairs for functional dependencies violations. The proposed algorithm only takes
into account functional dependencies. The repairs are based on a minimality criteria,
concerning the number of operations performed. However, only updates of values of
attributes are allowed, i.e., the values of the attributes may be updated with another con-
stant, or with a variable, which comes from an infinite set of variables. The algorithm
relies on graph theory, by building a conflict hypergraph of an inconsistent database in-
stance that represent the conflicts of the attributes of all tuples from a relations. Then, a
minimum vertex cover is applied and the algorithm solves the inconsistencies that may
exist.

This approach is merely a theoretical study. No practical implementation has been
done. Furthermore, it introduces an algorithm to perform database repairing taking into
consideration only functional dependencies. By only considering this kind of integrity
constraint, it is very limited. Although the algorithm provided, if implemented, may
have great performance, it lacks generality. We must take into consideration that a DBMS
implements more integrity constraints than just functional dependencies. Also, in this
algorithm, updates have been allowed as the only repair primitive. Because of that, the
algorithm can update a constant by a variable, whenever the algorithm cannot suggest
a value for that constant. Then, unknown values may be introduced in the database.
More importantly, if we have a functional dependency of the form X → Y , where X is
compose by one attribute and Y by a set of attributes, for example, the algorithm may
update the value of X to a variable, which is not desired at any time, since we lost notion
of what the integrity constraints is actually restricting in reality.

In [BIG10], and following the notion of repair and some lines of reasoning introduced
in [KL09], the authors propose a different repairing approach, still based on value up-
dated, rather that tuples deletions, and again, only considering functional dependencies.
The algorithm introduced by the authors, roughly speaking, “randomly” generates new
possible repairs. The algorithm relies on the following: for any two tuples t1, t2 that vi-
olate a functional dependency X → Y , it is enough to modify t1[Y] so it equals t2[Y] (or
vice-versa), or modify an attribute B ∈ X in either t1 or t2, so that t1[B] 6= t2[B]. Gen-
eralizing this observation, if a set of values of a set of attributes C does not violate any
functional dependencies, consistency of the set C ∪C, for any value C of an attribute, can
always be enforced by modifying C.

The objective behind the algorithm is to continuously select “random” values from a
database and keep storing those values. If, at any point, a value is selected that, together

37

4. RELATED WORK 4.2. Database Repair

with the already stored values, violates the functional dependency, that value is updated
by another constant or by a variable. At the end, minimal repair, under cardinality on the
updates performed, are generated.

In this approach, we have, once more, the problem of generality versus performance.
Also, although the authors show that the algorithm can generate all minimal repairs, it
takes several iterations of the algorithm to reach all minimal repairs. Moreover, the user
may not know that all possible repairs have been generated, since the algorithm is based
on a “random” choice of values of attributes. Furthermore, this algorithm allows the
update of a value by a variable. Once more, this variable means that an unknown value
is there, which may not be desired in a database. In their approach, the authors allow the
users to specify hard constraints, i.e., to specify that some values of attributes cannot be
updated during the repair process, which is a very interesting feature.

In [CM11], the authors came up with a new idea, with respect to the database repair
problem. Instead of simply repairing faulty tuples, the authors suggest the correction
of integrity constraints (in their approach, only functional dependencies were taken into
account). They defend that in modern applications, constraints may evolve over time,
as application or business rules change, as data is integrated with new data sources, or
as the underlying semantics of the data evolves. In this work, the authors developed
an algorithm to capture the inconsistencies and repair them. The main objective of their
approach is: given a database instance I that is inconsistent with respect to a given a set
of functional dependencies Σ, they want to find a set of low cost data repairs and a repair
of Σ (the repair of integrity constraints), such that the repaired database is consistent with
the repaired set of integrity constraints.

Since only functional dependencies are considered, all integrity constraint are of the
formX → Y . If there is a violation of an integrity constraint, it means that there exist two
distinct tuples t1 and t2, such that t1[X] = t2[X] and t1[Y] 6= t2[Y]. One possible repair
is simply to change the values of t2[Y] to t1[Y]. Another possible repair, is to change
the values of t1[X], to the values of another tuple t3[X], where t3[Y] = t2[Y]. However,
when dealing with these kinds of updates (the left side of the implication), the authors
only consider values forX that are supported by other tuples. This way, ambiguity is not
introduced in the database. Only value updates are considering when repairing the data.

In order to perform a repair of an integrity constraint X → Y , the users propose the
addition of another attribute A to X , such that X ∪A→ Y .

In this algorithm, optimality takes into consideration both tuples repairs or constraints
repairs, so that the optimum repair is the one that performs less changes. Also, the algo-
rithm provided is a greedy algorithm, i.e., an algorithm that relies on the use of heuristics.

There are several aspects that need to be pointed out in this study. Once again, only
functional dependencies are being taken in consideration. Therefore, the authors traded
performance with generality. When updating the values of the attributes of the right
side of an inclusion dependency, the authors simply update the values of a set of at-
tributes by the exact same values of another set of attributes. This may not be desired in

38

4. RELATED WORK 4.2. Database Repair

many cases. Consider we have the relation depicted in Table 4.2, where we have a rela-
tion to store information about people and the inclusion dependency Id → Name, Age.
By the algorithm provided, the first tuple would become 〈1, Anna, 22〉 or the second tu-

Id Name Age
1 Michael 27
1 Anna 22

Table 4.2: Inconsistent Person Relation

ple would become 〈1,Michael, 27〉. Either way, we would be losing information. If, on
the other hand, the algorithm suggested that the functional dependency should become:
Id,Name → Age. Then, we may ask why are the integrity constraints necessary? In-
tegrity constraints are supposed to be permanent, in order to have consistent information
at all times. If we are assuming that the integrity constraints may change in time, then
why should we even use them?

Lastly, since the algorithm describe is a greedy algorithm, heuristics are used. By
having heuristics, the tuning of some parameters is extremely important, in order to have
accurate answers, otherwise, the algorithm can be very fast, and produce weak repairs,
or, the repairs may be extremely efficient, but the time needed to reach such solutions is
very high. There is always this kind of trade-off between quality and performance. Since
it is a greedy algorithm, it may fail to compute the best optimum repair, simply because
it does not exhaustively look for repairs. This way, completeness is not achieved.

In [SMG10], the authors proposed the use of the Argumentation techniques to provide
a better understanding of the reasoning process behind database reparation. In their ap-
proach, they provide means to identify, represent and resolve the conflicts between tuples
in an inconsistent database. The objective goes through building an argumentation tree,
where arguments attack each other. In the end, each branch corresponds to a possible
way of restoring consistency to the database system. They also provided a mechanism to
ensure optimal repair checking.

Being this work purely theoretical, the authors introduced a new line of research that
embraces the database repair and argumentation research areas. But, to this point, we
cannot yet infer about the use of argumentation in this kind of technique, since we lack
enough results to do it, and this work is still just a preliminary study.

Work on the area of data cleaning has also been done, and some studies present very
interesting results. The purpose of data cleaning it to detect and remove errors and incon-
sistencies from data in order to improve the quality of the data. Data quality problems
are present in databases, due to misspellings during data entry, missing information or
other invalid data [RD00]. This is what is called dirty data. The way to correct this dirty
data may be, as in our approach, by rejecting tuples (deleting them from the database), or
correcting them (updating values of attributes). However, the process is computationally
expensive on very large databases. Besides considering inconsistency with respect to the

39

4. RELATED WORK 4.2. Database Repair

integrity constraints, data cleaning considers as well other sources of errors. Therefore,
some work done in data cleaning is very interesting and strongly related to database
repairing. There are several popular methods used in data cleaning, such as:

• Parsing: detection of syntax errors;

• Data Transformation: mapping of the data from their given format into the format
expected by the appropriate application (value conversions for instance);

• Statistical Methods: by analysing the data using values of mean, standard devia-
tion, range or clustering algorithms, it is possible to find values that are unexpected
and thus erroneous;

• Duplicate Elimination: determines whether data contains duplicate representa-
tions of the same entity.

The latter is a very interesting problem, and is strongly related to some database re-
pair problems. We now present some work done in this area.

In [LLL00, LLL01], the authors introduced IntelliClean, a knowledge-based intelligent
data cleaner, which is an application built do deal with duplicated tuples detection. They
developed a framework that provides a complete strategy for duplicate elimination in
dirty databases with duplicate (or seemingly duplicate) tuples. Their framework consists
on a three stage algorithm:

• Pre-Processing Stage - tuples are first conditioned and scrubbed of any anomalies
that can be detected at this stage. For instance, inconsistent abbreviations used in
the data can be resolved at this stage (e.g. occurrences of ’1’ and ’A’ in the sex
attribute will be replace by ’Male’, and occurrences of ’2’ and ’B’ in the sex attribute
will be replace by ’Female’). The output of this stage will be a set of conditioned
tuples which will be input to the processing stage.

• Processing Stage - the conditioned tuples are next fed into an expert system engine
together with a set of rules. These rules will fall into one of the following categories:

– Duplicate Identification Rules - these rules specify the conditions and crite-
ria for two tuples to be classified as duplicates. Tuples are then classified as
duplicates with a Certain Factor;

– Merge/Purge Rules - these rules specify how the duplicates tuples are meant
to be handled;

– Update Rules - these rules specify the way data is to be updated in a particular
situation;

– Alert Rules - the user might want an alert to be raised when certain events
occur. Such rules may be useful when the DBMS in which the data resides
does not support the checking of constraints.

40

4. RELATED WORK 4.2. Database Repair

• Human Verification and Validation Stage - human intervention is required to ma-
nipulate the duplicate tuples groups for which merge/purge rules are not defined.

The algorithm used in this framework is the Rete Algorithm [For82]. It is an efficient
method for comparing a large collection of patterns to a large collection of objects.

The rules, which form the knowledge-base of the framework, are written in Java Ex-
pert System Shell language.

This framework, however, may introduce false-positives, i.e., may consider that two
tuples are considered duplicate when, in reality, they are not. Therefore, the authors
introduced some threshold in order to reduce the number of wrongly merged duplicated
groups. Also, according to the rules generated, the application can be more accurate
or less accurate, but there is a trade-off. Being more accurate, means that more precise
rules need to be defined, increasing the computational time. Relaxing the rules, would
decrease the computational time, but increase the amount of false-positives as well.

This framework, as most of the studies already presented, only relies on specific in-
tegrity constraints. Here, the authors only studied the case of duplicate tuples, which, are
only a bigger problem when dealing with database merging. Once more, it is built around
a very particular and specific problem. Generality of the algorithm is not achieved. Also,
it requires human intervention in some cases that rules were not defined.

In [BSIBD09, BSI+10], the authors introduce ProbClean, a probabilistic duplicate detec-
tion system. It is a system that treats duplicate detection procedures as data processing
tasks with uncertain outcomes. They concentrate on a family of duplicate detection al-
gorithms that are based on parametrized clustering. The motivation behind their idea
is that, generating a single repair necessitates resolving the uncertain cases deterministi-
cally. Once the repair is chosen and updated, information is lost. Sometimes, it may be
the case that we do not wish this to happen. Therefore, the authors provide a system that
keeps track of multiple repairs, by probabilistically modelling possible repairs, allowing
uncertainty when deciding the duplicate tuples. The challenges involved in the process
are:

• Generation of Possible Repairs

• Succinct Representation of Possible Repairs

• Query Processing

For this purpose, the authors defined the notion of Duplication Repairs as such:

Definition 4.2 (Duplication Repair). Given an unclean relation R (a relation that contains
duplicate tuples), a repair X is a set of disjoint tuple clusters,{C1, ..., Cm} such that

⋃m
i=1Ci =

R.

A repairX partitionsR into disjoint sets of tuples that coverR. By coalescing each set
of tuple inX into a representative tuple, a clean (duplicate free) instance ofR is obtained.

41

4. RELATED WORK 4.2. Database Repair

In their approach, ProbClean generates all possible repairs corresponding to a set of
possible parameter settings of any fixed parametrized clustering algorithm. To model the
possible repairs, ProbClean creates a new relation, Rc, which are sets of c− tuples, where
each c− tuple is a representative tuple for a cluster of tuples. Attributes of Rc have all the
attributes ofR, plus two special attributes: C and P . Attribute C of a c− tuple is the set of
tuples identifiers in R that are clustered together to form the c− tuple. The attribute P of
a c− tuple represents the parameters settings of the clustering algorithm used to generate
the cluster represented by the c− tuple. The authors present some clustering algorithms
and provide some examples on how to build the space of repairs. Also, when merging
two or more distinct tuples into one representative tuples, there are also some measures
needed to merge the values of the attributes. The authors also provide some means to do
this operation.

Figure 4.1: ProbClean repair

Figure 4.1 shows an example of a clean relation, that captures possible repairs gener-
ated by a clustering algorithm A, with a uniformly distribute parameter τ in the range
[0, 10]. For example, if τ ∈ [1, 3], the resulting repair of Relation Person is equal to
{{P1, P2}, {P3, P4}, {P5}{P6}}. The cluster {P1, P2, P5} is generated if the value of
parameter τ belongs to the range [3, 10].

The authors in this work also provide means to query the repairs of the unclean rela-
tion. They define the selection, projection and join operators over repaired clean relations.

Since the ultimate objective is to obtain one good clean relation, the authors provide
means to compute the most probable relation, via a probability function define over c −
tuples. This function determines the membership probability of a c − tuple given its
parameter settings.

Although, at the beginning, it may seem a interesting approach, what would happen
if the parameters used in the clustering algorithm generated a high number of repairs?
It would no be efficient to maintain them all and reason over them. This brings us to
the problem of developing algorithms that rely on the parametrization of some values.
An inexperienced user may choose very bad parameters, resulting in very bad repairs as
well. Once more, there is also the problem of the lack of generality in the algorithm, since

42

4. RELATED WORK 4.2. Database Repair

if focus in a very specific problem: duplicate tuples detection.

As we saw throughout this chapter, there are several approaches to deal with the
database repair problem. However, in every one of them, we pointed some particular-
ities that were not considered, or were considered but we thought that they were not
approached in the best way. Some approaches only considered a small fraction of in-
tegrity constraints. Others considered that integrity constraints were subject to changes.
Others considered the use of greedy algorithms in order to obtain repairs, not providing
a sound and complete approach. For those approaches that relied on the use of answer
set programming, disjunction was used, and a substantial number of integrity constraints
were replaced by universal constraints, where we think that it would be best if the others
integrity constraints were considered separately. Furthermore, most of the approaches
defined a repair using a minimality criteria but did not provide any practical implemen-
tation considering that, nor gave approach on how to address such problem. Also, most
of the studies did not consider minimality under cardinality of operations. For this pur-
pose, in this dissertation, we wish to address the creation of new integrity constraints (all
that can be expressed in answer set programming) that may lead the database to an in-
consistent state, returning correct and minimal (under set inclusion or under cardinality
of operations) repairs to the user. As we have also seen, methods that relied on the use of
answer set programming allowed to represent the database repair problem in a very ad-
equate manner, being also sound and complete methods. Also, as far as we know, there
isn’t, yet, any real application to compute the repairs and actually restore consistency to
the database. We need to specifically know which tuples are meant to be deleted and
which tuples are meant to be inserted. With that information, we can generate the ade-
quate SQL code and actually perform those operations into the database, thus restoring
consistency. For this purpose, we shall use the declarativeness and expressiveness of an-
swer set programming, since, as we saw throughout this chapter, it is a suitable approach
to the problem.

43

4. RELATED WORK 4.2. Database Repair

44

5
Database Repair with Answer Set

Programming

In this chapter, we present our solution to the database repair problem. We first present
the way to map a repair problem into a logic program, showing as well the soundness
and completeness of it, i.e., we prove the all solutions are repairs, and we prove that all
repairs are generated. Afterwards, we present the mapping of a minimal repair problem,
where minimality issues are considered.

Throughout this chapter, we shall adopt some new notation as well. We will denote
by x̄, ȳ, z̄, sequences of pairwise distinct variables with appropriate arity, of the form
x̄ = 〈x0, x1, ..., xn〉 such that xi denotes the ith component of x̄ and where x0, y0,z0 rep-
resent the special extra attribute, the Rowid of the respective tuple. Also, we will de-
note by c̄, d̄, sequences of pairwise distinct constants with appropriate arity, of the form
c̄ = 〈c0, c1, ..., cn〉, such that ci denotes the ith component of c̄ and where c0, d0 represent
the value of the special extra attribute, the Rowid of the respective tuple. Also, in the
answer set part, the symbol ’∧’ stands for the symbol ’,’ as a matter of simplicity in the
transformation function.

5.1 General Approach

In this section, we show the general approach to our repair problem. We provide some
fundamental definitions that will be used from here on. We begin by introducing the
mapping of a repair problem into a logic program. We also introduce some definitions in
order to help us prove the soundness and completeness of our approach.

In the sequel, we transform a database repair problem into a logic program, with

45

5. DATABASE REPAIR WITH ANSWER SET PROGRAMMING 5.1. General Approach

respect to an initial databaseD = 〈ID, IC〉, more specifically, into an answer set program.
The alphabet of the language is the one introduced in Section 2.3, and, following our
mapping procedure, the following predicate symbols should always be present in the
alphabet as well:

• Predicate symbols:

{pN , p_keepN , p_keepiN | N ∈ N} ∪ {insert, delete, n_insert, n_delete} ∪

{dNa | N ∈ N ∧ a ∈ AT T } ∪

{aux〈κ1,...,κk〉,〈ε1,...,εk〉N1,N2
| N1, N2 ∈ N ∧ k ∈ N ∧ κi, εi ∈ AT T }

Also, recall that AT T is the set of all names for the attributes of all relations in a
database, and N is the set of all names of relations in a database.

We wish to transform a database repair problem into a logic program, such that there
is a one to one correspondence with the generated models and the database repairs. The
core of this transformation is the mapping of the integrity constraints into the logic pro-
gram. It is important to notice that there is a strong relation with the formal first order
definitions of the integrity constraints, described in Chapter 2.2. We must also take into
account the possible insertion of new tuples to deal with inconsistency.

Definition 5.1 (Problem Transformation Function). Let P = 〈D,E, IC1〉, be a database
repair problem, such that D = 〈ID, IC〉 and E = 〈IE , ∅〉. Let ϕ(P) be the logic program created
by performing the following operations:

1. Facts:

• For every atom N(t1, t2, ..., tn) in βt(ID), we add the following, as a fact, to ϕ(P):

pN (t1, t2, ..., tn). (5.1)

• For every atom N(t1, t2, ..., tn) in βt(IE), we add the following, as a fact, to ϕ(P):

p_keepiN (t1, t2, ..., tn). (5.2)

2. Repair Generator:

• For every relation N ∈ {N ′ | 〈N ′, C, S〉 ∈ ID}, we add the following rules to the
program:

delete(x0)← not n_delete(x0) ∧ pN (x̄). (5.3a)

n_delete(x0)← not delete(x0) ∧ pN (x̄). (5.3b)

p_keepN (x̄)← pN (x̄) ∧ not delete(x0). (5.3c)

46

5. DATABASE REPAIR WITH ANSWER SET PROGRAMMING 5.1. General Approach

• For every relation N ∈ {N ′ | 〈N ′, C, S〉 ∈ IE}, we add the following rules to the
program:

insert(x0)← not n_insert(x0) ∧ p_keepiN (x̄) (5.4a)

n_insert(x0)← not insert(x0) ∧ p_keepiN (x̄) (5.4b)

p_keepN (x̄)← insert(x0) ∧ p_keepiN (x̄). (5.4c)

3. Functional Dependencies/Keys: For every functional dependency FD(N,A,B) ∈ IC ∪
IC1, we add the following rules to the repair program:

For each j ∈ #N
B we add a rule of the type:

⊥ ← p_keepN (x̄) ∧ p_keepN (ȳ) ∧
∧
i∈#N

A

xi = yi ∧ xj 6= yj . (FDM (N,A,B))

4. Inclusion Dependencies: For every inclusion dependency IND(N1, N2, A,B) ∈ IC∪IC1,
we add the following rules to the repair program:

auxA,BN1,N2
(x̄)← p_keepN1(x̄) ∧ p_keepN2(ȳ) ∧

k∧
i=1

x
#
N1
κi

= y
#
N2
εi

.

(INDM (N1, N2, A,B)a)

⊥ ← p_keepN1(x̄) ∧ not auxA,BN1,N2
(x̄). (INDM (N1, N2, A,B)b)

5. Check Constraints: For every check constraint CC(N, κ, θ, V) ∈ IC ∪ IC1, we add the
following rules to the repair program:

⊥ ← p_keepN (x̄) ∧ x#N
κ
θ V. (CCM (N, κ, θ, V))

6. Domain Constraints: For every domain constraint DoC(N, κ,Do) ∈ IC ∪ IC1, where
Do = {val1, val2, ..., valn}, we add the following rules to the repair program:

For every vali ∈ Do we add a rule of the type:

dκN (vali). (DoCM (N, κ,Do)a)

We then add the integrity constraint rule:

⊥ ← p_keepN (x̄) ∧ not dκN (x#N
κ

). (DoCM (N, κ,D)b)

In the first step of the previous definition, we simply import all the tuples of the
database and add them as facts to the logic program. We do the same method with the
tuples from the extra source of tuples.

47

5. DATABASE REPAIR WITH ANSWER SET PROGRAMMING 5.1. General Approach

In the second step, in order to determine the new database instance, we consider that
all tuples from D are possible tuples to be deleted and that all tuples from E are possible
tuples to be inserted. We are then generating all combinations of atoms that may form a
repair.

In the third step, we take into consideration functional dependencies, based on Defi-
nition 2.24. We do not present the mapping of key constraints, since they can be expressed
by a functional dependency.

In the fourth step, we take into consideration inclusion dependencies, based on Defi-
nition 2.25.

The fifth and sixth step, are special cases of the denial constraints, the check con-
straints and domain constraints respectively, based on Definitions 2.26 and 2.27 respec-
tively.

Definition 5.2 (Extracting Function). Let P be a database repair problem and ϕ(P) be the
corresponding logic program. Assume X is an answer set of ϕ(P). Then, the extracting function
α is defined as follows:

αN (X)={N(c̄) | p_keepN (c̄) ∈ X}

α(X)=
⋃
N∈N

αN (X)

In the previous definition, we collect the set of atoms that will form the new repaired
database. They are represented by the atoms with predicate name p_keepN .

It is also essential to know what are the tuples that form the changes needed to be
done (the tuples that have to be deleted or inserted).

Definition 5.3 (Modifications Extracting Function). Let P be a database repair problem and
ϕ(P) be the corresponding logic program. Assume X is an answer set of ϕ(P). Then, let the
modifications extracting function ∆ be defined as follows:

∆d(X)={to_delete(x0) | delete(x0) ∈ X}

∆i(X)={to_insert(x0) | insert(x0) ∈ X}

∆(X)=∆d(X) ∪∆i(X)

Lemma 5.4. Let P = 〈D,E, IC1〉 be a database repair problem, where D = 〈ID, IC〉 and
E = 〈IE , ∅〉, and let ϕ(P) be the corresponding logic program. Let X be an answer set of ϕ(P).
Then, α(X) ⊆ βt(ID) ∪ βt(IE).

Proof of Lemma 1. Let P = 〈D,E, IC1〉, be a database repair problem, whereD = 〈ID, IC〉
and E = 〈IE , ∅〉. Also, let ϕ(P) be the corresponding logic program. Let X be an answer
set of ϕ(P). Recall from definition 2.43 that, in order for X to be an answer set of ϕ(P), it
must be a minimal model of the reduct:

Π

I
= {H(r)← B+(r) | r ∈ Π ∧B−(r) ∩ I 6= ∅},

48

5. DATABASE REPAIR WITH ANSWER SET PROGRAMMING 5.1. General Approach

where Π = ground(ϕ(P)).

In order to prove that α(X) ⊆ βt(ID) ∪ βt(IE), assume that N(c̄) is an arbitrary atom
of α(X). We want to show that it also belongs to βt(ID) ∪ βt(IE). By the definition of
the extracting function (definition 5.2), p_keepN (c̄) must belong to X (since α(X) is built
from X).

Following proposition 2.45, p_keepN (c̄) is supported by Π
I inX , hence there is a rule r

in Π
I with p_keepN (c̄) in the head and B(r) ⊆ X . Since (5.3c) and (5.4c) are the only rules

with p_keepN (c̄) in the head, we have two distinct cases:

1. If r is of form (5.3c), pN (c̄) needs to be true in X . Following once more proposition
2.45, there is a rule r′ in Π

I with pN (c̄) in the head such that B(r′) ⊆ X . Focusing on
(5.1), this is the only place where we have rules with predicate pN in the head. Also,
pN (c̄) occurs in Π

I only if N(c̄) belongs to βt(ID). This proves that N(c̄) ∈ βt(ID).

2. If r is of form (5.4c), p_keepiN (c̄) needs to be true inX . Following once more proposi-
tion 2.45, there is a rule r′ in Π

I with p_keepiN (c̄) in the head such thatB(r′) ⊆ X . Fo-
cusing on (5.2), this is the only place where we have rules with predicate p_keepiN (c̄)

in the head. Also, p_keepiN (c̄) occurs in Π
I only ifN(c̄) belongs to βt(IE). This proves

that N(c̄) ∈ βt(IE).

Lemma 5.5. Let P = 〈D,E, IC1〉 be a database repair problem, where D = 〈I, IC〉 and E =

〈E, ∅〉. Let ϕ(P) be the corresponding logic program. If X is an answer set of program ϕ(P),
then α(X) |= IC ∪ IC1.

Proof of Lemma 2. We want to prove that if X is an answer set of ϕ(P), then α(X) |=
IC ∪ IC1. By contraposition reasoning, we will prove that if α(X) 6|= IC ∪ IC1, then X is
not an answer set of ϕ(P). Since α(X) 6|= IC∪IC1, then ∃γ∈IC∪IC1 α(X) 6|= γ. Since α(X)

is obtained from X , according to definition 5.2, we show that there must exist a mapping
of γ that is being violated in X . Also, recall from definition 2.43 that, in order for X to be
an answer set of ϕ(P), it must be a minimal model of the reduct:

Π

I
= {H(r)← B+(r) | r ∈ Π ∧B−(r) ∩ I 6= ∅},

where Π = ground(ϕ(P)).

We now consider four distinct cases, based on the type of the integrity constraint of
γ.

• Functional Dependencies Let γ = FD(N,A,B), as defined in 2.24. In order to
α(X) 6|= γ, there must exist two sequences of constants c̄ and d̄, such thatN(c̄) ∧N(d̄) ∧

∧
i∈#N

A

ci = di ∧
∨

j∈#N
B

cj 6= dj

49

5. DATABASE REPAIR WITH ANSWER SET PROGRAMMING 5.1. General Approach

holds. Then, from the previous reasoning, there must exist a j, which we will de-
note j0, such that cj0 6= dj0 . By the definition of the extracting function, Defini-
tion 5.2, p_keepN (c̄) and p_keepN (d̄) must belong to X (since α(X) is built from X).
Then, the following rule r ∈ Π

X , based on the transformation function (FDM (N,A,B)):

⊥ ← p_keep(c̄) ∧ p_keep(d̄) ∧
∧

i∈#NA

ci = di ∧ cj0 = dj0 .

will be satisfied in X . If so, inconsistency will be generated. It follows that if
α(X) 6|= γ, then X cannot be an answer set of ϕ(P).

• Inclusion Dependencies Let γ = INC(N1, N2, A,B), as defined in 2.25. In order
to α(X) 6|= γ, there must exist one sequence of constants c̄, such that[

N1(c̄) ∧ ∀ȳ[¬N2(ȳ) ∨
k∨
i=1

c
#
N1
κi

6= y
#
N2
εi

]

]

holds. If X is an answer set of ϕ(P), it is a minimal model, under set inclusion,
of Π

X . Then, for all rules r that are reducts of a ground rule r′(where the default
literals are satisfied) of a rule r′′ ∈ ϕ(P), X satisfies r. Then, if r is a rule, based on
INDM (N1, N2, A,B)b, is of the following type:

⊥ ← p_keepn1(c̄)

where all default literals are satisfied in r′, either p_keepN1(c̄) 6∈ X (which can-
not be the case, since, by the definition of the extracting function, Definition 5.2,
p_keepN1(c̄) must belong to X , since α(X) is built from X), or auxA,BN1,N2

(c̄) is true in
X . Then, in order for auxA,BN1,N2

(c̄) to be true in X , by the definition of support and
rule INDM (N1, N2, A,B)a, there must exist a sequence of constants d̄ such that:

p_keepN1(c̄) ∧ p_keepN2(d̄) ∧
k∧
i=1

c
#
N1
κi

∧ d
#
N2
εi

is true in X . Then, and once more according to the definition of the extracting
function (definition 5.2), we have that

N1(c̄) ∧N2(d̄) ∧
k∧
i=1

c
#
N1
κi

= d
#
N2
εi

is true in α(X), which is a contradiction with the initial assumption. Therefore, it
follows that if α(X) 6|= γ, then X cannot be an answer set of ϕ(P).

• Check Constraints Let γ = CC(N,κ, θ, V), as defined in 2.26. In order to α(X) 6|= γ,

50

5. DATABASE REPAIR WITH ANSWER SET PROGRAMMING 5.1. General Approach

there must exist a sequence of constants c̄ such that

N(c̄) ∧ c#N
κ
θV

holds. By the definition of the extracting function, Definition 5.2, p_keepN (c̄) must
belong to X , since α(X) is built from X . Then, the following rule r ∈ Π

X , based on
the transformation function (CCM (N, κ, θ, V)):

⊥ ← p_keepN (c̄) ∧ c#N
κ
θV

will be satisfied. If so, inconsistency will be generated. It follows that if α(X) 6|= γ,
then X cannot be an answer set of ϕ(P).

• Domain Constraints Let γ = DoC(N,κ,Do), as defined in 2.27. In order to α(X) 6|=
γ, there must exist a sequence of constants c̄, such that:[

N(c̄) ∧
k∧
i=1

c#N
κ
6= vali

]

holds. If X is an answer set of ϕ(P), it is a minimal model, under set inclusion,
of Π

X . Then, for all rules r that are reducts of a ground rule r′(where the default
literals are satisfied) of a rule r′′ ∈ ϕ(P), X satisfies r. Then, if r is a rule, based on
DoCM (N, κ,D)b, of the following type:

⊥ ← p_keepN (c̄)

where all default literals are satisfied in r′, either p_keepN (c̄) 6∈ X (which can-
not be the case, since, by the definition of the extracting function, Definition 5.2,
p_keepN (c̄) must belong to X , since α(X) is built from X), or dκN (c#N

κ
) is true in X .

Then, in order for dκN (c#N
κ

) to be true in X , by the definition of support and rule
(DoCM (N, κ,Do)a), there must exist a val ∈ Do such that

val = c#N
κ

is true in X . Then, and once more according to the definition of the extracting
function (definition 5.2), we have that

N(c̄) ∧ val = c#N
κ

is true in α(X), which is a contradiction with the initial assumption. Therefore, it
follows that if α(X) 6|= γ, then X cannot be an answer set of ϕ(P).

Corollary 5.6 (Repair Soundness). Let P = 〈D,E, IC1〉 be a database repair problem. Let
ϕ(P) be the corresponding logic program. If X is an answer set of program ϕ(P), α(X) is a

51

5. DATABASE REPAIR WITH ANSWER SET PROGRAMMING 5.1. General Approach

repair of D with respect to P .

Proof. Immediately follows from lemmas 5.4, 5.5.

Lemma 5.7 (Completeness). Let P = 〈D,E, IC1〉 be a database repair problem. Let ϕ(P) be
the corresponding logic program. Let D′ be a repair of D with respect to P . Then there must exist
an answer set X of ϕ(P) such that βt(I ′D) = α(X).

Proof of Lemma 3. Let P be a database repair problem, regarding databases D = 〈ID, IC〉
and E = 〈IE , ∅〉, and a set of integrity constraints, IC1. Let ϕ(P) be the corresponding
logic program. Let D′ = 〈I ′D, IC ∪ IC1〉 be a repair of D with respect to P . Then, there
must exist an answer set X of ϕ(P) such that βt(I ′D) = α(X).

We consider the following set of atoms X :

X ={pN (c̄) | N(c̄) ∈ βt(ID)}

∪{p_keepiN (x̄) | N(c̄) ∈ βt(IE)}

∪{delete(c0) | N(c̄) ∈ βt(ID) ∧N(c̄) 6∈ βt(I ′D)}

∪{n_delete(c0) | N(c̄) ∈ βt(ID) ∧N(c̄) ∈ βt(I ′D)}

∪{insert(c0) | N(c̄) ∈ βt(IE) ∧N(c̄) ∈ βt(I ′D)}

∪{n_insert(c0) | N(c̄) ∈ βt(IE) ∧N(c̄) 6∈ βt(I ′D)}

∪{auxA,BN1,N2
(c̄) | INC(N1, N2, A,B) ∈ IC ∪ IC1 ∧N1(c̄) ∈ βt(I ′D)∧

∃d̄

[
N2(d̄) ∈ βt(I ′D) ∧

k∧
i=1

c
#
N1
κi

= c
#
N2
εi

]
}

∪{dκN (val) | DoC(N,κ,Do) ∈ IC ∪ IC1 ∧ val ∈ Do}

∪{p_keepN (c̄) | N(c̄) ∈ βt(I ′D)}

For X being an answer set of ϕ(P) such that βt(I ′D) = α(X), we need to verify that X is
a minimal model, under set inclusion, of:

Π

X
= {H(r)← B+(r) | r ∈ ground(Π) ∧B−(r) ∩X 6= ∅}

where Π = ground(ϕ(P)). We shall start to prove that X is a model of Π
X .

In order forX to be a model of Π
X , for every rule r in Π

X , B(r) ⊆ X ⇒ H(r) ∈ X . From
here on, let us assume that, for every rule r, r ∈ Π, such that r is a reduct of a ground rule
r′, of a rule r′′ ∈ ϕ(P). We shall also assume that B(r) ⊆ X .

If r′′ is of the form (5.1), then we must prove that pN (c̄) ∈ X . As we can see, rule r′′ is
only added to ϕ(P) if N(c̄) ∈ βt(ID). By the definition of X , pN (c̄) ∈ X if N(c̄) ∈ βt(ID),
as we wanted to show.

If r′′ is of the form (5.2), then we must prove that p_keepiN (x̄) ∈ X . As we can see,
rule r′′ is only added to ϕ(P) if N(c̄) ∈ βt(IE). By the definition of X , p_keepiN (c̄) ∈ X if
N(c̄) ∈ βt(IE), as we wanted to show.

52

5. DATABASE REPAIR WITH ANSWER SET PROGRAMMING 5.1. General Approach

If r′′ is a rule of the type (5.3a), r is of the form:

delete(c0)← pN (c0, c1, ..., cn).

Then, we must prove that delete(c0) ∈ X . Notice that since r ∈ Π
X , all default literals

from B(r′) are satisfied in X . In this case, it means that n_delete(c0) 6∈ X . By the defini-
tion of X , delete(c0) ∈ X if N(c0, c1, ..., cn) ∈ βt(ID) ∧N(c0, c1, ..., cn) 6∈ βt(I ′D). Since we
assumed that the body is true , pN (c0, c1, ..., cn) ∈ X , which means that N(c0, c1, ..., cn) ∈
βt(ID). It is still left to prove that N(c0, c1, ..., cn) 6∈ βt(I ′D). Since n_delete(x0) 6∈ X , then,
either N(c0, c1, ..., cn) 6∈ βt(ID) or N(c0, c1, ..., cn) 6∈ βt(I ′D). Since we already proved that
N(c0, c1, ..., cn) ∈ βt(ID), it follows that N(c0, c1, ..., cn) 6∈ βt(I ′D), as we wanted to prove.

If r′′ is a rule of the type (5.3b), r is of the form:

n_delete(c0)← pN (c0, c1, ..., cn).

Then, we must prove that n_delete(c0) ∈ X . Notice that since r ∈ Π
X , all default

literals from B(r′) are satisfied in X . In this case, it means that delete(c0) 6∈ X . By
the definition of X , n_delete(c0) ∈ X if N(c0, c1, ..., cn) ∈ βt(ID) ∧ N(c0, c1, ..., cn) ∈
βt(I

′
D). Since we assumed that the body is true , pN (c0, c1, ..., cn) ∈ X , which means

that N(c0, c1, ..., cn) ∈ βt(ID). It is still left to prove that N(c0, c1, ..., cn) ∈ βt(I ′D). Since
delete(c0) 6∈ X , then, either N(c0, c1, ..., cn) 6∈ βt(ID) or N(c0, c1, ..., cn) ∈ βt(I

′
D). Since

we already proved that N(c0, c1, ..., cn) ∈ βt(ID), it follows that N(c0, c1, ..., cn) ∈ βt(I ′D),
as we wanted to prove.

If r′′ is a rule of the type (5.3c), r is of the form:

p_keepN (c0, c1, ..., cn)← pN (c0, c1, ..., cn).

Then, we must prove that p_keepN (c0, c1, ..., cn) ∈ X . Notice that, since r ∈ Π
X , all

default literals from B(r′) are satisfied in X . In this case, it means that delete(c0) 6∈ X .
By the definition of X , p_keepN (c0, c1, ..., cn) ∈ X if N(c0, c1, ..., cn) ∈ βt(I ′D). Since we
assumed that the body is true, pN (c0, c1, ..., cn) ∈ X , which means that N(x0, x1, ..., xn) ∈
βt(ID). It is still left to prove that N(c0, c1, ..., cn) ∈ βt(I

′
D). Since delete(c0) 6∈ X , then,

either N(c0, c1, ..., cn) 6∈ βt(ID) or N(c0, c1, ..., cn) ∈ βt(I ′D). Since we already proved that
N(c0, c1, ..., cn) ∈ βt(ID), it follows that N(c0, c1, ..., cn) ∈ βt(I ′D), as we wanted to prove.

If r′′ is a rule of the type (5.4a), r is of the form:

insert(c0)← p_keepiN (c0, c1, ..., cn).

Then, we must prove that insert(c0) ∈ X . Notice that, since r ∈ Π
X , all default lit-

erals from B(r′)are satisfied in X . In this case, it means that n_insert(c0) 6∈ X . By the
definition of X , insert(c0) ∈ X if N(c0, c1, ..., cn) ∈ βt(IE) ∧ N(c0, c1, ..., cn) ∈ βt(I

′
D).

Since we assumed that the body is true, p_keepiN (c0, c1, ..., cn) ∈ X , which means that

53

5. DATABASE REPAIR WITH ANSWER SET PROGRAMMING 5.1. General Approach

N(c0, c1, ..., cn) ∈ βt(IE). It is still left to prove that N(c0, c1, ..., cn) ∈ βt(I
′
D). Since

n_insert(c0) 6∈ X , then, either N(c0, c1, ..., cn) 6∈ βt(IE) or N(c0, c1, ..., cn) ∈ βt(I ′D). Since
we already proved that N(c0, c1, ..., cn) ∈ βt(IE), it follows that N(c0, c1, ..., cn) ∈ βt(I ′D),
as we wanted to prove.

If r′′ is a rule of the type (5.4b), r is of the form:

n_insert(c0)← p_keepiN (c0, c1, ..., cn).

Then, we must prove that n_insert(c0) ∈ X . Notice that, since r ∈ Π
X , all default

literals from B(r′) are satisfied in X . In this case, it means that insert(c0) 6∈ X . By
the definition of X , n_insert(c0) ∈ X if N(c0, c1, ..., cn) ∈ βt(IE) ∧ N(c0, c1, ..., cn) 6∈
βt(I

′
D). Since we assume that the body is true, p_keepiN (c0, c1, ..., cn) ∈ X , which means

that N(c0, c1, ..., cn) ∈ βt(IE). It is still left to prove that N(c0, c1, ..., cn) 6∈ βt(I ′D). Since
insert(c0) 6∈ X , then, either N(c0, c1, ..., cn) 6∈ βt(IE) or N(c0, c1, ..., cn) 6∈ βt(I

′
D). Since

we already proved that N(c0, c1, ..., cn) ∈ βt(IE), it follows that N(c0, c1, ..., cn) 6∈ βt(I ′D),
as we wanted to prove.

If r′′, based on rule (5.4c), r is of the form:

p_keepN (c0, c1, ..., cn)← insert(c0) ∧ p_keepiN (c0, c1, ..., cn).

Then, we must prove that p_keepN (c̄) ∈ X . By the definition of X , p_keepN (c̄) ∈ X
if N(c0, c1, ..., cn) ∈ βt(I

′
D). Since we assume the body is true, insert(c0) ∈ X , which

means that N(c0, c1, ..., cn) ∈ βt(IE) ∧ N(c0, c1, ..., cn) ∈ βt(I ′D). It immediately follows
that N(c0, c1, ..., cn) ∈ βt(IE) ∧N(c0, c1, ..., cn) ∈ βt(I ′D), as we wanted to prove.

If r′′ is a rule of the form (FDM (N,A,B)), mapped from an integrity constraintFD(N,

A,B), from definition 2.24, we will prove that, if B(r) ⊆ X , then D′ is not a repair,
contrary to the assumption. If we assume that the body is true, then p_keepN (c̄) ∈ X

and p_keepN (d̄) ∈ X , such that
∧
i∈#N

A
ci = di ∧ cj 6= dj , for some j ∈ #N

B . Accord-
ing to the definition of X , it follows that N(c̄) ∈ βt(I

′
D) ∧ N(d̄) ∈ βt(I

′
D), such that∧

i∈#NA ci = di ∧ cj 6= dj , which is a contradiction considering the definition 2.24 of a
functional dependency. Given this, it follows that βt(I ′D) 6|= FD(N,A,B). In the sequel,
D′ is not a repair. Then, contrary to the assumption, B(r) * X , so X satisfies r.

Since keys are a specific case of the functional dependencies, we shall not considerate
that case, since it has already been proven for a more general case.

If r′′ is a rule of the form (INDM (N1, N2, A,B)a), then we must prove that auxA,BN1,N2
(c̄)

∈ X . If we assume that the body is true, then p_keepN1(c0, c1, ..., cn) ∈ X and p_keepN2(d0,

d1, ..., dn) ∈ X , such that
∧k
i=1 c#

N1
κi

= d
#
N2
εi

. As we can see, the rule r is only added

to Π if INC(N1, N2, A,B) ∈ IC ∪ IC1. By the definition of X , auxA,BN1,N2
(c̄) ∈ X if

INC(N1, N2, A,B) ∈ IC ∪ IC1 ∧ N1(c̄) ∈ βt(I
′
D) ∧ N2(d̄) ∈ βt(I

′
D). Since the body is

true, it follows that N1(c̄) ∈ βt(I ′D) ∧N2(d̄) ∈ βt(I ′D), as we wanted to prove.

54

5. DATABASE REPAIR WITH ANSWER SET PROGRAMMING 5.1. General Approach

If r′′, is a rule of the type (INDM (N1, N2, A,B)b), r is of the form:

⊥ ← p_keepN1(c̄),

where all default literals from B(r′) are satisfied in X , mapped from an integrity con-
straint INC(N1, N2, A,B), from definition 2.25. We will prove that, if B(r) ⊆ X , then D′

is not a repair, contrary to the assumption. If we assume that the body is true, then
p_keepN1(c̄) ∈ X . From the definition of X , if follows that N1(c̄) ∈ βt(I

′
D). Also,

auxA,BN1,N2
(c̄) 6∈ X . Then, by the definition of X , either INC(N1, N2, A,B) 6∈ IC ∪ IC1

(which cannot be the case, otherwise the rule would never exist), or N1(c̄) 6∈ βt(I
′
D)

(which cannot be the case as well, since we already proved otherwise) or

∀d̄

[
N2(d̄) 6∈ βt(I ′D) ∨

k∨
i=1

c
#
N1
κi

6= d
#
N2
εi

]
,

which is the case, since auxA,BN1,N2
(c̄) 6∈ X . Then, there is a contradiction with respect to

definition 2.25. Given this, it follows that βt(I ′D) 6|= INC(N1, N2, A,B). In the sequel, D′

is not a repair. Then, contrary to the assumption, B(r) * X , so X satisfies r.

If r′′ is a rule of the form (CCM (N, κ, θ, V)), mapped from an integrity constraint
CC(N,κ, θ, V), from definition 2.26, we will prove that, if B(r) ⊆ X , then D′ is not a
repair, contrary to the assumption. If we assume that the body is true, then p_keepN (c̄) ∈
X , such that c#N

κ
θV . According to the definition of X , it follows that N(c̄) ∈ βt(I

′
D),

such that c#N
κ
θV , which is a contradiction considering the definition (2.26) of a check

constraint. Given this, it follows that βt(I ′D) 6|= CC(N,κ, θ, V). In the sequel, D′ is not a
repair. Then, contrary to the assumption, B(r) * X , so X satisfies r.

If r′′ is of the form (DoCM (N, κ,Do)a), then, we must prove that dκN (val) ∈ X . As we
can see, rule r is only added to Π ifDoC(N, κ,Do) ∈ IC∪IC1. If such integrity constraint
exists, then, for every val ∈ Do, we add the rule dκN (val) to Π. By the definition of X ,
dκN (val) ∈ X if DoC(N,κ,Do) ∈ IC ∪ IC1 ∧ val ∈ Do, as we wanted to prove.

If r′′ is a rule of the type (DoCM (N, κ,D)b), r if of the form:

⊥ ← p_keepN (c̄),

where all default literals from B(r′) are satisfied in X , mapped from an integrity con-
straint DoC(N, κ,Do), from definition 2.27. We will prove that, if B(r) ⊆ X , then D′

is not a repair, contrary to the assumption. If we assume that the body is true, then
p_keepN (c̄) ∈ X . Then, by the definition of X , N(c̄) ∈ βt(I ′D). Also, dκN (c#N

κ
) 6∈ X . Then,

from the definition of X , either DoC(N,κ,Do) 6∈ IC ∪ IC1 (which cannot be the case,
otherwise the rule would never exist), or:

∀val∈Doval 6= c#N
κ
,

55

5. DATABASE REPAIR WITH ANSWER SET PROGRAMMING 5.1. General Approach

which is the case, since dκN (c#N
κ

) 6∈ X . Then, there is a contradiction with respect to
definition 2.27. Given this, it follows that βt(I ′D) 6|= DoC(N,κ,Do). In the sequel, D′ is
not a repair. Then, contrary to the assumption, B(r) * X , so X satisfies r.

We now prove that X is a minimal model of Π
X . In order to do it, let’s assume that

there is a model Y of Π
X , such that Y ⊆ X .

Let us pick an arbitrary atom p from X of the form pN (c̄). If follows that N(c̄) ∈
βt(ID). In order for p ∈ Y , we will show that there is a rule r ∈ Π

X such that H(r) =

p ∧ B(r) ⊆ Y . Let r be then a rule of the form (5.1). Since the body is the empty set and,
it is trivially contained in Y . Therefore, since Y is a model of Π

X , pN (x̄) ∈ Y .

Let us pick an arbitrary atom p from X of the form p_keepiN (c̄). If follows that N(c̄) ∈
βt(IE). In order for p ∈ Y , we will show that there is a rule r ∈ Π

X such that H(r) =

p ∧ B(r) ⊆ Y . Let r be then a rule of the form (5.2). Since the body is the empty set, it is
trivially contained in Y . Therefore, since Y is a model of Π

X , p_keepiN (x̄) ∈ Y .

Let us pick an arbitrary atom from X of the form delete(c0). If follows that N(c̄) ∈
βt(ID). Then, by the definition of X , pN (c̄) ∈ X . As we saw before, pN (c̄) ∈ X ⇒
pN (c̄) ∈ Y . In order for p ∈ Y , we will show that there is a rule r ∈ Π

X such that H(r) =

p ∧ B(r) ⊆ Y . Let r be then a rule of the form (5.3a). If we take a look at rules (5.3a) and
(5.3b), if an atom pN (c̄) is true in X , then we must have the atom delete(c0) true in X or
n_delete(c0) true in X (but not both). Since we assumed that Y ⊆ X , if n_delete(c0) 6∈ X ,
n_delete(c0) 6∈ Y , otherwise, Y * X . Therefore, since Y is a model of Π

X , delete(c0) ∈ Y .

The same line of reasoning is applied when we consider an arbitrary atom from X of
the form n_delete(c0).

Let us pick an arbitrary atom from X of the form insert(c0). If follows that N(c̄) ∈
βt(IE). Then, by the definition of X , p_keepiN (c̄) ∈ X . As we saw before, p_keepiN (c̄) ∈
X ⇒ p_keepiN (c̄) ∈ Y . In order for p ∈ Y , we will show that there is a rule r ∈ Π

X such
that H(r) = p ∧ B(r) ⊆ Y . Let r be then a rule of the form (5.4a). If we take a look at
rules (5.4a) and (5.4b), if an atom p_keepiN (c̄) is true in X , then we must have the atom
insert(c0) true in X or n_insert(c0) true in X (but not both). Since we assumed that
Y ⊆ X , if n_insert(c0) 6∈ X , n_insert(c0) 6∈ Y , otherwise, Y * X . Therefore, since Y is a
model of Π

X , insert(c0) ∈ Y .

The same line of reasoning is applied when we consider an arbitrary atom from X of
the form n_insert(c0).

Let us pick an arbitrary atom p from X of the form p_keepN (c̄). By the definition of a
repair and the definition ofX , (N(c̄) ∈ βt(ID)∨N(c̄) ∈ βt(IE)). Then, either pN (c̄) ∈ X or
p_keepiN (c̄) ∈ X . As we saw before, pN (c̄) ∈ X ⇒ pN (c̄) ∈ Y and, as well, p_keepiN (c̄) ∈
X ⇒ p_keepiN (c̄) ∈ Y . In order for p ∈ Y , we will show that there is a rule r ∈ Π

X such
that H(r) = p ∧B(r) ⊆ Y . There are two rules such that the previous condition holds.

• Let r be then a rule of the form (5.3c). We have already proved that pN (c̄) ∈ Y . We
have also seen, before, that delete(c0) 6∈ X ⇒ delete(c0) 6∈ Y , otherwise Y * X .
Therefore, since Y is a model of Π

X , p_keepN (c̄) ∈ Y .

56

5. DATABASE REPAIR WITH ANSWER SET PROGRAMMING 5.2. Minimality Statements

• Let r be then a rule of the form (5.4c). We have already proved that p_keepiN (c̄) ∈ Y .
We have also seen, before, that insert(c0) ∈ X ⇒ insert(c0) ∈ Y , otherwise Y * X .
Therefore, since Y is a model of Π

X , p_keep(c̄) ∈ Y .

Let us pick an arbitrary atom p from X of the form auxA,BN1,N2
(c̄). If follows that

p_keepN1(c̄) ∈ X and p_keepN1(c̄) ∈ X . As we saw before, p_keepN (c̄) ∈ X ⇒ p_keepN (c̄)

∈ Y . Then, p_keepN1(c̄) ∈ Y and p_keepN1(c̄) ∈ Y . In order for p ∈ Y , we will show that
there is a rule r ∈ Π

X such that H(r) = p ∧ B(r) ⊆ Y . Let r be then a rule of the form
(INDM (N1, N2, A,B)a). Since we have already seen that the atoms exist in Y , the body
is satisfied in Y . Therefore, since Y is a model of auxA,BN1,N2

(c̄) ∈ Y .
Let us pick an arbitrary atom p from X of the form dκN (val). If follows that DoC(N,κ,

Do) ∈ IC ∪ IC1 ∧ val ∈ Do. In order for p ∈ Y , we will show that there is a rule r ∈ Π
X

such that H(r) = p ∧ B(r) ⊆ Y . Let r be then a rule of the form (5.6). Since the body
is the empty set and, it is trivially contained in Y . Therefore, since Y is a model of Π

X ,
dκN (val) ∈ Y .

We have shown that X ⊆ Y . Following the initial assumption that Y ⊆ X , we con-
clude that X = Y .

We have now investigated all rules in Π
X their instances are satisfied by X . Further-

more, we checked, for all atoms in X , that they cannot be excluded in any model Y ⊂ X

of Π
X .
It is still left to prove that βt(I ′D) = α(X). According to definition 5.1, the repairs are

built with the atoms p_keepN (c̄), that are drawn fromX . If we take a look at the definition
of X , p_keepN (c̄) ∈ X if N(c̄) ∈ βt(I ′D). It is then clear that βt(I ′D) = α(X).

Corollary 5.8 (Repair Completeness). Let P be a database repair problem, regarding database
D = 〈ID, IC〉 and the set of integrity constraints IC1. Let ϕ(P) be the corresponding logic
program. If D′ = 〈I ′D, IC ∪ IC1〉 is a repair, then there is an answer set X of ϕ(P), such that
βt(I

′
D) = α(X).

Proof. Immediately follows from lemmas 5.4, 5.7.

Corollary 5.9 (Repair Soundness and Completeness). Let P be a database repair problem,
regarding database D = 〈ID, IC〉 and the set of integrity constraints IC1. Let ϕ(P) be the
corresponding logic program. Then, α(X) is a repair of X if and only if X is an answer set of
ϕ(P).

Proof. Immediately follows from lemmas 5.4, 5.5, 5.7.

5.2 Minimality Statements

So far, we have only considered a general approach, considering only the more general
definition of a repair. Here, we will take into consideration minimality under cardinality
of operations and minimality under set inclusion as well. We divide these approaches

57

5. DATABASE REPAIR WITH ANSWER SET PROGRAMMING 5.2. Minimality Statements

and introduce a new transformation function for each one of them, in order to build a new
logic program that takes into account these minimality statements. We begin first with
the minimality under cardinality, and then we go into minimality under set inclusion.

5.2.1 Cardinality Distance

Minimal repairs under cardinality of operations are the repairs that are obtained by per-
forming as little operations possible in the original database. It is an adequate minimality
criteria, since we are dealing with relational databases. Therefore, it is very important to
consider the number of “changes” that will occur during the whole process.

In order to encode this minimality into a logic program, let us define a new transfor-
mation function, based on the previously defined one, in Definition 5.1.

Definition 5.10 (Problem Transformation Function - Cardinality Based). Let P = 〈D,E,
IC1〉 be a database repair problem, where D = 〈ID, IC〉, and E = 〈IE , ∅〉. Let ϕC(P) represent
the transformation function, with respect to P , regarding minimality under cardinality, defined
as ϕ(P) ∪ card(P), where card(P) is defined as follows:

count(M)←M = #sum[delete(DRowid), insert(IRowid)]. (5.7)

#minimize[count(M) = M]. (5.8)

Since we introduced a new transformation function, we extend Definitions 5.2 and
5.3 to assume, in this particular case, that X is an answer set of ϕC(P).

In this approach, we explore the potential of the answer set grounder and solver,
gringo and clasp respectively. As we can see, we use two non-standard instructions,
the #sum (5.7) and the #minimize (5.8). Following the manual of clasp1, #sum is an
aggregate, which is an operation on a multi-set of weighted literals that evaluates to
some value. In combination with comparisons, we can extract a truth value from an
aggregate’s evaluation, thus, obtaining an aggregate atom. Aggregate atoms are of the
following form:

lop[L1 = w1, ..., Ln = wn]u

An aggregate has a lower bound l, an upper bound u, an operation op, and a multiset
of literal Li each assigned to a weight wi. An aggregate is true if operation op applied to
the multiset of weights of true literals is between the bounds. The aggregate #sum, as
the name indicates, sums the weights of every literal. In our approach, the weight of each
literal is set to 1. According to the previous rules, we are counting the number of atoms
that are meant to be inserted and deleted. Afterwards, we wish to minimize that very
same number. In order to do that, we use an optimization statement, the #minimize

statement.
The optimization statements extend the basic question of whether a set of atoms is an

answer set to whether it is an optimal answer set. In a multiset notation (the one being
1http://www.cs.uni-potsdam.de/clasp/

58

http://www.cs.uni-potsdam.de/clasp/

5. DATABASE REPAIR WITH ANSWER SET PROGRAMMING 5.2. Minimality Statements

used), weights may be provided. We are then, in (5.6), instantiating the count(M) atom,
and associating the value of M as its weight. That way, we want to minimize that very
same value. The semantic of an optimization statement is then very intuitive: an answer
set is optimal if the sum of the weights of literals is maximal or minimal, as required by
the statement, among all answer sets of the given program.

For further information about the semantics and syntax of aggregates and optimization
statements, we recommend the full reading of the clasp manual.

With this new program, we are restricting the answer sets of ϕC(P). Also, we do
not change the the rules of the original transformation function, and we simply add new
ones that restrict even more the possible answer sets of a logic program (since we are
minimizing the number of operations performed). It is acceptable that all of the previous
properties still hold, that is, this new transformation function is still sound and complete.
Therefore, all answer sets of P that are generated are minimal repairs under cardinality
of operations, with respect to P . Also, we are generating all possible minimal repairs of
P , considering minimality under cardinality of operations, if it is the case of being more
than one possible minimal repair.

5.2.2 Set Inclusion Distance

According to this kind of minimality, a repair D′ of D is minimal under set inclusion
if there is no other repair D′′ such that ∆(D,D′′) ⊂ ∆(D,D′), where ∆ stands for the
symmetric difference.

To address this problem, we used a technique called saturation, based on the one pre-
sented in [EFLP99], where an algorithm for abductive diagnosis (over disjunctive logic
programming) and consistency-based diagnosis was presented. We adapted that algo-
rithm to our specific problem, without using disjunctions. Using this in our approach,
we only generate an answer set X of a repair problem P , if there is not another answer
set Y of P , such that ∆(Y) ⊂ ∆(X) and |∆(X)| − |∆(Y)| = 1, where |R| denotes the
cardinality of set R, and ∆ stands for the modifications extracting function. Unfortu-
nately, saturation is only able to partially deal with the problem. It may be the case that
some repairs, without being minimal under set inclusion, may still be generated. Recall
that the complexity classes of database repairing lies between the NP-hard complexity
class and the Σp

2 complexity class. Also, answer set programming is oriented towards
NP-hard problems. Although some answer set solvers provide some optimizations state-
ments that are able to deal with problems of higher complexity, they do not provide any
optimization statement that can help in this specific problem. In order to encode this
minimality in a logic program, let us define a new transformation function based on the
previously defined one, in Definition 5.1.

Definition 5.11 (Problem Transformation Function - Set Inclusion Based). Let P = 〈D,E,
IC1〉 be a database repair problem, where D = 〈ID, IC〉, and E = 〈IE , ∅〉. Let ϕS(P) represent
the transformation function, with respect to P , regarding minimality under set inclusion, defined

59

5. DATABASE REPAIR WITH ANSWER SET PROGRAMMING 5.2. Minimality Statements

as ϕ(P) ∪ setinc(P), where setinc(P) is defined as follows:

1. Instance Multiplication: For every relation N ∈ {N ′ | 〈N ′, C, S〉 ∈ ID}, we add the
following rules to the program:

N_new(Newid, x̄)← p_keepN (x̄) ∧ delete(Newid).

N_new(x0, x̄)← pN (x̄) ∧ delete(x0).

N_new(Newid, x̄)← p_keepN (x̄) ∧ insert(Newid) ∧Newid 6= x0.

2. Functional Dependencies/Keys: For every functional dependency FD(N,A,B) ∈ IC ∪
IC1, we add the following rules to the repair program:

For each j ∈ #N
B we add a rule of the type:

ok(Newid)← N_new(Newid, x̄) ∧N_new(Newid, ȳ) ∧
∧
i∈#N

X

xi = yi ∧ xj 6= yj .

3. Inclusion Dependencies: For every inclusion dependency IND(N1, N2, A,B) ∈ IC∪IC1,
we add the following rules to the repair program:

new_auxA,BN1,N2
(Newid, x̄)← N1_new(Newid, x̄)∧N2_new(Newid, ȳ)∧

k∧
i=1

x
#
N1
κi

= y
#
N2
εi

.

ok(Newid)← N1_new(Newid, x̄) ∧ not new_auxA,BN1,N2
(Newid, x̄).

4. Check Constraints: For every check constraint CC(N, κ, θ, V) ∈ IC ∪ IC1, we add the
following rules to the repair program:

ok(Newid)← N_new(Newid, x̄) ∧ x#N
κ
θ V.

5. Domain Constraints: For every domain constraint DoC(N, κ,Do) ∈ IC ∪ IC1, where
Do = {val1, val2, ..., valn}, we add the following rules to the repair program:

ok(Newid)← N_new(Newid, x̄) ∧ not dκN (x#N
κ

).

6. Model elimination: At the end, we add the following rules:

⊥ ← not ok(Newid), delete(Newid).

⊥ ← not ok(Newid), insert(Newid).

Since we introduced a new transformation function, we extend Definitions 5.2 and
5.3 to assume, in this particular case, that X is an answer set of ϕS(P).

60

5. DATABASE REPAIR WITH ANSWER SET PROGRAMMING 5.2. Minimality Statements

The idea behind the previous definition is actually quite simple. If X is a potential
answer set of ϕ(P)S , for every atom delete(Rowid) ∈ X , we check if α(X) ∪N(c̄), where
c0 = Rowid and N is the relation that has that tuple with Rowid = c0, is a repair itself. If
so, we discard X , since it is not minimal under set inclusion. The identical is made with
the atoms of the form insert(Rowid). We check if α(X) \N(c̄), where c0 = Rowid and N
is the relation that has that tuple with Rowid = c0, is a repair itself. If so, we discard X ,
since, once again, it is not minimal under set inclusion.

With this approach, we eliminate many repairs of ϕ(P) that are not minimal under
set inclusion. However, there may still be repairs of ϕ(P) that are not minimal under set
inclusion that will still be generated. Notice that we did not change any of the rules of the
original transformation function, so, we are only restricting the generated answer sets of
ϕ(P). It is easy to see that this approach is still complete. We still generate all possible
minimal repairs under set inclusion with respect to P , along with some more that may
not be minimal under set inclusion, thus being soundness not achieved.2

Now that we have introduced our mapping of a minimal repair problem into a logic
program, it is time to present the implementation of our approach, by presenting the
developed graphical user interface and its architecture. In the next chapter, we present
DRSys, a database repair application.

2In order to obtain a sound approach, another step would be needed. A possible approach would be to
generate a Prolog program and, using a Prolog interpreter, eliminate all repairs of ϕ(P) that are not minimal
under set inclusion. That way, we would get soundness as well.

61

5. DATABASE REPAIR WITH ANSWER SET PROGRAMMING 5.2. Minimality Statements

62

6
Database Repair System - DRSys

In this chapter, we describe the “Database Repair System”, which, from now on, we shall
address to as DRSys, the database repair application developed throughout this disser-
tation. It allows the user to define new integrity constraints at any point in time, and,
if they lead the database to an inconsistent state, it computes database repairs, having
the possibility to update the inconsistent database with a repaired one. We provide a
language where the user can express any kind of integrity constraint that is possible to
be expressed using Answer Set Programming, not limiting ourselves to the integrity con-
straints of the database management system. Furthermore, we allow the inexperienced
user in ASP to express integrity constraints directly in SQL as well.

Our application is built over the PostgreSQL database management system1. Because
of this particularity, all integrity constraints defined directly in the database satisfy the
syntax defined by PostgreSQL.

DRSys implements two methods to compute repairs, which can be selected by the
user before the repairing process. Both of them are associated with the minimality issues.
Therefore, two distinct minimality measures were introduced, the minimality under car-
dinality of operations and the minimality under set inclusion.

We also took advantage of the answer set grounder gringo, since it allows a direct
connection to the database. Gringo has a built in scripting language, Lua2, which allows
the interaction with the database directly via the answer set program. Then, instead of
developing an application in SQL that would select all tuples from the database and then
creating an answer set program where we would add, as facts, all tuples returned from
that query, we can do it directly in the logic program.

1http://www.postgresql.org/
2http://www.lua.org

63

http://www.postgresql.org/
http://www.lua.org

6. DATABASE REPAIR SYSTEM - DRSys 6.1. Functionalities and Graphical User Interface

In this chapter, we describe the interface and the architecture of DRSys, emphasizing
the features provided by it. Also, we illustrate with several examples, which use the
database used in the TPC-W Benchmark3, whose database schema is in Figure 6.1.

Figure 6.1: TCP-W database schema

TPC BenchmarkTM W (TPC-W) is a transactional web benchmark. We generated the
database via a Java script provided by the authors of TPC BenchmarkTM W (TPC-W). We
extended the database in order to include the integrity constraints described in Figure
6.1. We now proceed with the description of the functionalities an the graphical user
interface of DRSys.

6.1 Functionalities and Graphical User Interface

In DRSys we opted for a wizard type of interface, where we have a sequence of menus,
each one corresponding to some particular aspect in the repair process. We divide our

3http://www.tpc.org/tpcw/

64

http://www.tpc.org/tpcw/

6. DATABASE REPAIR SYSTEM - DRSys 6.1. Functionalities and Graphical User Interface

application into the following menus: database connection menu, main menu, integrity
constraints edition menu, operations menu, insertion menu, deletion menu, repair menu
and the repair choice menu.

Regarding the user’s interaction, the repair process goes through these steps: con-
nection to the database, definition of the integrity constraints, edition of the integrity
constraints, choice of operations to be performed, insertion parameters, deletion param-
eters, repairs configurations, repair choice and, finally, database update with the selected
repair. We present next a flow chart with all the steps of our application.

Figure 6.2: DRSys flowchart

When the user creates the new integrity constraints, they must be enforced into the
database. However, there are still some criteria that are still needed in the application.
The user must specify which relations are going to be involved in the process, what kind
of operations is he willing to perform (deletions, insertions or both) and, since database
repairing is a very complex problem, we also developed some optimizations strategies,
automatic ones, and user enforced ones, to ease the repair process. We now describe the
interface, by going through the several menus, and discussing the functionalities pro-
vided in every one of them.

65

6. DATABASE REPAIR SYSTEM - DRSys 6.1. Functionalities and Graphical User Interface

6.1.1 Database Connection Menu

The first menu in our application is the database connection menu. Here, the user will
introduce all the information needed to connect to the desired database - username, pass-
word, the name of the database, the IP, and finally, the name of the ODBC connection. To
be able to connect to the database directly via the logic program (functionally provided
by the answer set grounder), we need to create an ODBC connection, hence being the
name of the ODBC connection an input parameter. This menu is depicted in Figure 6.3.
After the connection is established, the main menu appears.

Figure 6.3: Database Connection

6.1.2 Main Menu

Once connected to the database, the main menu shows up. This corresponds to the in-
tegrity constraints creation phase. This menu allows the user to define new integrity
constraints. In this menu, DRSys provides the user with two distinct ways to define in-
tegrity constraints: manually and/or automatically. In the manual way, DRSys allows
the user to express integrity constraints directly in ASP. This way, we provide a very
powerful and expressive language to specify integrity constraints. DRSys accepts all in-
tegrity constraints that can be defined in ASP. Also, since ASP is a very specific domain of
computer science and we wanted to make the application as general as possible, without
forcing the user to know ASP. Therefore, DRSys also provides a way to specify constraints
directly in SQL (taking into consideration the syntax of PostgreSQL). For this purpose,
DRSys provides a converter from SQL to ASP. However, it is very easy to make a mis-
take while defining a new integrity constraint, whether in ASP or SQL. In order to deal
with this problem, DRSys offers means to assist in the automatic specification of some
integrity constraints. In the automatic way, DRSys allows the specification of key con-
straints, functional dependencies, inclusion dependencies and domain constraints, all of
them according to Definitions 2.23,2.24,2.25,2.27 respectively, simply by selecting the at-
tributes that form the constraints and the application constructs the corresponding ASP

66

6. DATABASE REPAIR SYSTEM - DRSys 6.1. Functionalities and Graphical User Interface

code. Figure 6.4 shows the main menu.

Figure 6.4: Main Menu

The automatically specified integrity constraints are generated with some optimiza-
tions. We focus on this part in the next Chapter. Keep in mind that, when defining the
integrity constraints automatically, the code generated will be done by the application.
However, DRSys also allows the user to change this automatically generated code. There-
fore, once all the integrity constraints are defined, we proceed to the constraints edition
menu.

6.1.3 Constraints Edition Menu

In this menu, we enter the integrity constraints edition phase. DRSys allows the user to
edit the ASP code generated from all of the previously defined integrity constraints.

Figure 6.5: Edition Menu

This way, even though some integrity constraints might have been automatically gen-
erated by DRSys, we allow the user to infer about the generated code, and to change it as
well. DRSys also allows the user to freely eliminate the integrity constraints defined in
the previous menu.

67

6. DATABASE REPAIR SYSTEM - DRSys 6.1. Functionalities and Graphical User Interface

In Figure 6.5 we can see the specification of a key constraint, and the visual tool cre-
ated to edit the integrity constraint.

After agreeing on the integrity constraints, we proceed to the operations menu.

6.1.4 Operations Menu

In the operations menu, DRSys allows the user to choose what kind of operations will be
considered during the repair process: if only deletions, if only insertions or both. Figure
6.6 exhibits this menu, together with the provided features. If only insertions were chosen

Figure 6.6: Operations Menu

by the user, the next menu to appear will be the insertions menu. If only deletions were
chosen by the user, the next menu to appear will be the deletions menu. If both of the
operations were chosen, firstly the insertions menu will appear, followed by the deletions
menu. Note that, at least one type of operations must be chosen.

6.1.5 Insertions Menu

In this menu, we reach the insertions parametrization phase.

Figure 6.7: Insertions menu

68

6. DATABASE REPAIR SYSTEM - DRSys 6.1. Functionalities and Graphical User Interface

Here, DRSys provides the user the possibility to specify the extra source of tuples that
are taken into account during the repair process. DRSys provides two ways to do this.
On the first one, DRSys allows the user to select tuples that are stored in some relation of
the original database. Figure 6.7 demonstrates this feature.

On the second one, DRSys allows the user to manually specify extra tuples. This way,
we give more possibilities than the one offered considered only existing tuples in the
original database. Figure 6.8 shows the manual specification of new tuples, where the
user may manually specify new tuples, that can be inserted in the database.

Figure 6.8: Extra Tuples

After deciding the tuples that can be inserted, DRSys allows the user to specify where
those tuples can be added. For instance, the user may want to insert tuples from Relation3
in Relation1 but also tuples from Relation2 in Relation4.

Figure 6.9: Limit Insertions

As a consequence of such association, DRSys provides the user one more feature. It
allows the user to specify the maximum number of insertions that can be performed in a
relation. This way, we can greatly increase performance, as we demonstrate in Chapter
7. Figure 6.9 demonstrates this feature.

69

6. DATABASE REPAIR SYSTEM - DRSys 6.1. Functionalities and Graphical User Interface

6.1.6 Deletions Menu

In this menu, we reach the deletions parametrization phase. Here, very much like the in-
sertion menu, DRSys allows the user to select from which relations tuples can be deleted.
DRSys will only delete tuples from a relation that was selected. As in the insertion menu,

Figure 6.10: Deletions Menu

DRSys also provides the user the possibility to limit the number of deletions that can
be performed in a relation. Figure 6.10 illustrates the deletion menu, together with the
presented features.

Once the deletion parametrizations are finished, we go to the repair menu.

6.1.7 Repair Menu

In the repair menu, we enter the repairing configuration phase. Figure 6.11 show the
repair menu. In this menu, DRSys offers the user several features, which we describe
next.

Figure 6.11: Repair Menu

70

6. DATABASE REPAIR SYSTEM - DRSys 6.1. Functionalities and Graphical User Interface

DRSys offers the user, in this menu, the possibility to see all the answer set program-
ming code generated from the defined integrity constraints. This is just for information
purposes, not being editable at this point.

DRSys allows the user to define more repairs constraints. It allows the user to mark
certain tuples to not be considered for deletion. Although the user may have selected a
relation from where tuples may be deleted, the user might not want certain tuples to be
deleted. Therefore, in the repair process, such tuples will never be marked as tuples to be
deleted. Figure 6.12 show this feature.

Figure 6.12: Forbid Removals

Furthermore, DRSys allows the user to select the relevant relations, i.e., relations that
will be taken into consideration during the repair process. DRSys allows two distinct
ways to select them: an automatic way, by means of a dependency graph, and a manual
way. We shall discuss this part in greater detail in the next section.

One other feature that DRSys provides in this menu, is the possibility to define the
overall maximum number of operations. In the previous menus, the user could limit
the maximum number of operations in a specific relation, whereas in here, we limit the
overall number of operations.

The greatest feature provided by DRSys in this menu, is the possibility to choose
which kind of minimality criteria the user wishes to adopt throughout the repair process.
Here, DRSys allows the user to choose between the set inclusion minimality criteria or
the minimality under cardinality of operations criteria. Whichever is chosen, we proceed
to the repair choice menu, and consequently, to the repair choice phase.

6.1.8 Repair Choice Menu

According to the minimality criteria chosen, this last menu provides distinct features.
We shall begin with the features of minimality under cardinality of operations, and then
minimality under set inclusion.

In minimality under cardinality, we allow the user to obtain possible repairs as soon
as they are found by clasp. The computation of the repairs is done by a background

71

6. DATABASE REPAIR SYSTEM - DRSys 6.2. DRSys Architecture

process and, whenever a new repair is generated, the Repair Choice Menu will show what
are the operations that need to be done, while the answer set solver is still running in
the background process. Also, and according to the input parameters of clasp, when
DRSys reaches a repair, the next repair must be better than the previous one, i.e., must
perform less operations. This way, DRSys keeps generating better and better repairs.
DRSys also allows the user to stop the process at any time, presenting the user the last
repair obtained. Keep in mind that, if the process is stopped, the repair generated may
not be minimal, but is still a repair. This is useful when the computation of the minimal
repairs takes a lot of time, and the user is already satisfied with the non minimal repair
presented. If minimality under cardinality was chosen, we only present the operations
that are needed to be performed to obtain consistency with respect to one and only one
database repair. Although this is the case, and since there may be several repairs that
need to perform the same number of operations, DRSys allows the user to ask for all the
repairs that perform a specific number of operations.

In minimality under set inclusion, DRSys computes and presents all operations that
are needed to perform to obtain consistency with respect to all minimal (under set inclu-
sion) repairs only. Although in the answer set part we presented a unsound algorithm,
we provide means to retrieve only minimal repairs. We shall go into further details about
this topic in the next section as well.

Figure 6.13 shows this last menu.

Figure 6.13: Repair Choice

Finally, once the user chooses what repair he will be wanting, DRSys updates the
database with the newly generated one, leading the database to a consistent state. This
corresponds to the final phase, the update phase.

6.2 DRSys Architecture

In this section, we present the architecture of DRSys, by specifying the behaviour of the
application. We also present the optimizations that were adopted in several parts of the

72

6. DATABASE REPAIR SYSTEM - DRSys 6.2. DRSys Architecture

repairing process, in order to speed up the whole process.

The graphical interface of DRSys was implemented in Java. To compute the possible
repairs, we used, as answer set grounder/solver, gringo and clasp, respectively. Finally,
DRSys was built on top of the Database Management System PostgreSQL.

As inputs for the application, we consider the database connection options (user-
name, password, database name, server and the ODBC connection), integrity constraints
(in answer set programming or SQL), user parametrizations, and operations selection
(the ones that will create the repair).

Figure 6.14: DRSys Architecture

Figure 6.14 represents the overall design of the architecture. The database connection
inputs are received by the Database Connection Module that will connect to the specified
database. Then, all the interaction will be made with the JAVA Module. In it, we developed
the graphical user interface (using Java), with which the user interacts. Also, this module
represents the connection between all other modules developed. We now specify the
whole database repair process, by going through all modules. For that purpose, we shall
now describe the architecture of the system, step by step.

The first step is the database connection step. In order to do it, let us describe the
module responsible for that, the Database Connection Module.

73

6. DATABASE REPAIR SYSTEM - DRSys 6.2. DRSys Architecture

Database Connection Module

Everything in our application that needs to communicative with the database needs to
go through the Database Connection Module. Besides making the initial connection with
the application to the database, this module is also responsible for importing the existing
integrity constraints already stored in the database (integrity constraints directly defined
in the database management system or user defined constraints in ASP). It is responsi-
ble for all queries that need information about the schema as well, for instance, what
relations are defined in the database or what are the attributes of a particular relation
in the database. Furthermore, it is this module that deletes (inserts) tuples from (into)
the database, updating the inconsistent instance with the repaired one, thus restoring
consistency. Summarizing, it establishes the connection between the application and the
database, and deals with all operations that need access to it.

Let us now go through the repairing process. In the graphical interface, DRSys pro-
vides means to automatically create integrity constraints of particular classes: keys, func-
tional dependencies, inclusion dependencies, domain constraints, that are directly mapped
into Answer Set Programming code. This is the responsibility of the Automatic Con-
straint Converter Module, which we present next.

Automatic Constraint Converter

By creating the integrity constraints with the automatic mechanism, the user selects the
attributes and the relations that are involved in the integrity constraint. Afterwards, the
integrity constraints are mapped into an intermediate step, where an internal format is
generated, that can be easily read and understood by the user, in order to aid him. Then,
according to the internal format, DRSys converts the integrity constraints into answer set
programming code, ready to be used by the application. We now present the internal
format created for the integrity constraints:

• Keys - UNIQUE − relation_name(att1, att2, ..., attn)

• Functional Dependencies - F.Dependency − relation_name(att11, att12, ..., att1m)

DETERMINES relation_name(att21, att22, ..., att2,n)

• Inclusion Dependencies - Inc.Dependency−relation_name1(atts1, atts2, ..., attsn)

REFERENCES relation_name2(attd1, attd2, ..., attdn)

• Domain Constraints -DOMAIN−relation_name attribute_name(dom1, dom2, ...,

domn)

The meaning of the internal format is very self-explanatory.
As we can see, the internal format of the integrity constraint is made in a way that

is completely readable and understandable by the user, requiring only some knowledge
about databases.

74

6. DATABASE REPAIR SYSTEM - DRSys 6.2. DRSys Architecture

This module was only created to ease the definition of integrity constraints since,
despite not being a hard task to create them in ASP or SQL, it is very easy to make mis-
takes. This way, we provide a powerful tool to the user, and also, we allow any user, that
has some knowledge about databases, to create integrity constraints without needing to
know answer set programming.

It may also be the case that the user has some knowledge in SQL, but none in the
answer set programming part. Therefore, the user may want to create the integrity con-
straints by specifying the correspondent SQL code. For this purpose, we developed a
module that converts SQL directly into answer set programming code, the SQL Converter
Module, which we present next.

SQL Repair Converter Module

Since integrity constraints may be specified directly into SQL, we developed a converter
from SQL to Answer Set Programming. We allow some specific SQL commands, accord-
ing to the syntax provided by PostgreSQL, which are:

ALTER TABLE tablename ADD PRIMARY KEY (att1,att2,...,attn).

ALTER TABLE tablename ADD CONSTRAINT constraintname PRIMARY KEY

(att1,att2,...,attn).

ALTER TABLE tablename ADD CONSTRAINT constraintname CHECK

(attributename {<,>,<=,>=,!=,=} value).

ALTER TABLE tablename ADD CONSTRAINT constraintname CHECK

(attributename in (value1,value2,...,valuen)).

ALTER TABLE tablename ADD CONSTRAINT constraintname UNIQUE

(att1,att2,...,attn).

ALTER TABLE tablename_1 ADD CONSTRAINT constraintname FOREIGN KEY

(att_1) REFERENCES tablename_2 (att_2).

Again, the meaning of each instruction is also self-explanatory, so no explanation will
be done4.

After specifying the constraints, DRSys sends the SQL code to the SQL Repair Con-
verter Module.

This module has, as objective, the conversion of SQL code into Answer Set Program-
ming code. It takes as input some SQL statements, and transforms the integrity con-
straints into answer set programming code, following the transformation pattern pre-
sented previously. Notice that, when specifying the integrity constraints directly in SQL,
the user loses expressiveness, since he is confined to the integrity constraints provided by
PostgreSQL. However, this approach still allows the user to specify integrity constraints
that the database management system provides, so it will only lose expressiveness if

4For more information, we recommend the user to visit http://www.postgresql.org/docs/9.0/
interactive/index.html

75

http://www.postgresql.org/docs/9.0/interactive/index.html
http://www.postgresql.org/docs/9.0/interactive/index.html

6. DATABASE REPAIR SYSTEM - DRSys 6.2. DRSys Architecture

more powerful integrity constraints are desired.

Up until now, we have only been talking about the definition of integrity constraints.
However, there is more to the database repair than just defining new integrity constraints.
DRSys needs to know what relations are meant to be involved in the process, in order
to generate the logic program. We provide an automatic way to detect which relations
are needed in the process, by means of a dependency graph, built by the Dependencies
Graph Module.

Dependencies Graph Module

Consider a database with the schema presented in Figure 6.1, and the integrity constraint:

∀κ1,κ2,κ3,κ4,κ5,κ6 ¬[order_line(κ1, κ2, κ3, κ4, κ5, κ6) ∧ κ1 > 1]

If no insertions are desired, it is easy to see that only relation order_line is necessary to
compute the repairs. However, if insertions are desired, we have to take into account
many other relations: orders, customer, address, country, item and author, since there are
dependencies between the relations and the integrity constraints.

This module is responsible for building the dependencies graph of this database, i.e.,
a graph where we represent the connection between relations, with respect to the in-
tegrity constraints defined and the operations allowed. The dependencies graph is built
and is sent over to the Relevant Relations Module, so that the necessary relations are
automatically selected. Let us introduce what the dependencies graph is and how it is
built.

The dependencies graph is a directed graph that shows the connections between the
relations, with respect to the integrity constraint defined and the operations allowed. The
nodes of the graph are name of relations of the database, and the edges correspond to the
dependencies between relations.

Let us, once more, consider a database whose schema is depicted in Figure 6.1. Since
we allow deletions and insertions as primitives for the repairs, we need to build two
dependency graphs: one, to deal with deletions, and the other to deal with insertions.
Through the dependencies graph, taking deletion into account, we wish to represent the
relations from where we need to deletes tuples. Figure 6.15 shows the dependencies
graph associated with the deletions. As we can see, if, for instance, there is a need to
delete a tuple from relation author, then, following the graph, we need to delete tuples
from relation item and relation order_line. The dependencies graph, considering inser-
tions, is the exact symmetric of the deletions one, with respect to the edges of the graph.
In Figure 6.16 we show this other graph. Therefore, if, in the repair process, there is the
need to insert a tuple in, for instance, relation order_line, tuples in item and author must
be inserted as well, so that the integrity constraints are still satisfied.

The resulting graphs are then sent to the relevant relations module, that will select the

76

6. DATABASE REPAIR SYSTEM - DRSys 6.2. DRSys Architecture

Figure 6.15: Dependencies Graph considering deletions

Figure 6.16: Dependencies Graph considering insertions

relations that will be involved in the repair process, taken into consideration the newly
created integrity constraints.

Relevant Relations Module

In this module, we determine the relevant relations that must be involved in the repair
process. But first, let us clarify what a relevant relation is. Given a set of integrity con-
straints IC (the new defined integrity constraints) and an operation op ∈ {deletion, insertion},
and two dependencies graphs (the deletion one and the insertion one), a relevant relation
is a relation that:

• is a relation that is directly involved in any integrity constraint of IC;

• is a relation that, in the dependencies graph according to op, depends on a relevant

77

6. DATABASE REPAIR SYSTEM - DRSys 6.2. DRSys Architecture

relation.

More intuitively, a relevant relation is a relation that is directly expressed in a integrity
constraint, or a relation that depends on that relation, directly or indirectly (via some
other relations), according to the type of operations allowed.

For instance, consider the following integrity constraint, regarding the database schema
of Figure 6.1:

∀x0,x1,...,x6¬[author(x0, x1, ..., x6), x2 =′ Richard′]

The initial relevant relation is the relation author, since it is directly involved in the
integrity constraint. However, if we consider deletions in the repair process, relations item
and order_line are also considered relevant relations. If, on the other hand, only insertions
were taken into account, only relation author was considered a relevant relation.

However, the algorithm we developed to build the dependencies graph is very con-
servative, i.e., it may consider as relevant relations, relations that, in fact, are not. Suppose
that, in the database, we wanted to enforce the following integrity constraint:

∀x0,x1,...,x6¬[author(x0, x1, ..., x6), x1 > 1]

The previous integrity constraint states that the value for the attribute x1 in every
tuple of relation author, cannot be bigger than 1. Now consider that such integrity con-
straint leads the database to an inconsistent state. Therefore, a repair is needed. Now
consider that we only want to delete tuples in relation author and item. Then, according
to our algorithm and the dependency graph, DRSys would consider, as relevant relations,
the following relations: author, item and order_line, when, in fact, only the relations author
and item should be considered, since, if we do not allow deletions in relation item, there is
no need to select relation order_line as a relevant relation. For this particular reason, and
since relevant relations must be selected, instead of providing only an automatic mecha-
nism to select the relevant relations, we also allow the user to select them manually, since
it may be better in some cases to manually select the relevant relations.

As input of this module, we receive the dependencies graph, computed in the previ-
ous module. Also, the newly defined integrity constraints must be passed as input to this
module. Then, we analyse the relations involved in those constraints. After we know
the direct involved relations, for each of those relations, and considering the type of op-
erations allowed, we go through the dependencies graphs and compute the additional
relevant relations. Once we obtain the relevant relations, we can proceed to the repair
process.

In order to greatly increase performance, we divide the repair process in two distinct
phases: the consistency checking phase (Consistency Checking Module), where we verify if
the database becomes inconsistent when trying to enforce the new integrity constraints
in the database and, if so, we proceed to the repair phase (Repair Generator Module), where
we generate the possible repairs. We introduce both modules next.

78

6. DATABASE REPAIR SYSTEM - DRSys 6.2. DRSys Architecture

Consistency Module Checking

This module is responsible for checking consistency in the database, with respect to the
new integrity constraints defined by the user. Here, we create a logic program, very
similar to the one presented in the transformation function 5.1. There are although some
slight differences. In this new logic program, we are only concerned with what exists
in the main database, since it is only there that we check the (in)consistency. That way,
we don’t have rules of the type (5.2). Also, we are not interested here in computing the
repairs, so, we don’t need to know if any atom will be kept, deleted or inserted. Therefore,
rules of the type (5.3) and (5.4) are excluded from this repair program. All the remaining
rules will be present, with one more difference. We replace the predicate p_keepN by the
predicate pN . Finally, we add to the logic program the integrity constraints defined by
the user and the logic program is evaluated. If no stable models of the logic program
are generated, inconsistency is present in the database. It is easy to accept this, since, if
no stable models were generated, some integrity constraint present in the logic program
was trigerred, stating that some integrity constraint is being violated in the database. On
the other hand, if any stable model is generated, consistency is achieved and there is no
need to compute the repairs.

This module is simply an optimization module. It was indeed possible to verify con-
sistency by running only the repair program. If the database did not become inconsistent
with respect to the new integrity constraints, we just had to wait until the empty model
was generated (considering the tuples to be deleted or inserted), meaning that no tuple
was meant to be deleted nor inserted. It is also easy to see that, if no atom is meant to be
deleted nor inserted, it is because there is no inconsistency. Therefore, the empty model
is generated. However, before the generation of the stable models, a lot of other mod-
els would be generated. In the sequel, computational time would be wasted. For this
purpose, we developed the Consistency Module Checking.

If inconsistency is detected by the Consistency Checking Module, then we proceed to
the repair phase (Repair Generator Module).

Repair Generator Module

This module is responsible for computing the repairs, with respect to a database repair
problem P . According to the minimality chosen by the user, a logic program of the form
ϕC(P) or ϕS(P) is created. However, according to the minimality criteria chosen, the
behaviour of the Repair Generator Module changes. If minimality under cardinality is
chosen, a logic program of the form ϕC(P) is created an ran in gringo / clasp. The stable
models generated correspond to possible repairs, existing a one-to-one correspondence
of the answer sets with the repairs. However, if minimality under set inclusion is chosen,
DRSys works in a different way. Still, a logic program of the form ϕS(P) is created.
However, as we have showed, this approach is not sound. So, we went a little bit further.
Analysing the answer sets generated, we build a new logic program, a Prolog program.

79

6. DATABASE REPAIR SYSTEM - DRSys 6.2. DRSys Architecture

There, we build a list of lists, such that the number of lists is equal to the number of
answer sets generated. Also, given an answer set X , the created list will contain all the
atoms belonging to ∆(X). Then, in the Prolog program, we generate the minimal repairs
under set inclusion. The answers generated by XSB will represent the operations that
need to be performed in order to achieve consistency in the database. After computing
the answers, they are sent back to the DRSys application, and DRSys shows the user the
possible ways to restore consistency, by showing the user the operations that need to be
performed. We went a little bit outside of the scope of this dissertation, by using some
other technologies, but, we provide a sound and complete approach this way.

Here, however, we do not create the repair program straight forward as shown be-
fore. We introduce some optimizations statements, to enhance the performance of the
application. We present here some modifications to the logic program created.

Optimizations

The logic programs ϕC(P) and ϕS(P) are both created, by having as base ϕ(P). There-
fore, all modifications that we present, are made in the latter, so that both the previous
ones inherit as well these optimizations. Take into account that the modifications rely
on the language provided by the answer set solver, so we shall take full advantage of
that. Some optimizations are done automatically, and others are done by the user, man-
ually. Note that if the user decides to use some knowledge to increase the performance
of DRSys, if the parametrization of some features is not done well, it is possible that no
repairs are generated.

• Importing Integrity Constraints - When the relevant relations are defined, DRSys
queries the database to obtain the already defined constraints that are related to
those relations and maps them into the logic program according to the transforma-
tion function presented. It only obtains the integrity constraints associated with the
relevant relations, instead of simply adding all integrity constraints present in the
database.

• Deletions/Insertions Optimization - The generation of possible tuples to be deleted,
presented in (5.3), will slightly change. Instead of those rules, we create the follow-
ing generation rules for every relevant relation N5:

0{delete(x0) : pN (x̄)}n.

p_keepN (x̄)← pN (x̄), not delete(x0).

deleteN (x0)← pN (x̄), delete(x0).

We first generate all possible atoms to be deleted, and the atoms to be kept are the
ones that are not meant to be deleted. It is better to generate the deletions first

5Recall that x0 corresponds to the Rowid of a tuple, being it also the first term of x̄

80

6. DATABASE REPAIR SYSTEM - DRSys 6.2. DRSys Architecture

instead of the whole repaired instance since, usually, the number of deletions is
much smaller than the atoms to be kept. Also, while generating the atoms that are
meant to be deleted, we are also giving a maximum number of deletions, which is
expressed by n. This n is an optimization parameter introduced by the user, which
stands for the maximum number of deletions that can be done in relation N . Note
that the last rule will allow us to know from where we need to delete the tuple,
which will be important when updating the database.

Analogously, a similar approach is taken when dealing with the atoms that are
meant to be inserted, based on (5.4). For every relationN from where we can obtain
the tuples to insert, we add the following rules:

0{insert(x0) : p_keepiN (x̄)}n.

p_keepN (x̄)← p_keepiN (x̄), insert(x0).

insertN (x̄)← p_keepiN (x̄), insert(x0).

• Repair Constraints - We allow the user to have some influence regarding possible
tuples to be deleted and the number of tuples to be deleted. For that purpose, we
created two distinct optimizations.

– Forbidding deletions in a relation - In DRSys, we allow the user to specify
that there cannot be any deletion in a particular relation. In order to explicitly
say that that, the set of rules presented in (5.3) are modified to:

p_keepN (x̄)← pN (x̄).

where N is the relation where we are forbid to delete atoms, and the deletion-
s/insertions optimizations are ignored.

With this rule, we force the atoms of relation N of the main database to be
present in the repaired version, meaning that no tuple can be deleted from
relation N .

– Forbidding deletions of specific tuples - In DRSys, we allow the user to man-
ually specify tuples that cannot be deleted. In order to forbid certain tuples
to be deleted, we add integrity constraints of the following type to the repair
program:

⊥ ← delete(x0), pN (x̄).

where N is the relation where the tuple belongs to.

By adding this integrity constraint, there cannot be a model where an atom
that is in the main database is meant to be deleted, regarding the specific tuples
chosen by the user.

81

6. DATABASE REPAIR SYSTEM - DRSys 6.2. DRSys Architecture

• Maximum Overall Number of Operations - Besides providing limits on the num-
ber of deletions and insertions in a particular relation, in DRSys we allow the spec-
ification of a maximum overall number of operations. For instance, the user may
say that there cannot be more than 10 deletions in order_line and no more than 20
deletions in item, but, besides that, the user may also say that here cannot be more
than 5 operations globally. In order to represent this in the logic program, instead
of introducing the rules:

count(M)←M = #sum[delete(DRowid), insert(IRowid)].

#minimize[count(M) = M].

we introduce an additional rule, that will limit the maximum number of operations:

count(M)←M = #sum[delete(DRowid), insert(IRowid)].

⊥ ← count(M),M > n.

#minimize[count(M) = M].

where n is the overall maximum number of operations. Notice that this optimiza-
tion can only be done considering minimality under cardinality of operations.

• Projection of attributes - Finally, we made one last change in the transformation
function. Instead of considering all attributes, while specifying an integrity con-
straints, we only consider the relevant attributes. By relevant attributes, we mean
the ones that are directly related with the integrity constraint. In order to do this, we
make the projection of the relevant attributes, and then map the integrity constraint
regarding only those attributes. Consider the following example:

Example 2. Consider a database with the schema depicted in Figure 6.1. Suppose we wish
to add a check constraint in relation country of the form CC(country, co_exchange,>
, 1000). Following the mapping we introduced, we would create the following rule:

⊥ ← p_keepcountry(Att0, Att1, Att2, Att3, Att4), Att3 > 1000.

Now, instead of doing that mapping, we create the following rules:

p_keepCC(country,co_exchange,>,1000)(Att)← p_keepcountry(_, _, _, Att, _).

⊥ ← p_keepCC(country,co_exchange,>,1000)(Att), Att > 1000.

This optimization applies to all the classes of integrity constraints presented in the
transformation function. Since the mapping, considering this optimization, is very
similar to the one in the previous example, we will not go into further details. Also,
this mapping is used in the automatic constraint converter module and in the SQL
repair converter module.

82

6. DATABASE REPAIR SYSTEM - DRSys 6.2. DRSys Architecture

This new mapping is very effective and is much better than the straight forward
mapping presented before. Although we have more rules in the logic program, the
grounded program will be significantly reduced. This way, performance is greatly
increased, being the overall time needed to perform the repairs reduced.

The output of this module will be the models generated from the logic program created,
which correspond to the possible repairs or, the solutions provided by XSB, which cor-
respond to the operations needed to perform in order to restore consistency, according to
the minimal repairs under set inclusion.

Once the repairs are generated, we must extract, from the stable models, the opera-
tions that need to be done, that is, the information regarding the tuples that are meant to
be deleted and the tuples that are meant to be inserted. For this purpose, we developed
the Repairs Collector Module, which we present next.

Repair Collector

This module has, as input, the stable models generated from the evaluation of the logic
program previously created. The answer generated by XSB will not be treated here,
since they are already treated directly in XSB. Then, this module isolates the atoms that
are meant to be deleted and the atoms that are meant to be inserted. Since we have atoms
of the form deleteN (c0) and insertN (c0) in the answer sets, we can know exactly from
which relation we need to delete tuples and into which relation we need to insert tuples.
Let us define two extracting functions, a deletion extracting function, to collect the atoms
that are meant to be deleted, and an insertion extracting function, to collect the atoms
that are meant to be inserted.

Definition 6.1 (Deletion Extracting Function). Let P be a database repair problem and ϕ(P)C

be the corresponding logic program. Assume X is an answer set of ϕ(P)C . Then, let deletion
extracting function ∆d′ be defined as follows:

∆d′
N (X) = {to_deleteN (c0)|deleteN (c0) ∈ X}

∆d′(X) =
⋃
N∈N

∆d′
N (X)

Definition 6.2 (Insertion Extracting Function). Let P be a database repair problem and ϕ(P)C

be the corresponding logic program. Assume X is an answer set ofr ϕ(P)C . Then, let insertion
extracting function ∆i′ be defined as follows:

∆i′
N (X) = {to_insertN (c̄)|insertN (c̄) ∈ X}

∆i′(X) =
⋃
N∈N

∆i′
N (X)

For each stable model X in the set of stable models received as input, the set of atoms

83

6. DATABASE REPAIR SYSTEM - DRSys 6.2. DRSys Architecture

that are meant to be deleted and inserted form the output of this module.

Since it is possible to exist several minimal repairs, we separate all the modifications
from distinct repairs into distinct groups, and send them to the user, so that he can see
which operations he wants to perform to obtain a repair. Once the user chooses the
operations he wants, the corresponding SQL code needs to be generated, in order to
update the inconsistent database, generating a repaired version, and that is what is done
in the SQL Repairing Module.

SQL Repairing Module

This module receives as input the atoms that are meant to be deleted, in the form of
∆d′(X) and the atoms that are meant to be inserted, in the form of ∆i′(X). Then, the
corresponding SQL needs to be generated. We perform the following operations:

• For each atom to_deleteN (oid) ∈ ∆d′(X), we create the following SQL statement:

delete from N where oid = oid

The oid attribute represents the object identifier, which is, in PostgreSQL, very sim-
ilar to the concept of Rowid, since it allows a tuple to be uniquely identified in the
whole database.

• For each atom to_insertN (c̄) ∈ ∆i′(X), we create the following SQL statement:

insert into N values(c1,c2,...,cn)

By performing these operations, we restore consistency to the database. To finalize
the repair process, DRSys also stores the integrity constraints defined by the user in the
database, in ASP format.

We have shown the life cycle of the database repair. As we could see, to avoid com-
puting the repairs straight forward, we developed some optimization mechanisms that
greatly reduce the computation time needed. We next present the experimental study
done in DRSys, where we take some important conclusions about its behaviour.

84

7
Experimental Evaluation

In this chapter, we present the experimental tests regarding the performance of DRSys.
We investigate the influence of the optimization parameters, the influence of the number
of integrity constraints and also the influence of the size of the database.

The experiments were performed on a Intel R© CoreTM i7 CPU 920 @ 2.67 GHz, with
6.00 GB RAM, with Windows 7 Professional , 64 bit operating-system. The database
instances were stored on PostgreSQL 8.4 – PostgreSQL Global Development Group. All
the answer set programs were run using, as the answer set grounder, Gringo, version
3.0.3, as the answer set solver, and clasp version 1.3.4.

For every experiment1, we used the database of the TPC BenchmarkTM W, whose
database schema is presented in Figure 6.1. For some particular tests, we introduced
new relations to the database, which will be mentioned when appropriate. Also, all of
the experiments were realized three times each. The results presented are the average of
such results.

7.1 Experimental Results

We investigated several properties in our application. These properties are:

• Influence of the number of irrelevant relations involved in the repair process;

• Influence of the number of integrity constraints involved in the repair process;

• Influence of the number of operations per relation and overall number of operations
in the repair process;

1The database instances used for all the experiments are available online, and can be downloaded at
http://sourceforge.net/projects/drsys/files/drsys1.0/.

85

http://sourceforge.net/projects/drsys/files/drsys1.0/

7. EXPERIMENTAL EVALUATION 7.1. Experimental Results

• Influence of the number of irrelevant integrity constraints in the repair process;

• Influence of the size of the database in the repair process.

For each of the tests done, we created a specific scenario, so that the influence of the
specific factor could be understood.

7.1.1 Influence of the Number of Irrelevant Relations Involved in the Repair
Process

For this experiment, we wanted to test if, by adding some relations that are totally ir-
relevant considering the newly created integrity constraints, the total time necessary to
compute the repairs would be affected. For this purpose, we fixed a database with 10.000
tuples and used the following integrity constraints:

F1 = ∀x0,x1,x2,x3,x4¬[country(x0, x1, x2, x3, x4) ∧ x1 > 1]

F2 = ∀x0,x1,x2,x3,x4,x5,x6¬[author(x0, x1, x2, x3, x4, x5, x6) ∧ x1 > 1]

F3 = ∀x0,x1,...,x11∃y0,y1,...,y6 [¬orders(x0, x1, ..., x11) ∨ (author(y0, y1, ..., y6) ∧ x3 = y1)]

The integrity constraint F1 states that there cannot be a tuple in relation country, such
that the value of the attribute co_id is bigger than 1. The integrity constraint F2 states that
there cannot be a tuple in relation author, such that the value of the attribute a_id is bigger
than 1. The integrity constraint F3 states that values for the attribute o_date of relation
orders must exist as the values of the attribute a_id of relation author.

The relevant relations are the ones determined by the algorithm. Considering F1, they
are: country, address, customer, orders, order_line and cc_xacts. Considering F2, the relevant
relations are: author, item, order_line. If we consider both of them together, all relations
are relevant relations. Considering F3, the relevant relations are: author, item, order_line,
orders and cc_xacts. Also, the added relations do not have any integrity constraints asso-
ciated with them.

All of the irrelevant relations used here contained 1.000 tuples, and all of them had
arity 4. Also, we only considered deletions, and computed minimal repairs under car-
dinality of operations. Furthermore, we considered that DRSys could delete tuples from
every relevant relation.

We realized four experiments. In the first one, we used the integrity constraint F1.
Then, we tested the time needed using only the relevant relations, then, with one irrel-
evant relation with 1.000 tuples, then two irrelevant relations (each with 1.000 tuples),
and so on, until eight irrelevant relations (each with 1.000 tuples). We did the same using
only F2 and then using F1 together with F2. In the fourth experiment, we used the in-
tegrity constraint F3 and did the same as in the previous experiments. The results of this
experiment can be seen in Figure 7.1.

86

7. EXPERIMENTAL EVALUATION 7.1. Experimental Results

Figure 7.1: Influence of the number of relations involved in the repair process

As we can see from the results, adding extra relations to the repair process is severely
prejudicial. It is highly recommended that, whenever the user does not have information
about the database schema, to automatically choose the relevant relations. The algorithm
to automatically determine the relevant relations may be conservative, but still, the user is
able to introduce even more irrelevant relations than the algorithm. Otherwise, irrelevant
relations can be inserted in the process being the repair process severally affected.

By adding irrelevant relations, we are adding more rules of the type:

0{delete(x0) : p_keepN (x̄)}n

p_keep(x̄)← p_keepN (x̄), not delete(x0).

By doing so, the ground program grows drastically, and not in a linear way (as ex-
pected). Being that the case, the search space is significantly bigger, taking much longer
to reach the desired minimal repairs.

With these results, we can also state that the type of integrity constraints also affects
the performance of DRSys, since we altered the integrity constraints used, and the num-
ber of direct relations involved in the integrity constraints as well.

We also wanted to know if the performance would be affected if, instead of adding

87

7. EXPERIMENTAL EVALUATION 7.1. Experimental Results

several irrelevant tuples from a set of relations, we added only one relation with more ir-
relevant tuples. For instance, instead of adding 8.000 tuples from eight different relations
(each of them with 1.000 tuples), we wanted to know what would happen if we added
8.000 tuples but from one single relation. The results did no suffer significant changes,
as expected, taken into account the implementation of DRSys, so we do not present any
graphical results for this experiment.

7.1.2 Influence of the Number of Integrity Constraints Involved in the Repair
Process

For this experiment, we wanted to test how the addition of new integrity constraints to
the database affects the overall time necessary to compute the repairs. We considered a
database with 5.000 tuples and the following integrity constraints:

F1 = ∀κ0,κ1,...κ4,ε0,ε1,...,ε6¬[country(κ0, κ1, ..., κ4) ∧ author(ε0, ε1, ..., ε6) ∧ κ1 = ε1]

F2 = ∀κ0,κ1,...,κ7¬[address(κ0, κ1, κ2, κ3, κ4, κ5, κ6, κ7) ∧ κ7 > 25]

F3 = ∀κ0,κ1,...,κ4¬[country(κ0, κ1, κ2, κ3, κ4) ∧ κ1 > 40]

F4 = ∀κ0,κ1,...,κ6¬[address(κ0, κ1, κ2, κ3, κ4, κ5, κ6) ∧ κ1 < 45]

The integrity constraints F1 forbids tuples (from relation country and from relation
author) to have the same value for the attributes co_id and a_id respectively. The in-
tegrity constraint F2 forbids tuples from relation address to have values for the attribute
addr_co_id bigger than 25. Integrity constraint F3 forbids tuples from relation country
to have a value for the attribute co_id bigger than 40 and, finally, integrity constraint F4

forbids tuples from relation address to have a value for the attribute a_id smaller than 45.

The relevant relations considered for these experiments were all the relations in the
database.

For all the experiments, we only considered deletions, and computed minimal repairs
under cardinality of operations. Also, we considered that is was possible to delete tuples
from all the relevant relations.

We performed three different experiments, where we simply increased the number of
integrity constraints to be enforced in the database. In the first experiment, we started
with, besides the integrity constraints already defined in the database that are related to
the relevant relations, the integrity constraint F1. Then, added F2, then F3 and finally, F4.
Then, in the second experiment, we started with, besides the integrity constraints already
defined in the database, the integrity constraint F4. Then, added F3, then F2 and finally,
F1. Finally, in the third experiment, we started with, besides the integrity constraints
already defined in the database, the integrity constraint F3. Then, added F2, then F4 and
finally, F1. Figure 7.2 shows the results of these experiments.

∗This particular test, at the end of 30.000 seconds, still did no have reached a minimal repair. We opted
to terminate the test without letting it reach a minimal repair.

88

7. EXPERIMENTAL EVALUATION 7.1. Experimental Results

Figure 7.2: Influence of the number of constraints involved in the repair process

As we can observe from the results, the kind of integrity constraint greatly affects the
overall performance of DRSys. We could start to justify these results by comparing the
size of the ground program. However, it is not significant enough to explain such leaps.
We need to investigate the way clasp works. The primary algorithm of clasp relies on
conflict-driven nogood learning, a technique that proved very successful for satisfiability
checking [GKNS07]. Conflict analysis is the procedure that finds the reason for a conflict
an tries to resolve it. It tells the solver that there exists no solution for the problem in a
certain search space, and indicates a new search space to continue the search [ZMMM01].
A nogood is a set of literals, expressing a constraint violated by any assignment contain-
ing those literals. Furthermore, clasp is embedded with several heuristics that allow a
faster computation of the problem [DGKS10]. We can speculate that, as we keep intro-
ducing more integrity constraints, we are generating more nogoods and, therefore, more
conflicts and, because of this, clasp is able to prune the search space more efficiently, i.e., it
discards some solutions, reducing the remaining search space, and, therefore, increasing
performance.

When we changed the order in which we added the integrity constraints, we were
also changing the pruning quality of clasp. In the second test, we may infer that the
pruning was more effective than the first one, and, in the third test, the pruning was even

89

7. EXPERIMENTAL EVALUATION 7.1. Experimental Results

more effective.

7.1.3 Influence of the number of operations per relation and overall number
of operations in the repair process

For this experiment, we wanted to test how the variation of the maximum number of op-
erations in a relation, by fixing an integrity constraint, affected the overall time necessary
to compute the repairs. We also wanted to test how the variation of the overall maximum
number of operations, by fixing an integrity constraints, affected the overall time neces-
sary to compute the repairs. Furthermore, we wanted to compare both approaches with
each other, whenever operations were only realized in one, and only one relation. For
this purpose, we considered a database with 20.000 tuples and the following integrity
constraint:

∀x0,...,x6,y0,...,y6¬[order_line(x0, ..., x6)∧order_line(y0, ..., y6)∧x0 6= y0∧x4 = y4∧x5 < y5]

With the previous integrity constraint, we forbid two distinct tuples from relation
order_line to have the same values for the attributes ol_qty, with one value for the attribute
ol_discount of a tuple being smaller than the other value for the same attribute for the
other tuple. Furthermore, we considered the following maximum number of tuples to
be deleted in relation order_line: 255 tuples (which corresponds to the minimal repair),
300 tuples, 400 tuples, 500 tuples and unbounded (the computation of the repair straight
forward without optimizations). We did the same considering these values as the number
of overall number of operations permitted.

For this experiment, we only considered deletions, and computed minimal repairs
under cardinality of operations. As relevant relations, we considered those generated by
our algorithm, being them only the relation order_line. We considered that is was only
possible to delete tuples from that relation as well. When limiting the overall maximum
number of repairs, we stopped the process when DRSys computed the first minimal re-
pair (in case there should be more than one minimal repair).

The results of these experiments are both shown in Figure 7.3.
As we can observe, if a maximum number of operations in a relation, or an overall

maximum number of operations is given as input, the computational time required to
generate the repairs is greatly reduced, thus improving the performance of DRSys. Al-
though the ground program is not altered, we speculate that, since we are restricting the
maximum number of operations in a relation (or the overall maximum number of oper-
ations), we are, once more, generating more nogoods and more conflicts, and, therefore,
clasp prunes the search space, reducing the necessary time to reach the optimum repair.
Notice that the direct limitation of the number of operations in a relation is slightly better
than the overall limitation. However, since both options increase performance, if oper-
ations must be realized in more than one relation, the use of both criteria is possible,
increasing always performance of DRSys.

90

7. EXPERIMENTAL EVALUATION 7.1. Experimental Results

Figure 7.3: Influence of the number of user defined deletions in the repair process

Notice that, if operations can be realized in more than one relation, limiting the maxi-
mum number of operations in a relation can lead to the generation of repairs that are not
minimal. Consider the following relation depicted in Table 7.1, the source of extra tuples
in Table 7.2 and the following integrity constraint:

∀AId,CId∃Name.[¬accounts(AId,CId) ∨ customers(CId,Name)]

customers
CustomerId Name

111 John
222 Peter
333 Anna

accounts
AccountId CustomerId

1 111
2 222
3 333
4 444
5 444
6 444
7 444
8 555
9 666
10 666

Table 7.1: Inconsistent Database

As we can see, this database is clearly violating the integrity constraint. If we consider
deletions and insertions, and minimality under cardinality of operations, the minimal re-
pair will be the one where the tuples 〈444,Michael〉 and 〈555, Susan〉 and 〈666, Richard〉
are added to the Customers relation. However, imagine that the user said that only one
insertion could be performed in relation Customers. This way, the repair generated would
be the one where the tuples 〈8, 555〉, 〈9, 666〉, and 〈10, 666〉would be deleted and the tuple
〈444,Michael〉 would be inserted. This would not be minimal but, with the information

91

7. EXPERIMENTAL EVALUATION 7.1. Experimental Results

Extra
CustomerId Name

444 Michael
555 Susan
666 Richard

Table 7.2: Extra tuples

that the user provided, it is the best repair possible.

By looking at the results once more, we can see that, the less we limit the number
of operations, the worst the time gets. Strangely, the time needed to get to the mini-
mal repairs when we limited the number of operations to 400 is greater than when we
limited the number of operations to 500 (still however smaller than the straight forward
approach). Considering the implementation of DRSys, there is no reason to explain this
results. Perhaps it is a matter of the implementation of clasp itself, but, nevertheless, the
result is better than the unbounded approach.

7.1.4 Influence of the Number of Irrelevant Integrity Constraints

For this experiment, we wanted to test how the presence of irrelevant integrity constraints
affected the overall time needed to compute the repairs. Let us illustrate this problem
with an example: consider the relations depicted in Table 7.3 and the following integrity
constraint:

account
Acid Cid
11 11
22 11
33 22
44 44

client
Cid Name
11 Richard
22 John

Table 7.3: Account and Client relations

F1 = ∀Cid,Acid∃Name[¬account(Acid, Cid) ∨ client(Cid,Name)]

The previous integrity constraint simply states that there cannot be an account asso-
ciated with an client that is not present in the database. Furthermore, consider that the
following integrity constraints were already defined and store in the database:

F2 = ∀Acid,Cid1,Cid2¬[account(Acid, Cid1) ∧ account(Acid, Cid2) ∧ Cid1 6= Cid2]

F3 = ∀Cid,Name1,Name2¬[client(Cid,Name1) ∧ client(Cid,Name2) ∧Name1 6= Name2]

92

7. EXPERIMENTAL EVALUATION 7.1. Experimental Results

The previous integrity constraints state that a client is identified by its Id and that an
account is identified by an account Id as well. It is clear that there is a violation the in-
tegrity constraint F1. Consider as well that we are only dealing with deletions. It is clear
that none of the integrity constraints F2 and F3 will never be violated, since we are not
dealing with insertions. Therefore, we wanted to see if, by not introducing such integrity
constraints in the repair program, the overall time to compute the repairs would be af-
fected. Therefore, we realized two distinct experiments. For this purpose, we considered
some integrity constraints already used in the second test:

F1 = ∀κ0,κ1,...,κ4¬[country(κ0, κ1, κ2, κ3, κ4) ∧ κ1 > 40]

F2 = ∀κ0,κ1,...,κ6¬[address(κ0, κ1, κ2, κ3, κ4, κ5, κ6) ∧ κ1 < 45]

In each of the experiments, we considered only the relevant relations generated by
our algorithm. According to F1, the relevant relations are: country, address, customer, or-
ders, order_line and cc_xacts. In the second one, they are the same, except for the country
relation. In both experiments, we considered only deletions, and minimality under car-
dinality of operations. Also, we considered that DRSys could delete tuples from all of the
previous relations.

In the first experiment, we first generated repairs repairs using all integrity constraints
that were imported by DRSys together with F1. Then, we ran the exact same experiment,
excluding all key constraints, since they would never be violated in this case. In the
second experiment, we did the same, but using the integrity constraint F2, instead of F1.
In both experiments, the time needed to reach the optimal solution when considering the
key constraints or not was almost the same. There is a slight difference, but, comparing
to the overall time necessary, it is irrelevant. The results are shown in Figure 7.4.

Figure 7.4: Influence of the number irrelevant integrity constraints in the repair process

In order to justify this results, we should, once more, explore the implementation
of clasp. Although the primary algorithm of clasp relies on constraint-driven nogood
learning, it also incorporates various advanced Boolean constraint solving techniques,

93

7. EXPERIMENTAL EVALUATION 7.1. Experimental Results

being one of them early conflict detection [DGKS10]. This way, it may be the case that,
since clasp detects the conflicts early, it may be able to detect that some other integrity
constraints will never be violated. This way, although the resulting ground program may
be bigger when including the irrelevant integrity constraints, we speculate that clasp is
able to ignore those integrity constraints, since they are not violated.

7.1.5 Influence of the of Size of the Database in the Repair Process

For this experiment, we wanted to test how changing the size of the database, by fixing
an integrity constraint, affects the time to generate the repairs. For this purpose, we
considered the same integrity constraints as in the first test.

F1 = ∀x0,x1,x2,x3,x4¬[country(x0, x1, x2, x3, x4) ∧ x1 > 1]

F2 = ∀x0,x1,x2,x3,x4,x5,x6¬[author(x0, x1, x2, x3, x4, x5, x6) ∧ x1 > 1]

F3 = ∀x0,x1,...,x11∃y0,y1,...,y6 [¬orders(x0, x1, ..., x11) ∨ (author(y0, y1, ..., y6) ∧ x3 = y1)]

Once more, the relevant relations are the ones determined by our algorithm. Consid-
ering F1, they are: country, address, customer, orders, order_line and cc_xacts. Considering
F2, the relevant relations are: author, item, order_line. Considering F3, the relevant rela-
tions are: author, item, order_line, orders, and cc_xacts. If we consider both of them together,
all relations are relevant relations. Also, the added relations do not have any integrity
constraints associated with them.

For the experiments, we only considered deletions, and computed minimal repairs
under cardinality of operations. For F1 and F2 and F3, we considered that we could
delete tuples from every relevant relation.

We realized four different experiments. In the first one, we used the integrity con-
straint F1. In the second one, we used the integrity constraint F2. In the third one, we
used both integrity constraints. In the fourth one, we only used the integrity constraint
F4. In every one of the experiments, we changed the size of the database. We started
with one database with 1.000 tuples, then 2.000 tuples, then 3.000 tuples and so on, until
we reached 15.000 tuples. The results of this experiment can be seen in Figure 7.5. As
we can see, if the size of the database grows, the necessary time to compute the repairs
grows exponentially. If we have more tuples in the database, more facts will be added to
the logic program. As a result of such additions, the size of the ground program grows
significantly, increasing the search space as well, resulting in the exponential growth of
the necessary time. This shows that the direct approach to solve the inconsistency is very
heavy when the number of tuples in a database is elevated as well. It is greatly advised
that the user inputs some information that may be used to optimize the computation,
enhancing the performance of DRSys.

We also performed some tests regarding whether it would take more time to perform

94

7. EXPERIMENTAL EVALUATION 7.2. Comparison

Figure 7.5: Influence of the size of the database in the repair process

repairs by deleting tuples or by inserting tuples. According to such tests, the time needed
to reach a repair where, for example, 10.000 are meant to be deleted is approximately
the same as the time needed to reach a repair where 10.000 are meant to be inserted.
Therefore, we do not present any graphical result.

7.2 Comparison

DRSys is an application developed to repair databases. Besides generating all possible
repairs, it allows the user to actually update the database, replacing the old inconsistent
instance by a new consistent instance (with respect to the integrity constraints defined).

In this section, we compare our results with the results of other works done in the
database repair area, taken into account the works presented in Chapter 4. We shall
focus on the following aspects: functionalities, quality, applicability, integrity constraints
mapping, performance and parametrization requirements.

7.2.1 Functionalities

The majority of the work done in the area of database repairing was the theoretical for-
mulation of algorithms to repair databases[ABC99, ABC00, ABC03, VS09, KL09, Wij05,

95

7. EXPERIMENTAL EVALUATION 7.2. Comparison

Bry97, Cho07, CM05, RD00, Wij03, SMG10, GGZ03]. No real applications have been
developed in these cases. We, on the other hand, besides formalizing the algorithm,
created an actual application that allows the user to repair the database. Also, almost
every work in the database repairing literature only considers minimality under set in-
clusion. In DRSys, besides providing two minimality criteria, we allow the user to freely
choose between them. Also, we formally proved the soundness and completeness of our
transformation function, and, informally, we argued for the soundness and completeness
including the minimality criteria as well.

In DRSys, we perform repairs by inserting or deleting tuples, giving the user the
option to choose whichever possibility he desires. In the insertion part, we do not allow
the insertion of the NULL value, so DRSys offers the user the possibility to introduce an
extra source of tuples that will be taken into account in the repair process. In the database
repairing literature, some works presented a third option, the option to also perform
updates[Wij03, Wij05, CZ06, FPL+01], replacing a value of an attribute by aNULL value,
by another constant, or simply by a variable. However, by introducing variables in the
database, we are simply introducing unknown values, which may not be desired. In
the census data repair[FPL+01], the update makes sense, however, the domain of the
attributes was very small, and, therefore, special rules to deal with the problem could be
added into a logic program, to specify how to update a certain value. Suppose that, in a
database, we found an inconsistent tuple from a relation person, which has, as attributes,
the following: Id, Name, Sex. Also, the value that was inconsistent was the value for the
attribute Sex. Since the domain of that attribute is only {Male, Female}, it is easy to
express in a rule that the sex of a person should be either female or male. Now suppose
another example, on the same relation, but the value that is inconsistent is the value of the
attribute Id. In Portugal, we have around 10.000.000 habitants. Suppose that the domain
of the attribute Id is then the set of natural numbers from 1 to 10.000.000. It is not feasible
to express a rule on how to update this value.

In DRSys we also allow the user to have some influence in the repair process, by
introducing repair constraints, i.e., constraints that can limit the number of maximum
deletions, limit the number of maximum insertions, limit the number of maximum over-
all operations, and limit the tuples to be deleted. These were based on some ideas in-
troduced in [GGZ01], where the authors introduced rules that could influence the final
outcome.

Furthermore, we provide an automatic way of generating some integrity constraints
directly into ASP format, which, as to our knowledge, has not been done in any of past
works. We provide the automatic creation of key constraints, functional dependencies,
inclusion dependencies and domain constraints, providing the user a graphical display
to do it, in a convenient and intuitive manner. This way, we allow the user without any
knowledge regarding ASP to use DRSys.

We also allow the user to select the relevant relations to be involved in the repair
process, in an automatic or in a manual way. In [Can07], the authors also provide an

96

7. EXPERIMENTAL EVALUATION 7.2. Comparison

automatic way to select relevant relations, also through the use of a dependency graph.
As we could see, DRSys is a very complete application, that takes into consideration

a lot of features that can help the user and the application itself, by enhancing its perfor-
mance.

7.2.2 Quality

In DRSys, we traded performance for quality. As we have shown, we present a general,
sound and complete approach to deal with database repairing. This way, we present
an algorithm that can deal with any kind of integrity constraint that can be expressed
through ASP, providing a powerful and expressive language to the user. Other ap-
proaches, such as [KL09, BIG10, CM11], could only deal with functional dependencies,
making the repair problem more restrict. Others, such as [RD00, LLL00, LLL01, BSIBD09,
BSI+10], traded quality for performance, i.e., developed algorithms that are, on the one
hand, faster than the ones we presented, but, on the other hand, are not complete. DRSys
provides a general, sound and complete approach. It may not be as fast as others ap-
proaches, but it is more general.

7.2.3 Applicability

DRSys is an application built to work with centralized databases, where the user has
permissions the change the data. Database repairing is a technique that is mostly used
under these circumstances, and DRSys follows it. In all of the work done in the database
repairing literature, as far as we know, all studies and applications developed consider-
ing database repairing, are only done in a centralized environment. There are actually
some studies considering databases that are stored in distinct sources [VS09, CZ06], but,
in those cases, algorithms for merging databases were developed, resulting in a unique
centralized database, and then, it was over this database that database repairing was
used. In these cases, although it may seem that database repairing is being done over
distributed databases, in fact, it is being done over centralized databases. Our approach
is no different from those. It was built to work in a centralized environment.

7.2.4 Integrity Constraints Mapping into Logic Programs

Many of the studies done only considered a small fraction of integrity constraints. In
[KL09, BIG10, CM11], the authors only considered functional dependencies. In [BSI+10,
LLL00], the authors only took into consideration duplicate tuple detection. In [GL97],
denial constraints were not covered. In many other studies [GGZ03, ABC00, ABC03,
CB00, ABC99, BB03], inclusion dependencies were not covered. In [KL09, BIG10, CM11],
only functional dependencies were covered. Furthermore, many integrity constraints
can be expressed as a universal constraint, i.e., a universally quantified first order for-
mula. Keys can be expressed this way, functional dependencies can be expressed this
way and denial constraints as well. Then, some studies, where answer set programming

97

7. EXPERIMENTAL EVALUATION 7.2. Comparison

was used, provided transformation functions based only on this most general integrity
constraint[BB03, ABC03, ABC00, MB07, GGZ03]. In DRSys, we consider all of those in-
tegrity constraints as separately. This way, we could create a more specific mapping for
such integrity constraints, increasing performance, without losing generality, since all of
them are covered, simply separately. Also, in those studies disjunctive logic programs
were used, increasing the problem complexity to a higher class. In DRSys, we focused on
logic programs without disjunction.

We also consider that integrity constraints are properties that allow us to have more
consistent information. We consider them as being extremely important, and not subject
to changes, as opposed to [CM11], since otherwise, there would be no point in developing
such a concept.

7.2.5 Performance and Scalability

In terms of performance and scalability, there have been several studies that allow the
computation of repairs to be faster than the one we presented. However, the are some
subtleties that need to be further analysed. In some studies, [KL09, BIG10, CM11], since
the authors only focused on a particular class of integrity constraints (functional depen-
dencies), specialized algorithms were developed in order to increase performance, losing,
this way, generality.

There have also been some other approaches that are still faster than DRSys. In [RD00,
LLL00, LLL01, BSIBD09, BSI+10], database repairs were computed based on greedy al-
gorithms. These algorithms deal with heuristics. Therefore, they are not complete, and,
the repair obtained may not be a satisfactory repair, depending on the parameters estab-
lished for the algorithm. However, in terms of performance, they are very powerful. In
this case, quality was traded for performance. These algorithms can also scale better than
ours.

In DRSys, we traded performance for generality. Because of that, and since and given
the complexity of the problem we address, we introduced some user parametrization
to increase performance. These parametrizations can have great influence in the repair
process and still generate the optimal repair, allowing the system to scale better.

7.2.6 Parametrization Requirements

Some of the work done heavily relied on the use of algorithms that required the parametriza-
tion of certain variables by the user [RD00, LLL00, LLL01, BSIBD09, BSI+10]. For in-
stance, in greedy algorithms, a good heuristic is desired, otherwise bad repairs can be
made. Also, in some data cleaning algorithms [BSI+10, LLL01, BSIBD09], parameters for
the duplicate detection algorithms are needed, in order compare two distinct tuples and
know if they are indeed duplicates. This also affects the quality of the repair, since we are
introducing more input parameters, besides the ones used in the repair algorithms them-
selves. According to those algorithms, the outcome of the applications designed may

98

7. EXPERIMENTAL EVALUATION 7.2. Comparison

suffer several changes, having worse or better repairs, according to those parameters.
Also, in those cases, there is a high trade-off. If the parameters are very good and accu-
rate, the repairs will also be good, but the computational time will greatly increase. On
the other hand, if worse parameters are chosen, worse repairs are generated, however,
the computational time needed is a lot inferior.

Our approach does not rely on any user parametrization to obtain correct results. We
offer a free parametrization transformation function. We do allow the user to input some
parametrization, in order to enhance the performance of DRSys, but, if none is given,
DRSys reaches minimal repairs (although taking more time). This way, there is no need
for automatic learning of the parameters values, or user experience calibration of them,
being our application independent in this way.

The greatest achievement of this dissertation was the creation of a real application that
allows the specification of new integrity constraints at any point in time. Although in the
database repairing literature there are many studies regarding database repairing, they
are just theoretical studies, not existing real applications. In DRSys, we provide the user
with a declarative language, expressive enough to define powerful integrity constraints
at any point in time, that are not supported by the database management systems, be-
cause they are too complex and heavy to maintain. DRSys is a working application,
providing means to repair databases, as well as some additional features that can greatly
improve performance, and compute repairs under two distinct minimality criteria.

99

7. EXPERIMENTAL EVALUATION 7.2. Comparison

100

8
Conclusions and Future Work

Throughout this dissertation, we presented DRSys, an application to repair databases
using Answer Set Programming. We provide the user means to define new integrity con-
straints and enforce them into the database. If the database becomes inconsistent when
doing so, our application restores consistency to the database, by deleting and/or adding
tuples from/to the database. We presented a transformation function (the mapping of the
database repair problem into Answer Set Programming language) and proved its sound-
ness and completeness. We also presented our approach taking minimality of the repairs
into consideration, under set inclusion or under cardinality of operations. We introduced
some tweaks to enhance the process of repairs, by introducing some optimizations state-
ments to greatly reduce the number of candidate repairs. We described the interface
and the architecture of DRSys. Finally, we showed some experimental results, regard-
ing the performance of our application in different scenarios, in order to demonstrate its
behaviour towards several features. We have shown that, although DRSys does not eas-
ily scale, there are some optimizations that can be made to ease the process and allow
greater performance. We must also take into consideration that the process of repairing a
database is not meant to be done in a daily basis, but very rarely. Therefore, if the process
of repairing databases is, on one hand, a very complex and slow process, on the other
hand the number of times that it must be used throughout the life time of the database
is reduced. However, there are still improvements that can be made in order to increase
performance, there are some different approaches to this problem that can circumvent
some main issues. We present some ideas of future work next.

101

8. CONCLUSIONS AND FUTURE WORK

The use of NULL values

In our approach, in order to deal with insertions, and without the use of NULL values,
the user has to manually specify a source of extra tuples. However, it would be a good
idea if repairs were done completely automatically, without any kind of user dependence.
To this purpose, the value NULL should be allowed in the domain of every attribute. In
the literature, the is no consent on the meaning of the NULL value. There is no actual
global accepted semantics [Rei82, Mai83]. Also, how do we extend the relational model
to accept this special value? Studies have been made in this area. In [BB06], the authors
introduce an approach to deal with this problem, and the work done in [MB07] already
contemplates this problem, following the semantics introduced in [BB06]. Furthermore, if
the valueNULL is a possible value of the domains, a 3-valued logic would be interesting
to use, instead of the 2-valued logic used here. Therefore, an extensive study on the
Well-Founded Semantics should be made, in order to try to incorporate this situation.
Consider the following relation and the following integrity constraint:

∀Cid,Acid∃Name[¬account(Acid, Cid) ∨ client(Cid,Name)]

account
Acid Cid
11 11
22 11
33 22
44 44

client
Cid Name
11 Richard
22 John

Table 8.1: Inclusion Dependency - Null Values

In our approach, without specifying the source of extra tuples, the only possible mini-
mal repair would be to delete the tuple account(44, 44). However, considering theNULL
value, one possible repair would be to insert the tuple client(44, NULL). This way, con-
sistency would also be restored.

Updates versus Deletions and Insertions

In DRSys, only deletions and/or insertions are allowed. With deletions, it may be the case
that we are deleting a lot of correct information. Imagine a relation with 20 attributes, and
there is a tuple in that relation where only one value of one attribute is inconsistent, with
respect to some integrity constraint, and the others are right. If we delete this tuple, we
are deleting good information, since one value is wrong and the rest is correct. Also, it
may be that, in some cases, deleting information is not at all desired, even though incon-
sistency is present in the database. A good example of a real life situation where this is

102

8. CONCLUSIONS AND FUTURE WORK

true, is the census situation, presented in [FPL+01], which used updates as a repair prim-
itive. However, this was only possible in that case by introducing some rules that, in a
way, “showed” how to update the values. Also, the domain of each attribute was very re-
duced. In the general cases, one approach could be to manually specify a domain, which
would represent the constants with which the values of attributes could be replaced with.
However, this would, once again, make database repair process less automatic, since it
was up to the user to define that domain. Another possibility may be to update the er-
roneous values to the NULL value. Despite existing studies on this area, there has not
been an approach that convinced us of the efficiency of updates. Further study on this
area is still required, nevertheless, it is still a very interesting approach.

Incremental Database Repairing

In DRSys, and in almost every study made in the database repair problem that uses logic
programming to represent the database repair problem, the first step is to generate all
possible modifications, considering all tuples from relevant relations of the database.
However, it would be interesting if an automatic procedure was developed that per-
formed the repairs in the opposite way as we have been doing so far. We would start
with a repair that would perform 1 operation. If no models were generated, we would
then try again the process by performing 1 + α operations. If no models were generated,
we would consider 1 + 2α operations, and so on, until possible repairs were generated.
Since the number of inconsistent tuples is generally way less than the number of tuples in
the database, this would probably increase the performance of the application. However,
the α parameter should be well defined. Also, with this approach, we may not get the
optimal repair, but we get very close repairs, substantially increasing the performance of
the application. That could be done in DRSys, by simply performing several iterations of
the algorithm, always restricting the overall maximum number of operations. However,
if using DRSys, in every iteration we would need to ground the logic program created.
If the database has a big amount of tuples, the grounding will take some time as well. A
good way to address this problem could be the use of iclingo1 1, which is an incremen-
tal ASP system implemented on top of clingo. It is based on the idea that the grounder,
as well as the solver are implemented, in a stateful way. Thus, both keep their previous
states while increasing an incremental parameter. Therefore, since iclingo is implemented
in a stateful way, it “remembers” the grounding program. When we perform the first it-
eration, the ground program is created. When performing a new iteration, the previous
grounding is “remembered”, therefore, only the new part of the programs needs to be
grounded, and so on, until one repair is found.

11For more information about iclingo, we recommend the reader to visit http://www.cs.
uni-potsdam.de/clasp/.

103

http://www.cs.uni-potsdam.de/clasp/
http://www.cs.uni-potsdam.de/clasp/

8. CONCLUSIONS AND FUTURE WORK

Optimizations in the Transformation Function

In DRSys, we introduced a transformation function that mapped the integrity constraints
into ASP. We also devised some optimizations regarding this transformation, such as the
projection of the relevant attributes in order to reduce the size of the grounded program.
However, by further studying the implementation of the answer set solver, we may per-
form some new optimizations to the transformation function that, together with clasp,
increases even more the performance.

Optimizations in the Dependencies Graph

In DRSys, we presented a mechanism to automatically determine which relations are
relevant to the repair process, with respect to a set of integrity constraints. However, our
algorithm is very conservative, i.e., many of the times determines that some relations are
relevant when, in reality, they are not. As future work, it would be interesting to create
a more “intelligent” algorithm, such that the algorithm could choose more wisely the
relevant constraints needed to a specific problem.

Concurrency in Answer Set Solvers

One very interesting idea, would be the use of concurrent programming, by breaking the
problem into several smaller problems and dividing them through a set of processors.
Then, each of which would compute its corresponding part and in the end, they would
unite each part to form the final result. Curiously enough, some steps have already been
made towards concurrency in answer set programming. In [SSG+09], there have already
been shown some results for some particular classes of problems. Nevertheless, being
it an open problem still, it could lead to lots of gain, with respect to the time needed to
repair the database.

DRSys is an application built to repair databases whenever the database becomes
inconsistent. During this dissertation, we built a very robust an complete system, that
allows the user to create, at any point in time, new integrity constraints to be enforced
in the database and, if it becomes inconsistent, DRSys is able to, by means of insertions
and/or deletions, restore consistency.

In this work, we used answer set programming as a tool to solve the database re-
pairing problem. We introduced a transformation function that maps the database repair
problem into a logic program. We showed the quality of such mapping by proving its
soundness and completeness, with respect to the repairs generated. While mapping the
integrity constraints, we focused on the most widely known integrity constraints pro-
vided in the database literature: key constraints, functional dependencies, inclusion de-
pendencies and denial constraints. Furthermore, we allow the user to specify all kinds of

104

8. CONCLUSIONS AND FUTURE WORK

integrity constraints that can be mapped into a answer set programming.
When the user defines new integrity constraints, DRSys computes the possible repairs

and returns the user the operations that are needed to achieve consistency, regarding a
particular repair, so that he can choose which repair he wishes to keep. However, DRSys
does not compute all repairs and present them to the user, since the number of repair
can be very high. Therefore, in DRSys, we allow the user to choose between two distinct
minimality criteria in order to compute repairs. This way, we only present the user with
repairs that change as little information as possible.

In order to aid the user throughout the whole process of specifying integrity con-
straints, we developed a wizard based graphical user interface. This way, we provide the
user a very intuitive step-by-step interface, such that he can easily interact with DRSys.

Since the database repairing problem is very complex, we introduced several inter-
esting additional features in DRSys that can greatly increase performance.

We also extensively tested DRSys to study how it would scale. Unfortunately, and
as expected, since the problem is very complex (recall that the computation complexity
of database repairing lies between the NP-hard and Σp

2 complexity classes), DRSys does
not scale very well. Although the additional features introduced improve performance,
it still is a very complex and hard problem. However, one must take into consideration
that database repairing is not a technique designed to be used on a daily basis. Therefore,
it is not that bad that DRSys takes quite some time to perform repairs.

We have also introduced some future work that can be done in this area, in order to
increase performance and reduce the time needed to perform optimizations.

To conclude, DRSys is a working implementation of the database repair problem,
allowing the user to define new integrity constraints and enforce them into the database
at any point in time. Although the process is long, the number of times that the repairing
process is needed is very limited, making this approach feasible in the real world.

We hope to have motivated the reader to this area of databases, which is still an open
problem. We introduced our problem and solution, and, in the end, we pointed several
steps that can be taken in order to improve this work. We also hope to have shown how
interesting this topic is, and how much more work can be done.

105

8. CONCLUSIONS AND FUTURE WORK

106

Bibliography

[ABC99] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query
answers in inconsistent databases. In Proceedings of the Eighteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May
31 - June 2, 1999, Philadelphia, Pennsylvania, pages 68–79. ACM Press, 1999.

[ABC00] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Specifying and
querying database repairs using logic programs with exceptions. In FQAS,
pages 27–41, 2000.

[ABC03] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Answer sets for
consistent query answering in inconsistent databases. TPLP, 3(4-5):393–424,
2003.

[ABK00] Marcelo Arenas, Leopoldo E. Bertossi, and Michael Kifer. Applications
of annotated predicate calculus to querying inconsistent databases. In
John W. Lloyd, Verónica Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu
Lau, Catuscia Palamidessi, Luís Moniz Pereira, Yehoshua Sagiv, and Peter J.
Stuckey, editors, Computational Logic - CL 2000, First International Conference,
London, UK, 24-28 July, 2000, Proceedings, volume 1861 of Lecture Notes in
Computer Science, pages 926–941. Springer, 2000.

[Bac73] Charles W. Bachman. The programmer as navigator. Commun. ACM,
16(11):635–658, 1973.

[BB03] Pablo Barceló and Leopoldo E. Bertossi. Logic programs for querying incon-
sistent databases. In Verónica Dahl and Philip Wadler, editors, Practical As-
pects of Declarative Languages, 5th International Symposium, PADL 2003, New
Orleans, LA, USA, January 13-14, 2003, Proceedings, volume 2562 of Lecture
Notes in Computer Science, pages 208–222. Springer, 2003.

[BB06] Loreto Bravo and Leopoldo E. Bertossi. Semantically correct query answers
in the presence of null values. In EDBT Workshops, pages 336–357, 2006.

107

BIBLIOGRAPHY

[BBB01] Pablo Barceló, Leopoldo E. Bertossi, and Loreto Bravo. Characterizing
and computing semantically correct answers from databases with annotated
logic and answer sets. In Leopoldo E. Bertossi, Gyula O. H. Katona, Klaus-
Dieter Schewe, and Bernhard Thalheim, editors, Semantics in Databases, Sec-
ond International Workshop, Dagstuhl Castle, Germany, January 7-12, 2001, Re-
vised Papers, volume 2582 of Lecture Notes in Computer Science, pages 7–33.
Springer, 2001.

[BG94] Chitta Baral and Michael Gelfond. Logic programming and knowledge rep-
resentation. J. Log. Program., 19/20:73–148, 1994.

[BIG10] George Beskales, Ihab F. Ilyas, and Lukasz Golab. Sampling the repairs of
functional dependency violations under hard constraints. PVLDB, 3(1):197–
207, 2010.

[Bry97] François Bry. Query answering in information systems with integrity con-
straints. In Sushil Jajodia, William List, Graeme W. McGregor, and Leon
Strous, editors, Integrity and Internal Control in Information Systems, IFIP TC11
Working Group 11.5, First Working Conference on Integrity and Internal Control
in Information Systems: Increasing the confidence in Information Systems, Zurich,
Switzerland, December 4-5, 1997, volume 109 of IFIP Conference Proceedings,
pages 113–130. Chapman Hall, 1997.

[BSI+10] George Beskales, Mohamed A. Soliman, Ihab F. Ilyas, Shai Ben-David, and
Yubin Kim. Probclean: A probabilistic duplicate detection system. In Feifei
Li, Mirella M. Moro, Shahram Ghandeharizadeh, Jayant R. Haritsa, Gerhard
Weikum, Michael J. Carey, Fabio Casati, Edward Y. Chang, Ioana Manolescu,
Sharad Mehrotra, Umeshwar Dayal, and Vassilis J. Tsotras, editors, Proceed-
ings of the 26th International Conference on Data Engineering, ICDE 2010, March
1-6, 2010, Long Beach, California, USA, pages 1193–1196, 2010.

[BSIBD09] George Beskales, Mohamed A. Soliman, Ihab F. Ilyas, and Shai Ben-David.
Modeling and querying possible repairs in duplicate detection. PVLDB,
2(1):598–609, 2009.

[Can07] Monica Caniupan. Optimizing and implementing repair programs for consistent
query answering in databases. PhD thesis, Ottawa, Ont., Canada, Canada,
2007. AAINR23289.

[CB00] Alexander Celle and Leopoldo E. Bertossi. Querying inconsistent databases:
Algorithms and implementation. In John W. Lloyd, Verónica Dahl, Ulrich
Furbach, Manfred Kerber, Kung-Kiu Lau, Catuscia Palamidessi, Luís Moniz
Pereira, Yehoshua Sagiv, and Peter J. Stuckey, editors, Computational Logic

108

BIBLIOGRAPHY

- CL 2000, First International Conference, London, UK, 24-28 July, 2000, Pro-
ceedings, volume 1861 of Lecture Notes in Computer Science, pages 942–956.
Springer, 2000.

[Cho07] Jan Chomicki. Consistent query answering: Five easy pieces. In Thomas
Schwentick and Dan Suciu, editors, Database Theory - ICDT 2007, 11th Inter-
national Conference, Barcelona, Spain, January 10-12, 2007, Proceedings, volume
4353 of Lecture Notes in Computer Science, pages 1–17. Springer, 2007.

[cla] clasp. http://www.cs.uni-potsdam.de/clasp/.

[CM05] Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity mainte-
nance using tuple deletions. Inf. Comput., 197(1-2):90–121, 2005.

[CM11] Fei Chiang and Renée J. Miller. A unified model for data and constraint
repair. In Serge Abiteboul, Klemens Böhm, Christoph Koch, and Kian-Lee
Tan, editors, Proceedings of the 27th International Conference on Data Engineer-
ing, ICDE 2011, April 11-16, 2011, Hannover, Germany, pages 446–457. IEEE
Computer Society, 2011.

[Cod70] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, 1970.

[CS98] Jan Chomicki and Gunter Saake, editors. Logics for Databases and Informa-
tion Systems (the book grow out of the Dagstuhl Seminar 9529: Role of Logics in
Information Systems, 1995). Kluwer, 1998.

[CZ06] Luciano Caroprese and Ester Zumpano. A framework for merging, repair-
ing and querying inconsistent databases. In Yannis Manolopoulos, Jaroslav
Pokorný, and Timos K. Sellis, editors, Advances in Databases and Informa-
tion Systems, 10th East European Conference, ADBIS 2006, Thessaloniki, Greece,
September 3-7, 2006, Proceedings, volume 4152 of Lecture Notes in Computer
Science, pages 383–398. Springer, 2006.

[DGKS10] Christian Drescher, Martin Gebser, Benjamin Kaufmann, and Torsten
Schaub. Heuristics in conflict resolution. CoRR, abs/1005.1716, 2010.

[dlv] DLV. http://www.dlvsystem.com/dlvsystem/index.php/Home.

[EFLP99] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. The diag-
nosis frontend of the dlv system. AI Commun., 12(1-2):99–111, 1999.

[ELM+98] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco
Scarcello. The kr system dlv: Progress report, comparisons and benchmarks.
In KR, pages 406–417, 1998.

109

http://www.cs.uni-potsdam.de/clasp/
http://www.dlvsystem.com/dlvsystem/index.php/Home

BIBLIOGRAPHY

[fEotEC98] United Nations. Economic Commission for Europe and Statistical Office
of the European Communities. Recommendations for the 2000 censuses of popu-
lation and housing in the ECE region. Statistical standards and studies. United
Nations, 1998.

[Fit96] Melvin Fitting. First-order logic and automated theorem proving (2nd ed.).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[For82] Charles Forgy. Rete: A fast algorithm for the many patterns/many objects
match problem. Artif. Intell., 19(1):17–37, 1982.

[FPL+01] Enrico Franconi, Antonio Laureti Palma, Nicola Leone, Simona Perri, and
Francesco Scarcello. Census data repair: a challenging application of dis-
junctive logic programming. In Robert Nieuwenhuis and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning, 8th Inter-
national Conference, LPAR 2001, Havana, Cuba, December 3-7, 2001, Proceedings,
volume 2250 of Lecture Notes in Computer Science, pages 561–578. Springer,
2001.

[GGZ01] Gianluigi Greco, Sergio Greco, and Ester Zumpano. A logic program-
ming approach to the integration, repairing and querying of inconsistent
databases. In Philippe Codognet, editor, Logic Programming, 17th Interna-
tional Conference, ICLP 2001, Paphos, Cyprus, November 26 - December 1, 2001,
Proceedings, volume 2237 of Lecture Notes in Computer Science, pages 348–364.
Springer, 2001.

[GGZ03] Gianluigi Greco, Sergio Greco, and Ester Zumpano. A logical framework
for querying and repairing inconsistent databases. IEEE Trans. Knowl. Data
Eng., 15(6):1389–1408, 2003.

[GKNS07] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.
clasp : A conflict-driven answer set solver. In Chitta Baral, Gerhard Brewka,
and John S. Schlipf, editors, Logic Programming and Nonmonotonic Reasoning,
9th International Conference, LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007,
Proceedings, volume 4483 of Lecture Notes in Computer Science, pages 260–265.
Springer, 2007.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In ICLP/SLP, pages 1070–1080, 1988.

[GL91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Comput., 9(3/4):365–386,
1991.

[GL97] Michael Gertz and Udo W. Lipeck. An extensible framework for repairing
constraint violations. In Sushil Jajodia, William List, Graeme W. McGregor,

110

BIBLIOGRAPHY

and Leon Strous, editors, Integrity and Internal Control in Information Systems,
IFIP TC11 Working Group 11.5, First Working Conference on Integrity and In-
ternal Control in Information Systems: Increasing the confidence in Information
Systems, Zurich, Switzerland, December 4-5, 1997, volume 109 of IFIP Confer-
ence Proceedings, pages 89–111. Chapman Hall, 1997.

[KL09] Solmaz Kolahi and Laks V. S. Lakshmanan. On approximating optimum re-
pairs for functional dependency violations. In Ronald Fagin, editor, Database
Theory - ICDT 2009, 12th International Conference, St. Petersburg, Russia, March
23-25, 2009, Proceedings, volume 361 of ACM International Conference Proceed-
ing Series, pages 53–62. ACM, 2009.

[Len02] Maurizio Lenzerini. Data integration: A theoretical perspective. In Lucian
Popa, editor, Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 3-5, Madison, Wisconsin,
USA, pages 233–246. ACM, 2002.

[Lif02] Vladimir Lifschitz. Answer set programming and plan generation. Artif.
Intell., 138(1-2):39–54, 2002.

[Lif08] Vladimir Lifschitz. What is answer set programming? In Dieter Fox and
Carla P. Gomes, editors, Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, pages
1594–1597. AAAI Press, 2008.

[LLL00] Mong-Li Lee, Tok Wang Ling, and Wai Lup Low. Intelliclean: a knowledge-
based intelligent data cleaner. In KDD, pages 290–294, 2000.

[LLL01] Wai Lup Low, Mong-Li Lee, and Tok Wang Ling. A knowledge-based ap-
proach for duplicate elimination in data cleaning. Inf. Syst., 26(8):585–606,
2001.

[LRS97] Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Disjunctive stable
models: Unfounded sets, fixpoint semantics, and computation. Inf. Comput.,
135(2):69–112, 1997.

[Mai83] David Maier. The Theory of Relational Databases. Computer Science Press,
1983.

[MB05] Mónica Caniupán Marileo and Leopoldo E. Bertossi. Optimizing repair pro-
grams for consistent query answering. In XXV International Conference of the
Chilean Computer Science Society, SCCC 2005, 7-11 November 2005, Valdivia,
Chile, pages 3–12. IEEE Computer Society, 2005.

[MB07] Mónica Caniupán Marileo and Leopoldo E. Bertossi. The consistency extrac-
tor system: Querying inconsistent databases using answer set programs. In

111

BIBLIOGRAPHY

Henri Prade and V. S. Subrahmanian, editors, Scalable Uncertainty Manage-
ment, First International Conference, SUM 2007, Washington, DC, USA, October
10-12, 2007, Proceedings, volume 4772 of Lecture Notes in Computer Science,
pages 74–88. Springer, 2007.

[MS89] V. Wiktor Marek and V. S. Subrahmanian. The relationship between logic
program semantics and non-monotonic reasoning. In ICLP, pages 600–617,
1989.

[MT98] Victor W. Marek and Miroslaw Truszczynski. Stable models and an alterna-
tive logic programming paradigm. CoRR, cs.LO/9809032, 1998.

[NS97] Ilkka Niemelä and Patrik Simons. Smodels - an implementation of the stable
model and well-founded semantics for normal lp. In Jürgen Dix, Ulrich Fur-
bach, and Anil Nerode, editors, Logic Programming and Nonmonotonic Reason-
ing, 4th International Conference, LPNMR’97, Dagstuhl Castle, Germany, July
28-31, 1997, Proceedings, volume 1265 of Lecture Notes in Computer Science,
pages 421–430. Springer, 1997.

[Prz91] Teodor C. Przymusinski. Stable semantics for disjunctive programs. New
Generation Comput., 9(3/4):401–424, 1991.

[RD00] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current ap-
proaches. IEEE Data Eng. Bull., 23(4):3–13, 2000.

[Rei82] Raymond Reiter. Towards a logical reconstruction of relational database
theory. In On Conceptual Modelling (Intervale), pages 191–233, 1982.

[RG03] Raghu Ramakrishnan and Johannes Gehrke. Database management systems
(3. ed.). McGraw-Hill, 2003.

[SKS05] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System
Concepts, 5th Edition. McGraw-Hill Book Company, 2005.

[SMG10] Emanuel Santos, João Pavão Martins, and Helena Galhardas. An
argumentation-based approach to database repair. In Helder Coelho, Rudi
Studer, and Michael Wooldridge, editors, ECAI 2010 - 19th European Confer-
ence on Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010, Proceedings,
volume 215 of Frontiers in Artificial Intelligence and Applications, pages 125–
130. IOS Press, 2010.

[smo] smodels. http://www.tcs.hut.fi/Software/smodels/.

[SSG+09] Lars Schneidenbach, Bettina Schnor, Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. Experiences running a parallel an-
swer set solver on blue gene. In PVM/MPI, pages 64–72, 2009.

112

http://www.tcs.hut.fi/Software/smodels/

BIBLIOGRAPHY

[VS09] Navin Viswanath and Rajshekhar Sunderraman. Source-aware repairs for
inconsistent databases. In Qiming Chen, Alfredo Cuzzocrea, Takahiro Hara,
Ela Hunt, and Manuela Popescu, editors, The First International Conference on
Advances in Databases, Knowledge, and Data Applications, DBKDS 2009, Gosier,
Guadeloupe, France, 1-6 March 2009, pages 125–130. IEEE Computer Society,
2009.

[Wij03] Jef Wijsen. Condensed representation of database repairs for consistent
query answering. In Diego Calvanese, Maurizio Lenzerini, and Rajeev Mot-
wani, editors, Database Theory - ICDT 2003, 9th International Conference, Siena,
Italy, January 8-10, 2003, Proceedings, volume 2572 of Lecture Notes in Com-
puter Science, pages 375–390. Springer, 2003.

[Wij05] Jef Wijsen. Database repairing using updates. ACM Trans. Database Syst.,
30(3):722–768, 2005.

[xsb] XSB. http://xsb.sourceforge.net/.

[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Ma-
lik. Efficient conflict driven learning in boolean satisfiability solver. In IC-
CAD, pages 279–285, 2001.

113

http://xsb.sourceforge.net/

	Introduction
	Preliminaries
	First Order Logic
	FOL - Syntax
	FOL - Semantics

	Relational Databases
	Relational Model
	Integrity Constraints (IC's)

	Answer Set Programming
	Syntax
	Semantics

	Database Repair
	Inconsistency
	Repairs

	Related Work
	Consistent Query Answering
	Database Repair

	Database Repair with Answer Set Programming
	General Approach
	Minimality Statements
	Cardinality Distance
	Set Inclusion Distance

	Database Repair System - DRSys
	Functionalities and Graphical User Interface
	Database Connection Menu
	Main Menu
	Constraints Edition Menu
	Operations Menu
	Insertions Menu
	Deletions Menu
	Repair Menu
	Repair Choice Menu

	DRSys Architecture

	Experimental Evaluation
	Experimental Results
	Influence of the Number of Irrelevant Relations Involved in the Repair Process
	Influence of the Number of Integrity Constraints Involved in the Repair Process
	Influence of the number of operations per relation and overall number of operations in the repair process
	Influence of the Number of Irrelevant Integrity Constraints
	Influence of the of Size of the Database in the Repair Process

	Comparison
	Functionalities
	Quality
	Applicability
	Integrity Constraints Mapping into Logic Programs
	Performance and Scalability
	Parametrization Requirements

	Conclusions and Future Work

