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Estudo arqueometalúrgico de artefactos provenientes do Castro de Vila Nova de São Pedro 

(Azambuja, Portugal) 

Filipa Pereira 

 

Resumo 

O Castro de Vila Nova de São Pedro (VNSP), localizado no concelho da Azambuja, distrito de Lisboa 

é um povoado dos III e II Milénios a.C. com uma ocupação predominantemente calcolítica. 

Para esta tese foi estudado um conjunto seleccionado de 275 artefactos metálicos (inteiros ou 

fragmentados) de diferentes tipologias, através de técnicas analíticas não destrutivas ou micro-

destrutivas. A classificação dos objectos de acordo com os seus principais elementos químicos foi 

inicialmente estabelecida por EDXRF. Uma selecção de 53 destes artefactos foi analisada 

posteriormente por micro-EDXRF para quantificação dos elementos constituintes das ligas. A 

caracterização microestrutural das ligas, assim como a identificação dos processos termomecânicos 

aplicados aos artefactos na sua produção, foi efectuada por microscopia óptica apoiada com 

observações por SEM-EDS e complementada por testes de microdureza Vickers para avaliar a 

eficácia dos processos termomecânicos na dureza do artefacto. 

Os resultados obtidos mostram que a colecção inicial é composta fundamentalmente por cobre ou por 

cobre arsenical. No subconjunto dos 53 artefactos, 38% consideram-se como uma liga de cobre com 

arsénio (As>2%) – cobres arsenicais. Foi encontrada uma associação estatística significativa entre o 

uso de ligas de cobre com conteúdos de arsénio superiores a 2% e os artefactos agrupados por 

armas. Pode ser indicativo da adição de arsénio na liga de cobre, com vista a aumentar a capacidade 

mecânica das armas. 

A determinação da cadeia operatória pela análise da microestrutura mostra que a maior parte dos 

artefactos (73%) foram enformados com operações de forja e recozimento e 23% receberam um 

tratamento de forja a frio final. A presença, em vários casos, de fases ricas em arsénio não evidencia 

controlo das velocidades de arrefecimento durante os vazamentos. Através dos testes de 

microdureza Vickers não foi encontrada uma correlação directa entre o conteúdo em arsénio da liga e 

a sua dureza; mostram no entanto um aumento da dureza nas regiões correspondentes aos gumes 

dos artefactos. 

 

Palavras chave: Arqueometalurgia, Calcolítico, Cobre, Arsénio. 
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Archaeometallurgical study of artefacts from Castro de Vila Nova de São Pedro (Azambuja, Portugal) 

Filipa Pereira 

 

Abstract 

The Castro de Vila Nova de São Pedro (VNSP) is a settlement located at Azambuja, district of Lisbon, 

occupied during the third and second millennia BC, predominantly during the Chalcolithic period. 

A diversified collection of 275 copper-based artefacts (complete or in a fragmented condition) 

belonging to VNSP was studied for this thesis using non-destructive and micro-destructive analytical 

techniques. The classification of the objects according to its main chemical elements was performed 

by using EDXRF spectrometry. A selection of 53 of these artefacts was analysed by micro-EDXRF 

spectrometry to quantify the alloy compositions. The microstructural characterisation of the metal 

alloys, as well as the identification of the thermomechanical processes applied to the shaping of the 

artefacts was accomplished through optical microscopy, supported by SEM-EDS and supplemented 

by Vickers micro-hardness measures to establish the actual effectiveness of the thermomechanical 

processes in the hardness of the artefact. 

Results show that the initial collection is mainly composed of copper and arsenical copper. In the 

subset of 53 artefacts, 38% were considered copper alloyed with arsenic (As>2%). A statistically 

significant association was found between copper alloys with arsenic contents over 2% and artefacts 

identified as weapons. This could point out as the addition of arsenic in order to increase the weapon’s 

mechanical strength.  

The determination of the “chaîne opératoire” by microstructural analysis show that the majority of this 

subset (73%) was finished with forging plus annealing operations cycles and 23% of the artefacts 

received final cold hammering. In several cases, the presence of arsenic rich phases in the 

microstructure shows no evidence of controlling cooling rates during the casting operation. No direct 

correlation was found between the arsenic content of the alloy and its hardness, assessed by Vickers 

microhardness testing.  Nevertheless, proof was found of a higher hardness near the blade regions of 

the artefacts.  

 

Keywords: Archaeometallurgy, Chalcolithic, Copper, Arsenic. 
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1. Introduction 

Archaeometallurgy allow us to understand the importance of metallurgical activities and its evolution in 

the social and cultural organization of ancient cultures through the study of metallic artefacts and other 

remains of metallurgical activities (Craddock, 1995). It is a multidisciplinary approach that involves 

different areas of knowledge, and allows us to connect the analytical and quantitative results with the 

archaeological context from which the artefact or artefacts were recovered.  

An enormous development occurred during the twentieth century in the field of archaeometallurgy 

involving the application of analytical techniques, which enable to start large-scale projects (Craddock, 

1995), such as the “Studien zu den Anfängen der Metallurgie” (SAM) that produced thousands of 

analysis of pre- and proto-historic artefacts gathered from all over Europe, including Portugal 

(Junghans et al., 1968, 1974). 

From the late seventies, as a consequence of the installation of non-destructive analytical techniques 

in Portuguese research centres, the studies concerning chemical composition of pre and proto-historic 

metallic artefacts and metallurgical debris improved considerably. Many of these studies allowed for 

an overview of the composition of metals from various Portuguese archaeological contexts. These 

studies covered a significant chronological period from Chalcolithic (CA) to Iron Age (IA) and were 

focused mainly on three areas: copper alloys from different pre and proto-historic chronologies (Araújo 

et al., 2004; Sousa et al., 2004; Valério et al., 2007a,b; Cardoso & Guerra, 1997; Figueiredo et al., 

2007, Melo et al., 2009); chemical compositions of pre and proto-historic gold artefacts (Soares et al., 

2004, 2010); and the reconsideration of Atlantic and Mediterranean archaeometallurgical influences in 

Portuguese territory (Cardoso et al., 2002; Melo, 2000).  

Lately, research involving some other techniques has provided further significant contributions to the 

archaeometallurgical field. The microstructural characterization of metal artefacts and metallurgical 

debris, as well as the relationship between the thermomechanical operational chain used for artefacts 

prodution and the alloy composition has been recently under investigation in the framework of different 

research projects. Contributions also have been made relating to social and economic context of metal 

production. Among them, are worth mentioning the metallic production during Late Bronze Age (LBA) 

in Central Portugal (Figueiredo et al., 2010; Silva et al., 2008), the identification of very specific 

manufacturing techniques such as gilding by diffusion at high temperature (Figueiredo et al., 2010), 

partial melting/solid state diffusion process for the welding of gold button components (Soares et al., 

2010) and the establishment of a technological continuity from Late Bronze Age to Early Iron Age 

bronze metallurgy at the Southwestern Iberian Peninsula  (Valério et al., 2010). 

Nevertheless, in spite of the considerable progress achieved in recent years, there is still much work 

to be done concerning the metallurgy found in the Portuguese territory, especially when compared to 

what has already been done in the remaining area of the Iberian Peninsula (Rovira, 2002). The earlier 

sites with evidence of metallurgy in the Portuguese territory belong to the transition of the fourth to the 

third millennium BC (Soares and Cabral, 1993). The study of Chalcolithic materials from Vila Nova de 
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São Pedro archaeological site is of paramount importance, since a very extensive and diversified 

metallurgical collection has been recovered at this site, and is deposited at Museu Arqueológico do 

Carmo (MAC) (Soares, 2005). Their study is of utmost importance on the comprehension of the first 

steps of the metallurgy not only in the Portuguese Estremadura but also in the Iberian Peninsula. 

It is believed that the first metallic elements used during pre-historic times to manufacture artefacts 

were those present in the native form such as copper, gold or silver. However these last two elements 

are commonly found associated with each other in their mineral form; frequently native gold is 

associated with silver forming a natural alloy called electrum. Copper can also be found associated 

with arsenic (Mohen, 1990).  

Later, fortuitous alloys due to the significant presence of other metallic elements in the ores made their 

appearance. It was through the observation of different characteristics, like higher hardness and/or 

different colours that led the first metallurgists to experiment the production of copper based alloys. 

The bronze was certainly the most commonly used alloy during pre-historic times. Bronze alloys were 

progressively introduced in the Portuguese territory during the Bronze Age (BA ~2250-1200 BC) 

(Craddock, 1995). 

The main subject of study in this thesis is the investigation of coppers and arsenical coppers found in 

the Portuguese Estremadura, in the Chalcolithic settlement of Vila Nova de São Pedro in order to 

establish eventual relationships between elemental composition and typology and also to verify 

eventual correlation between thermomechanical properties, hardness and elemental composition of 

the artefacts. 

 

1.1 The archaeological site of Vila Nova de São Pedro 

The Portuguese Estremadura is a key region in studies of the Chalcolithic period due to the existence 

of impressive large settlements with evidences of metallurgy (Soares and Cabral, 1993). Three sites: 

Vila Nova de São Pedro (Azambuja), Zambujal (Torres Vedras) and Leceia (Oeiras) were subject to 

extensive archaeological excavations, which lead to a comprehensive body of data allowing a 

reasonable definition of the Chalcolithic culture of the region (Műller et al., 2008). The collection of 

copper-based materials analysed in this study comes from the settlement of Vila Nova de São Pedro 

(VNSP) (Figure 1.1).  
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Figure 1.1. Location of the settlement of Vila Nova de São Pedro and some views from the site today. 

 

The Castro de Vila Nova de São Pedro is a Chalcolithic fortified settlement located at Vila Nova de 

São Pedro (Azambuja, Lisbon). Since 1971, this archaeological site is classified by IGESPAR as a 

Monument of National Interest. 

Its material richness is of great value to the understanding of relevant aspects of pre-historic 

agricultural societies. The settlement presents a central defensive structure and two outer walls, 

surrounding the interior where diachronic occupations were found. It was occupied since the Late 

Neolithic to the Late Chalcolithic or to the Early Bronze Age and may have had sporadic occupations 

during the Middle Bronze Age. The need to build this complex defensive system is probably due to the 

accumulation of surplus of agricultural productivity, as inferred from the various excavation campaigns. 

Alongside agriculture and grazing, some evidence of other practices such as hunting, fishing and 

gathering were found. Lots of pottery was also collected in the settlement, arrowheads, household 

utensils, gouges, axes, scrapers and loom weights and articles of worship such as shale, clay and 

limestone idols. The objects found in VNSP are currently deposited in the Archaeological Museum of 

Carmo, Lisbon (Soares, 2005) (Figure 1.2). 

The defensive structure of this settlement was discovered by Hipólito Raposo in 1936. Following his 

death, archaeological excavations were carried out in the settlement from 1937 to 1950 by 

archaeologist Afonso do Paço with the support of Reverend Eugene Jalhay. Unfortunately, there are 

no field notes of the early excavations. In 1955 and 1959 Edward Sangmeister and Hubert Savory, 

respectively, participated in the excavations (Műller et al., 2008). Several hundred copper and some 

bronze artefacts were discovered at VNSP but there are not sufficient studies made of the available 

materials (Paço, 1952, 1955, 1989; Junghans et al., 1968, 1974). A small part of the metallic collection 

was analysed in this thesis studies. Despite some general idea about the evolution of the metallurgy in 

this region (Soares et al., 1996), additional research involving metallic artefacts are needed to answer 

Vila Nova de 

São Pedro 

• 
• 
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more precise and essential questions. These studies could provide important answers about the 

ancient metallurgy of this region and intercultural relationships with other Iberian prehistoric societies. 

   

Figure 1.2. Exhibition of finds from VNSP at MAC and a model and plan of the archaeological site. 

 

The present work intends to contribute to increase the knowledge of this important Portuguese 

archaeological site not only by evaluating the arsenic content of copper-based artefacts and 

correlating it with artefact typologies and functions, but also in the determination of the manufacturing 

operations involved such as forging and annealing, their evolution and their contribution to the 

production of harder or stronger metallic material.   
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2. Experimental Procedure 

2.1 Materials  

The original collection selected for this study was composed by 275 metallic artefacts or fragments of 

metallic artefacts, all recovered from Afonso do Paço’s archaeological excavations at VNSP. Most of 

the artefacts could be classified according different typologies: awls, wires, chisels, axes, blades, 

arrowheads, saws, daggers and a socket. Some of the artefact fragments had an indeterminate 

typology due to the fact that their size is too small and shapeless to facilitate a correct identification of 

the object function. An explanation for the shapeless objects and other fragments that show intentional 

cuts (like de axe’s blades) could be that they were scraps or ingots from the manufacturing process 

and were put aside for posterior remelting. These copper based artefacts were attributed to the 

Chalcolithic period, but some could already belong to the Early Bronze Age (EBA) due to their 

typology. 

This initial collection of 275 objects was grouped by typologies and each artefact was individually 

packed and identified. Table 2.1 summarises the division performed and the code assignment: VNSP 

followed by a number and a letter corresponding to the assigned typology. Images and description of 

each typology are presented in Appendix I.  

Table 2.1. Summary of typologies, quantities and codes attributed. 

Typologies* Number of artefacts Code (VNSP) 

A – Awl  121  001A – 024A; 026A – 122A 

B – Wires  9  123B – 131B  

C – Chisels 18  132C – 143C; 261C – 266C 

D – Axes 43 144D – 176D; 178D; 267D – 275D 

E – Blades, Arrowheads 5  179E – 183E 

F – Saws  3  185F – 187F  

G – Daggers 3 177G; 188G; 189G 

H – Socket 1 190H 

I – Indeterminate  72  025I; 184I; 191I – 260I 

Total 275  

* In Portuguese: A – Punções; B – Arames; C – Cinzeis; D – Machados; E – Lâminas/Pontas de seta; F – Serras; G – Punhais; 

H – Alvado; I – Indeterminados 

 

2.2 Methodology 

The methodology used in this study consisted of the application of several analytical techniques. 

These techniques did not require any surface preparation (EDXRF) or involved the removal of the 

superficial corrosion in a very small area or sampling (micro-EDXRF, OM, SEM-EDS, Vickers micro-

hardness testing). Table 2.2 summarises the techniques used to characterize de metallic studied 

artefacts and main objectives to achieve. 
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Table 2.2. Techniques used to characterize de metallic artefacts studied in this project. 

Analytical Techniques Number  of artefacts analysed  Information expected 

EDXRF  Initial group (275 artefacts) Main alloying elements (corrosion products influence). 

Micro-EDXRF  Selection of 53 artefacts Alloy elemental composition 

OM 53  

Identification of different phases, inclusions and the 

thermomechanical processes applied during artefacts 

production – the operation chain. 

SEM-EDS 2 

Determination of main chemical phases present in metal 

alloy and distribution of the chemicals elements and minerals 

in the inclusions. 

Vickers micro-hardness 

testing  

51  Establish the actual effectiveness of the thermomechanical 

processes in the hardness of the artefact. 

 

The entire collection was first analysed by Energy-Dispersive X-ray Fluorescence Spectrometry 

(EDXRF), in order to identify the main alloying elements (and some impurities). Subsequently, a 

subset of 53 artefacts was selected considering several aspects: archaeological significance, typology 

and conservation condition. From this subset, in 51 cases it was possible to remove a small fragment 

that was subsequently mounted in epoxy resin and prepared for micro-EDXRF and Optical Microscopy 

(OM) analysis. One part of the artefact VNSP145D (the cutting edge of an axe) was sampled in two 

perpendicular cross sections (longitudinal and transversal) and mounted separately in epoxy resin, 

giving a total number of 54 samples.   

The remaining two artefacts had unique characteristics that imposed us a different approach: one of 

the artefacts (VNSP196I) had a unique circular shape of undetermined typology and the removal of a 

small sample would interfere with its shape; the other, a saw fragment (VNSP187F) presents a thick 

corrosion layer and a thin metal core, hence being evaluated too fragile for sampling. Both artefacts 

were then cleaned from the superficial corrosion layer in a small elliptical area (with approximate 2-3 

mm diameter), which was also analysed by micro-EDXRF. The cleaned areas were also observed by 

OM. The latter procedure was more difficult to perform when compared to samples mounted on resin, 

and the micrographs often presented imperfections. Nevertheless, this procedure provided a 

satisfactory interpretation of the microstructure that could be obtained with minimum damage to the 

artefacts. 

Two of the mounted cross-sections were also analysed by Scanning Electron Microscopy with X-ray 

microanalysis (SEM-EDS).  

It is important to keep in mind that the archaeological copper-based artefacts present a characteristic 

corrosion layer that depends on the conditions of burial. The corrosion products are commonly 

enriched with some elements, due to the different elemental electrochemical potentials, and due to the 

different corrosion products stabilities (Robbiola and Portier, 2006). As a result, the elemental 

composition of archaeological artefacts will usually be different if determined in the surface of the 

artefact or in a small area cleaned of corrosion products. Therefore the EDXRF was used to identify 
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the main metal constituents, but these results can only be considered semi-quantitative due to the 

significant influence of the superficial corrosion layer. Analysing the artefacts by micro-EDXRF 

spectrometry allow us to determine quantitatively the elemental composition with a minimum damage 

to the artefact since only a small area of the artefact must be cleaned from the superficial corrosion 

layer (spot diameter analysed by Micro-EDXRF<100 µm).  

The advantages of sampling artefacts for further resin mounting far outweigh the disadvantages in 

terms of results and possibilities of analysis, if this operation is made carefully and well designed. The 

removal of samples is performed when the artefact is stable, incomplete and does not affect the visual 

interpretation. Polished samples mounted in resin are much easier to handle and less dangerous for 

the artefact when compared to dealing with a localized polished area in the artefact itself. 

Nevertheless, sometimes the later is the only option available to study an object. 

The following sections of the Methodology will detail each analytical technique used. 

2.2.1 Energy Dispersive X-ray Spectrometry 

A preliminary non-invasive study of 275 fragments of artefacts was conducted in an EDXRF 

spectrometer (Kevex 771) installed at ITN. 

This spectrometer is equipped with a 200 W Rh X-ray tube, secondary excitations targets, radiation 

filters and a Si(Li) detector with a resolution of 175 eV (Mn-K). The characteristic X-rays emitted by 

chemical elements present in the excited area of the sample (circular shape with a diameter of about 

2.5 cm) are measured in a liquid nitrogen cooled Si(Li) detector. The chamber of the spectrometer 

allows the analysis of whole artefacts with dimensions up to of 35x35x10 cm
3
. Details regarding the 

equipment, analytical conditions and quantifications procedures have been previous published (Kevex, 

1992; Araújo et al., 1993). 

Each artefact was analysed in one spot, using two excitation conditions – Ag secondary target and Gd 

secondary target. The analytical conditions used in this study are presented in Table 2.3. 

2.2.3. Experimental conditions for EDXRF analyses of copper-based samples. 

Excitation  
Tube voltage  

(kV)  

Current intensity  

(mA)  

Live time  

(s)  

Elements of interest  

(with respective X-ray peak)  

Ag secondary target  35  0.5  300  
Cu-K, Pb-L, As-K and Fe-K 

Bi-L, Zn-K Ni-K 

Gd secondary target  57  1.0   300  Sn-K  Sb-K  

 

2.2.2 Micro-Energy Dispersive X-ray Spectrometry 

Small cleaned surface areas and mounted cross-sections were analysed with an ArtTAX Pro 

spectrometer belonging to the DCR.  
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This micro-EDXRF spectrometer is equipped with a low power 30 W Mo X-ray tube and an electro-

thermally cooled silicon drift detector with a resolution of 160 eV (Mn-K). Poly capillary lenses 

collimate the primary X-ray beam enabling a spatial resolution approximately 70-100 m. 

Quantitative analysis was done using WinAxil software (Canberra, 2003) with readings performed in 3 

different spots for each artefact. In order to optimize the accuracy of the method, the experimental 

calibration factors were calculated by the analysis of a standard reference material. This material 

should have a composition similar to the composition of the samples to be analyzed. For that purpose, 

a standard material (Phosphor Bronze 551 from British Chemical Standards) was analysed using the 

same experimental conditions, to calculate the experimental calibration factors for the elements of 

interest of copper-based alloys. Due to spectral interferences among the As-K and Pb-L X-ray 

peaks, the quantification limit for arsenic could not be accurately calculated. The value attributed to 

arsenic was estimated using the limit of quantification determined for lead due to the similar absorption 

and enhancement effects in the copper-based matrix.  The quantification limits obtained are presented 

in Table 2.4.  

Table 2.4. Quantification limits for EDXRF analyses of copper-based alloys. 

(values in %; calculated as 10xbackground
0.5

/sensitivity (IUPAC, 1978) using the standard material Phosphor 

Bronze 551). 

Cu Sn Pb As Fe Zn Ni 

0.03 0.60 0.07 0.07 0.05 0.04 0.04 

 

The determination of the accuracy of the analysis made with Micro-EDXRF was accomplished with the 

quantification of the Phosphor Bronze 552 from British Chemical Standards (Table 2.5).  

Table 2.2.5. Accuracy of the micro-EDXRF quantitative analyses of copper-based alloys. 

 (values in %; * mean value and standard deviation of 3 independent measurements). 

Standard Element Certified Obtained* Relative error (%) 

BCS 552 Cu 87.7 88.2 ± 0.6 0.6% 

 Sn 9.78 10.1 ± 0.4 0.4% 

 Pb 0.63 0.56 ± 0.01 10.4% 

 Fe 0.10 0.11 ± 0.02 3.0% 

 Ni 0.56 0.51 ± 0.02 15.9% 

 Zn 0.35 0.46 ± 0.02 29.0% 

 

The micro-EDXRF exhibits accuracy with low relative errors for the major elements. The minor 

elements like iron, nickel and zinc present higher relative errors. The zinc and nickel have a strong 

spectral interference with the alloy main constituent (Cu) and the iron exhibits a spectral interference 

with escape peak of copper.  
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2.2.3 Metallographic preparation 

Sectioning and Mounting 

Samples were extracted from the corresponding archaeological pieces by conventional cutting 

methods, although applying a special care required for these types of archaeological materials. Due to 

the small size of the samples, they were fixed in an epoxy resin. Consult Appendix III to see the cross 

section sampled from each artefact. 

Polishing 

Mounted cross-sections were polished with SiC abrasive paper (P600, P1000, P2500 and P4000 grit 

size) and diamond paste (3 m and 1 m) using a rotary polishing wheel. Preparation (without 

sectioning) of small observation areas directly on the artefacts were also manually cleaned and 

polished with SiC abrasive papers and diamond pastes (6 m, 3 m and 1 m) with the help of a 

cotton swab. This process removed all cut marks and scratches from the sample surface, allowing for 

proper material characterization. 

Etching 

For metallographic observation, etching with a 10% ferrous chloride solution and a time ranging from 3 

to 5 s were carried out to reveal microstructural features, like grain boundaries, coring, annealing twins 

or slip bands. 

2.2.4 Optical Microscopy 

Metallographic observation of the cross-sections and small superficial areas of cleaned samples were 

carried out with an optical microscope Leica DMI 5000 M, under bright field (BF), dark field (DF) and 

polarized light (Pol) illumination. Samples were observed unetched and after etching with an aqueous 

ferric chloride solution. 

2.2.5 Scanning Electron Microscopy with X-ray Microanalysis 

Observations on the mounted cross-sections were made in a scanning electron microscope Zeiss 

DSM 962 equipped with a secondary electrons detector (SE) and a backscattered electrons detector 

(BSE) installed in CENIMAT.  

The equipment also includes an EDS spectrometer Oxford Instruments INCAx-sight with an ultrathin 

window used for semi-quantitative elemental analysis. For resin mounted samples the metallographic 

observations were done after the specimen had been sputter coated with carbon. 
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2.2.6 Vickers MicroHardness Testing 

For the subsequent Vickers microhardness studies, mounted cross-sections were again ground and 

polished to 1m diamond paste to remove the etched layer. This test was carried out using Zwick-

Roell Indentec ZHV µ Micro Hardness testing equipment installed at CENIMAT.  

The hardness of a material is defined by its plastic deformation resistance against the penetration by a 

harder material. The hardness of metals and other no-soft materials is usually given by the Vickers 

Hardness number (HVN), which is calculated by the load applied over the surface area of the 

indentation of a diamond pyramid into a prepared surface (Dieter, 1980). 

The Vickers micro-hardness was measured in the cleaned areas and avoiding the interference of 

coarser oxide inclusions or other less representative features. Three indentations were made for each 

sample with a force of 0.2 Kgf/mm
2
 (HV0.2) for 10s. In order to quantify the hardness profiles along a 

transversal and longitudinal axis, particular procedure was made for artefact VNSP263C: 45 

measurements in the longitudinal axis and 15 measurements in the transversal axis. 

2.2.7 Statistical Analysis 

Statistical analysis was performed using Matlab Version 7.10.0.499 (R2010a) from The Mathworks,Inc 

(tm). Paired t-tests of the hypothesis that two matched samples come from distributions with equal 

means were performed using the function “t-test” from the statistics toolbox. Linear regression analysis 

was performed by the function "polytool” also from the statistics toolbox. 

Fisher’s exact test was performed using an online tool available at: 

http://www.graphpad.com/quickcalcs/contingency1.cfm 

Null hypothesis were rejected at significance levels lower than 5%. 

2.2.8 Protection and Chromatic Reintegration of Artefacts 

After the analysis and sampling, the artefacts that were prepared for elemental and microstructure 

characterisation were submitted to a later intervention to avoid the occurrence of corrosion processes 

in the cleaned or cut area. This conservation treatment consisted essentially in the protection and 

reintegration of the affected/altered areas. The following steps were applied to all artefacts: 

- Application of a corrosion inhibitor Benzotriazol 3% (m/v in ethanol);  

- Application of an acrylic resin for protection Paraloid B-72 3% (m/v in ethanol); 

- Chromatic reintegration of the area with a mixture of pigments in the Paraloid B-72 media 

solution to approximate the coloration of the surrounding corrosion products;  

- Application of a final protection with a microcrystalline wax dissolved in “white spirit”.  

The final objective is to return the artefacts to the museum with an individual report consisting of the 

location of the intervened area and the conservation treatment applied. 
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3. Results and Discussion 

 

3.1 Alloy type 

EDXRF analysis of 275 artefacts was performed to determine the main metal constituents. All the 

obtained results are presented in Appendix II. A summary is presented in Table 3.1. 

The results indicate that the collection of the 275 artefacts is composed mainly by copper (pure copper 

or copper with some impurities, like arsenic or antimony) and copper with arsenic, where arsenic 

content seems to be more than vestigial, i.e. an alloy of copper and arsenic (As>2%). Three artefacts 

revealed to be copper alloyed with tin (bronze) and two to be iron alloys, being then excluded from this 

study. 

Table 3.1. Summary of main elements observed in VNSP artefacts (amount of objects sorted by typologies). 

Typologies Number of artefacts Cu Cu+As Cu+Sn Fe 

A – Awl (punch) 121 93 26 2 0 

B – Wires  9 5 4 0 0 

C – Chisels 18 5 13 0 0 

D – Axes 43 17 26 0 0 

E – Blades, Arrowheads 5 0 4 1 0 

F – Saws  3 3 0 0 0 

G - Daggers 3 0 3 0 0 

H – Socket 1 0 1 0 0 

I - Indeterminate  72 59 11 0 2 

Total 275 182 (66%) 88 (32%) 3 (1%) 2 (1%) 

 

 

Figure 3.1. Summary of the elemental 

composition of the 275 VNSP 

artefacts.  

Figure 3.2. Distribution of typologies and composition (Cu and Cu+As). 

A summary of the elemental composition of the VNSP artefacts is presented in Figure 3.1 and a 

distribution of typologies and composition by copper and copper with arsenic is presented in Figure 

3.2. Five artifacts composed by Cu+Sn and Fe alloys were excluded because the aim of the study is 
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the cooper and copper with arsenic artefacts. In this classification of the initial group it is important to 

refer that no elemental quantification was made for the alloy. Therefore, it is possible that in some of 

the artefacts considered as made of copper with arsenic, i.e. made of an alloy of these two elements, 

the arsenic is only present as an impurity (0.07%<As<2%, Northover, 1989) since only the corrosion 

layers were analysed by EDXRF. It was observed that blades/arrowheads and daggers are all copper 

with arsenic. Also the number of artefacts of copper with arsenic is higher than the ones only with 

copper in chisels and axes. In the remaining typologies the higher number of artefacts belongs to the 

copper group. 

Some authors refer that regarding VNSP artefacts collections, weapons systematically contain higher 

amounts of arsenic than tools. There is also a reference that axes were probably used as ingots and 

were traded over long distances, and for that reason are not considered weapons (Soares, 2005). 

In order to determine if there is an association between the presence and absence of arsenic and the 

artefact typology (either tools or weapons), three groups of typologies were made: tools (A - awls, C – 

chisels, D – axes and F - saws), tools excluding axes (A – awls, C – chisels and F – saws) and 

weapons (E – blades, arrowheads and G - daggers). In the second group it was assumed that axes 

were used as ingots. For this test we excluded the artifact with a typology of a blade/arrowhead 

composed by Cu+Sn. 

In the analysed collection from VNSP a statistically significant association was found between the fact 

of being a weapon and the presence of arsenic in the copper alloy (Fisher exact test p=0.0009 when 

comparing tools including axes and Fisher exact test p=0.0002 when comparing tools excluding axes).  

 

3.2 Alloy composition 

As previously explained, a subset of 53 fragments of artefacts was selected to be analysed by micro-

EDXRF to establish their elemental composition. 

Micro-EDXRF results of metallic artefacts from VNSP are presented in Appendix IV. It indicates that 

the selected artefacts are composed with copper and copper with arsenic (arsenic contents varying 

between 0.09% and 9.13%). Furthermore, 21 artefacts exhibit arsenic content that could be 

considered impurities and not an alloy constituent i.e. 0.07%<As<2% (Northover, 1989). Other 12 

exemplars exhibit arsenic content below the detection limit (<0.07%). Ultimately, 20 artefacts, 

representing 38% of this subset, present arsenic content that could be considered an alloy constituent 

(As>2%). Iron content is always below the detection limit (<0.05%) with the exception of two artefacts 

presenting 0.07% and 0.21%. 

It was observed that blades/arrowheads presented an arsenic content superior to 2%. On the other 

hand wires and saws presented an arsenic content below to 1%.  In the others typologies there are 

artefacts with lower and higher arsenic contents with the exception of the socket (As<2%) (Figure 3.3). 
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Again, a statistically association was found between the fact of being a weapon and the presence of 

arsenic in the copper alloy (Fisher exact test p=0.0058 when comparing tools including axes and 

Fisher exact test p=0.0131 when comparing tools excluding axes). Therefore, for this set of weapons it 

can be hypothesized that there was an intentional addition of arsenic to copper in order to increase its 

hardness.  

 

Figure 3.3. Typologies versus As (%) for the 53 artefacts analyzed by micro-EDXRF. 

 

3.3  Microstrutural characterization 

OM and SEM-EDS analysis identified different phases, common inclusions and features. Appendix VI 

provides the summary of the results. The most common manufacturing characteristics were equiaxial 

grains with annealing twins in the majority of cases and, more rarely, slip bands. Only two cases 

present as-cast microstructures (C). 

In etched samples, annealing twins (recristallization) looks like parallel strips longitudinally enclosed in 

the -phase grains. They appear after a metal has been mechanically cold worked (plastically 

deformed at low temperatures, usually by hammering (F)) and softening by heat treatment (annealing 

(A)). These cycles (the thermomechanical sequences, hammering plus annealing (F+A)) were 

established with its characteristic signatures, such as near-equiaxial -copper grains, having 

polygonal shapes with straight grain boundaries, annealing twins and elongated inclusions) (Scott, 

1991). Slip bands appear in the cold work condition (workhardening) as sets of parallel lines inside the 

-phase grains. 

Another commonly observed feature is the presence of red inclusions (under DF and Pol ilumination 

on OM). It was identified by SEM-EDS as being a Cu-O compound, assigned as cuprous oxide 

(Cu2O). In other cases the presence of a blue-gray phase was found along the -copper grain 

boundaries (under BF, BD and Pol illuminations of OM) and was identified as being a Cu-As rich 
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phase. A particular case of this arsenic rich phase presenting a heterogeneous morphology was 

analysed by SEM-EDS and recognized as the copper-arsenide eutectic+Cu3As). 

This study established that the majority of the artefacts from VNSP were manufactured with forging 

and annealing operations (F+A) (Figure 3.4 and 3.5).  

 

 

Figure 3.4. Distribution of 

manufactured procedures in the 

collection of VNSP studied. 

 

Figure 3.5. Distribution of manufactured procedures versus As (%). 

Versus arsenic content in the collection of VNSP studied. 

 

 

 

The copper metal solidifies from the liquid state by the nucleation and growth of -Cu crystals. 

Usually, with non-pure metals, those crystals grow in preferred directions and form open, tree like 

structures called dendrites (Figure 3.6). Therefore, as-cast alloy microstructures should present -Cu 

dendritic structures. Nevertheless, for slow solidification rates during casting and/or low solute 

concentrations (such as low alloy elements concentrations and low elemental contaminations) much 

coarser grain morphology should be expected, sometimes with clear cored grains.  

During solidification, oxygen in excess in the liquid metal forms cuprous oxide, originating Cu2O 

inclusions. According with thermodynamic equilibrium for the Cu-O system (see binary phase diagram 

Cu-Cu2O - Figure 3.7), a lower melting point mixture of -Cu phase and cuprous oxide, the eutectic ( 

+ Cu2O) will exist in the as-cast structures. This eutectic appears as an interdendritic network of oxide 

inclusions in the -Cu matrix.  

The presence in the alloy composition of high oxygen affinity elements, such as As, Sn or P, reduce 

these cuprous oxide formation. Intense thermomechanical treatments will contribute to destroy the 

inclusions network.  
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Figure 3.6. As-cast microstructures with columnar 

dendrites. 

 

 

Figure 3.7. Binary diagram Cu-Cu2O (Cu-O eutectic 

constituted by -Cu and Cu2O) (AMS, 1973). 

Only two of the artefacts (of indeterminate typology) analysed present similar characteristics to the as-

cast microstructures: VNSP194I e VNSP196I (Figure 3.8). In VNSP194I was possible to observe very 

large grains (approximately 520 m) with some deformations which are an indicator of the application 

of some forging and heating, but not enough to cause a rearrangement (recrystallization) of the grains 

structure and develop annealing twins.  

On the other hand, artefact VNSP196I had dendritic features but since a small area of the surface was 

cleaned of corrosion products, the columnar dendrites were not clearly visible. The VNSP194I was 

probably part of an incomplete artefact that was left out before finished and VNSP196I should be a 

casting droplet taking into account its circular and flatted shape (See Appendix III). 

VNSP194I BF Etched VNSP196I BF Etched 

  

 

Figure 3.8. MO micrographies of indeterminates VNSP194I and VNSP196I, presenting as-cast microstructures, 

under BF illumination and after etching. 
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The artefacts with lower content in arsenic presented cuprous oxide (Cu2O) inclusions in the 

characteristic eutectic ( + Cu2O) islands.  

Under BF illumination the Cu2O are usually dark globular bodies dispersed in a copper background 

and take a red colour under DF and Pol illumination. Figure 3.9 shows the cuprous oxide particles 

forming a network, outlining the dendritic grains. This feature was observed in all typologies with low 

arsenics contents. 

VNSP144D BF VNSP144D DF VNSP144D Pol 

   

VNSP150D BF VNSP150D DF VNSP150D Pol 

   

 

Figure 3.9. MO micrographies of axes VNSP144D (As<0,07%) and VNSP150D (As~0,24%) presenting copper 

oxides islands in a copper matrix; under BF, DF and Pol illumination. 

 

The interdendritic network of cuprous oxide particles is partial destroyed after thermomechanical 

operations. Cuprous oxide particles change form, and are present as stringers or aligned rows of dark 

particles. Due to heating the oxide particles are much larger and fewer in number than in the as-cast 

microstructure creating what is denominated particle coalescence effect (Scott, 1991).  

An example is observed in the axe VNSP178D, where is displayed the rearrangement of these 

inclusions particles is displayed (Figure 3.10). 
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VNSP178D BF VNSP178D DF VNSP178D Pol 

   

 VNSP178D BFEtched  

   

 
Figure 3.10. MO micrographies of axe VNSP178D revealing the annealing twins and rearrangement of copper 

oxides, under BF, DF and Pol illumination and after etching. 

 

SEM-EDS analyses were performed at the blade of axe (VNSP268D) to allow a safer confirmation of 

the oxide nature of the globular phase in the eutectic formation (Figure 3.11). Microanalysis proved 

that those inclusions are composed by Cu and O. 

This axe is an example of an artefact with low content in arsenic (As<0.07%) and presenting the 

characteristic Cu2O inclusions in a -Cu matrix. The cuprous oxide particles form a network, outlining 

the dendritic cells.  

VNSP268D BF  

 

 

Figure 3.11. MO micrographies of VNSP268D; SEM-BSE image with the region marked on the OM micrography 

showing the identification of two points by EDS; P1: Cu  phase; P2: Cu2O inclusions. 

 

P2 

P1 

Cu 
Cu+O 

• 

• 



18 
 

The majority of the analysed microstructures display equiaxial grains with annealing twins (Figure 

3.12) and some of them also exhibit slip bands (Figure 3.13). 

 

VNSP133C BF Etched VNSP137C BF Etched  

  

 

Figure 3.12. MO micrographies of chisels VNSP133C and VNSP137C revealing the annealing twins, under BF 

illumination and after etching. 

 

VNSP025I BF Etched VNSP025I BF Etched amplified 

  

 

Figure 3.13. MO micrographies of indeterminate VNSP025I revealing slip bands, under BF and after etching. 

 

This indicates the use of one or more cycles of forging plus annealing and also that, in some cases, 

the operation sequence was finished with forging without subsequent annealing. In most cases, this 

final forging procedure was not applied, which can be deduced from the absence of slip bands. 

Several microstructures exhibited deformed grains and very elongated cuprous oxides, clearly 

evidencing an important deformation applied to shaping the artefact. In the particular case of artefacts 

VNSP123B and VNSP124B (both wires) (presented in Figure 3.14), the microstructure that can be 

observed in the edges show evidence of being cut with some kind of instrument in order to obtain the 

final width of the artefact.  
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VNSP123B VNSP124B 

  

  

 

Figure 3.14. MO micrographies of wires VNSP123B and VNSP124B revealing the elongation of the copper 

oxides by deformation especially in the edges, under BF illumination and after etching. 

 

Due to arsenic segregation during solidification, some artefacts present a primary -copper phase 

exhibiting cored grains. Intense mechanical work elongates this features resulting in segregation 

bands that can be visualized after etching (Figure 3.15). 

VNSP146D BF Etched VNSP147D BF Etched 

  

 

Figure 3.15. MO micrographies of axes VNSP146D and VNSP147D revealing the elongation of the segregation 

bands, under BF illumination and after etching. 

 

According the Cu-As phase diagram (see Figure 3.17), in equilibrium conditions, the -Cu phase can 

dissolve up to approximately 8% of arsenic before the formation of the arsenic rich phase (As-rich ( 

phase – Cu3As), but under the relatively fast cooling rates of common casting this  phase has been 

observed in alloys with only 2% As (Northover, 1989). The fast cooling rate is not unusual because 

most artefacts have a very small size, but it suggests that there was not any intent to control cooling 
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process. The thermomechanical procedures of annealing that followed were also not enough to 

homogenize this kind of alloys. 

Therefore, were found artefacts presenting the As-rich () phase (consult Appendix VI) with the 

characteristics intergranular blue-grey formation in -copper matrix under BF illumination (under DF 

and Pol illumination appeared as a darker blue colour) (Figure 3.16). It is also observed a decrease of 

cuprous oxide, probably due to the deoxidise properties of the arsenic. 

VNSP180E BF VNSP180E DF VNSP180E Pol 

   

VNSP180E BF Etched VNSP196I BF Etched amplification 

  

 

Figure 3.16. MO micrographies of blade VNSP180E revealing the As-rich phase following the grain boundaries, 

under BF, DF and Pol illumination and after etching. 

 

This As-rich phase () could be the consequence of a phenomenon called inverse segregation. 

Inverse segregation is a result of shrinkage-driven flow of enriched liquid toward the outer faces 

(Buschow, K.H.Jürgen et al, 2001), that occurs during casting resulting in a concentration of low 

melting constituents, as arsenic in copper based alloys, in those regions in which solidification first 

occurs. 

 

Arsenic segregation in alloys with an overall arsenic content below its solubility limit (7-8% As, in 

equilibrium) provides evidence of a non-equilibrium solidification after pouring the alloy in the mould. 

According to previous studies (Northover, 1989), the annealing of arsenical coppers during ancient 

times was conducted with temperatures of about 300-400ºC. This range of temperatures is noticeably 

lower than the temperature necessary (approximately 600-700ºC) to homogenize this type of alloys in 

a reasonable time. Moreover, the already segregated microstructures could require an even higher 

temperature to be homogenized (Budd, 1991).  
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Figure 3.17. Section of Cu-As phase diagram in 

equilibrium conditions evidencing the formation of the 

arsenic-rich  phase at As-richer alloys.  

(Adapted from Subramanian and Laughlin, 1988). 

  

               

  

 

 

Figure 3.18. Schema representing segregation of 

arsenic from the solid solution over time, resulting in 

As-rich phase precipitation – aging process. 

 

It was observed that in some cases the thermomechanical processing (forging plus annealing cycles) 

in artefacts with arsenic content below its solubility limit is enough to chemically homogenize the alloy, 

since no arsenic segregations could be observed. Also, the rate of cooling and temperature could be 

lower enough to minimize the inverse segregation of arsenic. In other cases, the As-rich ( phase is 

still present, mostly in the intergranular -Cu regions. Examples of this is the awl VNSP001A 

(As~4.36%) presenting a -Cu phase and As-rich ( and a chisel VNSP140C showing a single phase 

structure (As~3.43%) (Figure 3.19). 

VNSP001A BF VNSP140C BF  

  

 

Figure 3.19. MO micrographies of awl VNSP001A and chisel VNSP140C under BF illumination. 

Aging phenomenon 

Thermomechanical work (F+A) 

Cu3As 

28,25% 

 

         As rich phase 

 

             As rich phase 

          As rich phase 
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The awl is a smaller artefact than a chisel and the control of temperature could be more difficult to 

accomplish. 

Some authors refer that the solubility of arsenic in copper falls markedly at low temperature and that 

As-rich ( phase (Cu3As) can precipitate from solid solution at ambient temperatures over 

archaeological times (Budd and Ottaway, 1995). Therefore, the As-rich ( phase can precipitate along 

grain boundaries by natural aging (slow evolution to a more stable condition) during the thousands 

years in burial context. In those cases the As-rich ( phase appears thicker (Schema in Figure 3.18 

and examples in Figure 3.20).     

VNSP097A BF VNSP097A BF amplified 

  

VNSP148D BF VNSP148D amplified 

  

 

Figure 3.20. MO micrographies of awl VNSP097A and axe VNSP148D revealing a thicker arsenic rich phase 

following the grain boundaries, under BF illumination.  

 

SEM-EDS microanalyses were performed at the blade of an axe (VNSP148D) to allow a better 

characterisation of the As-rich ( phase developed by inverse segregation. Two different regions of 

the artefact were studied. According to the equilibrium phase diagram for Cu-As system (Figure 3.17), 

for hypoeutectic alloys (As<20.8%), the second solidification transformation is the 

eutecticCu+formation, where  (Cu3As) is constituted by 28.25% As. 

In the first region analysed by SEM-EDS (Figure 3.21), the arsenic rich phase seems to form a 

heterogeneous layer since it shows a small difference in colouration from the centre to the edges. The 

As-rich () phase presents a composition of 34.3% As in a central a (spot P1) and 32.5% As near the 
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edge (spot P2). Outside this phase (spot P3) the arsenic content is 6.7%, which is clearly a non-

supersaturated -Cu phase composition.  

VNSP148D BF - Region 1 

 

 

 

Figure 3.21. MO micrographies analysis of VNSP148D – Region 1; SEM-BSE image with EDS analysis of tree 

points; P1 and P2: As rich  phase; P3: Cu  intermetallic phase. 

 

The phenomenon described earlier in Figure 3.18, could explain the compositional gradient observed. 

Over the years, resulting from an aging process, an increase of arsenic concentration in the As-rich () 

layer could occur due to precipitation of the  intermetallic phase from solid solution (Budd and 

Ottaway, 1995). Also, a preferential copper leaching resulting from corrosion processes would give 

arsenic concentrations higher than expected. 

The second region analysed by SEM-EDS allows the morphologic characterization of the eutectic 

(+ (Figure 3.22) as being composed by -Cu islands surrounded by the As-rich ( phase. A double 

layer in the As-rich phase is also observed. 

VNSP148D BF - Region 2 

 

 

 

Figure 3.22. MO micrographies of VNSP148D – Region 2; SEM-BSE image with the region marked on the OM 

micrography showing the determination by EDS of: As rich  phase; Cu  phase and Cu  islands 
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3.4 Vickers MicroHardness measurements 

In order to study the effect of the mechanical and metallurgical state on the work hardening condition 

of the outer surface layer, microhardness measurements were made on mounted cross-sections. The 

microhardness was also determined in the blade area and in the fracture area of the artefacts where a 

blade exists. The Vickers microhardness measurements (HV0.2) of the 51 artefacts are presented in 

Appendix V with the exception of the chisel VNSP262C where a transversal and longitudinal 

microhardness cross-section profiles were obtained and presented separately. 

Some authors point to an improvement of the mechanical properties of the resultant metal with the 

addition of arsenic to copper (Mohen, 1990) plus cycles of forging and annealing. The values of 

arsenic that are known to enhance the mechanical properties of copper are 3-4% As (Rovira, 2004).   

The increased hardness of these alloys could be related to precipitation hardening and higher volume 

fraction of the As-rich phase. The  intermetallic precipitates establish strain fields in the matrix and it 

should lead to an increase in hardness (Budd, 1991).  

The results are presented in Figure 3.23, subdivided by operational chain.  

In order to determine if there was any correlation between the obtained hardness and arsenic 

percentage values for the 51 analyzed artefacts, a linear regression was performed and the 95% 

Confidence Intervals (CI) for the line slope were determined: slope=344.54±354.81. Although the 

measures show a clear trend toward a positive slope, since the 95% confidence intervals included 

values less than zero, we cannot exclude the hypothesis of no positive correlation using a linear 

model. Similar results were obtained when subdividing the analysis by operational sequence, C+F+A 

or C+F+A+FF. 

Therefore, even though it should be expected that the arsenic should confer hardness to the alloy 

(Mohen, 1990) we did not found any statistically significant association between the arsenic content 

and the measured hardness. This is probably due to the fact that the material hardness is dependent 

of other variables, as grain size, phase constitution or degree of work hardening. In certain artefacts 

hardness measurements could be also affected by deep intragranular corrosion. Consequently, it 

seems to be difficult to find a clear correlation between the arsenic content and the alloy hardness in 

these archaeological artefacts. Since studied artefacts presented different typologies, functionalities 

and diverse corrosion conditions, it was probably necessary a higher or more homogeneous number 

of samples to obtain a more conclusive result.  
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Figure 3.23. Vickers microhardness measurements (HV0.2) versus arsenic content of the artefacts and 

operational sequence: (C+F) and (C+F)+FF. 

 

In order to compare the hardness in the blade, fracture (opposite side) and central areas for eighteen 

selected artefacts (Figure 3.24), a paired t-test was performed. The only statistically significant 

difference at 5% significance level was in the comparison of hardness between the blade and the 

centre (p=0,037), which reinforces to the conclusion that the blade is harder than the centre. The 

hardness differences between the fracture and the centre are not statistically significant (p=0.457). 

 

Figure 3.24. Comparison of microhardness measurements (HV0.2) between blade and fracture areas. 

 

The artefact VNSP262C was cut longitudinal and transversal and longitudinal microhardness profiles 

were measured along the cross section (Figure 3.25). The acquire data is presented in Appendix VII. 

The measurement data and the profile obtained for each case is presented in Figure 3.26 and Figure 

3.27. 
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Figure 3.25. View of the orientation of the cut made in the VNSP262C. 

 

 
 

Figure 3.26. Vickers microhardness measurements 

(HV0.2) in transversal profile of VNSP262C. 

 

 
Figure 3.27. Vickers microhardness measurements 

(HV0.2) in longitudinal profile of VNSP262C. 

 

The chisel VNSP262C is an artefact constituted mainly by copper (As<0.07%) and the “chaîne 

opératoire” consists in one or more cycles of forging and annealing. 

To evaluate if the longitudinal decrease in hardness observed in Figure 3.26 was statistically 

significant, a linear regression model was evaluated, assuming that all the measurements were evenly 

spaced. It yielded the following coefficients: slope= -0.322±0.106 for 95% confidence interval and y-

axis intercept= 93.637. Since 95% confidence interval for the slope didn’t include the value zero, the 

observed decrease of hardness from the blade to the interior of the artefact was statistically significant 

at 95% confidence. This means that the thermomechanical work applied in the edge of the chisel 

imprinted more hardness. 

On the other hand the transversal profile seems to indicate increasing close to surfaces (Figure 3.25). 

However it is not possible to confirm this tendency only with 15 measurements. Larger artefacts 

should be more adequate to perform microhardness measurements, allowing us to obtain more 

statistically significant conclusions. 
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4. Conclusion 

This particular collection of the settlement of Vila Nova de São Pedro exhibited great variability of 

arsenic content, which is in agreement to what is known of the Chalcolithic metallurgical tradition in 

Portuguese Estremadura (Soares, 2005). This could be explained by the association often found 

between copper ore and arsenic (Mohen, 1990). It was established in previous studies (Soares et al., 

1996) that the copper-based artefacts with significant arsenic contents are common since the middle 

of the third millennium BC. The introduction of arsenical coppers (As>2%) was understood by some 

authors as a metallurgical innovation (Craddock, 1995). 

Copper artefacts with arsenic contents less than 2% are also among the studied artefacts. The large 

quantity of artefacts and fragments of artefacts recovered from this site could indicate the existing of 

recycling operations since the arsenic content decreases with recycling operations. 

A statistically significant association was found between copper alloys with arsenic contents over 2% 

and artefacts identified as weapons. This could point out as the addition of arsenic in order to increase 

the weapon’s mechanical strength.  

However, we could hypothesize about the artefacts typology/functionality. Although the majority have 

been classified as tools, this does not mean that they would be all functional; some could have a 

ceremonial function or to be a prestige item. Therefore a clear intention of adding arsenic to the alloy 

to increase hardness could not be established. Functional artefacts would be frequently recycled 

resulting in reduced arsenic content since each melting of an arsenical copper alloy causes arsenic 

losses by oxidation and evaporation of As2O3 fumes. Other factors, such as the efficient control of the 

reducing atmosphere during melting and annealing, have as well important consequences in the 

arsenic content of copper-based artefacts (Mckerrell and Tylecote, 1972). 

The high arsenic content of some artefacts could also be associated with their colouring, so artefacts 

with increased arsenic concentrations present a more yellowish, golden colour that could be 

considered more suitable for prestige artefacts (Giumlia-Mair, 2005). In the ceremonial artefacts the 

alloy could have been selected by their colour. 

However the operational sequences identified in the manufacture of the artefacts also show that, 

artefacts with higher arsenic contents, which are harder and more difficult to work, were often 

mechanically and thermally worked, instead of being kept in as-cast condition. One of the most 

common operation sequences consisted of one or more cycles of forging and annealing. Annealing 

restores the ductility lost during hammering, enabling further deformation by forging. These cycles 

could end with a final forging procedure in order to produce a harder alloy. The operational sequence 

of annealing of the cast alloy, followed by forging in this group of artefacts is very small. Similar results 

have been reported in other studies concerning the early metallurgy in the Iberian Peninsula (Rovira, 

2004). 
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The results could indicate a primitive control or a non complete understanding of the purposes of the 

different metallurgical operations. Inverse segregation of arsenic found in this collection, evidences 

uncontrolled cooling rates during the casting operation, which difficult any latter thermal 

homogenisation. This fact could also be explained due to the small size of artefacts since in these 

cases the cooling velocity is hardly controlled.  

The most common manufacturing characteristics identified by OM were equiaxial grains with 

annealing twins in the majority of cases and, more rarely, slip bands. Another commonly observed 

feature is the presence of red inclusions (under DF and Pol ilumination). This was identified by SEM-

EDS as being the eutectic cuprous oxide (+Cu2O). In other cases, the presence of a grey blue phase 

was found in the intergranular regions (under BF, BD and Pol illuminations of OM) was also identified 

as being an arsenic rich phase (). A particular case of this arsenic rich phase presenting a 

heterogeneous morphology was tested by SEM-EDS and confirmed to be the eutectic copper 

arsenide+Cu3As). 

Regarding to micro-HV testing, although it should be expected that the arsenic was used to confer 

hardness to the alloy, it was not found any statistically significant association between the arsenic 

content and the measured hardness. It should also be expected that an artefact submitted to a final 

forging step should be harder. However this was not always the case in the artefacts analyzed. It 

seems that there are many factor to consider together, like intragranular corrosion, grain size, arsenic 

rich phases, or deformation that influence the hardness of the material. More conclusive results were 

obtained in a larger artefact (chisel) were a longitudinal measurement line of microhardness was made 

and a statistically significant decrease of hardness was observed from the edge to the center of the 

artefact. Larger artefacts would be probably more adequate to perform micro-HV measurements, 

allowing us to obtain further conclusions. 

Since studied artefacts present different typologies, functionalities and corrosion states, it is 

recommended an investigation of a higher number of samples for each typology in order to achieve 

more conclusive trends. In the future more studies, including experimental archaeology and 

archaeometallurgy research, are necessary to better understand the role of arsenic in the copper 

alloys. For example, one could try to replicate the manufacture procedure of the artefacts. 

Nevertheless, several difficulties could arise such as the control over As2O3 poisoning fumes during 

these procedures. 

The present study allowed some significant considerations regarding the primitive metallurgy at the 

Portuguese Estremadura territory. The results improved our understanding of the first steps of ancient 

metallurgy in this region. Future studies of Chalcolithic artefacts and metallurgical remains, including 

crucibles, slags, and metallic debris from metallurgical operations carried out at VNSP, available on 

the MAC collection will provide further information on the evolution of the copper-based metallurgy and 

will contributed to a better knowledge of the overall ancient metallurgy of the Iberian Peninsula. 
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Appendix I – Photographic documentation of metallic artefacts from VNSP 
 

 

Figure I.1. Awls: VNSP001A – VNSP0122A. 

 

 

Figure I.2. Wires: VNSP123B – VNSP131B. 
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Figure I.3. Chisels: VNSP132C – VNSP143C; VNSP261C – VNSP266C. 

 

 a) 

 b)   

 

 c) 

 

Figure I.4. Axes a) VNSP144D – VNSP176D; b) VNSP267D– VNSP275D; c) Distal proximity of Axe VNSP178D. 
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. 

 

 

 

Figure I.5. Blades/arrowheads: VNSP179E – VNSP183E. 

 

 

Figure I.6. Saws: VNSP185F – VNSP187F. 

 

 

 

Figure I.7. Distal proximity of Daggers: VNSP177G; 

VNSP188G-VNSP189G. 

 

 

 

Figure I.8. Socket: VNSP190H. 
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Figure I.9. Indeterminates: VNSP191I – VNSP259I. 
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Appendix II – EDXRF experimental results 
 

Table II.1. Summary of the EDXRF experimental results of the fragments of artefacts from VNSP.  

Results are semi-quantitative. Legend: n. d.: not detected; +++: Major element; ++ / +: Minor element (Sn, As, 

Pb); (-): Vestiges; ↓ low amount; ↑ high amount. 

Artefact 
Semi-quantitative elemental composition (EDXRF)  Obs. 

Cu Sn As Sb Pb Fe Ni Ca Elem. (-)  

VNSP001A +++ n. d. + n. d. n. d. (-) n. d. + Zn Cu+As 

VNSP002A +++ n. d. n. d. n. d. n. d. (-) n. d. + Zn Cu 

VNSP003A +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP004A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP005A +++ n. d. (-) n. d. n. d. (-) n. d. + Zn Cu 

VNSP006A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP007A +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP008A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP009A +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP010A +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP011A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP012A +++ n. d. (-) n. d. n. d. + n. d. + Zn Cu 

VNSP013A +++ n. d. (-) n. d. n. d. + n. d. + Zn; Bi Cu 

VNSP014A +++ n. d. + n. d. n. d. + (-) + Zn; Rb Cu+As 

VNSP015A +++ n. d. + n. d. n. d. + n. d. + Zn; Rb Cu+As 

VNSP016A +++ n. d. (-) n. d. n. d. + n. d. + Zn Cu 

VNSP017A +++ n. d. (-) n. d. n. d. + n. d. + Zn Cu 

VNSP018A +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP019A +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu 

VNSP020A +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP021A +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP022A +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP023A +++ n. d. (-) (-) n. d. + (-) + Zn; Bi Cu 

VNSP024A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP026A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP027A +++ n. d. n. d. n. d. n. d. + (-) (-) Zn Cu  

VNSP028A +++ n. d. n. d. n. d. n. d. + (-) (-) Zn Cu 

VNSP029A +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP030A +++ n. d. n. d. n. d n. d. + (-) + Zn Cu 

VNSP031A +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP032A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP033A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu  

VNSP034A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP035A +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP036A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP037A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP038A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu  

VNSP039A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP040A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP041A +++ n. d. + n. d. n. d. + (-) (-) Zn Cu+As 

VNSP042A +++ n. d. (-) n. d. n. d. + n. d. (-) Zn Cu 

VNSP043A +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu 

VNSP044A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP045A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP046A +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu  

VNSP047A +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu 

VNSP048A +++ n. d. (-) n. d. n. d. + (-) n. d. Zn Cu 

VNSP049A +++ n. d. (-) n. d. n. d. + n. d. + Zn Cu 

VNSP050A +++ n. d. (-) n. d. n. d. + n. d. + Zn Cu 

VNSP051A +++ n. d. (-) n. d. n. d. + n. d. + Zn; Bi Cu 

VNSP052A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP053A +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP054A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP055A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP056A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP057A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP058A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP059A +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP060A +++ n. d. + n. d. n. d. + (-) (-) Zn Cu+As 
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Artefact 
Semi-quantitative elemental composition (EDXRF)  Obs. 

Cu Sn As Sb Pb Fe Ni Ca Elem. (-)  

VNSP061A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP062A +++ n. d. n. d. n. d. n. d. + (-) n. d. Zn Cu 

VNSP063A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP064A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP065A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP066A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP067A +++ n. d. n. d. n. d. n. d. + n. d. n. d. Zn Cu 

VNSP068A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP069A +++ n. d. (-) n. d. n. d. + (-) (-) Zn Cu 

VNSP070A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP071A +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP072A +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP073A +++ n. d. (-) n. d. n. d. + (-) (-) Zn Cu 

VNSP074A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP075A +++ n. d. + n. d. n. d. + + + Zn Cu+As 

VNSP076A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP077A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP078A +++ n. d. (-) + n. d. + (-) + Zn Cu 

VNSP079A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP080A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP081A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP082A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP083A +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu 

VNSP084A +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu 

VNSP085A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP086A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP087A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP088A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP089A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP090A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP091A +++ n. d. n. d. n. d. n. d. + (-) (-) Zn Cu 

VNSP092A +++ n. d. (-) n. d. n. d. + (-) (-) Zn Cu 

VNSP093A +++ n. d. (-) n. d. n. d. + (-) (-) Zn Cu 

VNSP094A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP095A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP096A +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP097A +++ n. d. ++ n. d. n. d. + (-) + Zn Cu 

VNSP098A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP099A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP100A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP101A +++ n. d. (-) n. d. n. d. + (-) + Zn Cu  

VNSP102A +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP103A +++ n. d. (-) n. d. n. d. + (-) (-) Zn Cu 

VNSP104A +++ n. d. + n. d. n. d. (-) (-) + Zn Cu+As 

VNSP105A +++ n. d. ++ n. d. n. d. (-) (-) + Zn Cu 

VNSP106A +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu  

VNSP107A +++ n. d. (-) n. d. n. d. (-) (-) (-) Zn Cu 

VNSP108A +++ n. d. n. d. n. d. n. d. (-) (-) + Zn Cu 

VNSP109A +++ n. d. n. d. n. d. n. d. (-) (-) + Zn Cu 

VNSP110A +++ n. d. (-) n. d. n. d. (-) (-) (-) Zn Cu 

VNSP111A +++ n. d. n. d. n. d. n. d. (-) (-) (-) Zn Cu 

VNSP112A +++ n. d. (-) n. d. n. d. (-) (-) (-) Zn Cu 

VNSP113A +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP114A +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP115A +++ n. d. + n. d. n. d. (-) (-) + Zn Cu+As 

VNSP116A +++ ++ n. d. n. d. n. d. (-) (-) + Zn Cu+Sn 

VNSP117A +++ n. d. n. d. n. d. n. d. + (-) (-) Zn Cu 

VNSP118A +++ n. d. n. d. n. d. n. d. (-) (-) + Zn Cu 

VNSP119A +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP120A +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu  

VNSP121A +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP122A +++ ++ (-) n. d. n. d. (-) (-) + Zn Cu+Sn 

VNSP123B +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu 

VNSP124B +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP125B +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP126B +++ n. d. + n. d. n. d. + (-) + Zn; Bi↓ Cu+As 

VNSP127B +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP128B +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 
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Artefact 
Semi-quantitative elemental composition (EDXRF)  Obs. 

Cu Sn As Sb Pb Fe Ni Ca Elem. (-)  

VNSP129B +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP130B +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP131B +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP132C +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP133C +++ n. d. + (-) n. d. + n. d. + Zn Cu+As 

VNSP134C +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu 

VNSP135C +++ n. d. + n. d. n. d. + (-) + Zn; Bi Cu+As 

VNSP136C +++ n. d. n. d. (-) n. d. + (-) + Zn Cu 

VNSP137C +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP138C +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP139C +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP140C +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP141C +++ n. d. + n. d. n. d. (-) (-) (-) Zn Cu+As 

VNSP142C +++ n. d. (-) n. d. n. d. + n. d. (-) Zn Cu 

VNSP143C +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP144D +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu 

VNSP145D +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu 

VNSP146D +++ n. d. + n. d. n. d. (-) n. d. + Zn Cu+As 

VNSP147D +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP148D +++ n. d. ++ n. d. n. d. + n. d. + Zn Cu+As↑ 

VNSP149D +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP150D +++ n. d. (-) n. d. n. d. + n. d. + Zn Cu 

VNSP151D +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP152D +++ n. d. n. d n. d. n. d. + n. d. + Zn Cu 

VNSP153D +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP154D +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP155D +++ n. d. (-) n. d. n. d. + n. d. + Zn Cu 

VNSP156D +++ n. d. + ++ n. d. + n. d. + Zn; Bi↓ Cu+As 

VNSP157D +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP158D +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP159D +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu 

VNSP160D +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu 

VNSP161D +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP162D +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu 

VNSP163D +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP164D +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu 

VNSP165D +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP166D +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP167D +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP168D +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP169D +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu 

VNSP170D +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP171D +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP172D +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP173D +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP174D +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP175D +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP176D +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu 

VNSP178D +++ n. d. + n. d. (-) + n. d. + Zn Cu+As 

VNSP179E +++ ++(+) + n. d. (-) + n. d. + Zn Cu+Sn 

VNSP180E +++ n. d. ++ n. d. n. d. + n. d. + Zn Cu+As↑ 

VNSP181E +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP182E +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP183E +++ n. d. ++ n. d. n. d. + n. d. + Zn Cu+As↑ 

VNSP185F +++ n. d. (-) n. d. n. d. + n. d. + Zn Cu 

VNSP186F +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu 

VNSP187F +++ n. d. n. d. n. d. n. d. + n. d. + Zn Cu  

VNSP177G +++ n. d. + n. d. (-) + n. d. + Zn Cu+As 

VNSP188G +++ n. d. + n. d. n. d. (-) n. d. + Zn Cu+As 

VNSP189G +++ n. d. ++ n. d. n. d. + n. d. + Zn Cu+As↑ 

VNSP190H +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP025I +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP184I +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP191I +++ n. d. ++ n. d. n. d. + n. d. + Zn Cu+As↑ 

VNSP192I +++ n. d. + n. d. n. d. + n. d. + Zn Cu+As 

VNSP193I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP194I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP195I +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 
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Artefact 
Semi-quantitative elemental composition (EDXRF)  Obs. 

Cu Sn As Sb Pb Fe Ni Ca Elem. (-)  

VNSP196I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP197I +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP198I +++ n. d. (-) n. d. n. d. (-) (-) (-) Zn Cu 

VNSP199I +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP200I +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP201I +++ n. d. (-) n. d. n. d. (-) (-) (-) Zn Cu 

VNSP202I +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP203I +++ n. d. (-) n. d. n. d. (-) (-) + Zn; Bi↓ Cu 

VNSP204I +++ n. d. + n. d. n. d. + (-) + Zn Cu+As 

VNSP205I +++ n. d. n. d. n. d. n. d. (-) (-) + Zn Cu 

VNSP206I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP207I +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP208I +++ n. d. n. d.  n. d. n. d. (-) (-) + Zn Cu 

VNSP209I +++ n. d. n. d. n. d. n. d. (-) (-) + Zn Cu 

VNSP210I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP211I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP212I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP213I +++ n. d. n. d. n. d. n. d. + (-) + Zn Cu 

VNSP214I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP215I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP216I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP217I +++ n. d. (-) n. d. n. d. (-) (-) + Zn; Bi Cu 

VNSP218I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP219I +++ n. d. (-) n. d. n. d. (-) (-) (-) Zn; Bi Cu 

VNSP220I +++ n. d. (-) n. d. n. d. + (-) + Zn; Bi Cu 

VNSP221I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP222I +++ n. d. (-) + n. d. (-) (-) + Zn Cu 

VNSP223I +++ n. d. (-) n. d. n. d. + (-) + Zn; Bi↓ Cu 

VNSP224I +++ n. d. ++ + n. d. + (-) + Zn; Bi Cu+As↑ 

VNSP225I +++ n. d. (-) n. d. n. d. + (-) + Zn; Bi Cu 

VNSP226I +++ n. d. (-) n. d. n. d. (-) (-) + Zn; Bi Cu+As 

VNSP227I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP228I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP229I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP230I +++ n. d. n. d. n. d. n. d. (-) (-) + Zn Cu 

VNSP231I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP232I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP233I +++ n. d. + n. d. n. d. + (-) + Zn; Bi Cu+As 

VNSP234I +++ n. d. (-) n. d. n. d. + (-) + Zn; Bi Cu 

VNSP235I + n. d. n. d. n. d. n. d. ++ (-) + 
Zn; Rb; 

Sr 
Fe 

VNSP236I +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP237I +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP238I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP239I +++ n. d. + n. d. n. d. (-) (-) + Zn Cu+As 

VNSP240I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP241I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP242I +++ n. d. n. d. n. d. n. d. (-) (-) + Zn Cu  

VNSP243I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP244I +++ n. d. +  n. d. n. d. + (-) + Zn Cu+As 

VNSP245I +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP246I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP247I +++ n. d. n. d. n. d. n. d. (-) (-) + Zn Cu 

VNSP248I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP249I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP250I +++ n. d. + n. d. n. d. (-) (-) + Zn Cu+As 

VNSP251I +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP252I +++ n. d. + (+) n. d. n. d. + (-) + Zn Cu+As 

VNSP253I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP254I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP255I +++ n. d. n. d. n. d. n. d. (-) (-) + Zn Cu 

VNSP256I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP257I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP258I +++ n. d. (-) n. d. n. d. (-) (-) + Zn Cu 

VNSP259I +++ n. d. (-) n. d. n. d. + (-) + Zn Cu 

VNSP260I (-) n.d. n. d. n. d. n. d. +++ n. d. (-) Zn Fe 

VNSP261C +++ n.d. + n.d. n.d. ++ n.d. + Bi Cu+As 

VNSP262C +++ n.d. n.d. n.d. n.d. ++ n.d. + n.d. Cu 
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Artefact 
Semi-quantitative elemental composition (EDXRF)  Obs. 

Cu Sn As Sb Pb Fe Ni Ca Elem. (-)  

VNSP263C +++ n.d. + n.d. n.d. ++ n.d. ++ n.d. Cu+As 

VNSP264C +++ n.d. + n.d. n.d. + n.d. + n.d. Cu+As 

VNSP265C +++ n.d. + n.d. n.d. + n.d. + n.d. Cu+As 

VNSP266C +++ n.d. (-) n.d. n.d. + n.d. + n.d. Cu 

VNSP267D +++ n.d. (-) n.d. n.d. + n.d. ++ n.d. Cu 

VNSP268D +++ n.d. n.d. n.d. n.d. + n.d. + n.d. Cu 

VNSP269D +++ n.d. n.d. n.d. n.d. + n.d. (-) n.d. Cu 

VNSP270D +++ n.d. + n.d. n.d. + n.d. + n.d. Cu+As 

VNSP271D +++ n.d. ++ n.d. n.d. + n.d. n.d. n.d. Cu+As↑ 

VNSP272D +++ n.d. ++ n.d. n.d. ++ n.d. (-) n.d. Cu+As↑ 

VNSP273D +++ n.d. n.d. n.d. n.d. + n.d. n.d. n.d. Cu 

VNSP274D +++ n.d. ++ n.d. n.d. + n.d. n.d. n.d. Cu+As↑ 

VNSP275D +++ n.d. ++ n.d. n.d. + n.d. + n.d. Cu+As↑ 
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Appendix III – Summary of general characteristics of VNSP artefacts 
 

Table III.1. Summary of sampling and general MO micrographies observations (BF) of: A - Awls and B - Wires. 

VNSP001A VNSP021A VNSP023A 

 

 

 

 

 

 

VNSP029A VNSP031A VNSP038A 

 

 

 

 

 

 

VNSP040A VNSP047A VNSP049A 

 

 

 

 

 

VNSP097A VNSP123B VNSP124B 
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Table III.2. Summary of sampling and general MO micrographies observations (BF) of: C – Chisels. 

VNSP132C VNSP133C VNSP134C 

 

 

 

 

 

 

VNSP135C VNSP136C VNSP137C 

 
 

 

VNSP138C VNSP139C VNSP140C 

 

  

VNSP141C VNSP262C 
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Table III.3. Summary of sampling and general MO micrographies observations (BF) of: D – Axes. 

* Same artefact cut in two directions - Longitudinal and Transversal. 

VNSP144D VNSP145DT* VNSP145DL* 

 

  

 

VNSP146D VNSP147D VNSP148D 

  

 

VNSP150D VNSP153D VNSP154D 

 
 

 

VNSP155D VNSP165D VNSP178D 

 

 

 

 

 VNSP268D 
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Table III.4. Summary of sampling and general MO micrographies observations (BF) of: E – Blades, Arrowheads. 

VNSP180E VNSP181E VNSP182E 

  
 

 VNSP183E 
 

 

 

 

 

 

Table III.5. Summary of sampling and general MO micrographies observations (BF) of: F – Saws. 

VNSP185F VNSP186F VNSP187F 

 
  

 

Table III.6. Summary of sampling and general MO micrographies observations (BF) of: G – Daggers. 

VNSP177G VNSP188G VNSP189G 
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Table III.7. Summary of sampling and general MO micrographies observations (BF) of: H – Socket. 

VNSP190H 

 

 

Table III.8. Summary of sampling and general MO micrographies observations (BF) of: I – Indeterminates. 

VNSP025I VNSP184I VNSP191I 

 

 

 

VNSP192I VNSP193I VNSP194I 

 

 

 

 VNSP196I 
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Appendix IV – Summary of Micro-EDXRF experimental results  
 

Table IV.1. Summary of Micro-EDXRF experimental results (%) of selected artefacts from VNSP. 

Composition of the alloy is given by average of three determinations per artefact; <0.07% As, <0.05 Fe% - under 

detection limit; * Artefact observed in two sections - Longitudinal and Transversal. 

          Elements identified and quantified (%) 
Typologies Artefacts Cu As Fe 

A - Awls VNSP001A 95.43 4.36 <0.05 

 VNSP021A 98.90 0.90 <0.05 

 VNSP023A 98.73 0.96 <0.05 

 VNSP029A 96.53 3.19 <0.05 

 VNSP031A 98.27 1.43 <0.05 

 VNSP038A 98.10 1.56 0.07 

 VNSP040A 96.30 3.39 0.05 

 VNSP047A 99.70 <0.07 <0.05 

 VNSP049A 94.17 5.59 <0.05 

 VNSP097A 93.70 6.04 <0.05 

B - Wires VNSP123B 99.50 0.21 <0.05 

 VNSP124B 99.60 0.19 <0.05 

C - Chisels VNSP132C 94.87 4.92 <0.05 

 VNSP133C 99.50 0.27 <0.05 

 VNSP134C 99.70 <0.07 <0.05 

 VNSP135C 98.23 1.53 <0.05 

 VNSP136C 99.73 <0.07 <0.05 

 VNSP137C 99.77 <0.07 <0.05 

 VNSP138C 98.73 1.08 <0.05 

 VNSP139C 98.07 1.71 <0.05 

 VNSP140C 96.33 3.43 <0.05 

 VNSP141C 97.17 2.61 <0.05 

 VNSP262C 99.82 <0.07 <0.05 

D - Axes VNSP144D 99.73 <0.07 0.21 

 VNSP145D T* 99.80 <0.07 <0.05 

 VNSP145D L* 99.50 <0.07 <0.05 

 VNSP146D 97.73 2.04 <0.05 

 VNSP147D 97.93 1.85 <0.05 

 VNSP148D 90.57 9.13 0.07 

 VNSP150D 99.50 0.24 <0.05 

 VNSP153D 98.63 1.08 0.05 

 VNSP154D 98.20 1.58 <0.05 

 VNSP155D 98.90 0.79 <0.05 

 VNSP165D 98.37 1.42 <0.05 

 VNSP178D 99.70 <0.07 <0.05 

 VNSP268D 99.79 <0.07 <0.05 

E – Blades, 

Arrowheads 

VNSP180E 94.17 5.57 <0.05 

Arrowheads VNSP181E 97.53 2.22 <0.05 

 VNSP182E 94.10 5.66 <0.05 

 VNSP183E 95.83 3.89 <0.05 

F - Saws VNSP185F 99.70 0.09 <0.05 

 VNSP186F 99.73 <0.07 <0.05 

 VNSP187F 99.77 <0.07 <0.05 

G - Daggers VNSP177G 99.80 <0.07 <0.05 

 VNSP188G 97.93 1.79 <0.05 

 VNSP189G 95.20 4.53 <0.05 

H - Socket VNSP190H 98.17 1.57 <0.05 

I - Indeterminate VNSP025I 96.37 3.37 <0.05 

 VNSP184I 96.13 3.85 <0.05 

 VNSP191I 94.30 5.49 <0.05 

 VNSP192I 96.57 3.13 <0.05 

 VNSP193I 97.40 2.32 <0.05 

 VNSP194I 99.17 0.51 <0.05 

 VNSP196I 98.95 0.86 <0.05 
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Appendix V – Summary of microstrutural observations of VNSP artefacts 
 

Table V.1. Summary of MO micrographies of: A - Awls and B - Wires. 

VNSP001A VNSP021A VNSP023A 

   

VNSP029A VNSP031A VNSP038A 

  
 

VNSP040A VNSP047A VNSP049A 

   

VNSP097A VNSP123B VNSP124B 
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Table V.2. Summary of MO micrographies of: C – Chisels. 

VNSP132C VNSP133C VNSP134C 

   

VNSP135C VNSP136C VNSP137C 

   

VNSP138C VNSP139C VNSP140C 

  
 

VNSP141C VNSP262C 
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Table V.3. Summary of MO micrographies of: D – Axes. 

* Artefact observed in two sections - Longitudinal and Transversal. 

VNSP144D VNSP145DT* VNSP145DL* 

  
 

VNSP146D VNSP147D VNSP148D 

   

VNSP150D VNSP153D VNSP154D 

   

VNSP155D VNSP165D VNSP178D 

   

 VNSP268D 
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Table V.4. Summary of MO micrographies of: E – Blades, Arrowheads. 

VNSP180E VNSP181E VNSP182E 

   

 VNSP183E 
 

 

 

 

 

Table V.5. Summary of MO micrographies of: F – Saws. 

VNSP185F VNSP186F VNSP187F 

   

 

Table V.6. Summary of MO micrographies of: G – Daggers. 

VNSP177G VNSP188G VNSP189G 
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Table V.7. Summary of MO micrographies of: H – Socket. 

VNSP190H 

 

 

Table V.8. Summary of MO micrographies of: I – Indeterminates. 

VNSP025I VNSP184I VNSP191I 

   

VNSP192I VNSP193I VNSP194I 

   

 VNSP196I 
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Appendix VI – Summary of microstrutural characterization of VNSP artefacts 
 

Table VI.1. Microstrutural characterization of selected artefacts from VNSP.  

(P: Present; s: segregation bands; t: annealing twins; sb: slip bands; d: deformed inclusions; C: Casting; A: 

Annealing; F: Forging; FF: Final Forging; ↑: high amount; ↓: low amount; * Samples refers to the same artefact cut 

in two directions - Longitudinal and Transversal. ** Presenting -Cu eutetic remains. 

Typologies 
Artefacts 

As 

(%) 

EDX

RFF 

Phases 

 

As 

(%) 

EDS 

Segregation 

Cu-As 

Inclusions 

Cu-O 
Features 

Operatial 

Sequence 

A - Awls VNSP001A 4,36 As-rich - P - Equiaxial, s, t, sb C+(F+A)+FF 
 VNSP021A 0,90  - - P (eutectic) Equiaxial, t, d C+(F+A) 
 VNSP023A 0,96  - - P Equiaxial, t C+(F+A) 
 VNSP029A 3,19 As-rich - P P Equiaxial, s, t, d C+(F+A) 
 VNSP031A 1,43  - - P (eutectic) Equiaxial, t, d C+(F+A) 
 VNSP038A 1,56  - - P Equiaxial,  t C+(F+A) 
 VNSP040A 3,39  - - P (eutectic) Equiaxial, t, d, sb↓ C+(F+A)+FF↓ 
 VNSP047A <0,07  - - P (eutectic) Equiaxial, t C+(F+A) 
 VNSP049A 5,59 As-rich - P - Equiaxial, s, t C+(F+A) 
 VNSP097A 6,04 As-rich 34,02 

 

P - Equiaxial, s, t, sb↓ C+(F+A)+FF↓ 
B - Wires VNSP123B 0,21  - - P (eutectic) Equiaxial, t, d C+(F+A) 

 VNSP124B 0,19  - - P (eutectic) Equiaxial, t, d C+(F+A) 
C – Chisels VNSP132C 4,92 As-rich - P P Equiaxial, s, t, d? C+(F+A) 

 VNSP133C 0,27  - - P (eutectic) Equiaxial, t C+(F+A) 
 VNSP134C <0,07  - - P (eutectic) Equiaxial,  t C+(F+A) 
 VNSP135C 1,53  - - P Equiaxial, t, d C+(F+A) 
 VNSP136C <0,07  - - P (eutectic) Equiaxial, t, d C+(F+A) 
 VNSP137C <0,07  - - P (eutectic) Equiaxial, t, d, sb↓ C+(F+A)+FF↓ 
 VNSP138C 1,08  - - P Equiaxial, t, d C+(F+A) 
 VNSP139C 1,71  - - P Equiaxial, t, d C+(F+A) 
 VNSP140C 3,43  - - P Equiaxial, t, d, sb↓ C+(F+A)+FF↓ 
 VNSP141C 2,61  - - P Equiaxial, t, d, sb↓ C+(F+A)+FF↓ 
 VNSP262C <0,07  - - P Equiaxial, t C+(F+A) 

D – Axes VNSP144D <0,07  - - P Equiaxial, t C+(F+A) 
 VNSP145D 

T* 

<0,07  - - P (eutectic) Equiaxial, t, d? C+(F+A) 
 VNSP145D 

L* 

<0,07  - - P (eutectic) Equiaxial, t, d? C+(F+A) 
 VNSP146D 2,04  - - P Equiaxial, t, d C+(F+A) 
 VNSP147D 1,85  - - P Equiaxial, t, d C+(F+A) 
 VNSP148D 9,13  As-rich 

+

As-rich

34,28 P - Equiaxial, s, t C+(F+A) 
 VNSP150D 0,24  - - P Equiaxial, t, d C+(F+A) 
 VNSP153D 1,08  - - P Equiaxial, t, d C+(F+A) 
 VNSP154D 1,58  - - P Equiaxial, t, d C+(F+A) 
 VNSP155D 0,79  - - P Equiaxial, t, d C+(F+A) 
 VNSP165D 1,42  - - P Equiaxial, t, d C+(F+A) 
 VNSP178D <0,07  - - P (eutectic) Equiaxial, t, d C+(F+A) 
 VNSP268D <0,07  - - P Equiaxial, t C+(F+A) 

E – Blades, VNSP180E 5,57 As-rich - P P Equiaxial, s, t, d, 

sb↓ 

C+(F+A)+FF↓ 
Arrowheads VNSP181E 2,22  - - P Equiaxial, t, d, sb C+(F+A)+FF 

 VNSP182E 5,66  - - - Equiaxial, t, d C+(F+A) 
 VNSP183E 3,89 As-rich - P - Equiaxial, s, t, d, sb C+(F+A)+FF 

F - Saws VNSP185F 0,09  - - P (eutectic) Equiaxial, t, d C+(F+A) 
 VNSP186F <0,07  - - P (eutectic) Equiaxial, t, d C+(F+A) 
 VNSP187F <0,07  - - P (eutectic) Equiaxial, t, d C+(F+A) 

G - Daggers VNSP177G <0,07  - - P (eutectic) Equiaxial, t, d C+(F+A) 
 VNSP188G 1,79 As-rich - P P Equiaxial, t, d C+(F+A) 
 VNSP189G 4,53 As-rich - P P Equiaxial, s, t, d, sb C+(F+A)+FF 

H - Socket VNSP190H 1,57  - - P Equiaxial, t, d C+(F+A) 
I –  

Indeterminate 

VNSP025I 3,37 As-rich - P P Equiaxial, s, t, d, sb C+(F+A)+FF 
Indet. VNSP184I 3,85 As-rich - P P Equiaxial, s, t, d C+(F+A) 

 VNSP191I 5,49 As-rich - P P Equiaxial, s, t, d, 

sb↓ 

C+(F+A)+FF↓ 
 VNSP192I 3,13  - - P Equiaxial, t, d C+(F+A) 
 VNSP193I 2,32 As-rich - P P Equiaxial, s, t C+(F+A) 
 VNSP194I 0,51  - - P Equiaxial, t?, d? C+F? 
 VNSP196I 0,86  - - P Dendritic? C 
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Appendix VII – Vickers MicroHardness measurements of VNSP artefacts 

 

Table VII.1. Vickers MicroHardness measurements (HV0.2).  

Applied in three different locations of the artefact (when justified) and microstrutural characterization (C – Casting; 

A – Annealing; F – Forging; FF – Final Forging); * Sample refers to the same artefact cut in two directions - 

Longitudinal and Transversal; ** Profile of measurements made separately.   

Typologies Artefacts As (%) HV0.2 center HV0.2 blade HV0.2 fracture Operatial Sequence 

 A - Awls VNSP001A 4,36 80  - - C+(F+A)+FF 

 VNSP021A 0,90 40  - - C+(F+A) 

 VNSP023A 0,96 68  - - C+(F+A) 

 VNSP029A 3,19 59  - - C+(F+A) 

 VNSP031A 1,43 106  - - C+(F+A) 

 VNSP038A 1,56 81  - - C+(F+A) 

 VNSP040A 3,39 60  - - C+(F+A)+FF↓ 

 VNSP047A <0,07 63  - - C+(F+A) 

 VNSP049A 5,59 65  - - C+(F+A) 

 VNSP097A 6,04 86  - - C+(F+A)+FF↓ 

B - Wires VNSP123B 0,21 84  - - C+(F+A) 

 VNSP124B 0,19 91  - - C+(F+A) 

C - Chisels VNSP132C 4,92 53  - - C+(F+A) 

 VNSP133C 0,27 36  - - C+(F+A) 

 VNSP134C <0,07 81  - - C+(F+A) 

 VNSP135C 1,53 42  - - C+(F+A) 

 VNSP136C <0,07 94  - - C+(F+A) 

 VNSP137C <0,07 85  - - C+(F+A)+FF↓ 

 VNSP138C 1,08 44  - - C+(F+A) 

 VNSP139C 1,71 91 115 90 C+(F+A) 

 VNSP140C 3,43 80 105 90 C+(F+A)+FF↓ 

 VNSP262C** <0,07 -  - - C+(F+A) 

 VNSP141C 2,61 97 123 98 C+(F+A)+FF↓ 

D - Axes VNSP144D <0,07 44 66 47 C+(F+A) 

 VNSP145D T* <0,07 48 50 49 C+(F+A) 

 VNSP145D L* <0,07 53 50 49 C+(F+A) 

 VNSP146D 2,04 45 47 45 C+(F+A) 

 VNSP147D 1,85 65 57 64 C+(F+A) 

 VNSP148D 9,13 95 95 95 C+(F+A) 

 VNSP150D 0,24 45 50 49 C+(F+A) 

 VNSP153D 1,08 64 64 65 C+(F+A) 

 VNSP154D 1,58 47 46 45 C+(F+A) 

 VNSP155D 0,79 42 45 45 C+(F+A) 

 VNSP165D 1,42 42 47 46 C+(F+A) 

 VNSP178D <0,07 75 - - C+(F+A) 

 VNSP268D <0,07 41 50 45 C+(F+A) 

E – Blades,  VNSP180E 5,57 63 63 75 C+(F+A)+FF↓ 

Arrowheads VNSP181E 2,22 119 119 120 C+(F+A)+FF 

 VNSP182E 5,66 90 96 75 C+(F+A) 

 VNSP183E 3,89 54 55 53 C+(F+A)+FF 

F - Saws VNSP185F 0,09 53 42 46 C+(F+A) 

 VNSP186F <0,07 73 73 73 C+(F+A) 

G - Daggers VNSP177G <0,07 43 44 46 C+(F+A) 

 VNSP188G 1,79 77 80 78 C+(F+A) 

 VNSP189G 4,53 155 204 119 C+(F+A)+FF 

H - Socket VNSP190H 1,57 48 - - C+(F+A) 

I - Indeterminate VNSP025I 3,37 157  - - C+(F+A)+FF 

 VNSP184I 3,85 51 51 51 C+(F+A) 

 VNSP191I 5,49 61 - - C+(F+A)+FF↓ 

 VNSP192I 3,13 48 - - C+(F+A) 

 VNSP193I 2,32 50 44 -  C+(F+A) 

 VNSP194I 0,51 90 - - C+F? 

 VNSP196I 0,86 -  - - C 
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Table VII.2. Vickers MicroHardness (HV0.2) measurements of Chisel VNSP262C. 

 Applied in two directions. 

 
VNSP262C – Vickers microhardness profile 

Points Transversal (T) Longitudinal (L) 

1 116 93 

2 103 98 

3 99 97 

4 99 93 

5 91 101 

6 91 93 

7 90 90 

8 86 86 

9 86 84 

10 88 88 

11 89 93 

12 89 94 

13 89 85 

14 91 89 

15 103 91 

16   87 

17   82 

18   88 

19   82 

20   89 

21   88 

22   88 

23   85 

24   90 

25   80 

26   90 

27   89 

28   88 

29   82 

30   81 

31   83 

32   80 

33   77 

34   78 

35   74 

37   80 

38   83 

39   80 

40   79 

41   83 

42   78 

43   86 

44   84 

45   92 


