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ABSTRACT

The existing implementations of Well Founded Semantics restrict or forbid the use of
variables when using negative queries, something which is essential for using logic
programming as a programming language.

We present a procedure to obtain results under the Well Founded Semantics that
removes this constraint by combining two techniques: the transformation presented
in [MMNMH08] to obtain from a program its dual and the derivation procedure pre-
sented in [PAP+91] to determine if a query belongs or not to the Well Founded Model
of a program.

Some problems arise during their combination, mainly due to the original envi-
ronment for which each one was designed: results obtained in the first one obey a
variant of Kunen Semantics and non-ground programs are not allowed (or previously
grounded) in the second one.

Most of these problems were solved by using abductive techniques, which lead
us to observe that the existing implementations of abduction in logic programming
disallow the use of variables.

The reason for that is the impossibility to evaluate non-ground queries, so it
seemed interesting to develop an abductive framework making use of our negation
system.

Both goals are achieved in this thesis: the capability of solving non-ground queries
under Well Founded Semantics and the use of variables in abductive logic program-
ming.
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CHAPTER 1

INTRODUCTION

Kowalski and Colmerauer’s choice of the elements of first-order logic supported in
logic programming was influenced by the availability of implementation techniques
and efficiency considerations. Among those important aspects not included from the
beginning we can mention evaluable functions, negation and higher order features.
All of them have revealed themselves important for the expressiveness of logic pro-
gramming as a programming language. Here we propose an implementation for Well
Founded Semantics (WFS, see Sec. 2.5) that solves some pending problems with nega-
tion: floundering when trying to solve non-ground negative queries

Negation in logic has been widely studied and its declarative semantics has been
defined in multiple ways (see Chapter 2 for an overview). The development of the op-
erational procedures for negation has been influenced by the necessity of using logic
programs as programs (coding algorithms), while the development of the declarative
semantics has been influenced by the purpose of using logic programs as a knowl-
edge representation framework. These two different concerns lead to two different
approaches to the meaning of logic programs, that we call respectively proof-theoretic
approach and model-theoretic approach.

As a result of the different concerns in proof-theoretic and model-theoretic ap-
proaches, while most of the implementations of the former lack a correct management
of contradictory, inconsistent or incomplete information, most of the model-theoretic
ones do not consider the existence of variables in the programs or restrict their use.
So, the first ones disallow the use of logic programming for knowledge representation
and the second ones hinder the use of logic programming as a programming language.

Implementation examples of proof-theoretic methods are the (unsound) negation
as failure rule, and the sound (but incomplete) delay technique of the language
Gödel [HL94], Nu-Prolog [Nai86] (having the risk of floundering), the constructive
negation of ECLiPSe [ECL] (which was announced in earlier versions but has been re-
moved from recent releases due to implementation errors) or Constructive Intensional
Negation [MMNMH08]. The ones of model-theoretic methods are ASP [Gel07], the
XSB Prolog system [XSB], the DLV system for disjunctive datalog with constraints,
true negation and queries [DLV, LPF+06], the Stable Model Semantics system SMOD-

page 9



ELS [NSS00], the SLG system [CW93, SW94] and how to make it portable [RC94],
tabled evaluation with delaying [CW96], or the derivation procedures for extended
stable models [PAP+91].

Although some authors argue that programs with contradictory, inconsistent or in-
complete information are erroneous and not useful, the fact is that when representing
knowledge we can not get rid of them. The following program is an example of this.

Program 1.0.1

1work ← ¬tired.
2sleep ← ¬work.
3tired ← ¬sleep.
4angry ← work, ¬paid.
5paid ← .

This program naturally encodes the knowledge that: we work if we are not tired
(1), if we do not work then we sleep (2), we get tired if we do not sleep (3), when we
work and we are not paid we get angry (4), and we are always paid (5).

If we try to determine if we are paid it is clear that we are, but we can not deter-
mine if we work, we sleep, we are tired or we are angry. When evaluating the logic
program the result is almost the same: we get an infinite loop when evaluating the
queries work, sleep, angry or tired.

Depending on the point of view, we can describe our knowledge about these propo-
sitions as incomplete or perhaps even confusing. The model-theoretic methods focus
in assigning a truth value (undefined, false or even true) to a proposition suffering
from this problems. Their proposal is to associate a model (see Def. 2.1.19) to the
program and answer the queries directed to the program in accordance to this model.
The model is the meaning of the program, or its declarative semantics. For example, the
Well Founded Model (WFM, see Def. 2.5.2) for program 1.0.1 is { paid }, so that the
atom paid belongs to the model and is thus true. Consequently, its negation, ¬paid ,
is false. Moreover, neither work, sleep, angry, tired nor their negations belong to our
model and they are assigned the undefined truth value.

The definitions of the model-theoretic methods usually require that, in presence of
variables, programs must be grounded before evaluating the model, and this ground-
ing process might obtain an infinite ground program. This can be observed in the
example program 1.0.2, where the Herbrand Universe (see Def. 2.1.9) is the infinite
representation of the natural numbers: U = ( 0, s(0), s(s(0)), ... ).

Program 1.0.2 (Peano numbers)

1natural(0).
2natural(s(X)) ← natural(X).
3
4even(0).
5even(s(X)) ← odd(X).
6odd(s(X)) ← even(X).
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CHAPTER 1. INTRODUCTION

As we usually tend to program by using variables and functor symbols to build the
data structures of our programs (see Def. 2.1.2), instead of computing the Herbrand
Universe to determine the model (which is unfeasible for a machine), the implemen-
tations rely on top-down methods for evaluating whether the query belongs or not
to the model (see chapter 3). While for positive programs these methods works per-
fectly, when dealing with negative non-ground queries they do not work adequately:
as they make use of negation as failure they suffer from floundering. We first introduce
negation as failure and just after it the floundering problem.

Negation as (finite) failure is the most common negation mechanism in logic pro-
gramming. It is a meta-inference-rule allowing one to prove the negation of a ground
goal, when the proof of the corresponding positive goal finitely fails. So, to prove ¬a
in the following program we just have to prove that a finitely fails. As in this case a has
a proof, ¬a is not proven. On the contrary, b has no proof, and so ¬b can be proved.

Program 1.0.3

1a ← c.
2b ← d.
3c.

While negation as failure works perfectly for non-ground queries, when dealing
with variables it produces unexpected results. In the following example, to prove
¬a(1) (which is again a ground query) we need to prove that a(1) finitely fails, and
from that result negation as failure allows us to prove ¬a(1), which is the correct
result. But to prove ¬a(X) we need to prove that a(X) finitely fails. As a(X) has a
proof for X = 2, it does not finitely fail and we get no proof for ¬a(X). So, while we
expected a proof with the substitution X = 1 (or, more generally, with X 6= 2), what
we get is “no”.

Program 1.0.4

1a(X) ← r(X).
2r(2).

Evaluation of queries ¬a(1) and ¬a(X) in program 1.0.4

?- ¬a(1).
yes

?- ¬a(X).
no

The problem becomes even worse if we have free variables in the body of one (or
more) rules. In the following program we define that my (possible infinite) set of
friends is composed by my direct friends, the direct friends of my friends and so on.
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Program 1.0.5

1friend(me, juan).
2friend(me, pepe).
3friend(juan, antonio).
4friend(pepe, maria).
5...
6friend(X, Z) ← friend(X, Y) , friend(Y, Z).

The ones which are not my friends are then the ones that are not direct friends
of me or direct friends of one of my friends. If we make a positive non-ground (or
ground) query, the top-down method works perfectly, and it obtains all my friends
one by one.

Evaluation of query f riend(me, X) in program 1.0.5

?- friend(me, X).
X = juan ? ;
X = pepe ? ;
X = antonio ? ;
X = maria ? ;
...

Correct results are also guaranteed if we make a ground negative query. But if we
make a negative non-ground query, before getting any result the first thing that the
method will do is to determine which are my friends. As the set of my friends behaves
like an infinite set, it is impossible to compute the whole set of friends.

The existing WFS implementations do not have a correct management of univer-
sally quantified variables and use basic methods that suffer from floundering1 (Both
examples 1.0.4 and 1.0.5 suffer from floundering, although the end of the computa-
tion in the second one presents an error, usually OutOfMemory exception).

The main objective of this work is to develop an implementation dealing correctly
with non-ground queries under the Well Founded Semantics. Non ground queries in
logic programming is solved in the negation system developed in
[MHMN00, MHMNH01, MH03, MMNMH08], where the authors incorporate nega-
tion in the Prolog system Ciao [Bue95]. They developed a system able to manage
negation properly, combining different techniques and using static and dynamic tests
to determine which method is the best in each case. They are able to select the built-
in negation as failure (NAF, see Sec. 3.1) when a groundness analysis tells that every
negative literal is ground at call time, select Finite Constructive Intensional Negation
(an improved version of Constructive Intensional Negation that only works for finite
domains) when the analysis tells that the program has no infinite answers, or using
Constructive Intensional Negation (see Sec. 3.2) in the worst case.

Despite the huge amount of work done, the authors developed the system under
a variant of Clark’s Predicate Completion Semantics (see Sec. 2.2) that they suggest

1When the evaluation stops with no answer the problem is called floundering. This problem has
been widely documented in the literature, and we refer the reader to [AB94] for a survey.
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CHAPTER 1. INTRODUCTION

to be seen as a CLP version of Kunen’s semantics (KS, see Sec. 3.2). The drawback
of Kunen’s Semantics, as other proof-theoretic methods, is that it does not work ade-
quately in presence of contradictory, inconsistent or incomplete information.

In this thesis we generalize this work on Constructive Intensional Negation
[MMNMH08] to answer (non-ground) queries under the Well Founded Semantics.
This is done by combining the procedure used in [MMNMH08] with the one used in
[PAP+91].

Basically, we take from [MMNMH08] the methods to calculate the dual program,
and the derivation procedure from [PAP+91]. As the derivation procedure was not
developed to deal with dual programs, it is modified to take into account the following
characteristics that dual programs present:

1. the dual of a unification is a disequality. Since the predefined inequal-
ity predicate in logic programming is not suitable for dealing with variables
(see Sec. 4.4), in the implementation we must use attributed variables (see
Def. 4.4.1) to deal with them.

2. if a predicate in the original program has a free variable, its negation has this
variable universally quantified (see Sec. 3.5). As logic programming does not
have a predefined predicate to determine if a universal quantification holds or
not, we must implement a method capable of determining that.

When solving these problems we found that the techniques used resemble abduc-
tive techniques (see chapter 5). In fact, abduction collects solutions and tests these
solutions for the consistency of the result. Our implementation behaves like that in
two parts:

1. inequalities implementation: we collect all the disequalities over a variable and
finally we test if their conjunction is consistent or not (see Sec. 4.4).

2. universally quantified variables implementation: the results for the variable are
collected and finally they are tested in order to find a tautology that guarantees
the universal quantification to hold (see Secs. 3.5 and 4.5).

The extension of our work presented in chapter 5, abduction, comes indeed from its
previous use to solve these problems: as abduction is used to solve them, the appli-
cation of our negation system to abduction, in order to obtain explanations to nega-
tive hypotheses, seemed rather promising. The result from applying it is an abductive
framework that benefits from this new implementation of negation, and that can make
an unrestricted use of variables.

One extra feature that we considered mandatory for our negation system is that
solutions must be obtained in a Prolog way, i.e. one by one. In [MMNMH08], instead,
the solutions returned when making a query follow the structure

sol 1∨ sol 2∨ . . . ∨ sol n ? ;
no
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Such a solution has the following drawbacks:

• results obtained can not be used from other Prolog programs without a previous
conversion.

• one might be only interested in one solution (or a small subset of solutions),
in which case it makes no sense to wait for computing the whole disjunction.
This is specially important if our set of solutions has an exponential size, as may
happen when the computation of the universal quantification is involved.

• if the number of solutions is infinite then computing them (or their disjunction)
is unfeasible. While there is a solution, their method is not able to obtain any
solution at all.

Desirably, this should be substituted by the Prolog way, so that instead of results joined
by disjunction what we get is one result (disjunct) at a time, following the structure

sol 1 ? ;
sol 2 ? ;
. . .
sol n ? ;
no

The implementation of the Well Founded Semantics that we finally present here,
and that constitutes the main contribution of this thesis, has the following character-
istics:

1. It can be applied to any kind of logic program in which no symbols are intro-
duced to constraint the normal execution of Prolog, like cuts (the term ”!” ). So,
no restriction exists on the use of variables in the program or in the queries.

2. Solutions are obtained one by one. Some solutions represent disequalities, and
they use attributed variables for that purpose. Disequalities are only joined if
they need to be fulfilled at the same time (and only by conjunction), so they
represent only one valid solution.

3. The way inequalities between variables are tested is based on abductive tech-
niques: inequality conditions are assumed in advance and stored in the attribute
of the variables, being really tested when the variable is bound.

4. The way that the universal quantification is evaluated uses again abductive tech-
niques: solutions to the universally quantified variables are collected and tested
in order to build a tautology, so it can be determined if the universal quantifica-
tion holds.

5. Answers are given according to the Well Founded Semantics.

The structure of this work is as follows: to understand the implementation is-
sues a revision of the semantics is needed; it is in chapter 2. Chapter 3 presents
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CHAPTER 1. INTRODUCTION

the existing problems in WFS implementations and a general idea of how they
are solved by our implementation, which is explained in detail in chapter 4. Af-
ter that, in chapter 5, we present the abductive framework that benefits from the
negation system that we developed. Chapter 6 presents the conclusions of our
work. The implementation, along with some illustrative examples, is available at
“https://babel.ls.fi.upm.es/software/intneg-wfs/”.
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CHAPTER 2

SEMANTICS

According to [PP90], which we follow for this overview, the declarative semantics
SEM(Π) of a logic program Π can be specified in various ways, among which the
following two are most common. One that can be called proof-theoretic, associates
with Π its first order completion COMP (Π) (e.g., COMP (Π) can be Π itself or the
Clark predicate completion comp(Π) of Π ). A formula V is said to be implied by the
semantics SEM(Π) if and only if it is logically implied by the completion

COMP (Π) |= V;

i.e., if V is satisfied in all 2-valued (Herbrand or not) models of COMP (Π).
Another method of defining the declarative semantics SEM(Π) of a program is

model-theoretic. The semantics is determined by choosing a set MOD(Π) of intended
models of Π (in particular, one intended model MΠ). For example, MOD(Π) can be
the set of all minimal models of Π or the unique least model of Π. A formula V is
said to be implied by the semantics SEM(Π) if and only if it is satisfied in all intended
models:

MOD(Π) |= V (in particular, MΠ |= V):

Observe, that the proof-theoretic approach can be viewed as a special case of the
model-theoretic approach. Other approaches to defining the declarative semantics are
possible, e.g., a combination of proof-theoretic and model-theoretic methods has been
used in [Kun87, Fit85].

2.1 Preliminaries

In this section we introduce all the basic concepts and syntax that we use. In keep-
ing with Prolog’s convention, local variables begin with a capital letter; constants,
functions and predicates begin with a lowercase letter.
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2.1. PRELIMINARIES

Definition 2.1.1 (Alphabet). By an alphabet A of a first order language L we mean a
(finite or countably infinite) set of constant, predicate and function symbols. In addition,
any alphabet is assumed to contain a countably infinite set of variable symbols, connec-
tives (∨,∧,¬,←), quantifiers (∃, ∀) and the usual punctuation symbols. Moreover, we
assume that our language also contains propositions t, u and f, denoting the properties
of being true, undefined or false.

Definition 2.1.2 (Term, Functor). Terms are as customarily defined in logic:

• A variable or constant is a term.

• A function symbol (or functor) with terms as arguments is a term.

Terms may also be viewed as data structures of the program, with function symbols serv-
ing as record names. The word ground is used as a synonym for “variable-free”, in keeping
with common practice. Often a constant is treated as a function symbol of arity zero.

Definition 2.1.3 (Predicate, Atomic Formulae, Atom). A predicate is a relation between
terms, so the arguments of a predicate are terms. We use the same symbol, e.g., p, to refer
both a predicate and its relation.

If p is a predicate symbol of arity n (n ≥ 0) and t1, ...tn are terms then p(t1, ...tn) is
an atomic formulae or atom. Predicates of arity zero are also called propositions.

Definition 2.1.4 (Formulae). If F1 and F2 are formulas then so are

• ¬F1

• F1 ∨ F2

• F1 ∧ F2

• F1 ← F2

If X is a variable and F is a formulae then ∃X.F and ∀X.F are formulas too. We say
that X is existentially quantified in ∃X.F and universally quantified in ∀X.F.

Definition 2.1.5 (Quantifier-free formulae). If F is a quantifier-free formulae, then
by its ground instance we mean any ground formulae obtained from F by substituting
ground terms from the Herbrand Universe U (see Def. 2.1.9) for all variables.

Definition 2.1.6 (Universal closure of a formulae). For a given formulae F of a lan-
guage L its universal closure or just closure ∀F is obtained by universally quantifying all
variables in F which are not bound by any quantifier.

Definition 2.1.7 (Expression, Sentence). An expression is a term or a formulae. A
formulae with no free (unquantified) variables is a sentence.

Definition 2.1.8 (Literal). A literal L is either an atom A or its negation ¬A. In the first
form it is called positive literal and in the second one negative literal.

Definition 2.1.9 (Herbrand Base, Herbrand Universe). The set of all ground atoms of
an alphabet A is called the Herbrand Base H of A. The set of all ground terms of A is
called the Herbrand Universe U of A.

If the alphabet A contains a function symbol of positive arity, then the Herbrand
Universe and Herbrand Base are countable infinite; otherwise they are finite.
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CHAPTER 2. SEMANTICS

Definition 2.1.10 (Logic Rule or Clause). A rule or a clause C is a formulae of the form

H ← L1 ∧ ... ∧ Ln

where H is an atom other than false and { L1, ..., Ln } is a possibly empty set of literals.
The head or conclusion H is written on the left, and its subgoals (body) if any to the right
of the symbol←, which may be read “if”. In some parts of this document we refer to the
head by the left hand side (lhs) of the clause, and to the body by the right hand side (rhs)
of the clause.

Conforming to a standard convention, conjunction is replaced by commas and there-
fore clauses are simply written in the form

H ← L1, ..., Ln

For example,

p(X)← a(X), ¬ b(X), ¬ (c(X), d(X))

is a rule in which p(X) is the head, a(X) is a positive subgoal and b(X) and (c(X), d(X))
are negative subgoals. The head of a rule is always a positive literal.

Definition 2.1.11 (Logic Program (I)). By a logic program Π we mean a finite set of
logic rules or clauses. If Π is a logic program then, unless stated otherwise, we will assume
that the alphabet A used to write Π consists precisely of all the constant, predicate and
function symbols that explicitly appear in Π and thus A = AΠ is completely determined1

by the program Π. We can then talk about the first order language L = LΠ of the
program Π and the Herbrand base H = HΠ of the program.

Remark. Although some authors distinguish between general logic programs and
normal logic programs (see [GRS91, Llo87]), we will use logic programs to refer all
of them.

Definition 2.1.12 (Logic program (II)). Programs are constructed from a signature
Σ = 〈FSΣ, PSΣ〉 of function and predicate symbols. Provided a countable set of variables
V the set Term(FSΣ, V) of terms is constructed in the usual way.

Remark. This definition is equivalent to the previous one, but instead of defining the
alphabet from the program it defines the program from the alphabet. It is used in the
explanation of the Constructive Intensional Negation method (see Sec. 3.2).

Definition 2.1.13 (Horn Rule and Horn Logic Program). A horn rule is a general rule
with no negative subgoals, and a Horn logic program is one only with Horn rules.

Definition 2.1.14 ((Herbrand) constraint). A (Herbrand) constraint is a first-order
formula where the only predicate symbol is the binary equality operator = /2. A formula
¬(t1 = t2) will be abbreviated t1 6= t2. The constants t (for true) and f (for false)
will denote the neutral elements of conjunction and disjunction, respectively. A tuple
(x1, . . . , xn) will be abbreviated by x. The concatenation of tuples x and y is denoted
x · y.

1If there are no constants in the program Π, then one is added to the alphabet.
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2.1. PRELIMINARIES

Definition 2.1.15 ((constrained) Horn clause). A (constrained) Horn clause is a for-
mula

h(x) ← b1(y · z), . . . , bn(y · z) [] c(x · y)

where x, y and z are tuples from disjoint sets of variables.2 The symbols “,” and “[]” act
here as aliases of logical conjunction (the second one is introduced for readability of the
examples).

Definition 2.1.16 ((constrained) program). A (constrained) program is:

p(x)← B1(y1 · z1) [] c1(x · y1)
...

p(x)← Bm(ym · zm) [] cm(x · ym)

The set of defining clauses for predicate symbol p in program Π is denoted def Π(p). With-
out loss of generality we have assumed that the left hand sides in def Π(p) are syntactically
identical.

Definition 2.1.17 (Completed definition of a program). Assuming the normal form, let
def Π(p) = {p(x) ← Bi(yi · zi)[]ci(x · yi)|i ∈ 1 . . . m}. The completed definition of p,
cdef Π(p) is defined as the formula

∀x.

[
p(x) ⇐⇒

m∨
i=1

∃yi. ci(x · yi) ∧ ∃zi.Bi(yi · zi)

]

Definition 2.1.18 (Interpretation). By a 3-valued Herbrand interpretation I of the lan-
guage L we mean any pair < T, F >, where T and F are disjoint subsets of the Herbrand
base H. The set T contains all ground atoms true in I, the set F contains all ground atoms
false in I and the truth value of the remaining atoms in U = H− (T ∪ F) is undefined.
We assume that in every interpretation I the proposition t is true, the proposition f is false
and the proposition u is undefined. A 3-valued interpretation I is 2-valued if all ground
atoms (except for the proposition u) are either true or false in I.

An alternative way to represent an interpretation I =< T, F > is
I = T ∪ {¬L | L ∈ F}.

Definition 2.1.19 (Model). M is a model of a program Π if and only if the degree of the
truth of the head of every clause is at least as high as the degree of truth of its body. To
use this definition we need to introduce how to evaluate the degree of truth of the head
and the body of the clauses.

Any interpretation I =< T, F > can be equivalently viewed as a function
I : H → { 0, 1

2 , 1 }, from the Herbrand base H to the 3-element set V = { 0, 1
2 , 1 },

defined by:

I(A) =


0, i f A ∈ F
1
2 , i f A ∈ U
1, i f A ∈ T

2The notation p(x) expresses that Vars(p(x)) ∈ x, not that it is identical to p(x1, . . . , xn)
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We now extend the function (interpretation) I : H → V recursively to the truth
valuation Î : C→ V defined on the set C of all closed formulae of the language.

[Prz89a] If I is an interpretation, then the truth valuation Î corresponding to I is a
function Î : C → V from the set C of all (closed) formulae of the language to V recursively
defined as follows:

• If A is a ground atom, then Î(A) = I(A).

• If S is a closed formulae then Î(¬S) = 1− Î(S).

• If S and T are closed formulae, then

Î(S ∧ T) = min{Î(S), Î(T)};

Î(S ∨ T) = max{Î(S), Î(T)};

Î(T ← S) =
{

1, i f Î(T) ≥ Î(S)
0, otherwise

• For any formulae S(X) with one unbounded variable X:

Î(∀X.S(X)) = min { Î(S(A)) : A ∈ HΠ };

Î(∃X.S(X)) = max { Î(S(A)) : A ∈ HΠ };

where the maximum (resp. minimum) of an empty set is defined as 0 (resp. 1).
Once introduced how to evaluate the truth values of the head and the body of a clause

we can expose that if our program is a set of rules of the form A ← L1, ..., Lm, where
m ≥ 0, A’s is an atom and Li’s are literals, then an (Herbrand) interpretation M is a
model of a program Π if all the program clauses are true in M, i.e., if for every ground
instance of a program clause we have

M̂(A) ≥ min { M̂(Li) : i ≤ m }

Thus, M is a model of a program Π if and only if the degree of the truth of the head of
every clause is at least as high as the degree of truth of its body, as told before. By a ground
instantiation of a logic program Π we mean the (possibly infinite) theory consisting of
all ground instances of clauses from Π.

Corollary 2.1.1. An (Herbrand) interpretation M is a model of a program Π if and only
if it is a model of its ground instantiation.

A program Π can have different Herbrand models, as can be seen in the following
example. In fact, programs with negation may have several minimal Herbrand models.

Example 2.1.1 (Program with different Herbrand models)
1p(1).
2q(2).
3q(X) ← p(X).
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model 1: {p(1), q(1), q(2)}
model 2: {p(1), p(2), q(1), q(2)}

Models are usually associated with programs to represent the “meaning of the
program” or its “declarative semantics”. The idea is that a declarative semantics for a
class of logic programs can be defined by selecting, for each program Π in this class,
one of its models to determine which answer to a given query is considered correct.
For instance, a query without variables should be answered “yes” if it belongs to the
model and no otherwise, and a query with variables should be answered “yes” if by
substitution we found a ground version of the query that belongs to the model.

Ideally we should be able to select a canonical model for that purpose, but instead
of that we have different approaches to select it, as Stable Models [GL88], Perfect
Models [Prz88] and Well Founded Models (WFM) [GRS91, VGRS88]. Each one of
them is linked with a semantics, which respectively are Stable Model Semantics (SMS)
[GL88], Perfect Model semantics (PMS) [Prz88, ABW88, vG89], and Well Founded
Semantics (WFS) [GRS91, VGRS88]. A survey on PMS and WFS is exposed in the
following sections. We refer the reader to [GL88, PP90] for a survey on SMS.

Definition 2.1.20. [Prz89a] If I and J are two interpretations then we say that I 4 J if

I(A) ≤ J(A)(or, equivalently, Î(A) ≤ Ĵ(A))

for any ground atom A. If I is a collection of interpretations, then an interpretation I ∈ I

is called minimal in I if there is no interpretation J ∈ I such that J 4 I and J 6= I. An
interpretation I is called least in I if I 4 J, for any other interpretation J ∈ I. A model
M of a theory R is called minimal (resp. least) if it is minimal (resp. least) among all
models of R.

Proposition 2.1.1. If I =< T, F > and I′ =< T′, F′ > are two interpretations, then
I 4 I’ iff T ∈ T′ and F ∈ F′. In particular, for 2-valued interpretations, I 4 I’ iff I ∈ I’.

Thus I 4 I’ if and only if I has no more true facts and no less false facts than I’ .
This means that minimal and least models of a theory R minimize the degree of truth
of their atoms, by minimizing the set T of true atoms and maximizing the set F of false
atoms F. In particular, the least interpretation in the set of all interpretations is given
by I =< ∅, H >.

As we mentioned above, [Fit85] considers a different ordering of truth values
based on the degree of information rather than on the degree of truth. Under this
ordering, the ‘unknown’ value is less than both values ‘true’ and ‘false’, with ‘true’ and
‘false’ being incompatible. This immediately leads to a different ordering between
interpretations and to different notions of minimal and least models.

Definition 2.1.21. [Fit85] If I =< T, F > and I’ =< T′, F′ > are two interpretations,
then we say that I 4F I’ iff T ⊆ T’ and F ⊆ F’. We call this ordering the F-ordering. If I

is a collection of interpretations, then an interpretation I ∈ I is called F-minimal in I if
there is no interpretation J ∈ I such that J 4F I and J 6= I . An interpretation I is called
F-least in I if I 4F J, for any other interpretation J ∈ I. A model M of a theory R is called
F-minimal (resp. F-least) if it is F-minimal (resp. F-least) among all models of R.
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In particular, the F-least interpretation in the set of all interpretations is given by
I =< ∅, ∅ >. The notions of F-minimal and F-least models are different from the
notions of minimal and least models (see 2.1.20). While minimal and least models
of a theory R minimize the degree of truth of their atoms, by minimizing the set T of
true atoms and maximizing the set F of false atoms F, F-minimal and F-least models
minimize the degree of information of their atoms, by jointly minimizing the sets
T and F of atoms which are either true or false and thus maximizing the set U of
unknown atoms. For example, the F-least model of the program p ← p is obtained
when p is undefined, while the least model of Π is obtained when p is false. As it
will be seen in the sequel, this distinction reflects fundamental differences between
the semantics based on Clark’s completion and model-theoretic semantics, such as the
least model semantics, perfect model semantics or well-founded semantics.

2.1.1 Fixed Points

Declarative semantics of logic programs is often defined using fixed points of some
natural operators Ψ acting on ordered sets of interpretations. Suppose ≤ is an order-
ing on the set I of interpretations of a given language, J is a subset of I and Ψ is an
operator Ψ : I→ I on I.

Definition 2.1.22. The operator Ψ is called monotone if I ≤ J implies Ψ(I) ≤ Ψ(J),
for any I, J ∈ I. An interpretation I ∈ I is a fixed point of Ψ if Ψ(I) = I . By the least
upper bound ∑ J of J (resp. the greatest lower bound ΠJ of J) we mean an interpretation
I ∈ I such that J ≤ I , for any J ∈ J and J ≤ J’ for any other J’ with this property (resp.
I ≤ J , for any J ∈ J and J’ ≤ J for any other J’ with this property). By the smallest
interpretation (under the given ordering) we mean an interpretation I0 such that I0 ≤ I,
for any other interpretation I.

Least fixed points of monotone operators Ψ are often generated by iterating the
operator Ψ starting from the smallest interpretation I0 and obtaining the (possibly
transfinite) sequence:

Ψ↑0 = I0;
Ψ↑α+1 = Ψ(Ψ↑α);
Ψ↑λ = ∑α<λ Ψ↑α;

for limit ordinals λ. Clearly, an iteration Ψ↑α is a fixed point of Ψ if and only if

Ψ↑α = Ψ↑α+1.

In the sequel we will consider two principal orderings among interpretations,
namely the standard ordering 4 (see Def. 2.1.20) and the F-ordering 4F (see
Def. 2.1.21). Operators acting on sets of interpretations ordered by the standard
ordering, will be denoted by Ψ or Θ, while those acting on sets of interpretations
ordered by the F-ordering, will be denoted by Φ or Ω. Recall that I0 =< ∅, H >
(resp. I0 =< ∅, ∅ >) is the smallest (resp. F-smallest) interpretation in the set of all
interpretations ordered by 4 (resp. 4F ).

For a subset J of I , we will denote by ∑ J (resp. ΠJ ) the least upper bound (resp.
the greatest lower bound) of J with respect to 4. Similarly, we will denote by ∑F J
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(resp. ΠFJ) the least upper bound (resp. the greatest lower bound) of J with respect
to 4F.

Observe, that if J = {Js : s ∈ S}, with Js =< Ts; Fs >, then:

∑ J =<
⋃

s∈S
Ts,

⋂
s∈S

Fs >;

ΠJ =<
⋃

s∈S
Ts,

⋂
s∈S

Fs >;

∑F J =<
⋃

s∈S
Ts,

⋃
s∈S

Fs >;

ΠFJ =<
⋂

s∈S
Ts,

⋂
s∈S

Fs > .

Although ∑ J, ΠJ and ΠFJ are always well-defined interpretations, ∑F J =< T, F >
may not be an interpretation, because the sets T and F may not be disjoint. However,
∑F J is always an interpretation, provided that J is an F-directed set of interpretations,
i.e., such that for any J, J’ ∈ J there is a J” ∈ J satisfying J 4F J” and J’ 4F J”.

2.2 Clark’s Predicate Completion Semantics

The most commonly used declarative semantics of logic programs, although less pop-
ular in the context of knowledge representation, is based on the so called Clark predi-
cate completion comp(Π) of a logic program Π [Cla78, Llo87]. Clark’s completion of
Π is obtained by first rewriting every clause in Π of the form:

q(K1, ..., Kn )← L1 , ..., Lm,

where q is a predicate symbol and K1, ..., Kn are terms containing variables X1, ..., Xk,
as a clause

q(T1, ..., Tn)← V,

where Ti ’s are variables,

V = ∃X1, ..., Xk (T1 = K1 ∧ ... Tn = Kn ∧ L1 ∧ ... ∧ Lm)

and then replacing, for every predicate symbol q in the alphabet, the (possibly empty3)
set of all clauses

q(T1, ..., Tn)← V1
...

q(T1, ..., Tn)← Vs

with q appearing in the head, by a single universally quantified logical equivalence

q(T1, ..., Tn)↔ V1 ∨ ... ∨ Vs.

3If there are no clauses involving the head q(T1, ..., Tn), then the corresponding disjunction is empty
and thus always false. The resulting completion contains therefore a universal negation of q(T1, ..., Tn).
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Finally, the obtained theory is augmented by the so called Clark’s Equality Axioms
(see Def. 2.2.1), which include unique names axioms and axioms for equality. These
axioms are essential when considering non-Herbrand models of Clark’s completion.

Definition 2.2.1 (Clark’s Equational Theory (CET)). The so called Clark’s Equality
Axioms [Kun87] are:

CET1 X = X;

CET2 X = Y ⇒ Y = X;

CET3 X = Y ∧Y = Z ⇒ X = Z;

CET4 X1 = Y1 ∧ . . . ∧ Xm = Ym ⇒ f (X1, . . . , Xm) = f (Y1, . . . , Ym), for any
function f;

CET5 X1 = Y1 ∧ . . . ∧ Xm = Ym ⇒ ( p(X1, . . . , Xm) ⇒ p(Y1, . . . , Ym) ), for
predicate p;

CET6 f (X1, . . . , Xm) 6= g(Y1, . . . , Yn), for any two different function symbols f
and g;

CET7 f (X1, . . . , Xm) = f (Y1, . . . , Ym) ⇒ X1 = Y1 ∧ . . . ∧ Xm = Ym, for any
function f;

CET8 t[X] 6= X, for any term t[X] different from X, but containing X.

Remark. The first five axioms describe the usual equality axioms and the remaining
three axioms are called unique names axioms or freeness axioms. The significance of
these axioms to logic programming is widely recognized [Llo87, Kun87]. The equality
axioms (CET1) - (CET5) ensure that we can always assume that the equality predicate
“=” is interpreted as identity in all models. Consequently, in order to satisfy the
CET axioms, we just have to restrict ourselves to those models in which the equality
predicate - when interpreted as identity - satisfies the unique names axioms (CET6) -
(CET8).

Clark’s approach is mathematically elegant and founded on a natural idea that
in common discourse we often tend to use ‘if’ statements, when we really mean ‘iff’
statements. For example, we may use program 2.2.1 to describe natural numbers.

Program 2.2.1 (Peano numbers)

1natural_number (0).
2natural_number (succ(X)) ← natural_number (X).

The theory in program 2.2.1 is rather weak. It does not even imply that, say,
Mickey Mouse is not a natural number. This is because, what we really have in mind
is
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natural number (T)↔ ∃X (T = 0 ∨ (T = succ(X) ∨ natural number(X)))

which is in fact Clark’s completion of program 2.2.1 and it indeed implies

¬natural number(MickeyMouse).

Unfortunately, Clark’s predicate completion semantics has some serious drawbacks.
One of them is the fact that Clark’s completion is often inconsistent, i.e., it may not
have any 2-valued (Herbrand or not) models, in which case Clark’s semantics is un-
defined. For example, Clark’s completion of the program p ← ¬p is p ↔ ¬p, which
is inconsistent. The situation can be even worse, e.g., Clark’s completion of the pro-
gram 2.2.2 is program 2.2.3,

Program 2.2.2

1p ← ¬q, ¬p

Program 2.2.3

1p ← ¬q, ¬p
2¬q

which is inconsistent. However, after adding to program 2.2.2 a ‘meaningless’
clause q its completion becomes:

1p ↔ ¬q, ¬p
2q ↔ q

which has a unique 2-valued model in which q is true and p is false. On the other
hand, after adding to Π another ‘meaningless’ clause p p its completion becomes:

p↔ p ∨ (¬q ∧ ¬p)
¬q

which has a unique, yet different, 2-valued model in which q is false and p is true.

2.2.1 Three-Valued Extensions

[Fit85] showed that the inconsistency problem for Clark’s semantics, as well as some
other related problems, can be elegantly eliminated by considering 3-valued Herbrand
models of the Clark predicate completion comp(Π), rather than 2-valued models only.

Theorem 2.2.1 (Theorem 6.1 [Fit85]). Clark’s completion comp(Π) of any logic pro-
gram Π always has at least one 3-valued Herbrand model. Moreover, among all 3-valued
models of comp(Π) there is exactly one F-least model MΠ.

This result gave rise to Fitting’s 3-valued extension of Clark’s semantics.
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Definition 2.2.2 (Fitting’s Semantics). [Fit85] Fitting’s 3-valued extension of the Clark
predicate completion semantics is the semantics determined by the unique intended model
MΠ or, equivalently, by the set MOD(Π) of intended models, consisting of all 3-valued
Herbrand models of comp(Π).

For example, the program 2.2.2 defined before has a unique 3-valued model in
which q is false and p is undefined. Fitting also provided an elegant fixed-point char-
acterization of 3-valued models of comp(Π).

Definition 2.2.3 (The Fitting Operator). [Fit85] Suppose that Π is a logic program.
The Fitting operator Φ : I→ I on the set I of all 3-valued interpretations of comp(Π) is
defined as follows. If I ∈ I is an interpretation of comp(Π) and A is a ground atom then
Φ(I) is an interpretation given by4:

(i) Φ(I)(A) = 1 if there is a clause A ← L1, ..., Ln in Π such that Î(Li) = 1, for all
i ≤ n;

(ii) Φ(I)(A) = 0 if for every clause A ← L1, ..., Ln in Π there is an i ≤ n such that
Î(Li) = 0;

(iii) Φ(I)(A) = 1
2 , otherwise.

Theorem 2.2.2. [Fit85] An interpretation I of comp(Π) is a model of comp(Π) if and
only if it is a fixed point of the operator Φ. In particular, MΠ is the F-least fixed point of
Φ.

Moreover, the model MΠ can be obtained by iterating the operator Φ, namely, the
sequence Φ↑α of iterations5 of Φ is monotonically increasing and it has a fixed point

Φ↑λ = MΠ.

Kunen [Kun87] showed that the set of formulae implied by Fitting’s semantics is
not recursively enumerable and he proposed the following modification of Fitting’s
approach.

Definition 2.2.4 (Kunen’s Semantics). [Kun87] Kunen’s 3-valued extension of the Clark
predicate completion semantics is the semantics determined by the set MOD(Π) of in-
tended models, consisting of all 3-valued (Herbrand or not) models of comp(Π).

Kunen showed that his semantics is recursively enumerable and closely related to
the Fitting operator Φ.

Theorem 2.2.3. [Kun87] A closed formula V is implied by Kunen’s 3-valued extension of
the Clark predicate completion semantics if and only if it is satisfied in at least one finite
iteration Φ↑n of the Fitting operator Φ, n = 0,1,2, ... . Moreover, the set of formulae
implied by this semantics is recursively enumerable.

It is easy to see that Fitting’s semantics is stronger than Kunen’s semantics, i.e., any
closed formula implied by Kunen’s semantics is also implied by Fitting’s semantics.

4According to the conventions adopted in Sec. 2.1, Π is assumed to be instantiated and interpreta-
tions are viewed as 3-valued functions.

5According to the convention from Sec. 2.1.1, Φ is defined on the F-ordered set of interpretations
and the iteration begins from the F-smallest interpretation I = < ∅, ∅ >.
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2.2.2 Drawbacks of Clark’s Completion Semantics

Unfortunately, Clark’s predicate completion does not always result in a satisfactory
semantics. For many programs, it leads to a semantics which appears too weak. This
problem applies both to standard Clark’s semantics as well as to its 3-valued extensions
and it has been extensively discussed in the literature (see e.g. [She88, She84, Prz89b,
GRS91] ). We illustrate it on the following three examples.

Example 2.2.1 Suppose that to the program 2.2.1 defined before we add a seem-
ingly meaningless clause:

natural number(X)← natural number(X).

to obtain the program 2.2.4.

Program 2.2.4

1natural_number(0).
2natural_number(succ(X)) ← natural number (X).
3natural_number(X) ← natural_number(X).

It appears that the newly obtained program 2.2.4 should have the same semantics.
However, Clark’s completion of the new program 2.2.4 is:

natural number(T)↔
(natural number(T) ∨ T = 0 ∨∃X. (T = succ(X) ∧ natural number(X)))

from which it no longer follows that MickeyMouse (or anything else, for that matter)
is not a natural number.

Example 2.2.2 (Van Gelder) Suppose, that we want to describe which vertices in
a graph are reachable from a given vertex a. We could write the program 2.2.5.

Program 2.2.5

1edge(a, b)
2edge(c, d)
3edge(d, c)
4reachable(a)
5reachable(X ) ← reachable(Y), edge(Y, X).

We clearly expect vertices c and d not to be reachable. However, Clark’s completion
of the predicate ‘reachable’ gives only

reachable(X)↔ (X = a ∨ ∃ Y (reachable(Y ) ∧ edge(Y, X )))

from which such a conclusion again cannot be derived. Here, the difficulty is caused
by the existence of symmetric clauses edge(c, d) and edge(d, c).
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Example 2.2.3 Suppose the following program:

Program 2.2.6

1bird(tweety)
2fly(X) ← bird(X), ¬abnormal(X)
3abnormal(X) ← irregular(X)
4irregular(X) ← abnormal(X).

The last two clauses merely state that irregularity is synonymous with abnormality.
Based on the fact that nothing leads us to believe that tweety is abnormal, we are
justified to expect that tweety flies, but Clark’s completion of program 2.2.6 yields

fly (T)↔ (bird(T) ∨ ¬abnormal(T))
abnormal(T)↔ irregular(T),

from which it does not follow that anything flies. On the other hand, without the last
two clauses (or without just one of them) Clark’s semantics produces correct results.

The above described behavior of Clark’s completion is bound to be confusing for
a thoughtful logic programmer, who may very well wonder why, for example, the ad-
dition of a seemingly harmless statement “natural number(X)← natural number(X)”
should change the meaning of the first program. The explanation that will most likely
occur to him will be procedural in nature, namely, the fact that the above added clause
may lead to a loop. But it was the idea of replacing procedural programming by
declarative programming, that brought about the concept of logic programming and
deductive databases in the first place, and therefore it seems that such a procedural
explanation should be flatly rejected.

Some of the problems mentioned above are caused by the difficulties with the rep-
resentation of transitive closures when using Clark’s semantics (e.g., in the program
2.2.5). [Kun87] formally showed that Clark’s semantics is not sufficiently expres-
sive to naturally represent transitive closures. In the following sections we discuss
model-theoretic approaches to declarative semantics of logic programs which attempt
to avoid the drawbacks of Clark’s semantics discussed above.

2.3 Least Model Semantics

The model-theoretic approach is particularly well-understood in the case of positive
logic programs. In this section we assume that all interpretations are 2-valued.

Example 2.3.1 Suppose that our program Π (taken from [PP90]) consists of
clauses:

Program 2.3.1

1able mathematician(X) ← physicist(X).
2physicist(einstein).
3businessman(iacocca).
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This program has several different models, the largest of which is the model in
which both Einstein and Iacocca are at the same time businessmen, physicists and
good mathematicians. This model hardly seems to correctly describe the intended
meaning of Π. Indeed, there is nothing in this program to imply that Iacocca is a
physicist or that Einstein is a businessman. In fact, we are inclined to believe that the
lack of such information indicates that we can assume the contrary.

The program also has the unique least model MΠ :

{physicist(einstein), businessman(iacocca), able mathematician(einstein)},

in which only Einstein is a physicist and good mathematician and only Iacocca is a
businessman. This model seems to correctly reflect the semantics of P, at the same
time incorporating the classical case of the closed-world assumption [Rei77] if no
reason exists for some positive statement to be true, then we are allowed to infer that
it is false. It turns out that the existence of the unique least model MΠ is the property
shared by all positive programs.

Theorem 2.3.1. [vEK76b] Every positive logic program Π has a unique least (Herbrand)
model MΠ.

This important result led to the definition of the so called least model semantics
for positive programs.

Definition 2.3.1 (Least Model Semantics). [vEK76b] By the least model semantics of a
positive program Π we mean the semantics determined by the least Herbrand model MΠ
of Π.

The least Herbrand model semantics is very intuitive and it seems to properly
reflect the intended meaning of positive logic programs. The motivation behind this
approach is based on the idea that we should minimize positive information as much
as possible, limiting it to facts explicitly implied by Π, and making everything else
false. In other words, the least model semantics is based on a natural form of the
closed world assumption.

The least model semantics avoids the drawbacks of the Clark predicate completion
discussed in the previous section. For example, the least Herbrand model MΠ of the
programs 2.2.1 and 2.2.4 given above is:

{natural number(0), natural number(succ(0)), natural number(succ(succ(0))), ...}

which is exactly what we intended. Similarly, the least Herbrand model MΠ of the
program 2.2.5 above is:

{edge(a, b), edge(c, d), edge(d, c), reachable(a), reachable(b)},

which is again exactly what we would expect.
Least model semantics also has a natural fixed point characterization. First we

define the Van Emden-Kowalski immediate consequence operator Ψ : I→ I on the set
I of all interpretations of Π (ordered by 4).
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Definition 2.3.2 (The Van Emden-Kowalski Operator). [vEK76b] Suppose that Π is a
positive logic program, I ∈ I is an interpretation of Π and A is a ground atom. Then Ψ(I)
is an interpretation given by:

(i) Ψ(I)(A) = 1 if there is a clause A ← A1, ..., An in Π such that I(Ai) = 1, for all
i ≤ n;

(ii) Ψ(I)(A) = 0 , otherwise.

Theorem 2.3.2. [vEK76b] The Van Emden-Kowalski operator Ψ has the least fixed point,
which coincides with the least model MΠ. Moreover, the model MΠ can be obtained by
iterating ω times the operator Ψ, namely, the sequence Ψ↑n,
n = 0, 1, 2, ..., ω, of iterations6

of Ψ is monotonically increasing and it has a fixed point Ψ↑ω = MΠ.

The least model semantics is strictly stronger than Clark’s semantics:

Theorem 2.3.3. Suppose that Π is a positive logic program. If a closed formula is implied
by the Clark predicate completion semantics (or by one of its 3-valued extensions) then it
is also implied by the least model semantics.

The only serious, drawback of the least model semantics seems to be the fact that
it is well defined for a very restrictive class of programs. Programs which are not
positive, in general, do not have least models. For example, the program p ← ¬ q
has two minimal models {p} and {q}, but it does not have the least model. Similarly,
the program 2.2.6 from Example 2.2.3 does not have the least model.

2.4 Perfect Model Semantics

As we have seen above, although the least model semantics seems suitable for the
class of positive programs, it is not adequate for more general programs, allowing
negative premises in program clauses. The inclusion of negation in program clauses
increases the expressive power of logic programs and thus is of great practical impor-
tance. At the same time, the problem of finding a suitable semantics for programs
with negation becomes much more complex. In this section we discuss the perfect
model semantics, which extends the least model semantics to a wider class of logic
programs. Throughout most of this section by an interpretation (model) we mean a
2-valued interpretation (model).

Example 2.4.1 Suppose that we know that physicists are able mathematicians,
whereas typical businessmen tend to avoid (advanced) mathematics in their work,
unless they somehow happen to have a strong mathematical background. Suppose
also that we know that Iacocca is a businessman and that Einstein is a physicist. We
can express these facts using a logic program as follows:

6With respect to the standard ordering 4 of interpretations and beginning from the smallest inter-
pretation < ∅, H >. Here ω denotes the first infinite ordinal.
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Program 2.4.1

1avoids_math(X) ← businessman(X), ¬able_mathematician(X)
2able_mathematician(X) ← physicist(X)
3businessman(iacocca)
4physicist(einstein).

This program does not have a unique least model, but instead it has two minimal
models (M1 and M2). In both of them Iacocca is the only businessman, Einstein is the
only physicist and he is also an able mathematician, who uses advanced mathematics.
However, in one of them, say in M1, Iacocca avoids advanced mathematics, because
he is not an able mathematician and in the other, M2, the situation is opposite and
Iacocca is an able mathematician, who uses advanced mathematics in his work.

Since any intended semantics for logic programs must include some form of the
closed world assumption, and thus it must in some way minimize positive information,
it is natural to consider minimal models of our program Π [Min82, BS85, McC80]
as providing the desired meaning of Π. It seems clear, however, that not both
minimal models capture the intended meaning of Π. By placing negated predicate
able mathematician(X) among the premises of the rule, we intended to say that busi-
nessmen, in general, avoid advanced mathematics unless they are known to be good
mathematicians. Since we have no information indicating that Iacocca is a good math-
ematician we are inclined to infer that he does not use advanced mathematics. There-
fore, only the first minimal model M1 seems to correspond to the intended meaning
of Π.

The reason for this asymmetry is easy to explain. The first clause of Π is logically
(classically) equivalent to the fifth clause

5able_mathematician(X) ∨ avoids_math(X) ← businessman(X)

and models M1 and M2 are therefore also minimal models of the theory Π’ obtained
from Π by replacing the first clause by the fifth one. However, the intended meaning
of these two clauses seems to be different. The fifth clause does not assign distinct
priorities to predicates (properties) able mathematician and avoids math and thus
treats them as equally plausible. As a result the semantics determined by the two
minimal models M1 and M2 seems to be perfectly adequate to represent the intended
meaning of Π’. On the other hand, the program’s first clause intuitively seems to assign
distinct priorities for minimization to predicates able mathematician and avoids math,
essentially saying that the predicate able mathematician has to be first assumed false
unless there is a compelling reason to do otherwise. We can say, therefore, that the
first clause assigns a higher priority for minimization (or falsification) to the predicate
able mathematician than to the predicate avoids math.

We can easily imagine the above priorities reversed. This is for instance the case in
the following clause:

able mathematician(X)← physicist(X), ¬avoids math(X)

which says that if X is a physicist and if we have no specific evidence showing that he
avoids mathematics then we are allowed to assume that he is an able mathematician.
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Here, the predicate avoids math has a higher priority for minimization than the pred-
icate able mathematician, i.e., it is supposed to be first assumed false unless there is a
specific reason to do otherwise.

Also observe, that if B ← A is a clause, then minimizing B (i.e., making B false)
immediately results in A being minimized, too. Consequently, A is always minimized
before or at the same time when B is minimized. The above discussion leads us to
the conclusion that the syntax of program clauses determines relative priorities for
minimization among ground atoms according to the following rules:

I) Negative premises have higher priority than the heads;

II) Positive premises have priority no less than that of the heads.

To formalize conditions I and II, we assume that the program is already instantiated
and we introduce the dependency graph GΠ of Π (cf. [ABW88, vG89]), whose vertices
are ground atoms, i.e., elements of the Herbrand base H. If A and B are atoms, then
there is a directed edge in GΠ from B to A if and only if there is a clause in Π, whose
head is A and one of whose premises is either B or ¬B. In the latter case the edge is
called negative.

Definition 2.4.1 (Priority Relation). [ABW88] For any two ground atoms A and B in
H we define B to have a higher priority7 than A (A < B ) if there is a directed path in
G leading from B to A and passing through at least one negative edge. We call the above
defined relation < the priority relation between (ground) atoms. We will write A ≤ B if
there is a directed path from B to A.

Analogously, we can define the predicate priority relation <P between predicate
symbols, replacing in the above definition ground atoms by predicate symbols. Having
defined the priority relation, we are prepared to define the notion of a perfect model. It
is our goal to define a minimal model in which atoms of higher priority are minimized
(or falsified) first, even at the cost of including in the model (i.e., making true in it)
some atoms of lower priority. It follows, that if M is a model of Π and if a new model
N is obtained from M, by adding and subtracting from M some atoms, then we will
consider the new model N preferable to M if and only if the addition of any atom A is
always justified by the removal of a higher priority atom B (i.e. such that A < B ). A
model M of Π will be considered perfect, if there are no models of Π preferable to it.
More formally:

Definition 2.4.2 (Perfect Models). [Prz88, Prz89b] Suppose that M and N are two dis-
tinct models of a logic program Π. We say that N is preferable to M (briefly, N < < M),
if for every atom A ∈ N - M there is a higher priority atom B, B > A, such that B ∈ M -
N . We say that a model M of Π is perfect if there are no models preferable to M. We call
the relation < < the preference relation between models.

7There is no consensus in the literature as to whether to describe this property as having ‘higher’ or
‘lower’ priority and, accordingly, as to whether to denote it by A < B or A > B.
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It is easy to prove

Theorem 2.4.1. [Prz88] Every perfect model is minimal. For positive programs the
concepts of a least model and a perfect model coincide.

Example 2.4.2 Only model M1 in Example 2.4.1 is perfect. Indeed (using obvious
abbreviations):

M2 = {physicist(e), able mathematician(e), businessman(i), able mathematician(i)}
M1 = {physicist(e), able mathematician(e), businessman(i), avoids math(i)}

and we know that able mathematician > avoids math and therefore M1 < < M2,
while not M2 < < M1. Consequently, M1 is perfect, but M2 is not.

Unfortunately, not every logic program has a perfect model:

Example 2.4.3 The program:

1p ← ¬ q
2q ← ¬ p

has only two minimal Herbrand models M1 = {p} and M2 = {q} and since p < q
and q < p we have M1 < < M2 and M2 < < M1, thus none of the models is
perfect.

The cause of this peculiarity is quite clear. The concept of a perfect model is based
on relative priorities between ground atoms and therefore we have to be consistent
when assigning those priorities to avoid priority conflicts (cycles), which could render
our semantics meaningless. This observation underlies the approaches of Apt, Blair
and Walker [ABW88] and Van Gelder [vG89] who argued that when using negation
we should be referring to an already defined relation, so that the definition is not
circular, or, as Van Gelder puts it, we should avoid negative recursion. This idea led
them to the introduction of the class of stratified logic programs (see also [CH85,
Naq86]). The class of stratified logic programs has been later extended [Prz88] to the
class of locally stratified programs.

Definition 2.4.3. [ABW88, vG89, Prz88] A logic program Π is stratifed (resp. locally
stratified) if it is possible to decompose the set S of all predicate symbols (resp. the
Herbrand base H) into disjoint sets S1, S2, ... , Sα, ..., α < λ, called strata, so that for
every clause (resp. instantiated clause):

C← A1, ..., Am, ¬B1 , ..., ¬Bn

in P, where A’s, B’s and C are atoms, we have that:

i) for every i, stratum(Ai ) ≤ stratum(C);

ii) for every j, stratum(Bj ) < stratum(C),

where stratum(A) = α, if the predicate symbol of A belongs to Sα (resp. if the atom
A belongs to Sα). Any particular decomposition {S1, ..., Sα, ...} satisfying the above
conditions is called a stratification of Π (resp. local stratification of Π).
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In the above definition, stratification determines priority levels (strata), with lower
level (stratum) denoting higher priority for minimization. For example, the program
from Example 2.4.1 is stratified and one of its stratifications is

S1={able mathematician},
S2={businessman, physicist, avoids math}.

The difference between the definitions of stratification and local stratification is
that in the first case we decompose the set S of all predicate symbols, while in the
second case we decompose the Herbrand base H. Since every program can effectively
refer only to a finite set of predicate symbols, stratifications can be always assumed
to be finite. On the other hand, if the program uses function symbols then its Her-
brand universe is infinite and its local stratifications can, in general, be infinite. The
following fact is obvious:

Proposition 2.4.1. Every stratified program is locally stratified.

The next proposition characterizes (local) stratifiability.

Proposition 2.4.2. [ABW88, Prz88] A logic program Π is stratified if and only if its
predicate priority relation <Π is a partial order8. A logic program Π is locally stratified
if and only if its priority relation < is a partial order and if every increasing sequence of
ground atoms under < is finite9.

All programs described in sections 2.2, 2.3 and 2.4, with the exception of Example
2.4.3, are stratified. The program in Example 2.4.3, is not even locally stratified. We
now present an example of a locally stratified program which is not stratified.

Example 2.4.4 The following program defines even numbers:

1even(0)
2even(s(X)) ← even(X).

Here s(X) is meant to represent the successor function on the set of natural numbers.
This program is not stratified because the predicate even is involved in negative re-
cursion with itself, i.e., even <Π even. However, Π is locally stratified, because the
priority ordering < between ground atoms is easily seen to be a partial order and
every increasing sequence of ground atoms is of the form:

even(s(s(s(...)))) < even(s(s(...))) < even(s(...)) < ... < even(s(0)) < even(0)

and therefore it must be finite.

The following basic result shows that every locally stratified program has the least
model MΠ with respect to the preference relation < < .

Theorem 2.4.2. [Prz88] Every locally stratified program Π has a unique perfect model
MΠ. Moreover, MΠ is preferred to any other model M of Π, i.e., MΠ < < M, for any
other model M.

8By a partial order we mean an irreflexive and transitive relation.
9The last condition is only essential when the Herbrand base is infinite.
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For stratified programs, models MΠ have been first introduced under the name
of ‘natural’ models in [ABW88, vG89] and defined in terms of iterated fixed points
and iterated least models. In general, a (locally) stratified program may have many
stratifications, however, the notion of a perfect model is defined entirely in terms of
the priority relation < and thus it does not depend on a particular stratification. Now
we can define the perfect model semantics of locally stratified logic programs.

Definition 2.4.4 (Perfect Model Semantics). [ABW88, vG89, Prz88] Let Π be a locally
stratified10 logic program. By the perfect model semantics of Π we mean the semantics
determined by the unique perfect model MΠ of Π. It follows immediately from Theorem
2.4.1 that for positive logic programs the perfect model semantics is in fact equivalent to
the least model semantics and thus the perfect model semantics extends the least model
semantics. The following result, slightly generalizing [ABW88], shows that the perfect
model semantics is strictly stronger than the semantics defined by Clark’s completion.

Theorem 2.4.3. (cf. [ABW88]) If Π is a locally stratified logic program, then Clark’s
completion comp(Π) is consistent and if a closed formula is implied by the Clark predicate
completion semantics (or by one of its 3-valued extensions) then it is also implied by the
perfect model semantics.

The perfect model semantics eliminates various unituitive features of Clark’s se-
mantics discussed before. For example, the unique perfect model of the program
2.2.6 discussed in Example 2.2.3 consists of:

{ bird(tweety), fly(tweety) },

leading to the expected intended semantics.

2.4.1 Perfect Models As Iterated Fixed Points and Iterated Least
Models

Least models of positive programs have been characterized as fixed points of the Van
Emden-Kowalski operator. It turns out that perfect models of locally stratified pro-
grams can be also characterized as iterated least fixed points and as iterated least
models of the program. In the remainder of this section we consider both 2-valued
and 3-valued interpretations.

First we need a generalization of the Van Emden-Kowalski operator Ψ defined in
Section 2.3. For any interpretation J we define a corresponding operator ΨJ as follows:

Definition 2.4.5 (The Generalized Van Emden-Kowalski Operator). Suppose that Π is
any logic program, I, J ∈ I are interpretations and A is a ground atom. Then ΨJ(I) is a
(2-valued) interpretation given by:

(i) ΨJ(I)(A) = 1 if there is a clause A← L1, ..., Ln in Π such that, for all i ≤ n, either
Ĵ(Li) = 1 or Li is an atom and I (Li) = 1;

10Perfect model semantics can be defined for a significantly larger class of programs, but for the sake
of compatibility with its extensions discussed in the following sections, we limit it to the class of locally
stratified programs.
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(ii) ΨJ(I)(A) = 0, otherwise.

Intuitively, J represents facts currently known to be true or false and ΨJ(I) contains
all atomic facts whose truth can be derived in one step from the program Π assuming
that all facts in J hold and assuming that all positive facts in I are true. The Van
Emden-Kowalski operator Ψ coincides with ΨJ, where J =< ∅, ∅ >. Observe, that
operators ΨJ are asymmetric in the sense that they do not treat negative and positive
information symmetrically. In Section 2.5 devoted to the well-founded semantics we
will introduce analogous, but completely symmetric operators.

Proposition 2.4.3. [ABW88] For every interpretation J , the operator ΨJ is monotone
and it has the least fixed point given by Ψ↑ωJ (recall that ω stands for the first infinite
ordinal).

Intuitively, the least fixed point Ψ↑ωJ contains all positive (atomic) facts which can
be derived from Π knowing J. Now we give an iterated fixed point characterization of
perfect models. Let {S1, S2 ,... , Sα , ... }, α < λ, be a local stratification of a program
Π, i.e., a decomposition of the Herbrand base H. For every β ≤ λ let

Hβ =
⋃

α≤β
Sα.

Clearly,

H = Hλ.

Since the result of applying an operator ΨJ to an arbitrary interpretation I is always
a 2-valued interpretation ΨJ(I), we can identify interpretations ΨJ(I) with subsets of
the Herbrand base. We construct the following (transfinite) sequence { Iα : α ≤ λ }
of interpretations:

I0 =< ∅, ∅ >
Iα+1 =< Ψω

Iα
, Hα+1 −Ψω

Iα
>

Iδ = ∑F{ Iα : α ≤ δ },
for limit δ. At any given step α, the next iteration Iα+1 is obtained by:

• Taking the least fixed point Ψω
Iα

of the operator ΨIα as the set of positive facts.
This is justified by the fact that the least fixed point Ψω

Iα
contains those positive

facts whose truth can be deduced from Π assuming Iα.

• Taking the complement of Ψω
Iα

in Hα+1 as the set of false facts. This is justified by
the fact that the program is locally stratified and thus atoms from Hα+1, whose
truth cannot be deduced at the level α + 1 can be assumed to be false.

One can show that the sequence { Iα } is F-increasing and, clearly, the last interpre-
tation in this sequence is Iλ. Observe again, that the above definition of iterations Iα

does not treat negative and positive information symmetrically. In Section 2.5 devoted
to the well-founded semantics we will give an analogous, but symmetric definition.

The following two theorems generalize results obtained in [ABW88, vG89] from
the class of stratified programs to the class of locally stratified programs. The approach
presented here is slightly different from those given in [ABW88, vG89]
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Theorem 2.4.4. (cf. [ABW88, vG89]) The unique perfect model MΠ of a locally stratified
program coincides with Iλ. Moreover, MΠ is itself the least fixed point of the operator
ΨMΠ .

Thus perfect models of locally stratified programs can be viewed as iterated least
fixed points of operators ΨJ. Perfect models can be also described as iterated least
models of the program.

Let us first denote by Πα the set of all (instantiated) clauses of Π whose heads
belong to Hα. Clearly, Πλ = Π . It is easy to see that if in the above definition of the
sequence Iα we replace the definition of Iα+1 by:

Iα+1 = < Hα+1 ∩Ψω
Iα

, Hα+1 −Ψω
Iα

>

i.e., if we restrict true atoms to the elements of Hα+1 then we will still have MΠ = Iλ

. For the so modified sequence Iα the following result holds.

Theorem 2.4.5. (cf. [ABW88, vG89]) For every α ≤ λ, Iα is the least model of the
program Πα, which extends all models Iβ of programs Πβ, for β < α (i.e., such that
Iβ 4F Iα).

Thus MΠ can be viewed as an iterated least model of Π.

2.4.2 Extensions of the Perfect Model Semantics

The class of perfect models of locally stratified logic programs has many natural and
desirable properties. However, the fact that it is restricted to the class of locally strat-
ified programs is a significant drawback. Several researchers pointed out that there
exist interesting and useful logic programs with natural intended semantics, which are
not locally stratified [GL88, GRS91]

Example 2.4.5 [GL88] Consider the program Π given by:

1p(1, 2) ←
2q(X) ← p(X, Y), ¬q(Y).

After instantiating, Π takes the form:

6p(1, 2) ←
7q(1) ← p(1, 2), ¬q (2)
8q(1) ← p(1, 1), ¬q (1)
9q(2) ← p(2, 2), ¬q (2)
10q(2) ← p(2, 1), ¬q (1).

This program is not locally stratified. Indeed, the priority relation < between atoms
is not a partial order, because q(1) < q(2) and q(2) < q(1). On the other hand, it
seems clear that the intended semantics of Π is well-defined and is characterized by
the 2-valued model M = { p(1, 2), q(1) } of Π. The same results would be produced
by Prolog, which further confirms our intuition.

The cause of this peculiarity is fairly clear. Program Π appears to be semantically
equivalent to a locally stratified program Π* consisting only of clauses (6) and (7).
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The remaining clauses seem to be entirely irrelevant, because atoms p(1, 1), p(2, 1)
and p(2, 2) can be assumed false in Π. At the same time, they are the ones that
destroy local stratifiability of Π.

Three different extensions of the perfect model semantics have been proposed: the
stable model semantics [GL88] (equivalent to the default model semantics [BF91])
the weakly perfect model semantics [PP88] and the well-founded semantics [GRS91].
While the first two semantics are 2-valued and are defined only for restricted classes of
programs, the well-founded semantics is 3-valued and is defined for all logic programs.
Although the three semantics approach the problem from three different angles (see
[PP90]) it appears, that the well-founded semantics is the most adequate extension
of the perfect model semantics. In the next section we discuss the Well Founded
Semantics.

2.5 Well Founded Model Semantics

The well-founded semantics has been introduced in [GRS91] and it seems to be the
most adequate extension of the perfect model semantics to the class of all logic pro-
grams, avoiding various drawbacks of the other proposed approaches. Well-founded
semantics also has been shown to be equivalent to suitable forms of 3-valued formal-
izations of all four major non-monotonic formalisms [Prz89c]

One of the important features of well-founded models, and a strong indication of
their naturality, is the fact that they can be described in many different, but equivalent,
ways (see [GRS91, Prz89a, Prz89c, Gel89, Bry89]). Here we use the (iterated) least
fixed point approach proposed in [Prz89a], which seems to be a natural extension
of least fixed point definitions of least models and perfect models and is also closely
related to Fitting’s extension of Clark’s semantics. As opposed to the original definition
proposed in [GRS91], the iterated fixed point definition given here is constructive.

First, for any interpretation J of a program Π, we introduce the operator
ΘJ : I → I on the set I of all 3-valued interpretations of Π , ordered by the standard
ordering 4. The operator can be viewed as a cross between the Fitting operator Φ
(Sec. 2.2) and Generalized Van Emden-Kowalski operators ΨJ (see Sec. 2.4).

Definition 2.5.1. [Prz89a] Suppose that Π is a logic program and J is its interpretation.
The operator ΘJ : I → I on the set I of all 3-valued interpretations of Π is defined
as follows. If I ∈ I is an interpretation of Π and A is a ground atom then ΘJ(I) is an
interpretation given by:

(i) ΘJ(I)(A) = 1 if there is a clause A ← L1, ..., Ln in Π such that, for all i ≤ n,
either Ĵ(Li) = 1 or Li is positive and I(Li) = 1;

(ii) ΘJ(I)(A) = 0 if for every clause A ← L1, ..., Ln in Π there is an i ≤ n such that
either J(Li) = 0 or Li is positive and I(Li) = 0;

(iii) ΘJ(I)(A) = 1
2 , otherwise.
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Intuitively, the interpretation J represents facts currently known to be true or false.
The true facts in ΘJ(I) consist of those atoms which can be derived in one step from
the program Π assuming that all facts in J hold and that all positive facts in I are
true. The false facts in ΘJ(I) consist of those atoms whose falsity can be deduced in
one step (using the closed world assumption) from the program Π assuming that all
facts in J hold and that all negative facts in I are true. Observe, that, as opposed to
Van Emden-Kowalski operators ΨJ, the operators ΘJ are completely symmetric in the
sense that they treat negative and positive information symmetrically (dually).

Theorem 2.5.1. [Prz89a] For every interpretation J, the operator ΘJ is monotone and
it has a unique least fixed point11 given by Θ↑ωJ .

We will denote this least fixed point of ΘJ by Ω(J), i.e.

Ω(J) = Θ↑ωJ

Clearly, Ω constitutes an operator on the set of all interpretations of Π.
Observe that, although the operators ΘJ resemble the Fitting operator Φ, they

do not coincide with it. Moreover, the above Theorem is very different from theo-
rem 2.2.2. This is a consequence of the fact that the operators ΘJ are defined on the
set of all interpretations ordered by the standard ordering 4 and not by the F-ordering
4F and thus the iterations begin from the smallest interpretation I0 =< ∅, H > and
not from the F-smallest interpretation < ∅, ∅ >. As a result, as opposed to Φ, least
points of operators ΘJ can be always obtained after only ω steps, where ω is the first
infinite ordinal.

Intuitively, the least fixed point Ω(J) = Θ↑ωJ of ΘJ contains all facts, whose truth
or falsity can be deduced (using the closed world assumption) from Π knowing J. The
operator Ω turns out to have a unique F-least fixed point.

Theorem 2.5.2. [Prz89a] The operator always has a unique F-least fixed point MΠ, i.e.
the F-least interpretation MΠ such that

Ω(MΠ) = MΠ.

Moreover, all fixed points of Ω are minimal models of Π.

As we will see below, the F-least fixed point of Ω can be simply obtained as a
suitable iteration Ω↑λ of Ω. First, we give a definition of well-founded models.

Definition 2.5.2. [Prz89a] We call the unique F-least fixed point MΠ of Ω the well
founded model of Π.

Since the well-founded model of Π is defined as the F-least fixed point of the
operator Ω, which is itself defined by means of least fixed points of Θ, well founded
models can be viewed as iterated least fixed points of the operator Θ. Although our
definition of well-founded models is different from the original definition given in
[GRS91], the two notions are equivalent.

11Recall that ω stands for the first infinite ordinal and that the iteration begins from the smallest
interpretation I0 =< ∅, H >.
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Theorem 2.5.3. [Prz89a] Well founded models introduced above coincide with well-
founded models originally defined in [GRS91].

Now we can introduce the well-founded semantics of logic programs.

Definition 2.5.3 (Well-Founded Semantics). [GRS91], The well founded semantics of a
logic program is determined by the unique well-founded model MΠ.

In order to obtain a constructive definition of the well-founded model MΠ of a
given program Π , we define the following (transfinite) sequence { Iα } of interpreta-
tions of Π:

I0 =< ∅, ∅ >
Iα+1 = Ω(Iα) = Θ↑ωIα

Iδ = ∑F{Iα : α < δ},

for limit δ. Clearly, for any α, Iα coincides with Ω↑α, where the F-ordering of interpre-
tations is used to generate consecutive iterations, i.e., we have:

Iα = Ω↑α.

At any given step α, the next iteration Iα+1 is obtained as the least fixed point
Ω(Iα) = Θω

Iα
of the operator ΘIα . This is justified by the fact that, as we observed

before, the least fixed point Ω(Iα) = Θω
Iα

contains all facts, whose truth or falsity can
be deduced from Π knowing Iα.

One can show that the sequence { Iα } is well-defined and F-increasing and there-
fore, since all interpretations are countable, there must exist the smallest λ, such that
Iλ is a fixed point , i.e., such that:

Iλ+1 = Ω(Iλ) = Iλ

i.e., Iλ is a fixed point of the the operator Ω. We call λ = λ(Π) the depth of the
program Π. It turns out that Iλ is in fact the F-least fixed point of Ω and thus it
coincides with the well-founded model MΠ of Π.

Theorem 2.5.4. [Prz89a] The interpretation Iλ = Ω↑λ is the F-least fixed point of the
operator Ω and thus it coincides with the well-founded model MΠ of Π:

MΠ = Iλ = Ω↑λ

Observe, that the above description of well-founded models is very similar to the
iterated fixed point definition of perfect models given in Sec. 2.4, but it treats negative
and positive information completely symmetrically (dually) and does not require the
advance notion of (local) stratification. In particular, the well-founded model seman-
tics extends the perfect model semantics.

Corollary 2.5.1. [GRS91] The well-founded model of a locally stratified program coin-
cides with its perfect model.
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In [Prz89a] the iterated fixed point definition of well founded models is used to
introduce the so called dynamic stratification of an arbitrary logic program Π, with
properties analogous to local stratification. Using dynamic stratification, [Prz89a]
showed that the well-founded model MΠ can also be viewed as an iterated least model
of a program and that well-founded models can be defined by means of a suitable
preference relation between atoms, in a manner analogous to the definition of perfect
models.
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ON IMPLEMENTING WELL FOUNDED SEMANTICS

The central component of existing logic programming systems is a refutation pro-
cedure, which is based on the resolution rule created by Robinson [Rob65]. The
first such refutation procedure, called SLD-resolution, was introduced by Kowalski
[Kow74, VEK76a], and further formalized by Apt and Van Emden [AvE82]. SLD-
resolution is only suitable for positive logic programs, i.e. programs without nega-
tion. Clark [Cla78] extended SLD-resolution to SLDNF-resolution by introducing the
negation as finite failure rule, which is used to infer negative information. SLDNF-
resolution is suitable for general logic programs, by which a ground negative literal
¬A succeeds if A finitely fails, and fails if A succeeds.

As an operational/procedural semantics of logic programs, SLDNF-resolution has
many advantages, among the most important of which is its linearity of derivations.
Let G0 ⇒C1,Θ1 G1 ⇒ ... ⇒Ci,Θi Gi be a derivation with G0 the top goal and Gi the
latest generated goal. A resolution is said to be linear for query evaluation if when
applying the most widely used depth-first search rule, it makes the next derivation
step either by expanding Gi using a program clause (or a tabled answer), which yields
Gi ⇒Ci+1,Θi+1 Gi+1, or by expanding Gi−1 via backtracking1. It is with such linearity
that SLDNF-resolution can be realized easily and efficiently using a simple stack-based
memory structure [War83, Zho94]. This has been sufficiently demonstrated by Prolog,
the first and yet the most popular logic programming language which implements
SLDNF-resolution.

However, SLDNF-resolution suffers from two serious problems. One is that the
declarative semantics it relies on, i.e. the completion of programs [Cla78], incurs
some anomalies (see [Llo87, She88] for a detailed discussion); and the other is that it
may generate infinite loops and a large amount of redundant sub-derivations [BAK91,
SD94, Vie89]. This problems are introduced in detail in section 3.1.

The first problem with SLDNF-resolution has been perfectly settled by the definition
of the well-founded semantics [GRS91]. Three representative methods were then
proposed for topdown evaluation of such a new semantics: Global SLS-resolution

1The concept of “linear” here is different from the one used for SL-resolution [KK71].
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[Prz89a, Ros92], SLG-resolution [CSW95, CW96] and SLT-resolution [SyYhY02].
Global SLS-resolution is a direct extension of SLDNF-resolution. It overcomes the

semantic anomalies of SLDNF-resolution by treating infinite derivations as failed and
infinite recursions through negation as undefined. Like SLDNF-resolution, it is linear
for query evaluation. However, it inherits from SLDNF-resolution the problem of infi-
nite loops and redundant computations. Therefore, as the authors themselves pointed
out, Global SLS-resolution can be considered as a theoretical construct [Prz89a] and
is not effective in general [Ros92].

SLG-resolution (similarly, Tabulated SLS-resolution [BD98]) is a tabling mech-
anism for topdown evaluation under the well-founded semantics. The main idea
of tabling is to store intermediate results of relevant subgoals and then use them
to solve variants of the subgoals whenever needed. With tabling no variant sub-
goals will be recomputed by applying the same set of program clauses, so infi-
nite loops can be avoided and redundant computations be substantially reduced
[BD98, CW96, TS86, Vie89, War92]. Like all other existing tabling mechanisms, SLG-
resolution adopts the solution-lookup mode. That is, all nodes in a search tree/forest
are partitioned into two subsets: solution nodes and lookup nodes. Solution nodes
produce child nodes only using program clauses, whereas lookup nodes produce child
nodes only using answers in the tables. As an illustration, consider the derivation
p(X) ⇒Cp1 ,Θ1 q(X) ⇒Cq1 ,Θ2 p(Y). Assume that so far no answers of p(X) have been
derived (i.e., currently the table for p(X) is empty). Since p(Y) is a variant of p(X)
and thus a lookup node, the next derivation step is to expand p(X) against a program
clause, instead of expanding the latest generated goal p(Y). Apparently, such kind of
resolutions is not linear for query evaluation. As a result, SLG-resolution cannot be
implemented using a simple, efficient stack-based memory structure

SLT-resolution was the next development step, offering the user a linear tabling
method for top-down evaluation of the WFS of general logic programs. As SLG, it
resolves infinite loops and redundant computations, but it does not sacrifice the lin-
earity of SLDNF-resolution (like Global SLS-resolution). It is based on SLT-trees, which
are basically SLDNF-trees with an enhancement of some loop handling mechanisms.
Consider again the derivation p(X) ⇒ Cp1 ,Θ1 q(X) ⇒ Cq1 ,Θ2 p(Y). Note that the
derivation has gone into a loop since the proof of p(X) needs the proof of p(Y), a
variant of p(X). By SLDNF- or Global SLS-resolution, p(Y) will be expanded using the
same set of program clauses as p(X). Obviously, this will lead to an infinite loop of the
form p(X) ⇒Cp1

...p(Y) ⇒Cp1
...p(Z) ⇒Cp1

... In contrast, SLT-resolution will break
the loop by disallowing p(Y) to use the clause Cp1 that has been used by p(X). As a
result, SLT-trees are guaranteed to be finite for programs with the bounded-term-size
property.

In contrast to SLG, SLT-resolution is linear for query evaluation. Unlike SLG-
resolution and all other existing top-down tabling methods, SLT-resolution does not
distinguish between solution and lookup nodes. All nodes will be expanded by apply-
ing existing answers in tables, followed by program clauses. For instance, in the above
example derivation, since currently there is no tabled answer available to p(Y), p(Y)
will be expanded using some program clauses. If no program clauses are available
to p(Y), SLT-resolution would move back to q(X) (assume using a depth-first control
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strategy). This shows that SLT-resolution is linear for query evaluation. When SLT-
resolution moves back to p(X), all program clauses that have been used by p(Y) will
no longer be used by p(X). This avoids redundant computations.

In spite of the improvements of SLT over SLG and SLS, all these procedures
are restricted to programs with the bounded-term-size property and non-floundering
queries. This last problem is what we solve by combining the management of positive
and negative literals in a symmetrical way from Constructive Intensional Negation
[MMNMH08] and the Derivation Procedure for Extended Stable Models [PAP+91],
which allows us to determine if a query belongs or not to the well founded model of
the program, obtaining well founded semantics.

In the following sections we introduce Negation as Failure and its problems
(Sec. 3.1), the mechanisms used in Constructive Intensional Negation (Sec. 3.2), the
Derivation Procedure for Extended Stable Models (Sec. 3.3) and the general picture
of our implementation (sections 3.4 and 3.5).

3.1 Negation as Failure

Negation as Failure (NAF) is the dominant mechanism for processing negative literals
in logic programming. NAF, as pointed out by [BMPT90], is a meta-inference-rule
allowing one to prove the negation of a ground goal, when the proof of the corre-
sponding positive rule fails. The limitation of ground goals is a real problem, as can
be seen in the following examples.

Remark. We use for negation the predicate naf instead of not to denote that we are
using Negation as Failure.

Example 3.1.1 (NAF works for ground goals) In the following program, fly de-
pends on naf(penguin) and, as we can not prove penguin (the program has only one
rule), then fly is true.

Program 3.1.1

fly ← naf(penguin)

Evaluation of queries f ly and na f ( f ly) in program 3.1.1

?- fly.
true

?- naf(fly).
fail

Example 3.1.2 (NAF does not work for non-ground goals) In program 3.1.2,
fly(X) depends on naf(penguin(X)). We have added Tweety and Donald. Tweety
is a penguin and Donald flies because is a duck. In this way we expect a query
? − f ly(Y) to get an answer Y = donald and a query ? − na f ( f ly(Y)) to get an
answer Y = tweety. While the first query works, the second one does not.
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Program 3.1.2

1fly(X) ← ¬penguin(X)
2penguin(tweety).
3fly(donald).

Evaluation of queries f ly(Y) and na f ( f ly(Y)) in program 3.1.2

?- fly(Y).
Y = donald?
no

?- ¬fly(Y).
no

The reason for this strange behavior is in the implementation of NAF:

1naf(X) ← X, !, fail.
2naf(X).

While for the example 3.1.1 this works perfectly because the interpreter is not able
to find the proposition f ly, in the example 3.1.1 it tries to find f ly(Y), which is found
for Y = donald. As it is found, the interpreter executes the first rule of the predicate
naf, and fails to find a suitable value for Y making na f ( f ly(Y)) true.

Logically speaking, instead of getting the answers for the first rule below we are
getting the answers for second rule.

1∃ Y. ¬fly(Y). [Expected behavior]
2∀ Y. ¬fly(Y). [NAF behavior]

As can be seen in the example, NAF is a mechanism with a procedural semantics
that are far from the expected declarative semantics when programs are non-ground.

Besides, NAF does not take care of loops. The following example illustrate this
problem.

Example 3.1.3 The following program naturally encodes the knowledge that we
sleep if we do not work and we work if we do not sleep. As works depends on sleep
and sleep depends on work, the evaluation never stops or stops with an error message.

Program 3.1.3

1work ← naf(sleep).
2sleep ← naf(work).

Evaluation of queries sleep, work, na f (sleep) and na f (work) in program 3.1.3

?- sleep.
...
[OutOfMemory exception]

?- work.
...
[OutOfMemory exception]

?- naf(sleep).
...
[OutOfMemory exception]

?- naf(work).
...
[OutOfMemory exception]
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One may argue that this problem exists in Prolog without making use of negation,
which is true. The fact is that, as explained in chapter 1, we can define our knowledge
about these propositions as incomplete or perhaps even confusing, but in this cases the
implementation should take this into account and never abort the computation. As has
been introduced in chapter 2, this problem was solved by developing new semantics
for logic programs. The combination of the techniques revised in sections 3.2 and 3.3,
presented in section 3.4, goes in this line of research.

3.2 Constructive Intensional Negation

Here we introduce the technique developed in [MMNMH08] to obtain a variant of
Clark’s Predicate Completion Semantics (see Sec. 2.2) that the authors suggest to be
seen as a CLP version of Kunen’s Semantics. Its name is Constructive Intensional
Negation (CIN).

CIN is the first working implementation of the procedure developed by Barbuti
et al. [BMPT87, BMPT90], Intensional Negation (IN). IN uses a transformational ap-
proach that has some problems when transforming certain classes of programs, so the
authors of CIN slightly modified it to make it work. We will introduce Intensional
Negation and its problems to get to Constructive Intensional Negation.

In intensional negation [BMPT87, BMPT90] a program transformation technique is
used to add new predicates to the program in order to express the negative informa-
tion. Informally, the complement of head terms of the positive clauses are computed
and they are used later as the head of the negated predicate. We denote the negated
predicate of p as intneg p.

Remark. In the following example, Ex. 3.2.1, from the fact that the Peano numbers
0 and s(s(X)) are even (if X is even again) it is inferred that the Peano numbers s(0)
and s(s(Y)) are not even (if Y is not even again). As we will see in Sec. 4.2, this
inference is done from the human knowledge that s(0) and s(s(Y)) are not even, but
it is impossible (without human intervention) for an algorithm to determine that.
This example only illustrates the ideal computation of the negative clauses. The real
result is presented in Ex. 3.2.2, where the term f orall([Y], X 6= s(s(Y))) represents
the formula ∀Y. X 6= s(s(Y)). This formula is obtained from the negation of the
formula ∃X. Y = s(s(X)), that represents the head of the second clause of even,
even(s(s(X))). The process is explained in Def. 3.2.1.

Program 3.2.1 Predicate even for Peano numbers, from [MMNMH08]

1even(0) ← .
2even(s(s(X))) ← even (X).
3
4intneg_even(s(0)) ← .
5intneg_even(s(s(Y))) ← intneg_even(Y).
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Program 3.2.2 Predicate even for Peano numbers, from [MMNMH08]

1even(0) ← .
2even(s(s(X))) ← even (X).
3
4intneg_even(X) ← X 6= 0, forall([Y], X 6= s(s(Y)) ).
5intneg_even(s(s(Y))) ← intneg_even(Y).

There is one problem with this transformation technique: in the presence of new
logical variables on the right-hand side (rhs) of a clause2, the new program needs to
handle some kind of universal quantification construct (The ∀ symbol in Ex. 3.2.2). It
is solved by using a method semantically similar to the unfolding procedure in Sato
and Motoyoshi’s work [ST84, Sat89], but not requiring the management of syntactic
structures. The method deals with a recursive implementation of universal quantifica-
tion based on an expansion theorem.

The theoretical part is justified with the definition provided for the Intensional
Negation of a program, based on the extension of the signature used to build the
program:

Given a signature Σ = 〈FSΣ, PSΣ〉, let PS′Σ ⊃ PSΣ be such that for every p ∈ PSΣ
there exists a symbol neg(p) ∈ PS′Σ \ PSΣ. Let Σ′ = 〈FSΣ, PS′Σ〉.

Definition 3.2.1 (Intensional Negation of a Program). Given a program ΠΣ, its inten-
sional negation is a program Π′Σ′ such that for every p in PSΣ the following properties
hold:

P.1) Conservativity: ∀x. [Comp(Π) |=3 p(x) ⇐⇒ Comp(Π′) |=3 p(x)]

P.2) Negation: ∀x. [Comp(Π) |=3 p(x) ⇐⇒ Comp(Π′) |=3 ¬(neg(p)(x))]

From the definition provided they define a method able to generate the negated
counterpart of a set of clauses if they are non-overlapping clauses (see def. 3.2.2), and
a method to translate overlapping rules into non-overlapping ones.

Definition 3.2.2 (Nonoverlapping predicate definition). A pair of constraints c1 and c2
is said to be incompatible iff their conjunction c1 ∧ c2 is unsatisfiable. A set of constraints
{ ci } is exhaustive iff

∨
i ci = t. A predicate definition

def Π(p) = {p(x) ← Bi(yi · zi)[] ci(x · yi) | i ∈ 1 . . . m}

is nonoverlapping iff ∀i, j ∈ 1 . . . m the constraints ∃yi. ci(x · yi) and ∃yj. cj(x · yj) are
incompatible (so, i 6= j) and def Π(p) is exhaustive if the set of constraints {∃yi. ci(x · yi)}
is exhaustive.

A nonoverlapping set of clauses can be made into a nonoverlapping and exhaustive
set by adding an extra “default” case:

2Programs in which all variables appearing in the body of rules also appear in the corresponding
head are called covered by some authors (see [APS04]). Here by programs with new logical variables
in the rhs of a clause we refer to non-covered programs.
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Lemma 3.2.1. Let p be such that its definition

def Π(p) = {p(x) ← Bi(yi · zi)[] ci(x · yi) | i ∈ 1 . . . m}

is nonoverlapping. Then its completed definition is logically equivalent to

cdef Π(p) ≡ ∀x.[p(x) ⇐⇒ ∃y1. c1(x · y1) ∧ ∃z1.B1(y1 · z1) ‖
...
∃ym. cm(x · ym) ∧ ∃zm.Bm(ym · zm) ‖∧m

i=1 ¬∃yi. ci(x · yi) ∧ f ]

The interesting fact about this kind of definitions is captured by the following
lemma:

Lemma 3.2.2. Given {C1, ..., Cn} a set of exhaustive and nonoverlapping Herbrand con-
straints and {B1, ..., Bn} a set of first-order formulas with no occurrences of x, and yi a
set of variables included in the free variables of Ci, i ∈ {1 . . . n} the following holds:

∀x(¬[∃y1(C1 ∧ B1) ‖ · · · ‖ ∃yn(Cn ∧ Bn)] ⇐⇒

⇐⇒ ∃y1(C1 ∧ ¬B1) ‖ · · · ‖ ∃yn(Cn ∧ ¬Bn))

The idea of the transformation to be defined below is to obtain a program whose
completion corresponds to the negation of the original program, in particular to a
representation of the completion where negative literals have been eliminated. They
call this transformation Negate. The goal is to produce clauses for a new predicate
neg p (for each predicate p in Π) representing its negation.

Definition 3.2.3. The syntactic transformation negate rhs is defined as follows:

negate rhs(P ; Q) = negate rhs(P) , negate rhs(Q).
negate rhs(P , Q) = negate rhs(P) ; negate rhs(Q).

negate rhs(t) = f.
negate rhs(f) = t.

negate rhs(p(t)) = neg p(t).

Definition 3.2.4 (Constructive Intensional Negation). For every predicate p in the orig-
inal program Π, assuming def Π(p) = {p(x) ← Bi(yi · zi) [] ci(x · yi) | i ∈ 1 . . . m} a
nonoverlapping and exhaustive definition, the negated program ( Negate(Π) ) is obtained
by adding the following clauses to Π:

• If the set of constraints {∃yi.ci(x · yi), i ∈ {1..m}} is not exhaustive, a clause

neg p(x)← []
m∧
1

¬∃yi.ci(x · yi)

• If zj is empty, the clause neg p(x)← negate rhs(Bj(yj)) [] cj(x · yj)
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• If zj is not empty, the clauses neg p(x)← forall(zj, p j(yj · zj)) [] cj(x · yj)
p j(yj · zj)← negate rhs(Bj(yj · zj))

We can see that negating a clause with free variables introduces “universally quan-
tified” goals by means of a new predicate forall/2 . This predicate solves them by
exploring the Herbrand universe, making use of the following:

1. A universal quantification of the goal Q over a variable X succeeds when Q
succeeds without binding (or constraining) X.

2. A universal quantification of Q over X is true if Q is true for all possible values
for the variable X.

These two considerations lead to a mutually recursive rule that can be expressed
formally as follows:

∀X. Q(X) ≡ Q(sk) ∨
[
∀X1. Q(c1(X1)) ∧ · · · ∧ ∀Xn. Q(cn(Xn))

]
where FSΣ = {c1 . . . cn} is the set of function symbols and sk is a Skolem constant,
that is, sk /∈ FSΣ. In practice, the algorithm proceeds by trying the Skolem case first
and, if this fails, then it expands the variables in all possible constructors.

Theoretical soundness and completeness results are given, and the authors show
how it is implemented. However, its complexity and the fact that this algorithm does
not work in a Prolog way (i.e. returning the solutions one by one) lead us to propose
a new theoretical approach to evaluate the “universally quantified” goals, shown in
Sec. 3.5.

The method that the authors introduce to translate overlapping rules from general
sets of clauses into non-overlapping ones is the following:

Lemma 3.2.3. Let p be such that

def Π(p) = {p(x) ← Bi(yi · zi) [] ci(x · yi) | i ∈ 1 . . . m}
and there exist j, k ∈ 1 . . . m such that ∃yj. cj(x · yj) and ∃yk. ck(x · yk) are compatible.
Then the j-th and k-th clauses can be replaced by the clause

p(x)← Bj(yj · zj); Bk(yk · zk) [] cj(x · yj) ∧ ck(x · yk)

and the following additional clauses (if the new constraints are not equivalent to f):

p(x)← Bj(yj · zj) [] cj(x · yj) ∧ ¬∃yk.ck(x · yk)
p(x)← Bk(yk · zk) [] ¬∃yj.cj(x · yj) ∧ ck(x · yk)

without changing the standard meaning of the program. The process can be repeated if
there are more than two overlapping clauses. It is clear that it is a finite process.
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3.3 Derivation Procedure for Extended Stable Models

In [PAP+91] the authors show a derivation procedure to determine if a ground query
belongs to the well founded model of a ground program. We introduce here the
mentioned procedure, starting by the propositions, definitions and theorems needed
to understand them and referring the reader to the paper for more details. As a
general idea, the authors define the derivation procedure, show the steps to build a
WFM-Tree from the derivations and demonstrate that for a program Π and a literal
L, if L is in the WFM-Tree of Π then L belongs to the WFM of Π. The soundness and
completeness theorems shown in this section are identically applicable to the WFM-
derivation modified that we present in Def. 3.4.1.

Definition 3.3.1. A positive (resp. negative) interpretation I is a set of positive (resp.
negative) literals from Lit(Π).

Definition 3.3.2. A context Cn is an ordered set of positive or negative interpretations.
Let Si be a positive or negative interpretation; Cn denotes the context S1S2 . . . Sn. Cn
is a negative (resp. positive) context if Sn is a negative interpretation (resp. positive
interpretation). Cn + G denotes the concatenation S1S2 . . . SnG. A literal G is in context
Cn ( G ∈ Cn for short) iff G ∈ Sn. A context Cn implicitly defines an interpretation
In(Cn) which is the set of literals in partial interpretations Sn i.e. In(Cn) = ∪(i≤n)Si,
and for no atom A both A and ¬A belong to it.

Definition 3.3.3. A contextual formula (C-formula) is a pair C#F, where C is a context
and F is an expression built from atoms with conjunctions and negations. An empty
C-formula is the C-formula C#t.

By the interpretation I(C#F) we mean the interpretation I(C) associated with context
C.

Definition 3.3.4 (WFM-derivation). Let Rj = < Cj#Fj ; Ij > where Cj is a context, and
Ij a set of literals. A WFM-derivation from Ri to Rn is a sequence from < Ci#Fi ; Ii > to
< Cn#Fn ; In > such that for any < Ck#Fk ; Ik > (i ≤ k ≤ n), the following derivation
rules apply (where we assume Ck+1 = Ck and Ik+1 = Ik unless stated otherwise).

D.1) if Fk = ¬G and there is no rule G ← B then Rk+1 = (Ck + ¬G#t ; Ik ∪ {¬G})

D.2) if Fk = ¬G and ¬G ∈ Ck then Fk+1 = t

D.3) if Fk = ¬G and there are r rules for G with Gi (1 ≤ i ≤ r) as head, ¬ G /∈ Ck,
G /∈ Ik

G1 ← B11 . . . Bm1
. . .
Gr ← B1r . . . Bm′r

in Π and G /∈ Ik then Rk+1 = < Ck + ¬G# G̃1, . . . , G̃r ; Ik ∪ {¬G} > where G̃i is
a short hand for ¬(B1i, . . . , Bmi)

D.4) if Fk = ¬(G1, . . . , Gm) then Rk+1 = < Ck#¬Gi; Ik > for some 1 ≤ i ≤ m.
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D.5) if Fk = G and G /∈ Ik then for some rule G ← B1, . . . , Bm ∈ Π,
Rk+1 = < Ck + G#(B1, . . . , Bm) ; Ik ∪ G >.

D.6) if Fk = (g, G) then Rk+1 = < Ck#G ; Igk > if there is a derivation from
< Ck#g ; Ik > to < L#t ; Igk >.

There is a WFM-derivation for G in Π iff there is a sequence from < { }#G ; { } > to
< L#t ; I >, for some I.

As the authors argue, these rules are intuitive when one recalls the definition of
3-valued model (see Def. 2.1.19): rule 1 establishes the Closed World Assumption
(CWA). Rule 2 says that a literal may support itself when proving its falsity. Rule 3
says that for an atom to be interpreted as false it has to be proven false in all definitions
for it. Rule 4 says that for a body of a rule to be false it is enough to prove some literal
in the body to be false. Rule 5 says that for a literal to be true it is enough to have
a rule with all body literals true. Rule 6 says that a conjunction of formulas is true
if each element is true. Note that Ik = ∪i≤n Ii ∪ { Fk } if Fk is a literal. This means
we do not need to explicitly record Ik at each step k but simply consider all the Cj in
(j ≤ k).

A derivation from < ∅#G ; ∅ > to < L#t ; I > may be interpreted as the con-
struction of certain trees to be introduced now. These trees are obtained from the
derivation rules with the following in mind: at each derivation step < Ck#Lk ; Ik >,
Ck is the ordered ancestor list of literal Lk which is a node of the tree, and Ik is the set
of all literals in the nodes already visited by the derivation procedure. In the following
we will omit the special symbol t.

Definition 3.3.5 (WFM-Tree). A WFM-tree for G given program Π, WFM(G, Π) is a
finite tree with root G, such that if N is the literal of a node of the tree then:

WFM-I) If N is negative, let N = ¬L and:

(a) if there are no rules for L then N is a leaf (rule 1)

(b) if ¬L has an identical ancestor A and all literals in the branch from ¬L
to A are negative then N is a leaf (rule 2)

(c) if there are r rules (clauses) for L in Π,

L1 ← B11 . . . Bk1
. . .
Lr ← B1r . . . Bk′r

then node ¬L has r immediate descendents ¬Bj1, . . . ,¬Bhr, each one se-
lected from the body of a different clause (rules 3+4).

WFM-II) If N is positive then:

(a) If there is a fact N in Π, then N is a leaf (rule 5)

(b) the n immediate descendents are those literals B1, . . . , Bn, such that a
rule N ← B1, . . . , Bn exists in Π (rule 6)
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By considering all possible choices of rules and literals all WFM-trees are obtained.

Proposition 3.3.1. For every program and goal G there is a WFM-derivation for G in Π
iff there is a WFM-Tree(G, Π).

Lemma 3.3.1. Given a WFM-tree for G then, for any internal node literal H, if its imme-
diate descendents D1 . . . Dn are in the well founded model, then H is in the WFM.

Theorem 3.3.2 (Soundness of WFM-Trees). Let Π be a program and L a literal. If there
is a WFM-tree for L then L is in WFM(Π).

Theorem 3.3.3 (Completeness of WFM trees). Let Π be a program and L a literal. If
L is in WFM(Π) there is a WFM-tree for L.

3.4 The general picture of our implementation

As overviewed in the previous sections, NAF (see Sec. 3.1) is not adequate when deal-
ing with non-ground queries or programs with loops. Clark’s Semantics (see Sec. 2.2)
or its variants (Fitting or Kunen semantics, see subsection 2.2.1) still have some draw-
backs (see subsection 2.2.2) and are not suitable too. The most suitable semantics is
the Well Founded Semantics, but the procedures implemented have serious drawbacks
as the floundering problem previously exposed in the actual chapter.

Our proposal here is the combination of the symmetrical treatment of the liter-
als done by the Constructive Intensional Negation implementations and the deriva-
tion procedure used to determine if the query belongs to the Well Founded Model of
the program. By using them we expect the floundering problem to disappear, and
we obtain an implementation of Well Founded Semantics able to answer non-ground
queries.

As in [MMNMH08], we start from a nonoverlapping set of clauses (see Def. 3.2.2)
and apply lemma 3.2.1 to get to a non-overlapping and exhaustive set of clauses from
which lemma 3.2.2 is able to obtain the dual of the program.

So, from a non-overlapping set of clauses with the structure

def Π(p) = {p(x) ← Bi(yi · zi)[] ci(x · yi) | i ∈ 1 . . . m}

what we obtain is a program with the following structure:

• the positive part (the original program):

p(x) ← Bi(yi · zi)[] ci(x · yi) | i ∈ 1 . . . m

• and the negative part (the dual program):

– If the set of constraints {∃yi. ci(x · yi), i ∈ {1..m}} is not exhaustive, a
clause

neg p(x)← []
m∧
1

¬∃yi.ci(x · yi)
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– For each clause

p(x) ← Bi(yi · zi) [] ci(x · yi) | i ∈ 1 . . . m

∗ If zi is empty, the clause

neg p(x)← negate rhs(Bi(yi)) [] ci(x · yi)

∗ If zi is not empty, the clauses

neg p(x)← forall(zi, p i(yi · zi)) [] ci(x · yi)
p i(yi · zi)← negate rhs(Bi(yi · zi))

While the predicate negate rhs/1 is defined as in [MMNMH08] (see Def. 3.2.3), we
propose a new implementation of the predicate f orall/2, the universal quantification,
which is exposed in Sec. 3.5.

This is the point where the derivation procedure for the Well Founded Semantics
presented in [PAP+91] (see Sec. 3.3, Def. 3.3.4) enters in action. As we have in-
troduced before, the derivation procedure is defined for non-dual ground programs.
Since what we have is a non-ground dual program, we have slightly modified it to fit
our purposes.

The first modification is in the derivations of Def. 3.3.4 that take care of negated
goals. With the dual program we do not need to assure that the positive rules for
the goal can not be derived in order to have a negative derivation, we just need to
expand the derivation, by using the rules for the negative goal, in a similar way to
what is done with the positive goals. As a result, the derivations D.1, D.3 and D.4
are removed, and D.2 (which now is D.1) only allows negative loops with negative
goals in the loop. Derivations D.5 and D.6 are now D.2 and D.4 (they have not been
changed) and the new derivation D.3 is added in order to cope with the instantiation
of variables.

Definition 3.4.1 (WFM-derivation modified). Let Rj = < Cj#Fj ; Ij > where Cj is a
context, and Ij a set of literals. A WFM-derivation from Ri to Rn is a sequence from
< Ci#Fi ; Ii > to < Cn#Fn ; In > such that for any < Ck#Fk ; Ik > (i ≤ k ≤ n),
the following derivation rules apply (where we assume Ck+1 = Ck and Ik+1 = Ik unless
stated otherwise).

Remark. While when we write neg G we only refer to the negative part of the pred-
icate G, when we write G we refer to both of them. This is done to simplify the
derivation procedure.

D.1) if Fk = neg G, neg G ∈ Ck, Ck = . . . # neg G # H1 # . . . # Hn
and Hi is always a negative goal, then Fk+1 = t

D.2) if Fk = G and G /∈ Ik then for some rule G ← B1, . . . , Bm ∈ Π,
Rk+1 = < Ck + G#(B1, . . . , Bm) ; Ik ∪ G >.

D.3) if Fk = G, G /∈ Ik and there is a substitution θ such that Gθ unifies with H, head of
a rule H ← B1, . . . , Bm, then Rk+1 = < Ck + H#(B1, . . . , Bm) ; Ik ∪ H >.
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D.4) if Fk = (g, G) then Rk+1 = < Ck#G ; Igk > if there is a derivation from
< Ck#g ; Ik > to < L#t ; Igk >.

There is a WFM-derivation for G in Π iff there is a sequence from < { }#G ; { } > to
< L#t ; I >, for some I.

Now we proceed to redefine the way the derivation procedure is interpreted into a
WFM-Tree, so that soundness and completeness theorems exposed in section 3.3 can
be applied here too.

Definition 3.4.2 (WFM-Tree). A WFM-tree for G given program Π, WFM(G, Π) is a
finite tree with root G, such that if N is the literal of a node of the tree then:

WFM-I) If N is negative, let N = ¬L and:

(a) if ¬L has an identical ancestor A and all literals in the branch from ¬L
to A are negative then N is a leaf (rule D.1).

WFM-II) No matter if N is positive or negative:

(a) if there is a fact N in Π, then N is a leaf (rule D.2).

(b) the n immediate descendents are those literals B1, . . . , Bn, such that a
rule N ← B1, . . . , Bn exists in Π (rule D.4).

(c) if there exists a substitution θ such that Nθ unifies with H and
H ← B1, . . . , Bn exists in Π then the n immediate descendents are those
literals B1, . . . , Bn and the substitution θ must be applied to every occur-
rence of N (rule D.3).

By considering all possible choices of rules and literals all WFM-trees are obtained.

With these modifications in the derivation procedure, we can determine if a non-
ground query belongs or not to the Well Founded Model of the dual program. The
pending task is the implementation of the predicate forall/2.

3.5 The universal quantification

In this section we expose the existing problem when evaluating the dual of a program
that originally had free variables in the body of at least one of its clauses, and the
solution that we have adopted. Consider the following program with its dual:

Program 3.5.1

1p ← q(X).
2q(1).
3
4neg_p ← forall(X, neg_q(X)).
5neg_q(X) ← X 6= 1.
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Remark. The symbol 6= that appears in the programs in this section is a shortcut for
the predicate dist/2, whose implementation is explained in Sec. 4.4.

Apart from the fact that q(X) and neg q(X) are different predicates, there is a big
difference in their evaluation. For q(X), it is enough to find a value for X making
it true, while neg q(X) has to be true for all the values of X. Basically, the first
one is an existentially quantified query equivalent to the logic formula “∃X. q(X)”,
while the second one is an universally quantified query equivalent to the logic formula
“∀X. neg q(X)”.

Prolog interpreters are based on unification, so if during a proof a free variable
needs to be bound they will do it. While this procedure is equivalent to solve the
existential quantification, unification is not suitable for solving universally quantified
variables: Prolog has no implementation to deduce if the universally quantification
holds.

Some ∀-implementations have been proposed in [MMNMH08, Sat89, SM91]. In
the first one the authors use a method based on a two steps procedure: 1) they test
for the variable to be free by using a Skolem constant and 2) if it is not free they test
that the formula holds for every possible value for the variable. In the second and the
third ones the authors remove the universally quantified implications by transforming
them into Prolog programs with disequality constraints.

Both of them result very expensive in terms of computationally costs: the first
due to the expansion of code needed in the second step and the second one due to
the huge amount of inequalities that obtains from the transformation. So, we have
implemented a new version of the universal quantification. The general idea of the
method is the following: if we can build a tautology joining by disjunction the different
solutions that the variable can take in the formula, then this variable is not constrained
and the universal quantification succeeds.

We introduce the method by means of the following program:

Program 3.5.2

1p ← q(X), neg_q(X).
2q(1).
3
4neg_p ← forall(X, (neg_q(X) ; q(X))).
5neg_q(X) ← X 6= 1.

On the one hand, it is obvious that p is not provable, because q(X) and neg q(X) can
not be true at the same time. On the other hand, if p is not provable then neg p has to
be provable. In order to determine if neg p is provable or not we apply our method:

1. We obtain the solutions for the variable X in the formulae ( neg q(X) ; q(X) ),
which are X 6= 1 and X = 1.

2. We try to form a tautology by combining the solutions by disjunction. We obtain
the tautology X 6= 1∨ X = 1.
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3. As we have built a tautology, the variable is not constrained. So,
f orall(X, (neg q(X) ; q(X)) ) succeeds.

The algorithm used is presented below:

Algorithm 3.5.1 Algorithm to determine if the universal quantification succeeds

1. Obtain the different solutions that the variable can take in the formulae.
(It does not matter if we get all the solutions in one step or we get some
of them and backtrack to obtain more if they were not enough).

2. (a) If in one solution the variable is free (it is not bound or con-
strained) the forall predicate succeeds.

(b) If not, we take a constrained value (or a constant value) for the
variable and look for the necessary constants (or constrained val-
ues) to build a tautology and free the variable. If the tautology can
be built the forall succeeds.

We illustrate how the algorithm behaves in the following examples.

Example 3.5.1 In this example we show the original program, how it becomes
after adding to it the negated counterpart of the predicates and how the ∀ implemen-
tation looks for the tautology it needs to free the variable X.

Program 3.5.3 Original program

1q(X) ← mbr2(X, [1,2,3]).
2r(X) ← q(X) ; neg_q(X).
3s ← neg_r(X).

Program 3.5.4 Translated program

1q(X) ← mbr2(X, [1,2,3]).
2neg_q(X) ← neg_mbr2(X, [1,2,3]).
3
4r(X) ← q(X) ∨ neg_q(X).
5neg_r(X) ← neg_q(X) ∧ q(X).
6
7s ← neg_r(X).
8neg_s ← ∀ X. r(X).

The query in which we are interested here is ?− neg s. To answer it, we first obtain
the values for the variable X in the query r(X) that prove it. The valid values for X are
X = 1, X = 2, X = 3 and X 6= 1∧ X 6= 2∧ X 6= 3, as can be seen below.
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Evaluation of query r(X) in program 3.5.4

?- r(X).
X = 1;
X = 2;
X = 3;
X 6= 1 ∧ X 6= 2 ∧ X 6= 3;
no

Once we have the solutions or valid values for X, we joint them by disjunction: X =
1 ∨ X = 2 ∨ X = 3 ∨ (X 6= 1 ∧ X 6= 2 ∧ X 6= 3). After that we try to solve the
disjunction: X 6= 1 is removed by using X = 1, X 6= 2 is removed by using X = 2 and
X 6= 3 is removed by using X = 3. As we have not introduced any new constraint for
the variable X and all the initial constraints have been removed, the variable X is free.
As X is free, then ∀X. r(X) succeeds and finally ?− neg s succeeds.

Example 3.5.2 In this example the variable is free because there exists a rule in
the original program that does not make any restriction on the variable. It can be seen
equivalent to the evaluation of the program with a Skolem constant that is presented
in [MMNMH08], but it is much simpler: If the variable is not bound or constrained,
the ∀-quantification succeeds.

Program 3.5.5 Original program

1r(X).
2s ← neg_r(X).

Remark. When the dual of a clause can never succeed, it is removed from the final
program. This is the reason why neg r(X) has no rules.

Program 3.5.6 Translated program

1r(X).
2s ← neg_r(X).
3neg_s ← forall(X, r(X)).

The query in which we are interested here is ? − neg s., and to answer it our
implementation retrieves all the answers for r(X). In this case, X is not bound or
constrained, so the ∀-quantification succeeds without looking for a tautology (or as-
suming that one of the answers is a tautology itself).
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THE IMPLEMENTATION DETAILS

In the previous chapter we have revised the existing implementations of Well Founded
Semantics, and it was introduced the theory that supports our implementation: the
calculation of the dual (Sec. 3.4), the derivation procedure that allows to get results
according to the Well Founded Model (Sec. 3.4) and the evaluation of the universal
quantification (Sec. 3.5). In this section we show what is behind the scenes, we expose
the details of the implementation.

We start by describing the method that assures that our input program has only
nonoverlapping clauses (Sec. 4.1), something that is a necessary condition for apply-
ing lemmas 3.2.1 and 3.2.2. Next we describe how these lemmas are applied to obtain
the negated counterpart of the program (Sec. 4.2) and, finally, the obtained code is
modified to obtain the Well Founded Semantics results instead of the CLP version of
Kunen Semantics that the authors of [MMNMH08] obtain (Sec. 4.3). After that, we
present the implementation of inequalities via attributed variables (Sec. 4.4) and the
forall/2 predicate (Sec.4.5), both needed for the whole implementation to work.

Remark. The algorithms and procedures presented in the following sections take as
synonymous input program and set of clauses with the same head’s functor, but they
are obviously not (In a program we can have several sets of clauses with different
head’s functors). This is due to the fact that, before any other task, the method pre-
sented here splits the input program into sets of clauses with the same head’s functor,
and deals with each set separately. It is done in this way for the sake of simplicity,
but (in case it is necessary) it is easy to generalize the method for the whole input
program.

page 59



4.1. TRANSFORM OVERLAPPING CLAUSES INTO NONOVERLAPPING ONES

4.1 Transform Overlapping Clauses into Nonoverlap-
ping Ones

When programming in Prolog, we usually do it by cases. For example, when imple-
menting Peano numbers (See program 4.1.1) we use two clauses, one for the basic
case and the second one for recursion.

Program 4.1.1 Peano example

1p(0).
2p(s(X)) ← p(X).

Although this is how Prolog programmers try to code, sometimes it is not possible
to do it in that way, and overlapping clauses (see Def. 3.2.2) appear in programs. In
program 4.1.2 the second and the third clauses are overlapping, both of them can be
used to directly evaluate the query

?− prettyPrinting([′Here we are!!′]).

Program 4.1.2 Pretty printing example

1prettyPrinting([]).
2prettyPrinting([Sentence]) ←
3prettyPrintingSentence(Sentence).
4prettyPrinting([Sentence|Others]) ←
5prettyPrintingSentence(Sentence),
6nl,
7prettyPrinting(Others).

As lemmas 3.2.1 and 3.2.2 rely on the fact that our program has only nonover-
lapping clauses, we must turn a program with overlapping clauses into an equivalent
one without overlapping clauses. In [MMNMH08] this is done as described in algo-
rithm 4.1.1.
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Algorithm 4.1.1 Algorithm to transform overlapping clauses into nonoverlap-
ping ones (from [MMNMH08])

1. Input: Clauses Set [Set of clauses of the original program].

2. While there are two overlapping clauses in Clauses Set, loop.

2.1. Name the overlapping clauses Cl 1 and Cl 2, and remove them
from the input set.

2.2. Build a new clause Cl 3 := ( Head← Body ).

• Head := overlap(Cl 1, Cl 2). a b

• Body := or(body(Cl 1), body(Cl 2)). c

2.3. Remove the overlap from each one of the two selected clauses.

• If the result from removing it is an unsatisfiable clause then
forget about this clause.
• If not, add the resultant clause to the set of clauses.

3. Output: Clauses Set [Now non-overlapping clauses].

aThe symbol “:=” is used to assign to the variable to the left the value to the right.
bThe head of this clause is the overlap between Cl 1 and Cl 2.
cThe body of this clause is the result of joining with the operation ’or’ their bodies.

Apart from the fact that algorithm 4.1.1 can expand the program to a large amount
of clauses (up to a maximum of n+(n/2) clauses if the original program has n clauses),
it is very expensive computationally speaking (each time they remove one overlap
between two clauses they have to test again the whole set of clauses in order to de-
termine if there is another overlap between two of them). Besides, no method is
presented to evaluate if two clauses are compatible (if there is an overlap between
them) or not.

We present a new approach that removes this problems by finding all the overlap-
pings between the clauses in one step (by means of evaluating all the possible conjunc-
tions between the clauses’ heads, see algorithms 4.1.2 and 4.1.3) and transforming all
the involved clauses into nonoverlapping clauses in another step (see algorithm 4.1.4).
We start by generalizing the overlap between only two clauses to two or more clauses.
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Definition 4.1.1 (Overlapping between two or more clauses). Let p be such that

def Π(p) = { Cli | i ∈ 1 . . . m }

Cli = { p(x) ← Bi(yi · zi)[]ci(x · yi) }
so our set of clauses for the predicate p is {Cl1, Cl2, . . . , Clm}.
There is an overlapping between n clauses, n ≤ m and n ≥ 2, if the conjunction of their
constraints is compatible, if

n∧
1

∃yi. ci(x · yi)

is satisfiable.

Lemma 4.1.1 (Overlapping clauses to Nonoverlapping ones). Let p be such that

def Π(p) = { Cli | i ∈ 1 . . . m }

Cli = { p(x) ← Bi(yi · zi)[]ci(x · yi) }
so our set of clauses for the predicate p is {Cl1, Cl2, . . . , Clm}. If there exists a subset of
this set, say { Clk1, Clk2, . . . , Clkn}, such that

i=n∧
i=1

∃yki. cki(x · yki)

is satisfiable, then this clauses can be replaced by the clause

p(x)←
i=n∨
i=1

Bki(yki · zki) []
i=n∧
i=1

∃yki. cki(x · yki)

and the following additional clauses (if the new constraints are not equivalent to f):

p(x)← Bj(yj · zj) [] cj(x · yj) ∧ ¬
n∧
1

∃yi. ci(x · yi)

p(x)← Bk(yk · zk) [] ck(x · yk) ∧ ¬
n∧
1

∃yi. ci(x · yi)

without changing the standard meaning of the program.

The following algorithms 4.1.2 and 4.1.3 find in the input program all the satisfi-
able conjunctions between the clauses’ heads.
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Algorithm 4.1.2 Find conjunctions between the clauses’ heads (I)

1. Input: (Clauses) [List of clauses of the original program].

2. Initialize an empty list called Conjunctions.

3. Clauses 1 := Clauses.

4. while the list Clauses 1 has more than one clause, loopa

4.1. Clauses 2 := tail(Clauses 1)b

Clauses 3 := tail(Clauses 2)
First := head(Clauses 1)
Second := head(Clauses 2)

4.2. Search for a conjunction between First and Second.

4.2.i. If there is a conjunction between them, this one will be
Conj 1.
1. Initial Solution := [First, Second]c

2. Run algorithm 4.1.3 with this arguments:
(Conj 1, Clauses 3, Initial Solution).

3. Append the elements in the returned list to the Con-
junctions list.

4.2.ii. If not, continue.

4.3. Clauses 1 := Clauses 2.

5. Output: (Conjunctions) [The list of conjunctions between the clauses’
heads.]

aIf Clauses 1 is empty or has only one clause, there are no more conjunctions.
bThe functions head and tail obtain respectively the head and the tail of a list
cThis notation means that Initial Solution is a list composed by the elements First and

Second. The head of the list is First.
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Algorithm 4.1.3 Find conjunctions between the clauses’ heads (II)

1. Input: (Conj 1, Clauses 4, Initial Solution) [Clauses 4 and
Initial Solution are lists of clauses]

2. Initialize an empty list, Current Solution.

3. If Clauses 4 is empty.

3.1. Append “conjunction(Conj 1, Initial Solution)” to the list
Current Solution.

4. If Clauses 4 is not empty.

4.1. Third := head(Clauses 4)
Clauses 5 := tail(Clauses 4)

4.2. Run algorithm 4.1.3 with this arguments:
(Conj 1, Clauses 5, Initial Solution).

4.3. Append the elements in the returned list to the Current Solution
list.

4.4. Search for a conjunction between Conj 1 and Third.

4.4.i. If there is a conjunction between them, this one will be
Conj 2.
1 New Initial Solution is the result of append Third to the

end of the list Initial Solution.
2 Run algorithm 4.1.3 with this arguments:

(Conj 2, Clauses 5, New Initial Solution).
3 Append the elements in the returned list to the

Current Solution list.
4.4.ii. If not, continue.

5. Output: (Current Solution) [The list with the current solutions.]

The algorithm searches for all possible conjunctions between the heads of the set of
clauses given and returns a list of elements “conjunction(Conj, A f f ected Clauses)”.
In this list we may have results contained into other results. The cause is that if we
have, for example, c as the conjunction for the clauses 1, 2 and 3 then it will try to
find the conjunction between 1 and 2, 1 and 3 and 1, 2 and 3. So, we will obtain as
solution the following list:

[ conjunction(c, [1, 2, 3]), conjunction(c, [1, 2])conjunction(c, [1, 3]) ]

As we are only interested in the big one, determining which solution is the big one is
trivial. For simplicity, this procedure is not included here.

The following algorithm is in charge of converting the overlapping clauses into
nonoverlapping ones, by using the information provided by the previous algorithms.
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Algorithm 4.1.4 Algorithm to transform overlapping clauses into nonoverlap-
ping ones

1. Input: (Clauses, Conjunctions) [Clauses with same head’s functor and
set of conjunctions between them.]

2. Initialize an empty list, Non-Overlappings.
List 1 := Conjunctions

3. While List 1 is not empty, loop

3.1. First 1 := head
Others 1 := tail(List 1)

3.2. The clauses Conj Clause is formed as follows:

• Its head is the conjunction in the variable First (the
variable First contains an element “conjunction(Conj,
Affected Clauses)”).
• Its body is formed by the disjunction of the bodies of the af-

fected clauses, which are again in the variable First.

3.3. Append Conj Clause to the list Non-Overlappings

3.4. List 1 := Others 1

4. List 2 := Clauses

5. while List 2 is not empty, loop

5.1. First 2 := head(List 2)
Others 2 := tail(List 2)

5.2. For each conjunction in which First 2 appear, the clause
First 2 Non Overlap is formed as follows:

• The head of the new clause is the old one removing from it the
conjunction.
• The body of the new clause is the old one.

5.3. Append First 2 Non Overlap to the list Non-Overlappings.

5.4. List 2 := Others 2

6. Output: Non-Overlappings (Set of nonoverlapping clauses).
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The improvements, compared to [MMNMH08], are the following:

• instead of looking for an overlap between two clauses we look for the conjunc-
tions between all of them,

• instead of taking only two overlapping clauses at the same time we take all the
clauses with a common conjunction,

• instead of joining the bodies of two clauses we joint the bodies of all affected
clauses,

• instead of removing the existing overlap between two clauses we remove the set
of accepted values by the conjunction from all the affected clauses and

• where it tests again the whole set for another overlap between two clauses we
proceed to remove another conjunction (we do not need to test again).

Obviously this procedure saves computational time and, as it generates only one
clause for the existing conjunction between two or more clauses instead of one clause
for each overlap between two clauses, it generates more compact and simple pro-
grams.

4.2 Calculating the Negation of the clauses

After assuring that our input program has only nonoverlapping clauses, we proceed
to make the completion of the program, so finally we can take from it the nega-
tive part we are looking for. The method introduced in [MMNMH08] relies on lem-
mas 3.2.1 and 3.2.2, presented in section 3.2. Here we first show how to make a
practical use of them and, only after that, how to implement them.

As introduced before, the procedure in [MMNMH08] relies on the exhaustiveness
of the clauses, a prerequisite achieved by means of lemma 3.2.1. This lemma converts
a non-exhaustive set of clauses into an exhaustive one by introducing a new rule in the
program (its last rule). The resulting exhaustive set of clauses is then negated clause
by clause, as exposed in lemma 3.2.2, obtaining finally the dual of the input program.

Lemma 3.2.1 says that if our program is composed by a set of nonoverlapping and
non-exhaustive clauses, its definition is the following:

def Π(p) = {p(x)← Bi(yi · zi) [] ci(x · yi) | i ∈ 1 . . . m}

and then its completed definition is logically equivalent to

cdef Π(p) ≡ ∀x.[p(x) ⇐⇒ ∃y1. c1(x · y1) ∧ ∃z1.B1(y1 · z1) ‖
...
∃ym. cm(x · ym) ∧ ∃zm.Bm(ym · zm) ‖∧m

i=1 ¬∃yi. ci(x · yi) ∧ f ],

where the last clause is added in case that the previous definition of the predicate
is not exhaustive. We will see how this is implemented in practice by means of the
example in program 4.2.1.
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Program 4.2.1 bigger than predicate in Peano numbers

1bt(s(X), s(Y)) ← bt(X, Y)
2bt(s(X), 0).

For the code of the previous program (in the example there are no overlapping clauses,
but if we had overlapping clauses we should apply before the procedure presented in
section 4.1) its translation in logic is the following:

cdef Π(bt) ≡ ∀x.[bt(x) ⇐⇒ ∃y1. c1(x · y1) ∧ ∃z1.B1(y1 · z1) ‖
∃y2. c2(x · y2) ∧ ∃z2.B2(y2 · z2)

where

c1(x · y1) is (x == (s([y1]1), s([y1]2))
c2(x · y2) is (x == (s([y2]1), 0)

B1(y1 · z1) is bt(y1)
B2(y2 · z2) is t.

If we apply lemma 3.2.1, the last clause should be

i=2∧
i=1

¬∃yi. ci(x · yi) ∧ f.

Although the expected result from this procedure is the following program,

Program 4.2.2 bigger than predicate for Peano numbers (exhaustive)

1bt(s(X), s(Y)) ← bt(X, Y).
2bt(s(X), 0).
3bt(0, s(Y)) ← fail.

this is not the result even when we apply lemma 3.2.1. In fact we have taken a
decision that the lemma does not support: we know that the clause that is missing
is the one that deals with a second argument bigger that the first one ( 0 < s(Y) )
because the program that we are developing deals with Peano numbers and there are
no more options. This is not the correct way of applying lemma 3.2.1.

Lemma 3.2.1 does not say “look for the missing values”, but “add the clause”

i=2∧
i=1

¬∃yi. ci(x · yi) ∧ f.

which again needs to be modified in order to be implemented. The problem here is
the same that motivated us for this work: formulas in which existentially quantified
variables are negated.

Although we could just apply again the whole procedure developed here, the for-
mulas to which negation is applied are different from the original ones: here the
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formulas involved are only formed by conjunction of equalities or disequalities, i.e.
ci(x · yi) is always an equality or a disequality.

As a result, we can use logic to convert “¬∃” into “∀¬”, which is worth for our
purposes. The result is the following:

i=2∧
i=1

∀yi.¬ [ ci(x · yi) ] ∧ f.

Although it seems to introduce the universal quantification problem again, the
problem here is not as general as the one in Sec. 3.5, and so the solution is much
simpler that the one exposed there. We will see how this problem is solved by means
of the example previously introduced.

From the translation of the previous example (in which we have substituted
ci(x · yi) and Bi(yi · zi) for every i and ¬∃ by ∀¬ ) we have the following com-
pleted definition of our program Π:

cdef Π(bt) ≡ ∀x.[bt(x) ⇐⇒ ∃y1. x == (s([y1]1), s([y1]2)) ∧ ∃z1. bt(y1) ‖
∃y2. x == (s([y2]1), 0) ∧ ∃z2. t ‖

∀y1. ¬ [ x == (s([y1]1), s([y1]2)) ]
∧

∀y2. ¬ [ x == (s([y2]1), 0) ]∧
f ]

which is equivalent to:

cdef Π(bt) ≡ ∀x.[bt(x) ⇐⇒ ∃y1. x == (s([y1]1), s([y1]2)) ∧ ∃z1. bt(y1) ‖
∃y2. x == (s([y2]1), 0) ∧ ∃z2. t ‖

∀y1. [ x 6= (s([y1]1), s([y1]2)) ]
∧

∀y2. [ x 6= (s([y2]1), 0) ]∧
f ]

The point of this result is that the last clause can be seen in two ways:

• either we have to test for every possible values of y1 and y2 the formula

[ x 6= (s([y1]1), s([y1]2)) ]
∧

[ x 6= (s([y2]1), 0) ]

• or we have to whether test that x1 and x2 are different from every term built
with the structure exposed in the formulas, no matter which values y1 and y2
take.

The second one is the option selected. The last definition of our program is then
converted into:

cdef Π(bt) ≡ ∀x.[bt(x) ⇐⇒ ∃y1. x == (s([y1]1), s([y1]2)) ∧ ∃z1. bt(y1) ‖
∃y2. x == (s([y2]1), 0) ∧ ∃z2. t ‖

[ x 6= (s(”anything”), s(”anything”)) ]
∧

[ x 6= (s(”anything”), 0) ]
∧ f ].
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Remark. As this “anything” can not be coded in programs, we use the predicate
f A( ) as a shortcut for “anything”. When used, for example in (V 6= s( f A( ))), it
means that V has to be different from the functor s/1 applied to anything.

The big difference between using the second option or the first one is that we
remove the universal quantification by using a special term f A( ), which is a meta-
term that we handle by means of the inequalities implementation (see Sec. 4.4). The
general idea is that, when testing an inequality like (V 6= s( f A( ))), we just forbid
the variable V to be bound to a term formed with the functor s/1, which is just what
the logic formula ∀Y. (V 6= s(Y)) means. The resulting code from applying the
whole method to the previous example is the following:

Program 4.2.3 bigger than predicate in Peano numbers (exhaustive)

1bt(s(X), s(Y)) ← bt(X, Y)
2bt(s(X), 0).
3bt(V, W) ← ((V, W) 6= (s(fA(_)), s(fA(_)))),
4((V, W) 6= (s(fA(_)), 0)),
5fail.

Remark. The predicate 6= /2 is not a native predicate. It is in practice implemented
by the predicate dist/2, which uses attributed variables (see Def. 4.4.1) to assure that
the variable involved never takes the forbidden value. More details on this can be
found in Sec. 4.4.

After applying lemma 3.2.1 to achieve exhaustiveness in the set of clauses we apply
lemma 3.2.2 to finally obtain the dual of our input set of clauses. Lemma 3.2.2 says:
Given {C1, ..., Cn} a set of exhaustive and nonoverlapping Herbrand constraints and
{B1, ..., Bn} a set of first-order formulas with no occurrences of x, and yi a set of
variables included in the free variables of Ci, i ∈ {1 . . . n} the following holds:

∀x(¬[∃y1(C1 ∧ B1) ‖ · · · ‖ ∃yn(Cn ∧ Bn)] ⇐⇒

⇐⇒ ∃y1(C1 ∧ ¬B1) ‖ · · · ‖ ∃yn(Cn ∧ ¬Bn))

So we can compute the dual of the program just by computing separately the negative
clause for each one of its clauses. The final result for our example program (the dual
program) is shown below.

Program 4.2.4 dual of predicate bigger than in Peano numbers

1neg_bt(s(X), s(Y)) ← neg_bt(X, Y)
2neg_bt(s(X), 0) ← fail.
3neg_bt(V, W) ← ((V, W) 6= (s(fA(_)), s(fA(_)))),
4((V, W) 6= (s(fA(_)), 0)).

The algorithm for computing the negative part of a program is shown below.
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Algorithm 4.2.1 Algorithm to calculate the negative part of a set of clauses with
the same head’s functor

1. Input: (Clauses) [Nonoverlapping set of clauses with same head’s func-
tor.]

2. Initialize an empty list, Negated Clauses.

3. Initialize a clause: Negate Heads Clausea.

• Its head is the head’s functor negatedb (there is only one).

• Its body is empty.

4. While Clauses is not empty, loop

4.1. First := head(Clauses)
Others = tail(Clauses)

4.2. The variable First contains a clause whose structure is:
p(x)← ∃yN. cN(x · yN) [] BN(yN, zN)

4.3. Negate [ ∃yN. cN(x · yN) ] to obtain [ ∀yN.¬ cN(x · yN) ], and joint
it via conjunction to the body of Negate Heads Clause. If the body
was still empty, just take this formula as its new body.

4.4. The negation of the clause First is Negated First, whose structure
is ¬p(x)← ∃yN. cN(x · yN) [] negate rhs(BN(yN, zN))c

4.5. Append Negated First to Negated Clauses.

4.6. Clauses := Others

5. Append Negate Heads Clause to Negated Clauses.

6. Output: (Negated Clauses) [Negated clauses of the set of nonoverlap-
ping clauses with the same head’s functor].

aThis clause will contain the negation of the clause that ensures exhaustiveness.
bThe negation ¬p(t) will be coded as neg p(t).
cnegate rhs is a predicate in charge of evaluating the negation of the right hand side of a

clause. It is a syntactic transformation, and the way it works is in Def. 4.2.1.

Definition 4.2.1. The syntactic transformation negate rhs is defined as follows:

negate_rhs( (P ; Q) ) = negate_rhs( P ) , negate_rhs( Q ).
negate_rhs( (P , Q) ) = negate_rhs( P ) ; negate_rhs( Q ).
negate_rhs( ( t ) ) = f.
negate_rhs( ( f ) ) = t.
negate_rhs( ( p(t) ) ) = ¬ p(t).

where t is true, f is false and the negation ¬p(t) will be coded as neg p(t).
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4.3 Adding the well founded semantics behavior

In sections 4.1 and 4.2 we have shown how to obtain the dual part of a program.
As the semantics of the resultant program is theoretically based on the procedure
presented in CIN [MMNMH08] (see Sec. 3.2), the answers obtained from querying it
still obey the CLP version of Kunen Semantics that has been introduced in Sec. 3.2.

As our intended semantics is the Well Founded Semantics, in this section we show
how to modify the dual program obtained in Sec. 4.2 to obey them. Although the WFS
definition provided in Def. 2.5.1 is said to be symmetrical, implementations (like SLS,
SLG, SLT, see chapter 3) usually do not work in this way. To manage the clauses in a
symmetrical way it is required to obtain, in some way, the dual of the program (for
example via the procedure we introduced in sections 4.1 and 4.2), and none of them
do that. We remark that this is the first working implementation that makes use of the
dual program to achieve non-ground queries in Well Founded Semantics.

We will first introduce which are the results we want to obtain and, later, how to
modify the code obtained from Sec. 4.2 so we can do that. The expected results when
making a query to the interpreter is the 3-valued interpretation of this query according
to the Well Founded Model of our program, i.e.

• If we get a result for a query G, then the query G belongs to the Well Founded
Model (WFM) of the program Π.

• If we fail getting a result then the query G does not belong to the WFM of the
program. This does not mean that ¬G ∈ WFM(Π).

Remark. From here onwards, we use “¬L” to refer to the negation of a literal L.
As now we treat positive and negative literals symmetrically, this means that, for a
positive literal L, ¬L = neg L and, for a negative literal L, ¬neg L = L.

To completely assign a (3-valued) truth value to a literal L we need to do the
following:

• If we make a query “?− L.” and it gets an answer “yes” then L is true and neg L
is false.

• If we make a query “?− neg L.” and it gets an answer “yes” then neg L is true
and L is false.

• If both queries “? − L.” and “? − neg L.” get the answer “no” then the atom is
“undefined”.

Example Ex. 4.3.1 is introduced in order to clarify this: while in WFS the answers for
both queries q(a) and not(q(a)) should be undefined, our answer for them is in both
queries no. The meaning of this is that none of them belongs to the Well Founded
Model of the program Π, so we can conclude that the atom q(a) is undefined.
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Example 4.3.1 Program and results that we want to obtain by using the intro-
duced semantics

Program 4.3.1

1p(a) ← p(a).
2neg_p(a) ← neg_p(a).
3
4q(a) ← neg_r(a).
5neg_q(a) ← r(a).
6
7r(a) ← neg_q(a).
8neg_r(a) ← q(a).
9
10s(a) ← t(a).
11neg_s(a) ← neg_t(a).
12
13t(a) ← s(a).
14neg_t(a) ← neg_s(a).

Evaluation of queries p(a), neg p(a), s(a), neg s(a), q(a) and ¬q(a) in program
4.3.1

?- p(a).
no

?- neg_p(a).
yes

?- s(a).
no

?- neg_s(a).
yes

?- q(a).
no [undefined]

?- neg_q(a).
no [undefined]

If we compare implementations from WFS and from the CLP version of KS we find
that there are some procedures to obtain solutions in each of them that share most
part of the process. In fact, the only difference between them is the management of
loops, and the answer given to the user when a loop is found. The result that we want
to obtain, and that is in accordance with [PAP+91], when the query contains a goal G
involved in a loop is the following:

• If G is a positive literal then it should fail. G /∈ WFM(Π). It does not matter if
we have a negative literal involved in the loop (undefined in WFS) or not (false
in WFS, ¬G ∈ WFM(Π)).

• If G is a negative literal and there are some positive literals involved the loop
(undefined in WFS) then it should fail. G /∈ WFM(Π).

• If G is a negative literal and there are no positive literals involved in the loop
then it should succeed (true in WFS). G ∈ WFM(Π).

In order to implement this behavior we need to track the execution and examine
the derivation that has been performed when a loop is found. For doing that we use

page 72



CHAPTER 4. IMPLEMENTATION

a memorizing technique, which basically stores the whole derivation and allows us
to examine it when a loop is found. The implementation obtained from Sec. 4.2 (for
each predicate) is modified in the following way:

• We change the name of each one of the clauses not in the dual program from

p(x)← body. to positive p(x)← body.

and we add a new clause in charge of examining that there are no positive loops,

p(x)← test no loops on(p(x))
∧

positive p(x).

• We change the name of each one of the clauses in the dual program from

neg p(x)← body. to negative p(x)← body.

and we add two new clauses, the first in charge of testing that we have no loops
(so we can continue executing the old body of neg p(x), negative p(x) ) and
the second one to make the predicate succeed when there is a loop and only
negative literals are involved in the loop. Making the predicate fail when there
are some positive literal involved in the loop does not need to be coded.

neg p(x)← test no loops on(neg p(x))
∧

negative p(x).
neg p(x)← test loop on(neg p(x))

∧
test only negative literals in loop(neg p(x)).

We illustrate the whole process by means of the following example. It naturally
encodes the knowledge that: someone sleeps if he/she is not working (1), someone
is working if he/she is not sleeping (3) or if he/she is awake (4) and we know that
Susan (6) and Philip (7) are awake.

Example 4.3.2 Consider the following program and the query
“?− not(sleep(X)).”.

Program 4.3.2 Program to illustrate the whole process

1sleep(X) ← not(working(X)).
2
3working(X) ← not(sleep(X)).
4working(X) ← awake(X).
5
6awake(susan).
7awake(philip).

The evaluation of the query “? − not(sleep(X)).” in the previous program, due
to the existence of a loop between sleep/1 and working/1, does not end or ends
with an error under Clark’s Semantics or any of its variants. On the contrary, by
using our implementation, we obtain the expected results, which are X = Susan and
X = Philip. We start by computing the dual of the program (in the way we defined in
Sec. 4.2) and adding the clauses needed to obtain as results whether the query belong
to the Well Founded Model of the program.
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Remark. In the program below we perform a transformation that has not been in-
troduced before: the structure “not(X)” is changed by “neg X”. This modification is
made after the computation of the dual but before adding the clauses needed to get
Well Founded Semantics results. The reason for doing it is that not/1 is the predicate
implementing Negation as Failure and the dual offers us a better procedure to evaluate
the negation of a clause p/n, evaluating the clause neg p/n.

Program 4.3.3 Dual of the program used to illustrate the whole process

1sleep(X) ← neg_working(X).
2neg_sleep(X) ← working(X).
3
4working(X) ← neg_sleep(X).
5working(X) ← awake(X).
6neg_working(X) ← sleep(X).
7neg_working(X) ← neg_awake(X).
8
9awake(susan).
10awake(philip).
11neg_awake(Y) ← Y 6= susan, Y 6= philip.

Program 4.3.4 Dual of the program used to illustrate the whole process

1sleep(X) ← test_no_loops_on(sleep(X)), positive_sleep(X).
2neg_sleep(X) ← test_no_loops_on(neg_sleep(X)),
3negative_sleep(X).
4neg_sleep(X) ← test_only_negative_literals_in_loop(sleep(X)).
5
6positive_sleep(X) ← neg_working(X).
7negative_sleep(X) ← working(X).
8
9working(X) ← test_no_loops_on(working(X)),
10positive_working(X).
11neg_working(X) ← test_no_loops_on(neg_working(X)),
12negative_working(X).
13neg_working(X) ←
14test_only_negative_literals_in_loop(working(X)).
15
16positive_working(X) ← neg_sleep(X).
17positive_working(X) ← awake(X).
18negative_working(X) ← sleep(X).
19negative_working(X) ← neg_awake(X).
20
21awake(X) ← test_no_loops_on(awake(X)), positive_awake(X).
22neg_awake(X) ← test_no_loops_on(neg_awake(X)),
23negative_awake(X).
24neg_awake(X) ← test_only_negative_literals_in_loop(awake(X)).
25
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26positive_awake(susan).
27positive_awake(philip).
28negative_awake(Y) ← Y 6= susan, Y 6= philip.

The SLD-derivation of the resultant program is shown in Fig. 4.3.4. neg sleep/1
depends on negative sleep/1, and this one, in turn, on working/1. We have two rules
for working/1 and, as the order of the clauses determines the evaluation order, the one
that says that working/1 depends on neg sleep/1 is selected first. Its evaluation fails
due to the existence of a negative loop with positive literals involved, so, through back-
tracking, the second clause is selected. This one says that the evaluation of working/1
depends on awake/1, and its evaluation depends, in turn, on positive awake/1. The
evaluation of positive awake/1 can be performed by using one of the following rules:
“positive awake(susan)” or “positive awake(philip)”. Both can be used, but again the
order of the rules imposes which one is selected first: “positive awake(susan)”. The
first solution is found, and X = susan is returned. If a second solution is requested,
then through backtracking the second rule is selected, and X = philip is returned.

In [SSW96] the authors present an example of evaluation of SLG resolution. In
order to compare the method used there to our method, we expose the program used,
the evaluation and result in [SSW96] (Fig. 4.2) and ours.
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neg sleep(X)

negative sleep(X)

working(X)

positive working(X)

-OR-neg sleep(X)

LOOP

awake(X)

-OR-

SOL 1 positive awake(susan)

X = susan

SOL 2 positive awake(philip)

X = philip

Figure 4.1: SLD-derivation of program 4.3.4
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Program 4.3.5 Example program 1.1 from [SSW96]

1t ← not(p).
2p ← q.
3q ← not(r).
4r ← q, s.
5s ← r.

The query is “?− t.”. As can be seen in Fig. 4.2.b, SLG-resolution selects the left-
most literal of the first clause, t. The clause for t is marked active, but, because it
depends on a negative literal, not(p), it is suspended (marked as “susp”) until the
evaluation of p is completed. It continues by evaluating the clause for p, which is
marked active. As p depends on q, it selects q for evaluation. The clause for q is
then activated and, as q depends on not(r), suspended until the evaluation of r is per-
formed. As the evaluation of r depends on the evaluation of q, there is a loop between
q and r. When the loop involves one or more negative literals, it is solved by delaying
their evaluation. In the example, the evaluation of not(r) is delayed (Fig. 4.2.c). This
produces a conditional answer (they are marked as “ans” with a non-empty list of de-
layed literals) for p and q in the following stage (Fig. 4.2.d). As the evaluation of the
clause for r still depends on another literal, s, the clause for s is activated. The loop
between r and s is a positive loop (there are no negative literals involved), so both fail
(Fig. 4.2.e). The evaluation of ¬r was delayed, but now r has an answer. This answer
(failed) succeeds the rule for q, so it is no more delayed. The rule for p succeeds then,
and the query “?− t.” fails.

Figure 4.2: Evaluation of query ?− t. in the example 1.1 from [SSW96]

Our method starts by evaluating the dual of the program (program 4.3.6) and
doing the modifications needed to obtain results under the Well Founded Semantics
(program 4.3.7).
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Program 4.3.6 Dual of program 1.1 from [SSW96]

1t ← neg_p.
2neg_t ← p.
3p ← q.
4neg_p ← neg_q.
5q ← neg_r.

6neg_q ← r.
7r ← q, s.
8neg_r ← neg_q ; neg_s.
9s ← r.
10neg_s ← neg_r.

Program 4.3.7 Dual of program 1.1 from [SSW96] under WFS.

1t ← test_no_loops_on(t), positive_t.
2neg_t ← test_no_loops_on(neg_t), negative_t.
3neg_t ← test_only_negative_literals_in_loop(t).
4positive_t ← neg_p.
5negative_t ← p.
6
7p ← test_no_loops_on(p), positive_p.
8neg_p ← test_no_loops_on(neg_p), negative_p.
9neg_p ← test_only_negative_literals_in_loop(p).
10positive_p ← q.
11negative_p ← neg_q.
12
13q ← test_no_loops_on(q), positive_q.
14neg_q ← test_no_loops_on(neg_q), negative_q.
15neg_q ← test_only_negative_literals_in_loop(q).
16positive_q ← neg_r.
17negative_q ← r.
18
19r ← test_no_loops_on(r), positive_r.
20neg_r ← test_no_loops_on(neg_r), negative_r.
21neg_r ← test_only_negative_literals_in_loop(r).
22positive_r ← q, s.
23negative_r ← neg_q ; neg_s.
24
25s ← test_no_loops_on(s), positive_s.
26neg_s ← test_no_loops_on(neg_s), negative_s.
27neg_s ← test_only_negative_literals_in_loop(s).
28positive_s ← r.
29negative_s ← neg_r.

The SLD-derivation in Fig. 4.3 represents the process performed to evaluate the
query “?− t.”. We omit in the derivation the rules that take care of loops for the sake
of simplicity.

The process starts by selecting the rule for t, and it determines that the rule de-
pends on neg p. In turn, the rule for neg p depends on neg q, and the one for neg q
on r. The rule for r depends on the evaluation of the rules for both q and s, and, due
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to the left-to-right selection, the one for q is selected first. The rule for q depends on
neg r, and the rule for this one on neg q or neg s. The rule for neg q is not evaluated
because our method determines that there is a negative loop on it. This loop involves
positive literals, so the derivation fails and, through backtracking, it determines to
evaluate the rule for neg s. The rule for neg s depends on neg r, but the rule for neg r
is not evaluated because there is a negative loop. As this negative loop has no positive
literals involved, it succeeds. The success of neg r makes the rules for neg s and q
succeed, and the one for s is evaluated. The rule for s depends on r, but it is not
evaluated because there is a positive loop. The loop is positive, so r fails. As r fails, s,
neg q, neg p and t fail. t does not belong to the WFM of our program.

t

neg p

neg q

r

-AND-q s

r

FAILS

neg r

-OR-neg q neg s

FAILS

neg r

SUCCEEDS

Figure 4.3: SLD-derivation of program 4.3.7 (simplified)
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Apart from the fact that our method needs to compute the dual of the program and
add the clauses that manage the existence of loops, the main differences against the
method in [SSW96], SLG, are the following:

1. the linearity: our method does not delay computations and does not need to
notify the delayed literals when an answer is found. This is both an advantage
and a disadvantage: by loosing linearity SLG-resolution looses performance, but
the programs can be coded in a more declarative way.

2. the storage of the previous returned answers: this is used both to avoid giving
the user the same result more than once and to determine, by evaluating a fixed
point, that we will not obtain more valid solutions and the computation can be
stopped.

4.3.1 Problems of loop detection

Both the differences between our method and that of [SSW96], SLG, pointed out
above can in fact be seen as drawbacks of our implementation, and they are both
related with the fact that we detect loops solely based on looking at ancestor calls. We
illustrate these differences in the examples below.

Example 4.3.3 Suppose the following program and the query “?− p(X).”.

Program 4.3.8

1p(X) ← p(Y).
2p(a).

We (informally) demonstrate by induction that p(X) ∈WFM(Π) by proving that,
for some ground substitution σ, p(X)σ belongs to WFM(Π). As the substitution
grounds X, its structure is σ = X/t and t ∈ H (the term t belongs to the Herbrand
Base of the program and the query). So, to demonstrate that p(X) ∈ WFM(Π) we
show that it belongs for the base case, where the H = { a }, and for any Herbrand
Base having the term a and any other term.

• our Herbrand Base can not be empty because the second clause p(a) has the
term a. Moreover, as the term a is coded in our program, the minimal Herbrand
Base is H = { a } and the Herbrand Base of the program always has the term
a.

• if our Herbrand Base is H = { a } then it is clear that p(a) belongs to the WFM
of our program. As a is the only value for X and p(a) ∈ WFM(Π), p(X) ∈
WFM(Π).

• if our Herbrand Base is H = { a, b } then the fixed point is evaluated as follows:

I0 =< ∅, ∅ >

I1 = Ω(I0) = Θ↑ωI0
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Since Θ↑0I0
=< ∅, H >,

Θ↑1I0
= ΘI0(< ∅, H >) = < {p(a)}, {p(b)} >

Θ↑1I0
= ΘI0(Θ↑1I0

)

Since Θ↑0I1
= < {p(a)}, {p(b)} >,

Θ↑1I1
= ΘI1(Θ↑0I1

) = < {p(a), p(b)}, { } >

Θ↑1I1
= ΘI1(Θ↑1I1

)

and it is easy to see that Θ↑2I1
is a fixed point of ΘI1 , i.e.,

Θ↑1I1
= Θ↑ωI1

= I2

As { a, b } are the only values for X and p(a) and p(b) belong to WFM(Π),
p(X) ∈WFM(Π).

• if our Herbrand Base is H = { a, b, c } then the fixed point is evaluated as
follows:

I0 =< ∅, ∅ >

I1 = Ω(I0) = Θ↑ωI0

Since Θ↑0I0
=< ∅, H >,

Θ↑1I0
= ΘI0(< ∅, H >) = < {p(a)}, {p(b), p(c)} >

Θ↑1I0
= ΘI0(Θ↑1I0

)

Since Θ↑0I1
= < {p(a)}, {p(b), p(c)} >,

Θ↑1I1
= ΘI1(Θ↑0I1

) = < {p(a), p(b), p(c)}, { } >

Θ↑1I1
= ΘI1(Θ↑1I1

)

and it is easy to see that Θ↑2I1
is a fixed point of ΘI1, i.e.,

Θ↑1I1
= Θ↑ωI1

= I2

As { a, b, c } are the only values for X and p(a), p(b) and p(c) belong to
WFM(Π), p(X) ∈WFM(Π).

It is clear that no matter which is the Herbrand Universe, p(X) belongs to the Well
Founded Model of our program. We apply the method presented here to show its
drawbacks.
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Remark. We omit the dual of the program for simplicity, and add the WFS behavior
only to the original program.

Program 4.3.9

1p(X) ← test_no_loops_on(p(X)), positive_p(X)
2
3positive_p(X) ← p(Y).
4positive_p(a).

The SLD-derivation for the evaluation of p(X) is shown in Fig. 4.4. It starts from
p(X), which needs positive p(X) to be evaluated. The evaluation of positive p(X)
can be done by using any of the rules for it, positive p(X) ← p(Y) or positive p(a),
but the way Prolog interpreters choose the rule, when there are multiple options, is

p(X)

positive p(X)

-OR- X = ap(Z0)

positive p(Z0)

-OR- X = ap(Z1)

positive p(Z0)

-OR- X = ap(Z2)

. . .

Figure 4.4: SLD-derivation of program 4.3.8
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top-down. So, the selected rule for positive p(X) is the first one. We rename in the
derivation the variable Y by Zi, to remark that each time we evaluate the rule the
variable is new and different from the one used in previous evaluations of the rule.
The rule for p(Z0) determines that there is no loop, that p(X) is different from p(Zi),
and resolves to evaluate positive p(Zi). As before, the Prolog interpreter selects the
first rule for positive p(X), and loops. The result is that the evaluation never ends and
never gives the user any result.

This is the problem of keeping the linearity of the resolution: when in a SLD-
derivation the search tree for a given goal has an infinite branch, the order of the
clauses can determine if any solutions are given at all. It can be removed by consider-
ing p(Zi+1) a variant of p(Zi), and freezing the computation of the rule(s) that loops
until the one(s) that does not loop has been evaluated. We show the ideal evalua-
tion in Fig. 4.5, where, after freezing the first rule for positive p(X), the first result
is found, and each time we evaluate positive p(X) we need to freeze its first rule,
“positive p(X)← p(Y)”, in order to obtain results.
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p(X)

positive p(X)

X = a

SOLUTION 1

-OR- -OR-p(Z0)

FROZEN

p(Z0) UNFROZEN

positive p(Z0)

X = a

SOLUTION 2

-OR- -OR-p(Z1)

FROZEN

p(Z1) UNFR.

positive p(X)

X = a

SOLUTION 3

-OR- -OR-p(Z2)

FROZEN

p(Z2) UNFROZEN

. . .

Figure 4.5: Ideal derivation of program 4.3.8
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The problem can be removed too by reducing the declarativeness of the programs
we code: as the order of the clauses can determine if any solutions are given at all, by
coding first the clauses that do not produce an infinite branch in the SLD-derivation
tree we avoid the problem. To illustrate this and the second drawback of our imple-
mentation, in example 4.3.4 the rules from program 4.3.8 have been reordered so the
infinite branch is the rightmost branch of the SLD-derivation tree.

Remark. As program 4.3.10 has the same clauses that program 4.3.8, the Well
Founded Model does not need to be evaluated again.

WFM(Π) = { p(a), p(X) }

Example 4.3.4 Suppose the following program, obtained by changing the order of
the rules in program 4.3.8.

Program 4.3.10

1p(a).
2p(X) ← p(Y).

The program obtained from adding the Well Founded Semantics behavior is the
following:

Program 4.3.11

1p(X) ← test_no_loops_on(p(X)), positive_p(X)
2
3positive_p(a).
4positive_p(X) ← p(Y).

The SLD-derivation can be seen in Fig. 4.6. To evaluate the query we start
as in the previous example, from p(X). It depends again on positive p(X), and
the evaluation of this one can be done by using the rule positive p(a) or the rule
positive p(X) ← p(Y). The difference against the SLD-derivation in Fig. 4.4 is that
here the rule that is chosen first is “positive p(a)” instead of “positive p(X) ← p(Y)”.
This makes it possible to obtain solutions, instead of looping while trying to evaluate
an infinite branch. Specifically, when evaluating the chosen rule, the first answer is
returned, X = a.

When asking the system for a second solution, the rule “positive p(X) ← p(Y)” is
chosen and, as it depends on p(Y) for a new variable Y, the rule for p(X) is evaluated
again. The variable Y is again renamed here by Zi to remark that, each time the rule
“positive p(X) ← p(Y)” is evaluated, a new different variable is generated. p(Z0)
depends on positive p(X), and the evaluation of this one behaves like when looking
for the first solution. So, a new solution for p(X) is found. In this case the variable is
not bound (X is free), so p(X) ∈WFM(Π) for any value of X.

The second drawback appears here. When asking for the third solution
the expected answer should be “no”, because there are no more elements in
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WFM(Π). Instead of that, our method chooses the second rule for positive p(X),
“positive p(X) ← p(Y)”. As it depends on p(Z1), and the evaluation of this one
behaves like for the previous results, we obtain a solution: p(X) with X not bound.

p(X)

positive p(X)

-OR-X = a

SOLUTION 1

p(Z0)

positive p(Z0)

-OR-X = a

SOLUTION 2

p(Z1)

positive p(Z1)

-OR-X = a

SOLUTION 3

p(Z2)

. . .

Figure 4.6: SLD-derivation of program 4.3.10.

This third solution has been found before, but Prolog interpreters do not consider
it equivalent to the previous one because different computations have been performed
to arrive to the solutions. The same happens for the infinite solutions after the third
one: all succeed p(X) without binding X.

Getting more than once the same solution can be avoided by saving the previous
solutions and checking that the actual has not been returned before, but in this way
the evaluation of the infinite branch is still performed and the computation never
stops.
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The problem is to determine if the infinite branch does not offer any new solution,
so we can abort it. The best way is by computing a fixed point to detect if a recursive
evaluation does not offer any new solution. The existence of this fixed point will
denote the non-necessity to continue the computation, and it can be stopped by failing
the derivation branch. In Fig. 4.7 we show a modified version of the derivation in
Fig. 4.6. In this one the computation is stopped when it is observed that the evaluation
of p(Z1) needs the evaluation of p(Z2) (there is a recursive call or loop) and no new
solutions have been found in between.

p(X)

positive p(X)

-OR-X = a

SOLUTION 1

p(Z0)

positive p(Z0)

-OR-X = a

SOLUTION 2

p(Z1)

positive p(Z1)

-OR-X = a

SOLUTION 3
(repeated)

p(Z2)

FIXPOINT
REACHED

Figure 4.7: Ideal derivation of program 4.3.10.

We illustrate below a method that combines both the freezing and the fixed point
features, but none of them is present in the implementation. The reasons for not
including them is the necessity to break the SLD-resolution and the loose of perfor-
mance. Our proposal is that programs be coded in such a way that, if an infinite
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branch can exist in the derivation, this one is the rightmost branch of the derivation
tree.

The proposed procedure is based on some ideas from [GG01, SW94, RRS+99,
CW93, RC94, SyYhY02]. We have divided it in two parts for clarifying: the first
avoids the selection of rules that produce infinite branches in the derivation tree when
other rules can be selected (the freezing feature), and the second one is in charge of
determining when the evaluation of an infinite branch does not offer any new solution
(the evaluation of a fixed point). Example 4.3.5 illustrates the whole procedure.

The main idea of the first part is to track the clauses that are evaluated and, when
a loop is found (here we consider that evaluating p(X) and p(Z0) constitutes a loop),
the evaluation of the clause that starts the loop (p(X)) is canceled. Instead of getting
rid of the evaluation of this clause, the branch representing it in the SLD-resolution is
moved to the right of the tree. In this way, the execution is reordered and the infinite
branches are evaluated only after the finite ones.

The second part determines when the evaluation of a reordered clause does not
produce any new solution, and determines to cancel its evaluation. For this purpose a
table with the previous solutions is needed, and we need to track whether a predicate
has produced new solutions or not.

Example 4.3.5 Suppose the following program:

Program 4.3.12

1p(X) ← q(X).
2p(a).
3q(X) ← p(Y).
4q(b).

Remark. In this example we do not evaluate the dual of the program or add the
clauses that take care of loops. It is done in this way for the sake of clarifying.

Remark. In the derivations shown in this example we write the next literal to be
evaluated into the node, and the rule used to determine that this is the next literal
to the left of the node. When a loop is found the evaluation of the rule that loops is
frozen, and this is denoted by writing below the node the word FROZEN. When the
evaluation of all the finite rules is performed the frozen rule is unfrozen and evaluated.
This is marked to the right of the node.

Fig. 4.8 shows the first step of the derivation, where the loop between p(X) and
p(Z0) is detected and the evaluation of the first clause for p(X), “p(X) ← q(X).”, is
frozen until the rules that produce finite branches in the derivation are evaluated.
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p(X)

q(X)p(X)← q(X).

p(Z0)q(X)← p(Y)

p(X)← q(X).
[ LOOP ]

Figure 4.8: Proposed derivation of program 4.3.12 step 1.

Fig. 4.9 shows the second step, where the second available rule for p(X) is selected
and evaluated. As it reaches a solution, X = a, it is returned.

p(X)

p(X)← q(X).

FROZEN

X = ap(a).

SOLUTION 1

Figure 4.9: Proposed derivation of program 4.3.12 step 2.

Fig. 4.10 shows the third step of the derivation, that is done when a second solution
is requested. The frozen clause, “p(X) ← q(X).”, is unfrozen and evaluated. As
unfrozen clauses are not considered when checking for loops, a new loop is found on
the evaluation of q(X) and the clause “q(X) ← p(Y).” is frozen. We omit the rules of
the previous nodes.
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p(X)

FROZEN

X = a

SOL 1

q(X)p(X)← q(X). UNFROZEN

p(Z0)q(X)← p(Y).

q(Z0)p(X)← q(X).

q(X)← p(Y).
[ LOOP ]

Figure 4.10: Proposed derivation of program 4.3.12 step 3.

In fig. 4.11 the second clause for q(X) is selected and the solution X = b is found.

p(X)

FROZEN

X = a

SOLUTION 1

q(X)p(X)← q(X). UNFROZEN

q(X)← p(Y).

FROZEN

X = b

SOLUTION 2

q(b).

Figure 4.11: Proposed derivation of program 4.3.12 step 4.
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Fig. 4.12 shows the fifth step. When looking for the third solution, the frozen
clause “q(X) ← p(Y).” is unfrozen and evaluated. During the evaluation a loop on
p(X) is found, and the clause “p(X)← q(X).” is frozen.

p(X)

FROZEN

X = a

SOL 1

q(X)p(X)← q(X). UNFROZEN

FROZEN

X = b

SOL 2

p(Z0)q(X)← p(Y). UNFR

q(Z0)p(X)← q(X).

p(Z1)q(X)← p(Y).

p(X)← q(X).
[ LOOP ]

Figure 4.12: Proposed derivation of program 4.3.12 step 5.
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In Fig. 4.13 the third solution, p(X) with X unbound, is obtained.

p(X)

FROZEN

X = a

SOL 1

q(X)p(X)← q(X). UNFROZEN

FROZEN

X = b

SOL 2

p(Z0)q(X)← p(Y). UNFR

p(X)← q(X).

[FROZEN]

X = ap(a).

SOLUTION 3

Figure 4.13: Proposed derivation of program 4.3.12 step 6.
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When asking for another solution, the method continues evaluating the leftmost
branch in the tree, as can be observed in Fig. 4.14. As the unfrozen rules are not
considered to determine if there is a loop, a new loop is found on the evaluation of
rule “q(X)← p(Y)”.

p(X)

FROZEN

X = a

SOL 1

q(X)p(X)← q(X). UNFROZEN

FROZEN

X = b

SOL 2

p(Z0)q(X)← p(Y). UNFR

FROZEN

X = a

SOL 3

q(Z0)p(X)← q(X). UNFR

p(Z1)q(X)← p(Y).

q(Z1)p(X)← q(X).

q(X)← p(Y).
[ LOOP ]

Figure 4.14: Proposed derivation of program 4.3.12 step 7.
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The next step of the derivation is split into the figures 4.15 and 4.16. To ob-
tain the fourth solution the method evaluates the finite derivations of q(Z0) (the rule
“ q(X) ← p(Y)” has been frozen in the previous step). No new solution is found,
because the possible solution, p(X) with X unbound, has been returned as the third
solution. So, the frozen clause is unfrozen and reevaluated. As the unfrozen rules
are not considered to determine if there is a loop, a new loop is found on the clause
“p(X) ← q(X)”, and its evaluation is frozen.

Remark. From here onwards we will not repeat the first part of the derivation, be-
cause it does not change.

p(X)

FROZEN

X = a

SOL 1

q(X)p(X)← q(X). UNFROZEN

FROZEN

X = b

SOL 2

p(Z0)q(X)← p(Y). UNFR

FROZEN

X = a

SOL 3

q(Z0)p(X)← q(X). UNFR

[continues]

Figure 4.15: Proposed derivation of program 4.3.12 step 8 part 1 of 2.
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[continues from Fig. 4.15]

q(Z0)p(X)← q(X). UNFR

q(X)← p(Y).

FROZEN

FAILq(b). p(Z1)q(X)← p(Y). UNFR

q(Z1)p(X)← q(X).

p(Z2)q(X)← p(Y).

p(X)← q(X).
[ LOOP ]

Figure 4.16: Proposed derivation of program 4.3.12 step 8 part 2 of 2.
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The evaluation of “p(X) ← q(X)” has been frozen in the previous step, and
in Fig. 4.17 the finite solutions for p(Z1) are evaluated. As no new solutions are
found, the frozen rule is unfrozen and reevaluated. Due to the loop on the clause
“q(X) ← p(Y)”, it is frozen.

[continues from Fig. 4.15]

q(Z0)p(X)← q(X). UNFR

q(X)← p(Y).

FROZEN

FAILq(b). p(Z1)q(X)← p(Y). UNFR

p(X)← q(X).

FROZEN

FAILp(a). q(Z1)p(X)← q(X). UNFR

p(Z2)q(X)← p(Y).

q(Z2)p(X)← q(X).

q(X)← p(Y).
[ LOOP ]

Figure 4.17: Proposed derivation of program 4.3.12 step 9.
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As the evaluation of the rule “q(X) ← p(Y)” has been frozen, the finite rules for
q(Z1) are evaluated. After the evaluation of the finite rules (which do not lead us to
any new solution), the frozen clause should be unfrozen, but it has been frozen for
two times with no new solutions. As it is the second time that its evaluation does not
produce any new solution, we can infer that it has reached a fixed point. At this point
the evaluation can be (and is) cancelled, because all the solutions have been found.

[continues from Fig. 4.15]

q(Z0)p(X)← q(X). UNFR

q(X)← p(Y).

FROZEN

FAILq(b). p(Z1)q(X)← p(Y). UNFR

p(X)← q(X).

FROZEN

FAILp(a). q(Z1)p(X)← q(X). UNFR

q(X)← p(Y).

FROZEN

FAILq(b). UNFRq(X)← p(Y).

FIXED POINT

Figure 4.18: Proposed derivation of program 4.3.12 step 10.
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4.4 The implementation of inequalities

In section 4.2 we make reference to a predicate, 6= /2, that needs further explanation.
6= /2 is the predicate in charge of evaluating inequalities. We start by explaining why
the Prolog predefined predicate for evaluating inequalities, “\ ==”, is not suitable for
evaluating the inequalities that we have in the dual program, and, just after that, we
show in detail how 6= /2 is implemented.

The Prolog predefined predicate to evaluate inequalities, “\ ==”, can not be used
to evaluate the inequalities in the dual program due to two reasons:

• It does not retain information from the disequalities. For example in pro-
gram 4.4.1 if we evaluate the query ? − p(X). the answer will be X = a, al-
though we have explicitly coded that X has to be different from a.
The reason for this behavior is that the information of the disequality is not
stored in the variable, and once the disequality code has been evaluated the
variable can again take the forbidden value(s).

• As “\ ==” is not coded in a library but in the Prolog compiler, there is no way
to modify the implementation without removing the possibility of using our tool
in other Prolog systems. As “\ ==” is not able to deal with the meta-term
f A( ) (see Sec. 4.2 for more details on the meta-term f A( )) because it has no
representation for it, we can not use the implementation to evaluate disequalities
like s(0) 6= s( f A( )).

Program 4.4.1

1p(X) ← X \== a, q(X).
2q(a).

In order to solve these problems we present an implementation of the predicate
6= /2 which retains the disequality information by using attributed variables (defined
below) and is able to manage disequalities in which one or both terms are composed
by using the meta-term f A( ). Besides, our implementation is able to accumulate
information from different inequalities and, whenever it is possible, to simplify the
resulting inequality. We start defining attributed variables.

Definition 4.4.1 (Attributed variables). Attributed variables provide a technique for
extending the Prolog unification algorithm [Hol92] by hooking the binding of attributed
variables.

A suspension variable, or an attributed variable, is a variable to which there are
suspended agents (or hooks) and attribute values (its name and a value) attached. Agents
are registered onto suspension variables by action rules and each attribute is associated
to a module where the hook is executed immediately after a successful unification.

The built-in predicates to make use of attributed variables are usually (in some Prolog
systems their names change) the following ones:
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• put attr/3 is used to register attribute values,

• get attr/3 is used to retrieve attribute values and

• del attr/2 is used to remove attribute values.

The way that agents are registered changes from one Prolog system to another
one, but in general they offer some kind of predicate such as attr uni f y hook/3 or
install constraint portray hook/4, so the programmer can define the agent behavior.

Now we present the core (simplified) of our implementation (program 4.4.2), and,
after that, we expose some optimizations to increase the speedup of the evaluation of
inequalities.

Remark. As the predicate 6= /2 can not be coded because there is no symbol for 6=,
in the code its name is dist/2. Besides, dist/2 is not defined as an infix operator, but
as a prefix operator, so we have dist(a, b) in spite of a 6= b.

Program 4.4.2 dist/2 implementation (simplified)

1dist(T1, T2) ← var(T1), var(T2), T1 == T2, !, fail.
2dist(T1, T2) ← var(T1), var(T2), add_attribute(T1/T2),
3add_attribute(T2/T1).
4dist(T1, T2) ← var(T1), is_forall(T2), !, fail.
5dist(T1, T2) ← var(T1), is_functor(T2),
6add_attr(T1/T2).
7dist(T1, T2) ← var(T2), is_forall(T1), !, fail.
8dist(T1, T2) ← var(T2), is_functor(T1),
9add_attr(T2/T1).
10
11dist(T1, T2) ← is_forall(T1), !, fail.
12dist(T1, T2) ← is_forall(T2), !, fail.
13
14dist(T1, T2) ← functor(T1, Name1, Arity1),
15functor(T2, Name2, Arity2),
16(Name1 \== Name2 ; Arity1 \== Arity2).
17
18dist(T1, T2) ← functor(T1, Name, Arity),
19functor(T2, Name, Arity),
20T1=..[Name|Arguments1],
21T2=..[Name|Arguments2],
22dist_args(Arguments1, Arguments2).
23
24dist_args([], []) ← !, fail.
25dist_args([A1|L1], [A2|L2]) ←
26dist(A1, A2) ;
27dist_args(L1, L2).

The code exposed here is in charge of taking the following decisions:
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• accept the inequality because the terms are different at this point and the modi-
fications they can suffer do not affect the decision.

• fail the inequality because the terms unify.

• delay the decision until the variables are grounded by unification.

The last task is performed by adding an attribute to the involved variables, which is
done by the predicate add attr/1 Its implementation is presented in program 4.4.3.

Program 4.4.3 add attribute/1 implementation (simplified)

1add_attr(T1/T2) ← get_attribute(T1, T1/T3), !,
2remove_attribute(T1),
3combine_attributes(T2, T3, T4),
4put_attribute(T1, T1/T4).
5add_attr(T1/T2) ← put_attribute(T1, T1/T2).

The agent to be executed just after the unification of an attributed variable is pre-
sented in the program below. Basically it removes the variable’s attribute (so the hook
is not reevaluated while the agent determines if the inequality holds) and determines
if the variable has taken one of the values forbidden by the inequality or not. For
doing that we use again the predicate dist/2.

Program 4.4.4 verify attribute/2 implementation (simplified)

1verify_attribute(Value, T1/T2) ←
2remove_attribute(T1),
3dist(Value, T2).

Remark. For the sake of simplicity we have not included the code in charge of join-
ing/splitting the list of inequalities that is stored and retrieved from the variable’s
attribute.

Apart from trivial optimizations, like the elimination of identical inequalities, a
huge optimization is carried out by the dist/2 predicate: the division of this complex
inequalities into a disjunction of simpler and smaller inequalities. We introduce it by
means of program 4.4.5.

Program 4.4.5 bigger than predicate in Peano numbers (exhaustive)

1bt(s(X), s(Y)) ← bt(X, Y)
2bt(s(X), 0).
3bt(V, W) ← ((V, W) 6= (s(fA(_)), s(fA(_)))),
4((V, W) 6= (s(fA(_)), 0)),
5fail.
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Taking a look to the first inequality it can be seen that

((V, W) 6= (s( f A( )), s( f A( ))))

is equivalent to
(V 6= s( f A( )))

∨
(W 6= s( f A( ))).

So, instead of having a big and complex inequality, we now have two small and simple
inequalities joined by disjunction.

However, this simplification can not always be made: in program 4.4.6 the exist-
ing relationship between the first and the second arguments of the predicate incr/2
produces an unexpected result. Let’s see why:

If we take the program obtained from the negation of the clauses (we omit the
code for obtaining WFS results for the sake of clarity), shown in program 4.4.7, and
we make the simplification obtained before, we obtain program 4.4.8.

When evaluating the clause, the implementation notices the disjunction and selects
the first part of it (and only if it fails will it, through backtracking, look for the second
part). Inside the first part, it evaluates the dist/2 and adds two attributes: the first
to the variable X and the second one to the variable U. As a result, for the clause to
succeed it is enough to have the variable U different from the variable X, and, since
X is a free variable, this is always the case. neg incr(0, s(0)) succeeds, which is not
the intended meaning. The problem is reproduced in a similar way for the second
disjunction of the clause.

Program 4.4.6 incr predicate in Peano numbers

1incr(X, s(X)).

Program 4.4.7 incr predicate in Peano numbers (original+dual)

1incr(X, s(X)).
2neg_incr(U, V) ← (U, V) 6= (X, s(X)).

Program 4.4.8 incr predicate in Peano numbers (erroneous simplification)

1incr(X, s(X)).
2neg_incr(U, V) ← (U 6= X); (V 6= s(X)).

The reason for this behavior is that we can not split inequalities when there are
dependencies between the components of y used in ci(x, yi). In this case we have to
store the whole inequality in each one of the affected variables and test it every time
one of the variables is changed by unification.
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4.5 forall/2 implementation

As introduced in Sec 3.5, the procedure we use to evaluate the universal quantification
is based on the construction of tautologies from the answers given by the predicates
involved by the universal quantification. The code (simplified) in charge of this task
is presented in program 4.5.1.

Program 4.5.1 Core of the f orall/2 implementation (simplified)

1intneg_forall(FA_Vars, Preds) ←
2determine_nfa_vars(Preds, FA_Vars, NFA_Vars), !,
3find_sols(FA_Vars, NFA_Vars, Preds, Sols),
4intneg_forall_aux(FA_Vars, NFA_Vars, Sols,
5Preds, _Expl), !.

Basically, f ind sols(FA Vars, NFA Vars, Preds, Sols) executes each one of the dif-
ferent branches that we have for the predicates Preds and stores in Sols the solutions
for the variables universally quantified (FA Vars), the solutions for the variables that
are not universally quantified (NFA Vars) and the predicate(s) from Preds used to
achieve each one of the solutions.

We have two versions of this predicate. The first one is implemented by f indall
and the second one is implemented by a modified version of f indall that, instead of
retrieving all the solutions in one step, uses Prolog’s backtracking to retrieve at each
step the previous solutions and a new one. While the first one is more efficient than
the second one if the number of solutions is small, it is clear that if we have a predicate
with infinite solutions it will not be able to retrieve all of them. On the contrary, if
there is a solution, the second one will for sure find it. The algorithm for the modified
version of f indall is shown below.

Algorithm 4.5.1 find sols implementation

1. Input: (FA Vars, NFA Vars, Preds)

2. Initialize a variable from which Prolog in backtracking can not remove
inserted items. Call it Solutions.

3. Execute in Prolog Call(Preds).
Our new result is the tuple (FA Vars, NFA Vars, Preds).

4. Make a new copy of the tuple’s variables with copy term, so the vari-
ables do not clash with the variables from the following execution.

5. Store in Solutions the new tuple.

6. Output: A list with all the existing solutions in Solutions.
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The predicate intneg f orall aux(Sols, Expl) is in charge of the combination of
the different solutions to check for tautologies. The algorithm implemented is shown
below.

Algorithm 4.5.2 Detection of a tautology, predicate intneg f orall aux/2

1. Input: (Sols) [List of solutions with the structure
[(FA Vars, NFA Vars, Preds)] ]

2. Initialize an empty list, List Preds a.

3. For each variable Var in the list of variables FA Vars, loop.

3.1. Take the first solution that still has not been used to free Var (the
actual variable). Add it to the list List Preds.

3.2. For the solution of the variable,

• if the variable is free in the solution (it is not bound nor an
attributed variable), continue.
• if this variable is bound, look for a solution in which the vari-

able is an attributed variable and the combination of the actual
value and the disequality form a tautology.
Add the solution used to the list List Preds.
• if this variable is an attributed variable, the tautology can be

built in two ways:
– by one or more instantiated values from other(s) solu-

tion(s).
– by another solution with an attributed variable in which

the disequality forbids different values than the ones for-
bidden by the actual attributed variable.

Whatever it is the option taken, add the solutions used to the
list List Preds.

4. Test the consistency of the solutions for the variables NFA Vars in the
list List Preds. If it is inconsistent, fail. By backtracking look for the
next combination of the solutions that frees the variables in FA Vars. If
it is consistent, continue.

5. Output: (List Preds) [List of solutions used to freed the variables uni-
versally quantified, FA Vars].

aList Preds is used to store which solutions has been used to free the list of variables
FA Vars.
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Remark. The variable Expl in program 4.5.1 (that is not used there) offers the user
the possibility to observe which have been the solutions used to free the variables, and
this is not only useful for debugging options. In chapter 5 we show the implementation
of one extension of our work that makes use of it, abduction.

In order to better illustrate what the implementation of f orall/2 does, we intro-
duce the following examples. For the sake of simplicity none of them has loops, so,
instead of taking the output from the procedure that makes the program obey the Well
Founded Semantics (Sec. 4.3), we take the output from the procedure that calculates
the dual of the program (Sec. 4.2). As there are no loops, the results are just the same
and we can benefit from studying the f orall/2 behavior in programs that are much
simpler.

Example 4.5.1 Suppose that we have the following program:

Program 4.5.2

1q(Y) ← p(X, Y); neg_ p(X, Y).
2p(0, 1).
3
4neg_q(Y) ← ∀X.(¬ p(X, Y), p(X, Y)).
5neg_p(X, Y) ← (X, Y) 6= (0, 1).

For the query “?−¬q(Y).” the f orall/2 implementation asks f ind sols/4 to obtain
all the solutions for X and Y in “(¬p(X, Y) , p(X, Y))” and obtains the following
results:

• X 6= 0
∧

X = 0
∧

Y = 1→ f ail

• Y 6= 1
∧

X = 0
∧

Y = 1→ f ail

So the universal quantification does not succeed.

Example 4.5.2 Suppose that we have the following program where, compared to
the previous one, has the universal quantification applied to a disjunction rather than
a conjunction:

Program 4.5.3

1q(Y) ← p(X, Y), neg_ p(X, Y).
2p(0, 1).
3
4neg_q(Y) ← ∀X.(¬ p(X, Y); p(X, Y)).
5neg_p(X, Y) ← (X, Y) 6= (0, 1).

For the query “?−¬q(Y).” the f orall/2 implementation asks f ind sols/4 to obtain
all the solutions for X and Y in “(¬p(X, Y) ; p(X, Y))” and obtains the following
results:
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• X 6= 0

• Y 6= 1

• X = 0
∧

Y = 1

After that, f orall/2 calls intneg f orall aux/5, which combines the solutions to obtain
tautologies. We have the following possibilities:

• X 6= 0
∨

( X = 0
∧

Y = 1 )

• Y 6= 1

Thus, we have two possible solutions for the universal quantification: one which ben-
efits from the fact that X is free and assigns to Y (the variable in “? − ¬q(Y).”) the
value 1 and the other one that joints two solutions to free X and instead of assigning
a value to Y adds to the variable an attribute to forbid it to take the value Y = 1.

Example 4.5.3 Consider now the program:

Program 4.5.4

1q(0) ← p(X), r(X).
2p(1).
3r(2).
4
5neg_q(Y) ← Y 6= 0.
6neg_q(0) ← ∀X.(¬ p(X); neg_r(X)).
7neg_p(X) ← X 6= 1.
8neg_r(X) ← X 6= 2.

For the query “?−¬q(Y).” we have two possibilities:

• Y is different from 0 or

• Y is equal to 0, in which case we need to evaluate whether the body of the second
rule succeeds to determine if the universal quantification is satisfiable.

In the second possibility the f orall/2 implementation calls f ind sols/4 to obtain all
the solutions for X in “(¬p(X) ; r(X))” and obtains the following results:

• X 6= 1

• X 6= 2

After that, f orall/2 evaluates intneg f orall aux/5, which obtains only the tautology
X 6= 1

∨
X 6= 2, but this is nevertheless enough for the universal quantification to

succeed.
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Example 4.5.4 Suppose that we have the following program:

Program 4.5.5

1q(0) ← p(X).
2p(1).
3
4neg_q(Y) ← Y 6= 0.
5neg_q(0) ← ∀X.(¬ p(X); neg_r(X)).
6neg_p(X) ← X 6= 1.

For the query “?−¬q(Y).” we have now two possibilities:

• Y is different from 0 or

• Y is equal to 0, in which case we need to evaluate if the body of the second rule
succeeds, if the universal quantification succeeds.

In the second possibility f orall/2 calls f ind sols/4 to obtain all the solutions for X in
“(¬p(X) ; r(X))” and obtains the following result:

• X 6= 1

After that, f orall/2 calls intneg f orall aux/5. Here it is impossible to build a tautol-
ogy, and so the universal quantification fails. The only valid solution for the query
“?−¬q(Y).” is then Y 6= 0.

page 106



CHAPTER 5

EXTENSION: ABDUCTION

Although descriptions of abduction date back to the “fourth figure” of Aristotle
[Wan94], the philosopher Peirce first introduced the notion of abduction. In [Pei74]
he identified three distinguished forms of reasoning:

• Deduction, an analytic process based on the application of general rules to par-
ticular cases, with the inference of a result.

• Induction, synthetic reasoning which infers the rule from the case and the result.

• Abduction, another form of synthetic inference, but of the case from a rule and
a result.

Peirce further characterized abduction as the “probational adoption of a hypothe-
sis” as explanation for observed facts (results), according to known laws. “It is how-
ever a weak kind of inference, because we can not say that we believe in the truth of
the explanation, but only that it may be true.”

Abduction in logic programming is a method of reasoning in which one chooses
the hypothesis that would, if true, best explain the relevant evidence. It starts from a
program Π, a set of accepted facts (our query Q), a set of possible hypotheses (the set
of abducibles Abdcs), a set of integrity rules IR (see Def. 5.1.2 below) and infers their
explanations. We will see abductive problems as tuples < Π, Abdcs, IR, Q > . Let’s
say that we have an abductive program composed only by the rule:

p ← q.

Abdcs = { q }, the set IR is empty and the query is p. Then it is intended to get
an answer { q }, meaning that the existence of p in the model of our program can be
explained by the fact that q is too in this model.

In contrast with that, logic programming tries to prove that the goal(s) in the query
(the accepted facts before, p in the example) are deducible from the hypothesis in the
program. Let’s say that if we have a logic program composed only by the following
rule:
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p ← q.

Then a query ?− p. is intended to get an answer no because we can not prove p from
our program. We need, at least, q to be true in our program for p to succeed, like in
the following program:

1p ← q.
2q.

In spite of the fact that implementing abduction by means of logic programs could
be a problem (because logic programming proves that the query is deducible from the
program, and abductive reasoning looks for the facts that are needed to support this
proof), logic-based frameworks are common in the literature [APS04, ST99, TK94,
DK02, Men96, CDT91, CP86, Esh93, KM90, Poo89, Poo85, Poo94, Poo93, Pop73,
KKT92]. Even Charniak and Shimony [CS94] comment that, pragmatically, a logical
framefork for “explanation” is a useful definition since

... it ties something we know little about (explanation)
to something we as a community know quite a bit about (theorem proving)

The only drawback of these implementations is that, as knowledge representation
frameworks, they suffer from the problem of the model-theoretic approaches pre-
sented in chapters 1 and 2: as originally the existence of variables is not considered
or is restricted, the use of variables in abduction suffers from floundering.

Suppose that Abdcs = { parent/2, man/1, woman/1 },
IR = { ⊥ ← man(X), woman(X) }, and the abductive program Π is:

Program 5.0.6

1father(F,C)←man(F), parent(F,C).
2mother(M,C)←woman(M), parent(M,C).

Both the queries f ather(X, Y) and ¬ f ather(X, Y) suffer from floundering: the former
when testing that the integrity rule is satisfied and the second one when testing that
f ather(X, Y) can not succeed. Both problems are caused by the use of “negation as
failure” to evaluate the negation of the goals: the former tries to evaluate ¬⊥ and the
second one is a negative query itself.

The expected answers are, for the first query, a list composed with the abductions
needed for the predicate f ather to succeed, [ man(X), parent(X, Y) ], and, for the
second query, [ ¬man(X) ; ¬parent(X, Y) ]. The meaning of the last one is that if X
is not the father of Y is because X is not a man or X is not parent of Y.

The usual method to implement abduction in logic programming is to collect the
abductions into a set and test it for consistency, which resembles to two techniques
used in chapter 3 for solving the non-ground queries problem. In fact, when 1) collect-
ing all the disequalities and testing them in unification (see Sec. 4.4) and 2) collecting
solutions and testing for a tautology (see Sec. 4.5) we are indeed using abductive
techniques to solve our problems.

As we arrived to the use of abduction to fix some of our problems, we though
that our method for non-ground queries could be used to solve non-ground queries
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in abduction, and we were right. We obtained the framework for dealing with non-
ground queries that is presented here.

We start by presenting the theoretical bases of abduction (Sec. 5.1) to get to how
we translate an abductive problem < Π, Abdcs, IR, Q > into a problem that can
be solved by any logic programming interpreter (Sec. 5.2). After that we expose how
the universal quantification is managed in abduction (Sec. 5.3) and finally how the
consistency of the resultant set is tested (Sec. 5.4). The last sections are intended to
illustrate the process with some examples (Sec. 5.6) and summarize the work done in
abduction (Sec. 5.6).

5.1 The theoretical approach of abduction

As exposed in [Pei74]:

Definition 5.1.1. Given a set of sentences T (a theory presentation), and a sentence G
(observation), to a first approximation, the abductive task can be characterized as the
problem of finding a set of sentences ∆ (abductive explanation for G) such that:

1) T ∪ ∆ |= G

2) T ∪ ∆ is consistent

This characterization of abduction is independent of the language in which T, G and
∆ are formulated. The logical implication |= in 1 can alternatively be replaced by a
deduction operator `. The consistency requirement 2 is not explicit in Peirce’s more
informal characterization of abduction, but is a natural further requirement.

In fact, these two conditions, 1 and 2, are too weak to capture Peirce’s notion. In
particular, additional restrictions on ∆ are needed to distinguish abductive explana-
tions from inductive generalizations [CS92]. Moreover, we also need to restrict ∆ so
that it conveys some reason why the observations hold, e.g. we do not want to ex-
plain one effect in terms of another effect, but only in terms of some cause. For both
of these reasons, explanations are often restricted to belong to a special pre-specified,
domain-specific class of sentences called abducible.

Since we are only interested in abduction in logic programs, this definition is too
broad. Instead of using it, we use a specialized one, similar to [APS04], that for
introducing the notion of (in)consistency makes use of denials.

Definition 5.1.2 (Integrity Rule, modified from [APS04]). An integrity rule for an
abductive program Π and a set of abducibles Abds is a denial of the form

⊥ ← L1, . . . , Ln

where each Li is a literal.

Definition 5.1.3. Given an abductive program Π, a set of abducibles Abds and a set of
integrity rules IR, ∆ is an abductive solution for a query G if and only if
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1. Π ∪ IR ∪ ∆ |=Sem G and

2. Π ∪ IR ∪ ∆ is consistent and

3. for every term A, A ∈ ∆, there are a term B, B ∈ Abdcs , and a (possible
empty) substitution σ such that A = Bσ or A = (¬B)σ .

but, as we are restricted to Well Founded Semantics, we can simplify the definition
again:

Definition 5.1.4. Given an abductive program Π, a list of abducible predicates Abds,
a set of integrity rules IR and a query Q, ∆ is an abductive solution for our abductive
problem < Π, Abdcs, IR, Q > if and only if

• for every term A, A ∈ ∆, there are a term B, B ∈ Abdcs , and a (possible
empty) substitution σ such that A = Bσ or A = (¬B)σ ,

• Q ∈ WFM (Π ∪ IR ∪ ∆) and

• ⊥ /∈ WFM (Π ∪ IR ∪ ∆).

Remark. There can be no rule in program Π whose head H is in the set Abds of
abducibles or there exists some A ∈ Abds such that, for some substitution σ, Aσ = H.
This does not lead to loss of generality, since any program with abducibles can be
rewritten to obey it. For instance, if it is desired to make abducible some objective
literal B such that B is the head of a rule, one may introduce a new abducible predicate
B′, along with a rule “ B : −B′ ”. See e.g. [KKT92].

5.2 Dealing with the abductions

We have defined our abductive problem as a tuple < Π, Abdcs, IR, Q > , where Π
is our abductive program, Abdcs is the set of abducibles, IR the set of integrity rules
and Q the query, but we have not defined the syntax of the programs and the query.
Although in some papers (like [APS04]) the authors tend to modify the syntax of logic
programs to stress the fact that they are abductive programs, our proposal here is to
keep the syntax of the abductive programs (and the query) as close as possible to the
syntax of logic programs.

By doing that, we can apply the algorithms presented in chapter 4 to obtain the
dual of the abductive program and, in the last step, make the needed modifications to
the program so that it behaves as an abductive program instead of a logic program.
The resultant program will then benefit from the use of the dual program to get the
explanations of why a conclusion can not be reached, which are the abductive results
for a negative conclusion. So, the syntax used to define abductive programs is the
following:
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abdcs([A1/Ar1, . . . , Ai/Ari]).

H1 ← L11, ..., L1n
. . .
Hm ← Lm1, ..., Lmn′

⊥ ← L11, ..., L1k
. . .
⊥ ← Lj1, ..., Ljk

where “abdcs([A1/Ar1, . . . , Ai/Ari]).” is the way to declare the set Abdcs of ab-
ducibles (Ai/Ari is the conventional way in logic programming of referring to the
predicate named Ai with arity Ari), “Hm ← Lm1, ..., Lmn′ ” is one of our abductive
rules and “⊥ ← Lj1, ..., Ljk ” is one of our integrity rules.

Program 5.2.2 shows the result from applying the transformations from chapter 4
to program 5.2.1. For the sake of simplicity from here onwards, unless otherwise
stated, we omit the code in charge of getting WFS results.

Remark. As the symbol ⊥ can not be coded in programs, the term selected to sub-
stitute it is f alse, that is assumed to be a new propositional symbol, not appearing
elsewhere in the program.

Program 5.2.1

1abdcs([man/1, woman/1, parent/2]).
2
3father(F,C) ← man(F), parent(F,C).
4mother(M,C) ← woman(M), parent(M,C).
5
6false ← man(X), woman(X).
7% X can not be at the same time a man and a woman.

Program 5.2.2

1abdcs([man/1, woman/1, parent/2]).
2
3father(F,C)←man(F), parent(F,C).
4neg_father(F,C)← neg_man(F) ; neg_parent(F,C).
5
6mother(M,C)←woman(M), parent(M,C).
7neg_mother(M,C)← neg_woman(M) ; neg_parent(M,C).
8
9false ← man(X), woman(X).
10neg_false ← forall(X, ¬man(X); ¬woman(X)).
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The pending task is to convert the abductive problem, the tuple
< Π, Abdcs, IR, Q >, into a logic problem. It must be done in such a way
that, when posing the query Q, we obtain the evidence ∆ that can be used to prove
the query in the way exposed in Def. 5.1.4, i.e. the abductive solutions for the
hypothesis. The conversion is performed by making the following changes:

1. For each clause in our program to have the ability to add the abducibles that
explain it to the current set of abducibles, we need two new arguments: One
with the previous abducibles’ set and another one to return this set plus the new
ones that explain its success. For this purpose two new arguments are added in
each clause, and when evaluating sub-goals of the clauses these parameters are
managed in such a way that the abductions needed by the sub-goals are added
to the set of abductions needed by the clause. This is explained in detail just
below.

2. For each abducible in the set of abducibles Abds we need to build two new
clauses, one for abducing its positive version and the other one for abducing
its negative version. Besides, when evaluating these clauses and adding the
new abducible, we need to test for the consistency of the new set of abducibles.
While the first task is simply done by adding the new abduction to the actual
list of abductions, the second one is not so simple. It is introduced in detail in
Sec. 5.4.

3. The query Q is intended for an abductive program in which the clauses do not
have the new arguments to manage the previous set of abductions and the re-
sultant one. In order to fit the new clauses it needs two new arguments: the first
that represents the previous set of abductions (and normally will be an empty
set) and the second one which is the final result, i.e. the abducibles that explain
the query.

4. The integrity restrictions need to be tested when a query is posed to our program.
As the integrity rules have been treated as normal rules, the way we test them is
by evaluating the goal ¬ f alse ( ¬⊥ ), a task that can be done in two places:

• in the predicate that will be called to evaluate the query,

• or in the query itself.

In theory we say that the query is part of our abductive problem, i.e. of the tuple
< Π, Abdcs, IR, Q > . This is done to simplify the theoretical aspects. But,
in practice, repeating the whole conversion, if the only thing that changes is the
query, is inefficient.

To enable the possibility to reuse the conversion of the program, the integrity
rules and the abducibles, we do the following: instead of testing the integrity
restrictions in the predicate that will be called by the query, we add to the query
a call to the predicate in charge of testing them. So, the conversion of the query
is independent from the conversion of the rest of the problem but, as a drawback,
we need to explicitly say in the query that we want to test the integrity rules.
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As we have introduced before, in order to return the abducibles that explain one
predicate we need to add two new parameters to each clause: Abds In and Abds Out.

• Abds Out: If we want to return the abducibles for a predicate the best way
is using a variable, so the programmer can make use of it without too much
problems.

• Abds In: A rule might refer to another rule, so we need to obtain the abducibles
of the referred rule and add them to the set of abducibles of the referrer rule.
The set of abducibles needs to be consistent and, in order to test this consistency,
we have two options:

– Test for consistency before returning the result.

– Test for consistency each time we add a new abducible.

Obviously the option selected is the second one, so we do not wait until we have
computed a big set of abducibles to say that it is not valid.

To test consistency of the actual set of abductions we need to know which is this
set. Abds In is added for that purpose.

Special care must be taken when adding the variables Abds In and Abds Out to
the subgoals of a rule: while when adding them to a disjunction of subgoals we can
obtain different explanations for the goal, when adding them to a conjunction we can
obtain only one. So, while disjunction a ← b ∨ c is transformed into

a(Abds In, Abds Out)← b(Abds In, Abds Out) ∨ c(Abds In, Abds Out).

the conjunction a ← b ∧ c is transformed into

a(Abds In, Abds Out)← b(Abds In, Abds Aux) ∧ c(Abds Aux, Abds Out).

These transformations are done in a similar way when goals and/or subgoals have
arity bigger than zero, as can be seen in program 5.2.3. AI is Abds In, AA is
Abds Aux and AO is Abds Out.

Remark. In the last clause of our program it appears a new predicate, f orall/4,
which has not been introduced yet. It is in charge of determining the abductions that
explain the satisfaction of the universal quantification, and it is explained in detail in
section 5.3.

Program 5.2.3

1abdcs([man/1, woman/1, parent/2]).
2
3father(F, C, AI, AO)← man(F, AI, AA),
4parent(F, C, AA, AO).
5neg_father(F, C, AI, AO)← neg_man(F, AI, AO) ;
6neg_parent(F, C, AI, AO).
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7
8mother(M, C, AI, AO)← woman(M, AI, AA),
9parent(M, C, AA, AO).
10neg_mother(M, C, AI, AO)← neg_woman(M, AI, AO) ;
11neg_parent(M, C, AI, AO).
12
13man(X, AI, AO) ← add_abdcs([man(X)], AI, AO).
14neg_man(X, AI, AO) ← add_abdcs([neg_man(X)], AI, AO).
15
16parent(X, Y, AI, AO) ← add_abdcs([parent(X, Y)], AI, AO).
17neg_parent(X, Y, AI, AO) ←
18add_abdcs([neg_parent(X, Y)], AI, AO).
19
20false(AI, AO) ← man(X, AI, AA), woman(X, AA, AO).
21neg_false(AI, AO) ←
22forall(X, ¬man(X); ¬woman(X), AI, AO).

The conversion and evaluation of the queries f ather(F, C), neg f ather(F, C),
mother(M, C) and neg mother(M, C) can be seen below. As the second argument
of the predicate in charge of testing the integrity constraints, neg f alse/2, does not
give us any information, we use the symbol “ ” instead of a variable to avoid Prolog to
return some value for this variable.

Conversion and evaluation of queries f ather(F, C), neg f ather(F, C), mother(M, C)
and neg mother(M, C) in program 5.2.3

?- father(F, C, [], AO), neg_false(AO, _).
AO = [man(F), parent(F,C)] ? ;
no

?- neg_father(F, C, [], AO), neg_false(AO, _).
AO = [neg_man(F)] ? ;
AO = [neg_parent(F, C)] ? ;
no

?- mother(F, C, [], AO), neg_false(AO, _).
AO = [woman(F), parent(F,C)] ? ;
no

?- neg_mother(F, C, [], AO), neg_false(AO, _).
AO = [neg_woman(F)] ? ;
AO = [neg_parent(F, C)] ? ;
no

Up to here we have exposed our conversion, but we omitted the explanation of
the predicates f orall/4 and add abdcs/3. f orall/2 was the predicate in charge of
evaluating the universal quantification in our negation system (see Secs. 3.5 and 4.5),
but it was not implemented with the aim of being used for abduction, so it is not ready
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to return the abducibles that explain its satisfaction. The problem of the universal
quantification in abduction and the needed changes to its implementation are exposed
in the following section, and that of consistently adding abductions to a solution is
exposed in the section after that.

5.3 Universal Quantification in Abduction

In section 5.2 we have introduced the modifications needed to deal with abduction,
but we omitted the management of the universal quantification obtained from the
negation of a clause that has a free variable in its body.

For example, when we apply the transformations in chapter 4 to the program 5.3.1
we obtain the program 5.3.2, where the predicate f orall/2 is the representation of
the universal quantification.

Program 5.3.1

1abdcs([man/1, woman/1, parent/2]).
2
3father(F,C)←man(F), parent(F,C).
4mother(M,C)←woman(M), parent(M,C).
5
6grandfather(Gf, C) ← father(Gf, P), parent(P, C).
7grandmother(Gm, C) ← mother(Gm, P), parent(P, C).

Program 5.3.2

1abdcs([man/1, woman/1, parent/2]).
2
3father(F,C)←man(F), parent(F,C).
4neg_father(F,C)← neg_man(F) ; neg_parent(F,C).
5
6mother(M,C)←woman(M), parent(M,C).
7neg_mother(M,C)← neg_woman(M) ; neg_parent(M,C).
8
9grandfather(Gf, C) ← father(Gf, P), parent(P, C).
10neg_grandfather(Gf, C) ← forall(P, neg_father(Gf, P));
11forall(P, neg_parent(P, C)).
12
13grandmother(Gm, C) ← mother(Gm, P), parent(P, C).
14neg_grandmother(Gm, C) ← forall(P, neg_mother(Gm, P));
15forall(P, neg_parent(P, C)).

If we apply next the conversion of the abducible program into a logic program, we
arrive to program 5.3.3, where all predicates (including the f orall/2) have two new
arguments for dealing with the abductions’ sets ( f orall/2 is now f orall/4).
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Since, obviously, the universal quantification needs to deal with the sets of abduc-
tions, these two new parameters are not only desired but indispensable. The problem
is that the implementation presented in Sec. 4.5 is not suitable for dealing with ab-
duction: it is able to determine if the universal quantification is satisfiable, but not
which are the abductions that justify this satisfaction. Here we present the modifi-
cations done to this implementation to obtain the abductions that guarantee that the
argument predicates succeed for all instantiation of its free variables. Consider the
program:

Program 5.3.3

1abdcs([man/1, woman/1, parent/2]).
2
3man(X, AI, AO) ← add_abdcs([man(X)], AI, AO).
4neg_man(X, AI, AO) ← add_abdcs([neg_man(X)], AI, AO).
5
6parent(X, Y, AI, AO) ← add_abdcs([parent(X, Y)], AI, AO).
7neg_parent(X, Y, AI, AO) ←
8add_abdcs([neg_parent(X, Y)], AI, AO).
9
10father(F, C, AI, AO)← man(F, AI, AA),
11parent(F, C, AA, AO).
12neg_father(F, C, AI, AO)← neg_man(F, AI, AO) ;
13neg_parent(F, C, AI, AO).
14mother(M, C, AI, AO)← woman(M, AI, AA),
15parent(M,C, AA, AO).
16neg_mother(M, C, AI, AO)← neg_woman(M, AI, AO) ;
17neg_parent(M, C, AI, AO).
18
19grandfather(Gf, C, AI, AO) ← father(Gf, P, AI, AA),
20parent(P, C, AA, AO).
21neg_grandfather(Gf, C, AI, AO) ←
22forall(P, neg_father(Gf, P), AI, AO) ;
23forall(P, neg_parent(P, C), AI, AO).
24
25grandmother(Gm, C, AI, AO) ← mother(Gm, P, AI, AA),
26parent(P, C, AA, AO).
27neg_grandmother(Gm, C, AI, AO) ←
28forall(P, neg_mother(Gm, P), AI, AO) ;
29forall(P, neg_parent(P, C), AI, AO).

We start by illustrating the problem of determining which are the abducibles that
explain the success of the universal quantification in the previous program. If we make
the query

?− neg grand f ather(G f , C, [ ], AO).

to program 5.3.3, as there is a disjunction in the clause, we expect the abductive
solution(s) obtained to guarantee the success in the WFM of
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1. f orall(P, neg f ather(G f , P), AI, AO) or

2. f orall(P, neg parent(P, C), AI, AO).

We study first what is needed for the disjunct 1 to succeed and later what is needed
by the disjunct 2.

For the disjunct 1 to succeed we need neg f ather(G f , P) to succeed for all the
values of P, which is tested in the same way as in Sec. 4.5: we get the solutions for
neg f ather(G f , P) and try to build a tautology.

To get the solutions for neg f ather(G f , P) we first need to execute it and, for that,
it is mandatory to add the two new arguments needed for abduction. Here, the first
one will be an empty list so in the second one we get the abductions needed for this
predicate alone to succeed. The solutions obtained are the following:

Evaluation of the translation of query neg f ather(G f , P) in program 5.3.3

?- neg_father(Gf, P, [], AO).
AO = [neg_man(Gf)] ? ;
AO = [neg_parent(Gf, P)] ? ;
no

In this example the variable P stays free for the first solution, so we have a tautology.
The only task left is to add the abduced solutions of the forall evaluation to the actual
set. As the abduced predicate does not have the universally quantified variable P, in
this case we do not need to perform any special task. So, to add the new abducibles
to the set we can use the predicate add abdcs/3:

add_abdcs(ForAll_Abdcs, AI, AO).

that basically (more details on this predicate can be found in Sec.5.4) adds the abduc-
tions in the variable ForAll Abdcs to the input list of abductions AI, returning the
result in its third argument, AO. The evaluation of the second disjunct is rather simi-
lar to this one, and we are not introducing it. Instead, we will see how the predicate
f orall/4 behaves when we ask for another solution.

When asking for another solution one could be led to think that the second one
will came from the second disjunct, but there is still an usable result in the previous
f orall/4 execution for the first disjunct:

AO = [neg parent(G f , P)].

So, we take this one and test if P is free or we need to look for another solution to
build a tautology. Since it is free, the left task is to add the abductions needed for this
solution to succeed to the actual list of abductions, AI. As in this case the universally
quantified variable P is used by the abduction, it can not be simply added: we need to
remark that in order to succeed the f orall/4 predicate this abduction has to be in the
WFM of Π for every possible value of the variable P. For this task a new kind of
abducibles is introduced: the abducibles with universally quantified variables.

page 117



5.3. UNIVERSAL QUANTIFICATION IN ABDUCTION

Definition 5.3.1 (Abducible with universal quantified variable(s)). When to guarantee
that an universal quantification succeeds for all instantiations of some predicates’ vari-
able(s) we need some abducibles to be in the WFM of the program Π for every possible
value of the same variable, a more compact representation of this set of abducibles can be
used. We can use either of the following syntax for that compact representation, although,
when answering queries, Prolog will use only the first one.

f orall([Vars], [Abducibles])
or

∀Vars [Abducibles]

The intended meaning is that we need in the WFM of the program Π the abducibles
Abducibles for every possible value of the variables in Vars to guarantee that an universal
quantification succeeds.

The results obtained when executing the query
“? − neg grand f ather(G f , C, [ ], AO).” are presented below, where the first two
solutions belong to the disjunct 1 and the third one to the disjunct 2.

Evaluation of query neg grand f ather(G f , C, [ ], AO) in program 5.3.3

?- neg_grandfather(Gf, C, [], AO).
AO = [neg_man(Gf)] ? ;
AO = [forall(P, [neg_parent(Gf, P)])] ? ;
AO = [forall(P, [neg_parent(P, C)])] ? ;
no

Since the previous example does not build tautologies (the universally quantified
variable is always free), we introduce the following example to illustrate the process
performed when a tautology needs to be built to make the variable free.

Program 5.3.4

1abdcs([r/1]).
2
3p ← q(X).
4
5q(1) ← r(1).
6q(2) ← r(2).

For the sake of simplicity we first calculate the dual by using the process exposed in
Sec. 4.2.
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Program 5.3.5

1abdcs([r/1]).
2
3p ← q(X).
4neg_p ← forall(X, neg_q(X)).
5
6q(1) ← r(1).
7q(2) ← r(2).
8neg_q(X) ← X 6= 1, X 6= 2.
9neg_q(1) ← neg_r(1).
10neg_q(2) ← neg_r(2).

After that we add the WFS behavior by using the procedure exposed in Sec. 4.3.

Program 5.3.6

1abdcs([r/1]).
2
3p ← test_no_loops_on(p), positive_p.
4neg_p ← test_no_loops_on(neg_p), negative_p.
5neg_p ← test_loop_on(neg_p),
6test_only_negative_literals_in_loop(neg_p).
7
8positive_p ← q(X).
9negative_p ← forall(X, neg_q(X)).
10
11q(X) ← test_no_loops_on(q(X)), positive_q(X).
12neg_q(X) ← test_no_loops_on(neg_q(X)), negative_q(X).
13neg_q(X) ← test_loop_on(neg_q(X)),
14test_only_negative_literals_in_loop(neg_q(X)).
15
16positive_q(1) ← r(1).
17positive_q(2) ← r(2).
18negative_q(X) ← X 6= 1, X 6= 2.
19negative_q(1) ← neg_r(1).
20negative_q(2) ← neg_r(2).

Finally we add the arguments and clauses needed to get the abductions that explain
the hypotheses.

Program 5.3.7

1abdcs([r/1]).
2
3p(AI, AO) ← test_no_loops_on(p(AI, AO)),
4positive_p(AI, AO).
5neg_p(AI, AO) ← test_no_loops_on(neg_p(AI, AO)),
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6negative_p(AI, AO).
7neg_p(AI, AO) ← test_loop_on(neg_p(AI, AO)),
8test_only_negative_literals_in_loop(neg_p(AI, AO)).
9
10positive_p(AI, AO) ← q(X, AI, AO).
11negative_p(AI, AO) ← forall(X, neg_q(X), AI, AO).
12
13q(X, AI, AO) ← test_no_loops_on(q(X), AI, AO),
14positive_q(X, AI, AO).
15neg_q(X) ← test_no_loops_on(neg_q(X), AI, AO),
16negative_q(X, AI, AO).
17neg_q(X) ← test_loop_on(neg_q(X), AI, AO),
18test_only_negative_literals_in_loop(neg_q(X), AI, AO).
19
20positive_q(1, AI, AO) ← r(1, AI, AO).
21positive_q(2, AI, AO) ← r(2, AI, AO).
22negative_q(X, A, A) ← X 6= 1, X 6= 2.
23negative_q(1, AI, AO) ← neg_r(1, AI, AO).
24negative_q(2, AI, AO) ← neg_r(2, AI, AO).
25
26r(X, AI, AO) ← add_abdcs(r(X), AI, AO).
27neg_r(X, AI, AO) ← add_abdcs(neg_r(X), AI, AO).

If we try to obtain the abducibles that explain the existence of neg p in the WFM
of Π, the result for the query “?− neg p([ ], AO).”, the program will determine that it
needs f orall(X, neg q(X), AI, AO) to succeed, and the solutions for neg q(X, AI, AO)
are the following:

Evaluation of query neg q(X, AI, AO) in program 5.3.7

?- neg_q(X, [], AO).
X 6= 1 ∧ X 6= 2
AO = [] ? ;
X = 1
AO = [neg_r(1)] ;
X = 2
AO = [neg_r(2)] ;
no

So, for the predicate f orall/4 to succeed we have to build a tautology, which in this
case is

( X 6= 1∧ X 6= 2 ) ∨ X = 1∨ X = 2.

As when building the tautology we just append the abductions needed by each result
to the list AI that initially is empty, finally we obtain the list

[ neg r(1), neg r(2) ]

which does not contain the variable X. So, the final result does not need to quantify
the abductions universally:
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Evaluation of query neg p([ ], AO). in program 5.3.7

?- neg_p([], AO).
AO = [neg_r(1), neg_r(2)] ? ;
no

As a final remark in this section, we show a subset of the universally quantified ab-
ductions that we have introduced before: the abductions with constrained universally
quantified variables. Consider the following final program:

Program 5.3.8

1abdcs([g/1]).
2
3g(X, AI, AO) ← add_abdcs(g(X), AI, AO).
4neg_g(X, AI, AO) ← add_abdcs(neg_g(X), AI, AO).
5
6test(AI, AO) ← neg_p(X, AI, AA), q((X, AA, AO).
7neg_test(AI, AO) ← forall(X, (p(X); neg_q(X)), AI, AO).
8
9p(X, AI, AO) ← q(X, AI, AA), g(X, AA, AO).
10neg_p(X, AI, AO) ← q(X, AI, AO) ; g(X, AI, AO).
11
12q(X, AI, AO) ← neg_memberchk(X, [1,2,3], AI, AO).
13neg_q(X, AI, AO) ← memberchk(X, [1,2,3], AI, AO).
14
15memberchk(X, [X|L]).
16memberchk(X, [Y|L]) ← memberchk(X, L).
17
18neg_memberchk(X, Y) ← (X, Y) 6= (fA(_), [fA(_)|fA(_)]).
19neg_memberchk(X, [Y|L]) ← (X, [Y|L]) 6= (Z, [Z,fA(_)]),
20neg_memberchk(X, L).

and suppose that we want to obtain the abductions that explain neg test, the results
for neg test([ ], AO). When evaluating f orall(X, (p(X); neg q(X)), AI, AO) we
need to obtain the solutions for p(X); neg q(X), which are:

Evaluation of query p(X); neg q(X) in program 5.3.8

?- p(X, [], AO) ; neg_q(X, [], AO).
X 6= 1 ∧ X 6= 2 ∧ X 6= 3
AO = g(X) ? ;
X = 1
AO = [] ? ;
X = 2
AO = [] ? ;
X = 3
AO = [] ? ;
no
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As can be seen, from the list of solutions we can build the tautology
(X 6= 1 ∧ X 6= 2 ∧ X 6= 3) ∨ X = 1 ∨ X = 2 ∨ X = 3 , so we only
have to join the abductions obtained for each of the solutions used to build the tautol-
ogy. When joining, the result is:

g(X) [X 6= 1∧ X 6= 2∧ X 6= 3] ;

and after that we determine that, as the variable X is the same variable we had in
f orall, we need to quantify it universally. The result that f orall/4 returns is

f orall(X, g(X))[X 6= 1∧ X 6= 2∧ X 6= 3]

which we resolved to call constrained universally quantified variable.

Definition 5.3.2 (Abducible with constrained universal quantified variable(s)). When
to guarantee that an universal quantification succeeds for all instantiations of some pred-
icates’ variable(s) we need some abducibles to be in the WFM of the program Π for every
possible value of the same variable, it can happen that the variable has been constrained
before.

In this case the constraints are transferred to the universal quantification, because
abducing a predicate for a variable’s value that the variable is not allowed to take is
nonsense.

As in the universal quantified variables, a more compact representation of this set of
abducibles can be used. Its syntax is the following:

f orall([Vars], [Abducibles]) [Constraints]

For the sake of clarifying we may also use one of the following representations:

f orall([Var1Constraints, . . . , VarnConstraints], [Abducibles])
or

{ ∀[Var1,...,Varn] [Abducibles] } [Constraints]

The meaning of this abduction is that we need to assume the predicate for all the values
of the variable but the ones in the constraint.

Remark. Although we try to make the syntax more legible by putting the constraints
as close as possible to the variables, by writing

{ p(XX 6=a)} instead of { p(X) } [X 6= a]
or

{ ∀XX 6=a. p(X) } instead of { ∀X. p(X) } [X 6= a],

in some cases it is preferable to write the constraints out of the set, like in

{ p(X), neg p(Y)} [X 6= Y] instead of { p(XX 6=Y), neg p(YY 6=X)},

where the notation can lead to think that there are two constraints while there is only
one. Both syntaxes are equivalent.
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5.4 Testing the consistency of the abductions’ set

In the previous sections 5.3 and 5.2 we always referred to the consistency of the
abduction set as a task that has to be done when adding a new abducible to the actual
set, i.e. as a task of the predicate

add abdcs(New Abducibles, AI, AO).

Now we define how the consistency of a set of abductions is evaluated each time we
add a new abduction. We start by defining what is considered inconsistency:

Definition 5.4.1 (Inconsistency of a set of abductions). A set of abductions is inconsis-
tent if and only if for at least one ground atom A, both A and its negation ¬A belong to
the set.

Since the set is in general not ground, having instead predicates with variables (pos-
sibly universally quantified and/or with restrictions) that stand for a set of ground
literals (resulting from this grounding), in order to determine if a set of abducibles is
consistent we need to look first at the different forms of literals that we can have as
abductions.

F1) A literal (or its negation) with its variables instantiated. For example, p(a) (or
neg p(a)).

F2) A literal with one or more of its variables free. For example, p(X) (or neg p(X))
or p(X, a) (or neg p(X, a)).

F3) A literal with one or more of its variables constrained. For example, p(XX 6=a) (or
neg p(XX 6=a)) or p(XX 6=a, a) (or neg p(XX 6=a, a)).

F4) A literal with one or more of its variables universally quantified. For example,
∀X. p(X) (or ∀X. neg p(X)) or ∀X. p(X, a) (or ∀X. neg p(X, a)).

F5) A literal with one or more of its variables universally quantified and con-
strained. For example, ∀XX 6=a. p(X) (or ∀XX 6=a. neg p(X)) or ∀XX 6=a.p( X, a)
(or ∀XX 6=a. neg p(X, a)).

We examine the combinations to determine which of them make the set incon-
sistent, i.e. the combinations such that its grounding contains an inconsistency. We
restrict the combinations to the cases in which one abducible is positive and the other
one is negative, since it is clear that if both are positive or negative abducibles the
combination can not lead to inconsistency.

C1) If we have a ground literal (F1) and its negation (F1), for example p(a) and
neg p(a), it is clear from Def. 5.4.1 that the set is inconsistent.

C2) If for a literal we have a ground instance (F1) and its non-ground negation (F2),
for example neg p(a) and p(X), the set can be made consistent since the variable
can take a value different from the one taken by the ground instance (we need
to constraint the variable). So, if in the example we constraint the variable X to
X 6= a the set {neg p(a), p(XX 6=a)} is consistent.
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C3) If for a literal we have a ground instance (F1) and its non-ground negation con-
strained (F3),

• if the variable can not take the ground value then the set is consistent with-
out modifying the abductions, for example neg p(a) and p(XX 6=a).

• if the variable can take the ground value, the variable must be constrained
so it can not take the ground value. For example, in neg p(a) and p(X)X 6=b
the resultant set is { neg p(a), p(XX 6=b,X 6=a) }.

C4) If for a literal we have a ground instance (F1) and its non-ground nega-
tion universally quantified and not constrained (F4), for example p(a) and
f orall(X, neg p(X)), the set is inconsistent. The universal quantification forces
us to abduce the literal for all the possible values of the variable, and one of these
values is taken by the ground instance of the literal, so the combination form an
inconsistent set. In the example, neg p(a) is one of the ground instances included
in the abduction f orall(X, neg p(X)), and the combination {p(a), neg p(a)} is
inconsistent.

C5) If for a literal we have a ground instance (F1) and its non-ground negation uni-
versally quantified and constrained (F5),

• if the universal quantification can not take the ground value then the com-
bination is consistent. For example, p(a) and f orall(XX 6=a, neg p(X)).

• if the universal quantification can take the ground value then the set is
inconsistent. The reason is the same as in C4. For example, p(a) and
f orall(XX 6=b, neg p(X)): neg p(a) is included into f orall(XX 6=b, neg p(X))
and the set formed by p(a) and neg p(a) is inconsistent.

C6) If for a literal we have its non-ground positive and negative versions (F2),
they can be added since a constraint assures that they can not take the
same ground values. For example, p(X) and neg p(Y) can form the set
{ p(X), neg p(Y)} [X 6= Y].

C7) If for a literal we have its non-ground version (F2) and its non-ground negated
version constrained (F3), they can be added since a constraint assures that they
can not take the same ground values. For example, neg p(Y) and p(XX 6=a) can
form the set { neg p(Y), p(X)} [X 6= a, X 6= Y].

C8) If for a literal we have its non-ground version (F2) and its non-ground negated
version universally quantified (F4), they can not form a consistent set. The uni-
versally quantified one takes all the existing values and the other one can not be
bound to any value without making the set inconsistent. For example, neg p(Y)
and f orall(X, p(X)).

C9) If for a literal we have its non-ground version (F2) and its non-ground negated
version universally quantified and constrained (F5), they can form a consis-
tent set by constraining the values that the first one can take to the values
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that the second one can not take. For example, the union of neg p(Y) and
f orall(XX 6=a, p(X)) form the set { neg p(YY=a), f orall(XX 6=a, p(X)) } or, sim-
plified, the set { neg p(a), f orall(XX 6=a, p(X)) }.

C10) If for a literal we have its non-ground constrained version (F3) and its negated
non-ground constrained version (F3) they can form a consistent set by constrain-
ing the variables not to take the same value. For example, neg p(YY 6=a) and
p(XX 6=b) can form the set { neg p(Y), p(X) } [Y 6= a, X 6= b, Y 6= X].

C11) If for a literal we have its non-ground constrained version (F3) and its non-ground
negated version universally quantified (F4), they can not form a consistent set.
The reason is the same as in C8. For example, neg p(YY 6=a) and f orall(X, p(X)).

C12) If for a literal we have its non-ground constrained version (F3) and its non-ground
negated version universally quantified and constrained (F5), then

• if the first one can be constrained to take the values that the sec-
ond one can not take then they can form a consistent set. For
example, neg p(YY 6=a) and f orall(XX 6=c, p(X)) can form the consis-
tent set { neg p(YY 6= a, Y = c), f orall(XX 6= c, p(X)) } or, simplified,
{ neg p(c), f orall(XX 6= c, p(X)) }.

• if the first one can not be constrained to take the values that the second one
can not take, then the set is inconsistent. For example, neg p(YY 6=c) and
f orall(XX 6=c, p(X)).

C13) If for a literal we have its non-ground negated version universally quantified (F4)
and its non-ground negated version universally quantified (F4) then the consis-
tent set can not be formed. Both of them need all the ground instances of the
literal for the variable, and this means that for every instance of the literal the
set will be inconsistent. For example, f orall(X, p(X)) and f orall(Y, neg p(Y)):
since they need all the instances, we can take a ground value a and see that the
combination of p(a) and neg p(a) is inconsistent.

C14) If for a literal we have its non-ground version universally quantified (F4) and its
non-ground negated version universally quantified and constrained (F5) then the
consistent set can not be formed. We can always find a valid ground value for the
constrained one and see that this value is in the set of values that the other one
needs to take too. For example, f orall(X, p(X)) and f orall(XX 6=a, neg p(X)):
we can take a ground value b and see that the combination of p(b) and neg p(b)
is inconsistent.

C15) If for a literal we have its positive and negative non-ground versions universally
quantified and constrained (F5) then we can not form a consistent set. The reason
is similar to the one in C14: we can find a valid ground value for both of them
and see that this value is in the set of values that the other one needs to take too.
For example, f orall(XX 6=a, p(X)) and f orall(XX 6=b, neg p(X)): we can take a
ground value c and see that the combination of p(c) and neg p(c) is inconsistent.
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As introduced before, we use an inductive method to assure the consistency of the set:

• the empty set is obviously consistent.

• each time a new abduction is added to the set it is tested that the combination
of this new abduction with the existing ones does not make the set inconsistent.

Since testing the combination by using rules C1 to C15 is clearly inefficient, we re-
formulate the rules in the following ones. The difference is that the new ones only
determines when adding a new abducible to the set makes it inconsistent:

R1) The set becomes inconsistent if we add to it a literal (for example, p(X)) when
we have in the set its negation universally quantified (for example, ∀Y.neg p(Y)).

This applies too if we want to add the literal with the variable grounded (for
example, p(b)).

One exception to this rule occurs when the universally quantified formula is con-
strained (for example, ∀YY 6=a.neg p(Y) ) and the variable (or constant) of the
predicate to add (X in the example) can be constrained to the values that the
universally quantified variable can not take (a in the example). In this case the
variable has to be constrained to take only those values (in the example X has to
be constrained to take the value a).

R2) The set becomes inconsistent if we add to it a literal universally quantified (for
example, ∀Y. p(Y)) when we have in the set its negation (for example, p(X)).

This applies too if we have in the set the literal with the variable grounded (for
example, p(b)).

The exception of the rule R1 applies here too.

R3) The set becomes inconsistent if we add to it a literal (for example, p(X) or
neg p(X)) and we have in the set its negation (respectively, neg p(X) or p(X)).

This applies too if we have in the set the literal with the variable grounded (for
example, p(b) or neg p(b)) or if we have to add the literal with the variable
grounded (for example, p(b) or neg p(b)).

One exception to this rule occurs in the following cases:

• when the literals are ground and do not take the same value for the variable
(for example, p(b) and neg p(c)).

• when one of them is not ground (neg p(X) or p(X)) and the other one is.
In this case the variables of the first one must be constrained so they can not
take the values taken by the first one (if the first one is p(d) or neg p(d),
respectively neg p(XX 6=d) or p(XX 6=d) ).

• when both of them are not ground (neg p(X) or p(X) and p(X) or
neg p(X)) a constraint must be added to the variables to assure that
they do not take the same values (the resultant set for both cases is
{ neg p(X1), p(X2) } [X1 6= X2] ).
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We finally illustrate how this behaves by means of some examples:

Example 5.4.1 Suppose that we have a set of abductions AO = [neg r(X)] and we
have to add the abduction r(Y). As the second one is the negation of the first one, it
can not be added unless we constraint them to take different values. So, the result is:
AO = [neg r(X), r(Y)][X 6= Y].

Example 5.4.2 Suppose that we have a set of abductions
AI = [neg r(X), r(Y)] [X 6= Y] and we have to add the abduction r(1). As
the new abduction is included in r(Y), we do not need to explicitly add it, but
we need to constraint neg r(X) so X can not be bound to 1. So, the result is
AO = [neg r(X), r(Y)] [X 6= Y, X 6= 1].

Example 5.4.3 Suppose that we have a set of abductions
AI = [neg r(X), r(Y)] [X 6= Y, X 6= 1] and we have to add the abduc-
tion neg r(1). As there is a constraint over X that does not allow us to take this value,
the set is inconsistent and we fail to add the new abducible.

Example 5.4.4 Suppose that we have a set of abductions
AI = [neg r(X), r(Y)] [X 6= Y, X 6= 1] and we have to add the abduc-
tion f orall(Z, r(Z)). As there is a negated version of r(Z) in our set, the result is
inconsistent and we fail to add the new abduction.

Example 5.4.5 Suppose that we have a set of abductions
AI = [neg r(X), r(Y)] [X 6= Y, X 6= 1] and we have to add the abduc-
tion f orall(ZZ 6= 2, r(Z)). As r(Z) needs to be abduced for every value but Z = 2,
we can constraint neg r(X) to X = 2. Besides, as Y is constrained to have a
value different from the one taken by X, and X = 2, then Y 6= 2. So, r(Y) is
contained into f orall(ZZ 6= 2, r(Z)) and the result from adding the new abduction is
AO = [neg r(2), f orall(ZZ 6= 2, r(Z))].

5.5 Illustrative examples

In this section we expose the conversion of some abductive problems into logic pro-
grams, and we test the results obtained against the definition of abductive solution in
Def. 5.1.4.

Example 5.5.1 The abductive problem is formed by the following abductive pro-
gram Π (program 5.5.1), that declares Abds = { p/1 } and IR = { }, and the
query q.

Program 5.5.1

1abdcs([p/1]).
2
3q ← p(X).
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The corresponding logic program is

Program 5.5.2 Conversion of the abductive program Π into a logic program

1q(AI, AO) ← test_no_loops_on(q(AI, AO)),
2positive_q(AI, AO).
3
4positive_q(AI, AO) ← p(X).
5
6neg_q(AI, AO) ← test_no_loops_on(neg_q(AI, AO)),
7negative_q(AI, AO).
8neg_q(AI, AO) ←
9test_only_negative_literals_in_loop(neg_q(AI, AO)).
10
11negative_q(AI, AO) ← forall(X, neg_p(X), AI, AO).
12
13p(X, AI, AO) ← add_abdcs([p(X)], AI, AO).
14neg_p(X, AI, AO) ← add_abdcs([neg_p(X)], AI, AO).

The result from converting the query q is q([ ], AO), and its evaluation is:

Evaluation of query q([ ], AO) in program 5.5.2

?- q([], AO).
AO = [p(X)] ? ;
no

In order to determine that the result obtained is correct, according to Def. 5.1.4,
we have to test that

• for every term A, A ∈ ∆, there are a term B, B ∈ Abdcs , and a (possible
empty) substitution σ such that A = Bσ or A = (¬B)σ . p(X) is the only
term in ∆ and p(X) ∈ Abds so, for σ the empty substitution, A = Bσ.

• Q ∈ WFM (Π ∪ IR ∪ ∆). As the meaning of p(X) is that we need one
ground instance of the predicate p/1, we add p(a). The result is program 5.5.3,
where it can be seen that Q belongs to the WFM by simply making the query q.

• ⊥ /∈ WFM (Π ∪ IR ∪ ∆). As IR = { }, it does not need to be checked.

Program 5.5.3

1q ← test_no_loops_on(q), positive_q.
2neg_q ← test_no_loops_on(neg_q), negative_q.
3neg_q ← test_only_negative_literals_in_loop(neg_q).
4
5p(X) ← test_no_loops_on(p(X)), positive_p(X).
6neg_p(X) ← test_no_loops_on(neg_p(X)), negative_p(X).
7neg_p(X) ←
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8test_only_negative_literals_in_loop(neg_p(X)).
9
10positive_q ← p(X).
11negative_q ← forall(X, neg_p(X)).
12
13positive_p(a).
14negative_p(X) ← X 6= a.

Evaluation of query q in program 5.5.3

?- q.
yes

?-

Example 5.5.2 The abductive problem is formed by the previous abductive pro-
gram Π (program 5.5.1), that declares Abds = { p/1 } and IR = { }, and the
query neg q. As explained before, we do not need to convert again the whole prob-
lem, it suffices to convert the query Q.
The result from converting the query neg q is neg q([ ], AO), and its evaluation is:

Evaluation of query neg q([ ], AO) in program 5.5.2

?- neg_q([], AO).
AO = [forall(X, neg_p(X))] ? ;
no

In order to determine that the result obtained is correct, according to Def. 5.1.4,
we have to test that

• for every term A, A ∈ ∆, there are a term B, B ∈ Abdcs , and a (possible
empty) substitution σ such that A = Bσ or A = (¬B)σ . neg p(X) is the
only term in ∆ and p(X) ∈ Abds so, for σ the empty substitution, A = ¬Bσ.

• Q ∈ WFM (Π ∪ IR ∪ ∆). As the meaning of f orall(X, neg p(X)) is that we
need all the ground negative instances of the predicate p/1, we add neg p(X)
(which is going to succeed for all of them). The result is program 5.5.4, where
it can be seen that Q belongs to the WFM by simply making the query neg q.

• ⊥ /∈ WFM (Π ∪ IR ∪ ∆). As IR = { }, it does not need to be checked.

Program 5.5.4

1q ← test_no_loops_on(q), positive_q.
2neg_q ← test_no_loops_on(neg_q), negative_q.
3neg_q ← test_only_negative_literals_in_loop(neg_q).
4
5p(X) ← test_no_loops_on(p(X)), positive_p(X).
6neg_p(X) ← test_no_loops_on(neg_p(X)), negative_p(X).
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7neg_p(X) ←
8test_only_negative_literals_in_loop(neg_p(X)).
9
10positive_q ← p(X).
11negative_q ← forall(X, neg_p(X)).
12
13positive_p(X) ← fail.
14negative_p(X).

Evaluation of query neg q in program 5.5.4

?- neg_q.
yes

?-

Example 5.5.3 The abductive problem is formed by Π, the abductive pro-
gram 5.3.4, that declares Abds = { r/1 } and IR = { }, and the query p.
The corresponding logic program is program 5.3.7, the result from converting the
query p is p([ ], AO), and its evaluation is:

Evaluation of the query p([ ], AO) in program 5.3.7

?- p([], AO).
AO = [r(1)] ? ;
AO = [r(2)] ? ;
no

In order to determine that the results obtained are correct, according to Def. 5.1.4,
we have to test, for every solution, that

• for every term A, A ∈ ∆, there are a term B, B ∈ Abdcs , and a (possible
empty) substitution σ such that A = Bσ or A = (¬B)σ .

First solution: r(1) is the only term in ∆ and r(X) ∈ Abds so, for σ = X/1,
A = Bσ.

Second solution: r(2) is the only term in ∆ and r(X) ∈ Abds so, for σ = X/2,
A = Bσ.

• Q ∈ WFM (Π ∪ IR ∪ ∆).

First solution: the result of adding r(1) to the original program is shown in
program 5.5.5. It can be seen that Q ∈ WFM (Π ∪ IR ∪ ∆) by simply
making the query p.

Second solution: the result of adding r(2) to the original program is shown
in program 5.5.6. As the only differences with respect to program 5.5.5
are in the last two lines, we only show that ones. It can be seen that
Q ∈ WFM (Π ∪ IR ∪ ∆) by simply making the query p.

• ⊥ /∈ WFM (Π ∪ IR ∪ ∆). As IR = { }, it does not need to be checked.
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Program 5.5.5

1p ← test_no_loops_on(p), positive_p.
2neg_p ← test_no_loops_on(neg_p), negative_p.
3neg_p ← test_loop_on(neg_p),
4test_only_negative_literals_in_loop(neg_p).
5
6positive_p ← q(X).
7negative_p ← forall(X, neg_q(X)).
8
9q(X) ← test_no_loops_on(q(X)), positive_q(X).
10neg_q(X) ← test_no_loops_on(neg_q(X)), negative_q(X).
11neg_q(X) ← test_loop_on(neg_q(X)),
12test_only_negative_literals_in_loop(neg_q(X)).
13
14positive_q(1) ← r(1).
15positive_q(2) ← r(2).
16negative_q(X) ← X 6= 1, X 6= 2.
17negative_q(1) ← neg_r(1).
18negative_q(2) ← neg_r(2).
19
20r(X) ← test_no_loops_on(r(X)), positive_r(X).
21neg_r(X) ← test_no_loops_on(neg_r(X)), negative_r(X).
22neg_r(X) ← test_only_negative_literals_in_loop(neg_r(X)).
23
24positive_r(1).
25negative_r(X) ← X 6= 1.

Evaluation of query p in program 5.5.5

?- p.
yes

?-

Program 5.5.6

22...
23
24positive_r(2).
25negative_r(X) ← X 6= 2.

Evaluation of query p in program 5.5.6

?- p.
yes

?-
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Example 5.5.4 The abductive problem is formed by Π, the abductive pro-
gram 5.3.4, that declares Abds = { r/1 } and IR = { }, and the query neg p.
The corresponding logic program is program 5.3.7, the result from converting the
query neg p is neg p([ ], AO), and its evaluation is:

Evaluation of query neg p([ ], AO) in program 5.3.7

?- neg_p([], AO).
AO = [neg_r(1), neg_r(2)] ? ;
no

In order to determine that the result obtained is correct, according to Def. 5.1.4,
we have to test that

• for every term A, A ∈ ∆, there are a term B, B ∈ Abdcs , and a (possible
empty) substitution σ such that A = Bσ or A = (¬B)σ . As ∆ has two
elements, we have to test it for both. neg r(1) ∈ ∆ and r(X) ∈ Abds so, for
σ = X/1, A = ¬Bσ. neg r(2) ∈ ∆ and r(X) ∈ Abds so, for σ = X/2,
A = ¬Bσ.

• Q ∈ WFM (Π ∪ IR ∪ ∆). The result from adding neg r(1) and neg r(2)
to program 5.3.4 is program 5.5.7, where it can be seen that Q belongs to the
WFM by simply making the query neg p.

• ⊥ /∈ WFM (Π ∪ IR ∪ ∆). As IR = { }, it does not need to be checked.

Program 5.5.7

1p ← test_no_loops_on(p), positive_p.
2neg_p ← test_no_loops_on(neg_p), negative_p.
3neg_p ← test_loop_on(neg_p),
4test_only_negative_literals_in_loop(neg_p).
5
6positive_p ← q(X).
7negative_p ← forall(X, neg_q(X)).
8
9q(X) ← test_no_loops_on(q(X)), positive_q(X).
10neg_q(X) ← test_no_loops_on(neg_q(X)), negative_q(X).
11neg_q(X) ← test_loop_on(neg_q(X)),
12test_only_negative_literals_in_loop(neg_q(X)).
13
14positive_q(1) ← r(1).
15positive_q(2) ← r(2).
16negative_q(X) ← X 6= 1, X 6= 2.
17negative_q(1) ← neg_r(1).
18negative_q(2) ← neg_r(2).
19
20r(X) ← test_no_loops_on(r(X)), positive_r(X).
21neg_r(X) ← test_no_loops_on(neg_r(X)), negative_r(X).
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22neg_r(X) ← test_only_negative_literals_in_loop(neg_r(X)).
23
24positive_r(X) ← fail.
25negative_r(1).
26negative_r(2).

Evaluation of query neg p in program 5.5.7

?- neg_p.
yes

?-

Example 5.5.5 The abductive problem is formed by Π, the abductive pro-
gram 5.2.1, that declares Abds = { man/1, woman/1, parent/2 } and
IR = { ⊥ ← man(X), woman(X) }, and the query f ather(X, Y).
The corresponding logic program is:

Program 5.5.8

1father(F, C, AI, AO) ←
2test_no_loops_on(father(F, C, AI, AO)),
3positive_father(F, C, AI, AO).
4neg_father(F, C, AI, AO) ←
5test_no_loops_on(neg_father(F, C, AI, AO)),
6negative_father(F, C, AI, AO).
7neg_father(F, C, AI, AO) ←
8test_loop_on(neg_father(F, C, AI, AO)),
9test_only_negative_literals_in_loop(
10neg_father(F, C, AI, AO)).
11
12positive_father(F, C, AI, AO)← man(F, AI, AA),
13parent(F, C, AA, AO).
14negative_father(F, C, AI, AO)← neg_man(F, AI, AO) ;
15neg_parent(F, C, AI, AO).
16
17mother(F, C, AI, AO) ←
18test_no_loops_on(mother(F, C, AI, AO)),
19positive_mother(F, C, AI, AO).
20neg_mother(F, C, AI, AO) ←
21test_no_loops_on(neg_mother(F, C, AI, AO)),
22negative_mother(F, C, AI, AO).
23neg_mother(F, C, AI, AO) ←
24test_loop_on(neg_mother(F, C, AI, AO)),
25test_only_negative_literals_in_loop(
26neg_mother(F, C, AI, AO)).
27
28positive_mother(M, C, AI, AO)← woman(M, AI, AA),
29parent(M, C, AA, AO).
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30negative_mother(M, C, AI, AO)← neg_woman(M, AI, AO) ;
31neg_parent(M, C, AI, AO).
32
33man(X, AI, AO) ← add_abdcs([man(X)], AI, AO).
34neg_man(X, AI, AO) ← add_abdcs([neg_man(X)], AI, AO).
35
36parent(X, Y, AI, AO) ← add_abdcs([parent(X, Y)], AI, AO).
37neg_parent(X, Y, AI, AO) ←
38add_abdcs([neg_parent(X, Y)], AI, AO).
39
40
41false(AI, AO) ← man(X, AI, AA), woman(X, AA, AO).
42neg_false(AI, AO) ←
43forall(X, ¬man(X); ¬woman(X), AI, AO).

The result from converting the query Q = f ather(X, Y) is

f ather(X, Y, [ ], AO), neg f alse(AO, ),

and its evaluation is:

Evaluation of query f ather(X, Y, [ ], AO), neg f alse(AO, ) in program 5.5.8

?- father(X, Y, [], AO), neg_false(AO, _).
AO = [man(X), parent(X,Y)] ? ;
no

In order to determine that the result obtained is correct, according to Def. 5.1.4,
we have to test that

• for every term A, A ∈ ∆, there are a term B, B ∈ Abdcs , and a (possible
empty) substitution σ such that A = Bσ or A = (¬B)σ . As ∆ has two
elements, we have to test it for both. man(X) ∈ ∆ and man(X) ∈ Abds so, for σ
the empty substitution, A = Bσ. parent(X, Y) ∈ ∆ and parent(X, Y) ∈ Abds
so, for σ the empty substitution, A = Bσ.

• Q ∈ WFM (Π ∪ IR ∪ ∆). The result from adding an instance of the predicates
man/1 and parent/2 (the meaning of the abduction is that we need an instance
of both and the second predicate has to use as first argument the only argument
of the first predicate) to the program is program 5.5.9, where it can be seen that
Q belongs to the WFM by simply making the query f ather(X, Y)

• ⊥ /∈ WFM (Π ∪ IR ∪ ∆). IR = { ⊥ ← man(X), woman(X) }, and it can
be checked by making the query ”?− f alse.”. As expected, it does not belong to
the Well founded model of (Π ∪ IR ∪ ∆).
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Program 5.5.9

1abdcs([man/1, woman/1, parent/2]).
2
3father(F, C) ←
4test_no_loops_on(father(F, C)),
5positive_father(F, C).
6neg_father(F, C) ← test_no_loops_on(neg_father(F, C)),
7negative_father(F, C).
8neg_father(F, C) ← test_loop_on(neg_father(F, C)),
9test_only_negative_literals_in_loop(neg_father(F, C)).
10
11positive_father(F, C)← man(F), parent(F, C).
12negative_father(F, C)← neg_man(F) ; neg_parent(F, C).
13
14mother(F, C) ← test_no_loops_on(mother(F, C)),
15positive_mother(F, C).
16neg_mother(F, C) ← test_no_loops_on(neg_mother(F, C)),
17negative_mother(F, C).
18neg_mother(F, C) ← test_loop_on(neg_mother(F, C)),
19test_only_negative_literals_in_loop(neg_mother(F, C)).
20
21positive_mother(M, C)← woman(M), parent(M, C).
22negative_mother(M, C)← neg_woman(M) ; neg_parent(M, C).
23
24false ← man(X), woman(X).
25neg_false ← forall(X, ¬man(X); ¬woman(X)).
26
27man(juan).
28parent(juan, pepe).

Evaluation of the query f ather(X, Y) to test that Q ∈ WFM (Π ∪ IR ∪ ∆):

Evaluation of query f ather(X, Y) in program 5.5.9

?- father(X, Y), neg_false.
F = juan
C = pepe ? ;
no

?-

Evaluation of the query f alse to test that ⊥ /∈ WFM (Π ∪ IR ∪ ∆):

Evaluation of query f alse in program 5.5.9

?- false.
no

?-
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5.6 Summarizing the method of our adbuctive frame-
work

In this chapter we have described our framework for abduction, capable of solving
non-ground queries.

We started by defining our abductive problems as tuples
< Π, Abdcs, IR, Q > (Sec. 5.1), where Π is our abductive program, Abdcs
is the set of abducibles, IR the set of integrity rules and Q the query. As our goal
was to use logic programming to solve the queries, the translation of the abductive
problems into logic programs was our next step (Sec. 5.2).

This translation is done in two steps:

• The syntax of the abductive programs Π was keep close to the syntax of logic
programs to allow us to apply the transformation exposed in chapter 4. The
result obtained from this step is an abductive program that is able to deal with
negation with variables without suffering from floundering.

• In the previous step we still obtain an abductive program. Here this program is
changed to obtain the abductions that explain the success of the query.

This is done by:

– adding the arguments needed to return and manage the abductions needed
by the goals and subgoals.

– creating for each abducible two new clauses that are in charge of abducing
its positive and negative version, respectively.

– translating the query so it fits to the new program, and guarantees that the
IRs are satisfied.

During the translation process the following problems needed to be solved:

• The free variables in the bodies of the clauses need some kind of universal quan-
tification management. As the one presented in Sec. 4.5 is not capable of return-
ing the abductions that guarantee the success of the argument predicates for all
the instantiations of its variables, in Sec. 5.3 we present a new implementation
that is able to do it.

• The consistency of the set of abductions needs to be tested. This testing process
needs to deal with the different forms of abductions that we have, and it is
explained in detail in Sec. 5.4.

As a result from solving them two new forms of abductions appeared:

• the abduction with universally quantified variable(s) (see Def. 5.3.1) and

• the abduction with universally quantified and constrained variable(s) (see
Def. 5.3.2)
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CHAPTER 6

CONCLUSIONS

The work presented here solves the floundering problem of Well Founded Seman-
tics (see Sec. 2.5) implementations as Global SLS-resolution [Prz89a, Ros92], SLG-
resolution [CSW95, CW96] and SLT-resolution [SyYhY02] (a revision of them is done
in chapter 3).

The achievement of this goal is done by combining a modified version of both the
transformation presented in [MMNMH08] to obtain from a program its dual and the
derivation procedure presented in [PAP+91] to determine if a query belongs or not to
the Well Founded Model (see Def. 2.5.2) of a program.

Both works were initially developed to be used in different environments:

• The dual program transformation was developed under a variant of Clark’s Se-
mantics called Kunen Semantics (see Sec. 2.2) and this semantics consider con-
tradictory, inconsistent or incomplete information as a program error. This is not
the case in the Well Founded Semantics, where this kind of information is seen
as a knowledge undefinedness.

• The derivation procedure of [PAP+91] was developed for ground programs, so
variables are not considered and programs with variables need to be grounded
before this procedure is applied, hindering the use of logic programming as a
programming language.

So, when combining them some problems arise:

1. The dual program obtained from the transformation in [MMNMH08] uses in-
equalities (see Sec. 4.4) and universal quantification (see Secs. 3.5 and 4.5).
While inequations are not affected by the supposed “erroneous programs”, it is
the universal quantification.

2. The derivation procedure from [PAP+91] is only suitable for ground programs,
and dual programs present the following characteristics:

• they are not variable-free, so programs are not supposed to be ground.
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• instead of having only rules for the positive literals (see Def. 2.1.8), now
we have rules for both the positive and the negative literals.

The (summarized) solutions we propose are the following:

1. A new implementation of the universal quantification in which we determine if
it holds by using abductive techniques. (see Secs. 3.5 and 4.5).

2. A new derivation procedure that treats positive and negative literals symmetri-
cally and allows to make derivations with non-ground programs (see Sec. 3.4).

Besides, although modifications of the syntax transformation to get nonoverlap-
ping clauses from overlapping ones and the implementation of inequalities are not
strictly required for correctness in [MMNMH08], the following features motivated us
for performing modifications:

• the definition of non-overlapping clauses (Def. 3.2.2) are based on testing two
by two if they are compatible. We propose the definition of set of overlapping
clauses (Def. 4.1.1), to improve the method. Although they are equivalent, in-
stead of the existing loop in algorithm 4.1.1 that searches for an overlapping
and transforms it, our algorithms 4.1.2 and 4.1.3 determine all the sets of over-
lapping clauses and algorithm 4.1.4 transforms them. From our definition it is
possible to generate more compact and simpler programs.

• when an inequality has multiple different answers they try to simplify the solu-
tions’ set to avoid the existence of duplicates, and this is done by joining in a
disjunctive way the multiple solutions. While this can be useful for some prob-
lems, the expected way of obtaining solutions when making a query in a Prolog
interpreter is one by one. We propose a new inequalities implementation (see
Sec. 4.4) that works in this way, enabling its use from other Prolog programs
that are not capable of managing disjunctions of solutions.

With respect to the universal quantification, the method proposed in [MMNMH08]
tests its satisfiability by checking that the affected formula holds for all the terms in
the Herbrand Universe of the program. Apart from the fact that it is affected by the
supposed “erroneous programs”, checking one by one every term in the Herbrand
Universe results very expensive computationally speaking. We propose a new method
that relies on building tautologies from the solutions of the universally quantified
variables (see Secs. 3.5 and 4.5). By making use of it, our implementation is able to
solve problems like ∀ X. ( X = 0∨X 6= 0 ), while the method in [MMNMH08] is not1.

1Considering that the valid set of terms is the infinite set of the natural numbers, the formula can
not be evaluated for all of them.
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CHAPTER 6. CONCLUSIONS

Comparing our negation system with the existing ones in Well Founded Semantics
( SLS [Prz89a, Ros92], SLG [CSW95, CW96] and SLT [SyYhY02]), we found the
following differences:

• these systems can not compute the answers to negative non-ground queries (in
fact they restrict the use of variables) while our system is fully capable of doing
it.

Due to this, we can not compare which one has a better complexity when eval-
uating a non-ground query. Without regarding this, we must remark that, when
the satisfiability of universal quantification does not need to be determined, the
complexity is polynomial in the number of evaluated goals (as in SLS, SLT and
SLG). The worst case occurs when it needs to be determined; in this case the
complexity can be exponential in the number of solutions for the affected vari-
ables.

• with respect to ground negative queries, these systems need to compute that
there is no proof for the positive query in order to determine that there exists
one for the negative one.

They do the computation of a query that might be more complex than the origi-
nal one, while our negation system computes only the goals needed to determine
if there is a proof for the goal.

• to solve the problem of infinite loops and redundant computations SLS and SLG
make use of non-linear tabling, while SLT gains efficiency over them by using
linear tabling (see Chapter 3).

Our system uses a memorizing mechanism that is comparable to tabling only in
the sense that it avoids loops (see Sec. 4.3).

The drawbacks of this mechanism are that it is not capable of storing the nec-
essary information to avoid redundant computations, delay the evaluation of
infinite branches in the derivation tree until the finite ones have been evaluated,
or compute fixed points to determine that no new solutions will be obtained if
we continue evaluating an infinite branch. In Sec. 4.3 we expose the benefits of
having this features, and illustrate them by means of some examples.

It is clear that our implementation can be improved in this aspect (e.g. along the
lines illustrated in section 4.3.1), but the modifications affect the Prolog engine,
and our goal is to offer a new implementation of Well Founded Semantics that
does not suffer from floundering when answering non-ground queries and works
on any Prolog engine.

During the development of this work, we found ourselves using abductive tech-
niques (see Chapter 5) to solve the problems of the inequalities implementation (see
Sec. 4.4) and the universal quantification (see Secs. 3.5 and 4.5). In the former the in-
equalities are collected and stored as attributes of attributed variables (see Def. 4.4.1)
and tested just after unification, while in the universal quantification the solutions of
the affected variables are collected and the test is to build a tautology from them.
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As we use abductive techniques to solve both the inequalities and the universally
quantification problems, we found it interesting to use our implementation to develop
an abductive framework. The existing abductive frameworks in logic programming
can not deal with negative non-ground queries because they use negation systems
that constraint the use of variables. As our system does not constraint the use of
variables, we developed an extension of the negation system that is able to deal with
non-ground abductive queries (see chapter 5).

The process performed by our abductive framework, in order to obtain a logic
problem from the abductive problem, can be summarized into the following three
steps:

• it makes use of the transformations performed by our negation system to obtain,
from the abductive program, what should be called the abductive dual program,

• it makes some transformations to the abductive dual program it in order to ob-
tain a logic program that, when answering a query, returns the hypotheses that
justify the proof of the query (the abductive solutions),

• and it modifies the universal quantification implementation to return the hy-
potheses that explain its satisfaction.

The development of the new universal quantification lead us to the necessity of
representing new forms of abductions: the ones with universally quantified variables
(see Def. 5.3.1) and the ones with universally quantified variables and constrained
(see Def. 5.3.2). Both of them are compact representations of the necessity of the
abduction for all the possible values of the variables, but the second one eliminates
the necessity of having the abduction for some values of the variable.

While their representation is only a matter of syntax, when checking the consis-
tency of the abduction’s set they need to be taken into account, and we present a
method capable of determining its consistency even in presence of this compact rep-
resentations of infinite sets (see Sec.5.4).

Summarizing, the results of this work are:

• an implementation of negation in Well Founded Semantics that does not suffer
from the floundering problem when dealing with non-ground queries,

• and an abductive framework under Well Founded Semantics that deals with non-
ground abductive queries.

Both can be downloaded from “https://babel.ls.fi.upm.es/software/intneg-wfs/”.
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