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Abstract 

In complex biological systems, it is unlikely that all relevant cellular functions can be 

fully described either by a mechanistic (parametric) or by a statistic (nonparametric) modelling 

approach. Quite often, hybrid semiparametric models are the most appropriate to handle such 

problems. Hybrid semiparametric systems make simultaneous use of the parametric and 

nonparametric systems analysis paradigms to solve complex problems. The main advantage of the 

semiparametric over the parametric or nonparametric frameworks lies in that it broadens the 

knowledge base that can be used to solve a particular problem, thus avoiding reductionism. 

In this M.Sc. thesis, a hybrid modelling method was adopted to describe in silico 

Escherichia coli cells. The method consists in a modified projection to latent structures model that 

explores elementary flux modes (EFMs) as metabolic network principal components. It 

maximizes the covariance between measured fluxome and any input “omic” dataset. Additionally 

this method provides the ranking of EFMs in increasing order of explained flux variance and the 

identification of correlations between EFMs weighting factors and input variables. 

When applied to a subset of E. coli transcriptome, metabolome, proteome and envirome 

(and combinations thereof) datasets from different E. coli strains (both wild-type and single gene 

knockout strains) the model is able, in general, to make accurate flux predictions. More 

particularly, the results show that envirome and the combination of envirome and transcriptome 

are the most appropriate datasets to make an accurate flux prediction (with 88.5% and 85.2% of 

explained flux variance in the validation partition, respectively). Furthermore, the correlations 

between EFMs weighting factors and input variables are consistent with previously described 

regulatory patterns, supporting the idea that the regulation of metabolic functions is conserved 

among distinct envirome and genotype variants, denoting a high level of modularity of cellular 

functions. 

 

Keywords  

System Biology; Projection to latent structures; Hybrid methods; Escherichia coli; 

Elementary flux modes; Multiple omic analysis 
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Resumo 

Em sistemas biológicos complexos é não é plausível que todas as funções celulares 

relevantes possam ser completamente descritas quer por modelos mecanísticos (paramétricos) 

quer por modelos estatísticos (não paramétricos). Normalmente, os modelos híbridos 

semiparamétricos são a forma mais apropriada para lidar com estes problemas. Estes sistemas 

utilizam simultaneamente sistemas paramétricos e não paramétricos para resolver problemas 

complexos. A principal vantagem dos sistemas semiparamétricos perante os sistemas 

paramétricos ou não paramétricos reside na integração complementar de conhecimentos que 

podem ser utilizados para resolver dado problema, o que evita o reducionismo. 

Nesta tese de mestrado foi utilizada modelação híbrida para descrever células de 

Escherichia coli in silico. O método utilizado é uma versão deste modelo projecção de variáveis 

latentes que utiliza modos dos fluxos elementares (EFMs) como componentes principais da rede 

metabólica. O principal objectivo do método é a maximização da covariância entre o fluxo 

medido e qualquer um dos conjuntos de dados ómicos. Adicionalmente o método ordena os EFMs 

por ordem crescente de variância dos fluxos explicada e identifica as correlações entre factores de 

ponderação dos EFMs e as variáveis de entrada. 

Quando aplicado a uma parte do transcriptoma, metaboloma, proteoma e ambientoma (e 

algumas combinações destes) de várias estirpes de E. coli (selvagens e com um gene deletado) o 

modelo, de modo geral, permitiu prever os fluxos de forma precisa. Adicionalmente, os resultados 

mostram que o enviroma e a sua combinação com o transcriptoma são os melhores conjuntos de 

dados para prever os fluxos (88.5% e 85.2% de variância explicada dos fluxos na partição de 

validação, respectivamente). Simultaneamente, as correlações entre os factores de ponderação dos 

EFMs e as variáveis de entrada são consistentes com os padrões regulatórios descritos 

anteriormente, suportando a ideia que a regulação das funções metabólicas é conservada entre 

estirpes diferentes e entre diferentes condições de crescimento, demonstrando um elevado nível 

de modularidade das funções celulares. 

 

Palavras-chave 

Biologia de Sistemas; Projecção de variáveis latentes; Métodos híbridos; Escherichia 

coli; Modos dos fluxos elementares; Analisa ómica múltipla; 
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1 Introduction 



Hybrid Systems Biology: Application to Escherichia coli 
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1. Introduction 

3 

 

The foundations of Systems Biology can be traced back to the writings of Aristotle 

around 350 B.C. [1]. At that time, the word “system” had a similar meaning as nowadays. It was 

connoted with an entity that represents wholeness, which can be divided or fractioned into 

components but whose core properties cannot be fully explained from the knowledge of such 

parts alone [2]. Since then scientific paradigms changed dramatically. However the fundamental 

concepts of Systems Biology are apparently resistant to these changes and remain pretty much the 

same today as they were at that time [2]. Recently, the fast-growing applications of genomics and 

high-throughput technologies brought to light the limitations of the reductionist view of the 

world. So the Systems Biology paradigm became essential to further understand the biological 

functions since this information cannot be obtained by studying the individual constituents on a 

part-by-part basis. Moreover, the contemporary development of this area also took great 

advantages of its similarity with the more developed area of system level engineering [3]. 

Particularly, Escherichia coli has become a model system in biology and therefore many 

studies have addressed the standardization of the available information [4, 5] as well as the 

development of in silico models based on this data [6]. At the heart of Systems Biology is 

precisely the development or large-scale mathematical models that merge together the different 

layers of information embodied in large datasets of different aspects of the cell. To model such 

large, redundant and complex systems, constraints-based modelling approaches have been 

extensively applied [6-9]. Such methodologies lay on the premise that the cell cannot achieve 

every possible combination of metabolic fluxes. Consequently, several techniques have been 

developed in order to get a feasible combination of fluxes that meet the imposed restrictions 

(Figure 1.1a and Figure 1.1b). Some commonly used constraints are stoichiometric, 

thermodynamic and regulatory. The more important methods are metabolic flux analysis, flux 

balance analysis (FBA) and network-based pathway analysis through elementary flux modes 

(EFMs) or extreme pathways. 

In metabolic engineering the achievement of higher yields as fast as possible is critical. 

Thus, an in silico screening of possible genetic modifications and a medium design before the 

experimental phase is usually made. It is imperative to understand the biological system response 

to such genetic adjustments (across the different omic layers of biological information: 

transcriptome, metabolome, proteome and fluxome) and to identify a set of promising targets to 

improve strain performance [10]. It is also important to identify the influence of each 

environmental factor in the biological reaction. These two important challenges, in silico 

prediction of genetically perturbed systems and environmental and omic metabolic influence 

interpretation are the main objectives of the present thesis. So, in the lines below it is reviewed the 

most important modelling methods in Systems Biology with particular emphasis in mechanistic 

(metabolic reaction- and function-oriented), statistical and hybrid models. 
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Figure 1.1: The theoretical basis of constraint-based modelling and FBA. a – Without con-

straints, the hypothetical flux distribution of a biological network can be set anywhere in the solu-

tion space (any combination of metabolic fluxes). b – When mass balance constraints are imposed 

by the stoichiometric matrix S (in 1) and capacity constraints (flux vi lower and upper bounds ai 

and bi, respectively – 2) are applied, it is defined a plausible solution space. c – Through optimi-

zation of an objective function Z, FBA identifies a single flux distribution that lies on the edge of 

the allowable solution space [11]. 

 

1.1 Mechanistic models of bionetwork systems 

1.1.1 Metabolic reaction-oriented network models 

Systems Biology basis lies on all types of biological networks. The network concept is 

per se very similar to the systems sciences wholeness idea. Such networks represent all the 

different ways in which the different systems components can interact between them in order to 

generate a global physical trait. In biology such networks can represent the relations concerning 

proteins (for instance in the signal transduction pathways) or genes (like the gene regulatory 

networks). These already complex networks also cooperate between them to produce the cellular 

phenotype. So, the main goal of Systems Biology is to understand all these relationships and 

integrate them in a single model. However, this task has been challenging and most of the models 

developed so far focused on the metabolism because it sums up all the contributions of the other 

layers of omic information. For instance, the signal transduction pathways are activated by the 

extracellular state and have an effect in the transcriptional activity as well as in the fluxome itself. 

On the other hand, the interaction between proteins and metabolites also controls the fluxome as 

some metabolites regulate the enzymatic capacities through allosteric regulation. For this reason, 

in the following lines will be reviewed the main metabolic modelling methods. 

As described above, most of the computational methods applied in metabolic modelling 

use a constraint based models, from which FBA is the most used. FBA seeks for the particular 

flux distribution that maximizes or minimizes a pre-set objective function using linear 

programming methods [11] – Figure 1.1c. In order to predict the phenotype or metabolic flux 
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distribution of knockout (KO) strains, modifications to FBA have been proposed that, for 

example, include regulatory constrains [12, 13] or gene expression data [14]. More complex FBA 

strategies were employed with multiple objective functions including the minimization of some 

feature between the wild-type (WT) and the mutant strain, like minimization of metabolic 

adjustment [15] or regulatory on-off minimization [16]. The main difference between these two 

methods lies on the type of feature that these algorithms minimize, which in the former case is the 

Euclidean norm of the flux differences between the metabolic states [15], while the latter method 

minimizes the number of significant reaction flux changes, regardless of its value [16]. 

Benyamini et al. presented a FBA based method that aims to predict a feasible flux 

distribution under a given environmental and genetic condition. The culture medium conditions 

were introduced in the method in the form of growth-associated dilution of all produced 

intermediate metabolites. To solve the additional constraints the authors used a mixed-integer 

linear programming approach [17]. Additional studies were made in order to apply FBA to more 

objective problems. They address the engineering of an economically interesting metabolite 

overproducing strain [18-20]. 

However, when the objective function is not well posed the solution obtained by FBA is 

also inconsistent and inaccurate [21]. Therefore, it is very important to invest a lot of time and 

effort in the construction of a highly reliable metabolic network as well as in the definition of a 

consistent set of constraints for the optimization procedure and for the additional restrictions 

imposed. 

1.1.2 Function oriented models 

In alternative to FBA, pathway-oriented genetic engineering methods based on the 

calculation of EFMs have been developed. An EFM is a minimal set of enzymes that can operate 

in steady state [22]. The large number of possible combinations of metabolic reactions that can 

operate under these conditions makes the number of EFMs very high. Consequently, such 

methodology is robust but when the metabolic network grows it becomes difficult to calculate 

them. Recently, it has been described some methods that simplify this calculations, namely the 

metatool algorithm implemented as toolbox for MATLAB [23]. 

Stelling et al. [24] proposed an algorithm for the prediction of gene expression patterns on 

different substrates (control effective fluxes). Such model assumes that the structure of the 

network plays an essential role in the gene expression rate and therefore does not need any 

experimental data to do these calculations. Later on, the EFM-based enzyme control flux method 

was proposed. It calculates the correlation between the relative enzyme activity profile and its 

associated flux distribution. This method, together with a modified control effective fluxes model, 

enabled the metabolic flux distribution prediction of genetically modified microorganisms [25]. 

Wilhelm et al. [26] developed three measures of network robustness based on EFMs, 
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namely: the arithmetic mean of all ratios between the number of remaining EFMs after a KO and 

before it, the minimal robustness concerning an essential product (minimal number of EFMs for 

the production of a particular product after a KO) and the arithmetic mean of the particular 

product robustness values. The authors applied them to the central carbon metabolism of E. coli 

and human erythrocyte. They concluded that the bacterium was much more robust, denoting the 

environmental variations that can occur in that case and the much more stable growth conditions 

of the human erythrocytes. 

Afterwards this group used a similar approach to analyse the E. coli and human 

hepatocytes metabolic networks and the effect of multiple gene KO in these systems [27]. From 

this study the authors also concluded that E. coli metabolic network is more robust than human 

hepatocytes. 

Additional EFMs based models were applied to the improvement of some economically 

interesting products like heterologous protein production [28] and L-methionine [29]. 

1.2 Statistical models 

As described above, statistical models represent a completely different approach to the 

modelling of biological networks. In opposition to the parametric models, statistical models do 

not use mechanistic knowledge either it takes the biochemical, thermodynamic or regulatory 

form. Here, the most used statistical models are briefly reviewed. 

Multivariate linear regression (MLR) is one of the most used methods in top-down 

systems biology. One example of application is the theoretical product yield maximization 

proposed by Van Dien et al. [30]. The authors used MLR for the identification of metabolic 

reactions whose fluxes could be redirected in order to maximize the production of amino acids 

(arginine and tryptophan). They used the feasible solution space of the E. coli stoichiometric 

network to support in silico engineering of strains that overexpress target heterologous genes. The 

results showed that the increase of the glyoxylate cycle and PEP carboxylase activity as well as 

the elimination of malic enzyme promote the production of these amino acids [30]. 

A partial least squares regression, a particular form of MLR, was also used in the 

prediction of NADPH intracellular concentration using metabolites and protein concentrations as 

predictor of different Aspergillus niger strains (which KO genes were selected based on previous 

published E. coli and Ralstonia eutropha data). The motivation of this study was to overcome the 

rate limitation of some metabolic reactions due to the low NADPH concentrations. As 

conclusions, the authors identified target genes to be overexpressed in order to increase both the 

respective coded protein and the NADPH concentrations [31]. 

Another study addressed the capacity of four regression models (multiple linear 

regression, principal component regression, partial least-squares regression and regression using 
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artificial neural networks) in the estimation of physiological parameters (nine fluxes from 

mammalian gluconeogenesis pathway). After a calibration procedure with isotope labelling 

patterns from key metabolites, the model created 29 variables. In the end, the artificial neural 

networks showed better results (95% of captured information) than the remaining linear 

regression procedures (less than 75% of captured information) [32]. 

1.3 Hybrid semiparametric models 

Parametric mathematical systems are expressed in the form of a functional relationship 

with a fixed number of parameters. Mechanistic models and phenomenological models belong to 

the class of parametric models and are inspired on the a priori knowledge of the system. On the 

contrary, non-parametric models do not have a fixed structure nor a fixed number of parameters. 

The final model structure and parameters number and values are set exclusively by the 

experimental data and are part of the model fitting procedure without any incorporation of a priori 

knowledge. Examples of nonparametric modelling methods are artificial neural networks, 

projection to latent structures, splines and many others. A class of hybrid models (or hybrid 

semiparametric systems) make simultaneous use of the parametric and nonparametric systems 

analysis paradigms to solve complex problems [33]. The need to use cooperatively parametric and 

nonparametric methods to describe a given system arises when a priori knowledge is not 

sufficient to describe the system in a mechanistic way nor the experimental data is sufficient to 

develop a predictive model using statistical modelling methods alone. Indeed, it is unlikely that 

all cellular functions could be fully described either by a mechanistic (parametric) or by a statistic 

(nonparametric) approach, since, in biology, as initially described, the whole complex system is 

greater than the “sum” of its parts [34]. Opting for the one or the other framework will invariably 

promote reductionism. Consequently the main advantage in the use of semiparametric models 

over the others frameworks lies in that it broadens the knowledge base that can be used to solve a 

particular problem, in other words, semiparametric models are an inclusive approach that tries to 

merge all available knowledge in the model [35]. 

This hybrid semiparametric modelling approach is especially applicable to complex 

systems, namely the ones addressed in Systems Biology. Generally, biological databases, usually 

used as source of information in Systems Biology, are constituted by large and redundant datasets 

of biological parts, such as the genome, transcriptome, proteome and metabolome. Some of them 

do not have a direct mechanistic interpretation or have such information but with some 

uncertainty [36]. In such cases the hybrid approach considers that a priori mechanistic knowledge 

is not the only relevant source of information but also other sources, like heuristics or information 

hidden in databases, are considered valuable complementary resources for model           

development [37]. 
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The initial application of hybrid semiparametric models in bioprocess engineering 

occurred in the early 90s [38, 39]. In those, and subsequent, studies the authors tried to merge 

mechanistic or first principles models with nonparametric approaches like artificial neural 

networks [40, 41], mixture of experts [42] and linear and nonlinear projection of latent         

structures [43] in the modelling optimization and control of bioprocess. 

Such hybrid models were also used in a Michaelis–Menten kinetics model and in a lin-log 

kinetics method. These procedures were applied to a complex large-scale network where the exact 

rate laws were unknown as well as some model parameters, which were calculated [44]. Others 

alternative studies used a hybrid mass-action rate laws that incorporated proteomic data and an 

aggregated rate law model for the extraction of elementary rate constants from experiment-based 

aggregated rate law. These techniques were used in the estimation of rate constants of a model of 

E. coli glycolytic pathways [45]. 

Kappal et al. studied the effects of extracellular stresses on the metabolic responses, in 

which the former was modelled with ordinary differential equations and the latter with algebraic 

equations composing a hybrid system [46]. 

Another hybrid modelling approach was proposed by Bulik et al. in which only the 

central regulatory enzymes were described in detail with mechanistic rate equations, and the 

majority of enzymes reactions were approximated by simplified rate equations. This model was 

proposed to speed up the development of reliable kinetic models for complex metabolic networks, 

like erythrocytes [47]. 

1.4 Objectives 

Only a very limited number of studies have applied hybrid modelling methods in Systems 

Biology. Thus, this thesis main objective is to illustrate the applicability of hybrid modelling 

methodologies for in silico cellular modelling. In particular, the aim is to develop hybrid in silico 

E. coli models. The choice of this bacterium is motivated by the wealth of knowledge, data and 

models currently available, which facilitates benchmarking with other modelling methods. 

Briefly, the implemented modelling method is a constraint version of projection to latent 

structures (PLS). It has EFMs as additional constraints and some additional outputs (like the list 

of active EFMs and a regression coefficient that link the metabolic functions to inputs variables). 

After the enunciation of these general objectives, more specific ones can be enumerated: 

 Development of several hybrid models for different E. coli strains (single gene KO 

and WT) based on envirome, metabolome or transcriptome datasets (individually and 

combined) to predict the flux-phenotype of this bacterium. 

 Evaluate which is the best dataset to predict metabolic fluxes (envirome, metabolome 

or transcriptome datasets (individually and combined)). 
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 Interpret the regression coefficients between the selected EFMs and the different 

inputs datasets. 

 Assessment of regression coefficients consistency by comparing them with previously 

described regulatory patterns and evaluation of metabolic function regulatory mechanism 

conservation within the same species (across different strains and different growth 

conditions). 

In the end it is intended to illustrate the importance of hybrid modelling in Systems 

Biology. As mentioned earlier, understanding biological functions cannot be obtained by studying 

the individual constituents on a part-by-part basis. Hybrid modelling methods provide a cost-

effective method to bridge the parts in order to formulate the whole system, without the need of 

knowing all the mechanistic details of the model. 
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2.1 E. coli data 

With the model development purpose it was used the multiple high throughputs E. coli 

data published by Ishii et al. [48]. This data comprises envirome, proteome, metabolome, 

transcriptome and fluxome information, collected for different environmental conditions (namely, 

WT strain grown at different dilutions rates: 0.1h
-1

, 0.4h
-1

, 0.5h
-1

 and 0.7h
-1

) and for 24 single 

gene deletion mutants. Specifically, the authors removed in each strain one of the following 

genes: galM, glk, pgm, pgi, pfkA, pfkB, fbp, fbaB, gapC, gpmA, gpmB, pykA, pykF, ppsA, zwf, pgl, 

gnd, rpe, rpiA, rpiB, tktA, tktB, talA, and talB, creating the single gene KO strains analysed in this 

thesis. Additional data was also acquired for the reference strain (a WT strain grown at 0.2h
-1

, the 

same dilution rate at which every KO strain was grown). 

With this data it can be analysed the effect of the external (growth conditions) and 

internal (genetic modifications) perturbations on the dynamics of different omic layers, namely 

envirome, proteome, metabolome, transcriptome and fluxome. The external perturbation data 

analysis motivation is to study the effect of the growth rate in the different omic layers. On the 

other hand, the internal perturbation data was generated for almost all the viable single gene 

mutants that directly affect the E. coli central carbon metabolism considered in the metabolic 

network (described in E. coli metabolic network section on page 15). So, this analysis also has the 

same objective, i.e., to understand the effect of such genetic modifications in the different 

biological system’s information sets, as well as to understand which perturbation (internal or 

external) have the highest effect in the system. It should also be underlined that this data was 

obtained thought various chemostat cultures. Samples for omic analysis were taken at the same 

time after five complete medium volumes changes; such experimental design is consistent with 

the pseudo-steady state hypothesis. 

In what refers to the envirome data, it was obtained for some organic compounds present 

in the culture medium. Specifically, envirome (E) is composed by the glucose, ethanol, acetate, 

D- and L-lactate, succinate, pyruvate and formate concentration values. To these concentrations 

values it was added the dilution rate values, thus comprising a total of nine environmental factors. 

E={glucose, ethanol, acetate, D-lactate, L-lactate, succinate, pyruvate, formate, dilution 

rate}          (Eq. 2.1) 

Proteome data was obtained for the following proteins: 

P={GalM, Glk, Pgm, Pgi, PfkA, PfkB, Fbp, FbaA, TpiA, GapA, Pgk, GpmA, GpmG, 

Eno, PykA, PykF, PpsA, Zwf, Pgl, Gnd, Rpe, RpiA, RpiB, TktA, TktB, TalA, TalB, Edd, Eda, 

AceE, AceF, LpdA, PckA, Ppc, SfcA, GltA, AcnA, AcnB, IcdA, SucA, SucB, SucC, SucD, 

SdhA, SdhB, FrdA, FumA, FumB, FumC, Mdh, AceA, AceB, GlcB, Acs, PrpC, LdhA, LldD, 

PoxB, PflA, PflB, PflC, AdhE, Pta, AckA, Adk, PtsH, PtsI}   (Eq. 2.2) 
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These 67 proteins are proteins involved in the central carbon metabolism of E. coli 

(Figure 2.1). Moreover, the proteins functions can be consulted in several databases, like    

EcoCyc [4], as well as in the original paper [48]. 

Metabolome data was obtained for 579 metabolites. Since the list of metabolites is very 

large it is presented in Appendix A. Additional metabolite information may be accessed in the 

previously referred database [4]. 

The transcriptome data was obtained by two methods. With the first one, quantitative 

polymerase chain reaction (qtPCR), it was obtained the messengers ribonucleic acid (mRNAs) 

concentration values for the genes that were directly involved in the metabolic network and it was 

obtained for all the previously described WT and KO strains. Namely it was obtained for 85 

genes: 
 

T={galM, glk, pgm, pgi, pfkA, pfkB, fbp, fbaA, fbaB, tpiA, gapA, gapC 1 and 2, pgk, 

gpmA, gpmB, eno, pykA, pykF, ppsA, zwf, pgl, gnd, rpe, rpiA, rpiB, tktA, tktB, talA, talB, eda, edd, 

talC, aceE, aceF, lpdA, pckA, ppc, maeB, sfcA, gltA, acnA, acnB, icdA, sucA, sucB, sucC, sucD, 

fdrA, sdhA, sdhB, sdhC, sdhD, frdA, frdB, frdC, frdD, fumA, fumB, fumC, mdh, aceA, aceB, glcB, 

acs, prpC, ldhA, dld, lldD, poxB, pflA, pflB, pflC, pflD, adhE, pta, ackA, adk, udhA, pntA, pntB, 

ptsH, ptsI, crr, ptsG}        (Eq. 2.3) 
 

The microarrays technique was only used in the following cases: pgm, pgi, gapC, zwf and 

rpe single gene deletion mutants and WT strain grown at 0.2h
-1

 (two reference strains), 0.5h
-1

 and 

0.7h
-1

 dilution rate (full transcriptional data). From these full transcriptional datasets it was 

selected only the data from the regulatory genes (such selection were based in the information 

contained in the different biological databases [4]). So, for modelling purposes it was used the up- 

or down-expression level of 164 genes: 
 

RT={accA, accB, accD, acrR, ada, adiY, agaR, aidB, alaS, alpA, appY, araC, arcA, 

argR, arsR, ascG, asnC, atoC, baeR, betI, bglG, bglJ, birA, bolA, cadC, caiF, cbl, cpxR, creB, 

crp, csgD, cspA, cynR, cysB, cytR, deoR, dicA, dnaA, dsdC, dsrA, ebgR, engA, envR, envY, exuR, 

fabR, fadR, feaR, fecI, fhlA, fis, flhC, flhD, fliA, fnr, fruR, fucR, fur, gadX, gadY, galR, galS, gatR, 

gcvA, gcvH, glcC, glnG, glpR, gntR, gutM, hcaR, hdfR, hipA, hipB, hns, hupA, hupB, hyfR, iclR, 

lacI, leuO, lexA, lldR, lrhA, lrp, lysR, malI, malT, marA, marR, mcbR, melR, metJ, metR, mhpR, 

micC, modE, mprA, mqsA, mqsR, mtlR, nac, nadR, nagC, narL, narP, nemR, nhaR, oxyR, pdhR, 

pepA, phoB, phoP, prpR, pspF, purR, putA, qseB, rbsR, rcsA, rcsB, relB, relE, rhaR, rhaS, rho, 

rne, rob, rpiR, rplA, rpoD, rpoR, rpoH, rpoN, rpoS, rpsB, rpsG, rstA, rtcR, selB, sgrR, slyA, soxR, 

soxS, srlR, stpA, tdcA, tdcR, torR, treR, trpR, ttdR, tyrR, uhpA, uidR, ulaR, uxuR, xapR, xylR, 

ycgE, yefM, yeiL, yiaJ, yqhC}       (Eq. 2.4) 
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2.2 E. coli metabolic network 

It was adopted the metabolic network specified by Ishii et al. [48]. The metabolic network 

has 43 reactions comprising the three main catabolic pathways (glycolysis, pentose phosphate and 

tricarboxylic acid cycle), 24 intracellular metabolites (12 of them can exit the system and 

participate in biosynthetic pathways or can exit the cell, the latter is the case of carbon dioxide; 

these 12 metabolites are marked with bold in Figure 2.1, and the detailed metabolic reaction are 

listed in Appendix B). Besides the biosynthetic metabolites indicated by the authors, it was also 

considered that lactate, ethanol and acetate can also exit the metabolic network. The criteria to 

choose these metabolites were the determined concentrations in the culture medium and the 

simultaneous metabolic production in only one reaction, with no consumption. 

 

Glucose

G6P

F6P

6PG

F1,6P

G3PDHAP

3PG

PEP

PEP

PYR

Ru5P

R5PX5P

S7P
E4P

PYR AcCoA Ethanol

Lactate

CIT

ICIT

2-KG

SUC

FUM

MAL

OAA

Glyoxylate

Acetate

CO2

CO2

CO2

CO2

CO2

CO2

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R12

R11

R13

R14R16

R15

R28

R17

R18

R19

R20
R21

R22

R23

R24

R25

R26
R27

R29
R30

R31

 

Figure 2.1: E. coli metabolic network composed by 43 reactions and 24 metabolites. Bold metab-

olites represent the ones that can exit the system; these reactions are not explicit shown in the 

scheme. Reactions from 32 to 43 represent the exit of G6P, F6P, R5P, E4P, G3P, 3PG, PEP, 

PYR, AcCoA, OAA, 2-KG and CO2, respectively. 
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2.3 E. coli elementary flux modes 

As said before, the metabolic network is one of the central pieces of Systems Biology. In 

this thesis it will be represented by EFMs, which becomes a central concept in the modelling 

method employed in the present thesis. Briefly, EFMs can be seen as a minimal set of enzymes 

that could operate at steady state [22], which are weighted by the relative flux they carry. EFMs 

represent also non-decomposable ways of linking extracellular metabolites (substrates to 

products). EFMs have been widely applied in Systems Biology, not only in the metabolic fluxes 

prediction but also as metabolic network redundancy and flexibility measures. Due to its 

properties, any biologically viable flux distribution can be set as a combination of EFMs and, 

additionally, EFMs can be used in the calculation and comparison of parallel routes of products 

production and substrates consumption [26]. 

With the described network, the EMFs were calculated using metatool 5.0 [23], resulting 

in a total of 275 EFMs for the complete network. They are given as supplementary data 

(Appendix C). Upon gene deletion the number of EFMs can be reduced (Table 7.2 in       

Appendix D). For instance, in pgi single gene deletion mutant, in which the metabolic reaction 

number two is unfeasible, the first plausible EFM is EFM 6, since the first five EFMs all involve 

the reaction two. The same EFM pre-selection procedure was applied for all EFMs and 

organisms. The implemented pre-selection rule will be described later on in the method detailed 

description (page 24). 

Additionally the EFMs can be classified as energy producing EFMs, the EFMs that does 

not end in the production of metabolites that could exit the system and have biosynthetic 

functions, and biosynthetic EFMs, the EFMs that also involve the production of such metabolites. 

In this classification it was obtained 16 and 259, respectively. Furthermore, the classification 

according to the biosynthetic produced metabolite can also be set through the analysis of the 

possible metabolic pathways in which each metabolite can take part. 

2.4 Statement of the modelling problem 

In the models developed in this thesis, it is assumed that the genome of a given strain sets 

the structure of EFMs, while the relative weights of EFMs are a function of the cellular state 

translated by the information coded in all omic layers (Figure 2.2). Since in this thesis several KO 

mutants are studied, the analysed genome is variable. As was described by Klamt et al. [49], 

when a metabolic reaction is removed from a metabolic network all the EFMs in which this 

reaction was taking part became unfeasible, and all the others remain unaltered. In this way it was 

implemented a pre-selection rule in which the viable EFMs were selected for each case (as 

already said it will be presented later on – page 24). 
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Figure 2.2: Representation of the influence of the genome and the omic in the fluxome (R). The 

genome sets the metabolic capabilities of the cell (elementary flux mode – emk). Each metabolic 

function is up- or down- regulated by all omic factors (λk). 

 

As such, in the model presented in this work, the overall EFMs structure is set by the 

genome of the mutant or WT strains. The relative weight of EFMs will be explored as functions 

of different types of information, namely: envirome, proteome, metabolome and transcriptome. 

One of the presented model assumptions is the close relationship between all of these biological 

layers and the metabolic fluxes, so it is appropriate to predict metabolic fluxes from the 

information contained in these datasets. Some of them have a very close association with 

fluxome. Such is the case of envirome. In this case the metabolite concentrations either are a 

result of the bacterium metabolism or they are used as substrates in the metabolic network. 

Moreover, the remaining abiotic conditions, like temperature, also affect the cellular metabolism.  

On the other hand, the transcriptional dataset have a time-lapse between the actual mRNA 

production and an effect in the metabolic fluxes. These molecules can have a more direct effect in 

the fluxome, when the mRNA molecules code for metabolic enzymes, or can have an indirect 

effect when they have regulatory functions. In the latter case, the time-lapse might be even larger 

since the regulatory functions will have an influence over other genes or proteins and only after 

this event has taken place will the regulatory transcriptome have an effect in the fluxome. 

Moreover, perhaps the most intuitive fluxome-omic dataset relationship occurs between 

proteome and the metabolic fluxes. Since in this case the proteome data is composed by catalytic 

proteins, the influence is clear: without such proteins the metabolic reaction would not occur and 

when some protein concentration increases, the correspondent flux also increases. However, this 

latter rule is not always true since it is dependent of others factors like, for instance, the 

metabolite concentration, which can influence the protein activity, thus also affects the fluxome. 

As shown below, the resulting model can be classified as a hybrid model since the EFMs 

are hard mechanistic constraints that can be assumed with high levels of confidence, and the 

nature of the relationship between omic factors and the EFMs weighting factors is ‘statistic’ since 

it merges together many different mechanisms that are difficult to validate experimentally. 
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2.5 Hybrid modelling method 

The modelling strategy used in the present thesis is called projection to latent pathways 

(PLP) and was develop by Teixeira et al. [50] and described in detail by Ferreira et al. [51]. It is a 

hybrid modelling method because it combines the EFMs modelling strategy (parametric) and the 

PLS model (nonparametric) previously mentioned in the introduction. In the lines below it will be 

described in detail PLP algorithm and its application to E. coli cells. 

2.5.1 Statement of the mathematical problem 

Applying the typical steady-state material balance equations enounced in the Introduction 

section (Figure 1.1) to a metabolic network with m metabolites and nr metabolic reactions, the 

following system of linear algebraic equations is obtained: 

0rS         (Eq. 2.5) 

0lr              (Eq. 2.6) 

In this case r is a vector of nr metabolic fluxes and rl is the subset of fluxes associated to 

irreversible reactions l. S is a m × nr stoichiometric matrix. The null space solution of this system 

(Eq. 2.5 and Eq. 2.6) takes the form of a polyhedral cone [52]. Furthermore, the convex basis of 

system (Eq. 2.5 and Eq. 2.6) is formed by a large number of base vectors (Figure 1.1), which are 

the EFMs. 





emn

k

kk

1

emr         (Eq. 2.7) 

EFMs may represent the overall flux phenotype, r, of a cell. In this representation       

(Eq. 2.7), each k EFM is represented by emk, a nr × 1 vector of reaction weight factors, in which k 

can vary from 1 to nem, with nem the maximum number of EFMs. Each EFM have a correspondent 

weighting factor, λk, a scalar variable, that defines the partial contribution of each emk to r. 

However, not all the EFMs are active in each particular condition, i.e., many times the weighting 

factors of a large number of EFMs are close to zero. One of the usual features of the EFMs based 

methods is the determination of the active EFMs, the ones that have higher weighting factors. 

The PLP method also makes this selection on the basis of different omic datasets. The 

basic premise is that measured fluxome, r, can be systematically deconvoluted into genetic 

dependent factors (the structure of EFMs, emk) and omic dependent factors (the partial 

contribution of each EFM to flux phenotype, λk). To implement this method, Teixeira et al. [50] 

developed a discrimination algorithm that works according to the following criteria: 

1. Maximisation of explained variance of flux datasets, R = {r(d)} 

2. Maximization of correlation of λk against omic data, X = {x(d)} 

3. Minimization of the number of active EFMs 
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In this statement, R = {r(d)} is a np × nr matrix of np independent observations of reaction 

rates, r(d) for each d condition and with nr metabolic reaction fluxes. On the other hand,               

X = {x(d)} is a np  nx matrix of np independent observations of omic vectors x(d) with 

information about nx omic factors. The enumerated steps are equivalent to a covariance 

maximisation problem, which involves the maximisation of correlation and minimisation of 

redundancy between omic data, X, and observed flux data, R. The additional characteristic of this 

method lies in the additional constraints set by the universe EFMs set by the available genes. 











T

T

               s.t.      

Maximize 

RCXΛ

EMΛR

R,X )( cov          

     (Eq. 2.8) 

In the Eq. 2.8, EM represent the matrix of EFMs composed by nem emk(d) vectors, of         

1 × nr in size, comprising a nem × nr matrix. In the case of this metabolic network, the matrix of 

EFMs, EM is a 24  275 matrix given in the Appendix C. Additionally,  is a np × nem matrix of 

nem λ(d) weight vectors and RC a nem × nx matrix of regression coefficients. 

As said earlier, what distinguish this method from all the others is the EFMs additional 

constraint in the metabolic flux prediction and correlation with omic factors. However, 

unconstrained maximisation of covariance can be performed by the PLS method (also known as 

partial least squares). Figure 2.3 shows the structural differences between PLS and PLP. Due to 

the similarities between this two methods (whereas PLP is based on PLS), in the next section PLS 

decomposition will be described and latter it will be shown how it can be modified to PLP. 

 

Figure 2.3: Schematic representation of PLS and PLP decomposition operations. Decomposition 

of X and Y are similar in PLS and PLP. These methods decompose them into loadings (W and Q, 

respectively) and scores (T and U, respectively). The main difference between PLS and PLP lies 

on the calculus of the Y-loadings, Q, which in PLP is a subset of EFMs obtained from the meta-

bolic network of the cell. Also, in PLP, the scores, λ, have physical meaning [51]. 
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2.5.2 Projection to latent structures 

PLS is a multivariate linear regression technique between an input (predictor) matrix, X, 

and an output response matrix, Y (or R in PLP). In the PLS method X and Y are decomposed into 

reduced sets of uncorrelated latent variables, which are then linearly regressed against each other. 

Specifically, NIPALS (non-iterative partial least squares) algorithm [53] steps will be 

described in detail, since is one of the most used PLS derived method. This will provide the basis 

for PLP specification. NIPALS proceeds according to the following steps: 

1. The first Y-loading vector, q, is set as an arbitrarily chosen nonzero row of Y, ys. When 

these calculi are made for univariate PLS, Y is an np × 1 vector and q is one. 

s

T

s

y

y
q 

        

(Eq. 2.9) 

2. The next step is the computation of the ny × 1 Y-score vector, u. 

qYu          
(Eq. 2.10) 

3. Followed by the calculation of the nx × 1  weight vector, w. 

uX

uX
w






T

T

        (Eq. 2.11) 

4. And the np × 1 X-score vector, t. 

wXt          (Eq. 2.12) 

5. The final step is the Y-loading vector, q, recalculation. 

tY

tY
q






T

T

        (Eq. 2.13) 

6.  The steps 2-5 are repeated until the convergence criterion (for example, the absolute 

difference between t and told, X-score vector from the previous iteration, is lower than eps with, 

for instance, eps = 1 × 10
-8

). In the exception enunciated in 1, univariate PLS, Eq. 2.13 yields       

q = 1 hence no iterations are performed. 

7. After the criterion is fulfilled, the X data block loadings, p, are calculated and rescaled 

accordingly: 

tt

tX
p






T

T

        (Eq. 2.14) 

p

p
pnew          (Eq. 2.15) 

ptt          (Eq. 2.16) 

pww          (Eq. 2.17) 
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8. Then it is computed the regression coefficient of the inner linear model and the X and Y 

residuals, E. 

tt

tu
b






T

T

        (Eq. 2.18) 

TptXEX         (Eq. 2.19) 

TptbYEY         (Eq. 2.20) 

9. Finally the residuals are set as X and Y. Now it is possible to go to the first step and 

repeat the procedure for the next latent variable. 

XEX          (Eq. 2.21) 

YEY          (Eq. 2.22) 

10. Steps 1-9 are repeated for lv = 1, …, fac latent variables resulting into the following 

overall decomposition: 

XEWTX  T
       (Eq. 2.23) 

YEQUY  T
       (Eq. 2.24) 

UEBTU  T
       (Eq. 2.25) 

11. Finally, the prediction of Y from X is given by. 

TRCXY ˆ         (Eq. 2.26) 

12. And in PLS RC is a ny × nx regression coefficients matrix given by. 

T
WBQRC         (Eq. 2.27) 

For more details about this method Geladi and Kowalski review [54] might be consulted. 

2.5.3 Projection to latent pathways  

PLP, as already said, can be viewed as a constrained version of PLS that maximises the 

covariance between X and R, an output matrix similar to Y, under the constraint of known EFMs. 

PLP performs essentially the same decomposition described by Eq. 2.23 until Eq.2.27. The main 

difference resides in the computation of the output loadings, Q, similar to EM matrix in PLS. 

Since EFMs are unique and non-decomposable fluxome solutions, any observed flux distribution 

can be expressed as a non-negative weighted sum of EFMs (Eq. 2.7 and Figure 2.2). Additional 

features of PLP and some implementation details will be further enunciated. According to this 

analogy, PLP was modified as follows: 

1. For each k EFM, loadings, qk, are set to be equal to emk and the respective score vector, λk, 

is computed. 

kk emq          (Eq. 2.28) 

)( kkk uqRλ         (Eq. 2.29) 
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2. Perform a univariate PLS (with q = 1) with input X and target R = λk for fac X latent 

variables as described in the previous section and compute the predicted λk. 

kλ̂  predicted kλ  from univariate PLS     (Eq. 2.30) 

3. Compute the predicted R (Eq. 2.31) by the k EFM and the respective global explained 

variance (Eq. 2.32), with d and j denoting observation (in this case, different E. coli strains) and 

flux indexes, respectively. It was also calculated the explained variance of EFM weighting factors 

according to the formula (Eq. 2.33). 

T

kkk qλR  ˆˆ         (Eq. 2.31) 
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4. Repeat steps 1, 2 and 3 for every k EFM, with k = 1, …, nem, and choose the best, kopt, as 

the one that exhibits the highest variance value given by Eq. 2.32. Furthermore other statistical 

significance tests were implemented, namely it was set that the kopt EFMs was only selected if it 

satisfies the following statistical criteria: more than 0.75 in the r
2
 test and less than 0.05 in the 

pvalue criteria. 

kopt: EFM with highest var(robs)k value     (Eq. 2.34) 

5. Remove kopt EFM from the full list of EFMs and also remove the predicted fluxes by the 

kopt EFM from the R matrix. X matrix remain the same. 

koptRRR ˆ          (Eq. 2.35) 

6. Go back to step 1 and repeat the procedure until the maximum number of EFMs is 

reached, until the explained variance of R does not increase any further or until the r
2
 and pvaleu 

minimum and maximum respective values criteria is not fulfilled. 

In this model the PLS output loadings, Q, hold a subset of EFMs from matrix EM while 

the PLS output scores, U, are equivalent to the EFMs weights matrix, , representing the relative 

weights of latent pathways. For this reason, the algorithm is called projection to latent pathways. 

REEMΛR  T
       (Eq. 2.36) 

Although PLS and PLP are structurally equivalent, PLP has the advantage that the 

loadings and scores from the target matrix have a physical interpretation: 
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1. The number of Y latent variables in PLS is analogous to the number of active EFMs in 

PLP (number of R latent variables). Thus the subsets of EFMs that explain most of the variance 

of R are interpreted as the set of metabolic pathways activated by omic factors. 

2. The regression coefficients vector, rckopt, of the inner univariate PLS, being directly 

associated with the kopt EFM, shows the contribution of each omic factor to the up- or down- 

regulation of EFMs.  

Moreover, the regression coefficients B can be used to deduce the functional omics matrix, 

FM, as follows: 

BWFM         (Eq. 2.37) 

FM is a nx  nem matrix comprising the regression coefficients of EFMs against omic 

components, thus providing information of how EFMs are up- or down-regulated by omic 

components. 

PLP was implemented as a Matlab
TM 

(Mathworks, Inc) toolbox. In what follows, the PLP 

model execution details will be described. Such modifications are motivated by the E. coli omic 

datasets features. 

2.6 Implementation details 

2.6.1 Software 

The previous algorithm, PLP, is available as a MATLAB toolbox. It was developed and 

implemented in the group and is prior to the present thesis. 

2.6.2 Data organization 

The organization in which the E. coli data was presented above namely the sequence of 

variables, will be maintained in the following sections for modelling purposes. It was established 

that the name of the PLP models reflect their input variables. For instance, a PLP model with 

envirome (E) inputs is called model (E) and has 9 input variables obeying to the sequence of 

vector E as previously defined by Eq. 2.1. In case of multiple omic inputs, for instance PLP model 

(E+P) (see Table 3.6 and Table 3.7), it has inputs of the envirome (E) followed by the proteome 

(P) according to the sequences of Eqs. 2.1 and 2.3 respectively. All other models also obey these 

rules. 

2.6.3 Validation and calibration partitions 

The different 31 E. coli strain’s data (WT at four different dilutions rates, 24 single gene 

deletion mutants and three reference points, enunciated earlier) were divided in two groups: 

 Calibration partition (20 points) formed by galM, glk, pgm, fbaB, gapC, gpmA, gpmB, 

pykA, pykF, ppsA, pgl, rpiA, rpiB, tktA, tktB, talA, WT grown at 0.1h
-1

, 0.5h
-1

 and two 

reference points. 



Hybrid Systems Biology: Application to Escherichia coli 

24 

 

 Validation partition (11 points) formed by pgi, pfkA, pfkB, fbp, zwf, gnd, rpe, talB, WT 

grown at two high dilution rates (0.4h
-1

 and 0.7h
-1

) and a reference data point. 

Model parameters were calibrated with the calibration partition only while predictive 

power was assessed with the validation partition. 

Such division was maintained for all developed models with the exception of regulatory 

transcriptome (microarrays technique) since the data was only available for the pgm, pgi, gapC, 

zwf and rpe single gene deletion mutants and WT strain grown at 0.5h
-1

, 0.7h
-1

 and two strains 

grown at 0.2h
-1

 (reference). In this case the validation partition was formed by pgi, rpe single 

gene KO and a strain grown at 0.7h
-1

. The calibration partition was composed by pgm, gapC, zwf 

and WT strains grown at 0.5h
-1

 and two reference strains (0.2h
-1

). 

This division was not randomly made. Instead, it was intended to ensure a minimal 

number of E. coli strains in which each EFMs was feasible (higher than the input data principal 

components number, fac).  

Moreover, the validation dataset also comprises the E. coli strains with more distinct 

phenotypes (namely the examples given by Ishii et al. in the main text: pfkB, zwf, rpe and WT 

grown at 0.7h
-1

) in order to impose tough conditions for the assessment of model predictive 

power. 

2.6.4 Principal components optimization 

Before each actual PLP run, it was made an omics input’s principal components 

optimization (since the fluxes principal components are the EFMs, it does not need previous 

optimization). This procedure was done by defining the number of best performing principal 

components, i.e., the number of principal components that comprise the needed information to do 

a good metabolic flux prediction. The criterion used to evaluate such performance was the fluxes 

predictions mean squared error minimization for the strains defined in the validation subset. The 

MATLAB statistical toolbox was used to perform the mean squared error calculus. The optimal 

principal component number will be defined for each model (fac value). 

2.6.5 EFMs feasibility examination 

As said before, in this particular case, the E. coli strain genome was variable. An obvious 

consequence is the inability to catalyse a metabolic reaction. Such information was added in the 

method through the exclusion of all the EFMs that were in part constituted by such removed 

reaction [49]. Additionally, all the others EFMs remain unaltered. 

The implemented pre-selection rule in which the viable EFMs were selected for each case 

was applied at the algorithm’s third step (Eq. 2.27). Before the showed calculus, it was calculated 

in which organisms were valid the k EFM. It was set in the form of a 1 to np vector of ones and 

zeros. One means that the removed reaction in the strain does not takes part in the k EFM, thus 
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such k EFM is feasible; zero means otherwise. A consequence of such pre-selection rule was that 

only the fluxes from the E. coli strains in which the k and kopt EFM was valid will be predicted. 

So, only the feasible fluxes will be considered for the kopt EFM selection and the remaining will 

be set to zero in the predicted fluxes matrix. 

2.6.6 Consistency analysis 

The bootstrapping method was employed to check the model consistency. It was used a 

resampling method that generates new datasets from the available ones through the introduction 

of artificial perturbations. This consistency analysis is done by the spread in the results obtained 

for these new datasets [55]. 

More specifically, the general PLP method described in the previous section was repeated 

np times, being np, only in this case the number of E. coli strains in the calibration partition. In 

each time it was removed all the information regarding a d E. coli strain, with d an index value 

that changed from 1 to np. This was the artificial perturbation introduced in the model. For 

instance, in the model (E) first PLP-bootstrapping iteration it was removed all the information 

regarding the galM E. coli strain from the calibration partition (first strain in this partition). Thus 

it was developed a PLP model with the remaining 19 strains in the calibration partition. A similar 

procedure was followed for all the 19 remaining strains present in this partition, as well as for all 

the other PLP models (with single and multiple omic input datasets). 

With the resulting information it was calculated the frequency of selection of EFMs and 

respective regression coefficients. Additionally it was also calculated the regression coefficients 

confidence interval (CI) of the inner model. 

Moreover, it was calculated the mean squared error for each PLP run, for all data points 

and for the validation and calibration partition, separately. In order to do that, it was used the 

Matlab
TM 

(Mathworks, Inc) function for this calculus. 
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3.1 Model structure discrimination 

The general goal in this section is the synthesis of a model for E. coli cells with the ability 

to predict flux-phenotype. The major concern is to identify the optimal model structure and to 

estimate model parameters with high statistical confidence. In the hybrid modelling strategy 

employed in this work the general model structure is set by the EFMs of the metabolic network of 

E. coli cells as previously shown in Figure 2.2. This part of the model is fixed and represents the a 

priori mechanistic cellular knowledge. The number of active EFMs and the respective weighting 

factors values are however not known a priori. The identification of these unknown structural 

features is accomplished with the PLP algorithm as previously described. With PLP the EFMs 

weighting factors are linearly regressed against the input data in order to fulfil two criteria: 

 Maximise explained variance of target fluxome datasets 

 Minimise the number of active EFMs 

In this section, the models are explored with EFMs weighting factors linearly regressed 

against different input omic dataset. More precisely, it is investigated different scenarios where 

individual omic datasets are set as inputs to the PLP algorithm. 

3.1.1 Models with single omic information layers 

The Tables 3.2, 3.3, 3.4 and 3.5 compile the PLP modelling results when the input 

datasets are the envirome, proteome, metabolome, transcriptome and regulatory transcriptome, 

respectively. The first column represents the index of selected EFMs, r
2
 is the correlation 

coefficient of EFM weighting factor and input data, pvalue is an alternative measure of correlation 

and it should be as low as possible, var(λEFM) is the explained variance of the EFM weighting and 

var(robs) is the explained variance of measured fluxome data. In all the enunciated PLP runs, the 

optimal number of input data principal components (fac) was two. As said before, the flux 

principal components were the EFMs. The number of selected EFMs was limited by the not 

fulfillment of the statistical rules (minimum and maximum values for r
2
 and pvaleu, respectively), 

the cease of improvement in the flux explained variance or by a maximum number of 20 EFMs. 

Here, as well as in all the remaining PLP runs, the E. coli data was separated in two 

partitions, as referred before. Usually, from the 31 E. coli strain’s dataset it was made a 

calibration partition (galM, glk, pgm, fbaB, gapC, gpmA, gpmB, pykA, pykF, ppsA, pgl, rpiA, rpiB, 

tktA, tktB, talA, WT grown at 0.1h
-1

, 0.5h
-1

 and two reference points) and a validation partition 

(pgi, pfkA, pfkB, fbp, zwf, gnd, rpe, talB, WT grown at two high dilution rates (0.5h
-1

 and 0.7h
-1

) 

and a reference data point). The exception was the PLP runs which included the regulatory 

transcriptional dataset. In such cases the 9 different E. coli strains were separated in a calibration 

partition composed by pgm, gapC, zwf and WT strains grown at 0.5h
-1

 and two reference strains 

(0.2h
-1

), while the validation partition were constituted by pgi, rpe and 0.7h
-1

 E. coli strains. Still, 
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the EFMs selection and remaining calculations were done for the separated calibration and 

validation partitions while the data presented in the following Tables were calculated for the 

global data, unless it was said otherwise. 

With this information, it can be highlighted that the number of model parameters was 

always much lower than the number of data points. The former is highest in the model (RT). In 

this model the number of selected EFMs is maximum (20), thus the number of model parameters 

was 40 (selected EFMs x fac – 20 x 2). On the other hand, in this same model the number of 

independent measurements is also the lowest (9, as said before). So, the number of data points in 

the calibration partition was 258 (6 strains in the calibration partition x 43 metabolic reactions). 

All the others presented models have more data points and less model parameters. 

 

Table 3.1: Ranking of statistically significant EFMs with high correlation with the envirome. 

Each EFM is selected with increasing explained flux variance. It can also be examined the statis-

tical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.76 8.998 × 10
-5

 60.6 73.4 

205 0.87 6.754 × 10
-7

 91.6 84.4 

232 1.00 1.584 × 10
-2

 55.9 84.8 

34 1.00 3.237 × 10
-2

 99.5 84.8 

209 0.84 3.623 × 10
-6

 77.2 86.6 

202 0.76 1.119 × 10
-4

 87.4 88.7 

 

Table 3.2: Ranking of statistically significant EFMs with high correlation with the proteome. 

Each EFM is selected with increasing explained flux variance. It can also be examined the statis-

tical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

260 0.84 8.00 × 10
-6

 53.1 30.8 

275 0.82 8.71 × 10
-6

 56.6 38.6 

263 0.89 2.08 × 10
-7

 52.5 50.9 

271 0.91 4.51 × 10
-8

 60.5 51.4 

217 0.81 2.89 × 10
-5

 45.2 52.7 

250 0.93 4.83 × 10
-9

 55.6 53.1 

242 0.74 2.55 × 10
-4

 42.2 53.1 

232 1 2.79 × 10
-2

 95 53.2 

100 0.76 9.25 × 10
-5

 45.2 59.1 
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Table 3.2 (cont.): Ranking of statistically significant EFMs with high correlation with the prote-

ome. Each EFM is selected with increasing explained flux variance. It can also be examined the 

statistical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

244 0.82 1.41 × 10
-5

 30 59.3 

220 0.77 1.13 × 10
-4

 37.2 60 

229 0.68 1.35 × 10
-3

 39.7 60.4 

92 0.78 4.23 × 10
-5

 34.2 69.3 

124 0.87 1.14 × 10
-6

 32.8 69.3 

220 0.77 1.13 × 10
-4

 37.2 60 

229 0.68 1.35 × 10
-3

 39.7 60.4 

92 0.78 4.23 × 10
-5

 34.2 69.3 

124 0.87 1.14 × 10
-6

 32.8 69.3 

249 0.64 3.46 × 10
-3

 22.4 69.4 

34 1 3.56 × 10
-2

 99.5 69.4 

236 0.87 1.70 × 10
-6

 31.3 69.5 

105 1 1.37 × 10
-4

 50.9 69.9 

99 1 1.15 × 10
-2

 26.4 69.9 

 

Table 3.3: Ranking of statistically significant EFMs with high correlation with the metabolome. 

Each EFM is selected with increasing explained flux variance. It can also be examined the statis-

tical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

260 0.86 2.55 × 10
-6

 66.6 31 

219 0.88 3.91 × 10
-7

 52.4 54.5 

271 0.89 3.56 × 10
-7

 68.6 54.7 

275 0.82 8.04 × 10
-6

 48.6 59 

249 0.93 1.37 × 10
-8

 66.9 61.5 

274 0.83 4.78 × 10
-6

 38.8 64.3 

228 0.84 8.51 × 10
-6

 56.9 64.7 

253 0.98 8.45 × 10
-3

 58 65.1 

242 0.81 3.13 × 10
-5

 47.2 65.1 

252 0.78 8.45 × 10
-5

 45.9 65.2 

250 0.97 3.91 × 10
-12

 79.3 65.4 

240 0.78 9.61 × 10
-5

 42.1 65.4 
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Table 3.3 (cont.): Ranking of statistically significant EFMs with high correlation with the metab-

olome. Each EFM is selected with increasing explained flux variance. It can also be examined the 

statistical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

236 0.9 1.87 × 10
-7

 57.6 65.5 

34 0.99 1.03 × 10
-1

 94.7 65.5 

246 0.87 1.67 × 10
-6

 46.8 65.6 

48 0.85 1.73 × 10
-6

 51 69.5 

227 0.86 1.89 × 10
-6

 41.8 69.7 

30 0.88 8.14 × 10
-7

 28.1 69.8 

 

Table 3.4: Ranking of statistically significant EFMs with high correlation with the transcriptome. 

Each EFM is selected with increasing explained flux variance. It can also be examined the statis-

tical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.81 1.37 × 10
-5

 55.9 72.6 

205 0.92 6.44 × 10
-9

 64.9 82.4 

34 1.00 8.27 × 10
-4

 100 82.5 

30 0.80 3.80 × 10
-5

 57.7 82.5 

202 0.90 6.57 × 10
-8

 51.3 84.8 

 

Table 3.5: Ranking of statistically significant EFMs with high correlation with the regulatory 

transcriptome. Each EFM is selected with increasing explained flux variance. It can also be exam-

ined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.98 6.99 × 10
-4

 70.9 73 

263 0.98 4.69 × 10
-3

 68.3 82.7 

271 1 2.56 × 10
-3

 98.6 82.9 

269 1 2.45 × 10
-3

 87.3 82.9 

3 0.99 8.37 × 10
-5

 67.9 87.5 

122 1 2.14 × 10
-4

 53.7 87.5 

197 0.98 2.68 × 10
-3

 53.5 89.9 

157 0.99 5.66 × 10
-3

 41.3 90 

242 1 5.28 × 10
-4

 87.4 90 

129 0.98 4.43 × 10
-3

 -10.3 90.3 
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Table 3.5 (cont.): Ranking of statistically significant EFMs with high correlation with the regula-

tory transcriptome. Each EFM is selected with increasing explained flux variance. It can also be 

examined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

241 1 8.32 × 10
-4

 60.2 90.3 

240 0.99 5.60 × 10
-3

 54.8 90.3 

250 0.99 7.00 × 10
-3

 49.1 90.4 

158 1 3.32 × 10
-4

 99.6 90.4 

244 0.98 2.17 × 10
-2

 49.9 90.4 

162 0.97 2.87 × 10
-2

 37 90.4 

164 1 1.46 × 10
-3

 55.4 90.4 

124 1 4.92 × 10
-3

 58.3 90.4 

249 0.99 7.17 × 10
-3

 43.5 90.4 

121 1 3.83 × 10
-3

 99.2 90.4 

 

From these results it can be observed that the best performing model in terms of fluxome 

prediction accuracy is the one that has as input data the regulatory transcriptome omic layer 

(90.4% of explained variance of fluxome data) closely followed by the one that uses the envirome 

layer (88.9% of explained variance of fluxome data). However, this transcriptional data is 

available for fewer strains (9) than the remaining input datasets (31). This means that fewer 

independent measurements are available. So, it precludes a fair comparison with the other 

structures. Furthermore, when combined with other omic information, the validation partition 

variance decreased (see Table 3.6 discussed below). For these two reasons (few data points and 

possible overfitting) this structure was not selected for complete model identification in the next 

sections. Later on, flux prediction from the regulatory transcriptome dataset will be discussed 

(namely the reasons because it was not used for detailed examination and the possible 

applications of a wider data collection) and also the results for the envirome dataset, second best 

performing dataset in terms of explained variance and best mean squared error results, will be the 

closely analysed. 

3.1.2 Models with multiple omic information layers 

Tables 3.6 and 3.7 show the model performance criteria for different combinations of 

omic datasets as inputs for the metabolic fluxes calculation (the detailed EFMs selection results 

for each case is shown in Appendix E). The data shown in the referred Appendix is similar to the 

data showed earlier: the first column represents the index of selected EFMs, r
2
 is the correlation 

coefficient of EFM weighting factor and input data, pvalue is another alternative measure of 
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correlation and it should be as low as possible, var(λEFM) is the explained variance of the EFM 

weightings and var(robs) is the explained variance of measured fluxome data. In all the next PLP 

runs, the optimal number of input data principal components (fac) was also two. On the other 

hand, the flux principal components were the EFMs. The number of selected EFMs was also 

limited by the not fulfillment of the statistical rules (minimum and maximum values for r
2
 and 

pvaleu, respectively), by the cease of the improvement of explained variance or by a maximum 

number of 20 EFMs. Each line presents the fluxomes explained variance and the mean squared 

error for the overall, calibration and validation datasets. As in the models described earlier, the 

comparison between the number of model parameters and data points can also be done. The same 

results can be seen here: the number of model parameters is much lower than the number of data 

points. 

Similarly, the E. coli data was separated in two partitions. Usually, from the 31 E. coli 

strain’s dataset it was separated in a calibration partition composed by galM, glk, pgm, fbaB, 

gapC, gpmA, gpmB, pykA, pykF, ppsA, pgl, rpiA, rpiB, tktA, tktB, talA, WT grown at 0.1h
-1

, 0.5h
-1

 

and two reference points) and a validation partition (pgi, pfkA, pfkB, fbp, zwf, gnd, rpe, talB, WT 

grown at two high dilution rates (0.5h
-1

 and 0.7h
-1

) and a reference data point). The exception was 

the PLP runs which included the regulatory transcriptional dataset. In such cases the nine different 

E. coli strains were separated in a calibration partition composed by pgm, gapC, zwf and WT 

strains grown at 0.5h
-1

 and two reference strains (0.2h
-1

), while the validation partition were 

constituted by pgi, rpe and 0.7h
-1

 E. coli dataset. 

These results show a coarse comparison between different model structures that integrate 

different layers of omic information. It can be observed that the envirome alone is the most 

informative omic layer in terms of flux prediction since this dataset obtained the lowest mean 

squared error results for the validation partition, Table 3.6, and the second highest explained 

variance for the validation partition, Table 3.7. 

In the next sections, the best performing models are analysed in more detail. These 

include the envirome model (E) and also the envirome and transcriptome combined model (E+T), 

which ranked in second place in terms of mean squared error in the validation partition 

(20722),Table 3.7, and explained variance of flux data in the validation dataset (85.2%),         

Table 3.6. 

It should be noted again that despite the apparent good results of the regulatory 

transcriptome models (model RT), due to the lack of measurements and potential overfitting 

problems when joint together with other omic datasets, this models will not be considered for 

further detailed analysis. 
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Table 3.6: Explained variance for all data points and for calibration and validation partition for 

each PLP run with different omic factors. E: Envirome; P: Proteome; M: Metabolome; T: Tran-

scriptome; RT: Regulatory transcriptome; +: Different omic data was put together. 

 

Omic factors Overall explained 

variance (%) 

Calibration partition 

explained variance (%) 

Validation partition ex-

plained variance (%) 

E 88.7 88.83 88.52 

P 69.9 76.71 64.40 

M 69.8 84.32 58.14 

T 84.8 90.04 80.55 

RT 90.4 89.23 91.03 

E+P 87.8 94.20 82.72 

E+M 74.3 85.27 65.55 

E+T 87.1 89.56 85.16 

E+RT 89.7 91.07 64.26 

P+M 71 78.92 64.55 

P+T 89.1 93.12 85.85 

P+TR 89.3 90.38 69.13 

M+T 87.9 90.77 85.58 

M+RT 92.1 93.03 74.83 

T+RT 88.8 90.11 64.53 

E+P+M 71.7 79.74 65.30 

E+P+T 88.9 92.54 86.07 

E+P+RT 89.1 90.15 70.63 

E+M+T 86.7 89.50 84.45 

E+M+RT 92.1 93.00 75.17 

E+T+RT 88.8 90.18 64.09 

P+M+T 87.2 90.13 84.83 

P+M+RT 90.5 91.41 75.14 

M+T+RT 92 92.89 76.27 

E+P+M+T 86.2 89.56 83.58 

E+P+M+RT 90.5 91.40 75.34 

E+P+T+RT 88.8 90.20 64.53 

E+M+T+RT 92 92.87 76.43 

P+M+T+RT 90.2 91.13 73.83 

E+P+M+T+RT 90.2 91.12 74.00 
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Table 3.7: Mean squared error for all data points, calibration and validation partition for each 

PLP run with different omic factors. E: Envirome; P: Proteome; M: Metabolome; T: Transcrip-

tome; RT: Regulatory transcriptome; +: Different omic data was put together. 

 

Omic factors Overall mean 

squared error 

Calibration partition mean 

squared error 

Validation partition 

mean squared error 

E 10819 8751 14579 

P 20373 15607 29037 

M 21727 9238 44434 

T 14355 7285 27211 

RT 18436 16778 21751 

E+P 13797 6657 26777 

E+M 19716 11704 34282 

E+T 14956 11785 20722 

E+RT 43004 31583 65848 

P+M 22025 12632 39104 

P+T 14071 10304 20922 

P+RT 39598 29345 60103 

M+T 14871 11691 20852 

M+RT 24533 18861 35878 

T+RT 38849 28369 59810 

E+P+M 17504 10847 29608 

E+P+T 14421 10932 20765 

E+P+RT 32259 24000 48778 

E+M+T 15708 12758 21072 

E+M+RT 24532 18840 35915 

E+T+RT 39216 27951 61748 

P+M+T 15967 12525 22226 

P+M+RT 37299 25458 60982 

M+T+RT 28109 20088 44151 

E+P+M+T 15515 11998 21909 

E+P+M+RT 37334 25472 61060 

E+P+T+RT 28150 20126 44198 

E+M+T+RT 39713 28068 63003 

P+M+T+RT 38241 25478 63768 

E+P+M+T+RT 38260 25453 63872 
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3.2 Envirome as input to PLP 

3.2.1 Discriminated EFMs 

Table 3.1 shows the subset of EFMs with highest correlation with the envirome data 

determined by the PLP algorithm. It should be highlighted that a high percentage of variance 

(approximately 89%) can be explained by few EFMs (six; as said and as it was described by 

Wlaschin, et al., a small set of EFMs are able to predict the full metabolic state of the cell [56]). 

To assess the confidence of EFMs selection, a bootstrapping method was employed (see 

methods section). Briefly, in the bootstrapping method different PLP runs were made removing 

an E. coli strain data at each time. At each PLP run, the EFMs, regression coefficients values and 

remaining data was saved. From this data it was calculated an EFM frequency of selection map 

and it was also calculated a CI for the regression coefficients (Figure 3.1 and Table 3.8, 

respectively). The EFMs with highest frequency of selection define a plausible active set of EFMs 

activated by the envirome alone. 

3.2.2 Predictive power 

Figure 3.2 represents predicted against measured fluxes for the calibration partition (20 

observations with 43 reactions) and a validation partition (11 observations with 43 reactions). The 

validation dataset comprised eight mutants (namely, pgi, pfkA, pfkB, fbp, pgl, gnd, rpe and talB 

strains), some of each show differences when compared with the others mutants or with the 

reference strain, as described by Ishii et al. [48]. Moreover the validation dataset also include a 

WT point grown with a dilution rate of 0.2h
-1

, one with dilution rate of 0.4h
-1

 and another with a 

dilution rate of 0.7h
-1

. On the other hand, the calibration partition is composed by the remaining 

16 mutants (specifically, galM, glk, pgm, fbaB, gapC, gpmA, gpmB, pykA, pykF, ppsA, zwf, rpiA, 

rpiB, tktA, tktB and talA strains) and four WT strains, two grown at different dilutions rates (0.1h
-1

 

and 0.5h
-1

) and two reference points grown at 0.2h
-1

 dilution rate. 

It can be observed from these results that the model was able to do a good global flux 

prediction. It should be emphasized that these results indicate that the hybrid model succeed in the 

prediction of the fluxome of 8 single gene deletion mutants (included in the validation dataset). 

The relative errors go from -185 to 1 in the validation partition and its average is -5.3. The outer 

points (namely the two points with higher fluxes) will be further discussed, but in general they 

represent only one reaction, exit of carbon dioxide from the system (as it is shown in the last 

metabolic reaction presented in Figure 3.3). These outer points are the ones that presented the 

higher error, namely -185. 

Moreover, the mean squared error for the calibration and validation partitions are 

comparable, as well as the lowest in relation to the other models (Table 3.7), denoting a very 

consistent model that captured the essential features of the system. 
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Figure 3.1: Frequency of selection of each EFM in the bootstrapping validation procedure when 

envirome is the input data. 

 

 

Figure 3.2: Predicted against measured fluxes with envirome as input to PLP for the calibration 

partition (blue circles) and validation partition (grey triangles). 

 

As illustrative examples Figure 3.3A and Figure 3.3B show the prediction of a reference 

WT and mutant talB, respectively (both included in the validation dataset). The behaviour of both 

strains is quite different (as described by Ishii et al. [48]). Such biological alterations in the 

mutant strain when compared with the WT are especially noticeable in the protein concentration, 

gene expression, metabolite concentration and metabolic reaction rate that were directly related 

with such modification, this will be detailed examined in the Discussion section. 
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Figure 3.3: Measured (blue bar) and predicted (grey bar) metabolic flux for the reference strain 

grown at 0.2h
-1

 as dilution rate (A) and mutant talB (B) both present in validation partition of PLP 

algorithm with envirome as input data. 

3.2.3 Envirome-to-function relationship 

Table 3.8 shows the regression coefficients matrix (RC) of EFMs weighting factors 

against envirome components and the confidence interval. Additional information about the 

confidence interval determination procedure (bootstrapping method) is described in the methods 

section. 

 

Table 3.8: Regression coefficients, and respective confidence interval, between environmental 

components and selected EFM. 

 
 Glucose Ethanol Acetate D-Lactate L-Lactate Succinate Pyruvate Formate Dilution rate 

92 0.0454 

±0.0142 

0.111 

±0.0074 

0.0664 

±0.0052 

0.048 

±0.0244 

0.0625 

±0.0446 

0.0811 

±0.0283 

0.1881 

±0.0325 

0.0762 

±0.0054 

0.1328 

±0.0097 

205 0.1793 

±0.0219 

0.1316 

±0.0256 

0.1204 

±0.0094 

0.2735 

±0.0172 

-0.0221 

±0.0508 

0.0721 

±0.1178 

0.0168 

±0.0667 

-0.0089 

±0.0416 

0.3417 

±0.0898 

232 0.0403 

±0.0696 

0.0714 

±0.1111 

0.0423 

±0.0675 

-0.2556 

±0.0396 

-0.3387 

±0.1075 

0.112 

±0.1743 

0.329 

±0.1514 

0.0022 

±0.0607 

0.0482 

±0.0750 

34 -0.0214 

±0.0897 

-0.0384 

±0.1418 

-0.0214 

±0.0859 

0.3295 

±0.5136 

0.1193 

±0.3407 

-0.0602 

±0.2225 

-0.5217 

±0.8750 

0.0216 

±0.0996 

-0.0259 

±0.0957 

209 0.1534 

±0.0697 

0.1039 

±0.0245 

0.1028 

±0.0241 

0.1417 

±0.0633 

-0.0531 

±0.0795 

0.0555 

±0.0309 

-0.0143 

±0.0772 

-0.026 

±0.0525 

0.2036 

±0.0508 

202 0.2234 

±0.0335 

0.103 

±0.0201 

0.1181 

±0.0054 

0.2545 

±0.0321 

-0.1561 

±0.0162 

0.0092 

±0.0349 

0.0857 

±0.0939 

-0.1248 

±0.0718 

0.47 

±0.1018 
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Each column represents the contribution of envirome components to EFMs weighting 

factors. In some cases, the magnitude of Ik,h may be interpreted as the strength of up- or down-

regulation of a given cellular function k by the environmental factor h (see Methods). 

3.3 Envirome and transcriptome as input to PLP 

3.3.1 Discriminated EFMs 

As already mentioned, the envirome and transcriptome PLP results are listed in   

Appendix E (Table 7.5). Additional information about the EFMs selection frequency in the 

bootstrapping procedure can be seen in Figure 3.4. 

3.3.2 Predictive power 

Figure 3.5 represents predicted against measured fluxes for the calibration partition and a 

validation partition, which are the same as the ones described earlier. 

It can be observed from these results that the model was able to accurately predict the 

fluxome from the eight mutants present in the validation partition. The higher explained variance 

when compared with the envirome results can be substantiated by the more accurate prediction of 

the lower fluxes, with the one drawback: the worse flux prediction of the highest metabolic fluxes 

(namely the two highest fluxes, one in the calibration and the other in the validation partition). 

This interpretation can also be seen in the analysis of its relative error. These values go from -806 

to 116 and its average is -20.4. 

 

Figure 3.4: Frequency of selection of each EFM in the bootstrapping validation procedure when 

envirome and transcriptome are the input data. 
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Figure 3.5: Predicted against measured fluxes with proteome and transcriptome as input to PLP 

for the calibration partition (blue circles) and validation partition (grey triangles). 

 

Figure 3.6A and Figure 3.6B represent the same illustrative examples shown before 

(reference WT and mutant talB, respectively; both included in the validation dataset). In these 

examples, the over prediction of the last metabolic reaction on Figure 3.6B is more evident, this 

may be due to the number of selected EFMs as will be proposed. 

3.3.3 Relationship between input and cellular function 

Figure 3.7 shows the regression coefficients of EFMs (cellular functions) weighting 

factors against envirome and transcriptome components (input data). This information is not 

shown in the form of a table due to its overwhelming size. Here the only CI values presented will 

be the ones attached to the EFMs up- or down-regulation effects discussed in the next section. 

The remaining CI values will not be presented due to its size. 

A global analysis over the Figure 3.7 shows that the  main up-regulation effects on the 

EFMs 92, 126 and 127 undergoes by the last environmental factor (high concentrations of 

succinate and pyruvate in the culture medium) and by the sixty-ninth transcriptional factors, 

fumC, in the EFM 127. 

On the other hand, the negative influences are more distributed over all the metabolic 

functions. However, they are more present in the last selected EFMs (125 and 127). Such down-

regulation is clear in the tenth to twentieth omic index factor zone. 
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Figure 3.6: Measured (blue bar) and predicted (grey bar) metabolic flux for the reference strain 

grown at 0.2h
-1

 as dilution rate (A) and mutant talB (B) both present in validation partition of PLP 

algorithm with envirome and transcriptome as input data. 

 

Figure 3.7: Regression coefficients between the input components (envirome – index 1 to 9 – and 

transcriptome – index 10 to 94) and selected EFMs 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Discussion 
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4.1 Relevance of omic information for flux-phenotype prediction 

In the previous section, flux prediction models were developed based on single or 

multiple omic information layers. An important aspect in the analysis of these results is assessing 

the relevance of the information contained in the different omic layers in respect to the final goal 

of flux-phenotype prediction. 

The first noteworthy observation is the apparent very high explained variance of flux data 

achieved when the regulatory transcriptional dataset is the only input to PLP. This model explains 

the highest percentage of flux variance of the calibration dataset (see Table 3.6). It is 

unquestionable that the regulatory transcriptome (only dataset whit information for the regulatory 

proteins) hold very relevant information about the up- or down-regulation of the metabolic 

pathways. However the most likely explanation for this good performance is probably the much 

lower number of data points available of DNA microarrays data for the different strains (nine 

against 31 for the other biological layers); this implied a much lower number of points for model 

fitting leading to a lack of trustworthy in these results. Still it is very important to generate enough 

data to evaluate this dataset performance and compare it to the others biological layers. 

As for the proteome model, one would expect such dataset to be more directly related 

with the target fluxome than the regulatory transcriptome, since the proteome holds information 

linked to enzymatic activity. On the other hand, the regulatory transcriptome still needs to be 

translated in order to have an effect in the transcriptional regulation of the metabolic genes. Only 

then an effect in the metabolic network can be noticed, normally with a significant time delay 

associated. This was however not translated into a better model with the percentage of variance 

captured of the fluxome data being only 64.4% compared to 91% for the regulatory transcriptome 

(see Table 3.6), for the validation partition. Despite the complex dynamics with time delays, it 

was here hypothesized that this dataset could be useful when used together with some other inputs 

since this data encodes information that does not appear directly in any other biological layer. 

This was impossible to show due to the low number of measurements and potential overfitting 

when this dataset was joined together with others datasets (see Table 3.6). Moreover, this dataset 

is also comprised by high levels of noise, which complicates even further the analysis. 

The PLP model with the metabolome as single input shows the lowest explained variance 

of the fluxome data set. This is not a surprising result given the more stable nature of the 

metabolome information layer when compared with the other omic information layers. In fact, 

when cells undergo a given genetic or environmental perturbation the resulting proteome and 

transcriptome dynamical responses have normally the objective of maintaining the concentrations 

of the various metabolites relatively constant in order to assure cellular viability. Indeed, despite 

the fact that the metabolome was the most complete biological layer quantified, fluxome 
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explained variance was substantially lower than others much more incomplete layers of 

information such as the proteome (model P) or the envirome (model E). 

The PLP model that uses the envirome dataset as input (model E) is the second best 

performing model in terms of explained variance of fluxome data and also the one with lowest 

mean squared error of prediction (see Table 3.6 and Table 3.7, respectively). This result is 

concordant with the research of Kell et al. and Allen et al.. These studies have shown that the 

number of metabolites excreted or secreted to the environment is very high and that the variations 

of the envirome are much higher than the metabolome and also more easily and accurately 

measured [57]. These authors have clearly demonstrated through statistical analysis that 

exometabolome data enables to discriminate single gene deletion mutants of yeast cells [58]. 

Although the characterization of the envirome in this work was the most incomplete in relation to 

the other omic layers, the results obtained in the present thesis clearly support the discrimination 

of single gene deletion mutants using the envirome only. But even further than that, it is shown 

here that the envirome analysis enables not only the discrimination but also an accurate prediction 

of flux phenotype of the KO mutants. 

It could be argued that the regulatory transcriptome responds to the external impulses and, 

although it may have a time lapse, it comprises more or complementary information to the partial 

environmental data used in this work (only organic compounds). Contrary to this hypothesis, the 

results obtained with the E+T model, although quite good (the second best), they do not show a 

significant improvement in relation to the envirome model. 

4.2 Envirome flux prediction analysis 

In this section, it will be discussed the results obtained with the envirome as input to PLP 

model. 

4.2.1 Discriminated EFMs 

The first EFM selected by PLP is EFM 92, with 85% of frequency of selection (calculated 

by the bootstrapping method – Figure 3.1). EFM 92 is partially constituted by glycolysis and 

tricarboxylic acid cycle, and it belongs to the small group of EFMs that exclusively produces 

energy. Moreover, within the analysed KO mutants group present in both calibration and 

validation partitions (see section 2.6.3 on page 23), EFM 92 is a plausible EFM in all KO mutants 

except in the strain in which pgi gene is deleted, which adds consistency to this result. 

Others frequently selected EFMs are EFMs 209 and 232 (see Table 3.1). These EFMs 

together with EFM 92 comprise all the metabolic reactions involved in the three considered 

pathways (glycolysis, tricarboxylic acid cycle and pentose phosphate pathway) in such a 

combination that at least one of them is in theory plausible in every E. coli strain considered. As 

said before the EFM 92 is the only pathway that functions exclusively for energy production. All 
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the remaining EFMs besides energy also produce additional building blocks that could be used in 

biosynthesis (acetate in the case of EFM 209 and fructose-6-phosphate and erythrose-4-phosphate 

in the case of EFM 232). Depending on the global EFMs reaction products, the EFMs functions 

can be inferred through the analysis of the fate of such end-products in the cell. For instance, 

fructose-6-phosphate can be used in the production of others hydrocarbons or in the production of 

the cellular wall, namely through the production of peptidoglycan. On the other hand, the 

erythrose-4-phosphate utilization can be traced to the production of several amino acids like 

tryptophan, phenylalanine and tyrosine. All the remaining EFMs functions listed in Table 3.1 can 

be consulted in the supplementary material trough the participating reactions and its global 

products (as described by Schwartz, et al. [59]). 

The second layer of frequently selected EFMs is formed by EFMs 3, 202, 205 and 263. 

However they are usually selected in two sets (EFM 3+263 and EFM 202+205). The two sets 

confer the same functionality, namely the production of oxaloacetate, pyruvate and acetyl 

coenzyme-A required for biosynthesis. These are vital precursors for the cell to grow, whose 

fluxes carry a significant variance that needs to be explained. What seems to happen is that for 

some KO mutants EFM 3+263 are unfeasible while for other it is the group EFM 202+205 that is 

unfeasible. This justifies the mutually excluding selection observed in the PLP results. 

The EFM selected with lowest frequency is EFM 34. This may be related to the fact that 

the metabolic function of this EFM is redundant with the function of EFM 232, i.e., both EFMs 

produce erythrose 4-phosphate. Moreover, this EFM is only feasible in pgl, ripA and tktA E. coli 

strains, so this may also be one fact for the EFM selection since this cases may have unexplained 

fluxes that have been fully explained in the remaining cases. 

4.2.2 Predictive power 

As shown in Figure 3.2, the envirome model succeeds in the prediction of the fluxome of 

several gene deletion mutants with high accuracy. This result is to some extent surprising in light 

of the potential perturbations that the deletion of a gene can have in the physiology of a cell, 

which includes perturbations in the metabolome, proteome and transcriptome. 

As said before, usually, after the internal (genetic) perturbation, not many metabolic 

reactions are in theory directly affected. When compared to the full size metabolic network, such 

perturbations are very localized to the metabolic reactions tightly related to the deleted one. This 

localized nature of genetic perturbations could be confirmed through the analysis of the 

metabolome, proteome and transcriptome. 

One example is the talB single gene deletion mutant (Figure 3.3B). In this strain the 

concentration of sedoheptulose 7-phosphate, a reactant that participates in the metabolic reaction 

catalysed by the removed protein (reaction 16 in the metabolic network) drastically increased. 

Moreover, the concentration of some others metabolites not directly related to this protein also 
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changed (like the concentration of glucose-6-phosphate, ribose-5-phosphate and                 

ribulose-5-phosphate). The effects of these perturbations can also be traced in the proteome (since 

AcnB expression index reduced to half and SdhB expression index doubled, both proteins 

participate in the tricarboxylic acid cycle).  

Nevertheless, despite the visible but localized perturbations in the biological system, as 

whole one can conclude that the deletion of a single gene does not have a dramatic effect on the 

metabolism. An important indication of this is that all the analysed mutants are viable. 

Particularly, it seems that the deletion of a single gene does not perturb significantly the 

relationship between the cellular metabolism and the envirome, which is likely to be conserved 

within the same species. This could explain the success of the envirome model in predicting 

several single gene deletion mutants. 

Among the 43 metabolic reactions, the last reaction in the network is systematically over 

predicted with a higher error associated. This can be observed in the Figure 3.2 as the two highest 

fluxes correspond to the referred metabolic reaction in the E. coli strain grown at 0.5h
-1

 and 0.7h
-1

.  

Reaction 43 is peculiar in that it codes for the exit of CO2 from the system and is involved in all 

the EFMs. This modelling discrepancy is mostly associated to the difficulty in closing the carbon 

balance in the identified reduced metabolic models with a small number of EFMs. 

4.2.3 Envirome function mapping 

In this section, the identified relation patterns between envirome components and 

metabolic functions are analysed on the basis of the regression coefficients matrix delivered by 

the PLP algorithm (see Table 3.8 and Figure 2.3). 

As first note, it should be commented that the computation of confidence intervals of 

regression coefficients by the bootstrapping method clearly shoes that many of the values 

obtained are not statistically consistent, precluding taking rigorous conclusions about the effect of 

several envirome components on several metabolic functions. This is the case of, for instance, 

EFM 34. This EFM is only feasible in pgl, ripA and tktA E. coli strains. So, since there are few 

data points that can be used to calculate these regression coefficients, their confidence intervals 

are very large. Moreover, EFM 34 has a similar function to the EFM 232, which is also 

theoretically feasible in the referred strains. Framed by these practical constraints, the discussion 

that follows will be centred in those results that are statistical consistent. 

 So, one of the first things that stands out is the generally strong positive correlation 

between the weighting factors of almost all the EFMs and the glucose concentration and also the 

reaction dilution rate (see Table 3.8). These results are very consistent with the fact that glucose is 

the single carbon source and also that all the EFMs have either an energy production function or a 

biosynthetic function. As such, the higher the glucose concentration or the dilution rate value, the 

higher are the fluxes through the active pathways. Since glucose is the only carbon source in this 
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system, a positive regulation coefficient should be the most likely outcome. 

In the same way, the acetate, ethanol and (D- and L-) lactate regression coefficients show 

mostly a positive correlation with the pathways presented in the Table 3.8. This may suggest that 

when the fluxes upstream to the tricarboxylic acid cycle are very high they might be deflected to 

the production of these by-products. In this case, the positive correlation does not correspond to a 

regulatory effect triggered by environmental factors. Rather it represents an environmental change 

caused by an overflow in the metabolic pathways, which resulted in the accumulation of 

metabolic by-products in the extracellular medium. This condition is especially obvious in the 

case of EFM 202. The main product of EFM 202 is acetate, thus not surprisingly, EFM 202 

weighting factor shows positive correlation with acetate concentration in the medium. 

In another example, formate can be produced as an incomplete oxidized by-product of the 

formation of acetyl coenzyme-A from pyruvate (not included in the metabolic network). As 

expected the accumulation of formate in the medium correlates positively with EFM 92, which 

includes a reaction composed by the formation of acetyl coenzyme-A from pyruvate, and 

negatively with EFM 202, which does not include the referred reaction. Both regression 

coefficients have low CI suggesting a high confidence in this result. 

Until now the discussion was focused on global interaction patterns between the envirome 

and fluxome. However, this relationship is the result of several molecular level interaction 

mechanisms that goes across the multiple omic layers. The envirome components can interact 

with genes through sensing and regulatory proteins, which will activate or repress their    

expression [60]. Environmental factors can also exhibit, for instance, some allosteric interactions 

with enzymes (metabolites) or have other regulatory effects caused by abiotic factors such as 

temperature [61]. In many cases, a given environmental perturbation is followed by changes 

(either they are in a set of proteins activities or the transcriptional expression of some genes), 

which eventually will influence the fluxome. 

So, looking closely at the regulation properties, for instance in the case of pyruvate, the 

effect can be traced through the regulatory protein IclR, in which pyruvate works as ligand. It has 

been reported [62] that when pyruvate is present in high concentration, a AceB-IclR-pyruvate 

complex is formed as a safety mechanism to quickly repress the glyoxylate shunt. In Table 3.8 

can be seen that pyruvate correlates negatively with the EFM 34 that involves the glyoxylate 

shunt (reactions 26 and 27). 

Furthermore, the reflex of this effect can be seen in the ripA and tktA mutant. In these 

cases the extracellular and intracellular pyruvate concentration is one of the highest among all 

mutants. This had the consequence of decreasing the protein expression from the operon aceBAK 

(also the concentration of these proteins are one of the lowest in the referred cases when 

compared with the others mutant strains). This might be also a reason for the negative regression 
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coefficients between pyruvate and EFM34. 

Other metabolic effects can also be seen in the relationship between the PykF expression 

index and the extracellular pyruvate concentration, which show a positive correlation, that is, 

when the protein expression increases, pyruvate concentration also increases. The protein 

expression increase may occur due to the increase of fructose-1-phosphate intracellular 

concentration, which is the only metabolite with reported regulation properties of this gene 

expression (if the metabolite is present, the FruR transcriptional regulator becomes inactive and 

does not block the pykF transcriptional initiation [62]). A plausible explanation for the       

fructose-1-phosphate concentration increase is the increase of others closely related metabolites 

like fructose-6-phosphate and fructose-1,6-phosphate, involved in glycolysis. So, if these 

metabolites increase the remaining glycolysis metabolite can also increase, namely the pyruvate 

intracellular concentration (last metabolite in glycolysis) and so, when pyruvate intracellular 

concentration is high the respective extracellular concentration also increases. Again, this may be 

one of the regulation mechanism reflected in the regression coefficient of pyruvate in EFM 92, 

which involves the reaction 8 (production of pyruvate from phosphoenolpyruvate, catalysed by 

PykF). 

Similar mechanisms can be found with regulatory protein LldR which senses L-lactate. 

However, it has little influence in the protein concentration because it is maintained constant in 

the majority of the referred cases. This may be explained by others regulatory mechanisms that 

influences this metabolic function, like for instance translation regulation or its turnover process. 

4.3 Envirome and transcriptome flux prediction analysis 

Here discussion is focused on the differences between the envirome (E) and the envirome 

and transcriptome (E+T) models rather than exhaustive regulation interpretation. 

4.3.1 Discriminated EFMs 

When comparing Table 7.5 with Table 3.1, it is clear that the global prediction power of 

both methods is comparable (87.1% and 88.7%, respectively). The same occurs in the explained 

flux variance in the validation partition (88.5% and 85.1%, respectively). It is unquestionable that 

the transcriptome dataset may have important information for the flux prediction, yet it can also 

have some redundant information or some transcriptional evidence that is not relevant for these 

metabolic functions. This may complicate model development eventually resulting in a 

degradation of overall flux prediction results (as has been described, the mRNA concentration 

does not have a direct relationship between the protein concentration nor with its metabolic rate 

rather it depends on many other interactions besides the described one [63]). 

However, when it is added this dataset to the environmental information, there are some 

modification in the selected metabolic function. For instance, in this PLP run there were selected 
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the 2-keto-glutarate, phosphoenolpyruvate, 3-phosphoglycerate, glyceraldehyde 3-phosphate and 

ethanol production, which was not been selected when the envirome dataset were given to PLP as 

only input. This means that the metabolic function of, for instance, production of some amino 

acids like tyrosine (through the utilization of 2-keto-glutarate), or serine (using 3-

phosphoglycerate) are in some way related with the transcriptional level of the analysed genes. 

However, if there were to be determined exhaustively all the environmental factors concentration 

probably the flux prediction could be even better or it could select more metabolic function. 

4.3.2 Input data to function relationship 

Just as illustrative example, some of the omic factors that always show positive 

correlation with the selected EFMs are succinate and acs, column six and 64 from Figure 3.7. In 

the former case, it may be related with the utilization of succinate in almost all the selected EFMs 

(except in the last one, which has the lowest regression coefficient, 0.0053 and with relatively 

high confidence interval, 0.072). On the other hand, the other example given is the acs gene, 

which codes for the acetyl-CoA synthetase. Although the formation of acetyl-CoA is included in 

the metabolic network, this enzyme is not directly involved since the catalysed reaction involves 

the consumption of, for instance, acetate (which corresponds to the inverse reaction 29 in      

Figure 2.1). Nevertheless, this relationship also makes sense, since all the EFMs selected have the 

production of acetyl-CoA. So, although the mRNA production does not have a direct relationship 

with the protein level nor with its enzymatic rates, this regulation property was expected due to 

the close relationship between the acetyl-CoA production and the EFMs activation status. 

On the other end are the other omic factors that have a consistently negative influence in 

all the selected EFMs like fbp and lldd mRNA expression (16 and 78 columns in Figure 2.1, 

respectively). These two genes code for two enzymes (fructose-1,6-bisphosphatase I and L-lactate 

dehydrogenase) that catalyse two reactions that are not represented in the metabolic network. Yet 

they represent the inverse reaction of reaction 3 and 30, respectively. In this way it is obvious that 

they should have a negative influence in the EFMs that involve those reactions. 
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In this thesis, mathematical modelling tools were employed for the interpretation of 

different layers of omic information of E. coli cells, collected from 24 single gene deletion mutant 

experiments and WT strain experiments grown in 5 different conditions. In particular, a hybrid 

computational algorithm was employed to identify correlation patterns between input omic data 

sets (envirome, metabolome, proteome, transcriptome and regulatory transcriptome) with target 

fluxome data sets. In the adopted algorithm, the target fluxome data was deconvoluted into 

weighting factors of metabolic functions, which were linearly regressed against many input 

variables. This enabled to map in a robust way redundant input data sets into sets of active 

metabolic functions. Several combinations of input information were assessed in terms of 

achieved prediction power of the target fluxome data. 

One of the main conclusions to be taken from this study is that the envirome layer of 

information is very important for metabolic function inference and ultimately metabolic flux 

prediction. It should be highlighted in particular the ability of the PLP algorithm to predict the 

fluxome of genetically modified strains or WT strains grown at different conditions on the basis 

of envirome data and genome information alone. 

The analysis of the PLP regression coefficients showed that the regression coefficients 

could be used to infer envirome regulation mechanisms. Several of the identified regulation 

mechanisms could be confirmed by the analysis of the remaining datasets. Such regulatory 

mechanisms were previously described in other papers. However, it should be underlined that 

these regulation factors are computed at a pathway level, so the most straightforward 

interpretation scenario is that such regulatory coefficients are related to the rate-limiting step 

within each EFM. 

As corollary of the results above, one can conclude that the relationship between 

envirome and metabolic function is to some extent conserved among genotype variants lacking 

different genes. The deletion of a particular metabolic gene has the effect of deleting one or 

several metabolic functions within the cells. Interestingly, this does not perturb the remaining 

viable functions. As future study, it should be considered the full envirome data acquisition for a 

genome wide fluxome prediction. It should also be studied if the environmental factors regulation 

patterns are conserved not only among genotype variants of the same species but also among 

different species, in different phylogenetic classes or even in different genus. 

It is well known that the optimization of environmental factors, such as medium 

composition or reactor nutrients feeding, play an important role in industrial biotechnological 

process performance. Historically, these two factors (medium composition and genetic 

modifications) have contributed to the increase of bioprocess performance. In a way, the results 

produced in this thesis confirm the importance of the envirome information layer to infer and 

predict metabolic functions. Furthermore, an important lesson to be learned is that the envirome 
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layer can be used for effective metabolic function engineering. It can be used to systematically 

discover regulatory patterns over metabolic functions, paving the way for a function oriented 

environment engineering approach. 

Finally, besides the many developed and applied modelling methods, the PLP algorithm 

might have an important role in the future to unravel the regulatory patterns in redundant 

biological systems that have not yet been mechanistically described in the literature. This can be 

performed not only at an environmental level, but also at the level of metabolites and proteins, 

particularly for elucidation of the role of transcription factors. With this knowledge, standard 

biological parts can be better designed as building block for pathway level synthetic biology 

developments. 
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Appendix A 

Ordered list of metabolites present in the metabolome dataset. 

 (Methylthio) acetate 

 Malonyl-CoA 

 1,3-Diaminopropane 

 1,4-Butanediamine 

 1,5-Diaminopentane 

 1,5-Diphenylcarbohydrazide 

 10-Hydroxydecanoate 

 1-Adamantanamine 

 1-Amino-1-cyclopentanecarboxylate 

 1-Aminocyclopropane- 

1-carboxylate 

 1-Aminoethylphosphonate 

 1-Methyl-2-pyrrolidone 

 1-Methyl-4-pheny 

l-1,2,3,6-tetrahydropyridine 

 1-Methyladenine 

 1-Methyladenosine 

 1-Methylnicotinamide 

 1-Metylhistamine 

 2,3-Diaminopropionate 

 2,3-Diphosphoglycerate 

 2,4-Diaminobutyrate 

 2,4-Dihydroxypyrimidine- 

5-carboxylate 

 2,4-Dimethylaniline 

 2,5-Dihydroxybenzoate 

 2,6-Diaminoheptanedioate 

 2,6-Diethylaniline 

 2,6-Dimethylaniline 

 2-Acetamido-1-amino- 

1,2-dideoxyglucopyranose 

 2-Amino-2-(hydroxymethyl)- 

1,3-propanediol 

 2-Amino-2-methyl-1,3-propanediol 

 2-Amino-3-phosphonopropionate 

 2-Aminobenzimidazole 

 2-Aminoethylphosphonate 

 2-Aminophenol 

 2-Carboxybenzaldehyde 

 2-Cyanopyridine 

 2'-Deoxyadenosine 

 2'-Deoxyadenosine+ 

5'-Deoxyadenosine 

 2'-Deoxycytidine 

 2-Deoxyglucose 6-phosphate 

 2'-Deoxyguanosine 

 2-Deoxyribose 1-phosphate 

 2-Deoxystreptamine 

 2'-Deoxyuridine 

 2-Furoate 

 2-Guanidinobenzimidazole 

 2-Hydroxy-4-methylpentanoate 

 2-Hydroxyoctanoate 

 2-Hydroxypentanoate 

 2-Hydroxypyridine 

 2-Isopropylmalate 

 2-Mercapto-1-methylimidazole 

 2-Oxoadipate 

 2-Oxoglutarate 

 2-Oxooctanoate 

 2-Oxopentanoate 

 2-Quinolinecarboxylate 

 2-Thiopheneacetate 

 3-(2-Hydroxyphenyl)propionate 
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7.1 Appendix A  

Ordered list of metabolites present in the metabolome dataset. 

  

 (Methylthio) acetate 

 Malonyl-CoA 

 1,3-Diaminopropane 

 1,4-Butanediamine 

 1,5-Diaminopentane 

 1,5-Diphenylcarbohydrazide 

 10-Hydroxydecanoate 

 1-Adamantanamine 

 1-Amino-1-cyclopentanecarboxylate 

 1-Aminocyclopropane- 

 1-carboxylate 

 1-Aminoethylphosphonate 

 1-Methyl-2-pyrrolidone 

 1-Methyl-4-pheny 

 l-1,2,3,6-tetrahydropyridine 

 1-Methyladenine 

 1-Methyladenosine 

 1-Methylnicotinamide 

 1-Metylhistamine 

 2,3-Diaminopropionate 

 2,3-Diphosphoglycerate 

 2,4-Diaminobutyrate 

 2,4-Dihydroxypyrimidine- 

 5-carboxylate 

 2,4-Dimethylaniline 

 2,5-Dihydroxybenzoate 

 2,6-Diaminoheptanedioate 

 2,6-Diethylaniline 

 2,6-Dimethylaniline 

 2-Acetamido-1-amino- 

1,2-dideoxyglucopyranose 

 2-Amino-2-(hydroxymethyl)- 

1,3-propanediol 

 2-Amino-2-methyl-1,3-propanediol 

 2-Amino-3-phosphonopropionate 

 2-Aminobenzimidazole 

 2-Aminoethylphosphonate 

 2-Aminophenol 

 2-Carboxybenzaldehyde 

 2-Cyanopyridine 

 2'-Deoxyadenosine 

 2'-Deoxyadenosine+ 

 5'-Deoxyadenosine 

 2'-Deoxycytidine 

 2-Deoxyglucose 6-phosphate 

 2'-Deoxyguanosine 

 2-Deoxyribose 1-phosphate 

 2-Deoxystreptamine 

 2'-Deoxyuridine 

 2-Furoate 

 2-Guanidinobenzimidazole 

 2-Hydroxy-4-methylpentanoate 

 2-Hydroxyoctanoate 

 2-Hydroxypentanoate 

 2-Hydroxypyridine 

 2-Isopropylmalate 

 2-Mercapto-1-methylimidazole 

 2-Oxoadipate 

 2-Oxoglutarate 

 2-Oxooctanoate 

 2-Oxopentanoate 

 2-Quinolinecarboxylate 
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 2-Thiopheneacetate 

 3-(2-Hydroxyphenyl)propionate 

 3,3',5-Triiodothyronine 

 3,5-Diiodo-tyrosine  

 3,5-Dinitrosalicylate 

 3-Acetylacrylate 

 3-Amino-1,2,4-triazole 

 3-Amino-1,2-propanediol 

 3-Amino- 

3-(4-hydroxyphenyl) propionate 

 3-Aminopropionitrile  

 3-Chloroalanine  

 3-Hydroxy-3-methylglutarate 

 3-Hydroxyanthranilate 

 3-Hydroxykynurenine 

 3-Indoleacetonitrile 

 3-Indolebutanoate 

 3-Indoxyl sulphate 

 3-Iodotyrosine 

 3-Methyladenine 

 3-Methylbutanoate 

 3-Methylguanine 

 3-Methylhistidine 

 3-Phenyllactate 

 3-Phenylpropionate 

 3-Phosphoglycerate 

 3-Ureido propionate 

 4,4'-Methylene bis (o-chloroaniline) 

 4-Acetylbutanoate 

 4-Amino-3-hydroxybutyrate 

 4-Aminoindole 

 4-Aminoindole+5-Aminoindole 

 4-Aminophenylsulfone 

 4-Hydroxy-3-methoxybenzoate 

 4-Hydroxy-3-methoxymandelate 

 4-Hydroxyindole 

 4-Hydroxymandelate 

 4-Hydroxymethylimidazole 

 4-Methyl-2-oxopentanoate 

 4-Methyl-5-thiazoleethanol 

 4-Methylpyrazole 

 4-Methylthio-2-oxobutanoate 

 4-Nitrophenyl phosphate 

 4-Oxohexanoate 

 4-Oxopentanoate 

 4-Pyridoxate 

 4-Sulfobenzoate 

 5,6-Dimethylbenzimidazol 

 5-Aminoimidazole-4-carboxamide-

1-ribofuranosyl 5'-monophosphate 

 5-Aminoindole 

 5-Aminolevulinate 

 5-Aminopentanoate 

 5'-Deoxy-5'-Methylthioadenosine 

 5'-Deoxyadenosine 

 5-Hydroxy-3-indoleaceacetate 

 5-Hydroxylysine  

 5-Hydroxytryptophan 

 5-Methoxy-3-indoleacetate 

 5-Methoxy-N,N-dimethyltryptamine 

 5-Methoxytryptamine 

 5-Methoxytryptamine+2,6-

Diaminoheptanedioate 

 5-Methyl-2'-deoxycytidine 

 5-Methylcytosine 

 5-Methyltetrahydrofolate 

 5-Oxoproline 

 5-Phosphorylribose 1-

pyrophosphate 

 6,8-Thioctate 
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 6-Aminohexanoate 

 6-Aminopenicillanate 

 6-Hydroxyhexanoate 

 6-Hydroxynicotinate 

 6-Methylaminopurine 

 6-Phosphogluconate 

 7,8-Dihydrobiopterin 

 7,8-Dihydroneopterin 

 7-Methylguanine 

 8-Anilino-1-naphthalene sulfonate 

 8-Hydroxyoctanoate 

 9-Amino-1,2,3,4-tetrahydroacridine 

 Acetanilide 

 Acetoacetamide 

 Acetohydroxamate 

 Acetylcholine 

 Adenine 

 Adenosine 

 Adenylosuccinate 

 Adipate 

 Adenosine diphosphate 

 Adenosine diphosphate-glucose 

 Adenosine diphosphate-ribose 

 Agmatine 

 alpha-Hydroxybutanoate 

 alpha-Hydroxybutanoate+ 

beta-Hydroxybutanoate 

 alpha-Hydroxyisobutanoate 

 Alanine 

 Alanine-Alanine 

 Albizziine 

 Allantoate 

 Allantoin 

 Alliin 

 alpha-Aminoadipate 

 alpha-Aminoisobutyrate 

 alpha-Methylbenzylamine 

 alpha-Methylserine 

 Adenosine monophosphate 

 Aniline  

 Anserine 

 Anserine + Homocarnosine 

 Anthranilate 

 Arginine 

 Arginine ethyl ester 

 Argininosuccinate 

 Asparagine 

 Aspartic acid 

 Aspartate 

 Adenosine triphosphate 

 Azelaate 

 Azetidine-2-carboxylate 

 Barbiturate 

 Benzamide 

 Benzamidine 

 Benzimidazole 

 Benzoate 

 Benzoylformate 

 Benzyl viologen  

 Benzylsuccinate 

 beta-Alanine 

 beta-Alanine-Lys 

 beta-Cyanoalanine 

 beta-Guanidinopropionate 

 beta-Hydroxyphenethylamine 

 beta-Imidazolelactate 

 Betaine 

 Betaine aldehyde  

 beta-Hydroxybutanoate 

 beta-Hydroxypropionate 
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 Biotin 

 Bis(3-aminopropyl)amine 

 Bis(p-nitrophenyl)phosphate 

 Butanoate 

 Cyclic adenosine monophosphate 

 Canavanine 

 Carbachol 

 Carbamoylaspartate 

 Carnitine 

 Carnosine 

 Castanospermine 

 Cyclic citosine monophosphate 

 Citosine diphosphate 

 Cyclic guanine monophosphate 

 Chelidonate 

 Cholate 

 cis,cis-Muconate 

 cis-Aconitate 

 Citraconate 

 Citramalate 

 Citrate 

 Citrate  

 Citrulline 

 Citosine monophosphate 

 Citosine monophosphate+Citosine 

monophosphate -N-acetylneuramate 

 Citosine monophosphate-N-

acetylneuramate 

 Creatine  

 Creatinine  

 Crotonate 

 Cyclic timine monophosphate 

 Citosine triphosphate 

 Cumate 

 Cyclohexanecarboxylate 

 Cysteine 

 Cysteine-Glycine 

 Cystathionine 

 Cysteamine  

 Cysteate 

 Cysteine S-sulfate 

 Cysteine sulfinate 

 Cytidine 

 Cytosine 

 Deoxyadenosine diphosphate 

 Deoxyadenosine monophosphate 

 Deoxyadenosine triphosphate 

 Deoxycitosine diphosphate 

 Deoxycitosine monophosphate 

 Deoxycitosine triphosphate 

 Decanoate 

 Deisopropylatrazine 

 Desethylatrazine 

 Desthiobiotin 

 Diethanolamine 

 Diethyl-2-phenylacetamide 

 Digalacturonate 

 Dihydroorotate 

 Dihydrouracil 

 Dihydroxyacetone phosphate 

 Dihydrozeatine 

 Diphenylamine 

 Divalent ion from Acetyl coenzyme 

A 

 Divalent ion from coenzyme A 

 Divalent ion from D111* 

 Divalent ion from Isobutyryl 

coenzyme A 

 Divalent ion from Lauroyl 

coenzyme A 
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 Divalent ion from Malonyl 

coenzyme A 

 Divalent ion from nicotinamide 

adenine dinucleotide phosphate 

(NADPH) 

 Divalent ion from n-Propionyl 

coenzyme A 

 Divalent ion from guanosine 

tetraphosphate 

 Divalent ion from succinyl 

coenzyme A 

 Divalent ion from uridine 

diphosphate -glucuronate 

 Uridine diphosphate -N-

acetylglucosamine 

 Dodecanedioate 

 Dodecanoate 

 L-3,4-dihydroxyphenylalanine 

 Dopamine 

 Ectoine 

 Eflornithine 

 Epinephrine 

 Erythrose 4-phosphate 

 Ethanolamine phosphate 

 Etidronate 

 Flavin adenine dinucleotide 

 Flavin mononucleotide 

 Folate 

 Fructose 1,6-diphosphate 

 Fructose 6-phosphate 

 Fsarate 

 Fumarate 

 gamma-Aminobutyric acid 

 Galacturonate 

 Galacturonate 1-phosphate 

 gamma-Guanidinobutyrate 

 Guanosine diphosphate 

 Gibberellate 

 Glutamine 

 Glutamine+Albizziine 

 Gluconate 

 Glucosaminate 

 Glucosamine 

 Glucosamine 6-phosphate 

 Glucose 1-phosphate 

 Glucose 6-phosphate 

 Glucuronate 

 Glutamic acid- Glutamic acid 

 Glutamate 

 Glutarate 

 Glutathione 

 Glycine 

 Glycerate 

 Glycerophosphorate 

 Glycerophosphorylcholine  

 Glycocholate 

 Glycolate 

 Glycyrrhetinate 

 Glycine-Glycine 

 Glycine-Leucine 

 Glyoxylate 

 Guanosine monophosphate 

 Gramine 

 Guanosine triphosphate 

 Guanidinosuccinate 

 Guanidoacetate 

 Guanine 

 Guanosine 

 Harman 

 Heptanoate 
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 Hexamethylene tetramine 

 Hexanoate 

 Hexylamine 

 Hippurate 

 Histidine 

 Histamine  

 Histidinol  

 Homoarginine  

 Homocarnosine  

 Homocysteine 

 Homocystine 

 Homoserine 

 Homovanillate 

 Hydroxyatrazine 

 Hydroxyproline 

 Hydroxyurea 

 Hypotaurine 

 Hypoxanthine 

 Ibotenate 

 Inosine diphosphate 

 Isoleucine 

 Isoleucine+ Leucine 

 Imidazole-4-acetate  

 Inosine monophosphate 

 Indole-3-acetaldehyde 

 Indole-3-acetamide 

 Indole-3-acetate 

 Indole-3-ethanol 

 Inosine 

 Isatin 

 Isethionate 

 Isoamylamine 

 Isobutylamine 

 Isocitrate 

 iso-Citrate 

 Isocitrate + Citrate 

 Isonicotinamide 

 Isonicotinate hydrazide 

 Isopropanolamine 

 Isoquinoline 

 Itaconate 

 Inosine triphosphate 

 Keramine  

 Kynurenine  

 Lactate 

 Leucine 

 Leucine-Leucine-Tyrosine 

 Leupeptin hemisulfate  

 Lumazine 

 Lysine 

 Malate 

 Malonate 

 Malonyl coenzyme A 

 Mandelate 

 Mannosamine 

 Melamine 

 Melatonin 

 Mesalamine 

 Methionine 

 Metformin 

 Methanesulfonate 

 Methionine sulfoximine 

 Methyl sulfate 

 Methylguanidine 

 m-hydroxybenzoate 

 Mucate 

 Muramate 

 Muscimol 

 N,N-Dimethylaniline 

+Phenethylamine 
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 N,N-Dimethylaniline 

 N,N-Dimethylglycine 

 N1-Acetylspermine 

 N6-Methyl-2'-deoxyadenosine 

 N8-Acetylspermidine 

 N-Acetyl muramate 

 N-Acetylaspartate 

 N-Acetyl-b-alanine 

 N-Acetylgalactosamine 6-sulfate 

 N-Acetylglucosamine 

 N-Acetylglucosamine 1-phosphate 

 N-Acetylglucosamine 6-phosphate 

 N-Acetylglutamate 

 N-Acetylhistidine 

 N-Acetylleucine 

 N-Acetylmethionine 

 N-Acetylneuraminate 

 N-Acetylornithine 

 N-Acetylphenylalanine 

 N-Acetylputrescine  

 Nicotinamide adenine dinucleotide 

(NAD
+
) 

 Nicotinamide adenine dinucleotide 

(NADH) 

 Nicotinamide adenine dinucleotide 

phosphate (NADP) 

 Nicotinamide adenine dinucleotide 

phosphate (NADPH) 

 Nalpha,Nalpha-Dimethylhistidine 

 Nalpha-Benzenolarginine ethylester 

 N-a-t-boc-asparagine 

 N-Benzyloxycarbonylglycine 

 N-Carbamylglutamate 

 Neamine 

 Nepsilon-Acetyllysine 

 N-ethylglutamine 

 N-Formylaspartate 

 N-Formylmethionine 

 N-Glycolylneuraminate 

 Nicotinamide 

 Nicotinamide 

hypoxanthine dinucleotide 

 Nicotinate 

 Nicotine 

 N-Methylalanine 

 N-Methylaniline 

 N-Methylanthranilate 

 N-Methylglutamate 

 N-Methyl-N-propagylbenzylamine 

 Nomega-Acetylhistamine 

 Nomega-Methyltryptamine 

 Nonanoate 

 Noradrenaline 

 Nornicotine 

 n-Propionyl CoA 

 o-Acetylcarnitine  

 o-Acetylserine  

 Octanoate 

 Octopine 

 Octylamine 

 o-Hydroxybenzoate 

 o-Hydroxyhippurate 

 o-Phenanthroline 

 o-Phosphoserine 

 Ornithine 

 Orotidine 5'-monophosphate 

 o-Succinylhomoserine 

 Oxamate 

 Oxidized glutathione 

 p-Aminobenzoate 
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 Pantothenate 

 p-Coumarate 

 Pentanoate 

 Phenylalanine 

 Phenaceturate 

 Phenethylamine 

 Phenyl phosphate 

 Phenylhydrazine 

 Phloretate 

 Phosphoarginine 

 Phosphocreatine 

 Phosphoenolpyruvate 

 Phosphonoacetate 

 Phosphoramidon 

 Phosphorylcholine 

 Phthalate 

 p-hydroxybenzoate 

 p-Hydroxybenzoate+ 

m-Hydroxybenzoate 

 p-Hydroxyphenylacetate 

 p-Hydroxyphenylpyruvate 

 Picolinamide 

 Pimelate 

 Pipecolate 

 Piperazine 

 Piperidine 

 Porphobilinogen 

 Guanosine tetraphosphate 

 Propionate 

 Prostaglandine2 

 ProstaglandinF2a 

 Pseudopelletierine 

 Psychosine 

 Pterin 

 Purine 

 Purine riboside 

 Pyridine 

 Pyridoxal 

 Pyridoxal 5-phosphate 

 Pyridoxamine 

 Pyridoxamine 5'-phosphate 

 Pyridoxine 

 Pyrimidine 

 Pyrrole-2-carboxylate 

 Pyruvate 

 Quinate 

 Quinoline 

 Quisqualate 

 Riboflavin 

 Ribose 5-phosphate 

 Ribulose 1,5-diphosphate 

 Ribulose 5-phosphate 

 Saccharate 

 S-Adenosylhomocysteine 

 S-Adenosylmethionine 

 Sarcosine 

 S-Carboxymethylcysteine 

 Scopolamine 

 Sebacate 

 Sedoheptulose-7-phosphate 

 Sepiapterin 

 Serine 

 Serine O-sulfate 

 Serotonin 

 Shikimate 

 Sinapate 

 S-Lactoylglutathione 

 Sorbitol 6-phosphate 

 Spermidine 

 Spermine 
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 Succinate 

 Succinimide 

 Sulfanilate 

 Synephrine 

 Syringate 

 Tartarate 

 Taurine 

 Taurochenodeoxycholate 

 Taurocholate 

 Taurodeoxycholate 

 Taurodeoxycholate and 

Taurochenodeoxycholate 

 Taurolithocholate 

 Timine diphosphate 

 Terephthalate 

 Thiamine 

 Thiamine monophosphate 

 Threonine 

 Threo-beta-Hydroxyaspartate 

 Threonate 

 Thymidine 

 Thymidine+1,5-

Diphenylcarbohydrazide 

 Tiglate 

 Timine monophosphate 

 Tolazoline 

 T-4-Hydroxy-3-methoxycinnamate 

 T-Aconitate 

 T-Cinnamate 

 T-Zeatin 

 Trehalose 6-phosphate 

 Trientine 

 Triethanolamine 

 Trimethylamine N-oxide 

 Trimethylsulfonium 

 Tryptophan 

 Tryptamine 

 Tryptophanamide 

 Timine triphosphate 

 Tryptophanamide+O-

Acetylcarnitine  

 Tyrosine 

 Tyramine 

 Tyrosine methyl ester 

 Uridine diphosphate 

 Uridine diphosphate-glucose 

 Uridine diphosphate-glucuronate 

 Uridine diphosphate-N-

acetylglucosamine 

 Uridine monophosphate 

 Undecanoate 

 Uracil 

 Uridine 

 Urocanate 

 Uridine triphosphate 

 Valine 

 Xanthopterin 

 Xanthosine 

 Xanthurenate 

 Xanthosine monophosphate 

 Glycine-Proline 
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7.2 Appendix B 

Input for metatool 5.1 for the EFMs calculation 

 

-METEXT  

CO2ex G6Pex F6Pex R5Pex e4Pex G3Pex 3PGex PEPex PYRex AcCoAex OAAex 2-

KGex Glucose Acetate Lactate Ethanol 

 

-CAT 

r1 : Glucose + PEP => G6P + PYR 

r2 : G6P = F6P 

r3 : F6P => F1,6P 

r4 : F1,6P => DHAP + G3P 

r5 : DHAP => G3P 

r6 : G3P => 3PG 

r7 : 3PG = PEP 

r8 : PEP => PYR 

r9 : PYR => AcCoA + CO2 

r10 : G6P => 6PG 

r11 : 6PG => Ru5P + CO2 

r12 : Ru5P => X5P 

r13 : Ru5P => R5P 

r14 : R5P + X5P = S7P + G3P 

r15 : S7P + G3P = E4P + F6P 

r16 : X5P + E4P = F6P + G3P 

r17 : AcCoA + OAA => CIT 

r18 : CIT => ICT 

r19 : ICT => 2-KG + CO2 

r20 : 2-KG => SUC + CO2 

r21 : SUC => FUM 

r22 : FUM => MAL 

r23 : MAL = OAA 

r24 : PEP + CO2 = OAA 

r25 : MAL => PYR + CO2 

r26 : ICT => Glyoxylate + SUC 

r27 : Glyoxylate + AcCoA => MAL 
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r28 : 6PG => G3P + PYR 

r29 : AcCoA => Acetate 

r30 : PYR => Lactate 

r31 : AcCoA => Ethanol 

r32 : G6P => G6Pex 

r33 : F6P => F6Pex 

r34 : R5P => R5Pex 

r35 : E4P => E4Pex 

r36 : G3P => G3Pex 

r37 : 3PG => 3PGex 

r38 : PEP => PEPex 

r39 : PYR => PYRex 

r40 : AcCoA => AcCoAex 

r41 : OAA => OAAex 

r42 : 2-KG => 2-KGex 

r43 : CO2 => CO2ex 
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7.3 Appendix C 

Table 7.1: Elementary Modes Matrix – Metabolic reactions x EFMs. 

 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 1 2 4 1 1 1 1 2 2 1 1 1 1 1 4 1 1 1 1 1 4 3 2 4 

2 1 2 4 1 1 0 1 1 2 1 1 1 1 1 4 1 1 1 1 1 4 2 1 3 

3 1 2 4 1 1 0 1 1 1 1 1 1 1 1 4 1 1 1 1 1 4 2 1 3 

4 1 2 4 1 1 0 1 1 1 1 1 1 1 1 4 1 1 1 1 1 4 2 1 3 

5 1 2 4 1 1 0 1 1 1 1 1 1 1 1 4 1 1 1 1 1 4 2 1 3 

6 2 4 8 2 2 1 2 2 2 2 2 1 2 2 8 2 2 2 2 2 8 4 2 5 

7 2 4 8 2 2 1 2 2 2 2 2 1 1 2 8 2 2 2 2 2 8 4 2 5 

8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 2 1 0 2 0 2 0 0 1 3 0 0 0 2 0 1 3 2 1 2 0 0 0 

10 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 

17 0 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 

18 0 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 

19 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

21 0 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 

22 0 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 

23 0 2 0 -1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 

24 0 2 4 1 1 0 1 0 0 1 1 0 0 0 4 1 1 1 1 1 4 1 0 1 

25 0 0 1 1 1 0 2 0 0 0 2 0 0 0 2 1 0 2 2 0 2 0 0 0 

26 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 

27 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 

28 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

30 2 0 0 2 0 2 1 2 2 0 0 1 1 1 4 0 0 0 0 0 0 3 2 4 

31 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

32 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

33 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

36 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

37 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

38 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

39 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 4 0 0 0 

40 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

41 0 3 3 0 0 0 0 0 0 1 0 0 0 0 3 0 1 0 0 1 3 1 0 1 

42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

43 0 0 0 0 4 0 3 0 0 0 4 0 0 0 0 0 0 4 3 0 0 0 1 0 
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Table 7.1 (cont.): Elementary Modes Matrix – Metabolic reactions x EFMs. 

 

 
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 

1 3 4 1 1 2 4 2 1 3 3 2 2 2 1 1 2 4 2 4 1 2 2 1 1 

2 2 1 -2 1 0 -2 2 1 3 -2 0 0 0 1 0 0 2 0 2 0 1 2 1 1 

3 2 3 0 1 1 1 2 1 3 0 1 1 1 1 0 1 3 1 3 0 1 1 1 1 

4 2 3 0 1 1 1 2 1 3 0 1 1 1 1 0 1 3 1 3 0 1 1 1 1 

5 2 3 0 1 1 1 2 1 3 0 1 1 1 1 0 1 3 1 3 0 1 1 1 1 

6 3 7 1 2 2 2 4 2 6 1 2 2 2 2 0 2 6 2 6 1 2 2 1 2 

7 3 7 1 2 2 2 4 2 6 1 2 2 2 2 0 2 6 2 6 1 2 2 1 1 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 3 2 4 1 1 1 4 2 2 2 0 2 0 0 0 0 0 0 0 0 0 

10 1 3 3 0 2 6 0 0 0 5 2 2 2 0 1 2 2 2 2 1 0 0 0 0 

11 1 3 3 0 2 6 0 0 0 4 2 2 2 0 0 2 2 2 2 0 0 0 0 0 

12 0 2 2 0 1 3 0 0 0 2 1 1 1 0 0 1 1 1 1 0 0 0 0 0 

13 1 1 1 0 1 3 0 0 0 2 1 1 1 0 0 1 1 1 1 0 0 0 0 0 

14 1 1 1 0 1 3 0 0 0 2 1 1 1 0 0 1 1 1 1 0 0 0 0 0 

15 1 1 1 0 1 3 0 0 0 2 1 1 1 0 0 1 1 1 1 0 0 0 0 0 

16 -1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 1 2 2 1 1 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

18 0 0 0 1 2 2 1 1 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

21 0 0 0 1 2 2 0 0 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

22 0 0 0 1 2 2 0 0 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

23 0 0 0 0 2 4 0 0 1 4 0 0 0 0 2 0 0 0 0 0 0 0 0 0 

24 0 3 0 1 0 -2 2 1 3 -2 0 0 0 0 -1 0 2 0 2 0 0 0 0 0 

25 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

26 0 0 0 1 0 2 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

27 0 0 0 1 0 2 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

30 3 4 1 0 0 0 1 0 2 0 0 0 0 0 0 2 4 0 0 0 0 0 0 0 

31 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

35 2 0 0 0 1 3 0 0 0 2 1 1 1 0 0 1 1 1 1 0 0 0 0 0 

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 

37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

39 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 4 2 2 2 1 1 

40 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

41 0 3 0 0 0 0 1 0 3 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 

42 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

43 1 0 3 4 8 12 0 1 0 10 4 4 4 0 3 2 0 2 0 0 0 0 0 0 
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Table 7.1(cont.): Elementary Modes Matrix – Metabolic reactions x EFMs. 

 

 
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 

1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 2 2 2 2 1 1 1 1 1 

2 1 1 1 1 1 1 1 0 0 0 1 2 1 1 1 1 1 2 2 1 1 1 1 1 

3 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

5 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

6 2 2 2 2 2 2 2 1 1 1 2 2 1 2 2 2 2 2 2 1 1 2 2 2 

7 2 2 2 2 2 2 2 1 1 1 2 2 1 1 2 2 2 2 2 1 1 1 1 2 

8 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 1 

10 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

23 0 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

24 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

29 0 0 0 2 0 0 2 0 0 2 0 0 0 0 0 0 2 0 2 0 1 0 1 0 

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

31 0 2 0 0 2 0 0 2 0 0 2 2 1 1 1 0 0 0 0 0 0 0 0 0 

32 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 

33 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

36 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 

37 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 

38 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

39 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

40 0 0 2 0 0 2 0 0 2 0 0 0 0 0 0 2 0 2 0 1 0 1 0 1 

41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

43 0 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 1 
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Table 7.1 (cont.): Elementary Modes Matrix – Metabolic reactions x EFMs. 

 

 
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 

1 1 1 1 1 3 2 4 3 4 1 1 1 4 4 2 2 2 2 1 1 2 3 2 

2 1 -2 1 -2 2 1 3 2 1 -2 -2 1 1 4 2 2 2 2 0 1 1 2 1 

3 1 0 1 0 2 1 3 2 3 0 0 1 1 1 2 2 2 2 0 1 1 2 1 

4 1 0 1 0 2 1 3 2 3 0 0 1 1 1 2 2 2 2 0 1 1 2 1 

5 1 0 1 0 2 1 3 2 3 0 0 1 1 1 2 2 2 2 0 1 1 2 1 

6 2 1 2 1 4 2 5 3 7 1 1 2 2 2 1 4 4 4 1 2 2 3 2 

7 2 1 2 1 4 2 5 3 7 1 1 2 2 2 1 1 4 4 1 2 2 3 2 

8 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 

9 1 0 4 1 0 0 0 0 0 1 1 4 4 4 2 2 2 1 4 2 2 3 2 

10 0 3 0 3 1 1 1 1 3 3 3 0 0 0 0 0 0 0 1 0 1 1 1 

11 0 3 0 3 1 1 1 1 3 3 3 0 0 0 0 0 0 0 0 0 1 1 1 

12 0 2 0 2 0 0 0 0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 

14 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 

15 0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 

16 0 1 0 1 0 0 -1 -1 1 1 1 0 0 0 0 0 0 0 0 0 0 -1 0 

17 0 0 2 0 0 0 0 0 0 0 0 2 2 2 1 1 1 1 2 2 0 0 0 

18 0 0 2 0 0 0 0 0 0 0 0 2 2 2 1 1 1 1 2 2 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 

21 0 0 2 0 0 0 0 0 0 0 0 2 2 2 1 1 1 0 2 2 0 0 0 

22 0 0 2 0 0 0 0 0 0 0 0 2 2 2 1 1 1 0 2 2 0 0 0 

23 0 0 4 0 0 0 0 0 0 0 0 1 4 4 2 2 2 0 4 2 0 0 0 

24 0 0 -2 0 1 0 1 0 3 0 0 1 -2 -2 -1 -1 -1 2 -2 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 

26 0 0 2 0 0 0 0 0 0 0 0 2 2 2 1 1 1 0 2 0 0 0 0 

27 0 0 2 0 0 0 0 0 0 0 0 2 2 2 1 1 1 0 2 0 0 0 0 

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

29 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

31 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 

32 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 

33 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 

34 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

35 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 

37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 

38 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 

39 0 1 0 0 3 2 4 3 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

40 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 

41 0 0 0 0 1 0 1 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

43 1 3 6 4 0 1 0 1 0 4 4 6 6 6 3 3 3 0 6 6 3 4 3 
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Table 7.1 (cont.): Elementary Modes Matrix – Metabolic reactions x EFMs. 
 

 
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 

1 2 3 3 1 1 3 3 1 1 1 1 2 2 1 1 1 3 1 3 1 1 3 5 2 

2 1 2 2 0 1 0 2 0 0 0 0 1 2 1 1 1 3 1 0 -2 -2 0 0 -2 

3 1 2 2 0 1 0 0 0 0 0 0 1 1 1 1 1 3 1 0 0 0 0 0 0 

4 1 2 2 0 1 0 0 0 0 0 0 1 1 1 1 1 3 1 0 0 0 0 0 0 

5 1 2 2 0 1 0 0 0 0 0 0 1 1 1 1 1 3 1 0 0 0 0 0 0 

6 2 3 3 1 2 1 1 1 1 1 1 2 2 1 2 2 6 2 3 1 1 1 1 1 

7 2 3 3 1 2 1 1 0 1 1 1 2 2 1 1 2 6 2 3 1 1 1 1 1 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

9 2 3 3 4 2 4 4 2 2 2 2 2 2 1 1 1 1 1 6 2 2 4 8 2 

10 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 3 3 3 3 5 3 

11 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 2 2 3 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 2 

13 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 1 

14 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 1 

15 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 1 

16 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 -2 1 

17 0 0 0 2 2 2 2 1 1 1 2 2 2 1 1 1 1 1 4 1 1 2 4 1 

18 0 0 0 2 2 2 2 1 1 1 2 2 2 1 1 1 1 1 4 1 1 2 4 1 

19 0 0 0 0 2 0 0 0 0 0 2 2 2 1 1 1 1 1 2 0 0 0 0 0 

20 0 0 0 0 2 0 0 0 0 0 2 2 2 1 1 1 1 1 0 0 0 0 0 0 

21 0 0 0 2 2 2 2 1 1 1 2 2 2 1 1 1 1 1 2 1 1 2 4 1 

22 0 0 0 2 2 2 2 1 1 1 2 2 2 1 1 1 1 1 2 1 1 2 4 1 

23 0 0 0 2 1 4 4 2 2 2 2 2 2 1 1 1 1 1 4 2 1 4 8 2 

24 0 0 0 0 1 -2 -2 -1 -1 0 0 0 0 0 0 0 3 1 0 -1 0 -2 -4 -1 

25 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

26 0 0 0 2 0 2 2 1 1 1 0 0 0 0 0 0 0 0 2 1 1 2 4 1 

27 0 0 0 2 0 2 2 1 1 1 0 0 0 0 0 0 0 0 2 1 1 2 4 1 

28 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 3 0 0 1 3 0 

29 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

32 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 

33 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

34 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 

35 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 

36 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

37 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

38 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

40 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

41 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 1 0 0 0 0 0 0 

42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 

43 3 4 4 6 6 6 6 3 3 2 6 6 6 3 3 3 0 2 8 6 6 8 14 6 
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Table 7.1 (cont.): Elementary Modes Matrix – Metabolic reactions x EFMs. 
 

 
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 

1 2 2 4 2 2 2 2 2 2 1 3 2 3 1 1 4 1 1 1 1 2 2 1 1 1 2 

2 -1 -2 1 -3 1 -4 -4 -4 -4 -2 -6 1 2 1 1 4 1 1 1 1 1 2 1 1 1 1 

3 0 0 1 0 1 0 0 0 0 0 0 1 2 1 1 4 1 1 1 1 1 1 1 1 1 1 

4 0 0 1 0 1 0 0 0 0 0 0 1 2 1 1 4 1 1 1 1 1 1 1 1 1 1 

5 0 0 1 0 1 0 0 0 0 0 0 1 2 1 1 4 1 1 1 1 1 1 1 1 1 1 

6 1 1 2 1 1 1 2 2 2 1 3 2 3 2 2 8 2 2 2 2 2 2 1 2 2 2 

7 1 1 2 1 1 1 1 2 2 1 3 2 3 2 2 8 2 2 2 2 2 2 1 1 2 2 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 

9 2 2 4 2 2 2 2 2 2 1 3 2 3 1 2 1 2 1 4 2 4 4 2 2 2 2 

10 3 4 3 5 1 6 6 6 6 3 9 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 3 4 3 5 1 6 6 6 6 3 9 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 2 2 0 3 0 4 4 4 4 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 1 2 3 2 1 2 2 2 2 1 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 1 1 0 2 1 2 2 2 2 1 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 1 1 0 2 1 2 2 2 2 1 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 1 1 0 1 -1 2 2 2 2 1 3 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 1 1 2 1 1 1 1 1 1 1 2 2 3 1 1 1 1 1 2 1 2 2 1 1 1 1 

18 1 1 2 1 1 1 1 1 1 1 2 2 3 1 1 1 1 1 2 1 2 2 1 1 1 1 

19 0 0 0 0 0 0 0 0 0 1 1 2 3 1 1 1 1 1 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 1 0 2 3 1 1 1 1 1 0 0 0 0 0 0 0 0 

21 1 1 2 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 2 1 2 2 1 1 1 1 

22 1 1 2 1 1 1 1 1 1 1 1 2 3 1 1 1 1 1 2 1 2 2 1 1 1 1 

23 2 2 4 2 2 2 2 2 2 1 2 2 3 0 0 0 0 0 2 2 2 2 1 1 1 2 

24 -1 -1 -2 -1 -1 -1 -1 -1 0 0 0 0 0 1 1 4 1 1 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 0 2 2 1 1 1 0 

26 1 1 2 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 2 1 2 2 1 1 1 1 

27 1 1 2 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 2 1 2 2 1 1 1 1 

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 1 0 0 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

33 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

34 0 1 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

35 0 0 0 1 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

36 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

37 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

38 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

39 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

41 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0 0 0 1 0 0 0 0 0 1 

42 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

43 6 7 9 8 4 9 9 9 8 6 13 7 10 3 4 0 4 3 6 2 6 6 3 3 3 2 
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Table 7.1 (cont.): Elementary Modes Matrix – Metabolic reactions x EFMs. 
 

 
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 

1 2 2 2 2 3 6 6 3 3 3 2 2 6 2 3 2 6 6 3 3 3 5 5 3 3 

2 2 2 2 2 3 3 6 3 3 3 1 1 3 0 2 0 4 0 2 0 0 0 0 0 0 

3 1 2 2 2 3 3 3 3 3 3 1 1 3 1 2 1 4 3 2 2 2 2 2 1 1 

4 1 2 2 2 3 3 3 3 3 3 1 1 3 1 2 1 4 3 2 2 2 2 2 1 1 

5 1 2 2 2 3 3 3 3 3 3 1 1 3 1 2 1 4 3 2 2 2 2 2 1 1 

6 2 2 4 4 6 6 6 3 6 6 2 2 6 2 3 2 6 6 3 5 5 5 5 3 3 

7 2 2 2 4 6 6 6 3 3 6 2 2 6 2 3 2 6 6 3 5 5 5 5 3 3 

8 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 

9 2 2 2 2 6 6 6 3 3 3 4 2 6 4 6 2 6 6 3 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 1 1 3 2 1 2 2 6 1 3 3 3 3 3 3 

11 0 0 0 0 0 0 0 0 0 0 1 1 3 2 1 2 2 6 1 3 3 3 3 3 3 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 3 0 2 2 2 2 2 2 

13 0 0 0 0 0 0 0 0 0 0 1 1 3 1 1 1 2 3 1 1 1 1 1 1 1 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 3 1 1 1 1 1 1 1 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 3 1 1 1 1 1 1 1 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -2 0 -1 1 1 1 1 1 1 

17 1 1 1 1 4 4 4 2 2 2 2 1 4 2 3 1 3 4 2 0 0 0 0 0 0 

18 1 1 1 1 4 4 4 2 2 2 2 1 4 2 3 1 3 4 2 0 0 0 0 0 0 

19 0 0 0 0 2 2 2 1 1 1 0 0 2 0 0 0 0 2 1 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

21 1 1 1 1 2 2 2 1 1 1 2 1 2 2 3 1 3 2 1 0 0 0 0 0 0 

22 1 1 1 1 2 2 2 1 1 1 2 1 2 2 3 1 3 2 1 0 0 0 0 0 0 

23 2 2 2 2 4 4 4 2 2 2 2 2 4 2 3 2 6 4 2 0 0 0 0 0 0 

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 2 0 0 2 3 0 0 0 0 0 0 0 0 0 0 

26 1 1 1 1 2 2 2 1 1 1 2 1 2 2 3 1 3 2 1 0 0 0 0 0 0 

27 1 1 1 1 2 2 2 1 1 1 2 1 2 2 3 1 3 2 1 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 3 

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

32 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 

33 1 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

34 0 0 0 0 0 0 0 0 0 0 1 1 3 0 0 0 0 0 0 0 0 0 0 0 0 

35 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 4 3 2 0 0 0 0 0 0 

36 0 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

37 0 0 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

38 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 3 0 

40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

41 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 3 0 0 0 0 0 0 0 0 

42 0 0 0 0 2 2 2 1 1 1 0 0 2 0 0 0 0 2 1 0 0 0 0 0 0 

43 2 2 2 2 8 8 8 4 4 4 7 3 11 8 10 4 8 14 5 3 3 3 3 3 3 
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Table 7.1 (cont.): Elementary Modes Matrix – Metabolic reactions x EFMs. 
 

 
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 

1 5 5 3 3 3 3 3 3 3 3 3 5 3 5 3 3 3 5 5 3 3 5 5 3 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 1 2 2 2 

4 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 1 2 2 2 

5 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 1 2 2 2 

6 5 5 3 3 5 5 5 5 5 5 5 5 3 5 3 5 5 5 5 3 3 5 5 3 

7 5 5 3 3 3 3 5 5 5 5 5 5 3 5 3 3 5 5 5 3 3 5 5 3 

8 0 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 5 5 5 5 3 5 3 3 3 5 5 3 3 5 5 3 

10 5 5 3 3 3 3 3 3 3 3 3 3 3 5 3 3 3 3 3 3 3 5 5 3 

11 5 5 3 3 3 3 3 3 3 3 3 3 3 5 3 3 3 3 3 3 3 5 5 3 

12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

13 3 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 3 1 

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 5 0 3 0 5 0 

30 0 5 0 3 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 0 5 0 0 5 3 5 3 3 3 0 0 0 0 0 0 0 

32 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 2 0 0 0 0 0 

33 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 

34 2 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 2 0 

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

36 0 0 2 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 

37 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 

38 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 

39 5 0 3 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

40 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 5 0 3 0 5 0 3 

41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

43 5 5 3 3 3 3 3 3 8 8 8 8 6 10 6 6 6 8 8 6 6 10 10 6 
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Table 7.1 (cont.): Elementary Modes Matrix – Metabolic reactions x EFMs. 
 

 
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 

1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 6 3 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 4 2 

4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 4 2 

5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 4 2 

6 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 10 5 

7 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 10 5 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 4 7 

9 3 3 3 3 3 0 0 0 0 3 3 3 5 5 5 3 2 3 3 2 10 4 10 10 

10 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 6 3 

11 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 6 3 

12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 4 2 

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2 1 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 5 2 5 5 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 5 2 5 5 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 5 5 

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 5 5 

23 0 0 0 0 0 0 0 -2 -2 0 0 0 -2 -2 -2 0 0 0 0 0 5 4 10 10 

24 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 -2 0 -5 

25 0 0 0 0 0 0 0 2 2 0 0 0 2 2 2 0 0 0 0 0 5 0 0 0 

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 5 5 

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 5 5 

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

29 3 0 3 0 3 0 0 0 0 0 0 3 0 0 5 0 0 0 1 0 0 0 0 0 

30 0 0 0 0 0 0 3 0 5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

31 0 0 0 0 0 0 0 0 0 3 0 0 5 0 0 1 0 0 0 0 0 0 0 0 

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

36 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

37 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

38 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

39 0 0 0 0 0 3 0 5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

40 0 3 0 3 0 0 0 0 0 0 3 0 0 5 0 0 0 1 0 0 0 0 0 0 

41 0 0 0 0 0 2 2 0 0 2 2 2 0 0 0 0 0 0 0 0 0 0 5 0 

42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 0 

43 6 6 6 6 6 1 1 3 3 4 4 4 8 8 8 6 5 6 6 5 18 8 16 18 
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Table 7.1 (cont.): Elementary Modes Matrix – Metabolic reactions x EFMs. 
 

 
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 

1 3 3 5 3 5 3 3 3 3 3 3 3 3 3 7 4 10 10 4 6 12 4 10 10 2 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 2 2 2 1 2 2 2 2 2 2 2 2 2 0 0 1 4 2 1 2 1 1 4 2 1 

4 2 2 2 1 2 2 2 2 2 2 2 2 2 0 0 1 4 2 1 2 1 1 4 2 1 

5 2 2 2 1 2 2 2 2 2 2 2 2 2 0 0 1 4 2 1 2 1 1 4 2 1 

6 5 5 5 3 5 3 5 5 5 5 5 5 5 1 3 2 10 5 2 6 6 2 10 5 1 

7 5 5 5 3 5 3 3 5 5 5 5 5 5 1 3 2 10 5 2 6 6 2 10 5 1 

8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 5 7 10 6 10 6 6 6 4 7 7 4 10 4 8 4 10 10 4 6 12 4 10 10 2 

10 3 3 3 3 5 3 3 3 3 3 3 3 3 3 7 2 6 3 4 6 12 4 10 10 2 

11 3 3 3 3 5 3 3 3 3 3 3 3 3 2 6 2 6 3 4 6 12 4 10 10 2 

12 2 2 2 2 2 2 2 2 2 2 2 2 2 1 4 1 4 2 2 4 8 1 4 2 1 

13 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1 2 1 2 2 4 3 6 8 1 

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 2 4 1 2 1 1 

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 2 4 1 2 1 1 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2 0 2 1 0 2 4 0 2 1 0 

17 5 2 5 3 5 3 3 3 2 2 2 2 5 2 4 2 5 5 2 3 6 2 5 5 1 

18 5 2 5 3 5 3 3 3 2 2 2 2 5 2 4 2 5 5 2 3 6 2 5 5 1 

19 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

21 5 2 5 3 5 3 3 3 2 2 2 2 5 2 4 2 5 5 2 3 6 2 5 5 1 

22 5 2 5 3 5 3 3 3 2 2 2 2 5 2 4 2 5 5 2 3 6 2 5 5 1 

23 5 0 5 3 5 3 3 3 0 0 0 0 3 4 8 4 10 10 4 6 12 4 10 10 2 

24 0 2 0 0 0 0 0 0 2 2 2 2 2 -2 -4 -2 0 -5 -2 0 -6 -2 0 -5 -1 

25 0 4 5 3 5 3 3 3 4 4 4 4 7 0 0 0 0 0 0 0 0 0 0 0 0 

26 0 2 5 3 5 3 3 3 2 2 2 2 5 2 4 2 5 5 2 3 6 2 5 5 1 

27 0 2 5 3 5 3 3 3 2 2 2 2 5 2 4 2 5 5 2 3 6 2 5 5 1 

28 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 

31 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

32 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 4 7 0 0 0 0 0 0 0 

33 0 0 0 1 0 0 0 0 0 0 0 0 0 1 4 0 0 0 1 2 7 0 0 0 0 

34 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 7 0 

35 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 2 0 0 1 0 0 1 

36 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

37 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

38 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

39 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

40 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 3 0 0 5 0 0 

42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

43 18 12 18 12 20 12 12 12 9 12 12 9 18 8 18 8 16 18 10 12 30 10 20 25 5 



Hybrid Systems Biology: Application to Escherichia coli 

86 

 

Table 7.1 (cont.): Elementary Modes Matrix – Metabolic reactions x EFMs. 
 

 
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 

1 2 2 8 6 6 6 6 6 6 6 5 3 5 3 3 3 9 3 3 3 3 3 3 15 3 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 1 1 3 4 4 4 4 4 4 4 2 1 2 2 2 2 6 2 2 2 2 2 2 6 1 

4 1 1 3 4 4 4 4 4 4 4 2 1 2 2 2 2 6 2 2 2 2 2 2 6 1 

5 1 1 3 4 4 4 4 4 4 4 2 1 2 2 2 2 6 2 2 2 2 2 2 6 1 

6 2 2 4 6 3 10 10 10 10 10 5 3 5 3 5 5 15 5 5 5 5 5 5 15 3 

7 1 2 4 6 3 6 3 10 10 10 5 3 5 3 3 5 15 5 5 5 5 5 5 15 3 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 

9 2 2 8 6 6 6 6 6 6 6 5 3 5 3 3 3 15 5 2 5 5 2 5 15 3 

10 2 2 8 6 6 6 6 6 6 6 3 3 5 3 3 3 9 3 3 3 3 3 3 9 3 

11 2 2 8 6 6 6 6 6 6 6 3 3 5 3 3 3 9 3 3 3 3 3 3 9 3 

12 1 1 3 4 4 4 4 4 4 4 2 2 2 2 2 2 6 2 2 2 2 2 2 6 2 

13 1 1 5 2 2 2 2 2 2 2 1 1 3 1 1 1 3 1 1 1 1 1 1 3 1 

14 1 1 5 2 2 2 2 2 2 2 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 

15 1 1 5 2 2 2 2 2 2 2 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 

16 0 0 -2 2 2 2 2 2 2 2 1 1 1 1 1 1 3 1 1 1 1 1 1 3 1 

17 1 1 4 3 3 3 3 3 3 3 5 3 5 3 3 3 10 2 2 2 2 2 5 10 2 

18 1 1 4 3 3 3 3 3 3 3 5 3 5 3 3 3 10 2 2 2 2 2 5 10 2 

19 0 0 0 0 0 0 0 0 0 0 5 3 5 3 3 3 5 2 2 2 2 2 5 5 1 

20 0 0 0 0 0 0 0 0 0 0 5 3 5 3 3 3 0 2 2 2 2 2 5 0 0 

21 1 1 4 3 3 3 3 3 3 3 5 3 5 3 3 3 5 2 2 2 2 2 5 5 1 

22 1 1 4 3 3 3 3 3 3 3 5 3 5 3 3 3 5 2 2 2 2 2 5 5 1 

23 2 2 8 6 6 6 6 6 6 6 5 3 5 3 3 3 10 0 0 0 0 0 3 10 2 

24 -1 -1 -4 0 -3 0 -3 0 -3 4 0 0 0 0 0 0 0 2 2 2 2 2 2 0 0 

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 0 0 

26 1 1 4 3 3 3 3 3 3 3 0 0 0 0 0 0 5 0 0 0 0 0 0 5 1 

27 1 1 4 3 3 3 3 3 3 3 0 0 0 0 0 0 5 0 0 0 0 0 0 5 1 

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 

32 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 6 0 

33 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 

34 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

35 1 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

36 0 0 0 4 7 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 

37 1 0 0 0 0 4 7 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 

38 0 1 0 0 0 0 0 4 7 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 

39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 

40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 

41 0 0 0 3 0 3 0 3 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 5 1 

43 5 5 20 12 15 12 15 12 15 8 18 12 20 12 12 12 29 12 9 12 12 9 18 29 7 
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Table 7.1 (cont.): Elementary Modes Matrix – Metabolic reactions x EFMs. 

 

 
269 270 271 272 273 274 275 

1 15 3 3 3 9 3 3 

2 0 0 0 0 0 0 0 

3 6 2 2 2 6 2 2 

4 6 2 2 2 6 2 2 

5 6 2 2 2 6 2 2 

6 15 3 5 5 15 5 5 

7 15 3 3 5 15 5 5 

8 0 0 0 0 0 0 0 

9 15 3 3 3 9 3 3 

10 15 3 3 3 9 3 3 

11 15 3 3 3 9 3 3 

12 6 2 2 2 6 2 2 

13 9 1 1 1 3 1 1 

14 3 1 1 1 3 1 1 

15 3 1 1 1 3 1 1 

16 3 1 1 1 3 1 1 

17 10 2 2 2 8 3 3 

18 10 2 2 2 8 3 3 

19 5 1 1 1 7 3 3 

20 0 0 0 0 0 3 1 

21 5 1 1 1 1 3 1 

22 5 1 1 1 1 3 1 

23 10 2 2 2 2 3 1 

24 0 0 0 0 6 2 2 

25 0 0 0 0 0 0 0 

26 5 1 1 1 1 0 0 

27 5 1 1 1 1 0 0 

28 0 0 0 0 0 0 0 

29 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 

32 0 0 0 0 0 0 0 

33 0 0 0 0 0 0 0 

34 6 0 0 0 0 0 0 

35 0 0 0 0 0 0 0 

36 0 2 0 0 0 0 0 

37 0 0 2 0 0 0 0 

38 0 0 0 2 0 0 0 

39 0 0 0 0 0 0 0 

40 0 0 0 0 0 0 0 

41 0 0 0 0 0 2 0 

42 5 1 1 1 7 0 2 

43 35 7 7 7 19 10 8 
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7.4 Appendix D 

Table 7.2: Unfeasible EFMs for the analysed strains – EFMs x group of stains. Rows represent 

groups of strains: 1 – WT reference grown at 0.2h
-1

, tktB, talA, talB, rpiB, pfkA, pfkB, fbp, fbaB, 

gapC, gpmA, gpmB, pykA, pykF, ppsA, galM, glk, pgm; 2 – WT grown at 0.4h
-1

, 0.5h
-1

 and 0.7h
-1

; 

3 – pgi; 4 – gnd; 5 – zwf; 6 – rpe; 7 – In the remaining cases (pgl, rpiA and tktA gene deletions 

strains) all EFMs are plausible. 

 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
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x x 
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3 x x x x x 
 

x x x x x x x x x x x x x x x x x x 

4 
                     

x x x 
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x x x 

6 
                        

7 
                        

 

Table 7.2 (cont.): Unfeasible EFMs for the analysed strains. 

 
 

 
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 
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x x x x x 
   

x 
  

x 
 

x 
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5 x x 
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x x x x 
     

x 

7 
                        

  

Table 7.2 (cont.): Unfeasible EFMs for the analysed strains. 

 

 
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 
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Table 7.2 (cont.): Unfeasible EFMs for the analysed strains. 

 

 
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 
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x x x x x x  x    

3 x x x x x x x x x x x x x x x x x x x  x x x 
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Table 7.2 (cont.): Unfeasible EFMs for the analysed strains. 

 

 
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 
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x x x x x x 
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x x x x x x 
       

x x x x x 

3 x x x x 
 

x 
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x x x x x x x  x x   

4 x x x x 
               

 x x x x 

5 x x x x x 
 

x x x x x x 
       

x x x x x 
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 x x   
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Table 7.2 (cont.): Unfeasible EFMs for the analysed strains. 

 

 
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 

1 
               

           

2 x x x x x x x x x x 
 

x 
   

    x x x x x x x 

3 x x x x x x x x x x x x x x x x x x x x x x x x x x 

4 x x x x x x x x x x x x x x 
 

           

5 x x x x x x x x x x x x x x 
 

           

6 x x x 
 

x 
 

x x x x x x 
   

           

7 
               

           

  

Table 7.2 (cont.): Unfeasible EFMs for the analysed strains. 

 

 
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 

1 
            

             

2 x x x x x x x x x x x x x x x x x x x x      

3 x x x x x x x x x x x x x x  x  x  x      

4 
           

x x x x x x x x x x x x x x 

5 
           

x x x x x x x x x x x x x x 

6 
            

  x  x  x  x x x x x 

7 
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Table 7.2 (cont.): Unfeasible EFMs for the analysed strains. 

 

 
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 

1 
            

            

2 
            

            

3 
            

            

4 x x x x x x x x x x x x x x x x x x x x x x x x 

5 x x x x x x x x x x x x x x x x x x x x x x x x 

6 x x x x x x x x x x x x x x x x x x x x x x x x 

7 
            

            

 

Table 7.2 (cont.): Unfeasible EFMs for the analysed strains. 

  

 
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 

1 
            

            

2 
            

         x x x 

3 
            

            

4 x x x x x x x x x x x x x x x x x x x x x x x x 

5 x x x x x x x x x x x x x x x x x x x x x x x x 

6 x x x x x x x x x x x x x x x x x x x x x x x x 

7 
            

            

  

Table 7.2 (cont.): Unfeasible EFMs for the analysed strains. 

 

 
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 

1 
            

  x x          

2 x 
 

x x x x x x x x x x x x x x x x x x x x x x x 

3 
            

             

4 x x x x x x x x x x x x x x x x x x x x x x x x x 

5 x x x x x x x x x x x x x x x x x x x x x x x x x 

6 x x x x x x x x x x x x x x x x x x x x x x x x x 

7 
            

             

  

Table 7.2 (cont.): Unfeasible EFMs for the analysed strains. 

 

 
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 

1 
            

         

2 x x x x x x x x x x x 
 

     x    

3 
            

         

4 x x x x x x x x x x x x x x x x x x x x x 

5 x x x x x x x x x x x x x x x x x x x x x 

6 x x x x x x x x x x x x x x x x x x x x x 

7 
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Table 7.2 (cont.): Unfeasible EFMs for the analysed strains. 

 

 
264 265 266 267 268 269 270 271 272 273 274 275 

1 
            

2 
   

x x x x x x x 
  

3 
            

4 x x x x x x x x x x x x 

5 x x x x x x x x x x x x 

6 x x x x x x x x x x x x 

7 
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7.5 Appendix E 

Table 7.3: Ranking of statistically significant EFMs with high correlation with the envirome and 

proteome. Each EFM is selected with increasing explained flux variance. It can also be examined 

the statistical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.87 6.75 × 10
-7

 56 72.6 

205 0.89 2.18 × 10
-7

 53 82.1 

164 0.81 2.98 × 10
-5

 56.1 82.3 

158 0.76 1.71 × 10
-4

 50.9 82.5 

126 0.78 7.59 × 10
-5

 57.3 82.6 

34 1 3.92 × 10
-2

 99 82.6 

115 0.8 3.29 × 10
-5

 58.9 84.3 

30 0.93 1.21 × 10
-8

 73.4 84.3 

130 0.79 5.81 × 10
-5

 49.5 84.4 

175 0.94 4.35 × 10
-10

 52 87.8 

102 1 1.54 × 10
-2

 58.7 87.8 

 

Table 7.4: Ranking of statistically significant EFMs with high correlation with the envirome and 

metabolome. Each EFM is selected with increasing explained flux variance. It can also be exam-

ined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

260 0.87 1.67 × 10
-6

 67.5 31 

219 0.93 2.44 × 10
-9

 57.5 56 

275 0.9 7.87 × 10
-8

 52.5 60.6 

249 0.93 8.05 × 10
-9

 70.7 62.9 

272 0.87 1.63 × 10
-6

 59.6 63.1 

228 0.85 3.33 × 10
-6

 54.6 63.8 

227 0.81 2.65 × 10
-5

 55.1 63.9 

242 0.77 1.04 × 10
-4

 46.9 63.9 

250 0.97 7.00 × 10
-12

 77.6 64.2 

3 0.91 3.32 × 10
-8

 55.5 70.7 

236 0.92 2.55 × 10
-8

 60.2 70.8 

34 0.99 1.03 × 10
-1

 95 70.9 

246 0.83 9.01 × 10
-6

 55.8 70.9 
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Table 7.4 (cont.): Ranking of statistically significant EFMs with high correlation with the envi-

rome and metabolome. Each EFM is selected with increasing explained flux variance. It can also 

be examined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

110 0.81 1.48 × 10
-5

 43 73.1 

252 0.95 4.43 × 10
-10

 37 73.1 

93 0.83 4.90 × 10
-6

 37.4 73.5 

69 0.85 1.79 × 10
-6

 45.3 74.3 

 

Table 7.5: Ranking of statistically significant EFMs with high correlation with the envirome and 

transcriptome. Each EFM is selected with increasing explained flux variance. It can also be exam-

ined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.88 3.28 × 10
-7

 64 74 

263 0.89 1.64 × 10
-7

 50.7 81.2 

3 0.94 8.88 × 10
-10

 63.2 86.1 

126 0.8 4.35 × 10
-5

 58 86.1 

34 1 2.46 × 10
-2

 99.8 86.2 

123 0.79 6.21 × 10
-5

 47.1 86.3 

130 0.66 2.09 × 10
-3

 26.1 86.4 

127 0.8 4.13 × 10
-5

 3.5 86.4 

125 0.72 4.70 × 10
-4

 -4.6 86.4 

62 0.94 1.29 × 10
-9

 50.6 87.1 

 

Table 7.6: Ranking of statistically significant EFMs with high correlation with the envirome and 

regulatory transcriptome. Each EFM is selected with increasing explained flux variance. It can 

also be examined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.98 8.40 × 10
-5

 95.6 78.3 

263 0.99 1.96 × 10
-3

 90.4 85.8 

264 0.98 3.61 × 10
-3

 87.4 87.7 

274 0.98 3.25 × 10
-3

 76 88.4 

273 0.99 8.62 × 10
-2

 50.1 88.5 

164 1 8.91 × 10
-4

 37.6 88.5 

272 0.99 1.10 × 10
-1

 13.8 88.5 
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Table 7.6 (cont.): Ranking of statistically significant EFMs with high correlation with the envi-

rome and regulatory transcriptome. Each EFM is selected with increasing explained flux variance. 

It can also be examined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 

value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

262 0.96 8.65 × 10
-3

 68 88.5 

162 1 1.09 × 10
-3

 50.3 88.5 

275 0.99 4.72 × 10
-4

 53.5 88.6 

227 1 2.80 × 10
-2

 32.4 88.6 

126 1 9.77 × 10
-3

 70.5 88.6 

124 1 7.18 × 10
-4

 90.8 88.6 

258 0.98 3.43 × 10
-3

 44.7 88.7 

211 1 1.03 × 10
-4

 92 88.8 

158 1 2.40 × 10
-4

 46.6 88.8 

157 1 1.05 × 10
-3

 51.8 88.8 

122 1 1.61 × 10
-3

 74.3 88.9 

154 0.98 3.30 × 10
-3

 68.4 89.1 

3 0.95 1.21 × 10
-3

 79.9 89.7 

 

Table 7.7: Ranking of statistically significant EFMs with high correlation with the proteome and 

metabolome. Each EFM is selected with increasing explained flux variance. It can also be exam-

ined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

260 0.9 1.86 × 10
-7

 66.6 31 

219 0.9 7.60 × 10
-8

 57.2 55.8 

263 0.88 2.56 × 10
-7

 47.3 61 

249 0.86 2.73 × 10
-6

 60.5 61.6 

241 0.86 2.03 × 10
-6

 62.2 61.7 

228 0.96 7.91 × 10
-11

 55.8 62.5 

235 0.96 1.66 × 10
-10

 45.9 62.5 

242 0.92 2.49 × 10
-8

 39.9 62.5 

34 0.99 8.21 × 10
-2

 97.2 62.6 

244 0.9 1.17 × 10
-7

 42.2 62.6 

3 0.89 1.02 × 10
-7

 53.7 68.6 

79 0.88 3.22 × 10
-7

 19.4 68.9 

71 0.89 1.50 × 10
-7

 49.7 71 
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Table 7.8: Ranking of statistically significant EFMs with high correlation with the proteome and 

Transcriptome. Each EFM is selected with increasing explained flux variance. It can also be ex-

amined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.89 1.04 × 10
-7

 54.1 72.2 

263 0.95 1.13 × 10
-10

 51.8 80 

164 0.86 1.86 × 10
-6

 37.9 80.2 

30 0.82 1.77 × 10
-5

 50.4 80.3 

228 0.85 3.18 × 10
-6

 39.7 80.6 

3 0.96 2.47 × 10
-11

 54.3 85.4 

126 0.81 2.74 × 10
-5

 51.7 85.5 

124 0.96 1.24 × 10
-10

 39.1 85.5 

34 1 1.21 × 10
-2

 100 85.5 

121 0.79 5.55 × 10
-5

 49.1 85.5 

119 0.76 1.73 × 10
-4

 46.2 85.7 

130 0.85 4.24 × 10
-6

 38.2 85.7 

120 0.85 3.19 × 10
-6

 43.6 85.8 

115 0.87 1.75 × 10
-6

 54.1 86.9 

244 0.96 3.57 × 10
-11

 50.7 87.4 

127 0.96 1.26 × 10
-10

 66.5 87.5 

157 0.93 1.34 × 10
-8

 37.8 87.6 

71 0.97 6.12 × 10
-12

 49.7 89.1 

 

Table 7.9: Ranking of statistically significant EFMs with high correlation with the proteome and 

regulatory transcriptome. Each EFM is selected with increasing explained flux variance. It can 

also be examined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.97 1.88 × 10
-4

 94.1 78 

263 0.98 3.86 × 10
-3

 88.8 85.5 

264 0.98 4.33 × 10
-3

 87.7 87.5 

274 0.99 4.67 × 10
-4

 81.5 88.2 

273 1 8.14 × 10
-3

 50.7 88.3 

164 1 4.49 × 10
-4

 43.7 88.3 

260 1 1.03 × 10
-3

 13.5 88.4 

262 0.91 3.27 × 10
-2

 64.5 88.4 
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Table 7.9 (cont.): Ranking of statistically significant EFMs with high correlation with the prote-

ome and regulatory transcriptome. Each EFM is selected with increasing explained flux variance. 

It can also be examined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 

value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

162 1 9.20 × 10
-4

 75.3 88.4 

275 0.98 3.56 × 10
-3

 49 88.5 

227 1 4.35 × 10
-4

 38.3 88.5 

124 1 1.08 × 10
-3

 95.1 88.5 

158 1 1.34 × 10
-3

 49 88.6 

115 1 6.77 × 10
-4

 43.1 88.8 

253 1 3.11 × 10
-3

 77.5 88.8 

126 1 1.39 × 10
-3

 99 88.8 

211 1 1.25 × 10
-5

 95.3 89 

157 1 8.43 × 10
-5

 65.2 89 

122 1 1.46 × 10
-4

 90.6 89 

154 1 1.53 × 10
-4

 83.6 89.3 

 

Table 7.10: Ranking of statistically significant EFMs with high correlation with the metabolome 

and transcriptome. Each EFM is selected with increasing explained flux variance. It can also be 

examined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.93 3.71 × 10
-9

 59.3 73.1 

263 0.92 1.13 × 10
-8

 51.5 80.5 

3 0.95 2.90 × 10
-10

 53.4 85 

116 0.8 3.56 × 10
-5

 62.6 85.8 

30 0.77 1.07 × 10
-4

 56.9 85.8 

126 0.79 6.08 × 10
-5

 50.1 86.1 

123 0.79 6.65 × 10
-5

 44.9 86.1 

125 0.89 3.68 × 10
-7

 57.5 86.2 

102 1 6.12 × 10
-2

 72.2 86.2 

71 0.95 1.87 × 10
-10

 47.4 87.7 

120 0.87 1.06 × 10
-6

 55.9 87.8 

121 0.87 1.30 × 10
-6

 61 87.9 

 



7. Appendix 

97 

 

Table 7.11: Ranking of statistically significant EFMs with high correlation with the metabolome 

and regulatory transcriptome. Each EFM is selected with increasing explained flux variance. It 

can also be examined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 val-

ue. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 1 3.35 × 10
-7

 99.3 79.1 

263 1 1.51 × 10
-5

 95.8 86.3 

264 1 7.50 × 10
-6

 97.7 88.2 

274 1 1.82 × 10
-5

 63.9 88.8 

164 1 6.66 × 10
-5

 59.6 88.8 

262 1 3.47 × 10
-5

 36.5 88.9 

162 1 1.08 × 10
-3

 61.5 88.9 

158 1 8.72 × 10
-4

 52.5 88.9 

126 1 2.29 × 10
-2

 86.5 89 

211 1 1.85 × 10
-6

 81.6 89.1 

157 1 1.61 × 10
-3

 56.6 89.1 

154 1 1.33 × 10
-5

 92.5 89.4 

3 0.97 3.55 × 10
-4

 83.7 90 

155 1 6.49 × 10
-5

 81.4 90 

153 1 8.31 × 10
-5

 80 90.1 

151 0.99 5.78 × 10
-4

 78.6 90.1 

202 0.99 6.34 × 10
-4

 81.9 90.1 

134 0.99 1.02 × 10
-5

 93.9 92 

273 1 1.91 × 10
-3

 68 92 

275 1 1.01 × 10
-5

 96.6 92.1 

 

Table 7.12: Ranking of statistically significant EFMs with high correlation with the transcriptome 

and regulatory transcriptome. Each EFM is selected with increasing explained flux variance. It 

can also be examined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 val-

ue. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.97 4.14 × 10
-4

 91.8 77.5 

263 0.98 2.47 × 10
-3

 88.7 85.3 

264 0.99 1.20 × 10
-3

 86.7 87.4 

271 1 2.72 × 10
-3

 59.4 87.7 

274 0.99 4.96 × 10
-4

 83.3 88.2 
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Table 7.12 (cont.): Ranking of statistically significant EFMs with high correlation with the tran-

scriptome and regulatory transcriptome. Each EFM is selected with increasing explained flux var-

iance. It can also be examined the statistical relevance of each EFM trough the analysis of pvalue 

and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

164 1 2.03 × 10
-4

 40.2 88.2 

269 0.99 9.10 × 10
-2

 34.9 88.3 

260 1 3.13 × 10
-2

 20.1 88.4 

275 0.98 2.30 × 10
-3

 88 88.4 

273 1 6.00 × 10
-2

 36.2 88.4 

272 1 5.14 × 10
-2

 30.9 88.4 

253 1 1.61 × 10
-2

 75 88.5 

162 1 4.87 × 10
-4

 58.8 88.5 

262 0.99 1.83 × 10
-3

 75.9 88.5 

227 0.99 9.95 × 10
-2

 66.2 88.5 

258 0.98 2.61 × 10
-3

 79.3 88.6 

247 1 4.89 × 10
-2

 21.8 88.6 

124 1 1.97 × 10
-3

 98.8 88.6 

158 1 1.23 × 10
-3

 73.2 88.7 

211 1 7.03 × 10
-5

 98.3 88.8 

 

Table 7.13: Ranking of statistically significant EFMs with high correlation with the envirome, 

proteome and metabolome. Each EFM is selected with increasing explained flux variance. Statis-

tical relevance of each EFM can also be examined (pvalue and r
2
 value). 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

260 0.9 1.11 × 10
-7

 67.3 31 

219 0.93 1.67 × 10
-9

 59.8 56.5 

262 0.92 7.83 × 10
-9

 48.3 60.9 

249 0.86 3.08 × 10
-6

 58.4 61.5 

241 0.84 7.37 × 10
-6

 62.7 61.5 

227 0.92 2.42 × 10
-8

 53.9 62.2 

236 0.94 1.39 × 10
-9

 68.6 62.3 

233 0.99 1.00 × 10
-1

 69.4 62.3 

231 0.86 2.31 × 10
-6

 46.7 62.7 

253 0.96 6.32 × 10
-11

 54.2 63 

3 0.95 3.07 × 10
-10

 50 67.3 
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Table 7.13 (cont.): Ranking of statistically significant EFMs with high correlation with the envi-

rome, proteome and metabolome. Each EFM is selected with increasing explained flux variance. 

It can also be examined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 

value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

228 0.87 1.70 × 10
-6

 47.8 67.4 

250 0.98 4.56 × 10
-13

 23.9 67.4 

94 0.85 2.28 × 10
-6

 39.3 67.7 

70 0.92 9.88 × 10
-9

 50.9 70.8 

34 0.99 8.37 × 10
-2

 97.2 70.9 

246 0.93 1.31 × 10
-8

 55.9 71.1 

106 1 5.37 × 10
-2

 53.9 71.7 

 

Table 7.14: Ranking of statistically significant EFMs with high correlation with the envirome, 

proteome and transcriptome. Each EFM is selected with increasing explained flux variance. It can 

also be examined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.9 8.68 × 10
-8

 55 72.4 

263 0.96 6.64 × 10
-12

 55.8 80.4 

164 0.89 4.21 × 10
-7

 40.5 80.6 

30 0.85 4.45 × 10
-6

 48.2 80.7 

3 0.96 1.71 × 10
-11

 56.1 85.3 

126 0.84 6.93 × 10
-6

 59.5 85.4 

34 1 2.59 × 10
-2

 99.8 85.4 

121 0.83 9.72 × 10
-6

 52.3 85.4 

130 0.84 6.45 × 10
-6

 43.4 85.6 

123 0.9 1.91 × 10
-7

 46.6 85.6 

127 0.88 7.48 × 10
-7

 45.2 85.6 

125 0.78 9.22 × 10
-5

 16.1 85.6 

115 0.87 1.17 × 10
-6

 56.8 86.9 

244 0.96 1.03 × 10
-10

 53.9 87.3 

119 0.99 1.78 × 10
-14

 58.4 87.4 

120 0.96 4.45 × 10
-11

 29.7 87.4 

128 0.9 1.03 × 10
-7

 31.5 87.4 

71 0.97 3.01 × 10
-12

 50.6 88.9 
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Table 7.15: Ranking of statistically significant EFMs with high correlation with the envirome, 

proteome and regulatory transcriptome. Each EFM is selected with increasing explained flux var-

iance. It can also be examined the statistical relevance of each EFM trough the analysis of pvalue 

and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.98 1.29 × 10
-4

 94.9 78.2 

263 0.98 2.46 × 10
-3

 90.4 85.7 

264 0.98 2.72 × 10
-3

 89.4 87.6 

274 1 8.99 × 10
-5

 79.7 88.3 

273 1 8.68 × 10
-3

 46.1 88.4 

164 1 4.53 × 10
-4

 42.6 88.4 

262 0.97 5.73 × 10
-3

 73.3 88.5 

162 1 6.01 × 10
-4

 64.1 88.5 

275 0.99 1.18 × 10
-3

 50.5 88.5 

124 1 4.96 × 10
-4

 92.4 88.5 

229 1 5.87 × 10
-3

 75.7 88.7 

253 1 3.72 × 10
-3

 52.4 88.7 

126 1 7.07 × 10
-4

 69.1 88.8 

121 1 3.77 × 10
-3

 41.6 88.8 

132 1 1.47 × 10
-5

 98.3 88.9 

246 1 4.65 × 10
-3

 73.2 88.9 

160 1 4.04 × 10
-4

 46.4 88.9 

163 1 3.62 × 10
-3

 53.2 89 

216 1 1.99 × 10
-3

 12 89 

244 1 4.63 × 10
-4

 72.4 89.1 

 

Table 7.16: Ranking of statistically significant EFMs with high correlation with the envirome, 

metabolome and transcriptome. Each EFM is selected with increasing explained flux variance. It 

can also be examined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 val-

ue. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.93 2.38 × 10
-9

 60.4 73.3 

263 0.93 3.36 × 10
-9

 51.3 80.6 

3 0.96 4.31 × 10
-11

 53.7 85.2 

119 0.8 4.63 × 10
-5

 63.2 85.4 

126 0.89 3.04 × 10
-7

 76.2 85.5 
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Table 7.16 (cont.): Ranking of statistically significant EFMs with high correlation with the envi-

rome, metabolome and transcriptome. Each EFM is selected with increasing explained flux vari-

ance. It can also be examined the statistical relevance of each EFM trough the analysis of pvalue 

and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

30 0.91 6.62 × 10
-8

 72.3 85.6 

125 0.8 4.44 × 10
-5

 49.7 85.7 

121 0.81 2.77 × 10
-5

 64 85.7 

123 0.81 2.39 × 10
-5

 39.3 85.7 

127 0.69 1.10 × 10
-3

 42.6 85.7 

102 1 6.11 × 10
-2

 73.6 85.8 

130 0.78 7.16 × 10
-5

 38.3 85.8 

62 0.96 5.39 × 10
-11

 49.6 86.5 

13 0.81 1.39 × 10
-5

 35.2 86.7 

 

Table 7.17: Ranking of statistically significant EFMs with high correlation with the envirome, 

metabolome and regulatory transcriptome. Each EFM is selected with increasing explained flux 

variance. It can also be examined the statistical relevance of each EFM trough the analysis of 

pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 1 4.54 × 10
-7

 99.3 79.1 

263 1 1.45 × 10
-5

 96 86.3 

264 1 8.96 × 10
-6

 97.9 88.2 

274 1 2.35 × 10
-5

 63.8 88.8 

164 1 1.05 × 10
-4

 60.1 88.8 

162 1 1.56 × 10
-3

 60 88.8 

262 1 6.67 × 10
-5

 34.4 88.9 

158 1 9.12 × 10
-4

 52.3 88.9 

126 1 2.48 × 10
-2

 86.6 88.9 

211 1 1.71 × 10
-6

 81 89.1 

157 1 1.59 × 10
-3

 57.6 89.1 

154 1 2.24 × 10
-5

 92.4 89.4 

3 0.97 3.85 × 10
-4

 83.9 90 

155 1 5.62 × 10
-5

 81.4 90 

153 1 7.84 × 10
-5

 79.8 90.1 

151 0.99 6.04 × 10
-4

 78.3 90.1 
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Table 7.17 (cont.): Ranking of statistically significant EFMs with high correlation with the envi-

rome, metabolome and regulatory transcriptome. Each EFM is selected with increasing explained 

flux variance. It can also be examined the statistical relevance of each EFM trough the analysis of 

pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

202 0.99 5.78 × 10
-4

 81.6 90.1 

134 0.99 1.03 × 10
-5

 93.9 92 

273 1 4.40 × 10
-3

 59.7 92 

275 1 8.42 × 10
-6

 95.5 92.1 

 

Table 7.18: Ranking of statistically significant EFMs with high correlation with the envirome, 

transcriptome and regulatory transcriptome. Each EFM is selected with increasing explained flux 

variance. It can also be examined the statistical relevance of each EFM trough the analysis of 

pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.97 3.15 × 10
-4

 92.8 77.7 

263 0.99 1.64 × 10
-3

 89.9 85.5 

264 0.99 7.83 × 10
-4

 88.1 87.5 

271 1 5.48 × 10
-3

 54.7 87.8 

274 0.99 4.99 × 10
-4

 82.6 88.3 

164 1 1.17 × 10
-4

 38.8 88.3 

269 0.99 9.12 × 10
-2

 29.6 88.3 

262 0.99 1.02 × 10
-3

 75.8 88.4 

253 1 2.00 × 10
-2

 74.2 88.4 

162 1 1.81 × 10
-4

 55.9 88.4 

275 1 4.15 × 10
-4

 79.3 88.5 

270 0.99 9.20 × 10
-2

 29.9 88.5 

272 0.99 1.02 × 10
-1

 32.7 88.5 

227 0.99 9.16 × 10
-2

 67.4 88.5 

258 0.99 1.51 × 10
-3

 74.9 88.6 

124 1 2.15 × 10
-3

 98.3 88.6 

121 1 3.55 × 10
-2

 92.1 88.6 

273 1 2.35 × 10
-2

 90.1 88.6 

158 0.99 6.85 × 10
-3

 69.9 88.7 

211 1 7.32 × 10
-5

 93.7 88.8 
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Table 7.19: Ranking of statistically significant EFMs with high correlation with the proteome, 

metabolome and transcriptome. Each EFM is selected with increasing explained flux variance. It 

can also be examined the statistical relevance of each EFM trough the analysis of pvalue and r
2
 val-

ue. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.93 2.66 × 10
-9

 57.8 72.9 

263 0.93 2.75 × 10
-9

 52.4 80.4 

3 0.95 8.55 × 10
-11

 53.3 85 

125 0.79 6.79 × 10
-5

 59.8 85.2 

126 0.8 4.13 × 10
-5

 55.7 85.3 

120 0.85 5.01 × 10
-6

 63.5 85.5 

121 0.88 7.61 × 10
-7

 69.5 85.5 

127 0.83 1.17 × 10
-5

 44.3 85.6 

130 0.79 6.08 × 10
-5

 39.1 85.6 

30 0.8 3.53 × 10
-5

 50.7 85.6 

102 1 2.61 × 10
-2

 57.8 85.6 

71 0.96 1.93 × 10
-11

 46.7 87.2 

 

Table 7.20: Ranking of statistically significant EFMs with high correlation with the proteome, 

metabolome and regulatory transcriptome. Each EFM is selected with increasing explained flux 

variance. It can also be examined the statistical relevance of each EFM trough the analysis of 

pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 1 5.02 × 10
-7

 99.3 79.1 

263 1 2.01 × 10
-7

 96.2 86.3 

264 1 9.51 × 10
-7

 98 88.2 

274 1 1.29 × 10
-5

 62.2 88.7 

164 1 2.32 × 10
-4

 60.8 88.8 

162 1 3.82 × 10
-4

 61.4 88.8 

158 1 4.14 × 10
-3

 54.8 88.8 

262 1 4.83 × 10
-5

 33.3 88.9 

126 1 2.36 × 10
-2

 79.9 88.9 

211 1 4.17 × 10
-6

 80.1 89.1 

157 1 3.19 × 10
-4

 61.8 89.1 

154 1 5.15 × 10
-5

 94.2 89.3 

3 0.98 8.12 × 10
-5

 89.4 89.9 
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Table 7.20 (cont.): Ranking of statistically significant EFMs with high correlation with the corre-

lation with proteome, metabolome and regulatory transcriptome. Each EFM is selected with in-

creasing explained flux variance. It can also be examined the statistical relevance of each EFM 

trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

155 1 8.58 × 10
-5

 83.4 90 

153 1 9.38 × 10
-5

 82 90 

151 1 3.35 × 10
-4

 80.6 90.1 

150 0.99 4.87 × 10
-4

 77.9 90.3 

272 1 2.66 × 10
-2

 54.4 90.4 

273 1 4.26 × 10
-3

 53 90.4 

212 1 6.44 × 10
-7

 97.8 90.5 

 

Table 7.21: Ranking of statistically significant EFMs with high correlation with the metabolome, 

transcriptome and regulatory transcriptome. Each EFM is selected with increasing explained flux 

variance. It can also be examined the statistical relevance of each EFM trough the analysis of 

pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 1 3.07 × 10
-6

 98.8 79 

263 1 4.24 × 10
-6

 95.9 86.1 

264 1 4.59 × 10
-6

 97.5 88 

274 1 3.51 × 10
-6

 66.8 88.6 

164 1 5.55 × 10
-4

 51.6 88.6 

262 1 2.02 × 10
-4

 42.5 88.6 

162 1 1.41 × 10
-4

 60.4 88.6 

158 1 3.97 × 10
-3

 46.8 88.7 

126 1 1.01 × 10
-2

 86.2 88.7 

211 1 6.47 × 10
-7

 85.2 88.9 

157 1 1.61 × 10
-3

 52.5 88.9 

154 1 1.07 × 10
-5

 85.5 89.1 

155 1 3.27 × 10
-4

 76.9 89.2 

3 0.97 2.47 × 10
-4

 82.1 89.8 

134 0.99 1.68 × 10
-5

 89.7 91.7 

275 1 1.36 × 10
-5

 75.2 91.8 

228 1 1.89 × 10
-2

 76.6 91.9 

258 1 1.66 × 10
-5

 64.4 92 
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Table 7.21: Ranking of statistically significant EFMs with high correlation with the metabolome, 

transcriptome and regulatory transcriptome. Each EFM is selected with increasing explained flux 

variance. It can also be examined the statistical relevance of each EFM trough the analysis of 

pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

212 1 1.26 × 10
-4

 73.5 92 

213 1 7.31 × 10
-5

 90.9 92 

 

Table 7.22: Ranking of statistically significant EFMs with high correlation with the envirome, 

proteome, metabolome and transcriptome. Each EFM is selected with increasing explained flux 

variance. It can also be examined the statistical relevance of each EFM trough the analysis of 

pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.93 1.58 × 10
-9

 58.8 73.1 

263 0.94 1.16 × 10
-9

 52 80.5 

30 0.8 3.64 × 10
-5

 62.5 80.6 

3 0.96 1.64 × 10
-11

 53.5 85.2 

126 0.84 5.77 × 10
-6

 67.7 85.2 

121 0.82 1.99 × 10
-5

 62.4 85.3 

127 0.86 2.92 × 10
-6

 56.8 85.4 

130 0.78 8.63 × 10
-5

 51.3 85.4 

123 0.94 3.60 × 10
-9

 59.5 85.4 

119 0.92 2.75 × 10
-8

 65.5 85.5 

102 1 4.69 × 10
-2

 74 85.5 

62 0.96 2.96 × 10
-11

 46.7 86.2 

 

Table 7.23: Ranking of statistically significant EFMs with high correlation with the envirome, 

proteome, metabolome and regulatory transcriptome. Each EFM is selected with increasing ex-

plained flux variance. It can also be examined the statistical relevance of each EFM trough the 

analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 1 5.89 × 10
-7

 99.3 79.1 

263 1 2.64 × 10
-7

 96.3 86.2 

264 1 5.69 × 10
-7

 98.1 88.2 

274 1 7.97 × 10
-6

 62.1 88.7 

164 1 1.44 × 10
-4

 60.9 88.8 
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Table 7.23 (cont.): Ranking of statistically significant EFMs with high correlation with the envi-

rome, proteome, metabolome and regulatory transcriptome. Each EFM is selected with increasing 

explained flux variance. It can also be examined the statistical relevance of each EFM trough the 

analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

162 1 4.28 × 10
-4

 61.6 88.8 

158 1 4.09 × 10
-3

 54.3 88.8 

262 1 3.40 × 10
-5

 32.2 88.9 

126 1 2.39 × 10
-2

 79.8 88.9 

211 1 2.56 × 10
-6

 79.8 89.1 

157 1 4.87 × 10
-4

 61.6 89.1 

154 1 4.81 × 10
-5

 94.3 89.3 

3 0.98 8.88 × 10
-5

 89.6 89.9 

155 1 8.51 × 10
-5

 83.5 90 

153 1 9.79 × 10
-5

 82.1 90 

151 1 3.80 × 10
-4

 80.4 90.1 

150 1 3.85 × 10
-4

 78.9 90.3 

272 1 2.44 × 10
-2

 52.5 90.4 

273 1 1.45 × 10
-3

 63.7 90.4 

212 1 4.00 × 10
-7

 98 90.5 

 

Table 7.24: Ranking of statistically significant EFMs with high correlation with the envirome, 

proteome, transcriptome and regulatory transcriptome. Each EFM is selected with increasing ex-

plained flux variance. It can also be examined the statistical relevance of each EFM trough the 

analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.97 2.83 × 10
-4

 93 77.8 

263 0.99 1.27 × 10
-3

 90.7 85.5 

264 1 3.66 × 10
-4

 89.5 87.5 

271 1 1.15 × 10
-2

 52.2 87.8 

274 0.99 5.84 × 10
-4

 85.1 88.4 

164 1 2.27 × 10
-4

 41.4 88.4 

272 1 4.42 × 10
-2

 40.5 88.4 

253 1 4.11 × 10
-2

 53.4 88.4 

262 0.99 1.79 × 10
-3

 81.9 88.5 

162 1 7.50 × 10
-6

 62.5 88.5 
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Table 7.24 (cont.): Ranking of statistically significant EFMs with high correlation with the envi-

rome, proteome, transcriptome and regulatory transcriptome. Each EFM is selected with increas-

ing explained flux variance. It can also be examined the statistical relevance of each EFM trough 

the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

275 0.99 8.25 × 10
-4

 78.1 88.5 

270 1 1.69 × 10
-2

 16.8 88.6 

227 1 4.97 × 10
-2

 56.9 88.6 

258 0.99 1.77 × 10
-3

 68.6 88.6 

124 1 8.16 × 10
-4

 98.9 88.6 

121 1 3.33 × 10
-2

 75 88.7 

273 1 9.18 × 10
-3

 65.6 88.7 

158 0.99 5.35 × 10
-3

 60.7 88.7 

211 1 4.42 × 10
-5

 95.7 88.8 

157 1 5.83 × 10
-5

 65.2 88.8 

 

Table 7.25: Ranking of statistically significant EFMs with high correlation with the envirome, 

metabolome, transcriptome and regulatory transcriptome. Each EFM is selected with increasing 

explained flux variance. It can also be examined the statistical relevance of each EFM trough the 

analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 1 3.25 × 10
-6

 98.8 79 

263 1 5.52 × 10
-6

 96.1 86.1 

264 1 4.93 × 10
-6

 97.6 88 

274 1 1.61 × 10
-6

 66.6 88.6 

164 1 5.99 × 10
-4

 51.7 88.6 

262 1 1.13 × 10
-4

 40.7 88.6 

162 1 1.67 × 10
-4

 60.6 88.6 

158 1 3.73 × 10
-3

 46.5 88.7 

126 1 9.87 × 10
-3

 86.1 88.7 

211 1 2.38 × 10
-7

 85.1 88.9 

157 1 1.79 × 10
-3

 52.4 88.9 

154 1 1.03 × 10
-5

 85.5 89.1 

155 1 3.63 × 10
-4

 76.8 89.2 

3 0.97 2.74 × 10
-4

 82.3 89.8 



Hybrid Systems Biology: Application to Escherichia coli 

108 

 

Table 7.25 (cont.): Ranking of statistically significant EFMs with high correlation with the envi-

rome, metabolome, transcriptome and regulatory transcriptome. Each EFM is selected with in-

creasing explained flux variance. It can also be examined the statistical relevance of each EFM 

trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

134 0.99 1.77 × 10
-5

 89.7 91.7 

275 1 1.05 × 10
-5

 74.5 91.8 

228 1 1.27 × 10
-2

 75.6 91.9 

258 1 2.16 × 10
-5

 63.7 92 

212 1 1.66 × 10
-4

 72.3 92 

213 1 6.76 × 10
-5

 91 92 

 

Table 7.26: Ranking of statistically significant EFMs with high correlation with the proteome, 

metabolome, transcriptome and regulatory transcriptome. Each EFM is selected with increasing 

explained flux variance. It can also be examined the statistical relevance of each EFM trough the 

analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.99 4.18 × 10
-6

 98.6 79 

263 1 1.49 × 10
-6

 96.1 86.1 

264 1 4.61 × 10
-6

 97.6 88 

274 1 1.72 × 10
-7

 66.6 88.6 

164 1 1.72 × 10
-3

 53.2 88.6 

262 0.99 6.99 × 10
-4

 42.6 88.6 

162 1 3.29 × 10
-5

 61.4 88.6 

158 0.99 7.03 × 10
-3

 49.9 88.7 

126 1 4.65 × 10
-3

 81.9 88.7 

211 1 6.52 × 10
-7

 86 88.9 

157 1 8.97 × 10
-4

 55.5 88.9 

154 1 6.83 × 10
-5

 89.6 89.1 

3 0.98 1.84 × 10
-4

 85.5 89.8 

155 1 5.13 × 10
-5

 75.8 89.8 

152 1 2.73 × 10
-4

 73.7 89.9 

153 1 9.09 × 10
-6

 63.9 89.9 

151 1 3.63 × 10
-4

 62.2 89.9 

214 1 1.18 × 10
-7

 92.5 90 

213 1 1.87 × 10
-5

 87.7 90 

150 1 3.91 × 10
-4

 76.7 90.2 
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Table 7.27: Ranking of statistically significant EFMs with high correlation with the envirome, 

proteome, metabolome, transcriptome and regulatory transcriptome. Each EFM is selected with 

increasing explained flux variance. It can also be examined the statistical relevance of each EFM 

trough the analysis of pvalue and r
2
 value. 

 

EFM r
2
 pvalue var(λEFM) var(robs) 

92 0.99 4.17 × 10
-6

 98.7 79 

263 1 1.17 × 10
-6

 96.2 86.1 

264 1 3.51 × 10
-6

 97.7 88 

274 1 1.45 × 10
-7

 66.3 88.6 

164 1 1.77 × 10
-3

 53.1 88.6 

262 0.99 5.05 × 10
-4

 40.9 88.6 

162 1 3.54 × 10
-5

 61.5 88.6 

158 0.99 7.54 × 10
-3

 49.5 88.7 

126 1 4.17 × 10
-3

 81.8 88.7 

211 1 3.71 × 10
-7

 85.8 88.9 

157 1 1.02 × 10
-3

 55.4 88.9 

154 1 6.98 × 10
-5

 89.7 89.1 

3 0.97 1.99 × 10
-4

 85.6 89.8 

155 1 4.80 × 10
-5

 76 89.8 

152 1 2.78 × 10
-4

 73.8 89.9 

153 1 1.38 × 10
-5

 63.7 89.9 

151 1 3.41 × 10
-4

 62.1 89.9 

214 1 4.53 × 10
-8

 92.4 90 

213 1 1.46 × 10
-5

 82.3 90 

150 0.99 4.39 × 10
-4

 77.2 90.2 

 


