Universidade Nova de Lisboa
Faculdade de Ciéncias e Tecnologia
Departamento de Informética

Acceleration of Physics Simulation Engine through OpenCL

Dissertag@o para obtencao do Grau de Mestre em

Engenharia Informética

Jorge Miguel Raposeira Lagarto

Orientador: Prof. Doutor Fernando Birra

Juri:

Presidente: Prof. Doutor Pedro Manuel Corréa Barahona
Arguente: Prof. Doutor Jodo Anténio Madeiras Pereira
Vogal: Prof. Doutor Fernando Pedro Reino da Silva Birra

Maio de 2011

Universidade Nova de Lisboa
Faculdade de Ciéncias e Tecnologia
Departamento de Informética

Dissertagdo de Mestrado

Acceleration of Physics Simulation Engine through OpenCL

Jorge Miguel Raposeira Lagarto

Orientador: Prof. Doutor Fernando Birra

Trabalho apresentado no ambito do Mestrado em Engenharia
Informdtica, como requisito parcial para obten¢do do grau de
Mestre em Engenharia Informdtica.

Maio de 2011

Acceleration of Physics Simulation Engine through OpenCL

© Copyright by Jorge Miguel Raposeira Lagarto, FCT/UNL, UNL

A Faculdade de Ciéncias e Tecnologia e a Universidade Nova de Lisboa tém o direito,
perpétuo e sem limites geogrdficos, de arquivar e publicar esta dissertacdo através de
exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositorios
cientificos e de admitir a sua copia e distribuicdo com objectivos educacionais ou de
investigagdo, ndo comerciais, desde que seja dado crédito ao autor e editor.

Resumo

Hoje em dia, a simulagdo fisica é um tépico relevante em varios dominios, desde areas cientifi-
cas como a medicina, até ao entretenimento como efeitos em filmes, animag¢ao de computador
€ Jogos.

Para facilitar a producdo de simula¢des mais rdpidas, os programadores usam motores de
fisica, pois eles oferecem uma grande variedade de funcionalidades como simulac¢io de corpos
rigidos e deformaveis, dinamica de fluidos ou detec¢dao de colisdes. As industrias do cinema
e dos jogos de computador usam cada vez mais os motores de fisica para introduzir realismo
nos seus produtos. Nestas dreas, a velocidade € mais importante do que a precisdo e tém sido
desenvolvidos esfor¢os para atingir simulagdes com alta performance. Além de algoritmos de
simulacdo fisica mais rdpidos, o avanco na performance das Unidades de Processamento Gra-
fico (GPUs) nos ultimos anos tem levado os programadores a transferir cdlculos pesados para
este tipo de dispositivos, em vez de os realizar na Unidade Central de Processamento (CPU).
Alguns motores de fisica ja fornecem implementacdes em GPU de algumas funcionalidades,
nomeadamente na detec¢do de colisdes entre corpos rigidos.

Neste trabalho pretendemos acelerar uma funcionalidade presente na grande parte dos mo-
tores de fisica: a simulag@o de tecidos. Como a detec¢do de colisdes é um dos maiores factores
que limitam a eficiéncia neste tipo de simula¢do, vamo-nos concentrar especificamente em mel-
horar esta fase. Para atingir uma aceleracao considerdvel, planeamos explorar o incrivel par-
alelismo do GPU através do desenho de algoritmos eficientes na arquitectura Open Computing
Language (OpenCL). Finalmente, ird ser elaborado um estudo para comparar a performance de
uma implementac¢do sequencial em CPU com a solugdo paralela apresentada em GPU.

Palavras-chave: Motor de fisica; Simulacdo de tecidos; Detec¢do de colisdes; GPU - Unidade
de Processamento Grafico; OpenCL - Open Computing Language; BV - Volume envolvente;
BVH - Hierarquia de volumes envolventes

Vil

Abstract

Nowadays, physics simulation is a relevant topic in several domains, from scientific areas like
medicine to entertainment purposes such as movie’s effects, computer animation and games.

To make easier the production of faster simulations, developers are using physics engines
because they provide a variety of features like rigid and deformable body simulation, fluids
dynamics and collision detection. Computer game and film industries use increasingly more
physics engines in order to introduce realism in their products. In these areas, speed is more
important than accuracy and efforts have been made to achieve high performance simulations.
Besides faster physical simulation algorithms, GPUs’ performance improvement in the past few
years have lead developers to transfers heavy calculation work to these devices instead of doing
it in the Central Processing Unit (CPU). Some engines already provide GPU implementations
of several key features, particularly on rigid body collision detection.

In this work we want to accelerate a feature present in most of the current physics engines:
cloth simulation. Since collision detection is one of the major bottlenecks in this kind of simu-
lation, we will focus specifically in improving this phase. To achieve a considerably speed-up
we plan to exploit the massive parallelism of the Graphics Processing Unit (GPU) by design-
ing an efficient algorithm using the Open Computing Language (OpenCL) framework. Finally,
a study will be made to compare the performance of a sequential CPU approach against the
parallel GPU proposed solution.

Keywords: Physics engine; Cloth simulation; Collision detection; GPU - Graphics Processing
Unit; OpenCL - Open Computing Language; BV - Bounding Volume; BVH - Bounding Vol-
ume Hierarchy

1X

Contents

Acronyms

1 Introduction
1.1 Motivation
1.2 Expected contributions

2 State of Art
2.1 Physics Engines

2.1.1 PhysX
2.1.2 Havok
2.1.3 Bullet

2.1.4 GPU Acelleration in Physics Engines
2.2 Cloth Collision Detection
2.2.1 Spatial Enumeration
2.2.1.1 Regular Grids
2.2.1.2 Spatial Hashing
2.2.2 Bounding Volume Hierarchies
2.2.2.1 Bounding Volume choice
2.2.2.2 BVH Construction
2.2.2.3 BVH Traversal
2.2.2.4 BVH Update
2.2.3 GPU Implementations
2.3 OpenCL framework

3 OpenCLKernels
3.1 Introduction
3.2 Bounding Volume Hierarchy Construction
3.2.1 BVH Construction Kernel
3.2.1.1 Root Construction Kernel
3.2.1.2 Remaining Hierarchy Construction Kernel
3.2.2 BVH Construction Kernel Optimizations
3.2.2.1 Adaptive Work Group Size Optimization
3.2.2.2 Small Splits Optimization
3.2.2.3 Large Nodes Optimization
3.2.3 Compaction Kernel
3.2.3.1 Compaction Kernel for Small Arrays
3.2.3.2 Compaction Kernel for Large Arrays
3.3 Broadphase Collision Detection Kernel
3.3.1 Simple Broad Phase Collision Detection
Xxi

s
<
=

00NN PR PR WWW DN DO

ek
AN = OO

L W N DN NN NN NN = = = e
— = O 00 00 L L &~ L — O O O O \&

xii

3.3.2 Front-Based Broad Phase Collision Detection
3.4 Narrow Phase Collision Detection
3.5 Update Kernel

Results Analysis
4.1 Construction Kernels Results
4.1.1 Adaptive Construction Kernel Results
4.1.2 Small Splits Construction Kernel Results
4.1.3 Large Nodes Construction Kernel Results
4.1.4 Compaction Kernel Results
4.2 Broad Phase Collision Detection Kernels Results
4.2.1 Simple Broad Phase Collision Detection Kernel Results
4.2.2 Front Based Broad Phase Collision Detection Kernel Results
4.3 Narrow Phase Collision Detection Kernel Results
4.4 Update Kernel Results

Conclusions and Future Work

Appendix
A.1 Reduction and Scan Algorithms
A.2 Common Functions
A.3 BVH Construction Kernels
A.3.1 BVH Root Construction Kernel
A.3.2 BVH Construction Kernel
A.3.3 Small Splits Construction Kernels
A.3.4 Large Nodes Construction Kernels
A.3.4.1 Large Nodes Construction Kernels - Get Split Point
A.3.4.2 Large Nodes Construction Kernels - Split By Centroid
A.3.4.3 Large Nodes Construction Kernels - Build k-Dops
A.3.5 Compaction Kernels
A.3.5.1 Compaction Kernel for Small Arrays
A.3.5.2 Compaction Kernels for Large Arrays
A.4 Broadphase Collision Detection Kernels
A.4.1 Simple Broadphase Collision Detection Kernel
A.4.2 Front-Based Broadphase Collision Detection Kernel
A.5 Narrowphase Kernel
A.6 Update Kernel

35
37
37

39
39
40
41
42
44
45
45
46
47
47

49

51
51
53
61
61
62
63
68
68
69
72
75
75
76
78
78
80
84
86

List of Figures

2.1
22
23
24
2.5
2.6
2.7

3.1
32
33
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

Collision detection on the GPU
Collision types in cloth meshes
Bounding Volumes

Example of 2D Morton Code grid

SAH method ilustration

Index space orgainzation on OpenCL
Memory architecture in OpenCL device

Root construction kernel scheme

Build BVH Kernel Scheme

Construction timings per level

Kernels to get the split point for large nodes

Kernels to reorder primitives’ indices

Kernels to build a BV from several blocks of primitives
Compaction kernel scheme for small arrays

Compaction kernel scheme for large arrays - First Kernel
Compaction kernel scheme for large arrays - Second Kernel
Compaction kernel scheme for large arrays - Third Kernel
Broad phase kernel scheme: two internal nodes overlap
Broad phase kernel scheme: one internal node and one leaf overlap
Broad phase kernel scheme: two leafs overlap

Front decomposition

Front update

Update Kernel Scheme

Benchmark models

Adaptive Kernel timings per level

Small Splits Kernel timings

Large Nodes Kernels timings

Time consumed by the compaction kernel

Broad Phase kernel performance

Cloth dropping over the Bunny model

Broad Phase with and without the front based approach
Narrow Phase Kernel timings

Update kernel timings per level

Xiil

13
13
17
17

20
22
24
26
27
28
29
30
30
31
32
33
34
35
36
38

40
40
41
43
44
45
46
46
47
48

List of Tables

4.1
4.2
4.3
4.4

GPUs specifications

Construction phase timings

Construction phase timings for two different devices
Update phase timings

XV

39
43
44
48

Acronyms

AABB Axis-Aligned Bounding Box.

API Application Programming Interface.

BV Bounding Volume.

BVH Bounding Volume Hierarchy.

CCD Continuous Collision Detection.
CPU Central Processing Unit.

CUDA Compute Unified Device Architecture.
DOP Discrete Oriented Polytope.

GPU Graphics Processing Unit.

LBVH Linear Bounding Volume Hierarchy.

OBB Oriented Bounding Boxes.

OpenCL Open Computing Language.
PPU Physics Processing Unit.

SAH Surface Area Heuristic.
SM Streaming Multiprocessor.

SP Streaming Processor.

XVvil

1. Introduction

Physics is a huge area of investigation, which combined with computer science, is used to
simulate aspects of the physical world. From this union results the physics engine, a software
capable of performing an approximate simulation of the real world, based on physics laws.
Rigid and soft body dynamics, collision detection and fluid simulation are some of the features
offered by this kind of software.

Physics engines are used in a variety of domains, from scientific research to computer games
or movie’s special effects. While some areas need high accuracy, which leads to expensive
computations, in others speed of simulation is more important than precision. In computer
game and film industries, physics engines usually resort to simplified calculations, lowering
their accuracy and accelerating the simulation, providing real time gameplay and continuous
animation.

To meet this demand for speed, physics engines began to explore the power of actual GPUs
(Graphics Processing Unit). In the past few years, GPUs have improved their performance
dramatically, when compared to CPUs. This gap does not have to do with processor’s clock
speed-up, but with the difference in the number of cores between CPUs and GPUs. Such a high
number of cores results on a considerable increase in the amount of work a GPU performs at
once, by doing tasks in parallel. Each core can process large data sets by running thousands of
threads at the same time.

To help developers take advantage of these capabilities, NVIDIA launched Compute Unified
Device Architecture (CUDA) in 2007, providing an easy way to access cores and execute code
in parallel. Before CUDA, it was very difficult to use GPUs because the processor cores were
only accessible through Application Programming Interfaces (APIs) oriented towards common
graphics tasks. However, CUDA is limited to NVIDIA’s GPUs, so in 2008 OpenCL was re-
leased, offering a standard platform.

Nowadays, some physics engines are already using GPU acceleration through CUDA or
OpenCL in features like rigid body collision detection and particle interaction. This work will
focus on cloth simulation, which is a very important topic in areas like computer animation,
textile industry and games. Specifically, we will accelerate cloth collision detection using the
GPU to perform expensive computations.

This option was chosen after analyzing the features of three physics engines (PhysX, Havok
Physics and Bullet). The conclusion was that currently, there is little work done on this domain
using GPUs despite its enormous potential for improvement by doing tasks in parallel.

A cloth mesh is composed by a large number of triangles. During the simulation, each
triangle is in motion, which can cause intersections with other objects’ triangles (inter-object
collision) or even with triangles in the same mesh (self-collisions). In order to correctly detect
all the collisions, we need to perform a huge amount of tests which can lead to several pairs of
triangles to examine. Having the ability to use the GPU, we can run all these tests in parallel

and improve substantially the collision detection phase performance.
1

2

1.1 Motivation

The main motivation for this work is the possibility to improve physics simulation performance
by exploiting the capabilities of current GPUs, coupled with the utilization of OpenCL has a
generic way to produce parallel code.

Cloth collision detection was the feature chosen to be accelerated, due to the importance
of cloth simulation in physics engines, joined with the fact that collision detection in this area
remains little explored concerning to GPU utilization. Moreover, collision detection is an ex-
pensive process because of the large number of elementary tests needed between triangles to
find intersections. These tests are the strong candidates to be parallelized by several GPU cores.

Spatial enumeration techniques are not attractive to be applied in the context of collision
detection involving deformable objects, as they would require to constantly update the spatial
data structure. Instead, bounding volume hierarchies provide an easier alternative. Cloth trian-
gles are subdivided in areas and organized in a tree hierarchy. Nearby triangles (enclosed in the
same subdivided area) are stored in the same node to facilitate collision detection. To discover
collisions between two mesh based objects we need to traverse and compare their hierarchies
and test pairs of possible colliding triangles. The goal is to do this traversal, as well as the
elementary tests involving triangles in parallel by running OpenCL kernels on the GPU.

We use as model a cloth simulator developed in [6]. The main intention is to transfer the
expensive phase of collision detection (or the more relevant parts) to the GPU and improve the
simulator performance.

1.2 Expected contributions

With this work we expect to accelerate a cloth simulator [6] by improving its collision detection
system. To accomplish this task, we plan to transfer most of the calculations from the CPU to
the GPU using the OpenCL framework.

In summary, the main expected contributions are:

* Design and implementation of parallel algorithms through OpenCL architecture for col-
lision detection on cloth simulation, capable of running in the GPU with minimal inter-
vention from the CPU.

* Development of a comparative study in terms of speed-up between the results obtained
from the proposed solution and the studied approaches, as well as a comparison between
both CPU sequential and GPU parallel implementations.

2. State of Art

This chapter is divided in three phases. First, we will focus on actual physics engines, specif-
ically on the three major contributors in this area: PhysX, Havok and Bullet. The primordial
goal is to analyze the main features of each one with special attention to developments made in
GPU parallel computation and in the end do an overall comparison.

In the second phase we explain in more detail the physics simulation feature that we want to
accelerate through the GPU: cloth collision detection. Particularly, we will describe techniques
used to efficiently detect collisions in cloth meshes and the advances made using the GPU.

Finally, we will give an overview about the OpenCL framework used to produce parallel
algorithms capable of running on the GPU.

2.1 Physics Engines

Computer game and film industries use increasingly more physics engines in order to introduce
realism in their products. To meet these demands, physics engine developers work to refine sim-
ulation techniques to incorporate in their computer’s software. Rigid and soft body dynamics,
fluid dynamics or collision detection are examples of physical phenomena capable of being sim-
ulated in physics engines. However, in most cases, speed is more important than accuracy and
efforts have been made to achieve high performance simulation. Besides faster physical simu-
lation algorithms, GPU’s performance improvement in the past few years have lead developers
to transfer heavy computation work to these devices instead of doing it on CPU.

This section focuses on actual physics engines, specifically on the three major contributors
in this area: PhysX, Havok and Bullet. We will give a brief overview of these engines and focus
special attention to the developments made in GPU parallel computation.

2.1.1 PhysX

PhysX [4] is NVIDIA’s proprietary physics engine that provides support for physical simula-
tions used in actual PC and console games. It has a free and closed source version available
in NVIDIA’s home page, but developers can pay to obtain full source code. Medal of Honor:
Airborne, Unreal Tournament 3 and Batman: Arkham Asylum are examples of realistic games
running with this engine.

PhysX provides a set of features covering the main aspects of physic simulation, from rigid
to soft bodies and cloth, collision detection or fluids. In addition to its wide range of features,
it introduces innovations in cloth tearing and soft body collision detection with fluids. Almost
all of its functionalities are capable to run totally on NVIDIA’s Physics Processing Unit (PPU)
hardware and it also gives the possibility to parallelize some computations on GPU through
CUDA framework. However, it has the disadvantage of being a closed source SDK, which

does not confer great customization. As a proprietary system, it also restricts the hardware
3

4

acceleration to NVIDIA’s PPUs or GPUs, not offering a scalable service concerning hardware
parallelization yet.

2.1.2 Havok

Havok Physics [3] is one of the most popular physics engines in game and film industries, devel-
oped by a company called Havok. It gathers a set of features capable of running across multiple
platforms like PC, Xbox 360, PlayStation 3 or Nintendo’s Wii. It also provides solutions for
digital media creators in the movie industry, helping film production, including The Matrix,
X-Men: The Last Stand or Charlie and the Chocolate Factory. Havok Physics is integrated in
a suite of tools developed by Havok, each one with different features and directed to a specific
goal.

Havok Physics itself does not provide a rich kit of solutions. It is limited to rigid bodies
and collision detection. For a full utilization of its capabilities we have to integrate it with the
remaining Havok products. It has an efficient collision detection mechanism and a continuous
simulation system for fast object contact point’s recognition. Havok is fully multi-threaded for
CPU or Playstation’s Cell SPU and offers great flexibility because of its open source SDK.
Unfortunately, so far it was not possible to take benefit from GPU optimizations, despite an
OpenCL demonstration on Havok Cloth.

2.1.3 Bullet

Bullet [2] is a freeware and open-source physics library. Its SDK is implemented in C++ lan-
guage and is used in game development and movie special effects. Bullet is used in a variety
of game platforms and has optimized multi-threaded code for Cell SPU, CUDA and the newest
OpenCL.

The SDK gathers a collection of good features, such as rigid and soft body simulation,
discrete and Continuous Collision Detection (CCD). Its C++ source code gives the freedom
to customize engine’s features or port them to different platforms. However, Bullet’s most
promising feature is GPU acceleration. Besides a CUDA broad phase algorithm, developers are
working on OpenCL collision detection and a constraint solver, allowing for a bigger hardware
scalability.

2.1.4 GPU Acelleration in Physics Engines

CUDA is used in PhysX and Bullet engines to accelerate rigid body collision detection and
particle based applications where every particle interacts with each other (for example, through
gravitational attraction). For systems where particles don’t interact with each other, paralleliza-
tion is relatively easy because each particle can be treated independently, but to run a simulation
where interparticle forces are considered, a refined approach is needed. To cover all the particle
interactions, in a brute-force implementation, we need to perform n(n — 1) /2 collision tests for

5

n particles. However, we can take advantage of the fact that the interaction force drops off with
distance and comparisons will only be needed between each particle and its neighbors, using
a spatial subdivision method. The same can be applied to rigid body collision detection, since
only nearby bodies have a chance to collide.

The implementation described in [12], is used in PhysX and Bullet and consists in parti-
tioning the simulation space into a uniform grid (Figure 2.1), where the cell size is equal to the
particle size (for different particle’s sizes, is the same as the largest size), so each object can
occupy a maximum of 2¢ cells, where d is the number of dimensions (2 cells in a 3D world).
With this cell size, only four tests are needed for a 2D object and eight for a 3D object collision
detection. The cell id on the grid is calculated for each particle based on its center points (for
larger objects, it could be based on their bounding boxes positions). From this cell id, a hash
value is computed to parameterize object cell position to CUDA’s grid. The cell hash value is
stored along with the object id in an array which will be further transferred to the GPU. Once in
the GPU, this array is sorted by cell hash value, using a parallel radix sort algorithm, described
in detail by Scott Le Grand [11].

The next phase consists in signaling the cells containing particles in order to help the col-
lision detection in the next step. This is achieved by writing in a new array (cell start array)
the indexes in the sorted array where new cells appear. As shown in Figure 2.1, cells 4, 6 and
9 start on indexes 0, 2 and 5 respectively in the sorted array. To fill the array, threads (one per
particle) gets the particle’s cell index in the ordered array and compares it with the cell index of
the previous particle. If the indexes differ, it means that a new collision cell was found and the
index is written.

/
053 \024:
) ¢

-/l
ﬂf
°

N

Index | Unsorted list Index | List sorted Index | List sorted Cell start
(cell id, particle id) by cell id by cell id

0 (9.0 0 4,3) 0 (4,38
(6, 1) (4. 5) (4, 3)

(6,2)
(4,3
(6,4)
4.5

(6, 1)
(6,2)
(6,4)
(9.0)

(6, DA
(6.2) \] \
(6. 4) ! 0
(9. 004

W

(=]
(=]
=

\H___/Q
| ||t —
— | = |oco|=a|on|w | s b —
== |o|oo| | w| L o —
—
[}

r

2
2

E oS}
|

=== =] =] ||l |wn| &

|| ko] —

i
v

Figure 2.1 Collision detection on the GPU: left image shows an example of bodies disposition on a 2D
grid; right image shows how the array containing the particles and their cells on CUDA is before and
after radix sort algorithm and how cell start array is filled

In the final stage, each thread obtains one particle id from the ordered array, finds its Axis-
Aligned Bounding Box (AABB) in an AABB’s array and calculates in which cell (in the world’s
grid) the particle is in. Then it examines the neighboring 27 (3x3x3) cells and for each one

6

computes its hash value (for CUDA’s grid) and checks in the new filled array (cell start) if there
are particles in that cell id. If the cell is not empty (contains an integer index representing its
index in the ordered array), iterates over all bodies in the ordered array beginning on the index
read from cell start array and tests for collisions.

Since this implementation is in CUDA architecture, developers are still restricted to NVIDIA’s
GPUs. To achieve greater scalability, NVIDIA is considering the use of OpenCL in future
PhysX releases.

However, OpenCL is already incorporated in Bullet’s SDK. Since version 2.77 (September
2010), one of Bullet’s features is the soft body and cloth library translated to OpenCL. So
far, the current implementation only parallelizes the integration phase, forces computation and
constraint solver and does not provide support fro collision detection or other advanced features.

We can also check the Bullet’s OpenCL broad phase mechanism that uses a parallel Bitonic
Sort algorithm for bodies’ hash sort, different from CUDA’s Radix Sort implementation. Bitonic
Sort [16] is slower than Radix Sort [13, 26] for large data sets but performs better when has a
small number of elements to sort. Moreover, for short arrays that can fit on GPU shared memory,
execution is performed in a single kernel and take advantage of local memory fast access.

Presently AMD supports Bullet’s OpenCL developments, so it is expectable to see progress
in this area, and in the meantime, we can follow the latest implementation updates on Bullet’s
SVN [1].

2.2 Cloth Collision Detection

A cloth mesh is composed by a set of vertices, connected by edges, forming faces (usually
triangles). Due to cloth complex structure and deformation capacity, collision detection is more
difficult than for simple rigid bodies. To successfully identify collisions between cloth meshes
and generic mesh objects (deformable or rigid), as well as cloth self intersections, two tests are
needed (Figure 2.2), as demonstrated by Provot [25]:

e One vertex from one mesh intersects a face from another mesh (vertex/face collision).

* One edge from one mesh intersects an edge from another mesh (edge/edge collision).

Once more, testing all cloth triangles (vertices, edges and faces) against all obstacles’ trian-
gles is not the best approach. It is a very time consuming solution and leads to unnecessary tests
between distant triangles that have no chances to collide. To deal with this problem and accel-
erate the collision detection phase performance we have to think in a more efficient strategy.

We will focus on two methods to improve cloth collision detection performance: Spatial
Enumeration and Bounding Volume Hierarchies combined with space partition. In the follow-
ing sections these approaches will be analyzed based on their advantages and disadvantages.

Vertex/Face collision

bt

Edge/Edge collision

v ¥

Figure 2.2 Collision types in cloth meshes: Vertex/Face collision and Edge/Edge collision

2.2.1 Spatial Enumeration

This technique consists in dividing the 3 dimensional simulation space, into smaller volume
element boxes and assign each primitive (triangles for mesh based objects) to one of the boxes
(based on triangle’s center point), allowing to check collisions only between primitives con-
tained in the same or neighboring boxes. The grid is fixed during the simulation and we have to
compute objects’ new cells within the grid at each time step. The volume organization generally
varies between regular grids and hash tables (spatial hashing).

2.2.1.1 Regular Grids

We saw this technique applied by PhysX and Bullet engines for rigid body collision detection.
Each object was assigned to one grid’s box, limiting each object’s collision test to the neighbor-
ing cells. However, to achieve this optimization we needed to choose the right cell size. If the
box was too small, a triangle could intersect too many cells and increase the number of cells to
test. On the other hand, an excessively large cell would contain too much triangles, generating
useless tests involving far away primitives. The best choice was to have box dimensions equal
to object’s dimensions. This way a triangle can overlap a maximum of 8 cells and collisions test
can be resumed to the 27 surrounding boxes. Although this approach works very well for rigid
bodies, it has a problem when it comes to soft body collision detection. In soft body simulation,
triangles change their aspect frequently due to forces acting on them (stretching, bending, etc.)
making it impossible to predict their exact size. Very large cells can eventually solve this, but

also causes excessive triangles per box, decreasing the method’s performance.

The usual solution is to store each triangle in every cell it overlaps, creating a data structure
larger than the initial set of triangles. A bounding volume is computed for each triangle (usually
an AABB due to its simplicity) to easily identify the overlap cells. Then, in a second phase,
we compute again each triangle’s overlapped cells through its AABB and check for intersection
with other triangles in the same boxes. If two primitives overlap, a collision is detected and if
they belong to the same object a self-collision is found.

Regular grids are simple and efficient, but they are not adaptive, which could result in many
empty cells or many over-populated cells. This issue can be slightly improved with spatial
hashing, since the hash table size is normally smaller then the whole grid.

2.2.1.2 Spatial Hashing

Spatial hashing [28] works by storing mesh vertices in a hash table (spatial hashing). Each
vertex has a key, corresponding to its grid box identifier. Based on this key a hash value is
calculated to obtain the hash table index where the vertex will be inserted. If two vertices with
different key values obtain the same hash value, the insertion function will iterate over the hash
table until it finds an empty position to keep one of the elements, which means that each array
location will have vertices with identical keys (contained in the same cube). After filling the
array with all vertices, starts the second phase of collision detection. All triangles are iterated
and their AABB’s computed to discover the cells affected by the bounding volume. For each cell
overlapped by the AABB, its hash value is determined and intersection tests are made between
triangle and vertices in the same index (vertex/triangle test), as well as all the edges connected
to the vertex (edge/edge test).

2.2.2 Bounding Volume Hierarchies

The basic idea is to partition the space occupied by the objects’ bounding volumes hierarchi-
cally, storing it in a tree structure called Bounding Volume Hierarchy (BVH), used both for
inter-object and self collision detection.

Each BVH refers to one mesh object, which means that to check if two deformable bodies
are colliding we need to compare their BVHs. For a large number of bodies an exponential
number of BVH evaluations will be needed, which is very time consuming and inefficient. One
way to reduce that amount of tests is to enclose all objects with BVs and treat them like rigid
bodies. Then it is possible to apply techniques like regular grids to check only the closest
meshes.

2.2.2.1 Bounding Volume choice

Bounding Volume (BV) are closed volumes built around primitives that are used to accelerate
collision detection. Instead of testing every possible combination of two colliding triangles,
one from each object (or a smaller partition of an object), BVs allow to verify only if their

9

volumes intersect with a few tests, depending on BV’s complexity. The most well known BVs
for collision detection are Bounding Sphere, AABB, Oriented Bounding Boxes (OBB) and k-
Discrete Oriented Polytope (DOP), each one with different characteristics. Figure 2.3 illustrates
the equivalent 2D representations of these bounding volumes.

Sphere AABB OBB 8-Dop

Figure 2.3 Bounding Volumes: Sphere, AABB, OBB and 8-Dop

Bounding Sphere [24] is the simplest BV and the easier to test for intersection. It is defined
by a sphere centered on the object’s center with radius equal to the distance from the body’s
center and its farthest vertex.

AABBs [29] and OBBs [10] are rectangular boxes that completely contain an object. An
AABB is a box aligned with the coordinate axes and it only needs two tests per axis (six on
total) to detect a collision with another AABB. OBB has an arbitrary alignment, frequently with
object’s alignment for tighter fit. Collision detection is slower than for AABB but its update is
relatively easier if the object just moves without altering its size (good for rigid bodies) because
its OBB simply needs a rigid body transformation to follow body’s movement.

Another common type of bounding volume is the k-DOP. DOP stands for Discrete Oriented
Polytope, which is the equivalent to a convex polygon in three dimensional space and the value
of k determines how many faces it has. An AABB (in 3D) is equivalent to a 6-DOP, having the
planes’ normals oriented by the three dimensional axes. Values of k typically vary between 6, 14
18 and 26, which is reflected on BV’s tightness. To detect an overlap between two k-DOPs only
k tests are necessary, at most, and the update cost per leaf node is proportional to the number of
vertices inside the DOP, while it is in the order of k for internal nodes.

Bounding volume choice is an important issue in order to optimize the queries. We must
decide based on a good balance between performance (time required to perform an overlap test)
and accuracy (quantity of false collisions eliminated in each test). A simpler and less tight BV
such as AABB, OBB or Sphere bounding volume, guarantees faster and easier overlap tests,
as well as lower memory requirements when compared to tighter ones like k-DOPs. On the
other hand, more complex BVs can reduce the number of potential colliding triangle candidate
pairs and consequently the number of elementary tests (Vertex/Face and Edge/Edge) between
triangles.

10

According to [17], k-DOPs offer the best solution due to their tight volume that limits the
number of unnecessary elementary tests, paying off construction and update costs. In compar-
ison, OBBs also provide a decent approximation to the set of primitives but have a prohibitive
update cost. Nevertheless, in [17] it’s also referred that k-DOPs should be composed by pairs
of parallel planes, bounding the primitives along k/2 directions. This allows to compute k-
DOPs using simple dot products between object’s vertices and the k planes’ normal vectors,
minimizing the associated costs.

2.2.2.2 BVH Construction

Every mesh’s BVH is built in a pre-processing step, usually using a top-down approach. The BV
envolving the entire mesh will match the tree’s root and its descendants result from successive
splits in the ancestors’ BV. Usually, the arity of the tree depends on the number of axes split.
For instance, one axis split results in a binary tree, two axes in a 4-ary tree (quadtree) and three
axes in a 8-ary tree (octree). If we don’t want to divide along all the axes, the best option is
often to cut where the BV is longer, in general on the BV’s center because it guarantees the
smaller child volumes. Triangles intersected by the splitting plane are placed on the side where
they have their centroid, or in alternative positioned on the BV with fewer primitives.

This recursive technique stops when it was reached a defined threshold on the quantity of
triangles per volume. Besides its BV definition, a leaf node will also contain information about
the triangles included in its volume.

2.2.2.3 BVH Traversal

In order to find possible collisions between two objects we must recursively traverse their BVHs
and check for BV intersections, starting on both roots. Whenever a non-overlapping node pair
is reached, the algorithm stops its recursive traversal in that branch. However, if an overlap is
found and both nodes are leafs, their enclosed triangles are tested for intersection. If only one
node is leaf, the following tests are between the leaf and the internal node’s children. Lastly, if
the two nodes are internal, we choose one to step down and test its children. The best decision
is to examine the node with smaller volume against the children of the node with larger volume
(the decision can also be based on each node’s height in the tree or in the number of descen-
dants), with the aim of quickly reach a stopping point in the algorithm (leafs intersection or no
intersection at all).

Although this approach produces the right results, it’s possible to minimize the number of
BV overlap tests, reducing this way the collision detection time. A technique introduced by
Klosowsky in [17] exploits temporal coherence between successive frames to improve queries
performance. The main idea is to keep track of the last (deepest) node pairs (one node from
each tree) tested for overlap in the previous collision detection query, storing them in a front
data structure and start examining from there at the next time step. This can be advantageous
considering that if two BVs intersect each other at some instant in time, then it’s quite likely
that they (or the BVs nearby) also overlap after a small interval of time.

11

At the beginning, the front will contain only the roots from the two hierarchies (last nodes
traversed), but it will be updated during the simulation. It can be dropped, when a node pair
in the front is replaced by one of its descendants: the last traversed until a non-overlapped
node pair is reached or a pair of leaf nodes, meaning that a possible collision was found. The
other option is to do a raise operation, required when a particular node pair corresponding to an
overlap between two BVs at the previous instant, no longer represents an intersection. In these
cases, the node pair is removed from the front and it’s replaced by one of its ancestors (the first
matching an intersection). To find the replacement pair, we choose one of the nodes from the
removed pair to climb (usually the deepest in its hierarchy).

2.2.2.4 BVH Update

At each time step, a cloth object can move, deform or collide with another object, affecting
its mesh arrangement and, consequently its BV and tree representation. This means that the
hierarchy needs to be updated frequently to keep up with changes.

A “brute force” approach is to recompute the entire BVH at each discrete time step, which
has obviously an exaggerated cost (O(nlogn) for n triangles) and will slow down significantly
the simulation.

A better solution [20] is to refit the bounds of each BV in a bottom-up manner (O(n +logn)
for n triangles). Starting on leaf nodes, all triangles are checked to discover if their movement
has placed their vertices out of the BV. In positive cases the BV is updated to fully enclose
the triangles and changes are propagated up in the tree towards the root. Each BV is merged
with its siblings and the result is used to refit their parent’s BV. We can reduce even more the
update time by stopping refitting when the merged BV of all children is completely inside of
their parent’s BV, before reaching the root.

However, successive updates result on a degradation of BVH performance in collision
queries because primitives change their positions but the structure remains the same, leading
to less tight fit BV's (with more empty space that could guide in false intersections). This aspect
is specially noted when the cloth mesh suffers significant modifications during simulation time.
To rectify the hierarchy and guarantee more efficient collision detections, we have to perform
entire rebuilds from time to time. A simple approach is to rebuild the tree in pre-defined and
fixed time intervals or number of steps, but it has a drawback: it is not adaptive to mesh defor-
mations. The process used in [8] compares a node to its children based on their volumes and
decides to rebuild the hierarchy when the ratio between them becomes very large.

Alternatively, we can just update a part of the tree and leave the remaining nodes out of date
until we need them (lazy update). The method proposed by Larsson [18] opts to update only the
upper half of the tree (starting halfway (height /2) proved to be the best after the results achieved
in several experiments). The first BVs (at the halfway of the tree) are refitted based on the set
of triangles contained in their sub-trees and the BVs above them (their ancestors) are computed
using the merging method explained earlier. This update system is faster than normal bottom-up
update if we can enlarge the BV based on a set of vertices instead of triangles. This is explained

12

by the fact that lower level nodes have more vertices shared by various triangles that are stored
in more than one BV. Larsson refers that level d = height /2 requires approximately n/2 vertex
tests for n triangles, in other words, half the time needed to refit the BV when compared to
leaf nodes. Then, the outdated nodes are repaired in the collision detection phase as they are
needed. If the traversal reaches one of these nodes for an overlap test, the BV is recalculated in
a top-down manner by splitting its parent BV. Obviously, this will result in some loss of time
gained in the update phase.

Nevertheless, the same author improves this technique by introducing a dynamic update
scheme that takes advantage of temporal coherence between successive frames in cloth simu-
lation [19]. Instead of updating the upper half of the tree, the algorithm starts at the deepest
nodes visited in the last collision detection query. The refitting is done the same way: the first
BVs are recalculated based in their descendant set of primitives, the nodes above are built in a
bottom-up style by merging child BVs and the outdated nodes are constructed during the col-
lision detection phase. This scheme is similar to the front based mechanism used for collision
detection improvement, providing a more accurate starting point for updating.

2.2.3 GPU Implementations

As it can be seen, collision detection involves many computations to correctly discover and treat
primitive intersections, as well as time spent updating BV data structures, preparing them for the
next collision query. This results in a major bottleneck in cloth simulation and GPU utilization
emerges as an interesting option to accelerate its performance. Actual GPUs provide a large
number of cores, capable of running a huge number of threads in parallel. These properties can
be exploited by designing the right algorithms, choosing the best tasks to execute in parallel and
the optimal way to distribute them.

Cloth collision detection has several phases that can be parallelized on GPU. One of them is
BVH construction and is addressed in [7] where the authors describe two different construction
algorithms.

The first one, called Linear Bounding Volume Hierarchy (LBVH), uses an efficient method
based on Morton Codes to build hierarchies. The codes are calculated from primitives’ geomet-
ric coordinates and used to map each primitive to its correspondent BV. First, a 2K x 2k x 2k
grid is established from the enclosing AABB of the entire geometry. Once this grid is made, a
3k-bit Morton Code is assigned to each cell by interleaving the binary coordinate values (Figure
2.4).

It is now possible to select the right grid cell for each primitive based on their coordinates
and give them the correspondent code. After this initialization phase, begins the hierarchy
construction by ordering the primitives’ codes. At the first level we look for the most significant
bit of all codes and place those with 0 and 1 in the left and right child respectively. The process
of subdivision is then repeated by examining the next bit until all the 3k-bits are processed.
This partitioning method is highly parallel because it uses a fast radix sort [13, 26] to split the
primitives.

13

Figure 2.4 Example of 2D Morton Code grid.

The second method uses the Surface Area Heuristic (SAH) to construct BVHs optimized for
ray-tracing. The SAH consists in evaluating all possible split positions among all split planes
and choose the one with lowest cost according to the ratio between its surface area and the
number of primitives within it (Figure 2.5).

A A

L L]

d & O &
A

A A

L [

O & O &
A A

Figure 2.5 Possible object partitions along a single coordinate axis. SAH method tries to find the mini-
mum total volume.

After selecting the split coordinate, the algorithm sorts the primitives into the left or the
right node, depending on their centroid, through a parallel prefix sum operation [13]. Once

14

sorted, one thread updates the node’s bounding box information. In order to parallelize these
steps, the authors propose a working queue approach to distribute the splits across all cores.
Each block of threads reads a split object from the input queue, processes it (SAH evaluation,
primitive sorting and BV update) and writes the resulting splits in the output queue. By using
two work queues, one as input and another as output, in each construction level, we can avoid
synchronization between them. In a binary tree the output queue should have two times the
size of the input queue because we know that a split item can result at most in two new nodes.
However, sometimes a split generates only one (one is leaf) or even zero new nodes (both
leafs). These leaf nodes are written in the output queue as null objects because they don’t need
to be divided in the next level, which forces a compaction before the next split kernel to ensure
that only non leaf nodes remain in the queue. The compacted queue is then sent as the new
input queue for the next split kernel invocation and the procedure is repeated until all nodes are
divided.

Due to its simplicity and high parallel scalability, the Morton code based algorithm can
build hierarchies extremely quickly. It just performs a sorting operation to bucket the primitives
to their correspondent nodes, avoiding the evaluation and selection of a split point. Although
being the fastest construction method, it does not achieve the best BVHs for collision detection.
The reason is that the splitting point is always static and does not adapt to the distribution of the
geometry, which could lead to very non-balanced trees causing an increase of work during the
collision detection phase.

The SAH construction algorithm performs a more balanced partition of the primitives across
the hierarchy. This scenario can be favorable during the BVH traversal by reducing the number
of levels covered to detect a collision, as well as the number of elementary tests done in the next
phase. As a disadvantage, it has the lack of parallelism between processors in the first splits
and the lower resources utilization in very small splits at the last hierarchy levels, plus higher
compaction costs. To solve the first issue, the authors present a hybrid algorithm that uses
the LBVH method in the initial levels to maintain the parallelism and processes the remaining
active splits with the SAH scheme, without compromising the hierarchy quality. In order to deal
efficiently with the small splits, the kernel writes those splits to a local work queue (since local
memory access is fastest than global memory) and processes them at the last step in one single
run, using as few threads as possible (32 in this case) to reduce memory accesses and memory
bandwidth.

BVH traversal can also be made in parallel by the GPU to increase collision detection per-
formance. For example, a naive approach for a BVH traversal is to assign a limited number of
leaf nodes in both trees for each thread to test, in order to distribute the work in equal parts.
Each thread would be responsible for traversing both BVHs (or one BVH built with pairs of
BVs to test from each object), starting on roots and descending only through the branches that
would lead to the assigned leaf nodes, as well as doing elementary tests between primitives in
case of potential collisions. With this implementation, threads are completely independent from
each other, allowing them to execute without waiting for others to finish (to obtain results) and
does not use shared memory, avoiding synchronization problems.

15

However, despite these advantages, this solution does not take maximum benefit from the
large number of threads available. The main problem is that collisions in a cloth mesh can
occur in localized regions, producing high variance in the number of overlap and collision tests
that each thread has to do. In other words, some threads can process branches with few or
no intersections at all and terminate their work and yet, need to wait for other busy threads to
finish, resulting in many idle threads and less productive work. Furthermore, higher level nodes
are visited and tested repeatedly by various threads, which is clearly unnecessary. To prevent
these problems, some techniques were introduced, mostly based on work queues, for a better
task distribution.

The implementation presented in [21] uses one work queue per core (shared by several
threads) to store pairs of BVs to test for overlap. Each work queue is initialized with one pair
from the front (if the number of threads are larger than front size, there are threads without
initial nodes), making each core traversing a different branch and avoiding repeated tests in the
same nodes. At each iteration, a thread dequeues one node from its shared queue (queues are
processed in parallel using atomic operations) and checks it for intersection. If the two BVs
overlap, two new nodes are generated (or four nodes, depending if we choose to descend from
one or both nodes of the pair) and enqueued again. Whenever a work queue becomes full or
empty, making impossible further work, a global counter, visible by all threads, holding the
number of idle cores, is atomically incremented and the kernel execution is stopped in that core.

Every thread reads that counter after processing a node pair and checks if its value already
exceeded a user-defined threshold (50% of idle cores is a good value). If yes, the work queue
is written to global memory and the kernel is aborted. After all cores aborted or finished their
executions, a kernel is launched to examine all work queues and assign the same number of
tasks to each one. The algorithm is repeated until every possible colliding pair is processed.

However, the algorithm performance depends on front size. A small front does not allow
for great parallelism by leaving too many threads without work, resulting in a modest speed-up
when compared to a sequential approach.

A similar implementation is presented in [15] using both multi-core CPU and GPU archi-
tectures to deal with CCD.

A BVH containing pairs of BVs to test (from two objects) is traversed through a CPU
parallel algorithm. Each thread has its own queue, initialized with one pair from the BVH front.
This pair and its sub-tree are traversed to find possible collisions. Every time a node is tested
positive, its child nodes are enqueued for future examination and the node is updated (lazy
update). When a queue gets empty, it is necessary to do a task reassignment, inserting new
nodes to be processed by the idle thread. This is done as follows: a thread with an empty queue
requests a node by signalling a scheduling queue from a busy thread (it chooses the thread with
more primitives in its first pair of the queue). As soon as the busy thread checks its scheduling
queue and finds a request, sends its first node to the idle thread and continues to process its
nodes. This is done again and again until all nodes are scanned. All pairs of probable colliding
primitives are putted in a queue to be tested on GPU. Note that this approach could be also
implemented on GPU with few modifications.

16

On a second phase, a single CPU thread sends segments containing thousands of triangle
pairs to the GPU. The collision tests between triangles are then performed in parallel by the
device and results are sent back to the CPU.

2.3 OpenCL framework

OpenCL [23, 9, 5] is a framework for parallel programming that allows developers to write
efficient code in a C based language capable of running on devices like GPUs. It is similar
to CUDA, but unlike this, OpenCL is not restricted to NVIDIA’s GPUs, providing a standard
solution. Moreover, OpenCL is device agnostic, which means that its utilization is not confined
to GPUs but to every device that meets OpenCL requirements.

An OpenCL application runs on a host (usually the CPU) that is connected to one or more
devices. A device is divided into one or more compute units (in a GPU it corresponds to a set of
multiprocessors called Streaming Multiprocessor (SM)) and each compute unit can have several
processing elements (equivalent to the multiple cores within a multiprocessor, each one called
Streaming Processor (SP)).

The host executes a program that manages the functions (kernels) that run on devices. It
allocates memory space on the device and transmits the data required to kernel execution. Each
instance of a kernel is called a work-item (equivalent to a thread) and each work-item runs the
same kernel code. Work-items are grouped into work-groups, providing a more coarse-grained
organization. Each work-group is executed by one compute unit and all its work-items execute
concurrently.

Work-groups initially are distributed to the available compute units (multiprocessors) and
as they finish, new work-groups are assigned to the idle multiprocessors. The threads within a
multiprocessor are executed in groups of 32, named warps. Those 32 threads run one common
instruction at a time. Work-groups are organized in an N-dimensional grid (where N is one, two
or three) that limits the total index space available (Figure 2.6) and have IDs to identify their
position inside the dimensional space. Likewise, work-items have local IDs within their work-
group and global IDs along the whole space. These identifiers can be very useful, for example
to assign to each thread a different position on an array, enabling parallel access. Work-items
can access data from different memory locations in the device, as we can see on Figure 2.7.

* Global memory: each thread can read or write from global memory, but only the host can
allocate space. It is shared by all work-items from all work-groups.

* Constant memory: it is initialized on the host and remains constant during kernel execu-
tion, which means that is a read only memory.

* Local memory: each work-group has a local memory, shared by all their threads, provid-
ing faster access than global memory.

17

* Private memory: it’s a private memory location to each work-item, but significantly

smaller.
) work-group size Sx)
I |
Iy work-group (wy , w,) ¥
.
7 work-item work-item
S (g Spese wy Spes) | auy | (i Sps, w Ses)
,’, r:,.:,,r:{n.m r:l.srl={Sx-l.ﬂ)
l/’
il = : . : work-group size Sy
g e - .
work-item work-item
NDRange size G,}|r (Wy Syrsy, Wy Syvs) iy Syray. Wy 5,08,
l = Ft=mmee rs‘.,syl:{u. Sy-!j e (3 s}):fsl-!. Sy-!)
¥
NDRange size Gy

Figure 2.6 Index space orgainzation on OpenCL: example of work-item and work-groups within a two
dimensional index space

Private Private Private Private

Threadl = Thread M Threadl = Thread M
Compute Unit | Compute Unit 2

Local Memory Local Memory

Global/Constant Memory Cache

Compute Device

Global Memory

Compute Device Memory

Figure 2.7 Memory architecture in OpenCL device: private, local, constant and global memory loca-

tions

During kernel execution, there is no guarantee of memory consistency. In other words, some
work-item can access a memory location and read a value that is already outdated. However,

18

it’s possible to explicitly enforce memory consistency in some point during the execution, by
invoking a thread synchronization. Calling a barrier instruction guarantees consistency in local
and global memory within the same work-group.

In conclusion, OpenCL provides a flexible way to take advantage of GPU resources and
distribute the computational work efficiently across several cores. This parallelization should
be very useful in the cloth collision detection context, since the meshed objects are usually
composed by large amounts of primitives, which can result in a high number of collision tests.
By using the GPU, it is possible to distribute each primitive or set of primitives within an
object across several threads during a BVH construction, BVH update or narrow phase collision
detection, while in the BVH traversal we can perform BV overlap tests in parallel. Besides the
high parallelism, it is also possible to execute operations in local memory, reducing the memory
access timings.

These approaches are shown in the next chapter where we present our OpenCL implemen-
tation for cloth simulation collision detection detection.

3. OpenCL Kernels

3.1 Introduction

In this chapter we present an implementation, based on OpenCL kernels, to handle collision de-
tection on the GPU. This implementation deals with discrete collision detection between a piece
of cloth and other mesh objects. However, we did not focus on self collisions in the deformable
model neither on the collision response mechanism. This GPU kernels were integrated in the
cloth simulator developed in [6], which allowed us to have a basis for comparison between CPU
and GPU performances.

The kernels developed include the construction of a BVH for each simulation object, two
different approaches to traverse the hierarchies and find the colliding primitives, a method to
perform parallel elementary tests between primitives and a BVH update scheme.

In the following sections we will explain in detail all of these kernels and our implementation
choices.

3.2 Bounding Volume Hierarchy Construction

3.2.1 BVH Construction Kernel

As we have seen in the previous chapter, an option to efficiently detect collisions between
meshed objects is to map them into a BVH. We have chosen to use binary trees in our BVH
implementation because they are simpler and faster to build. Specifically, for each tree level we
only need to perform one split per node, generating two different subsets of primitives.

Concerning the hierarchy construction, the process is composed by three main phases, for
each node: choosing the split point within the BV; reordering the primitives either for the left
or right sides of the split point; computing the two new child BVs (in a binary tree) from the
reordered primitives.

However, to build the root node we only apply the last step, since the root is built from the
entire set of primitives while the remaining nodes are defined from their ancestors’ primitives.
To simplify, we have different kernels for the root and for the rest of the hierarchy nodes.
In both construction kernels, each BVH node is built by one work group to ensure that no
synchronization between different groups is required.

3.2.1.1 Root Construction Kernel

To construct the root node, each thread from the assigned group reads a primitive from global
memory to a private register, in order to create a bounding volume from their vertices’ coordi-
nates, as shown in Step 1 of Figure 3.1 and detailed in Appendix A.3.1.
The nodes’ BV construction can be viewed as a computation of maximum and minimum
19

20

coordinate values of the vertices from the primitives along several directions. For example,
to calculate the two BV planes parallel to x axis, we need to find the smaller and the higher
vertices’ values along that axis. To compute the threshold values in the kernel, each thread
writes into a local array (with size equal to group size) the minimum value of its primitive’s
vertices along the chosen direction (Step 2). For instance, if the primitive is a triangle and the
direction is the x axis, we check the tree vertices’ coordinates and choose the smallest value of
x. After the array is completely filled, the entire group performs a reduction operation [13] to
obtain the minimum value and updates one BV face with it, as indicated in Step 3 of Figure 3.1.

Triangles group
® o 1 2 size -1 M
Each thread in the AAA] .. [A] .. [A] <
Work Group reads Global Memnary
one triangle from
global memory to Thread 1 Thread group size -1
a private register
P g Thread 0 Thread 2
v N
e Priv. Priv. Priv. Priv.
Reg. A ‘ Reg.“ Reg.A Reg.A ‘ -
r\..__‘ e ’,'\ ’,ﬂ
Write Min and Max rfj I \\ o Y e “,
vertices' caordinates ! :,V\ /)(\ ”_){" Y @
between kDap[i] and ! TS SN LT \
kDop[i+k] planes into f S \‘x’/\\ ‘\\ “, gfpeag 5
lacal arrays with size ¥ K . ST Y Y @ eps 1,
e e " P O O ot
[i max|max|max max Repeat forthe
StZDSS 2 remaining
an ;
® Reductio Reductio for the triangles
Run reduction remaining
oo P
P planes

maximum and
minimum vertices m!!!! ﬁ!!!!
values and \ N,
update k-Dop Update kDopli] face Update kDop[i+k/2] face
\\\ l.n’;
\N.‘-h‘_-‘_ . / —
@ Mode
Write the root
node inthe .
Hierarchy and y Output Queue ¥ Hierarchy
in the Output
e up o .. 1] [o . []

Global Memary

Figure 3.1 Steps to build the root node from a set of triangles

We use a 18-Dop as BV and the faces are stored in 18 length array where the minimum
and maximum values in a given direction are stored in positions i and i + k/2 respectively, with
k representing the number of Dop faces (for instance, over the x axis the threshold values are

21

stored in positions 0 and 9). The process is then repeated for the maximum value in the same
direction and spread to all the remaining directions needed to compute the BV faces (Step 4).
In our case, to define all the faces of a 18-Dop volume, the reduction is executed over x, y, z,
xX+y,x+2,y+z x—y, x—z and y — z directions. If the number of primitives is larger than
group size, we repeat the above steps for the remaining primitives, processing them in blocks
with the group size (Step 5).

When all the BV values are computed, one thread is responsible to add some information
fields to the node, such as parent, left child and right child indices, node’s level in the hierarchy
or start and end indices of the primitives within the volume. The new node is then written to
the hierarchy array and also to a work queue to be processed during the next kernel invocation
(Step 6 in Figure 3.1).

In the root construction kernel we also have to initialize an array with the primitives’ indices.
At the beginning, the indices in the array correspond to the primitives’ order in their array.
However, during the construction process we have to reorder primitives’ indices to set them in
the correct BVs. Instead of change the primitives array order, we switch their indices in the
primitives indices array. The reason why we do this, has to do with the fact that the primitives
array on the GPU is not synchronized with the CPU version. Once the triangles are created on
the CPU, they maintain their positions in the array during the entire simulation and we don’t
change their indices to match modifications done in the kernels. Every time the primitives are
updated (acceleration, velocity, position, etc) on the CPU, we transfer them to the GPU and
access them through the primitives indices array. This way it is possible to utilize the input
data and read the correct primitives according to the BVH organization. Unfortunately, this
represents an extra step each time we need to access a primitive because we first have to load its
index and then the corresponding primitive. However, the initialization process is easily done in
parallel by all the threads in which each thread writes its identifier (global id) in the same index
(value O in index 0O, value 1 in index 1, etc).

3.2.1.2 Remaining Hierarchy Construction Kernel

After having the root node built and the indices array initialized, the remaining nodes can be
constructed from their ancestors. The task is accomplished on a level by level basis. The
following construction kernel invocations have as input a queue created in the previous level
with all the non leaf nodes (Figure 3.2 and Appendix A.3.2).

Each input node is read by a different work group which will subsequently split it in two
child nodes. Therefore, one thread within the group loads the node from global to local memory
and then the remaining threads read it to their private registers (Step 1 in Figure 3.2). Once all
threads have their copy of the node, the process of splitting and creating new nodes can start.
To choose the best plane to divide the node we use a method presented in [17] that proved to be
the fastest among other possibilities: pick the plane where there is the longest distance between
two opposite k-Dop faces. This is achieved by computing the difference between k-Dopl[i] and
k-Dopli + k/2] planes for values of i from 0 to k/2.

22

Then we need to select a good position for the splitting plane. One possibility is to split
by the median, in other words, sort the primitives based on their centroids and assign the left
half to the left node and the right half to the right node. The Bitonic Sort [16] algorithm is
an option to order the primitives that performs well on small sized arrays (capable of being
sorted inside a single group) but it is sub efficient for large sequences when compared with
the Radix Sort [13, 26]. Although radix sort is particularly suited for integer keys (specially
with a small number of bits), it is also possible to sort floating point values by converting them
into sortable unsigned integers [14, 27] through a very inexpensive operation. By using this
algorithm, dividing the primitives by the median may be an efficient splitting method. However,
results in [17] showed that splitting by the mean always produces a hierarchy with smaller total
volume than using the median, despite generating less balanced hierarchies.

. Input Queue (Nodes) .
01 2 3 4 5 N1 N Fill lacal array
000009 @@ | |ofcont = ney
0if Cent == Avg.
Glabal Mema —.
One thread per - .
group reads Thread 0, Group 0 Run Prefix
one node from Sum algorithm
the Input Queue ————————————————‘|r to find triangles
| Chaose the longest k-Dap axis to split | fw Indexes
T .
Y
| Get BEGIN and END triangles indexes | .
I
—) Triangles !
| c Group Size ,l Indexes array if I/k\\\\ Triangles
E.h rond . 0 Begin n T Reor_?er i /%, N, Indexes array
ach thread reads primitives
an index and the | L “2‘ 3| ---‘2‘0‘"-‘9 “16‘ indexes ‘ “ 2“20“ 1 ‘ 5‘
corresponding Thiead 0 ¢Thread 2 o 0 Begin x = T
. J rea
triangle /E" hread 1 \ Triangles Global Memary
0D 14”2y 3 4% ; T T
a2y £ N Left Mode Last Right Mode First
— ‘A‘A ‘A‘A A‘ ‘A|A‘ L Triangle Index Triangle Index
— - 7 T —
. Thread 2%, Thread 1 | Glabal Memary . Build Build
e i ']
Compute triangle's Thread | _ Left Right
centroid and write Build Nodes od od
it in local array ! and write
— theminthe t chiid @) Right Child
Reductio Hierarchy antin'e. ’_‘/Q ight Chi
@ and in the o = N\
H ,’) /”{ \‘\ N
Compute centroids' Output Queue o s, N
sum and divide by x/’k,/f}utput Queue * *\ Hierarchy
number of triangles M!
to get average : ‘.O.‘ ‘.‘ ‘.‘ .‘O‘| ‘
Centroids Average = 0 1 2 Mx2 0 T H
- Centraids Sum / Number of Triangles Global Memary

Figure 3.2 Steps to build two child nodes from their ancestor

23

Based on that, the decision was to use the mean method and compute the average of primi-
tives’ centroids in the chosen plane through a reduction algorithm and sort them into either the
left or right sides using a scan algorithm. To perform that task in parallel each thread reads one
triangle index (in the range between the node’s primitives’ indices) and loads its subsequent
triangle (Step 2). Then extracts its centroid in the chosen plane (given by the average between
all primitive vertices’ coordinates in that plane) and writes it down in a local memory array, as
illustrated in Step 3. The work group runs a reduction to find the centroids’ sum and divides it
by the number of primitives to get the average point (Step 4).

After that, it is necessary to reorder primitives’ indices based on the split point. If the
triangle’s centroid value is lower than the split point, a 1 is written into a local array, otherwise
it’s filled with a O (Step 5). This array is used to perform a prefix sum and from the values
obtained it’s possible to calculate the new positions for primitives’ indices (Step 6). Left sided
indices are placed in consecutive positions from left to right, starting from input node begin
index, and the same applies to right sided indices, in the opposite way, starting from end index,
as showed in Step 7 of Figure 3.2. If the number of node’s primitives is larger than the group
size, we need to keep processing indices in blocks with group size, starting again from Step 2.

At the end, we must have all the left and right new nodes’ indices ordered between the input
node bounds and in addiction know the index where one ends and another begins. The next
stage (Step 8) consists then in constructing both left and right BVs with their newly primitives
through the same mechanism used in root building (Figure 3.1), with the difference that the left
child is built with primitives in the range of begin and last left node index and the right child
with the primitives in the range last le ft node index + 1 to end.

Hereafter, one thread sets in both nodes their parent index as the input node index, as well
as their left and right child indices. If the node has less primitives than the threshold defined
for a leaf, its children indices are set with -1 value, signaling that it is a leaf node. In addiction,
its begin and end fields, pointing to the primitives indices array, are also saved to be used in the
next split. They are finally written in the hierarchy and in the output queue to be processed in
the next kernel invocation (Step 8).

3.2.2 BVH Construction Kernel Optimizations

The above construction kernel has two main bottlenecks, as evidenced in [7]. One of them
is the large number of nodes with few primitives in the lower levels of the hierarchy. The
second bottleneck happens in the initial hierarchy nodes, due to their large size and the lack of
parallelism by assigning only one work group per node.

These drawbacks are evidenced in Figure 3.3, where the constructions timings per level for
an object with approximately 1 million primitives (Happy Buddha model, illustrated in Figure
4.1) are shown. As we can see, the first levels of the hierarchy are considerably slow when
compared with the intermediate levels (the root level construction is faster than the second
level, since we do not need to find a split point, neither to reorder the primitives), while in the
last levels we notice a decrease in the performance related with the queue size.

24

N GPU Constr.

Queue Size

1200 300000

1100

275000

1000 250000

Timings {ms)
Numberof Nodes

00

225000

200 r 200000

700

- 175000

600

r 150000

500 - 125000

400

r 100000

300 4

- 75000

200

r 50000

100 r 25000

-0

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Level of Split

Figure 3.3 Construction timings per level for for the Happy Buddha model: construction is slow in the
first levels due to the nodes’ size, while in the last levels the performance decreases due to the queue size.

In the following subsections we introduce three measures to reduce these performance is-
sues.

3.2.2.1 Adaptive Work Group Size Optimization

In our construction kernel, each node is split by an entire work group. As we build new hierarchy
levels, the amount of primitives per node decreases. When the number of primitives in the
node is less than the group size we can have many idle threads (or threads doing unnecessary
work) revealing a poor utilization of work group parallelism, that is reflected in a decrease of
performance.

To solve that problem we need to adapt the work group size to the number of primitives per
node, in order to have the maximum use of all threads. Our solution was to estimate the average
node size at each level and reduce the group size to follow that value. The number of threads
within each work group should be always higher than the node size and also a power of two,
since it is a necessary condition to execute the scan and reduction algorithms. We compute the
average node size at each level by dividing the total number of primitives by 2/¢"*/~!. Whenever
that value is above the work group size, we round it up to the next power of two and set it as the
new work group size.

However, if we have less than 32 threads per work group the multiprocessors are not running
a full warp, which means that we are not taking advantage of all their capabilities. To split very
small nodes we introduce a refined approach explained in the next section.

25

3.2.2.2 Small Splits Optimization

To split very small nodes we use an algorithm based on the idea presented in [7] to deal with
small splits. The idea is that each small node is processed by a single thread using its private
memory registers, avoiding the local memory accesses and the synchronization needed to split
larger nodes across all group threads (kernel detailed in Appendix A.3.3).

In the construction kernel we define a threshold value for the maximum number of primitives
contained in a small node. During the kernel execution all the nodes above that threshold are
filtered into a local array instead of being split by the current work group. Once all nodes from
the input queue are processed, each thread within the group loads and splits individually one
or more small nodes from the local array. By individually we mean that all the steps needed to
split the node and generate its two child nodes are made sequentially by only one thread. With
this method there are several threads doing work in parallel and less idle threads. Nevertheless,
the threshold value should be smaller than the group size in order to compensate the increase of
work per thread when compared to a split executed by the entire work group. In the end of the
kernel, one thread per group atomically increments a global counter with the number of small
splits done in that group, to account the total of small nodes in that level.

Before the next kernel invocation, we compare the number of small nodes with the queue
size: if the small nodes exceed a percentage limit (another defined threshold) in the queue, we
invoke a different kernel where each thread begins immediately by reading the nodes from the
input queue in parallel, avoiding the filtering process (conducted by only one thread per group
in the construction kernel). In other words, each node will be processed by a single thread
instead of being processed by an entire work group, which results in more work per thread, less
idle threads and no need for synchronization of work group threads during the kernel execution.

This modification in the construction mechanism represents a considerable improvement in
terms of performance, as we will see in chapter 4.

3.2.2.3 Large Nodes Optimization

In this section we address the bottleneck problem in the top hierarchy levels by introducing an
improved construction mechanism for large nodes. Instead of assigning a single work group per
node, we want to use several work groups, cooperating to build those large nodes.

The basic idea is that each group should process a block of node’s primitives (or more, de-
pending on the number of work groups assigned) during the building process. The construction
process can be divided into three main phases: choose the split point, reorder the primitives and
build the two new child nodes. Each one of this phases is done through parallel algorithms such
as scan and reduction. Note that for the root node we only have to perform the last phase, since
we already have the initial set of primitives ready for the k-Dop construction.

To choose the split point we need to perform a reduction over primitives’ centroids. That
operation can be done by several groups by assigning a different block to each group (Figure
3.4 and Appendix A.3.4). After reducing the array, each group writes its sum into a block sums
array (Steps 1 and 2). Then, we invoke another kernel with one group that reduces the block

26

sums array to find the total sum and divide it by the number of primitives to get the mean point,
as illustrated in Figure 3.4 - Step 3 (the loading of the block sums array from global to local
memory was ignored in the figure). In alternative, we can use only one kernel: in the first kernel,
one thread per group increments a global counter with the total sum through atomic operations.

Get Qverall Centroid Kemel

Node 1+1 Triangles
. |<7—>| Indexes array
0 T
7] 0|18]..] 5|2 El
. Thread 0 Thread N-1
Eachnode is _ - Group D TGT:UE;,;;\GWU.; R
processed by Triangles .~ N
- Y _
several work Op-T 2 3 4 4y T T
groups AlAAAAA AlA
T = ey
i - ™M
Each work group i g Globsl Mg{nory

reduces a block of
the node primitives’

centoids eenioen] . oeneenteent . Jeen] ... foenfoe] ... foe
_. Each group Ty ¥ e

stores its sum ‘S:mﬂm‘ ‘SI(J;m
in global memory Glabal Memary

Merge Get Overall Centroid Kernel

A single work group
performs a final
reduction over

the sums obtained W
from the last kernel
and gets the total

sum
Centroids Average =
Centroids Sum / Number of Triangles

Figure 3.4 Kernels to get the split point for large nodes. The first kernel is executed by several groups.
In the second kernel, a single group performs a final reduction to obtain the overall centroid.

To reorder primitives’ indices each group runs a scan operation over the primitives’ centroids
flags (O if the centroid is in the left of the split point, 1 if it is in the right side) to compute their
new indices. Then, the scanned array is saved in global memory (not shown in Figure 3.5)and
each group also writes its prefix sum (last position in the array) into an array with all groups
prefix sums, as shown in Step 1 of Figure 3.5 (in the figure were ignore the steps that precede the
centroids’ flags scan, since their basis were explained in section 3.2.1.2). In a second kernel,
each group scans the groups sums array to compute its starting offset (global memory loads

27

were omitted in the figure), loads its scanned array block and computes the new indices with
that information, either for the left and right side indices, as illustrated in Step 2 of Figure 3.5.

To build the BV each group treats one block of primitives and builds its own BV (Step 1 of

Figure 3.6). In a second kernel, one group performs a merge of all the BVs and define the final
volume (Step 2 of Figure 3.6).

Split by Centroid Kermnel

[+ []ofofalafole] .. [1]oft]o]

Each group

runs a scan
operation over
the primitives'

centroids flags

o moasos WMol]. [sofoa .]s1] .. [o[4]. [so|

sums Array

| e

Global Memary v g~ P
‘ S0 ‘ 51 ‘SG‘ Black Sums

Merge Split by Centroid Kernel

® IS

Each group scans BSO|BS1 BSG
the Groups Sums .. .
array to compute
its increment,

Cioivall EINMAEIC K1 IO K1
computes the Reorder
new indexes Primitives'
Indexes

Global Memary
0 Begin End T

7]]2]s]1].Jo].]9]..]8]

Triangles Indexes Array

Figure 3.5 Kernels to reorder primitives’ indices. In the first kernel each group scans the centroids’ flags
array and saves its block sum. In the second kernel, each group obtains its block increment by scanning
the block sums array and computes the new indices.

In conclusion, to use all the GPU resources we need to divide each one of the three phases
(illustrated in figures 3.4, 3.5 and 3.6) in two kernels. In the first we distribute the work by
several work groups and in the second we merge the intermediate results to get the final product.

28

Build k-Dops Kernel
Global Memary

Al JATAIA] A JATA]. A

Each group
treats one

block of primitives Build Build Build
and builds its k-Dop k-Dop k-Dop
own BY
GO
k-Dop

Global Memary

. Merge k-Dops Kermel

. G0
k-Dop

Global Memary
Each group
treats one

block of primitives Merge
and builds its k-Dops
own BY
k-Dop
Global Memory

Figure 3.6 Kernels to build a BV from several blocks of primitives. In the first kernel each group builds
a BV from its block of primitives. In the second kernel, one work group merges all the BVs constructed
in the previous kernel and defines the final BV.

3.2.3 Compaction Kernel
3.2.3.1 Compaction Kernel for Small Arrays

Whenever the construction kernel creates leaf nodes, it is necessary to perform a compaction
in the output queue, leaving only the internal nodes to be split in the next construction kernel
invocation. For a small queue, capable of being processed by only a single work group at once,
we only invoke one work group (Figure 3.7 and Appendix A.3.5.1). In our kernel, each thread
processes two nodes, so the queue can have up to twice the size of the work group.

Each thread within the group reads two nodes from the queue, separated by a distance equal
to the group size, into their private registers. For example, the first thread will read nodes at
indices 0 and groupsize-1, the second at indices 1 and group size and so on. This way, every
thread participates in the first iteration of the prefix sum algorithm used to sort the nodes. Then,
we write either O or 1 into a local array depending if the node is a leaf or not. In the next step,

29

‘ @ Nonleaf @ Leaf ‘

Output Queue (Before Compaction) Glabal Memory
o1 2 3 4 5 6 7 8 9 10 N N3 M2 N-1TN
oceeooeoeeee .. 0ece

Threads
Private
Registers

[[fofofrrfofifof]1]r] . [1]o]1]o]

<

[0[1]2]2]2]e]afa]s|5 o] 7] .. |xfefeipa)

Threads

?fﬂ}l?@ e00@

eoeeeee . oo . ||
0 1 2 3 4 &5 B X

K+ N

Output Queue (After Compaction)

Figure 3.7 Compaction kernel for small arrays, executed by a single work group

we run a parallel scan algorithm (prefix sum) to compute nodes’ new indices. With the array
scanned, threads write the internal nodes in their new indices, inside the new output queue.

However, besides removing leafs from the work queue, compaction has an additional func-
tion of redirecting some nodes’ child indices. This comes from the fact that leaf nodes do not
have children, which would create empty spaces between the nodes of the next level of the
hierarchy.

3.2.3.2 Compaction Kernel for Large Arrays

To scan large arrays we use a different method executed across several work groups simulta-
neously and divided into three distinct kernels (for more details, please see Appendix A.3.5.2).
In the first kernel, the queue is divided into smaller blocks, capable of being processed inside a
single group at once. Each group scans its block and writes the total sum (corresponding to the
number of non leaf nodes) into an array of block sums in global memory, as illustrated in Steps
1 and 2 of Figure 3.8.

Then we run a second kernel with a single work group to scan the block sums array, gener-
ating an array of block increments (Figure 3.9).

30

Compaction Kernel 1
Output Queue (Befare Compaction) Global Memary
Group Size Group Size Group Size | Group Size |
_ 0 1 2 3 4 85 B 7 8 9 10 1 MN-3 N-2 N1 N
oceeoocececee . 0000
@
cecnaow 1]+ Jo]o[4[afo]1]o "] [+To]+ o]
plock with
O 9 O
group size
a Lol]2]2]ofafaf2folo]]2] o]]
Store Block
Sumto Global Memary
auxiliary Black Sums Array ‘ 2 | 3 | 3 | | 2 |
array

Figure 3.8 Compaction for large arrays: in the first kernel each group scan a block of nodes from the
queue, creating a block sums array

Compaction Kernel 2

. Block Sums Array Global Memary

Copy Block | 2 | 3 ‘ 3 | ‘ 2 |
sums Array
into local
memory

Scan Block
Sums
generating
a Block
Increments
Array and
save itin |D|2‘5| ‘S|
global memory Block Increments Array

Global Memory

Figure 3.9 Compaction for large arrays: in the second kernel a single work group scans the block sums
array, generating an array of block increments

If the arrays is bigger than the group size, the scan is performed several times inside the work
group in blocks with group size. For simplification we have only one work group, but the kernel
could be also executed by several work groups by assigning each block to a different group. In

31

that case, each work group would have to fill an extra block sums array for the block increments
array, that would have to be also scanned in the last kernel. Another option could be computing
the block sum scan in the last kernel, without this intermediate kernel. However, this would
require that every work group had to perform the same scan operation over the entire array.
That situation would be particularly bad if we have more work groups than multiprocessors,
meaning that each multiprocessor has to run the same scan operation for multiple groups.

Compaction Kermel 3

@ Block Increments Array Glabal Memary
Each group ‘ 0 ‘ 215 ‘ S

adds the block i R AR

increment A WS, SEss AN

stored in their /'F;" **\ k. . :f:‘?\::::nﬁ R

work group ¥ r IR | 23 B ey Y <4 Y
indextotneir [0 [1]2]2fafaalalo]ofr]2].]o]1]1]2]
previously Scanned Values Scanned Values Scanned Values Scanned Values
scanned values Group 0 Group 0 Group 2 Group B

— Output Queue (Uncompressed)

@ 0 1 2 3 4 &5 6 7 B8 9 10 11 M3 N2 N-1N
| 0000000000 . 000e
Fill Qutput
Queue with
nodes in their
new indexes

Y Y
oooooooeeeee. e . | |
g 1 2 3 4 5 B 7 8 9 10 N 5 5+1 N
Output Queue (Compressed)

Figure 3.10 Compaction for large arrays: in the third kernel the group threads add the block increment
stored in their work group index to their previously block scanned values and save their nodes in the new
indices

Finally, we run a third kernel in which all the group threads add the block increment stored
in their work group index to their previously block scanned values (Step 1 in Figure 3.10). With
those values, each thread with a non leaf node enqueues it in the right position and corrects its
child indices (Step 2).

3.3 Broadphase Collision Detection Kernel

3.3.1 Simple Broad Phase Collision Detection

In the broad phase we traverse the hierarchies to find nodes whose bounding volumes overlap.
As a result we obtain a more restricted list of primitives that have chances to collide, therefore
eliminating unnecessary tests between far apart primitives.

32

The kernel responsible for this operation receives as input the object’s hierarchies and re-
turns as output a list with all the potential pairs of colliding primitives. The first step is done
sequentially by one thread that reads both root nodes and tests their BVs for overlap (Figure
3.11 and Appendix A.4.1).

Hierarchy A Hierarchy B
0 0
® ®
® @ ® @
N o/ N N
o O

/N o/
(o4)
(08686 as /s

Hierarchy A Hierarchy B

o 1 2 3 4 &5 B 7 8B 5 W0 1 12 13 14 o 1 2 3 4 &5 6 T 8
©©/©0©®©00000000 ©eeo00®o000

Global Memary

@ @-
Overlap
Test .--.

m | |
- IBb Bc Chb Cc!
|

.| [y
Overlap Read Index Write Index

v
Write Children's Indices
to Local Queue

Figure 3.11 Example of hierarchies traversal starting from the roots. When two internal nodes overlap,
we write four new node indices into a local queue for further processing.

This overlap check consists in testing if the opposite faces of both BVs intersect, which has
a small cost (for k-Dops the operation cost is O(k), where k denotes the number of Dop faces)
and is executed by a single thread for each pair of nodes. If the BVs overlap, the thread writes
into a local queue all the possible pairings of their children’s indices for further processing. In a
binary tree it corresponds to four pairs of indices, assuming that both roots are non-leaf nodes.
The choice of storing indices instead of directly storing primitives is due to the fact that local

33

memory space is insufficient to keep a large amount of geometry data. After inserting new
nodes on local queue a local counter (write index) is also updated, signaling the index of the
last enqueued element, in order to avoid reading positions out bounds.

From now on the algorithm can run in parallel by several threads. A thread with an identifier
smaller than the difference between read and write pointers can dequeue a pair of indices and
load their corresponding nodes from the hierarchies, while increases the read index value. If
an overlap exists, the write pointer is incremented by the number of elements added and the
indices are placed in the queue. If one node from the overlapping pair is a leaf, we enqueue the
indices from the leaf together with the indices from the other node’s children, resulting in just
two new items (Figure 3.12).

Hierarchy A Hierarchy B

01 2 3 4 85 B 7 8 8 10 M 12 13 14 01 2 3 4 5 8B T 8
®eeoeeeooo0o0eoo0o @eeo0o0eoo0o
A A

Global Memary

33
Thread 0 ’. u

| Work Queue Overlap
33[34f4s]aa] . |es|ee|rales] . | |
ar ™ Lacal Memary

o
! Previous | ___ New
Read Index Wirite Index Write Index

Overlap
Hd Id v

L \rite Children's Indices
to Local Queue

Figure 3.12 Example of hierarchies traversal starting from the roots. When one of the overlapping pair
is leaf, it results in two new node indices in the local work queue.

To synchronize this process and prevent different writes on the same position, each thread
uses atomic operations to change pointer’s values.

In case both nodes are leafs, the thread loads nodes’ triangles and stores all the possible
pairs of colliding primitives into a global array (Figure 3.13). To ensure that each pair is written
in an empty position, it is necessary to atomically increase the array pointer into the last index
saved.

The algorithm ends when the read index reaches the same value of the write index, meaning
that the processing queue is empty.

This kernel is executed by a single work group to avoid repeat the same overlap tests over
different groups. Obviously, this represents a waste of GPU resources, since we have many idle
multiprocessors. A smarter approach might be to launch four work groups to test the root nodes
and in case of overlap distribute the four children pairing across the groups. Nevertheless, the

34

Hierarchy A Hierarchy B
o 1 2 3 4 &5 6 7 8 8§ 10 11 12 13 14 o 1 2 3 4 &5 6 T 8
®0eeeeeooo0000o00 @eeoo0o00o0
A A

Global Memary
737
7 -Q O

Thread O

| Wark Queue Overlap
7a8a] . lesles] . |] Test
r 2

™ Local Memary

-——Read Index Write Index——-

Triangles Overlap

AAAAAAAA 1AlAl

|Store primitives' pairs|
T
]

v

M ‘ ‘ Calliding Triangle Pairs

A

]
|
L

—--Triangles Write Index Global Memoary

Figure 3.13 Example of hierarchies traversal starting from the roots. If two leafs overlap, we write their
pairing primitives into a result array in global memory.

kernel would perform, at most, four times better than the single group method.

To increase the number of initial nodes to test and launch several work groups in parallel we
could use a different method, by starting the traversal in lower levels. For instance, we could
begin in the first levels with leaf nodes and descend the tree from there. The number of initial
overlap tests would be given by the total amount of node pairs from both starting levels of the
hierarchies. In an extreme case, this represents testing all the leaf pairs in both hierarchies. It
could be a good approach if the majority of the objects’ primitives are colliding, when com-
pared to always start from the root nodes but even so, it might result in many unnecessary tests
between far away BVs and the algorithm will perform worst when the objects do not collide.

Another strategy could be using the CPU to perform the tests in the first levels of the hi-
erarchy (with fewer nodes), generating a set of colliding pairs of nodes in a sufficient number
to distribute among several work groups. By doing this, we were only sending to the GPU, as
input, pairs of nodes that really intersect, avoiding unnecessary tests between faraway BVs like
in the above method.

However, in order to solve this issue and take maximum advantage of work group paral-
lelism, we use a Front based approach that fully runs on the GPU. In the next section we will
explain our implementation.

35

3.3.2 Front-Based Broad Phase Collision Detection

As explained in section 2.2.2.3, the front concept was introduced to explore temporal coherence
during a simulation and reduce the number of nodes traversed in the broad phase. However, in
a multi-threaded environment it has another great advantage: allows to distribute the different
front elements across several threads (and possibly several work groups) to be processed in
parallel. This task division represents a better utilization of GPU resources when compared
with the traditional top-down approach, reflected in less work per thread (obvious in the first top
levels of the hierarchy). The longer the front, the larger the parallelism achieved and consequent
success of this technique. In addition, each node has a distinct sub-tree, enabling each thread to
independently traverse the hierarchies and update the front without any type of synchronization.

At the beginning there is only one element in the front, formed by the two hierarchy roots.
Traversal process starts in the same way as the non-front version, by introducing elements into
a processing queue that are then processed in parallel. The main variation lies on the fact that
we need to perform a front maintenance during the traversal in order to provide a valid front for
the next simulation step (details can be seen in Appendix A.4.2).

By definition, the front includes all the leaf pairs, as well as all the last non-overlapping
pairs tested. In other words, it consists in the set of nodes where the traversal terminates during
the collision detection, as we can see in Figure 3.14.

‘ . MNon Leaf . Leaf v/ Overlap ¥ Mo Overlap Front

.\/

v N

/m{o/\“ ‘/Bﬂ’o\‘/é‘/o

TLY) o ® o 2%
) bé o

Figure 3.14 Example of front building. The front includes all the leaf pairs, as well as all the last
non-overlapping pairs tested

According to this, front update may involve replacing a node by a group of deeper nodes in
its sub-tree (lowering and expanding the front) or exchange one or more non-overlapping pairs
by one higher element (raising and shrinking the front).

36

The first operation is done when threads are reading nodes from the queue and checking for
collisions (while descending the hierarchies). Whenever a thread reaches a leaf node (colliding
or not) or a non-overlapping internal node, the node is added to the front (a global array).

The raising (Figure 3.15) is done after assigning the initial front nodes to different threads.
If the initial node pair (R, i) does not intersect, the thread tries to climb the hierarchies. In order
to choose the correct node to climb, it needs to look at nodes’ (within the pair) level in their
hierarchies: if they are in the same level, it is loaded the pair formed by both their parents; if
levels differ, we go up by the deepest node. If this upper pair (/,7) does not overlap, the thread
continues the ascension in the hierarchy. In other hand, when it represents an intersection, the
front is updated with the current pair (R, i), matching the deepest non-overlapping node pair.

‘ |:| Old Front Mew Front ‘

J=Level 3 .‘ =3
h=Level3 ;

!

k.: WX

R = Level 4 @ ‘
i=Level 3 @

Figure 3.15 Front raising

During climbing procedure the same node can be reached by different threads with different
initial nodes. To avoid adding that node multiple times to the front, only the leftmost child is
allowed to climb the trees and consequently update the front (in the example figure, only the
thread with J, 4 node climbs the hierarchy).

After the tree traversal is finished, the new front nodes as well as the possible colliding pairs
of nodes are written in global memory. If we use several work groups to perform the Broad
Phase, each one has a defined space in the array where it can write the nodes. For example,
if we define an offset of 1000 nodes, group 0 can write from index O to 999, group 1 from
index 1000 to 1999 and so on. In that case we need to perform a compaction in both front and
colliding nodes arrays to get a valid input for the next kernels. In order to know how many
nodes are written by each group, we store the last written index (for both front and colliding
nodes) for every work group. Then, we can invoke a compaction kernel with only one group
to read the front nodes and the colliding nodes from the old arrays and write them in their new
indices in a new array.

However, both our implementations have a drawback: the nodes are read and written in
local memory (in a local work queue), which reduces the capacity of the queue, due to the

37

limited local memory size. In our case, when the queue becomes full, threads can’t write on
it and the new nodes are lost. Only when more nodes are dequeued it is possible to save new
pairs of colliding nodes to process. This problem causes a decrease in the collision detection
accuracy, since there are branches in the hierarchies that are not traversed and the final number
of primitives to test will not be correct. We did not focus in this issue, so our implementation
is restricted to a certain number of nodes in the work queue (around 1000 pairs of nodes in our
GPU), but there are ways to solve this problem.

A simple way is to have an extra working queue in global memory and use it every time the
local queue is full. As soon as the local queue has space, the nodes are written again in local
memory.

Another approach is the one previously explained in section 2.2.3. Every time a local queue
becomes full (in one work group), all the work groups write their queues into global memory
and the kernel is stopped. Then, we invoke the kernel again and redistribute the nodes saved in
global memory by the several work groups and resume the traversal process.

3.4 Narrow Phase Collision Detection

In the narrow phase we test the primitive pairs resulting from the broad phase to find which
really collide. This process is highly parallel and don’t need any synchronization, since each
thread tests one pair of primitives independently. To perform the intersection test between
two triangles we use the open source algorithm presented by Moller in [22]. Moller’s method
basically checks the co-planarity of two triangles to find out if they intersect.

The kernel receives as input an array with the pairs of possible colliding triangles and return
an array with the triangle indices that really have collided (Appendix A.5). That is our only
output, since the collision response was outside the scope of our work.

3.5 Update Kernel

Updating the hierarchy is a way to prepare it for the next simulation step without perform an
entire rebuild operation. In BVH building each volume is computed using primitives’ coordi-
nates, whereas in update method only leafs need primitive checking and the remaining volumes
are refitted by merging their children’s volumes, which is less expensive than testing all the
primitives. The update kernel (Figure 3.16 and Appendix A.6) uses a bottom-up approach and
is invoked once per level.

Since the hierarchy is stored in an array arranged by the levels, we can easily perform the
update by sending an extra information (saved during execution of the construction kernel)
about the first index of the current level and how many nodes it has. The algorithm starts by
computing the number of nodes per work group, in order to distribute the work equally. At
each iteration, each thread within a group reads two siblings. This way, after refitting these

38

two nodes it is possible to load and update their parent without any synchronization with other
threads. By assigning each node to only one thread, the level is covered very quickly and threads
can efficiently update a node because it is not expected an high number of primitives in leafs
and merge operation has a low cost. The kernel is invoked once per level and the changes are
propagated towards the root.

‘ @ nNonlLeaf @ Leaf ‘

Hierarchy (Lewvel M) Global Memaory
-® o 1 2 3 4 5 N-1 N
0000006 oe
Each thread ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
loads 2 Thread 0 Thread 1 Thread 2 Thread T
siblings and rea rea E2 rea
updates Y ¥ ¥ ¥ Y ¥ Y Y
their BVs ’ Qv’ Qy’ ’ J,’ ’
W|th the \\\ //\\\ // \\\\‘{’ J’f"” ,"f
corrsponding X e ANy P /
primitives ‘K‘A‘
- Triangles Global Memary
MERGE MERGE MERGE MERGE
00000 e
Merge both
siblings and
Update their
parents
ooeooe @0
- o1 2 3 4 5 N1 N
Hierarchy (Level N-1) Global Memaory

Figure 3.16 Steps to update the hierarchy using a bottom-up approach.

4. Results and Analysis

We now expose the results achieved with our kernel implementations on the GPU and compare
them with the performances obtained from the analogous CPU sequential implementation in
the cloth simulator developed in [6]. Our experiments were run on a Intel Core 2 Duo T8300
at 2.13GHz with a NVIDIA Quadro FX 3800. We also have run the more optimized version of
the construction kernel with a NVIDIA Tesla C2050 for comparison. The specifications from
the above GPUs are described in Table 4.1. All the timings obtained from the GPU are only
relative to the OpenCL kernels execution and do not include any CPU-GPU data transfer.

Table 4.1 Hardware specifications of the devices used to run our tests.

Specifications NVIDIA Quadro FX 3800 | NVIDIA Tesla C2050 |
Max. Clock Frequency 1204 MHz 1147 MHz
Multiprocessors / Compute Units 24 14
Cores 192 448
Memory Bandwidth 51,2 GB/sec 144 GB/sec
Memory Interface 256-bit 384-bit
Memory Speed 800 MHz 1,5 GHz
Global Memory Size 1 GB 3GB
Local Memory Size 16 Kb 48 Kb
Max. Work Group Size 512 1024

4.1 Construction Kernels Results

In this section we will show the performance results achieved with the BVH construction ker-
nels. Our results will reflect the optimizations made from the first version of the kernel to the
last and optimal solution. To test our implementations, we have used the object models illus-
trated in Figure 4.1. The construction kernels were launched with a group size of 128 and with
a global size of 24 x 128 in order to give one work group to each compute unit (with the Quadro
FX 3880). The compaction kernels have a group size of 256 and a global size of a global size
of 24256, except the local compaction kernel where we run a single work group. Despite
the maximum group size of the Quadro FX 3800 being 512, we cannot have that many threads
running because they exceed the maximum number of the device private registers (specially on
more complex kernels with lots of private variables). Since we have only one work group per
compute unit and in some cases one work group is responsible for processing more than one
node, the scheduling is done inside the kernel (and not by the hardware scheduler) by computing
39

40

for each group the memory positions that they can access (array indexes).

Figure 4.1 Benchmark models used in our tests. From left to right: Biplane (6K tris), Small Bunny (16K
tris) and Large Bunny (69K tris), Armadillo (345K tris), Dragon (871K tris), Happy Buddha (1.08M tris)

4.1.1 Adaptive Construction Kernel Results

As we have already seen in section 3.2.2 and specifically in Figure 3.3, our first version of the
BVH construction has a performance degradation as the input queue grows. To minimize the
execution costs in the lower levels of the hierarchy we introduced a adaptive scheme where the
work group size was modified in accordance with the average number of primitives per node.
To justify the use of that mechanism we demonstrate in Figure 4.2 the differences in terms of
performance between both approaches.

N GPU Constr. N GPU Constr. Adapt. ——Waork Group Size

Avg Mode Size
1400 224
\ r 208
1200 192
\ - 176
1000 160
800 \

A\
\\
N\

Size

Timings (ms)

F 144

128

11z

96

- B0
400

G4

r 48

200

32
- 16

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Levelof Split

Figure 4.2 Adaptive Kernel timings per level: the adaptive kernel performs better by having less idle
threads. The work group size is reduce as the average node size decreases.

41

The figure shows the timings for the normal and adaptive versions of the construction kernel
in each split level and how the group size reduction affects the results achieved. The lines
represent the estimated node size and the work group size used for each level. This results were
once more obtained by running both kernels to build the Happy Buddha model. We reduced the
work group size from an initial value of 128 to a minimum of 16 threads in the last few levels.
As expected, the adaptive scheme obtains better results for small nodes, leading to a speedup
of 94% from level 16 to 26 (where we reduce the work group size) and an average of 67% for
the entire hierarchy. This results refer to the Happy Buddha model but the remaining models
follow this tendency and have similar improvements.

Despite this performance upgrade, the adaptive kernel still has some problems. When we
reduce the amount of threads per work group to values above 32, we are not using all the threads
available, since the cores do not run a full warp (32 threads at a time). Furthermore, even very
small nodes are created using parallel algorithms (scan and reduction) in local memory. This
memory access overhead is not worth (even for local memory) for few primitives.

4.1.2 Small Splits Construction Kernel Results

To improve even more the construction in the last levels, we applied a change so that each small
node is processed by a single thread with no need to synchronization within the group. In Figure
4.3 the results achieved by introducing the small splits optimization are highlighted.

I GPU Constr. Adapt. N GPU Constr. Small Nodes Small Modes Percentage

1000 — 100,00%

S00 90,00%

Timings {ms)

800 80,00%

700 70,00%

sSmall Nodes Percentage

600 60,00%

500

50,00%

400

40,00%

300

30,00%

200

20,00%

100

- 10,00%

- 0,00%

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Level of Split

Figure 4.3 Comparison between the Small Splits kernels and the Adaptive Scheme. The first one has
better results for small nodes.

After some tests we conclude that for nodes above 55 primitives there is a gain of per-
formance by assigning them to only one thread (with a work group size of 128). When the
percentage of small splits exceeds a defined threshold, we switch kernels. From that level to the

42

last level each node is immediately split by a single thread without the filtering process. The
percentage threshold chosen was 30% (after several experiments), since it was expected that the
remaining 70% of the nodes have an aproximate size.

In the illustrated test (Happy Buddha model) the first 10 levels (starting at level 0) were
ignored because the kernels behave in a similar way. What must be examined is the performance
gap achieved when we have a substantial amount of small nodes. From level 10 to the end of
level 15 that percentage is above 30%, which means that all the small nodes are written in a
queue during the normal kernel and processed at the end by single threads. If the percentage is
very low we do not have any benefit from it because there is an extra cost of writting and reading
nodes from local memory. Only in level 15, where there is a significant number of small nodes
(47%) we can obtain a gain in performance (25%) by saving the small nodes in local memory
and assigning to each one a single thread.

After the construction of level 15, the remaining levels are processed using a kernel with
one thread per node, since we have overcome the threshold barrier. By having all threads
working and with few memory accesses we get a faster execution with its peak on level 21
(approximately 7 times faster). The results demonstrate that for our models, in average, the
entire hierarchy is constructed from 1,5 to 2 times faster by using the conjugation of the two
small splits kernels when compared to the single adaptive kernel and 3 times faster than the
normal construction kernel.

4.1.3 Large Nodes Construction Kernel Results

So far we have reduced the construction timings for the lower levels of the hierarchy, where
we have a large number of nodes of small size. Now, we will demonstrate the impact achieved
by the optimization made to build the first BVH levels. As explained in section 3.2.2.3, our
solution was to distribute each large node to several work-groups (as many as multicores). This
way we don’t have idle threads since all the work groups are running in parallel.

However, this mechanism only performs better that the initial version until a certain level.
The number of levels processed with the Large Nodes kernels before switching to the group/n-
ode construction varies from model to model and depends of the amount of primitives of each
object. In this Large Nodes version, we need to synchronize all the work groups 6 times for
each level, corresponding to the 6 kernel invocations (2 kernels for each one of the 3 phases).

In the one group per node kernel, there is no need for synchronization between work groups
since each one processes its own node independently. The gain of performance by using the
Large Nodes kernels decreases as the ratio triangles per node/nodes decreases, in other words,
as the number of primitives per node decreases and the number of synchronizations per level
increases. For example, we have used these optimized kernels in the first three levels for the
Biplane model, four levels for the 16k Bunny, five levels for the 69k Bunny, six levels for the
Armadillo and seven levels for the Dragon and Happy Buddha models. The remaining levels
are constructed using the small splits kernels. In Figure 4.4 we expose the difference of timings
achieved for the Happy Buddha model. The first seven levels are constructed almost 5 times

43

faster when compared to the simple version, representing an improvement of 70% for the entire
hierarchy construction.

B GPU Const. M Large Modes Optimization

500

450

400

Timings {ms)

330

300

250

200

150 +

100 +

50 4

o 1 2 3 4 5 & 7 B
Level of Split

Figure 4.4 Comparison between the Large Nodes kernels and the Small Splits kernels. The first one has
better results for large nodes.

We also ran the last version of our construction kernel in another device for comparison. The
results listed in Table 4.2 show the difference of performances between the BVH construction
phase executed on the CPU and on the GPU, as well as the improvement achieved since the first
construction kernel (Normal Construction Kernel) to the last and more optimized version (with
large nodes and small splits optimizations).

Table 4.2 Construction phase timings (in ms) for BVH construction of several benchmark models in
CPU, GPU with Normal kernel (GPU N. Const.) and with the Large Nodes plus Small Splits optimiza-
tion (GPU Opt. Const.). In the last column is the performance speedup achieved with the best GPU
implementation against the CPU.

\ Model | Nr. Tris | CPU Const. | GPUN. Const. | GPU Opt. Const. | CPU vs GPU Opt. Speedup |
Biplane 6272 85 ms 25 ms 9 ms 9.4x
Small Bunny 16301 221 ms 62 ms 18 ms 12.2x
Large Bunny 69451 1216 ms 269 ms 85 ms 14.3x
Armadillo 345944 6513 ms 1402 ms 502 ms 12.9x
Dragon 871414 14121 ms 3433 ms 1105 ms 12.7x
Happy Buddha | 1087716 20875 ms 7189 ms 1376 ms 15.1x

In the first column are the benchmark models (Figure 4.1) used in the tests, followed by
their number of primitives and the corresponding construction timings in milliseconds. The last

44

column in the table demonstrates the speed up achieved with the best OpenCL construction ker-
nels when compared with the CPU approach. As we can see the GPU implementation achieves
better results than the sequential algorithm. For the tested models, the performance gain ranges
between 9 and 15 times and it tends to increase with larger objects Finally, we tested our final
construction kernel with the Tesla C2050 and compared the results with the ones obtained with
the Quadro FX 3800. Due to the Tesla C2050 characteristics, we were able to increase the work
group size to 256 for the construction kernels, in order to achieve a better performance. In Table
4.3 are highlighted the timings with both devices and the performance difference between them.
Note that this results refer to the more optimized kernel version.

Table 4.3 Construction phase timings (in ms) for BVH construction of several benchmark models in
two different GPUs (Quadro FX 3800 and Tesla C2050). In the last column is the performance speedup
achieved by using the second device.

Model | Nr. Tris | Quadro FX 3800 | Tesla C2050 | Quadro FX 3800 vs Tesla C2050 Speedup |
Biplane 6272 9 ms 8 ms 1.1x
Small Bunny 16301 18 ms 10 ms 1.8x
Large Bunny 69451 85 ms 34 ms 2.5%
Armadillo 345944 502 ms 183 ms 2.7x
Dragon 871414 1150 ms 401 ms 2.8x%
Happy Buddha | 1087716 1376 ms 471 ms 2.9%

4.1.4 Compaction Kernel Results

In Figure 4.5 it is illustrated the time consumed by the compaction phase during the hierarchy
construction.

m Construction ® Compaction

100%
99%
98%
97%
96%
95%
94%
93%
92%
91%
90% T T T T T

Biplane Small Bunny Large Bunny Armadillo Dragon Buddha

Figure 4.5 Time consumed by the compaction kernel during the entire construction process.

45

As we can see, the compaction occupies a small portion of the time spent, that tends to
decrease with larger models. This was expected since we only invoke the compaction kernel
in the levels that have leafs. Furthermore, the kernel uses a highly parallel scan algorithm to
compact the array and makes very good use from the GPU resources.

4.2 Broad Phase Collision Detection Kernels Results

4.2.1 Simple Broad Phase Collision Detection Kernel Results

In the Broad Phase we perform a parallel tree traversal in the cloth and object hierarchies.
Figure 4.6 demonstrates the performances achieved during this tree traversal between our CPU
implementation and the GPU without front kernel.

B CPU Broad Phase I GPU Broad Phase BV Overllaps

40 1000

- 900

33
- 800

Timings (ms)

30
r 700

Numberof Overllaps

23 - 600

20 r 300

15 - 400
- 300
10
r 200

- 100

a 14 17 25 28 34 37 38 41 50 56 58 59 61 63 73
Simulation Step

Figure 4.6 Broad Phase kernel performance: CPU and GPU performances during tree traversal during
a simulation test. The timings are influenced by the number of collisions found.

The results obtained concern to several discrete time intervals (not necessarily consecutive)
during a simulation where we drop a piece of cloth with 2048 triangles on a static object (Large
Bunny with 69K triangles), illustrated on Figure 4.7. In the x axis are the number of overlaps
found in different moments of the simulation and the y axis have the execution timings for both
algorithms. Obviously, the execution time varies with the number of overlaps found, which
also reflects the amount of nodes traversed. The results shown that the OpenCL kernel is much
faster than the sequential implementation (about 25 times faster), even running with a single
work group.

46

==
o
AR L T AT
s
R

Figure 4.7 Piece of cloth with 2K triangles dropped over a fixed object with 69K triangles. This simu-
lation was used to test both Broad Phase and Narrow Phase collision detection

4.2.2 Front Based Broad Phase Collision Detection Kernel Results

To use several work groups we introduce the front based approach. This algorithm exploits
temporal coherence, which means that it works better when the colliding BVs do not vary to
much and there are few changes in the front between different time steps. To test the front
algorithm performance and compare it with the normal version we run the same simulation
illustrated in Figure 4.7 across several time steps (we only show the consecutive steps with
more collisions found, to better highlight the differences between the two algorithms) using
both implementations. Since our cloth simulation does not have a collision response system for
two meshed objects, we have reduced the interval time between successive simulation steps.
By doing this we are ensuring that the overlapped BVs in one time step have good chances to
collide again in the next step (which result in fewer modifications in the front), as we expect to
happen in a real collision. Our results (Figure 4.8) show that the front based implementation
has a better overall performance, even with the extra cost of compacting the front nodes and the
colliding pairs (ranging between 0.1 and 0.2 ms in this test).

——GPUBFFront ——GPUBF ——0Overllaps

2z 1000
850
900
B850
B00
750
700
650
600
550
500
450
400
350
300
250

Timings (ms)

Numberof Overllaps

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 V1 FZ T3 74 75
Simulation Step

Figure 4.8 Broad Phase with and without the front based approach: comparison between the front based
algorithm and the normal version during a collision simulation between a piece of cloth and a static
object.

47

As we can see, the normal broad phase algorithm performance varies with the amount of
collisions detected, resulting in more hierarchy levels traversed and pairs of nodes tested. In the
other hand, the front based approach does not depend exclusively in the number of collisions,
but also in the front variation between successive steps, which explains that in some cases the
execution time decreases when the number of overlaps increases.

4.3 Narrow Phase Collision Detection Kernel Results

In the Narrow Phase we perform elementary tests between pairs of primitives in order to find
if they are colliding. In our simulator, both CPU and GPU run the same code [22] in these
tests. The main difference is that in the CPU we have a single thread to process every pair of
primitives, while in the GPU we launch as many threads as the number of elementary tests to
be done. As shown in Figure 4.9, this parallelism has a great influence in the final performance.
The graph also indicates that as the number of primitive pairs to test increases, the gap between
CPU and GPU implementations raises substantially.

N CPU Narrow Phase I GPU Narrow Phase Nr. Elementary Tests

1000

I~
in

Timings {ms)

=]
Elementary Tests

15

05

20 22 25 28 30 43 44 52 53 59 62 65 78 B2
Simulation Step

Figure 4.9 Results achieved by both CPU and GPU narrow phase implementations.

4.4 Update Kernel Results

In this section we expose the results achieved by the update kernel. Compared with the anal-
ogous CPU implementation, we got an average speedup of 4.5x by performing the update on
the GPU. Table 4.4 shows the timings obtained for each of our models and the correspondent

48

speedup. We also concluded that performing the update is 10 tomes faster in average than recon-
structing the entire hierarchy. As expected, these results justify the use of the update method,
since the BV update is much easier to perform, specially in the higher levels where we only
merge pairs of BVs.

Table 4.4 Update phase timings (in ms) for BVH construction of several benchmark models and the
performance speedup achieved with the GPU implementation.

| Model | Nr. Triangles | CPU Update | GPU Update | Speedup |

Biplane 6272 7 ms 2 ms 3.5x%
Small Bunny 16301 15 ms 3 ms Sx
Large Bunny 69451 60 ms 12 ms Sx

Armadillo 345944 314 ms 64 ms 4.9x

Dragon 871414 747 ms 159 ms 4.6

Happy Buddha 1087716 931 ms 201 ms 4.6

This increase of performance in the higher levels is evidenced on Figure 4.10, where it is
shown the execution timings in each level (Happy Buddha model). The time consumed by the
kernel is proportional to number of nodes in each level. In addiction, updating the leafs requires
to load nodes primitives from global memory, while in the internal nodes we only have to merge
their BVs.

I Update Time on GPU Level Leafs Level Modes

70 700000

600000

Timings {ms)

Numberof Nodes

500000

400000

300000

200000

100000

25 24 23 22 21 20 1% 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Level of Split

Figure 4.10 Update kernel timings per level: the time consumed is proportional to the number of nodes
in each level.

5. Conclusions and Future Work

Our initial motivation was to accelerate a physics engine through the OpenCL framework.
Based on an analysis over some physics engines features, as well as the current GPU imple-
mentations in that area, we have chosen the collision detection in cloth simulation as our target.

For that purpose we have implemented a set of kernels to deal with discrete collision de-
tection between a piece of cloth and a meshed object. In one of the kernels we present a way
to build Bounding Volume Hierarchies with k-Dops on the GPU, using parallel algorithms. We
have shown three versions of this construction kernel, explaining the optimizations done and
demonstrating the performance gains achieved. We also have proposed two different kernels
for the Broad Phase collision detection. The first one corresponds to a hierarchy traversal start-
ing always from the root nodes and performed by a single work group and multiprocessor. The
second version implements a front based algorithm that exploits temporal coherence and dis-
tributes the work in a more efficient way. To perform the Narrow Phase we adapted an open
source code to perform fast triangle-triangle intersection tests on the GPU. Finally, we presented
an update kernel using a bottom-up approach that is executed once per level and avoids having
to reconstruct the entire hierarchy at every simulation step.

We have tested our construction kernel with several benchmarks and highlighted the differ-
ence of performance between the three implemented versions. Furthermore, we have shown the
timings achieved for each level of the hierarchy, as well as how much the number of nodes to
split influenced the kernel performance and finally what were the kernel bottlenecks. For the
same kernel we have demonstrated that the GPU version can perform almost 10 times faster
than the analogous CPU approach in our benchmark tests.

Then, a comparison was made between the CPU and GPU Broad Phase algorithms using a
simulation with a piece of cloth dropping on a fixed meshed object. Our results revealed that the
parallel algorithm is 25 times faster in average than the single core Broad Phase. We have also
shown the advantages of using the front based approach and what were its main weaknesses
when compared to the normal version.

For the Narrow Phase the difference of execution times between a CPU and a GPU imple-
mentation of the same code are evident. Here, the advantage of using the device to perform the
elementary intersection tests was clearly visible, specially for large data sets.

Finally, our results revealed that we have a performance gain by executing a BVH update
instead of a full rebuild. Once more, we achieved an average gain of 450% by invoking the GPU
kernel. We also evidenced the impact of the number of nodes to update in the time consumed
by the kernel.

In conclusion, our results have shown that the GPU kernels were much faster than the se-
quential approach, encouraging the use of this type of device in physics simulations.

Regarding the future work, there are many opportunities to explore. For example, it would
be interesting to improve the construction kernel, since it represents the most time consuming

phase. In that context, different split strategies could be implemented other than the mean
49

50

point and test their performance in a parallel environment. For instance, we could split by the
median, as explained in section 3.2.1 through the bitonic sort or radix sort algorithms. There
is also the possibility to test other methods to choose the plane to split and study their impact
on the construction time. In this line of thought, it is not only the construction time that is
important. One must also measure eventual benefits from the collision detection phases that
may be introduced by different split strategies during construction. Even a slightly heavier
construction phase may be better if collision detection times are later drastically decreased.

Regarding the BVs, there are other alternatives, such as AABBs, OBBs or k-Dops with
a value of k larger than 18. By using simpler BVs we could achieve faster construction and
update timings but in other hand it would result in more false positives during the Broad Phase.
It may be worth since the tree traversal is much less time consuming when compared to the
construction.

It would be interesting to use trees with different degrees and measure the impact in the
performance. For example, by using quadtrees or octrees we could reduce the number of kernel
invocations and distribute more work inside a group during the Broad Phase. With respect to the
update kernel, it could be important to implement a mechanism to find if the hierarchy quality
is deteriorated enough to be necessary performing a reconstruction.

In addition, we could extend our implementation to work on systems with multiple GPUs
taking benefits from the increased availability of computing cores. Finally, it would be inter-
esting to explore the use of the GPU in other physics engines’ features, such as continuous
collision detection or fluid-cloth collision detection.

A.

A.1 Reduction and Scan Algorithms

Appendix

Reduction algorithm to sum a set of GPU_REAL values.

This reduces the overall cost of the algorithm while keeping the
work complexity O(n) and the step complexity O(log n).
(Brent’s Theorem optimization)

*/

GPU_REAL reduceSum(__local GPU_REALx local_data,

int tID =

/s
if
if

}

local_data[tID]

get_local_id(0);

(tID < 256) {
+=

Do reduction in local memory
(blockSize >= 512) {

barrier (CLK_LOCAL_MEM_ FENCE) ;

if
if

}

barrier (CLK_LOCAL_MEM

if
if

}

local_datal[tID]

local_data[tID]

(blockSize >= 256) {

(tID < 128) |
+=

(blockSize >= 128) {

(tID < 64) {

+=

_FENCE) ;

local_data[tID +

barrier (CLK_LOCAL_MEM_FENCE) ;

if
if
if
if
if
if
if

}

(tID < 32) {

(blockSize >= 64) {
(blockSize >= 32) {
(blockSize >= 16) {
(blockSize >= 8) {
(blockSize >= 4) |
(blockSize >= 2) |

local_datal[tID]
local_data([tID]
local_datal[tID]
local_data([tID]
local_datal[tID]
local_datal[tID]

barrier (CLK_LOCAL_MEM_FENCE) ;
return local_datal[0];

J ok x

* Reduction algorithm to get the minimum/maximum from a set of
0 returns the minimum
1 returns the maximum

* For arrowDir
* For arrowDir

*/

GPU_REAL reduceMinMax (__local GPU_REALx* local_data,

int

tID =

get_local_id(0);

// Do reduction in local memory
if (blockSize >= 512) {

if

(tID < 256) {

* *

*

* This version adds multiple elements per thread sequentially.
*

*

*

int blockSize) {

local_data[tID + 256];

local_data[tID + 128];

64]1;

51

int arrowDir,

= local_dataltID + 32]; }

local_data[tID + 16]; }

local_datal[tID + 8]1; }

local_data[tID + 4]; }

local_datal[tID + 2]1; 1}

local_data([tID + 11; }
values

int blockSize)

GPU_REAL valA = local_datal[tID];
GPU_REAL valB = local_data[tID + 256];
if ((valB > valA) == arrowDir)
local_data[tID] = valB;
}
barrier (CLK_LOCAL_MEM_FENCE) ;
}
if (blockSize >= 256) {
if (tID < 128) {
GPU_REAL valA = local_datal[tID];
GPU_REAL valB = local_data[tID + 128];
if ((valB > valA) == arrowDir)
local_data[tID] = valB;
}
barrier (CLK_LOCAL_MEM_FENCE) ;
}
if (blockSize >= 128) {
if (tID < 64) {
GPU_REAL valA = local_datal[tID];
GPU_REAL valB = local_datal[tID + 64];
if ((valB > valA) == arrowDir)
local_data[tID] = valB;
}
barrier (CLK_LOCAL_MEM_FENCE) ;

if (tID < 32) {
if (blockSize >= 64) {
GPU_REAL valA = local_datal[tID];
GPU_REAL valB = local_data[tID + 32];
if((valB > valA) == arrowDir)
local_data[tID] = valB;

if (blockSize >= 32) {
GPU_REAL valA = local_datal[tID];
GPU_REAL valB = local_datal[tID + 16];
if ((valB > valA) == arrowDir)
local_data[tID] = valB;

if (blockSize >= 16) {
GPU_REAL valA local_datal[tID];
GPU_REAL valB = local_datal[tID + 8];
if((valB > valA) == arrowDir)
local_data[tID] = valB;

if (blockSize >= 8) {
GPU_REAL valA = local_datal[tID];
GPU_REAL valB = local_datal[tID + 4];
if ((valB > valA) == arrowDir)
local_data[tID] = wvalB;

if (blockSize >= 4) {
GPU_REAL valA = local_datal[tID];
GPU_REAL valB = local_data[tID + 2
if((valB > valA) == arrowDir)
local_data[tID] = valB;

~.

if (blockSize >= 2) {
GPU_REAL valA = local_datal[tID];
GPU_REAL valB = local_data[tID + 1];
if((valB > valA) == arrowDir)
local_data[tID] = valB;

}
barrier (CLK_LOCAL_MEM_FENCE) ;
return local_datal[0];

J x*
* Prefix Sum algorithm without Shared Memory Bank Conflicts
*/

void scan(__local intx scanArray, int n) {

int threadID = get_local_id(0);
int offset = 1;
// Build sum in place up the tree
for (int d = n>>1; d > 0; d >>= 1) {
barrier (CLK_LOCAL_MEM_FENCE) ;
if (threadID < d) {
int ai = offset* (2+xthreadID+1)-1;
int bi = offsetx (2+xthreadID+2)-1;
ai += CONFLICT_FREE_OFFSET (ai);
bi += CONFLICT_FREE_OFFSET (bi);
scanArray[bi] += scanArraylail;
}
offset *= 2;

if (threadID == 0)
scanArray[n - 1 + CONFLICT_FREE_OFFSET(n - 1)] = 0;

// Traverse down tree and build scan
for (int d = 1; d < n; d *»= 2) {
offset >>= 1;
barrier (CLK_LOCAL_MEM_FENCE) ;
if (threadID < d) {
int ai = offsetx (2+xthreadID+1)-1;
int bi = offset* (2+xthreadID+2)-1;
ai += CONFLICT_FREE_OFFSET (ai);
bi += CONFLICT_FREE_OFFSET (bi);
int t = scanArraylail;
scanArray[ai] = scanArray([bi];
scanArray[bi] += t;

}

A.2 Common Functions

// Structure to define a triangle
typedef struct {

GPU_REAL vO0x;

GPU_REAL vO0y;

GPU_REAL vO0z;

GPU_REAL vlx;
GPU_REAL vly;
GPU_REAL vlz;

GPU_REAL v2x;
GPU_REAL v2y;
GPU_REAL v2z;

54

} gpu_triangle;

// Structure to define a BVH node
typedef struct {
GPU_REAL kDop[KDOP_SIZE];

int id;

’

int parent;

int leftChild;
int rightChild;
int beginTri;
int endTri;

int level;

} kNode;

unsigned int nextPow2 (unsigned int x) {

XXX X X
I
XX X X X

return

>> 1;
>> 2;
>> 4,
>> 8
>> 1
++x;

6;

bool isLeaf (kNode node) {
(node.leftChild == -1 && node.rightChild == -1);

return

bool overlap (GPU_REAL* kDopA, GPU_REALx kDopB) {

for(int i = 0, j = HALF_KDOP_SIZE; i < HALF_KDOP_SIZE && j < KDOP_SIZE;

if (kDopA[i] > kDopB[3])

r

eturn false;

if (kDopB[i] > kDopA[j])

}

r

eturn false;

return true;

GPU_REAL triangleCentroid(int direction,

GPU_REAL vO0, vl1, v2;
GPU_REAL centroid;

switch (direction) {
case X:
v0 = triangle.vOx;
vl = triangle.vlx;
v2 = triangle.v2x;
centroid = (v0 + v1 + v2) / 3.0;
return centroid;
break;
case Y:
v0 = triangle.vOy;
vl = triangle.vly;
v2 = triangle.v2y;
centroid = (v0 + v1 + v2) / 3.0;
return centroid;
break;
case 7:
v0 = triangle.vO0z;
vl = triangle.vlz;
v2 = triangle.v2z;
centroid = (v0 + v1 + v2) / 3.0;

return centroid;

gpu_triangle triangle)

{

it++,

j++)

{

cas

cas

cas

cas

cas

cas

}
ret

GPU_REAL getOverallCentroid (int beginTri,
__global int*x trianglesIndexes,

break;

e XY:

v0 = triangle.vOx +
vl = triangle.vlx +
v2 = triangle.v2x +
centroid = (v0 + vl
return centroid;
break;

e XZ:

v0 = triangle.vOx +
vl = triangle.vlx +
v2 = triangle.v2x +
centroid = (v0 + vl
return centroid;
break;

e YZ:

v0 = triangle.vOy +
triangle.vly +
triangle.v2y +
centroid = (v0 + vl
return centroid;
break;

e XMY:

v0 = triangle.vOx -
vl = triangle.vlx -
triangle.v2x -
centroid = (v0 + vl
return centroid;
break;

e XMZ:

v0 = triangle.vOx -
vl = triangle.vlx -
triangle.v2x -
centroid = (v0 + vl
return centroid;
break;

e YMZ:

v0 = triangle.vOy -
vl = triangle.vly -
triangle.v2y -
centroid = (v0 + vl
return centroid;
break;

vl =
v2 =

v2 =

v2 =

v2 =

urn 0;

triangle.v0y;
triangle.vly;
triangle.v2y;
+ v2) / 3.0;

triangle.v0z;
triangle.vlz;
triangle.v2z;
+ v2) / 3.0;

triangle.v0z;
triangle.vlz;
triangle.v2z;
+ v2) / 3.0;

triangle.vO0y;
triangle.vly;
triangle.v2y;
+ v2) / 3.0;

triangle.v0z;
triangle.vlz;
triangle.v2z;
+ v2) / 3.0;

triangle.v0z;
triangle.vlz;
triangle.v2z;
+ v2) / 3.0;

int endTri, __global gpu_trianglex triangles,

int splitDirection, __local GPU_REAL*x reductionArray) {

GPU_REAL acum = 0, centroid;

int
int
int
int
int

get_local_size (0);
endTri - beginTri + 1;

localID = get_local_id(0);
localSize =

nTriangles =

blockSize = localSize;

readIndex = beginTri + locallID;

while (readIndex < endTri) {

int triangleIndex =

gpu_triangle triangle =
triangleCentroid(splitDirection,

centroid =
acum += centroid;

trianglesIndexes[readIndex];
triangles[triangleIndex];
triangle);

55

56

readIndex += localSize;

// Try to minimize algorithm steps
if (nTriangles < localSize)

blockSize = nextPow2 (nTriangles);
if (locallD < blockSize)
reductionArray[localID] = acum;

barrier (CLK_LOCAL_MEM FENCE) ;

// Reduction Algorithm
GPU_REAL sum = reduceSum(reductionArray, blockSize)
return sum / (GPU_REAL)nTriangles;

GPU_REAL getOverallCentroidSingleThread(int beginTri,
int splitDirection) {

GPU_REAL acum = 0, centroid;

int nTriangles = endTri - beginTri + 1;

for(int i = beginTri; i <= endTri; i++) {
int triangleIndex = trianglesIndexes[i];
gpu_triangle triangle = triangles|[triangleIndex]

’

int endTri,
__global gpu_trianglex triangles, __global intx trianglesIndexes,

’

centroid = triangleCentroid(splitDirection, triangle);

acum += centroid;

}
return acum / (GPU_REAL)nTriangles;

J ok
* Return the longest k-Dop direction
* from k/2 possibilities
*/

int getLongestDirection (GPU_REALx* k) {

GPU_REAL longestDirectionValue = k[9] - k[0];
int longestDirection = 0;
for(int i = 1; i < HALF_KDOP_SIZE; i++) {
GPU_REAL 1DValue = k[i+HALF_KDOP_SIZE] - k[i];
if (1DValue > longestDirectionValue) {
longestDirectionValue = 1DValue;
longestDirection = i;

}
return longestDirection;
void buildl8DopFromBlockTriangles (GPU_REAL* k_current,

__local GPU_REALx local_data) {

unsigned int local_size = get_local_size(0);
unsigned int 1lid = get_local_id(0);

GPU_REAL x0

GPU_REAL z0 = triangle.v0Oz; GPU_REAL zl = triangle.
/) x
GPU_REAL v_min = fmin(x0, x1); v_min = fmin(v_min,

local_data[lid] = v_min;

triangle.vO0x; GPU_REAL x1 = triangle.
GPU_REAL y0 = triangle.vOy; GPU_REAL yl = triangle.

gpu_triangle

vlx;
vly;
vlz;

x2);

GPU_REAL
GPU_REAL
GPU_REAL

triangle,

x2 = triangle.v2x;
y2 = triangle.v2y;
z2 = triangle.v2z;

k_current [0] = reduceMinMax(local_data, DESCENDING, local_size);
GPU_REAL v_max = fmax(x0, x1); v_max = fmax(v_max, x2);
local_data[lid] = v_max;

k_current[9] = reduceMinMax (local_data, ASCENDING, local_size);
//y

v_min = fmin(y0, yl); v_min = fmin(v_min, y2);

local_data[lid] = v_min;

k_current[1l] = reduceMinMax (local_data, DESCENDING, local_size);
v_max = fmax(y0, yl); v_max = fmax(v_max, vy2);

local_data[lid] = v_max;

k_current [10] = reduceMinMax (local_data, ASCENDING, local_size);
// z

v_min = fmin(z0, zl); v_min = fmin(v_min, z2);

local_data[lid] = v_min;

k_current [2] = reduceMinMax(local_data, DESCENDING, local_size);
v_max = fmax(z0, zl); v_max = fmax(v_max, z2);

local_data[lid] = v_max;

k_current[11] = reduceMinMax (local_data, ASCENDING, local_size);
// x +y

v_min = fmin (x0+y0, x1+yl); v_min = fmin(v_min, x2+y2);
local_data[lid] = v_min;

k_current [3] = reduceMinMax (local_data, DESCENDING, local_size);
v_max = fmax(x0+y0, x1l+yl); v_max = fmax(v_max, x2+y2);
local_data[lid] = v_max;

k_current[12] = reduceMinMax (local_data, ASCENDING, local_size);
// x + z

v_min = fmin(x0+z0, x1+zl); v_min = fmin(v_min, x2+z2);
local_data[lid] = v_min;

k_current[4] = reduceMinMax (local_data, DESCENDING, local_size);
v_max = fmax (x0+z0, x1+zl); v_max = fmax(v_max, x2+z2);
local_data[lid] = v_max;

k_current [13] = reduceMinMax (local_data, ASCENDING, local_size);
/)y + z

v_min = fmin(y0+z0, yl+zl); v_min = fmin(v_min, y2+z2);
local_data[lid] = v_min;

k_current [5] = reduceMinMax (local_data, DESCENDING, local_size);
v_max = fmax(y0+z0, yl+zl); v_max = fmax(v_max, y2+z2);
local_data([lid] = v_max;

k_current[14] = reduceMinMax (local_data, ASCENDING, local_size);
/) x -y

v_min = fmin(x0-y0, x1-yl); v_min = fmin(v_min, x2-y2);
local_data[lid] = v_min;

k_current [6] = reduceMinMax (local_data, DESCENDING, local_size);
v_max = fmax (x0-y0, xl-yl); v_max = fmax(v_max, x2-y2);
local_data[lid] = v_max;

k_current[15] = reduceMinMax (local_data, ASCENDING, local_size);
// x -z

v_min = fmin(x0-z0, x1-z1l); v_min = fmin(v_min, x2-z2);
local_data[lid] = v_min;

k_current[7] = reduceMinMax (local_data, DESCENDING, local_size);
v_max = fmax(x0-z0, x1-z1l); v_max = fmax(v_max, x2-z2);
local_data[lid] = v_max;

k_current[16] = reduceMinMax (local_data, ASCENDING, local_size);

/)y - z

57

58

v_min = fmin(y0-z0, yl-z1l); v_min = fmin(v_min, y2-z2);
local_data[lid] = v_min;

k_current [8] = reduceMinMax (local_data, DESCENDING, local_size);
v_max = fmax(y0-z0, yl-zl); v_max = fmax(v_max, y2-z2);
local_data[lid] = v_max;

k_current[17] = reduceMinMax (local_data, ASCENDING, local_size);

void buildl8DopFromTriangle (GPU_REAL* k, gpu_triangle triangle) {

GPU_REAL x0 = triangle.vOx; GPU_REAL x1 = triangle.vlx; GPU_REAL x2 = triangle.v2x;
GPU_REAL y0 = triangle.v0Oy; GPU_REAL yl = triangle.vly; GPU_REAL y2 = triangle.v2y;
GPU_REAL z0 = triangle.v0z; GPU_REAL zl = triangle.vlz; GPU_REAL z2 = triangle.v2z;

/) x
k[0] = fmin(x0, x1); k[0] = fmin(k[0], x2); k[0] -= EPSILON;
k[9] = fmax(x0, x1); k[9] = fmax(k[9], x2); k[9] += EPSILON;
/)y
k[1] = fmin(y0O, y1); k([1] = fmin(k[1], y2); k[1l] -= EPSILON;
k[10] = fmax(y0, y1); k[10] = fmax(k[10], y2); k[10] += EPSILON;
// z
k[2] = fmin(z0, zl); k[2] = fmin(k[2], z2); k[2] -= EPSILON;
k[11l] = fmax(z0, zl); k[11l] = fmax(k[1l1l], z2); k[1l1l] += EPSILON;
// x +y
k[3] = fmin(x0+y0, x1+yl); k[3] = fmin(k[3], x2+y2); k[3] -= EPSILON;
k[12] = fmax(x0+y0, xl+yl); k[12] = fmax(k[1l2], x2+y2); k[12] += EPSILON;
/) x + z
k[4] = fmin(x0+z0, x1+zl); k[4] = fmin(k[4], x2+z2); k[4] —-= EPSILON;
k[13] = fmax (x0+z0, x1+zl); k([13] = fmax(k[13], x2+z2); k[13] += EPSILON;
/)y + z
k[5] = fmin(y0+z0, yl+zl); k[5] = fmin(k[5], y2+z2); k[5] —-= EPSILON;
k[14] = fmax(y0+z0, yl+zl); k[14] = fmax(k[14], y2+z2); k[1l4] += EPSILON;
/) x -y
k[6] = fmin(x0-y0, x1-yl); k[6] = fmin(k[6], x2-y2); k[6] —-= EPSILON;
k[15] = fmax(x0-y0, xl-yl); k[15] = fmax(k[15], x2-y2); k[15] += EPSILON;
// x - z
k[7] = fmin(x0-20, x1-zl1); k[7] = fmin(k[7], x2-z2); k[7] —-= EPSILON;
k[1l6] = fmax(x0-z0, xl-z1l); k[16] = fmax(k[1l6], x2-z2); k[16] += EPSILON;
/)y - z
k[8] = fmin(y0-z0, yl-z1l); k[8] = fmin(k[8], y2-z2); k[8] —-= EPSILON;
k[17] = fmax(y0-z0, yl-z1); k[17] = fmax(k[17], y2-z2); k[17] += EPSILON;
}
void buildl8DopSingleThread (kNodex node, __global gpu_trianglex triangles,

__global intx tri_indices, int beginTri, int endTri) {
GPU_REAL k[KDOP_SIZE];
for (int t = beginTri; t <= endTri; t++) {
int tri_idx = tri_indices|[t];
gpu_triangle triangle = triangles|[tri_idx];

buildl8DopFromTriangle (&k, triangle);

if(t == beginTri) {

for (int i=0, j = HALF_KDOP_SIZE; i < HALF_KDOP_SIZE && j < KDOP_SIZE; i++, Jj++)
{

(#node) .kDop[i] = k[i];
(¥xnode) .kDop[7] ;

Il
o~
~

}
else {
for (int i=0, Jj=HALF_KDOP_SIZE; i < HALF_KDOP_SIZE && j < KDOP_SIZE; i++, j++)
{
(*node) .kDop[i] = fmin(k[i], (*node) .kDopl[il]);
(*xnode) .kDop[]j] = fmax(k[]J], (*node) .kDop[]jl);

void buildl8Dop (kNode xnode, int beginTri, int endTri, __global gpu_trianglex triangles,
__global intx trianglesIndexesOuput__local GPU_REALx reductionArray) {

GPU_REAL k[KDOP_SIZE];
int triangleIndex;
unsigned int localID = get_local_id(0);

unsigned int localSize = get_local_size(0);

int numTriangles = endTri - beginTri + 1;
int trianglesPerThread = numTriangles / localSize;
if (numTriangles % localSize != 0)

trianglesPerThread++;

for(int t = 0; t < trianglesPerThread; t++) {
int index = beginTri + locallID + t % localSize;
if (index > endTri)
triangleIndex = trianglesIndexesOuput [beginTri];
else
triangleIndex = trianglesIndexesOuput [index];
gpu_triangle triangle = triangles|[triangleIndex];

// Compute a 18-Dop for each block of triangles
buildl8DopFromBlockTriangles (&k, triangle, reductionArray);

// Thread 0 updates the k-Dop with the current values
if(locallID == 0) {
if(t == 0) {
for (int i=0, j=HALF_KDOP_SIZE; i < HALF_KDOP_SIZE && J < KDOP_SIZE; i++, j++)
{
(xnode) .kDop[i] = k[i];
(*node) .kDop[j] = k[]];

}
else {
for (int i=0, j=HALF_KDOP_SIZE; i < HALF_KDOP_SIZE && J < KDOP_SIZE; i++, j++)
{
(xnode) .kDop[i] = fmin(k[i], (*node) .kDop[il]);
(*xnode) .kDop[]j] = fmax(k[]J], (*node).kDop[]jl);

}
barrier (CLK_LOCAL_MEM_ FENCE) ;

int splitByCentroid(int beginTri, int endTri, _ global gpu_trianglex triangles,
__global intx trianglesIndexesInput, __global intx trianglesIndexesOutput,

59

60

GPU_REAL overallCentroid, int splitDirection, __local intx scanArray,
__local intx lastProcessedFlag) {

int totalPositives = 0, negatives = 0, blockPositives, lastProcessedIndex, to_process;
int readIndex, triangleIndex, flag, newTriPos;

GPU_REAL centroid;

int locallID = get_local_id(0);

int localSize = get_local_size(0);

int numTriangles = endTri - beginTri + 1;

int triangles_per_thread = numTriangles / localSize;
int n = localSize;

int e = numTriangles % localSize;

if(e !'= 0) |

triangles_per_thread++;
n = nextPow2 (e);

for(int 1 = 0; 1 < triangles_per_thread; i++) {
readIndex = beginTri + localID + i * localSize;
if (readIndex <= endTri) {
triangleIndex = trianglesIndexesInput [readIndex];
gpu_triangle triangle = triangles[triangleIndex];
GPU_REAL centroid = triangleCentroid(splitDirection, triangle);
if (centroid < overallCentroid)

flag = 1;
else
flag = 0;
}
else
flag = 0;

int bankOffset = CONFLICT_FREE_OFFSET (locallD);

scanArray[localID + bankOffset] = flag;

to_process = numTriangles - localSize * i;

lastProcessedIndex = min(localSize-1, to_process-1);

if (localID == lastProcessedIndex)
(xlastProcessedFlag) = flag;

// Scan Algorithm

if (i == triangles_per_thread-1)
scan (scanArray, n);
else

scan (scanArray, localSize);
barrier (CLK_LOCAL_MEM_FENCE) ;

// Sorting Process
blockPositives = scanArray[lastProcessedIndex] + (xlastProcessedFlag);
negatives += lastProcessedIndex + 1 - blockPositives;
if (readIndex <= endTri) {
// Triangles that will be placed in the left child
if(flag == 1)
newTriPos = beginTri + scanArray[localID + bankOffset] + totalPositives;
// Triangles that will be placed in the right child

else

newTriPos = locallID-scanArray[localID+bankOffset] + (endTri+l-negatives);
// Saving indexes’ new order
trianglesIndexesOutput [newTriPos] = triangleIndex;

}

totalPositives += blockPositives;

return beginTri + totalPositives;

int splitByCentroidSingleThread(int beginTri, int endTri,
__global gpu_trianglex triangles, _ global intx trianglesIndexesInput,
__global int* trianglesIndexesOutput, GPU_REAL overallCentroid, int splitDirection)

int positives = 0, negatives = 0, triangleIndex;
GPU_REAL centroid;

for(int i = beginTri; i <= endTri; i++) {
triangleIndex = trianglesIndexesInput[i];
gpu_triangle triangle = triangles[triangleIndex];
centroid = triangleCentroid(splitDirection, triangle);

if (centroid < overallCentroid) {

trianglesIndexesOutput [beginTri + positives] = trianglelIndex;
positives++;

}

else {
trianglesIndexesOutput [endTri - negatives] = trianglelIndex;
negatives++;

}

return beginTri + positives;

void setNodeInfo (kNode xnode, int beginTri, int endTri, int parentID, int nodelD,
int level, int numLeafs, int trianglesPerNode) {

int numTriangles = endTri - beginTri + 1;
(xnode) .1id = nodelD;

(¥xnode) .parent = parentID;

if (numTriangles <= trianglesPerNode) ({

(#node) .leftChild = -1;
(*node) .rightChild = -1;
}
else {
(#node) .1leftChild = (nodeID - numLeafs) » 2 + 1;
(*node) .rightChild = (nodeID - numLeafs) * 2 + 2;

}

(*node) .beginTri = beginTri;

(*xnode) .endTri = endTri;
(xnode) .level = level + 1;
}
/%
* Kernel to initialize the array with triangles’ indexes
*/

__kernel wvoid initTrianglelIndexes(__global intx trilIndexes, int nTriangles) {
int threadID = get_global_id(0);
if (threadID < nTriangles)
triIndexes[threadID] = threadID;

A.3 BVH Construction Kernels

A.3.1 BVH Root Construction Kernel

J ok x

{

61

A
\S)

Kernel to build the BVH root executed by a single Work-Group
Arguments:

trianglex triangles - object’s triangles

trianglesIndexes — primitives’ indexes

hierarchy - Array with the current hierarchy

outputQueue - Queue where is written the root node
trianglesPerNode - Minimum number of triangles per node
nTriangles — Total number of object’s triangles

F S S S A

*/
__kernel wvoid buildBVHRoot (__global gpu_triangle* triangles,
__global intx trianglesIndexes, __global kNodex hierarchy,
__global kNodex outputQueue, int trianglesPerNode, int nTriangles) {

// k-Dop Construction Process executed by a single Work-Group
if (get_group_1id(0) == 0) {
// GPU_REAL local array to perform parallel reductions
__local GPU_REAL localGpuRealArray [WORKGROUPSIZE=x2];
kNode root;

// Build the root’s k-Dop
buildl8Dop (&root, 0,nTriangles-1,trianglesIndexes,triangles, localGpuRealArray);

if (get_local_id(0) == 0) {
setNodeInfo (&root, 0, nTriangles-1, -1, 0, -1, 0, trianglesPerNode);
hierarchy[0] = root;
outputQueue[0] = root;

}
A.3.2 BVH Construction Kernel

__kernel wvoid buildBVHNormal (__global gpu_trianglex triangles,

__global kNodex hierarchy, _ _global intx trianglesIndexesInput,

__global intx trianglesIndexesOutput, __global kNodex inputQueue,

__global kNodex outputQueue, int queueSize, int nTriangles,

int trianglesPerNode, __global intx leafs, __global intx smallNodesCounter) {

unsigned int localSize = get_local_size(0);
unsigned int groupID = get_group_1id(0);
unsigned int localID = get_local_id(0);

__local int locallIntArray[WORKGROUPSIZE];
__local GPU_REAL localGpuRealArray [WORKGROUPSIZE];

__local kNode splitNodeLocal;
__local int lastProcessedFlag;
_ _local int leafCounter;

kNode splitNode, left, right;
int privatelLeafFlag = -1;

if (locallID == 0)
leafCounter = 0;
int dequeuelndex = grouplD;
while (dequeueIndex < queueSize) {
if (localID == 0) // read a split object from the input queue
splitNodeLocal = inputQueue[dequeuelndex];
barrier (CLK_LOCAL_MEM_FENCE) ;
splitNode = splitNodeLocal;

int beginTri = splitNode.beginTri;
int endTri = splitNode.endTri;

}

63

int numTriangles = endTri - beginTri + 1;

// Choose the split axis by the longest direction method

int splitDirection = getLongestDirection (splitNode.kDop);

// Compute k-Dop split value by the mean method

GPU_REAL overallCentroid = getOverallCentroid(beginTri, endTri, triangles,
trianglesIndexesInput, splitDirection, localGpuRealArray);

// Split and reorder triangles’ indices

int splitPoint = splitByCentroid(beginTri, endTri, triangles,
trianglesIndexesInput, trianglesIndexesOutput, overallCentroid,
splitDirection, localIntArray, &lastProcessedFlagq);

// Commit triangles’ indexes to global memory to guarantee that all the threads
// in this Work-Group read updated data during the k-Dop construction
barrier (CLK_GLOBAL_MEM_FENCE) ;

int leftTriangles = splitPoint - beginTri;
int rightTriangles = (endTri+l) - splitPoint;

// If the subdivision led to the same geometry as the current node,
// we simply give half primitives for each node
if((leftTriangles == 0) || (rightTriangles == 0)

splitPoint = beginTri + (numTriangles/2);

// k-Dop Construction Process

buildl8Dop (&left, beginTri, splitPoint-1, trianglesIndexesOutput, triangles,
localGpuRealArray);

barrier (CLK_LOCAL_MEM_FENCE) ;

buildl8Dop (&right, splitPoint, endTri, trianglesIndexesOutput, triangles,
localGpuRealArray) ;
barrier (CLK_LOCAL_MEM_FENCE) ;

if(locallID == 0) {
setNodeInfo (&left, beginTri, splitPoint-1, splitNode.id, splitNode.leftChild,
splitNode.level, leafs[1l], trianglesPerNode);
setNodeInfo (&right, splitPoint, endTri, splitNode.id, splitNode.rightChild,
splitNode.level, leafs[1l], trianglesPerNode);

if (isLeaf (left) || isLeaf (right))
if (privatelLeafFlag < 0)
privatelLeafFlag = atom_inc(&leafCounter);

hierarchy[splitNode.leftChild] = left;
hierarchy[splitNode.rightChild] = right;
outputQueue [dequeueIndex*2] = left;
outputQueue [dequeueIndex*2+1] = right;

}
dequeueIndex += get_num_groups (0);
}
if (privateLeafFlag == 0)
leafs[0] = 1; // flag to indicate that there are leaf nodes in this level

A.3.3 Small Splits Construction Kernels

/

P

Kernel to build a BVH in which each node is split by a single thread
Arguments:

triangle+ triangles - object’s triangles

trianglesIndexesInput - primitives’ indexes before the split reordering
trianglesIndexesOutput - primitives’ indexes after the split reordering
hierarchy - Array with the current hierarchy

64

inputQueue - Queue where the split nodes are read

outputQueue - Queue where are written the new generated nodes

queueSize - Size of the Input Queue

trianglesPerNode - Minimum number of triangles per node

nTriangles - Total number of object’s triangles

leafs - Flag used to signal the existence of leafs in the current level
smallNodesCounter - Counts the number of small nodes (not used in this kernel)

T

*/
__kernel void buildBVHSingleThread(__global gpu_trianglex triangles,
__global intx trianglesIndexesInput, __global int*x trianglesIndexesOutput,
__global kNodex hierarchy, __global kNodex inputQueue, __global kNodex outputQueue,
int queueSize, int trianglesPerNode, int nTriangles, __global intx leafs,
__global intx smallNodesCounter) {

kNode splitObject, left, right;
int privateleafFlag = -1;
__local int leafCounter;

if (get_local_id(0) == 0)
leafCounter = 0;

int dequeuelndex = get_global_id(0);
while (dequeueIndex < queueSize) {
// Read the node to split from the Input Queue
splitObject = inputQueue[dequeuelndex];
int beginTri = splitObject.beginTri;
int endTri = splitObject.endTri;
int numTriangles = endTri - beginTri + 1;

// Choose the split axis by the longest direction method

int splitDirection = getLongestDirection(splitObject.kDop);

// Compute k-Dop split value by the mean method

GPU_REAL overallCentroid = getOverallCentroidSingleThread (beginTri, endTri,
triangles, trianglesIndexesInput, splitDirection);

// Split and reorder triangles’ indices

int splitPoint = splitByCentroidSingleThread(beginTri, endTri, triangles,
trianglesIndexesInput, trianglesIndexesOutput, overallCentroid, splitDirection);

int leftTriangles = splitPoint - beginTri;
int rightTriangles = (endTri+l) - splitPoint;

// If the subdivision led to the same geometry as the current node,
// we simply give half primitives for each node
if ((leftTriangles == 0) || (rightTriangles == 0)

splitPoint = beginTri + (numTriangles/2);

// k-Dop Construction Process

buildl8DopSingleThread(&left, triangles, trianglesIndexesOutput,
beginTri, splitPoint-1);

buildl8DopSingleThread (&right, triangles, trianglesIndexesOutput,
splitPoint, endTri);

setNodeInfo (&left, beginTri, splitPoint-1, splitObiject.id,
splitObject.leftChild, splitObject.level, leafs[l], trianglesPerNode) ;
setNodeInfo (&right, splitPoint, endTri, splitObject.id,
splitObject.rightChild, splitObject.level, leafs[l], trianglesPerNode);

if (isLeaf (left) || isLeaf(right))
if (privateleafFlag < 0)

privateLeafFlag = atom_inc (&leafCounter);

hierarchy[splitObject.leftChild] = left;

hierarchy[splitObject.rightChild] = right;

outputQueue [dequeueIndex*2] = left;

outputQueue [dequeueIndex*2+1] = right;

dequeueIndex += get_global_size(0);
}
// The first thread to find a leaf sets the leaf flag to true
if (privateLeafFlag == 0) {

// Flag to indicate that there are leaf nodes in this

// level and we need to perform a Compaction

leafs[0] = 1;

*

Kernel to build a BVH in which each node is split by a

Work—-Group and the small nodes are written into a local

queue to be processed individually by single threads

Arguments:

trianglex triangles - object’s triangles

trianglesIndexesInput - primitives’ indexes before the split reordering
trianglesIndexesOutput - primitives’ indexes after the split reordering
hierarchy - Array with the current hierarchy

inputQueue - Queue where the split nodes are read

outputQueue - Queue where are written the new generated nodes

queueSize - Size of the Input Queue

trianglesPerNode - Minimum number of triangles per node

nTriangles - Total number of object’s triangles

leafs - Flag used to signal the existence of leafs in the current level
smallNodesCounter - Counts the number of small nodes

P T T T T A

*/
__kernel wvoid buildBVH(__global gpu_trianglex triangles,
__global intx trianglesIndexesInput, __global intx trianglesIndexesOutput,
__global kNodex hierarchy, __global kNodex inputQueue,
__global kNodex outputQueue, int queueSize, int trianglesPerNode, int nTriangles,
__global int* leafs, __global intx smallNodesCounter) {

unsigned int localSize = get_local_size(0);

unsigned int groupID = get_group_id(0);

unsigned int locallID = get_local_1id(0);

kNode splitNode, left, right;

int privateleafFlag = -1, smallNodesTreated = 0, totalSmallNodes = 0;
__local kNode splitNodeLocal;

_ _local int leafCounter;

__local int lastProcessedFlag;

// Int local array to perform parallel scans

__local int locallIntArray[WORKGROUPSIZE];

// GPU_REAL local array to perform parallel reductions
__local GPU_REAL localGpuRealArray [WORKGROUPSIZE];

// Queue in local memory to store small nodes

__local kNode smallSplitsQueue [WORKGROUPSIZE];

// Queue in local memory to store small nodes’ indexes in the global work queue
__local int smallSplitsQueuelIndexes [WORKGROUPSIZE];

if (get_global_id(0) == 0)
smallNodesCounter[0] = 0;
if (locallID == 0)
leafCounter = 0;

// Work-Group Splits
int dequeuelndex = grouplD;

66

while (dequeueIndex < queueSize) {
if (locallID == 0) // Read a split object from the input queue
splitNodeLocal = inputQueue[dequeuelndex];
barrier (CLK_LOCAL_MEM_FENCE) ;
splitNode = splitNodeLocal;

int beginTri = splitNode.beginTri;
int endTri = splitNode.endTri;
int numTriangles = endTri - beginTri + 1;

// If the node is "small", put it on a local queue to be
// processed individually by a single thread
if (numTriangles <= SMALL_SPLIT_THRESHOLD && smallNodesTreated < 128) {

if(locallID == 0) {
smallSplitsQueue[smallNodesTreated] = splitNode;
smallSplitsQueuelIndexes[smallNodesTreated] = dequeuelndex;

}
smallNodesTreated++;
totalSmallNodes++;
}
else {
// When the node is a small node but there is no more local
// memory to store it, we simply increment the small nodes counter
if (numTriangles <= SMALL_SPLIT_THRESHOLD)
totalSmallNodes++;
// Choose the split axis by the longest direction method
int splitDirection = getLongestDirection (splitNode.kDop) ;
// Compute k-Dop split value by the mean method
GPU_REAL overallCentroid = getOverallCentroid(beginTri, endTri, triangles,
trianglesIndexesInput, splitDirection, localGpuRealArray);
// Split and reorder triangles’ indices
int splitPoint = splitByCentroid(beginTri, endTri, triangles,
trianglesIndexesInput, trianglesIndexesOutput, overallCentroid,
splitDirection, localIntArray, &lastProcessedFlag);
// Commit triangles’ indexes to global memory to guarantee that all the threads
// in this Work-Group read updated data during the k-Dop construction
barrier (CLK_GLOBAL_MEM_FENCE) ;

int leftNodeTriangles = splitPoint - beginTri;
int rightNodeTriangles = (endTri+l) - splitPoint;

// If the subdivision led to the same geometry as the current node,

// we simply give half primitives for each node

if ((leftNodeTriangles == 0) || (rightNodeTriangles == 0))
splitPoint = beginTri + (numTriangles/2);

// k-Dop Construction Process
buildl8Dop(&left, beginTri, splitPoint-1, trianglesIndexesOutput,
triangles, localGpuRealArray);
barrier (CLK_LOCAL_MEM_FENCE) ;

buildl8Dop (&right, splitPoint, endTri, trianglesIndexesOutput,
triangles, localGpuRealArray);
barrier (CLK_LOCAL_MEM_FENCE) ;

if(localID == 0) {
setNodeInfo (&left, beginTri, splitPoint-1, splitNode.id,
splitNode.leftChild, splitNode.level, leafs[l], trianglesPerNode);
setNodeInfo (&right, splitPoint, endTri, splitNode.id,
splitNode.rightChild, splitNode.level, leafs[1l], trianglesPerNode);

if (isLeaf (left) || isLeaf(right))

67

if (privatelLeafFlag < 0)
privatelLeafFlag = atom_inc (&leafCounter);

hierarchy([splitNode.leftChild] = left;
hierarchy[splitNode.rightChild] = right;
outputQueue [dequeueIndex*2] = left;
outputQueue [dequeueIndex*2+1] = right;

}

dequeueIndex += get_num_groups (0);

if (localID == 0) {
if (totalSmallNodes > 0)
atom_add (&smallNodesCounter[0], totalSmallNodes);

// Individual Splits
int smallReadIndex = locallD;
while (smallReadIndex < smallNodesTreated) {
dequeueIndex = smallSplitsQueueIndexes[smallReadIndex];
splitNode = smallSplitsQueue[smallReadIndex];
int beginTri = splitNode.beginTri;
int endTri = splitNode.endTri;
int numTriangles = endTri - beginTri + 1;

// Choose the split axis by the longest direction method

int splitDirection = getLongestDirection (splitNode.kDop) ;

// Compute k-Dop split value by the mean method

GPU_REAL overallCentroid = getOverallCentroidSingleThread(beginTri, endTri,
triangles, trianglesIndexesInput, splitDirection);

// Split and reorder triangles’ indices

int splitPoint = splitByCentroidSingleThread(beginTri, endTri, triangles,
trianglesIndexesInput, trianglesIndexesOutput, overallCentroid, splitDirection);

int leftTriangles = splitPoint - beginTri;
int rightTriangles = (endTri+l) - splitPoint;

// If the subdivision led to the same geometry as the current node,
// we simply give half primitives for each node
if((leftTriangles == 0) || (rightTriangles == 0)

splitPoint = beginTri + (numTriangles/2);

// k—-Dop Construction Process
buildl8DopSingleThread(&left, triangles, trianglesIndexesOutput,
beginTri, splitPoint-1);

buildl8DopSingleThread(&right, triangles, trianglesIndexesOutput,
splitPoint, endTri);

setNodeInfo (&left, beginTri, splitPoint-1, splitNode.id, splitNode.leftChild,
splitNode.level, leafs[1l], trianglesPerNode);

setNodeInfo (&right, splitPoint, endTri, splitNode.id, splitNode.rightChild,
splitNode.level, leafs[1l], trianglesPerNode);

if (isLeaf (left) || isLeaf(right))
if (privatelLeafFlag < 0)
privatelLeafFlag = atom_inc(&leafCounter);

hierarchy[splitNode.leftChild] = left;
hierarchy[splitNode.rightChild] = right;
outputQueue [dequeueIndex*2] = left;

outputQueue [dequeueIndex*2+1] = right;

68

smallReadIndex += localSize;

// The first thread to find a leaf sets the leaf flag to true
if (privatelLeafFlag == 0)

// Flag to indicate that there are leaf nodes in this level and we need

// to perform a Compaction
leafs[0] = 1;

A.3.4 Large Nodes Construction Kernels

A.3.4.1 Large Nodes Construction Kernels - Get Split Point

__kernel wvoid getOverallCentroidGlobal (_ _global gpu_triangle* triangles,

__global intx trianglesIndexes, __global kNodex inputQueue, int queueSize,
__global GPU_REAL* centroidsArray, __global intx offsetsArray) {
int localSize = get_local_size(0);

int globalSize = get_global_size (0);
int groupID = get_group_id(0);

int locallID = get_local_id(0);

int numGroups = get_num_groups (0);
int globalWriteOffset = 0;

__local kNode splitNodeLocal;

// GPU_REAL local array to perform parallel reductions
__local GPU_REAL localGpuRealArray [WORKGROUPSIZE];

// Work-Group Splits
for(int 1 = 0; i < queueSize; i++) {
if (locallD == 0) // Read a split object from the input queue
splitNodeLocal = inputQueuel[i];
barrier (CLK_LOCAL_MEM_FENCE) ;
kNode splitNode = splitNodeLocal;

int beginTri = splitNode.beginTri;

int endTri = splitNode.endTri;

int numTriangles = endTri - beginTri + 1;
int groupOffset = grouplD;

int numBlocks = numTriangles/localSize;

if (numTriangles % localSize != 0)
numBlocks++;

int groupReadIndex = beginTri + (groupID = localSize);

// Choose the split axis by the longest direction method
int splitDirection = getLongestDirection (splitNode.kDop) ;
while (groupReadIndex <= endTri) {
int lastIndex = min(groupReadIndex+localSize-1, endTri);
// Compute k-Dop split value by the mean method

GPU_REAL overallCentroid = getOverallCentroid(groupReadIndex, lastIndex,

triangles, trianglesIndexes, splitDirection, localGpuRealArray);

if(localID == 0) {
int index = globalWriteOffset + groupOffset;
centroidsArray[index] = overallCentroid;

}
groupReadIndex += globalSize;
groupOffset += numGroups;

}
if (groupID == 0 && localID == 0) {
offsetsArray[i*2] = globalWriteOffset;
offsetsArray[i*2+1] = globalWriteOffset+numBlocks-1;
}
globalWriteOffset += numBlocks;

__kernel void mergeCentroids(__global GPU_REALx centroidsArray,
__global intx offsetsArray, __global kNodex inputQueue, int queueSize,
__global GPU_REAL«* outputCentroids) {

__local GPU_REAL reductionArray[WORKGROUPSIZE];
unsigned int groupID = get_group_1id(0);
unsigned int localSize = get_local_size(0);
unsigned int localID = get_local_id(0);
unsigned int numGroups = get_num_groups (0);
GPU_REAL acum;

int groupReadIndex = grouplD;

while (groupReadIndex < queueSize) {
int startIdx = offsetsArray[groupReadIndexx*2]; // where the blocks begin
int endIdx = offsetsArray[groupReadIndex*2+1];
int readIndex = startIdx + locallD;
acum = 0;
while (readIndex <= endIdx) {
acum += centroidsArray[readIndex];
readIndex += localSize;
}
reductionArray[localID] = acum;
barrier (CLK_LOCAL_MEM_FENCE) ;
// Reduction Algorithm
GPU_REAL sum = reduceSum(reductionArray, localSize);

if(locallID == 0) {
kNode node = inputQueue[groupReadIndex];
int beginTri = node.beginTri;
int endTri = node.endTri;
int numTriangles = endTri - beginTri + 1;
GPU_REAL numCentroids = numTriangles / (GPU_REAL)localSize;
outputCentroids [groupReadIndex] = sum / numCentroids;

}

groupReadIndex += numGroups;

)
A.3.4.2 Large Nodes Construction Kernels - Split By Centroid

__kernel wvoid splitByCentroidGlobal (__global gpu_trianglex triangles,

__global intx trianglesIndexesInput, _ _global GPU_REAL* centroids,
__global kNodex inputQueue, __global intx scannedArray,
__global int* unScannedArray, __global int* blockSums, int queueSize) {

unsigned int groupID = get_group_1id(0);
unsigned int localSize = get_local_size(0);
unsigned int globalSize = get_global_size (0);
unsigned int localID = get_local_id(0);
unsigned int numGroups = get_num_groups (0);
__local kNode splitNodeLocal;

_ local GPU_REAL centroidLocal;

__local int scanArray [WORKGROUPSIZE];

int blockSumsWriteIndex = 0, flag;

70

for(int i = 0; 1 < queueSize; i++) {
if (locallD == 0) { // Read a split object from the input queue
splitNodeLocal = inputQueuel[i];
centroidLocal = centroids[i];
}
barrier (CLK_LOCAL_MEM_FENCE) ;
kNode splitNode = splitNodelLocal;

int beginTri = splitNode.beginTri;
int endTri = splitNode.endTri;
int numTriangles = endTri - beginTri + 1;

int numBlockSums = numTriangles / localSize;
if (numTriangles % localSize != 0)
numBlockSums++;

int splitDirection = getLongestDirection (splitNode.kDop);
int groupOffset = beginTri + (groupIDxlocalSize);
int block = 0;
while (groupOffset < endTri) ({
int readIndex = groupOffset + locallD;
if (readIndex <= endTri) {
int triangleIndex trianglesIndexesInput [readIndex];
gpu_triangle triangle = triangles[triangleIndex];
GPU_REAL centroid = triangleCentroid(splitDirection, triangle);
if (centroid < centroidLocal)

flag = 1;
else
flag = 0;
}
else
flag = 0;

int bankOffset = CONFLICT_FREE_OFFSET (locallID);
scanArray[locallD + bankOffset] = flag;

// Scan Algorithm

scan (scanArray, localSize);

barrier (CLK_LOCAL_MEM_FENCE) ;

if (readIndex <= endTri) {

unScannedArray[readIndex] = flag;
scannedArray|[readIndex] = scanArray[locallID + bankOffset];
}
if (localID == localSize-1) {
int index = blockSumsWriteIndex + groupID + (numGroupsxblock);
blockSums[index] = scanArray[localID + bankOffset] + flag;
}
block++;

groupOffset += globalSize;
}

blockSumsWriteIndex += numBlockSums;

__kernel void mergeSplitByCentroid(__global gpu_trianglex triangles,

__global intx trianglesIndexesInput, __ global intx trianglesIndexesOutput,
__global kNodex inputQueue, __global intx scannedArray, int queueSize,
__global intx unScannedArray, __global intx blockSums, __global intx splitPoints)

unsigned int groupID = get_group_1id(0);
int localSize = get_local_size(0);
unsigned int globalSize = get_global_size (0);

unsigned int localID = get_local_id(0);

unsigned int numGroups = get_num_groups (0);

__local kNode splitNodeLocal;

__local int scanArray[WORKGROUPSIZE];

int newTriPos, readIndex;

int blockSumsReadIndex = 0, flag, locallIncrement;

int blockIncrement, beginTri, endTri, numTriangles, numBlockSums;

for(int i = 0; 1 < queueSize; i++) {
if (localID == 0) // Read a split object from the input queue
splitNodeLocal = inputQueue[i];

barrier (CLK_LOCAL_MEM_FENCE) ;
kNode splitNode = splitNodeLocal;

localIlncrement = 0;

beginTri = splitNode.beginTri;

endTri = splitNode.endTri;

numTriangles = endTri - beginTri + 1;

numBlockSums = numTriangles / localSize;

if (numTriangles % localSize != 0)
numBlockSums++;

// Scan the Block Sums Array to get the group increment
int bankOffset = CONFLICT_FREE_OFFSET (locallID);

int globalRIdx = grouplD;

int localRIdx = grouplD;

int block = 1;
// scan block sums in blocks with the work group size
while (globalRIdx < numBlockSums) {
readIndex = blockSumsReadIndex + ((block-1)+localSize) + locallD;
if (readIndex < (blockSumsReadIndex + numBlockSums))
scanArray[localID + bankOffset] = blockSums|[readIndex];
else
scanArray([localID + bankOffset]
// Scan Algorithm
scan (scanArray, localSize);
barrier (CLK_LOCAL_MEM_FENCE) ;
// get several group block increments and reorder primitives
int blockReadOffset = min(localSize*block, numBlockSums) ;
while (globalRIdx < blockReadOffset) {
localRIdx = globalRIdx % localSize;
int groupBankOffset = CONFLICT_FREE_OFFSET (localRIdx);
blockIncrement = scanArray[localRIdx + groupBankOffset];

0;

// Sorting Process
int negatives=(globalRIdxxlocalSize)-blockIncrement-localIncrement;
int thrIdx = beginTri + localID + (globalRIdxxlocalSize);
if (thrIdx <= endTri) {
int triIdxIn = trianglesIndexesInput[thrIdx];
flag = unScannedArray[thrIdx];
if (flag == 1) // Triangles that will be placed in the left child
newTriPos=beginTri+scannedArray[thrIdx]+blockIncrement+localIncrement;
else // Triangles that will be placed in the right child

newTriPos = (endTri - negatives) - (localID - scannedArray[thrIdx]);
// Saving indexes’ new order
trianglesIndexesOutput [newTriPos] = trildxIn;

}
globalRIdx += numGroups;
}
int bankOffsetLastThread = CONFLICT_FREE_OFFSET (localSize-1);

72

int lastProcessedIndex = min (blockSumsReadIndex+ (block*localSize)-1,
blockSumsReadIndex+numBlockSums-1) ;

if (blockSumsReadIndex+ (block*xlocalSize)-1 < blockSumsReadIndex+numBlockSums)
localIncrement += scanArray|[(localSize-1) + bankOffsetLastThread] +
blockSums[lastProcessedIndex];
else
localIncrement += scanArray/[(localSize-1) + bankOffsetLastThread];
block++;
barrier (CLK_LOCAL_MEM_FENCE) ;
}
blockSumsReadIndex += numBlockSums;
if (groupID == 0 && localID == 0)
splitPoints[i] = beginTri + localIncrement;

}
A.3.4.3 Large Nodes Construction Kernels - Build k-Dops

__kernel wvoid buildDops(__global gpu_trianglex triangles,
__global intx trianglesIndexes, __global kNodex outputDops,
__global kNodex inputQueue, __global intx splitPoints,

int queueSize, int nTriangles) {

unsigned int localSize = get_local_size(0);
unsigned int localID = get_local_1id(0);
unsigned int globalSize = get_global_size(0);
unsigned int groupID = get_group_1id(0);

unsigned int numGroups = get_num_groups (0);
int beginTri, endTri;
int numDops = 0;

// GPU_REAL local array to perform parallel reductions
__local GPU_REAL localGpuRealArray [WORKGROUPSIZE];
if (queueSize == 0) { // Root Building!
// k-Dop Construction Process executed by several Work-Groups
int groupReadOffset = localSize % get_group_id(0);
int lastTriIndex;
int j = 0;
while (groupReadOffset < nTriangles) {
kNode node;
// Build the root’s k-Dop
lastTriIndex = groupReadOffset+localSize-1;
if (lastTriIndex >= nTriangles)
lastTriIndex = nTriangles-1;
buildl8Dop (&node, groupReadOffset, lastTrilIndex,
trianglesIndexes, triangles, localGpuRealArray);

if(locallID == 0) {
int writeIndex = groupID + (numGroupsx*j);
outputDops [writeIndex] = node;

}

barrier (CLK_LOCAL_MEM_FENCE) ;
groupReadOffset += globalSize;
Jt+;

}
else {
for(int i = 0; i < queueSize; i++) {

kNode inputNode = inputQueue[i];
beginTri = inputNode.beginTri;
kNode node;
endTri = splitPoints[i]-1;
for(int n = 0; n < 2; n++) { // build 2 nodes

int groupReadOffset = beginTri + (localSize * get_group_id(0));
int lastTrilndex;
int j = 0;
while (groupReadOffset <= endTri) {
lastTriIndex = groupReadOffset+localSize-1;
if(lastTriIndex > endTri)
lastTriIndex = endTri;
buildl8Dop (&node, groupReadOffset, lastTrilndex,
trianglesIndexes, triangles, localGpuRealArray);
if(locallID == 0) {
int writeIndex = numDops + groupID + (numGroupsxJ);
node.id = groupReadOffset;
outputDops [writeIndex] = node;
}
barrier (CLK_LOCAL_MEM_FENCE) ;
groupReadOffset += globalSize;
Jt+;
}
// change info for the right node construction
numDops += (endTri - beginTri + 1) / localSize;

if ((endTri - beginTri + 1) % localSize != 0)
numDops++;

beginTri = endTri+l;

endTri = inputNode.endTri;

J ok

* Merge Root Dops Kernel, without reading nodes from input queue (for simplification)
*%/
__kernel void mergeRootDops (__global kNode* inputDops, __global kNodex outputNodes,
__global kNodex hierarchy, int nTriangles, int trianglesPerNode) ({

GPU_REAL k[KDOP_SIZE];

kNode kNodeDop;

kNode node;

__local GPU_REAL reductionArray[WORKGROUPSIZE«*2];

unsigned int localID = get_local_1id(0);
unsigned int localSize = get_local_size(0);

int nDops = nTriangles / WORKGROUPSIZE;

if (nTriangles % WORKGROUPSIZE != 0)
nDops++;

int dopsPerThread = nDops / localSize;

if (nDops % localSize != 0)
dopsPerThread++;

for(int t = 0; t < dopsPerThread; t++) {

int index = locallID + (localSizext);

if (index >= nDops)
index = nDops-1;

kNodeDop = inputDops[index];

for (int i=0, j=HALF_KDOP_SIZE;

i < HALF_KDOP_SIZE && J < KDOP_SIZE; i++, j++) {
reductionArray[localID] = kNodeDop.kDop[i];
barrier (CLK_LOCAL_MEM_FENCE) ;

k[i] = reduceMinMax (reductionArray, DESCENDING, localSize);
reductionArray[localID] = kNodeDop.kDop[]];
barrier (CLK_LOCAL_MEM_FENCE) ;

74

k[j] = reduceMinMax (reductionArray, ASCENDING, localSize);
}

// Thread 0 updates the k-Dop with the current values
if(locallID == 0) {
if(t == 0) |
for (int i=0, j=HALF_KDOP_SIZE;
i < HALF_KDOP_SIZE && Jj < KDOP_SIZE; i++, j++) {
node.kDop[i] = k[i];
node.kDop[j] = k[]J];

}

else {
for (int i=0, j=HALF_KDOP_SIZE; i<HALF_KDOP_SIZE && J<KDOP_SIZE;i++, j++)
node.kDop[i] = fmin(k[i], node.kDop[il]);
node.kDop[j] = fmax(k[j], node.kDop[]j]);

}
barrier (CLK_LOCAL_MEM_FENCE) ;
}

if(locallID == 0) {
setNodeInfo (&node, 0, nTriangles-1, -1, 0, -1, 0, trianglesPerNode);
outputNodes[0] = node;
hierarchy[0] = node;
}
}
__kernel void mergeDops (__global kNodex inputDops, __global kNodex outputNodes,
__global kNodex inputQueue, __global kNodex hierarchy,

__global intx splitPoints, int queueSize, int trianglesPerNode) ({

GPU_REAL k[KDOP_SIZE];
kNode kNodeDop;
kNode inputNode, node;

unsigned int localID = get_local_id(0);
unsigned int localSize = get_local_size(0);

__local GPU_REAL reductionArray[WORKGROUPSIZE«*2];
int beginTri, endTri, nTriangles, nDops, readOffset = 0, writeIndex = 0;

for (int inode = 0; inode < queueSize; inode++) {
inputNode = inputQueue[inode];
beginTri = inputNode.beginTri;
endTri = splitPoints[inode]l-1;
nTriangles = endTri - beginTri + 1;

for (int child = 0; child < 2; child++) {
nDops = nTriangles/WORKGROUPSIZE;

if (nTriangles$WORKGROUPSIZE != 0)
nDops++;

int dopsPerThread = nDops / localSize;

if (nDops % localSize != 0)
dopsPerThread++;

for(int t = 0; t < dopsPerThread; t++) {
int index = readOffset + localID + (localSize=*t);
if (index >= readOffset+nDops)
index = readOffset+nDops-1;
kNodeDop = inputDops[index];
for (int i=0, j=HALF_KDOP_SIZE;
i < HALF_KDOP_SIZE && J < KDOP_SIZE;i++, j++) {

reductionArray[localID] = kNodeDop.kDop[i];
barrier (CLK_LOCAL_MEM_FENCE) ;

k[i] = reduceMinMax (reductionArray, DESCENDING, localSize);
reductionArray([localID] = kNodeDop.kDop[j];

barrier (CLK_LOCAL_MEM_FENCE) ;

k[j] = reduceMinMax (reductionArray, ASCENDING, localSize);

}
// Thread 0 updates the k-Dop with the current values

if(locallID == 0) {
if(t == 0) {
for (int i=0, j=HALF_KDOP_SIZE;
i < HALF_KDOP_SIZE && 7 < KDOP_SIZE;i++, j++) {
node.kDop[i] = k[i];
node.kDop[3j] = k[J];

}
else {
for (int i=0, j=HALF_KDOP_SIZE;
i < HALF_KDOP_SIZE && 7 < KDOP_SIZE;i++, j++) {
node.kDop[i] = fmin(k[i], node.kDop[il]);
node.kDop[j] = fmax(k[j], node.kDop[]jl);

}
barrier (CLK_LOCAL_MEM_FENCE) ;
}
if(locallID == 0) {
int nodelD;
if (child == 0)
nodeID = inputNode.leftChild;
else
nodeID = inputNode.rightChild;
setNodeInfo (&node, beginTri, endTri, inputNode.id, nodelD,
inputNode.level, 0, trianglesPerNode);
outputNodes[inodex2+child] = node;
hierarchy[nodeID] = node;
}
readOffset += nDops;

beginTri = endTri+l;
endTri = inputNode.endTri;
nTriangles = endTri - beginTri + 1;

A.3.5 Compaction Kernels

A.3.5.1 Compaction Kernel for Small Arrays

/ *
* Compaction kernel for arrays up to twice the work group size
*/
__kernel void compactionSmallArrays(___global kNodex hierarchy,
__global kNodex inputQueue, __global kNode* outputQueue,
__global intx leafs, int queue_size) {

kNode nodeA, nodeB;
bool isLeafA, isLeafB;

__local int scanArray [WORKGROUPSIZE=x2];

int indexA, indexB;

76

int local_id = get_local_id(0);
int local_size = get_local_size(0);
int n = nextPow2 (queue_size);

int ai = local_id;

int bi = local_id + (n/2);

int bankOffsetA = CONFLICT_FREE_OFFSET (ai);
int bankOffsetB = CONFLICT_FREE_OFFSET (bi);

if(bi < n) {
nodeA = inputQueuelail];

isLeafA = ((nodeA.leftChild == -1) && (nodeA.rightChild == -1));
scanArray[al + bankOffsetA] = !isLeafh;
if (bi < queue_size) {

nodeB = inputQueue[bi];

isLeafB = ((nodeB.leftChild == -1) && (nodeB.rightChild == -1));
}
else

isLeafB = true;
scanArray[bi + bankOffsetB] = !isLeafB;

// Scan Algorithm
scan (scanArray, n);
barrier (CLK_LOCAL_MEM_FENCE) ;

// Sorting Phase
if (bi < queue_size) {
if (!isLeafh) {
indexA = scanArrayl[ai + bankOffsetA];
int previous_indexA = nodeA.id;
int new_indexA = nodeA.id - ai + indexA;

nodeA.leftChild = (new_indexA-leafs[1l]) * 2 + 1;
nodeA.rightChild = (new_indexA-leafs[1]) % 2 + 2;
hierarchy[previous_indexA] = nodeA;

outputQueue [indexA] = nodeA;

}

if(!isLeafB) {
indexB = scanArray[bi + bankOffsetB];
int previous_indexB = nodeB.id;
int new_indexB = nodeB.id - bi + indexB;

nodeB.leftChild = (new_indexB-leafs[1l]) *= 2 + 1;
nodeB.rightChild = (new_indexB-leafs[1l]) * 2 + 2;
hierarchy[previous_indexB] = nodeB;
outputQueue [indexB] = nodeB;

}

else {
if (bi == queue_size-1)

indexB = scanArray[bi + bankOffsetB];

}

if (bi == queue_size-1) {
leafs[1l] += queue_size - (indexB + !isLeafB);
leafs[0] = 0; // reset flag

}

A.3.5.2 Compaction Kernels for Large Arrays

Ve
* Compaction kernel for Large Arrays - Phase 1
*/

// increment leafs

counter

__kernel void compactionLargeArraysl (__global kNodex inputQueue,
__global intx block_increments, __global intx scanned_elements, int queue_size) {

int local_id = get_local_id(0);

int local_size = get_local_size(0);

int groupID = get_group_1id(0);

bool isLeaf;

__local int scanArray [WORKGROUPSIZE=x2];

int node_index = local_id + (groupID * local_size);
int bankOffset = CONFLICT_FREE_OFFSET (local_id);
if (node_index < queue_size) {

kNode node = inputQueue[node_index];

isLeaf = ((node.leftChild == -1) && (node.rightChild == -1));
}
else

isLeaf = true;

scanArray[local_id + bankOffset] = !isLeaf;

scan (scanArray, local_size);

barrier (CLK_LOCAL_MEM_FENCE) ;

scanned_elements[node_index] = scanArray[local_id + bankOffset];

if(local_id == local_size-1)
block_increments[groupID] = scanArray[local_id + bankOffset] + !isLeaf;

J x*

* Compaction kernel for Large Arrays - Phase 2

*/
_ _kernel void compactionLargeArrays2(__global intx block_increments,
__global intx block_sums, int block_sums_size) {

int local_id = get_local_id(0);

int local_size = get_local_size(0);
int groupID = get_group_id(0);
int val = 0;

__local int scanArray [WORKGROUPSIZE=x2];

int node_index = local_id + (groupID * local_size);
int bankOffset = CONFLICT_FREE_OFFSET (local_id);

if (node_index < block_sums_size)

val = block_sums[node_index];

scanArray[local_id + bankOffset] = val;

scan (scanArray, local_size);

barrier (CLK_LOCAL_MEM_FENCE) ;

block_sums[node_index] = scanArray[local_id + bankOffset];

if(local_id == local_size-1)
block_increments[groupID] = scanArray[local_id + bankOffset] + val;

J k*

* Compaction kernel for Large Arrays - Phase 3

*/
__kernel void compactionLargeArrays3(__global kNodex hierarchy,
__global kNode* inputQueue, __global kNodex* outputQueue,
__global intx leafs, _ _global intx block_sums, __global int* scanned_elements,
int queue_size, int blocks, int current_leafs, __global intx block_increments,
int block_increments_size) {

78

int local_id = get_local_id(0);

int local_size = get_local_size(0);

int groupID = get_group_id(0);

__local int scanArray [WORKGROUPSIZE=x2];

int leafsC = current_leafs;
int node_index = local_id + (groupID * local_size);

if (block_increments_size > 1) {
int bankOffset = CONFLICT_FREE_OFFSET (local_id);
int n = nextPow2 (block_increments_size);
if (local_id < block_increments_size)

scanArray[local_id + bankOffset] = block_increments[local_id];
else
scanArray[local_id + bankOffset] = 0O;

scan (scanArray, local_size);
barrier (CLK_LOCAL_MEM_FENCE) ;

int increment2 = 0;

if (groupID >= WORKGROUPSIZEx2) {
int pos = groupID / (WORKGROUPSIZE«*2);
int bankOffset = CONFLICT_FREE_OFFSET (pos) ;
increment2 = scanArray[pos + bankOffset];

}

int increment = block_sums[groupID] + increment2;

// Sorting Phase
if (node_index < queue_size) {

kNode node = inputQueue[node_index];
bool isLeaf = ((node.leftChild == -1) && (node.rightChild == -1));
if (!isLeaf) {

int index = scanned_elements[node_index] + increment;

int previous_index = node.id;

int new_index = node.id - node_index + index;
int diff = previous_index - new_index;
node.leftChild = (new_index—-leafsC) % 2 + 1;
node.rightChild = (new_index-leafsC) x 2 + 2;
hierarchy[previous_index] = node;

outputQueue [index] = node;

}
if ((groupID == get_num_groups (0)-1) && (local_id == local_size-1)) {
increment leafs counter
if (block_increments_size <= 1)
leafs[1l] += queue_size - block_increments[block_increments_size-1];

else {

int bankOffset = CONFLICT_FREE_OFFSET (block_increments_size);

leafs[1l] += queue_size - scanArray[block_increments_size + bankOffset];
}
leafs[0] = 0; // reset flag

A.4 Broadphase Collision Detection Kernels

A.4.1 Simple Broadphase Collision Detection Kernel

J ok x

* Broadphase Collision detection kernel

*/
__kernel void intersectNodes (__global intx collisionsA, __global intx collisionsB,
__global kNodex bvhA, _ global kNodex bvhB, __ global intx cloth_tri_indices,
__global intx object_tri_indices, __global intx numTriangles, _ _global intx numCollisions,
__global int*x numTests, int clothSize, int objectSize) {

__local int writeIndex;

_ _local int readIndex;

__local int read_idx_aux;

_ _local int write_idx_aux;

__local int trianglePairs;

_ _local int collisions;

__local int cloth_overlaping[MAX_SIZE2];
__local int object_overlaping[MAX_SIZE2];

int locallID = get_local_id(0);
int groupID = get_group_id(0);

// Thread 0 processes both BVH roots

if(locallID == 0){
writeIndex = 0;
readIndex = 0;
read_idx_aux = 0;
write_idx_aux = 0;
trianglePairs = 0
collisions = 0;

’

kNode nodeA
kNode nodeB

bvhA[0];
bvhB[O0];

if (overlap (nodeA.kDop, nodeB.kDop)) {

cloth_overlaping[0] = nodeA.leftChild;
object_overlaping[0] = nodeB.leftChild;
cloth_overlaping[l] = nodeA.leftChild;
object_overlaping[l] = nodeB.rightChild;
cloth_overlaping[2] = nodeA.rightChild;
object_overlaping[2] = nodeB.leftChild;
cloth_overlaping[3] = nodeA.rightChild;
object_overlaping[3] = nodeB.rightChild;
write_idx_aux = 4;

writeIndex = 4;

}
barrier (CLK_LOCAL_MEM_FENCE) ;

// Work-Group 0 does the entire tree traversal
if (groupID == 0) {
while (readIndex < writelIndex) {
if(locallD < write_idx_aux - read_idx_aux) {
int r = atom_inc (&readIndex);
int ci = cloth_overlaping[r$MAX_SIZE2];
int oi = object_overlaping[r$MAX_SIZE2];
kNode nodeA = bvhA[ci];
kNode nodeB = bvhB[oi];
if (overlap (nodeA.kDop, nodeB.kDop)) {
// If both nodes are leafs, we save their pairing triangles’ indexes
if (isLeaf (nodeA) && isLeaf (nodeB)) {

int nodeANumTri = nodeA.endTri - nodeA.beginTri + 1;
int nodeBNumTri = nodeB.endTri - nodeB.beginTri + 1;
int totalPairs = nodeANumTri * nodeBNumTri;

int triPairsIndex = atom_add(&trianglePairs, totalPairs);

80

int col = atom_inc(&collisions);
int pos = 0;

for(int i = 0; 1 < nodeANumTri; i++)
for(int j = 0; j < nodeBNumTri; j++) {
collisionsA[triPairsIndex]=cloth_tri_indices[nodeA.beginTri+i];
collisionsB[triPairsIndex]=object_tri_indices|[nodeB.beginTri+j];
triPairsIndex++;

}
else if (isLeaf (nodeA) { // && !isLeaf (nodeB)

int i = atom_add(&writeIndex, 2);
cloth_overlaping[i$MAX_SIZE2] = nodeA.id;
object_overlaping[i%$MAX_SIZE2] = nodeB.leftChild;
cloth_overlaping[(i+1) $MAX_SIZE2] = nodeA.id;
object_overlaping[(i+1)%$MAX_SIZE2] = nodeB.rightChild;

}
else if (isLeaf (nodeB) { // && !isLeaf (nodeA)

int i = atom_add(&writeIndex, 2);
cloth_overlaping[i%$MAX_SIZE2] = nodeA.leftChild;
object_overlaping[i%$MAX_SIZE2] = nodeB.id;
cloth_overlaping[(i+1) $MAX_SIZE2] = nodeA.rightChild;
object_overlaping[(i+1)$MAX_SIZE2] = nodeB.id;

}

else {
int i = atom_add(&writelIndex, 4);
cloth_overlaping[i%$MAX_SIZE2] = nodeA.leftChild;
object_overlaping[i%$MAX_SIZE2] = nodeB.leftChild;
cloth_overlaping[(i+1) $MAX_SIZE2] = nodeA.leftChild;
object_overlaping[(i+1)$MAX_SIZE2] = nodeB.rightChild;
cloth_overlaping[(i+2) $MAX_SIZE2] = nodeA.rightChild;
object_overlaping[(i+2)%MAX_SIZE2] = nodeB.leftChild;
cloth_overlaping[(i+3) $MAX_SIZE2] = nodeA.rightChild;
object_overlaping[(i+3)%MAX_SIZE2] = nodeB.rightChild;

}

barrier (CLK_LOCAL_MEM_FENCE) ;

if(localID == 0) {
atom_xchg (&read_idx_aux, readIndex);
atom_xchg (&write_idx_aux, writelIndex);

}

barrier (CLK_LOCAL_MEM_FENCE) ;

}

if(locallD == 0) {
numTests[0] = writeIndex - readIndex;//writeIndex + 1;
numCollisions[0] = collisions;
numTriangles[0] = trianglePairs;

}
A.4.2 Front-Based Broadphase Collision Detection Kernel

J x*
* Broadphase Collision Detection with front
*/
__kernel wvoid intersectNodesFront (__global intx outputFrontl,
__global intx outputFront2, _ global intx inputFrontl,
__global intx inputFront2, int frontSize, _ global intx new_front_size,
__global intx collisionsl, __global intx collisions2, __global kNodex bvhA,
__global kNodex bvhB, __global intx cloth_tri_indices, __global intx object_tri_indices,

__global int* num_collisions, __global int* num_tests, _ _global intx num_triangles,

int clothSize,

__local int
__local int
_ local int
_ _local int
_ _local int
__local int

__local int
// front si
_ local int

int objectSize) {

writeIndex;
readIndex;
read_idx_aux;
write_idx_aux;

cloth_processing_queue [MAX_SIZE];
object_processing_queue [MAX_SIZE];
// number of triangle pairs to process on the Narrowphase

triangles_ctr;
ze in each group
local_front_size;

// number of nodes tested during front reading and front climbing

_ _local int

nodes_processed;

// number of colliding leaf nodes

__local int

int offset
int offset_.

int pairsPe

nodes_colliding;

5000 * get_group_1id(0);

2 = 20000 x get_group_1id(0);
// distribute the same number of nodes per group

rGroup = frontSize /

get_num_groups (0) ;

// index where each group starts reading the front nodes to process

int group_read_offset = pairsPerGroup * get_group_id(0);

if (get_group_1id(0) == get_num_groups (0)-1) // last group reads the remaining nodes
pairsPerGroup += frontSize %

int pairsPerThread =

get_num_groups (0) ;

(pairsPerGroup) / get_local_size(0);

if ((pairsPerGroup) % get_local_size(0) != 0)
pairsPerThread++;

if (get_local_id(0) == 0) {
writeIndex = 0;

readIndex = 0;
read_idx_aux = 0;
write_idx_aux = 0;
triangles_ctr = 0;

0

local_front_size = 0;
nodes_colliding = 0;
nodes_processed = 0;

}

barrier (CLK_LOCAL_MEM_FENCE) ;

for (int pair = 0;

pair < pairsPerThread; pair++) {

int thread_read_offset = get_local_id(0) + pair » get_local_size(0);
int pairID = thread_read_offset + group_read_offset;
if (thread_read_offset < pairsPerGroup && pairID < frontSize) {

int c_

node_idx = inputFrontl[pairID];

int o_node_idx = inputFront2[pairID];
nodeA = bvhA[c_node_idx];
nodeB = bvhB[o_node_idx];
bool finish = false;

kNode
kNode

while
if

}

(!'finish) {
(overlap (nodeA.kDop,

nodeB.kDop)) { // nodes overlap

int i = atom_inc (&writeIndex) ;
cloth_processing_queue[i] = nodeA.id;
object_processing _queue[i] = nodeB.id;

finish = true;

else { // pair do not overlap: climbing the tree...

if ((nodeA.parent<0)
outputFrontl1[0]

&& (nodeB.parent<0)) {//we have reached the root

= nodeA.id;
outputFront2[0] =

nodeB.id;

81

local_front_size = 1; // only one thread can reach the root
finish = true;

}

// choose BVH A node to climb

else if ((nodeA.level > nodeB.level) && (nodeA.parent >= 0)) {
kNode parent = bvhA[nodeA.parent];
// top level nodes overlap, we add the children to the front
if (overlap (parent.kDop, nodeB.kDop)) {

int ¢ = atom_inc(&local_front_size);

outputFrontl[c + offset] = nodeA.id;
outputFront2[c + offset] = nodeB.id;
finish = true;

}
else { // top level do not overlap, keep climbing

if (nodeA.id == parent.leftChild)
nodeA = parent;
else

finish = true;

}
else { // choose BVH B node to climb
kNode parent = bvhB[nodeB.parent];
if (overlap (nodeA.kDop, parent.kDop)) {
int ¢ = atom_inc(&local_front_size);

outputFrontl[c + offset] = nodeA.id;
outputFront2[c + offset] = nodeB.id;
finish = true;

}
else { // top level do not overlap, keep climbing

if (nodeB.id == parent.leftChild)
nodeB = parent;
else

finish = true;

}

atom_inc (&nodes_processed) ;

}

barrier (CLK_LOCAL_MEM_FENCE) ;

if (get_local_id(0) == 0)
write_idx_aux = writelIndex;

barrier (CLK_LOCAL_MEM_FENCE) ;

while (readIndex < writelIndex) {
if (get_local_1id(0) < write_idx_aux - read_idx_aux) {
int r = atom_inc (&readIndex);
int cIdx = cloth_processing_qgueue[r$MAX SIZE];
int oIdx = object_processing_queue[r$MAX_SIZE];
kNode nodeA = bvhA[cIdx];
kNode nodeB = bvhB[oIdx];
if (overlap (nodeA.kDop, nodeB.kDop)) {
if (isLeaf (nodeA) && isLeaf (nodeB)) {

int c_leaf_triangles = nodeA.endTri - nodeA.beginTri + 1;
int o_leaf_ triangles = nodeB.endTri - nodeB.beginTri + 1;
int n_tests = c_leaf_triangles * o_leaf_triangles;

int rc = atom_add(&triangles_ctr, n_tests);

int x = 0;

for(int 1 = 0; i < c_leaf_triangles; i++) {
for(int j = 0; j < o_leaf_triangles; j++) {
collisionsl[offset_2+rc+x]=cloth_tri_indices[nodeA.beginTri+i];

collisions2[offset_2+rct+x]=object_tri_indices[nodeB.beginTri+j];

x++;
}
}
int ¢ = atom_inc(&local_front_size);
outputFrontl[c + offset] = nodeA.id;
outputFront2[c + offset] = nodeB.id;

atom_inc (&nodes_colliding);

}

else {

int 1 = atom_add(&writeIndex, 2);

if (nodeA.level <= nodeB.level && !isLeaf (nodeh)) {
cloth_processing_queue [i%$MAX_SIZE] = nodeA.leftChild;
object_processing_queue[i%$MAX_SIZE] = nodeB.id;
cloth_processing_queue[(i+1) $MAX_SIZE] = nodeA.rightChild;
object_processing_queue[(i+1) $MAX_SIZE] = nodeB.id;

}

else {
cloth_processing_qgqueue [i$MAX_SIZE] = nodeA.id;
object_processing_gueue [i%$MAX_SIZE] = nodeB.leftChild;
cloth_processing_qgqueue[(i+1) $MAX_SIZE] = nodeA.id;
object_processing_queue[(i+1) $MAX_SIZE] = nodeB.rightChild;

}
else { // nodes do not overlap

int ¢ = atom_inc(&local_front_size);
outputFrontl[c + offset] = nodeA.id;
outputFront2[c + offset] = nodeB.id;

}
barrier (CLK_LOCAL_MEM_FENCE) ;
if (get_local_id(0) == 0) {
atom_xchg (&read_idx_aux, readIndex);
atom_xchg (&éwrite_idx_aux, writeIndex);
}
barrier (CLK_LOCAL_MEM_FENCE) ;

}

if (get_local_id(0) == 0) {
num_tests[get_group_id(0)] = /#nodes_processed +#*/ writeIndex;
num_collisions[get_group_id(0)] = nodes_colliding;
num_triangles|[get_group_id(0)] = triangles_ctr;
new_front_size[get_group_1id(0)] = local_front_size;
}
}
J k*

* Kernel to compact the front produced by several work groups,
* also used to compact the intersected pairs produced by several
* work groups

*/
__kernel wvoid compactFront (__global intx outputFrontl,
__global intx outputFront2, _ _global intx inputFrontl,
__global intx inputFront2, _ global intx frontSize, int blockSize) {
int numNodes = 0;
for(int 1 = 0; i < get_num_groups(0); i++) {
int nodesPerThread = frontSize[i] / get_global_size(0);
if (frontSize[i] % get_global_size(0) != 0)
nodesPerThread++;

for(int j = 0; j < nodesPerThread; Jj++) {
int nodeID = get_global_id(0) + (get_global_size(0) = J);

83

84

if (nodeID < frontSize[i]) {
int nodel = inputFrontl[(i * blockSize) + nodelD];
int node2 = inputFront2[(i * blockSize) + nodelD];
outputFrontl [numNodes + nodeID] = nodel;
outputFront2 [numNodes + nodeID] = node2;

}

numNodes += frontSize[i];

A.5 Narrowphase Kernel

J x*

* Narrowphase Collision detection kernel

*/
int compute_plane_eq(float4 v0, float4 vl, float4 v2, float4 uO,
floatd4 ul, float4d u2, floatx du0O, floatx dul, floatx du2, floatd* n) {

// Compute plane equation of triangle(V0,V1,V2)
floatd4d el = vl - vO0;

floatd e2 = v2 - v0;

(xn) = cross(el, e2);

float dl = —-dot((*n), v0);

// Put U0,Ul,U2 into plane equation 1 to compute signed distances to the plane

(xdu0) = dot ((xn), uld) + di;
(xdul) = dot ((xn), ul) + di;
(xdu2) = dot ((*n), u2) + di;

// Coplanarity robustness check

if (fabs ((*du0)) < EPSILON_1) (xdu0) 0.0;
if (fabs((*dul)) < EPSILON_1) (xdul) = 0.0;
if (fabs ((*du2)) < EPSILON_1) (xdu2) = 0.0;
float duOdul = (*dul) =* (*dul);
float dulOdu2 = (xdul) x (xdu2);

if (du0dul > 0.0f && duOduz2 > 0.0f)
return 0; // no intersection occurs

return 1;
int compute_intervals (float vpO, float vpl, float vp2, float dvoO,
float dvl, float dv2, floatx isectl, float* isect2) {

if (dvOxdvl > 0.0f) {

//here we know that DO0D2<=0.0
//that is D0, D1 are on the same side, D2 on the other or on the plane

«isectl = vp2 + (((vpO0-vp2)*dv2)/ (dv2-dv0));
*isect2 = vp2 + (((vpl-vp2)*dv2)/(dv2-dvl));
return 1;

}
if (dv0*dv2 > 0.0f) {
//here we know that d0d1<=0.0

«isectl = vpl + (((vpO-vpl)x*dvl)/ (dvl-dv0));
*isect2 = vpl + (((vp2-vpl)*dvl)/ (dvl-dv2));
return 1;

}
if (dvlxdv2 > 0.0f || dvO != 0.0f) {

//here we know that d0d1<=0.0 or that D0!=0.0

*isectl = vp0 + (((vpl-vpO)*dv0)/ (dv0-dvl));
*isect2 = vp0 + (((vp2-vp0)*dv0)/ (dv0-dv2));
return 1;

}

if(dvl !'= 0.0f) {
«isectl = vpl + (((vpO-vpl)x*dvl)/(dvl-dv0));
*isect2 = vpl + (((vp2-vpl)*dvl)/ (dvl-dv2));
return 1;

}

if(dv2 != 0.0f) {
xisectl = vp2 + (((vp0-vp2)xdv2)/(dv2-dv0));
xisect2 = vp2 + (((vpl-vp2)+*dv2)/(dv2-dvl));
return 1;

}

return O;

void sort (floatx a, float* b) {

if(xa > xb) {
float c;
c = *a;
*a = xb;
*b = c;
}
}
__kernel wvoid tritriIntersect(__global gpu_trianglex clothTri,
__global gpu_trianglex objTri, _ _global int* clothIndices,
__global intx objectIndices, __global intx collTri,

int num_collisions)

int triangles_witem = num_collisions / get_global_size(0);

o

if (num_collisions % get_global_size(0) != 0)
triangles_witem++;

for(int 1 = 0; i < triangles_witem; i++) {
int tid = get_global_id(0) + (i * get_global_size(0));
if(tid < num_collisions) {

int ctID = clothIndices[tid];
int otID = objectIndices[tid];
collTri[tid] = 1;

// Store cloth vertices in float4 arrays
float4 vO0 = (float4) (clothTri[ctID].v0x,

clothTri[ctID].v0y, clothTri[ctID].v0z, 0.0f);

floatd4d vl = (float4d) (clothTri[ctID].vlx,

clothTri[ctID].vly, clothTri[ctID].vlz, 0.0f);

floatd v2 = (float4d) (clothTri[ctID].v2x,

clothTri[ctID].v2y, clothTri[ctID].v2z, 0.0f);

// Store objects vertices in float4d arrays

float4 u0 = (float4) (objTri[otID].v0x,
objTri[otID].v0y, objTri[otID].v0z, 0.0f);
float4 ul = (float4) (objTri[otID].vlx,
objTri[otID].vly, objTri[otID].vlz, 0.0f);
float4 u2 = (float4) (objTrifotID].v2x,

objTri[otID].v2y, objTri[otID].v2z, 0.0f);

float4 nl, n2;

float dv0, dvl, dv2, du0O, dul, du2;

if (compute_plane_eq(v0, vl1l, v2, u0, ul, uz,
collTri[tid] = 2;

&du0,

&dul,

&du2,

{

&nl)

85

86

}

if (compute_plane_eqg(u0, ul, u2, vO0, vl, v2, &dv0, &dvl, &dv2, &n2) == 0)
collTri[tid] = 3;

float4 d = cross(nl, n2);

// Compute and index to the largest component of d
float vpO, vpl, vp2, upO, upl, up2;

float a = fabs(d.x);

float b = fabs(d.y);

float ¢ = fabs(d.z);

float max = fmax(a, b);

max = fmax (max, c);

// This is the simplified projection onto L
if (b == max) {
vp0 = vO0.y; vpl = vl.y; vp2 = v2.y;
up0 = ul.y; upl = ul.y; up2 = u2.y;
}
if(c == max) {
vp0 = v0.z; vpl = vl.z; vp2 = v2.z;
up0 = ul0.z; upl = ul.z; up2 = u2.z;

}
else {
vp0 = v0.x; vpl = vl.x; vp2 = v2.X%;
up0 = u0.x; upl = ul.x; up2 = u2.x;
}

// compute interval fobvhAth triangle
float isectl_0, isectl_1;

if (compute_intervals (vp0, vpl, vp2, dv0, dvl, dv2, &isectl_0, &isectl_1l)==

collTri[tid] = 4;

// compute interval for object triangle
float isect2_0, isect2_1;

)

if (compute_intervals (up0, upl, up2, duO, dul, du2, &isect2_0, &isect2_1)==0)

collTri[tid] = 5;

sort (&isectl_0, &isectl_1);
sort (&isect2_0, &isect2_1);

if(isectl_1 < isect2_0 || isect2_1 < isectl_0)
collTri[tid] = 6;

A.6 Update Kernel

J ok x

* Merge two nodes to update their parent

*/

void merge (kNode left, kNode right, __global kNodex hierarchy) ({
int parentID = left.parent; // = right.parent
kNode parent = hierarchy[parentID];

for (int i=0, j=HALF_KDOP_SIZE; i<HALF_KDOP_SIZE && J<KDOP_SIZE;i++, j++) {

}

parent.kDop[i] = fmin(left.kDop[i], right.kDopl[i]);
parent.kDop[j] = fmax(left.kDop[]j]l, right.kDopl[j]);

hierarchy[parentID] = parent;

87

hierarchy[left.id] = left;
hierarchy[right.id] = right;
}
J x*
* Update Kernel, invoked once per level
*/
__kernel wvoid updateBVH(__global gpu_trianglex triangles,
__global intx tri_indices, __global kNodex hierarchy, int nTriangles,
int hierarchySize, int firstLevelNode, int levelSize, __global intx updateFlag) {
int nodePairsPerGroup = (levelSize/2) / get_num_groups (0);
if (get_group_id(0) == get_num_groups(0)-1)
nodePairsPerGroup += (levelSize/2) % get_num_groups (0);

int nodePairsPerThread = nodePairsPerGroup / get_local_size (0);
if (get_local_id(0) < (nodePairsPerGroup % get_local_size(0)))
nodePairsPerThread++;

for(int i = 0; i1 < nodePairsPerThread; 1i++) {
int node_index = firstLevelNode + (get_local_id(0)*2)+ (get_local_size (0)*2*1)
+ (((levelSize/2) / get_num_groups(0)) *» 2 * get_group_id(0));

// Each thread reads two nodes (siblings), in order to update their parent
kNode left = hierarchy[node_index];
kNode right = hierarchy[node_index + 1];

// If the node is a leaf, update it with its primitives
if (isLeaf (left))
buildl8DopSingleThread(&left, triangles, tri_indices,
left.beginTri, left.endTri);
if (isLeaf (right))
buildl8DopSingleThread (&right, triangles, tri_indices,
right.beginTri, right.endTri);

// merge left and right child to update the parent
merge (left, right, hierarchy);

Bibliography

[1] Bullet - Project Hosting on Google Code. http://code.google.com/p/bullet.
[2] Bullet Physics Library. http://bulletphysics.org/wordpress.

[3] Havok. http://www.havok.com.

[4] NVIDIA PhysX. http://www.nvidia.com/object/physx_new.html.

[5] OpenCL Programming Guide for the CUDA Architecture.
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/
OpenCL_Programming_Guide.pdf.

[6] Fernando Birra. Técnicas Eficientes de Simulagdo de Tecidos com Realismo Acrescido.
Tese de doutouramento, Universidade Nova de Lisboa, Faculdade de Ciéncias e Tecnolo-
gia, 2007.

[7] Christian Lauterbach and Michael Garland and Shubhabrata Sengupta and David Luebke
and Dinesh Manocha. Fast BVH Construction on GPUs. Computer Graphics Forum,
28(2):375-384, 20009.

[8] Kirill Garanzha. Efficient Clustered BVH Update Algorithm for Highly-Dynamic Models.
In Proceedings of the 2008 IEEE Symposium on Interactive Ray Tracing, Los Angeles,
USA, 2008.

[9] David W. Gohara. OpenCL Tutorials, Episode 2 - OpenCL Fundamentals.
http://www.macresearch.org/opencl_episode2, 2009.

[10] S. Gottschalk, M. C. Lin, and D. Manocha. OBB-Tree: A Hierarchical Structure for Rapid
Interference Detection. In SIGGRAPH 96: Conference Proceedings, pages 171-180, New
York, NY, USA, August 1996. ACM.

[11] Scott Le Grand. GPU Gems 3 - Chapter 32. Broad-Phase Collision Detection with CUDA.
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch32.html, 2007.

[12] Simon Green. CUDA Particles. NVIDIA CUDA SDK, NVIDIA, November 2007.

[13] Mark Harris, Shubhabrata Sengupta, and John D. Owens. GPU
Gems 3 - Chapter 39. Parallel Prefix Sum (Scan) with CUDA.
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch39.html, 2007.

[14] Michael Herf. Radix tricks. http://www.stereopsis.com/radix.html, December 2001.
89

90

[15] Duksu Kim, Jae-Pil Heo, Jachyuk Huh, John Kim, and Sung-Eui Yoon. HPCCD: Hy-
brid Parallel Continuous Collision Detection using CPUs and GPUs. Computer Graphics
Forum (Pacific Graphics), pages 1791-1800, 2009.

[16] Peter Kipfer and Riidiger Westermann. GPU Gems 2 - Chapter 46. Improved GPU Sorting.
http://http.developer.nvidia.com/GPUGems2/gpugems?2_chapter46.html, 2005.

[17] James Klosowski. Efficient Collision Detection for Interactive 3D Graphics and Virtual
Environments. PhD thesis, State University of New York at Stony Brook, May 1998.

[18] Thomas Larsson and Tomas Akenine-Moller. Strategies for Bounding Volume Hierarchy
Updates for Ray Tracing of Deformable Models. MRTC Report, February 2003.

[19] Thomas Larsson and Tomas Akenine-Mdller. A Dynamic Bounding Volume Hierarchy
for Generalized Collision Detection. Computers & Graphics, 2006.

[20] Christian Lauterbach, Sung eui Yoon, and Dinesh Manocha. Interactive Ray Tracing of
Dynamic Scenes using BVHs. In Proceedings of the 2006 IEEE Symposium on Interactive
Ray Tracing, 2006.

[21] Christian Lauterbach, Qi Mo, and Dinesh Manocha. gProximity: Hierarchical GPU-based
Operations for Collision and Distance Queries. In Eurographics, 2010.

[22] Tomas Moller. A Fast Triangle-Triangle Intersection Test. Journal of Graphics, GPU, and
Game Tools, 2(2):25-30, 1997.

[23] Aaftab Munshi. The OpenCL Specification. Technical report, Khronos OpenCL Working
Group, 2008.

[24] L. J. Palmer and R. L. Grimsdale. Collision Detection for Animation using Sphere-Trees.
Computer Graphics Forum, 14:105-116, June 1995.

[25] Xavier Provot. Collision and Self-Collision Handling in Cloth Model Dedicated to Design
Garments. In Graphics Interface, 1997.

[26] Nadathur Satish, Mark Harris, and Michael Garland. Designing Efficient Sorting Algo-
rithms for Manycore GPUs. NVIDIA Technical Report NVR-2008-001, NVIDIA Corpo-
ration, September 2008.

[27] Pierre Terdiman. Radix Sort Revisited. http://codercorner.com/RadixSortRevisited.htm,
2000.

[28] Matthias Teschner, Bruno Heidelberger, Matthias Miiller, Danat Pomeranets, and Markus
Gross. Optimized Spatial Hashing for Collision Detection of Deformable Objects. In
Proceedings of Vision, Modeling, Visualization VMV’03, 2003.

91

[29] Gino van den Bergen. Efficient Collision Detection of Complex Deformable Models using
AABB Trees. Journal of Graphics Tools, 2:1-13, April 1997.

