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ABSTRACT 

 

In 1994, Marc Wilkins coined the word “Proteome” to define the protein product of the genome, and 

the word “Proteomics” to describe the science that studies the proteome. Since then, boosted by the 

development of soft ionization technologies, mass spectrometry and analytical and bioinformatic tools, 

proteomics has become one of most important and popular scientific fields for the large scale study of 

complex protein systems. Nowadays, the wide range of proteomics applications include not only the 

study of biological functions, but also the understanding of changes in cellular regulation mechanisms 

caused by disease states, biomarker identification for disease diagnosis and development of new drugs 

or therapeutic approaches. To achieve these goals, most proteomics studies rely on different but 

complementary tools, such as: two-dimensional gel electrophoresis, chromatographic separation 

methods, mass spectrometry, stable isotope labeling approaches for protein quantitation, and software 

for data collection and analysis. However, despite the many technological advances, the procedures 

used for protein identification and quantitation are still complex, lengthy and laborious. One of the 

most important steps in any protein identification or quantitation experiment is the digestion, or 

hydrolysis, of proteins. This crucial step is traditionally performed with proteases, such as trypsin, 

during 12 to 48 h. Over the years, many techniques have been used to optimize the sample treatment 

procedures in proteomics, particularly the protein enzymatic digestion stage. The most popular are 

microwave energy, high-pressure reactors, micro-reactors and immobilized enzymes.  

 

In 2005, ultrasonic energy was used for the first time to enhance protein enzymatic digestion in 

proteomics workflow. Promising results were obtained: the protein digestion time was reduced from 

12 h to only 120 s. Yet, many aspects regarding the application of the ultrasonic energy to the 

digestion of proteins with enzymes still remain unclear and not fully comprehended. 

 

The major objective of this dissertation was the development and optimization of protocols relying on 

ultrasonic energy to enhance protein identification and quantitation by matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). With this intention, 

different ultrasonic devices, such as the ultrasonic bath, the ultrasonic probe and the sonoreactor, were 

used to enhance several steps of the traditional procedures for protein identification by peptide mass 

fingerprinting (PMF), and protein quantitation by 
18

O isotopic labeling. Among the different variables 

assessed throughout this work, the most important were: (i) ultrasound amplitude; (ii) ultrasonication 

volume; (iii) ultrasonication time; (iv) ultrasound frequency; (v) ultrasonic probe diameter; (vi) protein 

concentration threshold; and (vii) enzyme-to-protein ratio. 

 

In the first part of this study, the experiments were focused on the application of ultrasonic energy to 

the in-gel protein enzymatic digestion for PMF identification. Different proteins were separated by 

one-dimensional gel electrophoresis and the corresponding gel bands were processed according to the 
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already established procedures. Protein digestion with trypsin was carried out with different ultrasonic 

devices: the ultrasonic probe and the sonoreactor. The results showed that confident protein 

identification was achieved after only 60 or 120 s of protein digestion with ultrasound. The number of 

peptides matching the protein sequence and the percentage of sequence coverage were equivalent to 

the classic overnight (12 h) procedure. Furthermore, the threshold for confident identification with the 

ultrasonic approach was the same than the classic sample treatment: 0.06 µg of protein. The best 

operating conditions for the ultrasonic probe were: 100 µL of sample volume; 1 mm or 0.5 mm of 

probe diameter; and 70 % of ultrasonication amplitude. For the sonoreactor, best operating conditions 

were 50 % of amplitude in the continuous mode. Since it reduces cross-contamination between 

samples, provides higher sample throughput and clear MALDI-TOF-MS spectra, the sonoreactor is the 

recommended ultrasonic device to perform in-gel protein enzymatic digestion.  These results were 

confirmed after the identification of standard proteins, and identification of proteins from the complex 

proteome of the sulfate reducing bacteria Desulfovibrio desulfuricans. 

 

Once the protein digestion conditions were optimized, the application of ultrasound was extended to 

other steps of the sample treatment for protein identification in gel-based approaches. An ultrasonic 

bath, an ultrasonic probe and a sonoreactor were used to accelerate the gel washing steps and the 

protein reduction and alkylation reactions. The results showed that with the above mentioned 

ultrasonic equipments the total time needed to perform the classic procedure could be reduced from 80 

to 90 %. In addition, the sample handling was also drastically simplified. The identification of proteins 

from complex biological samples (Desulfovibrio desulfuricans G20, Desulfuvibrio gigas NCIB 9332, 

and Desulfuvibrio desulfuricans ATCC 27774) was successfully performed as proof of the procedure. 

 

The last part of this dissertation presents the results obtained for the application of ultrasonic energy in 

the 
18

O-isotopic labeling procedure for protein quantitation. First, ultrasound was applied to the direct 

labeling approach, where protein digestion and 
18

O-labeling occur simultaneously. In this case, the 

sonoreactor was the ultrasonic device that produced the best results: a reduction in the labeling 

reaction time from 24 – 48 h to only 15 min was achieved without compromising the labeling 

efficiency. However, when applied to a complex protein sample, such as human plasma, this 

technology failed in promoting efficient double 
18

O-incorporation, compromising protein quantitation. 

Finally, the optimization of the decoupled 
18

O-labeling procedure was also performed. In this 

approach, the enzymatic digestion and the labeling reaction are performed in different steps and 

conditions. It was found that the total time necessary to complete the first part of this procedure, 

comprising protein denaturation, reduction, alkylation and digestion, could be reduced to only 8 min 

under the influence of an ultrasonic field. Interestingly, the results obtained suggest that the labeling 

reaction in the decoupled procedure cannot be accelerated or improved with ultrasound, neither with 

the ultrasonic probe nor with the sonoreactor. 
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RESUMO 

 

Em 1994, Marc Wilkins inventou a palavra “Proteoma” para definir o conjunto das proteínas 

expressadas pelo genoma, e a palavra “Proteómica” para descrever o ramo da ciência que estuda o 

proteoma. Desde então, graças ao desenvolvimento de novas tecnologias de ionização e análise por 

espectrometria de massa, e ferramentas bioinformáticas, a proteómica tornou-se no mais importante 

ramo da ciência para o estudo em larga escala de sistemas complexos de proteínas. Actualmente, as 

aplicações da proteómica são vastas e contemplam não só o estudo de funções biológicas, como 

também o estudo de modificações nos mecanismos de regulação celular provocados por doenças, e 

ainda a identificação de biomarcadores para diagnóstico e desenvolvimento de novos medicamentos. 

Contudo, apesar dos avanços tecnológicos alcançados, os procedimentos utilizados para identificação 

e quantificação de proteínas são complexos, extensos e muito trabalhosos. Uma das etapas mais 

importantes nestes procedimentos é a hidrólise das proteínas, normalmente efectuada na presença de 

enzimas proteolíticas, como a tripsina, durante 12 a 48 h. Com o objectivo de reduzir o tempo de 

digestão enzimática e optimizar outras etapas nos procedimentos de identificação e quantificação de 

proteínas, diferentes tecnologias têm sido testadas. Destacam-se entre as mais importantes: a energia 

de microondas, reactores de alta-pressão, micro-reactores e imobilização de enzimas em suportes 

específicos. 

 

Em 2005, a energia de ultra-sons foi pela primeira utilizada para acelerar a reacção de digestão 

enzimática em estudos de proteómica. Foram obtidos resultados interessantes e promissores: a 

utilização de ultra-sons permitiu reduzir de 12 h para apenas 120 s o tempo de digestão enzimática. 

Porém, muitos parâmetros relacionados com a aplicação de ultra-sons ficaram por testar e explicar. 

 

A presente dissertação tem como objectivo o desenvolvimento e optimização de procedimentos para 

identificação e quantificação rápida de proteínas por espectrometria de massa, nomeadamente por 

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), 

utilizando tecnologia de ultra-sons. Assim, vários aparelhos de ultra-sons, tais como o banho de ultra-

sons, sonda de ultra-sons e sonoreactor, foram utilizados na optimização de procedimentos de 

identificação de proteínas por espectrometria de massa, e na optimização de procedimentos de 

quantificação de proteínas através de marcação com oxigénio 18, um isótopo não radioactivo de 

oxigénio. Entre os vários parâmetros testados, destacam-se: (i) amplitude de ultra-sons; (ii) tempo de 

ultra-sonicação; (iii) volume de ultra-sonicação; (iv) frequência de ultra-sons; (v) diâmetro da sonda 

de ultra-sons; (vi) concentração de proteína; e (vii) razão enzima:proteína.  

 

Na primeira parte deste trabalho foi aplicada energia de ultra-sons à digestão enzimática de proteínas 

em gel de electroforese para identificação por espectrometria de massa (PMF). Várias proteínas foram 

separadas em gel de electroforese de uma dimensão, e as bandas de gel correspondentes a cada uma 
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foram processadas de acordo com os procedimentos tradicionais. A digestão enzimática foi efectuada 

com sonda de ultra-sons ou com o sonoreactor. Os resultados obtidos mostram que é possível 

identificar com confiança proteínas após 60 ou 120 s de digestão enzimática com ultra-sons. O número 

de péptidos identificados para cada proteína foi equivalente entre o procedimento clássico (digestão 

durante 12 h) e acelerado com ultra-sons. A quantidade mínima de proteína necessária para obter 

identificação com confiança foi igual em ambos os procedimentos: 0.06 µg por poço de gel. Para a 

sonda de ultra-sons os melhores resultados foram obtidos nas seguintes condições: 100 µL de volume 

de amostra; 1 ou 0.5 mm de diâmetro da sonda de ultra-sons; e amplitude de ultra-sonicação de 70 %. 

Para o sonoreactor os melhores resultados foram obtidos com 50 % de amplitude de ultra-sons em 

modo contínuo. O sonoreactor foi o aparelho escolhido para efectuar a digestão rápida de proteínas em 

estudos posteriores devido a vários factores: a ultra-sonicação é efectuada em recipientes fechados, 

reduzindo a contaminação entre amostras; e por outro lado o número de amostras que podem ser 

processadas em simultâneo é superior à sonda de ultra-sons. Os resultados obtidos foram validados 

após aplicação a amostras reais provenientes da bactéria Desulfovibrio desulfuricans. 

 

Uma vez optimizadas as condições para a digestão rápida de proteínas, foi aplicada energia de ultra-

sons em várias etapas do tratamento de amostra para identificação de proteínas separadas por 

electroforese em gel. Foram utilizados o banho de ultra-sons, o sonoreactor e a sonda de ultrasons, 

para acelerar as etapas de lavagem do gel, e as reacções de redução e alquilação de proteínas. Os 

resultados obtidos mostram que, utilizando energia de ultra-sons, o tempo total necessário para 

processar as amostras pode ser reduzido cerca de 80 a 90 % em comparação o procedimento 

tradicional. Além disso, o tratamento de amostra é também drasticamente simplificado. O novo 

procedimento foi testado em amostras de proteínas provenientes das bactérias Desulfovibrio 

desulfuricans G20, Desulfuvibrio gigas NCIB 9332 e Desulfuvibrio desulfuricans ATCC 27774. Em 

todos os casos as proteínas foram identificadas com confiança. 

 

A parte final desta dissertação apresenta os resultados relativos à aplicação de ultra-sons no 

procedimento de marcação isotópica com 
18

O para quantificação de proteínas. Primeiro, foram 

utilizados ultra-sons no procedimento em que a marcação isotópica ocorre durante a digestão 

enzimática de proteínas. Verificou-se que o tempo de marcação com 
18

O pode ser reduzido de 12 – 48 

h para apenas 15 min com sonoreactor, sem comprometer a eficiência da reacção. Contudo, quando o 

procedimento acelerado foi aplicado a uma amostra complexa de proteínas de plasma humano, a 

percentagem de péptidos marcados com dois átomos de 
18

O foi inferior ao procedimento clássico. 

Finalmente, foi optimizado o procedimento em que as reacções de digestão e marcação isotópica de 

proteínas são efectuadas separadamente e em condições diferentes. Os resultados obtidos mostram que 

a primeira parte deste procedimento, que compreende a redução, alquilação e digestão de proteínas, 

pode ser efectuada em apenas 8 min com ultra-sons. Quanto à reacção de marcação isotópica, 

verificou-se que a energia de ultra-sons não produziu qualquer efeito nos resultados obtidos. 
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ABBREVIATIONS 

 

ACN Acetonitrile 

Ambic  Ammonium bicarbonate 

AQUA  Absolute quantitation (with stable isotope labeled synthetic peptides)  

B  Magnetic sector (mass analyzer) 

BSA  Bovine serum albumin 

CA  Carrier ampholytes 

α-CHCA  α-Cyano-4-hydroxycinnamic acid 

CI  Chemical ionization 

CID  Collision induced dissociation 

CNBr  Cyanogen bromide 

2DE  Two dimensional electrophoresis 

DIGE  Difference gel electrophoresis 

1D-PAGE  One dimensional polyacrylamide gel electrophoresis 

2D-PAGE  Two dimensional polyacrylamide gel electrophoresis 

DHB  Dihydroxybenzoic acid 

DTT  DL-Dithiothreitol 

ECD  Electron capture dissociation 

EI  Electron ionization 

EPS  Enzymatic probe sonication 

ESI  Electrospray ionization 

ESI-MS  Electrospray ionization mass spectrometry 

ETD  Electron transfer dissociation 

FA  Formic acid 

FEE  Continuous free flow electrophoresis 

FT-ICR  Fourier transform ion cyclotron resonance  

HIFU  High intensity focused ultrasound 

HPLC  High performance liquid chromatography 

IAA  Iodoacetamide 

ICAT  Isotope coded affinity tag 

ICR  Ion cyclotron resonance (mass analyzer) 

IEF  Isoelectric focusing 

IT  Ion trap (mass analyzer) 

iTRAQ  Isobaric tag for relative and absolute quantitation 

IMERs  Immobilized enzyme reactors 

IPG  Immobilized pH gradients 

IR  Infrared radiation 
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LC  Liquid chromatography 

LCM  Laser capture microdissection 

LC-MS  Liquid chromatography mass spectrometry 

LC-MS/MS  Liquid chromatography tandem mass spectrometry 

LIT  Linear ion trap (mass analyzer) 

MALDI  Matrix-assisted laser desorption/ionization 

MALDI-TOF-MS Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 

MAPED  Microwave assisted protein enzymatic digestion 

MDLC  Multi dimensional liquid chromatography 

MS  Mass spectrometry 

MS/MS  Tandem mass spectrometry 

MudPIT  Multi dimensional protein identification technology 

MW  Molecular mass 

OT  Orbitrap (mass analyzer) 

pI  Isoelectric point 

PMF  Peptide mass fingerprinting 

PSD  Post source decay 

Q  Quadrupole (mass analyzer) 

QIT  Quadrupole ion trap (mass analyzer) 

QqQ  Triple quadrupole (mass analyzer) 

Qq-TOF  Quadrupole time-of-flight (mass analyzer) 

RP  Reverse phase 

RT  Room temperature 

SA  Sinapinic acid 

SCX  Strong cation exchange 

SDS  Sodium dodecyl sulfate 

SDS-PAGE  Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEM  Secondary electron multiplier 

SIL  Stable isotope labeling 

SILAC  Stable isotope labeling by amino acids in cell culture 

SRM  Selected reaction monitoring 

TCA  Trichloroacetic acid 

TFA  Trifluoroacetic acid 

TOF  Time-of-flight (mass analyzer) 

UE  Ultrasonic energy 

UP  Ultrasonic probe 

USB  Ultrasonic bath 

UTR  Sonoreactor 
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I.1. Proteomics 

 

I.1.1. A new era in protein science  

 

The word “Proteome” was introduced for the first time by Marc Wilkins in 1994 during the scientific 

meeting “2D electrophoresis: from protein maps to genomes” held at Siena, Italy [1, 2].  In 1995, the 

first papers using this new term were published and defined the proteome as “the protein product of 

the genome” [3, 4]. At the same time the word “Proteomics” appeared, in analogy with “Genomics”, to 

describe the scientific field that studies the proteome using a wide range of separation, analytical and 

bioinformatic tools to characterize and measure the result of gene expression at one time, under 

specific conditions, in a cell, tissue or organism [5, 6]. Unlike the genome, which is identical in all 

cells and tissues of an individual, the proteome is a dynamic entity that varies with the type of cells 

and their physiological state [7]. To fully understand the complexity of the term proteome, one can 

look to the Homo sapiens example: the human genome encodes 20 000 – 25 000 protein-coding genes, 

but the number of different proteins expressed in humans is estimated to be around 1 000 000 [8]. The 

large number and variety of expressed proteins is due to chemical modifications, known as post-

translational modifications, which happen after protein synthesis. Glycosylation, phosphorylation, 

acetylation, methylation, and ubiquitylation are some examples of post-translational modifications. 

The extent and diversity of these modifications in proteins is directly related with their function, 

regulatory mechanisms and external factors [9, 10]. Furthermore, the protein abundance dynamic 

range, which covers more than 5 orders of magnitude, makes the study of the proteome a humongous 

task [6].  

 

Since the definition of the concept 15 years ago, proteomics has become a very important discipline 

among the scientific community with multiple applications. Unlike the classical protein biochemistry 

science, which studies individual proteins emphasizing on structural, function and complete sequence 

analysis, proteomics investigates complex biological systems to understand the relation between 

different proteins and their distinct functions within large networks [11]. By studying these complex 

systems at the proteome level, scientists can obtain better knowledge about biological functions, 

understand the changes in cellular regulation mechanisms caused by disease states, identify disease 

biomarkers and develop new drugs or therapeutic approaches [7, 12]. To achieve this kind of complex 

information, proteomics relies on a number of different but complementary tools, such as: two-

dimensional gel electrophoresis (2DE), chromatographic separation methods, mass spectrometry 

(MS), stable isotope labeling approaches for protein quantitation, and software for data collection and 

analysis. Some of the most important methodologies and advances within the proteomics field will be 

addressed in the next sections.  
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I.1.2. Top-down versus Bottom-up proteomics 

 

The identification of proteins in proteomics can be performed at the protein level or at the peptide 

level. The first approach is named as “top-down” while the second is known as “bottom-up” 

proteomics.  

 

In top-down proteomics, after protein purification, the intact protein ions are introduced in a mass 

spectrometer and fragmented in the gas phase [13]. Normally, this is accomplished with powerful 

mass analyzers, such as the Fourier transform ion cyclotron resonance (FT-ICR), which can provide 

high-resolution mass spectra of large proteins, usually unit mass resolution, and fragment intact 

proteins with high-mass accuracy [14]. The use of high resolution mass spectrometry is imperative to 

obtain virtually the entire protein sequence and to characterize post-translational modifications, which 

are stable when the ion fragmentation occurs at the protein level [15, 16]. Yet, some limitations 

hamper the widespread use of this approach: (i) the MS spectra produced can be very complex and 

hard to interpret due to the multiple charged product ions, which difficult the determination of the 

correct fragment masses; (ii) high resolution mass analyzers like FT-ICR or the orbitrap are very 

expensive; (iii) the fragmentation mechanisms of proteins are less understood than the correspondent 

peptide forms [14-16].  

 

 

Figure I.1: Common bottom-up approaches for protein identification by mass spectrometry. 

 

Contrasting with the former protein identification approach, in bottom-up proteomics the proteins are 

hydrolyzed into peptides for mass spectrometry identification. The most used bottom-up strategies are 

depicted in Figure I.1. The first methodology entails protein separation by 2DE and then digestion 

with proteases, normally trypsin. In the second approach, also known as “shotgun” proteomics, the 

mixture of proteins is enzymatically digested to complex mixtures of peptides, which are separated by 

chromatographic techniques. The final step in both procedures is peptide analysis by MS or tandem-

MS (MS/MS) [16, 17]. Protein identification is accomplished by comparison between the peptide 

mass values obtained and the theoretical mass values present in dedicated databases.  
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Bottom-up proteomics is currently the most used approach for protein identification due to several 

reasons: (i) it can be easily automated; (ii) several MS technologies are available from different 

companies, compatible with different sample treatment procedures; and (iii) the databases for data 

analysis are easily accessible. However, unlike the top-down approach, bottom-up proteomics does not 

provide information on the entire protein sequence, because only a part of the digested peptides is 

identified. Moreover, information regarding post-translational modifications is often lost, which limits 

the ability to distinguish between protein isoforms [14, 16, 17].  

 

I.1.3. Analytical proteomics 

 

The complex nature of the proteome demands the use of different analytical technologies to obtain the 

global picture of the cellular state [18]. Most proteomics workflow use MS for protein profiling 

through a bottom-up approach. However, MS analysis of complex biological samples generates 

incomprehensible data due to the enormous amount of proteins present in different abundance levels 

with a dynamic range higher than 5 orders of magnitude, and in different forms with diverse post-

translational modifications [19]. Therefore, a reduction in the complexity of these protein mixtures is 

crucial to obtain good and reliable MS results. This is generally achieved through fractionation and 

separation techniques such as: two-dimensional gel electrophoresis (2DE) and liquid chromatography 

(LC) [19-24].  

 

I.1.3.1. Two-dimensional gel electrophoresis 

 

Electrophoresis is defined as the movement of charged molecules under an electrical field towards the 

opposite charged electrode. Due to their varying charges and masses, different molecules move with 

different velocities and became separated into single fractions [25].  

 

During the first years, most proteomics studies relied on 2DE for protein separation from complex 

samples [22, 26]. Yet, this technology had been developed years before by 3 independent scientists. 

O’Farrel reported in 1975 the development of a high resolution and sensitive technique for the analysis 

of complex biological samples, which he successfully used to resolve a great number of proteins 

(1100) from a complex E. coli sample, combining separation by isoelectric focusing in the first 

dimension with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the second 

dimension [27]. During the same year, Klose reported the protein mapping of mouse tissues with high 

resolution and reproducibility by a similar methodology [28]; and Sheele used slab gel isoelectric 

focusing and a gradient SDS-PAGE for the characterization of secreted proteins from a guinea pig 

pancreas [29]. The fundamental concept of this technique is the separation of complex mixtures based 

on two independent protein characteristics: the isoelectric point (pI) and the molecular mass (MW). 
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Proteins are first separated according to their net charge by isoelectric focusing (IEF). In the second 

dimension, proteins are separated by SDS-PAGE according to the molecular mass [27-29].  

 

In the first procedures developed for two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), 

the IEF was performed in polyacrylamide tube gels with pH gradients produced by amphoteric 

compounds in liquid form, carrier ampholytes (CA). When an electrical field is applied to these small 

ionisable molecules they migrate according to their isoelectric point and a pH gradient is generated 

[30]. However, the lack of IEF reproducibility due to (i) the instability of the pH gradient; (ii) the 

batch-to-batch variability of the CA mixtures; and (iii) the technical difficulties in transferring the 

proteins from the tube gel to the second dimension SDS-PAGE gel, hampered the exchange of 2D-

PAGE data between different laboratories and the widespread use of this technique [11, 19]. 

Meanwhile, some technical limitations were overcome by the introduction of immobilized pH 

gradients (IPG) for IEF [31], allowing higher resolution in the separation process, higher loading and 

buffering capacity, and improved reproducibility of the 2D maps [32]. The original IPGs used acidic 

or basic buffering groups (Immobiline) covalently linked to the polyacrylamide gel to generate the 

desired pH gradient, between pH 3 and 10 [31]. Currently, in most 2D-PAGE experiments the IEF is 

performed with commercially available IPG strips in variable lengths and with different pH ranges 

[33].  

 

With the current 2D-PAGE methodologies thousands of proteins can be resolved and visualized at the 

same time on a single 2D gel, providing a global view of the proteome at a particular time. Important 

information on the molecular mass and isoelectric point of the proteins can be obtained, and relative 

quantitation can be performed by gel comparison. In addition, proteins with post-translational 

modifications can be easily detected and image analysis can be used to select specific protein spots for 

MS analysis. Last but not least, this is a relatively low-cost technology accessible to most proteomics 

laboratories [19, 33].  Nevertheless, this separation tool has some important limitations: (i) it is labor 

intensive; (ii) has low throughput and reproducibility issues; (iii) most hydrophobic and membrane 

proteins are difficult to analyze by IEF; (iv) co-migrating spots can produce incorrect quantitative 

measurements; (v) low-abundance proteins are under-represented and most of the time they cannot be 

detected due to the limited detection range of the staining reagents used for protein visualization [19, 

33-35]. Despite these limitations, 2D-PAGE is still an essential tool for protein separation in many 

proteomics studies and projects [36].  

 

The introduction of narrow range IPGs and sample pre-fractionation techniques improved 2D-PAGE 

resolution and the ability to detect low-abundance proteins [33, 37]. While the wide range IPGs (pH 3-

10) provide a general overview of the proteome, narrow range IPGs generally cover 1 pH unit per strip 

(e.g. pH 4-5; pH 5-6) and can seriously increase the resolution of the 2D-PAGE separations [30, 37, 

38]. Sample pre-fractionation techniques are also used to improve the representation of low abundant 
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proteins in 2D-PAGE through the simplification of crude samples. There are different pre-

fractionation methods available and their application depends on type of sample [1, 36, 39, 40].  

Subcellular fractionation [41-43], differential solubilization [44-47], chromatography techniques [48-

51], continuous free-flow electrophoresis (FFE) [52-54], laser capture microdissection (LCM) [55-57], 

the Rotofor system [58, 59], high-abundance protein depletion [60, 61] and the Protein Equalizer™ 

Technology [62, 63] (disclaimer: specific company, products and equipment names are given to 

provide useful information; their mention does not imply recommendation or endorsement by the 

author) are only a few examples among the different pre-fractionation methods available. 

Nevertheless, it must be stressed that the pre-fractionation approaches have some reproducibility 

issues and additional variability might be introduced in the analysis [37].  

 

I.1.3.2. Liquid chromatography separation – shotgun proteomics 

 

Proteomics methodologies based on liquid chromatography separations, also known as “shotgun” 

proteomics, were developed as an alternative to the established 2D-PAGE approach, which has 

important limitations in the analysis of membrane proteins, proteins with extreme pIs and low 

abundance proteins [64-67]. The general procedure in shotgun proteomics is based on the enzymatic 

digestion of a complex mixture of proteins into a mixture of peptides, which is then separated by high-

performance liquid chromatography (HPLC) and analyzed by tandem mass spectrometry (MS/MS) 

[68, 69]. However, the complexity of the peptide mixture formed after protein digestion is so great that 

it cannot be completely resolved in a single chromatography run before the MS analysis. This 

limitation produces reproducibility problems and a reduction on the number of identified proteins, due 

to the high amount of co-eluting peptides that enter into the mass spectrometer at a rate exceeding the 

rate of the MS/MS analysis [65, 68]. This problem was overcome by the introduction of 

multidimensional liquid chromatography (MDLC) [64-66, 68-71]. MDLC separations rely on coupling 

two or more chromatographic separation dimensions to increase (i) the peak capacity, i.e. separation 

resolving power; (ii) the dynamic concentration range and sensitivity to detect low abundance 

proteins; and (iii) sample throughput [65, 70]. There are many MDLC approaches, with different 

combinations of chromatographic techniques for peptide separation, but most procedures use reverse 

phase (RP) liquid chromatography as the last separation dimension. This is due to the efficiency in the 

resolution of complex mixtures of peptides and the compatibility of the solvent systems used for 

peptide elution and the electrospray ionization for mass spectrometry [64, 65].  

 

One of the most common MDLC approaches is the Multidimensional Protein Identification 

Technology (MudPIT), developed in late 1990’s at the Yates group [72-74]. This approach was 

successfully used to study the yeast proteome, allowing the identification of 1484 proteins in a single 

run [73]. Briefly, this technology is based on a two-dimensional chromatographic separation in a 

single biphasic microcapillary column packed with a strong cation-exchange (SCX) resin, and a C18 
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reverse phase. In the first dimension the separation is based on the electrostatic interactions between 

different charged peptides and the SCX resin, and in the second dimension the separation occurs due 

to the hydrophobic interactions between peptides and RP packing material. First, the acidified peptide 

mixture is loaded into the SCX phase and eluted with increasing salt gradient buffers to the RP part of 

the column. Then, the salts are washed off with a specific buffer, and the peptides are eluted with a 

reversed-phase gradient buffer directly into the MS analyzer. The end of the capillary column is 

tapered and is also used as the electrospray needle for peptide ionization. Finally, the MS/MS spectra 

obtained for the different peptides is matched against mass spectrometry databases derived from the 

genome of the organism being studied by bioinformatic algorithms [73, 74]. As an alternative to the 

described biphasic columns, triphasic columns were introduced for MudPIT analysis [75]. These 

columns, packed with an extra RP material prior to the SCX phase, allow the online analysis of high 

salt concentration samples without previous offline desalting.  

 

According to Wolters et al., the MudPIT technology has a dynamic range of 10 000:1 and is suitable 

for the analysis of a great variety of proteins: low abundance proteins, proteins with extreme pI or 

MW, hydrophobic proteins and membrane proteins [74]. Nevertheless, MudPIT presents also some 

limitations, such as: (i) the processing time of a biological sample can be as high as 30 h; (ii) 

experimental costs associated with the analysis time and the high grade solvents used; (iii) column 

clogging due to sample impurities; and (iv) peptide co-elution, which hampers correct protein 

identification and decreases reproducibility [69, 76, 77]. Even though, MudPIT is a valuable and 

important tool for proteomics studies and has been used in different works: proteome analysis of 

different bacteria, plants, membrane proteins studies and quantitative experiments [76].  

 

MDLC was developed to overcome some important limitations of the 2D-PAGE methodology. 

However, these technologies are not competitors; instead, they are complementary tools which provide 

different but important information to understand complex proteome systems. Table I.1 summarizes 

the main differences, the advantages and the limitations of the MudPIT and 2D-PAGE methodologies. 

 

I.1.4. Protein digestion strategies 

 

Most proteomics studies rely on peptide analysis by mass spectrometry for protein identification and 

quantitation due to several reasons: (i) intact protein MS measurements are less accurate and less 

sensitive than the corresponding peptide analysis; (ii) large hydrophobic proteins are difficult to 

analyze; and (iii) fragmentation of intact protein ions produces multiple charged fragments and very 

complex spectra [11]. Therefore, protein digestion procedures are used to produce a specific pool of 

peptides from single proteins, or from complex mixtures of proteins, which is then analyzed by MS. 

To obtain good and reproducible results, proteins should be hydrolyzed at specific positions and the 

peptide fragments produced should have more than 6 amino acids to avoid multiple matches in 
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database searches, and less than 20 residues to improve MS/MS analysis [11]. Protein digestion can be 

accomplished through enzymatic reactions or by chemical reagents, such as cyanogen bromide 

(CNBr) or acid solutions [78, 79]. The choice of the method used for protein digestion depends on the 

type of protein, on the protein sequence and on the objective of the work. 

 

CNBr cleaves proteins in acid medium at the C-terminus of methionine, except when threonine or 

serine residues are the next amino acids in the sequence [80]. However, due to the low frequency of 

methionine residues in proteins, the reaction with CNBr generates a low number of large peptide 

fragments (MW > 2000 Da) which do not provide useful sequence MS data [11, 81]. One way to 

improve the CNBr chemical digestion of proteins is by coupling this procedure with enzymatic 

digestions [81]. 

 

Table I.1: Comparison between 2D-PAGE and MudPIT methodologies for protein separation. 

2D-PAGE MudPIT 

Separation target 

 Complex protein mixtures  Complex peptide mixtures 

1st dimension 

 IEF separation based on the pI of proteins   SCX chromatography separation based on the 

charge of the peptides  

2nd dimension 

 SDS-PAGE separation based on the MW of 

proteins  

 Separation by RP chromatography based on the 

hydrophobic character of the peptides. 

Advantages 

 High resolving power (thousands of proteins/gel) 

 pI and MW information 

 Relative quantitation by direct comparison 

between different gels 

 Parallel gel runs – reduces the analysis time 

 Image analysis 

 Separation of protein isoforms – information on 

post-translational modifications 

 Identification of thousands of proteins in a single 

run 

 Identification of membrane proteins and proteins 

with extreme pI and MW 

 Minimal sample loss 

 Reduced sample handling 

 Automation 

Disadvantages 

 Dynamic range – limits the detection sensitivity 

 Low sample capacity 

 Analysis of membrane proteins and extreme pI 

and MW proteins 

 Low-throughput 

 Automation problems 

 Protein co-migration affects protein identification 

and relative quantitation  

 Labor intensive 

 Dynamic range – limits the detection sensitivity 

 MS duty-cycle – MS/MS analysis rate limits the 

peptide detection 

 Ion suppression of low abundance peptides 

 Column clogging due to sample impurities 

 Peptide co-elution compromises quantitation and 

identification 

 Expensive reagents and maintenance 

 Long analysis time 
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Acid hydrolysis digestion is another example of a chemical protein digestion. Is this approach the 

peptide fragments are rapidly obtained after protein hydrolysis with hydrochloric acid (HCl) or 

trifluoroacetic acid (TFA). Yet, the MS data obtained is not suitable for protein identification by 

database search due to the nonspecific cleavage products [82-85]. The problem of nonspecific 

cleavages can be overcome by using dilute formic acid (FA), which specifically cleaves the peptide 

bond at the C-terminal group of aspartyl amino acid [86, 87].  

 

Enzymatic digestion of proteins with proteases produces a reproducible pool of peptides suitable for 

MS analysis. This feature makes this the preferred and most popular method to obtain the peptide 

fragments for protein identification [79, 88]. Different proteases are available for protein digestion. 

The main differences between them are related with the optimal operating conditions and the cleavage 

sites on the protein sequence [89]. The temperature and the pH of the buffer significantly affect the 

enzymatic activity and must be controlled and optimized to obtain the best enzymatic performance 

[79].  For instance: Asp-N has an optimal pH between 6 and 8.5 and hydrolyses the peptide bond at 

the amino side of aspartate residues; Glu-C cleaves at the carboxyl side of glutamate and aspartate 

residues in sodium phosphate buffer, and only at glutamate residues when ammonium acetate or 

ammonium bicarbonate is used; and Lys-C works best at pH 8.5 and cleaves specifically at the 

carboxyl side of lysine residues, except when this residue is followed by a proline [11, 90]. Generally, 

only one enzyme is used for protein digestion, but it has also been reported the use of multiple 

proteases to improve protein identification and characterization [91]. Trypsin is the most used protease 

in MS-based proteomics studies, due to several factors: (i) high specificity, since it hydrolyses the 

peptide bond at the C-terminus of lysine and arginine residues, except when a proline follows in the 

sequence [92, 93]; (ii) the peptides produced have basic residues at the C-terminus (arginine and 

lysine) which make them easily ionisable in the mass spectrometer [88]; and (iii) the mass range of the 

obtained peptides, between 800 and 4000 Da, provides excellent MS and MS/MS data [79, 93].  

 

In general, protein enzymatic digestion can be performed by three different approaches: (i) in-gel 

digestion; (ii) in-solution digestion; and (iii) digestion with immobilized enzymes [78, 79, 94]. Each 

one of these approaches, as well as other new methodologies for protein digestion, will be addressed in 

the next sections. 

 

I.1.4.1. In-gel protein digestion  

 

This approach is used to hydrolyze proteins after separation by 1D or 2D-PAGE [95]. There are 

different procedures available, but most of them comprise the same steps and are equally tedious and 

time-consuming [96-98]. Moreover, the numerous sample handling steps make this methodology 

prone to contamination, normally by keratins present in human skin, textiles and dust. Therefore 

special measures should be taken when handling electrophoresis gels and samples: powder free gloves 
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must always be used during sample processing, and the laboratory material, such as pipettes, tips, 

tubes and flasks, should be stored in a dust-free environment [98].  

 

The general protocol for protein digestion is as follows [76, 79, 96]: 

 

 First step – gel staining. After protein separation by gel electrophoresis, the polyacrylamide gel is 

stained to locate the proteins that will be analyzed. There are different staining reagents, each one with 

different detection limits and specificities, but the most common are the Coomassie Brilliant Blue 

(CBB), sliver nitrate, and fluorescent dyes like Sypro® Ruby, Sypro® Orange and Sypro® Red [99].  

 

 Second step – protein excision. The excess of staining is removed from the gel, and the proteins are 

located. The bands or spots from 1D or 2D-PAGE, respectively, are excised and transferred to 

individual tubes for enzymatic digestion. 

 

 Third step – washing, reduction and alkylation. The gel pieces are washed with mixed buffer 

solutions and organic solvents to remove the remaining staining reagents and other contaminants. If 

the protein sample was not previously reduced and alkylated, then, a series of additional steps must be 

performed before digestion. First, proteins are denatured by the reduction of disulfide bonds between 

cysteine residues with DL-dithiothreitol (DTT), during ca. 25 min at 37ºC. To prevent protein 

renaturation, a further reaction with iodoacetamide (IAA), at room temperature during 30 min, is 

performed. This introduces a modification at cysteine residues, carbamidomethylation, and prevents 

the formation of disulfide bonds.  

 

 Fourth step – protein digestion. In this step the gel piece is incubated with trypsin at 37ºC during 4 to 

12 h. This is a critical step and several parameters need to be optimized to obtain a good protein 

digestion yield: (i) the enzyme-to-protein ratio should be controlled to maximize the digestion 

efficiency and, at the same time, reduce enzyme autolysis; (ii) the buffer concentration, composition 

and pH; and the (iii) reaction temperature must be controlled and adjusted to the optimal enzymatic 

conditions to guarantee the best enzymatic activity.  

 

 Fifth step – peptide extraction. The reaction media is acidified with FA or TFA to stop the enzymatic 

digestion. Then, the supernatant containing the digested peptides is removed to another tube, and 

additional peptides are extracted from the gel with a 50 % acetonitrile/0.1 % TFA solution. After the 

extraction step, the supernatant and the extraction solutions are combined and analyzed by MS, or 

stored frozen for further analysis.  

 

The major drawbacks of this approach are related with: (i) laborious sample handling; (ii) low 

throughput; (iii) low protein digestion yield; and (iv) extended analysis time [78].  



General Introduction 

14 

 

 

I.1.4.2. In-solution protein digestion  

 

This procedure is normally used to digest complex mixtures of proteins in shotgun proteomics 

experiments. As previously referred for the in-gel digestion protocols, also in this case special 

measures should be taken to avoid sample contamination. Despite some variations due to the type of 

samples analyzed, in-solution digestion procedures share the same basic steps [76, 78, 100].  

 

 First step – sample preparation. To obtain large digestion yields from whole cell extracts, the sample 

must be homogeneous and contaminant free. Protein precipitation methods, with trichloroacetic acid 

(TCA) or acetone, are normally used to remove nucleic acid contaminants, lipids and salts from 

biological samples. After precipitation, proteins are solubilized in a suitable buffer. Generally, organic 

solvents, like acetonitrile, or chaotropic agents, such as urea or thiourea, are used for protein 

solubilization and denaturation [76].  

 

 Second step – reduction and alkylation. Denatured proteins have their tertiary structure disrupted, 

which facilitates the access of the protease to cleavage sites that otherwise would be concealed in the 

native form of the protein. To obtain complete protein denaturation, disulfide bonds between cysteine 

residues must be disrupted. As for in-gel digestion, DTT and IAA are normally used to reduce and 

alkylate cysteine amino acids, preventing protein renaturation [100]. The reaction with DTT is 

performed for 50 min at 60ºC, and alkylation with IAA is carried out at room temperature, in dark, 

during ca. 35 min. However, special care must be taken with buffers containing urea. Urea exists in 

equilibrium with isocyanic acid in solution. Isocyanic acid reacts with the side chains of lysine 

residues introducing a chemical modification known as carbamylation. This reaction is very slow at 

room temperature but is accelerated when the temperature rises above 40ºC [1]. Hence, the 

temperature should be carefully controlled and maintained below 40ºC if urea buffers are used. 

 

 Third step – protein digestion. In general, proteolysis is performed during 12 to 24 h. To guarantee 

that protein digestion is not compromised by a deficient enzymatic activity, three main variables need 

to be controlled: (i) the buffer pH; (ii) the buffer concentration; and (iii) the reaction temperature. 

Trypsin as an optimal pH between 7 and 8, and an optimal temperature of 37ºC. However, its activity 

is deeply affected by the buffer composition. Urea buffers with a concentration of 8 M are normally 

used for protein solubilization, but the activity of trypsin is very low under these conditions. Hence, 

when trypsin is used for proteolysis, the sample should be diluted to reduce urea concentration below 

2 M. Other approaches use Lys-C to digest proteins in 8 M urea buffers and after sample dilution to 2 

M the digestion is carried out with trypsin [76, 78].  
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 Fourth step – peptide analysis. The reaction media is acidified with FA or TFA to pH 2 – 3 to stop 

the enzymatic digestion. The complex mixture of peptides is finally separated and desalted by MDLC 

and analyzed by MS. 

 

In-solution digestion is suitable for on-line applications and the sample handling is easier than the 

previous described in-gel approach. Yet, there are some drawbacks: (i) time-consuming enzymatic 

digestion; (ii) protein modifications, such as carbamylation, introduce variability; (iii) enzyme 

autolysis products may introduce background noise in MS analysis [78, 79].  

 

I.1.4.3. Protein digestion with immobilized enzymes 

 

In this approach the proteolysis occurs when the protein solution pass through solid supports with 

immobilized enzymes, also known as immobilized enzyme reactors (IMERs). The reduction of 

enzyme autolysis products, the increase of the enzyme-to-protein ratio and the reduction in the 

digestion time are the main advantages of this methodology over the traditional in-solution or in-gel 

digestion procedures [94, 101-103].  

 

Enzymes can be immobilized in different supporting materials. The most usual are immobilization in 

silica monolithic supports, in synthetic polymers, in chromatographic stationary phases, in magnetic 

beads, and in microfluidic chips [101, 103].  Each one of these materials has particular properties, 

which affect the performance of the proteolytic reaction [78].  

 

One of the greatest advances introduced by IMERs was the automation and the reduction in sample 

handling with on-line digestion approaches. The enzyme, normally trypsin, is immobilized in a 

column and buffered solutions of proteins are eluted with a reduced flow rate to allow the enzymatic 

digestion [101]. For example, the procedure developed by Craft et al. uses an automated HPLC system 

with a trypsin packed column coupled to a mass spectrometer for on-column digestion and direct 

analysis of the peptide fragments [104]. Immobilized trypsin cartridges, or columns, are available from 

different companies. The Poroszyme® immobilized trypsin cartridge, which can be connected directly 

to an LC-MS system, is available from Applied Biosystems, and it is claimed that complete and 

automated digestions can be obtained in 5 min [105]. Sigma-Aldrich offers another alternative, the 

Trypsin Spin Columns, which digest proteins in 15 min [106]. Yet, the high cost and the sample 

preparation procedure before protein digestion present some limitations to the use of these products 

[78, 79, 94]. Recently, reports were made on the development of a device with immobilized trypsin 

that completes protein digestion in only 1 min: the DigesTip [107]. The DigesTip is a typical pipette 

tip with an immobilized trypsin cartridge. Protein digestion is performed simply by aspiration and 

release of the protein sample through the pipette tip, for 1 min, in repetitive cycles. This seems a 
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promising approach for protein digestion, but more applications and studies are necessary to prove its 

full potential.  

 

I.1.4.4. New technologies to improve protein digestion procedures 

 

The identification and quantitation of proteins for proteome characterization is the main goal of most 

proteomics studies. Traditionally, sample preparation procedures for MS identification are the 

bottleneck of most protein profiling studies, and hamper the rapid identification of proteins. The 

classical procedures addressed in the previous sections are tedious, labor-intensive and generally have 

low-throughput [79, 94]. Protein digestion is normally emphasized as the limiting step for protein 

identification and numerous technologies have been developed to improve the enzymatic digestion. 

Microwave energy; heating; mixed organic-aqueous solvents; ultrasound; and infrared energy are 

some examples of new methodologies developed to accelerate protein digestion. 

 

I.1.4.4.1. Microwave Energy 

 

Microwave energy has been used not only to enhance the enzymatic digestion, but also to improve 

other time-consuming steps, such as protein reduction and alkylation. The mechanism responsible for 

microwave catalysis is not well understood yet, but the main principle of this technique is related with 

the agitation of polar molecules in an electrical field to generate heat [108]. Pramanik et al. were the 

first to report the use of microwave energy to accelerate in-solution enzymatic digestion. They claimed 

that protein digestion could be achieved in only 12 min with the same yield as the 6 h common 

reaction [109]. Furthermore, nonspecific cleavage products were not observed and the digested 

proteins were identified with sequence coverage higher than 80 %. In-gel protein digestion can also be 

accelerated with microwave energy from overnight (ca. 12 h) to only 5 min [110]. In a different work, 

Sun et al. developed a procedure, which they named “Microwave-Assisted Protein Preparation and 

Enzymatic Digestion” (MAPED). They applied microwave energy not only to in-solution and in-gel 

digestion procedures, but also to protein reduction and alkylation, and they were able to reduce the 

total sample treatment time from almost 20 h to only 25 min [111]. Microwave methodologies are 

easy to perform and provide high-throughput protein analysis. Yet, a number of variables need to be 

optimized to obtain good results: (i) temperature; (ii) irradiation energy; and (iii) irradiation time [79, 

108].  

 

I.1.4.4.2. Heating 

 

Havlis et al. reported in 2003 a new method for protein digestion based on heating the reaction media 

[112]. Nevertheless, the increase of temperature per se does not mean that the enzyme reaction rate is 

improved, because enzymes have an optimal operating temperature. Because the optimal temperature 



Chapter I 

17 

 

of trypsin is ca. 37ºC, they used a modified version of the enzyme – reductive methylated trypsin, 

which as an optimal catalytic activity between 50 and 60ºC.  This modification makes the enzyme 

more stable at higher temperatures and less prone to autolysis, which means that a higher enzyme-to-

protein ratio can be used. Finally, they claimed that in-gel proteolysis can be performed in 30 min at 

58ºC, after incubation with modified trypsin during 60 min in an ice bath. The digestion yield obtained 

was ca. 75 % of the classic overnight reaction yield [98, 112]. In another approach, Turapov et al. 

were able to digest native proteins in a small volume (3 µL) in only 5 min [113]. Using a PCR-type 

thermocycler to gradually increase the temperature of the reaction medium from 49 to 55ºC, they 

improved protein identification results. Yet, this procedure was not tested in the digestion of complex 

protein samples, and therefore further tests should be performed to prove the efficiency of this 

approach. 

 

I.1.4.4.3. Mixed organic – aqueous solvents 

 

In this approach, methanol-water, acetone-water, and acetonitrile-water solvent systems were used to 

digest proteins in-solution with trypsin at 37ºC [114]. The amino acid sequence coverage obtained 

with the mixture of solvents, after 1 h of proteolysis, was always higher than with the aqueous buffer. 

Curiously, it was reported that the pool of peptides generated is solvent dependant. The authors also 

tested the digestion procedure with proteolysis resistant proteins, as myoglobin and chicken 

ovalbumin, and found that myoglobin is efficiently digested in 5 min in 80 % acetonitrile solution. 

This is a promising approach, especially for the digestion of hydrophobic or membrane proteins, since 

buffers with chaotropic agents like urea, which may denature trypsin, are avoided. Lin et al. used  

mixed organic – aqueous solvents and microwave energy to accelerate in-solution enzymatic digestion 

of proteins, without previous reduction and alkylation [115]. They improved the digestion efficiency 

using solvents containing acetonitrile, methanol or chloroform, heated during 10 min in a commercial 

microwave oven. Furthermore, it was reported that the activity of the enzyme decreases with the 

increasing methanol content of the solvent. In contrast, they found that the enzyme activity was 

improved by increasing the acetonitrile percentage in the solvent system. 

 

I.1.4.4.4. Ultrasonic Energy 

 

In 2005, López-Ferrer et al. introduced the high-intensity focused ultrasound (HIFU) technology to 

accelerate protein digestion [116]. Using an ultrasonic probe, the authors successfully digested BSA 

and lysozyme in 40 and 60 s with, respectively, in-solution or in-gel approaches. Moreover, HIFU 

digestion of complex protein samples in 60 s was also assessed and compared with the classic 

overnight proteolysis. The authors reported similar MS spectra between both approaches, but the 

number of identified peptides was slightly higher with the overnight digestion, and the number of 

peptides with missed cleavage sites was higher for the HIFU protocol. Even though, the same proteins 
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were identified with both the HIFU and the overnight procedure. This method drastically reduces the 

digestion time of proteins; it is economic, easy to handle and adaptable to on-line procedures. 

However, a number of variables must be optimized to obtain the best ultrasound performance: (i) 

ultrasonication power; (i) ultrasonication amplitude; (iii) ultrasonication time; (iv) temperature; (v) 

enzyme-to-protein ratio; (vi) sample volume; and (vii) probe diameter [79]. The optimization of these 

parameters, as well as the assessment of other ultrasonic technologies, is one of the main tasks 

included in this dissertation and will be addressed in the next chapters. 

 

I.1.4.4.5. Infrared Energy 

 

Over the last 2 years a number of papers have been published claiming that protein digestion can be 

achieved within 5 min with infrared radiation (IR). Wang et al. first reported the use of infrared energy 

to obtain peptide digests in only 5 min from proteins in solution [117]. Briefly, after protein 

denaturation in boiling water, trypsin was added to a protein solution of BSA, myoglobin or lyzozyme, 

and the samples were irradiated with an IR lamp during 5 min at a controlled temperature of 37ºC. In 

general, the results achieved in terms of amino acid sequence coverage were higher when IR was used, 

instead of the common 12 h enzymatic digestion. Similar results were reported when IR energy was 

applied to the digestion of proteins in solution with chymotrypsin [118]; to the digestion of proteins in 

gel with trypsin [119], and protein digestion with immobilized enzymes [120]. Finally, an interesting 

approach in which proteolysis is accomplished in 5 min directly on the MALDI plate was also 

reported, and the results obtained were similar to the 12 h digestion [121]. Despite these promising 

results, the authors did not test any of the developed procedures in whole proteome samples. 

Therefore, the applicability of these approaches to large scale proteomics studies remains unclear, and 

further validation is necessary.  
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I.2. Protein quantitation 

 

The information about the relative or absolute expression of proteins in a cell, body fluid, tissue or 

organism, is essential to understand and characterize the dynamics of the proteome. For example, the 

measurement of changes in protein concentration helps to identify disease biomarkers and the 

distinction between healthy and disease states [122-125]. There are two types of quantitative 

information: (i) absolute quantitation, which provides information on the exact amount of proteins 

present in the sample; and (ii) relative quantitation, which measures the differences in protein 

abundances between a sample and a control, and determines if a protein is up- or down-regulated 

[126-128]. Generally, the quantitative information is achieved through gel-based approaches or by 

mass spectrometry-based methodologies [128-133]. Figure I.2 schematically presents the different 

methodologies used to measure protein abundance in proteomics experiments.  

 

 

 

Figure I.2: Overview of quantitative methodologies used in proteomics studies. (Adapted from Lau et 

al. [126]) 
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I.2.1. Gel-based quantitation: difference gel electrophoresis (DIGE) 

 

In the classical gel-based quantitative approach, complex mixtures of proteins are separated in 

different 2D-PAGE experiments and, after gel staining, the protein distribution pattern is analyzed 

with imaging software. Then, the relative abundance of each protein is obtained by comparison 

between the intensities of the protein spots in different 2D gels [134, 135]. However, the variability 

found in the protein separation pattern due to fluctuations in temperature, differences in pH, electrical 

fields and in the polymerization of the polyacrylamide gel, poses major limitations to the comparison 

of protein spots from different gels, affecting the reproducibility of the quantitation procedure [136, 

137]. To overcome these limitations, Unlu et al. developed the difference gel electrophoresis (DIGE). 

This method allows the separation of more than one sample in a single polyacrylamide gel, eliminating 

gel to gel variability, which improves protein quantitation results [138]. Figure I.3 describes the 

general DIGE workflow. In the first step, two or three different protein samples are labeled with 

different fluorescent cyanine dyes, known as Cy2, Cy3 and Cy5 dyes. Next, the different samples are 

pooled together and separated on the same 2D-PAGE experiment. Finally, the gel is revealed by 

fluorescence imaging: the 2D-PAGE gel is scanned at different wavelengths, which correspond to the 

excitation wavelengths of the specific dyes. The difference between the intensities of the cyanine dyes 

in a particular protein spot is measured by image-analysis software, and the protein relative abundance 

is obtained [136-138].   

 

 

Figure I.3: DIGE workflow for protein quantitation. Different protein samples, labeled with different 

fluorescent cyanine dyes (Cy2, Cy3 and Cy5), are pooled together and separated by 2D-PAGE. The 

resulting gel is revealed with different excitation wavelengths, and the difference between the 

intensities of the cyanine dyes in a particular protein spot is measured by image-analysis software to 

obtain the relative abundance of the protein. 

 

According to Minden et al., the development of different dyes relied upon 4 main principles: (i) 

distinct fluorescent characteristics; (ii) similar molecular mass; (iii) each dye must be specifically 

linked to a particular amino acid; and (iv) the charge of the amino acid linked to the dye must remain 
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unaltered [137]. The different set of dyes can be lysine- or cysteine-reactive. Since the relative ratio of 

lysine residues in proteins is high, lysine-reactive dyes are used in a minimal labeling approach, which 

means that only 1 in 20 proteins is actually labeled in a single lysine residue. This prevents protein 

precipitation due to the hydrophobic character introduced when the dye is linked to multiple lysine 

amino acids. Conversely, the lower ratio of cysteine amino acids in proteins, as well as the 

zwitterionic character of the cysteine-reactive dyes, allows the labeling of every cysteine residues in 

all proteins, increasing the sensitivity of the method. This is known as saturation labeling approach 

[136, 137]. 

 

The DIGE methodology has a number of advantages over traditional gel-to-gel comparison, as 

explained before. However, this technology presents also some drawbacks [132, 137]: (i) expensive 

equipment, software and reagents; (ii) the labeling reaction has to be performed under rigorous 

conditions to avoid the formation of different labeled protein species, and to prevent protein 

precipitation due to the hydrophobic character of the dye; (iii) the introduction of a dye in the protein 

structure causes molecular mass differences between labeled and unlabeled proteins, especially in 

minimal labeling approaches; (iv) it is almost impossible to know where the cyanine dye is attached in 

a protein so, different peptide mass patterns might be generated, hampering MS protein identification; 

and (v) the different extinction coefficients of the dyes can introduce variability problems in protein 

quantitation. Even though, the DIGE methodology as proven its value in may proteomics studies and 

applications, such as the study of protein expression in different organisms, tissues, body fluids and 

sub-cellular proteomes [137]. 

 

I.2.2. Mass spectrometry-based quantitation 

 

Mass spectrometry-based quantitation approaches are influenced by the chemical and physical 

properties of proteins and peptides ions, such as: (i) different charge states; (ii) amino acid 

composition; (iii) different molecular mass; (iv) post-translational modifications; and (v) the presence 

of buffer salts and other contaminants [130, 139]. These variables affect the ionization efficiency of 

the different peptides, resulting in different mass peak intensities even in peptides from the same 

protein [135]. Therefore, protein quantitation has to be performed by comparison between the same 

peptide mass-to-charge ratios (m/z) from different samples. The best way to overcome these 

limitations, is to introduce an internal standard with similar chemical and ionization properties [139]. 

This is normally accomplished by labeling different protein samples with stable isotopes, through 

stable isotope labeling (SIL) methodologies [122, 140]. In this approach, a light- or heavy-isotope tag 

is introduced in the protein or peptide from different samples and then, the heavy and light-labeled 

peptides are mixed together and analyzed by mass spectrometry. The quantitative information is 

obtained by measuring the ratio between the peak intensities of the light- and heavy-peptide forms, 

which present distinct mass values due to the mass difference introduced by the isotopic tag [135].  
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SIL can be achieved by distinct approaches (Figure I.2): (i) the in-vitro approach involves the 

introduction of the isotope tag before, or after protein digestion, through a chemical or enzymatic 

reaction; (ii) the in-vivo approach involves the introduction of the stable isotope label at the protein 

level during cell growth [141-145]. Yet, a number of conditions have to be ensured to obtain accurate 

quantitative measurements: (i) the chemical properties of the peptides must not be altered by the 

introduction of the isotope label to guarantee an equal behavior between different peptide forms in 

subsequent separation steps; (ii) the ionization efficiency of different labeled peptide forms must 

remain unaltered to ensure that the relative quantitation is not affected by differences in the ionization 

behavior upon mass spectrometry analysis; (iii) a minimal mass difference of 4 Da between the heavy 

and light peptide forms must be obtained to prevent the overlap between isotopic patterns from 

different labeled peptides in the mass spectra [135, 146, 147]. An overview of some important SIL 

methodologies is given at the end of this section in Table I.2. The following sections describe some of 

the most used SIL methodologies, as well as the label-free and absolute quantitation approaches.  

 

I.2.2.1. 
15

N-metabolic labeling 

 

This methodology is based on the metabolic incorporation of 
14

N or 
15

N stable isotopes into proteins 

during cell growth [122, 128, 133]. In 1999, Oda et al. described the quantitation of phosphopeptides 

from yeast using this whole-cell stable isotope labeling approach [148]. Briefly, two different cell 

cultures are grown in different cell culture media: one composed of natural abundance 
14

N-glucose and 

the other composed of 
15

N-labeled glucose. After the appropriate growing period, every amino acid 

within the cell is labeled with 
14

N or 
15

N. This allows the discrimination between different labeled 

peptide species by mass spectrometry, and relative protein quantitation is achieved by measuring the 

ratios between the relative intensities of the mass peaks of the 
14

N and 
15

N labeled peptides [148]. The 

greatest advantage of this methodology relies in the early stage of isotope labeling: the different 

samples are labeled during cell growth and then combined before sample treatment for MS analysis. 

This way, variability and errors related with the sample handling procedure are reduced, since the 

labeled and non-labeled proteins are processed as a unique sample [133]. However, there are some 

limitations in this approach: (i) expensive reagents; (ii) the cells have to be compatible and able to 

grow in isotopically enriched media; (iii) the labeling depends on the amino acid sequence of the 

peptide; (iv) the mass shift  introduced in peptides with unknown sequences cannot be predicted; and 

(v) difficult interpretation of the mass spectra and lack of appropriate software for analysis [128, 129]. 

 

I.2.2.2. Stable isotope labeling by amino acids in cell culture (SILAC) 

 

Stable isotope labeling by amino acids in cell cultures (SILAC) is a metabolic labeling methodology 

developed by Ong et al. to overcome the limitations of 
15

N metabolic labeling [149]. The main 

difference between these two approaches is related with the cell culture media. The SILAC 
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methodology uses essential amino acids labeled with different heavy stable isotopes, which are added 

to the cell culture media and incorporated into the proteins during cell growth [149-151]. The most 

common heavy labeled amino acids in SILAC are the 
13

C6-arginine and the 
13

C6-lysine, which have a 

mass difference of + 6 Da to the normal arginine or lysine residues. Other amino acids, like the 

isotopically enriched leucine and methionine have also been used with success [151]. In general, only 

essential amino acids that provide a minimum mass difference to the unlabeled samples of 4 Da should 

be chosen [151]. The general SILAC workflow, depicted in Figure I.4, is similar to the 
15

N-labeling 

approach. Briefly, different cells are cultured in different heavy or light media, containing heavy-

labeled or natural isotope abundance essential amino acids, respectively. After a minimum of five cell 

doublings it is expected that more than 97 % of the proteins have incorporated the heavy-labeled 

amino acid. Finally, the different labeled samples are mixed, processed and analyzed by MS [151, 

152].  

 

 

Figure I.4: SILAC workflow for protein quantitation by MS. Cells are grown on culture media 

enriched with either heavy labeled or natural abundance amino acids. Then, the samples are combined 

and after protein extraction and digestion the peptides are separated by liquid chromatography and 

analyzed by mass spectrometry. Sample quantitation is obtained from the extracted ion 

chromatograms for the heavy- and light-labeled peptide forms. (adapted from Kline et al. [144]) 

 

The main advantages of the SILAC methodology are also related with the early stage of protein 

labeling, which allows the different labeled samples to be mixed even before cell lysis. Thus, all 

sources of variability and error introduced by fractionation, purification and mass spectrometry 

procedures are excluded, because both sets of proteins are affected in the same extent. Moreover, 

unlike the 
15

N-labeling, the labeling is uniform and the mass differences depend only on the amino 

acid selected for protein labeling. Therefore, the mass differences between heavy- and light-labeled 

peptides are already known before peptide identification, which simplifies the quantitation 

process[152]. Finally, no significant effect on the cell growth rates, or morphology, caused by the 

presence of heavy-labeled amino acids in the culture media has been reported [151]. Some limitations, 

however, can also be referred: (i) this method requires living cells, which exclude the application to 

body fluids, clinical tissues and cells that do not grow in the required media for SILAC; (ii) eukaryotes 
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can metabolically convert arginine to proline residues, introducing error in the quantitation; (iii) it is a 

time-consuming technique; (iv) the isotope labeled amino acids are very expensive reagents; and (v) 

the large amount of data obtained complicates the interpretation of the results [141, 153]. Despite 

these limitations, SILAC has been used with success in different studies, such as: the identification of 

protein biomarkers; analysis of signaling pathways; subcellular proteomics and cell signaling 

dynamics studies [152]. 

 

I.2.2.3. Isotope-coded affinity tag (ICAT) 

 

Unlike the previous in-vivo labeling approaches, in which the isotope label is metabolically introduced 

into the proteins during cell growth, the isotope-coded affinity tag (ICAT) methodology introduces the 

heavy isotope tag through a chemical reaction between specific reagents and reactive sites on a 

protein, or peptide. This methodology was first described by Gygi et al. to study the effect of different 

carbon sources on protein expression in Saccharomyces cerevisiae [154]. The ICAT procedure for 

protein quantitation comprises several steps (Figure I.5a). First, proteins from control and experiment 

samples are isolated, denatured and reduced. Then, the cysteinyl residues side chains are tagged with 

the heavy or light form of the ICAT reagent and the samples are combined and enzymatically 

digested. Finally, the modified peptides are isolated by avidin affinity chromatography and quantified 

by MS analysis [154-156]. The original ICAT reagent (Figure I.5b) is composed of three functional 

elements [154]: (i) a thiol reactive group that specifically reacts with the reduced cysteine amino acid 

side chain; (ii) a light- or heavy-labeled polyether linker with either 8 hydrogen atoms (H8) or 8 

deuterium atoms (
2
H8), respectively; and (iii) an affinity tag, the biotinyl group, which allows the 

selective recovery of the labeled peptides by avidin affinity chromatography.  

 

The ICAT approach for protein quantitation has several advantages over the previous metabolic 

labeling strategies: (i) compatibility with the analysis of body fluids, tissues and cell samples grown in 

different conditions; (ii) the reaction between the ICAT reactive group and the cysteine residues is 

highly specific and tolerant to the presence of salts, detergents and chaotropes; (iii) the presence of a 

biotin group in the ICAT reagent, and the possibility to isolate labeled peptides through affinity 

chromatography, allows the reduction of the sample complexity [155]. However, because the 

quantitation is only based on peptides containing cysteine residues, proteins without cysteine amino 

acids cannot be quantified. Another drawback is related with the large size of the ICAT tag, which 

compromises peptide identification and fragmentation by mass spectrometry. Furthermore, the 

presence of deuterium atoms in the polyether linker affect the retention time of the heavy-labeled 

peptides when they are separated by reversed-phase chromatography [155, 157].  

 

Over the last years some technical advances have been introduced to overcome the ICAT limitations 

[156-158]. The most important development was the introduction of an acid-cleavable bond between 
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the biotin group and the isotope labeled linker, and the use of 
13

C instead of 
2
H in the polyether labeled 

chain [159]. The acid-cleavable bond allows the removal of the biotin affinity tag before the MS 

analysis, improving the MS and MS/MS performance. The substitution of 
2
H by 

13
C heavy isotopes in 

the labeled tag prevents the occurrence of different chromatographic retention times between heavy- 

and light-labeled samples, improving the quantitation accuracy. These new ICAT reagents are known 

as cleavable ICAT (cICAT). 

 

 

Figure I.5: Overview of the ICAT methodology for protein quantitation through MS. a) ICAT 

workflow. Proteins from different samples are isolated, tagged with the heavy or light ICAT reagents 

at the cysteinyl residues, and pooled together. After protein digestion, the tagged peptides are isolated 

by avidin affinity chromatography and analyzed by MS. Quantitation is obtained by measuring the 

relative intensity between the labeled peptide pairs, and protein identification is achieved by tandem-

MS. b) Structure of the original ICAT reagent. The reagent consists of a biotin affinity tag used to 

isolate the chemically modified peptides; a linker group in which the stable isotopes are incorporated; 

and an iodoacetamide reactive group with specificity towards cysteine residues. (adapted from Kline et 

al. [144] and Gygi et al. [154]). 

 

I.2.2.4. Isobaric tag for relative and absolute quantitation (iTRAQ) 

 

The isobaric tag for relative and absolute quantitation (iTRAQ) methodology, developed in 2004 by 

Ross et al., is another example of a chemical isotope labeling approach [160]. Unlike the ICAT, this is 



General Introduction 

26 

 

a multiplexed methodology, since it allows the comparison of multiple samples (more than 2) in the 

same experiment, thanks to the particular characteristics of the tagging reagents. The iTRAQ reagents 

consist of 3 groups with distinct functions (Figure I.6a): (i) a peptide reactive group based on a N-

hydroxy succinimide ester (NHS-ester), which reacts specifically with the N-terminus of every peptide 

and ε-amine groups of lysine residues; (ii) a carbonyl balance group; and (iii) a reporter group based 

on N-methylpiperazine [160]. The reporter group and the balance group form the isobaric tag with a 

constant mass of 145 Da. Since these two groups are labeled with different proportions of 
13

C, 
15

N
 
and 

18
O stable isotopes, their individual masses are not constant: the reporter group mass varies between 

114 and 117 Da while the mass of the balance group ranges between 31 and 28 Da. Therefore, the 

reporter and the balance group are combined in such a way that the mass of the isobaric tag remains 

constant in all iTRAQ reagents. 

 

In the iTRAQ strategy (Figure I.6b), proteins from different samples are isolated, reduced, alkylated 

and enzymatically digested into peptides. Each set of peptides is then labeled with one of the four 

isotopically labeled tags, mixed together and analyzed by MS. Since the iTRAQ reagents are isobaric, 

the different labeled peptides cannot be distinguished in the initial MS scan. However, when the 

peptides are analyzed by MS/MS, the tagging reagent is fragmented and the single charged reporter 

groups, with masses from 114 to 117 Da, are detected. The relative abundance of the peptides is 

calculated from the intensities of each reporter ion and, at the same time, the peptide sequence can be 

determined from the MS/MS spectra [160, 161]. The analysis of MS data is generally performed with 

different available software tools [122, 127, 162]. In addition, because the iTRAQ reagents are 

deuterium free, the retention time of the different labeled peptides is not affected during liquid 

chromatographic separations. Recently, the use of 8-plex iTRAQ reagents has been reported [127, 

163]. These reagents allow the simultaneous comparison of 8 different samples. The reporter ion 

masses are from 113 to 119 Da and 121 Da. The mass at 120 is not used to avoid the overlapping with 

the mass from phenylalanine immonium ions (120.08 Da). 

 

The capacity to analyze multiple samples at the same time (up to 8 samples) represents one of the 

greatest advantages of this methodology. Additionally, all tryptic peptides are labeled, which increases 

the confidence level in quantitation and protein identification. The main disadvantages are related with 

the complex and laborious procedures necessary to obtain reproducible and robust results, and with the 

expensive reagents required [127]. Wu et al. compared the performance of the DIGE, ICAT and 

iTRAQ quantitation approaches [164]. The authors concluded that, even though the iTRAQ labeling 

methodology was more prone to errors in the isolation of the precursor ion for quantitation, this 

technique was the most sensitive of the three, followed by ICAT which was found to be more sensitive 

than DIGE. 
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Figure I.6: Overview of the iTRAQ methodology for protein quantitation by MS. a) Structure of the 

iTRAQ reagent. The reagent consists of three groups with distinct functions: the peptide reactive 

group (red), a NHS ester with specificity towards the N-terminus of every peptide and ε-amine groups 

of lysine residues; the balancer group (blue); and the reporter group (green), which is used for peptide 

quantitation. The reporter group mass varies from 114-117 Da, while the complementary balance 

group mass varies from 31-28 Da. Together, these groups form the isobaric tag with 145 Da. b) 

Workflow of the iTRAQ labeling method. Proteins form different samples are isolated, digested to 

peptides and chemically modified with an isobaric tag. The samples are mixed and analyzed by MS. 

Peptides are analyzed by tandem-MS for protein identification and quantitation, which is calculated 

from the ratios between the intensities of the different reporter groups. (adapted from Boehm et al. 

[162] and Kline et al. [144]) 

 

 

I.2.2.5 Enzymatic 
18

O-labeling  

 

The 
18

O-labeling of proteins was introduced by Sprinson et al. in 1951 [165] and it was used for the 

first time as a quantitative approach by Desiderio et al. in 1983 [166] for the quantitation of opioid 

pentapeptides. Since then it has been used in many proteomics studies, such as: quantitation of 

proteins from viruses [167]; protein expression in liver diseases related with hepatitis-C virus infection 
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[168]; cellular processes affected by anthrax lethal toxins [169]; effect of culture conditions on the 

protein expression of oral pathogens associated with chronic periodontitis [170]; in cancer related 

studies [171-175]; and also as an approach for absolute protein quantitation [176]. This methodology 

has several advantages, which make it one the most versatile SIL methodologies used in protein 

quantitation: (i) the procedure is straightforward and only requires the presence of 
18

O enriched water 

(H2
18

O) and an enzyme; (ii) every peptide is labeled, except the original C-terminal peptide; (iii) can 

be adapted and applied to any kind of protein sample, including clinical samples and post-

translationally modified proteins; (iv) compatibility with peptide fractionation methodologies; (v) can 

be used in proteins separated by gel electrophoresis; and (v) increased sensitivity, since it can be 

applied to proteins at the femtomol level [177, 178].  

 

 

Figure I.7: Schematic representation of the 
18

O-labeling reaction. This is a two step reaction: (1) in 

the first step, one 
18

O-atom from the buffered media is incorporated at the peptide C-terminus during 

protein digestion with trypsin, corresponding to a mass increment of + 2 Da; (2) the second step 

consists in an enzymatic catalyzed reversible reaction, in which the peptide incorporates a second 
18

O-

atom, resulting in a total mass increment of + 4 Da. (adapted from Yao et al. [179]) 

 

In the enzymatic labeling approach, the isotopic tag, which in this case is the heavy stable 
18

O isotope, 

is introduced into the peptide C-terminus during the hydrolysis of the amide peptide bond. The 

labeling reaction is a two step reaction (Figure I.7) [178-181]. In the first step, one 
18

O atom from 
18

O-

enrinched water (H2
18

O) buffer is incorporated during the enzymatic hydrolysis of the peptide bond. If 

the reaction is performed in > 95 % H2
18

O media, almost all the peptides will be labeled with one 
18

O 

atom at the C-terminal carboxyl group. The second step, known as carboxyl oxygen exchange 

reaction, is a reversible reaction in which the enzyme forms an ester intermediate with the newly 
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formed peptide and catalyzes the incorporation of the second 
18

O atom. Unlike the peptide bond 

hydrolysis reaction, which requires only one cycle for the incorporation of the 
18

O atom, the carboxyl 

oxygen exchange reaction requires several cycles to achieve a complete double labeling of all 

peptides. It was estimated that at least 5 esterification cycles are necessary to obtain an 
18

O 

incorporation of 98 % [181]. 

 

 

Figure I.8: Complete 
18

O-labeling versus variable 
18

O-labeling. a) Mass spectrum obtained for a 

mixture of unlabeled (blue) and completely 
18

O-labeled (green) peptide samples – no isotope 

overlapping is observed. b) Mass spectrum obtained for a mixture of unlabeled (blue) and variable 

18
O-labeled (green) peptide samples – overlapping between isotope clusters from different samples 

occurs, introducing error in the quantitation process. 

 

The efficiency of the second labeling reaction depends not only on the percentage of 
18

O-water in the 

buffer media [182], but also on (i) the labeling time; (ii) the enzyme chosen for proteolysis [179, 183, 

184]; (iii) the pH of the reaction [182, 185]; (iv) the peptide sequence [182, 183]; and (v) the extent of 

the back exchange reaction [182, 185]. This creates a major problem for protein quantitation through 

18
O-labeling: the variable 

18
O-incorporation into each peptide [181]. As previously referred, for 

accurate quantitation measurements a minimum mass gap of 4 Da between the native and the heavy 

labeled peptides should be obtained to avoid overlapping between isotopic clusters of the different 

species. Therefore, in a perfect 
18

O-labeling experiment where all peptides in one sample are double 

labeled, quantitation is based only on the measurement of the unlabeled (
16

O) and the double labeled 

(
18

O2) relative intensities of the peptides (Figure I.8a). Though, in most experiments, the incorporation 

of 
18

O occurs with a variable degree, meaning that two species of labeled peptides co-exist in the 

sample: single labeled peptides (
18

O1) that produce a mass shift of + 2 Da; and double labeled peptides 

(
18

O2), which are displaced + 4 Da to the native peptides. Consequently, when the labeled peptides are 

mixed with the unlabeled sample for MS analysis, spectra with a complex isotopic pattern will be 

obtained (Figure I.8b). In this case, protein quantitation is based on the peak intensities of the 
16

O, 
18

O1 

and 
18

O2 peptide species. Yet, the deconvolution of these kinds of spectra for correct assignment of the 

relative mass peak intensities is not an easy task, being generally performed with software tools and 

complex algorithms [186-188]. All the variables affecting the efficiency of the 
18

O-labeling reaction, 
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as well as the most recent strategies to control and optimize them, were recently and extensively 

reviewed by Fenselau et al. [178], Miyagi et al. [181] and Capelo et al. [189]. 

 

 

Figure I.9: Comprehensive scheme of two common procedures for protein quantitation by 
18

O-

labeling. a) Direct labeling procedure. After protein denaturation, reduction and alkylation, the 

samples are diluted with 
18

O- or 
16

O-enriched buffer for enzymatic digestion with trypsin. The reaction 

is performed at pH 8.5, during ca. 12 h at 37ºC. Finally, the labeled peptides from different samples 

are mixed and analyzed by MS. Quantitation is obtained by measuring the ratio between the relative 

intensities of 
18

O- and 
16

O-labeled peptides. b) Decoupled labeling procedure. After protein 

denaturation, reduction, alkylation and enzymatic digestion in natural abundance aqueous media at pH 

8.5, the samples are dried or lyophilized. The peptides are resuspended in 
18

O- or 
16

O-enriched buffer 

and the labeling reaction proceeds with trypsin at pH = 6.75, during ca. 18 h at 37ºC. The samples are 

finally pooled together for MS analysis, and the quantitation is obtained by measuring the ratio 

between the relative intensities of 
18

O- and 
16

O-labeled peptides. 

 

18
O-Labeling can be achieved through different procedures (Figure I.9) [189]. In the direct labeling 

approach [182], after the reduction and alkylation steps, the proteins are digested with trypsin in H2
16

O 

or H2
18

O enriched buffer at pH 7 – 8.5. The main advantage of this procedure is its simplicity, because 

it consists on a simple enzymatic digestion, carried out in an isotopic enriched media. In the decoupled 

labeling procedure [173, 190] the proteins are reduced, alkylated and enzymatically digested in natural 
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abundance aqueous media at pH 7 – 8.5. Then, the mixture of peptides formed is dried or lyophilized. 

At last, the peptides are dissolved in 
18

O-enriched buffer with trypsin, and the labeling reaction occurs 

at pH 5 – 6.75. This is a more elaborate and time-consuming procedure, but increased labeling 

efficiencies are obtained, because the enzymatic and labeling reactions are performed at their optimal 

pH values and the digested peptides are dissolved in a higher 
18

O content buffer before the labeling 

reaction. Yet, both procedures have a common limiting step, which is the time-consuming labeling 

reaction: normally, the peptides are digested/labeled during 24 to 48 h. In the last years, several 

technologies, such as microwave energy, high-pressure systems, immobilized enzymes and ultrasonic 

energy, have been used not only to accelerate the labeling reaction, but also to improve the labeling 

efficiency and the quantitative measurements [189]. The optimization and development of new 

strategies for 
18

O-labeling is one of the main tasks of the present work, and therefore this will be 

addressed in dedicated chapters throughout the dissertation.  

 

I.2.2.6. Label-free quantitation 

 

The label-free methodologies for protein quantitation are relatively inexpensive techniques, compared 

to the cost of SIL reagents, and can be applied to virtually any biological sample. There are two main 

strategies for label-free protein quantitation: (i) peak area measurements and (ii) spectral counting 

[127, 130, 191]. In the first approach, after LC-MS/MS analysis, the mass spectrometric area of a 

peptide ion detected within a specific interval of time is normalized, integrated and compared with the 

ion abundance obtained for the same peptide in different experiments. The second approach, spectral 

counting, is based on the premise that more abundant proteins and peptides produce more MS/MS 

spectra than the low abundance counterparts. In this case, the relative quantitation is based on the 

spectral counts obtained for a specific peptide in different experiments [191].  

 

Although these may seem simple and easy-to-perform approaches for protein quantitation, these 

methodologies are less accurate than the SIL techniques due to important issues: (i) the accuracy of the 

methodology, and the potential to quantify low abundance proteins, is reduced by ion suppression 

effects between different samples; (ii) each sample has to be individually analyzed, introducing 

variability in the quantitation measurement; (iii) all the data need to be normalized to obtain accurate 

measures between different experiments, which is generally a challenging task; and (iv) the spectral 

counting approaches assume that every protein has the same response in an mass spectrometer 

analyzer and do not account for differences in ionization efficiency [127, 141, 191]. 

 

I.2.2.7. Absolute quantitation of proteins 

 

Conversely to the previous methodologies that provide relative quantitation data between two or more 

samples, in this approach the objective is to obtain information on the precise amount of a protein, or 
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proteins, in a sample. There are two ways of performing absolute quantitation: (i) the samples are 

spiked with a known amount of a stable isotope labeled synthetic peptide and, after MS analysis, the 

spectral intensities of the endogenous peptides are plotted in a calibration curve with known amounts 

of the standard peptide; or (i) by selected reaction monitoring (SRM), in which the intensities of the 

precursor/fragment ion pairs of the heavy-labeled standard and the target peptides are monitored, and 

compared against each other [127, 192].  

 

In 2003, Gygi et al. proposed a new methodology for absolute quantitation of proteins, which they 

named AQUA [193]. In the AQUA workflow a synthetic heavy-labeled peptide, with a similar 

structure to a peptide produced during the proteolysis of a specific protein, is added to a complex 

sample before the enzymatic digestion. Then, the samples are separated by liquid chromatography and 

analyzed by SRM in a mass spectrometer. Absolute protein quantitation is obtained after comparing 

the abundance of the native peptide with the abundance of the AQUA internal standard, [193, 194]. In 

the AQUA approach, the selection of the peptide standard is crucial, because the chemical properties 

and ionization efficiencies of the standard and native peptides must be as similar as possible, to reduce 

the variability of the experiment. One of the most important drawbacks of this approach is related with 

sample losses that occur before mixing the sample with the internal standard, leading to inaccurate 

quantitation results. Another practical issue is how to determine the correct amount of synthetic 

peptides that must be added, knowing that the protein abundance has a great variation within a sample 

[141]. 
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Table I.2: Overview of the most important SIL methodologies for relative or absolute protein 

quantitation by mass spectrometry. 

 Metabolic labeling Chemical Labeling 
Enzymatic 

Labeling 

Spiking with 

labeled 

standards 

 15
N-labeling SILAC ICAT iTRAQ 

18
O-labeling AQUA 

Quantitation 

nature 
Relative Relative Relative Relative Relative Absolute 

Sample type 

Mammalian and 

microorganisms 

cell culture 

Mammalian and 

microorganisms 

cell culture 

Any sample Any sample Any sample Any sample 

Labeling target 
Proteins (all 

nitrogen atoms) 

Proteins 

(selected amino 

acids) 

Proteins 

(cysteine 

residues) 

Peptides 

(N-terminus; 

lysine side 

chain) 

Peptide 

(C-terminus) 
Standard peptide 

Time of labeling 
During cell 

growth 

During cell 

growth 

Before protein 

digestion 

After protein 

digestion 

During protein 

digestion 

Before MS 

analysis 

Quantitation 

stage 
MS MS MS MS/MS MS MS 

Sample number 2 2 - 5 2 2 – 8 2 ≥ 2 

Advantages 

 

Earliest 

incorporation of 

the labeling tag 

 

 

Earliest 

incorporation of 

the labeling tag 

 

Uniform 

labeling 

 

Reproducibility 

 

Applicable to all 

types of sample 

 

Complex 

samples are 

simplified 

 

 

Applicable to all 

types of samples 

 

Large number of 

peptides 

identified per 

sample 

 

Up to 8 samples 

can be analyzed 

at the same time 

 

Applicable to all 

types of sample 

 

Labeling of all 

peptides 

 

Reduced cost 

 

Easy to 

implement 

 

Applicable to all 

types of sample 

 

Absolute 

quantitation 

Disadvantages 

 

Not applicable 

to human 

samples 

 

Variable 

labeling 

depending on 

the peptide 

sequence 

 

Only suited for 

samples 

compatible with 

isotopically 

enriched culture 

media 

 

Not applicable 

to tissue samples 

 

Expensive 

reagents 

 

Not applicable 

to human 

samples 

 

Only suited for 

samples 

compatible with 

isotopically 

enriched culture 

media 

 

Not applicable 

to tissue samples 

 

Proline to 

arginine 

rearrangements 

 

Expensive 

reagents 

 

Limited to the 

analysis of 

proteins with 

cysteines 

 

Loss of 

information on 

peptides with no 

cysteine residues 

 

 

Only fragmented 

peptides can be 

quantified 

 

Expensive 

reagents 

 

Variable 

labeling degree 

 

Time-consuming 

incubation time 

 

Lack of software 

for data analysis 

 

One labeled 

synthetic peptide 

of known 

concentration is 

needed for each 

quantified 

peptide 

 

Quantitation 

based only on 

one or two 

peptides per 

protein 

 

Expensive 

reagents 
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I.3. Mass Spectrometry 

 

Mass spectrometry (MS) foundations lead us to the beginning of the XX century when Sir Joseph J. 

Thomson, who was awarded the Nobel Prize in Physics in 1906 for the discovery of the electron, 

developed an instrument to measure the masses of charged atoms [195]. The development and 

improvement of new MS instruments during the following decades allowed the discovery of new 

isotopes and the determination of their relative abundances, which proved to be of extreme importance 

for the identification and isolation of 
235

U isotopes during the Manhattan Project, in World War II. 

Since then, mass spectrometers became commercially available, helping the outspread of MS as an 

important analytical tool [195, 196]. 

 

The success of MS is related with different features: it is one the most versatile analytical techniques, 

being applicable to all elements and to a wide range of samples and materials; the sensitivity of some 

MS technologies allows the detection of samples in the zeptomole (10
-21

) range; and, with the 

information provided, the structure of most classes of compounds can be determined [197]. In the next 

sections the fundamentals of MS, the soft ionization techniques that boosted proteomics and the most 

important protein identification methods by MS are described. 

 

I.3.1. Basic principles 

 

Mass spectrometry analysis deals with ionized molecules because ions are easier to manipulate than 

neutral molecules. Hence, the first step of a MS experiment consists in the production of gas phase 

ions from the sample. Then, the ionized molecules are separated by their mass-to-charge ratio (m/z) in 

a mass analyzer, and finally, the different ions are measured and the signal generated is amplified and 

recorded as a mass spectrum, where the relative ion intensity (ordinate) is plotted against the m/z value 

(abscissa) [197, 198]. The unit of mass used is the unified atomic mass (u), defined as 1/12 of the mass 

of one 
12

C atom, normally represented by the term Dalton (Da) [199].  

 

The analysis of the charged atoms or molecules is performed with a mass spectrometer, in different 

but sequential parts, as depicted in Figure I.10. First, the sample inlet introduces the sample into the 

ion source. Depending on the type of sample and ionization method, the sample can be introduced 

directly into the ionization chamber, as in MALDI-TOF, or via a chromatographic interface, like the 

LC-MS [197, 199]. Once inside the ion source the sample is ionized, generally by electron ejection or 

electron capture, protonation or deprotonation, or by adduct formation [200]. The first ionization 

methods, electron ionization (EI) and chemical ionization (CI), were developed mainly for the analysis 

of organic compounds. These very energetic techniques cause broad molecular fragmentation, and are 

only suitable for the ionization of volatile and thermostable samples [201]. The development of new 
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technologies, like electrospray and atmospheric pressure ionization, which are used to analyze liquid 

samples, or plasma desorption and matrix-assisted laser desorption/ionization that are mostly used to 

ionize solid samples into the gas phase, permitted the analysis of proteins, peptides and polymers. 

Nowadays, several methods for sample ionization are easily accessible and their use depends on both 

the type of sample, and the mass spectrometer available [202]. An extensive description of these 

methods can be found in the books of Hoffman and Stroobant [200], J. Gross [198], and references 

cited therein. The most important ionization methods used in proteomics are electrospray ionization 

(ESI) and matrix-assisted laser desorption/ionization (MALDI), which are described in sections I.3.2.1 

and I.3.2.2, respectively. 

 

 

Figure I.10: Basic diagram of a mass spectrometer. (adapted from Gross, J. H. [198]) 

 

After sample ionization, the ions are directed into the mass analyzer, where they are separated 

according to their m/z ratio using appropriate electric fields, magnetic fields, or both [203]. The 

principle of separation varies with the type of mass analyzer and the ions can be distinguished by the 

differences on their momentum, velocity and kinetic energy [197, 203]. Several mass analyzers are 

currently available, each one with different features, advantages and limitations. The better known are 

the quadrupoles (Q) and magnetic sectors (B), time-of-flight (TOF), ion cyclotron resonance (ICR), 

ion traps (IT) and more recently the orbitrap (OT) [197, 198, 200]. The choice of the mass analyzer 

depends not only on the objective of the work, but also on their intrinsic characteristics, such as: (i) 

mass range, i.e. the maximum m/z value detected; (ii) resolution, which is the ability to distinguish 

between ions with a small m/z difference; (iii) mass accuracy, which represents the difference between 

the measured m/z and the theoretical m/z value, usually expressed in parts per million (ppm); (iv) ion 

transmission, i.e. the ratio between the number of ions that reach the detector and the number of ions 

entering the analyzer; and (v) scanning speed, which is the time needed by the mass analyzer to scan a 

particular mass range and produce a mass spectrum [200, 203]. An overview of the most important 

features and differences between the referred mass analyzers is given in Table I.3. 

 

Another important aspect in the choice of the mass analyzer is the ability to perform tandem mass 

spectrometry (MS/MS). In MS/MS the precursor ion is selected and fragmented into characteristic 

secondary ions, known as product ions, which can be used for structural or sequencing studies [204, 

205]. There are different ways to obtain ion fragmentation: (i) metastable or spontaneous 

fragmentation; (ii) collision induced dissociation (CID), which occurs when the parent ion collides 
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with neutral gas molecules; (iii) electron-capture dissociation (ECD), which involves the capture of a 

low energy electron by a protonated ion and subsequent fragmentation; and (iv) electron-transfer 

dissociation (ETD), in which free radical anions are used to fragment molecular ions, by electron 

transference between multiple charged species [206-208]. MS/MS experiments can be performed by 

(i) coupling two or more mass analyzers of the same type, as the triple quadrupole (QqQ) or TOF/TOF 

systems; (ii) by coupling different mass analyzers creating hybrid systems, such as the quadrupole-

time-of-flight (Qq-TOF); or (iii) by doing the appropriate temporal sequence of events in the same 

device, normally ion-traps (IT), as the quadrupole ion-trap (QIT) or linear ion-trap (LIT) [197, 209]. 

 

Table I.3: Overview of the main characteristics of different mass analyzers available. (adapted from 

Gross, J. H. [198] and Hoffmann et al. [200]) 

a 
Varies with reflectron and linear modes (see section I.3.2.2. for details) 

 

The last part of the mass spectrometer is the detector that records and amplifies the ion current of the 

mass resolved ions. The type of detector used depends on the design of the mass analyzer, but 

generally they can be divided in two groups: (i) focal-point detectors, which only count ions of a 

single mass at a time; and (ii) focal-plane array detectors, that monitor all ions all the time, resulting in 

improved detection and sensitivity [210, 211]. Among the several types of detectors developed over 

the years, the Faraday cup detector is the simplest, consisting only in a metal box with a collector 

electrode at the bottom to measure the ion current [210, 212]. Currently, the most common ion 

detector in MS is the electron multiplier (EM), also known as secondary-electron multiplier detector 

(SEM), which relies on the emission of secondary electrons produced when the accelerated ion beam 

strikes the conversion dynode. This event generates an electron cascade that hits other dynodes to 

produce even more electrons, resulting in a gain of at least 10
6
 electrons for each ion [197]. There are 

also other examples of detectors, such as photographic plates, photomultipliers and multichannel plate 

 TOF Q B IT ICR OT 

Mass Range 

(Da) 
Unlimited 4000 20 000 6000 > 10 000 6000 

Resolution 15 000
a
 2000 100 000 4000 500 000 100 000 

Accuracy 

(PPM) 
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a
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Range 
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detectors, which are described in detail in dedicated bibliography [197, 210]. Ideally, a MS detector 

should have the following characteristics: (i) wide mass-range and mass independent response; (ii) low 

noise level; (iii) simultaneous detection; (iv) short recovery time and fast response; and also (v) high 

saturation level and a wide dynamic range [210].  

 

Finally, the ion source, the analyzer and the detector, operate under high vacuum conditions during 

mass analysis. The vacuum system allows ions to move through different parts of the mass 

spectrometer without colliding with air molecules. Normally, the pressure at the ion source is 

maintained between 10
-4

 and 10
-8

 torr, although atmospheric pressure can also be used. At the mass 

analyzer the pressure is usually lower than 10
-8 

torr [197, 198]. 

 

I.3.2. Soft ionization technologies 

 

Mass spectrometry is currently an indispensable and fundamental tool in the proteomics field for the 

rapid and accurate analysis of proteins, with high sensitivity and reproducibility [213-215]. The 

development of soft ionization techniques allowed the ionization of large, polar, nonvolatile and 

thermally unstable biomolecules without affecting their integrity, and deeply contributed for the 

growth of MS as an essential tool for large scale proteomics studies [216-218]. ESI and MALDI, both 

introduced in late 1980s, are presently the most used soft ionization techniques for the analysis of 

proteins and peptides, but they have also been used in many other applications, as carbohydrate and 

lipid analysis, and pharmacokinetic screening and drug discovery studies [219]. The main differences 

between the two techniques are described in Table I.4. 

 

I.3.2.1. Electrospray ionization (ESI) 

 

ESI appeared in 1968 when Dole et al. [220] applied electrospray to ionize a dilute solution of 

polystyrene into nitrogen at atmospheric pressure [221]. In 1984, the Fenn’s group improved the 

technique and developed the first ESI-MS apparatus, which they used to analyze small molecular mass 

ions [222, 223]. Finally, in 1988, the first papers reporting the use of electrospray to produce multiple 

charged protein ions followed by MS analysis were published by Fenn and coworkers [224, 225]. 

Over the years, ESI increased in popularity and became an essential tool in most proteomics 

laboratories. The importance of Fenn’s achievements was further recognized by the Nobel Academy, 

who awarded him the Nobel Prize in Chemistry in 2002 [195]. 

 

The ionization mechanism in ESI is complex. Briefly, the samples are dissolved in polar and volatile 

solvents (H2O, CH3OH, or CH3CN) and passed through a narrow stainless steel capillary at a reduced 

flow rate (1-10 µL/min). High electrical potential, generally between 3 - 6 kV, is applied at the tip of 

the capillary and the solution is nebulized into small charged droplets. This process is normally 
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assisted by a nebulizing gas, such as nitrogen, or by heating the capillary [226]. Depending on the 

polarity of electrical field, positive or negative charged droplets can be produced [227-229]. Once the 

sample is nebulized the droplets migrate to the counter-electrode. During this process, the solvent 

evaporates, the droplet size diminishes and the charge density at the surface increases. Eventually, the 

Coulomb repulsion between the charges overcomes the surface tension of the liquid and the droplets 

disintegrate into solvent-free multi-charged sample ions, which enter the MS analyzer [219, 228-231]. 

 

To obtain a successful electrospray ionization of the analytes, several variables need to be optimized. 

One of them is the solvent composition: ESI is not possible with pure organic solvents and, therefore, 

mixtures of organics (CH3OH or CH3CN) with acid or basic buffers are used. Positive ionization is 

enhanced when the solvent contains a trace of formic or trifluoroacetic acid, and negative ionization is 

improved by the presence of ammonium salts [229]. The presence of salts and detergents, which are 

frequently used in sample preparation procedures, has a suppressing effect on sample ionization and 

their use for ESI is not recommended [197, 229]. Another important ion suppressing agent is the 

presence of nonvolatile contaminants not removed during the sample treatment. These contaminants 

generally affect the reproducibility of the analysis [229]. Moreover, the sample concentration, the flow 

rate and the electrical potential at the capillary are also important variables that need to be considered 

as well [219]. 

 

Table I.4: Common soft ionization techniques used in proteomics: ESI & MALDI.  

ESI MALDI 

 Solution phase samples. 

 Continuous ionization. 

 Strongly influenced by contaminants. 

 

 Can be used for the analysis of complex protein 

samples, such as whole cell proteome. 

 

 Easy coupling with chromatographic interfaces for 

online workflow. 

 High reproducibility of quantitation measurements.  

 

 Production of multiple charged ions, ideal for 

analysis in mass spectrometers with limited m/z range. 

 Multiple charged ions generate spectra of difficult 

interpretation. 

 Scanning mass analyzers like quadrupoles and ion-

traps are preferred. 

 High cost of consumable reagents and gas. 

 Mostly solid phase samples. 

 Pulsed ionization. 

 Robust and reasonably tolerant to buffers and other 

additives. 

 Used for the analysis of low complex samples, such 

as isolated proteins or peptides from the digestion of 

single proteins. 

 Can be coupled with LC interfaces (LC-MALDI) 

 

 Spectra reproducibility influenced by the 

heterogeneity of matrix-sample crystallization 

 Production of mostly single charged ions, ideal for 

protein identification by PMF. 

 Spectra of easy interpretation. 

 

 TOF analyzers are normally used. 

 

 Low cost of consumable reagents. 
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One of the most important achievements for ESI was the development of miniaturized ionization 

sources, such as micro-ESI [232] and nano-ESI [233, 234], which allow a significant reduction of the 

flow rate to the nL/min level. The introduction of these technologies permitted the analysis of low 

concentrated samples with increased sensitivity, and the reduction in the wasted sample volume [218, 

219]. Another feature that contributed to the popularity of ESI is the possibility of coupling  ionization 

with liquid chromatography and capillary electrophoresis separation techniques, for online 

applications [235].  

 

I.3.2.2. Matrix-assisted laser desorption ionization (MALDI) 

 

In 1985, Karas et al. published the first paper regarding the use of an organic matrix to enhance the 

ionization of amino acids by laser desorption. This method, which they named “Matrix-Assisted Laser 

Desorption”, was MALDI’s official debut [236]. The first application of laser desorption ionization for 

protein analysis by MS was made by Tanaka et al., in 1988 [237]. In Tanaka’s methodology, proteins 

are first dissolved in a suspension of ultra fine metal powder and glycerol and then ionized after laser 

irradiation. At the same time, Karas and Hillenkamp reported a method for protein analysis by laser 

desorption ionization, in which a UV-light absorbing organic matrix was mixed in large excess with 

the analytes [238]. For his achievements, Tanaka received the 2002 Nobel Prize in Chemistry, 

alongside with John Fenn who developed ESI-MS. However, due to its ease of use and higher 

sensitivity, it was the MALDI  technology developed by Karas and Hillenkamp that prevailed in the 

MS community [195]. The most important characteristics that drove MALDI into a leading technique 

for protein analysis by MS are: (i) capability to analyze biological samples without extensive 

purification, since MALDI is relatively tolerant to buffers, salts, chelating agents, chaotropic agents 

and some detergents; (ii) accurate mass measurements with high sensitivity, usually in the pmol range; 

(iii) most classes of proteins can be analyzed, on the condition that they can be dissolved in suitable 

solvents; (iv) fast analysis speed; (v) ability to measure biomolecules with molecular masses over 100 

kDa; (vi) production of primarily single charged ions, which simplifies spectra interpretation; and (vii) 

capability to perform molecular imaging in tissue samples [217, 239]. 

 

Unlike ESI, MALDI is a discontinuous ionization technique in which ions are produced by laser 

pulses. In brief, the sample is mixed with an excess of a matrix compound and applied onto a MALDI 

probe where co-crystallization of matrix and analyte molecules occurs. Then, the probe is introduced 

into the ionization chamber and the sample is irradiated with a laser beam, usually from a nitrogen 

laser with a wavelength of 337 nm. When the laser irradiates the sample, the energy is absorbed by the 

matrix as heat. The rapid heating of matrix molecules results in the sublimation of the crystals and 

expansion of both matrix and intact analyte molecules into the gas phase [240-242]. The ionization 

process in MALDI is not fully understood, but different ionization mechanisms have been proposed 

[243-247]. Two of the most popular models are (i) the photochemical ionization model and (ii) the 
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pseudo proton transfer model [217, 248]. The first model assumes that photoionized matrix molecules 

transfer charge to the neutral analyte molecules during collision events in the plume formed after 

desorption, while the latter model assumes that analyte molecules become charged during 

crystallization. Sample ionization in MALDI is also influenced by different parameters, such as: laser 

wavelength, pulse duration, crystallization conditions and type of matrix [243, 245]. Actually, due to 

these parameters, most of the spectra generated by MALDI have variable noise level, variable peak 

intensity, variable baseline, and suffer from shot-to-shot and sample-to-sample reproducibility issues. 

Therefore, multiple spectra from the same sample, but from different regions on the target surface, are 

usually acquired and added, or averaged, to minimize variability and generate a representative 

spectrum of the sample [249].  

 

As explained before, MALDI matrices have a crucial influence on the ionization process. Overall, a 

number of properties need to be fulfilled for a compound to be considered an acceptable matrix: (i) 

ability to form crystals incorporating the analyte; (ii) high molar absorptivity at the laser’s wavelength; 

(iii) the matrix should promote the analyte ionization without chemically modifying it; (iv) solubility 

in the same solvent as the sample; (v) the matrix should be volatile enough to vaporize when shot by 

the laser, but sufficiently stable to remain unaltered in the vacuum system of the mass spectrometer; 

and (vi) should minimize fragmentation and adduct formation with analyte molecules [250-252]. 

Currently, several matrix compounds are available to be used with different types of samples, such as 

proteins, peptides, carbohydrates, synthetic polymers or nucleic acids (Table I.5) [248, 252, 253]. 

Traditionally, the most popular matrices in proteomics applications are small organic acids, like α-

cyano-4-hydroxycinnamic acid (α-CHCA) for peptide analysis, and sinapinic acid (SA) or 2,5-

dihydroxybenzoic acid (DHB) for protein analysis [216, 241, 253]. The main difference between these 

matrices is related with the amount of energy transferred to the analytes during desorption and 

ionization processes. Hence, the matrix can be classified either as “hot” or “cold”, depending on the 

propensity to induce higher or lower fragmentation in the analyte molecules. For instance, α-CHCA is 

“hotter” than SA or DHB and therefore is used in most peptide MS/MS analysis, where fragmentation 

is required. On the other hand, the “colder” DHB and SA matrices are used when large molecules, 

such as intact proteins, are analyzed [243, 245, 254].  

 

Besides the type of matrix used, which must be compatible with the analyte, also the sample and 

matrix preparation procedures influence the ionization by MALDI [255]. Chait et al. reported that 

peptide ionization with α-CHCA is highly dependent on matrix solution conditions, such as the pH 

and the solvent system, and on the rate of matrix and sample co-crystallization [256]. When the 

crystallization process is fast, smaller crystals are formed and the incorporation of the analytes into the 

crystalline lattice is more homogeneous than that obtained with a slower process [249]. Sample purity 

is also a very important variable to be considered, because the presence of salts, buffers and 

detergents, which are very useful in sample preparation procedures, compromise the ionization 
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efficiency in MALDI. Hence, desalting procedures must be used before the analysis. ZipTip® 

cleaning is one of the most used desalting procedures for MALDI applications. Briefly, the peptide or 

protein solution is passed through a C18 resin packed in a pipette tip; peptides and proteins are 

adsorbed, washed, and finally eluted with a suitable solvent system for MALDI [257].  

 

Table I.5: Example of common matrix compounds used for MALDI-MS analysis. 

Matrix Major applications 

2,5-Dihydroxybenzoic acid (DHB) Proteins, peptides, polymers and carbohydrates. 

3,5-Dimethoxy-4-hydroxycinnamic acid 

(Sinapinic acid, SA) 
Proteins, peptides. 

α-Cyano-4-hydroxycinnamic acid 

(4-HCCA or CHCA) 
Peptides. 

2-(4’-Hydroxy-phenylazo)benzoic acid 

(HABA) 
Polymers, carbohydrates. 

Nicotinic acid Proteins, peptides. 

3-Hydroxypicolinic acid (HPA) Oligonucleotides 

1,8,9-Trihydroxyantracene (Dithranol) Synthetic polymers 

 

Some of the most important parameters and variables of the MALDI technique have been addressed 

over the last paragraphs. However, to analyze the ions produced, a suitable mass analyzer must be 

coupled to the MALDI source. The time-of-flight (TOF) mass spectrometer is by far the most common 

type of analyzer used to measure ions in MALDI [248]. This is one of the simplest mass analyzers, 

characterized by its excellent mass accuracy, high resolution and high sensitivity. Moreover, TOF 

systems analyze all the ionic species produced and have a theoretical unlimited mass range, which is 

particularly suited and compatible with the MALDI pulsed ionization process, and with the analysis of 

large single charged ions [248, 251]. In a MALDI-TOF-MS system, the ions produced by the laser 

beam are accelerated by an electrical potential (ca. 20 kV) into a field-free drift tube, where they travel 

until the detector, at the end of the flight tube. The m/z ratio is determined by measuring the time 

needed for ions to move from the source to the detector [258, 259]. Generally, smaller ions are faster 

than larger ions and need less time to travel the entire fight tube length. Yet, some variables can 

compromise the mass resolution obtained: (i) the surface from which the molecules are desorbed may 

have an irregular shape, making ions with the same mass to depart for the TOF from different 

positions; and (ii) the difference in the kinetic energy of ions with the same mass affects their initial 

velocity and, consequently, the time at which they are detected [260]. With the introduction of delayed 

extraction and the reflectron TOF mode, these problems were overcome and the analysis resolution 

was improved. The delayed extraction mode [261-263] consists in introducing a time delay 

(nanoseconds range) between ionization and extraction to the TOF analyzer. By allowing the ions to 

“cool down” before acceleration into the analyzer, this process reduces the differences in the kinetic 
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energy of ions with the same mass, and the temporal spread in the analyzer is reduced. In the 

reflectron mode [258] the amount of time a ion needs to reach the detector is increased, not by 

increasing the physical length of the flight tube, but by reflecting the ions to another detector (Figure 

I.11). As a result, ions with higher velocity, i.e. high kinetic energy, penetrate the reflectron deeper 

and travel a longer path than less energetic ions of the same mass. This leads to ion focusing and 

higher resolution, but sometimes with expense of sensitivity due to ion loss [241, 242].  

 

 

Figure I.11: Schematic representation of linear and reflectron time-of-flight mass analyzers. a) Linear 

TOF: ions are separated in a field-free drift tube according to their m/z value; heavier ions move 

slower than lighter ions and arrive later at the detector. b) Refletron TOF: the ions are reflected to 

another detector by an electrical potential applied at the end of the flight tube. The resolution is 

improved by increasing the flight distance available for ion separation. Furthermore, faster ions 

penetrate deeper in the reflectron field than slower ions of the same m/z, which result in ion focusing 

and higher resolution. (adapted from Lane, C. S. [260])   

 

I.3.3. Protein identification by mass spectrometry 

 

Since the introduction of soft ionization technologies, mass spectrometry has become the primary 

method for protein identification. Actually, most of the MS approaches for protein identification rely 

on the analysis of peptides from protein enzymatic digestion, rather than intact protein mass 

measurements, because peptides are easier to handle and the sensitivity of the mass spectrometer is 
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higher for peptides than for proteins [88, 264] (see section I.1.4. for further details). In general, protein 

identification is achieved by one of the following strategies, or by the combination of both: (i) peptide 

mass fingerprinting (PMF); or (ii) peptide fragmentation by MS/MS [265, 266]. Even though, protein 

identification would not be possible without the development of protein databases, algorithms and 

other bioinformatic tools for comprehensive MS data analysis [267-269]. Some of the most popular 

computational resources used in proteomics are listed in Table I.6. 

 

Table I.6: Websites with popular search engines and databases used for protein identification by mass 

spectrometry. 

 Name Website 

S
ea

rc
h

 E
n

g
in

e
s 

Mascot
1
 http://www.matrixscience.com/ 

ProteinProspector
1
 http://prospector.ucsf.edu/ 

SEQUEST
2
 http://fields.scripps.edu/sequest/ 

ProFound
3
 http://prowl.rockefeller.edu/ 

ExPASy Proteomics tools
3
 http://expasy.org/tools/ 

D
a

ta
b

a
se

s Swiss-Prot
3
 http://www.expasy.org/sprot/ 

NCBInr
3
 http://www.ncbi.nlm.nih.gov/protein 

GenPept
3
 http://bioweb.pasteur.fr/databases/local/banquesdetail.html#genpept 

1 
Semi-public (free web access but with limited functionality);

 2 
Commercial (distributed by Thermo 

Finningan); 
3 
Public access. 

 

I.3.3.1. Peptide mass fingerprinting (PMF) for protein identification 

 

Protein identification by peptide mass fingerprint was first reported in 1993 by a number of different 

groups [270-274]. This is perhaps the fastest and simplest method for protein identification. In a 

typical PMF experiment, proteins are first separated by 1D- or 2D-electrophoresis and digested with a 

specific protease to produce a unique pool of peptides for each protein. Generally, trypsin is the 

selected enzyme because it is stable, highly active and very specific, cleaving proteins at the carboxyl-

terminal side of lysine and arginine amino acids [264]. Furthermore, due to the presence of arginine 

and lysine basic residues at the C-terminus, the peptides are easily protonated and ionized [266]. Then, 

the pool of peptides produced is analyzed by MS, usually by MALDI-TOF-MS, and a unique peptide 

mass fingerprint is obtained for each protein [275]. The MALDI-TOF mass spectra are recorded above 

500 Da to avoid interference and ion suppression caused by matrix peaks, and below 4000 Da, which 

is commonly the upper limit of the molecular mass for tryptic peptides [254]. However, it is rare to 

find mass peaks corresponding to every peptide in a mass spectrum because MALDI is a competitive 

process in which the ionization efficiency is peptide dependant, and strongly influenced by the 
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presence of other analytes or contaminants [248, 276]. It was also reported that peptides with arginine 

at the C-terminus are preferentially ionized in MALDI than lysine C-terminal peptides, and therefore 

possess a higher intensity in the mass spectrum [277].  

 

Finally, using search algorithms like the ones listed in Table I.6, the PMF is matched against databases 

that contain theoretical masses calculated by in silico digestion of the protein in the same conditions as 

the proteolytic method used in the experiment. The results obtained are ranked according to the 

number of peptides matching the protein sequence, and rely on several variables: (i) the mass accuracy 

and resolution of the instrument; (ii) the size of the database used; (iii) the presence of isobaric 

peptides from enzymatic digestion of unseparated proteins, which may produce false positive results; 

(iv) the presence of protein modifications, which change the molecular mass of the peptide; (v) the 

presence and of non-cleaved sites (missed cleavages) in the peptide sequence; and (vi) the presence of 

contaminant masses from human keratin peptides, trypsin autolysis peptides, matrix adduct peaks and 

other non-assigned masses [216, 235, 265]. A protein is considered to be identified with confidence by 

PMF if 10 – 20 % of the sequence is covered, and the identification score is higher than a statistically 

pre-defined value [254, 266]. Obviously, PMF is only successful if the analyzed protein already exists 

in the databases. In addition, this methodology is not suited for the analysis of complex protein 

samples without previous separation, because it would not be possible to determine which peptide 

belongs to each protein [235].  

 

I.3.3.2. Protein identification by tandem mass spectrometry 

 

Protein identification by MS/MS relies on the fragmentation of peptide ions in the gas phase, to 

produce structural information about the peptide sequences. Since this information is more specific 

and restrict than the peptide mass alone, it can be used to improve the confidence level of the PMF 

results, or when PMF identification was not successful at all [254]. Peptide fragmentation can be 

performed by post source decay (PSD) in a simple MALDI-TOF system, or by dissociation methods, 

usually CID, in IT, Qq-TOF, QqQ or TOF/TOF mass spectrometers [265, 278] (see section I.3.1. for 

details). In PSD analysis, peptide fragmentation occurs after the ionization process by high energy 

collision between peptide ions and matrix ions, usually from “hot” matrices. Next, the fragments 

produced are separated and analyzed in a reflectron TOF mass spectrometer [279-282]. Though, high 

energetic collisions generate a mixture of ions from the peptide backbone and side chain 

fragmentation, producing complex spectra of difficult interpretation. In addition, PSD is a time-

consuming method, difficult to control, and less efficient and less reproducible than other MS/MS 

strategies [265, 283]. Therefore, most MS/MS data is obtained by low energy CID. In this case, 

peptide fragmentation occurs primarily at the amide bond between amino acids, and two types of ions 

are produced: the b ions, when the charge is retained by N-terminal peptide fragment; and y ions, 

when the charge is retained by the C-terminal fragment [205, 264, 278].  



Chapter I 

45 

 

The information obtained by MS/MS can be used for protein identification by different approaches: (i) 

database searching, also known as peptide fragment fingerprinting, where experimental data is 

compared and correlated with theoretically peptide sequences derived from proteins present in 

databases; (ii) de novo sequencing, in which the amino acid sequence is directly derived from the 

fragment mass spectra; and (iii) peptide sequence tagging, where a partially interpreted short sequence 

from the mass spectra is used for database searching [267, 278, 284, 285]. Of course, there are also 

some variables that influence the results obtained and need to be considered [88, 264]. First, data 

quality is strongly influenced by the mass spectrometer characteristics, such as resolution, accuracy 

and sensitivity. Second, the peptide bonds do not have the same tendency to fragment under specific 

CID conditions. And finally, the results obtained are also highly dependent on the database and search 

algorithms used. Consequently, some journals are adopting a number of restrict conditions not only for 

publication of PMF data, but also for MS/MS data [286]. 
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I.4. Ultrasound 

 

“Ultrasound is defined as sound of a frequency that is too high for the human ear to detect – i.e. it is 

inaudible” [287].  

 

The properties of ultrasound have been used in many different fields with different objectives. 

Applications of ultrasonic energy can be found in (i) medicine (e.g. ultrasonic imaging, dentistry); (ii) 

industry (e.g. cleaning and emulsification processes); (iii) engineering (e.g. plastic and metal welding, 

drilling); (iv) military (e.g. the sound navigation and ranging system, SONAR); (v) biology (e.g. cell 

disruption, homogenization procedures); and (iv) in chemistry (e.g. organic synthesis, analytical 

chemistry) [288, 289]. Usually, the application of ultrasound in chemistry is known as sonochemistry. 

Sonochemistry provides a number of benefits over traditional approaches: the increase of reaction 

rates; reduction of sample treatment time in some methodologies; and initiation of reactions without 

the need of additives [288]. Regarding analytical chemistry, many different processes assisted by 

ultrasonic energy have been reported over the years. Cleaning, degassing, atomization, digestion, 

acceleration of enzymatic reactions, homogenization, nebulization, extraction of organic and inorganic 

compounds, filtration and aggregation of particles are only some examples thoroughly described in the 

works of  Priego-Capote and Luque de Castro [289-292] and Capelo et al. [293, 294].  

 

In the following sections, the basic concepts of ultrasonic irradiation and the most used ultrasonic 

devices in analytical chemistry are briefly described. In addition, since the main objective of the 

present dissertation relies on the application of ultrasonic energy for the enhancement of protein 

enzymatic digestion, and other steps in sample treatment procedures for proteomics workflow, the 

combination of ultrasound and enzymatic digestion is emphasized.  

 

I.4.1. Fundamentals 

 

By definition, the frequency of ultrasound is higher than the detectable frequencies by the human 

hearing. While the human audible range lies between 20 Hz to 20 kHz, ultrasound covers a wider 

range of frequencies, from 20 kHz to the GHz range (Figure I.12) [288]. This large interval of 

frequencies is normally divided in two regions: (i) low-frequency region, from 20 to 100 kHz, which 

provides high-power ultrasound that is normally used in sonochemistry applications, such as synthesis 

and catalysis; and (ii) the high-frequency region, from 2 MHz to GHz range, which provides low-

power ultrasound and is typically used for diagnostic purposes, like medical imaging [288].  

 

Ultrasonic energy propagates through gas, solid, or liquid media by a series of compression and 

expansion waves, producing molecular vibration motion that is transmitted between adjacent 
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molecules. In liquid media, the compression cycle generates positive pressure, pushing molecules 

together, while the expansion cycle produces a negative pressure that pulls molecules apart. The 

repetition of these cycles generates tiny bubbles, known as cavitation bubbles, filled with solvent and 

vapor, which repeatedly grow and compress (Figure I.13a). Eventually, these bubbles will reach an 

unstable size, where they cannot absorb more ultrasonic energy, and compressive implosion will occur 

by a phenomenon known as cavitation [288, 295, 296]. According to the Hot-Spot theory [297, 298], 

the violent and rapid collapse of the cavitation bubble creates a localized hot-spot with extreme 

pressures and temperatures, around 1000 atm and 5000ºC, respectively. However, due to the small size 

of the cavitation bubble, compared to the volume of the liquid media, the generated heat rapidly 

dissipates. It is estimated that the heating and cooling rates are as high as 10
10

 K/s [299-302]. These 

extreme conditions transform cavitation bubbles into high energy micro-reactors, which can be used to 

improve catalytic reactions, increase reactivity, and change the surface morphology in solids [296, 

300]. For example, when the cavitation occurs near to a solid surface, the cavity bubble assumes a 

non-spherical shape and, because the implosion occurs asymmetrically, micro-jets of liquid are formed 

and directed towards the solid at velocities close to 400 km/h (Figure I.13b), causing mechanical 

erosion and disruption of the solid surface [295, 303]. Moreover, the ultrasonication of liquid media 

increases the mass transfer processes in heterogeneous systems, and produces highly reactive radical 

species, which can be used to enhance chemical reactions. For instance, the extreme conditions 

produced during cavitation when ultrasound is applied to water generate highly reactive species, as 

hydroxyl radicals,  hydrogen atoms and hydrogen peroxide, which can react with other compounds 

present in the system [299, 300].  

 

 

Figure I.12: Sound frequency ranges. (from Mason et al. [288]) 

 

The cavitation phenomenon entails three different stages: (i) nucleation, i.e. formation of the bubble; 

(ii) bubble growth; and (iii) implosion [300, 304]. These stages are conditioned by a number of 

factors, such as: (i) ultrasound frequency; (ii) temperature; (iii) applied pressure; (iv) solvent; (v) 

ultrasound intensity; and the (vi) type of gas present in the media [288, 290, 305]. A brief explanation 

of each one of these factors, and their effect on cavitation is provided below. 
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Figure I.13: Schematic representation of cavitation bubble development and collapse. a) The 

cavitation bubble grows in successive expansion and compression cycles until it reaches an unstable 

size and collapses. (from Castro et al. [290]) b) When cavitation occurs near a solid surface the bubble 

assumes a non-spherical shape and micro-jets of liquid are formed and directed towards the solid with 

velocities of nearly 400 km/h, causing mechanical erosion and disruption of the solid surface. 

 

(i) Ultrasound frequency. The production of cavitation bubbles and the intensity of cavitation effects 

decrease with the increasing frequency of the ultrasonic wave. At higher frequencies, the expansion 

and compression cycles are very short to allow the growth of the cavitation bubble, and the bubble 

collapse with enough energy to cause liquid disruption. Therefore, most sonochemical reactions are 

performed by applying frequencies from 20 to 50 kHz. 

 

(ii) Temperature. The cavitation effects are facilitated by lower temperatures. As the temperature of 

the liquid media increases, the vapor pressure inside the cavitation bubble also increases. Thus, when 

cavitation occurs, the shockwave from the implosion is cushioned and the heat generated is dissipated 

by the presence extra vapor inside the bubble.  

 

(iii) Applied pressure. When the external pressure is increased, the sonochemical effects of the cavity 

bubble implosion are also improved. However, higher ultrasound intensity has to be applied to the 

liquid media to obtain cavitation, because the pressure increment promotes the dissolution of gas 

molecules in the liquid, reducing the number of nucleation sites available for bubble formation. 

 

(iv) Solvent. Solvent viscosity, surface tension and vapor pressure are also important factors. As 

previously explained, the higher the vapor pressure, the lower the cavitation intensity. However, the 

formation of cavitation bubbles is facilitated by high vapor pressures due to the increased number of 

nucleation sites provided by a higher amount of vapor. Regarding viscosity and surface tension, the 
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production of cavitation bubbles is hampered in solvents where the cohesive forces are larger, i.e. high 

viscosity and increased surface tension, because more energy is required to break these forces and 

form the cavitation bubble. Yet, the effects of cavitation are increased in solvents with high-surface 

tension and viscosity. 

 

(v) Ultrasound intensity. The ultrasonication intensity, or acoustic power, is directly proportional to 

the square of the wave amplitude. In general, the increase of ultrasound intensity enhances the 

cavitation effects. However, if the intensity applied to a system is higher than the required to produce 

efficient cavitation, a number of different problems may arise. For example, the transducer material 

that provides ultrasound can break, or loose contact with the liquid due to the formation of large 

cavitation bubbles near the surface of the transducer, reducing the ultrasonication efficiency. This is 

generally referred as ultrasound decoupling phenomenon. 

 

(vi) Gas present in the solvent. The presence of a gas in the liquid media produces a higher number of 

nucleation spots and reduces the cavitation threshold, i.e. the intensity required to obtain effective 

cavitation. The nature and properties of the gas are also important. For example, gases with low 

thermal conductivity properties cannot dissipate the heat formed during the bubble implosion, which 

results in the increase of the cavitation effect. 

 

Finally, the ultrasonication of liquid media can produce two types of cavitation: transient cavitation 

and stable cavitation [288, 290]. The transient cavitation occurs when the ultrasonic intensity applied 

to the system exceeds 10 W/cm
2
. These cavitation bubbles only exist for a short period of time and 

they are responsible for the most violent cavitation phenomena. In general, most of the chemical and 

physical effects produced by ultrasound are related with transient cavitation. Conversely, stable 

cavitation is generated at lower ultrasound intensities. Stable cavitation bubbles are formed during 

many expansion and compression cycles, and they are mostly filled with gas, which softens the 

cavitation implosion and decreases the cavitational effects in the surrounding medium [305]. 

 

I.4.2. Ultrasonic devices 

 

Ultrasonic energy can be provided by different ultrasound devices, such as ultrasonic baths, horns or 

probes. These devices are equipped with powerful transducers that convert either electrical or 

mechanical energy into vibrations, which are transferred to the medium in the form of an ultrasonic 

wave [288]. Three main types of ultrasound transducers are available: (i) gas-driven transducers, 

which are used in whistles and sirens; (ii) liquid-driven transducers that generate ultrasound by the 

motion of liquids into confined chambers; and (iii) electromechanical transducers, which are the main 

type of transducers used in analytical devices, as the ultrasonic bath or the ultrasonic probe [288, 290]. 

Among electromechanical transducers, the magnetostrictive and piezoelectric transducers are the most 
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common to produce ultrasound. In magnetostrictive transducers, short pulses of a magnetic field are 

applied in a metal to induce modifications in its shape. Nickel, for example, reduces size when a 

magnetic field is applied, and returns to the original size when the magnetic field is removed. Thus, 

the metal vibration induced by the magnetic pulse, applied at a given frequency, is transmitted to the 

media as an ultrasonic wave [288]. On the other hand, in piezoelectric transducers different electric 

voltages are used to induce structural changes in crystals (e.g. quartz) and ceramics, producing 

ultrasound [288]. 

 

The most common ultrasonic devices used for analytical applications are ultrasonic baths, ultrasonic 

probes and cup horn reactors [294, 296]. These devices are all based on electromechanical transducers. 

A brief description of each one is provided in the following sections, and an overview of the main 

advantages and disadvantages is given in Table I.7. 

 

Table I.7: Overview of the major characteristics of different ultrasonic devices used throughout this 

work: ultrasonic bath, ultrasonic probe, and sonoreactor. 

 Ultrasonic bath Ultrasonic probe Sonoreactor 

Sample throughput High Low Medium 

Sample handling Low High Low 

Thermostat Yes No No 

Operating frequency 35 kHz – 130 kHz 20 kHz – 30 kHz 20 kHz – 30 kHz 

Intensity Low High Medium 

Cost € €€€ €€€ 

Advantages 

Available in most 

laboratories; 

 

No special adaptation is 

required for the reaction 

vials. 

High ultrasonic power; 

 

 

Ultrasonic amplitude 

control. 

 

Higher ultrasonic power 

than the cleaning bath; 

 

Higher throughput than 

the probe system. 

 

No cross-contamination. 

Disadvantages 

Reduced power; 

 

Ultrasonication effects 

depend on the vial 

position in the bath. 

Sample overheating; 

 

Cross-contamination; 

 

Tip erosion. 

Lower ultrasonic power 

than the probe system; 

 

 

Limited sample volume. 

 

 

I.4.2.1. Ultrasonic bath 

 

Ultrasonic cleaning baths are easily available, relatively inexpensive, and perhaps the most common 

ultrasonic apparatus present in chemical laboratories. The ultrasonic energy provided is generally of 

low intensity, 1 to 5 W/cm
2
, and the operating frequencies are around 40 kHz [293, 294]. 

 
A normal 

ultrasonic bath consists in a stainless steel tank with piezoelectric transducers located at the base. The 
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number and type of transducers are directly related with the intensity of ultrasound provided by the 

equipment [288]. Operating this ultrasonic device is very simple and straightforward, but a number of 

variables must be considered: (i) the size of the bath and the position of reaction vessel inside the tank 

affect the intensity of the ultrasonic energy transmitted to the reaction media, creating reproducibility 

issues; (ii) the temperature inside the tank increase with the ultrasonication time and is difficult to 

control, since most ultrasonication baths do not have thermostats; and (iii) the ultrasound frequency  

varies with the equipment, and must be considered when comparing results obtained from different 

baths [288]. 

 

Many applications of the ultrasonic bath have been reported over the years. Extraction of metal 

elements from biological samples; extraction of organic compounds, such as pesticides, polymers and 

pollutants; and the improvement of methodologies for analytical chemistry, are some examples of the 

wide range of applications of this device [293, 306]. 

 

More recently, the ultrasonic cleaning bath was reported as a valuable tool for proteomics applications. 

The enhancement and improvement of sample processing for protein identification [307], and protein 

quantitation by 
18

O-labeling [308] with the ultrasonic bath was performed in our laboratory as part of 

this dissertation. 

 

The ultrasonic bath used throughout this work has specific characteristics, which make it one of the 

most advanced equipments of the genera, namely: (i) two different operating frequencies, 35 and 130 

kHz; (ii) ultrasound intensity regulation, from 10 to 100 %; (iii) thermostat, for temperature control; 

(iv) timer; and (v) three different operating modes to regulate how the ultrasound frequency is applied 

to the bath [294]. 

 

I.4.2.2. Ultrasonic probe 

 

The ultrasonic power provided by an ultrasonic probe varies from 50 to 500 W/cm
2
, with operating 

frequencies from 20 to 30 kHz. It is at least 100 times higher than the ultrasound intensity of an 

ultrasonic bath [302, 306]. In general, the design of this kind of equipments consists simply in 

attaching a probe, also known as sonic horn, to a piezoelectric transducer. The probes, generally made 

of a titanium alloy, amplify the vibration of the piezoelectric transducer and transfer the ultrasonic 

energy directly into the liquid medium [288].  

 

Even though the ultrasonic probe is the most reliable source of ultrasound, several factors must be 

considered when performing ultrasonication with this equipment. First, the ultrasound intensity and 

performance are largely dependent on the shape, length and diameter of the probe [288]. Nowadays, 

probes with different specifications are commercially available, and must be chosen according to the 
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desired effect and objective of the work. Second, during ultrasonication, the temperature of the liquid 

media increases and its physical characteristics may change, causing the decoupling of the probe and 

the decrease of cavitation efficiency, and aerosol formation inside the container. Therefore, the 

reaction vial must be refrigerated during the ultrasonication procedure, or pulses of ultrasound must be 

applied to avoid sample overheating [294]. The shape of the reaction vial is another important variable 

affecting the efficiency of the probe: the vials must have a conical form to ensure a more effective 

energy transfer [309]. Finally, special care must be taken to avoid sample contamination, because 

ultrasonication is performed in an open reactor, and the probe, if not efficiently decontaminated 

between experiments, may introduce contaminants in samples [290]. 

 

The ultrasonic probe has been used in many and different works [293, 306], but one of the most recent 

and promising applications is the use of the ultrasonic probe to accelerate enzymatic digestion [116, 

310, 311] and 
18

O-labeling of proteins [312, 313]. Much of this work was developed in this 

dissertation, and the results are reported throughout the next chapters.  

 

Recent advances in the ultrasonic probe technology have introduced the silica glass probes, spiral 

probes and multi-probes [294]. The multi-probe systems provide higher sample throughput, while the 

spiral probes provide uniform ultrasonic energy across the entire surface, and are especially useful for 

ultrasound application in lengthy and thin reaction vials. Glass probes are mainly used for metal trace 

analysis, because they are less prone erosion and, therefore, metal contaminants resulting from the 

erosion of the probe, as in metal alloy probes, are not introduced in the sample. 

 

I.4.2.3. Cup horn reactors 

 

The sonoreactor technology, available from Hielscher Ultrasonics (www.hielscher.com), is a powerful 

cup horn reactor. The sonoreactor can be regarded as a small ultrasonic bath, since it provides indirect 

ultrasonication of samples. Unlike the ultrasonic probe, that delivers ultrasound directly into the liquid 

media, the ultrasonic waves generated by the sonoreactor have to cross the walls of the reaction vessel, 

resulting in a lower ultrasonic power, compared to the probe system [294]. However, it is claimed by 

the manufacturers that the ultrasonic energy provided is 50 times higher than a normal ultrasonic bath. 

The main advantage of this system is the possibility to perform high-intensity ultrasonication in closed 

vials, which prevents cross contamination and allows the ultrasonication of hazardous samples. 

Furthermore, the sample throughput is higher than the ultrasonic probe. 

 

This equipment was used for the first time in proteomics applications during the work developed in 

this dissertation. Promising results were obtained, namely, the reduction of protein enzymatic 

digestion time from 24 h to only 1 min [314], and the improvement of protein 
18

O-labeling [313, 315]. 

These results are described in detail over the next chapters. 
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I.4.3. Enzymatic digestion with ultrasound 

 

Ultrasonic energy has been used for many applications in analytical chemistry, among which the 

enhancement of protein enzymatic digestion. The main variables affecting enzymatic digestion of 

proteins with ultrasound are related with ultrasonication parameters, such as the acoustic frequency, 

and intensity; and parameters directly associated with the enzyme stability and activity, like the 

temperature and pH of the buffer [316]. The effect of ultrasonic energy in enzymes is not fully 

understood yet, but some studies reported that the activity of the enzyme could be controlled by 

inducing changes in its structure with ultrasound [317]. However, there is no general consensus in 

whether ultrasonic energy is responsible for the activation or inactivation of enzymes. 

 

Several studies reported the enhancement of enzymatic reactions with ultrasound. Barton et al. studied 

the effect of ultrasonic energy from an ultrasonic bath on the activities of α-amylase and 

amyloglucosidase, and found that the reaction rates of these enzymes increased in the presence of 

ultrasonic irradiation [318]. These results were justified with the temperature increment, and the 

improvement of mixing/diffusion of reagents caused by ultrasonic energy. In 2000, Ozbek et al. 

reported the effects of ultrasound on the stability of several enzymes, and concluded that the alkaline 

phosphatase stability was not affected by ultrasound, while some enzymes, such as alcohol 

dehydrogenase and malate dehydrogenase, appeared to be inactivated with increasing ultrasonic power 

[319]. Capelo et al. used an ultrasonic probe, enzymatic probe sonication (EPS), to enhance the 

activity of protease XIV and subtilisin for the determination and speciation of Se in biological 

samples, and concluded that the catalytic activity of these enzymes could be improved, even when the 

selenium extraction was performed in non-buffered solutions [320]. This new methodology allowed 

total recovery of Se compounds from yeast in only 15 s. Another example of enzymatic digestion 

improvement with ultrasound was described by Siwek et al., when they used pronase E, combined 

with ultrasonic energy, to hydrolyze Antarctic krill for the extraction of  Se organic compounds [321]. 

The authors obtained a quantitative extraction yield in only 15 min with ultrasound from an ultrasonic 

probe, compared to the 24 h incubation at 37ºC without ultrasound. Finally, in a recent study Jian et al. 

used ultrasonic energy to accelerate the enzymatic hydrolysis of the untanned solid leather waste 

[322]. The authors obtained an increment of ca. 40 % in the skin degradation to soluble proteins when 

ultrasound was used, compared to the normal procedure with no ultrasound, and showed that 

ultrasonic energy has a negligible effect on the activity of alkaline protease form Bacillus 

licheniformis [322]. 

 

On the other hand, reports describing the ultrasound inactivation of proteins were also made by 

different scientists. Ovsianko et al. studied the effect of ultrasound on the activation of serine 

proteases, and found that the increment of ultrasonic intensity promote a considerable decrease in the 

proteolytic activity of a mixture of chymotrypsinogen and trypsinogen [323]. The ultrasound effects 
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on the structure and function of trypsin were described in 2004 by Tian et al. [324]. The authors 

reported that the activity of trypsin decreased when the ultrasound power increased from 100 to 500 

W, and when the ultrasonication time increased from 1 to 20 min. According to them, the reason for 

trypsin inactivation depends mainly on two factors: (i) the water-air interface generated by cavitation, 

which contributed to the modification of the molecular conformation, due to hydrophobic interaction 

and hydrogen bond disruption; and (ii) the free radicals, shock wave and shear force produced by 

cavitation, which damaged the molecular structure of trypsin [324]. In a different work, Vale et al. 

described the inactivation of protease XIV with increasing ultrasonication time [325]. They found that 

with 30 s of ultrasonication the enzyme activity is not affected; 60 s of ultrasonication makes the 

activity decrease 20 %; and with 120 s of ultrasound irradiation the enzyme is completely inactivated. 

 

As can be seen, different reports, and sometimes contradicting ones, have been published about the 

enhancement of enzymatic digestions with ultrasonic energy. Also, most of the referred studies are 

related with applications of ultrasound for metal extraction and speciation from biological samples, 

environmental remediation and food processing. In 2005, for the first time, López-Ferrer et al. 

introduced the high-intensity focused ultrasound (HIFU) technology to enhance protein digestion 

[116], as previously described in section I.1.4.4.4. Since then, many papers and results were published 

describing different applications of ultrasound technology in proteomics workflow, and the 

optimization of variables and conditions for rapid protein quantitation and identification. Part of that 

work was performed during the last 4 years and is described in this dissertation, over the following 

chapters. 
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I.5. General objectives and thesis outline 

  
The main objective of this dissertation was the development and optimization of methodologies for 

rapid protein identification and quantitation by MALDI-TOF-MS. These two items are of major 

importance for the proteomics community, since they are the basis of any proteomics study. However, 

the procedures generally used are time-consuming, labor-intensive, and error-prone due to the several 

steps involved.  

 

Recently, ultrasonic energy appeared as a promising tool to enhance protein enzymatic digestion, a 

crucial step in any proteomics workflow. Yet, the application of ultrasound in the sample treatment 

procedure for protein identification is new and needs further refinement. Hence, experiments were 

conducted with the objective to understand and optimize the parameters related with the application of 

ultrasonic energy, not only in protein identification procedures, but also in protein quantitation studies 

by 
18

O-isotopic labeling. The results obtained are described throughout this dissertation in different but 

complementary parts and chapters, as follows: 

 

 

Part I – Chapter I 

An evaluation of the state of the art regarding the most important methods for protein identification 

and quantitation is provided. The most significant achievements in mass spectrometry technologies for 

proteomics, particularly MALDI-TOF-MS, were reviewed. In addition, the basic principles of 

ultrasound, the major ultrasonic devices and applications of ultrasonic energy in the enhancement of 

enzymatic reactions were also surveyed.  

 

 

Part II – Application of ultrasonic energy to protein identification procedures 

 

Chapter II 

This chapter describes the application of ultrasound provided by an ultrasonic probe (high intensity 

focused ultrasound) to the enhancement of in-gel protein enzymatic digestion. Several variables were 

evaluated and optimized: (i) sample volume; (ii) probe diameter; (iii) protein denaturation; (iv) 

incubation time with trypsin in an ice bath; (v) enzyme concentration; and (vi) protein concentration. 

 

Chapter III   

In chapter III, the in-gel protein enzymatic digestion with a sonoreactor equipment was evaluated. This 

device has several advantages over the ultrasonic probe, but the ultrasound intensity is lower. Different 
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parameters were assessed and optimized: (i) enzyme-to-protein ratio; (ii) enzymatic digestion time; 

(iii) ultrasound amplitude; and (iv) protein concentration.  

 

Chapter IV 

Results regarding the application of the ultrasonic bath, the sonoreactor and the ultrasonic probe to 

different steps of the procedure for protein identification, after protein separation by gel 

electrophoresis, are presented. The gel washing steps, the reduction and alkylation reactions were 

accelerated with ultrasonic energy, and the sample treatment procedure was drastically simplified. The 

new procedure was validated and applied to the identification of proteins from three different sulfate 

reducing bacteria. 

 

 

Part III – Application of ultrasonic energy to protein quantitation procedures 

 

Chapter V 

Protein quantitation by 
18

O-labeling was enhanced with ultrasonic energy provided by an ultrasonic 

bath. Different ultrasonication frequencies and labeling times were assessed. The results obtained with 

the optimized ultrasonication conditions were compared with the results obtained in the same 

conditions but with no ultrasound, and with the results obtained by the classic sample treatment.     

 

Chapter VI 

This chapter describes the optimization of the direct 
18

O-labeling procedure with the ultrasonic probe 

and the sonoreactor. Several variables were studied, such as: (i) labeling reaction time; (ii) enzyme-to-

protein ratio; and (iii) sample concentration. Protein samples from human plasma were labeled with 

the new ultrasonic procedure.   

 

Chapter VII 

In chapter VII, the robustness of ultrasonic energy to accelerate the isotopic labeling of proteins by the 

18
O-decoupled procedure was evaluated. The sonoreactor and the ultrasonic probe were selected for 

this study. The results were validated after the application of the optimized procedure to protein 

samples from human plasma. 

 

 

Part IV – Chapter VIII 

The last chapter describes the general conclusions of this work and the future prospects. 
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II.1. Abstract 

 

New findings regarding the sample treatment based on high-intensity focused ultrasound (HIFU) for 

protein digestion after polyacrylamide gel electrophoresis separation are presented. The following 

variables were studied: (i) sample volume; (ii) sonotrode diameter; (iii) protein denaturation before 

enzymatic digestion; (iv) cooling; (v) enzyme concentration; and (vi) protein concentration. Results 

show that confident protein identification could be achieved after protein separation by gel 

electrophoresis through peptide mass fingerprint (PMF) in a volume as low as 25 µL. The time needed 

was less than 2 min and no cooling was necessary. The importance of the sonotrode diameter was 

negligible. On the other hand, protein denaturation before ultrasonication was a trade-off for the 

success of the procedure here described. The protein coverage increased from 5 to 30 %, and the 

number of peptides matching the proteins was also increased in a percentage ranging 10 – 100 % when 

protein reduction and alkylation were performed before enzymatic digestion with the classical 

overnight treatment, or the proposed HIFU procedure. The minimum amount of protein that can be 

identified using the HIFU sample treatment by matrix-assisted laser desorption ionization time-of-

flight mass spectrometry (MALDI-TOF-MS) was 0.06 µg. The lower concentration of trypsin 

successfully used to obtain an adequate protein digestion was 3.6 µg/mL. 
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II.2. Introduction 

 

Proteins used as biomarkers are changing (i) disease screening/treatment and (ii) strategies for 

developing new drugs [1]. In addition, emerging applications of protein biomarkers such as bacterial 

or virus identification [2-4] can help significantly to reduce morbidity and mortality across the globe. 

Furthermore, protein biomarkers discovery can help governments to beat bioterrorism since bacteria 

are the common weapons used by bioterrorists. Protein biomarkers identification can actually be 

accomplished by three different strategies: (i) proteins are separated and isolated by gel 

electrophoresis and then subjected to enzymatic digestion in situ in the gel to form a pool of peptides 

that are used later to identify the proteins [5]; (ii) mixtures of proteins are digested in-solution using 

enzymes and later the peptides produced are separated by liquid chromatography and used to identify 

the proteins [6]; and (iii) the solution containing the protein mixture is separated in a chromatographic 

column, then the isolated proteins are passed through a column packed with immobilized enzyme and 

the peptides formed are used for protein identification [7]. Identification of protein biomarkers can be 

performed with the peptides obtained through one of the three approaches described above by liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) [8]. Yet, the Achilles Heel of LC-MS/MS is 

the high cost of the analysis. An alternative to LC-MS/MS is matrix assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which can be routinely 

used in conjunction with the first aforementioned sample treatment for protein identification, this is, 

the in-gel enzymatic protein digestion. In addition, the second and third sample treatments also 

described above can be used with MALDI-TOF-MS in conjunction with preparative chromatography. 

In MALDI-TOF-MS, the samples are sublimated and ionized from a crystalline matrix [3, 9] and then 

accelerated by electric potentials into a mass analyzer. Protein identification is obtained by comparison 

between the experimental mass values from the peptides produced after protein digestion and those 

produced by the in silico, theoretical, digestion, which are included in a particular database. In most 

cases, the pool of peptides formed after protein enzymatic digestion is enough for unambiguous 

protein identification. This methodology is known as peptide mass fingerprinting (PMF) [10]. The 

PMF of any protein is identified using special search programs, known as search engines, such as the 

MASCOT [http://www.matrixscience.com/search_form_select.html], or the PROTEIN 

PROSPECTOR [http://prospector.ucsf.edu/]. 

 

Modern protocols for in-gel protein digestion have been drastically changed after the introduction of 

high-intensity focused ultrasound (HIFU) to enhance the enzymatic activity. This is a recent developed 

technology in phase of internationalization [8, 11]. With the HIFU methodology enzymatic protein 

digestion is performed in seconds, while former approaches needed from 4 to 12 h to complete the 

enzymatic process. Although the HIFU methodology has proven its efficiency in many ways, it is still 

a novel procedure that deserves to be further investigated. 
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As can be seen in Figure II.1, the classic sample treatment for protein identification is tedious and 

time-consuming. The first approach for the application of HIFU to protein identification procedures 

based on PMF was focused on the reduction of the enzymatic digestion time from overnight to 

seconds [8]. For simplification of the sample handling with HIFU, the elimination of the reduction and 

alkylation steps, which are performed during 1 h to facilitate protein digestion, was evaluated. 

 

In the present work, different variables such as: (i) ultrasonication amplitude; (ii) ultrasonication 

power; and (iii) total sample volume [12-14] are investigated, but this time without performing the 

alkylation and reduction steps in the treatment for protein identification by MALDI-TOF-MS. 

Furthermore, recent achievements suggest that even the shape of the sample container can affect 

effectiveness of ultrasonication [15]. We demonstrate that a minimum volume is necessary to obtain 

the best performance with the HIFU sample treatment and that the alkylation and reduction steps 

cannot be suppressed. Furthermore, the importance of variables such as probe diameter is highlighted. 

 

Finally, the parameters studied were tested on a biological sample, and the adenylylsulfate reductase 

alpha subunit from Desulfovibrio desulfuricans ATCC 27774 was identified from a complex protein 

mixture. 

 

 

II.3. Experimental 

 

II.3.1. Apparatus 

 

Gel electrophoresis was performed with a Bio-Rad (Hercules, CA, USA) model Powerpac basic 

following the manufacturer’s instructions. Protein digestion was performed in safe-lock tubes of 0.5 

mL from Eppendorf (Hamburg, Germany). A vacuum concentrator centrifuge from UniEquip 

(Martinsried, Germany) model UNIVAPO 100H with a refrigerated vacuum pump model Unijet II 

was used for (i) sample drying and (ii) sample concentration. Biogen Cientifica (Madrid, Spain) 

centrifuges and vortex models Sky Line and Spectrafuge Mini were used throughout the sample 

treatment, when necessary. An ultrasonic cell disruptor from Hielscher Ultrasonics (Teltow, Germany) 

model UP 50H was used to accelerate enzymatic protein digestions. An ultrasonic bath from Elma 

(Singen, Germany), model Transsonic TI-H-5, was used to help peptide and protein solubilization. An 

incubator from P-Selecta (Barcelona, Spain) was used to perform classical protein enzymatic 

digestions. A Simplicity™ 185 from Millipore (Milan, Italy) was used to obtain Milli-Q water 

throughout all the experiments. 
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Figure II.1: Classic sample treatment along with the intended effects of each step used for protein 

identification by PMF. Reduction and alkylation steps are performed between steps 8 and 9 to increase 

the sequence coverage. 
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II.3.2. Standards and reagents 

 

A protein mixture containing glycogen phosphorylase b (97 kDa), bovine serum albumin (BSA; 66 

kDa), ovalbumin (45 kDa), carbonic anhydrase (30 kDa), trypsin inhibitor (20.1 kDa) and α-

lactalbumin (14.4 kDa), was purchased from Amersham Biosciences (Buckinghamshire, UK, part 

number 17-0446-01). BSA (> 97 %) and trypsin proteomics grade were purchased from Sigma 

(Steinheim, Germany). All proteins were used without further purification. α-Cyano-4-

hydroxycinnamic acid (α-CHCA) puriss for MALDI-MS from Fluka (Buchs, Switzerland) was used 

as MALDI matrix and Sequazyme Peptide Mass Standards Kit (part number P2-3143-00) from PE 

Biosystems (Foster City, USA) was used as mass calibration standard for MALDI-TOF-MS. 

 

The following reagents were used for gel preparation and protein digestion: methanol, acetonitrile, 

iodoacetamide (IAA) and DL-dithiothreitol (DTT) (99 %) were purchased from Sigma; formic acid 

for mass spectrometry, acetic acid (> 99.5 %), ammonium bicarbonate (> 99.5 %) were from Fluka; 

bromophenol blue, glycine, glycerol and trifluoroacetic acid (TFA, 99 %) were from Riedel-de Haën 

(Seelze, Germany); coomassie blue R-250, β-mercaptoethanol (> 99 %), sodium dodecyl sulfate 

(SDS) from Merck (Darmstadt, Germany); and α,α,α-tris-(hydroxymethyl)methylamine + 

tris(hydroxymethyl)aminomethane (Tris-HCl), ultrapure grade from Aldrich (Steinheim, Germany). 

 

II.3.3. Sample treatment 

 

Protein samples between 3.7 and 0.06 µg were dissolved in sample buffer for SDS-polyacrylamide gel 

electrophoresis (PAGE) [16]. Since protocols for protein identification require many different steps, 

the classic sample treatment used throughout this work is schematically depicted in Figure II.1 along 

with the intended effects of each individual step. The classic sample treatment for protein digestion 

differs from the HIFU protocol in the incubation time necessary for the enzymatic digestion: overnight 

versus 2 min, respectively. HIFU was performed with the 0.5 mm or 1 mm sonotrode at 70 % of 

amplitude. 

 

II.3.4. Protein samples from complex mixtures 

 

Desulfovibrio desulfuricans ATCC 27774 was cultured in lactate-nitrate medium as described 

previously by Liu and Peck [17]. The cell culture was centrifuged during 30 min at 3000 x g to 

separate the cells from the medium. The pellet was resuspended in 10 mM Tris–HCl (1 mL buffer/ 1 

mg cells), pH 7.6, and ruptured in a French press at 9000 psi. The bacterial extract was centrifuged at 

19 000 x g during 30 min and ultracentrifuged at 180 000 x g during 60 min. The soluble extract 

obtained was subjected to an anionic exchange column (DEAE 52, Whatman). The fraction eluted 

between 100 and 250 mM Tris–HCl was analyzed. Two aliquots containing 0.9 µg of total protein 
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were run in a 12.5 % polyacrylamide gel and then, in-gel digestion of the protein observed at ca. 75 

kDa was performed with the HIFU protocol. HIFU was performed with the 0.5 mm sonotrode 

diameter at 70 % of amplitude during 2 min. 

 

II.3.5. Matrix formulation 

 

Prior to MALDI-TOF-MS analysis the sample was mixed with the matrix solution. α-CHCA matrix 

was used throughout this work and was prepared as follows: 10 mg of α-CHCA were dissolved in 1 

mL of 50 % acetonitrile/ 0.1 % TFA solution. Then, 10 µL of the aforementioned matrix solution were 

mixed with 10 µL of sample and the mixture was stirred in a vortex during 30 s. One microliter of 

each sample was spotted onto the 100 well MALDI-TOF-MS sample plate and allowed to dry.  

 

II.3.6. MALDI-TOF-MS analysis 

 

A MALDI-TOF-MS instrument (Applied Biosystems, Foster City, USA) model Voyager DE-PRO™ 

Biospectrometry™ Workstation, equipped with a nitrogen laser radiating at 337 nm was used to obtain 

the peptide mass fingerprints. MALDI mass spectra were acquired as recommended by the 

manufacturer. Measurements were performed in the reflectron positive ion mode, with 20 kV of 

accelerating voltage, 75.1 % grid voltage, and 0.002 % guide wire with a delay time of 140 ns. Two 

close-external calibrations were performed with the monoisotopic peaks of des-Arg
1
-Bradykinin 

(904.4681m/z), Angiotensin I (1296.6853 m/z), Glu
1
-Fibrino-peptide B (1570.6774 m/z), and 

Neurotensin (1672.9175 m/z). Mass spectrometry analysis of each sample was based on the average of 

500 laser shots. Peptide mass fingerprints were searched with the MASCOT and PROTEIN 

PROSPECTOR search engines with the following parameters: (i) for MASCOT; variable 

modifications: oxidation (M); fixed modifications: carbamidomethyl (C); (ii) for PROTEIN 

PROSPECTOR; cys modified by: unmodified/carbamidomethylation; MW of protein: all; possible 

modifications mode: oxidation of M. For both search engines, the Swiss-Prot database, one missed 

cleavage, and a peptide tolerance up to 100 ppm after close-external calibration were used. A match 

was considered successful when the protein identification score was the highest and was outside of the 

random interval. 

 

II.4. Results and discussion 

 

The handling of the HIFU technology is complicated and requires minimum skills, otherwise non-

desired reactions involving radicals caused by the cavitation phenomena will take place [18]. The 

ultrasonic waves crossing a liquid induce the generation, growth, oscillation, splitting and implosion of 

numerous tiny gas bubbles named cavitation bubbles. When a cavitation bubble collapses near the 

surface of a solid, such as the gel containing proteins, micro-jets of solvent propagate toward the 
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surface at velocities higher than 100 ms
−1

. This phenomenon has important consequences in the 

performance of the enzymatic treatment. On the one hand, pitting and mechanical erosion of the gel 

surface results in gel rupture and, as consequence, in a decrease of the gel size. Hence, the total area of 

the gel exposed to the solvent is higher, and zones that otherwise were not exposed are now subjected 

to the direct enzymatic action. On the other hand, research on ultrasonic applications for medicine and 

drug delivery had estimated a pressure around 60 MPa at the tip of the probe, generated by the 

cavitation bubble collapse, which means that liquid jets may act as microsyringes, helping the enzyme 

to penetrate inside the gel and improving the enzymatic digestion [19]. Nevertheless, the inherent 

advantages of HIFU may be at the same time its drawbacks. Thus, when a liquid is under the influence 

of an ultrasonic field an aerosol is formed and small drops of liquid spread through the walls of the 

container. When a large volume is ultrasonicated the aerosol formation is not a problem, since the 

amount of liquid dispersed is negligible. However, when a small volume is used, such as the one in 

this procedure, 25 µL, aerosol formation becomes an important problem, since a considerable fraction 

of the liquid is deposited over the walls of the container and therefore, is not affected by ultrasound. 

Bearing in mind the aforementioned problem, two different volumes were assessed to study the 

enhancement of enzymatic digestion with HIFU: 100 µL and 25 µL. Trypsin concentration was kept 

constant during this set of experiments at 14.4 µg/mL. Neither reduction nor alkylation was performed 

in the sample treatment. The handling of both volumes was slightly different. The higher volume 

allowed continuous ultrasonication for at least 2 min. After the first 60 s, ultrasonication was stopped 

during 1 min to avoid excess sample heating. The manipulation of the smallest volume, 25 µL, was 

troublesome and it was performed as follows: ultrasonication was applied in intervals of 20 s, and 

stopped due to the excessive spread of liquid towards the eppendorf walls making ultrasonication 

impossible. To overcome this problem, the eppendorf was closed after each 20 s of ultrasonication and 

centrifuged during 5 s, allowing the gel piece to be covered again with the buffer media. This 

procedure was repeated during a total ultrasonication time of 2 min. Results are shown in Table II.1. 

 

 As can be seen, the number of matched peptides and the sequence coverage obtained are slightly 

higher when the sample treatment with HIFU was applied in a total volume of 100 µL. This trend was 

not observed for carbonic anhydrase, in which the sequence coverage was slightly lower with a 

volume of 100 µL. It must be stressed that protein identification was possible regardless of the sample 

volume used, which indicates the effectiveness of the sample treatment when applied in either 25 µL 

or 100 µL. It must also be pointed out that the number of peptides obtained was virtually the same for 

both the classic method and the HIFU approach, as shown in Figure II.2. This is an important result, 

because it shows that the number of missed cleavages was similar with both procedures (data not 

shown). A missed cleavage occurs when the enzyme fails one cleavage site between two amino acid 

residues in the polypeptide chain. Furthermore, the sample treatment can drastically affect the PMF 

score and sequence coverage for a given protein digest [20]. So, it must be emphasized that our results 

were almost the same regardless the sample treatment used: the classic or the HIFU methodology.  
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Table II.1: Influence of the ultrasonication volume on the (i) number of matched peptides and (ii) 

coverage (%) for the in-gel protein enzymatic digestion (n = 2). Proteins were separated by SDS-

PAGE and digested with trypsin by the HIFU procedure. Quantity of protein analyzed: 1.7 µg of 

glycogen phosphorylase b; 2.1µg of BSA; 3.7 µg of ovalbumin; 2.1 µg of carbonic anhydrase. HIFU 

conditions: 2 min ultrasonication time; 70 %ultrasonication amplitude; 0.5 mm sonotrode diameter. 

Trypsin concentration: 14.4 µg /mL. Protein reduction with DTT and alkylation with IAA were not 

performed in the sample treatment. (See Figure II.1 for details)   

Protein 
V 

(µL) 

Peptides 

used for 

PMF 

Intensity 

MASCOT PROSPECTOR 

Score 
Coverage 

(%) 

Matched 

Peptides 
Score 

Coverage 

(%) 

Matched 

Peptides 

Phosphorylase b 
25 37 1.8E5 78 12 13 3305 22 20 

100 43 2.4E5 256 33 27 1.4E16 39 29 

Albumin 
25 29 2.8E5 108 21 12 1.3E06 21 12 

100 26 9.8E4 172 24 16 2.0E06 24 16 

Ovalbumin 
25 28 8.3E4 90 30 8 1.1E09 38 12 

100 36 9.4E4 108 36 10 1.3E10 40 14 

Carbonic 

anhydrase 

25 35 2.9E5 203 59 14 1.4E14 59 18 

100 28 2.6E5 142 54 10 4.2E09 55 12 

 

Concerning the sequence coverage obtained for the proteins studied, as shown in Table II.1, the results 

were lower than expected, below 50 % with the exception of carbonic anhydrase. In addition, α-

lactalbumin was not identified neither using the classic protocol nor using the HIFU procedure (data 

not shown). This fact can be explained with the absence of some sample treatment steps, such as (i) 

the reduction with DTT and (ii) the alkylation with IAA, which are usually performed in the sample 

treatment to break protein disulfide bonds and facilitate the enzymatic performance. These steps were 

omitted to assess the ultrasonic efficiency in the sample treatment. As we will see later, when 

reduction and alkylation were included in the procedure the sequence coverage was improved, in some 

cases by a factor of two (Figure II.3).  

 

Regarding the temperature influence in the sample treatment, no changes were observed in the 

efficiency of the procedure when the ultrasonication was performed at room temperature or in an ice 

bath. In this set of experiments, neither protein reduction nor protein alkylation was done and HIFU 

was performed in a volume of 25 µL and 100 µL. These experiments were carried out with 1.05 µg of 

BSA. As can be seen in Table II.2, the number of peptides matching the sequence of BSA was almost 

the same regardless the sample treatment used, i.e. with or without the ice bath (test t, P = 0.05). In 

addition, the differences in the sequence coverage values obtained as consequence of the changes in 

the sample volume were also not significant (test t, P = 0.05). Moreover, the number of matching 
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peptides and the percentage of sequence coverage were virtually the same with both search engines 

used: MASCOT or PROTEIN PROSPECTOR. 

 

 

Figure II.2: MALDI-TOF mass spectra of BSA acquired in the reflectron positive ion mode. 

Spectrum a): classical treatment without reduction and alkylation. Spectrum b): HIFU treatment 

without reduction and alkylation. Spectrum c): classical treatment with reduction and alkylation. 

Spectrum d): HIFU treatment with reduction and alkylation. 



New findings for in-gel enzymatic digestion of proteins accelerated by HIFU 

84 

 

Table II.2: Influence of temperature on the (i) number of matched peptides and (ii) sequence coverage 

(%) obtained for the in-gel enzymatic digestion of 1.05 µg of BSA (n =2). Protein was separated by 

SDS-PAGE and digested with trypsin by the HIFU procedure. HIFU conditions: 2 min ultrasonication 

time; 70 %ultrasonication amplitude; 0.5 mm sonotrode diameter. Trypsin concentration: 14.4 µg /mL. 

Protein reduction with DTT and alkylation with IAA were not performed in the sample treatment. (See 

Figure II.1 for details) 

Sample volume 

(µL) 
Ice Bath 

Peptides used 

for PMF 

MASCOT PROSPECTOR 

Matched 

Peptides 

Coverage 

(%) 

Matched 

Peptides 

Coverage 

(%) 

25 Yes 32 ± 2 13 ± 1 22 ± 2 13 ± 1 22 ± 2 

25 No 33 ± 1 14 ± 1 24 ± 1 14 ± 1 24 ± 1 

100 Yes 32 ± 1 14 ± 1 23 ± 2 14 ± 1 23 ± 1 

100 No 36 ± 3 14 ± 1 23 ± 2 14 ± 1 23 ± 1 

 

 

Table II.3: Influence of sonotrode diameter on the (i) number of matched peptides and (ii) sequence 

coverage (%) obtained for the in-gel enzymatic digestion of proteins (n=2). Proteins were separated by 

SDS-PAGE and digested with trypsin by the HIFU procedure. HIFU conditions: 2 min ultrasonication 

time; 70 %ultrasonication amplitude. Trypsin concentration: 3.6 µg /mL. Quantity of protein analyzed: 

1.7 µg of glycogen phosphorylase b; 2.1µg of BSA; 3.7 µg of ovalbumin; 2.1 µg of carbonic 

anhydrase; 2.0 µg of trypsin inhibitor; 2.9 µg of α-lactalbumin. Neither protein reduction with DTT 

nor alkylation with IAA was performed in the sample treatment. (See Figure II.1 for details). 

Protein 

1 mm tip diameter 0.5 mm tip diameter Classic treatment 

Coverage 

(%) 

Matched 

Peptides 

Coverage 

(%) 

Matched 

Peptides 

Coverage 

(%) 

Matched 

Peptides 

Phosphorylase b 28 ± 2 20 ± 3 28 ± 2 20 ± 3 26 ± 1 21 ± 1 

BSA 15 ± 2 12 ± 2 21 ± 1 13 ± 1 19 ± 1 14 ± 1 

Ovalbumin 40 ± 3 9 ± 1 40 ± 3 9 ± 1 33 ± 1 9 ± 1 

Carbonic anhydrase 41 ± 2 13 ± 2 45 ± 1 7 ± 1 50 ± 5 9 ± 1 

Trypsin inhibitor 26 ± 2 6 ± 2 35 ± 2 9 ± 2 34 ± 3 9 ± 3 

α-lactalbumin - - - - - - 

 

As far as trypsin is concerned, two concentration values were used during the enzymatic digestion to 

study the robustness of the procedure: (i) 14.4 µg/mL and (ii) 3.6 µg/mL. The results obtained were 

similar and protein identification was possible using the HIFU methodology with both concentrations 

(data not shown). Therefore, further experiments were performed with the lower concentration of 

trypsin, 3.6 µg/mL. 
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With regard to the probe diameter, it must be highlighted that for the same amplitude setting in the 

ultrasonic processor (range: 20 – 100 %), the ultrasound intensity achieved depends on the probe 

diameter, which means that when working with the same theoretical percentage of amplitude, 70 % in 

this case, the intensity of the cavitation phenomena will be different with the 0.5 mm or the 1 mm 

probe. In fact, each probe diameter is designed for a specific working volume: (i) for the 0.5 mm 

sonotrode a volume ranging from 10 to 500 µL; and (ii) for the 1 mm sonotrode a volume ranging 

from 100 to 5000 µL. Therefore we chose a sample volume of 100 µL to check the performance of 

both sonotrodes in the enhancement of the enzymatic reaction. Results are presented in Table II.3 and, 

as can be seen, both the sequence coverage and the number of matched peptides were similar for the 

treatments with (i) the 1 mm sonotrode; (ii) the 0.5 mm sonotrode; and (iii) the classic procedure. This 

means that both sonotrodes can be used. In addition, Table II.3 also shows that the information 

obtained with the ultrasonic treatment was similar to the one achieved with the classic sample 

treatment. However, it must be kept in mind that for sample volumes lower than 100 µL only the 0.5 

mm sonotrode should be used. 

 

 

Figure II.3: Number of matched peptides and percentage of sequence coverage obtained for the 

proteins studied (n = 2). The search engine used was MASCOT. 1) Classic sample treatment without 

reduction and alkylation. 2) Classic sample treatment with reduction and alkylation. 3) HIFU sample 

treatment without reduction and alkylation. 4) HIFU sample treatment with reduction and alkylation. 

HIFU conditions: 2 min ultrasonication time; 70 %ultrasonication amplitude; 0.5 mm sonotrode 

diameter. Trypsin concentration: 3.6 µg/mL. Amount of protein analyzed: 1.7 µg of glycogen 

phosphorylase b (Phos.); 2.1 µg of BSA; 3.7 µg of ovalbumin; 2.1 µg of carbonic anhydrase (Car. 

Anhy.); 2.0 µg of trypsin inhibitor (Trp. Inhib.); 2.9 µg of α-lactalbumin (α-lactal). (See text for 

details) 
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As stated above, protein enzymatic digestion is facilitated when reduction and alkylation is 

implemented in the sample treatment, because breaking protein disulfide bonds between cysteinyl 

residues disrupts the protein structure and reveals cleavage sites that otherwise would not be accessible 

to the enzyme. Reduction and alkylation treatments were not performed in a first approach to assess 

the effectiveness of ultrasonication. However, when the sample procedure was repeated again, this 

time with reduction and alkylation steps, the protein coverage raised from 5 to 30 %, depending on the 

protein, as shown in Figure II.3. In addition, the number of peptides matching the protein also 

increased in a percentage between 10 and 100 %. It must be stressed that confident identification of α-

lactalbumin was only achieved when the reduction and alkylation steps were performed. Hence, 

although confident identification was possible for most proteins studied without protein reduction and 

alkylation, performing these steps is recommended when using the HIFU technology for the in-gel 

enzymatic digestion, to increase the sequence coverage and attain unambiguous protein identification. 

 

In addition, different amounts of BSA were used to study the minimum quantity of protein necessary 

to obtain a confident identification with the ultrasonic and the classic sample treatments. In this case 

the reduction and alkylation steps were included in the procedure. Results presented in Table II.4 show 

that the minimum quantity of BSA identified in our conditions with both methodologies was 0.06 µg. 

Lower amounts of BSA were also tested, but the results were negative with both the classic and HIFU 

approaches. It is remarkable that the ultrasonic treatment also performs well at low protein 

concentrations, being as effective as the classic treatment. 

 

Table II.4: Influence of protein concentration on the (i) number of matched peptides and (ii) sequence 

coverage obtained for the in-gel enzymatic digestion of proteins (n=2). The protein was separated by 

SDS-PAGE and digested with trypsin by the HIFU procedure. HIFU conditions: 2 min ultrasonication 

time; 70 %ultrasonication amplitude; 0.5 mm sonotrode diameter. Trypsin concentration: 3.6 µg /mL. 

BSA (µg) 

Classic sample treatment HIFU sample treatment 

Matched 

Peptides 
Coverage (%) 

Matched 

Peptides 
Coverage (%) 

0.50 29 ± 1 50 ± 4 24 ± 3 41 ± 6 

0.12 23 ± 2 39 ± 3 27 ± 1 50 ± 3 

0.06 22 ± 2 36 ± 2 27 ± 2 43 ± 2 

 

To test if this protein identification methodology is suitable for application in complex mixtures, the 

identification of a protein obtained from the sulfate reducing bacteria Desulfovibrio desulfuricans 

ATCC 27774 was attempted. After purification in an anionic exchange column, over expression of this 

protein was observed by SDS-PAGE at approximately 75 kDa (Figure II.4) and in-gel digestion 

accelerated by HIFU (0.5 mm sonotrode diameter, 70 % amplitude and 2 min of ultrasonication time) 

followed by MALDI-TOF-MS analysis, was carried out on these bands. Reduction and alkylation 
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steps were included in the sample treatment. The protein was correctly identified in the UniProt2006 

database using the PROTEIN PROSPECTOR search engine with 21 % of sequence coverage for the 

adenylylsulfate reductase alpha subunit from Desulfovibrio desulfuricans. Since the sequence of this 

protein is already known, alignment with homologous proteins was carried out using the CLUSTALW 

program (CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through 

sequence weighting, position-specific gap penalties and weight matrix choice) [21] and the peptides 

recognized by PROTEIN PROSPECTOR were identified. As can be seen in Figure II.5, correct 

alignment was achieved with Desulfovibrio vulgaris Hildenborough and Desulfovibrio desulfuricans 

G20. 

 

 

 

Figure II.4: SDS-PAGE of a complex protein mixture obtained from the sulfate reducing bacteria 

Desulfovibrio desulfuricans ATCC 27774. 

 

 

II.5. Conclusions 

 

Volumes as low as 25 µL can be used to perform in-gel enzymatic protein digestion accelerated by 

HIFU for protein identification by peptide mass fingerprint. However, the sample handling for such 

low volumes is time-consuming. When possible, a sample volume of 100 µL is recommended since 

the procedure is handled with less manipulation steps. It must be also considered that the higher the 

volume to be treated the higher the amount of enzyme required, which is an expensive chemical. So, it 

is up to the analyst to decide whether time or money is the best item to be considered. 
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Figure II.5: Multiple alignment of adenylylsulfate reductase (APS reductase) alpha subunit from 

Desulfovibrio desulfuricans ATCC 27774 and related organisms. Dd27k: APS reductase from 

Desulfovibrio desulfuricans ATCC 27774 (Q9L767). Dvulg: APS reductase from Desulfovibrio 

vulgaris Hildenborough (DVU0847). DdG20: APS reductase from Desulfovibrio desulfuricans G20 

(Dde1110). (*) identity; (:) strongly similar; (·) weakly similar. Red amino acids: peptides identified in 

the UniProt2006 database with the PROTEIN PROSPECTOR. 
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Regarding the sonotrode diameter, the results here presented show that this variable is not a 

determining factor to obtain good results. The only precaution is to carefully inspect if the diameter of 

the probe is the adequate one for the volume which will be ultrasonicated.  

 

As far as temperature concerns, due to the ultrasonication times used, shorter than 2 min, the sample 

treatment can be performed at room temperature with no risk of sample overheating. 

 

Concerning the minimum amount of protein necessary for the enzymatic digestion with the HIFU 

technology and for a confident PMF identification after MALDI-TOF-MS analysis, the results showed 

that this threshold is same as with the classic sample treatment: 0.06 µg. Furthermore, the lowest 

amount of trypsin needed to obtain an adequate protein digestion in our conditions with the HIFU 

technology was 3.6 µg/mL. 

 

Finally, the identification of the adenylylsulfate reductase alpha subunit from a complex mixture 

obtained from the sulfate reducing bacteria Desulfovibrio desulfuricans ATCC 27774 demonstrates 

that: (a) the parameters tested on standard samples can also be applied to biologic samples and (b) the 

method provides important advances for fast protein identification. 
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III.1. Abstract 

 

Fast (120 s) and high-throughput (more than six samples at once) in-gel trypsin digestion of proteins 

using the sonoreactor technology has been accomplished. Successful protein identification was 

obtained after analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, 

MALDI-TOF-MS. Specific identification of the adenylylsulfate reductase alpha subunit from a 

complex protein mixture from Desulfovibrio desulfuricans ATCC 27774 was performed as a proof of 

the procedure. The new sample treatment is of easy implementation, saves time and money, and can 

be adapted to online procedures and robotic platforms. 
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III.2. Introduction 

 

Rapid protein identification is nowadays an issue of primary importance for the medical, biochemical, 

and analytical communities. For instance, protein biomarker discovery for medical diagnostic or for 

pharmacological purposes is becoming one of the hottest subjects among many researchers [1]. 

 

The sample handling for protein identification through enzymatic digestion is a complex and time-

consuming procedure with many different steps that have to be carefully performed to obtain reliable 

results. The whole procedure can take as long as 4-12 h, since the protein enzymatic digestion is 

typically performed overnight. Therefore, new analytical methodologies have recently emerged with 

the objective of making protein digestion as fast and confident as possible [2]. The current procedures 

used to accelerate enzymatic kinetics for protein digestion are mainly based on (1) microwave energy, 

named microwave-assisted protein enzymatic digestion, MAPED [3, 4], or on (2) ultrasonic energy, 

the high-intensity focused ultrasound, HIFU [5, 6]. There are remarkable differences between these 

two approaches [2], and the HIFU is the fastest one: 30 s versus 20 min for an in-solution or an in-gel 

protein digestion using trypsin [2]. 

 

Technological improvements in sonochemistry have been accomplished during the last years, and a 

new device is now available for researchers, the sonoreactor [7] (disclaimer: specific company, 

product, and equipment names are given to provide useful information; their mention does not imply 

recommendation or endorsement by the authors). This instrument offers some advantages over the 

ultrasonic probe and the ultrasonic bath since it combines their benefits but not their drawbacks. A 

comparison between the ultrasonic energy provided by common probes, baths, and the sonoreactor is 

provided in Figure III.1, where it can be seen that the ultrasonic energy generated by the sonoreactor is 

lower than the ultrasonic probe but higher than the energy produced by a common ultrasonic bath. 

This is critical, because it allows in-gel protein digestion without the gel degradation that occurs when 

an ultrasonic probe is used. Gel degradation may limit the applicability of the in-gel HIFU 

methodology for protein identification by electrospray ionization tandem mass spectrometry, ESI-

MS/MS, since the solutions obtained after ultrasonication of the gel piece may be excessively viscous 

to be used with ESI systems. Furthermore, common ultrasonic probes only allow one sample to be 

treated at a time, whereas the sonoreactor technology offers high sample throughput, since many 

samples can be treated at once. 

 

In the present work, we report on the application of the sonoreactor technology to the fast and high-

throughput protein identification by peptide mass fingerprint, PMF, after in-gel enzymatic digestion 

and MALDI-TOF-MS analysis. In addition, the new sample treatment was successfully used in the 

identification of the adenylylsulfate reductase alpha subunit from a complex protein mixture from 

Desulfovibrio desulfuricans ATCC 27774.  
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Figure III.1: Comparison between the ultrasonic energy provided by common probes, baths and the 

sonoreactor. Reprinted with permission from Hielscher Ultrasonics (http://www.hielscher.com). 

 

 

III.3. Experimental Section 

 

III.3.1. Apparatus 

 

Gel electrophoresis was performed with a Bio-Rad (Hercules, CA, USA) model Powerpac basic 

following the manufacturer’s instructions. Protein digestion was performed in 0.5 mL safe-lock tubes 

from Eppendorf (Hamburg, Germany). A vacuum concentrator centrifuge from UniEquip 

(Martinsried, Germany) model UNIVAPO 100H with a refrigerated vacuum pump model Unijet II 

was used for (1) sample drying and (2) sample concentration. Biogen Cientifica (Madrid, Spain) 

centrifuges and vortex models Sky Line and Spectrafuge Mini were used throughout the sample 

treatment, when necessary. A sonoreactor model UTR200 from Hielscher Ultrasonics (Teltow, 

Germany) was used to accelerate enzymatic protein digestions. An ultrasonic bath from Elma (Singen, 

Germany), model Transsonic TI H-5, was used to help in peptide and protein solubilization. A 

Simplicity™ 185 from Millipore (Milan, Italy) was used to obtain Milli-Q water throughout all the 

experiments. 

 

III.3.2. Standards and reagents 

 

A standard protein mixture of glycogen phosphorylase b (97 kDa), bovine serum albumin (BSA; 66 

kDa), ovalbumin (45 kDa), carbonic anhydrase (30 kDa), trypsin inhibitor (20.1 kDa), and α-

lactalbumin (14.4 kDa) was purchased from Amersham Biosciences (Buckinghamshire, United 

Kingdom, part number 17-0446-01). α-Lactalbumin from bovine milk (≥ 85 %), BSA (> 97 %) and 

trypsin proteomics grade, were purchased from Sigma (Steinheim, Germany). All materials were used 

without further purification. α-Cyano-4-hydroxycinnamic acid (α-CHCA) puriss for MALDI-MS from 

Fluka (Buchs, Switzerland) was used as MALDI matrix. ProteoMass™ Peptide MALDI-MS 

Calibration Kit (MSCAL2) from Sigma was used as mass calibration standard for MALDI-TOF-MS. 
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The following reagents were used for gel preparation and protein digestion: methanol, acetonitrile, 

iodoacetamide (IAA), and DL-dithiothreitol (DTT) (99 %) were purchased from Sigma; formic acid 

for mass spectrometry, acetic acid (> 99.5 %), and ammonium bicarbonate (> 99.5 %) were from 

Fluka; bromophenol blue, glycine, glycerol, and trifluoroacetic acid (TFA, 99 %) were from Riedel-

de-Haën (Seelze, Germany); coomassie blue R-250, β-mercaptoethanol (> 99 %), and sodium dodecyl 

sulfate (SDS) were from Merck (Darmstadt, Germany); α,α,α-tris-(hydroxymethyl)methylamine and 

tris(hydroxymethyl)aminomethane (Tris-HCl), ultrapure grade, were from Aldrich (Steinheim, 

Germany); and ammonium persulfate (PSA) and N,N,N′,N′-tetramethylethylenodiamine (TEMED) 

were from Sigma (Steinheim, Germany). 

 

III.3.3. Sample treatment 

 

Protein samples ranging from 0.06 to 3.7 µg were dissolved in sample buffer for sodium dodecyl 

sulfate polyacrylamide gel electrophoresis, SDS-PAGE. The protein spots in the SDS-PAGE were 

excised and treated according to the protocol in Figure III.2. After washing, reduction, alkylation, and 

drying steps, the gel slices were incubated with trypsin (0.37 µg) in an ice bath during 45 min to help 

rehydration and trypsin diffusion into the gel. In-gel protein digestion was performed with the 

sonoreactor operating at 50 % amplitude during 60 s (digestion volume: 25 µL). Protein digestion was 

stopped after the addition of 15 µL of formic acid 5 %. Finally, the samples were dried in a vacuum 

concentrator centrifuge and then resuspended with 10 µL of formic acid 0.3 %. 

 

III.3.4. MALDI-TOF-MS Analysis 

 

A MALDI-TOF-MS model Voyager DE-PRO™ Biospectrometry™ Workstation equipped with a 

nitrogen laser radiating at 337 nm from Applied Biosystems (Foster City, United States) was used for 

the mass spectrometry analysis of the protein digests. MALDI mass spectra were acquired as 

recommended by the manufacturer. The α-CHCA matrix used throughout this work was prepared as 

follows: 10 mg of α-CHCA were dissolved in 1 mL of 50 % acetonitrile/ 0.1 % TFA solution. Then, 

10 µL of the aforementioned matrix solution were mixed with 10 µL of sample and the mixture was 

stirred in a vortex during 30 s. One microliter of each sample was spotted onto the 100 well MALDI-

TOF-MS sample plate and allowed to dry. 

 

Measurements were performed in the reflectron positive ion mode, with 20 kV of accelerating voltage, 

75.1 % of grid voltage, 0.002 % of guide wire, and a delay time of 140 ns. Two close external 

calibrations were performed with the monoisotopic peaks from bradykinin, angiotensin II, P14R, and 

ACTH peptide fragments (m/z: 757.3997, 1046.5423, 1533.8582, and 2465.1989, respectively). Mass 

spectral analysis of each sample was based on the average of 500 laser shots. Peptide mass fingerprints 

were searched with the MASCOT and PROTEIN PROSPECTOR search engines with the following 
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parameters: (1) database: SwissProt; (2) protein molecular mass (MW): all; (3) one missed cleavage; 

(4) fixed modifications: carbamidomethylation (C); (5) variable modifications: oxidation (M); (6) 

peptide tolerance up to 100 ppm after close-external calibration. A match was considered successful 

when the protein identification score was the highest value and outside of the random interval. 

 

 

Figure III.2: Comprehensive scheme of the sample treatment procedure. 
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III.3.5. Protein samples from complex mixtures 

 

Desulfovibrio desulfuricans ATCC 27774 was cultured in lactate-nitrate medium [8]. To separate the 

cells from the medium, the culture was centrifuged 30 min at 3000 x g. The pellet was resuspended in 

10 mM Tris-HCl (1 mL buffer/ 1 mg cells), pH 7.6, and ruptured in a French press at 9000 psi. The 

bacterial extract was centrifuged at 19 000 x g during 30 min and then ultracentrifuged at 180 000 x g 

during 60 min. The soluble extract obtained was subjected to an anionic exchange column (DEAE 52, 

Whatman). The fraction eluted between 100 and 250 mM Tris-HCl was analyzed. Four aliquots 

containing 0.9 µg of total protein were run in a 12.5% SDS-PAGE gel, and in-gel digestion of the 

protein observed at ca. 75 kDa was performed in the sonoreactor. 

 

III.4. Results and discussion  

 

III.4.1. Optimization of the sonoreactor performance 

 

To test the suitability of the sonoreactor technology for in-gel protein digestion, the following 

parameters were optimized: (1) trypsin/protein ratio; (2) digestion time; (3) sonoreactor amplitude, and 

(4) protein concentration. 

 

(1) Trypsin/Protein Ratio. Slices of SDS-PAGE gel with 0.5 µg of α-lactalbumin were digested with 

decreasing concentrations of trypsin ranging from 0.6 µM to 0.008 µM. In-gel digestion (25 µL) was 

performed with the sonoreactor operating in the continuous mode at 70 % amplitude during 60 s. 

Confident protein identification was only obtained when 0.6 µM (375 ng in 25 µL) of trypsin was 

used. When lower amounts of trypsin were used, confident identification was not achieved (see Figure 

III.3 in III.8. Supporting Information). The optimum trypsin concentration is consistent with the one 

previously obtained for the HIFU procedure [5, 6], and suggests that the cavitation phenomena [9] 

produced by the ultrasonic energy assists and enhances in-gel enzymatic digestion, although the 

enzyme concentration is still an important variable in the proteolysis reaction. 

 

(2) Digestion Time. To optimize the digestion time, different pieces of SDS-PAGE gel with 0.5 µg of 

α-lactalbumin and BSA were digested in the sonoreactor, in duplicate, with 0.6 µM of trypsin at 70 % 

amplitude. The digestion time was comprised between 30 and 180 s. As can be seen in Figure III.4 (in 

III.8. Supporting Information), confident identification of BSA was possible with all the 

ultrasonication times tested and no differences were observed in the number of matched peptides or 

sequence coverage percentage. Regarding α-lactalbumin, a minimum digestion time of 60 s was 

required for its confident identification, out of the random region, and no differences were observed 

between the ultrasonication times of 60, 120, and 180 s. These data suggest that the time needed to 

perform enzymatic digestion with the sonoreactor can be slightly higher than the HIFU procedure, 
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which is consistent with the differences in the ultrasonic power produced by the sonoreactor and the 

ultrasonic probe, as previously explained.  

 

(3) Sonoreactor Amplitude. To optimize the sonoreactor amplitude, slices of SDS-PAGE gel with 0.5 

µg of α-lactalbumin and BSA were digested, in duplicate, with 0.6 µM of trypsin during 60 s in the 

continuous mode. The operating amplitudes ranged from 25 % to 90 %. Interestingly, different results 

were obtained for each protein. On the one hand, the number of matched peptides and the sequence 

coverage percentage were virtually the same for BSA with all the amplitude values tested, as shown in 

Figure III.5 (in III.8. Supporting Information). On the other hand, for α-lactalbumin the number of 

matched peptides and the sequence coverage (%) decreased as the amplitude increased. For this 

reason, 50 % was chosen as the optimum amplitude for protein digestion in the sonoreactor. 

 

(4) Protein Concentration. To evaluate the minimum concentration of protein needed to obtain a 

confident PMF identification, samples ranging from 0.01 to 5 µg were dissolved in sample buffer for 

SDS-PAGE, and the protein bands were submitted to the ultra-fast in-gel protein digestion procedure 

with the sonoreactor. Protein identification was only possible for the protein samples equal or higher 

than 0.1 µg with a trypsin concentration of 0.6 µM (see Figure III.6 in III.8. Supporting Information). 

Higher quantity of trypsin was not tried. 

 

Finally, when the sonoreactor procedure was applied with the optimized conditions, as described 

above, to gels containing BSA or α-lactalbumin in the absence of trypsin, no evidence of protein 

digestion products was observed, which indicates that this ultrasonic treatment does not change protein 

integrity per se (data not shown). 

 

 

III.4.2. Proof of the Procedure 

 

Proof of the procedure for specific protein identification using (1) protein separation from a complex 

mixture, (2) sonoreactor proteolytic digestion, and (3) protein identification by MALDI-TOF-MS was 

performed with samples from the sulfate reducing bacteria Desulfovibrio desulfuricans ATCC 27774 

as follows: after anionic exchange column, over expression of a protein was observed by SDS-PAGE 

at approximately 75 kDa. The in-gel protein digestion with the sonoreactor protocol (continuous 

mode, 50 % amplitude and 60 s of ultrasonication time), followed by MALDI-TOF-MS analysis, was 

performed on the gel bands containing the over expressed protein. Reduction and alkylation steps were 

included in the sample treatment. The protein was identified with confidence as adenylylsulfate 

reductase alpha subunit in the UniProt2006 database using the Protein Prospector search engine: 15 

peptides matched the protein sequence with 21 % coverage. 
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III.5. Conclusions 

 

The developed method based on the sonoreactor technology for ultrafast high-throughput in-gel 

protein digestion represents an important advance in the proteomics field. This method is faster than 

the classical in-gel protein digestion protocol and also faster than the in-gel protein digestion with 

common ultrasonic probes, since it allows the simultaneous digestion of six samples in 1 or 2 min. 

Furthermore, similar results were obtained when this method was compared with the HIFU protocol 

[6] in terms of number of matched peptides and sequence coverage but, as a general role, lower 

standard deviations and clear MALDI-TOF mass spectra were obtained when the sonoreactor was 

used. This fact may be related with a better homogeneity in the operation conditions during the 

ultrasonication step and also with the lower gel degradation. Therefore, the new methodology 

represents a good alternative to the classic and HIFU protocols. 

 

The optimization experiments demonstrate that the best sonoreactor conditions for protein digestion 

are: 50 % ultrasound amplitude and 1 min of ultrasonication time. The ultrasonication time, when 

necessary, can be increased. With this procedure, the minimum amount of protein necessary to obtain 

confident identification by PMF after MALDI-TOF-MS analysis was 0.1 µg. 

 

Finally, the identification of the adenylylsulfate reductase alpha subunit from a complex mixture 

obtained from the sulfate reducing bacteria Desulfovibrio desulfuricans ATCC 27774 demonstrates 

that (a) the parameters tested on standard samples can be also applied to complex biologic samples; 

and (b) the method provides important advances in protocols for fast protein identification. 
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III.8. Supporting Information  

 

 

Figure III.3: Effect of the amount of trypsin on the in-gel protein digestion procedure with the 

sonoreactor. Slices of SDS-PAGE gel with 0.5 µg of α-lactalbumin were digested with a) 375 ng, or 

b) 100 ng of trypsin in the sonoreactor, during 60 s. Operating conditions: continuous mode; 70 % 

amplitude. 

 

 
Figure III.4: Effect of the digestion time on the sequence coverage (%) obtained for α-lactalbumin 

(0.5 µg) and BSA (0.5 µg), after in-gel protein digestion with the sonoreactor procedure and analysis 

by MALDI-TOF-MS. Sonoreactor operating conditions: continuous mode; 70 % amplitude. 
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Figure III.5: Effect of the ultrasound amplitude on the sequence coverage (%) and number of 

matched peptides obtained for α-lactalbumin (0.5 µg) and BSA (0.5 µg), after in-gel protein digestion 

with the sonoreactor (continuous mode; 60 s of ultrasonication). 
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Figure III.6: MALDI-TOF-MS spectra obtained for α-lactalbumin after in-gel digestion with the 

sonoreactor (continuous mode; 50 % amplitude; 60 s of ultrasonication). a) 1 µg of α-lactalbumin. b) 

0.1 µg of α-lactalbumin. c) 0.05 µg of α-lactalbumin. 
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IV.1. Abstract 

 

An ultrasonic bath, an ultrasonic probe and a sonoreactor were used to speed up the reactions involved 

in each step of the sample handling procedure for in-gel protein identification by peptide mass 

fingerprint, PMF, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF-MS). The following steps were successfully accelerated using ultrasonic energy: gel 

washing, protein reduction, and protein alkylation. As a result, a reduction comprising 80 % to 90 % 

of the total time used in the classic approach was achieved. In addition, sample handling was also 

drastically simplified. The number of peptides identified and the protein sequence coverage obtained 

with the new procedure were similar to those obtained with the traditional sample treatment for the 

following standard proteins: glycogen phosphorylase b, BSA, ovalbumin, carbonic anhydrase, trypsin 

inhibitor and α-lactalbumin. Finally, as a proof of the procedure, specific proteins were identified from 

complex mixtures obtained from three different sulfate reducing bacteria: Desulfovibrio desulfuricans 

G20, Desulfuvibrio gigas NCIB 9332, and Desulfuvibrio desulfuricans ATCC 27774. 
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IV.2. Introduction 

 

Nowadays, one of the most common methods used for protein identification is known as peptide mass 

fingerprint (PMF). The classic sample treatment for protein identification by PMF includes several 

steps. Frequently, proteins are first separated from a complex mixture, using gel electrophoresis based 

methodologies. Then, the gel band containing the protein is excised and submitted to enzymatic 

digestion, usually with trypsin. Finally, after mass spectrometry (MS) analysis, generally by matrix-

assisted laser desorption/ionization time-of-flight (MALDI-TOF) [1, 2], protein identification is 

achieved by comparing the mass values of the pool of peptides obtained from protein digestion, with 

the peptide masses produced by the theoretical (in silico) digestion of the proteins included in a 

particular database [3]. 

 

The classic in-gel protein digestion methodology is as exhausting procedure with numerous single 

steps. Modern protocols for in-gel protein digestion have been drastically changed after the 

introduction of ultrasonic devices, such as the ultrasonic probe or the sonoreactor, to enhance 

enzymatic activity [4-6]. The use of these ultrasonic devices allowed protein enzymatic digestion to be 

performed in seconds (60 - 120 s), while former approaches needed from 4 to 12 h to complete the 

enzymatic process. This is a recently developed technology in the phase of internationalization [7]. 

However, in spite of the important advance achieved with the application of ultrasound to speed up the 

tryptic digestion, the time consumed during the preceding steps of the protocol is currently its main 

limitation. Prior to enzymatic digestion, the gel piece must be washed with water to remove 

contaminants and with acetonitrile for dehydration and removal of the staining agents. Then, proteins 

are submitted to reduction and alkylation to facilitate the following enzymatic digestion. Finally, 

another washing step is required. The total time involved in these steps is about 3 h. Some of these 

stages, such as gel excision or gel washing, can be performed by commercial robots allowing the 

reduction of the operator’s work. However, the elevated cost of these equipments is an important 

limitation for small laboratories. Therefore, in these cases, simplification of the operator’s work is 

crucial. 

 

The main objective of this study was to reduce sample handling and the total time necessary for in-gel 

protein digestion in each step of the procedure. This way, different commercial ultrasonic devices, an 

ultrasonic bath, an ultrasonic probe and a sonoreactor, were used to accelerate the physical and 

chemical processes which take place during washing, reduction and alkylation procedures. 

 

 

IV.3. Experimental 

 



Chapter IV 

109 

 

 

IV.3.1. Apparatus 

 

Gel electrophoresis was performed with a model PowerPac Basic (Bio-Rad, Hercules, CA, USA) 

following the manufacturer’s instructions. The image of the gel after staining was acquired in a Gel 

Doc 2000 from Bio-Rad. Protein digestion was performed in 0.5 mL safe-lock tubes (Eppendorf, 

Hamburg, Germany). A model UNIVAPO 100H vacuum concentrator centrifuge (UniEquip, 

Martinsried, Germany) with a model Unijet II refrigerated vacuum pump was used for (i) sample 

drying and (ii) sample concentration. A Spectrafuge minicentrifuge (Labnet, Madrid, Spain) and a Sky 

Line minicentrifuge-vortex (ELMI, Riga, Latvia) were used throughout the sample treatment, when 

necessary. A Simplicity™ 185 (Millipore, Milan, Italy) was used to obtain Milli-Q water throughout 

the experiment. Different ultrasonic devices were tested: a Transsonic TI-H-5 ultrasonic bath (Elma, 

Singen, Germany); an UTR200 sonoreactor (Hielscher Ultrasonics, Teltow, Germany); and an UP 

100H ultrasonic probe (Hielscher Ultrasonics). 

 

IV.3.2. Standards and reagents 

 

A standard protein mixture of glycogen phosphorylase b (97 kDa), bovine serum albumin (BSA) (66 

kDa), ovalbumin (45 kDa), carbonic anhydrase (30 kDa), trypsin inhibitor (20.1 kDa) and α-

lactalbumin (14.4 kDa) was purchased from Amersham Biosciences (Buckinghamshire, UK, part 

number 17-0446-01). α-Lactalbumin from bovine milk (≥ 85 %), BSA (> 97 %) and trypsin 

proteomics grade, were purchased from Sigma (Steinheim, Germany). All materials were used without 

further purification. α-Cyano-4-hydroxycinnamic acid (α-CHCA) puriss for MALDI-MS (Fluka, 

Buchs, Switzerland) was used as MALDI matrix. The ProteoMass™ Peptide MALDI-MS Calibration 

Kit (MSCAL2) from Sigma was used as mass calibration standard for MALDI-TOF-MS. 

 

The following reagents were used for gel preparation and protein digestion: methanol, acetonitrile, 

iodoacetamide (IAA) and DL-dithiothreitol (DTT, 99 %) (Sigma); formic acid for mass spectrometry, 

acetic acid (> 99.5 %) and ammonium bicarbonate (> 99.5 %) (Fluka); bromophenol blue, glycine, 

glycerol and trifluoroacetic acid (TFA, 99 %) (Riedel-de-Haën, Seelze, Germany); Coomasie blue R-

250, β-mercaptoethanol (> 99 %) and sodium dodecyl sulfate (SDS) (Merck, Darmstadt, Germany); 

and α,α,α-tris(hydroxymethyl)methylamine + tris(hydroxymethyl)aminomethane (Tris-HCL), 

ultrapure grade, (Aldrich, Steinheim, Germany). 

 

IV.3.3. Sample treatment 

 

Protein samples from 0.5 to 3.7 µg were dissolved in 5 µL of water and 5 µL of sample buffer (5 mL 

Tris-Base [0.5M]/ 8 mL SDS [10%]/ 1 mL β-mercaptoethanol/ 2 mL glycerol/ 4 mg bromophenol blue 
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to a final volume of 20 mL in water) for sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) (12.5 %, 0.5 mm thickness). After gel electrophoresis (65 min, 120 V, 400 mA), the gel 

was stained with Coomassie blue R-250 and distained for identification of the protein bands. Then, the 

protein bands were excised from the gel and treated according to the classic protocol schematized in 

Figure IV.1. After washing, reduction, alkylation and drying steps, the gel pieces were incubated with 

trypsin (375 ng in 25 µL) in an ice bath, during 60 min, for rehydration and diffusion of the enzyme 

into the gel. In-gel protein digestion was performed in a sonoreactor operating at 50 % amplitude 

during 2 min [6]. The activity of trypsin was stopped after the addition of 20 µL of formic acid (5 %, 

v/v). Finally, the samples were evaporated to dryness in a vacuum concentrator centrifuge and then 

resuspended in 10 µL of formic acid (0.3 %, v/v). 

 

Prior to MALDI-TOF-MS analysis, the sample was mixed in a 1:1 ratio with α-CHCA matrix and 

stirred in a vortex for 30 s. MALDI matrix was prepared as follows: 10 mg of α-CHCA were dissolved 

in 1 mL of 50 % acetonitrile/ 0.1 % TFA solution. Finally, 1 µL of each sample was hand-spotted onto 

the MALDI-TOF-MS sample plate and allowed to dry. 

 

IV.3.4. MALDI-TOF-MS analysis 

 

A MALDI-TOF-MS model Voyager DE-PRO™ Biospectrometry™ Workstation equipped with a 

nitrogen laser radiating at 337 nm (Applied Biosystems, Foster City, USA) was used for mass 

spectrometry analysis of the protein digests. 

 

Measurements were performed in the reflectron positive ion mode, with a 20 kV of accelerating 

voltage, 75.1 % grid voltage, 0.002 % guide wire and a delay time of 100 ns. Two close external 

calibrations were performed with the monoisotopic peaks from bradykinin, angiotensin II, P14R and 

ACTH peptide fragments (m/z: 757.3997, 1046.5423, 1533.8582 and 2465.1989, respectively). Mass 

spectral analysis of each sample was based on the average of 500 laser shots. Peptide mass fingerprints 

were identified in the MASCOT [8] and PROTEIN PROSPECTOR [9] search engines with the 

following parameters: (i) Database: SwissProt. 2006; (ii) molecular mass (MW) of protein: all; (iii) 

one missed cleavage; (iv) fixed modifications: carbamidomethylation (C); (v) variable modifications: 

oxidation (M); (vi) peptide tolerance up to 150 ppm. A match was considered successful when the 

protein identification score was the first and outside of the random interval. 

 

IV.3.5. Protein samples from complex mixtures 

 

As proof of the procedure, different proteins were identified from complex mixtures obtained from 

three sulfate-reducing bacteria: Desulfovibrio desulfuricans G20, Desulfuvibrio gigas NCIB 9332, and 

Desulfuvibrio desulfuricans ATCC 27774. 
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Desulfovibrio desulfuricans G20 was grown under anaerobic conditions in Postgate C medium. Cells 

were collected at the end of the logarithmic phase by centrifugation at 8000 x g during 15 min at 4ºC 

(Beckman Avanti™ J-25 centrifuge). The periplasmatic fraction was obtained following the protocol 

described by Brondino et al. [10]. Then, using the protocols described in the former sections, a protein 

of approximately 15 kDa was identified after SDS-PAGE of an aliquot containing 8.4 ± 0.5 µg of total 

protein. 

 

 

Figure IV.1: Classic sample treatment for in-gel protein digestion. 
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Desulfuvibrio gigas NCIB 9332 was cultured under anaerobic conditions in lactate-sulfate medium 

and collected by centrifugation at 8000 x g during 15 min at 4ºC. Soluble extract was obtained as 

described by Almendra et al. [11] and loaded into an anion-exchange column (DEAE 52, Whatman) 

equilibrated with 10 mM Tris-HCl, pH 7.6. A 50 kDa protein present in the fraction eluting between 

250 and 300 mM Tris-HCl was identified. The total amount of the protein analyzed was 2.9 ± 0.3 µg. 

 

Desulfovibrio desulfuricans ATCC 27774 was cultured in lactate-nitrate medium as described 

previously by Liu and Peck [12]. The culture was centrifuged during 30 min at 3000 x g to separate 

the cells from the medium. The pellet was resuspended in 10mM Tris-HCl, pH 7.6 (1 mL buffer/1 mg 

cells), and ruptured in a French press at 9000 psi. The bacterial extract was centrifuged at 19 000 x g 

during 30 min and ultracentrifuged at 180 000 x g during 60 min. The soluble extract obtained was 

loaded into an anion-exchange column (DEAE 52, Whatman) for separation. A total protein amount of 

4.7 ± 0.2 µg contained in the eluting fraction at 250 mM Tris-HCl was analyzed by SDS-PAGE and a 

protein of approximately 40 kDa was identified. 

 

IV.4. Results and discussion 

 

The following ultrasonic devices, an ultrasonic bath, an ultrasonic probe, and a sonoreactor, were used 

to test the efficiency of ultrasound in the enhancement of different steps of the in-gel protein digestion 

protocol. The performance of each ultrasonic device is different and can be related with the different 

ways in which ultrasound is transmitted. In fact, their ultrasonic power follows this order: ultrasonic 

probe, 15 W; sonoreactor, 0.5 W; and ultrasonic bath, 0.01 W. These differences make each system 

appropriate for different functions, and not all of them can be used for the same purpose. For instance, 

the ultrasonic probe must be carefully used, because the ultrasonic energy produced can degrade the 

gel piece containing the protein, introducing contaminants into the buffer solution. These contaminants 

can difficult the analysis by MALDI-TOF-MS or LC-MS/MS [5]. The main characteristics and 

parameters regarding the ultrasonic devices used in this work are described in Table IV.1. The 

ultrasonication times and amplitudes used were chosen according to our previous experience [4-6]. As 

a general rule, short times, 2 and 5 min, were selected because the goal of this work was the reduction 

of the total time of the sample treatment. The ultrasonication amplitudes were selected to make gel 

degradation as low as possible. For the aforementioned reason, 50 % was the ultrasonication amplitude 

used for the sonoreactor and ultrasonic probe, while 60 % was selected for the ultrasonic bath, the 

device with the lower ultrasonic energy output. The classic sample treatment is presented in Figure 

IV.1. The following steps were identified as targets: 

 

(i) Washing step. In the classic approach the gel is washed three times with water followed by three 

times with acetonitrile. With the ultrasonic procedure the gel was washed once with water and once 
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with acetonitrile, both times under the influence of an ultrasonic field. Ultrasonic bath (5 min), 

sonoreactor (2 min) and ultrasonic probe (2 min) were tested for this purpose. 

 

(ii) Reduction step. The classic procedure uses two steps of 10 and 15 min, respectively, which were 

substituted by a unique ultrasonication step of 2 min using the sonoreactor or the ultrasonic probe, and 

5 min for the ultrasonic bath. 

 

(iii) Alkylation step. The classic procedure has only one step in which alkylation is performed during 

35 min. The ultrasonic approach was also performed in a single step but only for 2 min with the probe 

and the sonoreactor, and 5 min with the bath. 

 

(iv) Trypsin diffusion into the gel. In the classic method the gel pieces are incubated on ice, before 

digestion, during 60 min with trypsin. It was investigated if it was possible to omit this step using the 

ultrasonic sample treatment. 

 

Gel bands containing 0.5 µg of α-lactalbumin or BSA were processed according to the protocol in 

Figure IV.1, and enzymatically digested, in duplicate, with the sonoreactor with 0.6 µM of trypsin 

(375 ng in 25 µL) at 50 % amplitude during 2 min, according to a previous method developed by our 

group [6]. 

 

Table IV.1: Characteristics and parameters of the ultrasonic devices used for the acceleration of 

washing, reduction and alkylation steps. 

Ultrasonic devices 
Samples processed 

at once 

Amplitude 

(%) 

Ultrasonication 

time (min) 

Gel 

degradation 

Ultrasonic bath (35 kHz) > 6 60 5 Low 

Sonoreactor (24 kHz) ≤ 6 50 2 Medium 

Ultrasonic probe (30 kHz; 0.5 mm) 1 50 2 High 

 

 

IV.4.1. Ultrasound effect on the washing steps 

 

The washing steps (steps 5, 6, 9 and 10 in Figure IV.1) were performed by cleaning the gel piece with 

water followed by a second cleaning step with acetonitrile, as stated above. The effect of each 

ultrasonic device in the washing procedure was assessed, and the investigation was performed as 

follows (see Figure IV.2a). 
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Figure IV.2: Comprehensive scheme of the several sample treatments studied. The ultrasonic energy 

was provided by an ultrasonic bath (35 kHz, 60 % ultrasonication amplitude, 5 min ultrasonication 

time); a sonoreactor (24 kHz, 50 % ultrasonication amplitude, 2 min ultrasonication time); and an 

ultrasonic probe (30 kHz, 50 % ultrasonication amplitude, 2 min ultrasonication time, 0.5 mm 

sonotrode diameter). See text for further details. 
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(i) First assay. Cleaning with water was carried out in one single step accelerated with the sonoreactor 

(2 min), the ultrasonic probe (2 min) or with the ultrasonic bath (5 min). The next washing step was 

performed with acetonitrile by the classic approach: three times comprising centrifugation and stirring. 

In Figure IV.3, the results obtained with the ultrasonic bath correspond to number 2; number 3 for the 

sonoreactor; and 4 for the ultrasonic probe. As can be seen, the number of matched peptides and the 

sequence coverage (%) for both proteins using any of the ultrasonic devices tested were similar to the 

ones obtained with the classic protocol, corresponding to number 1 in Figure IV.3. A lower number of 

matched peptides and sequence coverage were obtained with the sonoreactor. It must be stressed, 

however, that longer ultrasonication times for the sonoreactor were not tested, since the results 

achieved with the bath and the probe were satisfactory. 

 

(ii) Second assay. The washing step with water was performed by the classic procedure, three times 

with centrifugation and agitation. The following cleaning step with acetonitrile was accelerated with 

the sonoreactor or the ultrasonic probe (2 min), or with the ultrasonic bath (5 min). In Figure IV.3, the 

ultrasonic bath results correspond to number 5; number 6 for the sonoreactor; and 7 for the probe. The 

trend observed for the number of matched peptides and for the protein sequence coverage was similar 

to the one obtained in the first assay. 

 

(iii) Third assay. The water and acetonitrile washing steps were accelerated with the sonoreactor or the 

ultrasonic probe (2 min), or with the ultrasonic bath (5 min). In Figure IV.3, number 8 corresponds to 

the results obtained with the ultrasonic bath; 9 to the sonoreactor; and 10 to the ultrasonic probe. As 

can be seen, when the water and acetonitrile washing steps were accelerated with ultrasound, the 

number of matched peptides was similar to the result obtained with the classic approach. The protein 

sequence coverage was also similar, even slightly better. Remarkably, the effectiveness of the 

ultrasonic bath, the probe and the sonoreactor for this purpose was analogous. 

 

Therefore, it was concluded that the washing procedure can be accelerated with ultrasonic energy, 

without protein degradation, in one single step with water, followed by another single step with 

acetonitrile. In addition, contaminants were removed and no gel degradation was observed. 

Furthermore, the number of matched peptides and sequence coverage were similar or even better than 

the results obtained with the classic protocol. Considering that the washing procedure has to be 

performed before and after the reduction and alkylation steps, the total sample handling time was 

reduced from ca. 90 min to 20 min using the ultrasonic bath. The reduction is even higher, from 90 

min to 8 min, using the sonoreactor or the ultrasonic probe. However, the number of samples that can 

be processed at the same time with the ultrasonic bath is higher than with the sonoreactor or the 

ultrasonic probe. Another important aspect to be referred is that not only is time saved, but also sample 

handling is simplified. 
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Figure IV.3: Ultrasound effect on the washing procedure (n = 2). The ultrasonic energy was provided 

by an ultrasonic bath (35 kHz, 60 % ultrasonication amplitude, 5 min ultrasonication time); a 

sonoreactor (24 kHz, 50 % ultrasonication amplitude, 2 min ultrasonication time); and an ultrasonic 

probe (30 kHz, 50 % ultrasonication amplitude, 2 min ultrasonication time, 0.5 mm sonotrode 

diameter). See Figure IV.2a) for number identification. 

 

 

IV.4.2. Ultrasound effect on the reduction and alkylation steps 

 

Reduction and alkylation steps are normally performed to break protein disulfide bonds between 

cysteine residues and facilitate the enzymatic digestion. Hence, in the classic procedure, prior to 

protein digestion, cysteine residues are reduced using DL-dithiothreitol (DTT) during 10 min at 60ºC, 

plus 15 min at room temperature. Then, the thiol groups of the cysteine residues are blocked with 

iodoacetamide (IAA) during 35 min in the dark at room temperature [13]. 

 

Once it was confirmed that the washing procedures could be rapidly completed with ultrasonic energy, 

the reduction and alkylation steps (steps 7 and 8 in Figure IV.1) were also submitted to the influence 

of ultrasound (see Figure IV.2b). Like in the washing procedure, this study was performed gradually, 

trying to avoid protein degradation and minimize gel deterioration. The classic procedure was always 

carried out for result comparison. 
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(i) First assay. Reduction with DTT was performed in one single step accelerated with the sonoreactor 

(2 min), the ultrasonic probe (2 min) or with the ultrasonic bath (5 min). In this assay, the alkylation 

step with IAA was performed by the classic procedure, i.e. 35 min at room temperature in darkness. In 

Figure IV.4, letter B corresponds to the results obtained with the ultrasonic bath; letter C to the 

sonoreactor; and D to the ultrasonic probe. As can be seen, the number of matched peptides and the 

protein sequence coverage obtained for both proteins was similar to the results obtained with the 

classic procedure, letter A. 

 

(ii) Second assay. Reduction with DTT was performed with the classic protocol, i.e. 10 min at 60ºC 

plus 15 min at room temperature, while the alkylation step was performed during 2 min with the 

sonoreactor or the probe, or in 5 min with the ultrasonic bath. In Figure IV.4, letters E, F and G 

correspond to the results obtained with the bath, the sonoreactor and the probe sample treatment, 

respectively. As can be seen, the results were similar between the ultrasound enhanced procedure and 

the classic procedure, letter A. 

 

 

Figure IV.4: Ultrasound effect on the reduction and alkylation procedure (n = 2). The ultrasonic 

energy was provided by an ultrasonic bath (35 kHz, 60 % ultrasonication amplitude, 5 min 

ultrasonication time); a sonoreactor (24 kHz, 50 % ultrasonication amplitude, 2 min ultrasonication 

time); and an ultrasonic probe (30 kHz, 50 % ultrasonication amplitude, 2 min ultrasonication time, 

0.5 mm sonotrode diameter). See Figure IV.2b) for letter identification. 
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(iii) Third assay. Once it was demonstrated that the reduction and alkylation steps could be accelerated 

without protein degradation and non-desired collateral reactions, caused by the cavitation effects of 

ultrasonic energy, the third assay was to perform reduction and alkylation both with ultrasonic energy. 

In Figure IV.4, letters H, I and J correspond to the results achieved with the bath, the sonoreactor and 

the probe, respectively. As may be seen, the number of matched peptides and percentage of sequence 

coverage for both proteins was similar to the results obtained with the classic protocol, letter A. 

 

Hence, it was concluded that protein reduction and alkylation can be performed with ultrasonic 

energy, in such a way that the sample treatment time was reduced from 60 min to 10 min using the 

ultrasonic bath, or 4 min using the sonoreactor or the ultrasonic probe. Neither the number of matched 

peptides nor the protein sequence coverage percentage was affected by the ultrasonication process. 

Again, it must be noticed that not only was time saved, but also the sample handling was simplified. 

 

IV.4.3. Ultrasound effect on the washing, reduction and alkylation steps 

 

As previously demonstrated, ultrasonic devices are a good alternative to accelerate and simplify the 

washing, reduction and alkylation steps in the sample treatment for in-gel protein enzymatic digestion. 

So, the next step was to investigate if ultrasonic energy could be applied to all the referred steps at the 

same time without compromising protein identification. A mixture of standard proteins was used with 

this purpose. Protein molecular masses were comprised between 14.4 and 97 kDa as follows: glycogen 

phosphorylase b, 97 kDa; BSA, 66 kDa; ovalbumin, 45 kDa; carbonic anhydrase, 30 kDa; trypsin 

inhibitor, 20.1 kDa; and α-lactalbumin, 14.4 kDa. The proteins were separated by SDS-PAGE and the 

gel bands were submitted to the in-gel protein digestion procedure schematized in Figure IV.1, where 

the washing, reduction and alkylation steps were accelerated with ultrasound as described above. 

Digestion of the same mixture of standard proteins by the classic protocol was also performed. The 

ultrasonic device selected was the ultrasonic bath (35 kHz, 60 % ultrasonication amplitude, 5 min 

ultrasonication time) due to its higher throughput, compared to the sonoreactor and the ultrasonic 

probe. Results presented in Figure IV.5 confirm that the acceleration and simplification of the sample 

treatment with ultrasonic energy is a valid approach. The number of matched peptides and the protein 

sequence coverage obtained for the proteins studied was virtually the same with either the classic or 

the ultrasonic procedure. In addition, the protein identification score obtained was always the highest 

score and was always outside of the random region. 

 

MALDI-TOF mass spectra obtained for BSA and α-lactalbumin with the classic and ultrasonic 

procedures are presented in Figure IV.6. As can be seen, the peptides formed, and their intensity, are 

essentially the same regardless of the sample treatment used. In addition, the background of the 

spectra is similar, which indicates that no interfering gel degradation products were formed during the 

ultrasonication process. 
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Figure IV.5: Ultrasound effect on the washing, reduction and alkylation steps in the in-gel protein 

digestion procedure. Ultrasonic energy was from an ultrasonic bath operating at 35 kHz, 60 % 

ultrasonication amplitude, during 5 min (n = 2). 

 

 

A major concern for in-gel protein digestion is the sensitivity of the method. Any method capable of 

reducing the sample preparation time needs to prove that the sensitivity is not compromised. 

Therefore, the identification of protein samples raging from 0.5 - 0.01 µg was attempted. BSA, 

ovalbumin, carbonic anhydrase, and α-lactalbumin protein standards with different concentrations 

were separated by SDS-PAGE and the corresponding gel bands were processed according to the in-gel 

protein digestion procedure schematized in Figure IV.1. The washing, reduction and alkylation steps 

were accelerated with ultrasound as described above. To increase the sensitivity of the method, the 

buffer solution containing the peptides was collected after enzymatic digestion, and the remaining 

peptides were extracted from the gel as follows: 25 µL of a 50 % acetonitrile/ 0.1 % TFA solution 

were added to the gel and ultrasonicated in the sonoreactor during 2 min (amplitude 50 %). The 

extraction solution was added to the digestion solution, evaporated to dryness and finally redissolved 
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in 10 µL of 0.3% formic acid. This extraction step was repeated twice. Protein digestion by the classic 

protocol was also performed for result comparison. As can be seen in Figure IV.7, the protein 

sequence coverage and the number of matched peptides decrease with the decreasing amount of 

protein used for enzymatic digestion. However, all the protein standards were identified with 

confidence with both the ultrasonic and classic methods, even when low amounts of protein, such as 

0.1 µg, were used. Only BSA was correctly identified with both approaches when 0.01 µg of protein 

was used. Based on these results, the proposed ultrasonic method can be considered a good alternative 

to the classic protocol also when low amounts of protein are analyzed. 

 

 

Figure IV.6: Influence of the ultrasonic enhanced procedure on the MALDI-TOF mass spectra 

obtained for BSA and α-lactalbumin after in-gel enzymatic digestion. a) BSA mass spectrum obtained 

after protein digestion with the classic protocol. b) BSA mass spectrum obtained after protein 

digestion with the ultrasonic enhanced protocol. c) α-lactalbumin mass spectrum obtained after protein 

digestion with the classic protocol. d) α-lactalbumin mass spectrum obtained after protein digestion 

with the ultrasonic enhanced protocol. The washing, reduction and alkylation steps were accelerated 

with the ultrasonic bath (35 kHz, 60 % ultrasonication amplitude, 5 min ultrasonication time). 
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Figure IV.7: Effect of ultrasonic energy on the washing, reduction and alkylation steps for the in-gel 

digestion of low amounts of protein, ranging from 0.5 and 0.01 µg (n = 2). Ultrasonic bath parameters: 

35 kHz, 60 % ultrasound amplitude; 5 min ultrasonication time.  

 

 

IV.4.4. Ultrasound effect on the trypsin diffusion process into the gel 

 

After washing, reduction and alkylation steps, the gel band is dehydrated and the trypsin solution is 

added and left in an ice bath during 60 min (see step 11 in Figure IV.1) for enzyme diffusion into the 

gel at low temperatures to avoid trypsin autolysis. Then, the buffer solution is added and the enzymatic 

protein digestion is performed using the sonoreactor, as depicted in steps 12 and 13 in Figure IV.1. 

Since ultrasonic energy increases the enzymatic activity and facilitates the diffusion of the enzyme 

into the gel, the 60 min ice bath step could possibly be reduced or even suppressed using ultrasound 

instead. Therefore, gel slices with α-lactalbumin and BSA (0.5 µg) were digested with trypsin in the 

sonoreactor at 50 % of amplitude during 4 and 8 min without the previous ice bath step. It must be 

referred that the water bath in the sonoreactor was refrigerated during the procedure to guarantee a 

constant temperature in the ultrasonication process. When the slow gel rehydration step using the 

trypsin solution was replaced by ultrasonication with the sonoreactor during 4 min, none of the 

proteins were identified. As a consequence, a longer ultrasonication time was tested, 8 min, in which 

BSA was correctly identified. Nevertheless, the protein sequence coverage (63 ± 3 %) and the number 
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of matched peptides (43 ± 1) were lower than the results obtained when the gel rehydration on ice was 

performed. In addition, α-lactalbumin was not identified. The MALDI-TOF mass spectra obtained for 

BSA following both procedures were different, as can be seen in Figure IV.8. Hence, when the slow 

trypsin diffusion into the gel was replaced by ultrasonication with the sonoreactor, m/z fragments are 

located in the low mass range (< 1600 Da), as can be seen in Figure IV.8b). In contrast, when the 

digestion was completed by the classic procedure, peptide fragments had a higher molecular mass (> 

1400 Da, Figure IV.8a), and a better protein sequence coverage was obtained. Regarding α-

lactalbumin, only four of the predicted peptides for this protein were observed with lower intensity 

than expected (data not shown). Furthermore, high intensity peaks corresponding to trypsin autolysis 

(842 and 1045 Da) were detected (data not shown).  

 

 

Figure IV.8: Mass spectra obtained for BSA (0.5 µg) after sonoreactor digestion with and without gel 

incubation with trypsin, on ice, during 60 min. a) Protein digestion with the sonoreactor (2 min; 50 % 

ultrasonication amplitude) after incubation with trypsin on ice during 60 min. b) Protein digestion with 

the sonoreactor (8 min; 50 % ultrasonication amplitude) without gel incubation with trypsin on ice. 
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IV.4.5. Proof of the procedure 

 

The identification of proteins from complex mixtures obtained from three different organisms was 

performed as proof of the procedure. Protein mixtures were separated by SDS-PAGE as shown in 

Figure IV.9. Gel bands containing a 15 kDa protein present in the periplasm of the Desulfovibrio 

desulfuricans G20, together with two proteins present in the soluble extract of Desulfovibrio gigas and 

Desulfovibrio desulfuricans ATCC 27774, at 50 and 40 kDa, respectively, were excised. The gel slices 

were treated according to the classic sample treatment protocol for in-gel protein digestion as shown in 

Figure IV.1, and the ultrasonic accelerated procedure, i.e. washing, reduction and alkylation steps 

accelerated with an ultrasonic bath (35 kHz, 60 % ultrasonication amplitude, 5 min ultrasonication 

time). Proteins were correctly identified with both procedures, and their respective sequence coverage 

and number of matched peptides are summarized in Table IV.2. 

 

 

Figure IV.9: SDS-PAGE analysis of the protein mixtures used as proof of the procedure. Three 

protein bands were selected for PMF identification: D. desulfuricans G20, ca. 15 kDa; D. gigas NCIB 

9332, ca. 50 kDa; D. desulfuricans ATCC27774, ca. 40 kDa. 

 

IV.5. Conclusions 

 

The time-consuming and tedious sample handling for protein identification by PMF has been revised 

with the introduction of ultrasonic energy in the different steps of the sample treatment. The total time 

was reduced ca. 85 % without compromising the protein sequence coverage or the number of matched 
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peptides. In addition, the sample handling was also drastically simplified. Furthermore, no background 

increment was observed in the MALDI spectra. The acceleration of the different stages in the sample 

treatment for protein identification by PMF can be performed, with similar results, using any of the 

following ultrasonic devices: bath, probe or sonoreactor. However, the ultrasonic bath offers higher 

sample throughput and so it is the recommended device for speeding up the sample handling by PMF. 

 

We also tried to simplify the step comprising trypsin diffusion into the gel prior to protein enzymatic 

digestion, but no satisfactory results were obtained. 

 

Finally, the new sample treatment using ultrasonic energy was successfully applied for the 

identification of proteins from complex mixtures of three different sulfate reducing bacteria, 

demonstrating that: (a) the parameters tested on standard samples can also be applied to biological 

samples; and (b) the method provides important advances for fast protein identification. 

 

Table IV.2: Comparison of the sequence coverage (%) and number of matched peptides obtained with 

the classic sample treatment and the ultrasonic enhanced procedure for proteins from a complex 

mixture from different sulfate reducing bacteria (n = 2). 

  Classic protocol Ultrasonic bath 

Protein Database 
Mascot 

score 

Sequence 

coverage % 

(X ± SD) 

Matched 

peptides 

(X ± SD) 

Mascot 

score 

Sequence 

coverage % 

(X ± SD) 

Matched 

peptides 

(X ± SD) 

Sulfite reductase (EC 1.8.99.1), 

Desulfovibrio desulfuricans 
MSDB 97 ± 6 40.0 ± 1.4 17.5 ± 3.5 108 ± 1 42.5 ± 3.5 20.5 ± 0.7 

Zinc resistance-associated 

protein precursor, Desulfovibrio 

desulfuricans (strain G20) 

MSDB 131 ± 8 37.5 ± 6.4 13.5 ± 0.7 126 ± 13 46.5 ± 2.1 13.0 

Sulfite reductase, dissimilatory-

type alpha subunit 

(EC 1.8.99.3) (Desulfoviridin 

alpha subunit) (hydrogen 

sulfite reductase alpha subunit) 

SwissProt 81 ± 14 47.8 ± 2.5 15.1 ± 0.7 82 ± 1 56.1 ± 4.3 21.0 ± 2.8 
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V.1. Abstract 

 

Preliminary results regarding fast isotopic labeling of proteins with 
18

O, combined with matrix assisted 

laser desorption/ionization time-of-flight mass spectrometry analysis, are presented. Similar 
16

O/
18

O 

isotopic labeling ratios were found for the overnight procedure (12 h) and the new fast ultrasonic 

procedure (30 min) for the BSA, ovalbumin and α-lactalbumin proteins. The procedure, however, 

failed to promote double 
18

O isotopic labeling for the proteins ovalbumin and α-lactalbumin. Two 

different ultrasonication frequencies, 35 kHz and 130 kHz, were studied with two different 

ultrasonication times of 15 min and 30 min. The best results were obtained with the procedure 

comprising 130 kHz of ultrasonication frequency and 30 min of ultrasonication time. For comparative 

purposes the overnight isotopic 
18

O-labeling procedure was performed. In addition, the new fast 

isotopic labeling procedure was also studied without ultrasonication, in a water bath at 60ºC. 
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V.2. Introduction 

 

Protein quantitation is an essential tool for proteomics and system biology studies, since it helps to 

understand the function of biological processes, to quantify protein post-translational modifications or 

to identify diagnosis or prognosis biomarkers, and to develop new drugs [1-3]. 

 

Relative or absolute protein quantitation can be obtained through mass spectrometry, MS, techniques. 

MS-based protein quantitative methods can be traced back to the MS stable isotope labeling absolute 

measurements [4], but after different improvements in the area MS-based strategies for protein 

relative/absolute quantitation are currently divided into four different approaches, as follows [5]: (i) in 

the chemical or “tagging” approach proteins react with a chemical reagent in a specific site; (ii) in the 

biological/metabolic approach cells are cultured in media enriched with essential amino acids 

containing stable isotopes, which are incorporated into the proteins during the cellular growth; (iii) in 

the enzymatic incorporation approach the protein cleavage is carried out in 
18

O-water and 
18

O is 

incorporated into the C-terminus of peptides; and (iv) in the internal standard approach a known 

quantity of an isotopically-labeled synthetic peptide is added to the protein digest as internal standard.  

 

The use of 
18

O-water for isotopic labeling in protein quantitation has its origins in the work of 

Sprinson and Rittenberg [6]. Enzymatic labeling with 
18

O during proteolysis cleavage can be used for 

relative or absolute quantitation [5, 7]. In this process, depending on the enzyme used, one or two 

oxygen atoms from the solvent (H2
18

O) are incorporated into the peptide C-terminus. For relative 

quantitation, one set of proteins is cleaved in 
18

O-water while the other is hydrolyzed in 
16

O-water. 

Then, both samples are mixed in equal proportions to ensure that any variation that may occur in 

further sample treatment steps (e.g. loss of peptides) is equivalent between them, maintaining this way 

a constant ratio between the two. Relative quantitation is achieved by the measuring the ratios 

obtained between the intensities of the mass peaks corresponding to the labeled and unlabeled peptides 

[8]. Absolute quantitation can also be performed with 
18

O enzymatic labeling by using standard 

curves. These curves are done by plotting the protein concentration vs. the ratio obtained between the 

intensity of a characteristic peptide from the protein, and the intensity of an external synthetic peptide 

used as internal standard, which is also labeled during the protein enzymatic cleavage or later. The 

internal standard is added in a fixed quantity to the sample. After MS analysis, the ratio of the 

endogenous to the synthetic peptide is measured, and the absolute amount of the endogenous peptide 

can be calculated [9, 10]. Enzymatic labeling with 
18

O-water has the following advantages: (i) easy 

labeling procedures; (ii) all peptides present in the sample are labeled; and (iii) it requires only the 

presence of 
18

O-water, avoiding extra-reagents or synthetic steps. 

 

Some drawbacks, however, inherent to this type of labeling need to be overcome. Systematic studies 

have shown that different types of proteolytic enzymes incorporate different levels of 
18

O from water 



Chapter V 

133 

 

during digestion [5]. Ideally, the incorporation of two 
18

O (
18

O2), i.e. a mass shift of 4 Dalton (Da), 

would be the minimum required to obtain appreciable m/z changes in the mass spectrum between 

labeled and unlabeled samples, avoiding the 
13

C interference or isotopic peak overlapping. The 

incorporation of a single 
18

O (
18

O1), yields a mass increment between each sample of only 2 Da, which 

is not adequate to produce an appreciable change in m/z, especially for multiply charged species. 

Furthermore, the procedure for isotopic labeling is a time-consuming approach which can take from 

12 to 48 h.  

 

Ultrasonic energy has been used in chemistry to speed up the kinetics of chemical reactions [11, 12]. 

Remarkably, ultrasonic energy has been recently reported as a tool for the acceleration of enzymatic 

protein digestion from overnight (12 h) to only a few min [13, 14]. However, the potential of 

ultrasonic energy to accelerate the 
18

O enzymatic labeling process and to increase the ratio of 
18

O-

incorporation into the peptides is still unknown. 

  

In this work we report our preliminary results regarding the acceleration of the enzymatic 
18

O isotopic 

labeling reaction with ultrasonic energy. With this goal, 
18

O-labeling with ultrasonic energy provided 

by an ultrasonic bath at 60ºC was studied. The influence of the ultrasonic frequency was also studied 

by using 35 kHz and 130 kHz ultrasonic transducers. In addition, for comparative purposes the 

overnight labeling and labeling in water at 60ºC with no ultrasound were also performed.  

 

 

V.3. Experimental 

 

V.3.1. Apparatus 

 

Protein digestion/labeling was carried out in 0.5 mL safe-lock tubes from Eppendorf (Hamburg, 

Germany). A minicentrifuge, model Spectrafuge-mini, from Labnet (Madrid, Spain), and a 

minicentrifuge-vortex, model Sky Line, from ELMI (Riga, Latvia) were used throughout the sample 

treatment, when necessary. Milli-Q natural abundance (H2
16

O) water was obtained from a Simplicity
TM

 

185 from Millipore (Milan, Italy). An ultrasonic bath, model Transsonic TI-H-5, from Elma (Singen, 

Germany) with temperature and amplitude control was used.  

 

V.3.2. Materials and Reagents 

 

Bovine serum albumin, BSA (66 kDa, > 97 %), α-lactalbumin (14.4 kDa, ≥ 85 %), ovalbumin (45 

kDa), and trypsin (proteomics grade) used in all experiments, were purchased from Sigma (Steinheim, 

Germany). Protein reduction and alkylation were performed, respectively, with DL-dithiothreitol 

(DTT, 99 %) and iodoacetamide (IAA) from Sigma. The following reagents were used during sample 
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digestion/labeling: ammonium bicarbonate buffer (AmBic, pH 8.5, ≥ 99.5 %) and formic acid (FA, 98 

%) from Fluka (Buchs, Switzerland); H2
18

O (95 atom %) from ISOTEC™ (Miamisburg, OH, USA). 

α-Cyano-4-hydroxycinnamic acid (α-CHCA, ≥ 99.0 %), acetonitrile (99.9 %) and trifluoroacetic acid 

(TFA, 99 %) were from Fluka, Sigma-Aldrich and Riedel-de Haën (Seelze, Germany), respectively. 

ProteoMass™ Peptide MALDI-MS calibration kit (MSCAL2) from Sigma was used as mass 

calibration standard for MALDI-TOF-MS. 

 

V.3.3. Sample treatment 

 

A stock solution of BSA, ovalbumin and α-lactalbumin (100 pmol/µL) was prepared in AmBic (100 

mM) using natural abundance water. Reduction was performed with DTT (10 mM) at 37ºC for 1 h and 

alkylation was performed with IAA (50 mM) at room temperature (RT) during 45 min in the darkness. 

Then aliquots (10 µL) of the protein solution were diluted to 100 µL with AmBic (100 mM) prepared 

in natural abundance water or in 95 % 
18

O-enriched water. Trypsin (2 %, v/v) was added to these 

solutions to a final concentration of 0.47 pmol/µL. The substrate to enzyme ratio was 20:1 (mol/mol).  

Different digestion and labeling procedures were tested: (i) overnight/labeling (12 h) digestion at 

37ºC; (ii) digestion/labeling at 60ºC in an ultrasonic bath (70 % of ultrasonication amplitude and 35 

kHz of ultrasonication frequency) during 15 or 30 min; (iii) digestion/labeling at 60ºC in an ultrasonic 

bath (70 % of ultrasonication amplitude and 130 kHz of ultrasonication frequency) for during 15 or 30 

min; and (iv) digestion/labeling at 60º C during 15 and 30 min with no ultrasound. To stop the 

enzymatic digestion/labeling reactions, 5 µL of formic acid (50 %, v/v) were added. A comprehensive 

scheme of the sample treatment is presented in Figure V.1. 

 

V.3.4. MALDI-TOF-MS analysis 

 

Prior to MALDI-TOF-MS analysis, the samples were mixed in a 1:1 ratio with the α-CHCA (10 

µg/µL) matrix solution prepared in 50 % acetonitrile/ 0.1 % TFA. Then, 1 µL of each sample was 

hand-spotted onto a stainless steel MALDI-TOF-MS plate and allowed to dry. 

 

MALDI mass spectra were obtained with a Voyager DE-PRO™ Biospectrometry™ Workstation 

model from Applied Biosystems (Foster City, USA), equipped with a nitrogen laser radiating at 337 

nm. Measurements were carried out in the reflectron positive ion mode, with 20 kV of accelerating 

voltage, 75.1 % of grid voltage, 0.002 % of guide wire and a delay time of 100 ns. Two close external 

calibrations were performed with the monoisotopic peaks of the bradykinin, angiotensin II, P14R and 

ACTH peptide fragments (m/z [M+H]
+
: 757.3997, 1046.5423, 1533.8582 and 2465.1989, 

respectively). 500 laser shots were summed per spectrum. The spectra analysis was performed with the 

Data Explorer™ software (version 4.0) from Applied Biosystems. 
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The following search engines were used to identify the obtained peptide mass fingerprints: MASCOT 

[http://www.matrixscience.com/search_form_select.html] and PROTEIN PROSPECTOR 

[http://prospector.ucsf.edu/]. Search parameters: (i) Database: SwissProt. 2006; (ii) molecular mass 

(MW) of protein: all; (iii) one missed cleavage; (iv) fixed modifications: carbamidomethylation (C); 

(v) variable modifications: oxidation (M), 
18

O1 and 
18

O2 label (C-term); (vi) peptide tolerance up to 

150 ppm. If the protein identification score is located out of the random region and the protein scores 

first, then a match is considered successful.  

 

 

Figure V.1: Comprehensive scheme of the 
18

O-isotopic labeling sample treatment. 
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V.3.5. Isotopic peak deconvolution 

 

Isotopic peak deconvolution was performed with the deisotope function of the Data Explorer™ 

software (version 4.0) from Applied Biosystems. This function is an advanced peak filtering method 

that uses a deisotoping algorithm to determine the relative abundance of multiple components with 

overlapping isotope distributions [15]. The deisotope function reduces the spectrum to a centroided 

plot by deconvolution of the monoisotopic peaks from the peak list. For each peak in the spectrum, the 

software inspects the peak list for the higher theoretical masses and areas associated with additional 

expected peaks in a theoretical isotopic cluster. Moreover, to test the correct applicability of this 

function, the mathematical algorithm for deconvolution described by Yao and coworkers [16] was also 

used in the first steps of this work, and the results were compared. 

 

V.4. Results and discussion 

 

V.4.1. The isotopic labeling and the deconvolution problem 

 

Figure V.2 presents the MALDI-TOF-MS spectra of the peptide fragment (YLYEIAR)H
+
 (m/z = 927 

Da) obtained from the tryptic digestion of BSA under the conditions briefly described in the caption of 

the figure (for further details refer to the sample treatment section). The peptide (YLYEIAR)H
+
 is 

used throughout this manuscript for explanation purposes because the best isotopic labeling was 

obtained with this peptide. As referred in the introduction section, the incorporation of one 
18

O (
18

O1) 

yields a mass increment for each isotopic peak of 2 Da while the incorporation of two 
18

O (
18

O2) yields 

a mass increment of 4 Da (see Figure V.2a and Figure V.2b). To avoid isotopic peak overlapping, 100 

% of 
18

O2- labeling should be achieved. The difference in the isotopic pattern due to the variable 

labeling and its consequences for spectra interpretation can be easily explained through Figure V.2, 

spectra a – c. Spectrum a, corresponds to the BSA overnight digestion in 
16

O-water and the isotopic 

pattern is similar to the natural isotopic distribution, as showed in Table V.1, with the following main 

m/z peaks being obtained: 927, 928 and 929 Da. Ideally, the isotopic labeling should incorporate two 

18
O, resulting in a mass increment of 4 Da for each mass peak. Therefore, the following main m/z 

peaks should be expected in a complete (100 %) 
18

O2-labeling: 931 Da (= 927 + 4), 932 Da (= 928 + 

4), and 933 Da (= 929 + 4). Experimentally, however, this does not occur because the double oxygen 

incorporation yield is not 100 %. This is the reason why spectrum b (Figure V.2) presents mass peaks 

at 929 Da and 930 Da, which would not be present in a complete 
18

O2-labeling reaction. The mass 

peak at 929 Da observed in Figure V.2 b refers to the single labeled peptide signal (YLYEIAR)H
+
 

(927 + 2 Da) plus the contribution of the isotope cluster from the unlabeled peptide. The mass peak at 

931 Da corresponds to the double labeled peptide signal (YLYEIAR)H
+
 (927 + 4)  plus the 

contribution from the isotope cluster of single labeled peptides (929 + 2). Since there is no way to 

know the number unlabeled, single labeled or double labeled peptides, it is necessary to use 
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complicated mathematical procedures for spectra deconvolution [7-9]. To better understand this 

problem, consider spectra d – f present in Figure V.2, were different intensities for the mass peaks 929 

and 931Da were obtained for the same sample and the same concentration, as a result of the different 

conditions used in the isotopic labeling reaction. This indicates that different degrees of labeling 

(single or double) are obtained as a function of the sample treatment. 

Figure V.2: Reflectron positive ion mode MALDI-TOF mass spectra of the peptide fragment 

(YLYEIAR)H
+
 obtained in the tryptic digest of BSA. a) Overnight digestion in 100 % H2

16
O buffer 

solution at 37ºC (ca. 12 h). b) Overnight digestion in 95 % atom H2
18

O buffer solution at 37ºC (ca. 12 

h). c) Ultrasonic bath digestion in 95 % atom H2
18

O buffer solution at 60ºC (35 kHz frequency; 70 % 

amplitude; 30 min); d) Ultrasonic bath digestion in 95 % atom H2
18

O buffer solution at 60ºC (130 kHz 

frequency; 70 % amplitude; 15 min); e) Ultrasonic bath digestion in 95 % atom H2
18

O buffer solution 

at 60ºC (130 kHz frequency; 70 % amplitude; 30 min); f) Water bath digestion in 95 % atom H2
18

O 

buffer solution at 60ºC (30 min). 

 

Table V.1: Theoretical vs. experimental isotopic distribution for the tryptic peptide fragment 

(YLYEIAR)H
+
 from BSA digestion. 

Mass (m/z) 

[M+H
+
] 

Theoretical isotopic 

distribution
a
 

Experimental 

isotopic distribution
b
 

Mass (m/z) 

after 
18

O1 incorporation 

Mass (m/z) 

after 
18

O2 incorporation 

927 100.0 100 929 931 

928 53.8 54.1 930 932 

929 16.6 15.6 931 933 

930 3.7 3.4 932 934 

a 
Isotopic distribution calculated with the isotopic calculator function of the Data Explorer™ software 

(version 4.0) from Applied Biosystems.  

b 
Experimental ratios obtained for overnight digested BSA samples. Values were acquired with a 

MALDI-TOF-MS system in the reflectron positive ion mode (n=2). 
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V.4.2. Influence of the sample treatment on the 
18

O-labeling (
16

O/
18

O)  

 

The proteolytic 
18

O-labeling method can be performed by two different approaches, as described 

below. In the first approach, named as “direct labeling”, the 
18

O-labeling occurs at the same time than 

enzymatic digestion [8, 9]. This means that the enzymatic cleavage is performed in 
18

O-water, 

normally at the pH recommended by the companies (pH = 8.5) to obtain the best enzymatic efficiency. 

 

The second approach, named as “decoupled procedure”, was first reported by Yao et al. [17], and 

briefly, the labeling process is completed in two steps, as follows: first, the enzymatic digestion is 

performed in 
16

O-water, at the enzyme’s optimal pH and then, after 
16

O-water evaporation, the labeling 

process occurs in 
18

O-water at a lower pH (5-6). The 
18

O-labeling decoupled process is based on recent 

literature, which suggests that to obtain almost complete 
18

O-labeling, the pH of the labeling reaction 

should be shifted toward acidic pHs, instead of performing the reaction at the optimal pH of the 

enzyme [7]. Although, the decoupled procedure has the advantage of separating the digestion and 

labeling steps, allowing their conditions to be individually optimized, in our experiments we decided 

to use the direct labeling approach as mentioned above, since it was expected a smaller technical 

variation due to the reduced number of sample handling steps. In addition, the development of on-line 

approaches for mass spectrometry is facilitated because the direct labeling is performed in one single 

step. 

 

The 
18

O-labeling process can be divided into two chemical reactions, as follows. 

 

(i) First reaction: amide bond cleavage. 

                                          

 

 (ii) Second reaction: carboxyl oxygen exchange.  

                                         

 

The first experiments were carried out to study the influence of ultrasonic energy on the total 

enzymatic labeling of peptides with 
18

O. The ratio 
16

O/
18

O refers to the amount of 
18

O incorporated in 

the labeling process, no matter the type of labeling (single or double). Table V.2 shows the 
16

O/
18

O 

ratios of different peptides obtained from the tryptic digestion of BSA using the different sample 

treatments studied in this work.  

 

Concerning the overnight protocol (12 h), the 
18

O-incorporation yield obtained for all the BSA 

peptides (Table V.2) was higher than 95 % (
16

O/
18

O ratios lower than 0.05). 
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Table V.2: 
16

O/
18

O ratios of different peptides obtained from the tryptic digestion of BSA, ovalbumin 

and α-lactalbumin (900 pmol each protein), in the presence of 95 % H2
18

O. Different labeling methods 

were used in this experimental: overnight (12 h); ultrasonic bath (35 kHz; 70 % amplitude, 60ºC, 15 

and 30 min); ultrasonic bath (130 kHz; 70 % amplitude, 60ºC, 15 and 30 min); water bath (60ºC, 15 

and 30 min). Values were obtained after MALDI-TOF-MS analysis in the reflectron positive ion mode 

(n=2). 

Protein Peptide Fragment 
[M+H]

+
 

(m/z) 

Overnight 

(12 h) 

US bath 

35 kHz 

US bath 

130 kHz 

Water 

bath 
Time 

BSA 

(YLYEIAR)H+ 927.49 0.01  0.02 

0.07  0.01 0.03 ± 0.01 0.04  0.00 15 min 

0.05  0.00 0.02 ± 0.01 0.03  0.03 30 min 

(ALKAWSVAR)H+ 1001.59 a 

0.08  0.02 0.03 ± 0.04 0.06  0.01 15 min 

0.06  0.03 0.06 ± 0.05 0.05  0.03 30 min 

(RHPEYAVSVLLR)H+ 1439.82 0.04  0.01 

0.11  0.02 0.05 ± 0.02 0.08  0.01 15 min 

0.11  0.02 0.06 ± 0.01 0.07  0.01 30 min 

(LGEYGFQNALIVR)H+ 1479.80 0.04  0.01 

0.31  0.05 0.08 ± 0.01 0.12  0.02 15 min 

0.23  0.06 0.11 ± 0.04 0.13  0.01 30 min 

(KVPQVSTPTLVEVSR)H+ 1639.94 0.03  0.02 

0.11  0.03 0.08 ± 0.00 0.11  0.02 15 min 

0.08  0.03 0.08 ± 0.02 0.06  0.05 30 min 

Ovalbumin 

(VYLPR)H+ 647.39 0.02 ± 0.02 

b 

0.09 ± 0.00 

b 30 min 

(HIATNAVLFFGR)H+ 1345.74 0.03 ± 0.01 0.13 ± 0.01 

(GGLEPINFQTAADQAR)H+ 1687.84 0.07 ± 0.06 0.11 ± 0.01 

(ELINSWVESQTNGIIR)H+ 1858.97 0.19 ± 0.17 0.15 ± 0.01 

(LYAEERYPILPEYLQCVK)H+ 2284.17 0.08 ± 0.03 0.15 ± 0.02 

α-Lactalbumin 

(CEVFR)H+ 710.33 0.03 ± 0.00 

b 

0.14 ± 0.01 

b 30 min 

(VGINYWLAHK)H+ 1200.65 0.04 ± 0.03 0.14 ± 0.03 

(EQLTKCEVFR)H+ 1309.66 a 0.14 ± 0.01 

(ILDKVGINYWLAHK)H+ 1669.94 0.09 ± 0.07 0.17 ± 0.01 

a 
Peptide not present in the spectra. This peptide has a missed cleavage. 

b 
Experimental was not performed. 

 

Regarding 
18

O-incorporation yield obtained with the ultrasonic bath at 130 kHz of ultrasonication 

frequency at 60ºC, and with the water bath at 60ºC (no ultrasonication), data in Table V.2 show that 

similar results were obtained with both methods: a labeling efficiency of ca 90 % (
16

O/
18

O ratios lower 

than 0.13). In addition, the yields of incorporation were close to the ones obtained by the overnight 

protocol. For the peptides with higher mass values labeling results obtained were slightly worst, but 

the labeling efficiency was still ≥ 90 %.  



Ultrasonic energy as a new tool for fast isotopic 
18

O-labeling of proteins: preliminary results 

140 

 

As far as the sample treatment with 35 kHz of ultrasonication frequency at 60ºC concerns, data in 

Table V.2 suggests a relation between the labeling efficiency and the ultrasonication frequency. 

Hence, the 
18

O-incorporation was worse than the one obtained with the same time and the same 

temperature, but with a higher ultrasonication frequency of 130 kHz. 

 

On the overall, for the aforementioned treatments, the labeling efficiency was not the same for all 

peptides. It seems that the labeling yield is related with the peptide size. Therefore, as presented in 

Table V.2, labeling efficiencies lower than 90 % (
16

O/
18

O ratios higher than 0.11) were obtained for 

the peptides (RHPEYAVSVLLR)H
+
, (LGEYGFQNALIVR)H

+
 and (KVPQVSTPTLVEVSR)H

+
, with 

mass peaks of 1439, 1479 and 1639 m/z, respectively. On the other hand, labeling efficiencies higher 

than 90 % (
16

O/
18

O ratios lower than 0.11) were obtained for the peptides (YLYEIAR)H
+
 and 

(ALKAWSVAR)H
+
 with masses of 927 and 1001 m/z, respectively. Interesting, this problem was not 

observed when the labeling process was performed overnight. This fact suggests that the time range 

(15 min and 30 min) selected to speed up the enzymatic digestion and labeling reaction with 

ultrasound, or heating at 60ºC, was not enough to increase the reaction rates of the enzymatic process. 

A further explanation can be suggested, considering that the labeling yields were similar for the 

ultrasonic process at 130 kHz of ultrasonication frequency at 60ºC, and for the water bath at 60ºC. So, 

although different authors have suggested that ultrasonication can accelerate the enzymatic reactions, 

little attention has been given to the type of device used to perform such treatment, which can be an 

ultrasonic bath, like in this work, or an ultrasonic probe [18, 19]. Thus, for a given volume of solution, 

the ultrasonic intensity obtained with an ultrasonic bath is 100 times lower than the ultrasonic intensity 

obtained with an ultrasonic probe [20]. The low 
18

O-labeling yields, obtained with the ultrasonication 

treatment for the higher mass peptides, can be related to the low ultrasonication intensity of the 

ultrasonic bath. In this case, the 
16

O/
18

O labeling yield observed for the ultrasonic bath sample 

treatment can be linked to the temperature at which the labeling reaction was performed, rather than 

the ultrasonic energy. In fact, the labeling ratios for the sample treatment with the 130 kHz ultrasonic 

bath at 60ºC and with the water bath at 60ºC, without ultrasonication, were similar for all BSA 

peptides. Nevertheless, as we will see below, the 
18

O1/
18

O2 labeling efficiencies obtained with both 

methods were completely different. 

 

Another interesting finding was the relation between the different isotopic labeling yields and the 

frequency of ultrasound used, as referred previously. The ultrasonic bath used in this work provides 

ultrasound with two different ultrasonication frequencies: 35 kHz and 130 kHz. As can be seen in 

Table V.2, the results obtained with the ultrasonic bath operating at 130 kHz and 60ºC are similar to 

the overnight protocol for all the BSA peptides considered, but the labeling yield achieved with 35 

kHz of ultrasonication frequency was lower, specially for the peptide (LGEYGFQNALIVR)H
+
. The 

explanation can be as follows: when ultrasonic energy is provided to a liquid media, an effect known 

as cavitation occurs. This effect is responsible for the generation of small gas bubbles, which grow in 
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successive cycles, according to the frequency of ultrasound, and collapse violently when they reach an 

unstable size. The temperature and pressure near the collapse point can reach values up to 5000ºC and 

1000 atm respectively [21]. This energy is transmitted to the liquid media and the mass transfer 

processes are enhanced in a more effective manner than when only heat is used. Two types of 

cavitation can be produced by ultrasound: transient cavitation and stable cavitation. Most of the 

physical and chemical effects produced by ultrasound are associated with the collapse of transient 

cavitation bubbles [21], which are dominant at lower frequencies, i.e. 35 kHz. However, as the 

frequency increases, so it does the fraction of stable cavitation bubbles formed. As the ratio between 

transient to stable cavitation bubbles changes, the sonochemical effects are altered. Therefore, we 

hypothesize that the worst performance of the enzymatic labeling at lower frequencies (i.e. 35 kHz) is 

directly linked with the increasing number of transient cavitation bubbles formed. 

 

V.4.3. Influence of the sample treatment on the double 
18

O-labeling degree (
18

O1/
18

O2) 

 

One of the major issues regarding the application of 
18

O-labeling to quantitative proteomics is the 

variable 
18

O-incorporation into the peptide C-terminus [7-9]. This variability is related with the nature 

of the two reactions involved in the 
18

O-labeling process: the amide bond hydrolysis and the carboxyl 

oxygen exchange reaction. While in the first reaction one 
18

O atom is incorporated by the peptide 

during the enzymatic digestion, at least five cycles of the second reaction are necessary to obtain an 

18
O2-incorporation yield of ca. 98.5 % [7]. This reaction is extremely slow under the common 

conditions used, leading to variable exchange within the timeframe of the proteolytic reaction [17]. 

The cavitation phenomena generated by ultrasonic energy enhances both labeling reactions, but in the 

second reaction the forward and backward processes are probably both accelerated. It must also be 

referred that dedicated literature suggests that when ultrasound is applied for a short period of time, 

the enzymatic reactions are accelerated, while longer ultrasonication periods promote the inactivation 

of the enzyme [18]. Therefore, the control of the carboxyl oxygen exchange reaction (second reaction) 

is critical to overcome the 
18

O-incorporation variability. Table V.3 presents data regarding the single 

to double labeling ratios (
18

O1/
18

O2) obtained for BSA with the different sample treatments studied. As 

can be seen, the 
18

O1/
18

O2 labeling ratio follows the same pattern than the 
16

O/
18

O ratio. This means 

that the best results were obtained with the overnight protocol: 
18

O1/
18

O2 ratio lower than 0.35, 

corresponding to double (
18

O2) incorporation higher than 75 %. Regarding the other sample treatments 

studied, only the acceleration with the 130 kHz ultrasonic bath at 60ºC accomplished relative success. 

It is remarkable that the water bath at 60ºC, although capable of producing 
16

O/
18

O labeling ratios 

similar to the 130 kHz ultrasonic bath at 60ºC, failed in promoting double 
18

O incorporation. 

 

As far as the peptide size is concerned, the double labeling with the overnight protocol, or with the 130 

kHz ultrasonic bath at 60ºC, were the most robust procedures, with similar results: the peptides 

(YLYEIAR)H
+
 and (ALKAWSVAR)H

+
 (m/z = 927 and 1001, respectively) were double labeled with 
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a yield higher than 70 %  (
18

O1/
18

O2 ratio lower than 0.43). Nevertheless, for the peptides 

(RHPEYAVSVLLR)H
+
, (LGEYGFQNALIVR)H

+
 and (KVPQVSTPTLVEVSR)H

+
 (m/z = 1439, 

1479 and 1639, respectively) a double labeling efficiency of ca. 70 % was achieved with the overnight 

protocol, while lower double labeling yields were obtained with the ultrasonic protocol (130 kHz and 

60ºC).   

 

Table V.3: 
18

O1/
18

O2 ratios of different peptides obtained from the tryptic digestion of BSA, 

ovalbumin and α-lactalbumin (900 pmol each protein), in the presence of 95 % H2
18

O. Different 

labeling methods were used in this experimental: overnight (12 h); ultrasonic bath (35 kHz; 70 % 

amplitude, 60ºC, 15 and 30 min); ultrasonic bath (130 kHz; 70 % amplitude, 60ºC, 15 and 30 min); 

water bath (60ºC, 15 and 30 min). Values were obtained after MALDI-TOF-MS analysis in the 

reflectron positive ion mode (n=2). 

Protein Peptide Fragment 
[M+H]

+
 

(m/z) 

Overnight 

(12 h) 

US bath 

35 kHz 

US bath 

130 kHz 

Water 

bath 
Time 

BSA 

(YLYEIAR)H+ 927.49 0.32  0.04 

1.30  0.16 0.41 ± 0.05 0.80  0.08 15 min 

0.80  0.23 0.42 ± 0.01 0.51  0.19 30 min 

(ALKAWSVAR)H+ 1001.59 a 
1.50  0.33 0.40 ± 0.03 0.12  0.38 15 min 

0.83  0.18 0.32 ± 0.09 0.55  0.07 30 min 

(RHPEYAVSVLLR)H+ 1439.82 0.29  0.05 

4.33  0.61 0.77 ± 0.07 1.42  0.02 15 min 

2.11  0.84 0.76 ± 0.01 0.84  0.48 30 min 

(LGEYGFQNALIVR)H+ 1479.80 0.34  0.04 

3.51  0.27 1.15 ± 0.04 1.33  0.23 15 min 

2.59  0.30 1.21 ± 0.26 1.09  0.21 30 min 

(KVPQVSTPTLVEVSR)H+ 1639.94 0.30  0.00 

24.21  2.17 3.61 ± 0.18 7.77  5.37 15 min 

21.07  17.47 3.06 ± 0.13 2.63  1.03 30 min 

Ovalbumin 

(VYLPR)H+ 647.39 0.36 ± 0.06 

b 

2.12 ± 0.30 

b 30 min 

(HIATNAVLFFGR)H+ 1345.74 0.45 ± 0.07 3.89 ± 0.37 

(GGLEPINFQTAADQAR)H+ 1687.84 0.52 ± 0.06 3.18 ± 0.48 

(ELINSWVESQTNGIIR)H+ 1858.97 1.02 ± 0.93 c 

(LYAEERYPILPEYLQCVK)H+ 2284.17 0.90 ± 0.87 c 

α-Lactalbumin 

(CEVFR)H+ 710.33 0.31 ± 0.03 

b 

19.38 ± 3.66 

b 30 min 

(VGINYWLAHK)H+ 1200.65 0.39 ± 0.21 32.25 ± 1.34 

(EQLTKCEVFR)H+ 1309.66 a 37.53 ± 13.50 

(ILDKVGINYWLAHK)H+ 1669.94 5.98 ± 0.43 c 

a
 Peptide not present in the spectra. This peptide has a missed cleavage. 

b
 Experimental was not performed. 

c
 Double labeled peptide was not identified in the MALDI mass spectra. 
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It was also observed for the 130 kHz ultrasonic bath that the double labeling efficiency decreased as 

the peptide mass increased. Other authors have also referred that different peptides may exhibit 

different labeling efficiencies [7]. The reasons for the aforementioned fact, however, are not well 

understood yet.  For instance, Mirgorodskaya et al. [9] reported similar 
18

O1/
18

O2 ratios for peptide 

fragments with masses comprised between 1050.5 and 1385.6 m/z from a RNase tryptic digest, while 

Stewart et al. [8] have found 
18

O1/
18

O2 ratios comprised between 25 % and 80 %, as a function of the 

peptide type. 

 

V.4.4. Application to further proteins 

 

To evaluate the efficiency of the ultrasonic procedure at 60ºC and 130 kHz, α-lactalbumin and 

ovalbumin were submitted to the ultrasound developed procedure during 30 min. In addition, the 

overnight procedure was also performed for comparative purposes. Results are presented in Table V.2 

and Table V.3 for the 
16

O/
18

O and 
18

O1/
18

O2 labeling ratios, respectively.  

 

Regarding ovalbumin, the labeling efficiency (
16

O
 
/
18

O) was similar with both procedures. For the 

overnight procedure the labeling efficiency was comprised between 84 % and 98 % (
16

O/
18

O ratio 

between 0.19 and 0.02), while for the ultrasonic procedure the incorporation was comprised between 

87 % and 92 % (
16

O/
18

O ratio between 0.15 and 0.09). This means that the sample treatment time 

necessary to perform the isotopic labeling can be reduced from ca. 12 h to 30 min when 

ultrasonication is used. However, the ultrasonication treatment failed in promoting double 
18

O-

incorporation. As presented in Table V.3, for the overnight procedure the double labeling efficiency 

was comprised between 50 % and 73 %, (
18

O1/
18

O2 ratio between 1 and 0.36), while for the ultrasonic 

process the double incorporation was comprised between 20 % and 32 % (
18

O1/
18

O2 ratio between 4 

and 2.1). 

 

Concerning α-lactalbumin, the 
18

O-labeling efficiency (Table V.2) for the overnight procedure was 

comprised between 65 % and 97 % (
16

O/
18

O ratio comprised between 0.54 and 0.03), while for the 

ultrasonic procedure the labeling efficiency was comprised between 85 % and 88 % (
16

O/
18

O ratio 

comprised between 0.17 and 0.14). However, the ultrasonication treatment was almost non-effective in 

promoting the double oxygen incorporation (Table V.3). The best double incorporation was for the 

peptide fragment (CEVFR)H
+
, and it was as poor as 5 % (

18
O1/

18
O2 ratio higher than 19). The double 

incorporation for the same peptide with the overnight protocol was 76 % (
18

O1/
18

O2 ratio = 0.31). 

 

V.5. Future prospects 

 

Overall, the possibility of speeding up 
18

O
 
isotopic labeling from 12-48 h to 30 min using an 130 kHz 

ultrasonication bath is a reliable approach, that deserves further investigation due to the importance of 
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protein quantitation in biomarker discovery and clinical diagnosis. It is clear, from the data presented 

here, that ultrasonication can accelerate the 
18

O-labeling, but it seems to fail in promoting the double 

18
O-incorporation (

18
O2). However this drawback seems to be protein dependant. In addition, for the 

same protein, when ultrasonication is used, the double 
18

O-incorporation is also peptide dependant. 

Therefore, further research needs to be carried out, focusing on the following variables: (i) regarding 

ultrasonic energy, it is necessary to establish if the ultrasonic frequency is a parameter of major 

importance; (ii) it is also essential to test other ultrasonic devices, such as the sonoreactor or the 

ultrasonic probe. Preliminary results obtained in our laboratory suggest that important differences in 

the 
18

O-labeling efficiency can be achieved, depending on the ultrasonic device used to enhance the 

labeling process. Finally, the protein variable must be assessed and the sample treatment must be 

studied, linking the ultrasonic efficiency to the physical and chemical characteristics of the protein. In 

addition, special attention must be paid to the 
18

O-incorporation as a function of the type of peptide. 

 

V.6. Conclusions 

 

Our preliminary results demonstrate that ultrasonic energy has great potential to enhance the 

enzymatic isotope labeling of peptides with 
18

O. The time needed to perform the isotopic labeling can 

be reduced from 12-48 h to 30 min, using a 130 kHz ultrasonic bath at 60ºC, with similar results to the 

ones obtained with the overnight protocol, depending on the protein.  

 

Similar 
16

O
 
/
18

O ratios were obtained for BSA, ovalbumin and α-lactalbumin with the ultrasonic 

(ultrasonic bath, 130 kHz, 70 % amplitude, 30 min) and overnight procedures.  However, the 
18

O1/
18

O2 

labeling ratios obtained with the ultrasonic procedure were considered acceptable only for BSA. 

 

The ultrasound frequency (35 kHz vs. 130 kHz) was found to be a critical parameter on the 

performance of the ultrasonic bath in the labeling process. This finding is essential to re-think 

ultrasonic applications in the analytical laboratory for proteomics purposes. It must be referred that 

most ultrasonic devices used at present, work at low frequencies such as 20 kHz, 22 kHz, 30 kHz or 35 

kHz. 

 

Further research work is being carried out in our laboratory to elucidate the key parameters on this 

new methodology, including the use of different ultrasonic devices with different operating 

frequencies. 
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VI.1. Abstract 

 

Herein we report results regarding the optimization and comparison between different ultrasonic-based 

procedures for protein quantitation by the direct 
18

O-labeling approach. The labeling procedure was 

evaluated using different proteins, different ultrasonic devices and different reaction times: from 30 s 

to 10 min with the ultrasonic probe and from 30 s to 30 min with the sonoreactor. Variables such as 

the enzyme-to-protein ratio and protein concentration were also assessed. The results show that it is 

possible to accelerate the labeling reaction from 12 h to only 15 min with the sonoreactor without 

compromising the labeling efficiency. A larger variation in the double labeling yield was obtained 

among different peptides, but the values for the smaller peptides were similar to the ones achieved 

with the classic methodology. These findings were further confirmed by labeling a complex protein 

mixture from human plasma. It was also found that the labeling reaction is affected by the sample 

concentration, even when performed with the classic overnight procedure. 
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VI.2. Introduction 

 

The proteome of a living organism is the result of gene expression, but unlike the genome, it is highly 

dynamic and influenced by cellular conditions and physiological states. To study the protein 

components of biological systems we need to obtain not only information about the presence or 

absence of proteins (qualitative information), but we also need to infer about the protein expression 

level (quantitative information) [1]. 

  

Mass spectrometry (MS) is nowadays an essential technique in the proteomics field and, when coupled 

with stable isotopic labeling (SIL) methods, MS can provide us important quantitative information [2-

5]. There are several SIL methodologies, e.g.: stable isotope labeling by amino acids in cell culture 

(SILAC) [6], isotope-coded affinity tags (ICAT) [7], and isobaric tag for relative and absolute 

quantitation (iTRAQ) [8]; but the 
18

O enzymatic labeling of proteins is one of the most commonly 

used methods, because it is a relatively cheap technique, easy to perform and versatile [9-13]. 

  

In the normal 
18

O-labeling workflow one sample is labeled in 
18

O-enriched water, while the other is 

labeled in natural abundance 
16

O-water. Then, the two samples are mixed and analyzed by MS. 

Finally, the relative abundance of each sample is calculated based on the relative intensities of the 

“light” and “heavy” labeled peptides provided by the mass spectrum [14]. The labeling reaction occurs 

during the hydrolysis of the peptide bond and, depending on the enzyme and on the reaction 

conditions, one or two 
18

O-atoms from the H2
18

O-enriched medium are incorporated at the C-terminal 

carboxyl group of the peptide [9]. Trypsin can catalyze the incorporation of two 
18

O-atoms, resulting 

in the ideal mass shift of + 4 Da for the labeled peptide fragment, which is the minimum mass gap 

required to avoid naturally occurring isotopic interferences (e.g. 
13

C, 
15

N, 
34

S) or isotopic overlapping 

between labeled and unlabeled species in the mass spectrum. There are two main approaches for the 

18
O isotopic labeling of proteins: (i) the direct labeling procedure, where the isotopic labeling occurs 

during the enzymatic digestion in H2
18

O buffered medium; or (ii) the post-digestion approach, the 

decoupled procedure, where the proteins are first digested in H2
16

O buffered medium, dried and then 

labeled in H2
18

O in the presence of trypsin [15]. The post-digestion approach has the advantage of 

consuming less H2
18

O, an expensive reagent, and provides better 
18

O conversion at the C-terminus of 

the peptide, increasing the labeling efficiency. However, the procedures used with this approach are 

generally longer, more elaborate and labor-intensive than the direct labeling protocols [16]. Due to 

these disadvantages, and because the direct labeling is performed in one single step, which minimizes 

technical variations and facilitates on-line approaches for MS protein quantitation, we choose this 

strategy for protein labeling in this study. 

 

Despite the advantages of 
18

O-labeling over other labeling techniques, there are also some drawbacks 

that can affect the labeling efficiency, such as: (i) variable 
18

O-incorporation, i.e. single or double 
18

O-
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incorporation at the peptide’s C-terminus; and (ii) back-exchange reaction, i.e. the post-labeling 

exchange of 
18

O from the peptide’s C-terminal carboxyl group with 
16

O from medium contamination 

with residual H2
16

O. To improve the double 
18

O-labeling and diminish the effect of the back-exchange 

reaction in the labeling efficiency, several reaction parameters, such as (i) the pH of the labeling 

reaction, (ii) the H2
16

O/H2
18

O ratio and (iii) the residual enzymatic activity, need to be optimized and 

controlled [12, 13, 17-19]. The time-consuming labeling reaction, 12 to 48 h, also creates a hurdle for 

the application of this methodology to a wider range of protein quantitation experiments. 

 

Ultrasonic energy has been used in proteomics methodologies to enhance protein enzymatic digestion 

from overnight to min [20, 21]. More recently, we reported the application of ultrasonic energy to 

accelerate the 
18

O-labeling procedure with promising results. Several proteins were labeled in only 30 

min in an ultrasonic bath (USB) and 
16

O/
18

O ratios similar to the classical approach (12 h labeling) 

were obtained. However, acceptable 
18

O1/
18

O2 ratios were only obtained for BSA [22]. 

  

In this work, the application of direct ultrasonication with the ultrasonic probe and indirect 

ultrasonication with the sonoreactor (UTR) to enhance the enzymatic 
18

O-labeling reaction is 

compared and reported. The influence of the type of ultrasonic device, the ultrasonication time, the 

protein concentration and the enzyme concentration in the labeling efficiency, and in the 
18

O 

incorporation degree, were assessed, and compared to the results previously obtained with the classical 

approach (overnight labeling) and with the ultrasonic bath [22].  

 

VI.3. Experimental 

 

VI.3.1. Apparatus 

 

Protein digestion/labeling was performed in 0.5 mL safe-lock tubes (Eppendorf, Hamburg, Germany). 

A minicentrifuge-vortex model Sky Line (ELMI, Riga, Latvia), and a minicentrifuge model 

Spectrafuge-mini (Labnet, Madrid, Spain) were used during the sample treatment. Milli-Q natural 

abundance (H2
16

O) water was obtained from a Simplicity™ 185 model (Millipore, Milan, Italy). A 

UTR200 sonoreactor (200 watts, 24 kHz) and a UP100H ultrasonic probe (100 watts, 30 kHz, 0.5 mm 

probe diameter) from Hielscher Ultrasonics (Teltow, Germany) were used to accelerate enzymatic 

protein digestion/labeling. 

 

VI.3.2. Standards and reagents 

 

Bovine serum albumin, BSA (66 kDa, > 97 %), α-lacatlbumin (14.4 kDa, ≥ 85 %), ovalbumin (45 

kDa), human plasma (lyophilized powder) and trypsin (proteomics grade) used throughout the 

experiment were from Sigma (Steinheim, Germany) as well as the DL-dithiothreitol (DTT, 99 %) and 
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iodoacetamide (IAA) used for protein reduction and alkylation, respectively. Ammonium bicarbonate 

buffer (AmBic, pH 8.5, ≥ 99.5 %) and formic acid (FA, ~ 98 %) were from Fluka (Buchs, 

Switzerland), and the H2
18

O (95 atom %) used for protein isotopic labeling was from ISOTEC™ 

(Miamisburg, OH, USA). α-Cyano-4-hydroxycinnamic acid (α-CHCA, ≥ 99.0 %), acetonitrile (99.9 

%) and trifluoroacetic acid (TFA, 99 %) were from Fluka, Sigma-Aldrich and Riedel-de Haën (Seelze, 

Germany), respectively. ProteoMass™ Peptide MALDI-MS calibration kit (MSCAL2) from Sigma 

was used as mass calibration standard for MALDI-TOF-MS. 

 

VI.3.3. Sample treatment 

 

VI.3.3.1. Protein digestion/labeling 

 

Protein digestion/labeling was performed as previously described [22]. Briefly, stock solutions of 

BSA, ovalbumin and α-lactalbumin (100 pmol/µL) were prepared in Ambic (100 mM) using natural 

abundance water. The protein samples were reduced with DTT (10 mM), during 1 h at 37 ºC, and 

alkylated with IAA (50 mM), in the dark at room temperature, during 45 min. Aliquots of 10 µL were 

diluted to 100 µL with AmBic (100 mM) prepared in natural abundance water, or in 95 % 
18

O-

enriched water. Trypsin (2 µL) was added to the samples to a final concentration of 0.47 pmol/µL and 

the enzymatic digestion/labeling was accelerated with: (i) ultrasonic probe (50 % of amplitude with a 

0.5 mm probe), during 30, 60, 120, 300 s and 10 min; (ii) sonoreactor (UTR) (50 % amplitude) during 

30, 60, 120, 300 s, and 10, 15 and 30 min. The enzymatic reaction was stopped after the addition of 5 

µL of formic acid (50 %, v/v). Three replicates were performed for every experiment (n = 3). 

 

VI.3.3.2. Enzyme-to-protein ratio effect on the 
18

O-labeling reaction 

 

The sample treatment before protein digestion/labeling was performed like described in the previous 

section. Following protein reduction and alkylation, aliquots of 10 µL of BSA (60 µg) were diluted to 

100 µL with AmBic (100 mM) prepared in natural abundance water, or in 95 % 
18

O-enriched water. 

After the addition of 2 µL of trypsin the reaction was performed during 15 min in the sonoreactor (50 

% amplitude). Different enzyme-to-protein (E:P) ratios  were used for protein digestion/labeling: (i) 

1:120 w/w (trypsin – 0.5 µg); (ii) 1:80 w/w (trypsin – 0.75 µg); (iii) 1:60 w/w (trypsin – 1.0 µg); (iv) 

1:40 w/w (trypsin – 1.5 µg); (v) 1:30 w/w (trypsin – 2.0 µg). Formic acid (50 %, v/v, 5 µL) was added 

to stop the enzymatic digestion. 

 

VI.3.3.3. 
18

O-labeling in low concentration protein samples 

 

Protein reduction and alkylation was performed as described above. BSA samples of 2.5; 5; 15; 30 and 

60 µg were digested/labeled in 100 µL of AmBic (100 mM) prepared in natural abundance water, or in 
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95 % 
18

O-enriched water. The E:P ratio used throughout this experimental was always 1:40 (w/w) 

except for the 2.5 µg samples, which were also digested/labeled with different E:P ratios: 1:40 w/w 

(trypsin – 0.0625 µg); 1:20 w/w (trypsin – 0.125 µg); 1:6.7 w/w (trypsin – 0.375 µg); and 1:3.3 w/w 

(trypsin – 0.75 µg). The enzymatic reaction was performed in 15 min with the sonoreactor (50 % 

amplitude), and stopped after the addition of 5 µL of formic acid (50 %, v/v). 

 

VI.3.3.4. 
18

O-labing of proteins from human plasma 

 

Lyophilized human plasma was dissolved in 1 mL of phosphate-buffered saline (PBS, pH 7.2). 

Aliquots of 100 µL were precipitated overnight at -20 ºC with 5 volumes of cold acetone. The samples 

were then centrifuged at 10 000 x g during 30 min (4 ºC); the supernatant was discarded and the pellet 

resuspended in 50 µL of Ambic 100 mM. Protein reduction and alkylation were performed as 

described above, and then aliquots of 10 µL were diluted to 100 µL with AmBic (100 mM) prepared 

in natural abundance water, or in 95 % 
18

O-enriched water. Trypsin (1 µg) was added and the 

enzymatic digestion/labeling reaction allowed to proceed for 15 min in the sonoreactor at 50 % 

amplitude, or overnight at 37 ºC. The enzymatic reaction was stopped after the addition of 5 µL of 

formic acid (50 %, v/v). All the experiments were performed in replicates of three (n = 3). 

 

VI.3.4. MALDI-TOF-MS analysis 

 

Before MS analysis, the samples were mixed in a 1:1 ratio with the α-CHCA matrix solution (10 

µg/µL) prepared in 50 % acetonitrile/ 0.1 % TFA. Each sample (1 µL) was hand-spotted onto a 

MALDI-TOF-MS stainless steel 96-well plate and allowed to dry. The mass spectra were obtained 

with a Voyager DE-PRO™ Biospectrometry™ Workstation (Applied Biosystems, Foster City, USA), 

equipped with a nitrogen laser radiating at 337 nm. Measurements were carried out in the reflectron 

positive ion mode, with an accelerating voltage of 20 kV, 75.1 % of grid voltage, 0.002 % of guide 

wire and a delay time of 100 ns. The monoisotopic peaks of bradykinin, angiotensin II, P14R and 

ACTH peptide fragments (m/z [M+H]
+
: 757.3997, 1046.5423, 1533.8582 and 2465.1989, 

respectively) were used for the external calibration of the mass spectra. A total of 500 laser shots were 

summed per spectrum.  

 

VI.3.5. Deconvolution of MALDI mass spectra  

 

The mass spectra deconvolution was performed with the Data Explorer™ software (version 4.0) from 

Applied Biosystems. This software has an advanced peak filtering method, the deisotope function, that 

uses a deisotoping algorithm to determine the relative abundance of multiple components with 

overlapping isotope distributions [23]. The deisotope function deconvolutes the mass spectra and 

reduces the isotopic cluster to a centroided plot composed of the monoisotopic peaks from the peak 
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list. Additionally, to evaluate this function, the mathematical algorithm for deconvolution described by 

Yao and coworkers [24] was also used in the first steps of this work, and the results were compared.  

  

 

VI.4. Results and discussion 

 

The 
18

O-labeling reaction can incorporate one or two 
18

O atoms at the terminal carboxylic group of the 

peptide, shifting the mass value of the naturally occurring isotope distribution by + 2 or + 4 Da. Figure 

VI.1 presents two theoretical cases which can occur when performing protein 
18

O-labeling 

quantitation. Spectrum a) represents the theoretical result obtained when the labeling reaction is 

complete and all the peptides are double labeled. In this case, when the labeled sample is mixed with 

the unlabeled control sample, there is no isotope overlapping in the mass spectrum between the two 

peptide forms. Therefore protein relative quantitation can simply be done by measuring the relative 

intensities of the monoisotopic peaks of each peptide. In case b) the labeling reaction was incomplete 

and a mixture of single and double labeled peptides is generated, producing an isotopic overlap 

between the non-labeled control sample and labeled sample. The variable 
18

O-incorporation affects the 

measuring of the relative abundances of the peptide and increases the error in the calculation of the 

correct 
16

O/
18

O peptide ratios [3, 11, 13]. Therefore, when performing 
18

O-labeling it is important to 

consider not only the labeling efficiency (
18

Ototal %), which measures the percentage of both single and 

double labeled peptides, but also the labeling degree (
18

O2 %) which measures the percentage of 

double labeled peptides.  

 

 

Figure VI.1: Complete 
18

O-labeling vs. variable 
18

O-labeling. a) Complete 
18

O-labeling: theoretical 

MALDI-TOF mass spectrum of a mixture (1:1) of the unlabeled (927 m/z) and the double labeled (931 

m/z) peptide (YLYEIAR)H
+
 from BSA. b) Variable 

18
O-labeling: theoretical MALDI-TOF mass 

spectrum of a mixture (1:1) of the unlabeled (927 m/z) and the single (929 m/z) and double labeled 

(931 m/z) peptide (YLYEIAR)H
+
 from BSA. 
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Table VI.1: Percentage of double 
18

O incorporation (
18

O2) at the peptide’s C-terminus. BSA (60 µg) 

digestion/labeling with trypsin was performed during 12 h (overnight) and with different ultrasonic 

devices: (i) ultrasonic bath (USB 130 kHz) operating at 70 % amplitude and 60ºC; (ii) ultrasonic probe 

(UP) operating at 50 % amplitude and equipped with a 0.5 mm sonotrode; (iii) sonoreactor (UTR) 

operating at 50 % amplitude. The ultrasonication time was comprised between 30 s and 30 min. The 

five most intense mass peaks were considered: 927.49 m/z – (YLYEIAR)H
+
; 1001.59 m/z – 

(ALKAWSVAR)H
+
; 1439.81 m/z – (RHPEYAVSVLLR)H

+
; 1479.80 m/z – 

(LGEYGFQNALIVR)H
+
; 1639.94 m/z – (KVPQVSTPTLVEVSR)H

+
. (n=3) 

 18O2 %  

[M+H]+ 

(m/z) 

Ultrasonication Time 
Method 

30 sec 60 sec 120 sec 300 sec 10 min 15 min 30 min 12h 

927.49 

- - - - - - - 75.61 ± 2.30 Overnight* 

- - - - - 70.88 ± 2.56 70.57 ± 0.53 - USB 130 kHz* 

42.88 ± 4.32 48.97 ± 12.08 63.91 ± 6.99 61.29 ± 2.76 51.81 ± 5.37 - - - UP 

45.98 ± 7.69 47.72 ± 2.23 58.50 ± 4.90 63.66 ± 3.25 73.17 ± 1.04 74.75 ± 0.01 74.10 ± 0.36 - UTR 

1001.59 

- - - - - - - ** Overnight* 

- - - - - 71.67 ± 1.57 75.67 ± 5.34 - USB 130 kHz* 

29.47 ± 1.86 40.78 ± 13.83 59.09 ± 9.80 58.97 ± 3.30 56.17 ± 7.77 - - - UP 

33.99 ± 5.48 37.82 ± 2.96 54.48 ± 5.78 62.73 ± 3.77 75.12 ± 5.82 71.72 ± 10.03 ** - UTR 

1439.81 

- - - - - - - 77.75 ± 3.28 Overnight* 

- - - - - 56.60 ± 2.18 56.73 ± 0.20 - USB 130 kHz* 

9.03 ± 3.22 16.12 ± 12.57 34.35 ± 13.04 29.94 ± 7.23 29.48 ± 1.64 - - - UP 

14.97 ± 7.31 15.13 ± 1.95 30.36 ± 1.50 35.42 ± 6.51 60.89 ± 0.30 69.86 ± 1.97 72.29 ± 1.98 - UTR 

1479.80 

- - - - - - - 74.70 ± 2.02 Overnight* 

- - - - - 46.63 ± 0.88 45.62 ± 5.38 - USB 130 kHz* 

24.31 ± 3.55 13.17 ± 2.06 30.52 ± 6.73 23.11 ± 4.84 17.45 ± 3.09 - - - UP 

34.72 ± 3.59 22.26 ± 1.76 27.85 ± 3.12 31.41 ± 1.96 52.18 ± 0.29 58.63 ± 5.79 66.92 ± 1.17 - UTR 

1639.94 

- - - - - - - 76.73 ± 0.01 Overnight* 

- - - - - 21.72 ± 0.86 24.67 ± 0.78 - USB 130 kHz* 

** ** 12.59 ± 4.11 15.52 ± 12.09 ** - - - UP 

** ** 9.44 ± 2.23 10.38 ± 8.15 30.30 ± 4.67 41.12 ± 2.48 42.61 ± 2.07 - UTR 

* Results previously obtained for the overnight and USB 130 kHz digestion/labeling were used for 

comparative purposes [22]. 

** Peptide not present in the spectra. 

 

VI.4.1. 
18

O-lalebing with direct ultrasonication  

 

The ultrasonic probe provides ultrasonic energy directly into the reaction media and the ultrasound 

intensity is at least 1500 times higher than that provided by the ultrasonic bath [25]. Previous studies 

reported the use of direct ultrasonication to accelerate the 
18

O-labeling reaction in a post-digestion 

approach with similar results to the ones obtained with the conventional protocols [26]. However, 

despite accelerating the enzymatic reactions to only a few min, this workflow still remains tedious and 

long due to the several drying steps required, which increase sample losses and preclude on-line 
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labeling approaches. Therefore, to assess the ultrasonic probe effect on peptide 
18

O-labeling by the 

direct labeling approach, aliquots of BSA (60 µg) were digested in the presence of H2
18

O and trypsin 

(1 µg) with a 0.5 mm sonotrode. The ultrasonication time was between 30 s and 10 min.  

 

Table VI.1 presents the labeling degree results (
18

O2 %) obtained for several BSA peptides after 

ultrasonication with the ultrasonic probe (UP). In general, the labeling degree increased with the 

ultrasonication time reaching a maximum value for t = 120 s, and no improvement was achieved when 

ultrasonication was performed during 5 and 10 min. In fact, the ultrasonication of liquid media with 

the ultrasonic probe during long periods of time (> 2 min) leads to sample overheating and aerosol 

formation, diminishing ultrasonication efficiency [27]. In addition, in a previous study developed by 

our group, we demonstrated that 30 s of ultrasonication with the ultrasonic probe does not affect the 

enzyme’s activity, but after 60 s the activity decreases ca. 20 % (casein hydrolysis with protease XIV). 

An ultrasonication time of 120 s led to the complete inactivation of the enzyme [28]. The results 

obtained also show that the double 
18

O-labeling yield decreased with the increasing mass of the 

peptide fragment. The smallest peptide fragment considered in this study (YLYEIAR)H
+
 – 927 m/z 

was double labeled with an efficiency of 63.9 % (t = 120 s), while the larger peptide 

(KVPQVSTPTLVEVSR)H
+
 – 1639 m/z presented a double labeling efficiency of only 12.6 % for the 

same ultrasonication time. Considering that the oxygen exchange rate is dependent on the peptide size, 

sequence and type of amino-acid [29], it is possible that the ultrasonic energy provided by the 

ultrasonic probe was not sufficient to enhance the different reaction rates during the short reaction 

times tested here, since when the labeling reaction was performed during 12 h at 37ºC the double 

labeling yield was ca. 76 % for all the peptides [22]. 

 

Concerning the isotopic labeling efficiency (Table VI.2), i.e. the percentage of peptides labeled with at 

least one 
18

O (
18

Ototal %), the results show that the best performance was obtained for t = 120 s and t = 

300 s, and no significant improvement was achieved when ultrasonication was performed during 10 

min. The percentage of single or double labeled peptides was higher than 90 % for all peptides, except 

fragment (LGEYGFQNALIVR)H
+
 – 1479 m/z with a labeling efficiency below 85 % for all the 

ultrasonication times tested. These results are closer to the values obtained with the USB, with a 

labeling efficiency higher than 92 % for all peptides, but they are still below the values obtained by the 

classic methodology (overnight labeling), with labeling efficiencies higher than 96 % [22]. This is 

probably due to the fact that the labeling reaction is a two step reaction. In the first step the enzyme 

forms an ester intermediate with the peptide, and during the hydrolysis of the amide bond the first 
18

O 

from the medium is incorporated at the terminal carboxyl group. During the second step of the 

reaction, also known as carboxyl exchange reaction, the enzyme forms another ester intermediate with 

the peptide terminal carboxyl group and, after a series of esterification and hydrolysis cycles, the 

peptide will be double labeled [29]. Unfortunately, the rates of the carboxyl oxygen exchange reaction 

are much lower than the peptide bond hydrolysis, which lead to the variable 
18

O incorporation when 
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short reaction times are used. It is also important to stress that the carboxyl exchange reaction is a 

reversible reaction; therefore, the ultrasonic energy not only accelerates the 
16

O-exchange from the 

peptide’s carboxyl group with 
18

O from the medium, but also enhances the reverse reaction. The 

results presented in Table VI.1 and Table VI.2 also suggest a complex relation between ultrasonic 

energy and the first and second 
18

O-incorporation. It seems that these reactions can be enhanced with 

ultrasonic energy of low intensity, such as the one provided by the ultrasonic bath and the sonoreactor. 

Yet, a system like the ultrasonic probe, 30 times more intense than the sonoreactor and 1500 times 

more intense than the ultrasonic bath, seems to produce uncontrolled effects which compromise an 

effective 
18

O-incorporation, especially the double 
18

O-incorporation. The nature of these effects 

remains unclear.  

 

VI.4.2. 
18

O-lalebing with UTR 

 

The sonoreactor (UTR) can be defined as a high-intensity ultrasonic bath [25]. Even though the 

ultrasonic energy generated by the sonoreactor is 30 times less intense than the one provided by the 

ultrasonic probe, several advantages make this device suitable for proteomics workflow, such as: (i) 

sample ultrasonication in sealed vials, which prevents cross-contamination between samples; (ii) no 

aerosol formation, which improves bio safety when working with hazard samples from pathogenic 

bacteria and viruses; (iii) lower sample volume is needed for ultrasonication; (iv) high throughput, 

since many samples can be treated at once unlike common ultrasonic probes [21, 25]  

 

The efficiency of the sonoreactor was first evaluated using BSA as a protein model. The results in 

Table VI.1 show that the percentage of double labeled peptides (
18

O2) increased with the 

ultrasonication time. For the time range between 30 and 120 s the percentage of double labeled 

peptides obtained with the sonoreactor was similar to the one achieved with the ultrasonic probe. 

However, better results were obtained with the sonoreactor when BSA was labeled during 5 min and 

10 min, especially for the largest peptides. This is in agreement with the data presented before for the 

ultrasonic probe, where it was said that the lack of improvement in the labeling degree efficiency for 

larger ultrasonication times could be related to aerosol formation, sample overheating and unexpected 

reactions caused by the high ultrasound intensity provided by the probe. When ultrasonication is 

performed with the sonoreactor the aerosol formation is insignificant and the temperature of the water 

bath can be controlled. In addition the ultrasound intensity provided is 30 times lower than the one 

obtained with the ultrasonic probe. Therefore, no sample overheating or spreading through the walls of 

the container occurs, and the ultrasonic efficiency is maintained during the process. Regarding the 

larger ultrasonication times tested, 15 and 30 min, the 
18

O-labeling degree obtained with the 

sonoreactor was higher than when the ultrasonic bath was used, and for the smallest peptide 

fragments, (YLYEIAR)H
+
 – 927 m/z; (ALKAWSVAR)H

+
 – 1001 m/z; and (RHPEYAVSVLLR)H

+
 – 
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1439 m/z, the percentages of double 
18

O-incorporation were higher and close to the values obtained 

with the classic overnight protocol (76 %).  

 

Table VI.2:  Percentage of total 
18

O-incorporation (
18

Ototal) at the peptide’s C-terminus. BSA (60 µg) 

digestion/labeling with trypsin was performed during 12 h (overnight) and with different ultrasonic 

devices: (i) ultrasonic bath (USB 130 kHz) operating at 70 % amplitude and 60ºC; (ii) ultrasonic probe 

(UP) operating at 50% amplitude and equipped with a 0.5 mm sonotrode; (iii) sonoreactor (UTR) 

operating at 50% amplitude. The ultrasonication time was comprised between 30 s and 30 min. The 

five most intense mass peaks were considered: 927.49 m/z – (YLYEIAR)H
+
; 1001.59 m/z – 

(ALKAWSVAR)H
+
; 1439.81 m/z – (RHPEYAVSVLLR)H

+
; 1479.80 m/z – 

(LGEYGFQNALIVR)H
+
; 1639.94 m/z – (KVPQVSTPTLVEVSR)H

+
. (n=3) 

 18Ototal %  

[M+H]+ 

(m/z) 

Ultrasonication Time 
Method 

30 sec 60 sec 120 sec 300 sec 10 min 15 min 30 min 12h 

927.49 

- - - - - - - 98.55 ± 1.80 Overnight* 

- - - - - 97.53 ± 0.54 97.60 ± 1.29 - USB 130 kHz* 

92.85 ± 0.33 93.59 ± 1.90 96.07 ± 1.10 96.44 ± 0.19 94.19 ± 1.76 - - - UP 

93.54 ± 0.47 92.27 ± 0.23 95.57 ± 1.02 96.56 ± 0.22 97.54 ± 0.01 98.66 ± 0.01 99.23 ± 1.09 - UTR 

1001.59 

- - - - - - - ** Overnight* 

- - - - - 96.93 ± 3.36 94.40 ± 4.33 - USB 130 kHz* 

89.76 ± 0.81 92.25 ± 3.06 95.95 ± 2.32 95.36 ± 0.95 91.52 ± 2.66 - - - UP 

89.28 ± 0.67 89.19 ± 0.51 93.85 ± 0.59 96.46 ± 0.08 95.75 ± 6.01 97.12 ± 4.08 ** - UTR 

1439.81 

- - - - - - - 96.35 ± 0.50 Overnight* 

- - - - - 95.50 ± 1.86 94.64 ± 1.02 - USB 130 kHz* 

88.44 ± 1.14 89.75 ± 1.94 91.36 ± 2.12 90.10 ± 0.87 89.31 ± 0.49 - - - UP 

86.97 ± 1.60 88.21 ± 0.35 91.67 ± 1.10 91.90 ± 1.42 95.73 ± 0.13 97.45 ± 0.64 96.42 ± 2.67 - UTR 

1479.80 

- - - - - - - 96.60 ± 0.84 Overnight* 

- - - - - 93.02 ± 0.97 90.21 ± 2.88 - USB 130 kHz* 

61.05 ± 2.50 66.21 ± 8.17 80.90 ± 8.77 82.38 ± 7.10 85.04 ± 2.92 - - - UP 

68.52 ± 7.87 77.39 ± 2.66 82.77 ± 0.03 88.33 ± 0.78 93.22 ± 2.85 93.17 ± 1.29 97.34 ± 0.13 - UTR 

1639.94 

- - - - - - - 99.80 ± 0.29 Overnight* 

- - - - - 92.61 ± 0.21 92.52 ± 2.11 - USB 130 kHz* 

** ** 90.64 ± 1.51 93.08 ± 1.67 ** - - - UP 

** ** 89.49 ± 5.59 89.81 ± 0.33 95.76 ± 5.99 93.25 ± 0.63 96.23 ± 5.34 - UTR 

* Results previously obtained for the overnight and USB 130 kHz digestion/labeling were used for 

comparative purposes [22]. 

** Peptide not present in the spectra. 

 

The efficiency of the 
18

O-labeling reaction (single and double labeling) also increased with the 

ultrasonication time (Table VI.2). Like before, the results obtained with the sonoreactor between 30 s 

and 5 min were similar to the ones obtained with the ultrasonic probe, but with 10 min of 

ultrasonication the labeling efficiency was higher for the sonorector. As previously referred, this result 

suggests that the labeling reaction is more effective when ultrasonic energy of low intensity is used. 
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This conclusion is confirmed by the data obtained with the sonoreactor and the ultrasonic bath. These 

devices, which provide low intensity ultrasonic energy, can accelerate the labeling reaction to the same 

levels as the overnight process (12 h) in just 15 min. 

  

Table VI.3: Percentage of double 
18

O-incorporation (
18

O2 %) and total 
18

O-incorporation (
18

Ototal %) in 

different peptides from ovalmunin and α-lactalbumim. The labeling reaction was performed during 12 

h (overnight) and with different ultrasonic devices: (i) 30 min with the ultrasonic bath (USB 130 kHz) 

operating at 70 % amplitude and 60ºC; and (ii) 15 and 30 min with the sonoreactor (UTR) operating at 

50 % amplitude. The most intense peptides considered for ovalbumin were: (VYLPR)H
+
 – 647.39 

m/z; (HIATNAVLFFGR)H
+
 – 1345.74 m/z; (GGLEPINFQTAADQAR)H

+ 
– 1687.84 m/z; and for α-

lactalbumim: (CEVFR)H
+
 – 710.33 m/z; (VGINYWLAHK)H

+
 – 1200.65 m/z. (n=3) 

  18
O2 %  18

Ototal %  

Protein 
[M+H]+ 

(m/z) 
Overnight* 

USB 

130 kHz* 
UTR  Overnight* 

USB 

130 kHz* 
UTR 

Time 

(min) 

Ovalbumin 

647.39 73.45 ± 3.49 

- 65.42 ± 10.55  
97.65 ± 1.58 

- 98.68 ± 1.18 15 

32.19 ± 3.07 69.78 ± 1.46  91.67 ± 0.06 99.24 ± 0.11 30 

1345.74 68.86 ± 3.45 

- 57.37 ± 5.71  
97.15 ± 1.16 

- 95.24 ± 1.71 15 

20.50 ± 1.53 66.16 ± 2.74  88.29 ± 0.90 96.59 ± 0.18 30 

1687.84 65.96 ± 2.53 

- 71.60 ± 2.33  
93.44 ± 5.21 

- 96.41 ± 0.82 15 

24.06 ± 2.76 71.08 ± 0.18  89.92 ± 1.16 98.07 ± 0.47 30 

α-Lactalbumim 

710.33 76.12 ± 1.48 

- 27.77 ± 0.11  
97.05 ± 0.44 

- 90.90 ± 0.08 15 

4.99 ± 0.89 30.17 ± 1.16  87.67 ± 0.51 91.95 ± 0.60 30 

1200.65 71.34 ± 1.02 

- 15.87 ± 1.25  
96.30 

- 90.43 ± 0.43 15 

3.01 ± 0.12 24.02 ± 0.14  87.79 ± 2.27 90.40 ± 0.98 30 

* Results previously obtained for the overnight and USB 130 kHz digestion/labeling were used for 

comparative purposes [22]. 

 

Additional proteins were 
18

O-labeled to assess the efficiency of the UTR technology. Therefore, 

aliquots of ovalbumin and α-lactalbumin were labeled in the presence of H2
18

O and trypsin during 15 

and 30 min. The ultrasonication times chosen were based on the best labeling degree and efficiency 

obtained for BSA. As can be seen in Table VI.3, for the most intense peptides of ovalbumin the 

labeling efficiency (
18

Ototal) was between 96 and 99 % for both 15 and 30 min of ultrasonication. In 

addition, the labeling efficiency obtained in only 15 min with the sonoreactor was higher than that 

obtained during 30 min with the ultrasonic bath, and it was equal or higher than that obtained with the 

classic overnight reaction, which was between 93 and 97 %. In terms of the double labeled peptides 

yield (
18

O2), the results were mostly the same, regardless of the ultrasonication time applied: for 

peptide (VYLPR)H
+
 – 647.39 m/z, the double labeling yield was between 65 % and 70 % with 15 and 
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30 min, respectively; and for the largest peptide (GGLEPINFQTAADQAR)H
+
 – 1687.84 m/z the 

double labeling yield was 71 % with both reaction times, which is higher than the yield obtained with 

the classic method, 66 %. 

 

Concerning the labeling efficiency (
18

Ototal) obtained for α-lactalbumin, the results show that at least 90 

% of the peptides were labeled with one or two 
18

O-atoms for both 15 and 30 min of ultrasonication, 

while with the ultrasonic bath a labeling efficiency of 87 % was obtained after 30 min. However, in 

this case the results were below the classic overnight procedure with a labeling efficiency of ca. 97 %. 

As far as the double 
18

O-incorporation is concerned, the sonoreactor performed much better than the 

ultrasonic bath by promoting the 
18

O-double incorporation in 30 % of α-lactalbumin’s (CEVFR)H
+
 

(710.33 m/z) peptide, whereas the results obtained with the ultrasonic bath for the same peptide were 6 

times lower: 5 % of double 
18

O-incorporation during 30 min of ultrasonication. However, the 

sonoreactor results were still lower than the ones obtained with the classic overnight methodology for 

which 71 to 76 % of the peptides were double 
18

O-labeled. 

 

VI.4.3. Influence of enzyme-to-protein ratio on the 
18

O-labeling reaction 

 

The double 
18

O-incorporation at the terminal carboxylic group of the peptide is essential to obtain 

mass spectra free from isotopic overlap between unlabeled and labeled species, improving the 

precision and accuracy of the protein quantitation method. To achieve a complete double 
18

O-labeling, 

the carboxyl oxygen exchange reaction must be accelerated and controlled. This can be performed by 

several different approaches, such as: (i) decreasing the pH of the enzyme-catalyzed carboxyl oxygen 

exchange reaction from 8.5, the optimal pH for trypsin proteolytic activity, to pH between 5 and 6, 

where trypsin presents the best catalytic activity regarding the carboxyl oxygen exchange reaction [15, 

30]; (ii) or by performing the carboxyl oxygen exchange in aqueous solutions with organic solvents 

[31]. Despite providing promising results, these techniques rely on the post-digestion labeling 

approach, where the sample is first digested in natural abundance water media, then dried and finally 

labeled in an appropriate buffer enriched with 
18

O-water. Due to the extra drying steps introduced, this 

method demands higher sample handling and time, is not suitable for on-line approaches and the 

results may be affected by a higher technical variation. Another way to increase the yield of the double 

labeling is to use a higher enzyme-to-protein (E:P) ratio, although this might be a problem due to 

enzyme autolysis, because of the ion suppression effect caused by enzyme peptides over the protein 

peptides in the mass spectra. The use of calcium salts to improve trypsin’s activity and prevent 

autolysis has been reported [32, 33], but this implicates an extra step to remove the salts before MS 

analysis to avoid interferences with peptide ionization. Immobilized trypsin can also be used as an 

alternative to overcome the problem of back-exchange and enzyme autolysis [16, 34], but the cost of 

this reagent may be discouraging to some laboratories. 
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Table VI.4: Effect of the enzyme-to-protein ratio (E:P) on the labeling efficiency (
18

Ototal %) and 

labeling degree (
18

O2 %). Aliquots of BSA (60 µg) were labeled during 15 min with the sonoreactor 

(50 % amplitude) in the presence of H2
18

O and trypsin. Different E:P ratios were used: (i) 1:120 w/w 

(trypsin – 0.5 µg); (ii) 1:80 w/w (trypsin – 0.75 µg); (iii) 1:60 w/w (trypsin – 1.0 µg); (iv) 1:40 w/w 

(trypsin – 1.5 µg); (v) 1:30 w/w (trypsin – 2.0 µg). The five most intense mass peaks were considered: 

927.49 m/z – (YLYEIAR)H
+
; 1001.59 m/z – (ALKAWSVAR)H

+
; 1439.81 m/z – 

(RHPEYAVSVLLR)H
+
; 1479.80 m/z – (LGEYGFQNALIVR)H

+
; 1639.94 m/z – 

(KVPQVSTPTLVEVSR)H
+
. (n=3) 

 E:P ratio [Trypsin (µg)] 

 18
O2 % 

[M+H]
+
 (m/z) 1:120 [0.5] 1:80 [0.75] 1:60 [1.0] 1:40 [1.5] 1:30 [2.0] 

927.49 50.46 ± 1.86 70.63 ± 2.08 74.75 ± 0.01 75.43 ± 0.51 72.63 ± 1.28 

1001.59 58.98 ± 6.70 76.03 ± 2.13 71.72 ± 10.03 * * 

1439.81 24.19 ± 3.52 52.22 ± 0.22 69.86 ± 1.97 69.05 ± 1.96 68.90 ± 1.26 

1479.80 23.15 ± 1.69 45.44 ± 3.40 58.63 ± 5.79 64.51 ± 0.18 58.61 ± 1.62 

1639.94 6.74 ± 2.22 19.02 ± 1.45 41.12 ± 2.48 40.38 ± 7.54 42.71 ± 3.02 

 
18

OTotal % 

927.49 93.56 ± 0.08 97.59 ± 2.49 98.66 ± 0.01 95.90 ± 2.52 97.39 ± 0.17 

1001.59 93.54 ± 4.30 100 97.12 ± 4.08 * * 

1439.81 90.64 ± 1.20 95.93 ± 1.43 97.45 ± 0.64 97.61 ± 1.32 95.63 ± 1.02 

1479.80 78.35 ± 7.88 94.31 ± 0.51 93.17 ± 1.29 96.78 ± 0.85 92.38 ± 0.83 

1639.94 83.79 ± 3.40 92.51 ± 0.38 93.25 ± 0.63 95.53 ± 1.22 92.23 ± 2.32 

*Peptide not present in the spectra. 

 

To further evaluate the combined effect of ultrasound and different E:P ratios, aliquots of BSA (60 µg) 

were labeled during 15 min with the sonoreactor in the presence of H2
18

O and different amounts of 

trypsin. The E:P ratio varied between 1:120 and 1:30 (w/w). As can be seen in Table VI.4, the lowest 

labeling efficiency (
18

Ototal %) was obtained when only 0.5 µg (1:120 w/w E:P ratio) of trypsin was 

used. In this case the labeling efficiency varied from 80 %, for the two larger peptides (1479 and 1639 

m/z), to 93 % for the smallest peptide (927 m/z). When other E:P ratios were used the labeling 

efficiencies obtained with each ratio were similar among them: between 96 % and 98 % for the 

smaller peptides - 927, 1001 and 1439 m/z; and between 93 % and 96 % for the largest peptides 1479 

and 1639 m/z. Regarding the double 
18

O-incorporation (
18

O2 %) yield, the worst performance was 

obtained with the lowest amount of trypsin (0.5 µg): 50 % of the (YLYEIAR)H
+
 – 927 m/z peptides 

were double labeled with 15 min of ultrasonication, while the classical overnight labeling 

methodology achieved a double labeling yield of 75 % for the same peptide. Focusing on peptide 

fragments (YLYEIAR)H
+
 – 927 m/z; and (LGEYGFQNALIVR)H

+
 – 1479 m/z, results show that the 

double labeling degree increased with the amount of enzyme, reaching a maximum when 1/40 (w/w) 

E:P ratio was used: 75 % and 65 %, respectively. For these peptides no improvement in the double 

incorporation yield was obtained when the E:P ratio was raised to 1:30 (w/w). Regarding peptide 
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fragments (RHPEYAVSVLLR)H
+
 – 1439 m/z; and (KVPQVSTPTLVEVSR)H

+
 –1639 m/z, the 

labeling degree obtained also increased with the amount of trypsin, but no significant differences were 

found when the E:P ratio varied from 1:60 to 1:30 (w/w). In addition, no significant interference from 

trypsin autolysis peptides was found in the mass spectra of the samples labeled with a higher quantity 

of trypsin (Figure VI.2). Overall, the best results were obtained when the E:P ratio was 1:40 (w/w), 

which is in the range of the recommended E:P ratios by Sigma-Aldrich® for the in-solution protein 

digestion: between 1:100 and 1:20 (w/w) [35].  

 

Figure VI.2: Effect of the enzyme-to-protein ratio (E:P) on the MALDI-TOF mass spectra obtained 

after protein 
18

O-labeling with different amounts of trypsin. a) 1:120 w/w (trypsin – 0.5 µg); b) 1:80 

w/w (trypsin – 0.75 µg); c) 1:60 w/w (trypsin – 1.0 µg); d) 1:40 w/w (trypsin – 1.5 µg); e) 1:30 w/w 

(trypsin – 2.0 µg). 

 

VI.4.4. Influence of sample concentration on the 
18

O-labeling of proteins 

 

When the sample concentration decreases the probability of having protein and enzyme molecules 

colliding with each other and establishing bonds also decreases, which may compromise protein 
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digestion/
18

O-labeling. Thus, the ultrasound effect on the isotopic labeling reaction of low 

concentration protein samples was evaluated: BSA samples ranging from 2.5 µg and 60 µg were 
18

O-

labeled during 15 min with the sonoreactor in the presence of trypsin, using an E:P ratio of 1:40 (w/w), 

which was previously found to be the best E:P ratio. The results in Table VI.5 show that the labeling 

efficiency (
18

Ototal) and the yield of double labeled peptides (
18

O2) were higher when the protein 

concentration used was 0.6 µg/µL (60 µg of BSA). Regarding the smallest BSA peptide, 

(YLYEIAR)H
+
 – 927 m/z, the variation of the labeling efficiency was between 94 % and 96 % for the 

lowest (0.025 µg/µL) and highest (0.6 µg/µL) protein concentration samples, respectively. Yet, the 

variation obtained in the percentage of double labeled peptides between the two protein samples was 

much higher: 25 % of the peptides were double labeled in the 0.025 µg/µL BSA samples, in contrast 

with the 75 % yield obtained when 0.6 µg/µL of BSA was used. The same pattern was observed for 

the other peptides: the labeling efficiency and the labeling degree increased with the increasing sample 

concentration.  

 

 

Table VI.5:  Effect of the sample concentration on the labeling efficiency (
18

Ototal %) and labeling 

degree (
18

O2 %). Aliquots of BSA: (i) 2.5 µg; (ii) 5 µg; (iii) 15 µg; (iv) 30 µg; and (v) 60 µg were 

labeled during 15 min with the sonoreactor (50 % amplitude) in the presence of H2
18

O and trypsin. A 

constant enzyme-to-protein ratio was used in this experiment: 1:40 w/w. The five most intense mass 

peaks were considered: 927.49 m/z – (YLYEIAR)H
+
; 1001.59 m/z – (ALKAWSVAR)H

+
; 1439.81 

m/z – (RHPEYAVSVLLR)H
+
; 1479.80 m/z – (LGEYGFQNALIVR)H

+
; 1639.94 m/z – 

(KVPQVSTPTLVEVSR)H
+
. (n=3) 

 BSA (µg) 

 18
O2 % 

[M+H]
+
 (m/z) 2.5 5 15 30 60 

927.49 25.23 ± 3.57 32.55 ± 0.88 61.48 ± 2.79 72.69 ± 1.67 75.43 ± 0.51 

1001.59 25.60 ± 2.15 27.06 ± 3.69 67.98 ± 0.56 86.48 ± 6.60 * 

1439.81 13.00 ± 0.44 8.26 ± 2.54 38.89 ± 0.02 54.19 ± 4.51 69.05 ± 1.96 

1479.80 15.35 ± 12.92 8.80 ± 1.22 34.72 ± 2.03 48.67 ± 2.55 64.51 ± 0.18 

1639.94 * * 5.77 ± 1.16 18.17 ± 10.28 40.38 ± 7.54 

 
18

OTotal % 

927.49 94.15 ± 0.11 92.39 ± 0.03 96.77 ± 0.55 98.35 ± 0.35 95.90 ± 2.52 

1001.59 89.29 ± 3.45 91.48 ± 0.48 97.51 ± 1.07 100.00 * 

1439.81 90.05 ± 7.44 92.29 ± 1.80 92.31 ± 0.08 95.25 ± 0.65 97.61 ± 1.32 

1479.80 86.04 ± 4.48 83.17 ± 1.77 87.50 ± 2.63 95.48 ± 1.10 96.78 ± 0.85 

1639.94 * * 90.74 ± 2.52 91.89 ± 0.80 95.53 ± 1.22 

*Peptide not present in the spectra. 
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Figure VI.3: Effect of sample concentration on the a) labeling degree (
18

O2 %) and b) labeling 

efficiency (
18

Ototal %). Aliquots of BSA 2.5 µg were labeled with increasing amounts of trypsin during 

12 h (overnight) at 37 ºC, and 15 min with the sonoreactor (50 % amplitude). A) Overnight labeling 

with 0.0625 µg of trypsin; B) sonoreactor labeling with 0.0625 µg of trypsin; C) overnight labeling 

with 0.125 µg of trypsin; D) sonoreactor labeling with 0.125 µg of trypsin; E) overnight labeling with 

0.375 µg of trypsin; F) sonoreactor labeling with 0.375 µg of trypsin; G) overnight labeling with 0.75 

µg of trypsin; H) sonoreactor labeling with 0.75 µg of trypsin. (n=3) 

  

These results suggest that the ultrasonic energy provided by the sonoreactor is suitable for the 

enhancement of the peptide bond hydrolysis, but not for the acceleration of the carboxyl oxygen 

exchange reaction in low concentration protein samples. Thus, to achieve a better double labeling 

yield at the low concentration range with only 15 min of ultrasonication, we increased the E:P ratios 

from 1:40 w/w (trypsin - 0.0625 µg) to 1:3.33 w/w (trypsin - 0.75 µg) in the isotopic labeling of 2.5 µg 

of BSA. The overnight labeling reaction was also performed for comparative purposes. The results in 

Figure VI.3a) show that the percentage of double 
18

O-incorporation (
18

O2) obtained with the 

sonoreactor (15 min) increased with the E:P ratio. Yet, a labeling yield higher than 70 % was only 

achieved for the smallest peptides, 927 m/z  and 1001 m/z, when the E:P ratio was 1:3.3 (w/w). 

Interestingly, the results achieved with the 12 h labeling method also presented some variation, 

especially for the larger peptides. Considering peptides (LGEYGFQNALIVR)H
+
 – 1479 m/z; and 

(KVPQVSTPTLVEVSR)H
+
 –1639 m/z, the labeling efficiency (

18
Ototal %) was between 92 and 98 %, 

but the double labeling yield (
18

O2 %) was only superior to 70 % for E:P ratios higher than 1:6.7 

(w/w). It is important to note that these E:P ratios are much higher than the recommended ones [35]. 
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Therefore, when working with samples of low protein concentration, the peptides chosen for protein 

quantitation are of special importance, as well as the total time for labeling. In order to achieve the 

maximum double 
18

O-incorporation yield, the reaction time must probably be increased beyond the 12 

h, if no ultrasonication is used, or smaller peptides should be chosen for protein quantitation. Protein 

concentration strategies, as protein precipitation or ultrafiltration methods, may also be used in 

complex samples to increase protein concentration. 

 

 

Figure VI.4: 
18

O-labeling of complex protein samples from human plasma. Spectra a) and b) 

correspond to the overnight protein digestion at 37ºC with trypsin in 
16

O- and 
18

O-enriched buffer, 

respectively. Spectra c) and d) correspond to protein digestion with the sonoreactor (15 min; 50 % 

amplitude) in 
16

O- and 
18

O-enriched buffer (for details, see section VI.3.3.4). 

 

VI.4.5. Ultrasound-based 
18

O-labeling of proteins from human plasma 

 

The labeling procedure reported in this manuscript was further tested in a complex protein sample 

from human plasma. As we were only interested in studying the labeling efficiency, protein 

identification was not performed. Thus, after precipitation with cold acetone, protein aliquots of 10 µL 

in ammonium bicarbonate (100 mM, pH 7.5 – 8.5) were reduced, alkylated and finally labeled with 

trypsin in 
18

O- or 
16

O-enriched buffer by two different methods: (i) overnight (37ºC); and (ii) in the 

sonoreactor during 15 min (50 % amplitude), which was previously found to be the best ultrasonic 
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enhanced 
18

O-labeling method. Regarding the number of peptides obtained with the different 

procedures, 181 peptides were labeled with the overnight method, 177 peptides were labeled with the 

sonoreactor and, from these peptides, 122 were common to both methods. The remaining peptides, 

which were characteristic to each method, had a relative intensity below 15 %. Furthermore, as can be 

seen in Figure VI.4, the background noise and baseline in the mass spectra obtained with the different 

labeling methods were similar.  

 

 

 

Figure VI.5: 
18

O-labeling of complex protein samples from human plasma. Comparison between: a) 

18
O-labeling efficiency (

18
Ototal %); and b) 

18
O-labeling degree (

18
O2 % ) obtained with the overnight 

(12 h; 37 ºC) and the sonoreactor (15 min; 50 % amplitude) methodologies. (n = 3) 

 

Regarding the labeling efficiency for the most intense peptides, the results obtained were similar 

between the two methodologies tested and showed that all the peptides were labeled with at least one 

18
O-atom in a percentage higher than 90 % when the sonoreactor methodology was used (Figure 

VI.5a). These results are also very close to the best results previously obtained for the standard 

proteins. However, as far as the labeling degree is concerned (Figure VI.5b), the results presented a 

larger variation between different peptides, as obtained for α-lactalbumin when the accelerated 

procedure was used. In fact, only the peptide corresponding to 1623 m/z was double labeled with a 

similar percentage to the overnight procedure: ca. 88 %. Peptides corresponding to 927, 960 and 1467 

m/z presented double labeling percentages higher than 50 %, but lower than the double labeling yield 
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of 85 % obtained with the overnight methodology. This is probably related with the presence of 

multiple proteins with different characteristics, some of them more efficiently digested with trypsin 

than others. It must be also noticed that peptides corresponding to 1160, 1226 and 1342 m/z were 

present in the mass spectra of the ultrasonicated samples with a lower relative intensity, compared to 

the mass spectra of the overnight labeled samples. Actually, if we exclude these peptides, it is possible 

to confirm the trend observed for the standard protein samples: the higher the peptide mass, the lower 

the percentage of double 
18

O-incorporation. 

 

VI.5. Conclusions 

 

The results obtained show that the ultrasonic probe is capable of accelerating the labeling reaction 

from 12 h, the classic overnight methodology, to only 120 s without compromising the labeling 

efficiency. Yet, the labeling degree, i.e. the percentage of double 
18

O-labeled peptides was lower than 

that obtained with the classic methodology, especially for larger peptides. It was also found that the 

use of an ultrasonic probe is not recommended for the acceleration of the labeling reaction when the 

ultrasonication time is higher than 120 s, at least with the conditions here reported, because the aerosol 

formation, sample overheating and uncontrolled secondary reactions, that occur during ultrasonication 

at high intensities, compromise the 
18

O double incorporation at the carboxyl group of the peptide.  

  

Regarding the sonoreactor, the results obtained from 30 to 120 s were similar to the ones obtained with 

the direct ultrasonication method, but in contrast to the ultrasonic probe, as the ultrasonication time 

increased, higher labeling efficiencies and higher double labeling yields were obtained. Furthermore, 

the sonoreactor technology has some advantages over the ultrasonic probe: (i) it provides indirect and 

less intense ultrasonic energy, preventing aerosol formation; (ii) no sample overheating occurs, 

because the temperature of the water bath where ultrasonication takes place can be controlled; and last 

but not least, (iii) the ultrasonication is performed in sealed vials, preventing sample contamination. 

The results achieved for the labeling degree (
18

O2 %) in just 15 min of ultrasonication were similar to 

the ones obtained previously with the overnight methodology. This was further confirmed with the 

labeling results obtained for ovalbumin.  

  

When the ultrasonication was performed with different enzyme-to-protein (E:P) ratios the results 

showed that the labeling efficiency and the labeling degree were best with an E:P ratio of 1:40 (w/w). 

However, for low concentration protein samples, higher E:P ratios were required to obtain an 

acceptable double labeling yield, even when the classic methodology was performed.  

  

Our results demonstrate that the isotopic labeling reaction can be performed in simple protein samples 

in only 15 min, in a direct labeling approach using indirect ultrasonication provided by the 

sonoreactor. No intermediate drying steps are required in this procedure, which facilitate on-line 
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approaches for protein quantitation. In addition, the sonoreactor has a higher sample throughput than 

the ultrasonic probe, which minimizes the sample treatment time and simplifies the overall workflow. 

However, when applied to a complex protein sample such as human plasma, this technology did not 

promote efficient double 
18

O-incorporation, compromising protein quantitation. Therefore, in the 

presence of this type of samples two approaches can be used: (i) the decoupled labeling procedure in 

which peptides are double labeled in percentages higher than 95 % [36]; or (ii) mathematical 

algorithms that measure the effective 
18

O-incorporation rate due to variable enzyme substrate 

specificity during the labeling reaction and correct for the 
18

O abundance [37, 38].  
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VII.1. Abstract 

 

We report in this work on the robustness of ultrasonic energy as a tool to accelerate the isotopic 

labeling of proteins using the 
18

O-decoupled procedure. The first part of the decoupled procedure, 

comprising protein denaturation, reduction, alkylation and digestion, was performed in 8 min under 

the influence of an ultrasonic field. The second part, the isotopic labeling, was performed with and 

without the use of ultrasonic energy. Our results clearly demonstrate that the 
18

O-isotopic labeling in 

the decoupled procedure cannot be accelerated using ultrasonic energy. 
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VII.2. Introduction 

 

Protein quantitation using isotopic labeling of peptides with 
18

O has recently recalled the attention of 

the proteomics scientific community, due to its almost perfect characteristics to be used in differential 

protein expression and relative protein quantitation studies [1]. 

 

18
O-labeling of proteins can be performed by two different approaches [2]. On the one hand, the 

protein enzymatic digestion and the labeling process are completed at the same time. On the other 

hand, the protein cleavage and the labeling reactions are carried out in different steps; this procedure is 

named as decoupled 
18

O-labeling. 

 

Ultrasonic energy (UE) has recently emerged as a powerful tool in sample treatment for proteomics 

[3–7]. Furthermore, it has been demonstrated that UE can reduce the sample treatment time for protein 

identification through MS techniques, namely by peptide mass fingerprint, from 12 - 24 h to 8 min [7]. 

Notably, not only time is saved, but also the handling is simplified since there is no need of high salt 

concentrations or chaotropic agents. Moreover, UE has been applied to speed up the sample treatment 

for 
18

O-labeling in both the decoupled and direct approaches [4, 8]. 

 

We demonstrate in the present work that in the 
18

O-labeling decoupled procedure UE is only worthy to 

speed up the protein enzymatic digestion, and it is ineffective in the enhancement of the labeling 

process. 

 

VII.3. Experimental 

 

Protein digestion and labeling was performed using the materials and reagents as described elsewhere 

[4–7]. The Sonoreactor, model UTR 200, from Hielscher Ultrasonics (Teltow, Germany) and the 

ultrasonic multi-probe from Branson Ultrasonics (Danbury, CT, USA), model SLPe (150 W, 40 kHz 

ultrasonic frequency, 1 mm probe diameter), equipped with a multi-probe detachable horn (model 

4c15) were used as UE sources. 

 

Digestion of proteins was performed with a urea-free procedure, as previously described by our group 

with minor modifications [7]. Briefly, a stock solution of BSA or α-lactalbumin was prepared in 

ammonium bicarbonate buffer (25 mM, pH 8.25) using natural abundance water, and then mixed with 

acetonitrile (ACN) in a 1:1 ratio. To speed up the process, protein denaturation, reduction (DTT 10 

mM) and alkylation (IAA 50 mM) were performed with UE (sonoreactor, 50 % ultrasonication 

amplitude, 1 min ultrasonication time). Aliquots of 5 µL, corresponding to 15 µg of protein, were 

diluted to a final volume of 20 µL with ammonium bicarbonate (12.5 mM). Trypsin was added (1:20 

(w/w) enzyme-to-protein ratio) to a final volume of 24 µL and the protein solutions were 
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ultrasonicated with the sonoreactor during two intervals of 2.5 min at 50 % amplitude. To stop the 

enzymatic reaction, 2 µL of formic acid (50 %, v/v) were added. Finally, the samples were dried by 

vacuum centrifugation. For the 
18

O-labeling, the dried digested peptides were dissolved in 10 µL of 

calcium chloride (50 mM) and 10 µL of ACN (20 % , v/v)/ ammonium acetate (100 mM, pH 6.75) 

with proteomics grade trypsin in a 1:40 or 1:20 (w/w) enzyme-to-protein ratio. Then, the samples were 

dried again, and after evaporation the dried samples were dissolved in 10 mL of natural abundance 

water or 97 % 
18

O-enriched water. Then, the digested peptides were labeled during 12 h (6 + 6 h) at 

37ºC with the addition of a second amount of trypsin (1:40 (w/w) enzyme-to-protein ratio) after the 

first 6 h, or labeled with UE using the sonoreactor at 50 % amplitude, with different ultrasonication 

time: (i) (2.5 + 2.5 min); (ii) 5 min (continuous); (iii) (5 + 5 min); (iv) (15 + 15 min); and (v) 30 min 

(continuous). A second amount of trypsin (1:40 (w/w) enzyme-to-protein ratio) was always added to 

the samples after the first ultrasonication period, except when continuous ultrasonication was 

performed (ii and v), where trypsin (1:20 (w/w) enzyme-to-protein ratio) was added once, before the 

labeling reaction. The total amount of trypsin added was the same in all experiments. For comparative 

purposes an ultrasonic multi-probe was also used at 10 % amplitude during (2 + 2 min) to accelerate 

the labeling reaction (trypsin was added twice). Furthermore, a set of experiments where no UE was 

used to accelerate the labeling reaction was also performed at room temperature (RT): (i) (2.5 + 2.5 

min); (ii) (5 + 5 min); and (iii) (15 + 15 min). In all experiments trypsin was added twice (1:40 (w/w) 

enzyme-to-protein ratio) as explained before. The labeling reaction was stopped by adding TFA to 1 % 

(v/v) final concentration. 

 

MALDI-TOF-MS spectra were obtained with a Voyager DE-PRO™ Biospectrometry™ Workstation 

model from Applied Biosystems (Foster City, CA, USA), equipped with a nitrogen laser radiating at 

337 nm using the conditions described elsewhere [4–7]. 

 

Isotopic peak deconvolution was performed with the deisotope function of the Data Explorer™ 

software (version 4.0) from Applied Biosystems [9]. To test the applicability of this function, the 

mathematical algorithm for deconvolution described by Yao et al. [10] was also used in the first steps 

of this work to calculate the 
16

O/
18

O ratios, and the results were compared. 

 

VII.4. Results and discussion 

 

Protein enzymatic digestion was done in 
16

O water, which was then removed by drying the sample in a 

vacuum centrifuge. The samples were dried to avoid the interference of any H2
16

O in the following 

labeling step with 
18

O. The labeling reaction time was comprised between 5 min and overnight (12 h). 

Data presented in Figure VII.1a) with the percentage of double 
18

O-incorporation in BSA peptides 

with the most intense peaks, shows that the double labeling of BSA peptides was achieved very 

quickly: in 5 min most of the peptides were double labeled in a percentage higher than 90%. 
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Figure VII.1: a) And b) show the influence of time and ultrasonic energy on the double 
18

O-

incorporation (
18

O2 %) through the most intense peptides obtained after MALDI-TOF-MS analysis of 

BSA (15 μg) and (b) α-lactalbumin (15 μg), respectively. Different labeling procedures were used: (i) 

overnight labeling at 37ºC (6 + 6 h); ultrasonication with the sonoreactor at 50 % amplitude during (ii) 

(2.5 + 2.5) min; (iii) 5 min (continuous); (iv) (5 + 5) min; (v) (15 + 15) min; (vi) 30 min (continuous); 

and labeling without ultrasound at RT during (vii) (2.5 + 2.5 min); (viii) (5 + 5) min; and (ix) (15 + 

15) min. c) Comparison of the labeling degree efficiency, calculated as the ratio between peptides 

labeled with one 
18

O (
18

O1) and peptides labeled with two 
18

O (
18

O2), obtained for BSA (15 μg) after 

ultrasonication with different ultrasonic devices and without ultrasonic energy: (i) no-ultrasound at 

37ºC overnight (6 + 6 h); (ii) sonoreactor at 50 % amplitude during (2.5 + 2.5 min); (iii) no-ultrasound 

at RT during (2.5 + 2.5 min); (iv) ultrasonic probe at 10 % amplitude during (2 + 2) min. d) And e)  

report the comparison between 
18

O-labeled human plasma peptides with the following different 

methods: (i) overnight (O) at 37ºC (6 + 6 h); (ii) sonoreactor (U) at 50 % amplitude (5 + 5 min or 15 + 

15); and (iii) no-ultrasound (N) at RT (5 + 5 min or 15 + 15 min). * Peptide not present in the spectra. 

For all experiments three replicates were performed (n = 3). 



Chapter VII 

177 

 

When the labeling reaction was performed with ultrasonic energy no improvement was obtained. The 

same set of experiments was repeated with α-lactalbumin. For this protein, the effect of UE on the 

double labeling efficiency can be easily understood by looking to the peptides VGINYWLAHK 

([M+H]
+
:
 
1200.65 m/z) and ILDKVGINYWLAHK ([M+H]

+
: 1669.94 m/z) in Figure VII.1b). The 

double oxygen incorporation results obtained with an ultrasonication time of (2.5 + 2.5 min) were 

similar to the values obtained with the same reaction time at RT without ultrasonication. In addition, 

no differences were found concerning the yields of double 
18

O-incorporation when other labeling 

times were tested, with and without the use of UE, (data not shown). Hence, performing isotopic 

labeling in a decoupled procedure using UE [8] does not produce any improvement, at least for the 

conditions here reported. To further confirm this conclusion, a set of experiments using BSA was 

carried out using an ultrasonic probe instead of the sonoreactor as proposed by Ferrer et al. [8]. 

Results presented in Figure VII.1c) show conclusively that there were no differences when the 

labeling reaction was performed with or without the use of an ultrasonic probe in (2 + 2 min). In other 

words, in the decoupled procedure the use of UE in the labeling step is ineffective. It must be referred 

however, that UE is a powerful tool when the isotopic labeling is performed during protein digestion, 

as demonstrated by Carreira et al. [4].  

 

Additional corroboration of our conclusion was obtained by labeling Human plasma (Sigma), ca. 40 

µL. The plasma was dissolved in ammonium bicarbonate (25 mM) after acetone precipitation. Each 

sample was digested with 2 µg of trypsin in 5 min using the sonoreactor technology. Then, all samples 

were concentrated to 10 µL and cleaned with zip-tip to eliminate salts from biological origin, which 

could interfere with the labeling reaction or subsequent analysis. Finally, the samples were dried, 

dissolved in 
18

O water and labeled with and without UE as described in the caption of Figure VII.2. 

After careful inspection and comparison between the MALDI spectra of labeled and unlabeled 

samples, as shown in Figure VII.1d) and e), 182 ± 1 (n = 3) labeled peptides were found for the 

overnight procedure; 171 ± 2 (n = 3, 10 min) and 176 ± 2 (n = 3, 30 min) labeled peptides were 

obtained with the ultrasonic method; and the following labeled peptides at RT (no ultrasonication): 

181 ± 1 (n = 3, 10 min) and 181 ± 3 (n = 3, 30 min). Concerning the 
16

O/
18

O-labeling efficiency and 

the double 
18

O-incorporation (
18

O1/
18

O2), we found that ca. 98% of all peptides were single or double 

labeled, and the percentage of double 
18

O-incorporation was higher than 90%. However, the classic 

overnight 
18

O-labeling performed better, since the intensities of the mass peaks observed in the 

MALDI spectra were generally higher, compared to the accelerated protocols, as can be seen in Figure 

VII.2. Even though, it must be emphasized that the results achieved in only 10 min of labeling were 

good, since a considerable number of labeled peptides was obtained, most of them with good 

intensities. In any case, for 10 or 30 min of labeling reaction, no improvements on the yields of the 

labeled peptides neither on their intensities were observed when ultrasonication was used, comparing 

to the results obtained for the same time with no ultrasonication. 
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Figure VII.2: MALDI mass spectra of Human plasma samples (~ 40 μg) labeled with 
18

O using the 

following treatment/conditions: lyophilized human plasma from Sigma was dissolved in 1 mL of 

phosphate-buffered saline (PBS; pH = 7.2) and then aliquots of 40 µL were precipitated overnight 

with 5 volumes of cold acetone. The samples were centrifuged at 10 000 x g, for 30 min (4ºC); the 

supernatant was removed and the pellet was air dried. The pellet was dissolved in 40 μL of ammonium 

bicarbonate 25 mM/ acetonitrile 50 % (v/v) and ultrasonicated in the sonoreactor (50 % amplitude) 

during 1 minute to promote protein denaturation. Reduction and alkylation were performed with DTT 

(10 mM) and IAA (50 mM), respectively, in the sonoreactor (50 % amplitude) for 1 minute (each 

reaction). Protein digestion was performed during 5 min (2.5 + 2.5 min) in the sonoreactor (50 % 

amplitude) with proteomics grade trypsin (1:20 (w/w) enzyme-to-protein ratio). Formic acid was 

added to 1 % to stop the enzymatic digestion and the samples were concentrated to 10 μL in the 

vacuum centrifuge. Sample cleaning was performed before the labeling reaction with C18 reversed-

phase ZipTip
®
.
 
After cleaning the samples, the reagents used in the labeling reaction – CaCl2 (50 mM); 

NH4CH3COO (100 mM); acetonitrile 20 % (v/v); and proteomics grade trypsin (1:20 (w/w) enzyme-
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to-protein ratio) were added. The peptides were dried again and finally dissolved in H2
18

O (97% atom 

abundance) or in H2
16

O. Five labeling methods were tested: a) overnight – 12 h (6+ 6 h) at 37 ºC; b) 

ultrasonication with the sonoreactor – 10 min (5 + 5 min) at 50 % amplitude; c) ultrasonication with 

the sonoreactor – 30 min (15 + 15 min) at 50 % amplitude; d) without ultrasonication - 10 min (5 + 5 

min) at RT; and e) without ultrasonication - 30 min (15 + 15 min) at RT . The labeling reaction was 

stopped by adding TFA to 1 % and the peptides were analyzed by MALDI-TOF-MS. 

 

VII.5. Conclusions 

 

This work clearly demonstrates the great potential of UE to enhance the procedure
 
for protein 

18
O-

labeling, but only when applied to the following steps in the first part of the 
18

O-decoupled procedure: 

(i) protein denaturation, (ii) protein reduction, (iii) protein alkylation and (iv) protein digestion. Our 

results do not validate the data previously reported in literature [8] and suggest that the labeling 

reaction in the decoupled procedure cannot be accelerated or improved with ultrasound, neither with 

an ultrasonic probe nor with the sonoreactor. 
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VIII.1. Conclusions 

 

New ultrasonic-based procedures for rapid protein identification and quantitation by mass 

spectrometry have been developed. Ultrasonic energy was successfully used to enhance, improve and 

simplify different stages of the typical sample treatment workflow for protein identification and 
18

O-

labeling for protein quantitation. 

 

Protein enzymatic digestion is the crucial step of any peptide mass fingerprinting experiment for 

protein identification, and it is usually performed during 12 h. Hence, ultrasonic energy was first 

applied to this stage, specifically to in-gel protein digestion. Different ultrasonic devices, such as the 

ultrasonic probe and the sonoreactor, were used, and the following operating conditions were studied 

and successfully optimized: (i) sample volume; (ii) sonotrode diameter; (iii) ultrasound amplitude; (iv) 

ultrasonication time; (v) protein denaturation; (vi) protein concentration; (vii) cooling; and (viii) 

enzyme concentration.  

 

As far as the ultrasonic probe is concerned, the results showed that protein digestion can be carried out 

in 120 s, in a sample volume as low as 25 µL. When possible, 100 µL should be used instead, to avoid 

aerosol formation and extra manipulation steps. The diameter of the probe was not a critical parameter 

to obtain good results, but it should be chosen in accordance with the sample volume. In addition, due 

to the short ultrasonication time used for protein digestion, there is no risk of sample overheating. 

Regarding the minimum amount of protein necessary to obtain confident identification, the threshold 

was the same as for the classic sample treatment: 0.06 µg (quantity of BSA used for enzymatic 

digestion). Finally, it was also found that, to obtain confident protein identification, the reduction and 

alkylation procedures cannot be omitted in the sample treatment even when ultrasound is used to 

accelerate the enzymatic reaction. 

 

Successful protein identification was also obtained after 60 s of enzymatic digestion in the sonoreactor 

at 50 % amplitude. Besides being faster than the classic sample treatment, the sonoreactor 

methodology is also faster than the common ultrasonic probe procedure, since it allows the 

simultaneous digestion of 6 samples. Moreover, because the ultrasound intensity is lower than the one 

provided by the probe, the ultrasonication time can be increased without increasing gel degradation, 

and without compromising protein identification. At last, it must be highlighted the sonoreactor 

technology performs ultrasonication in closed vials, which reduces contamination between samples 

and allows the application of this procedure to hazardous biological samples. Moreover, sample 

contamination with metals, as in the case of the ultrasonic probe, is avoided. Due to the 

aforementioned reasons, the sonoreactor is the recommended ultrasonic device for protein digestion. 
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The application of ultrasonic energy was also tested in other stages of the gel-based workflow for 

protein identification, namely: protein reduction, alkylation and gel washing steps. The total time 

needed to perform those steps was reduced ca. 85 %. Furthermore, the sample handling was drastically 

simplified. The results obtained, i.e. the number of identified peptides and percentage of protein 

sequence coverage, were similar between the ultrasonic bath, the sonoreactor and ultrasonic probe. 

Yet, the ultrasonic bath provides higher sample throughput and therefore, it is the recommended 

apparatus enhance protein reduction, protein alkylation and the gel washing steps.  The new procedure 

for protein identification by PMF was successfully validated in complex biological samples from 

sulfate reducing bacteria: Desulfovibrio desulfuricans G20, Desulfuvibrio gigas NCIB 9332, and 

Desulfuvibrio desulfuricans ATCC 27774 

 

For the optimization of the direct labeling procedure, different ultrasonic devices were used: an 

ultrasonic bath, an ultrasonic probe and a sonoreactor. Regarding the ultrasonic bath, the best results 

were obtained in 30 min with an ultrasound frequency of 130 kHz, a bath temperature of 60ºC, and 70 

% of amplitude. The labeling efficiency (
16

O
 
/
18

O) obtained in these conditions was equivalent to the 

classic sample treatment, but the labeling degree (
18

O1/
18

O2) was only acceptable for BSA. A water 

bath at 60ºC, with no ultrasonication, was also tested for comparative purposes and the results 

obtained, i.e. labeling efficiency and labeling degree, were lower than the ultrasonic bath procedure. 

As far as the ultrasonic probe is concerned, the labeling efficiency was not compromised and the best 

results were obtained after 120 s. Yet, the labeling degree was lower than that obtained with the classic 

methodology, especially for larger peptides. Overall, the best conditions were achieved with the 

sonoreactor, using an enzyme-to-protein ratio of 1:40 (w/w), and 50 % of ultrasound amplitude during 

15 min. It was also found that the labeling efficiency and labeling degree vary with the sample 

concentration and the type of peptide. The sonoreactor procedure was further tested in a complex 

protein sample from human plasma, but acceptable double 
18

O-incorporation results were not 

obtained. Hence, in the presence of complex samples like this, two approaches are recommended: (i) 

the decoupled labeling procedure, in which peptides are double labeled in percentages higher than 95 

%; or (ii) mathematical algorithms that measure the effective 
18

O-incorporation rate and correct for the 

18
O abundance, due to the variable enzyme-substrate specificity during the labeling reaction. 

 

Finally, interesting results were obtained when ultrasonic energy was applied to the decoupled 
18

O-

labeling procedure. A significant simplification and reduction of the sample treatment time was 

accomplished in the first part of the decoupled procedure: the total time used for protein denaturation, 

reduction, alkylation and digestion was reduced from 12 h to only 8 min with the sonoreactor, at 50 % 

of ultrasound amplitude. However, the results obtained in the second part of the procedure, comprising 

protein 
18

O-labeling, do not validate previously published data by other authors. The labeling reaction 

was assessed with and without ultrasonic energy, and the results obtained with both approaches were 
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equivalent to the ones obtained with the classic methodology. These results were confirmed when a 

complex protein sample, from human plasma, was processed with the described sample treatment. 

 

VIII.2. Final remarks and future prospects 

 

Proteomics has experienced an enormous growth and innumerous developments since it was 

introduced in early 1990’s, and nowadays its applications span different areas of knowledge, from 

fundamental systems biology, to clinical diagnosis. Over the years, different technologies and 

methodologies have been developed, most of them related with protein separation, quantitation and 

mass spectrometry analysis. Yet, most of these technological advances and improvements are not 

implemented in many small laboratories, because the technology is not easily accessible, or because it 

is too expensive.  

 

The procedures developed throughout this dissertation rely on ultrasonic energy for rapid protein 

identification and quantitation. The ultrasonic devices used are easily accessible from different 

companies, and most of them are available in the common laboratory: the ultrasonic bath, for instance, 

is present in almost all laboratories, and can be used for different tasks; and the ultrasonic probe is also 

common and used most of the times for cell disruption in biological samples. Furthermore, the 

developed methodologies are simple, easy to perform, minimize the sample handling, can be used for 

on-line approaches, and save time and money. 

 

However, despite the significant reduction and simplification of the sample treatment achieved with 

the new ultrasonic-based procedures, the handling still needs to be done by humans. Therefore, one of 

the most interesting applications of this work would be the development of ultrasound robotic 

platforms. Robots equipped with multi-ultrasonic probes, or with a sonoreactor-like bath, could be 

used to perform all the tedious sample handling for protein identification or quantitation, allowing the 

researcher to be focused on more important tasks, such as data analysis and interpretation of the 

results. Furthermore, the variability in the results would be largely decreased by automated systems. 

 

Ultrasonic energy has proven its efficiency to enhance protein digestion with trypsin. Yet, different 

proteases, or combinations of proteases, are sometimes used for the digestion of complex protein 

samples. Thus, it would be interesting to evaluate the efficiency and effect of ultrasound when applied 

to protein digestion with different proteases. Moreover, it would be also very important to test the 

application of ultrasonic energy in on-line approaches, particularly MudPIT approaches 

 

Another interesting application would be the analysis of complex biological samples for rapid 

detection of pathogenic micro-organisms. This would be useful not only in pandemic situations, which 

require the rapid identification of the infectious agent, but also to identify the biological agents used in 
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biological warfare and terror, which demand a rapid response from governments to minimize the risk 

for civilians.  

 


